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Short Abstract

Language Recognition is the problem of discovering the language of a spoken definition

utterance. This thesis achieves this goal by using short term acoustic information
within a GMM-UBM approach.

The main problem of many pattern recognition applications is the variability of problem

the observed data. In the context of Language Recognition (LR), this troublesome
variability is due to the speaker characteristics, speech evolution, acquisition and
transmission channels.

In the context of Speaker Recognition, the variability problem is solved by solution

the Joint Factor Analysis (JFA) technique. Here, we introduce this paradigm to
Language Recognition. The success of JFA relies on several assumptions: The global
JFA assumption is that the observed information can be decomposed into a universal
global part, a language-dependent part and the language-independent variability
part. The second, more technical assumption consists in the unwanted variability
part to be thought to live in a low-dimensional, globally defined subspace. In this
work, we analyze how JFA behaves in the context of a GMM-UBM LR framework.
We also introduce and analyze its combination with Support Vector Machines
(SVMs).

The first JFA publications put all unwanted information (hence the variability) improvement

into one and the same component, which is thought to follow a Gaussian distributi-
on. This handles diverse kinds of variability in a unique manner. But in practice,
we observe that this hypothesis is not always verified. We have for example the
case, where the data can be divided into two clearly separate subsets, namely data
from telephony and from broadcast sources. In this case, our detailed investigations
show that there is some benefit of handling the two kinds of data with two separate
systems and then to elect the output score of the system, which corresponds to the
source of the testing utterance.

For selecting the score of one or the other system, we need a channel source related analyses

detector. We propose here different novel designs for such automatic detectors.
In this framework, we show that JFA’s variability factors (of the subspace) can be
used with success for detecting the source. This opens the interesting perspective
of partitioning the data into automatically determined channel source categories,
avoiding the need of source-labeled training data, which is not always available.

The JFA approach results in up to 72% relative cost reduction, compared to the overall results

GMM-UBM baseline system. Using source specific systems followed by a score
selector, we achieve 81% relative improvement.
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Résumé Français

La problématique traitée par la Reconnaissance de la Langue (LR) porte sur la définition

découverte de la langue contenue dans un segment de parole. Cette thèse se base
sur des paramètres acoustiques de courte durée, utilisés dans une approche d’adap-
tation de mélanges de Gaussiennes (GMM-UBM).

Le problème majeur de nombreuses applications du vaste domaine de la re- problème

connaissance de formes consiste en la variabilité des données observées. Dans le
contexte de la Reconnaissance de la Langue (LR), cette variabilité nuisible est due à
des causes diverses, notamment les caractéristiques du locuteur, l’évolution de la
parole et de la voix, ainsi que les canaux d’acquisition et de transmission.

Dans le contexte de la reconnaissance du locuteur, l’impact de la variabilité solution

peut sensiblement être réduit par la technique d’Analyse Factorielle (Joint Factor
Analysis, JFA). Dans ce travail, nous introduisons ce paradigme à la Reconnaissance
de la Langue. Le succès de la JFA repose sur plusieurs hypothèses. La première est
que l’information observée est décomposable en une partie universelle, une partie
dépendante de la langue et une partie de variabilité, qui elle est indépendante de la
langue. La deuxième hypothèse, plus technique, est que la variabilité nuisible se
situe dans un sous-espace de faible dimension, qui est défini de manière globale.
Dans ce travail, nous analysons le comportement de la JFA dans le contexte d’un
dispositif de LR du type GMM-UBM. Nous introduisons et analysons également sa
combinaison avec des Machines à Vecteurs Support (SVM).

Les premières publications sur la JFA regroupaient toute information qui est amélioration

nuisible à la tâche (donc ladite variabilité) dans un seul composant. Celui-ci est
supposé suivre une distribution Gaussienne. Cette approche permet de traiter les
différentes sortes de variabilités d’une manière unique. En pratique, nous observons
que cette hypothèse n’est pas toujours vérifiée. Nous avons, par exemple, le cas
où les données peuvent être groupées de manière logique en deux sous-parties
clairement distinctes, notamment en données de sources téléphoniques et d’émis-
sions radio. Dans ce cas-ci, nos recherches détaillées montrent un certain avantage à
traiter les deux types de données par deux systèmes spécifiques et d’élire comme
score de sortie celui du système qui correspond à la catégorie source du segment
testé.

Afin de sélectionner le score de l’un des systèmes, nous avons besoin d’un analyses
engendréesdétecteur de canal source. Nous proposons ici différents nouveaux designs pour

de tels détecteurs automatiques. Dans ce cadre, nous montrons que les facteurs
de variabilité (du sous-espace) de la JFA peuvent être utilisés avec succès pour
la détection de la source. Ceci ouvre la perspective intéressante de subdiviser les
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données en catégories de canal source qui sont établies de manière automatique.
En plus de pouvoir s’adapter à des nouvelles conditions de source, cette propriété
permettrait de pouvoir travailler avec des données d’entraînement qui ne sont pas
accompagnées d’étiquettes sur le canal de source.

L’approche JFA permet une réduction de la mesure de coûts allant jusqu’àrésultats
généraux 72% relatives, comparé au système GMM-UBM de base. En utilisant des systèmes

spécifiques à la source, suivis d’un sélecteur de scores, nous obtenons une améliora-
tion relative de 81%.
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Zusammenfassung Deutsch

Automatische Sprachen-Erkennung (Language Recognition, LR) besteht darin, die Definition

Sprache einer gesprochenen Sequenz herauszufinden. Die vorliegende Dissertation
erreicht dieses Ziel, indem kurzzeit-akustische Informationen in einem GMM-UBM-
basierten Ansatz analysiert werden.

Das Hauptproblem zahlreicher Anwendungen der Mustererkennung ist die Problem

Veränderlichkeit der beobachteten Daten. Im Umfeld der Sprachenerkennung (LR),
stammt diese störende Variabilität aus den individuellen Merkmalen des Sprechers,
aus Schwankungen und Veränderungen des Gesprächs und der Stimme, sowie aus
dem Erfassungs- und dem Übermittlungskanal.

Dieses Variabilitätsproblem wird im Kontext der Sprecher-Erkennung mit der Lösung

Faktoranalysis-Technik (Joint Factor Analysis, JFA) gelöst. In dieser Arbeit wird
dieses Paradigma in die Sprachenerkennung eingeführt. Der Erfolg der JFA ba-
siert auf mehreren Annahmen: Die Globalanschauung der JFA besteht darin, dass
die beobachteten Informationen aufgetrennt werden können in einen universellen
globalen Teil, einen sprachabhängigen Teil und einen sprachunabhängigen Varia-
bilitätsteil. Die zweite, technischere Annahme besagt, dass sich dieser störende
Variabilitätsteil auf einen global definierten Unterraum von geringer Dimension
beschränkt. In der vorliegenden Arbeit wird analysiert, wie sich die JFA im Rahmen
eines GMM-UBM-basierten LR-Systems verhält. Auch dessen Kombination mit
Support Vector Machine (SVM) wird hier eingeführt und analysiert.

Die ersten Veröffentlichungen zu JFA fassen alle störenden Informationsteile Verfeinerung

(die Variabilitäten) in einer einzelnen Komponente zusammen. Es wird davon
ausgegangen, dass diese einer Gauss-Verteilung folgt. Dies bewältigt verschiedene
Arten von Variabilität in einer einheitlichen Weise. In der Praxis wird hier jedoch
beobachtet, dass diese Hypothese nicht immer bestätigt werden kann. Die Daten
der NIST LRE 2009 Kampagne können z.B. in zwei klar trennbare Untermengen
aufgeteilt werden, nämlich Daten aus telefonischen und aus Rundfunk-Quellen. In
diesem Fall zeigen die hier durchgeführten ausführlichen Untersuchungen, dass ein
gewisser Vorteil besteht, diese zwei Datentypen durch zwei separate, spezialisierte
Systeme zu handhaben und als Ergebniswert denjenigen zu wählen, dessen System
der Quelle der Testsequenz entspricht.

Um den Ergebniswert des einen oder anderen Systems zu wählen, wird ein weiterführende
AnalysenModul benötigt, welches die Quelle erkennt. Hier werden verschiedene neuartige

Designs solcher automatischer Detektoren vorgeschlagen. In diesem Rahmen wird
auch gezeigt, dass die Variabilitätsfaktoren (des JFA-Unterraums) erfolgreich da-
zu verwendet werden können, den Quellenkanal zu erkennen. Dies eröffnet die

7



interessante Perspektive, die Daten in automatisch bestimmte Quellkategorien zu
unterteilen. Dies würde vermeiden, eine quellenbezeichnende Annotation für die
Trainingsdaten zu benötigen, welche nicht immer zur Verfügung steht.

Der JFA-Ansatz erlaubt eine relative Kostenreduktion von bis zu 72% gegen-globale
Ergebnisse über dem GMM-UBM-basierten Grundsystem. Beim Einsatz von quellspezifischen

Systemen und einem Ergebniswert-Selektor wird eine relative Verbesserung von
gar 81% erreicht.
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Abstract

Language Recognition (LR) is the problem of discovering the language of a spoken baseline
approachutterance. In this work, we focus on a short term acoustic modeling approach,

leaving apart solutions which use phonetics, phonotactics or prosody. Our base-
line approach builds on Gaussian Mixture Models (GMMs), whose mean values
are adapted from the Universal Background Model (UBM) through a Maximum
A Posteriori (MAP) criterion. The systems are evaluated on the NIST LRE 2005 and
2009 core tasks, including utterances of nominally 30 seconds of 7 and 23 languages,
respectively.

One of the big problems of researches in the general field of pattern match- problem

ing is the variability of the observed data. In the narrower domain of Language
Recognition (LR), this variability is due to factors of different nature: the differences
between individual speakers of a language, the evolution of the speech of each
speaker, differences or fluctuations in the signal due to the acquisition and trans-
mission channel, and possibly dialects or accents (in the case we do not want to
distinguish between them). A good LR system should come along with considerable
robustness against variations of these factors.

This thesis introduces a series of novelties. As guiding axis, we analyze the novelties

effects of a technique called Joint Factor Analysis (JFA) in order to handle data
variability and to add considerable robustness to the system. The JFA approach
has been reported to work well in the context of Speaker Recognition. Here, we
adapt and introduce it to the LR problem. When adding the JFA step to the baseline
(GMM-UBM) system, we observe a relative reduction of the detection cost of up
to 72%.

Another novelty consists in combining the JFA approach with Support Vector SVM

Machines (SVMs). So we investigate how JFA behaves in the context of an SVM,
for which different topologies are trialed. The addition of SVMs to the GMM-UBM
approach is already able to reduce the error rates or the costs considerably. But
applied to the baseline GMM-UBM, JFA has an even bigger gain. The gain of
applying SVMs on JFA-compensated models is not as high as the JFA gain is for the
GMM-UBM approach. The resulting absolute average cost (with JFA) may even be
slightly higher.

The first JFA publications put all unwanted information (hence the variability) database
differencesinto one and the same component, which is thought to follow a Gaussian distribu-

tion. This handles diverse kinds of variability in a unique manner and produces a
considerable enhancement over systems without JFA. But in practice, we observe
that this hypothesis is not always well verified. In NIST LRE 2009, we have for
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example the case, where the data can be divided into two clearly separate subsets,
namely data from telephony, Conversational Telephone Speech (CTS), and from
broadcast Voice of America (VOA) sources. In analyses, we show that the data of
these two channel sources have rather big differences.

In an in-depth investigation of unseen magnitude, we look at different ways to
cope with this problem. We try to handle these two channel categories in a separate,
parallel way up to a certain point and then to merge together these two parts to
produce one score or decision in output.

The best strategy of this case is to build two completely parallel systems and to
choose the one or the other score for output. In the context of this investigation, this
is first done by an oracle indicating of which channel category the actual utterance
is. This approach yields an additional cost reduction of 18.6% relative, compared to
the global JFA approach. In total, this is an enhancement of 81% relative over the
baseline system.

The analyses selecting the score of the correct system lead to researches oncategory selector

finding automatic ways to detect the category of an utterance. We propose different
novel ways to achieve this. They operate directly and solely on the variability
factors of the JFA approach. While the oracle detection constitutes ground-truth,
our automatic detectors have a channel category identification rate of 87%. When
replacing the oracle by the automatic module, the system performance degrades
only by 6%, relative to the oracle one.

The detectors which are based on the variability factors have a big advantage.
Using these factors opens the interesting perspective of partitioning the data into
automatically determined channel source categories. A dedicated system can then
be built for each of these classes and this automatic detector finally be used for
merging them. They may even be employed in an environment where the training
data is not accompanied by labels about the channel source.
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Problem and Challenge

The works presented in this document concern the large domain of automatic language
recognitionspeech processing. It is articulated around Language Recognition, whose task

is to recognize the language of some spoken utterance. The general approach is
narrowed down to a purely acoustic based technique, allowing to run it in an
automatic way without the need of laborious data preparation steps like authoring
phonetic transcriptions.

Speech is a living entity. It comes under very different natures, such as read structure of
speechor conversational speech. Speech may also be characterized depending on the

person who speaks, with the obvious example being the natural differences between
women and men speaking. Another kind of variation may also be due to more
technical aspects like the environment or the type of microphone used for the
recording.

Automatic Language Recognition relies on automatically trained language language
modelsmodels, which have to capture thoroughly the structure of spoken languages. They

have also to be able to highlight the particularities of single languages or the
differences between languages in order to discern them.

All the information contained in the captured speech signal and that does not nuisance

belong to the language itself can be considered as nuisance from the point of view
of the Language Recognition task. This typically corresponds to the troublesome
variabilities sketched above and which are due to the manifold sources as the type
of speech, the speaker particularities, as well as the recording and transmission
channel.

This thesis focuses on handling these variabilities in order to enhance the variability
compensationability to recognize the language. The proposed approach particularly looks at the

variabilities and introduces ways to compensate the systems for this nuisance.

The variability problem can be looked at either in a holistic way considering different
approacheseverything that does not depend on the language itself as being nuisance in an

abstract manner. On the other hand, the different variabilities may be approached
separately and enumerated individually. This implies to identify the diverse natures
of variability: speaker particularities, modifications in the recording setup or even
distinguishing general transmission sources like the telephone or broadcasts.
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The heart of this thesis builds around an approach, which directly takes intomain challenge

account this nuisance. It consists in explicitly modeling the variability at the same
time as the classical language-dependent information, but in a separate term. This
thesis will analyze on one hand the holistic treatment by applying this Joint Factor
Analysis (JFA) approach, which proved well for speaker verification. It will as well
investigate ways to handle transmission source categories in a separate manner.

The main challenge of this thesis is the nuisance that hits Language Recognition
applications in a considerable way. The effects of these variabilities and their
compensation are investigated under the protocols defined by National Institute of
Standards and Technology’s biennial Language Recognition Evaluations.
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Für alle, die die Schönheit von Wissenschaft
anderen zeigen wollen.
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Language Recognition is the problem of discovering the language of a spoken
utterance. It is achieved by automatic approaches founded typically on signal pro-
cessing and stochastic modeling. They are applied on different parts of information
carried in the signal (acoustic, phonotactic, semantic, etc). The whole is realized by
a sequence of processing steps, which are subjected to various kinds of factors.

— ⋄—
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July 12, 2010.
English translation: To all, who want to show the beauty of science to others.
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Chapter 1. Introduction to the Research Field

1.1 Scientific goals

This section sketches the problems faced by Language Recognition (LR) systems. It
further presents some basic requirements of an automatic speech processing system,
together with the difficulties to meet them. The broad goals of the work presented
in this document are located with respect to these basic requirements. Subsequent
sections will then give a more in depth presentation of the domain of Language
Recognition as well as a more ample introduction to the problem we try to solve.

— ⋄—

A general goal of a research project may consist in improving performances ofgoal of research

a system in a given (and controlled) evaluation context. For Language Recognition
systems, this would mean to defy the performance of the best system at any price.
But before all, it is surely of bigger value to the scientific community if research
targets in producing advances and novelties that are persistent over the change of
setups.

In order to be perennial, an approach should evolve towards universal applicabil-easy extension

ity. This means that results of research efforts should still be applicable if several
factors of the evaluation or the application context get changed. This permits for
instance to be able to add new languages to the recognition system with a minimal
(or at a lowered) effort.

The universality of the chosen approaches is one of the basic principles adopted
for the research efforts presented in this document. This means that the same
process may be applied on any set of target languages, independent of the number
or the identity of these languages. It should be possible to extend this set to include
additional languages with a very small effort in human and computational labor.
One way to achieve this goal is by choosing a purely acoustic approach. In the
concrete case, the only thing required for adding a new language should be a decent
amount of recorded speech in that language.

Besides the independence to the set of languages that have to be recognizedrobustness

and the ease to add new languages, we think an LR system should also be robust.
This research goal includes robustness against modifications in the environment (for
instance changing from indoor to outdoor recording). It can also be the robustness
against changing signal conditions such as when data is coming from diverse origins
(e.g. telephonic vs. broadcasted data). Particularly targeted is also robustness to the
natural "fluctuation" of the observations for a given class (for a language, in our
case). This fluctuation is the variability that occurs between the single observations
or utterances to be more specific.

This thesis focuses on the general problem of variability. By variability, wevariability

mean the differences we can observe between samples belonging to the same class.
Variability is one of the main factor hindering Language Recognition performances.
This is also true for most pattern recognition problems. For instance in image
processing, this may include distortions like rotation or illumination, as well as
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1.1. Scientific goals

variabilities inherent to the classes’ subjects like wearing glasses or hair style in a
face recognition context.

In the automatic speech processing domain, fluctuation problems can be con-
sidered to be conceptually similar to those in image processing, but of a different
nature since we are working on a temporal signal. One fundamental difference is
that the speech signal is said to be non-stationary in the long term, reflecting the
fact that an utterance is the result of the production of a sequence of phones. These
have rather different short-term characteristics. The aspect of an utterance (thus the
sequence of phones) is mainly dependent on the speech content (what is being said).

Even if the observed characteristics in speech processing are of acoustic nature,
problems about variability have to be faced. In the LR context, different kinds
of variability may be distinguished. They will be highlighted in the following
paragraphs.

In the particular domain of Language Recognition the languages can be distin- speaker

guished by their acoustic properties. Apart from this, acoustic differences mainly
occur between distinct speakers. This has a big impact in modeling the spoken
language concisely. Each speaker has a specific (physical) configuration of its vocal
tract, as well as behavioral differences in the production of speech. These distinc-
tions are usually called inter-speaker variability. They are useful and typically tracked
by Speaker Recognition (SR) applications, but are disturbing in the context of a
Language Recognition system. As (Abe et al., 1990; Li, 1994) also point out, the
variability between speakers (of a same language) is of roughly the same magnitude
as the difference between the languages themselves.

On an other aspect, since languages are living objects undergoing slow, but accent

perpetual evolution, a class representing a particular language can not be defined
with precision. This fact is largely endorsed by different accents or even dialects
of one and the same language. Hence for practical usage of automatic LR, the
choice of pooling together different dialects into the same class or to handle them
separately is dictated by the application context. This inherent aspect of dialects,
accents or simply the language’s natural evolution also accounts for differences
between utterances of the same class.

Besides differences between individual speakers, differences in the speech signal channel

recording and transmission steps can also be observed. These steps are referred to
as channel. Their variability is troublesome in most applications.

A further variability that may be observed lies in the fact that a same speaker intra-speaker

will produce slightly different signal characteristics depending to her/his state
(being of health, emotional, environmental, etc nature). The voice of a given speaker
is also evolving over time. In Speaker Recognition, this is called the intra-speaker
variability.

All the mentioned differences will be referred to as variabilities. The works pre- acoustic
variabilitysented and proposed in this document are aimed at solving this problem involving

variabilities of diverse sources.
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Chapter 1. Introduction to the Research Field

As hinted above, Speaker Recognition (SR) has to handle session and chan-
nel variability. One of the major questions addressed in the presented works is
if the techniques used in SR may also be applied to the Language Recognition
problem. A further important question is if these techniques are able to handle
the aforementioned differences between individual speakers in the same run as
the channel effects. The channel effect is probably of a more fine-grained nature
than the inter-speaker variability. Is this even the case if the variabilities to track
down are substantially different between a Speaker Recognition and a Language
Recognition application? In Language Recognition, they are more diverse and span
bigger differences1.

To sum it up, the basic problem we have to face is the variability of the data. Allclass
separability this variability can be seen as being the spreading of the points (coordinate-vectors

representing individual utterances) of one class with regard to the spacing between
the different classes. Fig. 1.1 illustrates this in (a) where the point distributions of
different classes largely overlap — the classes are difficult to be separated. The
ellipses depict the scattering of each class’ points (being the covariance of a Gaussian
fitting). What we target to obtain is a compensation or a reduction of the variability.
This means that the points of each class will be more concentrated and the different
classes farther apart. This is depicted in (b). As result, the classes will be more
separable since the point distributions of different classes will overlap less.

centroids
english

hindi
japanese

korean
mandarin

spanish
tamil

(a) Problem: classes largely overlap

centroids
english

hindi
japanese

korean
mandarin

spanish
tamil

(b) Target: reduced variability = separability

Figure 1.1: Distribution of language-centroids and individual utterances, projected onto first two
PCA dimensions, standard deviation ellipses for each language’s points

As a further addition of variability, we may see differences between recording
databases (corpora) in their design and realization. This kind of variability is similar
to the channel variability, but on a far larger scale than the fine differences of the
channel between individual utterances.

To give an idea, in the presently analyzed case, this involves corpora of conver-

1Assuming that the speaker variability is more important than the variability about the channel.
LR includes the problem of speaker variability whereas on the other side, SR usually does not contain
the problem of language variability (a speaker speaking in several languages, at least without accent).
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1.2. General introduction

sational telephone speech opposed to recordings of radio broadcast.

Handling corpora of noticeably different channel categories constitutes the database
differencessecond major axis of the works presented herein. We think that the huge differences,

as they may occur between databases, require more ingenious approaches. In a first
step to resolve such a possible mismatch of channel category, we assume that these
categories (corpora sources) may be handled separately up to a certain level. Then
the results will have to be merged.

A next step to this parallel handling may then be some way to detect the category
by automatic means. This will allow to partition the data into two or more subsets
(i.e. for the case the category is not known a priori). These subsets can then be
handled separately following the parallel approach. Since there is a multitude of dif-
ferent ways to design such channel category detectors, some interesting approaches
will be investigated in this work.

— ⋄—

All presented works are based on the principle of keeping a Language Recogni- summary

tion system easily extensible to additional languages while improving its robustness.

The main problem we observe in the data is its variability with respect to the
different classes, which are the languages. This variability is due to very different
sources, including differences between individual speakers, recording setup, signal
transmission, or even accent or dialects.

The approaches investigated in this work follow the goal of taking into account
the variability. We then compensate this variability in order to enhance class separa-
bility. This also yields systems that are more robust to fluctuations in the different
kinds of variabilities.

1.2 General introduction

In order to be able to address the burning problems and the goals stated in previous
section, we particularly introduce the working domain by a top-down approach. It
also locates the application field among similar and linked domains. This will be
followed by a description of the challenge Language Recognition implies and some
areas of application.

1.2.1 Situation of the domain

Automatic speech processing is an important domain of artificial intelligence pattern
recognitionresearch, or more technically speaking, machine learning or pattern recognition.

Its visions comprise computer systems able to dialogue with humans. There is
a lot of research going on in this domain and such systems could evolve to next
generation’s most used human-machine interfaces. They are usually quite well

23



Chapter 1. Introduction to the Research Field

accepted because of their non-intrusive nature and their simple and natural way of
usage.

Automatic speech processing covers several fields. One of the best known isautomatic
speech

processing
automatic speech recognition, whose task is to transform an acoustic speech signal
into its textual/symbolic representation which is then interpreted for some action
to be taken by the computer. This ranges from keyword recognition (e.g. on cellular
phones) over dictation systems (for text processing) to fully featured dialog systems
(hotel reservations or similar).

Another area with a lot of research is speaker verification or speaker identifi-
cation. The verification problem checks if the observed utterance has really been
spoken by the speaker the actual person claims to be. Thus this usually fulfills an
authentication purpose.

A further field of automatic speech processing is the task dealing with automaticautomatic
language

recognition
Language Recognition (LR), which is the process of recognizing the language used
in a sample of speech. LR systems can be evaluated in an identification task, electing
the one correct language out of a (closed) set of L languages, which is referred to as
Automatic Language Identification (ALI or LID).

But usually the task is designed in a slightly different manner, namely in ver-
ification mode, detecting if a candidate language is used in the input waveform
or not. So for an utterance of unknown language, the system is confronted with a
series of binary (yes/no) questions — one for each potential language. LR is often
run in a closed set context, meaning that the utterance is forcibly spoken in one
of the proposed languages. But language detection easily allows open set exper-
iments, since the system may have responded with "no" for all languages. What
changes is principally the method of system performance measurement. For the
work presented here, we will mainly focus on closed-set language detection.

While there are only a few publications dating from before 1980 (Leonard andprior work

Doddington, 1974; House and Neuburg, 1977; Cimarusti and Ives, 1982), Automatic
Language Recognition grew to an important field of research only after 1990 (see
(Geoffrois, 2004) for a very concise overview). It really started running in the very
early 1990s with several feasibility studies and first dedicated works with real data
(Savic et al., 1991; Riek et al., 1991; Muthusamy and Cole, 1992; Hazen and Zue,
1993; Zissman, 1993; Lamel and Gauvain, 1994; Zissman and Singer, 1994). During
the same period, the first large Language Recognition centered corpora appeared:
OGI2-MLTS3, (Muthusamy et al., 1992) and three years later the OGI 22-Languages
(Lander et al., 1995) corpus.

Significant progress has been made over the last decades through advanced
modeling that can be applied at the different levels of information. For example on

2Oregon Graduate Institute, School of Science and Engineering, a department of Oregon Health &
Science University (OHSU), subsequently named Department of Science & Engineering, and now
Center for Spoken Language Understanding, of the OHSU (CSLU) (OGI).

3Multi-Language Telephone Speech corpus, sometimes just called TS (MLTS).
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the acoustic level (Zissman, 1993; Torres-Carrasquillo et al., 2002b; Singer et al., 2003;
Campbell et al., 2004; Verdet et al., 2009b) and on the phonotactic level (Zissman
and Singer, 1994; Yan et al., 1996; Zissman, 1996; Hazen and Zue, 1997; Torres-
Carrasquillo et al., 2002b; Singer et al., 2003; BenZeghiba et al., 2008). A large deal of
the progress has been stimulated by a growing availability of large benchmarking
data sets (Muthusamy et al., 1992; Lander et al., 1995). A big part of progress has
also been induced by systematic comparisons of systems through the organization
of evaluation campaigns such as the NIST’s Language Recognition Evaluations
(LREs) in the years 1996, 2003, 2005, 2007 and 2009 (NIST LRE, 2009).

1.2.2 Challenges

Automatic Language Recognition consists in processing a speech signal to detect
which language the speaker is talking in. On a finer level, it could distinguish
different dialects or even regional accents or accents due to languages spoken by
non native speakers.

The main challenges in automatic LR are the following (the French article (Geof-
frois, 2004) gives a good sketch of these points):

• Certain languages are more proximate to other ones by nature, as for instance
languages of a same family or language group (e.g. the Latin languages).

• The natural language is a living object which undergoes a perpetual devel-
opment and evolution. It also has many facets depending on the region,
environment, speech topic, partner and communication medium.

accents• With increasing mobility and globalization, many people are urged to speak
in foreign languages (and are thus called non-native speakers). Without a
perfect integration and assimilation of this non-native language, there are
always some elements of the native language that interfere and which can
cause problems to the Language Recognition system.

dialects• Even native speakers can have intense accents or dialects. Sometimes, dialects
are so special that most Language Recognition systems will not work well
enough without special training for that dialect (or even introducing this
dialect as a sort of new language)4!

foreign words• Another problem consists in foreign words imported into a language. If they
were not fully adapted to the actual language, their sound (and even phono-
tactics) does not match the common sound (or construction) of the language.
Similarly, the pronunciation of proper names may also make phonemes of
other languages appear in the currently spoken language. This phenomenon
is especially present in multilingual countries.

4For supplementary information on accents, consider reading at least the introduction of (Vaissière
and Boula de Mareüil, 2004).
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From what is stated above, boundaries between languages are probably not
clear-cut. They are manifold and easily flow one into another. Because of that, a
lot of studies on Language Recognition are done with clearly distinctive categories
(exemplary languages) — omitting the fuzzy region in between them.

To complicate the LR task even more, we could have to process multilingual
speech signals, which requires them to be segmented into monolingual parts and
to identify the language of each of these segments. Such tasks are called language
segmentation and may for instance have to work on online streams (e.g. a radio
broadcast). They are out of the direct scope of this work.

1.2.3 Application areas

Automatic Language Recognition is applied where speech has to be handled in amultilingualism

multilingual environment. Nowadays, multilingual capacities are required in many
domains due to worldwide collaboration and services (enhanced by the internet)
or in environments covering several languages. This includes also tasks where an
automatic LR system assists humans to deliver a service in the requested language,
but also systems where speech is processed in a fully automatic way.

— ⋄—

One of the first real-world applications which showed interest to automaticsecurity
applications LR originated from nationwide surveillance applications. Such services try to spot

telephone calls of chosen languages. This implies a non-interactive LR system which
may also work offline on previously recorded data. This kind of application still
continues to be prompting nowadays and it is one of the driving entities, notably
through regular evaluation campaigns endorsed by this environment (i.e. NIST
LRE).

Another rather popular example is the one of a telephone server taking incomingtelephone

calls and detecting the language a client talks in. The call is then redirected to some
suitably skilled operator. Such servers could be found in multinational companies
or in government departments (like in the European Union since most probably no
operator speaks every of the 23 languages5). Its application could also reach other
telephone or computer based services like travel or tourism services, translation or
information services or even support in emergency situations (Lamel and Gauvain,
1994).

It can also be used as the first step of an automatic multilingual speech recog-
nition system. After the language has been detected, the speech recognition unit
for the corresponding language can be selected. This first step of a telephone
voice-activated service is nowadays performed asking the user to press a given key
on the telephone or to pronounce the preferred language, which is cumbersome.
Examples for such systems would be fully computer based telephone servers for

5See http://en.wikipedia.org/wiki/Languages_of_the_European_Union

26

http://en.wikipedia.org/wiki/Languages_of_the_European_Union
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commercial services like voice-commerce, banking or stock trading (Hieronymous
and Kadambe, 1996).

Automatic Language Identification systems will probably also find a large tagging

deal of applications in a passive (non-interactive) manner for processing (indexing,
tagging,. . . ) large data sets like uploaded videos, broadcast or TV recordings,
meeting minutes or for national security applications.

1.3 Approaches to language recognition

The previous sections laid out the domain of Language Recognition (LR) in a general
manner and from an applicative point of view. On the more technical side, we now
will introduce some basic requirements and characteristics of speech processing
systems. They are also valid in the context of LR systems. Subsequently, the different
types of automatic approaches are listed and compared to some insights of how
recognition is likely to be carried out by humans.

1.3.1 System characteristics

A very early publication about Language Recognition, (Cimarusti and Ives, 1982),
gives a good sketch of what an LR system should bring along. The enumerated
points are reproduced in this section with updated and extended descriptions:

Content independence — A LR system should not depend on the topic covered by
the speech utterance. It should be able to work on speech covering any domain.
So it should not be restricted to applications for instance for one specific
profession. Most of the times, this condition is verified, even if sometimes it
may be linked to the form of the speech (read, prepared or conversational).
In comparison to that, we find even nowadays a vast majority of (text based)
translation systems not holding this point since they keep to be specific to one
application domain (as the medical or the juristic one).

Context independence — "Context-independence indicates that the speech signal sur-
rounding the extracted portion may be from among an almost infinite number of
possible contexts." (Cimarusti and Ives, 1982). For standard applications, where
a recorded segment containing only one language is presented to the system,
this condition is met by design. In other applications, where for instance
consecutive segments of different languages have to be classified, we possibly
dispose of the information that any two adjacent segments are not of the same
language. This could make the detection slightly easier since the priors change.
For automatic speech recognition, this condition is met on a short-time level
by explicitly modeling context-dependent phones/phonemes.

Acquisition and transmission independence also named Form independence by
(Cimarusti and Ives, 1982) — An LR system should be able to work with
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speech of different form or coming from different sources. This may include
recorded speech, speech transmitted over a telephone line, speech acquired
by different means (e.g. handhelds) and in different environments or even live
acquisitions or streams. This is one of the hardest condition to meet. Generally,
as long as the testing data is of similar nature as the data previously seen,
there is not much trouble. This is one point which will be addressed in this
work (Chapter 6).

Language independence — The system design should not rely on the availability
of data or knowledge that exists only for certain languages. It should be able
to work with any language. It would be discriminatory if the system was able
to work only on a dozen of worlds many thousand languages.

Speaker independence — The LR system should not be dependent on the speaker
producing the utterance. Nor should it depend on speaker characteristics
like sex, age, emotional state or health. This is also a condition, which is not
trivial to verify. It constitutes one of the driving factors for the investigations
addressed in this work (see also Sect. 1.4).

Style independence — An LR system should be able to work on speech that comes
in different styles, such as read speech, prepared speech, formal speech and
conversational or casual speaking. An even bigger impact to the speech style
has for instance the high stress of people in an urgency situation (such as
911-calls in the U.S.). Early systems worked on read speech, while the NIST
LRE campaigns work with conversational (telephone) speech.

Degraded speech signal — An LR system should also come along with a certain
robustness against degraded conditions such as noise. Usually, this point
heavily depends on the severity of the degradation. This may range from
only a slight background noise to very adverse conditions, where the speech
is barely understandable even for humans.

Total automation — The ultimate goal of a Language Recognition system is of
course its ability to run without (or with the least possible) human interaction.

While some of the above conditions are easier to be met, other are more delicate
and require dedicated research. Our goal is to develop a system that is above
all widely reusable and as portable as possible. It should be task and language
independent in order to be able to add new languages solely by presenting a set of
corresponding utterances to the system.

Specifically for the presented works, the conditions that are easiest met are
the content and the context independence. Also met by design (using acoustic
modeling) are the independence of the language and the total automation. The
driving factors for the analyses following in this document are clearly the speaker,
as well as the acquisition and transmission independence. Even if our works do
not specifically cope with style independence, it should in many cases not have
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a big impact. We are principally working with conversational speech6, which is,
compared to prepared speech, a moderately hard task. One of the biggest problems
on the style side is speech of urgency situations (911-calls for instance). Such data is
very challenging, even if the signal itself may be of good quality.

1.3.2 Basic human language recognition

The human’s capacity in recognizing the language spoken depends a lot of the
set of languages he knows (Muthusamy et al., 1994). We may distinguish three
performance levels for humans. These are sketched in (Cimarusti and Ives, 1982):

• If the person is fluent in a certain language, the recognition is nearly in-
stantaneous. Probably this works understanding single words and possibly
recognizing a particular dialect reflected in the way of pronunciation. Things
degrade in adverse conditions like huge background noise or mixed up speak-
ing.

• On the next level are languages that are familiar to the listener and in which
he has still certain competency. Usually languages of this class take some-
what longer to be recognized. Either we are looking for some known word
(our dictionary being smaller) or we are gathering enough occurrences of
characteristic sound structures, that are known by the listener.

• The weakest level of human language recognition could be called handling
out of set languages. Here the human listener does not have much competency.
He may still guess the kind of language, based on the overall stored linguistic
knowledge and based on parallels or similarities to known languages. He
may for instance be able to attribute the language to a family of languages.

The way the human works is based a lot on its knowledge and previous confronta-
tions with languages. A big part is also due to the knowledge of similarities between
languages, as their membership to language families.

— ⋄—

We may give the following interpretation of language recognition by humans: If
the languages are well known by the listener, the recognition happens in a rapid
way and is likely to use features of high linguistic levels, such as recognizing words.
But the recognition seems to be based more on the acoustic (and maybe prosodic)
level if the language has to be inferred from other, better known, languages of a
same family for instance.

To make the link to automatic LR, we can for instance see that language "families"
may be distinguished simply by working on statistics of the ratio between vowels
and consonants and similar measures (Rouas and Farinas, 2004; Rouas et al., 2005)
and also (Adda-Decker et al., 2003; Barry et al., 2003).

6The VOA dataset is likely to contain prepared speech as well.
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Opinion: A good part of the observed links between languages can be explained
etymologically (languages belonging to the same group or family). Despite
this, some links or proximities that may appear can not be explained as
simply as that. Such findings even awake the curiosity of linguists7. By own
observation, some evidence may for instance be explained in terms of more
technical linguistic cues. As an example, some grouping of languages seem
to be linked to the occurrence possibility of consonant clusters (pronouncing
two or more consecutive consonants). This is the fact that the phonology of
certain languages is more permissive for consonant clusters whereas other
languages are quite restrictive or do not even permit them8. As an other
example, certain ways of observation seem to link Latin languages more to
the Indian ones than to English. Finding an explanation to this is slightly
more delicate9.

1.3.3 Automatic approaches

The diverse approaches and techniques of automatic Language Recognition (LR)
explore linguistic units at different levels. The rules describing these units are
collected in appropriate models. They may operate on a low level such as purely
acoustic models or explore high linguistic units like syllables or words. A brief
overview is given in the following list, while acoustic modeling is detailed in
Sect. 2.4 and other major approaches in Sect. 3.4.3:

Acoustic modeling: Statistical approach to model directly the probability of a lan-
guage, given a set of features measured on the acoustic signal in regular
intervals. This is done by calculating the likelihood that the observed data
have been generated by a previously trained language model (using Bayes’
Theorem). For modeling acoustics, most often, GMMs (or GMM based tech-
niques like SVMs) are used. All works presented in this work are built on
approaches working on this acoustic level.

Phonetic modeling: A statistical model based on the likelihood that an acoustic
feature vector is part of a phoneme that itself belongs to a hypothesized
language. Phonetic LR is typically based on the output likelihoods of one
Hidden Markov Model (HMM) for each language, where each state reflects a
phoneme or a broad phonetic class. In fact to be accurate, the units represented
by the models are rather speech sounds than real phonemes as they are defined

7In reference to thoughts and discussions for instance during some Interspeech 2009 presentations
of the linguistic track, as well as other observed discussions.

8On the permissive side may be found Indo-European (e.g. English, Spanish) and Eurasian
languages (e.g. Hindi, Tamil) and on the restrictive side may be found North-Asian languages (like
Japanese, Korean and Mandarin), whilst the majority of Malayo-Polynesian languages (e.g. Tahitian,
Maori) are inhibitive. cf. The World Atlas of Language Structures Online, http://www.wals.info

9For instance Spanish and Hindi, which, at a quick glance, exhibit some very similar word roots,
by comparing their Swadesh lists at http://en.wiktionary.org/wiki/Appendix:Swadesh_
lists.
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by linguists or phoneticians.

Phonotactic modeling: Statistical approach to the likelihood of a hypothesized lan-
guage, given a detected (pseudo-) phoneme sequence. One global or several
language dependent phonetic recognizers may be used. The succession of
phonemes is basically exploited using language dependent n-grams. In the
most basic approach, only the sequence of recognized phonemes is used for
language modeling. But the Likelihoods generated as by-product by multiple
recognizers may also be included into the system. The main approaches for
the phonetic and the phonotactic levels are presented later on in Sect. 3.4.3.

Syllable modeling: Describes how syllables are composed of consonantal and
vocalic phonemes. Syllables are, similar to context-dependent phonemes,
derived from proper phonemes. This comprises statistics on the occurrence
of different syllables, as well as modeling the structure of the syllables. As
an example, languages that are called "open" have all syllables ending with a
vowel10.

Prosodic modeling: Describes the rhythm, the melody, the stress and the intonation
of a whole phrase (prosodic unit) or a possible tone of a word (e.g. in Chinese
or some African languages). Such prosodic features are more difficult to
measure and come in a wide variety (e.g. Itahashi and Du, 1995; Yan et al.,
1996; Hazen and Zue, 1997; Barry et al., 2003; Rouas et al., 2003).

Morpho-lexical language modeling: Describes the set of words that a language
uses. This recognizes the words pronounced in the utterance using phone
recognizers and language-dependent word lexica (Kadambe and Hieronymus,
1995; Hieronymous and Kadambe, 1996).

Syntactic language modeling: Describes the sequences of words by modeling the
grammar of a language. The design and implementation of systems using
linguistic units of such very high level is often considered too heavy and
expensive compared to its benefit over phonotactic modeling.

Some of these approaches include or may be extended by a duration component duration
modelingthat is taken into account by the system. So the duration of the units at different

levels may be modeled as well and can include additional language-dependent
information. In general, doing so tends to show its usefulness. Such observations
may be found for instance in (Pellegrino et al., 1999a), which states "segmental
duration provides very useful information".

An automatic LR system exploits one or more of these modelization levels. system fusion

When using more than one system, the individual results have to be fused together
in order to produce a final result. There are some difficulties arising while trying to
merge different systems because one of these may generally outperform others or
may even have the tendency to produce false results under certain circumstances.

10This is typically the case for most Polynesian languages, as for example Tahitian, Marquesan or
Hawai’ian.
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Some appropriate tuning of the fusion weightings (e.g. Hazen and Zue, 1997) has
to be found or some more evolved back-end has to be used (see also Sect. 3.5.2 for
this).

When comparing single acoustic and phonotactic-based systems, neither isbest system?

consistently more superior than the other. In fact, over history of LR, these two
approaches take turn to outperform each other (Pellegrino et al., 1999a,b). Fusing
systems of the two approaches is generally rather beneficial since they work on
different levels and track different kinds of information.

Some of these systems require, according to the techniques used, certain pho-our choice

netic and linguistic knowledge. The majority of the systems working on higher
levels, use training data with annotations. For instance phonotactic systems tradi-
tionally require some amount of phonetically transcribed data to build one or more
phone recognizers.

The phonetic transcription may also be obtained by automatic means where
a textual transcription (which has to be provided) is transformed to a phonetic
representation according to a phonetic lexicon or phonetization rules.

But some approaches have also been attempting to model higher level features
that are obtained in an completely unsupervised manner without the need of
transcriptions, as will be stated in Sect. 3.4.3.2. This allows to still use such higher
level systems (for instance a phonotactic system) (Pellegrino et al., 1999b; Verdet,
2005).

— ⋄—

The need of transcriptions or more advanced techniques makes up one of the
major bottlenecks in the development of higher level LR systems. The transcription
process is very time-consuming, costly and error-prone. This is one of the reasons
why we focus on acoustics-only systems in our works.

1.4 Variability compensation

After a review on the research domain and the requirements towards a Language
Recognition system in Sect. 1.2 and Sect. 1.3, this section states more in detail the
problem of the different variabilities which were shortly evoked in Sect. 1.1.

1.4.1 Speaker and channel variability

A recurrent difficulty is the fact that the speech signal includes all sort of information
that is not relevant to the task of Language Recognition – such as speaker and
channel dependent information. This makes systems with straightforward language
modeling not meeting the requirements of being independent of the speaker and of
the form (as described in Sect. 1.3.1). This constitutes the main motivation for the

32



1.4. Variability compensation

present works. We will show a solution to this, that still meets the total automation
condition and which uses purely data driven approaches.

— ⋄—

Speaker variability includes various physical and behavioral features of the inter-speaker
variabilityspeaking person. For instance vocal tract configuration, gender and age or growth,

but also culture, the native language or accents, as well as the nativeness or fluency
in the currently spoken language.

Intra-speaker variability, on the other side, comprises for instance the current intra-speaker
variabilityemotion and health status, tiredness or the time of the day. It also includes the topic

spoken about. This kind of variability is principally (but not exclusively) observed
over several recordings of the same speaker. These are called sessions. Intra-speaker
or session variability is an important factor for Speaker Recognition applications,
but for Language Recognition, it may likewise be attributed to the speaker or the
channel variability since these variabilities can not be measured separately, having
only one session per speaker.

Further, channel variability is contributed by different means of audio acquisi- channel

tion and transmission procedures. This includes room acoustics, the environment,
background noise, microphone setup (the type of microphone or telephone used)
and the distance of the speaker to it. Some effects may also be attributed to the
speech signal encoding and the transmission channel used.

In this work and in many other LR environments, we are mainly dealing with nuisance

telephony signals (since this field is driven by NIST evaluations). The speaker and
the recording condition potentially change from utterance to utterance. Because
of that, we propose here to handle all this non-useful or perturbing information
together. Further, we qualify it under the general term of nuisance. The observed
data is thus composed of useful information, which is the information that depends
on the language, and useless or even perturbing information that depends on the
above mentioned factors.

The feature extraction and modeling strategy (e.g. with GMMs), as described in
Chapter 2, should attempt to focus on the useful information and, at the same time,
minimize the effect of the language independent, perturbing information.

For the speech signal, it is well known that the usual feature extraction (Sect. 2.3) on feature level

approaches can only partially discard perturbing information related to the record-
ing setup and the transmission channel. Furthermore, a lot of the speaker dependent
characteristics are kept in the features. Feature extraction is thus not optimal, since
we do not know which parameters carry most useful information. In fact, we know
few things about perturbing information. Therefore, we try to countervail this fact
in the modeling stage (Sect. 2.4). This constitutes the topic of the works presented
in this document. We should therefore seek modeling strategies that can naturally
focus on the language dependent characteristics and that discard the language
independent ones. The strategy we propose in this work is to explicitly keep track
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of the language-independent variability, i.e. the nuisance.

Regarding the modeling methodologies, most of them are statistical. To em-model level

phasize language dependent information and minimize the speaker, channel and
session dependent information, the solution is usually to use a large set of training
data. This data typically includes many speakers and has session and channel infor-
mation which is similar to the one used in the testing conditions. In consequence the
models become robust enough to the speaker variability, but less so to the session
and channel variability.

The first solution, namely to increase the amount of data used for systemA: augment data
volume training, is not ideal, since it tries to hide the problem about variability with the

mass of data. Despite the use of larger and larger quantities of data, we usually
still experiment a rather big sensitivity of the models to mismatched conditions
between training and testing. So other techniques have emerged to compensate
such mismatches.

A second (and presumably better) way to a solution is applying normalizationsB: using
normalization at different levels. There has been considerable progress on normalization tech-

niques to achieve robustness in the feature extraction step (e.g. Matějka et al., 2006).
But such early-stage approaches like Vocal Tract Length Normalization (VTLN)
or RelAtive SpecTrAl transform (RaSta) (outlined in Chapter 3) are not enough to
remove all nuisance. Whereas on the side of modeling acoustic features, session
compensation has been tried (Castaldo et al., 2007b; Verdet et al., 2009b). Despite
these considerable advances, we may still see some disturbing sensitivity of the
models to a mismatch of channels. This occurs for instance when working on data
of different databases (Verdet et al., 2010b).

— ⋄—

The inter-speaker variability and the intra-speaker variability (as the channel
effects) are likely to be of different natures since the origins of these two kinds of
variabilities are different: on one side for instance the vocal tract or someone’s way
of speaking emanating from the speaker as human being and on the other side
channel distortions or noise, which are more of technical nature. Also, in Speaker
Recognition, they can be separated considerably well (by a technique introduced
later on in this chapter). But even when likely being of different natures, we will
try to handle them together in a holistic way, and simply englobe them under the
nuisance term.

1.4.2 Variability between databases

Even if the approach proposed herein is of great use, the resulting models remain to
a certain extent dependent on the global kind of data. This may be reflected in data
coming from different corpora. We refer to such a global kind as (channel) category.
We think this kind of nuisance of being even of another nature than the variabilities
presented in last section.
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As an example for big differences between databases, we analyze the fact that in
2009, it was the first time that NIST’s Language Recognition Evaluation (LRE) (NIST
LRE, 2009) included data of two quite different channel categories, namely the
classical Conversational Telephone Speech (CTS) and data coming from telephone
bandwidth parts of Voice of America (VOA) radio broadcasts (which constitutes the
major part). This LRE dataset disposes of a total of 23 target languages. In Chapter 6,
this work addresses also the challenge induced by the differences between these
two LRE 2009 channel conditions and analyzes ways to cope with this problem.

— ⋄—

In summary, the term nuisance encompasses a number of phenomena includ- problem:
variabilitying transmission channel effects, environment noise (other people, cars, TV, etc.),

variable room acoustics (hall, park, etc.), the position of the microphone relative
to the mouth and the variability introduced by the speaker himself. The solutions
proposed in the literature involve works at various levels of the signal processing
and modeling chain (feature space, model space and score space). In spite of using
sophisticated feature extraction modules, the troublesome variability introduces a
bias in estimated model parameters. This bias can dramatically influence the classi-
fication performance. This is mainly caused by the fact that the training databases
cannot offer an exhaustive coverage of all the potential sources of variability. The
retained solution consists of explicitly modeling this variability information.

1.4.3 Underlying model

Having stated the problem of variability, this section indicates how the solution of
explicitly modeling the nuisance is motivated and how this might be realized. It
gives a first presentation of the basic principle behind Joint Factor Analysis (JFA),
which is used to cope with this troublesome variability.

— ⋄—

In spite of the research efforts in the fields of audio feature extraction and mod-
eling, several domains of automatic speech processing have to face the problem
of nuisance or session/channel variability stated above. This channel variability prob-
lem, related to changing acoustic/transmission conditions from one recording11 to
another, has been identified as one of the most important source of performance
degradation in automatic Language Recognition (Kenny et al., 2005b; Vogt et al.,
2005; Campbell et al., 2006b; Matrouf et al., 2007; Castaldo et al., 2007b; Kenny et al.,
2008; Vogt et al., 2008; Matrouf et al., 2011).

The commonly used approaches in statistical classifier training (such systems solution: JFA

will be described in detail in Chapter 2) aim at estimating the parameters that
characterize the target pattern (in our case the language) itself. But the variability
is neither explicitly modeled in this training process, nor implicitly captured from

11This includes live acquisitions and working on streams as well.
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(the incomplete) training corpora. Recently, in the context of the speaker verifica-
tion task based on Gaussian Mixture Model (GMM)-Universal Background Model
(UBM), a Joint Factor Analysis (JFA) paradigm was introduced. This models the
speaker characteristics and the session variability at the same time, but as distinct
components (Bimbot et al., 2004; Kenny et al., 2005b; Vogt et al., 2005; Matrouf et al.,
2007; Kenny et al., 2008; Matrouf et al., 2011). The works presented herein build on
this paradigm, but here it is applied to the field of Language Recognition.

In terms of information contained in the observed speech utterances, we canbasic
decomposition decompose the model as follows: One component represents the information that

is linked to the language of the utterance. This is the useful information about the
target pattern. And another component represents the troublesome variability and
is explicitly enumerated. So, using the term model (here with symbol M) as working
entity that tracks information, we can write12:

Mobserved = Mlanguage + Mlanguage (1.1)

where Mobserved is the statistical model of the observed data. We assume that it can
be decomposed into the two components Mlanguage which is the statistical model for
the language information, and Mlanguage being the statistical model for the useless
information. So the first underlying idea is to separate the useful and the useless
information in order to model them separately and explicitly (but in the same run in
the same context). This allows to estimate and to characterize the nuisance instead
that it is just some noise in the target model.

The question which arises as next is how to separate the useful (Mlanguage)
and the useless (Mlanguage) components. One of the basic assumptions is that
the language-dependent information can be estimated by finding the part that is
common to all (training) utterances of a given language. We can easily think of
it being the average over these utterances. On the other hand, the information
which is not part of all utterances corresponds to the unwanted variability (speaker,
microphone, noise, etc...). This would be the remaining part of each utterance, once
the (language-dependent) average removed. This is the underlying strategy of
JFA, which is basically a simple idea. The exact way it works and a ready-to-go
implementation algorithm will be detailed in Chapter 4.

