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Introduction

I. Motivation

Real-time computing is spreading more and more in our daily lives through avionic systems, automo-
tive systems, multimedia, telecommunications, robot controllers, etc. A real-time system operates in
a dynamic environment and must constantly be adapted to changes in that environment. The correct-
ness of critical real-time systems is determined partly by the functional results of computations, and
partly by the time at which results are produced.

The model driven development of real-time systems can take place over several years, and designers
have to cope with new hardware/software/standards during the design process. Moreover, software
development costs are sharply impacted by wrong design choices made in the early stages of devel-
opment, in particular during the design phase, but often detected after the implementation. Timing
vulnerabilities may result in catastrophic failures, hence they are among vulnerabilities which must be
detected at the design phase of the life-cycle development, to ensure the feasibility of the system under
development over a reasonable time-to-market. This kind of prediction is based on the schedulability
analysis.

The schedulability analysis is one of the main analyses required to ensure the timing correctness of
a real-time system. The real-time scheduling theory has been devoted to propose di�erent models
providing several levels of expressiveness, and di�erent analytical methods with di�erent levels of
accuracy.
Recently, di�erent approaches taking bene�ts from the model driven engineering ease the use of real-
time scheduling theory during the design phase. Real-time designers can operate during the analysis
phase, since di�erent analysis tools based on di�erent input analytical models facilitate the utilization
of the scheduling theory.

Due to the criticality of real-time systems, the choice of the appropriate validation tests and/or di-
mensioning techniques has a relevant impact on the development life-cycle. The utilization of the
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real-time scheduling theory in practical cases could be pro�table. Unfortunately, it is not su�ciently
applied and research results have been exploited in industry only to a modest extent to date. The steep
learning curve behind many of the current analysis methods has been one of the major impediments
to their adoption. The utilization of current solutions is driven by the real-time designer's experience.
However, experts in both design and analysis of real-time systems are uncommon. Determining what
type of an analysis technique or a model to use for a given system-design situation is di�cult. Yet,
collecting the relevant information to de�ne the analysis context may be laborious.

By taking the criticality of hard real-time systems into consideration, the lack of scheduling analysis
background can lead to an imprecise analysis result due to a wrong choice of analysis contexts or analysis
tests. Indeed, the conception process which starts from the modeling to analysis phase provided by
current solutions may lead to a potential gap (measured as pessimism and over-dimensioning) due to
the estrangement between the abstract model and the practical application.

II. Thesis objectives and Solution overview

The thesis contributions are driven by two essential purposes.
The �rst objective is to help designers to cope with the analysis di�culty, then to orient them in
order (1) to choose the most appropriate analysis tests and (2) to ease the design modi�cation due
to re�nement or dimensioning actions. Therefore, designers will be guided to build scheduling-aware
models.
The second objective is to enhance the applicability of the real-time scheduling theory. Nowadays, only
few works are adopted and give a good satisfaction due to their impact on the development life-cycle of
real-time systems. Therefore, it is needful to provide an easy way for transferring the research studies
from academia to industrial practice.

To achieve the above objectives, we propose a �exible way to unify modeling and analysis e�orts for
supporting schedulability analysis. We use the model driven engineering to ensure a good utilization
of existing solutions and to complete their provided results by exploiting di�erent research studies.
Consequently, we propose a framework called MoSaRT (Modeling-oriented Scheduling analysis of Real-
Time systems). It is an intermediate framework between real-time design languages and schedulability
analysis tools.
The MoSaRT framework o�ers dual capabilities in order to have a chain of transformation and veri�-
cation starting from design languages down to analysis tools.
First capability is the MoSaRT design language that is a speci�c modeling language dedicated to
designers. It supports designers during the design phase to dimension their models, and to analyze their
applications with several third-party tools, without requiring a deep understanding of the schedulability
analysis techniques.
Second capability is the MoSaRT analysis repository which is dedicated to be fed by real-time analysts
in order to play an advising role and to help designers. The goal of the analysis repository is to identify
which analysis tests are applicable to the design model.
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III. Thesis structure

The remainder of the manuscript is composed as follows.

The research foundations part contains three chapters. It starts by Chapter 2, which introduces sev-
eral generalities related to the real-time systems and highlights the general structure of the systems
on which we are interested in this thesis. Chapter 2 also gives an overview about the software design
area and its importance throughout the development process.

Chapter 3 presents brie�y di�erent aspects related to the real-time scheduling theory and discusses the
common timing properties and constraints determining the behavior of real-time systems. An overview
of di�erent kinds of analyses studying the feasibility and the schedulability of real-time systems is also
presented.

Chapter 4 presents some capabilities related to the use of model driven engineering and their impact
on the design of real-time systems. It discusses and presents a comparison of some standard modeling
languages and analysis tools.

The contribution part starts by Chapter 5, which highlights the work positioning by presenting di�er-
ent problem statements and illustrating them via some motivating examples. Chapter 5 describes the
objectives we aim to achieve in this thesis, and gives a brief idea about our proposals.

Chapter 6 is devoted to present the MoSaRT design language. It introduces our contribution referring
to the research foundations and describe both functional and operational elements, and their seman-
tics. Rules enabling a good usage of the MoSaRT design language are presented.

Chapter 7 highlights di�erent scheduling characteristics helping designers and easing the use of real-
time scheduling theory. It presents an approach based on the analysis repository (i) to improve the way
designers check their system designs, and (ii) to increase the applicability of real-time scheduling theory.

Chapter 8 introduces the objectives of the MoSaRT framework, describes the structure of the MoSaRT
framework and its various capabilities. The framework is illustrated through several case studies.

Chapter 9 summaries the thesis and discusses obtained results and perspectives.
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Abstract

This chapter is devoted to discuss several generalities related to the real-time systems. Section
I presents brie�y the de�nition of real-time systems and their classi�cations. The general
structure of the systems on which we are interested in this thesis has been highlighted in
Section II. Finally, Section III is devoted to give an overview about the software design area
and its importance throughout the development process.
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I. REAL-TIME SYSTEMS

I. Real-time systems

The main intent of this section is to describe the domain of interest for the current work.

I.1. De�nition of real-time systems

I.1.a. Control/command systems

Control/command systems are usually dedicated to handle the execution of a process of the physical
world. The command synthesis serves to react and to adjust the system regarding to given requests.
Since commands are produced through actuators, requests are generated after measures done on one
or several sensors.

I.1.b. Embedded systems

An embedded system is a set of cooperating hardware and software elements dedicated to accomplish a
speci�c mission. The architecture of an embedded system is often composed of di�erent subsystems that
are distributed on several equipments. They communicate with their environments by taking decisions,
performing calculations and reacting accordingly. Yet, embedded systems are subjected to di�erent
environmental and resource constraints like power consumption, size, cost, resources and memories,
etc. One of the key points of embedded systems is that the energy is also embedded (batteries, fuel,
ambient energy production, etc.).

I.1.c. Real-time systems

A real-time system is any information processing system that must interact with a correct behavior to
input events within speci�ed timing bounds [BW09]. In other words, a real-time system has to satisfy
both the following requirements types [Sta88]:

ˆ Logical correctness: the result produced and computed by the system has to be correct.

ˆ Timing correctness: the correct behavior of the system is also de�ned by the timing of the
output. A result, that is functionally correct, but not temporally correct (e.g. not respecting the
deadline), is considered as a wrong behavior. Moreover, a delay is considered as an error that
can lead to severe consequences. Note that this is di�erent from requiring the interaction to be
as fast as possible. The timing correctness is usually modeled as deadlines which have to be met.

When embedded control/command systems are subjected to timing constraints, they are considered as
real-time systems. Indeed, embedded control/command systems are often real-time systems because
the embedded computing resources have to �t the computational requirements of the control. For
instance, an over powerful central processing unit is requiring a lot of energy (e.g. battery), while
for an adapted central processing unit, the duration of the execution of the treatments cannot be
neglected.
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I.2. Classi�cation of real-time systems

The classi�cation of real-time systems may be based on di�erent criteria. In the following, we classify
the real-time systems according to their criticality in two categories:

ˆ The soft real-time systems are systems which tolerate timing failures, possibly because those
failures do not lead to a catastrophe, like telecommunication and multimedia systems [AMK98].

ˆ The hard real-time systems have to meet the required deadlines. Otherwise, something unac-
ceptable can occur. According to the de�nition provided by Buttazzo [But11], a hard real-time
system has to be capable of executing tasks - if missing their deadlines can cause catastrophic
consequences - on the environment under control. When the real-time system is used to super-
vise a critical environment, it is called a safety-critical system (e.g. automotive [AUT], avionics
[DH92], supervision of nuclear power plants [NSST98], etc.).

Real-time systems are implemented to be used in di�erent contexts: they can be used as calculating
and processing systems, or as system controllers. Most soft real-time systems are used as calculating-
oriented systems like video games. Most hard real-time systems are used as control-oriented systems
like the anti-lock braking system given as an example below.
In this work we are interested in hard real-time systems which are not necessarily control-oriented
and/or safety-critical.

Example: Anti-lock Braking System

When the car driver uses the brake, the anti-lock braking system (ABS) as a controller has to use the
environment information (like the wheels speed and the brake pedal) and control the brake operation
at the right instant (fractions of a second). Both the functional result (brake activation) and the
timing behavior (time at which the functional result is produced) are important in ensuring the car
and passengers safety. Then, we can say that the ABS is an embedded, hard real-time, control-oriented
and safety-critical system.

Synchronous and asynchronous approaches

Note that this approaches classi�cation contains several notions (like RTOS, preemption and semaphores)
which will be presented later.
The synchronous approach has been developed to integrate the determinism into concurrent program-
ing [BB91, Hal92]. The underlying implementation of synchronous approaches is either event based or
time-unit based. In event-based implementations, an event is triggering a function, and its execution
duration is supposed to be shorter than the inter-arrival delay between successive events. This hypoth-
esis supposes that the computational resources are over powerful. Therefore, in embedded systems,
this can be achieved in a time-unit-based implementation: the system considers, at each time unit, the
events that have arrived since the previous time unit. It executes the functions related to these events.
The synchronous hypothesis is then that the execution requirements to handle all events do not take
more than the time unit. Yet, delaying the response to an event by a time unit is not harming the
behavior of the system. In both cases, the system can be non-preemptive. Then, there is no need for all
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the functionalities (such as semaphores, mailboxes, etc.) of a real-time operating system (RTOS). The
advantage of the synchronous approach is its easy implementation and its design veri�cation. However,
the synchronous hypothesis is not �tting for several real-time applications.
The asynchronous approach takes the time of the system execution into account. Moreover, tasks may
be preempted (interrupted) due to the arrival of events. The system behavior (e.g. event interceptions,
task preemptions, execution priorities, etc.) is managed by a RTOS. Events can be produced by the
environment via sensors. In this case we talk about event driven programming (also called event
triggered) [Kop91]. Nonetheless, a real-time system can be also conceived to be dependent of the
internal clock instead of being dependent of the controlled environment. This kind of systems is called
the time driven programming [Kop91]. In the current work, we are focusing on the asynchronous
approach.

II. General Structure of Real-Time Systems

While most embedded real-time systems are executed on electronic circuits, implementing several
protocols and executing various algorithms, a generic architecture for the notion of a real-time system
is illustrated in Figure 2.1. This architecture represents a computer-based system interacting with its
environment. The control system acts on the process through actuators and gets information about
the environment using sensors.

Figure 2.1: A generic architecture of a real-time system

A real-time system consists of a software structure executing on a hardware platform.

II.1. Hardware Structure

The hardware structure has an important impact on the real-time system's execution and also on
the system's analyzability. A hardware platform is a composition of a set of elements which can be
processors, memories, networks, input/output cards, storage supports, etc. (See Figure 2.2).
The interaction between di�erent hardware elements leads to various types of architectures. We can
classify these types in three categories:
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ˆ Uniprocessor architecture: the hardware structure is composed of a unique processor. This
processing unit is a common resource for software elements composing the software application.
A processor or a central processing unit (CPU) is an electronic circuit characterized by several
properties like the internal-clock frequency, the energy consumption, etc.

ˆ Multiprocessor or multicore architecture: in this case, the hardware structure contains several
processors (or cores) sharing memories. So, by multiprocessor architecture we mean the MIMD
(Multiple Instructions on Multiple Data) architecture category [Fly72]. The MIMD architectures
can have a shared memory or distributed memories:

� A shared memory multiprocessor platform enables access from any processor of the system
to any location within a common memory, through the interconnection network or via a
hierarchical way involving cache memories.

� In case of a distributed memory multiprocessor platform, each processor accesses its own
memory and communicates with the memory of other processors via an interconnection
network.

ˆ Distributed architecture: the hardware structure is composed of a set of nodes communicating via
networks. Each node may be represented as a uniprocessor or a multiprocessor architecture (see
Figure 2.2). Furthermore, the networks are exploited by remote software elements to exchange
messages. In real-time systems domain, networks can be classi�ed according to the size (e.g.
local area network, wide area network, etc.), the physical support and topology [EP93] (e.g. optic
�ber, wireless, bandwidth, etc.) and the access protocol (like Controller Area Network [DBBL07],
Avionics Full DupleX Switched Ethernet [Sch07], Asynchronous Transfer Mode [Gor95], etc.).

Figure 2.2: A hardware structure of a real-time control system

II.2. Software Structure

The software structure of a real-time system consists of two main parts: the real-time operating system
and the application program (see Figure 2.3).
The real-time operating system is the bridge that links the application program to the hardware
structure. In the literature, the de�nition of the real-time operating system is often related to �kernel�
and �executive� terms. Hence:
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ˆ Kernel: it manages the hardware resources access, and provides a scheduler (in case of an on-line
scheduling) or a dispatcher (in case of an o�-line scheduling)1 deciding which part of program
has to be executed on which processor.

ˆ Executive: it provides a set of drivers modules and libraries facilitating the �les management,
the communication management, etc. The real-time executive includes the real-time kernel.

ˆ Real-time operating system (RTOS): it provides a set of means ensuring the system maintenance
and the multi-tasking through several services. The RTOS plays the role of a middle-ware
between end-users or developers and the real-time executive.

Some RTOS and executives possess their proprietary API (Application Programing Interface), while
other RTOS are conforming to standards like Osek/VDX [G+ ], POSIX [Wal95] de�ning speci�cations
which have to be respected by RTOS implementations.

Figure 2.3: A software structure of a real-time control system

The application program corresponds to the software that executes di�erent functionalities enabling the
system to control its environment. The application is often structured in several tasks, where every task
ensures a sequence of operations in order to perform treatments, to respond to events, to send messages,
etc. Some programming languages handle tasks directly by encapsulating the operating systems layer
(like Ada language [BW01]). However, other languages (like C or C++) require the utilization of the
real-time operating system for tasks management. The notion of �task� represents the basic entity
considered as the stepping stone of the development of real-time systems using RTOS. The real-time
operating systems provide various services enabling di�erent kinds of interactions between tasks like
task communications, mutual exclusions, etc.

1On-line and o�-line scheduling notions will be discussed later
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II.3. Towards a real-time system design

For obtaining a real-time application structured in di�erent tasks, the development of real-time systems
has to be elaborated through a set of services ensuring the respect of system's speci�cations, such as,
the timing constraints (e.g. the execution time of a task has to not miss the deadline). However, any
incoherent development may cause a non-compliance and may lead to a severe violation of the timing
constraints. Whereof, a special attention is dedicated to the design phase which plays a key role in the
real-time system's development �ow.

III. Real-Time Systems Design

To understand the importance of the design during the life-cycle of a real time system, it is preferable
to start by highlighting the whole development process. Then, we emphasize the speci�cities of the
design phase (which is a step of the development process) of real-time systems.

III.1. Real-Time Systems Development

Embedded real-time systems have been increasingly used in di�erent domains. For instance, nowadays,
a car is made of an assembly of many systems ensuring the various functionalities of the vehicle.
Hundreds of functions are realized or controlled by softwares (e.g. Anti-lock Braking System, Global
Positioning System, Airbag, etc.).
The development of real-time systems is di�cult, because they are part of a physical environment
and they must meet timing requirements. Di�erent characteristics should be considered through the
development of a real-time system. Some of these characteristics are [TKK+ 98]:

ˆ Anticipation of the problems and the risks.

ˆ Easing the cooperation of multiple actors.

ˆ Shortening the development time.

ˆ Controlling the complexity.

To understand the needs in terms of system engineering, we choose the automotive sector to illustrate
the growing utilization of real-time embedded systems.

Illustration: real-time systems development in the automotive domain

In the automotive domain, developing real-time embedded systems engages two stakeholder categories:
carmakers (or manufacturers) and their tier suppliers. The objective of the carmaker is to market
vehicles which satisfy the needs and the customers expectations. Yet, a carmaker has to respect the
manufacturing standards and norms. Then, they aim to enrich vehicle by a set of real-time systems
in order to ful�ll the needs of the customers. Since manufacturers have to ensure the sustainability
and the assembly of embedded systems which require a very high-knowledge, their suppliers have the
expertise enabling to concretize the expected systems (see Figure 2.4).

26



III. REAL-TIME SYSTEMS DESIGN

Figure 2.4: Interaction between car-manufacturers and their suppliers

Since, software and hardware technologies become a dominant factor for the system complexity, so-
phisticated development approaches for complex embedded systems have been developed. Then, as
di�erent types of computer systems, the development of real-time embedded systems may follow dif-
ferent life-cycles starting from the requirement collections to the system integration, its utilization and
maintenance. In the sequel, we consider the development of embedded software which is a component
of the whole embedded system development elements.

III.1.a. Software development of real-time systems

The software engineering is using methodologies based on the scienti�c knowledge. In other words,
the software engineering consists in the development of techniques and tools allowing to produce a
software respecting its constraints.
A software product is a solution suggested to address some problems. Although, �nding a solution
does not mean the end of problems, because, there are quality criteria that may be satis�ed globally
or partially by a software development [Bro87]. Some of those criteria are:

ˆ Determinism: the most important quality criteria. The software has to provide the same results
under the same conditions.

ˆ E�ciency: even if a software optimizes the time, the size, etc., the optimization has not to have
a negative impact on the software, and the e�ciency characteristic has to meet the user needs.
This criterion is very important in embedded applications.
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ˆ Re-usability: the ability of the software to evolve or to be used at least partially in order to
develop another program, without modi�cation or with minor modi�cations.

ˆ Robustness: the ability of the software to maintain its performance despite changes of operating
conditions or the presence of uncertain parameters. Indeed, the software must react well when
it deviates from its normal use.

ˆ Portability: the ease of the software utilization in di�erent implementations. We distinguish
between the portability and the compatibility. The compatibility is a term rather used to describe
the ability of computers to exchange data or to execute the same program.

Generally, the software development may be realized by following a cycle called the software life-
cycle. The software development cycle is a set of steps transforming the requirements to an assisted
treatment process. This latter is derived from users and utilization's environments to satisfy these
requirements (entry points). The treatment process is decomposed to a set of steps in order to facilitate
the monitoring, the veri�cation and the validation of the project.
Despite the di�erences in the development cycles, all of them consist of several phases which are
staggered by time:

ˆ Requirements speci�cations;

ˆ Preliminary Design;

ˆ Detailed design;

ˆ Implementation;

ˆ Integration;

ˆ Validation;

ˆ Exploitation and utilization.

Each phase ends with a set of deliverables that have to be validated by the responsible actors (i.e.
designers for design phase, developers for implementation phase, customers for exploitation phase,
etc.). Then, the development process moves to the next phase by using the deliverables of the previous
phase as inputs.
There are many kinds of software development cycles, like the V-shaped approach, the spiral-shaped
approach, the waterfall approach, etc. Hereafter, we introduce the V-shaped approach as an example
of the software development cycle.

III.1.b. Example of a development-cycle: V-shaped approach

The V-shaped approach is one of the most famous software development life-cycle. It has been sharply
adopted in industrial domains, especially via the technical processes de�ned by ISO 15288/NF Z 67-288
standard [dS13].
The V-shaped life-cycle is composed of two slopes: a downward slope and an upward slope. The
downward slope shows the progressive stages from the speci�cation to the implementation. The upward
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slope depicts a set of tests to verify and/or validate the stages of the downward slope. Moreover, every
step from the downward slope is matched with a step from the upward slope (see Figure 2.5). So, we
can say that the V-shaped life-cycle focuses on the veri�cation (e.g. testing) and validation.

Figure 2.5: V-shaped approach

The steps composing the V-shaped life-cycle are detailed as follow:

ˆ Speci�cation: this phase is de�ning the system requirements. The speci�cation is expressing
what the system must carry out and the qualities that the system must have. We separate the
requirements into two categories: functional and non-functional (also called extra-functional)
requirements. While functional requirements de�ne the system capabilities, non-functional re-
quirements focus on performance, design and quality constraints. Indeed, for real-time systems,
the timing constraints represent a sub-set of the non-functional requirements. The speci�cation
can be expressed informally in natural language, but it can be also expressed in a formal or
semi-formal language.

ˆ Design: this phase can be divided in two steps, preliminary design and detailed design. The
design phase de�nes the internal structure of the system referring to the requirements that are
previously imposed. The preliminary design leads to a general system architecture composed
by a set of components, modules and concurrent tasks. Due to the speci�city of the real-time
systems, dividing the architecture into modules and concurrent tasks enables to obtain static
and dynamic system views. Detailed design permits to detail the preliminary design of the
system until getting a detailed description of each component and specifying data structures,
communication protocols, tasks content, etc. At the design phase, it is possible to use many
design formalisms.

ˆ Implementation: this step is used to implement the concepts proposed via the design phase.
Through the implementation step, every component is encoded in a programming language.
Indeed, for real-time systems, the programming language can be a concurrent language (e.g.
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Ada) or a sequential language used in conjunction with a real-time operating system (e.g. a
real-time executive with C).

ˆ Module Testing: during this phase every independent component is checked in order to verify
the respect of its speci�cations and the correct behavior under all circumstances.

ˆ Integration Testing: this phase regroups tests according to the module testing phase. Moreover,
the integration testing step checks the components interactions, the component relationships, the
task functionalities, the communication mechanisms, the task synchronization, etc.

ˆ Validation: it is a phase for checking that the developed software respects the requirements
expressed in the speci�cation phase. Furthermore, the end-customers can check if the developed
software responds to their expectations.

The development e�ciency di�ers from an approach to another one. Although, if an error occurs in one
of the early phases, it would spread to the other successive phases, and changes may not be taken into
account until the end of the last phase. This leads to an additional cost of the software development
especially in terms of time-to-market.

III.1.c. Time-to-Market concept

�Time-to-market� is a concept representing the duration required to develop and commercialize a
product. Nowadays, with the rapid development of technology and the growth of users demands,
�Time-to-market� becomes an important criterion contributing in the product success, particularly in
areas where demands and norms evolve rapidly.

III.1.d. Hardware and software parts

Since a real-time system is composed from the real-time software and the hardware components, the
hardware part has to be taken into consideration during the life-cycle development. We recall that
a part of real-time constraints is related to the architecture platform on which the software will be
executed. Indeed, considering the hardware part during the development enables to get a �nal product
respecting its real-time constraints.
The narrow link between the software and the hardware means that the software development of
real-time systems is often in�uenced by the hardware. Although we have focused on the software
development of real-time systems, the complexity of hardware part and software part of a real-time
system requires more suitable development approaches. As a solution, more sophisticated development
approaches called hardware/software co-design methodologies have been proposed [LHG98]. Figure
2.6 depicts one of the traditional concurrent development process. The hardware/software co-design
approach focuses on the combination of hardware and software prospects at an early development
stage. The needs are met by exploiting the synergy between hardware and software through their
concurrent development.
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Figure 2.6: General hardware/software development approach

III.1.e. Discussion

Recently, major advances have been announced. They are related to several methodological aspects
regarding the system design and its correctness referring to its requirements. Conventionally, the veri-
�cation is done at a very late stage of the system's life-cycle. However, in case of an early development
�aw, the cost of backtracking in the cycle is usually very high. In a number of cases, the malfunction
is due to the design errors.
Moreover, formally, the integration of the hardware/software subsystems was a very hard task to
be managed by manufacturer's designers. However, in complex industrial systems (e.g. avionics,
automotive, etc.), many modules developed for a special product are reused for another ones. Therefore,
at the design stage, designers already have a number of information for a primary system analysis.
Yet, the time partitioned systems that have appeared in the aerospace domain due to the Integrated
Modular Avionics (IMA) [C + 97] need an early dimensioning during the design phase [CRS11].
Hence, currently, several actors of real-time systems �eld apply the veri�cation methods at an early
stage of the development, in particular during the design phase [HS09, APK+ 11, ZBG+ 08].

III.2. Software Design of real-time systems

Experiences on real-world applications shows that software development costs are sharply impacted by
wrong design choices made in the early stages of development but often detected after implementation.
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Several studies have reported that 80% of the money spent in development goes to correcting defects
[NIS02], and most timing-related vulnerabilities are detected very late in the development process (i.e.
during the implementation phase or the system integration phase). Accordingly, the design phase of
real-time systems has been recently treated as one of the earliest stage where the validation of timing
properties can save over 50% of the costs required for the developement process [SZP+ 03].
Consequently, in the current work, by the software design of real-time systems we mean (i) the modeling
step and (ii) the real-time scheduling analysis step of those systems. The real-time design is an iterative
process where modeling and analysis steps complete each other2.