In this study, the model we propose is based on the use of the GMM-UBMGMM-UBM
approach approach, which will be presented in Chapter 2. The UBM is thought to be repre-

sentative of the whole acoustic space of speech. In LR, this comes down to a kind of
average, pooling all languages together. We focus on UBM-based GMMs and Joint
Factor Analysis for their intrinsic simplicity.

Some other statistical approaches, which are known for instance for speakerother
approaches verification, may propose a slightly higher potential but can hardly be applied

to LR out of the box. For example modeling the speaker using eigen-speaker

12This is just representative of what the decomposition aims to do and does not follow any mathe-
matical formalism.

36



1.5. Summary

factors (Kenny et al., 2008), which has shown better results than standard MAP
adaptation. In LR, Maximum Mutual Information (MMI) training of GMMs is said
to be more powerful than standard MAP adaptation (Burget et al., 2006), but its
training is very demanding in computation power and it has parameters that are
difficult to tune. First experiences of the JFA method applied to LR have been
proposed in (Verdet et al., 2009b; Brümmer et al., 2009) and integrating somehow
differing strategies in (Castaldo et al., 2007b; Hubeika et al., 2008).

A similar approach to deal with troublesome variability was proposed by (Camp-
bell et al., 2006b). This approach, named Nuisance Attribute Projection (NAP),
works in Super-Vector13 space and has hence to be used with an adequate classifier,
for example SVMs. The JFA presented here works at GMM-UBM and at frame level.
In this case the theoretical framework is more interesting, because it allows joint
modeling of different kinds of information, which is not the case of NAP-SVM. The
full JFA for Speaker Recognition is an example of such extended modeling, where, in
addition to nuisance modeling, a part of the speaker component is also constrained
to a low-dimensional subspace14. And the remaining part of the speaker component
spans the whole SV space (Kenny et al., 2008; Burget et al., 2009). Very recently,
JFA has also been applied to emotion detection (Dumouchel et al., 2009; Kockmann
et al., 2009) and to speech recognition (Povey and et al., 2010).

1.5 Summary

The Language Recognition system to be developed in this document should be design

designed in such a way to be extensible to other languages without much effort
and primarily not requiring annotated databases. It thus should be a language
independent, data driven approach to automatic LR, which does not require any
transcription or annotation.

The burning problem of such a system is the variability introduced by the problem

differences between speakers of the same language, recording setups, channel effects
and similar troublesome factors. This leads the observed data of each language to
be widely dispersed, compared to the spreading of the different languages between
each other (Fig. 1.1). In order to reduce or to compensate this variability, we gave an
initial introduction to the JFA paradigm. Having proved its usefulness in Speaker
Recognition, this work introduces the same paradigm to the task of Language
Recognition, which has its own particularities.

Another major problem is the discrepancy in the amount of data available for
each language. Whilst there may be hundreds of hours of speech for some common
languages, there may be just a handful of utterances for other rarer languages. The
kind or the source of this data may also have a big impact, as will be shown (in

13A Super-Vector (SV) is usually obtained by stacking the parameters of a model into one big vector.
More on this in Chapter 4 and Chapter 5.

14The concept of low-dimensional subspace will be introduced in Chapter 4.
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Chapter 6) e.g. when our system is trained on broadcast transmitted data and we
evaluate it using telephony data. Since the Joint Factor Analysis approach can not
fully solve the issue, additional ways to cope with this will also be attempted.

1.6 Structure of this document and our related publications

This document is divided into two main parts: Part I comprises a general and
detailed analysis and synthesis of the current state of the art. Chapter 1 provides an
introduction to the field of research. Chapter 2 contains a step-by-step presentation
of a baseline Language Recognition system. It is followed by some of the major
advances on this domain in Chapter 3.

Part II comprises the different novelties spawned by our works, namely a pre-
sentation of Joint Factor Analysis (JFA) applied to the field of Language Recognition
in Chapter 4 and an introduction of Support Vector Machines (SVMs) and their
combination with JFA in Chapter 5.

• Results of these two chapters on NIST LRE 2005 data have been published in
our INTERSPEECH 2009 paper entitled "Factor Analysis and SVM for Language
Recognition" in Brighton: (Verdet, Matrouf, Bonastre, and Hennebert, 2009b).

• The same JFA system has been applied to NIST’s 2009 data through our
participation to the NIST LANGUAGE RECOGNITION EVALUATION 2009 and
the associated workshop in Baltimore: (Verdet, Matrouf, and Bonastre, 2009a).

• Updated results of both systems and on both data sets have been published
in an article entitled "Modeling Nuisance Variabilities with Factor Analysis for
GMM-based Audio Pattern Classification", together with similar approaches
applied to Speaker Recognition and Video Genre Recognition, in the COM-
PUTER SPEECH AND LANGUAGE journal edited by Elsevier: (Matrouf, Verdet,
Rouvier, Bonastre, and Linarès, 2011).

JFA solving a main part of the variabilities, we still observe that this approach is
not omnipotent in the context of very different databases being used (telephone vs.
broadcast). In Chapter 6, we thus analyze how this may be solved.

• This analysis, result of Chapter 6, has been presented at ODYSSEY 2010, THE

SPEAKER AND LANGUAGE RECOGNITION WORKSHOP in Brno under the title
of "Coping with Two Different Transmission Channels in Language Recognition":
(Verdet, Matrouf, Bonastre, and Hennebert, 2010b).

Finally, in Chapter 7, we focus on score-level merging of specialized systems by
tackling different automatic channel category detectors, which opens the interesting
perspective of an automated way to subdivide the data.

• These results have been published in INTERSPEECH 2010 in Makuhari under
the title "Channel Detectors for System Fusion in the Context of NIST LRE 2009":
(Verdet, Matrouf, Bonastre, and Hennebert, 2010a).
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Why shouldn’t we succeed? Admiral Anderson did.

— Captain Bligh, Mutiny on the Bounty, movie, 1962
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In this chapter, we will introduce all elements needed for a baseline system. The
different steps required to build a Language Recognition system will be presented
in order to inscribe subsequent analyses, improvements and novelties that work
towards resolving the variability problem. The baseline system resulting from the
composition of this succession of steps allows also to obtain first basic results. It
provides also a benchmark which subsequent development is compared against.
These results are included in later chapters together with our novelties in order to
facilitate their comparison (Sect. 4.4, Sect. 5.4.1, Sect. 6.2 and partly Sect. 3.3.3).

— ⋄—

2.1 General classification system

This section gives a general overview over the different processing steps involved
in a pattern recognition system, of which Language Recognition is a particular
application. These steps will then be detailed in subsequent sections. They are
presented in the context of Language Recognition (LR).

— ⋄—

The aim of a pattern recognition system is to learn (by automatic means) apattern
recognition certain structure or pattern contained in the labeled training data and to recognize

it again while provided with some unknown data. For each category of input
data, a separate model is trained holding the pattern for this data category. Pattern
recognition addresses classification problems since at the later testing stage, it tries
to identify which category (or class) the unknown data belongs to. The models
can be seen as templates and the data of unknown class attempted to be matched
against them. In the scope of Language Recognition, each category or class generally
corresponds to one language (for general references to LR, see Chapter 3).

The aim of a Language Recognition (LR) system is to find the most likelyBayes’ rule

language l∗, given a speech utterance X (the observation) or in a slightly different
form, detecting if a specific language is used or not. This may be expressed as:

l∗(X ) = arg max
l∈L

[P(l|X )] (2.1)

where P( | ) is the conditional probability. P(l|X ) is a sketch of what we are
seeking and is thus called the posterior probability. By the fact, P(l|X ) is not directly
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2.1. General classification system

computable, but Bayes’ Theorem (Bayes and Price, 1763; Laplace, 1986; Bernardo
and Smith, 1994) and using flat language-priors allows to write1

l∗(X ) = arg max
l∈L

[P(l|X )] = arg max
l∈L

[P(X |l)] (2.2)

which uses the (computable) conditional Likelihood of the utterance, given a lan-
guage model l (see also Sect. 2.5.1 on scores).

The above being the aim of a recognition system, let us describe how this is LR phases

achieved. An overview of the typical steps composing a pattern recognition or
classification system is given in Fig. 2.1 and described subsequently in the context
of Language Recognition (LR).

input signals

models

feature
extraction

model
training

feature
extraction

training phase

testing phase

likelihood
calculation

unknown signal

score
processing

decision/
evaluation

Figure 2.1: The generic steps involved in any pattern recognition system

In a pattern recognition system, two sequential phases can be distinguished: the
training phase where the models are estimated using some training data and the
testing phase where they are applied on unseen data.

The very first stage in both phases is the preprocessing, called Feature Extraction feature
extraction(FE) and its objective is to reduce the amount of input data (in our case the audio

signal) to some useful and more manageable values (parametric representation),
called features. The audio signal is cut into chunks of several milli-seconds each and
converted to some parametric representation, the features. Every chunk produces
one set of features, called a feature vector. They all have the same number of
parameters and are therefore called being of d dimensions, since such a feature
vector may be seen as a point in a d-dimensional space. A whole utterance (speech
data) is thus transformed to a series of feature vectors. This step is presented more
in detail in Sect. 2.3.

The second stage in the training phase is one of the most most challenging parts. training

1Using Bayes’ Theorem: l∗(X ) = arg max
l∈L

[P(l|X )] = arg max
l∈L

[
P(X |l)P(l)

P(X )
] where the lan-

guages l are represented by their respective models. Since P(X ) does not depend on l, this term can
be omitted without changing the result. Moreover, if we have equal priors, as is the case for the NIST
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It consists of training the models - usually one for each language. In the optics
of the feature vectors being points in multidimensional space, the classes (here:
languages) are often simplified as being concentrations (or clusters) of points in
this space. So, training is the process of spotting and delimiting those clusters and
possibly tracing decision boundaries between clusters. This is achieved by applying
statistical analysis algorithms to the training data. The basic approach consists in
estimating a multivariate mixture (weighted sum) of Gaussian distributions over
the feature vectors belonging to one class in order to shape them most conveniently.
These are called Gaussian Mixture Models (GMMs) and are described in Sect. 2.4.

The key step of the testing phase is the application of the system to some newtesting

data, the class of which is unknown. It is called testing and involves calculating the
likelihood of the data, given each of the language models in turn (Eq. 2.2). When
an utterance of unknown class is presented to the system, it first undergoes the
very same Feature Extraction step as the training data. Then, the system calculates
the similarity of this data against each of the stored templates (the models). This
usually yields a correlation or similarity likelihood, which is called the score.

The score then undergoes some score processing in order to be normalized inscore
normalization different ways. This step is partly dependent on the final task, the kind of decision

and evaluation that will be carried out. Likelihood scoring and score processing are
presented in Sect. 2.5.

The normalized scores are then used to take some decision or used for systemdecision/
evaluation evaluation. In a real-world recognition system, this decision would typically be

a hard decision (Yes/No answers) and may result from comparing the scores to a
previously fixed threshold. In a research context, the system performance is usually
calculated using different thresholds in order to evaluate the system over a wide
range of applications. In such a context, the best threshold may also be determined
a posteriori (Sect. 2.6).

The normalized scores are at the same time an indication of confidence intoconfidence

the (hard) decision obtained by thresholding. To be able to give a confidence inter-
pretation to the scores, they have to be normalized (inter-utterance normalization,
Sect. 2.5.2). The confidence in scores that lay far over the threshold is high, whereas
the confidence into scores near the threshold is more limited.

— ⋄—

We saw that a pattern recognition system is composed of two phases, the training
phase with preprocessing and model training, which uses data of a training corpus,
and the testing phase where unseen and unlabeled data undergo preprocessing and
classification, followed by some means of evaluation of the results.

LRE protocols (NIST LRE, 2005, 2009; Greenberg and Martin, 2009), the priors’ term P(l) will be the
same for all l and can thus also be omitted. We finally end up with Eq. 2.2.
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2.2. The speech signal

2.2 The speech signal

Because of historical reasons, most Language Recognition (LR) systems operate on
and are tuned to telephonic speech data. So the data usually comes with a constant
sampling rate of 8 kHz and a 8 bit µ-law resolution (nowadays, it may typically
have been downsampled from 16 kHz recordings).

The speech signal is assumed to be stationary on a short term (this is fairly true
in the middle portion of phonemes). But obviously it is highly non-stationary on
the longer term. Recordings have lengths of a few seconds up to full half-hour
conversations. Since the sampling rate is 8 kHz, the Nyquist limit of extractable
frequencies is 4 kHz, which covers a good portion of frequencies that are present in
speech, but which is far from being optimal2. This counts among the issues about
speech data quality (Sect. 1.3.1).

2.3 Feature Extraction

As described in Sect. 2.1, a first step called Feature Extraction (FE) is needed to cut
down the audio data to a sequence of more manageable vectors, possibly normalized
and represented in a domain that is more convenient to model. This step is carried
out as well in the training, as in the testing phase, in an independent manner. We
present here the different operations which make up FE (see also Fig. 2.2).

— ⋄—

frames

windowing FFT

append
energy

cepstra extraction

augmenting

input signal

SDC
speech
activity

Mel
filter-bank
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σ²=1 

frames

cepstral analysisspectral analysis

Figure 2.2: Processing steps of Feature Extraction for obtaining cepstral coefficients and appending
SDCs

2.3.1 Cepstral coefficients

The very first step of FE cuts down the sampled and digitized speech signal to
parametric feature vectors, used for further processing. The parameterization

2For instance, it becomes hard to distinguish between some fricatives if we are limited at 4 kHz.
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chosen for the baseline system is based on a cepstral representation.

— ⋄—

We used a sliding window of Hamming type with a length of 20 ms and a shiftsliding window

of 10 ms. This allows on the one hand to take enough samples to be able to reliably
estimate frequencies at a given time t and on the other hand it assures that the
observation is not too far off the assumption of the signal being stationary in that
portion. This window configuration has a long tradition in speech recognition and
corresponds more or less to the time-frequency resolution capability of the human
ear. So one frame will be extracted every 10 ms by the subsequently presented steps.

Spectral analysis is carried out applying a Fast Fourier Transform (FFT) on thespectral analysis

samples contained in the window. Then, a bank of filters, non-linearly warped by
the Mel function, is applied. The Mel scale tries to meet towards human spectral
resolution capacities and is less sensitive to harmonic frequencies.

An additional Discrete Cosine Transform (DCT) is chained on top of the log-cepstral analysis

spectrum in order to perform cepstral analysis. Whilst the (frequency) spectrum is
the result of analyzing periodicity in time (the frequencies contained in the signal),
cepstral values depict periodicity in the frequency space. It thus detects salient
frequencies together with their harmonic frequencies (which are roughly repetitions
at integer multiples of the base frequency) and has therefore the effect of greatly
reducing the impact of the harmonics to the other coefficients.

Cepstral analysis can thus be seen as computing the intensity of main basic fre-
quencies together with their harmonics. If SDCs will be appended (next paragraph),
we retain only the first 6 coefficients3, which can be motivated by the strong energy
compaction property of the DCT4. These 6 cepstral coefficients, together with the
frame energy, form the basic feature vector, which is often referenced as MFCC vector.
Cepstral coefficients are supposed to be an adequate representation of the speech
signal for various automatic speech processing tasks.

Instead of appending deltas and double-deltas to the extracted coefficients, as itSDC

is common for speech or Speaker Recognition (SR), the more elaborate Shifted Delta
Cepstras (SDCs) are appended. As most acoustic LR systems, SDC vectors in the
7-1-3-7 configuration and based on MFCCs are used (as (Burget et al., 2006; Torres-
Carrasquillo et al., 2002b; Campbell et al., 2004; Castaldo et al., 2007b; Matějka
et al., 2006) and a majority of the NIST LRE 2009 participants). The values are
the parameters N-d-P-K, where N is the number of basic features (6 MFCCs plus
energy in our case). The remaining parameters signify to append K delta-blocks
(7 in this case), each shifted by P frames (here 3) and each being the differences
(delta) between frames t + d and t− d (d being 1). We thus obtain a final feature
vector size of 56.

3Speech and Speaker Recognition classically work on 12 or 19 coefficients.
4See http://en.wikipedia.org/wiki/Discrete_cosine_transform, and K. R. Rao and

P. Yip, "Discrete Cosine Transform: Algorithms, Advantages, Applications", Academic Press, Boston,
1990.
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2.3. Feature Extraction

They take into account signal evolution over many frames. The present con-
figuration uses static cepstra of a window of 21 frames to compose one final SDC
vector. It thus tries in a certain manner to include the evolution of the signal into
the feature vectors.

2.3.2 Speech activity detection

In most acoustic speech processing applications, signal parts without speech are re-
moved more or less aggressively. Especially silence parts do not carry any linguistic
information (but it possibly is of some importance for SR as it might be an indication
of fluency or separating individual words in speech recognizers). Because of its
relative simplicity, often just basic silence removal is used, as opposed to more
sophisticated methods to remove also regions of music or noise.

The easiest way to segment a stream of vectors into silence and non-silence energy based

regions is to model the energy component. The first approach is to set a threshold
below which a frame is considered containing silence and above which it is assigned
to speech. This threshold may be fixed beforehand, but in this case the energy
component has to be normalized to achieve usable results. A better variant is to
automatically determine this threshold for each utterance separately (a posteriori).
This can be achieved by training small models on the energy parameter of one
utterance only.

Since such frame based labeling may be jerky in the middle-energy region, a smoothing

supplementary step may be required to smooth the segmentation in order not to
have too short segments. Thus to introduce some stability to the decisions. This is
especially necessary if we use SDC type features since they use a certain number of
consecutive frames for their calculation.

So only the segments labeled as speech are used in any further processing. motivation

Speech activity detection (SAD), voice activity detection (VAD) or silence removal
is carried out to retain only regions containing speech. Amongst others, this avoids
that a part of the (GMM) model is trained on frames containing silence. This would
not be ideal since in general, silence matches rather well silence5 and thus the model
would yield good matching likelihoods for silence frames. But since silence does
not contain much acoustic or linguistically relevant information, this artificially
high likelihood overwhelms the true likelihood computed from frames actually
containing speech.

The step of speech activity detection is nevertheless an important step. For SR, importance

(Scheffer, 2006, Sect. 5.3.2, pp. 71f) shows considerable sensibility of the system to
the frames selected as speech. By varying just one threshold controlling parameter,
the speaker verification system can make up to roughly 70% relative more errors.
Some of our analyses regarding this particular topic are presented in Sect. 3.3.4.

5The variance being quite small.
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Opinion: Speech activity detection is a quite hard domain since it is, up to some
degree, dependent on the further processing objective (i.e. in the case of
SDCs). For some applications like speaker verification, it seems beneficial to
be strict in discriminating speech/non-speech frames on a nearly per-frame
basis. However, for instance in the case of SDC parameters, too tiny segments
may be damaging as the introduced discontinuity does not work well with
SDC’s window (or lookahead). The results may vary quite a lot, depending
on the speech activity detection approach chosen.

2.3.3 Feature normalization

As last step of the FE process, the feature vectors undergo a normalization process in
order to remove one part of the variabilities pointed out at the beginning (Sect. 1.1).

— ⋄—

Here, all vectors are normalized on a per-utterance basis by subtracting theµ = 0
σ2 = 1 mean from each parameter (also known under the therm of Cepstral Mean Sub-

traction (CMS)6) and by dividing it by the variance. In this way, the new mean of
an utterance’s features is 0 and their variance is 1. This allows to transform the
parameters of different files to a common (standard) range, which has a normalizing
effect. It also equalizes the ranges of the different parameters among each other.

2.4 Modelization

In the training phase, after FE, individual language models have to be estimated.
The goal of the training step is to use a set of (training) data samples of a given
class in order to estimate a model, which will be representative of that class. There
are different ways such models may be designed. We may principally distinguish
between two types of models:

Generative models try to mold at best how the data of a given class is structured,
how its points are distributed. A well known kind of generative models is
the Gaussian Mixture Model (GMM), which will be presented hereafter and
which will be used in the baseline system. The GMM structure serves also
as basis for other types of models like SVMs (Chapter 5), where the GMM is
transformed to one Super-Vector. Further, in Hidden Markov Models, several
GMMs are chained together by transition probabilities.

Discriminative models do not focus on the distribution of the data of one class,
but rather on the separation between the target class and its competitors. The
most well known representative of this kind of models is the Support Vector
Machine (SVM), which will be used and discussed in Chapter 5.

6Even if the energy and the delta blocks, which undergo the same processing, are not really cepstra.
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Once a specific type of models has been chosen, an appropriate strategy to
estimate its parameters has to be found. In this section will be presented one
possible way to address GMM modeling, namely the GMM-UBM approach. We
use this approach, as it is in a large majority of other works in the automatic
speech processing domain. And above all, it serves as constituent basis for other
approaches, like JFA and SVMs, used in subsequent developments.

As first step, a Universal Background Model (UBM) is estimated using the Ex-
pectation Maximization (EM) algorithm with a Maximum-Likelihood (ML) criterion.
This UBM will then be adapted through the MAP strategy to obtain all necessary
language models. Language models may also be obtained, with similar results,
directly through EM-ML, but for several subsequent processing steps this approach
is not appropriate7. Approaches that work on other linguistic levels (as defined in
Sect. 1.3.3) will not be explained, since we chose a purely acoustic approach due of
its simplicity and because it does not require any annotated data (as would probably
be the case i.e. for training a phone recognizer).

2.4.1 Gaussian Mixture Model

We first need to introduce the structure of a Gaussian Mixture Model (GMM), before
their estimation can be presented. This section thus gives a constructive approach
to the GMM, starting with a single simple-valued Gaussian.

The Gaussian distribution is also known as normal distribution. A Gaussian Gaussian pdf

distribution is characterized by two values, the mean µ and the variance σ2 and can
be written as follows:

N ( |µ, σ2) =
1√

2πσ2
e
− ( −µ)2

2σ2 (2.3)

Since we work in a feature space that has many dimensions (here: d), the multivariate
Gaussiandistributions are multivariate, which means that the Gaussian extends into multiple

dimensions. Thus, the mean is a vector and the variance becomes a covariance
matrix Σ (which is symmetric positive definite). In fact, most implementations use
a diagonal covariance matrix, which comes down of having only each dimension’s
variance. This allows for a consequent speedup, since its inversion (i.e. in Eq. 2.4
hereafter) becomes trivial. The matrix form notation of Eq. 2.3 is thus:

N ( |µ, Σ) =
1

(2π)
d
2 |Σ| 12

e−
1
2 ( −µ)TΣ−1( −µ) (2.4)

As Fig. 2.3 illustrates, in the one-dimensional case, a (Monte-Carlo) sampled Gaus-
sian density has a distribution of points on the only dimension axis, where they

7Using MAP adaptation, the relative configuration of the single Gaussian components does not
change a lot. In consequence, we can make the assumption that the single components still correspond
to the original ones. We thus can take corresponding components of multiple individually adapted
models as being linked. This constitutes a precondition for several subsequently described techniques.
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lay nearer together near the mean value. If we draw the distribution function (or a
histogram in the discretized case), it resembles to the well known bell line. In two
dimensions, the points are dispersed on a plane and cluster together near the mean.
The distribution (as third axis) forms a bell or simple hat. In three dimensions,
the points crowd together in a cloud (the distribution can not be imagined in a
convenient way since we exhausted our easily understandable three dimensions).
In the present case, we run with 56 dimensions.

...

Figure 2.3: In the lower row, first column shows points randomly drawn from a one-dimensional
Gaussian distribution, second column from a 2-dimensional and third from a 3D one. The upper row
shows the corresponding density functions.

Excurse: With increasing number of dimensions, the space gets less and lessThe curse of
dimensionality populated, what is known as The curse of dimensionality, a term introduced by

Bellman in 1957 (Chen, 2010; Bellman, 1957b,a; Gutierrez-Osuna). It states also that,
if we exceed a certain limit in the number of dimensions for a given number of
samples, it may even be beneficial to discard some dimensions in order to increase
the population "density". Friedman (Friedman, 1997) states that the complexity of
density estimation functions increases exponentially with the number of dimensions,
which in turn requires a higher population density in order to be estimated well
enough. Further, the multivariate Gaussian is one of the only density functions for
high dimensional spaces.

Excurse: Another interesting fact about multivariate Gaussians is the GaussianGaussian Egg

Egg (Chen, 2010; Lawrence and Barker, 2009): Data sampled from a high dimen-
sional multivariate Gaussian density lives in a "shell" around 1σ from the mean
µ of the Gaussian. The distribution of the mass of a one-dimensional Gaussian is
well known: about 65.8% falls within 0.95σ, 4.8% between 0.95σ and 1.05σ and the
remaining 29.4% lay further than 1.05σ from the mean. Analyzing this distribu-
tion while augmenting the dimensionality shows that the mass of the innermost
part decreases (more or less logarithmically) and the mass of the thin "(egg) shell"
around 1σ augments rapidly, until reaching roughly 98% at about 1024 dimensions.
In analogy, we can imagine the mass (area or volume) ratio of a circle inscribed into
a square (2D case)8 or a sphere inscribed into a cube (3D)9. It has a very similar

82D: (working with unit radius r) V© = πr2 = π ; V� = (2r)2 = 4 ; ratio =
π

4
≈ 0.8

93D: V© =
4π

3
r3 =

4π

3
; V� = (2r)3 = 8 ; ratio =

4π

3 · 8 =
π

6
≈ 0.5
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behavior. With about 10 dimensions, the volume occupied by the hyper-sphere
becomes negligible with respect to the volume of the bounding hyper-cube10.

Since the observed data usually does not have a Gaussian-like distribution, mixture of
Gaussiansbut a far more complex structure (its histogram does not resemble to a Gaussian),

we try to mold it by multiple Gaussian distributions that get summed together.
Each Gaussian has an own mean, variance and weight. The weight is the ordinate
scale and corresponds to the "maximal height" of the Gaussian. Gaussian Mixture
Models are thus linear combinations of multivariate Gaussian density functions.
A GMM is defined by a set of G Gaussians along with their associated weights αg

(g ∈ 1, ..., G):

P( |Λ) =
G

∑
g=1

αgN ( |µg, Σg) =
G

∑
g=1

γg( ) (2.5)

where we define γg as the posterior probability of one Gaussian g (including its
weight; see also Eq. 2.7) and Λ as the set of all model parameters of a GMM (this is
all we need to characterize a GMM):

Λ = {α1, µ1, Σ1, ..., αG, µG, ΣG} (2.6)

The variance of the training data is not only contained in the covariance Σ, total variance

which might be diagonal or full. A certain part of the variance is also taken up by
the fact that we use multiple Gaussians in our mixture. The set of all frames of the
training data gets somehow divided into several subsets by the mixture of Gaussian
components (if we consider that each frame is assigned to only one Gaussian). The
variance of each component is smaller than the whole data’s variance since each
subset is built up only by frames that fall into the neighborhood of the components
mean. The (total) variance of the whole data could be obtained if we use only one
Gaussian component. In summary, the variance of the data is represented by the
(co-)variances Σ, as well as by the distribution of the means µ. Both together make
up the total variance of the training data11.

— ⋄—

A GMM can thus be fully characterized by the set of its model parameters
αg, µg, Σg for g ∈ 1, ..., G. They can be estimated from the observed vectors, which

10General formula for the volume of a sphere in n dimensions. To simplify, we use unit radius
(r = 1). Basic formulas can be found on http://en.wikipedia.org/wiki/Sphere and rely on
the surface A, which uses Euler’s Gamma function Γ(n) = (n− 1)! .

V© = A© ·
r

n
=

A©
n

=
2π

n
2

n · Γ( n
2 )

=
π

n
2

n
2 · Γ( n

2 )
=

π
n
2

( n
2 )!

for the case n is even.

For n = 10 we have thus: V© =
π5

5!
≈ 2.55

and V� = (2r)n = 210 = 1024, which gives a ratio of about 0.0025
11The same fact can be seen in Linear Discriminant Analysis (LDA), where we speak more of scatter

than of variance. In fact, LDA even relies on the distinction between these two kinds of scattering,
within-class (here the covariance) and between-class (distribution of the means).
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are samples or emissions of the underlying model. The most common algorithm for
ground-up estimation of these parameters is presented in the following section.

Fig. 2.4 depicts the derivation of the GMM from a single one-dimensional normal
distribution as it was explained in this section.

g1
d1
d2
d3
d4
d5
d6
d7

g2 g3

Figure 2.4: Illustration of a single one-dimensional Gaussian (left), a single multivariate (center) and
a mixture of multivariate Gaussian densities (right) with 3 Gaussians and 7 dimensions (represented
in a stacked way)

2.4.2 Expectation Maximization

The Expectation Maximization (EM) algorithm is a basic approach for estimating
model parameters. Combined with a Maximum-Likelihood (ML) criterion, this
algorithm finds ML Point-Estimates (MLEs) of the parameters of a statistical model
(a GMM in the present case), where some model parameters depend on unobserved
latent variables. While the standard reference for this procedure is (Dempster et al.,
1977), it has first been tackled for gene frequency estimation in (Ceppellini et al.,
1955) and in the context of Hidden Markov Models (HMMs) by (Baum et al., 1970).
The EM algorithm is presented here, since it is used to obtain the UBM (using the
ML criterion, as described in Sect. 2.4.3). It constitutes also the basis for the MAP
adaptation (Sect. 2.4.4).

— ⋄—

Starting with some initialization, EM is an iterative process over two steps:iterative
E +M steps An expectation (E) step and a maximization (M) step. In the E step, the attribution

of the data (feature vectors) to the different elements of the actual model (the
single Gaussians) is gathered. These assignments can not be observed directly and
constitute thus the hidden or latent variables of our model. We will see in the details
of the M step that it is sufficient to retain certain statistics of these attributions. In
the M step, the model parameters are re-computed as to maximize the likelihood
with respect to the data that was assigned to them in the E step (ML criterion).
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Citing the English wikipedia site12, "EM is particularly useful when the likelihood is
an exponential family: the E-step becomes the sum of expectations of sufficient statistics,
and the M-step involves maximizing a linear function. In such a case, it is usually possible
to derive closed form updates for each step, using the Sundberg formula." Exactly this will
be shown in the following subsections.

The Expectation Maximization algorithm is a general estimation approach. In criterion

its M step, this algorithm updates the model parameters as to optimize a certain
criterion or objective function, which has to specified. In the case of EM-ML, the
Maximum-Likelihood (ML) criterion is used. It will be introduced at the given
place.

2.4.2.1 Initialization

The EM algorithm requires the model parameters to be initialized in order to update
them by consecutive E- and M steps. The choice for the initialization is rather
important, since it may result the algorithm in converging to some more or less
expressed local minimum. By changing the way of initialization, convergence may
be different. This is specially the case when EM uses an ML criterion, described
hereafter.

In the approach chosen in for this work, the model parameters are initialized our choice

as follows: The dimensionality of the multivariate Gaussians is fix since it is given
by the cardinality of the feature vectors. The number G of Gaussian mixtures in
the GMM is set in advance and does not change13. The weights of the Gaussian
components are initialized as being all equal (thus 1/G each). The initial values of
the means and the covariance matrices are calculated choosing for each Gaussian an
equally sized random subset of the training feature vectors (at most one G-th part).

2.4.2.2 Expectation step

The first step of the iterative EM algorithm is the Expectation (E) step. It gathers
sufficient statistics, based on the model initialization or the model issued from the
previous iteration.

As simplified view, it can be stated that each Gaussian’s parameters are calcu-
lated using the data points (vectors) for which the actual Gaussian is the nearest
one (that yields the highest posterior probability, E step). The new weight of the
Gaussian will be the fraction of the data points that got assigned to this Gaussian.

12http://en.wikipedia.org/wiki/Expectation-maximization_algorithm (accessed
in November 2010, it also gives a series of useful references).

13Using different approaches, it could also be set to one at the beginning and be split to obtain
more and more Gaussians as the iterations go on. Some of such approaches split only the "heaviest"
Gaussian, other do binary splitting (ex. (Verdet, 2005)).
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The mean of the Gaussian will be the mean value of the assigned vectors (for each di-
mension) and the variance is also calculated on these vectors only. This corresponds
to the M step.

This simplified view can be generalized such that a vector is not assigned to onlyfeature’s
posterior

probability
one Gaussian, but to all Gaussians (or a fixed number for speed-up) in a weighted
manner. Thus the latent variables are not discrete vector-to-Gaussian assignments
any more, but rather assignment probabilities14. Each vector x has an influence that
depends on the proximity to the Gaussian g15. In fact, its influence weight is the
(a posteriori) probability that it has been emitted by the Gaussian that is defined by
the parameter estimates of the current iteration (in Eq. 2.5, this corresponds to the
summand for Gaussian g):

γg(x) = P(x|αg, µg, Σg) = αgN (x|µg, Σg) (2.7)

For each Gaussian, we define zeroth (also called occupation), first and secondsufficient
statistics order statistics that will be used in the M step. They are collected over the set X of

all training feature vectors of the model’s language as follows (not indicating the
index for the language):

ϑ0
g(X ) = ∑

x∈X
γg(x)

ϑ1
g(X ) = ∑

x∈X
γg(x) · x

ϑ2
g(X ) = ∑

x∈X
γg(x) · x2

(2.8)

2.4.2.3 Maximization step

In the Maximization (M) step, the model parameters get re-estimated by trying to
maximize a certain objective function. In the EM-ML case described here, it is theMaximum-

Likelihood
criterion

Maximum-Likelihood (ML) criterion. This maximizes, as its name indicates, the
average frame (log-)Likelihood. This is calculated on the set of all training feature
vectors X . Relaying on Eq. 2.5 and Eq. 2.7 (see also Eq. 2.17), it is given by:

Λ̂ = arg max
Λ

P(X |Λ) (2.9)

FML(X ) =
1
|X | ∑

x∈X
log

(

∑
g∈G

γg(x)

)
(2.10)

Solving the maximization problem of this objective function results in followingmodel
re-estimation

14Readers knowing Hidden Markov Models (HMMs) may see that this generalization corresponds
to replacing discrete state assignments used in the Viterbi algorithm by vector-to-state assignment
probabilities and using Baum-Welch algorithm.

15By taking also into account the Gaussian’s variance and weight.

52



2.4. Modelization

closed-form update formulas for the Gaussian’s new weight, mean and variance
respectively (the model parameters Λ̂). They use the sufficient statistics gathered
by the E step:

α̂g =
ϑ0

g

∑g∈G ϑ0
g

; µ̂g =
ϑ1

g

ϑ0
g

; Σ̂g =
ϑ2

g

ϑ0
g

− µ̂2
g (2.11)

The model defined by these new parameters reaches the maximum (log-) Likeli-
hood on the above statistics and is thus a ML Point-Estimate (MLE). But since the
underlying model changed, the statistics do not match it any more and the whole
process has to be iterated. The latent variables (expressed under the form of the
statistics) and the model parameters are interdependent – we thus hit a chicken-egg
problem and this new model becomes the input for the next EM iteration and we
start over with the E step.

For the ML criterion, this process converges usually with about 5 to 10 iter- convergence

ations, but the obtained result is not necessarily the best possible, since it may
have converged to a local maximum. This local maximum largely depends on the
initialization step.

— ⋄—

Compared to the MAP adaptation (presented in Sect. 2.4.4), EM with an ML
criterion is computationally more expensive because several iterations are required
in order to converge. In addition, MAP has the advantage to work considerably
well with a limited amount of data. Using the MAP criterion, it may globally seem
to have better convergence properties since the models of all languages have the
same initialization (the UBM). This probably builds models that are better balanced
between each other. Further, MAP’s a priori model can be seen as a mechanism,
which at each iteration pushes the model out of a possible local maximum.

2.4.3 Universal Background Model

The GMM-Universal Background Model (UBM) framework is a long established
standard in speaker verification (Reynolds, 1997; Reynolds et al., 2000; Bimbot et al.,
2004). It was developed out of a strategy, where speaker identification scores were
normalized using a set of background speakers. Typically (and in contrast to the
UBM), one model was estimated for each background speaker (Reynolds, 1995).
Now, the GMM-UBM approach is used in a large variety of audio classification
tasks such as speech recognition, Speaker Recognition, Language Recognition or
even (video) genre recognition.

— ⋄—

The UBM is a GMM that is representative of all possible observations of the
acoustic speech space. It is of general nature and usually independent of the task.
So theoretically the same UBM may be used for SR or LR (for the same type of
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parameterization). In the present case, it is thought to represent a kind of average
over all languages. It is sometimes also called the World Model in reference to all
possible languages (or speakers) of the world. The UBM can also be seen as a sort
of neutral, universal language.

The UBM is estimated using the EM algorithm with an ML criterion, presented
in Sect. 2.4.2 in order to obtain a model from scratch. This model will be a good fit16

of the predefined number of Gaussian distributions to the data.

For each target pattern (a language in our case), a specific GMM will be obtained
by adapting the UBM via the MAP criterion (Gauvain and Lee, 1994; Reynolds et al.,
2000). This step will be explained in the next section.

2.4.4 Maximum A Posteriori adaptation

The goal of using Maximum A Posteriori (MAP) (Gauvain and Lee, 1994) is to start
with a robust model (in occurrence the UBM) as an a priori model. Some of its
parameters are then adapted towards the training data of a specific language. This
keeps some generality of the UBM at the same time as fitting well to the target
language. The particularity of this method is to work still well when there is not
much training data available for a specific language. This is caused by the fact that
far more data has been used for training the UBM, which gives it the robustness.

In our case, as is classically done by the LIMSI17 (Gauvain and Lee, 1994)
and the MIT18 (Reynolds et al., 2000), only GMM means are adapted. The other
GMM parameters (variances and weights) are taken from the UBM without any
modification. This is the main reason for the robustness of the resulting models.

In terms of means, we can describe the adaptation (for one Gaussian component,MAP mean
update whose index we suppress) as:

µ̂client = (1− α) µUBM + α µclient (2.12)

where α is a factor which controls the weighting of the new (one-step) EM-ML lan-
guage model (µclient) to the UBM. It can be seen as a parameter avoiding overfitting.

In fact, usually only one iteration of EM-ML is used. We may show that in this
case, only the E step is really necessary and that the MAP adaptation can be written
directly in terms of the sufficient statistics.

µ̂client =
ϑ1 + τ µUBM

ϑ0 + τ
(2.13)

16But probably not the best possible, due to the local maximum property of ML.
17Laboratoire d’Informatique pour la Mecanique et les Sciences de l’Ingenieur (Computer Sciences

Laboratory for Mechanics and Engineering Sciences), CNRS UPR 3251, Orsay
18Massachusetts Institute of Technology, Cambridge
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where τ = (
1
α
− 1)ϑ0 is the MAP regulation factor which regulates the strength of

the a priori model (µUBM) with respect to the statistics of the observed data. For the
more commonly written formula Eq. 2.12, α is expressed as function of τ and the

occupation counts ϑ0 as: α=
1

1 + τ
ϑ0

=
ϑ0

ϑ0 + τ
.

Further on, an other a priori model is required for obtaining the required statis-
tics, that reflect the latent variables. This can also be seen as the initialization model
for the EM-ML part (µclient) of the MAP adaptation19. Usually, MAP adaptation is
carried out in one run, but it could also be refined iteratively. Fig. 2.5 shows the two
models required as input and indicates the iterative working. Most often, the same
model is taken as well for EM-ML initialization, and also as a priori model for the
adaptation. In potentially further iterations, the statistics are calculated using the
new model estimate, whereas MAP’s a priori model still remains the UBM.

input signals

MAP

EM-ML

    μclient μUBM

initialization model

a-priori model

adapted model

α

Figure 2.5: Sketch of Maximum A Posteriori (MAP) adaptation, possibly iterative

Being a blending of the UBM mean and the observed language statistics, the
model resulting from a MAP adaptation lies, in terms of mean vectors, somewhere
between the UBM and the language model that would be obtained through EM-ML.
This fact is illustrated in Fig. 2.6 for one single Gaussian.

+ +
UBM MAP EM-ML

α 1-α:
Figure 2.6: Illustration of the MAP adapted model, laying between the UBM and the client data

As the name indicates, the Maximum A Posteriori objective function maximizes Maximum
A Posteriori
criterion19Instead of using the initialization described in Sect. 2.4.2.1
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the a posteriori distribution of the model parameters (Λ), based on the training
feature vectors X :

Λ̂ = arg max
Λ

P(Λ|X ) (2.14)

As described at the beginning of this chapter (Sect. 2.1), the a posteriori probability
can not be obtained directly and has to be based on the conditional likelihood
through Bayes’ Theorem (cf. Eq. 2.2). Consequently the MAP implementation
is also built on top of the (a priori) conditional likelihood P(X |Λ). Since this
likelihood is also used by the ML criterion, the MAP adaptation can be based on ML
Point-Estimates (or on the sufficient statistics leading to them). In fact, this situation
is also depicted in Fig. 2.5.

— ⋄—

In summary, the ML criterion operates in a non-Bayesian way on the Likelihood.ML vs. MAP

Combined with the EM algorithm, it tries to estimate the best possible model
parameters, based on the corresponding training data. It can thus be seen as a priori
optimization or to focus on the training phase. On the other hand, MAP is a
Bayesian method and is thus based on the a posteriori probability. Consequently,
MAP adaptation is thought to meet the overall goal of the posterior probability
(Eq. 2.2). It can thus be seen as trying to estimate a good model for the testing phase.
Further explanations on these criteria and on optimization can be found in (Kamen
and Su, 1999, Sect. 3.5, p. 94).

In addition, we can find parallels in the structure of the update formulas of the
EM-ML and the MAP adaptation: They both use sufficient statistics/means and
weights20. We will see in Sect. 3.4.1 that even Maximum Mutual Information (MMI)
builds on the same structure.

2.5 Scoring and score processing

After having presented the universal Feature Extraction and the training phase, we
now come to the testing phase. In this second phase, a speech utterance whose
language we want to recognize is presented to the system. This returns a score in
function of the utterance and the model of the hypothesized language. The score
may be a Likelihood, as in the context of GMMs, or a distance measure (for instance
for SVMs).

20Excurse: In EM-ML, we have
ϑ1

ϑ0 (Eq. 2.11) for updating the mean. This is a fraction of the first

order to the zeroth order statistics. It can equally be written as fraction with in its numerator a mean
weighted by zeroth order statistics and in its denominator the zeroth order statistics (weighting) alone

(µ =
ϑ0µ

ϑ0 =
ϑ0 · ϑ1/ϑ0

ϑ0 =
ϑ1

ϑ0 ). Here in MAP (Eq. 2.13), we have also a fraction dividing a sum of

weighted means by the sum of their weights. In MMI (Sect. 3.4.1), we will see, that we will have three
summands, laid out exactly in the same manner.
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The scores of several test speech utterances are then processed in order to
evaluate the system. LR systems are most often evaluated as a verification task (as
opposed to the identification task, see Sect. 1.2.1), detecting if a candidate language
is present in the input utterance or not. Since a good decade, this mode of evaluation
is often chosen, because it matches the NIST Language Recognition Evaluations.

2.5.1 Scoring

Scoring is the step of using the model estimated in the training phase. This is
typically done on utterances which were not implicated in the model estimation
process (called the testing dataset). Each utterance is scored against each estimated
model.

— ⋄—

For an input utterance and a candidate language, the LR system returns a score.
For most system designs, this score can be considered being a log-likelihood, namely
of the utterance being of that language. Consequently, the Log-Likelihood type
scores have a negative value (since the Likelihood is comprised between 0 and 1)
and the bigger (the closer to 0) it is, the more likely the language is present.

We can define the Log-Likelihood score of utterance X against the model of
language l in a general manner:

LLkl(X ) = log P(X |l) (2.15)

Here, we make the assumption of frame independence (which is not fully true21, but frame
independencewidely accepted). So this score can further be written in terms of frame probabilities:

LLkl(X ) = log ∏
x∈X

P(x|l)1/|X | =
1
|X | ∑

x∈X
log P(x|l) (2.16)

The normalization term
1
|X | is not really required since each test utterance is

processed independently (and thus it cancels out in the decision function Eq. 2.2),
but it allows to obtain scores that are more comparable between utterances22.

In the particular case of GMM scoring, this LLk becomes:

LLkl(X ) =
1
|X | ∑

x∈X
log

(

∑
g∈Gl

γg(x)

)
(2.17)

where Gl is the set of Gaussians of language l’s GMM and γg(x) is the Gaussian g’s
posterior probability of frame x, defined in Eq. 2.7. The whole also corresponds to
the EM optimization criterion (Eq. 2.10).

21The window shift being smaller than the window size, they overlap and thus contain partly the
same information. In addition, the changes in the speech signal are continuous. In most cases, it does
not contain abrupt changes on the level of the frame duration.

22They are still slightly biased due to the frame independence assumption.
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2.5.2 Score normalization

Similarly as on the FE and on the modeling level, normalizations can be and have
to be performed also on this score level. Two fundamentally different types of
score normalization have to be distinguished: inter-utterance and inter-language
normalization.

— ⋄—

inter-utterance normalization: The objective of the first kind of normalization isutterance
normalization to compensate for differences between single utterances, which are reflected

in the scores. This is by far the most crucial kind of normalization for any
verification task. In the identification case, this is not a problem, since there is
no global threshold and the final decision can be drawn on the set of trials of
each utterance separately and independently. In verification however, we have
(usually a global) threshold. So the scores obtained by different utterances
have to be comparable. This kind of normalization is often conducted on
a per utterance basis. The two main normalization approaches are: (i) The
utterance is used to compute some reference score (the World Model approach,
Sect. 3.5.1). (ii) The normalization is carried out using the set of scores of one
utterance’s trials (hence the scores of the utterance tested on all languages
in turn). No normalization factors have to be estimated beforehand and no
specially allocated data (development corpus) is required for this.

inter-language normalization (or calibration): The objective of the second kindlanguage
normalization of normalization is to balance the scores produced by the different language

recognizers among each other. A particular language recognizer (a language
model in our case) may have the tendency to produce better (or poorer) scores
than others. this recognizer’s scores would be over- (or under-) rated and
will cause an exceeding number of false positives (or misses, see Sect. 2.6.2
for these notions). This problem applies to both, the identification and the
verification task. In order to apply this kind of normalization, some separately
estimated normalization parameters are required.

We may explained this in a more visual manner: Let all results be organized in
a matrix where each row represents an utterance and the columns the different
languages (recognizers/models). The first type of normalization operates (individ-
ually) on the different rows. And the second one tries to normalize the columns
among themselves. The two kinds of normalizations operate thus along the two
axes of this matrix.

— ⋄—

In the baseline system, we use only a rather basic inter-utterance score normal-
ization, which will be presented in the next two sections. More advanced score
processing strategies (Sect. 3.5) may also combine both kinds of normalizations into
one run.
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2.5.2.1 divSum

As (Campbell et al., 2006a) state, "The performance of language recognition is enhanced
considerably by applying back-end processing to the target language scores. A simple
back-end process is to apply a log-likelihood normalization". This Log-Likelihood normal-
ization will be described here.

— ⋄—

The most simple approach to utterance-wise score normalization consists in
dividing each score sl in turn by the sum over the scores the utterance (X ) obtained
against all language models:

ŝ∗l (X ) =
sl(X )

∑
k∈L

sk(X )
(2.18)

l being the hypothesized language and k being each language of our set in turn. Let’s
note that here, we include the current score in the denominator sum (as opposed to
the divOthers variant described below). This division is performed in Likelihood
domain. If the scores are of Log-Likelihood kind (which is the case if it is an average
Log-Likelihood, as in Eq. 2.16 or Eq. 2.17), they first have to be transformed to the
non-logarithmic domain (and at the end back to log again). So the normalization
becomes:

ŝl(X ) = log

(
eLLkl(X )

∑
k∈L

eLLkk(X )

)
= LLkl(X )− log ∑

k∈L

eLLkk(X ) (2.19)

where LLkl(X ) is the (average) Log-Likelihood of utterance X , given the hypothe-
sized language l and where L is the set of all languages. The second term (log-sum)
has to be calculated only once for a given utterance, since it does not depend on l.

We will call the normalization presented in this section divSum. This type of divSum

normalization (and its various forms below) is largely used throughout literature
(Campbell et al., 2006a; Castaldo et al., 2007b; BenZeghiba et al., 2009). Often, it is
combined with additional score processing steps, as will be shown in Sect. 3.5.2.

Different alternatives of the divSum normalization may be found in literature: variants

divOthers

A frequently used variant consists in leaving out the current language l from the
denominator. In consequence, the denominator sum range reads ∑ L

k 6=l . This
kind has also been trialed in our works and produces substantially similar results.
But the advantage of divSum is that the denominator is the same for all l in the
context of a given X . Thus it has to be calculated only once per utterance, which
accounts for some speedup of the scoring step. Also, divSum corresponds more to
the World Model normalization approach used in SR, where the denominator also
only depends on X (see also Sect. 3.5.1 for this).
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divMean

In the denominator, we may also calculate an average over the diverse k (whether

including or excluding l), e.g.:
1
|L|∑ k∈L. This variant is also frequently used.

— ⋄—

Some form of inter-utterance normalization (as the presented ones) is indis-
pensable for an evaluation in detection or verification mode. This is also shown
by our baseline system (as well as the subsequent ones), which obtains a useless
performance of around 50% errors when it is run without score normalization and
a more usable results using this kind of normalization.

In fact, for the baseline system, an other derived version is used and the tech-
nique is presented in Sect. 2.5.2.2 just hereafter. Finally, simpler but equally powerful
novel steps introduced in our work will be presented in Sect. 7.2.

Opinion: Some authors (Castaldo et al., 2007b,c,a) call the type of normalizationsT-norm

presented in this section T-normalization (Tnorm). In the context of Speaker
Recognition, Tnorm uses a cohort of independent speakers (under the form
of models) for the normalization (Auckenthaler et al., 2000; Campbell et al.,
2004). In LR, this cohort is built up of the other language models, as dis-
cussed above. When the denominator is the average over all languages (thus
including l), this comes very close to the Tnorm.
But (Castaldo et al., 2007b) introduce an additional normalization term which
does not correspond to any enumerated variant and which thus is difficult

to be retraced: ŝl = log
( 1
|L| − 1

· eLLkl

∑k 6=l eLLkk

)
.

2.5.2.2 divSum with exponent K

Based on the divSum normalization described in previous section, system perfor-
mance can be enhanced by powering each score with a constant K (or multiplying
the Log-Likelihood domain score by K) in the following manner:

ŝ∗l (X ) =
sl(X )K

∑
k∈L

sk(X )K
(2.20)

ŝl(X ) = LLkl(X )K− log ∑
k∈L

eLLkk(X )K (2.21)

l being the hypothesized language and k being each language in turn. In our case, a
K of 35 has been chosen. This is based on consequent observations of the impact of
different Ks (in steps of 5) prior to our participation to the LRE 2009.

60



2.5. Scoring and score processing

This variant yields considerably better performances compared to the divSum
approach23. On the other hand, the value of the constant K, here set to 35, is not the
best one for every experiment. It should typically be determined on a per-case basis
using held back development data.

This factor has been introduced by (Matějka et al., 2006) in the context of MMI
training. They describe that this procedure attempts to introduce some correction
to the assumption of the frames being independent of each other (Sect. 2.5.1). While
they use an empirically determined value of 6, its maximum is limited to the number
of frames in the current utterance24.

(Matějka et al., 2006) use this empirical factor K only in the MMI estimation novelty

process, but not during scoring. However, we propose here to use it expressively
during the scoring (or more accurately during the score processing) step. Applying
this technique during score processing in order to enhance score normalization
constitutes a novelty.