III.2.a. Design methodologies of real-time systems

The modeling is an abstraction level in the development �ow. So, we can say that a model is an
abstraction, a simpli�cation of a system that is su�cient to understand the modeled system and
answer the questions that are raised about its performance. Since real-time software is typically
a set of communicating concurrent processes, through models and the modeling process, designers
(or modelers - to be more accurate -) extract the basic system parameters, especially the timing
ones. Several methodologies have been proposed for modeling real-time systems [Gom08]. Below, we
introduce some methodologies items:

ˆ Component based-design [HNN05]: a software component is a module or object which performs a
speci�c function according to a set of speci�cations. Components are software units with provided
and required interfaces. Every software component is used to encapsulate some functionalities
which are only accessed via the component's interfaces. In case of real-time system's design, the
component contains also introspective interfaces, that are used to retrieve non-functional proper-
ties like timing requirements. The whole system is built by assembling the set of components and
connecting their interfaces. Hence, the application can be split into clearly separable and reusable
blocks, improving the organization of the product as well as its reusability and modularity.

ˆ Data-�ow design [Gom84]: various approaches based on the data �ow methodology aim to model
the system functions as well as the data-�ows and data stores between functions. Several methods
serve designers to decompose the system into modules with a high cohesion and low coupling.
Typically, a design of a real-time system following a data-�ow methodology is composed of a high
level control oriented sub-system which executes di�erent data processing corresponding to each
state of the system. Furthermore, some researches consider that it may be important to study
separately control and data parts. This separation gives a more structural view of the model and
facilitates the modi�cation and the re-use of di�erent parts.

ˆ Platform-based design [SVN07, SVCBS04]: foundations of platform-based design consist in pro-
viding a high level of abstraction by modeling only the important system parameters, and limit-
ing the design space exploration to a set of available components. Platform-based design elicits
identi�ed abstraction layers. This is allowing a separation of concerns between functional ar-
chitectures and abstractions of possible implementations. For instance, a platform-based design
methodology decouples software layer from changes in hardware layer. Indeed, platform-based

2 In the literature, the terms �design� is often used to only indicate the modeling process.
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design methodologies are carrying out the design as a sequence of re�nement steps by using
platforms at various level of abstraction. In other words, modeling goes from an initial abstract
model related to the application towards the �nal speci�c model containing detailed properties
about the platform. Then, the whole system modeling is a process consisting of mapping the
application model to the architecture platform.

Each design approach following one or several above-mentioned methodologies has its advantages and
its drawbacks. At this stage, we do not emphasize on the utility of each approach rather than what
we expect from a design approach during the modeling phase. Thus, whatever the methodology is, we
expect the following characteristics:

ˆ A separation between the design level and the implementation level, de�ning semantics of abstract
descriptions.

ˆ A close connection between software and hardware parts (see Figure 2.7) by saving the inde-
pendence of each part to ensure the maintenability and extendibility of each part. That can be
achieved by using, for instance, intermediate interfaces.

ˆ Taking the quality-of-service (QoS)/non-functional properties into account, in particular, the tim-
ing properties in order to obtain an analyzable design (i.e. a design which provides all necessary
elements to check the timing constraints).

Figure 2.7: Real-time system's design: elements of software system architectures

We have just introduced some traditional families of methodologies without comparing their character-
istics. Due to the diversity of the modeling approaches, a need is perceived and consists of performing
the temporal veri�cation of real-time systems independently of the modeling approach used. We devote
Section III of Chapter 4 to highlight some standard modeling languages in which we are interested.
Once the modeling is made, the analysis step may be launched in order to detect inconsistencies, errors,
and omissions in the requirements. In our work, we are interested solely in the real-time scheduling
analysis.

III.2.b. Temporal veri�cation of real-time systems

To verify a system, testing can be used. Testing [Hoa69] is the process of executing a program to check
that it satis�es speci�ed requirements, and also to identify di�erences between expected and obtained
results. However, testing can be used to show the presence of bugs but never to show their absence. In
addition, bugs may be found during later developing process stages. So, this kind of techniques is not
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su�cient in the context of hard real-time systems. In order to avoid any impact on the time-to-market
and the reliability of critical system, the early veri�cation can be used.
Referring to the context of real-time systems (when the veri�cation is a part of the real-time scheduling
analyses), the veri�cation is based on three main approaches: model-checking approach, simulation
approach and analytical approach.

ˆ Model-checking methods represent an approach using the formal veri�cation. Model-checking
methods are based on an exhaustive exploration of all the system states de�ned by an abstract
design. The design is expressed in a formal language such as Petri nets [CEP03], temporal logic
[CES86], timed automata, etc. While, the model checking methods are dedicated to �nite-state
systems, a system with a very high number of states may lead to a state explosion problem.
Generally, the analyses via model-checking methods are safe (i.e. conservative).

ˆ Simulation consists in studying the behavior of the system. Generally, a simulation is to run under
some speci�cations in order to verify the performance in the most signi�cant system conditions.
Nevertheless, it is impossible to perform exhaustive simulations for every possible system's state.
The simulation is verifying the most representative cases. So, the analyses via the simulation are
not safe in general, but they can be considered as safe under some conditions.

ˆ Analytical methods consist in analyzing the system with a set of equations. Mathematical equa-
tions are used to calculate various criteria like the processor utilization, tasks response-time, etc.
Thus, giving the results computed by these equations, the system's behavior is described. When
a design complies with the conditions of some analytical methods, the scheduling analysis may
be performed by using these convenient methods. Generally, the analytical methods are safe.

Whereas we are interested in all these kinds of temporal veri�cations, in this thesis, we emphasize the
analytical methods based on the scheduling theory. The scheduling theory proposes several analytical
methods and simulations in order to perform the analyses e�ciently. Hence, the scheduling analysis
might lead the analyst to rewrite some speci�cations, to reassess the initial analysis, or to correct and
re�ne the design's requirements. Therefore, Section 3 is devoted to present an overview of the real-time
scheduling theory.

III.2.c. Illustration: real-time systems design in automotive domain

The quest for a rapid new system introduction has induced most car-makers to change the scope and
the structure of their development process. In general, the relationship between the car-maker and its
suppliers can be as [Vol04]:

ˆ Supply proprietary which is a set of standard items based on a proposition made by the supplier.

ˆ Black box: in which the car-maker de�nes the functional features, but the product development
responsibility is totally left to suppliers.

ˆ Concurrent engineering is a mutual exchange of competences and information between the car-
maker and a tier-supplier for a common system's development. Concurrent engineering develop-
ment is considered a very promising way in order to achieve relevant results in time-to-market
shrinkage and cost reduction.
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In the context of real-time systems, the manufacturers adopt increasingly the introduced design
methodologies for improving the quality and the re-usability. They intervene during two particu-
lar development steps: the design of systems and their integration into vehicles. Moreover, the vehicle
development may take more than 24 months and the cost of embedded systems represent about 25%
of the car manufacturing cost [PBKS07]. Hence, due to the concurrency pressure, manufacturers may
specify the design and delegate the implementation of real-time systems (or subsystems) to various
suppliers that ensure the software coding by respecting the speci�ed design. Manufacturers may also
follow some standard methodologies like AUTOSAR [AUT] in order to maximize the product margin.

III.2.d. Conclusion

To summarize the importance of multi-partner development (especially in industrial domain), Figure
2.8 depicts actors and views related to the real-time design phase. So, Figure 2.8 shows di�erent roles
which can be played by a system designer depending on the nature of tasks and the intervention stage.
Generally, the system designer can be considered as a model designer when modeling functional parts
and platform architectures of systems. Yet, the system designer can be viewed as an analyst during
the analysis phase.
Indeed, referring to di�erent elements tackled until this stage (real-time notions and design method-
ologies), and regardless of actors a�liation (manufacturer or supplier), it is helpful to introduce three
main actors and their design views related to the design of real-time systems.

Software-Hardware Architecture Generally, architects focus solely on the non-functional model-
ing and the system analysis. Thus, architects have architectural views of the real-time systems. When
the software and hardware modeling processes begin with the immature speci�cations of the system, a
parallel development of the incomplete speci�cations requires a close collaboration in particular with
the analysts.

Temporal Veri�cation: Scheduling Analysis Before starting the timing veri�cation of a real-
time system. Analysts have �rst to extract the system requirements from the system modeling (done
by the architects). Then, this latter has to be implemented using a speci�cation formalism. Since
the architect may not be knowledgeable in the scheduling analysis area, the analyst collaborates with
him/her to write the requirements and system speci�cations. Both actors work closely to ensure that
the speci�cations re�ect the real requirements and system's behavior. Once these speci�cations are
taken into consideration by architects during the modeling phase, the analyst can verify whether the
system satis�es the requirements.

Function Modeling The existence of a function modeler depends on the domain, the competence
and the strategies followed for developing real-time systems. It is known in industrial sectors using
real-time systems that suppliers are characterized by high specialized technical skills. So, the function
modeling (based on functional requirements) depends on the followed design methodology and the rela-
tionship between the architect and the function modeler (e.g. the relationship between manufacturers
and their suppliers). For instance, in case of a top-down methodology (i.e. from architecture to busi-
ness model), the function modeler depends on the provided architecture. Otherwise, the architecture
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Figure 2.8: Di�erent real-time system's views depending on each actor

modeling depends on the functional model proposed by the function modeler.
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Abstract

This chapter presents brie�y di�erent aspects related to the real-time scheduling theory. The
common timing properties and constraints determining the behavior of real-time systems are
tackled in the �rst section. The second section gives an overview of di�erent kinds of analyses
studying the feasibility and the schedulability of real-time systems.
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I. Introduction

Our goal is not to provide an exhaustive study about analysis models and methods, but to emphasize
guidelines leading to the analysis situation of a real-time system and its corresponding tests.
Elements aiding to identify the context of real-time systems are tackled in Section II. Section III gives
an overview of di�erent kinds of analyses studying the feasibility and the schedulability of real-time
systems.

II. Real-Time Scheduling-Aware Context

In order to enable real-time scheduling analyses we need to have system models that facilitate such
analyses. In this work, we refer to such models as analytical models. The analytical model of a
real-time system supplies the information necessary for performing the required analyses. As we are
interested in the temporal behavior of real-time systems, this section is devoted to introduce some
aspects related to the analytical models.

II.1. Real-time tasks: description, characteristics and de�nitions

II.1.a. Real-time tasks description

A task, also called thread, is an active entity of the real-time application. It represents the sequential
execution of a set of instructions corresponding to one or many functions. A task is executed when a
speci�c event occurs. Each time a task recurs is called an �instance� of the task or a �job� of the task.
According to the type of the hardware architecture, jobs may be run on one or di�erent processors.
However, in a given instant, a processor (i.e. a processing core) is able to execute only one job. In the
sequel, by the word �processor� we mean a processor with one core.

Figure 3.1: Di�erent possible task states

Every job is related to a data structure containing its runtime state. The transition from a job state to
another is ensured by the real-time operating system following a state transition diagram (see Figure
3.1). The state of a tasks may be among the following common states (states may di�er according to
real-time operating systems):

ˆ Ready: the task is ready to run when obtaining a processor.

ˆ Blocked: the task is waiting for one or more events or resources (shared resource, message,
interrupt, etc.) to be available.
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ˆ Sleeping: the task is sleeping and waiting for a wake event.

ˆ Running: the task is active and executing on a processor.

II.1.b. Real-time tasks characteristics

In the literature, the execution of a task � i is frequently depicted by a time-line or a Gantt diagram as
shown in Figure 3.2. This latter contains a part of the main properties, like:

Figure 3.2: Usual graphic representation of a real-time task

ˆ Release time ri : time of creation of task � i , it corresponds to the activation instant of the �rst
job. If the release time is a known value then the task is said concrete.

ˆ Activation pattern (Periodicity): it represents the execution frequency of the jobs of task � i .
Generally, three periodicity kinds are known:

� Periodic task: periodically, a new job is released referring to a �xed time interval Ti . Periodic
tasks are usually activated by clock-based interrupts. Let� i;j be the j th instance of the
periodic task � i , and ri;j its release time, hence ri;j = r i + ( j -1)T i .

� Sporadic task: task that recurs at uncontrolled instants, but two successive releases are
characterized by a minimum separation interval Ti . The fast activation pattern of a sporadic
task corresponds to a periodic activation. Indeed, every job� i;j is characterized by a release
time r i;j , where ri;j +1 � r i;j + T i , and ri; 1 = r i .