— ⋄—

Fig. 2.7 shows typical25 distributions (histograms) of scores applying different effects of K

normalizations discussed in the previous sections. In each plot, the distributions
of the target and of the non-target trials are shown. Plot (a) uses bare LLk scores,
which can be seen at the score range covered (around −72). The two distributions
completely overlap — as described, the system is useless without normalization.
In (b) divSum normalized scores are used. This can also be seen as using a factor K
of 1. This normalizes the scores between the different utterances (inter-utterance
normalization). Since the target trials tend to have a better score than the non-
targets, they get better "aligned" and start to detach from the non-targets. In (c)
divSum normalization is applied to the scores with a K factor of 35. And in (d) a
K factor of 70 is used.

Opinion: The K factor seems to have the effect of compressing high scores to-
wards the 0 limit and to dilate smaller scores exponentially towards negative
infinity. This is translated in the distributions as grouping or emphasizing of
the target trials (which should have better scores) and to flattening out the
non-target distribution towards the negative. So the error rate or cost, which
is linked to the overlap of both distributions, has the tendency to decrease
up to a certain point.

Such a reasonably straightforward normalization technique already proves to
enhance LR performance. More advanced score normalizations like inter-language
normalizations are presented later on in Sect. 3.5.2.

23Up to −42% relative for the JFA system with 2048 Gaussians.
24In fact, our parameter K corresponds to (Matějka et al., 2006)’s parameter C of the full exponent

Kr =
C

Tr
since we included the number of frames (Tr) already in Eq. 2.16.They state 0 < Kr < 1.

25The scores were obtained by the 256 Gaussian system with accurate JFA, LRE 2005 protocol.
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Figure 2.7: Sample score distributions for raw LLk and divSum normalized scores with factors 1, 35
and 70 for our JFA system

2.6 Evaluation

The evaluation of a Language Recognition (LR) system involves applying the two
phases of training and testing. This is done using previously defined data sets and
will produce a set of scores, which will then be analyzed to give some performance
measure.

The resulting performance of a LR system not only depends on the strategies
chosen at the different levels or processing steps, but also on the data used for its
calculation — as well for the training as for the testing stage. This section gives a
quick hint about the different available datasets and on how the performance of a
system is measured.

2.6.1 Data sources

In order to train models of an automatic speech processing system and later on to
evaluate it and to measure its performance in a given environment, we need well
defined protocols (Sect. 2.6.3), which also indicate the different data sets. The data
sets used for training and for testing have to be disjointed. This section gives an
overview of the different available corpora and describes the different parts thereof
which have been used in the experiments leading to the results presented in this
document.

— ⋄—
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Table 2.1 gives an overview of available speech corpora for Language Recogni-
tion, distributed by NIST26, LDC27 or the CSLU28, together with their respective
identification numbers. These indications are given here since sometimes, it is hard
to find out which data is included in an other corpus as sub-part. And also, the
same dataset is often referenced under different identifiers. Most of the datasets in
this table were used in one or the other way in setups presented in this work. The
remaining part of this section describes which datasets were used in which step.

Table 2.1: Some of the available corpora with their corresponding identification numbers

Corpus LDC-ID NIST-ID ISBN is part of notes

CallFriend LDC1996S46–
LDC1996S60

1-58563-061-6–
1-58563-075-6

VOA 2 LDC2009E40

VOA 3 LDC2009E40

MLTS LDC2006S35

lid96d1 LDC2006E103 +r31 LDC2006S31

lid96e1 LDC2006E102 +r32 LDC2006S31

lid03e1 LDC2006E107 LDC2006S31

LDC2006S31 1-58563-364-X LDC2009E41 should be used as
LRE-09 CTS train-
ing data

lid05d1 LDC2006E104 R103 LDC2008S05 &
LDC2009R31(?)

Indian-English
only

lid05e1 LDC2006E105 R104-1.1 LDC2008S05

LDC2008S05 1-58563-477-8 LDC2009E41

LDC2009E41 lre09-CTS-
train[12] ??

lre05e-full

lre07d-suppl LDC2009S05 1-58563-530-9

lid07e1 LDC2009S04 R117_1_1 1-58563-529-4 extracts of lid07e-
full

lid07e-full LDC2009R31 LRE-09 Supplem’
CTS Training

LRE09e1 R124_1_1 &
R124_2_1

On the other hand, Table 2.229 gives a list of all languages (and dialects) made
available by the corpora listed in Table 2.1. This table here also shows the number
of utterances for each language contained in a given data set. No such indication is
given for the VOA corpus since the notion of utterance can not really be defined.

26National Institute of Standards and Technology
27Linguistic Data Consortium, at University of Pennsylvania, http://www.ldc.upenn.edu/
28Center for Spoken Language Understanding, of the OHSU
29For layout reason, this table was split into two parts: Table 2.2 and Table 2.3.
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In most LR corpora, note that generally every utterance is produced by a different
speaker. To the exceptions count some evaluation datasets where the 3 and 10 second
segments are cut out of the longer 30 s ones. Also, there is no notion of speaker
for the VOA datasets and the same speaker may appear at several locations in the
database36. Consequently, the number of utterances given in Table 2.2 reflects at the
same time the number of speakers, with the named limits.

2.6.1.1 Data sets used for training

Training material is drawn from various sources. Let us define the different data
sets as follows:

cfChans

The CallFriend corpus, which is distributed by LDC (see reference (CallFriend, 2010)),
is a very well adapted corpus for training LR systems. It has the same amount
of data for each of totally 15 languages and dialects. It is organized into three
equal-sized parts: train, devtest and evltest. Each of these three parts contains 20
complete two-ended, half-hour conversations per language (the two channels have
first to be separated).

Our cfChans data set is composed of all data contained in the train part of
CallFriend for seven languages37. This gives 40 files, each containing roughly
14 minutes of speech, for every language or dialect.

cfChansTrDvEv

The cfChansTrDvEv data set is similar to cfChans, but includes data of all three
CallFriend parts for the same languages. This set has thus a total of 1200 files.

CTSsmall

We will detail in due curse (Sect. 6.1) that the NIST LRE 2009 setup includes data
from two different channel categories, namely the classical Conversational Tele-
phone Speech (CTS) and the major part coming from telephone bandwidth parts of
Voice of America (VOA) radio broadcasts.

The CTSsmall data set is composed of the following corpora, providing data for
the CTS condition:

30(Table 2.2) Bangla and Bengali are two names for the same language
31(Table 2.2) English from "Talk to America" emissions, without further precision
32(Table 2.2) Persian and Farsi are actually two names for the same language
33(Table 2.2) For VOA3, it is African French (West and Central-)
34(Table 2.3) Kirundi/Kinyarwanda
35(Table 2.3) For VOA3, it is Caribbean, Latin American, and Andean (andina) Spanish
36Some NIST LRE 2009 participants could confirm this fact due to recognizing the voice of a well

known person of their region.
37The seven languages are: English∗, Hindi, Japanese, Korean, Mandarin∗, Spanish∗, Tamil, includ-

ing two dialects for the languages followed by a star (∗).
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• In a similar manner as cfChansTrDvEv, data from all three CallFriend parts is
included for 8 languages38

• The 120 Indian English recordings of NIST’s LRE 2005 development data
(lid05d1).

• The full conversations of the LRE 2007 evaluation data (lid07e-full) for 9 lan-
guages39.

In this dataset, each language has between 40 and 317 segments, representing
between 2.7 and 58.6 hours of speech. In total for 11 different languages, we have
312 h in 1867 segments.

CTS

This CTS set includes CTSsmall, augmented by the 10 and 30 second evaluation
segments (ranging from 284 to 1934 segments per language) of LRE 2005 (lid05e1)
for 6 languages40. For this set, the 3 second Indian English segments of LRE 2005
development (included in CTSsmall) have been avoided, since we added other
utterances of this language. Each language has segment counts ranging from 40 to
2253, that represent between 2.7 and 64.8 hours of speech. In total for 11 different
languages, we have 337 h in 7870 segments.

VOA

The data of the VOA set comes from the Voice of America 3 (voa3) corpus and is used
together with the phone/wideband and speech/non-speech segmentation provided by
NIST for the LRE 2009 campaign and which were built by the BUT41 lab (Plchot
et al., 2009). Each language is represented by 3.0 to 27.9 hours of speech. In total for
22 languages, we have 333 h across 8632 segments.

VOA10k

This VOA10k set contains all data of the VOA set and a lot of additional voa3 data
for a total of 141 599 segments (1111 to a maximum of 11 029 for each language).

2.6.1.2 Testing data sets

We will evaluate the systems under two protocols (described in Sect. 2.6.3). For this
reason, we use two different testing data sets:

LRE 2005

On one side, tests are conducted on NIST LRE 2005 data (NIST LRE, 2005). We name
this set lid05e1. This evaluation set comprises 10 986 utterances, each containing 3,
10 or 30 seconds of speech.

38English, Farsi (Persian), French, Hindi, Korean, Mandarin, Spanish and Vietnamese, again with
both available dialects for the three concerned languages.

39Cantonese, English, Indian English, Korean, Mandarin, Persian (Farsi), Russian, Spanish and
Vietnamese.

40English, Hindi, Indian English, Korean, Mandarin and Spanish.
41Brno University of Technology
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The primary condition of NIST LRE 2005 aggregates just utterances of seven
languages (closed-set condition). The seven languages are: English, Hindi, Japanese,
Korean, Mandarin, Spanish, Tamil. The closed-set condition has a total of 10 734 ut-
terances. We focus mainly on the 30 second ones, which comes down to 3578 files,
giving as many target trials and thus 21 468 non-target trials (one for each non-target
language and utterance).

LRE 2009

In the other case, LRE09e1, tests are conducted on NIST LRE 2009 data (NIST LRE,
2009). That evaluation set comes with 41 794 utterances also containing nominally
3, 10 and 30 seconds of speech each. Our SAD processing (Sect. 2.3.2) did not detect
any speech in 106 of these files42. The other sum up to 133.3 hours of speech.

The primary condition aggregates 31 178 utterances of a closed-set of 23 lan-
guages: Amharic, Bosnian, Cantonese, Creole (Haitian), Croatian, Dari, English
(American), French, Georgian, Hausa, Hindi, Indian English, Korean, Mandarin,
Pashto, Farsi (Persian), Portuguese, Russian, Spanish, Turkish, Ukrainian, Urdu and
Vietnamese. We focus on the 30 second ones, which are at a number of 10 571. This
gives that many target trials and 232 562 non-target trials. There are between 315
and 1015 testing files per language.

As stated, this test set comprises data drawn from CTS and from VOA sources
(NIST LRE, 2009; Greenberg and Martin, 2009). There are 8708 testing files in
10 languages43 originating from CTS sources. Thereof 3081 for the 30 second
condition with 32 to 625 for each language. Drawn from VOA are 22 470 testing
files with 7490 of 30 seconds. We count between 27 and 399 testing utterances for
each of 22 of the 23 languages44.

2.6.2 Performance metric

Having obtained a series of scores (Sect. 2.5) for a set of speech utterance (Sect. 2.6.1)
of a priori unknown languages by running tests against the set of previously es-
timated language models (Sect. 2.4), we can evaluate the system by calculating a
performance.

— ⋄—

In our works, we evaluate the systems in detection mode (Sect. 1.2.1). So the
questions we try to answer are of the kind "Is language l present in this utterance?".
This detection mode is used since it is prescribed by the NIST Language Recognition
Evaluations, which became de facto standard over the last decade.

42A quick glance at some of these files reveals the presence of huge noise or files containing just
music.

43Cantonese, English, Hindi, Indian English, Korean, Mandarin, Persian, Russian, Urdu and
Vietnamese

44The missing language being Indian English
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A system’s performance is analyzed at a certain operating point, being a specific system decision

application of the system with given priors and which returns a hard "Yes/No"
detection decision for each trial. For this, the trial score is compared to a given
threshold. If the score is below the threshold, the answer is "No" and, according to reject

acceptthe speaker verification terminology, we call it a rejection. If it is the same or more
positive than the threshold, the answer is "Yes" and we call it an acceptance.

The evaluation now checks if the answer is correct or not, by accessing the key
that holds the true answer which test file is of which language.

We define as target trial a test where a file of true language l has been tested target
non-targeton model l also. All the tests where the file is run against a model which does not

correspond to its true language are called non-target trials.

Depending on the check against the answer key, there are two types of errors:

• If the answer was positive (a "Yes"), but the utterance does not contain that false positives

language, we speak of false positive (or false acceptance, or in an even more
historic terminology: false alert). This is thus an utterance in which a certain
language has mistakenly been detected.

• If the answer was negative, but the language is effectively present in the false negatives

utterance, we call it false negative or a miss. This is thus an utterance that is
not recognized of being of the true language.

In summary, false positives are non-target trials with a "Yes" answer and false negatives
are target trials with a "No" decision.

— ⋄—

By changing the threshold, the number of errors of one type decreases while
the ones of the other type increase45. In the following, some performance measures
are presented and discussed. They build on the rates (percentages, or expressed as
probabilities) of these two types of errors.

As explained, the rate configuration of the two error types depend on the
threshold. So these two rates may be plotted against the threshold. For this, each
type of errors is put to one coordinate and with each different threshold, a single
dot is added to the plot. This plotting of the system performance at all possible
thresholds is called the Detection Error Trade-off (DET) curve (Martin et al., 1997).

2.6.2.1 Equal Error Rate

The Equal Error Rate (EER) is a metric concept that is rather simple to understand.
It is the performance at the system’s operation point of equal error rates. That is the
system choosing the (global) threshold in such a way to perform equally on the two
types of errors. In a graphical interpretation, it is the point where the DET curve

45In some limit cases, the number of one type may remain constant over a certain threshold interval
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crosses the first quadrant’s diagonal. The diagonal being all the points where the
values for the two kinds of errors are the same.

Pooled Equal Error Rate

The easiest way to compute an EER from a set of (target and non-target) trials is to
put the trials of all languages together and keep only the information if they are
target or non-target trials (and obviously the answer or the error checking). For
this, usually, the target trials are put on one side and the non-target ones on the
other. Then the threshold is slid along the score space until the percentage of targets
scoring below the threshold is the same as the percentage of too high non-targets.
This simplistic approach has a big drawback: If the number of tests for the different
(target) languages are unbalanced, the yielded results may be quite biased.

Average Equal Error Rate

As first solution, we could calculate an EER for each language separately and then
take their average. This approach avoids big bias due to unbalanced test counts,
but does not use a global threshold since it is determined on a per language basis.

These drawbacks motivate the use of even an other kind of performance measure,
namely minimal average cost (presented hereafter) rather than EER, because the
minimal average cost measure is insensitive to unbalanced test sets and features
nevertheless a global threshold.

2.6.2.2 Minimal average cost

System performance can also be measured using minimal average cost (min-Cavg),
which avoids major drawbacks of EER measures. The detection system under
min-Cavg evaluation chooses the decision threshold (or operation point) in a particu-
lar way: It minimizes the average expected cost of misses46 and false acceptances47

among all pairs of languages. The cost measure is related to the error rates by
including priors and possibly unbalanced penalties (decision costs). An extended
description may be found in Section 4.1f of the LRE 2009 plan (NIST LRE, 2009).

— ⋄—

In all applications and protocols studied in this work, a false negative (a miss)complete
closed-set case and a false positive decision (false acceptance) have the same cost and the prior of a

target trial is 0.5, independently of the number of languages. The cost function to
be minimized is thus:

Cavg =
1
|L| ∑

l∈L

[
0.5 · PMiss(l) +

0.5
|L| − 1 ∑

k 6=l∈L

PFA(l, k)
]

(2.22)

PMiss() is the probability that a language model misses a match (false negative) and
PFA(l, k) is the probability that an utterance of language l is mistakenly recognized

46Utterances not recognized as being of the true language
47Mistakenly detecting the presence of a language
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as being of language k (false acceptance). These probabilities are calculated in
function of a global threshold. This average detection cost is thus the mean over
all target languages of its probability to be missed and its average probability to be
detected by a false language model48.

In the case where the set of classes (in our case languages) present in the testing incomplete
closed-set caseutterances does not cover the whole set of language models we have, this cost

function turns to the more general one:

Cavg =
1
|LT| ∑

l∈LT

[
0.5 · PMiss(l) +

0.5
|LM|-1 ∑

k 6=l∈LM

PFA(l, k)
]

(2.23)

where LT is the set of languages in the test data set (also called target languages) and
LM is the set of languages for which we have models (non-target languages). This
more elaborated cost function has to be used if we have to run an evaluation in a
context where the there is at least one language (of those we trained models for) that
has no test utterances assigned. This will be the case in Chapter 6 and Chapter 7
when we analyze CTS and VOA data separately.. In a general manner, |LT| ≤ |LM|.
Otherwise we would speak of an open-set evaluation, which is not in the scope of
this work.

This Cavg function is minimized with respect to the threshold θ which is used
for calculating the error probabilities (or rates).

min-Cavg = min
θ

Cavg
θ (2.24)

The two kinds of error probabilities are defined for a given threshold θ as follows:

PMiss(l, θ) is the fraction of target tests T of language l with scores s < θ: error
probabilities

PMiss(l, θ) =
∑t∈T(l) 1θ(st)

|T(l)| ; 1θ(s) =

{
1 if s < θ,

0 if s ≥ θ.
(2.25)

Similarly, PFA(l, k, θ) is the fraction of non-target utterances N of true language
l tested against model k which have a score s ≥ θ:

PFA(l, k, θ) =
∑t∈N(l,k) 1θ(st)

|N(l, k)| ; 1θ(s) =

{
0 if s < θ,

1 if s ≥ θ.
(2.26)

— ⋄—

In this work, we stick to the scheme of expressing the min-Cavg measure under
the form of percentages (%). In literature it can also be found under the ×100 form
(as is done for min-DCF). Our choice is motivated by the similar interpretation of
the min-Cavg to the EER, where a useless (random) system has a cost of 50%.

48Cavg is the average of the detection cost (the content of the square brackets of Eq. 2.22, itself
usually denoted CDET) over all languages.
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An other cost based performance metric introduced by (Brümmer and du Preez,
2006; Brümmer and van Leeuwen, 2006) is the Log-Likelihood Ratio (average) cost
(Cllr), which will be discussed in Sect. 3.6, since we did not apply it to our works.

2.6.3 Protocols

It is necessary to be able to evaluate a system in a well-defined and consistent
environment49. One reason is to be able to reproduce the same results using a given
system. And also to allow comparisons between systems with slightly different
setups. If possible, we should also work on the same basis as other research groups
to be able to compare system performances meaningfully. These are the main
goals of experimental protocols. Further, they clearly describe the experimental
environment such as the application area of the system, the data to be used, the way
to measure the performance and so on.

In our works, we use two well-established protocols designed by NIST for their
Language Recognition Evaluations (LREs). In a first step, our works were analyzed
in the context of 2005’s LRE protocol. Amongst others it was the most recent LRE
(testing) data available for developing our first systems, since the LRE 2007 data was
released only in June 2008. In a later stage, for our participation to the NIST LRE
2009 campaign, we faced the 2009 data with the additional VOA training corpora.

The official NIST LRE protocols do not set constraints on which training data may
be used — they simply have to be listed on the system description (see i.e.(Verdet
et al., 2009a) and the following subsections). These protocols define different tasks.
E.g. there are testing utterances with a content of nominally 3, 10 and 30 seconds of
speech. And the evaluation may be carried out in an open-set or a closed-set context.
Here, we focus on the core task, which uses only the 30 s utterances, closed-set.

2.6.3.1 NIST LRE 2005

The NIST Language Recognition Evaluation 2005 (NIST LRE, 2005) consists in de-
tecting the following seven languages: English, Hindi, Japanese, Korean, Mandarin,
Spanish and Tamil.

For training the UBM, as well as language models (and later on the JFA U matrix),
the cfChansTrDvEv (Sect. 2.6.1) data set is used. Some single analyses were carried
out using only the cfChans data set. The testing data is the official one that comes
from lid05e1. In Table 2.2, this data set is highlighted and the number of testing
utterances is given (including utterances of all lengths). Performances on NIST LRE
2005 are usually evaluated using the pooled EER metric (Sect. 2.6.2.1).

49This has not much to do with the stability of the recording environment. So we are not trying to
avoid the robustness problem outlined in Sect. 1.1, but we aim stability of the evaluation environment
in the sense of reproducibility.
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2.6.3.2 NIST LRE 2009

The NIST Language Recognition Evaluation 2009 (NIST LRE, 2009) consists in de-
tecting the following twenty-two languages: Amharic, Bosnian, Cantonese, Creole
(Haitian), Croatian, Dari, (American) English, (West- and Central-African) French,
Georgian, Hausa, Hindi, Indian English, Korean, Mandarin Chinese, Pashto, Farsi
(which is the same as Persian), (Angolan) Portuguese, Russian, (Caribbean, Latin
American and Andean) Spanish, Turkish, Ukrainian, Urdu and Vietnamese.

The UBM was trained with all data of CTSsmall50 and VOA10k sets (including
thus six times more VOA than CTS data). This comes down to 787 million speech
frames (representing 2185 hours in 143 366 utterances). Language models (and
JFA’s U matrix) are estimated using CTS and VOA data sets. The testing data is the
official one that comes from LRE09e1. The exact number of testing segments in this
set is indicated in Table 2.2. This table also indicates the 16 out-of-set languages
(with a star), as well as which languages can be found on the VOA data disks. From
2005 to 2009, NIST LRE changed performance metric from pooled EER to minimal
average cost (min-Cavg, Sect. 2.6.2.2), which will generally be used when measuring
system’s performance on LRE09e1 data.

2.7 System implementation

In the following, we give a rapid insight how the baseline system and the subsequent
extensions were implemented and which tools were used for this task.

The Feature Extraction step is carried out using the SPRO4 tool (SPro, 2004)
where cepstral coefficients needed to be extracted. For PLP based features and those
using RaSta filtering, the in-house tool lia_plp_mt was used.

The Language Recognition systems of all reported experiments were imple-
mented using the free software library and framework ALIZE (MISTRAL, 2009;
Bonastre et al., 2008, 2005; Charton et al., 2010)51. They have mainly been developed
at the LABORATOIRE INFORMATIQUE D’AVIGNON (LIA) . For working with SVMs,
the utils are based on the third party library LIBSVM (Chang and Lin, 2001; Hsu
et al., 2003). All these toolkits are freely available to the community.

All this was assembled with a good part of Bash, Ruby52 and Perl scripting
to configure and to glue together the different processing steps. And finally, the
evaluation protocols are the ones of NIST LRE 2005 and 2009, as described in
previous section.

50All data sets are described in Sect. 2.6.1
51The high level tools are sometimes also referenced under the MISTRAL term.
52Featuring a framework of coherent classes for different file types and extended algebraic calcula-

tions, as well as a set of tools for conversions, analyzes and other utilities.
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Some more technical aspects which had to be handled comprise ways to cope
with the huge amount of data. This ranges from massively parallelized computation
and algorithm redesign (i.e. fully parallelized U estimation) to loading only one
chunk of a big matrix (i.e. statistics) at any given time since the whole would not fit
into memory.

— ⋄—

This concludes the chapter which presented the cycle of a pattern recognition
or classification application. We have shown a Language Recognition system with
all its processing steps. They are organized into the training and the testing phases.
The major steps involved in the training phase are Feature Extraction and model
estimation, and for the testing phase: Feature Extraction, (Likelihood) scoring,
score processing, followed by the final evaluation with performance measurement.
Having stated protocols and associated data sets, we now have also at our disposal
test beds to evaluate different systems.

In the context of the present works, we have chosen the following system
setup: We use Mel scale SDC features in a 7-1-3-7 configuration, energy based
Speech activity detection and mean/variance feature normalization. Our modeling
approaches are based on a GMM-UBM setup using MAP adaptation. For the
NIST LRE 2005 protocol, scores will generally undergo a divSum-K normalization
before being evaluated using pooled EER. However for the NIST LRE 2009 protocol,
the scores are normalized by the llkMax0 method (which will be introduced in
Sect. 7.2.1). The performance measurement is also changed to min-Cavg in order to
avoid test set imbalance bias.
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Table 2.2: List of available languages across the diverse corpora. Number of files, star indicates
out-of-set. See Sect. 2.6.1 for footnote texts. Part 1 of 2, continuation in Table 2.3.
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Albanian X

Amharic 1194 X

Arabic * 561 *X X 240

– Egyptian 40 226 240 240 40

Azerbaijani *1098 X

Bangla/Bengali30 * 123 X 40 240 40

Belorussian *1089 *X

Bosnian 1065 X

Bulgarian *1125 *X

Burmese X

Chinese

– Cantonese 1071 X X 40 240 40

– Mandarin 2976 X X X 471 240

– – Mainland/north 40 234 1062 240 40

– – Taiwan 40 234 1800 168 252 42

– Min (Nan/south) * 139 40 240 40

– Wu (Shanghai) * 194 40 240 40

Creole (Haitian) 969 X

Croatian 1128 X

Czech X

Dari 1167 X

English X X X 477

– American 2615 720 2445 246 41

– Non-Southern 40 1199

– Southern 40 237

– TtAm31 !X

– Indian 1624 X 525 504 44

Farsi/Persian32 1159 X 40 X X 237 240 240 240 40

French X X *240

– African33 1185 X

– Canadian 40 232 240 240

Georgian 1197 2X

German 40 X X 238 240 240 *252 240

Greek X

Hausa 1167 X

Hindustani

– Hindi 1922 X 40 X X 233 232 240 429 486 41

– Urdu 1133 X 40 246 41
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Table 2.3: List of available languages across the diverse corpora. Part 2 of 2, continuation of Table 2.2
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Hungarian X

Indonesian X X *240

Italian * 80 X *240 *40

Japanese * 490 40 X X 235 239 480 1095 240 40

Khmer X

Kirundi34 X

Korean 1365 X 40 X X 234 236 240 942 240 40

Kurdish X

Laotian X

Macedonian X

Ndebele X

Oromo, Afan- X

Pashto 1185 X

Polish X

Portuguese X

– African (Angolan) 1191 X

Punjabi * 22 * 96 *16

Romanian *1200 *X

Russian 1486 X X *240 40 480 40

Serbian X

Shona X

Somali X

Spanish35 1155 X X X 456

– Caribbean 40 234 240 40

– Non-C’/Highland 40 231 480 40

– Latin Am’ 240

– Mexican 1833 130

Swahili *1188 X X

Swedish X

Tagalog * 224 *240 *40

Tamil 40 X X 226 222 240 549 92 480 20

Thai * 511 X 40 240 40

Tibetan *1104 X

Tigrigna X

Turkish 1182 X

Ukrainian 1164 X

Uzbek *1146 X

Vietnamese 878 X 40 X X 228 239 240 480 40
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Uguali nella varietà e variegati nell’unità,
unici nella diversità e diversi nella loro atta coadunazione

— Umberto ECO, Il nome della rosa, 1980 0
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This chapter is structured into two parts. The first one gives a chronological or
historical overview of the introduction of different techniques. It first discusses the
domains of speech and speaker recognition, then Language Recognition (LR) more
in particular. This way of presentation has been chosen, since most methods used
or tried on the LR problem were first employed in these other automatic speech
processing domains.

The second part shows in a little more detail some important advances in
Language Recognition during last decades. It is deliberately kept non-exhaustive.
These important advances are structured following the system processing chain, as
presented in the previous chapter to be able to situate them easily.

— ⋄—

The basic structure of state of the art systems do not differ much from those usedlinguistic point
of view ten years ago. Thus, Zissman’s article (Zissman, 1996) still gives a good overview

of the underlying approaches. What research did since then, was trying slightly
different algorithms, playing with the tuning of those many parameters, fuse several
systems to increase the overall performance and primarily finding ways to cope
with special kinds of cases — as the problem of variability, which is addressed in
this work. The evolution of computing power allowed also to estimate bigger (that
is more precisely or complexly structured) models and to tackle more elaborate
approaches (as for instance MMI, Sect. 3.4.1 or GMM-SVM pushback, Sect. 3.4.2).

3.1 Chronology of approaches to speech and speaker recog-

nition

In the following, a very short history of speech recognition and speaker verification
is presented. Where explicit references are not given, they can be found in (Furui,
2005). Since speech and Speaker Recognition is not the focus of this document, these
references are not repeated. Other overviews of these domains can be found in (Fu-
rui, 1994; Juang and Rabiner, 2005). These two domains laid the basis for Language

0Primo giorno, Sesta, § 6. Citation used by Gion A. Caminada in the laudatio for my father,
Stiftung Bündner Kunsthandwerk 2010.
German: Gleichförmig in der Vielfalt und vielförmig in der Gleichheit, einig in der Verschiedenheit und
verschieden in der Einigkeit, Der Name der Rose, übersetzt von Burkhart Kroeber, 1982, Carl Hanser.
English: United in their variety and varied to their unity, unique in their diversity and diverse in their apt
assembly, The Name of the Rose, translated by William Weaver, 1983, Harcourt.
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3.1. Chronology of approaches to speech and speaker recognition

Recognition (LR) since their exploration started well before the investigations in the
area of LR.

In the 1950s and 1960, first attempts to exploit fundamental ideas of acoustic
phonetics have been undertaken. They were mostly based on spectral resonances of
the vowels using an analogue filter-bank and logic circuits.

In the 1950s, all efforts focused on vowel (RCA Labs) or vowel-based digit (Bell 1950s

Labs) recognition. In 1959, first consonants have been recognized and their perfor-
mance enhanced through statistics on allowable phoneme sequences in English.

In the early 1960, several hardware phoneme recognizers appeared.

In the mid-1960s, elementary time-normalization methods arose, which reduced mid-1960s

the variability of the speech recognition scores. In the Soviet Union, time aligning
of utterance pairs using Dynamic Time Warping (DTW) was developed. Until late
1970s, several dynamic programming variants, including the Viterbi algorithm,
became invaluable in the speech recognition domain.

In the 1960s also appeared first publications on speaker (or "talker") recogni-
tion — about one decade later than speech recognition. They use filter banks and
order to measure the similarity (correlation) of two spectrograms. Later on, linear
discriminators as well as formant analysis appeared in Speaker Recognition (SR).

In the 1970s, automatic speech recognition became a full-fledged topic of pattern 1970s

recognition (Velichko and Zagoruyko, 1970) and linear prediction coefficients (LPC)
spectral parameters were introduced (Itakura, 1975).

During this period, the IBM Labs focused on Large Vocabulary Speech Recog-
nition (LVSR), the AT&T Bell Labs on speaker-independent speech recognition.
Several speech understanding systems were developed under the DARPA (U.S.
defense) program. Such as the Hearsay I system using semantic information or the
Harpy system accurately recognizing speech of a 1011 words corpus, which uses
graph search on a connected network issued of lexical representations of words, as
well as syntactical production and word boundary rules. It was the first one using a
finite state network.

In the Speaker Recognition branch, even if research on text-dependent ap-
proaches continued because of the inherent simplifications, text-independent meth-
ods were attempted quite early. For this, features that are independent of the
phonetic context, but which characterize the speaker were extracted: averaged
auto-correlation, instantaneous spectra covariance matrix, spectrum and fundamen-
tal frequency histograms, linear prediction coefficients, and long-term averaged
spectra. Also introduced were instantaneous cepstral coefficients as well as their
first and second derivatives (or first and second order polynomial coefficients),
commonly named ∆ and ∆∆ (double-delta) coefficients.

The speech recognition systems developed in the 1980s focused on robustly 1980s

recognizing the connected words of fluent speech with a wide variety of approaches
and algorithms.
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The basis of most practical systems of present times were researched in the
1980s with some major improvements dating from the 1990s. "Speech recognition
research in the 1980s was characterized by a shift in methodology from the more intuitive
template-based approach (a straightforward pattern recognition paradigm) towards a more
rigorous statistical modeling framework.", as describes (Furui, 2005).

Also, in the mid-1980s, the language models (grammars) moved towards the
nowadays well known n-grams, defining the occurrence probability of a sequence
of n words.

Doubtlessly the most important advance in speech recognition was the HMM
approach, which found its way to virtually all speech recognition research groups
in the world and was also introduced to SR at about the same time (Ferguson,
1980; Rabiner, 1989). At the very end of the 1980s, first GMMs (single-state HMMs)
occurred in speaker identification (Rose and Reynolds, 1990), estimated by an
EM-ML algorithm (Sect. 2.4.2).

About one decade after cepstral coefficients and their deltas have been tried
in Speaker Recognition (SR), they were also applied to the speech recognition
task. This is one of the few examples of Speaker Recognition technologies finding
application in speech recognition.

After first trials in the 1950s, neural nets were reintroduced to the speech recog-
nition task only in the 1980s with a better understanding of the technology with its
strengths and limitations.

Prior the 1990s, the problem of pattern recognition followed the framework1990s

of Bayes requiring data distribution estimation. During the 1990s it was then
transformed into an optimization problem where the empirical recognition errors
are being minimized. This concept came along with several new techniques like
discriminative training or kernel-based methods.

The developments of the 2000s focus mainly on spontaneous and multilingual2000s

speech. In conjunction with full dialog systems, confidence measures were more
thoroughly investigated. Also combining speech recognition with multimodality as
the lip movements has shown to improve recognition in noisy environment. On the
modeling level, dynamic Bayesian networks have been analyzed.

In Speaker Recognition, the problem of score normalization in order to reduce
intra-speaker variation of Likelihood values was brought up in the 1990s and
addressed with Likelihood ratio and a posteriori probability techniques. This nor-
malization problem has then more seriously been researched in the early 2000s with
normalizations as the mean-subtraction and standard deviation-division, where
the parameters are estimated on a set (cohort) of impostor speakers, which are
processed an impostor score distribution — calculated with different approaches
such as Znorm, Hnorm, Tnorm, HTnorm, Cnorm and Dnorm (Bimbot et al., 2004).

Generally, normalization is carried out at different stages: At Feature Extrac-
tion level with CMS, variance normalization (Sect. 2.3.3) or feature warping, at
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model level using the World Model (WM), and several score-level normalizations
(Sect. 2.5.2).

The early 2000s also saw higher level features emerge for Speaker Recognition.
These comprise amongst others: word idiolect, pronunciation, phone usage and
prosody (Rouas and Farinas, 2004).

3.2 Early times of language recognition

Now we will have a look at the early history of automatic Language Recognition.
In the first times, we nearly exclusively find the term of Language Identification
(LID), referring to the identification evaluation mode (as opposed to detection).
This has changed a lot during the last decade, due to the different NIST LREs,
which are carried out as detection tasks. As a side effect, we see a distinction also
on the corpora used for one or the other task, even if there is no data-motivated
reason: OGI-MLTS and OGI-22-languages corpora are mainly used for Language
Identification, whereas LDC’s CallFriend and NIST’s LRE data are mostly used for
detection. Nevertheless, we can still find some publications doing real identification.

3.2.1 The manual or supervised era

Prior to the late 1070s/early 1980s, Language Identification (LID) has largely been
guided by human experts based on linguistic units that were thought of being most
likely to discriminate languages. These linguistic units have different occurrence
frequencies in different languages.

(Leonard and Doddington, 1974) carefully select transitional and steady-state mid-70s

sound segments for each pair of languages. These segments are based on manual
analysis of filter-bank feature vectors. Then, they calculate a time-average log-
likelihood for template matching. But the processing seems cruelly to lack some
BE calibration since one language achieves 0% accuracy while other achieve 90%
(over a set of 5 languages). This was one of the earliest LID systems described in
literature.

An early feasibility study (House and Neuburg, 1977) investigates Markov end-70s
early 80schains (ergodic HMMs) on some artificial data and is thus quite far from a real

world application. The data being mold are published phonetic transcriptions.
Other studies (Li and Edwards, 1980) apply segmentation and finite-state models to
six broad acoustic-phonetic classes.

Another pilot study published in 1982 (Cimarusti and Ives, 1982) presents a
totally automatic approach, where the only human interaction was the designation
of the speech segments to be used. It uses pattern analysis techniques with the
justification that humans are able to perform language discrimination based on
"some language-unique features of which they are apparently minimally aware". This study
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makes the fundamental assumption that introduces acoustics based Language
Identification: The discriminating linguistic units used in earlier LID studies "can be
described in terms of their acoustic characteristics in the speech signal. [...] it is reasonable
to assume that the acoustic description of the speech signal will retain the discriminating
nature of the language-unique properties". Based on this, features for LR need not be
strictly of linguistic nature, but can also be purely acoustic. The study works with
a total of three minutes of read speech for each of five (male only) speakers per
language and on a set of 8 languages. The feature vectors are a combination of
100 parameters. Since these LPC-derived features are rather uncommon nowadays,
they are listed hereafter without further details:

• 15 area functions
• 15 autocorrelation coefficients
• 5 bandwidths
• 15 cepstral coefficients
• 15 filter coefficients
• 5 formant frequencies
• 15 log area ratios
• 15 reflection coefficients.

The trained decision functions were Type-II exponential functions, expressed as a
polynomial. This study concludes optimistically with the sentiment that an accurate
feature ordering and selection strategy could improve the results even more. The
pretty good results (between 77 and 93% correct classification) accrue possibly from
the method of dividing the data set into training and testing subsets: The database
was randomly divided so that both subsets contained an equal number of feature
vectors from each language — possibly missing the fact that data of a given speaker
may be attributed to both, training and testing subsets, which would partially lead
to speaker recognition instead of LID.

— ⋄—

Before the 1990s, most systems were evaluated on very different and often
specially designed databases and thus their results are hardly comparable.

3.2.2 First automatic approaches

Most general directions of LR research were developed out of speech and Speaker
Recognition. This section shortly evokes some approaches on the way from the
manual era seen above to the automated systems employed nowadays. A more
extended overview of LR, as well as further references to research evoked in this
section, can be found in (Zissman, 1993).

— ⋄—

In the late 1980s, formant and prosodic features were investigated and rule-late 80s
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based thresholding over pitch and formant frequency variance or power density
centroids was explored.

In the early 1990s, Vector Quantization (VQ) on linear prediction coefficients early 90s

(LPC) features and GMMs, as well as neural net classifiers (Cole et al., 1989) were
introduced to LID. In 1991, (Savic et al., 1991; Riek et al., 1991) successfully tried
HMMs and pitch contour analysis. The five states of the HMM represent different
articulatory configurations of the vocal tract with the self-transitions giving the
occurrence rate of a sound class. "The observation and transition probabilities show
considerable inter-language variations", while remaining remarkably similar within
a same language. Pitch detection was conducted by offset removal and a method
of autocorrelations with user-defined thresholds. Pitch evolution was analyzed
on a long-term and a short-term level. The former operating on a sentence level
and tracking intonation and the latter analyzing a possible tone, thus on a word
level. Whereas the initial database consisted of 15 languages, only a subset of fluent
bi-lingal speakers in 4 languages was used. The data being noise-free read speech,
the study did not hit any error. But it was observed that only articulatory HMMs or
only pitch evolution alone was not sufficient for all cases — a combination of the
two approaches is necessary.

(Muthusamy and Cole, 1992) introduced probably the first time in the history
of LID the representation of an entire utterance under the form of a fixed size
vector. For this, the speech signal was partitioned into a token sequence of seven
broad phonetic categories using neural nets and then transformed to one vector of
194 features, which was then used for LID. This system requires some hand-labeled
training data and thus some language-specific phonological knowledge.

The first system not relying on transcribed training data is described in (Zissman,
1993). It features an ergodic Hidden Markov Model (HMM) with tied Gaussian
mixtures for each language using Mel-scale weighted cepstrum and delta-cepstrum
vectors. The presentation of this system concludes that the performance of GMMs
(single state HMMs) is comparable to the multistate HMMs, which indicates that
the sequential modeling capabilities inherent in the HMMs were not exploited.
This could be due to the limited amount of training data or to a lack of balance
between static (states’ observation likelihoods) and transitional information. But as
advantage, this system can easily be extended to other languages since it does not
require any phonological knowledge or hand-labeled training data.

— ⋄—

While early Language Recognition involved manual analyses (think of Feature summary

Extraction by hand), first automated systems still involved some expert linguistic
knowledge and manual segment selection. Later evolutions were mainly taken over
from the linked domains of Speech and Speaker Recognition. In the following, we
will have a slightly more detailed look at some major advances of the last decades.
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3.3 Feature extraction

This and the next sections present chosen major advances in the domain of language
recognition. They are ordered in sections in the same sequence as the presentation
of the baseline system (in Chapter 2).

Let us start with Feature Extraction, presenting different approaches used and
combinations thereof.

3.3.1 Types of features

There is a considerable variety of different kinds of parameterizations used through-
out the large domain of automatic speech processing. Some of them are more
frequently used in speech recognition, Speaker Recognition and again others in LR.
It follows a list of some more or less widespread types of feature vectors.

We principally distinguish two basic approaches to FE, which will be detailed in
the in the following.

3.3.1.1 Cepstral-based

One class of features are based on Cepstral Coefficients, extracted principally the
way described in Sect. 2.3.1. Cepstra can be extracted using slightly different
setups or adding further processing steps. The following list presents some of these
nuances. Most can be seen as individual configuration/processing elements, which
may be combined together:different

elements
Energy : The basic feature vector is augmented with one additional parameter,

which contains the instantaneous signal energy.

Mel scale : The filters of the filter-bank that is applied to the spectrum are dis-
tributed non-linearly along the frequency scale, as mentioned in Sect. 2.3.1.
This has the same effect as warping the spectrum itself to a non-linear frequency
scale.

Linear scale : The more historic approach uses a linear frequency scale (as opposed
to Mel warping).

Deltas : Additional parameters are appended to the basic feature vector. They
contain the deltas (∆) of the basic parameters. Deltas are the instantaneous
evolution of the signal and can be seen as first order derivative. They indicate
how the signal (or more precisely the feature vectors) change in the neigh-
borhood of the current frame. Usually about 5 frames are used in a weighted
manner for this calculation.

Double-Deltas : Similarly, double-deltas (or delta-deltas, ∆∆) can be calculated.
They represent the instantaneous evolution of the signal and it can be seen as
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3.3. Feature extraction

"acceleration" of the signal in the neighborhood of the current frame. Usually,
about 9 frames are used for its calculation. They get also appended to the
basic feature vector.

SDC : Shifted Delta Cepstra are multiple (single-) delta-blocks calculated in the
future of the signal (looking ahead of the current frame). Their configuration
is given by a set of four parameters in the form N-d-P-K (Sect. 2.3.1).

RaSta : RaSta filtering (Hermansky et al., 1991, 1992; Hermansky and Morgan,
1994), uses band-pass filtering in the log-spectral domain and removes slow
channel variations in order to smooth over short-term noise variations and
remove constant offsets. So it is a window-based filtering technique that
adapts itself over time. It is an acronym of "RelAtive SpecTrAl transform ".

T-DCT : Temporal Discrete Cosine Transform (Kinnunen et al., 2006) is in effect
rather similar to SDC. But it uses all frames of a window of a given length (SDC
only use single frames therein for delta-block calculation). This also avoids
SDC’s problem of the same delta-block repeating some frames later in an
other block. This seems an interesting approach, but it is not often employed.
It may be considered, together with SDCs, as link between cepstral-based
approaches and more complex Time-Frequency (TF) domain approaches.

Combinations

Some common combinations of the above steps can be observed. All the following final parameteri-
zationsare based on cepstra-type features:

MFCC — Mel (scale) Frequency Cepstral Coefficients is perhaps the most used
parameterization. It is especially used for speech recognition and for speaker
verification. In MFCCs, the number of static cepstral coefficients is often 12. To
these are appended energy, the deltas and all or a subset of the double-deltas.

LFCC — Linear scale Frequency Cepstral Coefficients usually come in a similar
configuration as the MFCCs, but keeping a plain linear frequency scale.

(Mel-)SDC — SDCs are most often computed on MFCCs and come in a 7-1-3-7
configuration. In this work, we use this kind of features (in the stated setup),
like most acoustic LR systems nowadays. This uses static cepstra of a window
of 21 frames to compose one final SDC vector.

(Mel-)T-DCT — T-DCT are often applied on top of MFCCs. (Castaldo et al., 2007c)
for instance finds that (T-)DCT in a 12-3-7 setup perform better for shorter
utterances (10 and 3 seconds), whereas 7-1-3-7 SDCs are better for 30 s.

3.3.1.2 Linear prediction based

An other class of parameterizations are based on PLP features. Perceptual Linear
Prediction (PLP) coefficients are based on concepts from psychophysics of hearing
(Hynek, 1990). It avoids speaker-dependent details of the auditory spectrum and
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would thus be less adapted for speaker verification. PLPs can also be combined
with most of the above steps. Some commonly used ones are:

PLP — Plain Perceptual Linear Predictions.

R-PLP — RaSta filtering is usually applied to PLPs (Hermansky et al., 1991, 1992;
Hermansky and Morgan, 1994), but intuitively the same can also be applied
to LFCCs or MFCCs — or even be combined with SDCs. Using RaSta-PLPs is
just as common as using plain PLPs.

PLP-SDC — We also shortly tried to apply the SDC approach to PLPs. The results
are shown in the tables later on in this chapter. We did not cross such trials in
other publications yet.

— ⋄—

Other possible parameterizations include features which combine, by someother types

trade-off, time and frequency domains (for this, see (Milner and Vaseghi, 1995)
and other references indicated in (Castaldo et al., 2007c) for Time-Frequency Princi-
pal Components Analysis (PCA)). Even other features may represent prosodic or
other linguistic cues (e.g. Itahashi and Du, 1995; Yan et al., 1996; Hazen and Zue,
1997; Barry et al., 2003; Rouas et al., 2003). Results comparing some of the named
parameterizations will be presented later on in Table 3.2 and Table 3.3.

Both CMS/variance normalization and RaSta filtering have been consideredfeature
normalization here as feature normalization step. Obviously more advanced normalization tech-

niques such as Vocal Tract Length Normalization (VTLN) exist, but they are not
considered here.

3.3.2 Shifted Delta Cepstra

This section revisits the concept of SDCs, which include a certain evolution of the
signal over time directly on the feature level (instead of the model level, as is done
i.e. by HMMs). But this introduces some problems other types of features do not
have.

— ⋄—

Let us define the configuration of an SDC setup by four parameters N-d-P-K1.N-d-P-K
configuration Let c(t) be the frame at time t, which has been extracted by the first FE step

(Sect. 2.3.1) N is the number of basic parameters in such vectors. This includes, in
most cases, the cepstral coefficients as well as energy (usually the last parameter
in this vector). This energy is most often also used in generating SDCs and thus
counted in the value of N.

For each time t, the delta is calculated by subtracting the values of frame num-stacked
delta-blocks

1Readers knowing other publications describing SDC will see that an upper-case K has been chosen
here to keep lower-case (k) as index of K.
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bered t− d from the frame at t + d (element-wise subtraction of the vectors)2. An
other delta-block is calculated around time t + P, that is frame t + P− d subtracted
from t + P + d. And further blocks around integer multiples of P in the "future" of
time t. P is the number of frames between consecutive delta-block centers — it is
the "Shift" in Shifted Delta Cepstra. More generally, the formula for a delta-block is

∆kc(t) = c(t + kP + d)− c(t + kP− d) (3.1)

where k ∈ 0, . . . , K− 1 is the index of the delta-block and c( ) is the basic feature
vector. Thus, for each time t, K such delta-blocks ∆kc(t) are calculated and stacked
on top of the basic vector3. This yields SDC vectors of size N + KN for each frame
at time t.

In the present case, the parameters N-d-P-K have values 7-1-3-7, as do most 7-1-3-7

other acoustic LR systems (e.g. (Burget et al., 2006; Torres-Carrasquillo et al., 2002b;
Campbell et al., 2004; Castaldo et al., 2007b; Matějka et al., 2006) and a majority of
the NIST LRE 2009 participants). In Sect. 2.3.1 we have extracted 6 (Mel frequency
scale) cepstral coefficients. Together with energy, this gives a N of 7. Further, we
have seven delta-blocks, with a shift of 3 frames, stacked on top. This yields vectors
of size 56. The range of vectors that are used in the SDC calculation for time t is
t− 1 (for ∆0c(t)) to t + 19 (for c(t + 6 ∗ 3 + 1) in ∆6c(t)). This interval of 21 frames
(which corresponds to 21 ∗ 10 ms = 0.21 s) allows thus to include in a certain manner
the dynamics of the signal over a reasonable time span. A duration of 21 frames
corresponds roughly to the length of a (simple) syllable (Fletcher and McVeigh,
1992).
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Figure 3.1: Illustration of how the different delta-blocks (∆) are obtained from MFCC feature vectors
and concatenated together to form one SDC vector. This is repeated for every frame.

One of the main problems of SDCs is the interaction of this "lookahead" (in our look into silence

case of about 20 frames) with the Speech activity detection. The question arises

2We note that for SDCs, the deltas are calculated by simple subtraction of two feature vectors,
while standard cepstrum deltas are usually calculated in a weighted manner on 5 consecutive frames.

3Early SDC applications used to keep only the delta-blocks, but nowadays the convention is to
keep the cepstral coefficients as well as the energy.
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whenever it comes to the end of each speech segment, as looking ahead means
looking into the silence that follows.

We imagined one simple possibility, which consists in reducing the length of
each speech segment. This should avoid or at least lessen the number of SDC frames
whose delta-blocks include silence frames. Some results analyzing this idea are
presented in Table 3.1 (the system setup will be given together with Table 3.3). A
first experiment removes the first and the 19 last frames of each speech segment
(chop 1/19). This keeps only SDC vectors which are entirely calculated on speech
frames. Compared to the base SDC system, performances are degraded a lot. The
second part of the table does the same experience on non-SDC parameters. The idea
is to find out what is due to the fact of avoiding silence frames (for SDCs, the cost
should decrease) and on the other hand, how much the cost increases because we
removed (too) many feature vectors. We observe that also for non-SDC parameters,
the degradation is of the same order. As result, we see that the "look into silence"
problem of SDCs can not be solved this way, since too much data is discarded of
the already quite short segments (discussed in Sect. 3.3.4).

Table 3.1: Impact of the speech segment lengths, trying to remove frames at (beginning and) end of
each segment where SDC looks into silence, our NIST LRE 2005 system, in % pooled EER

parameterization segment reduction accurate JFA

PLP-SDC – 7.97
chop 1/19 10.87

RaSta-PLP – 7.38
chop 0/9 9.03
chop 1/19 10.23
train chop 1/19 12.68

Opinion: Common literature does not pay much attention to the problem of
SDCs "looking into silence" at the end of segments detected as speech by
the Speech activity detection algorithms. We feel that some more in-depth
research should be carried out in this field. The context of this problem
is rather dependent on the nature of the segments produced by the SAD—
the average length of the individual segments, the minimal duration of a
segment or the smoothing (Sect. 3.3.4).
The works in (van Leeuwen and Brümmer, 2006) use a special approach
to this problem (without more explanation on its usefulness though): They
calculate SDCs as usual and add an additional feature parameter, which is
a flag taking the value +0.5 if all frames used for the different delta-blocks
were detected containing speech and otherwise −0.5 if at least one frame
used belongs to silence. Discarded are only frames where all implied cepstral
feature vectors lay in regions labeled with silence.

Besides, a questionable fact about SDC is that the very same values of a bigrepeating blocks
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part of the feature vector can be found again P frames later at the position one
delta-block before, then P more frames later, two blocks before and so on. This
happens since ∆kc(t) = ∆k−zc(t + zP) for all z ≤ k.

An interesting problem about repeating blocks is pointed out by (Castaldo et al.,
2007c): The parameters of an SVM’s mean Super-Vector will be highly correlated
because of this fact. But since we keep only frames containing speech, the (corre-
lated) segments are all relatively short (but this depends on the used SAD). The
effects of the initial and final frames may, up to a certain point, compensate the
intrinsic correlation of the features. This correlation problem does not occur in a
GMM context.

— ⋄—

This highlighted two problems inherent to SDCs: looking into silence at the
end of speech segments and the repeating blocks feature values. Both of them are
unsolved or they even can not suitably be resolved.