� Aperiodic task: task which may arise at any instant, without any minimum separation
duration between two consecutive instances. The aperiodic tasks are often activated by
external events. Thus, ri;j +1 6= r i;j , and ri; 1 = r i .

ˆ Execution time C i : represents the time needed for executing each job of� i on a processor. The
execution time of tasks and the hardware execution resources are strongly coupled. Generally,
the execution-time of a task is represented by the worst-case execution time (WCET) which is
the upper bound of all possible execution times of any job. The execution time is an important
information for analysis methods and tools. Some research studies consider also the best-case
and the average execution time values (BCET and AET). In case of mixed criticality systems

40



II. REAL-TIME SCHEDULING-AWARE CONTEXT

[Ves07] (appeared in avionic systems according to the safety standards like RTCA DO-178B),
a task may be characterized by L execution time values, where L represents the number of the
criticality levels considered by the system. Although we are not interested in the estimation of
the worst-case execution time in this work, there are two types of the estimation methods (also
known as the timing analysis):

� Static analysis: it is performed by analyzing the code and counting the number of clock
cycles that a job needs to execute. Moreover, a task is represented as a graph �ow. Then,
the worst-case behavior of a task leads to know its worst-case execution time [CP00].

� Dynamic analysis: it is based on extensive testing. The dynamic analysis is based on the
measures performed during task executions or simulations [RS04]. The major drawback of
the dynamic analysis is that it does not produce safe results.

Calculating the worst-case execution time is a non-trivial problem and had led to many works.
The execution time evaluation may be very pessimistic because of some factors, like the existence
of hardware caches or system interruptions. The knowledge of this parameter is indispensable
for the hard real-time systems analysis, which is using it as an input.

ˆ Relative deadline Di : is the time devoted to task � i to �nish its execution. Every job � i;j of task
� i must �nish its execution before Di time units after its activation.

ˆ Utilization: it is the average time for which a task executes per unit time interval. For periodic
task � i , the utilization U i = C i / T i , where Ci is the worst-case execution time and Ti is the
period of � i . The greatest utilization for a sporadic task is also Ui = C i / T i .

II.1.c. Real-time characteristics related to the system execution

While the behavior of the task-set is characterized by several properties, Figure 3.3 shows some of
them. They are related to the tasks execution and/or derived from the properties already presented.

Figure 3.3: Usual graphic representation of a task execution

Jobs properties

ˆ Start time: time at which the job starts running.
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ˆ Completion time: time at which the job �nishes the execution.

ˆ Preemption time: instant where the job is interrupted in order to execute for example a higher
priority job (i.e. instance of another task). A job can be preempted several times during its
execution.

ˆ Deadline of a job di;j : end of the allowed time frame where the job has to be executed. Usually,
the deadline is obtained from the job release date plus a relative deadline. So, di;j = r i;j + D i .
A typical timing constraint is that the completion time must occur before or on the deadline.

ˆ Lateness of a job: it is the interval between the completion time of a job and its deadline. A
negative lateness signi�es that the job respects the deadline.

ˆ Laxity of a job L i;j (t) (or slack time): remaining time to deadline minus the amount of remaining
execution. If this parameter is null at a given time t, the job should be executed without
interruptions, otherwise the deadline will be missed.

ˆ Response time of a job TRi;j : duration required for the job to produce its results. The response
time is obtained by the completion time minus the release time, and contains also the duration
related to the blocking on shared resources and the duration of the preemptions. The job respects
its deadline di;j if TR i;j � Di .

Tasks properties

ˆ Laxity L i (t): it is the duration when the task cannot be executed without missing its deadline.

ˆ Response time TRi : The worst-case response time of a task is the greatest value among its jobs
response times. Thus, TRi = max 8j (TR i;j ). A task is schedulable if TRi � Di .

ˆ Practical factors: it is important to take into consideration several practical factors related to
the system execution, for instance:

� Execution modes: we distinguish four possible execution modes of a real-time task according
to the preemption and the suspension. Then, the �rst three modes concern the preemption,
and the last one concerns the suspension.

* Preemptible task: every job can be preempted by the scheduler at any time.
* Non-preemptible task: every job cannot be preempted once it starts executing.
* Co-operative task: the task can only be preempted at speci�c instants within its exe-

cution. Then, each job execution is composed by series of non-preemptible sections.
* Self-suspending task: the task may suspend itself. The self-suspension delays in the

task behavior represents essentially the waiting time due to the execution of external
operations.

� Jitter: the term jitter means the variability in time. A task that is expected to be periodic
can have a release jitter. Then, the value of the release jitter is used as a bound on the
maximum deviation from the ideal task period. The release jitter can also be related to
other factors such as network congestions.
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� Precedence: a job must wait for the result provided by another job (instance of another task)
before being executed. Generally, the precedence relationships of a task-set are represented
by a directed graph where the vertices represent tasks and the edges represent the precedence
relations.

� Shared resources: tasks often need to share some software resources (e.g. memories access)
or hardware resources (e.g. sensors). We talk about a critical shared resource requiring a
mutual exclusion, when this resource cannot be used by more than one task simultaneously.
Thus, the critical section is the piece of code belonging to a task that is executing under
mutual exclusion constraints enforced by a synchronization mechanism (e.g. semaphores
introduced by Dijkstra in 1965).

II.2. Real-time tasks system: the task-set characteristics

A tasks system is the execution of a set of tasks subjected to several timing constraints. In other
words, the tasks system is a Cartesian product of all temporal properties characterizing the tasks of
the software application. Therefore, tasks may be classi�ed using di�erent characteristics such as:
deadlines, release-times, interdependency relationships, etc.

Deadlines Referring to the relative deadlines, task-set may be among one of the following categories:

ˆ Implicit-deadlines case: deadlines of the tasks are exactly equal to periods;

ˆ Constrained-deadlines case: deadlines of the tasks are less than or equal to periods;

ˆ Arbitrary-deadlines case: deadlines of the tasks and periods are unrelated;

Thus, the implicit-deadlines case is a particular case of the constrained-deadlines case which is also a
particular case of the arbitrary-deadlines case.

Release times A task-set may be concrete or non-concrete depending on its release times:

ˆ Concrete/Non-concrete task-set: if the release-time of every task is known, then the task-set is
concrete. Otherwise, the task-set is non-concrete.

ˆ Synchronous/Asynchronous task-set : when the task-set is concrete, if all the tasks are released at
the same time, then we talk about a concrete simultaneous (i.e. synchronous) task-set. Otherwise,
the task-set is concrete and asynchronous.

Execution times Every task forming the task-set may be characterized by several types of execution
times. For instance, the execution time may be:

ˆ An interval of values between BCET and WCET values;

ˆ A set of values for each criticality level;

ˆ Probabilistic set of values;
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ˆ An unknown value which must be calculated. So, the value has to be computed depending on
the other task-set parameters [ZBB11].

ˆ etc.

Interdependency relationships According to the precedence relationships and the existence of
shared resources, a task-set is categorized as follows.

ˆ Independent task-set: all tasks are independent from each other.

ˆ Dependant task-set with precedence relationships: some tasks have to expect messages or syn-
chronization signals coming from other tasks.

ˆ Dependant task-set due to the existence of shared resources.

Preemption control A task-set can also be classi�ed according to the preemptivity of tasks.

ˆ Preemptible task-set: every task may be preempted at any time.

ˆ Non-preemptible task-set: one task or more cannot be preempted at all.

ˆ Limited preemptible task-set [BBY13]: an alternative between the two extreme cases of fully
preemptible and non-preemptible task-set, where tasks can be preemptible, non-preemptible or
co-operative.

Models hierarchy To design the real-time task systems, several expressive models were proposed
over the years and many of them allow an e�cient analysis.
In the 1970s, Liu and Layland proposed a model which is characterized by few behavioral task param-
eters (execution time and period of task activations). It allows a simple e�cient analysis, but it is very
limited in terms of realistic tasks. Since then, many models have been proposed.
Early works have proposed their models as a generic model. The generalized multiframe model (GMF)
[BCGM99] was proposed as a generalization of the sporadic model [Mok83] and of the multiframe
model of Mok and Chen [MC96]1. This latter is generalized in that the deadlines of the internal
frames are allowed to di�er from the minimum frame separation, all the frames do not have the same
deadlines, and the minimum frame separations are not identical. The transaction model is another
generalization of the sporadic model. In that model, the transaction release times are not known a
priori [PGH98, RGRR12]. The recurring branching model is a further generalization of GMF [Bar98].
It allows to model some restricted forms of conditional real-time code (�if-then-else� and �case�). This
type of model was further generalized to recurring model [Bar03] by proposing di�erent job types that
can be released by a task. Another generalization of the GMF model is the non-cyclic GMF model
[TMNLM10] allowing to release the jobs in any order, thence the behavior is not strictly cyclic. The
two last generalizations were uni�ed to introduce the non-cyclic recurring model [Bar10]. The non-
cyclic recurring model was also generalized by the digraph model (DRT), which is one of the most
general models [SEGY11] currently known. It models each task using an arbitrary directed graph for

1Readers can see Appendix A showing some examples of multiframe and GMF models
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Figure 3.4: A hierarchy of various models

job releases.

Figure 3.4 shows the generalization relationship between various models indicated by arrows (i.e. A
! B means that B is a generalization of A). These models were introduced in the uniprocessor case,
and most of them with independent tasks, unable to suspend themselves. Some of these models are or
have been investigated in larger architectures such as in the distributed systems, or in multiprocessor
systems for partitioned, semi-partitioned and global scheduling [QFGM13].

II.3. The hardware execution resources

The physical part of a real-time system contains a set of hardware elements like processors, memories,
inputs/outputs, etc. As we are interested in the execution resources, the classi�cation below depends
on the number and the type of processors, and it is driven by a scheduling analysis point of view.

ˆ Uniprocessor architecture: the architecture contains only one processor.

ˆ Multiprocessor architecture: according to the nature of the available processors, the multipro-
cessor architecture can be:

1. Homogeneous: in this case, the processors are identical, hence the processors are inter-
changeable and they have the same speed. Then, the execution rate of all tasks is the same
on every processor.
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2. Uniform: the processors can execute the same tasks. Moreover, the execution rate of a task
depends only on the speed of the processor. For example, a processor of speed 2 will execute
all tasks at exactly twice faster than a processor of speed 1.

3. Heterogeneous: the processors are di�erent and the execution rate of a task depends on both
the processor and the task, because every task has di�erent computational requirement on
each processor.

ˆ Distributed architecture: the distributed systems are de�ned by a set of tasks running on proces-
sors and exchanging messages. The network is the only way of communication between processors.
It represents a shared resource for tasks communication.

II.4. Schedule and Scheduling

Basically, a scheduler is a module implementing an algorithm (or a policy) ordering the execution of
the outstanding tasks on processors according to some criteria.
A scheduleproduced by a scheduler is an assignment of a subset of ready jobs to available processors.
Then, a schedulefor a task-set is one where every job is assigned to at most one processor at a time,
every processor executes to at most one job at a time. A schedule is called afeasible schedule, only if
every job in the schedule starts at or after its release time and completes by its deadline and all job
constraints are satis�ed (e.g. resource constraints, precedence constraints, etc.).
Scheduling algorithms can be classi�ed into several categories according to the knowledge they require
to operate, the type of parameters they use, and their ability to interrupt tasks during their executions.

II.4.a. On-line and o�-line scheduling

De�nition 1. (O�-line scheduling) An o�-line scheduling algorithm provides a feasible schedule in
advance. It presupposes the knowledge of tasks characteristics, and in particular their exact activation
patterns.

The major drawback of this kind of schedulers is their sti�ness and their inability to be adapted to
the variations of the environment. The advantage of these methods is that the schedule is correct by
construction.

De�nition 2. (On-line scheduling) An on-line scheduling algorithm is a strategy executed by a sched-
uler, in order to share the processor(s) between the active jobs.

On-line algorithms are �exible, but in order to validate a system, a suitable schedulability test has to
be checked at the design stage (see Section III).

II.4.b. Feasibility and Schedulability

De�nition 3. (Feasibility) A task-set is said to be feasible with respect to a given system if there exists
at least one scheduling algorithm that produces a feasible schedule.

De�nition 4. (Schedulability) A task is said to be schedulable according to a given scheduling algorithm,
if its worst-case response time under that scheduling algorithm is less than or equal to its deadline.
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Likewise, a task-set with respect to a given system is referred to as schedulable according to a given
scheduling algorithm if all of its tasks are schedulable.