3.3.3 Comparison of parameterizations

Having listed different parameterizations, this section gives a quick glance at some
comparisons of these, applied to the NIST LRE 2005 protocol. All results presented
in this section have been obtained either by our baseline system (Chapter 2) or by
systems described in Chapter 4, by varying the FE configuration.

— ⋄—

Table 3.2 shows the effects of different parameterizations. They are analyzed frequency scales,
SDCas well in the MAP as the JFA context. It includes also some MMI results for

comparison. On one term, the type of frequency scale is changed. In general and
particularly for JFA, the Mel scale outperforms the linear one. On the other side,
analyses replace the deltas and double-deltas by SDC blocks. SDCs seem to require
a certain model size to develop their power. The combination of SDCs with the Mel
scale is the way to go.

This Table 3.2 will also be referenced subsequently (in Sect. 3.4.1 and in Chapter 4)
because it shows other interesting aspects. This table indicates results on slightly
different parameterizations than used later on. These early results have to be taken
with certain caution, since the internals of the systems were reworked later on. But
several conclusions that will be drawn in Chapter 4 can also be observed in this
table. We see for instance that JFA systems have a better evolution with growing
model size than models obtained through MAP adaptation only.

Setup: Parameters with first and second order deltas are extracted with 19 basic
coefficients plus energy. A feature mask with configuration 0-18, 20-50, meaning
that the basic energy and the 9 last double-deltas (8 plus energy) are not used.
We note that the final number of 50 parameters (the vector size d) is nearly the
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same as the 56 for SDCs, which allows the results to be slightly more comparable.
It uses a 3-Gaussian SAD, approximated JFA (Sect. 4.3.3) with CMS (Sect. 4.3.4).
The results are obtained on the NIST LRE 2005 protocol.

Table 3.2: Comparison of linear and Mel frequency scale cepstral coefficients with Delta-Cepstrum
or with SDC, for different model sizes (256 to 2048 Gaussians), in % pooled EER, d indicates the
dimension of the feature vectors

basic parameters delta types d system 256 512 1024 2048

LFCC ∆, ∆∆ 50 MAP 21.52 – – 18.64
JFA 40 13.36 12.63 11.99 11.88

LFCC SDC 7-1-3-7 56 MAP 19.62 18.53 – –
JFA 40 14.87 11.15 11.21 9.25
MMI 16.9 – – –

MFCC ∆, ∆∆ 21 MAP – 36.1 – –
JFA 40 – 24.6 – –

39 JFA 40 17.8 – – –

MFCC SDC 7-1-3-7 56 MAP 18.48 16.88 18.47 18.31
JFA 40 10.46 8.97 8.78 8.27
MMI 14.81 – – –

Table 3.3 (as well as the earlier Table 3.1 and Table 3.5 in next section) presentscepstra vs. PLP

results changing between cepstral based and PLP features with deltas and accelera-
tion or with SDCs. It includes also the addition of RaSta filtering. Best results are
obtained by RaSta-PLPs (at least for the accurate JFA strategy).

Setup: These systems use models of 256 Gaussian with model-space JFA (training
and testing, Sect. 4.3.1 and Sect. 4.3.3) without additional CMS (Sect. 4.3.4).
The column approximated shows performances using the UBM based model
compensation and the column accurate the more expensive model compensation
JFA approach (as detailed in Sect. 4.3.3). MFCC and PLP based SDCs are both
built on 6 base coefficients plus energy and are both in the configuration 7-1-3-7
and have thus 56 parameters. The non-SDC parameterizations (MFCC, PLP
and RaSta-PLP) have 12 base coefficients plus energy, deltas and double-deltas,
which sum up to 39 parameters. The Speech activity detection uses a 3-Gaussian
setup, as described in next section. The evaluation takes place on the NIST LRE
2005 set, 30 second utterances.

3.3.4 Speech activity detection

In this section, we continue looking into the problem of SDCs taking on silent
frames (Sect. 3.3.2). We analyzed two slightly different ways of doing Speech
activity detection: a 2- and a 3-Gaussian based SAD. This section gives also a hint
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Table 3.3: Comparison of MFCC and PLP parameterizations combined with deltas or SDCs, and
the effect of RaSta filtering, in % pooled EER

parameterization dimension approximated JFA accurate JFA

MFCC 39 17.78 9.14
MFCC-SDC 56 14.94 10.09
PLP 39 16.55 9.11
PLP-SDC 56 11.21 9.45
RaSta-PLP 39 16.15 8.72

to even other approaches used in literature.

— ⋄—

A frequently used SAD approach is to use a model of two Gaussians: one 2-Gaussians

modeling low energy and the other one high energy. This comes down to using
two one-Gaussian models (and tracking their priors). The frames are then assigned
to speech or silence by comparing the Gaussians’ posterior probabilities. The per-
utterance threshold is thus implicitly given by the Gaussian distributions. This
approach is rather dependent on the initialization and thus on the prior of a frame
being speech (on the estimation or the guess of how much speech a recording
contains).

An other possibility to achieve SAD are strategies using for instance three 3-Gaussians

Gaussians: One for low-, one for the mid-energy range and one for high energy.
A speech label is assigned to frames hit by the high-energy Gaussian and by a
percentage of the middle one. The results of this approach depend on the parameter
indicating where to place the threshold, expressed as a percentage of the middle-
energy Gaussian to take as speech.

Table 3.4 gives a small insight into our analyses to the challenge of Speech
activity detection. It indicates the effect of the middle-Gaussian parameter (here
called alpha) of the 3-Gaussian setup on the number and the lengths of the resulting
segments labeled as speech. It shows also the effect of the light smoothing algorithm,
particularly on the average segment length, which is lengthened by 38 and 49%
relative (from 19.2 to 28.6 frames for the CallFriend data). A good set of experiments
on the NIST LRE 2005 protocol presented throughout this document were carried
out using this SAD approach.

Table 3.5 shows how system performance may vary upon changing SAD algo-
rithm from the three- to the two-Gaussian setup. It shows that over 15% relative can
be gained just by changing speech activity detection algorithm with an acceptable
initialization. This table also shows that RaSta normalization is beneficial, since it
reduces the costs up to 16.7% relative for the better 2-Gaussian SAD.

Setup: The system setups of the experiments in Table 3.5 are the same as in Table 3.3
of previous section. The setup labeled 3-Gaussian energy uses the previously
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Table 3.4: Statistics on the segments of 3-Gaussian energy-based SAD mainly showing the effect of
subsequent segmentation smoothing

total length in seconds
data set alpha smoothing segment count min max average

CallFriend-train 0.0 – 1 175 428 0.01 16.89 0.143
0.5 – 1 272 966 0.01 69.53 0.192
0.5 smoothing 852 715 0.03 69.53 0.286

NIST LRE 2005 0.0 – 376 407 0.01 6.99 0.135
0.5 – 421 876 0.01 29.57 0.163
0.5 smoothing 307 301 0.03 29.57 0.225

described three-Gaussian setup modeling energy, and which takes half of the
middle-energy Gaussian as speech (alpha= 0.5). It is followed by a slight smooth-
ing step to clean up far too small segments. The other setup uses 2 Gaussians
based on a different implementation.

Table 3.5: Some indications on the impact of the speech activity detection (in % pooled EER)

parameterization speech activity detection approximated JFA accurate JFA

PLP 3-Gaussian energy 16.55 9.11
2-Gaussian energy – 8.86

PLP-SDC 3-Gaussian energy 11.21 9.45
2-Gaussian energy (<10.2 ) 7.97

RaSta-PLP 3-Gaussian energy 16.15 8.72
2-Gaussian energy – 7.38

Other researchers (BenZeghiba et al., 2008) use two GMMs for the SAD task.other
approaches There, the speech GMM consists of a mixture of 2048 Gaussians and a 512 Gaussian

mixture is modeling silence (presumably applied on the whole feature vectors
instead of only the energy component).

More thorough systems may even train dedicated classes to avoid taking music,
laughing, coughing or severe noise as speech. SAD may also directly be based on
the output of a phone or phoneme recognizer.

3.3.5 Feature Extraction conclusion

As conclusion of the different analyses related to FE, we observe following: Moving
from linear frequency to Mel scale (Table 3.2) is doubtlessly the way to go for LR.
Taking SDCs instead of deltas and delta-deltas helps most of the time (Table 3.2
and Table 3.3). We see that the fact of applying RaSta improves results up to 16.7%
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relative in the analyzed cases (Table 3.5). A well-designed and well-parameterized
SAD also plays a very important role, as we witness a 15% relative improvement
(Table 3.5). Best results (on accurate JFA) are obtained with PLP-SDC or RaSta-PLP
parameterizations.

Since a substantial part of these analyses were made at a quite late stage, all
subsequent experiments build on MFCC-SDC features in the 7-1-3-7 configuration.
On the SAD side, NIST LRE 2005 experiments use 3-Gaussian setup with an alpha
of 0.5 and smoothing, while NIST LRE 2009 builds on a 2-Gaussian approach with
its considerable improvement.

3.4 Modelization

Let us now move along from FE to the next step which is the modelization. Espe-
cially in this environment, advances on various levels could be observed:

The most basic approach is to model the acoustic characteristics of a language
as whole. More technically, it is the spectral content that is modeled. For this, we
saw GMMs (in Sect. 2.4.1). They feature a rather high number of mixtures (typically
from 64 up to some thousands) and are trained directly on the feature vectors.

We saw the EM algorithm with a ML criterion (Sect. 2.4.2), as well as MAP
adaptation (Sect. 2.4.4). This section presents two other interesting GMM estimation
algorithms, while the Support Vector Machine (SVM) approach is kept for Chapter 5
because it represents one of the important pillars of our works and will further be
combined with JFA.

After alternative GMM estimation algorithms, this section will also outline
approaches on other linguistic levels, requiring considerable effort.

3.4.1 Maximum Mutual Information

In contrast to the EM-ML or the MAP adaptation algorithms, which are generative,
the Maximum Mutual Information (MMI) approach is a discriminative way to train
models (Matějka et al., 2006; Burget et al., 2006; Castaldo et al., 2007b). On one side,
it is similar to the MAP adaptation because it moves the previous model (starting
with the UBM) towards the observed distribution of the target language. But at
the same time, the algorithm tries to keep an eye on the other language models,
avoiding to move the current model too much towards the others. This is what
makes up the discriminative part. It can thus be seen as a discriminative derivation
of MAP.

— ⋄—

The objective function is a combination of a maximization for every language MMI criterion

model (the posterior Likelihoods of the corresponding training data) and at the
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same time minimizing the effect of every language model on the other languages’
training data.

Instead of running the algorithm separately for each language (as is the case in a
generative environment), this is expressed globally, involving all language models
at once. Assuming equal priors, this can be expressed as

FMMI = ∑
X

log
(

P(X |l)KX

∑k∈L P(X |k)KX

)
(3.2)

with X being every training utterance of every language in turn and KX =
K

|X | ;
0 < KX < 1 depending on the number of frames |X | and a tunable constant K. The
numerator of the fraction in Eq. 3.2 is the maximization part and the denominator is
the minimization and corresponds to the overall posterior likelihood of the utterance
X (given all models): P(X ). This has the tendency to move models of different
languages away from each other.

A rather detailed description of MMI, which may be used as basis for anmean update

implementation can be found in (Matějka et al., 2006). We will just present and
discuss the formula for updating the Gaussians’ mean values without presenting
all required details. For each Gaussian of every language model (thus neglecting
the indices for the model and the Gaussian), we have:

µ̂ =
ϑ1 − ϑ1∗ + Dµ

ϑ0 − ϑ0∗ + D
(3.3)

where ϑ0 , ϑ1 (and ϑ2 for potential variance updates) are zeroth, first and second
order ML statistics respectively, as defined in Eq. 2.8. Further, ϑ0∗, ϑ1∗ (and ϑ2∗) are
the statistics corresponding to the denominator of the MMI criterion of Eq. 3.2. They
are responsible for the discriminative effect. They are collected over the utterances
of the whole training set instead of only the target language (as is the case for ϑ0

and affiliated). The regulation factor D is linked to ϑ0.

This mean update formula has a very similar structure as the mean adaptation of
MAP (Eq. 2.13)4. Compared to MAP, there is just a negative (first-order) summand
added to the numerator, (a zeroth-order) one to the denominator and the weighting
factor D adapted.

Since in this discriminative modeling approach, the updates of the differentiterative

language models are interdependent, the whole process is iterated several times (in
practice 10 to 20) in order to converge to some stable estimates.

With the necessary amount of caution, the implementation can be simplified up
to needing only one single data traversal for each iteration, gathering all required
statistics and weightings at once and then updating all mixtures of all language
models in one run.

4See also the comments in last footnote of Sect. 2.4.4.
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Opinion: Some thoughts on (Matějka et al., 2006), which may be helpful in the
case of an implementation: The Dj in the numerator of Eq. (2) (of the cited
work) should read Dsm. The left hand side of third line (occupation counts)
of Eq. (3) should read γnum

sm (no r in the left hand index). And as guidance
for a potential implementation: The fraction in Eq. (5) does not depend on t
and can thus be pulled up one level and placed between the two sums (over
R and over Tr). The priors compensation factor Ws can similarly be pulled
up from the lowest level of Eq. (6) to the top level of Eq. (2). Care has to be
taken on the coverage of the different algorithm implementation loops since
the cited work lacks some more explicit explanations...

— ⋄—

In literature, MMI can also be found under the term of Maximum Mutual conclusion

Information estimation (MMIE) (i.e. Castaldo et al., 2007b). Compared to EM-ML
and MAP, MMI requires much more computation because of the interdependence
of the models. Our few experiments with MMI (included in Table 3.2 presented
previously) certainly showed an enhancement of 14% relative and 20% relative over
MAP adapted models of the same size, but it is not of the same magnitude as other
researchers have shown (i.e. Burget et al., 2006; Matějka et al., 2006). However our
models were estimated on the cfChans data set only (to limit the number of frames)
and it was stopped after 10 iterations.

MMI has lost of broad interest since it is outperformed by the SVM approach
(presented in Chapter 5), which is also discriminative, but far less expensive.

3.4.2 GMM-SVM pushback

GMMs (Sect. 2.4.1) are a well-known generative training approach, but they lacks
of the discriminative power of SVMs (that will be introduced in Chapter 5). Thus,
(Castaldo et al., 2007a) propose the so called pushback procedure. In this approach,
the GMMs are trained in a discriminative manner by exploiting the information
given by the separating hyperplanes estimated by an SVM. The GMM means are
moved along the directions that lay orthogonal to the separating hyperplane of an
SVM, which is trained on the Super-Vector (SV) issued of the language’s GMM and
with a blacklist containing the other languages’ SVs.

(Castaldo et al., 2007a) found that MAP adaptation is not necessary in Language
Recognition since the language models can be trained robustly enough by ML
estimation. We found similar conclusions, but the huge advantage of a MAP
adaptation starting with a UBM is clearly that we have a correspondence between
the individual Gaussians of the languages’ mixtures — the Gaussians are linked
and retain thus some similarity. This fact is required for several approaches, like
SVMs (Chapter 5) or JFA (Chapter 4).

For GMM-SVM pushback, a GMM is adapted from the UBM for each utterance,
as well in the training, as in the testing phase. The adapted means of a GMM are
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then stacked to form a SV. But this simple stacking to obtain a vector in a high
dimensional space is inaccurate since it does not take into account nor weights nor
(co-)variances.

In order to measure a distance between two GMMs, the approximate Kullback-KL space

Leibler Divergence (KLD) can be used. If each component µgp of the mean is
(mean- and variance-) normalized with respect to the UBM, the KLD is an Euclidean
distance in a new space having the UBM SV in its origin (note that the weight and
the variance were not adapted):

µ̃ l
gp =

√
αg ·

µ l
gp − µUBM

gp

σgp
(3.4)

Since a translation in this space does not change the relative position of points in
the same space, nor their distance, the normalization term can be reduced to the
scaling factor:

µ̃ l
gp =

√
αg ·

µ l
gp

σgp
=

√
αg

σgp
µ l

gp (3.5)

The SVs in this normalized space are used to train a linear SVM (see Chapter 5)SVM

for language l with parameters w and b: Its hyperplane verifies w · + b = 0.

(Castaldo et al., 2007a) have observed that the results were not good enough for
short utterance durations when scoring directly on the SVM level. This is due to the
small amount of data for the per-utterance model adaptation.

To circumvent this, the SVM information is "pushed back" to the GMM space:pushback

The means of the classical GMM language model are transformed by shifting the
corresponding SV along the discriminative direction (given by w) in the KL space:

µ̂ l(ωl) = µ̃ l + ωl ·w (3.6)

where ωl is a tunable shift size. This has then to be put back to the GMM domain.
For each GMM model component (Gaussian g and dimension p), this is:

µ̆ l
gp(ω

l) =
σgp√

αg
µ̂ l

gp(ω
l) =

σgp√
αg

(
µ̃ l + ωl ·w

)
=

σgp√
αg

(√αg

σgp
µ l

gp + ωl ·w
)

(3.7)

This comes down to take the mean component to the KL space, shifting it along w

and transforming it back again. As next step, the transformation could simply be
applied to w, representing the discriminative direction (obtained by simplifying
Eq. 3.7):

µ̆ l
gp(ω

l) = µ l
gp +

σgp√
αg

ωl ·w (3.8)

The shift strength ωl has to be determined carefully. It moves the GMM means
in the direction that separates it best from the other languages’ models in the above
KL domain, but it also moves them away from the position which best fits the
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training data (ML) and thus the Likelihood of the training data decreases. The factor
ωl is chosen in such a way that the models do not move too far away in respect to
the UBM, thus keeping the Log-Likelihood Ratio (LLR) positive. (Castaldo et al.,
2007a) report a ωl of 12 for all languages, but it can potentially be different for each
language.

— ⋄—

The discriminative goal behind GMM-SVM pushback is very similar to the conclusion

goal of MMI (presented in Sect. 3.4.1). This pushback technique requires far less
processing to be carried out than MMI since it works on mean SVs instead of
traversing all frames in each iteration. (Castaldo et al., 2007a) report a speedup of a
factor of 30 despite several computational enhancements on MMI. This pushback
technique, called Discriminative GMM by (Castaldo et al., 2007a), performs better
than SVMs for shorter utterances. For long utterances (30 s), it performs comparably
to SVMs and MMI, whilst for shorter utterances, it is not too far away from MMI
performances.

Opinion: This approach seems exceedingly interesting and promising. There
should be no theoretical issues combining this approach with JFA, because
of its additive nature. Some minor troubles may arise if the directions of w

are too similar to JFA’s variability directions. But this will be of no issue if
the two techniques are estimated and applied sequentially.

3.4.3 Modelizations on other levels

This section will shortly present the main approaches on other linguistic levels, such
as phonetics and phonotactics, as hinted in Sect. 1.3.3. Since the present works focus
only on the acoustic approach, not much details will be given, but starting points
for further reading will be referenced.

3.4.3.1 Phonetic

A typical phonetic approach relies on estimating a phone recognizer for every lan-
guage and on scoring their output Likelihoods for the task of Language Recognition.
Such phone recognizers are usually HMM-based — in one way or the other.

— ⋄—

Early phonetic systems had one single HMM per language. This ergodic (fully
interconnected) HMM had its states representing more or less broad acoustic-
phonetic classes. The states were implemented by a GMM (being a single-state
HMM). The first ones tried by (House and Neuburg, 1977; Li and Edwards, 1980)
used five states, the five broad classes.
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Later on (Muthusamy et al., 1993; Zissman, 1993; Lamel and Gauvain, 1993b,a;
Zissman and Singer, 1994), recognizers started using a network of interconnected
small HMMs, each representing a single phoneme. Traditionally, these HMMs have
three emitting GMM states arranged in a left-to-right (linear) topology.

— ⋄—

Such an approach using language-dependent Parallel Phone Recognition (PPR)PPR

uses a Viterbi algorithm to decode the speech frame sequence. Each language’s
recognizer produces a decoding Likelihood, which is used as score. The phone
sequences themselves, output as a by-product by the recognizers, are not used.

Phonetic LR may also be carried out transforming a sequence of phones or
acoustic-phonetic classes to a fixed-size vector (Muthusamy and Cole, 1992), which
may then be used for instance in an SVM.

3.4.3.2 Phonotactic

In general, two approaches on the phonotactic level can be distinguished. These are
sketched below. Other, intermediary or variant methods were also tried with similar
success. The general setup is to have one or more phone/phoneme recognizers,
followed by a set of language models that take care of the phonotactic structure of
the languages.

— ⋄—

One approach consists in decoding the utterance with a universal phone recog-PR-LM

nizer (cf. the phonetic approach above). Instead of using the recognizer’s Likelihood
output, the sequence of phones (the transcription), which is produced at the same
time but disregarded in the phonetic approach, is used.

This resulting phone successions is processed by language models (abstractlanguage model

grammars), using one model for each target language. For this, n-gram modeling is
typically used, which has largely been introduced in the mid-1980s5. This describes,
which sequences of (n) phones/phonemes may occur and at which frequency
they do. Its training is thus count-based with possibly a minimum occurrence
thresholding. The language models are then constituted by relative occurrence
frequencies and some back-off mechanism handling sequences appearing in testing
data which were not observed during training. The captured units may be seen as a
kind of automatically determined pseudo-syllables.

This setup is called language-independent Phoneme Recognition followed by language-
dependent Language Modeling (PRLM) (Zissman and Singer, 1994). This technique
can be of use if we have transcribed training data only for one language. Fig. 3.2
illustrates the unique phone recognizer (English in this case) as front-end and the
set of n-gram language models as back-end. Each language model produces the

5An alternative being context-dependent phonemes...

96



3.4. Modelization

phonotactic Likelihood, which is used as score. This figure has been copied as-is
from (Zissman, 1996, p. 35, Fig. 2) since it has a long tradition and was present
in a number of relevant publications covering at least 1993 through 2001 — an
overview of phonotactic systems would be incomplete without including these very
characteristic figures.

Figure 3.2: The front-end of a PRLM system includes acoustic preprocessing (FE) augmented by a
phone recognition step producing a sequence of phone tokens, which is modeled by n-gram language
models (back-end). This figure is copied as-is from (Zissman, 1996).

Approaches working in a data-driven way also exist: In GMM tokenizers data-driven

(Torres-Carrasquillo et al., 2002a), a GMM is trained without the need of tran-
scriptions. It is then used to tokenize an utterance by the indices of the highest
scoring Gaussian for each frame. Other recent studies (Pellegrino et al., 1999b;
Verdet, 2005; Verdet et al., 2005) use slightly more complex methodologies coming
from low bitrate speech coding that are also completely data-driven and produce a
phoneme-like transcription into automatically determined pseudo-phone classes.

Diverse variants of the PRLM approach exist, in particular may be distinguished variants

approaches using data of only one language for training the unique phone recog-
nizer (Hazen and Zue, 1993; Zissman and Singer, 1994; Tucker et al., 1994) or using
data of several languages pooled together (Hazen and Zue, 1994).

In earlier times, English was frequently used (due to its availability) to train
front-end phone recognizers. Since the 1990s, Hungarian got a lot of attention for
this (promoted by the BUT lab), because Hungarian is known to cover natively a
rather broad phone/phoneme inventory, which makes it appropriate as universal
front-end (Matějka et al., 2005).

An other kind of approaches run several (P) phone/phoneme recognizers in parallel PRLM

parallel as front-end, producing one phone or phoneme sequence each. On top of
every sequence, |L| language models are trained. In testing stage, this produces
P ∗ |L| scores, which can be combined and used for LR.

This setup is called Parallel language-independent Phoneme Recognition followed
by language-dependent Language Modeling (PPRLM) or PRLM-P (Zissman, 1993). In
some sort, this combines the PRLM with the PPR (phonetic) approach. This strategy
has been quite promising and is still used nowadays. Its performances are generally
slightly superior to those of PRLM systems, but to a huge additional cost.

An example of PPRLM system is sketched in Fig. 3.3. We can see the multiplica-
tion of the number of language models required: At the first level, P phone/phoneme
recognizers are run in parallel, each producing a token sequence. At the second
level, an n-gram model for each language is run on each of these phone or phoneme
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sequences. These P ∗ |L| Likelihood scores are then combined by some back-end to
produce the final score. This Fig. 3.3 has also been copied from (Zissman, 1996, p. 37,
Fig. 3) or (Zissman and Berkling, 2001, p. 5, Fig. 2). As Fig. 3.2, it is characteristic of
Zissman’s publications and can easily be recognized wherever it appears.

Figure 3.3: Two-step PPRLM system with |L| language models for each of P phone/phoneme
recognizer outputs. This figure is copied from (Zissman and Berkling, 2001).

Among different variants of this approach, we may find the basic approachvariants

training one phone recognizer for each language (thus P = |L|). This has the
huge drawback that phonetically transcribed training corpora are required for all
languages. Thus adding a new language has a big impact and requires a lot of
preparation (transcription) and a lot of engineering (one phone recognizer and
2 ∗ |L′| − 1 language models). (Corredor-Ardoy et al., 1997) use one language-
independent phone recognizer, followed by a set of language models. Even other
systems may use a phone recognizer of one language to bootstrap the transcriptions
(and thus the recognizers) for all other languages (Tucker et al., 1994; Lamel and
Gauvain, 1994). As somewhat intermediary systems, a setup with only a few phone
recognizers (P < |L|) may as well be designed (Zissman and Singer, 1994; Yan and
Barnard, 1995).

— ⋄—

Phonetic and phonotactic systems require some phonetic and linguistic knowl-conclusion

edge (beginning with the production of the transcriptions). Finely annotated train-
ing data and quite a lot of engineering is also required for such systems, while
systems working on the acoustic level are kept simpler with this respect. As effect
of this, it is much easier for the acoustic systems to extend the set of languages to
new, possibly under-resourced languages. This is one of the reasons why we focus
on acoustics-only systems in our works.

As further pointers to works using the phonotactic level, we may indicate (Yan
et al., 1996; Zissman, 1996; Hazen and Zue, 1997), as well as more recent studies
like (Torres-Carrasquillo et al., 2002b; Singer et al., 2003; BenZeghiba et al., 2008).
Beside the reference overview (Zissman and Singer, 1994), further discussions and
comparisons to acoustic approaches may be found in (Pellegrino et al., 1999a,b).
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3.4.4 Conclusion on modelization

In this section about state-of-the-art modelization, we presented two interesting
acoustic approaches that appeared in LR in rather recent times. Together with
EM-ML, MAP and SVMs, introduced in other chapters, they account for the most
used modeling approaches to acoustic LR.

We had also a quick glance at the main phonetic and phonotactic approaches,
leaving aside other directions like the domain of prosody. First works on lexical
modelization can be found in (Kadambe and Hieronymus, 1995).

Other possible approaches to modelization include techniques that are more other
modelizationscommonly used in score processing (back-ends) like PCA, LDA and similar ones.

They often have severe limitations and are not powerful enough as self-contained
modeling approaches. Even other approaches may also build on Artificial Neural
Networks (ANNs).

3.5 Score processing

Also, the two steps of score processing (normalization) and performance measure-
ment are full domains of research for their own.

Hereafter are presented some other approaches to score normalization than
those explained in Sect. 2.5.2. After one more utterance-wise normalization, we
will principally dwell in the field of normalizing or balancing the scores output by
the different class recognizers (language models in our case), the inter-language
normalizations.

3.5.1 Ratio to the Universal Background Model

Instead of working with the bare Log-Likelihood of an utterance, given a language
model, it can be divided by the Log-Likelihood the utterance obtains if it is tested
against the UBM. This is an utterance-wise normalization and is exactly what is
done in Speaker Verification with the World Model.

This way, we obtain a Log-Likelihood Ratio (LLR), which indicates if an ut- LLR

terance is more likely to be of the hypothesized language or of the UBM (which
represents a global mean, the world). Other more complex normalizations may
subsequently be applied on top of this LLR.

In fact, divSum (Sect. 2.5.2.1) emulates this approach by approximating the comparing to
divSumUBM Likelihood by the sum (or in the more accurate variant, the average) of all

scores the utterance obtains. Compared to divSum style score normalizations, LLR
alone performs between -0.1 and 2.5% relative better (analyzed over different of our
systems).
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Opinion: The calculation against the UBM and thus the LLR has been droppedlimited use

quite early in our system development process in order to reduce calculation
load. This because a similar effect is achieved with divSum (Sect. 2.5.2.1),
which allows for great performance increases when applied with an exponent
K (Sect. 2.5.2.2). Using divSum-K makes using LLR pointless. This can
also be seen purely mathematically: The denominator (UBM LLk) is the
same for all languages and thus cancels down when we apply other simple
normalization techniques as the divSum variants or llkMax0 (Sect. 7.2.1). Even
without further normalization, UBM-LLR could be acceptable for obtaining
first results.

3.5.2 Back-end score normalizations

Normalization between the orders of magnitude of the scores output by the different
language recognizers is also called calibration. It requires a set of parameters previ-
ously estimated using some specially allocated data, called development corpus.

If such a corpus is not available, to a certain extent, the data that was usedproblem

for training may be used. But in our case, this was of no help, mainly due to the
structure of the training data. The CallFriend corpus (and a part of VOA) contains
only a small amount of files, but each containing a lot of speech. This does not
produce enough values to robustly estimate normalization parameters and the
utterance durations differ too much. These files may admittedly have been split
into smaller chunks for this reason, cf. Sect. 8.1.1. However, similar approaches
without separate development set and thus without BE fusion or calibration can
also be found in literature, i.e. in (Campbell et al., 2007).

Such BEs most often operate on feature vectors, which are built by storing allscore vector

scores an utterance obtained on the different models into a single vector (of size |L|).
Each utterance thus produces one (score) feature vector for this BE step. First, the
BE models get estimated and then applied to the testing data. This comes down to
run the models on one single feature vector (considering utterance by utterance).

— ⋄—

In a top-down approach, this section presents an overview of several BE pro-back-end
pipelines cessing sequences, which are commonly crossed in literature (references will be

given). These BE processing techniques are structured into multiple sequential
steps. Potentially, these steps may also be combined in a slightly different way. The
details of the individual steps will be elucidated in later sections.

3.5.2.1 Gaussian Back-End sequence

Several authors, such as (Campbell et al., 2004, 2006b) report a three-step back-end
(BE). The sequence of the three steps is:
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a) A feature transformation step, usually employing Linear Discriminant Analysis
(LDA). Details will be presented later on in Sect. 3.5.4.

b) A set of Gaussian classifiers where each output class (in our case each language)
is represented by a single (multivariate) Gaussian. They feature a global co-
variance, which often is a full covariance matrix. Details will follow later in
Sect. 3.5.3.

c) As last step, Log-Likelihood Ratio (LLR) normalization divides each score by
the average of the other |L| − 1 ones, as stated in Sect. 2.5.2.1 (or Sect. 3.5.1).

Often, the combination of LDA and the subsequent Gaussian modeling is presented
under the term of Gaussian Back-End (GBE). Sometimes the term is also used only
for the Gaussian step alone (we will stick to this one). The same processing chain is
also used by (Zissman, 1996; Singer et al., 2003), with the precision that diagonal
covariance Gaussians are employed.

Fig. 3.4 illustrates these three steps contained in the GBE sequence described
here: LDA maps the input score vectors to a space of reduced dimensionality, which
is then modeled by a set of |L| language-dependent Gaussians. Their Likelihoods
are finally utterance-wise normalized by LLR.

1

.

1

∣L∣−1 

LLR

score
vector

GBE

..........................................
LDA

                        LDA-space
                 vector

scores
normalized

score

Figure 3.4: Steps of the frequently used Gaussian Back-End for score normalization: LDA, Gaussian
modeling and LLR

Opinion: This seems appealing and should be tried in this sequence. We gave
LDA a try as back-end, but got a bit clueless how to use it alone as BE for a sin-
gle system (not doing system fusion) since it reduces dimensionality. Due to
time and objective constraints, we did not exhaust the possible combinations
of LDA with some other technique like a Gaussian modeling.

3.5.2.2 GBE with Multi-class Logistic Regression

Other researchers (BenZeghiba et al., 2009) combine a GBE with Multi-class Logistic
Regression (MLR). In this case the described sequence is the following:
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a) Mean normalization of the score-space feature vectors
b) Gaussian Back-End (GBE) classifiers (Sect. 3.5.3)
c) Log-Likelihood Ratio (Sect. 2.5.2.1, Sect. 3.5.1)
d) Multi-class Logistic Regression (MLR) with details later on in Sect. 3.5.6.

Opinion: Some logistic regression has been tested and evaluated on our systemscomparing to
divSumK for a long time in parallel to the divSumK approach. As a conclusion, we

saw that the results were roughly the same level for both approaches (even if
the first is an inter-class normalization and the latter an inter-utterance one).
So we kept using divSumK with the advantage of not requiring scores to be
calculated on a development or on the training data (our case) in order to
estimate the regression parameters. A setup combining these two approaches
did not improve over a single one either.

3.5.2.3 GBE with Artificial Neural Network

The GBE sequence presented in Sect. 3.5.2.1 may be extended by an Artificial Neural
Network. For instance (Campbell et al., 2008) use this pipeline of steps:

a) Transform scores using LDA (Sect. 3.5.4)
b) Model the resulting vectors using one tied-covariance Gaussian per language

(GBE, Sect. 3.5.3)
c) The per language scores are then calibrated separately using an Artificial Neural

Network (ANN). Thus the LLR normalization is replaced by an ANN.

Opinion: We did not put enough effort to experiments using ANNs and it would
have needed deeper analysis and a chapter of its own in order to be of any
advantage for our case. The results (not shown here) were in the same rough
magnitude as other normalization approaches tested6.

— ⋄—

The back-end sequences just presented gave some insight to score processingBE sequence
conclusion BEs, which are significantly more complex than simple utterance-wise normaliza-

tions presented in Sect. 2.5.2. The main elementary steps of the presented pipelines
will be presented on the following pages.

3.5.3 Gaussian Back-End

A Gaussian Back-End (GBE) is mainly used for fusing multiple systems. Each of
these usually produces one score per target language. But it can also combine
systems together with additional scores, for instance scores of some out-of-set
languages. At the same time, the GBE calibrates the output scores to remove biasing

6This approach is likely also teared down by the lack of development data.
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between target languages. So it may also be applied just as calibration step for a
single system.

For a given test utterance, a GBE cross-combines the set of all scores to one
score for each target language. The set of input scores are stacked into a vector (as
outlined in Sect. 3.5.2), which forms the new feature set for the GBE multivariate
distributions.

For each target language, one Gaussian distribution is estimated. The covariance output score

is common to all language dependent Gaussians (they are called tied). This common
within-class covariance (CWCC) may be as well diagonal or a full matrix. The
output score is the a posteriori probability of a normal density N ( |µ, Σ) (Eq. 2.4).
Since we have a common (often full) covariance matrix, the following decision
function can be found by simplifying the Gaussian probability (l is the language):

δl(x) = (x− µl)
TΣ−1(x− µl) (3.9)

If these outputs will be used for computing an LLR (or by the similar divSum), it
can be developed and terms that do not depend on the language (l) can be removed
since they will cancel down (see BenZeghiba et al., 2009). We finally stick to

δl(x) = (Σ−1µl)
Tx− 1

2
µT

l Σ−1µl (3.10)

which still has Likelihood interpretation.

The linear part, (Σ−1µl)
T, of this function can actually be seen as affine trans- linear GBE

form, which is the same as an LDA (see Sect. 3.5.4). It maximizes the ratio of

the between-class to the within-class variance. The translation part, −1
2

µT
l Σ−1µl ,

actually performs a calibration of the language dependent thresholds. Since this
transformation is linear, we also speak of a Linear GBE.

Usually, the outputs δl(x) of the GBE are converted to LLRs by normalizing log-likelihood
ratiothem with respect to the other likelihoods (see Sect. 2.5.2.1 or similarly Sect. 2.5.2.1f.

and also (Campbell et al., 2004)). X is the input utterance and x is the corresponding
score vector:

sl(X ) = LLR(x|l) = log
( δl(x)

∑
k 6=l

δk(x)

)
(3.11)

The Bayes’ Theorem can be used to convert LLRs to posterior probabilities by posterior
probabilitiesincluding the priors πT and πN of the target language and the non-target languages

respectively. If they are equal to 0.5, which is the case in NIST evaluations, they
cancel down.

sl(X ) = LLR(x|l) = log
( πT δl(x)

πN
1

N−1 ∑
k 6=l

δk(x)

)
(3.12)

103



Chapter 3. State of the Art

3.5.4 Back-end LDA

Linear Discriminant Analysis (LDA) is commonly used for its dimensionality re-
duction properties.

The projection matrix which maps a test (score) vector into a subspace of reduced
dimensionality is obtained by gathering, as its columns, the leading eigenvectors
of the W−1B problem, where W is the within-class variability (the covariance Σ

in the case of common/tied covariances) and B is the between-class variability.
The number of eigenvectors required is equal to the desired dimensionality of the
transformed space. But there are at most one less eigenvectors than the rank of the
matrix containing the input (training data). If we have only one score per language
in the input vectors (thus |L| dimensions), the dimensionality of transformed space
will be one less: |L| − 1.

LDA will fail due to the parametric assumption of Gaussian probability densities
in the case where the discrimination does not lie in the means of the data, but in
their variability. I.e. if we have two classes with merely the same mean, but very
different variances).

3.5.4.1 LDA algorithm for dimensionality reduction

LDA is based on Sir FISHER’s work (Fisher, 1936), in which he describes a projection
of data points into a (sub-) space in which points of distinct classes are kept far
apart (as PCA, Sect. 4.6.1, also does), but at the same time keeping the data points
of a same class together.

FISHER’s criterion thus uses the ratio of the between class covariance B, which iscriterion

to maximize, and the within class covariance W, which is to minimize. We define the
criterionF LDA on the projection matrix P for which the ratio between the (projected)
covariance matrices has to be maximized7:

F LDA(P) =
|PT B P|
|PTWP| (3.13)

Finding P for which F LDA is maximal comes down to the following eigenvalueFisher’s linear
discriminant problem (see Sect. 4.6.2 for the derivation):

W−1Bp = Fp (3.14)

where the solutions p are the eigenvectors (corresponding to the non-zero eigenval-
ues F ). They form the columns of P. This is called the FISHER’s Linear Discriminant.

The within class covariance matrix W is the sum of all classes’ (full) covariancewithin class
covariance

matrix 7Compared to the LDA employed for classification (as described in Sect. 4.6.2), the LDA here uses
a projection matrix, which yields a vector in the new space, instead of projecting onto a vector using
the dot product (which produces a scalar value).
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matrices (µl being the mean of all data points of class l)8:

W = ∑
l∈L

Σl ; Σl = X̂ lX̂
T
l = ∑

x∈X l

(x− µl)(x− µl)
T (3.15)

The covariance Σl of class l’s data can be obtained by two different implementations:
on the set of centered data points X̂ l = X l ⊢ µl

9 or through the individual data
point deviations from the mean.

The between class covariance matrix B is the weighted covariance of the class between class
covariance
matrix

means µl (centroids). Thus, these centroids form our data points and have first to
be centered themselves around their weighted mean µ̄ (which corresponds to the
global mean of all individual data points). The difference is only that each centroid
vector may have a different weight, according to the size of each class (X pooling
together the data of all classes):

B = ∑
l∈L

|X l | (µl − µ̄)(µl − µ̄)T

µ̄ =
1

∑l∈L |X l | ∑l∈L

|X l | µl =
1
|X | ∑

l∈L

|X l | µl =
1
|X | ∑

x∈X
x

(3.16)

The covariances of each class centroid (the sum elements on the first line of
Eq. 3.16) have a rank of 110, since they are calculated on a single vector only. And
thus, being the sum of such matrices, B is at most of rank |L|.

For obtaining the projection matrix, we need to solve the eigenvalue problem projection
matrixW−1B. Since B is singular, the product is singular too (with a rank less or equal to

the one of B). Consequently, we will have at most |L| − 1 non-zero eigenvalues and
eigenvectors for composing our projection matrix.

We can furthermore verify that the global (total) covariance of the points, indepen- global
covariancedent of their class, can be decomposed into the presented within class and between

class covariances11:
V = (X ⊢ µ)(X ⊢ µ)T = W + B (3.17)

In FISHER’s discriminant, the between class covariance matrix B may likewise be replace between
by total
covariance8Note that in the formulas of back-end processing (operating on score vectors), the indices of

means µ and covariances Σ are the language and not the GMM’s Gaussian component as in Sect. 2.4.1
for instance.

9
X l is the matrix containing the data vectors of class l. µl is the (column) vector of the row-wise

means of X l , so it is the mean of all data points of class l: µl =
1
|X l | ∑

x∈X l

x . And ⊢ is the operator

subtracting the right-hand vector from each column of the left-hand matrix.
10Or a rank of 0 for a zero vector as centroid.
11Opinion: This total covariance V may also be seen as "mean of the covariances plus the covariance

of the means " (neglecting weightings). A quite similar structure in linear algebra can be seen for
the variance, which can be expressed as the "mean of squares minus square of means " (speaking of
means instead of the more accurate expected value).

105



Chapter 3. State of the Art

replaced by the total covariance matrix V without changing the resulting projection
matrix P (Sakai et al., 2008)12.

This corresponds to the original W−1Bp = Fp (Eq. 3.14) with the eigenvalues
F shifted by 1: F ′ = F + 1. This has the effect that eigenvalues that were zero
in the classical LDA, have now the value of 1. For this reason, using the total
covariance matrix assures that a |L|-dimensional input vector can be mapped to a
(|L| − 1)-dimensional output space.

Excurse: Note that instead of the covariances, we may likewise use the scatter
matrices. They are obtained by normalizing the covariances by the number of points
and are commonly noted Sb and Sw. Since the objective function (Eq. 3.13) is a ratio
of scatters or covariances, the normalization terms cancel down. Some publications
in the domain of computer science have the tendency to mix up two terms of scatter
and covariance.

3.5.5 Score Support Vector Machine

Support Vector Machines (SVMs) (described in Chapter 5) as back-end simply oper-
ate on the score feature vectors in a straightforward way. Since SVMs discriminate
only between two classes, one SVM is trained for each target language using all
training/development data score vectors of non-target languages as blacklist.

Upon test, the score vector is run against the SVM of the hypothesized language
to obtain the output Likelihood.

3.5.6 Logistic Regression

Logistic Regression is a discriminative learning technique. Let us define a linear
combination of the input scores (components of the score vector) together with a
general offset. The fundamental hypothesis of Logistic Regression can be stated as:

f (x) = β0 + β1x1 + . . . + β J x J (3.25)

where β0 is the offset (also called intercept) and the remaining β j are the individual
component weights, the regression coefficients. All these values have to be estimated.

At testing time, the output of Logistic Regression is a probability (of the hypoth-testing

esized class, given the observations). It is conditioned by the combination of the
input scores in the logistic function:

logistic function 12In Eq. 3.13/Eq. 3.14, we replace B by V and develop:

F ′(P) = |P
TVP|

|PTWP| =
|PT(W + B)P|
|PTWP| (3.18)

W−1(W + B)p = F ′p (3.19)

W−1Wp + W−1Bp = F ′p (3.20)

Ip + W−1Bp = F ′p (3.21)

p + W−1Bp = F ′p (3.22)

W−1Bp = F ′p− p (3.23)

W−1Bp = (F ′ − 1)p (3.24)
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P(+|x) = e f (x)

1 + e f (x)
=

1
1 + e− f (x)

(3.26)

with + indicating the positive class of the discrimination and f (x) being the linear
combination of Eq. 3.25.

For estimating the coefficients (β ), the Eq. 3.26 can be resolved to f (x), which training

turns to the logit function:

logit function
log
( P(+|x)

1− P(+|x)
)
= f (x) = β0 + β1x1 + . . . + β J x J (3.27)

which is the (natural) logarithm of the odds. This also shows that the logit function
is the inverse of the logistic function.

Having multiple training score vectors, this theoretically represents a linear
system of equations, which has to be solved. But because xj are random variables,
the solution is a little more tricky than solving a simple equation system. Usually,
ML estimation could be used, but in practice, it is approached for instance by
iterative gradient methods to obtain satisfying solutions.

— ⋄—

From a more abstract point of view, instead of the output (p) being a simple
linear combination of the input elements (p = bx + c)13, a certain function of the
output is set equal to the linear combination: g(p) = bx + c. In the case of Logistic
Regression, g() is the logit function.

While the extension of Logistic Regression to multiple classes (thus featuring
multi-category dependent variables) is known in computer science as Multi-class
Logistic Regression (MLR) (van Leeuwen and Brümmer, 2006), mathematicians call it
polytomous regression or multinomial logit modeling.

3.5.7 Score processing conclusion

This section gave an insight into various score processing techniques. The two main
kinds of score normalizations are: (i) per-utterance normalization (can be seen as
Tnorm in SR) and (ii) inter-language normalization (similar to Znorm in SR).

We saw that inter-class normalization is more tricky to put into action and that
usually a whole chain of different processing steps has to be designed. Most back-
ends (BEs) use score vectors. They consist of all scores of an utterance presented
in a stacked way. Seen from the BE’s point of view, the whole recognition system
producing these scores is simply an oversized front-end.

13c being β0 and b being the vector of the remaining β j.
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3.6 Performance metric

We have seen pooled and average EER, as well as min-Cavg in Sect. 2.6.2. One
further measure of system performance will be discussed in this section. This Cllr

measure has been proposed only a few years ago. A good overview over different
performance metrics (including other ones) can be found in (Brümmer and du Preez,
2006).

3.6.1 Log-likelihood ratio cost

Log-Likelihood Ratio (average) cost (Cllr) has been published by N. Brümmer in
2004 for the Speaker Recognition task and in (Brümmer and van Leeuwen, 2006) in
the Language Recognition (LR) context. It is an empirical measure of the effective
quality of information delivered to the user. In a derived form, it can also be used to
measure the loss that is due to mis-calibration of the system and thus the goodness
of the score normalization (Sect. 2.5.2).

— ⋄—

Mis-calibration is the problem handled by inter-language normalization (ascalibration

evoked in Sect. 2.5.2) and arises on LR systems that are run as well in detection as in
identification mode. The goal of calibration is to balance the score output distribu-
tions of the different language recognizers (these may simply be GMM Likelihoods).
Some recognizers may have the tendency to under-evaluate Likelihoods and others
may show an opposite trend. As result of this, once the scores are thresholded, the
former recognizers will not produce enough positive detections (thus generating
misses) and the latter will verify too many detections (false positives).

Mis-calibration is typically a problem that is important in Language Recognition,
but far less in Speaker Recognition. This because in LR, we are in an environment
of multiple concurrent hypotheses, whereas SR is a binary-hypothesis problem
(matching speaker or not) and can be seen as a one-class open-set detection.

The explanations given by (Brümmer and van Leeuwen, 2006) highly link cali-
bration, which is part of the score processing/normalization step (Sect. 2.5.2 and
Sect. 3.5), to the performance measure and evaluation (Sect. 2.6.2). The score normal-
ization technique is traditionally often chosen in a way to fit and to be adapted to
the performance metric. Thus the performance metric has an impact to the system
design — beyond the priors’ configuration.

Usually, LR systems are evaluated at only one operating point, which is given bysingle operating
point some threshold (i.e. by EER, Sect. 2.6.2.1). Such an evaluation thus presents a view

of the system performance that is biased by one unique application case. The Cllr

measure tries to avoid such a single-threshold evaluation. But it still comes in the
form of a numeric value instead of a curve like the Detection Error Trade-off (DET)
curve. Such curves are hard to read in an accurate way and difficult to compare.
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Cllr is thus a global performance measure, which means that it does not depend Cllr

on a threshold. As a second (and somehow linked) advantage, it does neither
depend on an application’s costs (which may be different for the two types of errors,
Sect. 2.6.2, Sect. 2.6.2.2). This type of measure is called to be application-independent.
It can intuitively be seen as a measure similar to the area below the DET curve14. It
is consequently a measure of the expected cost of a system.

Further, Log-Likelihood Ratio (average) cost (Cllr) is an information-theoretic definition

metric, expressed in bits of Shannon entropy. It is defined as follows, assuming a
closed-set evaluation:

Cllr =
1
|L| ∑

l∈L

1
|X l | ∑

X∈X l

− log2 Pl(X ) (3.28)

where X l is the set of all testing utterances X having l as true language and where
Pl(X ) is the posterior probability, which is related to the Likelihoods via Bayes’
Theorem— here using flat priors:

Pl(X ) =
eLLkl(X )

∑k∈L eLLkk(X )
(3.29)

This corresponds to the normalized divSum score (without taking the log, Eq. 2.19)
and which can be seen as a kind of Likelihood ratio. Consequently:

Cllr =
1
|L| ∑

l∈L

1
|X l | ∑

X∈X l

− log2
eLLkl(X )

∑k∈L eLLkk(X )

=
1
|L| ∑

l∈L

1
|X l | ∑

X∈X l

−ŝl(X )

log 2

(3.30)

The Cllr definition can thus be read as an average over Log-Likelihood Ratio
scores, which are transformed to logarithms to the base 2 and put to the positive (ŝ,
defined in Eq. 2.19, is usually negative). This averaging evaluation is done giving
every language the same importance. Because of that, the mean over per-language
averages is calculated.

It is important to observe that there are no error probabilities PMiss() and PFA(), unit

but that the average runs over all single test Likelihood ratio scores. To note is also
the base 2, which allows this measure to have an interpretable unit, namely bits.

A Cllr of 0.0 corresponds to the perfect system not making any errors and the boundary
valuesthreshold of log2 |L| corresponds to a system that is just as good as relying only on

the priors.

When applied on the raw system output, the actual Cllr is evaluated. This actual Cllr

quantity is composed of two parts, namely the refinement on one side and calibration
loss on the other.
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The measured Cllr can be decomposed into these two components: The first min-Cavg +
calibration losscomponent, min-Cllr, is obtained by finding the optimal calibration and by re-

calculating the Cllr. Calibration loss is then simply the difference between both
values: Cllr −min-Cllr. In the multi-class case, the ideal calibration can not be calcu-
lated, but has to be estimated for instance through logistic regression (Sect. 3.5.6).

In summary, the refinement or discrimination part is the quality15 of the real in-
formation content of the system. It is not changed by the act of calibration. However
the calibration part represents the form of the output results16.

— ⋄—

One of the main drawbacks of Cllr is that it still depends on the priors, whichAPE curves

can not be inferred by the system, but are really application specific. This problem
can be solved by plotting the error probability against the (logit of the) prior. The
Cllr is then the area under the curve and the maximum corresponds to the EER.
Such curves are called Applied-Probability-of-Error curves (APEs). The curves of the
system Cllr, min-Cllr and the log2 |L| threshold may be plotted in the same diagram.

It is to note, that the Cllr measure may only be applied if the system’s output
is (log-)Likelihood like, thus has (log-)Likelihood type interpretation or can be
transformed to such.

The article (Brümmer and du Preez, 2006) contains an exhaustive discussion on
the subject of this measure (mainly in the context of Speaker Recognition).

Opinion: Another drawback of Cllr, which is perhaps the main reason why Cllr is
not yet more widely used, is its non-trivial interpretation. The values do not
correspond to something intuitive like error rates, costs or rate of correctness.
A solution to this could be to present Cllr in a form that is relative to the
log2 |L| threshold. For instance in percentage of this threshold:

%relCllr =
Cllr

log2 |L|
(3.31)

This would represent a kind of total error17 where the ideal system is at 0%
while a useless system run at ≥ 100%. This would also allow to compare the
performances of systems tested on different numbers of languages.

The steps of diverse back-end processing together with performance measure-
ment in particular for LR can be found composed into the toolkit FOCAL MULTI-
CLASS, published by N. Brümmer on (FoCal, 2007). It is a collection of Matlab
functions for BE score processing (and fusion, calibration...) like MLR, as well as
performance measures for system evaluation like Cllr and APEs.

14More accurately the area between the coordinate origin and the curve (first quadrant).
15In fact, it is an inverse of quality, since the smaller the value the better.
16This conceptual separation of content and its form may be compared to what is done separating

(X)HTML and CSS...
17As opposed to EER, which is a kind of half-error, since it is the rate of each of the two error types

(Sect. 2.6.2), not of both together.
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Problems w/ FA:
It is more art than science
This is what makes it great...

— Factor Analysis lecture,
California State University, Northridge 0

Chapter 4
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The main problem inherent to any Language Recognition (LR) system are the problem

different kinds of variabilities contained in the observed speech signal (Sect. 1.4).
This is investigated in the works presented here. We address it by means of Joint
Factor Analysis (JFA). This choice has been taken, because JFA has proved to work

0Online: http://www.csun.edu/~ata20315/psy524/docs/Psy524lecture20FA.ppt
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Chapter 4. Joint Factor Analysis

very well in the Speaker Recognition (SR) context (Kenny and Dumouchel, 2004;
Kenny et al., 2005b,a, 2008; Matrouf et al., 2007). So we apply the same approach to
the LR problem with an in-depth investigation of its effects on this task.

This chapter contains a thorough description of the decomposition used in JFA
(the structure of the models we use) and details the full JFA algorithm. We then
proceed with presenting how JFA can be applied under different flavors in the
training and the testing phases. Presented results compare the JFA approach to the
baseline system and analyze variations in the modeling setups (on the GMM and
the JFA side).

— ⋄—

The classical model training approach keeps track of the class-dependent in-strategy/
hypothesis formation only. The overall strategy proposed in this work is to keep also track of

the speaker and channel variability, which come along mixed up with the (class-
dependent) language information. The variability is estimated separately from the
language information. This allows the variability to be removed from the observed
data. The hypothesis being that the dispersion of one class’ points get reduced. This
would improve class separation and facilitate modeling. This makes it more easy to
point out the real language dependent information and to model it concisely. At the
same time, JFA may also capture speaker particularities, including and exceeding
what Vocal Tract Length Normalization (VTLN) would achieve. Where VTLN
is part of the FE step (Sect. 2.3 and Sect. 3.3.1) whereas JFA works (or at least is
estimated) on the model level.

In Sect. 1.4.3, we introduced the basic idea of JFA, which consists in separat-decomposition

ing the two information components: the language dependent and the language
independent parts. So we remember the decomposition we sketched (in Eq. 1.1):

Mobserved = Mlanguage + Mlanguage (4.1)

Let X = X 1,X 2, ...X n be the information of n utterances of a given language l.
The part that is common to all of them is the information about the language l.
Everything else, the information not belonging to X 1 ∩ X 2 ∩ ...∩ X n, corresponds
to the nuisance or the session variability. It is caused by a multitude of things
like the speaker characteristics, room acoustics, microphone and the transmission
channel, as detailed in Sect. 1.1 and Sect. 1.4.

We may depict this as follows: The common part can be described as being the
average over all utterances of one language. The variability part (speaker, channel
etc.) would then consist in all deviations from this average. In JFA, these variability
deviations are explicitly modeled in order to recognize or to estimate them again in
a later stage (notably during testing).

The basic strategy behind the JFA paradigm is that, for one utterance, thestrategy

speaker/channel component (the unwanted part) is not estimated from its data
alone, but also on a large number of utterances coming from different speakers
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as well as different languages. Consequently, the language independent part (the
variability) will have a globally defined nature.

We assume that each observed utterance X i may be represented by a model MX i

from R
D. It is composed of the set of model parameters to be estimated from X i.

In fact, X i is the observation, the set of data frames extracted from a given audio
recording by the FE step.

During training, we have the language labels and thus, we can calculate the
language-dependent part (the per-language average). Once we have the language
dependent part Mlanguage, we can also calculate the variability term Mlanguage for
each utterance, in consequence of Eq. 4.1. But during testing, we are left alone with
only one utterance and we can not compute Mlanguage as average. We thus have to
find a way to be able to separate the two information parts during the testing stage.
For this, we consider developing the model as follows:

MX i
= Mlanguage + UxX i ,language (4.2)

where Mlanguage is a vector of parameters that contain the information about the lan-
guage of interest and UxX i ,language is the nuisance or session component of utterance
X i.

Further, this UxX i ,language part is composed of two terms: The term U is a matrix nuisance
sub-spacewith R columns (the rank of this matrix is R and it is low with respect to the size

of M). U is estimated using a large amount of data corresponding to different
speakers or recordings. It is estimated globally, so it is the same for all languages.
This gives the variability tracking its global nature. The sub-space generated by
the vector columns of U represents this useless information. The term xX i

is a
vector characterizing the current recording (with respect to the language of X i). It
thus contains the troublesome information, the nuisance. So the x vector contains
the variability factors in the sub-space opened by U. Or expressed the other way
around, the vector x is projected to the domain of M thanks to the U matrix.

JFA consists in estimating the different terms of Eq. 4.2, in particular the global
U matrix and the vector xX i

for each utterance. The success of the nuisance JFA JFA hypotheses

modeling depends mainly on the correctness of the hypothesis that this variability
is located in a sub-space of low dimension. It also relies on the hypothesis that the
language and channel effects are of additive nature. The very good results obtained
in Speaker Recognition (SR) by (Kenny et al., 2005b; Vogt et al., 2005; Matrouf et al.,
2007; Kenny et al., 2008; Matrouf et al., 2011) show that these hypotheses are at least
satisfied in the SR task. The same paradigm can be applied to several different audio
pattern classification tasks, such as LR (described here) (Brümmer et al., 2009; Verdet
et al., 2009b, 2010b,a; Matrouf et al., 2011) or even for video genre classification
(Matrouf et al., 2011). In these different application tasks, the nuisance is not defined
in the same way and it can be of very different nature. For example, the identity of
the speaker, which is the information to be modeled in SR systems, is however part
of the troublesome variability in LR or in video genre classification.

While JFA has triggered significant advances in speaker verification, the context difference to SR
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of LR is substantially different from SR. Even if evaluated under a detection task,
LR is a typical multi-class problem, whereas SR is a typical verification (target vs.
world) problem. Each class has far more training data than is usually the case for
speaker verification. Bigger models can thus be estimated or they may be estimated
more robustly. Some analyses presented in Sect. 4.4.3, Table 4.4 (and published
in (Verdet et al., 2009b)) show this on different model sizes. On the other side, in
LR we have less classes — only some languages instead of a lot of speakers. But
there are a lot of different sessions for each language. Generally, each recording is
produced by a different speaker. This big speaker variability may be caught at the
same time as the finer grained variabilities of the channel.

In summary, we need several utterances for every language (the more the better).compensation
when testing In order to detach language dependent information from session variability, we

consider the language part being the information that is common to all utterances of
that language and the remaining part being the session variability. In testing stage,
where we are left alone with only one session, the perturbing variability contained
in the data is estimated and removed (compensated). This will be done based on
the structure of the variabilities seen in the training data and caught by the matrix
U. What remains should hopefully emphasize the useful part of the information
and thus, the classification should be more precise. The matrix U catches inter-
speaker and channel variability of all languages’ training utterances. Later on, while
compensating, the variability estimation is not limited to the variabilities observed
within the target language’s training data, but any variability structure seen in
any of the languages can be recognized and compensated. The variability is thus
thought to be independent of the language and to be of a global nature. This allows
thus to benefit to a maximum from the information about variability contained in
the whole training dataset.

— ⋄—

As short summary, the principle of JFA consists in decomposing each utterance
into a language-dependent and a language-independent part. The language part
is tied among all training utterances of a same language. The variability part is
supposed to be located in a low-dimensional sub-space, thus constrained by a global
low-rank matrix.

4.1 The Factor Analysis model

This section defines and describes finely the different model parts of the JFA de-
composition. It builds on the model and the principles sketched in Sect. 1.4.3. Until
now, this chapter presented the decomposition in an abstract way. This will now be
concretized, which will lead to the implementation algorithm.

— ⋄—

In the following and similarly to the baseline system (Chapter 2), we will worksuper-vector
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with Gaussian Mixture Models (GMMs) and apply JFA on them. Consequently
the vector of model parameters M is a GMM mean Super-Vector (SV), which we
will write m. A Super-Vector is obtained from a GMM by stacking its G mean
values µg (of dimension d) into one big (super-) vector. Hence, JFA works in mean
Super-Vector space, whose dimensionality is Gd.

The different mean SVs ml corresponding to the different languages l are MAP

assumed to be statistically independent (with respect to l). They are further assumed

to have a normal prior distribution with mean m and variance DDT =
Σ

τ
. m and Σ

are the parameters of the GMM-UBM, as defined in Sect. 2.4.3 and τ is the relevance
factor required in the standard MAP adaptation (Sect. 2.4.4 and (Reynolds et al.,
2000)). The justification of this form concerning the inter-language variability can
be found (for the case of speaker verification) in (Kenny and Dumouchel, 2004).
Based on this, the random variable ml can be written as:

ml = m + Dyl (4.3)

where yl is a latent random vector variable distributed according to the standard
normal distribution N (0, I). Given some adaptation data for language l, MAP
adaptation consists in estimating the a posteriori distribution of ml . The a posteriori
distribution of yl is shown to be normal (Kenny and Dumouchel, 2004). By this
fact, the MAP Point-Estimate of yl is the mean of this distribution. Actually, this
language model (Eq. 4.3) is equivalent to the one obtained by Reynold’s MAP
(Reynolds et al., 2000) and described in Sect. 2.4.4, where the UBM is combined with
the language’s sufficient statistics in a weighted way. Here, m corresponds to the
(mean SV of the) UBM and the matrix D plays the weighting role and depends on
the adaptation regulation factor τ.

Suppose that for a language l, we have obtained a MAP Point-Estimate ml of variability
sub-spaceml by using some language adaptation data. Given a collection of utterances for

the language l, let m(h,l) denote the Super-Vector corresponding to the utterance h
(h = 1, 2, ...). For a fixed l, assume that all GMM mean SVs m(h,l) are statistically
independent (thus with respect to h). If we assume further that the prior distribution
of m(h,l) is normal, then we can get up, similarly to Eq. 4.3 but here for one particular
language, with writing m(h,l) as:

m(h,l) = ml + Ux(h,l) (4.4)

where x(h,l) is a latent random vector variable distributed according to the standard
normal distributionN (0, I). Given some adaptation data for language l and channel
h (typically one utterance), MAP adaptation consist in estimating the a posteriori
distribution of x(h,l). This distribution can be shown to be normal. And the MAP
Point-Estimate of x(h,l) is the mean of this distribution.

We see that we end up with the structure we saw in Eq. 4.2. Under the as-
sumptions stated at the beginning of this chapter, ml corresponds to the language-
dependent part and Ux(h,l) is the variability. U is a matrix of low-rank R and x(h,l) a
R-vector.
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In order to integrate language modeling (MAP) and the channel variabilities infull model

the same framework we will work with the model obtained by substituting Eq. 4.3
into Eq. 4.4 (ml is replaced by its corresponding random variable ml). Thus the final
model is given by:

m(h,l) = m + Dyl + Ux(h,l) (4.5)

where m(h,l) is the channel-language dependent mean Super-Vector, D is a (Gd×
Gd)1 diagonal matrix, yl the language vector (a Gd-dimensional vector), U is the
session/channel variability matrix of low rank R (thus a matrix of size Gd× R) and
x(h,l) are the channel factors (an R-dimensional vector). Analyses by (Vair et al.,
2006) show that x(h,l) depends only very weakly on l and that it can be assumed to
be independent for the reason of simplification and computation speedup.

The different terms may be explained as follows:

• m(h,l) are the different training utterances we observe
• m represents the UBM and can be seen as the global or overall mean of the

training data; this term does not change
• Dyl is the language-dependent term and can be seen as mean of all utterances

that belong to language l (actually the difference between that mean and m);
this term is composed of:

– D, which is the weighting term; it depends on the regulation factor τ of
the MAP adaptation

– yl are the language factors; they are the same for all utterances h of a
given language l

• Ux(h,l) is the term that catches the troublesome variability; it is composed of

– U, which is a global matrix describing the sub-space in which speaker/
channel variabilities are thought to live

– x(h,l) are the nuisance factors in that sub-space; they vary from utterance
to utterance

In summary, the observed utterance is decomposed into a global mean (UBM), a
per language-mean and the variability leftovers.

We saw that all frames, independent of the language and the session are as-frames’
distribution sumed to be represented by the GMM parameters µg and the frame (co-)variance

Σg.

In the SV space, in which JFA works, the global average term is representedlatent variables

by the UBM SV with mean m, and is thus not a distribution. By Eq. 4.5, the
latent variables yl and x(h,l) define a GMM mean SV. The observation sequence
(the frames) is assumed to be generated from the GMM that corresponds to this
SV. Latent variables yl and x(h,l) are both assumed to be sampled from standard
Gaussian prior distributions N (0, I). Consequently, the language-dependent part
Dy has also a mean of 0 with a covariance of DDT and the language-independent

1G being the number of Gaussians in the GMM (Sect. 2.4.1) and d being the dimensionality of a
feature vector at the output of the FE step.
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part Ux is assumed to be a priori distributed on normaldistribution(0, UUT. DDT

represents the variability of the language mean SVs. It corresponds to the across-
(or inter-) class covariance matrix. UUT is the speaker and channel variability and
corresponds thus to the within-class covariance matrix. Hence, as we assume the
language and the session variabilities to be independent, the total a priori variability,
which is the covariance of the different m(h,l), is given by: DDT + UUT.

Given the priors on latent variables yl and x(h,l) and given an observation posterior
distributionssequence, one can obtain a posterior distribution (and hence MAP Point-Estimates)

of yl and x(h,l). The MAP Point-Estimate of yl for language l is y(l). And the MAP
Point-Estimate of x(h,l) is x(h, l) with a (a posteriori) distribution N (L−1B, L−1).
In consequence, the Ux part has an a posteriori distribution N (UL−1B, UL−1UT).
While m(h,l) has a prior distribution with mean m, its posterior distribution has
the mean m + Dy(l) + Ux(h, l), which is depicted by the JFA formula (Eq. 4.5).
All derivations and the posterior distributions for y can be found in (Kenny et al.,
2005a) and in the algorithm presented later on in this chapter (containing also the
definitions of L(h, l) and B(h, l)).

This framework (JFA formula Eq. 4.5) is what we need for enrolling a language
model and estimating channel factors. Using segments from many utterances (of
several languages), the model parameters can be estimated using the EM algorithm
described in Sect. 2.4.2, where:

• in the E-step, MAP Point-Estimates of yl and x(h,l) are calculated (Eq. 4.11 and
Eq. 4.12); yl is constrained not to change for segments of the same language.

• in the M-step, model parameters are updated (Eq. 4.13 and Eq. 4.14) to increase
likelihood of the training data by maximizing the EM auxiliary function
(depending on the posterior distribution of the latent variables)

In our implementation, we make some approximations: approximations

• Alignment of frames to Gaussian components is given by the UBM (rather
than the two-level generative model itself). This simplifies the mathematical
formulation and allows to work only with sufficient statistics (Eq. 4.8 and
Eq. 4.9).

• Only the U matrix is estimated - m, Σ and weights are copied from the UBM
and not updated during the M-step, D is set in an ad-hoc way, so that with-
out U, MAP point estimation of yl becomes equivalent to relevance MAP
adaptation.

• MAP Point-Estimates of yl and x(h,l) are obtained using a Gauss-Seidel-like
approximation method as proposed by (Vogt et al., 2008) rather than estimat-
ing the joint posteriors for yl and all x(h,l) corresponding to all sessions of the
given language.
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4.1.1 Complete Joint Factor Analysis

The model in Eq. 4.5 can be spun further. We saw in Sect. 1.1 and Sect. 1.4 that the
variability comes under various forms. It is due to the speaker characteristics, as
well as the environment and the channel. This may lead to the idea to separate even
the different variabilities, thus to attempt an extended decomposition.

— ⋄—

In consequence, we may try to put the inter-speaker variability into one sub-multiple
subspaces space and constrain the channel variability into a different low-dimensional sub-

space. This assumes that these two variabilities are of additive nature. The complete
Joint Factor Analysis model becomes:

m(h,s,l) = m + Dyl + Vz(s,l) + Ux(h,s,l) (4.6)

where we expressively distinguish between the speaker s and the speaker’s ut-
terance (h, s). The term Vz(s,l) only depends on the speaker (and the language l)
whereas the term Ux(h,s,l) depends on the individual utterance. Similarly to the other
terms, Vz(s,l) is distributed with mean 0 and covariance VVT and consequently
z(s,l) is also of standard normal distribution N (0, I).

This extended decomposition is thus a 4-level decomposition: the global mean
(UBM), the language-dependent part, the speaker-dependent part (several speakers
per language) and the leftover is the utterance-dependent part. It is motivatedhypothesis

by the hypothesis that the speaker and the channel variabilities are of different
natures and that they are consequently located in distinct sub-spaces. In addition,
we consider also the fact that JFA in SR is effectively capable to separate the speaker
characteristics from the session/channel variability. But in LR, the speaker is part of
the nuisance and the language has to be separated out.

The first term is the global mean of all training data, the second term is thedifferent means

per-language average, the third term (Vz(s,l)) is also the mean, but over for speaker-
language combination individually.

This complete JFA model would condition to have at one’s disposal severalnot possible

utterances for each speaker. Unfortunately, the large majority of the (LR-centered)
corpora include only one utterance per speaker. That is, every recording file belongs
to another speaker. Consequently, this decomposition can hardly be applied in our
LR context. But the model in Eq. 4.6 would surely be a more suitable representation
of the reality.

As a side-observation of the drawback that we do not have the required data
at our disposal, our experiments also analyze if these different variabilities can be
handled at once, in one and the same sub-space.

Excurse: A recently appeared technique goes even further and includes also thei-vectors

information of the wanted class (the language in our case) into the unique sub-space.
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The generated sub-space is called total variability space2 and the factors therein are
called i-vector (Dehak et al., 2009, 2011). It may be sketched as: mh,s = m + Twh,s.
In this context, JFA is used as a new front-end. Because the target information (the
speaker in the SR case) is also included, the class modeling has to be done in a
subsequent step applied to these i-vectors and featuring full-fledged modelization
techniques (as the LDA-WCCN3 stack for instance (Dehak et al., 2011)). In the
research presented in this document, JFA is not used as a front-end, but to model the
language and the variabilities separately, but in one run and in the same framework
(Eq. 4.5).

Excurse: In the case of Speaker Recognition, (Kenny and Dumouchel, 2004) extended
speaker factorsgo even one step further. They separate the original speaker-dependent term Dyl

into two parts: One continues to be Dyl with D being square diagonal and a second
term Vz(l), which constrains also a part of the speaker-dependent information into
a low-dimensional sub-space, in a very similar way to what happens in the Ux term:
mh,s = m + Dys + Vzs + Uxh,s, where s is the speaker. The dimensionality of these
additional speaker factors z(l) is usually just a little bigger than the dimensionality
of x. The covariance VVT tries thus to catch (or to learn) a part of the inter-speaker
variability from the data (utterances/sessions) itself, instead of relying only on the

predefined DDT=
Σ

τ
covariance.

Excurse: The idea about trying to learn the inter-speaker variability (covariance) D based on data

directly from the data can also be spun further, as shown by a recent study (Burget
et al., 2009). Instead of adding an additional speaker-dependent term as in (Kenny
and Dumouchel, 2004), the covariance DDT can also be caught directly from the data

instead of having it fixed to
Σ

τ
. This goes into a similar direction as the comments

in the previous paragraph.

4.2 Algorithm for JFA estimation

The success of the JFA model relies on a good estimation of the variability matrix U.
This is possible thanks to a sufficiently high amount of data, where several different
utterances per language are available. In the following, all details allowing the
implementation of JFA within the GMM-UBM framework are given. For more
information concerning equation derivations see for example (Vogt et al., 2008) and
partly (Kenny et al., 2005a).

The goal of the algorithm presented here is first of all to estimate the matrix U algorithm
summaryof the JFA formula (repeating Eq. 4.5):

m(h,l) = m + Dyl + Ux(h,l) (4.7)

2This total variability sub-space has typically a dimensionality of 400 or more.
3Within Class Covariance Normalization
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At the same time, the vectors yl and x(h,l) are also obtained. Given is on one side
the UBM, whose means are stacked to the mean SV m and whose covariance matrix
has influence on D. On the other side, we will gather statistics on the training
data, which will be used as left-hand side of the JFA formula. Having obtained
this, MAP Point-Estimates of the latent variables yl and x(h,l) are calculated roughly
by resolving the JFA formula to the one or the other. Finally the matrix U gets
estimated.

4.2.1 General statistics

General statistics on the data have to be gathered for estimating the latent variables
and the U matrix of Eq. 4.5. These are the zeroth-order and first-order statistics with
respect to the UBM4.

Let N(l) and N(h, l) be vectors containing the zeroth-order language-depen-zeroth-order
statistics dent and utterance-dependent statistics, respectively. Both are of dimension G for a

particular language or utterance. Each component corresponds to one Gaussian g
and is defined as:

Ng(l) = ∑
f∈l

γg( f ) ; Ng(h, l) = ∑
f∈(h,l)

γg( f ) (4.8)

where γg( f ) is the a posteriori probability of Gaussian g for the cepstral vector of
observation f (cf. Eq. 2.5 and Eq. 2.7). In Eq. 4.8, ∑

f∈l

denotes the sum over all the

frames that belong to language l and ∑
f∈(h,l)

denotes the sum over all the frames that

belong to utterance h of language l.

Let X(l) and X(h, l) similarly be the vectors that contain the first-orderfirst-order
statistics language-dependent and utterance-dependent statistics, respectively. For a lan-

guage or an utterance respectively, the dimensions of X(l) and X(h, l) are equal
to Gd. Each block corresponding to a Gaussian g has a dimension of d (which is the
dimension of f ). They can be defined as:

Xg(l) = ∑
f∈l

γg( f ) · f ; Xg(h, l) = ∑
f∈(h,l)

γg( f ) · f (4.9)

4.2.2 Latent variables estimation

The estimation equations for x(h, l) and y(l) in this section represent MAP Point-
Estimates of the channel factors x(h,l) and the language vector yl , respectively5.

Let X(l) and X(h, l) be the channel- and the language-independent statistics,cleaned statistics

4All the posterior probabilities are computed on the UBM.
5For an easier notation, the indices have been moved into parentheses for the Point-Estimates
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respectively, defined as follows:

Xg(l) = Xg(l)−∑
h∈l

Ng(h, l) · {m + Ux(h, l)}g

Xg(h, l) = Xg(h, l) − Ng(h, l) · {m + Dy(l)}g

(4.10)

where X(l) is used for estimating the language vector (speaker and channel effects
are discarded), while X(h, l) is used for estimating the channel factors (language
effects are discarded)6.

Let L(h, l) be a R× R dimensional matrix and B(h, l) a vector of dimension R,
defined by:

L(h, l) = I + ∑
g∈UBM

Ng(h, l) ·UT
g · Σ−1

g ·Ug

B(h, l) = ∑
g∈UBM

UT
g · Σ−1

g · Xg(h, l),
(4.11)

where Σg is the covariance matrix of the gth UBM component. L(h, l) corresponds to
the inverse of the covariance of x(h,l)’s posterior distribution, as detailed in (Kenny
et al., 2005a), where the proofs can be found.

By using L(h, l) and B(h, l), we can obtain x(h, l) and y(l) MAP Point-Estimates MAP
Point-Estimatesfrom the following equations7:

x(h, l) = L(h, l)−1 · B(h, l)

yg(l) =
τ

τ + Ng(l)
·Dg · Σ−1

g · Xg(l),
(4.12)

where Dg =
1√
τ

Σ1/2
g (resulting from DDT =

Σ

τ
; τ is set to 14.0 in our experiments).

4.2.3 Inter-speaker/channel matrix estimation

The U matrix can be estimated row by row, with Ui
g being the ith row of Ug; thus:

Ui
g = L(g)−1 · Ri(g) (4.13)

where L(g) andRi(g) are given by:

L(g) = ∑
l

∑
h∈l

Ng(h, l) ·
(

L(h, l)−1 + x(h, l)x(h, l)T
)

Ri(g) = ∑
l

∑
h∈l

Xg(h, l)[i] · x(h, l)
(4.14)

Excurse: We notice that U does not depend directly on something that depends local minimum

6The structure of Eq. 4.10 can be seen as roughly resolving the JFA formula to Dyl and Ux(h,l)
respectively: i.e. Ux(h,l) = m(h,l) − (m + Dyl).

7Seen in a rough (not so mathematical) way: x :=
B

L
=

Xg(h, l)

U
=

Ux

U
= x.
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only on l. Thus, the steps of centering of X(l) and the estimation of y(l) are inde-
pendent of the steps on the x side (estimation of L(h, l), B(h, l) and x(h, l)). They
find influence only in the centering of X(h, l) of the next iteration. It is thus crucial
that x and y are not reset at the beginning of each iteration. However, during
development of our systems, we noticed that this element has an effect on trapping
the convergence of this algorithm to a local minimum8.

4.2.4 Algorithm summary

Algorithm 1 presents the adopted strategy for estimating the nuisance matrix U

with the above developments. The estimation of U is performed using preferably
an independent data corpus with several utterances per language. In the model
training and the testing phases, the components x and y are estimated using the
same algorithm (Algorithm 1) where the U matrix is fixed (not re-estimated) and
only one iteration is performed.

Algorithm 1: Estimation algorithm for U

Initialization:
y(l)← 0 for each language l ;
x(h, l)← 0 for each language l and utterance h;
U← random (U is initialized randomly with values in [0.0, 1.0) );

Estimate statistics: N(l), N(h, l), X(l), X(h, l) (Eq. 4.8 and Eq. 4.9);
for i = 1 to nb_iterations do

for all l do

for all h do

Center statistics: X(h, l) (Eq. 4.10);
Estimate L(h, l)−1 and B(h, l) (Eq. 4.11);
Estimate x(h, l) (Eq. 4.12);

end

Center statistics: X(l) (Eq. 4.10);
Estimate y(l) (Eq. 4.12);

end

Estimate matrix U (Eq. 4.13 and Eq. 4.14) ;
end

Opinion: Originally, JFA made discrete assignments of the frames to the Gaus-closed-form
restriction sians of the GMM, that is one frame is assigned to only one Gaussian, as

described in (Kenny et al., 2005a). This limitation on the statistics step is
required in order to find a closed-form solution to the optimization problem

8In fact, probably significantly better results were observed on one setup by resetting x and y at
the end of the third and eighth iteration. For that setup, this accidental observation could not be
outperformed by any other (structured) resetting strategy. This can be explained by the local-minimum
trap.
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that has to be solved (MAP criterion in the M-step of EM). We may wonder
that JFA continues to work considerably well even if the assignments are
changed to the Gaussians’ posterior probabilities γg, so the frames are as-
signed to different Gaussians according to their "proximity". In our eyes, the
closed-form updates are still completely valid, since we may probably see
the assignments or sufficient statistics as being one single Gaussian, because
the individual Gaussian component parts are stacked into one SV. If we see
the problem from the abstract SV space, without its partitioning into the
components, there is only one Super-Gaussian and the assignment is trivially
discrete. For us, this is the justification for the algorithm’s validity.

4.3 JFA variability compensation

In the following, we will see that JFA may be applied either on the feature level
(removing the variability from each feature vector) or to the model level (compen-
sating the model with a nuisance term). And both cases may be applied or only
during training or only during testing or even at both stages. The resulting four
possible combinations will be discussed in this section.

As basis, we are given U, which we estimated by Algorithm 1. Let htar and
htest be the training and testing utterances respectively and ltar and ltest are the
corresponding languages.

4.3.1 Model compensation during training

In this paragraph we present the strategy using models in which the effect of
variability is compensated. We are given U, which was globally estimated using
Algorithm 1. Now, with the exact same processing (except last step of estimating the
U matrix), for all utterances htar belonging to a given language ltar, the per-session
xhtar

vectors and subsequently yltar
get estimated whereas yltar

is tied among all
training utterances of this language ltar:

m(htar ,ltar) = m + Dyltar
+ Uxhtar

(4.15)

Finally, the compensated model for language ltar is simply given by the two model cleanup

terms that are common to all training utterances and which thus do not include
the (per-utterance) variability term Uxhtar

. Our model is thus m + Dyltar
. This is

transformed (from the SV space) to a GMM model by splitting the SV to individual
mean components and using Gaussian weights and covariances unchanged from
the UBM. This is then stored as a compensated (cleaned-up) language model for
language ltar.
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4.3.2 Feature compensation during training

Instead of removing the variability from the model, it may be subtracted from
the feature vectors. The channel- and speaker variability-free features may be
reused in any algorithm or classifier of various nature and complexity without any
additional restriction. In this approach, JFA can be seen as new front-end generating
cleaned-up features or simply as an additional step in the front-end processing (FE,
Sect. 2.3).

The channel variability term is removed from the feature vectors by subtract-feature cleanup

ing the Ux term, weighted by the individual Gaussian occupation probability γg

(posterior probability) of Eq. 2.7:

f̂ = f −
G

∑
g=1

γg( f ) ·Ugxh (4.16)

where xh is estimated for the utterance h, which f belongs to and Ug designing
the part of U that corresponds to Gaussian g (analogous to the sections of an SV
resulting from stacking). This compensation is usually also done for the testing
utterances in the very same way.

Since this approach is independent of the language of the utterance, it is a global,
blind processing (we are just given U). Thus xh is estimated based on the UBM
through the equation

m(h,l) = m + Uxh (4.17)

Opinion: Even if (Castaldo et al., 2007c) states that this approach is only possible
based on the UBM, we think it is possible to apply feature-domain JFA to
the training data by estimating x using the information about the utterance’s
language. Thus including the Dyl term into Eq. 4.17. This should perhaps be
attempted.

4.3.3 Model compensation during testing

During testing stage, the utterances may also be compensated for the speaker and
channel variability represented by the Ux term.

Accurate way

Ideally, xhtest
has to be estimated based on the hypothesized language’s model using

the equation
m(htest ,ltest) = m + Dyltar

+ Uxhtest
(4.18)

Think of the left hand side representing the observed testing utterance and m+Dyltar

comes from the (compensated) language model stored in the training step.

Under the assumption that the hypothesized language ltar is the correct one
(ltar = ltest), we try to set the whole difference between the observed utterance
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m(htest ,ltest) and the stored model m + Dyltar
as channel variability — that is what

Eq. 4.18 expresses. If this difference can be well mapped to the variability sub-space
(opened by U), the assumption about the language is likely to be true. If only a little
of this difference can be described in the variability sub-space, it is more likely not
the right language and the posterior Likelihood described hereafter will likely be
poor.

In order to perform the verification test under the model-space approach, Uxhtest

is added to the model’s mean SV, which is converted back to a GMM and used to
test the utterance against. We may express this under the form

f | m + Dyltar
+ Uxhtest

(4.19)

We thus compensate the stored language model with an utterance- (and language-) model
perturbingdependent variability term in order to test the observed features against.

Compared to what happens in model-space compensation during training, we
may also see this as follows: During training, the target model is transformed
by removing the session component of the training data and during testing, the
variability of the testing data is added. Thus in total, the training variability gets
replaced by the testing variability.

As side-note, if we calculate the LLR against a UBM, the UBM itself has also to
succumb to the same compensation.

Since the stored model of the hypothesized language is used (in Eq. 4.18), the
whole process has to be restarted for every utterance–language combination, and
thus for every single testing trial.

Approximation

In order to speed up calculations, the channel factors xhtest
may also be estimated

using only:
m(htest ,ltest) = m + Uxhtest

(4.20)

which is an approximation to Eq. 4.18. This xhtest
is then used in the setup described

by Eq. 4.19. The channel factors for the test utterance are thus obtained using the
UBM instead of the hypothesized language’s model. This is a good approximation
(and speedup) to the accurate way described above (see also Vair et al., 2006;
Castaldo et al., 2007c; Glembek et al., 2009).

This speeds up testing since the channel variability component Uxhtest
has to speedup

be estimated only once for every testing utterance. In the case of LLR scoring, the
UBM has also to be compensated only once per utterance. Running protocols with
23 languages (as in NIST LRE 2009), this contributes a considerable speedup!

Opinion: In our eyes, (Vair et al., 2006) mix up or do not distinguish the indepen-
dence of x(h,l) (resp. xh) with respect to l and the approximation of estimating
xh on the UBM only instead of the full target model. The former being a
precondition to the latter.
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4.3.4 Feature compensation during testing

Even if the feature-domain compensation during training is a self-contained and
theoretically sufficient process, feature-domain compensation can also be applied at
testing stage.

For this, the variability term Uxhtest
is estimated using one of the methodsfeature cleanup

mentioned in Sect. 4.3.3 (the accurate or the approximate way). But then, instead of
appending this term to the stored model in order to match the channel distortion
of the testing utterance, the troublesome variability is removed from the feature
vectors. These cleaned features are then tested against the clean models stored
during training stage. We may similarly express this under the form

f −Uxhtest
| m + Dyltar

(4.21)

This approach is usually combined with model-space compensation during
training. So this is called the hybrid-domain approach since it involves model domain
(training) and feature domain (testing).

A small nuance can be found for feature-space compensation: The compensated
features may undergo a final CMS step or not. Our original implementation in-
cluded this step, but it has been disabled in an early stage, based (amongst others)
on the results of Table 4.1 presented in the next section.

4.4 JFA results

This section investigates the effect JFA has in the context of Language Recognition
under the diverse basic hypotheses and using the approaches presented in last
sections.

First we analyze the possibilities that JFA offers when applied to the training
and/or the testing phase. We then also investigate the effect of some tuning parame-
ters. These include on one hand the rank of the matrix U to be used and on the other
hand how JFA reacts when changing the sizes of the GMM models themselves.

4.4.1 Comparing JFA strategies

The objective of the following analyses is to compare the different strategies enu-
merated in Sect. 4.3. At the same time, we compare the JFA approach to JFA-less
MAP adapted models.

— ⋄—

In a first part, Table 4.1 compares the baseline MAP system to systems featuringJFA vs.
bare MAP JFA. Similar comparisons have already been included into Table 3.2 of Sect. 3.3.3.
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The same Table 4.1 compares also different testing-time JFA compensation model-space
trainingstrategies (and even no testing-JFA). They build all on model-space JFA during

training.

Setup: The results presented in Table 4.1 are based on following two systems: Both
systems are based on SDC features and have mixtures of 256 and 2048 Gaussians.
One system is trained on the train part of CallFriend; The second system is
trained on all three parts of CallFriend. The U matrix has a rank of 40 and
performance is measured following the NIST LRE 2005 protocol using divSum-
K normalization (with K = 35) and pooled EER (Sect. 2.6.2.1).

Table 4.1: Comparing different testing-time JFA approaches and baseline MAP trained models,
trained on CallFriend, tested on NIST LRE 2005, in %pooled EER

256 Gaussians 2048 G.
JFA approach used for CallFriend CallFriend

training testing -train -all -train

MAP 18.48 19.51 18.31
model-space without JFA 11.54 11.29 10.17
model-space feature-space (hybrid), fast 10.46 – 8.27
model-space, no CMS feature-space, fast, no CMS 10.09 10.17 7.52
model-space model-space, accurate 10.17 9.64 7.49

From Table 4.1, we can read that JFA is most important during training. Perform-
ing JFA also on the testing data gives another reasonable 9% relative improvement.
We observe also, similarly to what was already touched in Table 3.2 of Sect. 3.3.3
and will also be stated in Sect. 4.4.3, that JFA reveals its power on bigger models, the
cost also drops from 10.17%pooledEER for training-only JFA to 7.49%pooledEER
for training and testing stage JFA (−26.4% relative). The results seem to indicate
that testing-time JFA helps particularly when the models are big.

The second part of analyses focuses on JFA applied to the feature domain during feature-space
trainingtraining. Table 4.2 shows a result into this direction, but this mitigated performance

has to be taken with some precaution. Other researchers obtain results similar to
model-domain JFA though (Vair et al., 2006).

Opinion: This compensation in feature space has been tried and a cleaned set of
utterances (as files containing feature vectors) have been generated. These
have then been used to train a new UBM and then language models using
MAP adaptation.
A first try yielded very poor performances. A later fresh attempt gave the
results presented in Table 4.2, with very moderate performances, halfway
between (JFA-less) EM models and model-space JFA (described in Sect. 4.3.1).
We are still not completely convinced that either the tools provided by AL-
IZE/MISTRAL (Sect. 2.7) or our scripting solve this task fully correctly. To
verify is for instance if the occupation probability γ has to be normalized to
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sum up to 1.0 over all Gaussians (as it is implemented) or not. There is no
hint about this in (Vair et al., 2006; Castaldo et al., 2007c).

Setup: The experiment with results in Table 4.2 is based on 256 Gaussian models
trained on PLP type features of all CallFriend data. Measured using divSum-K
normalization (with K = 35) and min-Cavg.

Table 4.2: Comparison of feature- and model-space JFA approaches during training phase to baseline
EM-ML trained models, in %min-Cavg

EM-ML 28.91
feature-space FA 18.56

model-space FA 9.23

4.4.2 Variability matrix rank

We have seen that the speaker and channel variability is assumed to live in a sub-
space of low dimension. This dimension corresponds to the rank of the U matrix.
This section now analyzes the effective size of this sub-space. The results will allow
to choose a good value for the U matrix rank.

— ⋄—

We present an analysis on the number of channel factors represented by the
U matrix, which is its rank. The results of this analysis, shown in Table 4.3 indicate
that we can gain some small enhancement by increasing the number of channels
in/the rank of the U matrix. We can easily go up to around 100 channels, but re-
quired computation power increases considerably for just 4% relative improvement.
We considering a rank of 40 as appropriate tradeoff between rather good perfor-
mance and adequately light computation. Therefore, results of all other JFA systems
presented in this work feature 40 compensation channels. Analog researches in the
domain of speaker verification show a very similar behavior (Matrouf et al., 2007).

Setup: The systems used for obtaining the results of Table 4.3 have a slightly different
setup than most other systems presented here (since this analysis has been
done in an early stage of the development). They are based on LFCC-SDC
features (instead of MFCCs, see Sect. 3.3.1). Further, only the train part of the
CallFriend corpus was used for U matrix and language model estimation and
the models are built with 521 components. The evaluation is done using divSum-
K normalization (Sect. 2.5.2.2, K = 35) and pooled-EER performance measure
(Sect. 2.6.2.1) on the NIST LRE 2005 data.
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Table 4.3: Factor Analysis performance on 512 Gaussian models using different channel variability
matrix ranks

rank 40 60 80 100 200

% EER 11.18 11.04 10.90 10.73 11.15

4.4.3 JFA effect on different model sizes

This section presents JFA results on different GMM-UBM model sizes. The objective
of this series is to investigate how JFA behaves with respect to the GMM model
size. Compared with the analysis in the previous section about U’s rank, it may
lead to answering the question where computation power has to be invested: in
augmenting the rank (JFA side) or the number of Gaussian components (GMM
side). It also compares the JFA performances to the ones obtained on non-JFA, MAP
adapted GMM-UBM models.

— ⋄—

While system development has been done on GMMs with 256 Gaussians, results
are also presented featuring full systems using up to 2048 Gaussians. All the results
are for 30 second segments, according to the NIST LRE 2005 primary condition.
The GMM-UBM language models are obtained from the UBM with 10 iterations
of MAP adaptation (Sect. 2.4.4), where only the mean values are updated (neither
Gaussians’ weights, nor variances are updated).

While seeing the GMM-UBM system as baseline, it obtains 22.40 %min-Cavg GMM-UBM
resultswith 256 Gaussians and 19.44 %min-Cavg with 2048, which represents about 13%

relative gain for increasing the number of Gaussian components.

Table 4.4: GMM-UBM and GMM-UBM-based JFA systems with respect to model size, NIST
LRE 2005 task, 30 seconds; ratings in %min-Cavg.

system 256 512 1024 2048 3072

GMM-UBM 22.40 21.25 20.07 19.44 –
JFA 8.57 8.38 6.99 5.41 5.75
gain, % relative -61 -60 -65 -72

For the JFA system, the U matrix is set to have a rank of 40 (which is also the JFA results

number of session factors). The matrix is iteratively estimated during 20 iterations
using Algorithm 1. This JFA system performs at 8.57 %min-Cavg using mixtures of
256 Gaussians. As Table 4.4 shows, the cost jumps to 5.41 %min-Cavg with 2048 Gaus-
sians, which is a far bigger improvement (37% relative) than observed for baseline
GMM-UBM systems without JFA. For 2048 Gaussians, the JFA system outperforms
the GMM-UBM one by 72% relative. While the capacity of GMM systems seems
slowly to exhaust with about 512 Gaussians, JFA systems reveal their power on
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increased model size (in the range of evaluated setups, the error rate reduction
seems to be linear in the number of Gaussians added to the models). Observing this
big performance impact of JFA over the baseline GMM-UBM system validates the
profit of JFA for LR. Amongst others, we benefit from the fact that we have far more
data to train each class than is the case in Speaker Recognition.

Other series including results on different model sizes can be found in Table 4.1
above and in Table 3.2 of Sect. 3.3.3, where also the reaction of JFA on different types
of parameters is shown. The results they contain show similar trends.

Opinion: A quick attempt on a bigger model has been carried out, where the
system ran with 3072 Gaussians. But the obtained result of 6.71 %min-Cavg

did not give additional improvements. This could be caused by the models
getting too complex. The power of the UBM may get exhausted at such sizes,
since there may be too many parameters to estimate.

4.5 Joint Factor Analysis conclusions

The basic principle of JFA consists in decomposing each utterance into three partsprinciple
summary (Eq. 4.5): A globally valid part (the general average, the UBM), a language-depen-

dent part and the language-independent, per-utterance leftover. The UBM part is
common to all training utterances. The language part is tied among all training
utterances of the same language. And finally, the third part represents the various
variabilities. It is supposed to live in a low-dimensional sub-space, and is thus
constrained by a global low-rank matrix (named U).

The (co-)variance of the observed data is separated into a part that is due to the
language, DDT, and a part which is the variability of the speaker, channel etc., UUT.

Traditionally, JFA works in the mean Super-Vector space. With SDC 7-1-3-7
features and working with 2048 Gaussians, this yields vectors of 114 688 dimensions.

After a thorough description of the decomposition, we presented a step-by-stepalgorithm

algorithm, which may be implemented without further developments (Algorithm 1).
The algorithm is mainly divided into three consecutive steps: First, general (pos-
terior) statistics of the training data on the UBM have to be gathered. Then, MAP
Point-Estimates of latent variables are calculated, based on these statistics and pos-
sible previous estimates. As a final step the compensation matrix U is estimated. It
describes the sub-space, in which the variability factors live. These two last steps
are usually iterated to allow the U matrix to converge.

We presented and investigated different ways to apply JFA in a running system,usage strategies

once the global U matrix has been estimated. The strategies differ along two axes:
JFA may be applied in feature- or in model-space. Further, JFA may be used only
during training or only during testing — or during both stages.

We arrive at following conclusions on JFA: The number of channels (rankstructural
results
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of U) is not very decisive. We chose a rank of 40, which we think to be a good
tradeoff between performance and computation time. More crucial in contrast is
the size of the GMM models, which are transformed to mean SVs. While system
developments were mainly achieved with 256 Gaussians, full systems are run with
typically 2048 Gaussians.

Further, our results tend to attest that the variabilities of diverse kinds (such as
the speaker and the channel) can be caught at the same time in the same sub-space.
The need for a complete JFA model separating these two variabilities can not be
approved.

As overall conclusion, we can say that JFA helps, whatever strategy is adopted. performance
resultsHowever, JFA compensation during training-time helps most, whilst testing-time

JFA enhances with growing model size. Reductions of a system’s cost up to 72%
relative can be achieved with JFA (comparing 2048 Gaussian models adapted
through MAP with and without JFA). Observing this big performance impact
of JFA over the baseline GMM-UBM system validates the profit of JFA for Joint
Factor Analysis.

4.6 Similar methods

This section will briefly spend a few words on other dimensionality reduction
methods that may be compared to JFA.

We may just indicate feature mapping, which uses the a priori information of a set feature mapping

of models trained in known (channel) conditions to map the feature vectors towards
a channel independent feature space (Vair et al., 2006; Campbell et al., 2008).

Also, we touched already the Nuisance Attribute Projection (NAP), proposed NAP

by Campbell (Campbell et al., 2006b). NAP works in SV space and can thus be
combined with SVMs, whereas JFA works on GMM-UBM and frame level and
allows thus for instance joint modeling of different kinds of information.

4.6.1 Comparison between JFA and PCA

Principal Components Analysis (PCA) has first been introduced by Pearson in PCA

1901 and is the oldest multivariate analysis technique. "The objective of PCA is to
perform dimensionality reduction while preserving as much of the randomness in the high-
dimensional space as possible" (Gutierrez-Osuna). For the randomness, we can think
of the spread of the data points. Further, compared to JFA, PCA does not consider
class separability, but only data reconstruction.

From a visual point of view, a full PCA (without reducing the number of dimen-
sions) can be seen as centering the data distribution around the origin and rotating
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it in such a way that the maximal variance directions become the coordinates.

— ⋄—

The hypothesis used in the PCA algorithm is to minimize the squared errorscriteria

between the (current) model9 and the training data. This error is also called repre-
sentation error or reconstruction error. PCA thus uses a signal representation criterion
(Gutierrez-Osuna).

PCA minimizing the reconstruction error, supposes that the data can be recon-
structed without errors. On the other side, JFA assumes that some error will be
made upon reconstruction. JFA further supposes that these errors follow a certain
law. The error or residue (also called noise source is thus thought to be probabilistic,
and the JFA can be seen as a probabilistic version of the PCA10.

Supposing the reconstruction error following a single law, we are in the case of
homogeneity of variance, also called homoscedasticity.

PCA finds a projection matrix, which maps the observed data points to a newway of working

(low-dimensional) space. JFA however finds a transformation (factor loadings,
U matrix) and latent factors, which are able to reconstruct the observed data points
under a certain error assumption. Thus JFA, in a certain manner, works in the
opposite way compared to PCA.

In a visual manner, JFA stretches, rotates and shifts an initial standard nor-
mal distribution (the latent factors) in order to produce (describe) the input data
distribution.

In PCA, the observed data point is thought to come from a weighted combi-observed
data point nation of basis vectors (the weights being the values of the different dimensions,

thus the low-dimensional representation, and the basis vectors originating from
the eigenvectors). In JFA however, they are supposed to be drawn from a Gaussian
distribution.

In JFA (i.e. when i-vectors, Sect. 4.1.1, are used), all output dimensions haverepartition on
dimensions the same importance and potentially carry the same amount of information. But in

the PCA case, the different output dimensions do not have the same importance.
Since they are issued from eigenvectors or Singular Value Decomposition of the
covariance matrix, the first dimension (the one which corresponds to the biggest
eigenvalue) has more power in separating the classes than the other dimensions.
The relative importance of the dimensions is probably linked to the magnitude of
the eigenvalues.

The different repartition of the information on the dimensions between JFA and
PCA can also be seen from its variances: In JFA, we suppose the variance to be the

9More accurately the data reconstructed by the model
10Many thanks to Pierre Michel Bousquet, LIA, for the related discussions.
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identity (I), but in PCA, the variances are the eigenvalues.

— ⋄—

A more thorough description of PCA and its comparison to JFA can be found in
(Tipping and Bishop, 1999a,b), as well as in (Roweis, 1998).

4.6.2 LDA

Linear Discriminant Analysis is based on SIR RONALD AYLMER FISHER’s work introduction

(Fisher, 1936) in which he projects the data points into a (sub-)space in which the
points of distinct classes are far apart, but at the same time keeping the data points
of the same class in a close neighborhood. In contrast to PCA, LDA can only be
used when class labels are available for the training data.

— ⋄—

FISHER defined thus a criterion which, being maximized, maximizes the between Fisher criterion

class scatter and which minimizes the within class scatter using a ratio of covariances:

F =
σ2

between

σ2
within

(4.22)

This criterion may also be interpreted as some kind of signal-to-noise ratio for
the class labeling.

In the following, we very briefly show the LDA in different context, as when
working with two or with more classes.

Two class problem — Equal covariance case

For this part, we assume the covariances of the two classes being the same (ho- detection using
Fisher’s
discriminant

moscedastic) and having full rank.

We will find a hyperplane with norm p that separates these two classes. If the
points of each class are assumed to be normally distributed and if the class priors are
equal, this hyperplane lies half-way between the two centroids (the mean vectors
of the distribution). The class centroids being µi and the global mean µ being at
half-way between the class-means, we have for the between class scatter11:

σ2
between = E[(µi − µ)(µi − µ)T] =

1
2

2(µ0 − µ)(µ0 − µ)T (4.23)

So, we write out σ2
between and for the (co-)variance (unique, since homoscedastic) of

a class’s points, we write Σ:

F =
σ2

between

σ2
within

=
(µ0 − µ)(µ0 − µ)T

Σ
(4.24)

11Using: (µ0 − µ) = µ0 −
1
2
(µ0 + µ1) =

1
2
(µ0 − µ1) = (µ1 − µ)
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During detection, the test vector x will be projected onto the norm p of the
hyperplane separating the two classes. The magnitude of this dot product will then
be compared to some threshold b (or b is subtracted to obtain a score): p · x < b.

So we are seeking for the norm p which maximizes this criterion, once projected:

F (p) =
pT(µ0 − µ)(µ0 − µ)Tp

pTΣp
(4.25)

We may show that p can directly be calculated as: p = Σ−1(µ0 − µ1). For the
decision threshold b, we find, what can be interpreted as the value of the projection
of the point laying half-ways between both centroids: b = p · (µ0 + µ1)/2.

Two class problem — Different covariances

In the case of each class having a different covariance (heteroscedastic, i.e. Σ0
and Σ1), p becomes: p = (Σ0 + Σ1)

−1(µ0 − µ1). This is known as the Quadratic
Discriminant Analysis (QDA) classifier, which compares a likelihood ratio to the
threshold b:

LR =

1√
2π|Σ1|

e−
1
2 (x−µ1)

TΣ−1
1 (x−µ1)

1√
2π|Σ0|

e−
1
2 (x−µ0)TΣ−1

0 (x−µ0)
< b (4.26)

An alternative to the QDA is the kernel trick, which can be applied to LDA
as it is for SVM (Chapter 5). Its basic idea is to expand the test vector to a higher
dimensional space so that a linear classifier in that space equals a non-linear one in
the original space.

C classes — Equal covariance case

When extending LDA to C classes, the between class variability is the covariance of
the class means µi:

B =
1
|C| ∑

i∈C

(µi − µ)(µi − µ)T (4.27)

F (p) =
pTBp

pTΣp
(4.28)

The separating hyperplane has norm p, which is an eigenvector of Σ−1B, and a
distance according to the corresponding eigenvalue.

In order to find the maximum, we may differentiate the criterion fraction (usingderivation

the rule
∂pTAp

∂p
= pT(AT + A) ) and equate it with zero.

We may also simply put the denominator to the other equation side and intro-
duce an identity term WW−1 to the right hand side: pTWpF = pT(WW−1)Bp

and left-multiply both sides by W−1(pT)−1, which has the effect of "shortening" the
left pT and W, in order to leave over Fp = W−1Bp.

So the result of the criterion optimization (substituting back Σ for W for the
present case) is a typical eigenvector (p)/eigenvalue (F ) problem: W−1Σp = Fp.
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C classes — Different covariance

The C-class LDA with class-specific covariance matrices is called Heteroscedastic
Linear Discriminant Analysis (HLDA) . It will not be handled here.

Detection/Classification

In multi-class context, classification is commonly done using a one-against-the-rest
approach where the target class is opposed to a second macro-class, formed by all
other classes. Very similar concepts of thresholding and using binary classifiers for
the multi-class problem will be explained more in detail in Chapter 5.