II.4.c. Priority-based algorithms

Many on-line algorithms are priority-based to de�ne an order of ready tasks. Thus, the task(s) with
the highest priority can be elected by the scheduler. The speci�cation of such algorithms is to de�ne
a priority assignment strategy. The priority assignment can be made once and for all or progressively
over time. Hence, we introduce the following classi�cation:

ˆ Fixed task priority: the priority of each task is calculated from its static parameters (like the
period). Then, the priority assignment is done before starting the application. Examples of �xed
priority scheduling algorithms are: Rate Monotonic (RM) [LL73], Deadline Monotonic (DM)
[LW82], etc.

ˆ Fixed job priority: the jobs of a task may have di�erent priorities, but each job has a single static
priority. Example of a �xed job priority scheduling algorithm is: Earliest Deadline First (EDF)
[Der74].

ˆ Dynamic job priority: priorities of jobs may change between their release times and their com-
pletion times. Example of a dynamic priority scheduling algorithm is: Least Laxity First (LLF)
[Mok83].

II.4.d. Migration-based algorithms

In case of multiprocessor systems, scheduling algorithms may also be classi�ed according to the allo-
cation problem (e.g. on which processor a job/task should execute). Carpenter et al. [CFH+ 04] have
proposed the following classi�cation:

ˆ No migration: each task is allocated to a processor and the migration is not authorized.

ˆ Task-level migration (also known as restricted migration): the di�erent task instances (i.e. jobs)
can execute on di�erent processors, but each instance executes only on a single processor.

ˆ Job-level migration (also known as full migration): each job can migrate and execute on di�erent
processor, but the parallel execution of the job is not authorized.

Scheduling algorithms where no migration is permitted are referred to as partitioned, those where
migration is permitted are referred to as global.

II.4.e. Synchronization protocols

Synchronization protocols manage concurrent accesses of tasks to shared resources.
Sharing resources may cause some problems like:

ˆ The deadlock which is a situation where two or more tasks are waiting for each other to �nish,
but neither ever does.
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ˆ The priority inversion is a situation where a high priority task is waiting for a low priority task
which is waiting for a medium priority task. For instance, let L, M, and H be tasks with priorities
Low, Medium, and High. M is running and H is blocked waiting for some resource that is held
by L. So long as any task with a priority higher than L is runnable, it will prevent task L, and
thus task H, from running.

In order to avoid these problems, several synchronization protocols have been proposed. For example,
the following protocols are widely used in the uniprocessor scheduling contexts:

ˆ The Priority Ceiling Protocol (PCP) (also called Original Ceiling Priority Protocol OCPP) is a
protocol for shared critical resources avoiding the synchronization problem especially the dead-
lock. In this protocol, each resource is assigned a priority ceiling, which is a priority equals to
the highest priority of any task that may lock the resource [SRL90].

ˆ The Immediate Ceiling Priority Protocol (ICPP) is identical to PCP from a scheduling view
point, but it is easier to implement than OCPP.

ˆ The Priority Inheritance Protocol (PIP) [SRL90] is a method for eliminating the priority inver-
sion, but not the deadlocks. Thus, if a job blocks one or more high priority jobs, it would ignore
its original priority assignment and it would execute its critical section at the highest priority
level of all the jobs it blocks. Then, the job would return to its original priority level after its
critical section.

II.4.f. Preemptive and non-preemptive algorithms

Scheduling algorithms are also characterized by the kind of events impacting their behaviors. Thus,
the preemptive and non-preemptive algorithms can be distinguished:

ˆ Preemptive scheduling algorithms: a preemptive scheduling algorithm can interrupt and suspend
the execution of a task at any moment, in order to proceed to its execution later. Such behavior
occurs every time a change impacts the list of ready and blocked tasks, or the priorities of the
ready tasks for priority based schedules.

ˆ Non-preemptive scheduling algorithms: once a task is elected for execution, it runs without
yielding the processor.

II.4.g. Optimality

De�nition 5. (Optimal scheduling algorithm) A scheduling algorithm is said to be optimal with respect
to a system if it can schedule all the task-sets that are feasible on the system.

In other words, if an optimal scheduling algorithm with respect to a system (i.e. task model, hard-
ware model and resource model) cannot schedule some task-sets, then no other scheduling algorithm
with respect to the same system should be able to produce a feasible schedule for those task-sets.
Furthermore, it is possible to �nd several optimal algorithms with respect to a system.
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II.5. Discussion: Real-time scheduling contexts

The temporal behavior of the real-time systems is impacted by the choices of the scheduling algorithms,
the task-set characteristics and the hardware execution resources. Every choice represents a system
timing characteristic. In this section, we have presented several timing characteristics, which represent
a set of assumptions forming the real-time system's context. This latter is needed to be known by the
systems designers in order to ensure a consistent process of the real-time scheduling analysis.
To summarize, modeling the real-time system by focusing on the timing properties and the resource
requirements is composed of three elements:

1. Tasks system: it describes the software application.

2. Hardware/resources model: it describes system resources available to applications.

3. Algorithms: it de�nes how the software application uses resources at all times (scheduling algo-
rithms, synchronization protocols, network protocols, etc.).

III. Real-time Scheduling Analysis

III.1. Principles

The scheduling analysis should provide evidence that the system behaves as expected and produces
results at the correct time. Several scheduling problems are induced due to the real-time system
characteristics. They are related to the systems validation or the systems design when this latter is
not set yet. Therefore, the problematic of real-time scheduling concerns three aspects:

ˆ Decision: this aspect is requested by systems with strict constraints to verify their feasibility. The
decision problem is checking if a set of tasks can be executed on a given architecture according
to a given scheduling algorithm. A decision problem is a mathematical question that is de�ned
on given parameters enabling to obtain a yes/no answer.

ˆ Repartition: this is speci�c to multiprocessor and distributed architectures. The repartition
consists in the allocation of a set of tasks to a set of processors.

ˆ Optimization: it is related to the decision and the repartition aspects. For example, minimizing
the number of processors needed to respect the timing constraints, or minimizing the execution-
time of tasks, etc. Some optimization problems may be also viewed as decision problems.

III.2. Schedulability analysis

Schedulability analysis decides for a given task-set under certain scheduling policy, whether all deadline
requirements associated with each task will be satis�ed. When the scheduling policy is given (e.g. it
may be determined by the used RTOS), and the question is: �is the system schedulable with the
chosen policy?�, hence the test used to respond to the question is called aschedulability test. In order
to perform the schedulability test for a task-set, one has �rst to determine the task model corresponding
to the timing behavior of the analyzed system.
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Sustainability and Predictability A schedulability test is used to check the schedulability of a
task-set according to a given real-time scheduling context. While schedulability tests are based on
the worst-case behavior of the analyzed system, they should besustainable and predictable. The
sustainability concept has been introduced by Baruah and Burns in 2006 [BB06] and generalizes the
concept of predictability. The sustainability allows to ensure that the practical system in fact would
be schedulable, even if during execution the system behaves better than the worst-case behavioral task
parameters considered for analysis.

De�nition 6. (Sustainability) A schedulability test with respect to a system is sustainable, if the task-
sets deemed schedulable by the schedulability test remains schedulable when the parameters of one or
more individual jobs are changed in any, some, or all of the following ways: (i) decreasing execution
times, (ii) increasing periods or inter-arrival times, (iii) decreasing jitters and (iv) increasing relative
deadlines.

The sustainability requires that the schedulability is preserved in situations in which it should be
easier to ensure schedulability, e.g. the opposite of the worst-case execution. Yet, the predictability is
a speci�c case of the sustainability. The schedulability test is predictable when the analyzed system
deemed schedulable even after decreasing execution times.

Computational complexity of the schedulability tests The computational complexity theory
is developed to determine the practical computational limits of a mathematical algorithm aiming to
solve a problem [Coo71]. Thus, the computational complexity is measuring the solving-time which
is relative to the size of the input problem. The algorithm's complexity is often quanti�ed by the
number of instructions. Then, the complexity of an algorithm is O(F(n)) where F is the complexity
function, n is the size of the input taken into account, and the (big-O) O notation is used to bound the
complexity. When F is a polynomial function, the algorithm is called polynomial. A particular case of
the polynomial function is when F(n) = n. Hence, the algorithm's complexity is called linear. If F(n)
= n.log(n), then the complexity is quasi-linear. Yet, if F(n) = n p, the complexity is polynomial when
p is a constant. Furthermore, if F(n) = 2 n , the complexity is exponential.
To ensure the scalability of the analysis tests, the complexity is a very important aspect. Indeed, it is
preferable for a test complexity to be polynomial or pseudo-polynomial at worst.

Su�cient/Necessary/Exact conditions A schedulability test is de�ned to be a su�cient condi-
tion if all of the task-sets that are deemed schedulable according to the test are in fact schedulable. A
test can also be referred to asnecessarycondition if failure of the test will indeed lead to a deadline
miss at some point during the execution of the system. Schedulability test that is both su�cient
and necessary is labeled asexact condition, then it is in some sense optimal. So, a su�cient but not
necessary test is pessimistic, but for many situations an exact test is computationally intractable.
In the literature, there are several complexity classes related to the decision problems, the well-known
are:

ˆ The complexity class P is the class of problems that can be solved in a polynomial time by a
deterministic algorithm. Class P is the class of the so-called easy problems.
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ˆ The NP-complete is the class of hard problems, which are solvable in a polynomial time using a
non deterministic algorithm.

ˆ The complexity class NP (Non-deterministic Polynomial) includes the P and NP-complete com-
plexity classes.

III.2.a. Examples of validation methods

The temporal validation of real-time systems requires the schedulability analysis, and it needs to
have a complete knowledge about the system con�guration (e.g. the scheduling algorithm, hardware
architecture, task model, etc.). The validation may be performed through the simulation over a
simulation duration and under some system hypothesis (e.g. the worst system behavior correspond to
executing the tasks with their worst-case execution times) [Dec03].
The validation may also be performed via algebraic methods, which may be su�cient or exact schedu-
lability conditions depending on the system conception which needs validation. Four main kinds of
schedulability tests are widely used:

ˆ Processor utilization analysis: this method is related to the utilization factor that represents the
time the processor spends to execute the task-set. The processor utilization has to be under a
speci�c utilization threshold in order to avoid the unschedulability of the system.

ˆ Processor demand analysis: it is based on the demand bound function which corresponds to the
maximum amount of tasks executions that can be released and must be �nished in a time interval
[LSD89, JS93].

ˆ Response time analysis (RTA): this method consists in calculating the worst-case response time
of each task in order to be compared with the deadline [JP86]. If the worst-case response time of
a task exceeds its deadline, hence the system is not schedulable. In case of distributed systems,
an alternative of the response time analysis technique may be used. This technique is called the
holistic analysis [TC94]. It transforms the distributed system to a set of uniprocessor systems,
then that eases the computing of the response times.

ˆ Simulation: the scheduling is related to an in�nite duration. Nonetheless, the objective of the
simulation is to simulate the behavior of a real-time system in order to detect any temporal fault
within a �nite duration. This latter is related to the periodicity of the task-set and it is called the
feasibility interval [LM80]. Generally, the feasibility interval depends on the system properties
and it is based on thesimulation interval.

De�nition 7. (Simulation interval) The simulation interval of a real-time system is an exact or
upper bound of the time interval for the schedule to repeat in a cycle.

De�nition 8. (Feasibility interval) The feasibility interval is a �nite interval such that if all the
deadlines of jobs released in the interval are met, then the system is schedulable.

51



CHAPTER 3. REAL-TIME SCHEDULING

III.2.b. Examples of validation methods utilization

The choice and the utilization of each test to prove the schedulability of a real-time system depends
on the real-time context of that analyzed system. As the examples below are based on the concept of
worst-case scenario, hence we �rst provide the following notions for a good understanding. They are
valid according to examples contexts.

Worst-case scenario The worst-case scenario is the execution scenario of a speci�c task-set con-
sidered for a validation purpose. The speci�city of this type of scenario is that it represents the case
when tasks have the longest response-times. The underlying idea of using the worst-case scenario is to
de�ne the worst-case behavior of a real-time system. Then, the validation of the worst-case behavior
implies the validation of the system regardless of its practical executions (this is correct under some
conditions presented hereafter). Traditionally, the critical instant notion is often used to well determine
the worst-case scenario for basic task models.

De�nition 9. (Critical instant [LL73]) A critical instant for any task occurs whenever the task is
requested simultaneously with requests for all higher priority tasks.

Context 1:
B Tasks are independent, sporadic and with constrained-deadlines.
B The Deadline Monotonic (DM) is used as a �xed priority scheduling algorithm.
B The architecture is uniprocessor.
Worst-case timing behavior:
The worst-case behavior of a task is produced when the task is released simultaneously with other
higher priority tasks. Moreover, the task-set is executed as fast as possible (i.e. periodically). The
instant when the task is released is known ascritical instant .
Schedulability analysis:
The test used in this case is the response time analysis which is known as an exact schedulability
condition for critical instant. Furthermore, as the task-set is sporadic, the critical instant may
e�ectively be produced during the task-set execution. Therefore, the test is exact and test complexity
is pseudo-polynomial.

Context 2:
B Tasks are independent, periodic, asynchronous and with constrained-deadlines.
B The Deadline Monotonic (DM) is used as a �xed priority scheduling algorithm.
B The architecture is uniprocessor.
Worst-case timing behavior:
As the release times are deferred and tasks are periodic, the critical instant may not occur.
Schedulability analysis:
As it is not sure that the task-set execution achieves the critical instant, the response time analysis
is a su�cient schedulability condition. In the current context, it is possible to use the simulation as
an exact test since it is sustainable in this context. However, its complexity is exponential.
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Context 3:
B Tasks are periodic, synchronous and with constrained deadlines.
B Tasks are sharing critical resources.
B The Deadline Monotonic (DM) is used as a �xed priority scheduling algorithm.
B The Priority Ceiling Protocol (PCP) is used as a resources access protocol.
B The architecture is uniprocessor.
Worst-case timing behavior:
The worst-case behavior of a task may happen if when the task is released, a shared resource is
used by a task with lower priority, while achieving the longest critical section. At the moment of
the release, other higher priority tasks are released.
Schedulability analysis:
It is possible to use the response time analysis with the worst blocking durations, but it is not
sure that the worst-case behavior described earlier would happen. Consequently, the response time
analysis is a su�cient schedulability condition, else, in the best of our knowledge, it does not exist
any exact and sustainable schedulability test for the current context.

III.3. Dimensioning analysis

Verifying the temporal behavior of a real-time system may have an impact on the system dimensioning
(also know as sizing) and the development cost. Even when not exact, tests are always safe. If the
schedulability tests used during the validation generate some pessimisms, the system can be over-
dimensioned (i.e. over-sized). In other words, to overcome the uncertainties caused by validation
techniques, real-time system designers may replace the processor by faster ones or add new cores to
comply with the timing constraints of the real-time application.
Feasibility/Schedulability tests produce results that are of binary nature (i.e. schedulable or not). In
the design phase, it is interesting to measure the impact of the system parameters on its schedulability.
Increasing the system cost is not acceptable in the industry. So, the objective is to address the
dimensioning problem as early as possible in the development cycle to reduce design and prototyping
costs.
The dimensioning analysis tests have the same characteristics as the schedulability tests. Every dimen-
sioning test is related to a speci�c context. Essentially, the contexts which need dimensioning tests are
known to be incomplete: some timing parameters may be unknown and/or the scheduling algorithm
is not de�ned and/or tasks are not yet allocated and/or the hardware architecture is not well de�ned,
etc. As the dimensioning test is related to a speci�c context, then it may be characterized by several
properties related to the feasibility, the complexity and the sustainability.

III.3.a. Examples of dimensioning methods

Hardware dimensioning The objective of the hardware dimensioning of a real-time system is to set
the resources (processor number and processing capacities) required for a task-set in order to respect
the timing constraints. A rudimentary way to perform this kind of analysis is to investigate the resource
levels within a given interval by using successive dichotomies. Minimizing the number of processors
[DRGR08] is an example of hardware dimensioning.
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Sensitivity analysis The sensitivity analysis of a real-time system aims to study the variation do-
mains of the system parameters while maintaining the system schedulability. These domains are
called the feasibility regions. Several research studies have discussed the sensitivity analysis like
[BDNB08, Ves94].

Priority assignment and task allocation In order to enforce the schedulability of the system, the
assignment of the priorities to the tasks and the messages is very important. Choosing the priorities
for a simple system can be a simple job not requiring any computation tool. Nonetheless, de�ning
the set of priorities for complex systems (like automotive systems) becomes very di�cult. Indeed, any
bad choice may lead to an un-schedulable system, hence it enforces the designers to over-dimension
components. The Audsley's algorithm [Aud91] is one of the research studies related to the priority
assignment. When the hardware structure contains more than one processor, we talk also about
the task allocation. Then, several methods have been proposed to simultaneously allocate tasks to
processors and assign �xed priorities to tasks and messages [RRC03].

IV. Conclusion

The main goal of designing a real-time application before its implementation on a target machine is
to validate both logical and temporal behaviors. Hence, to study the schedulability and the feasibil-
ity of a real-time system, it is necessary to focus on the modeling process to integrate the di�erent
timing characteristics for analysis purposes. In order to master the system complexity and to improve
the system-level quality, model-driven engineering is gaining momentum in industrial domains. The
challenging rubs are how to integrate real-time architecture models and how to perform di�erent kinds
of scheduling analyses based on formal and mathematical aspects. Therefore, the big challenge is to
study the possibility to get correct-by-construction products due to an incremental design process.
Next Chapter is devoted to present works related to model-based engineering.
In the sequel, we use the term �scheduling analysis� to regroup di�erent analysis categories
tackled in this chapter.
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Abstract

Scheduling tests often require di�erent information of the analyzed system as input, and models
provide a good means of capturing this information in a structured way. In this chapter, we
present some capabilities related to the use of model driven engineering, and their impact on
the design of real-time systems. Furthermore, some standard modeling languages and analysis
tools will be presented, discussed and compared to each other.
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I. Introduction

Schedulability/feasibility methods need several data about the systems that require analysis. Model-
driven engineering becomes increasingly used to propose solutions and tools for modeling and analyzing
real-time systems. The remainder of this chapter is organized as follows. Section II is devoted to
present principles of model-driven engineering. Section III presents some works based on model-driven
engineering and related to the design and the analysis of real-time systems. The last section concludes
this chapter.

II. Basics of Model-Driven Engineering

Abstraction representations have been required due to the growth of the systems complexity. Indeed,
the system engineering has evolved around the notion of model. An engineering model is a selective
representation of some system that speci�es, accurately and concisely, all of its essential properties of
interest for a given set of concerns. Nowadays, multifarious disciplines are based on computer models in
order to use equipped tools and automatize their development activities. Then, computer models have
increasingly taken a leading role in the development cycle of complex systems thanks to model-driven
engineering (MDE).

II.1. Models and Meta-models

Model-Driven Engineering (MDE) has a signi�cant in�uence on the systems development by focusing
on the abstract concern more than the traditional programming concern.

De�nition 10. (Model) A model is an abstraction and a systems's simpli�cation enabling to under-
stand and provide answers related to the modeled system. Then, a system can be described by di�erent
models related to each other.

In MDE context, the roles of models are numerous as they are used during the whole development
cycle. So, models can be used to describe the requirements, to express the design choices independently
of domains requirements, and to explore several solutions based on several criteria. Yet, models may
also be used to store information. In other words, model-driven engineering is a form of generative
engineering in which one or several parts of computer application are generated from the models.
To highlight the nature of the di�erent models used in computer systems, we will identify two main
relationships. The �rst one, called �represented by�, indicates a representation of an object which is
modeled through a model. The second relationship, called �conforms to�, de�nes the dependence of a
model to a modeling language (see Figure 4.1). In model driven engineering, these relationships have a
special attention since domain modeling languages are described by the models. These models are called
meta-models. A modeling language is a computer language intended for constructing models of systems
and the contexts in which these systems operate. Figure 4.1 shows the modeling of some geometric
shapes. The proposed model (model shown in model layer) is an engineering model representing
the �system� from a particular viewpoint. The model can be speci�ed and composed by using the
set of components and relations provided by the metamodel (model shown in meta-model layer).
So, every model element conforms to a metamodel element. Moreover the modeling viewpoint also
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Figure 4.1: Illustration of model driven engineering concepts

depends on the meta-model (e.g. the color characteristics are not taken into consideration by the
meta-model). Likewise, the elements composing the metamodel and their arrangements conform to
the meta-metamodel (model shown in meta-meta-model layer). Accordingly, it is helpful to provide
the following de�nitions.

De�nition 11. (Metamodel) A meta-model is an abstraction for highlighting properties of the model it-
self. A meta-model describes the di�erent types of model elements and how they are arranged [GETS07].

A model conforms to the metamodel as a program conforms to the programming language's grammar
in which it is written.

De�nition 12. (Meta-metamodel) A meta-metamodel is a model of a modeling language for describing
meta-models.
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In other words, the meta-metamodel contains adequate elements to de�ne modeling languages and it
has also the ability to describe itself.

II.2. Model Driven Architecture

The concept of MDE emerged as a generalization of the Model Driven Architecture (MDA) which is
a trade mark proposed by the Object Management Group (OMG) in 2000. The MDA approach is
based on a set of OMG standards including MOF [OMG11a], UML [OMG04], XMI [OMG11b], OCL
[OMG06], etc. Where:

ˆ The MetaObject Facility (MOF) de�nes an abstract and extensible language to describe, de�ne
and manipulate meta-models. It has the characteristic of auto-de�nition.

ˆ The Uni�ed Modeling Language (UML) is a modeling language for general purposes. Historically,
UML is an object oriented language. It includes a set of graphical notations representing di�erent
views of a system.

ˆ The XML 1 Metadata Interchange (XMI) complements the modeling languages by de�ning an
interchange format based on XML. Interoperability and serialization techniques of models are
based on the XMI.

ˆ The Object Constraint Language (OCL) is an expression language enabling to precise the spec-
i�cation which may be ambiguous due to the graphical notation of modeling languages.

II.3. Meta-Modeling

The meta-modeling is the process of de�ning the metamodel of a modeling language. The meta-
modeling aims to model the language, which enables to express the designed system. A modeling
language is any arti�cial language which may be used to express information of systems in a struc-
ture. Modeling languages can be graphical or textual. Graphical modeling languages use diagram
techniques with (i) named forms which represent concepts, and (ii) links connecting the forms to ex-
press the relationships. Textual modeling languages typically use standardized grammars to make
computer-interpretable expressions. Examples of a graphical modeling language and its corresponding
textual modeling language are UML [OMG04] and XMI [OMG11b]. There are several ways related to
the meta-modeling process permitting to obtain a modeling language. We solely highlight two manners
related to our thesis topic.
1) On the one hand, UML was proposed as a universal modeling language. It is one of the main stan-
dards on which the MDA approach is based. Nonetheless, UML is a language dedicated to the software
systems based on the object paradigm. Yet, UML does not design the non-functional information. So,
to overcome the fore-mentioned limits, the UML pro�le mechanism has been proposed to extend the
language with new concepts. Recently, several MDA standards have been developed following the
UML pro�le mechanism.
2) On the other hand, MDE favors the construction of modeling languages dedicated to a particular
domain (i.e. Domain Speci�c Modeling Language - DSML). The last mechanism provides a �exible
way to its users in order to conceive their needs and requirements.

1eXtensible Markup Language
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II.3.a. Domain Speci�c Modeling Languages (DSMLs)

A Domain Speci�c Modeling Language (DSML) is a speci�cation language that provides - through
appropriate notations and abstractions - expressive power focused on - and usually restricted to - a
particular problem domain. In other words, a DSML is used to describe a problem and its solution in
concepts which are familiar to people who work in the domain.
De�ning the structure of a DSML consists of the design of an abstract syntax, concrete syntax and
semantics.

ˆ Abstract syntax describes the basic structure of the language. Indeed, the abstract syntax is
based on a set of concepts and constructs that can be exchanged and speci�es how they can be
linked together to form valid expressions. The abstract syntax is also a set of rules for creation
of well-formed underlying structures of the language.

ˆ Concrete syntax means de�ning graphical and/or textual representation(s) dedicated to end-users
in order to manipulate models (instances of the DSML). For instance, the model of Figure 4.1
depicts some shapes (model) representing a part of the graphical representation of the DSML
(the DSML abstract syntax corresponds to its metamodel).

ˆ While syntax is concerned with the form of a valid model, we need to describe the mean-
ing in terms of some well-known semantic domain. There are two kinds of DSML semantics
[AvdBEV12]. The static semantics de�ne the structural properties of models that can be de-
termined without considering either input or execution. The dynamic semantics (also know as
execution semantics) are concerned with the execution and the behavior of speci�ed models.
Moreover, semantics may be de�ned by a natural language or by describing syntactical elements
in terms of a formal approach using, for example, a mathematical framework, logical rules, exe-
cution rules on an abstract machine [CMTG07], etc.

Sometimes, it is preferable to construct a DSML by reusing and specializing parts of existing metamod-
els. This way alleviates the development process of new modeling languages from scratch. Generally,
there are two major ways to extend modeling languages [Sel07]:

ˆ The heavyweight approach is a extension based on the re�nement of new language constructs from
an existing modeling language. Then, designers can customize the source language as required
via the extension, re�nement and modi�cation mechanisms in order to create a new modeling
language.