— ⋄—

While the limitation from theory is the number of output dimensions, being limits

linked to the rank of the processed matrices, the practical limitation lies in the
potentially huge processing power needed to compute the scatter (covariance)
matrices if we have a lot of data points.

Other variants of LDA are for instance the Power Linear Discriminant Analysis variants

(PLDA) (Sakai et al., 2008) or also the Non-parametric LDA by Fukunaga(-Koontz),
which removes the uni-modal Gaussian assumption so the projection preserve the
data structure more closely.
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La curiosité n’est que vanité. Le plus souvent,
on ne veut savoir que pour en parler.

— Blaise PASCAL, Pensées de M. Pascal, 1670 0

Chapter 5

Support Vector Machines
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As opposed to Gaussian Mixture Models (GMMs), a Support Vector Machine origin

(SVM) is a supervised two-class (binary) classification system (but it can also be
applied to regression). SVMs are one of the algorithmic results of the Vapnik-
Chervonenkis (VC) theory of statistical learning, which was developed by Vladimir
Vapnik and Alexey Chervonenkis between 1960 and 1990.

GMMs (with or without JFA applied) are statistical modeling techniques, which discriminative
modelingtry to mold at best the clusters (distributions) of points in multidimensional space.

This is called generative modeling. Another kind of techniques is discriminative
classification as Artificial Neural Networks (ANNs) or the SVMs presented in this
chapter. They focus on tracing decision boundaries between the clusters instead
of reproducing the distribution of the points. Discriminative techniques are thus
working on the difficult part of space where most of the confusions occur. Whereas

0Pensées de M. Pascal sur la religion, et sur quelques autres sujets, Chapitre XXIV: Vanité de
l’homme, § 9; 1670: p. 186 ; 1688: p. 123
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generative techniques focus more on the "easier" part of space, where points have
higher concentrations.

In speaker verification, SVM systems are roughly at the same performance asSVM +JFA

GMMs with JFA (Matrouf et al., 2011). Herein, we will try to verify how the combi-
nation of SVMs with JFA behaves in the context of Language Recognition. Further,
the SVs on which JFA works could directly be used as SVs for an SVM classifier.
The hypothesis behind the research related to this chapter is that the association
between JFA and SVM should allow to benefit from the JFA decomposition (and
variability compensation) power together with the SVM classification power. After
an introduction to SVMs, this interaction between JFA and SVM will be analyzed in
Sect. 5.4.

This chapter has also the objective to explore how an SVM has to be structuredSVM structure

to obtain best results in Language Recognition. SVMs solve two-class problems. We
thus analyze how these two classes (the positive and the negative one) have to be
composed.

5.1 Linear SVM

In 1963, Vladimir Vapnik proposed the following linear classifier using an opti-
mal hyperplane algorithm. In a general way, SVMs build on the structural risk
minimization principle, defined by Vapnik in 1979.

Instead of feature vectors, SVMs operate with points in space, that are of highersuper-vectors

dimension, usually called Super-Vectors. Since SVMs are binary classifiers, we
need SVs of two classes for their training. In an SVM, this signifies that one class is
discriminated against the other. So one class is said to be the positive and the other
the negative one. The set of SVs representing the negative class is usually calledblacklist

the blacklist.

An SVM is a discriminative classifier, meaning it focuses on the information
distinguishing the two classes. It tries to represent or to model the boundary
between them instead of trying to mold the distributions (clouds of points in space)
of the two classes, as generative models like GMMs do.

The simplest SVM setup is the linear SVM, where the frontier between thelinear SVM

positive and the negative points in space is a hyperplane in the same space. In the
2-dimensional space, this can be depicted as a straight line. This hyperplane can be
expressed as:separating

hyperplane w · x− b = 0 (5.1)

where w is the normal (perpendicular) vector of the hyperplane and
b

|w|2
is the

offset of the hyperplane from the coordinate origin in that direction ( | |2 being the
Euclidean norm of w).
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5.1.1 Maximum margin SVM

For determining the separating hyperplane between the two classes, only the few support vectors

SVs that lay on this boundary are used. They are called support vectors and give the
name to the SVM.

— ⋄—

The SVs on each side of the boundary verify, for the positive and for the negative margin

class respectively:

w · x− b = +1

w · x− b = −1
(5.2)

These define two hyperplanes that are parallel to the separating hyperplane and
they span up a margin between the two classes (which does not contain any points)

of width
2
|w|2

(resulting from
b + 1
|w|2

− b− 1
|w|2

).

In order to obtain a robust SVM, this margin has to be maximized. Since the maximum
margin

width is
2
|w|2

, this involves minimizing |w|2 . For mathematical ease, this can be

replaced by the equivalent
1
2
|w|2

2
, which is a quadratic programming optimization

problem. The result of this optimization is the set of support vectors to be used optimization

and at the same time the normal vector of the separating hyperplane:

w =
n

∑
i

λi 1±(xi) xi ; 1±(xi) =

{
+1 if xi is of positive class,

−1 if xi is of negative class.
(5.3)

where λi are the non-negative Lagrangian multipliers of the SVM optimization
problem. We see also that the values of the class-indicating function 1±( ) can be
found again as the right hand side of Eq. 5.2. The SVs that do not lay on the margin’s
boundary (but are correctly classified by it) are not of any interest since their λi is
zero.

And b is determined such that
b

|w|2
is the offset of the hyperplane. This can be

done solving Eq. 5.2 to b. It would be sufficient to calculate it for one support vector,
but usually the mean over all support vectors S is taken:

b =
1
|S| ∑

i∈S

w · xi − 1±(xi) (5.4)

— ⋄—

The maximum margin SVM as generalized linear classifier maximizes at the
same time the margin (geometrically), as it minimizes the empirical classification
error.
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5.1.2 Soft-margin SVM

In 1995 (Cortes and Vapnik, 1995) spun the (maximum margin) linear SVM further
to allow training sets that are not entirely separable. This means to allow and to
take into account SVs that lay inside the margin or even in the area of the other
class.

Their proposed method not only takes into account the SVs on the boundariesslack variables
(penalties) of the margin, but also the SVs that fall into the false area by applying a penalty.

They use (non-negative) slack variables ξ i that will be non-zero for those penalizing

SVs. The problem that has to be minimized (that was
1
2
|w|2

2
for the clean case)

becomes:
1
2
|w|2

2
+ C

n

∑
i

ξ i (5.5)

with C controlling the tradeoff between the penalty applied to ξ i and the size of the
margin. In this case, not only |w|2 has to be estimated, but also the different ξ i.

This defines a linear penalty with the drawback of outliers having a big impact.non-linear

Non-linear penalty functions have also been developed, but they need bigger
computational and mathematical efforts.

5.1.3 Testing with SVMs

We have seen how to train a Support Vector Machine. Now it is the turn of looking
at the testing phase. More insight will be given in Sect. 5.3 since results will be
presented at the same time for raw and for JFA-based GMM-SVMs.

— ⋄—

Test utterance points (SVs) are also mapped to the higher-dimensional domain,
as training SVs are. They originate from GMMs of UBM-based MAP adaptation
towards the testing utterance’s data.

This testing SV of unknown class is then classified by the SVM according to the
trained normal vector w and the offset b:score

s = w · x− b (5.6)

If the score s is positive, the testing utterance can be classified into the positive class,
otherwise into the negative one.

Since LR is a multi-class problem and SVMs are binary classifiers, there are twomulti-class

possibilities how they can be applied: 1) testing one class (positive) against all other
ones (negative set) or 2) testing pairs of classes two-by-two. Here, we chose the
former, since it matches well our detection task, which consists in detecting one
class against the others.
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5.2. Non-linear SVM

The scores produced by the SVM systems are Log-Likelihood Ratio like, so theLLR
interpretation same score processing procedure as for the other GMM based systems may also be

applied, although the effect of score normalization is far less crucial.

— ⋄—

System setups and results for SVMs will be presented in next section, together
with results of SVM-UBM-JFA systems.

Opinion: By defining the margin to have a width of
2
|w|2

, we see that the value score
interpretation

of a classification score becomes meaningful: It is well known that the sign
of the score indicates the class to decide (Eq. 5.6), since the offset b plays the
role of threshold. Additionally, if the absolute value of the score is bigger
than 1, then the SV could be classified clearly, since it falls outside the margin
(Eq. 5.2). If its absolute value is inferior to 1, then it falls into the margin.
But this easy interpretation will probably not hold any more for soft-margin
SVMs.

5.2 Non-linear SVM

In 1964, Aizerman, Braverman and Rozonoer (Aizermann et al., 1964) found the
kernel trick for machine learning algorithms. Its effect is to put the SVs to a high-
dimensional space in order to apply linear SVMs. This corresponds to applying a
non-linear SVM in the original input space.

There is an infinite number of possible kernels that may be applied. The design
or architecture of kernels may be a field of research of its own (Moschitti, 2010a,b).

5.2.1 Kernel trick

The kernel trick maps each (multidimensional) point into a higher-dimensional
space, which might even be infinite. The idea is that classes with a complex (non-
linear) structure in the original space can be described with linear classifiers in the
mapped high-dimensional space.

The trick consists in the fact that, if an algorithm depended on the inner product
of two input vectors, then it depends also only on the inner product of the two
vectors mapped to this higher-dimensional space. Thus, this mapped space does
not need to be explicitly known. This allows also this space to be potentially of
infinite dimension. Further, this non-explicitness makes it computationally easier
or even feasible.

A kernel is thus a function, which maps a combination of two input vectors to a kernel
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real value:
κ : X× X → R (5.7)

where an inner product space exists with:

κ(x, xi) = 〈ϕ(x), ϕ(xi)〉 (5.8)

where ϕ( ) is the mapping of an input vector to the high-dimensional inner product
space.

Only in 1992, Boser, Guyon and Vapnik (Boser et al., 1992) applied the kernelSVM kernel

trick to the linear maximum-margin hyperplane SVMs in order to build nonlinear
classifiers. The maximum margin hyperplane classifier, which is linear in the kernel
space appears thus in the original input space as a nonlinear classifier.

Compared to the linear SVM, the kernel function replaces the dot products (e.g.
Eq. 5.1). This makes the separation of complex classes easier and it is still linear (in
the mapped space). We can also use the definition of a hyperplane to feel that theconceptual

proof mapping does not need to be defined: A hyperplane is defined (by Eq. 5.1) as the
set of points (SVs), for which their inner product with a fixed vector (in occurrence
w) is constant. For a higher-dimensional space, this is the same and it is sufficient
to be able to calculate inner products in that space in order to define hyperplanes
therein.

5.2.2 Kernel types

In our GMM-UBM context, the Super-Vectors consist of all means µg of a GMMmean
super-vector stacked to form a vector of considerable dimensionality: G · d, with G being the

number of Gaussians in the model and d being the dimensionality of the feature
vectors. For example with 2048 Gaussians and a feature vector dimensionality d of
56 (for typical SDCs), this results in SVs of dimension 114 688.

In (Campbell et al., 2006a), a probabilistic distance kernel that computes akernel

distance between GMMs was proposed. This distance is well suited for a Sup-
port Vector Machine classifier. Let X l and X k be two sequences of speech data
corresponding to the languages l and k. The kernel formulation we use is given by:

κ(X l ,X k) =
G

∑
g=1

〈√
αgΣ

− 1
2

g µl
g ,
√

αgΣ
− 1

2
g µk

g

〉
(5.9)

where αg, µl
g and Σg are the weight, the mean and the covariance matrix of the

gth Gaussian in the GMM. This kernel is valid when only the means of the GMM
models are varying. This is true since the weights and covariances are taken from
the UBM. All the SVM experiments presented hereafter use the linear kernel shown
in Eq. 5.9. We will stick to this kernel for our SVM experiments.

Other kernels may be divided into several classes. They may for instance beother types of
kernels categorized according to the following basic structures:
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5.3. SVM structure

Linear kernels: κ(x, y) = 〈x, y〉
Polynomial kernels: κ(x, y) = 〈x, y〉d

Radial Basis Function (RBF) kernel: κ(x, y) = e
− |x−y|2

2σ2

Further types of kernels include for instance sigmoidal or inverse multi-quadratic
ones. A more exhaustive research on SVMs and different kernel types in the SR
context can be found in the thesis (Louradour, 2007).

5.3 SVM structure

For training SVMs, we need a set of positive SVs and a set of negative ones, the training sets

blacklist. There is two possibilities for the positive SVs:

one: One unique SV is obtained for a given language to train. For this, the GMM
language model of a previous MAP or JFA experiment is converted to a SV
using not only the Gaussians’ means, but also their weights and covariances
(cf. Eq. 5.9):

xg =
√

αgΣ
− 1

2
g µg (5.10)

These per-Gaussian vectors are then stacked to a SV.

multi: A multitude of SVs are used. For each training utterance of the current
language, the UBM is adapted by MAP with a regulation factor τ (of 14.0
in our case) towards the utterance’s data. At this stage, a JFA step may be
inserted. These per-utterance GMMs are then transformed using Eq. 5.10.
Thus, one SV for each utterance is obtained.

So all utterances of the training language are used for the positive set, either as one
centroid SV or as distinct (utterance-wise) SVs.

For a given training language, the negative labeled examples are recordings blacklists

belonging to all the other languages. Also for this blacklist, different configurations
can be imagined. We define three different blacklist compositions:

Set A is composed of one SV for each of the non-target languages — similar to the
one-SV setup for the positive case. This type of blacklist thus contains |L| − 1
SVs. Each SV is obtained by Eq. 5.10.

Set B is composed of one SV for each training utterance of the non-target languages.
As example for the NIST LRE 2005 setup, the training corpus comprises all
three CallFriend parts, and thus these blacklists contain 960 or 1080 SVs,
issued from utterances containing about 12 minutes of speech each.

Set C is the same as set B, augmented by additional (non-target) SVs. In the NIST
LRE 2005 context, this adds all SVs of non-target language utterances of NIST
LRE 2003 evaluation data, which contains utterances of 3, 10 and 30 sec-
onds.These blacklists count thus between 2640 and 3240 SVs.
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Fig. 5.1 depicts on the left hand side the two enumerated possibilities for the
positive SVs (targets) and on the right the three blacklist sets defined above.

multi

++
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+

++++++
+++ ‒

‒‒
one

+
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Figure 5.1: Illustration of different setups for the targets (+, one vs. multi) and for the blacklist (−,
Sets A, B, C) with the line symbolizing the SVM hyperplane

Exploring these combinations is motivated by the fact that estimating a sepa-combinations

rating hyperplane using only one point on the target side seems amendable and
for the impostor side, by using more SVs, we expect better generality (similar to a
UBM adducting robustness).

5.3.1 Results

Table 5.1 shows the results of the 256 Gaussian SVM systems with all differenttraining sets
composition target SVs and blacklist combinations. All SVs are the mean Super-Vectors obtained

of JFA compensated GMMs. The systems are tested on NIST LRE 2005 and the
scores are normalized with divSum-K (Sect. 2.5.2.2, K = 35). As comparison, one
test has been conducted on 2048 Gaussians: For one target SV and blacklist set C,
the pooled EER is at 5.61 %.

Table 5.1: SVM-UBM-JFA results for 256 Gaussians, in % pooled EER

blacklist one target SV multiple target SVs

set A 8.16 8.74
set B 7.32 7.88
set C 7.12 6.93

The results primarily indicate that the blacklist should be composed of asdiscussion

different SVs as possible (set C). In addition, we obtain better results using multiple
target SVs, given we also have enough impostor SVs. But SVM systems are more
difficult to tune, since there is more parameters that are quite sensitive, as for
instance the soft-margin penalty controlling parameter C, Eq. 5.5 in Sect. 5.1.2 (Hsu
et al., 2003), and the profit may be lost.
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5.4 JFA-based SVMs

The JFA decomposition algorithm leads to compensated SVs defining GMM models.
Since in this SV domain, each utterance is represented by a single (big, fixed-size)
vector (denoted M or m in Chapter 4), these SVs can directly be used in an SVM
classifier to evaluate data Likelihood in the usual way (Campbell et al., 2006a). But
with the kernel we use (Eq. 5.10 and Eq. 5.9), this is only possible taking over the
the GMM weights and covariance from the UBM (since SVs issued from JFA are
purely the means stacked, whereas the kernel also uses the covariance and the
weights). This association between the JFA and SVM allows one to benefit from the
JFA decomposition power and SVM’s (discriminative) classification power.

By using Algorithm 1, the JFA modeling leads to SVs that contain both additive
terms: the language component and the channel component. All SVs are com-
pensated by discarding the channel component. The retained SVs are of the form
m + Dy. The resulting compensated SVs are directly used in the SVM classifier
described here. All the SVs used by the SVM are compensated: the SVs correspond-
ing to the target language, the set of negative examples (blacklist) used in training
SVMs, and to the SVs of the test utterances.

5.4.1 Results

Further, we compare SVM systems to GMM-UBM systems, as well with as without GMM to SVM
comparisonJFA applied. For these SVM systems, every training utterance of the target language

is represented by an associated positive SV (multi-target). The blacklist is using
blacklist set C.

In Table 5.2, we show the results of 256 Gaussian and 2048 Gaussian SVM
systems using mean SVs obtained without and with JFA. These are compared
to MAP adapted GMM-UBM systems with a corresponding setup. All systems
build on MFCC-SDC features and are run on NIST LRE 2005 with llkMax0 score
normalization (Sect. 7.2.1) and expressed as min-Cavg.

Table 5.2: Results for SVM systems (one-target and blacklist set C setup) without and with JFA
compared to the generative GMM systems. NIST LRE-2005, in %min-Cavg

system 256 G 2048 G

GMM-UBM 22.40 19.44
GMM-UBM-JFA 8.57 5.41

SVM-UBM 11.55 —
SVM-UBM-JFA 8.91 7.21

The results primarily indicate that the SVM system without JFA largely outper-
forms the GMM-UBM system, but the JFA-based systems are at about the same
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level with or without JFA for a model size of 256 Gaussians and do not improve
that well for 2048 Gaussians. This could be due to the fact that the tuning of SVMs
is more delicate.

— ⋄—

In this section, we investigated the use of the JFA method in the context of SVMs.discussion

For the JFA-based SVM system evaluated on the NIST LRE 2005 task, the result is at
8.91 %min-Cavg for 256 Gaussians, which is a relative gain of 60% over the GMM-
UBM system. Using SVs coming from 2048 Gaussian models, the cost of the SVM
system is 7.21 %min-Cavg (a gain of 63% relative over bare GMMs). We observed
that the SVM systems with JFA do not show any improvement over generative
GMMs with JFA, but the JFA approach proofs its usefulness also in this SVM context
(−23% relative for 256 Gaussian).

Similar observations can still be made while changing the type of front-end
parameters from MFCC-SDCs (dimension 56) to PLPs (dimension 39), as it is shown
in Table 5.3.

Table 5.3: Results for different system setups, based on PLP-12 features with/without JFA and
with/without SVM. NIST LRE-2005, llkMax0 score normalization, in %min-Cavg

base system no-SVM SVM setup
blacklist one target SV multiple target SV

EM-ML 28.97 — — —

MAP 28.24 set A 34.08 31.22
set B 20.93 20.05
set C 20.17 14.95

JFA 8.85 set A 15.25 11.60
set B 11.89 10.42
set C 10.78 9.03

It is to note, that the training data should be as similar to the testing data
as possible. This is a general rule for pattern classification, but it has shown of
particular importance on a quite fine level for SVMs, where (in the context of LR)
this holds particularly for the speech utterance duration1.

Opinion: Perhaps, it should be tried to obtain training SVs through MAP adap-
tation not from the UBM, but from the language model, which was trained
on all training utterances of that language. We thus think of a language-
model-based instead of UBM-based MAP. Perhaps, this "triangle" adaptation
would be the same as a UBM-based MAP with a different regulation factor
regulation factor. Perhaps, the performances could even be slightly worse,

1Some NIST LRE participants fork off specific handling for the three nominal durations (3, 10, 30 s).
Other append an additional parameter containing the segment’s duration as workaround.
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if we remember of the SVMs being sensitive to the utterance duration (see
just above), since the testing SVs will still be MAP’ed from the UBM, which
would induce a discrepancy from the training utterances’ adaptation.

5.5 SVM conclusion

In a short constructive approach, we presented the working of SVMs, starting with
linear SVMs and subsequently applied the kernel trick to end up with non-linear
SVMs (in the input space). The scores output by an SVM indicate the location
(distance) of the testing SV with respect and relative to the margin. Different SVM
configurations, as well on the target (positive) as also on the blacklist (negative)
side can be imagined. In the LR context, these are crucially different, since we have
a lot of (training) utterances for every class.

We observe that exploding the per-language centroids into individual utterance-
wise SVs is, at least for the blacklist, of some benefit. Further, we analyzed the
effect of SVMs in the JFA context. While the SVM approach is of considerable use
(−48% relative) on bare GMM-UBM models, their advantage in the JFA context can
not be affirmed. The direct usage of JFA’s SVs as inputs to the SVM may justify
this procedure for its simplicity avoiding the need to retransform the SVs to GMM
models for scoring.

The novelty about combining SVMs (directly) with JFA compensated models novelty

(represented by SVs), which we presented in this chapter were among the first in
their kind in the domains of Speaker Recognition and Language Recognition.

Let’s also recall, that the SVM technique is not limited to scoring, but may also
be used in more complex processing, as shown in Sect. 3.4.2 about GMM-SVM
pushback.
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La nature a des infinis mystérieux, une puissance
d’imagination. Elle se manifeste en variant toujours
ses productions.

— Eugéne Henri Paul GAUGUIN,
’Oviri, écrits d’un sauvage, 1889 0
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151



Chapter 6. Variability Between Databases

telephone bandwidth parts of Voice of America (VOA) radio broadcasts. This LRE
disposed of a total of 23 target languages, of which some were very similar, as
Ukrainian and Russian or Hindi and Urdu.

As pointed out in Chapter 4, JFA systems presented here will show a verysection’s
objective important gain over traditional MAP adaptation systems. These JFA systems require

a projection matrix (U) that keeps track of the session and channel variabilities
observed in the training data. The NIST 2009 evaluation setup contains two rather
distinct channel categories (CTS and VOA). The objective of this part of study is
to analyze the impact of working in an environment containing such hybrid data
sources. In this section, we will research how these two categories may be handled
separately up to a certain point, under the hypothesis that a unique system is not
able to cope conveniently with data of very different kinds, as is the case in the
environment pointed out.

Further, the considerable number of languages to be handled in the NIST LREincomplete data

2009, which is 23, leads to the fact that there are some languages where there is only
data of one channel category. As well the training as also the testing stage are hit
by the possibly strong bias introduced by this fact. This particular aspect of LRE
2009 is discussed in Sect. 6.1 and an unbiased way of evaluation using a subset of
8 languages is proposed.

— ⋄—

In regard to system setup, different organizations are conceivable. One pos-system setup
strategies sibility is to build one unique system including data from both categories pooled

together. But initially, it may be a better idea to cope with these two categories
separately and then putting them together at some later stage. For this, there are
several possible setups: We may estimate one JFA session variability matrix (U)
using both, CTS and VOA data and then train category dependent models using
this common compensation matrix. Another strategy could be to estimate session
variability matrices separately and train the language models using data pooled
over both channel categories. This case has not been researched because it does not
seem optimal to use some training material of a category which the compensation
was not designed for1. Finally, we may estimate separate matrices and estimate the
models using only data of the same category as used for the matrix and then put
the systems together on the score level.

This section will thus have a look at systems with a global approach putting
all data together and systems handling these categories separately. These systems
will be evaluated following the NIST LRE 2009 protocol (Sect. 2.6.3.2) with its
23 languages, as well as on a common subset of 8 languages since we do not have
training and testing data for both channel categories in all 23 languages (more on
this problem can be found in Sect. 6.1). Each system will also be evaluated on the
CTS segments of these 23 and 8 language evaluation sets only and on the VOA

1If the session variability was really independent of the channel category, this could work. But in
this case, a separation into two parallel systems would not be needed.
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utterances only.

For the different JFA systems we analyze in the following sections, the channel
compensation matrices are obtained using the unique UBM and are set to have
a rank of 40 (the number of session factors and the dimensionality of x; they are
iteratively estimated during 14 iterations).

For training each language model, statistics over training data against the UBM
are collected and x and y are estimated. The model, being the m + Dy part of the
JFA formula (Eq. 4.5), gets then fashioned in one step.

6.1 NIST LRE 2009 particularity

The data provided by NIST in 2009 for system development and training is a
heterogeneous composition of CTS and VOA data. CTS data comes from historic
recordings from the CSLU of the OHSU.

CTS training data is available only for 11 of the 23 languages of NIST LRE 2009: incomplete
training dataSpanish, English, Korean, Mandarin, Hindi, Indian English, Cantonese, French,

Persian (Farsi), Russian and Vietnamese. VOA data comes from broadcast record-
ings transmitted over satellite or over the internet. This source comprises 22 of the
23 languages, where the missing language is Indian English. The fact that there
is not training data of both category conditions for every language poses some
troubles. If we follow an approach where both data parts are pooled together, some
language models will have been trained exclusively on one channel category (the
source of the recordings). On the other hand, if the two sets are handled separately,
we can not estimate two sets of 23 single-source models. To be still able to obtain
a full set of 23 language models, we will, where it is necessary, use recordings of
the other category. Since otherwise, there would be no data for training some of the
models.

Similarly, on the testing segments side, some category–language combinations incomplete
testing dataare missing. This presents even a more consequent problem. CTS test utterances

are available for 10 languages only: Cantonese, English, Hindi, Indian English,
Korean, Mandarin, Persian, Russian, Urdu and Vietnamese. Of these, 9 correspond
to the available CTS training data languages, the exception being Urdu. VOA test
utterances are present for the same 22 languages as in the training data. When
analyzing systems separately on the CTS and on the VOA testing utterances, we
will end up comparing system performances on a different number of languages.
But this is not a big problem since the evaluation officially is a detection task, which
answers binary questions, in contrast to an identification task that has to select one
language out of a set. Being in a detection context, the results remain comparable
and the average expected cost of a detection system delivering random decisions is
50%, independently of the number of classes in the evaluation.

Table 6.1 shows the above mentioned facts and gives some statistics for the dif- overview
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ferent languages, as well as the indication about the number of languages available
for each set.

Table 6.1: Data availability for the different languages in the training and the testing sets, number
of utterances and total duration, the 8 languages with full coverage are highlighted

training data testing data
language CTS VOA CTS VOA

Amharic 400 25.38 h 398
Bosnian 400 10.03 h 355
Cantonese 39 3.04 h 388 2.98 h 316 62

Creole Haitian 400 14.04 h 323
Croatian 400 4.58 h 376
Dari 400 13.07 h 389
English Amer. 1906 58.90 h 400 21.80 h 522 374

English Indian 474 4.88 h – – 574 –
Farsi=Persian 159 29.75 h 400 19.97 h 52 338

French 119 27.63 h 400 20.30 h – 395
Georgian 400 6.43 h 399
Hausa 400 18.84 h 389
Hindi 403 25.53 h 386 11.40 h 270 397

Korean 786 28.81 h 350 5.37 h 145 318

Mandarin 2253 64.84 h 400 15.32 h 625 390

Pashto 400 17.36 h 395
Portuguese 400 17.11 h 397
Russian 40 2.70 h 361 27.82 h 257 254

Spanish 1535 27.85 h 347 63.78 h – 385
Turkish 400 7.78 h 394
Ukrainian 400 8.20 h 388
Urdu – – 400 23.85 h 32 347
Vietnamese 156 400 13.36 h 288 27

total 7870 336.94 h 8632 332.84 h 3081 7490
number of languages 11 22 10 22

6.1.1 8 language task

There are only 8 languages that are available in both data sources, in CTS and
in VOA, and that are contained as well in the training as in the testing data sets.
Consequently, results will also be presented for the subset of these 8 common
languages in order to be able to take conclusions on a somehow cleaner setup
(unbiased with this respect).

The languages of the 8-language task are: Cantonese, English, Hindi, Korean,languages and
datasets Mandarin, Persian, Russian and Vietnamese. Table 6.2 gives some overall statistics
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about this 8-language task. The datasets involved in this task are the CTS and the
VOA datasets, as defined in Sect. 2.6.1.1.

Table 6.2: Number of languages and number of test utterances in the 8-language task for all 30 s
test segments and on a per-condition basis

NIST LRE 2009 — 8 language task, closed-set 30s tests
all tests CTS tests only VOA tests only

number of testing languages 8 8 8
total number of test files 4635 2475 2160
files per language 315–1015 52–625 27–397

6.1.2 23 language task

The 23 language task represents the same systems under the official NIST LRE 2009
condition, where there are language–condition combinations that are missing either
in the training or in the testing set. It also shows to which extent the systems are
robust enough to recognize certain languages on a channel condition for which no
training data is available.

As described in Sect. 2.6.1.2, NIST’s LRE 2009 evaluation concerns 23 languages.
Hence, we need some data to train each of the 23 language models in the case we
focus on one channel category only. For this, we extend the clean data sets (defined

datasetsin Sect. 2.6.1.1) used for training as follows:

CTS+ extended data set

The CTS+ data set comprises the CTS dataset (Sect. 2.6.1.1) for its 11 languages,
extended by the VOA parts for the other 12 languages.

VOA+ extended data set

This set analogously contains the VOA dataset for the 22 languages contained in it
plus the CTS part for Indian English, which is missing VOA data.

Table 6.3 gives some statistics of the testing data for this 23-language task.We
observe for instance that CTS tests exist only for 10 languages, whereas there are 22
for the VOA test utterances. For this testing data, there is nothing we can do. Only
for the training data, we can add utterances from the other category to cover all
languages.

6.2 Baseline MAP results

Results in subsequent sections describing JFA systems will be compared to MAP
adapted GMM-UBM systems (Sect. 2.4.4) without JFA, whose results are given in
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Table 6.3: Number of languages and number of test utterances in the 23-language task

NIST LRE 2009 — 23 language task, closed-set 30s tests
all tests CTS tests only VOA tests only

number of testing languages 23 10 22
total number of test files 10571 3081 7490
files per language 315–1015 32–625 27–399

this section. All models in this and subsequent sections are mixtures of 2048 Gaus-
sians. The GMM-UBM language models are obtained by simple MAP adaptation
(still with a factor τ of 14.0), where only the mean values are changed (neither
Gaussians’ weights nor variances are adapted). The remaining system setups match
those of the subsequent JFA systems and can thus directly be compared.

6.2.1 Evaluation on 8 languages

While seeing the GMM-UBM system as baseline, it obtains, evaluated on the 8-lan-
guagetask, 18.21 %min-Cavg when trained on CTS data only and 18.31 %min-Cavg

with VOA data only. When using all data for training, its mean average cost is at
16.91 %min-Cavg. Table 6.4 indicates the MAP performances of the single channel
category evaluations as well.

Table 6.4: MAP adapted GMM-UBM systems evaluated using only the 8 mutual languages on all
test segments and on a per-category basis, in %min-Cavg, the highlighted values indicate results
with matching category

NIST LRE 2009 — 8 language task, closed-set 30s tests
data for MAP model estimation all tests CTS tests only VOA tests only

CTS &VOA 16.91 19.69 14.27

CTS 18.21 19.64 19.27
VOA 18.31 24.62 12.27

Opinion: The MAP systems presented here did undergo just one MAP adapta-
tion iteration. Either the MAP regulation factor τ should be tuned or several
iterations should be done (which should have a similar effect). For 10 itera-
tions for instance, the 8-language VOA system would have a performance of
15.09 %min-Cavg over all test utterances, 21.91 %min-Cavg on cross-condition
and 9.36 %min-Cavg on the matching VOA only tests. Even if this signifies an
enhancement of 11 to 23% relative, these results are still far from JFA based
results, as will be shown later on.
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6.2.2 Evaluation on 23 languages

Also on the 23-language task, the performances shown in Table 6.5 are not that
good and thus there is not so a big difference between the different evaluation parts,
but slightly better results can still be observed on testing utterances matching the
training data.

Table 6.5: MAP results of the 23 language task on all test segments and on a per-category basis, in
%min-Cavg

NIST LRE 2009 — 23 language task, closed-set 30s tests
data for MAP model estimation all tests CTS tests only VOA tests only

CTS &VOA 20.60 22.41 21.21

CTS+ 23.54 21.50 27.89
VOA+ 21.62 35.48 17.30

6.3 Pure single category JFA systems

In order to analyze the impact of the channel category in the JFA context, we build
two completely distinct parallel systems. One system is trained exclusively on CTS
data, the other exclusively on VOA data. The used datasets are thus truly distinct.
This allows not only to investigate the category problem, but it serves also as basis
for subsequent approaches. We define the two "pure-category" systems as follows:

Pure CTS system

The pure CTS system uses only standard phone data (the CTS data set, Sect. 2.6.1.1)
for estimating the session compensation matrix U. The language models are then
also estimated using this pure CTS session compensation matrix and the CTS
training data set.

Pure VOA system

The pure VOA system estimates a session compensation matrix on VOA data only
(VOA data set), which are phone calls transmitted over broadcast. This matrix
serves then for estimating language models using this same VOA data set.

Due to the reasons given in Sect. 6.1, systems working on the whole set of 23 language
context23 languages, require some foreign data, namely the CTS+ and VOA+ datasets

defined in Sect. 6.1.2. We will see that the U matrices will still be trained on the pure
data, but these extended datasets are required for model training.

To compare now their performance, we define tests of matching category as CTS matching and
cross teststest segments tested on the CTS system or VOA segments tested using the VOA

system. Similarly, cross category (or channel category mismatch) tests are trials where
the test segment category does not match the channel category on which the system
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was trained, thus testing CTS on VOA and VOA on CTS. This allows to evaluate
the impact of the channel categories.

6.3.1 Evaluation on 8 languages

The results for the clean 8-language task are shown in Table 6.6. As expected, we
see a striking difference between evaluations with matching category and those
on cross category: If the category of the testing utterances match the one used in
training, we observe excellent 2.71 %min-Cavg for CTS and 1.90 %min-Cavg for VOA.
If the category does not match, the results degrade to 10.15 %min-Cavg and 4.28 %
min-Cavg respectively. This means, when changing the condition of the training data
(while still testing on the very same utterances), the systems yield 3.8 and 2.3 times
more errors! When looking at the pure VOA system, it presents a striking difference
between matching tests with 1.90 %min-Cavg and cross category tests with a cost as
high as 10.15 %min-Cavg! On the other hand, the CTS U matrix seems to be much
more robust against big changes in the channel condition (the channel category).
This is perhaps a result of the CTS data being of a little lower quality or being more
heterogeneous than the phone-over-broadcast VOA data.

Table 6.6: UBM-based JFA systems trained on single channel categories, evaluated on all test
segments and on a per-category basis, matching category tests are highlighted, in %min-Cavg

NIST LRE 2009 — 8 language task
data for estimating closed-set 30s tests

U matrix models all tests CTS only VOA only

pure CTS CTS 3.05 2.71 4.28
pure VOA VOA 6.78 10.15 1.90

We observe that both training data parts (CTS and VOA) have about the same
total amount of training data, but for CTS distributed on only half the number
of languages, thus benefiting in average from twice as much data each (30.6 h vs.
15.1 h). The VOA tests seem to be easier. By analyzing the matching category
evaluation, VOA gives a far better performance, even if the models are trained on
less data in average.

6.3.2 Evaluation on 23 languages

The observations on the 23-language task, presented in Table 6.7, are very similar:
when testing on the very same utterances, but changing U matrix estimation and
training data condition, the systems yield 2.8 and 2.6 times more errors!

What we see is that the overall performance (tested on all utterances) of the CTS
system degraded massively compared to the 8-language task (from 3.05 %min-Cavg

to 9.22 %min-Cavg). It has now a lower performance (higher error rate) than the pure
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Table 6.7: Single category systems for the 23-language task, matching category tests are highlighted,
in %min-Cavg

NIST LRE 2009 — 23 language task
data for estimating closed-set 30s tests

U matrix models all tests CTS only VOA only

pure CTS CTS+ 9.22 7.75 10.06
pure VOA VOA+ 7.95 21.51 3.91

VOA system, which did not change that much. This can not really be explained,
since the CTS+ data set used for training includes some VOA data for the missing
languages (see Sect. 6.1) and for these languages, there is also only VOA test data,
which thus would correspond to the data these particular models were trained with.
This indicates that it is not good to train models on data of a channel category that
was not present for estimating the U matrix.

The degradation of the matching CTS tests evaluation from 2.71 %min-Cavg

(8-language task) to 7.75 %min-Cavg can only be caused by A) adding 3 more lan-
guages (Indian English, French and Spanish) to the U matrix estimation, which
should not have a negative impact and B) testing on 2 additional languages (Indian
English with very little training data and Urdu without CTS training data at all).
The analysis of the error probabilities for the single languages (not shown herein)
gives the explanation: It is Urdu that degrades the whole system performance since
it has a Pmiss

2 as high as 81.25% (and an average PFA of 11.79%). The Urdu model
was trained on VOA data only since no CTS data is available and Urdu CTS tests
consist of only 32 utterances. Using all utterances for testing (the all tests column),
the few Urdu utterances for the CTS category disappear under the number of Urdu
VOA utterances3.

The biggest part may thus come from the fact that the U matrix has been esti-
mated purely on data of one category. For the CTS system, it has been estimated
using only data of the 11 CTS training languages (as shown in Table 6.1). So even the
models which have only VOA data available for training and which are also tested
on VOA data only (refer to Table 6.1) suffer from the "false" compensation matrix.
This means that the kinds of (fine grained) variabilities tracked by the U matrix
depend up to a certain level on the channel category. The channel variability matrix
does not seem as universal as in its initial definition.

Opinion: Future investigations should also analyze cross-category combinations
of the data used for the U matrix and the models. Thus, estimating the U ma-

2These values for Pmiss and PFA are obtained in identification mode and are potentially slightly
different from the ones obtained by the global threshold in min-Cavg. So the presented analysis has
still its importance.

3We speak about utterances of the same language pooled together for testing, thus no "number
un-biasing" takes place.
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trix with one data set (for instance CTS) and training the language models
on the other data set (VOA— or the other way around). This would not
only show the trivially negative impact of training data of the false category,
but (seen from another perspective) it would clearly show the impact of
the channel category for the estimation of U, how much the U matrix is
dependent on the channel category.

— ⋄—

This section principally showed the big impact of the channel category. Ifpure systems
conclusion the category of the testing utterances does not correspond to the data used for

training (as well the U matrix, as also the language models), performances degrade
very rapidly. On clean setups with matching category, we may achieve excellent
performances (1.9 %min-Cavg for the best case)4.

The analyses of this section highlighted the fundamental problem when working
on data of different (big) channel categories. It prompts for more extended research
on this topic and it lays the foundations for the subsequent analyses presented in
this chapter.

6.4 Data level fusion: Global approach with pooled data

The most straightforward approach in handling multiple channel categories consists
in pooling all available training data together, in our case the CTS and the VOA
datasets, without distinguishing or keeping track of the source. There is thus
only one global channel compensation matrix (U) to be estimated (as described in
Chapter 4). Further, one plain set of 23 language models is estimated (as described
in the same chapter). In order to speak of "merging" the two categories at different
levels, we can name this approach a fusion at the data level, since the two data sets
are pooled together.

6.4.1 Evaluation on 8 languages

Table 6.8 shows the results on the JFA system pooling all data together to estimate
the U matrix. The number of tests is indeed the same as indicated in Table 6.4.
Evaluated on the 8 language subset, the base JFA system pooling together the
training data of both categories performs at 2.23 %min-Cavg. Evaluating only on the
CTS test utterances yields 3.03 %min-Cavg and on the VOA files 1.75 %min-Cavg.

Interesting is that VOA tests slightly benefit either from the additional (model)
training data or from the enhanced U matrix since the cost measure is reduced by
nearly 8% relative compared to the pure VOA system. But this does not hold for the

4But this 8 language task has to be regarded with a certain caution since a good share of languages
had to be removed and it does not contain "hard" language pairs any more.
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CTS tests (with +11% relative). Perhaps the channel variabilities coming from VOA
overwhelm those of CTS so that they are more present in this pooled U matrix. The
question that arises is, if the VOA channel variabilities are more "stable" or more
characteristic of the variability than the CTS ones, then they could emerge and get
caught more easily by the U estimation algorithm than the CTS ones and make up a
bigger part of U.

Since the merged (stacked) U matrix described in the next section has a rank of
80 (originating from twice 40), we also tested a U matrix having 80 channels, but
using the pooled approach (denoted pooled 80 ch). Here, it is slightly less powerful
than its corresponding matrix of rank 40.

Table 6.8: Results of the pooled data systems, varying the model training data, compared to the
single category systems (grayed out), in %min-Cavg

NIST LRE 2009 — 8 language task
data for estimating closed-set 30s tests

U matrix models all tests CTS only VOA only

pure CTS CTS 3.05 2.71 4.28
pure VOA VOA 6.78 10.15 1.90

pooled CTS &VOA 2.23 3.03 1.75
pooled CTS 2.73 4.08 1.51
pooled VOA 5.30 7.28 3.19

pooled 80 ch CTS &VOA 2.99 3.71 2.37

6.4.2 Evaluation on 23 languages

The testing conditions (as the number of utterances etc.) are still those shown
in Table 6.5. Let us look at the matching condition trials while moving from the
8-language to the 23-language task: In the case of pure systems (Sect. 6.3), we
observed for CTS a change from 2.71 %min-Cavg to 7.75 %min-Cavg (2.9 times more
errors) and for VOA a change from 1.90 %min-Cavg to 3.91 (2.1 times more). When
using a pooled U matrix (described here), for CTS the change is smaller: from 4.08 %
min-Cavg to 8.50 %min-Cavg (2.1 times more). Also for VOA, the change is smaller:
from 3.19 %min-Cavg to 5.62 %min-Cavg (1.8 times more). In conclusion, the costs are
higher when using a pooled matrix, but the more difficult 23-language task seems
nevertheless to be able to take some benefit from this pooling.

— ⋄—

As global conclusion, pooling of the U matrix slightly flattens out the difference data level
summarybetween matching and cross-category tests: matching condition tests perform worse

and cross-condition tests considerably better. So that the overall performance (by
testing with all test utterances pooled together, all tests) improves about 20% relative.
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Table 6.9: UBM-based JFA systems with pooled data, compared to the single category systems
(repeated from Table 6.7), in %min-Cavg

NIST LRE 2009 — 23 language task
data for estimating closed-set 30s tests

U matrix models all tests CTS only VOA only

pure CTS CTS+ 9.22 7.75 10.06
pure VOA VOA+ 7.95 21.51 3.91

pooled CTS &VOA 4.79 6.71 4.57
pooled CTS+ 7.23 8.50 6.93
pooled VOA+ 6.27 11.96 5.62

pooled 80 ch CTS &VOA 5.36 7.24 5.04

Until this stage, the best system (on whatever test set) is the system where the
U matrix is estimated on all data together and where the language models are also
estimated on all data of both channel categories.

6.5 Model level fusion: Merged channel compensation ma-

trices

After having trialed pooling all training utterances together on the data level, the
next level would be to put together the two systems on the model level.

One approach is thus to estimate separate channel compensation matrices (U)
and to "merge" these two matrices together by stacking one on top of the other. We
will call it merged, which is not to be confound with the pooling of data described in
previous section. The new session compensation matrix is built by concatenating
the two category dependent matrices we have already estimated for the pure CTS
and the pure VOA system described in Sect. 6.3. This forms a new U matrix of
double rank (in our case 80 instead of 40).

The difference to a compensation matrix with the same (double) rank estimated
on all data is that, in the present case, there are half of the channels assured for each
category, whilst for the pooled case, the channels are allotted dynamically — some
channels may even be similarly present/found in both categories.

Two sites participating in NIST LRE 2009 have used a similar strategy of stacking
session compensation matrices (ATVS NIST LRE, 2009; IFLY NIST LRE, 2009).

Using this merged (thus dual-category) matrix, we may train the language
models using either training data pooled together or we may build category specific
models using either data set, CTS or VOA. Thus the training step corresponds to
what was also done in last section.
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6.5.1 Evaluation on 8 languages

In the case of concatenated compensation matrices, we have a rank of 80. The results
using this stacked compensation matrix and different training set compositions
are shown in Table 6.10. It indicates that the results are rather similar to the pure
systems. In reference to what has been said in last section’s conclusion (that the
difference between matching and cross-condition is lessened), the results using
merged-U very slightly deepen this gap. This insinuates that it is sufficient if the
U matrix is estimated on data of the channel category that is also used for model
training. Adding data of an other channel category does not have a big impact (it
has just a slight helping tendency) if no similar data is used for the models.

Table 6.10: Systems featuring a merged matrix, models trained on all data or on only one category,
in %min-Cavg

NIST LRE 2009 — 8 language task
data for estimating closed-set 30s tests

U matrix models all tests CTS only VOA only

pure CTS CTS 3.05 2.71 4.28
pure VOA VOA 6.78 10.15 1.90

pooled CTS &VOA 2.23 3.03 1.75
pooled CTS 2.73 4.08 1.51
pooled VOA 5.30 7.28 3.19

pooled 80 ch CTS &VOA 2.99 3.71 2.37

merged U CTS &VOA 2.33 3.06 1.68
merged U CTS 3.32 2.61 4.76
merged U VOA 6.78 10.34 1.92

Let us have a look at following sequence for the CTS tests only, in the optics evolutive
sequence:
CTS

of a somehow pessimistic approach: Cross-category MAP is at 24.62 %min-Cavg

(Sect. 6.2.1), pure cross-category JFA drops to 10.15% (−59% relative), adding some
data that matches the testing category (merged-U and still adverse VOA+ data for
the models) stays similarly at 10.34 %min-Cavg. Adding some data that matches
the model training category improves the performance to 3.06 %min-Cavg (another
−70% relative, which gives a total of −88% relative over the MAP setup).
So we see that JFA is very useful, even for channels purely estimated on chan-
nel/sessions of a quite different category. These results tend thus to show that
the channel (and speaker) variability captured by the compensation matrix is for a
certain part of some global nature, which is independent of the channel category.
We further see the importance to have training data as similar to the testing data as
possible — this seems to be even of more benefit for JFA (the above −70% relative)
than for MAP (−20% relative).

For the analogous (pessimistic) approach on VOA tests only, we observe: Cross- VOA
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category MAP 19.27 %min-Cavg, pure cross 4.28 %min-Cavg (−78% relative), adding
matching channels gives 4.76 %min-Cavg and adding matching training data yields
1.68 %min-Cavg (another−64% relative, or over−91% relative compared to the base-
line MAP approach).

For matching category, CTS test utterances, we have a cost reduction of 86%
relative between simple MAP and the pure JFA system. For matching VOA, the
cost reduction is of about 84% relative.

— ⋄—

Globally, we see that performance does not vary radically by changing the wayconclusion

the session compensation matrix is estimated (at least when evaluating on cross-
category condition). Thus the most important, besides having some compensation
matrix (thus using JFA), is to have at one’s disposal a lot of training data, with a
part of it as similar to the testing data as possible.

6.5.2 Evaluation on 23 languages

The corresponding results for the 23-language task are displayed in Table 6.11.

Table 6.11: Merged systems, different data sets for model training, in %min-Cavg

NIST LRE 2009 — 23 language task
data for estimating closed-set 30s tests

U matrix models all tests CTS only VOA only

pure CTS CTS+ 9.22 7.75 10.06
pure VOA VOA+ 7.95 21.51 3.91

pooled CTS &VOA 4.79 6.71 4.57
pooled CTS+ 7.23 8.50 6.93
pooled VOA+ 6.27 11.96 5.62

pooled 80 ch CTS &VOA 5.36 7.24 5.04

merged U CTS &VOA 4.47 7.16 4.14
merged U CTS+ 6.23 6.96 6.86
merged U VOA+ 6.16 13.13 3.72

For this 23-language task, systems using a merged channel/speaker variability23-L analysis

compensation matrix and that are still trained on only one or the other channel
category clearly benefit from the extended channel modeling (80 instead of 40 and
more diverse channels): an improvement of −32% relative and −39% relative for
cross-category tests and also slightly (−5% relative to −10% relative) for tests with
matching category. Also for the official NIST LRE setup (evaluating by taking all
testing utterances together), the improvement is in the order of −32% relative and
−23% relative (for CTS+ and VOA+ training respectively).
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This observation about the merged-U setup improving in every case for the comparison
to 8-L23-language task could not be confirmed in the "cleaner" 8 language setup, where

the performances with the merged U matrix were very similar to the category
specific ones. In that setup, we have all required language–channel combinations
in our training data and thus the additional channels are not of much use. An
interpretation of this difference between the 8- and the 23-language setups may be
that the data used for estimating the U matrix has at least to cover the language–
channel combinations used for model training5.

As we did for the 8-language task, let us have a look at following (pessimistic evolutive
sequence:
CTS

approach) sequence for the CTS only tests: Cross-category MAP has a min-Cavg

of 35.48% (Sect. 6.2.2), pure cross-category JFA reduces the errors/costs to 21.51 %
min-Cavg (−39% relative), adding some matching channels (merged U matrix and
still adverse VOA+ model data) drops to 13.13 %min-Cavg (another −39% relative,
or −63% relative from the MAP system) and then adding some channel-matching
data for model training improves to 7.16 %min-Cavg (additional −45% relative, that
is about −80% relative compared to the adverse MAP system).
As difference to the 8-language task, we notice here that adding some channels of
matching category to the U matrix helps. This means also that JFA does not really
help for channels of non-matching category. The case described here reveals also
that it is of the same importance to have data of corresponding category in the
channel variability matrix as to have such data for training the models.

Analogously for VOA only tests: Cross-category MAP 27.89 %min-Cavg, pure VOA

cross 10.07 %min-Cavg, adding matching channels gives us 6.89 %min-Cavg (32%
relative) and adding matching training data yields 4.18 %min-Cavg (another 39%
relative, with totally 85% relative).

The drastic degradation compared to Table 6.10, occurring in a general manner CTS
degradationon the CTS systems (doubling or tripling the number of errors) can be explained by

the fact that in this 23 language case, not even half of the models could really be
trained with CTS data (the CTS+ data set containing VOA data for the 12 languages
that do not have CTS training data).

For the system where CTS+ data was used for model training, the cost for Urdu

the CTS-only tests (matching) is slightly higher than the one of the VOA-only test
utterances (cross, on the same models). This can again be explained by the high
Pmiss of the Urdu language: 65.63% for the CTS&VOA trained system and 71.88% for
the CTS+ one. This finally gives an Urdu CDET of 38.42% and 41.12% respectively
(for CDET, see Sect. 2.6.2.2).

— ⋄—

Comparing the results between pooled-U and merged-U matrices seems to model level
conclusionhighlight that the channel variability mapping in the compensation matrix is fairly

5And above analyses seem to indicate that there should be a match between model training and
testing data. The direct link between compensation matrix and testing data seems to be far less
important.
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on a per-category basis. So adding additional (foreign–category) channels does
not help in a context where training data of the same category as the test data is
available for every language (as the more controlled environment of the 8-language
task). But the additional channels can prove useful when correct channels are
missing from the training data for some languages (23-language setup). Thus the
merged-U system proves well when a certain robustness is required.

Looking at the performance on all 30 seconds tests, no single channel dependent
system performs as well as systems with models trained on all data together.

6.6 Score level fusion: Fully separate category modeling

In Sect. 6.3, we observed that performance is very good when channel compensationsystem selection

matrix, training data and test part are of the same channel-category (matching
condition). This leads to the question if we could not fuse two completely separate
category-dependent systems. One of the easiest ways to merge two such completely
separate systems is by selecting the score that matches the correct channel category.
By taking the corresponding system for each testing utterance, this tries to obtain
the benefits of both systems. Thus, in this last approach, the fusion is delayed until
reaching the score level.