ˆ The lightweight approach is a restricted metamodel extension of an existing modeling language
without modifying its abstract syntax or its semantics.

When the lightweight mechanism is used to extend MOF-based languages (see Section II.3.b), that leads
to build pro�les [FFVM04]. Indeed, pro�les are usually used to customize UML (which is a MOF-based
language) for a speci�c domain. Then, UML pro�les are also considered as domain speci�c modeling
languages.
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UML pro�le UML can be easily customized by using the lightweight mechanism provided by UML
itself. The recent version of UML (including the Pro�les package) de�nes a set of UML artifacts that
allows a speci�cation dealing with concepts and notation required in particular application domains
(e.g., real-time systems).

Figure 4.2: The pro�le mechanism: example of an UML pro�le

Figure 4.2 represents an example of an UML pro�le. This latter is dedicated to design semaphores.
UML pro�les are based on three aspects:

ˆ Stereotype: a stereotype extends a metaclass (i.e. class of UML metamodel) in order to enrich the
semantics without changing the original meaning. For example, Figure 4.2 shows an extension of
the UML metaclass �class�. The concrete syntax of the stereotype respects that of the metaclass
(i.e. the class shape), but the stereotype can also have an optional one (e.g. icon). Moreover,
for semantical reasons, the stereotype may also have properties called �tagged values� and be
subjected to many constraints.
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ˆ Tagged value: it is a way for adding attributes (e.g. concurrency limit in Figure 4.2) and
operations (e.g. getSemaphore() in Figure 4.2).

ˆ Constraint: adding constraints allows to precise semantics. Generally, a constraint is expressed
by an OCL rule. For instance, according to the rule shown in Figure 4.2, the constraint means
that the maximum number of concurrent accesses cannot exceed a special constantMAXlimit
which equals to 1 in case of a binary semaphore (i.e. mutex).

Referring to the growth of the system's complexity, DSMLs qualities become undeniable. However,
as they are used by small groups of specialists, it is economically di�cult to develop and maintain
the DSML appropriate tools (e.g. Integrated development environments, code generation tools, etc.).
Fortunately, various platforms have been created ensuring a good DSMLs maintainability. Among
these initiatives, we can �nd the Eclipse Modeling Project (including EMF, GEF and GMF) [Ecl]
which is a popular integrated development environment.

II.3.b. Towards a meta-modeling with MOF

The notion of the metamodel has become widely used as a description language in di�erent domains.
Then, many meta-models have emerged to provide their characteristics in particular domain (web
services, data bases, software development, etc.). To face the incompatible emergence of metamod-
els, the Object Management Group (OMG) has proposed a generic framework supporting di�erent
metamodels. Since the objective is to curb the number of abstraction levels, the solution was to pro-
vide a common language de�ning all metamodels. Accordingly, the OMG has provided the MOF as
metametamodel. This latter is the cornerstone of MDA. Therefore, the MDA approach depicts the
four-layered architecture (see Figure 4.3):

Figure 4.3: Four-layered architecture of MDA [BB02]
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ˆ M3. The meta-metamodel layer contains MOF language. The MOF is used to de�ne the various
modeling formalisms and also to describe the MOF itself.

ˆ M2. The metamodel layer contains metamodels built by the M3-model. The most prominent
example is the UML metamodel [OMG04]. So, all metamodels, standardized or not, de�ned by
MOF are positioned on the M2 level.

ˆ M1. The model layer contains the structure of elements that conform to a model of level M2, for
example, models written in UML.

ˆ M0. The real-world layer contains concrete objects represented by models of level M1, for exam-
ple, executable codes corresponding to UML models.

II.4. Model Transformation

The model transformation is among the main advantages of modeling layers (i.e. models, metamodels
and meta-metamodels). In addition to the meta-modeling, the model transformation is a central
operation in model driven engineering allowing to get di�erent target models by treating di�erent
source models [REP12].

De�nition 13. (Model Transformation) A model transformation is a function, � : S ! T, such that:
� takes as input a set of source models S, and produces as output a set of target models T. S and T
are models sets conforming to two sets of metamodels. If the two metamodels sets are identical, then
the model transformation � is called endogenous, otherwise it is called exogenous.

Figure 4.4 shows an overview of the model transformation mechanism as it is used via model driven
engineering. In general, a model transformation is a program that is composed of a set of rules
and based on a corresponding metamodel. This latter represents an abstract de�nition of the used
transformation language. A transformation rule is a description of how one or more elements in the
source language can be transformed to one or several elements in the target language [KWB03]. Then,
the transformation rules are speci�c to the source and target metamodels. The execution of the
transformation rules is ensured by a transformation engine. Furthermore, the rules description can be
declarative (i.e. the execution order of rules is not de�ned by users) or imperative (i.e. the execution
order of rules is de�ned by users).
There are many classi�cations criteria related to model transformation [CH06, REP12]. In the current
work, we are interested in two kinds of model transformation approaches:

ˆ model-to-model transformation produces models conforming to the target metamodels. For ex-
ample, ATL (Atlas Transformation Language) [JK05] is one of the famous transformation lan-
guages. It contains a mixture of declarative and imperative constructs. Also, QVT (Query-View-
Transformation) [GGKH03] is the model-to-model transformation language provided by OMG.
Figure 4.5 shows an example of the model-to model transformation ensured by an ATL program
called �transfo.atl�. This program transforms any instance of thePerson class (part of the meta-
model MMA) with a function property equals to �Manager� to an instance of theContact class
(part of the metamodel MMB).
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Figure 4.4: Models transformations in model driven engineering

Figure 4.5: Example of a transformation program with ATL language
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ˆ model-to-text transformation permits to obtain target models which essentially consist of strings.
The model-to-text transformation is usually used to perform the code generation, like transform-
ing UML models to a Java programs. Acceleo [MJL06] and Xpand[Kla07] are among template-
based languages ensuring model-to-text transformation.

II.5. Model-driven development of real-time systems

Models occupy a prominent place among the artifacts of systems development. When applied to the
embedded systems domain, the main idea is to use models to highlight functional and non-functional
aspects of the system (behavior, structure, timing, etc.) prior to any implementation. Thus, models
must be su�ciently precise in order to be understood and processed by machines. During last decade,
several research studies have discussed the integration of the model-driven development into real-
time systems design by taking advantage of the expressive power of modeling languages. That allows
to explore di�erent candidate architectures according to the non-functional requirements. The next
section is devoted to discuss some model-based approaches of real-time systems design.

III. Model-based Approaches and Scheduling Analysis

The objective behind proposing model-based approaches of real-time systems is to get a design in a
language that is commonly understood by di�erent actors (e.g. modelers, architects, analysts, etc.).
Then, the common language represents a manner that designers use to discuss many candidate design
solutions. Moreover, it is necessary for the solution to be unambiguous in order to perform the analyses
which are the scheduling analyses in our context (as it is mentioned in Chapter 3).

III.1. Standard design languages

Several design languages have been proposed, however this section is solely devoted to present some
standard ones.

III.1.a. Architecture Analysis and Design Language (AADL)

Description The Architecture Analysis and Design Language (AADL) is a domain speci�c language
standardized by the Society of Automotive Engineers (SAE) in 2004. The �rst version of AADL was
developed for avionics �eld, it was formerly known as the Avionics Architecture Description Language.
In 2009, the SAE published the second version of AADL which is used to model the software and the
hardware architecture of embedded real-time systems. AADL is aimed at modeling the architecture of
distributed real-time embedded systems, cyber-physical systems, and other mission-critical software-
reliant systems. The description of a system in AADL consists in describing an architecture as a
hierarchy of components with their interfaces and their interconnections.
There are three component categories: software, hardware and system (see Figure 4.6). Interactions
between components are expressed through prede�ned features (like ports, access to bus, data, etc.).
Furthermore, the resulting architectural models can be used for various activities such as the analyses
(e.g. schedulability analysis, �ow control) or the code generation.
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Figure 4.6: The main AADL components. (1): part of software components, (2): part of hardware
components, (3): system component

Utilization OSATE [Uni13] is one of the tools supporting AADL. It is an open-source Eclipse plug-
in and it suggests three possible formalisms to construct AADL models. The graphical formalism, the
textual formalism, and XML formalism called AAXL. Figure 4.7 shows di�erent possible formalisms
of an AADL model where the designed system contains two sub-systems communicating through a
network.
AADL (version 2) provides two meta-models. A metamodel of the AADL models and property sets,
and a meta-model of AADL model instances. Both kinds of meta-models conform to the Meta Object
Facility (MOF) (see Figure 4.8). In other words, if one would like to model a real-time system using
AADL, one has �rst to do a model conforming to the meta-model of the AADL models. Then, this
model has to be instantiated to get the model instance which conforms to the meta-model of the AADL
model instances. So, the obtained model instance represents the practical system.
AADL is extensible by the use of annexes or property-sets without modifying the meta-models. There
are among others annexes available for specifying error handling and behavior. AADL provides also
the ability to specify non-functional properties of the components separately.
Then, designers can instantiate the corresponding metamodel to specify some properties as needed.
Listing 4.1 show an example of a property-set containing the declaration ofPeriod as a property
related to thread elements.

Listing 4.1: Part of a property set
proper ty se t My_Proper t ies i s
Time_Units : type u n i t s ( Us , Ms => Us * 1000 , Sec => Ms * 1000 , Min => Sec * 60 , Hr => Min * 6 0 ) ;

Time : type a a d l i n t e g e r 0 Us . . v a l u e (Max_Time) u n i t s Time_Units ;

P e r i od : i n h e r i t Time a p p l i e s to ( thread ) ;
.
.
.

end My_Proper t ies ;

For various purposes, an AADL model may be completed by adding properties. The utilization of an
ad-hoc property is done as shown in Listing 4.2, where the model is enriched by thePeriod property
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Figure 4.7: Example of an AADL model which contains two sub-systems communicating through a
network. (1): textual formalism, (2): graphical formalism, (3): AAXL formalism

already declared in Listing 4.1. In addition, every component speci�ed in the architecture inherits all
the properties from its parents except if the property is de�ned in the component itself.

Listing 4.2: Example of a property-set utilization by an AADL model

. . .
th read implementat ion th readExample . imp l

p r o p e r t i e s
. . .

My_Proper t ies : : P e r i o d => 15 Ms ;
. . .

end th readExample . imp l ;
. . .

While AADL is proposed as a standard, the SAE provides a prede�ned set of properties.

67



CHAPTER 4. TECHNOLOGICAL BACKGROUND

Figure 4.8: AADL metamodels

Advantages/Drawbacks The main advantage of AADL is that it is an industrial standard. More-
over, AADL proposes a practical way to be extended by using annexes and property-sets. However,
the extension and the customization of AADL - to represent for example some timing based properties
- may lead to a lack of semantics related to the schedulability analysis. Indeed, as such extension is
ad-hoc, its use in a design can make the design be driven by the tools supporting these properties, and
consequently that may in�uence the design of the system architecture.

The di�erent components provided by AADL allows designers to get an architecture very close to
the practical one. Moreover, designers using AADL through OSATE can bene�t from the syntactical
and architectural veri�cation. Nonetheless, while the component-based modeling needs to have deep
information about the designed system, its utilization is not very suitable for early design stages.

III.1.b. Modeling and Analysis of Real-Time and Embedded systems (MARTE)

Description In 2009, the OMG has adopted the Modeling and Analysis of Real-Time and Embedded
systems language (MARTE) [OMG09], which is an UML pro�le providing support for speci�cation,
design, and validation stages. MARTE is a standard structured around two main concerns: (i) modeling
the features of real-time and embedded systems and (ii) annotating application models in order to
support analyses of system properties. Indeed, as an UML pro�le, MARTE annotates UML models (i.e.
functional models) with the real-time properties. For this purpose, MARTE proposes 158 stereotypes
to be used to model both hardware and software properties.

MARTE consists of four parts where elements composing each part are regrouped in a package as
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Figure 4.9: Architecture of the MARTE pro�le [OMG09]

depicted in Figure 4.92:

ˆ Foundations package: it contains the basic concepts required to support real-time and embedded
domain.

ˆ Design package: it re�nes the foundation concepts by supporting detailed design of real-time
software and hardware characteristics.

ˆ Analysis package: it provides elements supporting quantitative analysis of UML models. The
package is specially aimed at o�ering information needed for schedulability and performance
analyses.