So, fully separated CTS and VOA systems are trained and the testing utterancescategory
detector are scored against both systems separately. The idea is then to take, for every single

utterance, only the scores of one or the other system. Ideally, the choice is done
according to the real channel category of the testing utterance. In a first run, this
ideal choice can be simulated using an oracle, which returns the channel category
of the utterance.

This section presents and discusses the results using an oracle type selector. Theoracle

oracle tells us of which category the test utterance really is. Our fusion unit then
selects the scores of the corresponding channel-dependent system for that utterance.
Since this selector is perfect in terms of channel detection, we can interpret the result
as being the best performance a fusion unit based on automatic channel detection
may approach. We employ an oracle to investigate the feasibility and the use of a
system combination at this score level.

The separate Chapter 7 will then replace this oracle by automatic channel cate-
gory detectors. It will principally dwell on the design of such detectors.

Also for this approach, one problem is the missing training data described in
Sect. 6.1, which inhibits training a full set of 23 language models for both categories.
But we tried to solve this issue by taking data of the other category, where really
necessary.
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6.6.1 Evaluation on 8 languages

Table 6.12 evaluates the fusion for the 8-language task. Once, it combines the pure
CTS (2.71 %min-Cavg on the matching tests) with the pure VOA (1.90 %min-Cavg

on VOA) systems. This yields a global cost of 2.06 %min-Cavg for the merged
system. This result is interesting since it is better than the global results of the
system merging the channel compensation matrices (merged-U, −12% relative) or
the system pooling all data together since beginning (−7.7% relative). We note also
that the per-category testing has to produce the same results as the corresponding
single system (due to the oracle).

The same kind of fusion applied on the category-dependent systems featuring
a merged channel compensation matrix performs insignificantly better at 2.04 %
min-Cavg, which is 8.6% relative better than the best single system.

Table 6.12: Fusion of JFA systems using an oracle type system selector, compared to best single
systems, 8-language task, in %min-Cavg

LRE 2009, 8 languages
system 1 system 2 closed-set 30 s tests

U matrix models U matrix models all tests CTS only VOA only

pooled CTS &VOA 2.23 3.03 1.75
merged U CTS &VOA 2.33 3.06 1.68

CTS CTS VOA VOA 2.06 2.71 1.90
merged U CTS merged U VOA 2.04 2.61 1.92

We note that the result on all 30 s tests (grouping CTS and VOA segments) can
differ from the value that would be obtained by averaging the matching category
performances of the two corresponding single systems (weighted by the number of
tests). This happens since the indicated performance uses the average detection cost
function (Cavg) and is thus a mean of language pair (mis-) detection costs, based on
a global threshold which may also change from experiment to experiment.

6.6.2 Evaluation on 23 languages

The oracle fusion is also applied on the whole set of 23 languages to match the
LRE 2009 protocol. The results using an oracle as selector for fusion are shown in
Table 6.13.

The fusion of the two pure systems is with 4.16 %min-Cavg slightly outperformed
by the fusion of the systems built on a common, merged eigensession matrix, which
runs at 3.90 %min-Cavg (probably significant −6% relative). This is similar to the
difference that has been observed between unfused pooled and merged-matrix
systems in Table 6.11 (and repeated in Table 6.13). A big part of the easier recognition
on VOA tests is still due to the fact that nearly all language–channel combinations
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Table 6.13: Fusion of UBM-based JFA systems using an oracle type selector, compared to best single
systems, 23-language (NIST LRE 2009) task, in %min-Cavg

LRE 2009, 23 languages
system 1 system 2 closed-set 30 s tests

U matrix models U matrix models all tests CTS only VOA only

pooled CTS &VOA 4.79 6.71 4.57
merged U CTS &VOA 4.47 7.16 4.14

CTS CTS+ VOA VOA+ 4.16 7.75 3.91
merged U CTS+ merged U VOA+ 3.90 6.96 3.72

are present in the training data. This fused system with a minimal average cost of
3.90 %min-Cavg has a cost reduction of 12.6% relative compared to the best single
system with its 4.47 %min-Cavg.

6.7 Channel category conclusion

The data used for the NIST LRE 2009 contains utterances of two different sources:problem

Conversational Telephone Speech (CTS) and Voice of America (VOA). We called
these two kinds being of different channel categories. We suspected that these two
sources have considerably different structures or variabilities. We tried to design
an approach which allowed these two categories to be separated. The subsequent
analysis revealing striking differences between these two categories, most notably
in the context of Joint Factor Analysis.

We tried to cope with this category problem by designing parallel category-solutions

specific systems. These systems can be combined together on different levels: 1) On
the data level, 2) on the model (or more accurately the JFA U matrix) level and 3)

finally on the score level. The data level merging consists in naively pooling all data
together. With 4.78 %min-Cavg on 2048 Gaussian on the LRE 2009 setup, it achieves
already acceptable performances. The combination on the model level features
a compensation U matrix, which is obtained by stacking two category-specific
ones. This systems runs at globally at 4.47 %min-Cavg (−7% relative). Finally, the
fusion on the score level analyzed here uses an oracle channel category "detector".
Depending on this detector’s output, the scores of one of two category-specific
systems are chosen. The best such combination runs at comparable 3.90 %min-Cavg,
which correspond to the middle-field of NIST LRE 2009’s participants. This shows
that it is possible to improve over the naive pooled (JFA) approach (−18% relative).
Compared to the baseline MAP approach, this is a reduction of 81% relative.

One important observation of the presented results is that the fact of addingobservations

more data to the U matrix estimation does not necessarily mean an improvement.
Certainly, the robustness against testing utterances of a channel category which
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was not included in the model training data (cross-category) increases. But this
enhancement comes at the expense of reducing the channel compensation power
on the data of known (matching) category.

But when imposing a certain (a priori) structure on the U matrix, as is for
instance implicitly done when concatenating category-dependent matrices, signifi-
cant improvements may be obtained6. This way allows to benefit of the additional
information about the other channel category, which can be included into the corre-
sponding part of the U matrix. We have further the impression that the VOA part
of the compensation matrix slightly overwhelms the CTS one.

One finding was also that the data used for estimating the U matrix has at least
to cover the language–channel combinations used for model training.

In general, the most important bit is to have model training data that is as close
to the testing data as possible. The data used for model training is more crucial than
the data used for estimating the U matrix.

6Opinion: We think that the two matrices that get stacked may need some proper balancing in
order to benefit fully from both. We tried to normalize each column (corresponding to one channel
factor) individually by its norm. But this strategy was not useful...
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Les machines un jour pourront résoudre tous les problèmes,
mais jamais aucune d’entre elles ne pourra en poser un !

— Albert EINSTEIN

Chapter 7

Channel-Detectors for
System Selection
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If we have rather different channel categories (as analyzed in Chapter 6 for NIST
LRE 2009), one possibility is to handle these categories completely separately in
a parallel manner and merge such category-dependent systems at the score level.
This combination may be done by a system or score selector taking the "better"
system for each utterance. This chapter extends this idea of a channel category
detector, already presented in Sect. 6.6. Here, we replace the oracle based detector
by automatic detectors in different designs.

— ⋄—
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7.1 Designing channel category detectors

In previous chapter and in (Verdet et al., 2010b), we investigated the idea of model-
ing the CTS and the VOA conditions separately. We have shown that the merging
of such separate systems may be done at different levels:

1. Pooling all data together since the beginning (having thus just one common
system),

2. stacking channel-category dependent JFA channel compensation matrices (U)
in order to have a matrix with a CTS specific and a VOA specific part and

3. merging two completely channel-dependent systems only at the score level.

A simple, but nevertheless effective way to merge such systems at score level
is using a system selector. This means that, for each test utterance, the scores of
one or the other system are taken (selected). Typically, such a system selector acts
according to the channel category detected in the test utterance and selects the
scores of the corresponding system.

In previous chapter, we employed an oracle category detector. The work pre-
sented in this section investigates different ways to design automatic channel detec-
tors in the context of such a system selector. More specifically, we design channel
detectors based on SDC features (Sect. 3.3.2), as well as detectors working on the
JFA level. In the latter variant, the term containing the session variability (the x

vectors of the JFA formula Eq. 4.5) is used. This is a simple, but novel idea, which at
the same time also validates the fundamental idea behind the JFA approach.

The impact of the different channel detectors are evaluated on systems with two
different structures, already discussed in Chapter 6:

Pure channel-category systems where the compensation matrix U has a rank of 40
and is estimated exclusively on data of one or the other channel category.

Merged-U systems that use a common U matrix, which is obtained by stacking the
two channel dependent U matrices and has thus a rank of 80. The category
distinction lies only in the language model training.

— ⋄—

The following sections present the different channel category detectors we
designed. It is then followed by a comparative analysis presenting results on the
two category-dependent type of systems.

7.1.1 Simple-sum

The simple sum fusion is not a channel detector, but a baseline replacement for
the system selector. For each test, the scores of both channel-category dependent
systems are summed together (without special weighting). This gives a minimal
system performance which acts as a baseline for the different channel detectors.
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7.1.2 Feature-based MAP

As a first automatic approach, a Maximum A Posteriori (MAP (Gauvain and Lee,
1994)) adapted model is estimated for each of the two categories using all train-
ing data (feature vectors) of that channel category. Since the same UBM as for
training the channel-dependent systems is used, these channel models are mix-
tures of 2048 Gaussians. Let us identify this detector by f-MAP . It has a channel
identification rate of 87.63% when evaluated on the 30 second NIST LRE 2009
segments.

7.1.3 SVM on channel variability

Since JFA tries to model the session and channel variability separately and expres-
sively, it is obvious to try to use this information alone for a channel detector. The
channel variability part of the JFA formula (Eq. 4.5) is the term Ux. Since U is
globally fixed, the vector x represents the channel variability (the channel factors).
In the present setup, these x vectors are obtained in every case using the UBM
and the stacked U matrix (Sect. 6.5), since they have to be obtained on a common
U matrix in order to be comparable.

These x vectors (here with a dimension of 40) can directly be used as input SVs
for an SVM (Singer et al., 2003; Campbell et al., 2004; Verdet et al., 2009b). The x

vectors of the target category are taken as positive SVs and the x vectors of the other
category as blacklist (negative examples). We notice that the two SVMs we get for
our two-category case are symmetric (in theory, for a given test, just the sign of the
output score changes). We shorten this detector as x-SVM and it has a channel
identification rate of 87.41% on LRE 2009 30 seconds.

7.1.4 MAP on channel variability

These FA x vectors can also be used as new features (thus as new front-end) on
which a new channel-UBM can be estimated. This can then be adapted through
MAP to obtain channel-dependent models working on these x vectors. For the work
presented here, we use models of 64 mixtures (since each utterance is represented
by one frame only). This detector returns the channel category corresponding to the
model with the bigger likelihood We write this channel category detector x-MAP
and it has an accuracy of 75.29% on the 30 second NIST LRE 2009 segments.

7.1.5 Oracle

The oracle represents the error-less channel detector. It returns the true channel cate-
gory of an utterance. Evaluating the systems using the oracle as channel detector,
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gives the performance we want to approach by automatic channel detectors.

— ⋄—

The performances of automatic data-based channel detectors are thus expected
to lay between the one of a simple-sum fusion and that of the oracle.

7.2 Novel score normalizations

We saw different score normalization strategies in Sect. 2.5.2 and in Sect. 3.5. What
concerns inter-utterance normalization, we saw the divSum and the divSum-K ap-
proach. The latter requires a constant K to be estimated or empirically chosen
beforehand. This section presents novel approaches to replace this cumbersome
technique. The hypothesis is not to rely on any tunable parameter and to understand
what is really going on.

7.2.1 llkMax0

The llkMax0 score normalization presented in these lines is also an inter-utterance
normalization, meaning the scores are normalized separately for each test utterance.

Each Likelihood score is divided by the maximum of the scores the utterance
obtains against all language models. Expressed in Log-Likelihood domain, this uni-
formly shifts all scores in order to assign a Log-Likelihood of 0 to the hypothesized
language yielding the biggest score (hence the name of llkMax0):

sl(X ) = log

(
eLLkl(X )

max
k∈L

eLLkk(X )

)
= LLkl(X )−max

k∈L
LLkk(X ) (7.1)

where LLkl(X ) is the Log-Likelihood of the utterance X and the hypothesized
language l, whereas L is the set of all languages.

This procedure has the effect of aligning the top-scores of all utterances to aDET step

Log-Likelihood of 0 (or 1 in Likelihood domain). De facto, this accepts all highest
scores, producing a minimal level of false acceptance rate1.

The problem of setting the threshold thus exploits principally the informationfocus

about the second-biggest score. If the second-biggest score of an utterance lies near
to the biggest one (thus rather near to 0), it will pass to the positive side of the
threshold sooner than if its distance to the biggest one was larger. Hence the basic
idea behind this approach is to focus mainly on the second-biggest scores. The

1While lowering the threshold from the high end (imagine the DET plot), the progress of the false
accept rate will jump from 0 to this minimal level. Then, it potentially stays at this level for some
range. This produces a rectilinear step on the DET plot. The threshold at this edge point lies hence at
(normalized) score 0.0.
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assumptions are the following: (i) If the biggest corresponds to the true language,
we are on the safe side (de facto acceptance). (ii) If the true one is not the biggest
one (the recognition was not optimal), the chances that it is the second-biggest is
higher if the spacing between these two top scores is relatively small.

Fig. 7.1 (a) shows the distribution of llkMax0 normalized scores of a typical JFA
experiment. Note that the big (target) peak as result of the 0.0 alignment is cut off
since it extends to some big value2. We see that the false acceptance peak of the
non-targets is far smaller3. Compared to the non-targets, the targets that did not
make it to 0 (thus second-biggest and beyond, here accounting for 16.8% of the
targets) are all relatively proximate to 0. In fact, the distributions resemble to the
ones of divSum-K in Fig. 2.7 with a K high enough.

— ⋄—

We looked for a simpler scheme than the division by the sum put to a power of K
(divSum-K ) described in Sect. 2.5.2.2 in order to avoid having to tune the parameter
K. The simple division proposed here has the big advantage not to depend on
any tunable parameter, nor on the availability of a separate calibration dataset (as
required for more evolved back-ends like the GBE). Nevertheless it still performs as
well as the divSum-K approach.

The basic idea behind this llkMax0 score processing is mainly to exploit the
constellation of the few highest scores of each utterance (mainly the second-highest).
This kind of score normalization is used throughout the current chapter.

7.2.2 llkInt01

In last section, we presented the llkMax0 approach with the big advantage to perform
as well as divSum-K , but not requiring any parameter (K). Here, we present
even an other approach, which can be logically derived from divSum-K . But the
chronological development was inverse since this llkInt01 normalization process as
designed by Jasmin Wei Ming Liu4, whose idea was then spun further.

— ⋄—

The principle of llkInt01 is not only to put the highest score to some fixed value,
but doing similarly for the minimum. This transforms the set of (Log-Likelihood)
scores of one utterance to a fixed interval, namely 0 to 1. (We note that in this
case, we can not see the result as being Log-Likelihood-like any more, but a more
appropriate interval could have been chosen.)

2In the present case up to over 8300
3Here fitting on the plot with 35.3
4Affiliated to Ultra Electronics AudioSoft and to the University of Swansea.
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The scores are thus shifted and scaled as follows:

sl(X ) =
LLkl(X ) −mink∈L

[
LLkk(X )

]

maxk∈L

[
LLkk(X )

]
−mink∈L

[
LLkk(X )

] (7.2)

where LLkl(X ) is the Log-Likelihood of the utterance X and the hypothesized
language l, and L is the set of all languages5.

Fig. 7.1 (b) gives an idea of the score distribution after llkInt01 normalization for
the same system as in (a) and in Fig. 2.7. Here again, the y-axis is truncated6.

— ⋄—

The approach presented here formed the basis for the thoughts, which lead to
the llkMax0 technique described in Sect. 7.2.1. The results using this approach here
are slightly better than the bare divSum approach, but not as good as divSum-K .
This can principally be funded on the problem induced by aligning the minimum.
The minimal scores do not have (or has only very little) influence on thresholding.
The minimum more depends on the set of languages in our task. It is more the
high-scoring range which is decisive.
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Figure 7.1: Sample score distributions for llkMax0 and for llkInt01 normalized scores for our JFA
system

7.3 Evaluation on 8 common languages

The results presented subsequently are based on SDC features. All models aresetup

obtained through MAP adaptation from the UBM with JFA channel and speaker
normalization. All models are composed of 2048 Gaussians. Data parts and general
system structures are the same as in Chapter 6, following the NIST LRE 2009
protocol and adding an 8-language task. The results presented in this section are
based on scores which are normalized using the llkMax0 approach (Sect. 7.2.1)7 and

5As degenerate case of all scores happening to be the equal (possible consequence of an utterance
containing no speech), the denominator is set to 1 — so that the resulting scores are all equal to 0.

6At the 0 edge, where the minima are aligned, the non-targets reach about 137 in the present case.
At the 1 edge of the maxima, the targets reach 2.3 · 109 and the non-targets as indicated 5.6.

7This change in normalization strategy accounts for the very slight change of the values compared
to last chapter.
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evaluated under the min-Cavg measure.

As explained in Sect. 6.1, there are some language–channel combinations which 8-L task

lack training or testing data. This section thus evaluates the systems on the NIST
LRE 2009 30-second segments of the 8 common languages only, as well as solely on
the CTS and solely on the VOA subset.

7.3.1 Pure systems

Table 7.1 presents the results of the two pure channel-category dependent systems
and their fusion. The results of all automatic channel detectors fall in between those
of a simple-sum fusion and the oracle. We observe that the best results among the
automatic channel detectors are obtained by the x-SVM detector. They approach
the ones of the oracle, which represents ground truth, quite well (only ∼6% relative
from the oracle away). The weakest channel detector is the one where the same
x vectors are modeled by MAP.

Table 7.1: 8 languages, pure per-channel systems, in %min-Cavg

LRE 2009 closed-set 30s
base system fusion all 30s tests CTS tests only VOA tests only

CTS — 2.34 2.11 2.94
VOA — 6.34 9.88 1.28

— simple-sum 2.58 3.67 1.30
— oracle 1.63 2.11 1.28
— f-MAP 1.88 2.49 1.38
— x-MAP 2.31 3.06 1.73
— x-SVM 1.73 2.27 1.26

7.3.2 Systems with merged-Umatrix

The results shown in Table 7.2 are obtained by systems featuring a common merged
U matrix. This matrix is obtained by stacking the two channel-dependent U matrices
used for the pure systems. The observations for the merged-U systems are similar
to those for the pure systems. Except for the VOA only evaluation, we identify a
clear general tendency of slightly better performances for these merged-U systems
compared to the pure category systems (i.e. with 4.3% relative gain for the x-SVM
channel detector). When evaluated on the channel-categories separately, the feature
based MAP detector (f-MAP ) is slightly better than x-SVM with 2.30 %min-Cavg for
CTS tests and 1.44 %min-Cavg for VOA tests.

Evaluated on all 30-second segments, system selection based on the x-SVM
channel detector have a minimal average cost of 1.65%, which is respectable −90%
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relative over the most basic MAP system (trained on all data pooled together).

Table 7.2: 8 languages, merged-systems, in %min-Cavg

LRE 2009 closed-set 30s
base system fusion all 30s tests CTS tests only VOA tests only

CTS — 2.53 2.04 3.63
VOA — 6.30 6.64 1.48

— simple-sum 2.40 3.48 1.60
— oracle 1.55 2.04 1.48
— f-MAP 1.75 2.30 1.44

— x-MAP 2.27 2.96 1.87
— x-SVM 1.65 2.39 1.45

7.4 Evaluation on all 23 languages

This section now presents the same systems under the 23 language NIST LRE 2009
task. It also shows to which extent the systems are robust enough to recognize
languages of a channel category for which no training data is available.

7.4.1 Pure systems

The results in Table 7.3 show that the automatic channel detectors achieve results
that are a bit further off the oracle (about 12% relative) compared to the 8-language
protocol, but they remain clearly closer to the oracle than to the simple-sum perfor-
mance.

Table 7.3: 23 languages, channel-dependent , in %min-Cavg

LRE 2009 closed-set 30s
base system fusion all 30s tests CTS tests only VOA tests only

CTS — 9.87 7.44 11.05
VOA — 8.59 25.40 3.73

— simple-sum 8.70 16.73 6.39
— oracle 3.95 7.44 3.73
— f-MAP 4.47 8.24 4.02

— x-MAP 5.94 9.84 5.51
— x-SVM 4.65 8.35 4.36

178



7.5. Discussion

7.4.2 Systems with merged-Umatrix

The performances of the systems using a common stacked U matrix are given in
Table 7.4. As for the 8-language task, they also indicate that these systems perform
better than the pure systems. The f-MAP channel detector performs best with its
3.85 %min-Cavg. Its enhancement over the channel-category dependent U matrix
(pure) systems is 14% relative. Compared to the simplest MAP system, this shows
an improvement of over 81% relative for all 30-second test utterances.

Table 7.4: 23 languages, merged-systems, in %min-Cavg

LRE 2009 closed-set 30s
base system fusion all 30s tests CTS tests only VOA tests only

CTS — 6.59 6.63 7.51
VOA — 5.80 13.77 3.43

— simple-sum 4.32 7.17 3.92
— oracle 3.64 6.63 3.43
— f-MAP 3.85 7.01 3.54

— x-MAP 4.78 7.58 4.51
— x-SVM 4.44 7.58 4.09

7.5 Discussion

All these results show that channel detectors may be designed in different ways
and that they may approach the performance of oracle based ground truth fusion
up to 5–6% relative.

Of the analyzed channel detectors, x-SVM and f-MAP achieve similar perfor-
mances. Whereas the former performs marginally better when training data for all
channel-categories (and languages) is available and the latter seems more robust to
incomplete data.

The results on the x vector based detectors confirm the basic idea behind Joint
Factor Analysis, in which the channel variability is captured by the Ux term of
Eq. 4.5.

The validation of x vector based channel detectors opens the important and perspectives

interesting perspective of completely data driven systems that automatically cluster
and identify channel categories in the training data (instead of having the labels
about CTS and VOA). This is not possible on the feature level, since the information
about the channel (and thus about the channel category) is mixed up with the
information about the language itself. But the channel category detectors based on
the x-vectors make this possible.
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Opinion: Even better results may be obtained upon employing more sophisti-
cated back-ends. But these require separate development data for estimating
their parameters.
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L’ampule électrique n’a pas été inventée
en perfectionnant la bougie !

— Unknown colleague assistant,
on the why of research, CIES, 2009 0
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In this chapter, we will give some thoughts about what additional elements may
have been tried and which are likely to enhance results or solve spotted problems.
We will also discuss some bigger research directions, which may deserve further
investigation.

8.1 Development set

We saw two kinds of normalization on the score level: inter-utterance and inter- inter-language
normalizationlanguage normalization (Sect. 2.5.2), the latter including more elaborate back-ends.

Such inter-language techniques try to even out the strengths of the different lan-
guage recognizers (models). They usually depend on some previously estimated
normalization parameters. The different analyses on this topic conducted during
our works turned out that this style of normalization made certain demands on the
data set used for estimating these parameters.

— ⋄—

0English transition: The electric bulb has not been invented by perfecting the candle!
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Ideally, the data which is run through the system to obtain scores on which thesedev set

parameters are gathered comes from a spare data set. This is usually done this way
because we assume that a certain structure, which is captured by the modelization
step, gets also expressed in the scores. For instance, data which is hard to model or
outliers to the modelization is also likely to have bad scores. Score normalization
with parameters estimated on the same data set as the models may even reduce the
universality or robustness (appropriateness to slightly different data) for the testing
step.

The parameters for such score calibration should be estimated using a separate
data set, commonly called development set. In the current setup, we did not keep
apart some part of the data for this and included all available parts for estimating the
models and the variability matrix at best. In early stages, we were not completely
aware of the importance of score calibration (or inter-language normalization). Only
with concentrating our attention to the score processing step, we saw that better
results could probably have been obtained using a more evolved back-end (BE). In
the context of LRE 2009, (Jancik et al., 2010) investigated different compositions for
the development set.

Several tests and analyses1 were carried out to put into action an inter-languageanalyses

normalization BE using the training set instead of a development set. But all results
yield performances at the same level or marginally poorer.

— ⋄—

A proper score normalization is crucial for obtaining good results. Even if we
spent enough time on this part of the system, which does not lie in the core topic of
this thesis, a better approach should be chosen. Some development data set should
be defined and typically a Gaussian Back-End (GBE) based processing pipeline
(Sect. 3.5.2.1) should be applied. This could potentially lead to a system with
increased performance, to a system with less loss due to calibration (see Sect. 3.6.1
for this concept).

8.1.1 Chunked training files

When trying to add a back-end (GBE or similar) to our system by estimating its
parameters on the training data itself, we run the training utterances as if they
were testing segments through our system. Having thus the scores of the training
utterances, we may analyze the "quality" of training (possibly biased by overfitting)
by calculating the system performance on these (known) utterances. Doing so, we
observe that only a very few (typically 0, 1 or 2) errors are made on the whole set
and that all other utterances are recognized correctly. This happens on the LRE 2005
protocol, where only CallFriend data is used in the training phase.

There seems to be two reasons for these good results on the training data itself:number of
utterances

1These range from a kind of simple Tnorm, over the use of FoCal (FoCal, 2007), to Logistic
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The first is that there is only a very limited number of utterances in this (CallFriend)
training set, namely 120 or 240 per language, which is a total of 1 200 over all seven
languages. This is potentially too few for a good estimation of BE parameters.

As second reason, these CallFriend files contain each about 14 min of speech, duration

since they originate from half-hour telephone conversations. This is far more data
that is at the recognizer’s disposal than in the real testing utterances with 30 s
(or 10 or 3 s resp.). On this side, the fact that an elaborate BE does not give any
improvement may also be due to this difference in length between the training
(or calibration training) and testing utterances. A difference in duration from the
training to the testing data may also introduce some bias to the results — this is
particularly true for SVMs (see discussion of SVMs in Sect. 5.4.1).

One solution (while sticking to the training data) would be to cut each utterance solution/
resultsinto smaller parts to be handled individually. This procedure was attempted in

some early stage by extracting segments containing at least 30 s of speech from the
CallFriend utterances. The individually applied mean and variance normalization
(feature level) did not show any effect to the modelization (and hence to the results).
Also, the JFA step estimating the U matrix using these shorter utterances showed
itself insensitive to this change. Due to these reasons, this procedure chopping the
long utterances into shorter ones was left apart in later development and it was not
re-attempted for the BE normalization. But this surely constitutes a possible way if
we want to add a more evolved BE.

As a reference to other works choosing this chopping approach, we may cite
(Castaldo et al., 2007c), which split the same CallFriend utterances into 8172 chunks
of about 150 s each.

8.2 Higher level approaches

In this work, we focused on GMM based acoustic modeling. This could form the
basis of a vast diversity of further researches exploring higher level information, but
keeping the basic core of the system simple and based on such short time acoustics.

The following sections will shortly present some ideas of such short time acous-
tics based higher level systems.

8.2.1 Signal dynamics on Gaussian indices

We saw that each feature vector can be seen as a point in multidimensional space. multi-
dimensional
path

A speech utterance, which consists of a series of feature vectors, can be represented
as a sequence of points. Since the signal is thought to be quasi-stationary and
continuous on a very short term, the values of adjacent feature vectors change only

Regression or LDA + Gaussian modeling.
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slightly (i.e. this is exploited by the deltas). So an utterance can be seen as a (more
or less continuous) path through this multidimensional space.

— ⋄—

We assume that this path can be discretized by keeping for each frame only theGaussian
indices index (identity) of the Gaussian of a previously trained model, whose distance to

the frame is minimal (also called the top-1 Gaussian). For this, typically the UBM is
used.

First analyses show that using only the top-N Gaussians in a usual JFA basedtop-N

system is enough to achieve equal or similar performances as when using all
Gaussians. These results are sketched in Table 8.1 for a 256 Gaussian system using
the accurate JFA strategy. We observe that even when limiting to only one Gaussian,
the systems does not loose too much of its power. This is a first validation step for
the described assumption.

Table 8.1: Effects of using only the top-N Gaussians, tested on NIST LRE 2005, in %pooled EER

Top-N 1 3 6 10 15 20 30 50 100 256
%EER 11.43 9.00 8.86 8.85 8.86 8.86 8.86 8.86 8.86 8.86

Having "decoded" all utterances into sequences of Gaussian indices, we maytransition
histograms analyze these sequences. For instance, we may calculate, for each language sepa-

rately, the frequencies of transitions from one index to another along these paths.
During testing, we may re-use these statistics to calculate a Likelihood score (in a
straightforward manner).

As a next step in development, we may build statistics on the duration a pathdwelling
durations "dwells" around a given Gaussian. This tracks the number of consecutive indices of

the same value. For each Gaussian of each language, we will obtain a histogram of
the frequency as function of the dwelling duration (this is illustrated in Fig. 8.1 (a) ).
We assume that the histograms for some Gaussians sensibly differ from language
to language. The problem here is surely the jitter in the index sequence. We may
perhaps apply some smoothing to the sequence beforehand (slightly similar to the
smoothing in the SAD step, Sect. 2.3.2).

These duration histograms may be transformed to complementary cumula-minimum
duration tive distributions, which indicate how much time (in number of frames) the path

dwells at least on a given Gaussian (thus the sum from n to positive infinity in the
above histogram). This is called Minimum Duration Modeling (MDM) and other
applications of it (without references here) indicate that such a distribution can
typically be divided into two zones: (i) a high (cumulative) probably zone for low
minimal durations (meaning that only a very few sequences are that short) and (ii)
after a certain edge point, the complementary cumulation seems to decrease in an
asymptotic manner. More accurately, it is most likely a complementary Gumbel
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cumulative distribution (also Gumbel survival function for the maximum case)2.
This is illustrated in Fig. 8.1 (b). We assume that this minimal duration threshold
potentially changes from language to language. The modeling is thus built around
this threshold3.

As consequence, we may use this MDM to force the path to dwell on a given forced MDM

Gaussian for (at least) the number of frames, which corresponds to the minimal
duration threshold. This forcing can be used for instance in conjunction with classic
Likelihood calculation (Sect. 2.5.1), where the posterior probability γ of this possibly
forced Gaussian is used. For the true language, this constraint should not induce
severe penalties, but for false languages, this is likely to introduce potentially severe
loss in Likelihood. MDM enforcing imposes the use of bad or very bad Likelihood
values for some frames if the forced Gaussian does not correspond to the top-1
Gaussian. Fig. 8.1 shows in (c) the top-1 Gaussian for each frame (dark-gray boxes)
and the Gaussians forced by MDM (black connected boxes).

One problem of such an approach is the dependence of the starting point for the problem

forcing — which frame we start with. We propose for instance to apply a threshold
on the frame Likelihood, which has to be exceeded for the MDM to apply (on the
following frames).
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Figure 8.1: Illustration of the different statistics for a given language and a given Gaussian in (a),(b)
and the MDM forcing imposing penalizing Likelihoods in (c)

2The Gumbel distribution is also known as the log-Weibull distribution or the type I extreme
value distribution. See also http://en.wikipedia.org/wiki/Gumbel_distribution and
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm

3Apparently, some researchers choose as minimal duration threshold half the value of the average
duration.
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8.2.1.1 Possible implementation

In the following paragraphs, we give a sketch how MDM enforcing possibly could
be implemented.

A GMM may be translated into an equivalent (ergodic) Hidden Markov Model
(HMM). This HMM will have one state for each Gaussian of the GMM. The Gaussian
weights will become the transition probabilities to the corresponding state. The
path that the frames describe thus becomes a path through the HMM. Using the
top-1 Gaussian, this corresponds to a decoding using the Viterbi algorithm4.

— ⋄—

Based on this concept, the MDM enforcing could be implemented in a veryimplementation

simple manner by duplicating each state until reaching a number equal to the
minimal duration threshold. There will be only one unidirectional transition (of
weight 1.0) between the duplicated states. This will hence enforce the minimum
number of frames.

Using a HMM based implementation has the big advantage of being indepen-solution

dent of the starting point since the Viterbi algorithm will choose the best possible
path under the MDM constraints implicitly introduced by the state duplications.
Fig. 8.2 shows in (a) a three-state HMM and a possible Viterbi decoding. In (b) it
shows the effect of the MDM constraint implicitly implemented in the transformed
HMM.
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Figure 8.2: Illustration of a GMM-corresponding HMM with an utterance path (a) unconstrained
and (b) with MDM forcing

— ⋄—

Working with Gaussian indices opens a large variety of possible approaches.
Even if they move towards techniques used in phonotactics, the suggested approach
has its basis in short time acoustics. Here, the system would heavily be based on the
duration aspect, instead of mainly on the sequence of the index labels themselves.

The proposed MDM approach (i.e. with an HMM implementation) could evenmin-max

be extended to a min-max modelization, where there is an additional constraint

4Whereas the all-Gaussians approach would use the Baum-Welch algorithm.
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indicating the maximum duration. As a hint, this could be implemented by re-
placing the state which has a (non-zero) self-transition by a series of (left-to-right)
states with jumping (or by-passing) transitions (removing the self-transition avoids
looping of uncontrolled length).

An extended discussion of all ideas introduced in this section has been formu-
lated in (Verdet and Hennebert, 2010).

8.2.2 Pair-wise SVMs5

We investigated SVMs in Chapter 5. Since SVMs are binary classifiers, but we are
working in a multi-class environment, we took the approach were we estimate
the hyperplanes using one target language and putting all other languages to the
negative class.

We may likewise train a set of pair-wise SVMs, meaning that their hyperplanes pair-wise SVMs

are estimated using SVs of two languages only: the hypothesized as positive and
one other language in turn as negative class. The hypothesis is that such SVMs can
be estimated more robustly than if we had SVs of |L| − 1 languages on the negative
side.

Working with L languages, we end up with
|L| · (|L| − 1)

2
pair-wise SVMs, if we ergodic vector

do all combinations. As a first approach, the Likelihoods of an utterance run against
all these SVMs may get concatenated into one big score vector, which can be input
to a back-end (BE) to obtain a series of |L| final scores. This will probably exploit
the constellation of the utterance in the multidimensional space of all languages in
a better way as can be achieved with one-against-others SVMs.

The vector of pair-wise SVM scores may also be augmented for instance by
classical GMM (-JFA) scores before being input to the BE. The expected effect would
be the SVM scores giving additional guidance in the case where the GMM ones are
not clear enough (i.e. the highest Likelihood not standing out against the others). In
order to avoid to have too large score vectors, we may also take only some selected
pair SVMs. For instance those of often confound languages. As a development, we
may also think of a more complex architecture which uses only a few automatically
chosen SVMs. I.e. taking only those with big Likelihoods, thus those in which we
have a sufficient confidence in order to enhance the GMM based detection.

These pair-wise SVMs may for instance also be exploited in some hierarchic hierarchy

manner, deciding at each level towards the more likely language or by introduc-
ing some bonus system, giving more weight to the languages that obtain better
likelihoods against many other languages.

5These pair-wise SVM based findings were sketched in an exchange with Jasmin Liu, affiliated to
Ultra Electronics AudioSoft and to the University of Swansea.
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8.3 More technical directions

RaSta-PLP-SDC

In Sect. 3.3.3, we compared parameterizations with different compositions of indi-
vidual processing steps. From Table 3.3, we see that we missed out one interesting
and promising combination. As basic type of features, PLPs seem very promising.
We saw also that as well RaSta filtering normalization, as also the addition of delta-
blocks (to obtain SDCs) show beneficial. The idea is then to combine these three
elements to RaSta-PLP-SDC features.

Analysis of accurate JFA approach

While looking back to our work, we noticed that it would be interesting to analyze
the effects of the U matrix rank, as it is done in Sect. 4.4.2, but for the accurate JFA
approach (described in Sect. 4.3.3). The results are potentially different from those
using the approximated JFA. We may guess that while lowering the number of
channels (U rank), the accurate JFA will still work good enough for longer (lower
ranks) than the approximate one. If this is the case, the justification may be that the
accurate way is able to exploit the (few) channels in a better way.

Enhanced category detector

On the channel category detector side, the next potential step would be to includef-MAP +JFA

the JFA technique to the f-MAP detector. The disturbing variability we want to
remove will then be the intra-category differences. Here, it will be constituted
of the information about the language, the speaker and the fine-grained channel
fluctuations.

As a second future direction may be imagined to design a system, which obtainsx-* from full
decomposition cleaner category-dependent factors (x) for the x-MAP and x-SVM detectors. More

category-specific x factors may for instance be obtained (i) by the JFA approach
using intra-category variability, as described in last paragraph or (ii) maybe even
better would be to use a full decomposition, as described in Sect. 4.1.1. This would
separate the nuisance information into multiple terms, each of which lives in a
separate subspace. One of these (specialized) subspaces will then correspond to the
channel category, whereas the other disturbing information is constraint to different
subspaces.

The full decomposition is likely to enhance the accuracy of the channel categoryproblems

detectors, but at the cost of much more engineering (i.e. estimating a different
matrix for each subspace). In addition, this complete decomposition will void the
perspective about partitioning the training data into automatically determined,
data-driven channel categories since the decomposition into multiple subspaces
requires labels for the different subspaces. We may at most choose a data-driven
approach as first layer (a kind of bootstrapping) to produce labels (of the channel
category) and then to use a multi-subspace approach in a second turn in order to
refine the categories and the recognizer.
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8.4 Conclusion on perspectives

Even though Feature Extraction was not part of the core subjects of this thesis, FE

we think that some more enhancement could be reached in this domain. We
may try more ingenious SDC building strategies in the neighborhood of silence
segments, where frames labeled with silence are used for building delta-blocks.
Likewise, we may give a try to T-DCT type features (Kinnunen et al., 2006; Castaldo
et al., 2007c) since they operate comparably to the SDCs, but use all frames within
the "lookahead" window and may avoid the second problem of SDCs, which is
repeating delta-blocks.

We have also the feeling that we did not reach the best Speech activity detection SAD

(SAD). We showed in Sect. 2.3.2 that SAD can have a crucial impact to performance.

For being able to balance the different language recognizers among themselves, dev set

a development dataset, as well as more complex BE modules are necessary. First
tries indicate however that a Gaussian Back-End alone is not able to do such inter-
language normalization.

Although SVMs are nowadays outrun by other algorithms, we may also advance pair-wise SVMs

on this path. We suppose that pair-wise SVMs may give additional information in
contexts of uncertainness.

A great share of research may be carried out on higher level approaches which
build on the short time acoustic features we researched here. We may discretize the Gaussian

indicesutterances into a sequence of Gaussian indices, representing the utterance as a tra-
jectory in multidimensional space. Having partitioned this space into (discretized)
areas, we can gather statistics on the number of consecutive frames spent in each
area. This leads to Minimum Duration Modeling (MDM), which can then be used
to force utterances of false languages to a penalizing trajectory.

This chapter presented some thoughts and first analyses of how future research
directions, which are based on the present thesis, may look like.
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Je ne vous dis plus rien ; la vertu, quand on l’aime, porte de
nos bienfaits le salaire elle-même. Mon admiration, mon
respect, mon amour, voilà ce que je puis vous offrir en ce jour.

— Pierre Carlet de Chamblain de MARIVAUX,
Annibal, 1720, Acte V, Scène 4
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9.1 Language recognition and variability

Language Recognition is the problem of discovering the language of a spoken
utterance. If a person is familiar to the language, the recognition is quite easy. If he
knows other languages of the same family, he may still guess which language it is.

A particular domain of computer science tries to recognize the language con- field of research

tained in a speech utterance by automatic means. Such research is part of the vast
field of automatic speech processing, which also includes speech recognition and
Speaker Recognition

9.1.1 Challenges and solutions

The definition of the Language Recognition (LR) task itself comes along with challenges

some challenges. Dialects, non-native accents and foreign words make it difficult.
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Furthermore, it may also have to operate in a multilingual environment. To the
main applications can be counted telephone based voice servers, video recording
tagging and national security applications.

We presented some basic requirements of automatic speech processing systemssystem
characteristics and enumerated the conditions an automatic Language Recognition (LR) system

should fulfill, together with the difficulties to meet them. An LR system should
namely be designed in a way which makes it being independent of following points:
the pronounced content, the application context, the style of speech, the acquisition
and transmission, the signal quality, the set of targeted languages and the speaker.
With respect to these basic requirements, it should first and foremost be easily
extensible to additional languages and come along with substantial robustness to
changing conditions like the speaker or the microphone. Keeping the extensibility
of existing systems, this thesis focuses on the robustness of Language Recognition
systems.

We gave an overview over automatic Language Recognition systems. A shortapproaches

outline of diverse existing approaches was given. Such systems can be distinguished
by the linguistic level they operate on: acoustic systems analyzing the sound of a
language, phonetic systems using occurrence statistics of phones and phonotactic
systems tracking the sequence of phones/phonemes. Other approaches observe
the prosody or operate on the morpho-lexical and syntactical level. For the works
presented herein, acoustic systems (which operate on the lowest level) have been
chosen, since they easily meet the extensibility condition.

9.1.2 Troublesome variability

The robustness term is highly linked to the concept of variability. In an LR system,variability

there is a lot of parts which may have considerable variability. This includes the
inherent differences between speakers, the evolution of each speaker, the dialects or
accents (in the case they are not required to be distinguished) and the variabilities
due to the acquisition and transmission of the signal.

All these variabilities have a penalizing effect to automatic systems. Generally,
the separability of the different classes (here the languages) is reduced by these
nuisances. This is the main problem we observe in the data and it constitutes a
challenging environment. The approaches investigated in this thesis follow the goal
of taking into account this variability.

This variability problem is similar to the one that Speaker Recognition (SR)factor analysis

has to face, but its nature is slightly different. While the information about the
speaker is the important piece in SR, it is part of the nuisance in the LR domain.
Nevertheless, we adapted and applied the Joint Factor Analysis (JFA) concept,
which works well in SR, to our domain. This solution consists in decomposing
the information contained in the acquired signal into three components of differ-
ent levels: a global component (an overall mean), a language-specific part and
the language-independent nuisance part. The decomposition permits to model
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explicitly this last variability part. This way, we can compensate our system for the
estimated variability and obtain enhanced results.

9.1.3 Acoustic language recognition

In Chapter 2, we presented the whole processing flow of a system modeling acoustic
modelinglanguages on the acoustic level. As most of the typical pattern recognition systems,

it is divided into two consecutive phases: the training where for each class the
model parameters are estimated and the testing phase where these models are used
to score data of unknown class.

In both phases, the first step always consists in Feature Extraction (FE), which Feature
Extractioncuts down the input signal into a more manageable representation. Traditionally,

the frequencies contained in the signal are extracted and transformed to a cepstral
representation, the feature vectors. A first step of normalizations may be carried
out at this stage, like CMS, VTLN or RaSta.

In the training phase, one model for each class (language) is estimated. In the training

acoustic modeling approach we have chosen, these are Gaussian Mixture Models
(GMMs), which are derived from the Universal Background Model (UBM) through
a MAP criterion. For the development of the further approaches, we used GMMs of
256 components, whereas full evaluation models consisted of 2048 mixtures.

In the second phase, the extracted features are scored against each model in testing

turn. This produces a (Likelihood) score as output. Subsequent score processing
steps like score normalization and calibration are generally applied before they are
used to take a decision. This has the effect of putting the scores of the diverse testing
utterances to a common range and to achieve some balance between the different
language models.

If the system is run in an evaluation objective, the outputs of a big number evaluation

of tests are analyzed in order to give a performance measure. We also gave an
overview over different ways to measure the performance. The Equal Error Rate
(EER) measure is not well adapted for this, since it becomes biased if the different
classes do not have the same number of testing utterances. One of the most suitable
and unbiased methods is the minimal average cost (min-Cavg).

9.2 Novelties

The main challenge handled by the thesis consists in the unwanted variability
contained in the data, which is mixed up with the useful language-dependent infor-
mation. In a first step, we largely discussed the proposed Joint Factor Analysis (JFA)
approach, which has been borrowed from researches in the Speaker Recognition
domain.
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We applied JFA to UBM-based GMMs using a Likelihood scoring, as well as to
Support Vector Machines (SVMs) originating from such GMMs. This analyzes the
possibly to use JFA as a global approach, which can get hold of diverse variabilities.
In an other optic, we also probed to apply JFA by building differentiated systems,
for telephone and for broadcast based sources.

9.2.1 Joint factor analysis

In Chapter 4, we thoroughly described the concept behind JFA. The main assump-decomposition

tion behind the JFA approach is that the information contained in the observed
utterance can be separated into multiple components. The most important decom-
position consists in separating the language-independent information from the
language-dependent one. Additionally, this language-dependent part is further
decomposed into a globally valid part and a purely language-dependent term.

Formally, this decomposition can be written as (Eq. 4.5):decomposition
implementation

m(h,l) = m + Dyl + Ux(h,l) (9.1)

During the training phase, the different terms can be obtained with reasonable
easiness: The term m is the global average over the data (here represented by the
Universal Background Model (UBM)), Dyl is the purely language-dependent part,
obtained from the per-language average, and Ux(h,l) is the language-independent
term, which is the share which is neither contained in the global nor in the language
part. This term depends on the utterance itself and represents the variability of the
utterance (compared to the other utterances of the same language).

This per-utterance variability part is further composed of two parts: U, which is
a global (rectangular) matrix and x, which contains the per-utterance (variability)
factors. The dimensionality of x is low (40 in our case). U has the goal to constrain
the session variability to this low subspace. The robustness of the x factor estimates
is due to the global nature of U. Since U is estimated on the variability parts of
a large number of utterances of all languages, we can finally say that all these
utterances contributed (by the fact of U) to the estimation of the x factors.

During the testing phase, each utterance is considered separately. The real
language-dependent information can not be identified directly. For this reason, the
third (variability) term is estimated first. Due to the hypothesis that this nuisance
term lives in a low-dimensional subspace, whose structure is given by U, the
variability of a single utterance can effectively be estimated1.

We also presented the detailed JFA algorithm, which is the basis of this work.algorithm

1In our eyes, it is the subspace hypothesis that makes JFA in the testing stage possible. If U was
square (invertible) all the information would flow into this nuisance term and no information would
be left for the language-dependent part (which is the term we target at). By the subspace method, the
variability term can be estimated robustly and the remaining information is compared to the one of
the hypothesized language.
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The algorithm is presented in a manner that allows a direct implementation. It
includes a preparation step where sufficient statistics are gathered, followed by an
iterative cycle of centering these statistics, obtaining Point-Estimates for x and y and
building the session compensation matrix U. This matrix is the core element of the
proposed approach. Its column vectors form the basis of the variability subspace
and thus it captures the structure of the variability. This structure is used again
during testing to estimate the nuisance part of the data.

We also saw different ways to compensate our modelization system for this applying JFA

nuisance. Either the identified variability is removed from the feature vectors (they
are cleaned up), or the general language models are compensated for the variability
of the specific utterance (moved towards the data). Similarly, the compensation may
take place only during the training phase, only during testing or, what works best,
during both phases. The best strategy seems to require a model-space compensation
during training. For the testing phase, the feature-space (and thus hybrid) method
is only slightly outperformed by a model-space testing.

On the model-space testing side, we distinguish an accurate and an approxi- accurate vs.
approximatedmated way for obtaining the channel factors x. The accurate approach obtains x

through the JFA formula (Eq. 4.5), where the m + Dy part is taken from the hy-
pothesized language model (estimated during training) and U is fixed. While the
approximate way just uses the UBM component m along with U under the form
m + Ux for obtaining the x factors. The accurate model-space approach gives supe-
rior results, but at a nearly L-times higher computation cost (L being the number of
possible languages). This is due to the fact that the accurate way has to estimate
an x for each hypothesized language, whereas the approximation estimates it only
once (for each testing utterance). This accurate method has not found its way to
similar systems of other research groups (in the context of Speaker Recognition for
instance).

The rank of the U matrix (the dimensionality of the subspace, commonly results

also called the number of channels) is not a very critical factor for the system’s
performance. Within some reasonable range, varying the rank does not have a big
influence on the final system performance. However, the size of the underlying
GMMs has a far higher impact. While the performance of systems using simple
MAP adaptation begins to stagnate with about 512 Gaussians, the JFA approach
allows to reliably estimate the means of even bigger models and thus to enhance
performance. Compared to JFA-less GMMs, JFA contributes a relative cost reduction
of about 61% for models with 256 components and 72% for 2048 mixtures.

In a general manner, JFA allows to solve a severe problem of estimation theory, conclusion

which is the tradeoff between the number of parameters and the amount of data
required for their robust estimation. The results clearly support this fact, since JFA
shows beneficial even on models of sizes where JFA-less MAP adaptation exhausts.
This is also the influence of the global U on the robustness of the x factor estimates.
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9.2.2 Support Vector Machines

We also analyzed the effects of JFA in the context of Support Vector Machines
(SVMs). For this, the Super-Vectors (SVs) are principally obtained by stacking the
mean values of a GMM one on top of the other to obtain one vector characterizing
an utterance or a language. In the case of individual utterances, a GMM has been
estimated (through MAP) for every utterance and transformed to an SV.

We trialed different ways to estimate SVM hyperplanes — with different com-
binations of target (positive) and blacklist (negative) sets. Since SVMs are put on
top of the GMM approach (the GMMs becoming SVs are a new front-end), this
approach does not interfere with the JFA scheme2. So we also tried to combine
SVMs with JFA.

Since the SVM approach itself is rather powerful, compared to a standard GMM-results

UBM approach, the benefit of JFA in the context of SVM is limited. Nevertheless,
this combination of SVM and JFA has been a novelty and has subsequently been
attempted in the domains of Speaker Recognition and video genre recognition
(Matrouf et al., 2011)

9.2.3 Channel category variability

Back to the more conceptual core of the JFA approach, we may analyze what
happens when handling one kind of variability in a separate way up to a certain
point. The data of the NIST LRE 2009 opened the opportunity to work on two rather
different data sets, namely Conversational Telephone Speech (CTS) one one side
and utterances coming from Voice of America (VOA) broadcast recordings on the
other side.

In order to analyze the severity of the problem induced by data coming fromseriousness

two quite different sources, we trained a dedicated system for each of these two
sources (channel categories). This resulted in two completely separate pure-category
systems (parts of them will be reused in later systems). By testing with one kind of
data only, we observe severe performance differences between models trained on
the same type of data and models trained on the other kind. The minimal average
cost for such a mismatch is up to 3.7 times higher than for the corresponding case.

In Chapter 6, we discussed how this data of two very different kinds of sourcesseparate
handling may be handled. After an explanatory description of the data and the particular

challenge of the related setup, we analyzed different ways to cope with it.

A first approach corresponds to the JFA approach described until now. Itfeature level

pools together the data of the two sources since beginning (thus on the feature
vector level). One U matrix on the pooled data is estimated, thus without category
distinction, and one set of models are obtained.

2The SVs could potentially also be taken directly from JFA’s internals, whose implementation
operates in mean Super-Vector space.
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Another approach works by taking this pooled U matrix, but to estimate two model level

category-dependent sets of models. The results indicate that this approach slightly
"flattens out" the discrepancy between matching and cross-category evaluations.
In average, these systems are slightly better than the pure per-category ones. This
is likely to be due to the extended or more robust estimation of this pooled-data
U matrix.

A further attempted way takes the separate, channel category specialized JFA level

U matrices that were obtained in the pure systems above. They can be combined
together by stacking one on top of the other to form a single U matrix which has
a CTS and a VOA dedicated part. In the same manner, the language models are
trained by either channel category to obtain two sets of models. Results show that
this approach has the effect of accentuating again the discrepancy between same-
and cross-category evaluations. But overall, it has the big advantage of being more
robust to the case where some languages have training data of only one channel
category (which is the case for 15 of the 23 languages in the LRE 2009 closed-set).

As last analyzed possibility, two dedicated systems may as well be merged only score level

on the score level. The merging is done in a very simple manner by choosing, for a
given testing utterance, the score output by one or the other system. For this, we use
in a first step an oracle, which reveals the correct system to look at. Here, we had
also a look at two setups: using the above pure per-category systems or by merging
the systems featuring a stacked U matrix. The latter slightly outperforms the former
and it is also more robust to the problem of missing language–channel combinations.
Compared to the standard pooled approach, the latter reduces the costs by 18.6%
relative. This indicates that a separate handling of such big database differences
(the channel categories) may be beneficial. The obtained results outperform the
baseline JFA-less MAP adapted GMM-UBM system by 81% relative.

9.2.4 Channel category detectors

As described just above, we used an oracle for deciding which scores to choose.
Even though this may be used in a study, a real system does not dispose of the
correct answers to be returned by the oracle. For this reason, we also investigated
ways to design automatic detection of the channel category.

Whilst the oracle, as best possible detector, dictates the ground-truth, we chose category
detectorsa simple-sum fusion of the two category-dependent systems as lower performance

bound for comparisons. The different category detectors we designed are the
following: In a first attempt, the bare feature vectors are used to train two channel
category models, in a usual MAP adaptation process. These can then be used to
detect the category in a classical way.

An innovative approach consists in using the channel factors issued from JFA channel
variability basedfor the task of channel category detection. These factors are the x(h,l) vectors of the

JFA formula (Eq. 4.5). So we apply the merged U matrix using the above formula on
the speech utterances and retain only the x vectors. These can be used for instance
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in an SVM classifier, which discriminates between the CTS and the VOA data. It
is obviously trained on the x vectors of the training data. Another way is to use
these vectors as input features for a classical GMM MAP adaptation. Since solely
one vector is obtained per utterance, models were chosen to have only 64 mixtures.

The results show that the feature-based MAP detector and the SVM-basedresults

detector using the x vectors yield similar performances. The former being slightly
more robust to missing category–language combinations in the training data.

On the other hand, the variability factors (x)-based detectors have a very impor-
tant advantage: They may without any problem be used in future works to cluster
and classify completely unlabeled data into some automatically determined channel
categories. These categories do even not have to correspond to broad data sources
like telephone or broadcast, but may also get hold of other types of variabilities,
which allow to be separated into a small number of classes.

9.3 Wrap-up

Our works are based on purely acoustic Language Recognition (LR) for the sim-
plicity to add more, possibly under-resourced languages. The main challenge of
an LR unit is the variability of the data for each of the proposed languages. This
variability comes under very diverse forms and from a lot of different sources, like
intra- and inter-speaker variability, as well as acquisition and transmission caused
fluctuations.

The proposed solution to these variabilities is to decompose the total observedJFA

information into several parts: a universal (global average) part, a language-depen-
dent and a language-independent part. This JFA approach is interesting, since it
offers a way to handle all kinds of variabilities at the same time without the need to
distinguish between them. This universal approach works well, but may not be the
best one.

For bigger types of variability, as the channel category (i.e. telephone or broad-channel
category cast), we analyzed ways to work on parallel (JFA) systems and to combine them

at different stages. Merging of channel category dependent systems on the score
level in a fully automatic way using our designed detectors allows to approach the
oracle ground-truth up to 5–6% relative. Some of the proposed detectors work by
classifying the channel factors x into one of the two categories. Beyond interesting
applications we may imagine with this technique (evoked above), it also validates
the fact that the (channel) variability part is effectively caught by this x term.

Overall in the course of this thesis, we reduced the error rate (or cost) from
19.4 %min-Cavg (for MAP) down to 5.4 %min-Cavg (−72% relative) for the LRE 2005
protocol and from 20.6 %min-Cavg down to 3.9 %min-Cavg (−81% relative) for the
LRE 2009 protocol. This shows as well the seriousness of the variability problem
and at the same time it validates the JFA approach for Language Recognition.
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List of Symbols

Cavg average detection cost, see: min-Cavg

CDET detection cost
Cllr Log-Likelihood Ratio (average) cost
κ( ) kernel function used for instance in SVMs
ϕ( ) mapping to the kernel space, used for instance in SVMs
Σ covariance matrix of a Gaussian
∆ delta-block constituting SDCs
· dot product/scalar product of two vectors, also written as 〈 , 〉

e exponential function
1 ( ) indicator function of type for , returns 0 or 1 (or −1/+1)
−1 inverse of matrix

min-Cavg minimal average cost
| | determinant of matrix
µ mean (vector) of a Gaussian
| | number of elements in/the size/cardinality of the set
F objective function or criterion of type . Also called auxiliary function
π prior of language
P ( ) probability of
ϑ1 sufficient statistics of first order
ϑ2 sufficient statistics of second order
ϑ0 sufficient statistics of order zero

T transpose of vector or matrix
σ2 variance of a Gaussian
| |2 Euclidean norm /2-norm of a vector
| | norm of a vector
α weight of a Gaussian
M model
R in JFA, the rank of matrix U

Λ model parameters

α weighting factor for MAP, =
ϑ0

ϑ0 + τ
C soft-margin SVM penalty controlling factor
G number of Gaussians (in a GMM)
K normalization exponent, see: Sect. 2.5.2.2
L the set of all languages
i =

√
−1 : the imaginary number

X set of utterances
γ a posteriori probability of a Gaussian for an observed feature vector
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Σ−1 inverse of the Co-Variance matrix
λ Lagrangian multiplier (used for SVM margin optimization)
B intermediary matrix in the JFA algorithm
L intermediary matrix in the JFA algorithm
N zeroth-order statistics for the JFA algorithm
X first-order statistics for the JFA algorithm
N normal distribution
X utterance, represented by a set of feature vectors
σ standard deviation, square-root of variance
D in JFA, the square matrix, which has weighting effect since it depends

on MAP’s regulation factor τ: DDT =
Σ

τ
U in JFA, the matrix, which projects the channel factors x into the SV

space, has a low range
m an SV obtained by stacking the means of one GMM
w the normal vector of an SVM hyperplane
x in JFA, the vector containing the channel factors and being of low

dimension
y in JFA, the vector, containing the language factors (same dimension

as the SV space)
θ threshold Upon testing, a hard decision is taken by comparing a

score against the threshold
b The offset of an SVM hyperplane
d the dimension of a feature vector x
g Gaussian of the set G of Gaussians of a GMM
h an alternate Gaussian (as opposed to g)
k an alternate language (as opposed to l)
l a language (of set L)
s score an utterance X obtains against a language model
t time t
x a feature vector
B between class scatter matrix, in LDA
P LDA projection matrix
V total scatter matrix, in LDA
W within class scatter matrix, in LDA
τ regulation factor for MAP
⊢ operator subtracting the right-hand vector from each column of the

left-hand matrix
p LDA projection vector
ξ slack variable (used in soft-margin SVMs)
Hz Hertz, the frequency of an occurrence [1/ s]
h hour (unit of time, 60*60 seconds)
kHz kilo- Hz [1000/ s]
min minute (unit of time, 60 seconds)
ms milli-second (1/1000 s)
s second (unit of time)
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Acronyms

ALI Automatic Language Identification
ANN Artificial Neural Network
APE Applied-Probability-of-Error curve
BE back-end
BUT Brno University of Technology
CallFriend LDC CallFriend corpus
cdf cumulative distribution function
CMS Cepstral Mean Subtraction
CSLU Center for Spoken Language Understanding, of the OHSU
CTS Conversational Telephone Speech
CWCC common within-class covariance
DET Detection Error Trade-off
DTW Dynamic Time Warping
EER Equal Error Rate
EM Expectation Maximization
FE Feature Extraction
GBE Gaussian Back-End
GEM Generalized EM
GMM Gaussian Mixture Model
HLDA Heteroscedastic Linear Discriminant Analysis
HMM Hidden Markov Model
JFA Joint Factor Analysis
KLD Kullback-Leibler Divergence
LBE Linear Back-End
LDA Linear Discriminant Analysis
LDC Linguistic Data Consortium, at University of Pennsylvania,

http://www.ldc.upenn.edu/
LFCC Linear Frequency Cepstral Coefficients
LIA Laboratoire Informatique d’Avignon
LID Language Identification
LIMSI Laboratoire d’Informatique pour la Mecanique et les Sciences de

l’Ingenieur (Computer Sciences Laboratory for Mechanics and Engi-
neering Sciences), CNRS UPR 3251, Orsay

Lk Likelihood
LLk Log-Likelihood
LLR Log-Likelihood Ratio
LPC linear prediction coefficients
LR Language Recognition
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Acronyms

LRE Language Recognition Evaluation
LVSR Large Vocabulary Speech Recognition
MAP Maximum A Posteriori
MDM Minimum Duration Modeling
MFCC Mel Frequency Cepstral Coefficients
MIT Massachusetts Institute of Technology, Cambridge
ML Maximum-Likelihood
MLE ML Point-Estimate
MLR Multi-class Logistic Regression
MLTS Multi-Language Telephone Speech corpus, sometimes just called TS
MMI Maximum Mutual Information
NAP Nuisance Attribute Projection
NIST National Institute of Standards and Technology
OGI Oregon Graduate Institute, School of Science and Engineering, a

department of OHSU, subsequently named Department of Science
& Engineering, and now CSLU

OHSU Oregon Health & Science University
PCA Principal Components Analysis
pdf probability density function
PLDA Power Linear Discriminant Analysis
PLP Perceptual Linear Prediction
pmf probability mass function
PPR language-dependent Parallel Phone Recognition
PPRLM Parallel language-independent Phoneme Recognition followed by

language-dependent Language Modeling
PRLM language-independent Phoneme Recognition followed by language-

dependent Language Modeling
QDA Quadratic Discriminant Analysis
RaSta RelAtive SpecTrAl transform
ROC Receiver Operating Characteristics
SAD Speech activity detection
SDC Shifted Delta Cepstra
SR Speaker Recognition
SV Super-Vector
SVM Support Vector Machine
SVR Support Vector Regression
UBM Universal Background Model
VOA Voice of America
VQ Vector Quantization
VTLN Vocal Tract Length Normalization
WCCN Within Class Covariance Normalization
WM World Model
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This glossary has been gathered in different stages during the time of the works
presented in this document. It may therefore lack of some homogeneity. Neither is
it thought to be exhaustive nor very precise.
At the same time, it serves as index, the page numbers being listed at the end of
each entry.

Artificial Neural Network

A discrimination-based method featuring one or multiple hidden layers of
nodes, each containing a function which maps the input values to the output
values. The nodes are interconnected between the (input, hidden, output)
layers. 99, 102, 139

a posteriori

Based on the state of knowledge after new evidence has been observed. see
also: a priori. 40, 42, 45, 49, 51, 52, 56, 57, 78, 89, 91, 92, 103, 109, 117, 119, 122,
123, 125–127, 132, 185, 205, 212, 214

a priori

Describing or based on a previous state, before making further observations
which may lead to a changed view or new estimate of the problem. see also:
a posteriori. 23, 53–56, 66, 119, 133, 169, 205

back-end

Commonly a score back-end.
It often tries to combine the scores an utterance obtains against all classes
(instead of only the hypothesized one) in order to enhance the performance.
see also: Linear Back-End (LBE), Gaussian Back-End (GBE). 59, 79, 98–102,
105–107, 110, 175, 180–183, 187, 189, 209, 212

Baum-Welch algorithm

also known as forward-backward algorithm. 52, 186

Bayes’ Theorem

P(B|A) = P(A|B) ∗ P(B)/P(A);
posterior = likelihood ∗ prior/marginal_likelihood. 30, 41, 56, 103, 109, 205

bayesian

see: Bayes’ Theorem and Sect. 2.1.
see: iterative estimation for the basic notations.
Let Ω̄ be the space of all possible universes ω̄.
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(Y, µ) are two random variables or functions:
(Y, µ) : Ω̄→ R×R ; (Y, µ) : ω̄ 7→ (y, µ)

PΩ̄ is the probability distribution of the ω̄.
Pµ is the probability distribution of y following the law Lµ of µ.

µ −→ Y.
a priori/prior distribution : P(µ = µ) ; µ ∼ N (0, 1)
a posteriori/posterior distribution : P(Y = y|µ = µ) ; Y ∼ N (µ, σ2)

Lµ|Y : A 7→ P(µ ∈ A|Y)
prior: Lµ : A 7→ P(µ ∈ A)

posterior: P(Y = y) · P(µ = µ|Y = y) = P(µ = µ, Y = y)

= P(µ = µ) · P(Y = y|µ = µ) .

Categorical Variables

e.g. the class label.

characteristic function

Fourier transform of the probability density function (pdf). It always exists
(in contrast to the pdf).

ϕX(t) = E[eitX] =
∫ ∞

−∞
eitx dFX(x) =

∫ ∞

−∞
eitx fX(x) dx = MiX(t) = MX(it),

where MX(t) is the moment-generating function (mgf) (see: Generating func-
tions). , 211, 218

Conditional Probability

P(A|B); = P(A, B)/P(B).

confusion matrix

A matrix presenting the percentages of identification decisions of the elected
class vs. the true-class. It shows all combinations of elected class with respect
of the true class.
On its diagonal, the elected class is the right one, these values thus are the per-
class identification rate. The off-diagonal elements contain the false-positive
(false-alarm, PFA(l, k)) values.

Conversational Telephone Speech

Data source.
Recordings of plain old telephone system conversations. The used corpora do
not contain any cellular data and they have been recorded in the USA with
at least one side also located in the USA.. 10, 35, 63–66, 69, 71, 151–169, 172,
177–179, 196–198

covariance

the measure of how much two random variables vary together; Cov(X, Y) =
E((X−m) ∗ (Y− n)) = E(X ∗Y)−m ∗ n ; m = E(X) ; n = E(Y) ;
measure of "linear dependence". 104–106, 136
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covariance matrix

matrix of covariances between elements of a vector.

cumulant

Cumulants of a pdf can be used instead of the moments for describing its
shape since one determines the other (bijective relation between cumulants
and moments). Often, working with cumulants is simpler (for instance be-
cause of their additive property in the context of independent random vari-
ables). The cumulants κk = 〈Xk〉c are defined through (the Maclaurin se-
ries of) the cumulant-generating function g(t) (see: Generating functions):
κ1 = g′(0) ; κ2 = g′′(0) ; κ3 = g′′′(0) · · · κn = g(n)(0).
In terms of central moments µk (and raw moment µ′k):
κ1 = µ1 = µ′1 = µ ; κ2 = µ2 = µ′2 − µ′21 = σ2 ; κ3 = µ3 ;
κ4 = µ4 − 3µ2

2 ; κ5 = µ5 − 10µ2µ2 . , 210, 215, 220

cumulative distribution function

Similar to the pmf or the pdf, but cumulating the probabilities, thus the
probability of the random variable taking a value smaller as (or equal to) a
given value (for the discrete and the continuous case):

FX(x) = P(X ≤ x) = E[1{X≤x}(X)] ; F(X) =
∫ x

−∞
f (t) dt.

see also: probability mass function (pmf), probability density function (pdf). ,
218

Delta-Cepstrum

Synonym: speed and acceleration. first (and second) order polynomial cepstral
coefficients in addition to the instantaneous cepstral coefficients. 88

detection

As opposed to identification. The detection task answers binary questions
related to some hypothesized class. , 211

Detection Error Trade-off

A curve plotting the system’s P[FA] (false positives) against the P[Miss] (false
negatives) by varying the global system (score) threshold over the whole
possible range. More verbosely, it shows the different system operation points
with a tradeoff between high security (few false positives, but more false
negatives) and high convenience (few false negatives, but more false positives).
67, 108, 109, 174, 214

distribution

An empirically or parametrically described set of values or points (either
discrete observed or generated). To (parametric) probability density function
count among others the normal distribution or the Gaussian distribution. 3, 9,
47, 89, 206, 209, 210, 212, 215, 216

emission

The observable outputs of probabilistic model. The hidden variables are the
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parameters, which have to be estimated and which define a pdf from which
the observations are thought to be drawn or emitted. 50

Equal Error Rate

see: Sect. 2.6.2.1.
Uses an a-posterior determined (global) threshold. Is particularly sensitive
to unbalanced number of test segments for the different classes, since all
results are pooled together, independently of the class. 67–72, 88–90, 108, 110,
129–131, 146, 184, 193, 215

estimate

The result of an estimation process or of an estimation step (e.g. iteration). It
usually corresponds to updated hidden variables of a model. 52

Estimation Theory

estimating the values of parameters based on measured/empirical data;
preferably, the estimator exhibits optimality; estimator estimates a models
parameters.

Estimator

examples of common estimators: •Maximum likelihood estimators, •Bayes es-
timators, •Method of moments estimators, •Cramér-Rao bound, •Minimum
mean squared error (MMSE), also known as Bayes least squared error (BLSE),
•Maximum a posterior (MAP), •Minimum variance unbiased estimator (MVUE),
•Best linear unbiased estimator (BLUE), •Unbiased estimators (see: estimator
bias), •Particle filter, •Markov chain Monte Carlo (MCMC), •Kalman filter,
•Ensemble Kalman filter (EnKF), •Wiener filter.

Expectation Maximization

(Algorithm) alternates between E and M steps:
•Expectation step: compute expectation of likelihood by including the latent
variables as if they were observed,
•Maximization step: compute maximum likelihood estimates of the parame-
ters by maximizing the expected likelihood;
Prominent instances of this algorithm: •Baum-Welch algorithm: applied to
hidden Markov models, •inside-outside algorithm, •algorithm for fitting a
mixture density model;
An EM algorithm can also find maximum a posteriori (MAP) estimates, by
performing MAP estimation in the M step, rather than maximum likelihood;
faster variant: OS-EM . 47, 50, 51, 53, 54, 56, 57, 91, 119, 125, 129, 215

expected value

Usually written E[X]. The average value we may expect from a random
variable. see also: mean, (first) raw moment. 105, 215

Fast-Scoring

Synonym: Top-Gaussians.
For each feature vector, the C top-scoring mixtures in the background model
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(UBM) are determined, then the Likelihood is computed by scoring the vector
against the same C mixtures in the hypothesized target model.

feature

Parametric representation of the observed data (speech signal). 41, 71, 72, 77,
78, 80, 81, 83, 84, 87, 88, 91, 188, 189, 193, 198, 214

feature space

The domain of the transformed observed data, in contrast to model and score
domain. 47, 133

feature vector

. 30, 41–46, 50–52, 56, 79, 80, 82, 83, 85–87, 90, 91, 100, 102, 106, 118, 125, 126,
129, 133, 144, 173, 183, 193, 195–197, 201, 202, 208, 212, 220, see vector

Fisher’s Linear Discriminant

the separation between two distributions is the ratio of the variance between
the classes to the variance within the classes; is, in some sense, a measure of
the signal-to-noise ratio for the class labeling.

FoCal

A BE, normalization and score calibration tool developed by Niko BRÜMMER.
see: (FoCal, 2007). see also: back-end (BE), normalization. 182, 212

Formants

peak in an acoustic frequency spectrum which results from the resonant
frequencies of any acoustic system.

frame

Synonyms: feature vector, parametric vector. 45, 49, 61, 71, 82–87, 89, 92, 93,
95–97, 115, 118, 119, 122, 124, 125, 133, 184–186, 189, 214, 219

Gaussian

see: Gaussian distribution, Gaussian Mixture Model (GMM). 3, 9, 22, 42, 47–55,
57, 61, 81, 88–94, 97, 101–105, 118, 119, 122, 124–126, 129–133, 137, 144–148,
156, 168, 173, 176, 183–186, 189, 195, 201, 202, 209

Gaussian Back-End

A BE modeling the input scores (putting them to a vector) by means of a
multivariate Gaussian. 101–103, 175, 182, 189, 205

Gaussian distribution

pdf concentrating the mass around the mean value. It can fully be described
by two parameters: its mean and its (co-)variance. Named after Carl Friedrich
GAUSS (1777-1855). see also: distribution, probability density function (pdf).
47, 134, 207, 209, 215, 216, 220

Gaussian Mixture Model

weighted combination of G unimodal Gaussian densities of dimension d. See
Sect. 2.4.1 for a complete description and further pointers. see also: Gaussian.
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9, 30, 33, 36, 37, 42, 45–47, 49–51, 53, 54, 56, 57, 76, 78, 81, 87, 90, 91, 93–97, 105,
108, 114, 117, 118, 124, 125, 127, 128, 131, 133, 139, 140, 142–149, 183, 186, 187,
193–196, 198, 201, 202, 209, 214, 215, 219, 220

Generalized EM

no need to find optimal (argmax) conditional expectation and parameters
(m,s,a-priori-P), just some improvement over their current value will also
ensure successful convergence. ex: improving conditional expectation with
factorial distribution; improving parameters with hill-climbing method.

Generating functions

, 206, 207, 215, 220

probability-generating function (pgf)

In the context of a discrete random variable (univariate case):

G(z) = E[zX] =
∞

∑
x=0

p(x)zx;

see also: cumulant-generating function g(t).

exponential generating function

EG[an; x] =
∞

∑
n=0

an
xn

n!
;

for the sequence an = 1, 1, 1, . . .:
∞

∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · = ex ;

Note that this can be resolved to the factorial term to obtain: n! =
∫ ∞

0
xne−x dx.

, 210

moment-generating function (mgf)

MX(t) = E[etX] = G(et) = ϕX(−it) = 1 +
∞

∑
m=1

µ′m
tm

m!
; t ∈ R,

where µ′m are the raw moments. MX(0) = 1 ;
Or viewed by the Maclaurin series (consecutive/nth derivatives):
M

(n)
X (0) = E[Xn] ; n >= 0

(for the case the mgf exists on an open interval around t = 0), so it is the expo-
nential generating function of the moments of the probability distribution. see
also: exponential generating function (with its x replaced by tX):

etX =
∞

∑
n=0

an
(tX)n

n!
=

∞

∑
n=0

anXn tn

n!
= 1 + tX +

t2X2

2!
+

t3X3

3!
+ · · · ;

see also: moments. , 206, 210

cumulant-generating function

Defined as the logarithm of the moment-generating function (mgf):

g(t) = log(E[etX]) =
∞

∑
n=1

κn
tn

n!
.

see also: cumulant. , 207, 210, 215, 220
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second cumulant-generating function

Logarithm of the characteristic function.

Generative Models

model for randomly generating observed data, typically given some hidden
parameters;
defines a joint probability distribution over observation and label sequences;
examples:

• Gaussian distribution,
• Gaussian mixture model,
• Multinomial distribution,
• Hidden Markov model,
• Generative grammar,
• Naive Bayes,
• Latent Dirichlet Allocation;

If the observed data are truly generated by the generative model, then fitting
the parameters of the generative model to maximize the data likelihood is a
common method.;
However, data rarely truly arises from the generative models used. Therefore,
it is often more accurate to model the conditional density functions directly:
i.e., performing classification or regression analysis .

hidden variable

The non-observable part of a probabilistic model. The model is defined by
some hidden variable parameters and possibly further fixed parameters. , 207,
208

hyperplane

A linear geometrical object extending to (n − 1)-dimensions (a plane (2D
object) for the 3D case). It is for instance used in SVMs for separating two
classes. 94, 135, 136, 140, 141, 144, 146, 187, 196, 202, 219

identification

As opposed to detection, its task has to choose or elect one class among a set
of possible classes. , 206, 207

iterative estimation

Let yi be a random variable.
Yi follows a normal distribution with unknown (hidden) mean µ: Yi ∼
N (µ, 1). Yi can be seen as function Yi : Ω → R, which maps (ω 7→ yi)

our universe ω to concrete (the observed) values yi.

– A Possible estimator may be µ̂ = Y1 or µ̂ =
Y1 + Y2

2
or µ̂ =

Y1 + Y2 + Y3

3
or . . . (µ̂ is also a random variable)
which associates, in the case of our universe, µ̂ → y1 or . . .
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– Objective function: measures the goodness of an estimator:
e.g. F(µ̂, µ) = E[|µ̂ − µ|2]
Even if such a measure depends on the unknown mean, it is possible to use it
because we only need to be able to compare objective function applications
(i.e. from one iteration to the other), since the terms with µ possibly cancel
out.

When using for instance the objective function
Pµ̂(Yi = yi)

Pµ(Yi = yi)
, the denominator

cancels out when comparing . , 205

Joint Probability

P(A, B) = P(A|B) · P(B) P(A|B) = P(A, B)

P(B)
.

Kullback-Leibler Divergence

Synonyms: information divergence, information gain, relative entropy.
A non-symmetric measure of the difference or distance between two probabil-
ity distributions. However, it is not a true distance metric.
The problem of measuring the difference between two distributions is not
easy. An often adopted replacement is the KLD.
It has been introduced by Solomon KULLBACK and Richard LEIBLER in 1951.

Approximate KLD: D(i, j) =
G

∑
g

αg ∑
d

(µi
gd − µ

j
gd

σgd

)2
, d being the dimen-

sions of the acoustic feature vector. 94

labeling

The action of assigning a token or class label to each slice of a segmented
sequence — for instance indicating if the segment was detected as being
speech or silence. 45

latent variable

synonyms: hidden variable, model parameter, hypothetical variable or hy-
pothetical construct; variable which is not directly observed but is rather
inferred from other variables that are observed and directly measured; one
advantage of using latent variables is that it reduces the dimensionality of
data. 50, 52, 53, 55, 118, 119, 122, 132

Likelihood

As opposed to probability, the likelihood is related to a conditional pdf. It thus
can be seen as a kind of probability of a posterior observation (without taking
into account the priors). 31, 41, 52, 53, 56, 57, 59, 72, 78, 91, 95–99, 101, 103,
106, 108–110, 127, 147, 174, 184, 185, 187, 193, 194, 209, 219

Linear Back-End

A BE featuring a linear combination of the scores input to the BE (score vector).
see also: FoCal. , 205
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Linear Classifier

Often the fastest classifier; often works very well when the number of dimen-
sions is large.
Parameter determination:

• by modeling conditional density functions:
- Linear Discriminant Analysis (or Fisher’s linear discriminant) (LDA):
assumes Gaussian conditional density models; supervised learning;
- Naive Bayes classifier: assumes independent binomial conditional den-
sity models

• by discriminative training: often yields higher accuracy:
- Logistic regression: maximum likelihood estimation assuming that the
observed training set was generated by a binomial model that depends
on the output of the classifier;
- Perceptron: attempts to fix all errors encountered in the training set;
- Support vector machine: maximizes the margin between the decision
hyperplane and the examples in the training set

.

Linear Discriminant Analysis

method to find the linear combination of features which best separate two or
more classes of objects or events;
attempt to express one dependent variable as a linear combination of other
features or measurements; as do: ANOVA (analysis of variance) or Regression
Analysis;
closely related to:
- Principal Components Analysis (PCA): unsupervised learning; does not take
into account any difference in class,
- Factor Analysis: builds the feature combinations based on differences rather
than similarities;
the dependent variable is a categorical variable;
LDA explicitly attempts to model the difference between the classes of data;
a distinction between independent variables and dependent variables (also
called criterion variables) must be made;
works when the measurements made on each observation are continuous
quantities (vs. Discriminant Correspondence Analysis for categorical vari-
ables);
for 2-classes, LDA assumes, that both pdfs are normally distributed;
in many practical cases linear discriminants are not suitable. 49, 99, 101–104,
106, 121, 135–137, 183, 202

Linear Prediction

Mathematical operation where future values of a discrete-time signal are
estimated as a linear function of previous samples. see also: Perceptual Linear
Prediction (PLP), linear prediction coefficients (LPC). , 214

linear prediction coefficients
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Synonym: Linear prediction coding.
Single-level or multilevel sampling system; predicted to be a linear function of
the past values of the quantized signal. Some authors present it as being one
of the most powerful speech analysis techniques and one of the most useful
methods for encoding good quality speech at a low bit rate.
They estimate the formants, remove them (inverse filtering) and estimate the
intensity and frequency of the remaining buzz, subtracting it gives the residue.
Its values describe intensity and frequency of the buzz, the formants ("tube"),
and the residue signal. They can be used to resynthesize the speech. But the
encoding is very sensitive to errors. LPC usually work with generally 30 to
50 frames per second.
Other features that are more robust to errors and more stable prediction filter:
Log Area Ratios (LAR), Line Spectral Pairs (LSP) decomposition and reflection
coefficients.
see also: Linear Prediction. 77, 80, 81, 213

Log-Likelihood Ratio (average) cost

An empirical measure of the effective quality of information delivered to the
user.
It is measured in bits of entropy. The cost is composed of calibration loss, which
is related to the way the information is presented by the scores, and refinement,
which effectively is the discrimination part or ability of the system.
The advantage of this performance is its independence of the application task.
Hence it does not depend on a predefined operating point.
It can intuitively be seen as a measure similar to the area below the DET curve.
see: Sect. 3.6.1.

Marginal Probability

Prior Probability; probability of one event, regardless of the other event;
obtained by summing (or integrating, more generally) the joint probability
over the unrequired event (called marginalization); P(A); P(e) = P(R =
0, e) + P(R = 1, e) + · · · = ∑

r

P(e|R = r)P(R = r).

Maximum A Posteriori

Bayesian based Optimization criterion, which thus maximizes the a posteriori
probability. Consequently, MAP adaptation is thought to meet the overall
goal of the posterior probability, as indicated in Eq. 2.2. It can thus be seen as
trying to estimate a good model for the testing phase. Further explanation on
this and the ML criteria, as well as the optimization can be found in (Kamen
and Su, 1999, Sect. 3.5, p. 94). Pointers to the working of MAP in the context
of GMMs can be found in (Gauvain and Lee, 1994). 9, 37, 47, 50, 53–56, 72, 87,
88, 91–93, 99, 117–119, 122, 123, 125, 128, 129, 131–133, 142, 145, 147–149, 152,
155–157, 163–165, 168, 173, 176–179, 188, 193, 195–198, 201, 202, 214, 217

Maximum Margin Classifiers

see also: SVM, Chapter 5. , 219
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Maximum Mutual Information

which feature(s) is (are) most discriminative for the classes; H(C|Xi), H:relative
entropy, C:classes, Xi:ith component of the feature vector. 37, 56, 61, 76, 87, 88,
91–93, 95

Maximum-Likelihood

Algorithms using the ML criterion require the evaluation of first and/or
second derivatives of the likelihood function.
Some of such algorithms are: •gradient descent, •conjugate gradient, •variations
of the Gauss-Newton method, •Expectation Maximization.
see also: Point-Estimate, Expectation Maximization (EM) Sect. 2.4.2. 47, 50–54,
56, 91–93, 95, 107, 204, 214, 215, 217

mean

Usually the mean/average parameter of a Gaussian distribution or a GMM.
µ = E[X] = 〈X〉 = µ′1 = κ1 = g′(0), where g(t) is the cumulant-generating
function (see: Generating functions) and κ the cumulant. 9, 46–49, 51–54, 56,
72, 78, 87, 92, 104, 105, 117–120, 122, 125, 132, 133, 135, 144, 145, 147, 156, 183,
196, 201, 202, 208, 209, 211, 212, 216, 217, 220

Mel

The Mel scale is a non-linear mapping of the frequency scale based on per-
ceptually equal pitch distances. Based on this fact, the word melody gave the
name of Mel. It is defined as:

mel =
1000

log(2)
log
( f req

1000
+ 1
)
= 2595 log10

( f req

700
+ 1
)
= 1127 loge

( f req

700
+ 1
)

It has been developed by STEVENS, VOLKMAN and NEWMAN in 1937. 44,
72, 81–83, 85, 87, 88, 90, 204

minimal average cost

An alternative cost measure to the EER. It is insensitive to unbalanced amount
of testing utterances among the different classes. As EER, it features also a
global threshold. see: Sect. 2.6.2.2.

model

is composed of statistical samples, parameters, their probability density func-
tion (pdf) or probability mass function (pmf); ev. parameter probability distri-
bution. 36, 66, 72, 115, 117, 125, 127

moments

Parameters measuring the shape of a distribution (usually a pdf).
see also: cumulant. , 207, 210, 220

raw moment

Synonyms: crude moment, non-central moment.
The kth (raw) moment is the expected value of Xk, X being the points (discrete
case) or the random variable of the distribution. This is roughly the location
or translation of the distribution.
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In the case f being a pdf:

µ′k = E[Xk] = 〈Xk〉 =
∫ ∞

−∞
xk dFX(x) =

∫ ∞

−∞
xk fX(x) dx ;

And in the discrete sample case:
1
n ∑

x

xk,

where we easily can see that µ′1 = µ is the mean. , 207, 208, 210, 220

central moment

Are the (raw) moments about the mean µ, the (raw) moments of the differ-
ences to the mean. They describe the translation-independent shape of the
distribution.
µk = E[(X− µ)k] = E[(X− E[X])k] =

∫ ∞

−∞
(x− µ)k dx ;

Some typical central moments: µ0 = 1 ; µ1 = 0 ; µ2 = σ2 = µ′2 − µ2 = σ2.
We note that the second central moment is the variance. The third central
moment is the "lopsidedness" of the distribution. , 207, 216

normalized moment

Synonyms: normalized central moment, standardized moment.
Are the central moment, normalized (divided) by the "k-variance ":

µ̂k =
µk

σk
=

E[(X− µ)k]

σk

Some typical ones have got own names:
µ̂1 = 0 ; µ̂2 = 1 ; µ̂3 = skewness ; µ̂4 = Kurtosis.

multivariate

Related to a multidimensional domain and thus working with vectors of
values instead of simple (e.g. scalar) values. 47, 101

N-gram

Language model (grammar) represented by statistical syntactical rules. Con-
taining the probability of occurrence of an ordered sequence of N symbols.
Indispensable in LVSR systems and core of phonotactic systems.

Naive Bayes Assumption

assumption that the pieces of evidence are conditionally independent: a1 and
a2 in: P(B|a1, a2) = P(a1|B) ∗ P(a2|B) ∗ P(B)/P(a1, a2).

non-target

Related to a class, which is not the true one (training) or not the hypothesized
one (testing). see also: target. , 219

normal distribution

Synonym: standard distribution. A distribution of Gaussian type having
zero mean and unit variance. see also: distribution, Gaussian distribution. 47,
50, 117, 119, 134, 202, 207, 211, 218, see Gaussian distribution

normalization

Acoustic features: CMS, feature variance normalization, feature warping; BM:
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Bayesian hypothesis test, likelihood ratio; Score Normalizations: 42, 58–61,
72, 78, 79, 84, 89, 99–102, 107, 108, 143, 148, 174–176, 181–183, 188, 189, 193, 209

Cnorm

Clustering used when there are several unidentified handsets; blind clustering
of the normalization data; Hnorm algorithm using each cluster as a different
handset. 78

Dnorm

distance normalization; normalize the score with the distance between the
client and the world models; the distance is derived by comparing scores from
client model scores on world model generated data with world model scores
on client model generated data. 78

Hnorm

handset normalization; detect the type of handset used and apply its normal-
ization; m,s: estimates of non-clients using the detected microphone type and
client model. 78

HTnorm

handset variation of Tnorm; m,s estimated by testing the input utterance
against handset-dependent impostor models. 78

Tnorm

test-normalization; matches the input utterance against a large number of
non-client models. From these, the impostor mean and variance are esti-
mated; avoids the possible acoustic mismatch between test and normalization
utterances. 60, 78, 107, 182

WMAP

MAP approach on likelihood ratio World-model Maximum A Posteriori
normalization. Produces a meaningful score in probability space.

Znorm

zero normalization; transform non-clients to N (0, 1), assuming Gaussian dis-
tribution; the transformed score represents the number of standard deviations
above the impostor average score. Same with the decision threshold; FAR
directly defined by the decision threshold. 78, 107

Observations

also called features, attributes, variables or measurements.

Point-Estimate

The result of an estimation step, usually maximizing a certain criterion. see
also: Maximum-Likelihood (ML), Maximum A Posteriori (MAP). 50, 53, 56,
117, 119, 122, 123, 132, 195, 204, 215

probability density function

Rarely also: probability distribution function, probability function.
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It describes the probability that the continuous random variable ( f (t)) takes a

value in a given interval (a..b): P(a ≤ X ≤ b) =
∫ b

a
f (x) dx.

For the normal distribution : f (x) =
e−x2/2
√

2π
.

It characterizes the random variable and is commonly noted P( ). It may not
exist (in contrast to the characteristic function).
For the discrete case, see: probability density function (pdf). , 206–209, 212,
213, 215, 216, 218

probability distribution

Depending on the adopted definition or the context, this term may reference
to: probability density distribution function (pdf), probability mass function
(pmf) or cumulative distribution function (cdf). , 206, 211, 212, 215

probability mass function

A function returning the probability that the underlying discrete random
variable takes the given value. It characterizes the random variable and is
commonly noted P( ).
For the continuous case, see: probability density function (pdf). , 207, 215, 218

random variable

Synonym: stochastic variable.
The values of a random variable can be seen as the outcomes of a random
process (an experiment).
It is a measurable function from a probability space. This means that the real
outcome value of the experiment can not be told with certainty, but only its
potential value. This also corresponds to possible future outcomes.
Random variables are either discrete or continuous.. 107, 206–208, 210, 211,
215, 218

range

The range of a matrix is the same as its column space, which is the set of all
possible linear combinations of its column vectors. Thus, we are using the
definition where the range of a function is the same as its image (as opposed
to the definition sometimes used where it is the co-domain). The dimension
of the range is called rank. , 218

rank

The rank of a matrix is at most the smaller of its dimensions (equal if the
matrix has full rank). It is the maximal number of linearly independent row
or column vectors, which compose the matrix. The row rank and the column
rank are always the same. If we speak of rank in JFA, we mean the rank of the
variability matrix U, which is equal to its number of columns (the nullity is 0).
It is at the same time the dimensionality of the nuisance sub-space and thus
of the vectors x. The rank of a matrix is thus also the dimension of its range.
104, 105, 115–118, 128–133, 135, 137, 153, 161–163, 172, 188, 195, 218
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RelAtive SpecTrAl transform

A fnormalization method. It uses band-pass filtering in the log-spectral do-
main and removes slow channel variations in order to smooth over short-term
noise variations and remove constant offsets. So it is a window-based filtering
technique that adapts itself over time. RaSta filtering is described in (Her-
mansky et al., 1991, 1992; Hermansky and Morgan, 1994). The filter can be
described as:

H(z) = 0.1 ∗ 2 + z−1 − z−3 − 2z−4

z−4(1− 0.98z−1)
. 34, 71, 83, 84, 86, 88–91, 188, 193, 219

Spectral Envelope

Boundary of the spectral properties of a small portion of speech (usually a
frame).

Support Vector

Samples along the maximum-margin hyperplanes. see also: Maximum Margin
Classifiers.

Support Vector Machine

A discrimination-based vector classification method, featuring a non-linear
decision boundary. A kernel function transforms the complex input space
to a space, which is more suited for linear discrimination; Limitation: Can
not handle the temporal structure of speech; A Combination with GMMs
is possible: Use GMM’s Likelihood values of each frame and each mixture
component as an input vector for the SVM. 3, 5, 7, 9, 30, 37, 38, 46, 47, 56, 71,
76, 87, 91, 93–96, 99, 106, 133, 136, 139–149, 173, 177–179, 183, 187–189, 194,
196, 198, 201, 202, 211, 214, 219

Support Vector Regression

SVM only takes the support vectors; SVR only ignores any training data that
are close to the model prediction.

target

During the training phase, an element related to the true class, and during
testing, an element related to the hypothesized class. see also: non-target. , 209,
216

Universal Background Model

Synonyms: World Model, root model. Model commonly estimated by pooling
together data of a rather large number of target class representatives. This
model may then be used for being adapted to the target data or as reference
for score normalization. 9, 36, 47, 50, 53–55, 70, 71, 88, 91, 93–95, 99, 100,
117–120, 122, 123, 125–127, 129, 131, 132, 142–149, 153, 158, 162, 168, 173, 176,
184, 193–195
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Glossary

utterance

The utterance designs an input element to our system seen from outside. It
may be a phrase, speech of a defined length (i.e. some seconds) or even whole
conversations. This data may be recorded beforehand, stored and handled in
an offline manner or it may be recorded in an online (live) manner as stream or
chunked on the fly. In the system, the utterance will be processed by sampling
(windowing) it to smaller working units, the feature vectors. Commonly, the
system will output a decision and/or a resulting score for a whole utterance
only. 3, 9, 10, 15, 20–22, 27, 28, 31, 36, 40–42, 45, 46, 56–61, 63–67, 69–71, 77,
89, 92, 93, 97, 99, 100, 103, 107, 109, 114–122, 124, 126, 127, 129, 132, 142, 145,
147–149, 153, 155–162, 164–166, 168, 171–176, 179, 181–184, 186, 187, 189, 191,
193–198, 201, 202, 205, 215

variance

Usually the variance parameter of a Gaussian distribution or a GMM. More
generally, the mean squared deviation (from the mean µ).
σ2 = 〈〈X〉〉 = 〈(X − µ)2〉 = E[(X − µ)2] = E[X2]− E[X]2 = E[X2]− µ2 =

µ′2− µ′21 = κ2 = g′′(0) =
1

∑x p(x) ∑
x

p(x) ∗ (x− µ)2, where µ′k are the raw mo-

ments (see: moments), κk the cumulants, and g(t) is the cumulant-generating
function (see: Generating functions). 45–47, 49, 52–54, 72, 84, 94, 103–105, 118,
131, 132, 134, 135, 156, 183, 201, 202, 209, 216, 217

vector

Synonyms: Feature vector. When speaking of a vector, in the pattern recogni-
tion domain, we usually mean a parametric vector, a multidimensional vector
of parametric values, the smallest unit representing observed data. 43–46, 49,
51, 52, 81, 84–87, 96, 100–107, 117, 122, 128, 132, 135, 143, 144, 187, 196–198,
202, 209, 212, 219

Viterbi algorithm

Algorithm developed by Andrew VITERBI in 1967. For finding the most likely
sequence of hidden states (Viterbi path) that result in a sequence of observed
events. 52, 96, 186

Vocal Tract Length Normalization

A f-based normalization strategy to remove speaker particularities that are
thought to be due to the length of its vocal tract. 34, 84, 114, 193

Voice of America

Data source.
Recordings of broadcasts emissions of the Voice of America station. Some
stations feature only the language local to the geographical area, while other
stations have languages mixed up.
For the NIST LRE, potentially only segments containing phone calls coming
to the broadcast station are used. 10, 29, 35, 63–66, 69–71, 100, 152–169, 172,
177–179, 196–198

220



Bibliography

More detailed reference information such as links to abstracts and PDFs, as well as
the bibliography source may be accessed online by appending the key given by the
go: tag to the end of http://florian.verdet.ch/thesis/bib/.
DOI identifiers can be accessed by appending them to http://dx.doi.org/.
Recurrent conference proceedings have got own entries and are cross-referenced.
The section numbers where the work is cited are listed at the end of each entry.

(Abe et al., 1990) M. Abe, K. Shikano, & H. Kuwabara, 1990. Statistical Analysis of
Bilingual Speaker’s Speech For Cross-Language Voice Conversion. Journal of the
Acoustical Society of America (JASA) 90(1), 76–82. go:AbeJASA90. 1.1

(Adda-Decker et al., 2003) M. Adda-Decker, F. Antoine, P. B. de Mareüil, I. Vasilescu,
L. Lamel, J. Vaissiere, E. Geoffrois, & J.-S. Liénard, 2003, August 3–9. Phonetic
knowledge, phonotactics and perceptual validation for automatic language iden-
tification. In (ICPhS, 2003). go:AddaICPhS03. 1.3.2

(Aizermann et al., 1964) M. Aizermann, E. Braverman, & L. Ronzonoer, 1964.
Theoretical foundations of the potential function method in pattern recognition
learning. Automation and Remote Control 25, 821–837. go:Aizermann64. 5.2

(ATVS NIST LRE, 2009) National Institute of Standards and Technology (NIST)
(Ed.), 2009, June 24–25. ATVS (Universidad Autonoma de Madrid, Spain) system,
In (NIST LRE, 2009). http://www.itl.nist.gov/iad/mig/tests/lre/2009

(accessed: July 2010). NIST LRE 2009 participant system description., go:lre09atvs.
6.5

(Auckenthaler et al., 2000) R. Auckenthaler, M. Carey, & H. Lloyd-Thomas, 2000,
January. Score Normalization for Text-Independent Speaker Verification Sys-
tems. Digital Signal Processing 10(1-3), 42–54, doi:10.1006/dspr.1999.0360.
go:Auckenthaler00. 2.5.2.1

(Barry et al., 2003) W. J. Barry, B. Andreeva, M. Russo, S. Dimitrova, & T. Kostadi-
nova, 2003, August 3–9. Do Rhythm Measures Tell us Anything about Language
Type? In (ICPhS, 2003), 2693–2696. go:BarryICPhS03. 1.3.2, 1.3.3, 3.3.1.2

(Baum et al., 1970) L. Baum, T. Petrie, G. Soules, & N. Weiss, 1970. A
maximization technique occurring in the statistical analysis of probabilistic

221

http://florian.verdet.ch/thesis/bib/
http://dx.doi.org/
http://florian.verdet.ch/thesis/bib/AbeJASA90
http://florian.verdet.ch/thesis/bib/AddaICPhS03
http://florian.verdet.ch/thesis/bib/Aizermann64
http://www.itl.nist.gov/iad/mig/tests/lre/2009
http://florian.verdet.ch/thesis/bib/lre09atvs
http://dx.doi.org/10.1006/dspr.1999.0360
http://florian.verdet.ch/thesis/bib/Auckenthaler00
http://florian.verdet.ch/thesis/bib/BarryICPhS03


Bibliography

functions of markov chains. Annals of Mathematical Statistics 41, 164–171,
doi:10.1214/aoms/1177697196. go:Baum70. 2.4.2

(Bayes and Price, 1763) T. Bayes & R. Price, 1763. An Essay towards Solving a
Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Com-
municated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philosophical
Transactions 53, 370–418, doi:10.1098/rstl.1763.0053. go:Bayes1763. 2.1

(Bellman, 1957a) R. E. Bellman, 1957. Adaptive control processes: a guided tour. New
Jersey: Princeton University Press. go:Bellman61. 2.4.1

(Bellman, 1957b) R. E. Bellman, 1957. Dynamic programming. Princeton University
Press. Republished: (Bellman, 2003) ([page ix]?)., go:Bellman57. 2.4.1

(Bellman, 2003) R. E. Bellman, 2003. Dynamic programming. Courier Dover
Publications, ISBN 9780486428093. go:Bellman03. 9.3

(BenZeghiba et al., 2009) M. BenZeghiba, J.-L. Gauvain, & L. Lamel, 2009, April 19–
24. Gaussian Backend design for open-set language detection. In (ICASSP, 2009),
4349–4352, doi:10.1109/ICASSP.2009.4960592. go:BenZeghibaICASSP09. 2.5.2.1,
3.5.2.2, 3.5.3

(BenZeghiba et al., 2008) M. F. BenZeghiba, J.-L. Gauvain, & L. Lamel, 2008, Septem-
ber 22–26. Context-dependent phone models and models adaptation for phonotac-
tic language recognition. In (INTERSPEECH, 2008), 313–316. go:BenZeghibaIS08.
1.2.1, 3.3.4, 3.4.3.2

(Bernardo and Smith, 1994) J. M. Bernardo & A. F. M. Smith, 1994. Bayesian
theory. Statistical Methods & Applications 3, 155–160, doi:10.1007/BF02589045.
go:Bernardo94. 2.1

(Bimbot et al., 2004) F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-
Chagnolleau, S. Meignier, T. Merlin, J. Ortega-García, D. Petrovska-Delacrétaz,
& D. A. Reynolds, 2004. A Tutorial on Text-Independent Speaker Verification.
EURASIP Journal on Applied Signal Processing, Special issue on biometric signal
processing 4, 430–451, doi:10.1155/S1110865704310024. go:BimbotASP04. 1.4.3,
2.4.3, 3.1

(Bonastre et al., 2008) J.-F. Bonastre, N. Scheffer, D. Matrouf, C. Fredouille,
A. Larcher, A. Preti, G. Pouchoulin, N. Evans, B. Fauve, & J. Mason, 2008,
January 21–24. ALIZE/SpkDet: a state-of-the-art open source software for
speaker recognition. In Proc. of Proceedings of Odyssey 2008 - The Speaker and
Language Recognition Workshop. International Speech Communication Association.
go:BonastreOdy08. 2.7

(Bonastre et al., 2005) J.-F. Bonastre, F. Wils, & S. Meignier, 2005, March 18–
23. ALIZE, a free toolkit for speaker recognition. In (ICASSP, 2005), 737–740,
doi:10.1109/ICASSP.2005.1415219. go:BonastreICASSP05. 2.7

222

http://dx.doi.org/10.1214/aoms/1177697196
http://florian.verdet.ch/thesis/bib/Baum70
http://dx.doi.org/10.1098/rstl.1763.0053
http://florian.verdet.ch/thesis/bib/Bayes1763
http://florian.verdet.ch/thesis/bib/Bellman61
http://florian.verdet.ch/thesis/bib/Bellman57
http://florian.verdet.ch/thesis/bib/Bellman03
http://dx.doi.org/10.1109/ICASSP.2009.4960592
http://florian.verdet.ch/thesis/bib/BenZeghibaICASSP09
http://florian.verdet.ch/thesis/bib/BenZeghibaIS08
http://dx.doi.org/10.1007/BF02589045
http://florian.verdet.ch/thesis/bib/Bernardo94
http://dx.doi.org/10.1155/S1110865704310024
http://florian.verdet.ch/thesis/bib/BimbotASP04
http://florian.verdet.ch/thesis/bib/BonastreOdy08
http://dx.doi.org/10.1109/ICASSP.2005.1415219
http://florian.verdet.ch/thesis/bib/BonastreICASSP05


Bibliography

(Boser et al., 1992) B. E. Boser, I. M. Guyon, & V. N. Vapnik, 1992. A Training
Algorithm for Optimal Margin Classifiers. In D. Haussler (Ed.), 5th Annual ACM
Workshop on COLT’92, 144–152. go:Boser92. 5.2.1

(Brümmer and du Preez, 2006) N. Brümmer & J. du Preez, 2006, April–July.
Application-independent evaluation of speaker detection. Computer Speech & Lan-
guage 20(2-3), 230–275, doi:10.1016/j.csl.2005.08.001. go:BrummerCSL06. 2.6.2.2,
3.6, 3.6.1

(Brümmer et al., 2009) N. Brümmer, A. Strasheim, V. Hubeika, P. Matějka, L. Burget,
& O. Glembek, 2009, September 6–10. Discriminative Acoustic Language Recog-
nition via Channel-Compensated GMM Statistics. In (INTERSPEECH, 2009),
2187–2190. go:BrummerIS09. 1.4.3, 4

(Brümmer and van Leeuwen, 2006) N. Brümmer & D. van Leeuwen, 2006, June 28–
30. On calibration of language recognition scores. In (ODYSSEY, 2006), 1–8,
doi:10.1109/ODYSSEY.2006.248106. go:BrummerOdy06. 2.6.2.2, 3.6.1

(Burget et al., 2009) L. Burget, M. Fapšo, V. Hubeika, O. Glembek, M. Karafiát,
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(Matějka et al., 2006) P. Matějka, L. Burget, P. Schwarz, & J. Černocký, 2006, June 28–
30. Brno University of Technology System for NIST 2005 Language Recognition
Evaluation. In (ODYSSEY, 2006), 57–64. go:MatejkaOdy06. 1.4.1, 2.3.1, 2.5.2.2, 24,
3.3.2, 3.4.1, 3.4.1, 3.4.1
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