2NFPs = Non-Functional Properties, GRM = Generic Resource Modeling, GCM = Generic Component Model, Alloc
= Allocation modeling, RTEMoCC = RTE Model of Computation & Communication, SRM = Software Resource Mod-
eling, HRM = Hardware Resource Modeling, GQAM = Generic Quantitative Analysis Modeling, SAM = Schedulability
Analysis Modeling, PAM = Performance Analysis Modeling, VSL = Value Speci�cation Language, RSM = Repetitive
Structure Modeling
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ˆ Annexes package: it gathers all the MARTE annexes like the Value Speci�cation Language (VSL)
pro�le that de�nes a language for non-functional properties within UML models [Esp07].

Utilization No modeling process is de�ned to use the MARTE language, hence the utilization of
several elements may be used in di�erent contexts with di�erent semantics. Figure 4.10 shows an
example of MARTE utilization, where tasks are annotated by the schedulableResourcestereotype,
processors are annotated by thesaExecHost stereotype, etc.

Figure 4.10: Example of a MARTE model containing resources platform [MTPG11]

To �ll the chasm due to the absence of the modeling process, di�erent MARTE methodologies have
been proposed [HG10, MC11, MTPG11]. Optimum process is one of the methodologies interested in
scheduling analysis [MTPG11]. The underlying idea behind Optimum is to use MARTE as a modeling
framework that provides a rich set of concepts for modeling (i) end-to-end �ows, (ii) software and
hardware resource platform, and (iii) the allocation of application modules to platform resources.
Relying on Papyrus [LIS] which is a UML graphical editor, Optimum methodology suggests di�erent
kinds of models based only on a subset of MARTE stereotypes:

ˆ Workload model: it represents the UML functional model (as an entry point) annotated by a
set of stereotypes corresponding to the semantics de�ned by Optimum. The workload model
illustrates the end-to-end �ows and uses the UML activity diagram for this purpose. Once the
workload model is speci�ed, Optimum launches an internal process to produce a concurrency
model and a deployment model also called architectural models.

ˆ Concurrency model: it represents the architecture of the task-set and the mapping to the func-
tional blocks.
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ˆ Deployment model: it represents the architecture of the software and hardware resources, and
the tasks allocation.

Merging the three models leads to get the schedulability analysis model which may be analyzed. The
process may be iterated many times until �nding the architectural models that �t the workload model.

Advantages/Drawbacks As a UML pro�le, MARTE bene�ts from the facilities provided by UML,
and also from the several mature UML editors. So, MARTE can be used in di�erent design stages,
and that leads to an incremental modeling. Yet, the traceability o�ered by the properties eases the
modeling analysis in an incremental way also. Since MARTE focuses on giving concepts for modeling
real-time systems without de�ning any methodology, that complicates its utilization, in particular in
cases where designers have to choose suitable annotations for their schedulability analyses. Not only
the utilization steps are not well de�ned but also no architecture veri�cation is provided to check the
reliability of the system architecture.
Following a modeling methodology as discussed earlier can make designers �hemmed� to design only
architectures that are able to be analyzed by tools supporting this methodology. In our point of view,
this manner of usage does not totally match the principle of the standard modeling language.

III.1.c. Comparison

Although UML-MARTE and AADL are standard design languages, each one has its own capabilities.
Di�erences and similarities are summarized as a comparison table (see Table 4.1). The comparison
metrics have been chosen regarding to the context of our work and the background we have acquired
when handling those standard languages.

III.2. Analysis tools

When using design solutions (i.e. models), the design has to be analyzed to verify that the timing
requirements of a real-time system are met. Performing the scheduling analyses manually is tedious
and error-prone, hence several academic open-source and commercial tools have been developed. We
present some of these tools.

III.2.a. Cheddar

Cheddar is a schedulability analyzer and simulation toolkit written in Ada for real-time systems
[SLNM04]. Cheddar can manipulate AADL models under some conditions, such as the model has
to not be complex, and it must be enriched by several ad-hoc properties only understood by Ched-
dar. Basic systems to analyze can be described by the Cheddar design language, because it cannot
cover all kinds of the real-time systems. The Cheddar input and output formalism is based on XML.
Furthermore, to ease the modeling, Cheddar provides a graphical user interface.
Although Cheddar supports a great number of schedulability tests, there are cases where existing tests
do not match the characteristics of a given system. For those cases, Cheddar o�ers the possibility to
de�ne new analysis tests. This task is a very tedious because it requires to well understand the internal
architecture of the Cheddar analyzer.
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AADL UML-MARTE
Systems architecture The component-based ap-

proach used in AADL enables
to elaborate an architecture
very close to the system in
practical cases. Nevertheless,
architectures modeled via
AADL are frozen.

UML-MARTE focuses more on
models which may be organized
on separate diagrams for an in-
cremental modeling than the
architecture.

Utilization phase in the devel-
opment life-cycle

The modeling with AADL re-
quires to know several informa-
tion which cannot be necessar-
ily known at early design steps

UML-MARTE may be uti-
lized in di�erent steps com-
posing the design phase. In
addition, UML-MARTE mod-
els are grouped in two lay-
ers: the logical application layer
which contains the functional
UML model without annota-
tions, and the non-functional
layer which is composed from
the other kinds of models the
workload model, the platform
model, the allocation model,
etc.

Traceability: the ability to re-
cuperate the analysis informa-
tion to be added into input
models

Currently, no standard prop-
erty set enables to keep the
traceability, but it is possible to
add this feature in an ad-hoc
way

the traceability is guaranteed
by the non-functional proper-
ties of UML-MARTE, but it is
still complex because it requires
to be familiar with the VSL lan-
guage

Timing information semantics AADL components have a clear
unchangeable semantic regard-
less on the designed architec-
ture. Moreover, in case of using
OSATE, the utilization of dif-
ferent elements is checked

Due to the absence of a stan-
dard semantic, some elements
have di�erent meaning accord-
ing to the methodology fol-
lowed, the type of the designed
systems, and the analysis tools
which would be used

Table 4.1: Design modeling languages capabilities

III.2.b. MAST

MAST (Modeling and Analysis Suite for Real-Time Applications) [dC] is a model-based schedulability
analysis tool suite developed in Ada for real-time applications. MAST has its own metamodels based
on XML, an input metamodel to create the models to analyze, and an output metamodel for analysis
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results. MAST provides a user environment facilitating the creation of models, a results viewer to view
the analysis results, and also a graphical interface to choose an analysis test. However, the graphical
interfaces are sprinkled which make their usage in a convenient way di�cult. In addition of supporting
basic real-time systems, MAST also supports distributed architectures. Moreover, the MAST design
language enables to design the core of threads by proposing theOperation elements. The type of
an operation can be simple, composite or enclosing. Elements composing the last version of MAST
metamodels are very close to those of SAM which is a package of UML-MARTE pro�le. Even if MAST
is open source, the extension of MAST for adding new tests requires to program new tests from scratch.

III.2.c. ASIIST

ASIIST (Application Speci�c Input/Output Integration Support Tool) [NPSB09] is a tool that supports
system models speci�ed in AADL to perform many types of real-time analyses. ASIIST has been
developed as an Eclipse plug-in and works well with OSATE AADL editor. ASIIST helps to recognize
Integrated Modular Avionics (IMA) architectures. Then, by performing the schedulability analysis for
such applications, ASIIST can detect e�ects occurred due to I/O tra�c existing in the systems. To
solve the analysis equations, ASIIST is related to the kernel of Mathematica.

III.2.d. Rt-Druid

RT-Druid [GNS + 07] is an analysis tool and a design environment implemented as an Eclipse plug-in
with a graphical user interface. Although, RT-Druid is oriented towards automotive applications (It
supports the OSEK/VDX standard), it is possible to use it in any other real-time systems domains.
Systems designed via the RT-Druid tool are de�ned by an application part (pieces of application
code), and a platform part (the platform resources, hardware and software). Next, RT-Druid captures
the mapping of the functional components of the system to the concurrent threads, and provides
schedulability and sensitivity analysis tests.

IV. Conclusion

As it is presented above, there are several standard and non-standard design languages and also a
variety of analysis tools. However, each language/analysis tool has its advantages and its limitations
depending on the nature of the system which needs modeling, and also depending on the kind of users
and their experiences. Referring to the context of model driven engineering, the main idea behind the
existence of design languages and analysis tools is the integration of the timing veri�cation during a
seamless model-based development process. Unfortunately, several issues are related to the lack of a
guidance enabling a good integration of such scheduling analyses during the development process of
real-time systems.
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Abstract

In this chapter, we synthesize the �rst part of the manuscript and we give an overview of
our contributions presented in the second part. First, the work positioning is highlighted by
presenting di�erent problem statements and illustrating them via some motivating examples.
The second section describes the objectives which we aim to achieve in this thesis. Finally, the
third section gives a brief idea about our proposals.
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I. Work Positioning

I.1. Introduction

During the model-driven development of real-time systems, the primary task of system designers is to
create models with enough information to support timing requirements in the di�erent design stages.
The goal is to usedesign modelsto drive series of scheduling analysis that verify the timing requirements
and help to predict the timing behavior of the target system. Thus, to perform these analyses, the
design models must be �rst transformed intoanalytical models that admit mathematical evaluations.
The modeling frameworks and design languages are used to get design models, and the analysis tools
accept as input the analytical models and evaluate them mathematically to produce results used
for successive re�nement of design models. However, the transition from the design models to the
analytical models is not an obvious task, and it may generate several problems as it is detailed in the
next subsection.

I.2. Issues, Problem Statements and Motivating Examples

Di�erent key issues are of concern in this work. Generally, they are related to a common problem,
which is the design decision due to the complexity in terms of real-time systems analysis, and also due
to the weak integration of this analysis into a design process.
In the following, we present details of every spotted issue.

I.2.a. Issue 1: usage of the analysis tools

Problem Statement The current utilization of model driven engineering through the design phase
of real-time systems accelerates the development process. However, integrating modeling frameworks
with analysis tools is still di�cult. Indeed, due to the large semantic gap between design and analysis
representations, some design information must undergo signi�cant simpli�cation or re�nement before
being fed into the analytical models used as input by analysis tools. So, the transformation process
eases greatly the passage from the modeling frameworks to the analysis frameworks despite the di�erent
input analysis formalisms. Nonetheless, the example below gives an overview showing that yet the
utilization of the actual solutions requires both modeling and analysis skills.

Example Figure 5.1 shows the two main scenarios illustrating the current situation related to design
and analysis frameworks. The �rst scenario (see Scenario 1 of Figure 5.1) represents the successful
classic �ow of the tool utilization. In this case, the designer has obtained the analysis results after
transforming a design model to an analysis tool. Nevertheless, the designer cannot know if the obtained
result is correct and accurate, and if it corresponds well to the analyzed system.
To clarify Scenario 1, we consider an application composed of four periodic independent tasks where
each task is de�ned by a set of properties (See Table 5.1). The preemptive task-set is executed on a
uniprocessor architecture and follows a �xed priority scheduling policy. Task1 is the highest priority
task and Task4 is the lowest priority task. To alleviate the example, we consider that the model
is done via a design framework and the transformation is done correctly. Although, after launching
the analysis process through two di�erent analysis tools which are Rt-Druid [GNS+ 07] and MAST
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Figure 5.1: From the real-time modeling to the timing analysis: the current situation

Task Worst-case execution time Deadline Period Release time

Task1 3 ms 15 ms 20 ms 2 ms
Task2 4 ms 8 ms 23 ms 0 ms
Task3 5 ms 13 ms 23 ms 5 ms
Task4 9 ms 13 ms 23 ms 7 ms

Table 5.1: Values of task characteristics

[MPHD01], two di�erent results have been produced for the same input model. Table 5.2 shows the
response-times provided by Mast and Rt-Druid. While the Rt-Druid result shows that the system
is not schedulable because the response-time ofTask4 exceeds the deadline, the Mast result shows
that the system is schedulable and provides more accurate response times (i.e. the result provided by
Rt-Druid is pessimistic).

Task Worst-case response-time (Mast) Worst-case response-time (Rt-Druid)

Task1 3 ms 3 ms
Task2 7 ms 7 ms
Task3 8 ms 12 ms
Task4 21 ms 33 ms

Table 5.2: Worst-case response times computed through di�erent analysis tools

The di�erence between the two provided results is apparent. However, it may not be for a designer
without deep analysis background, hence the result could be unexpected.

The di�erence is not related to a wrong implementation of the analysis methods, but to the input
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analytical model. The example shown in Table 5.1 is considered by Mast as a transaction model
[PGH98]. Then, the mathematical formula calculating the response-times takes the release-times
into consideration, whereas the analysis chosen via Rt-Druid masks the release-times and considers
the model as a sporadic model [JP86]. So, the mathematical formula calculating the response-times
considers that tasks are non-concrete (i.e. the release-times are unknown). The result provided by
Rt-Druid does not mean that the tool does not support the transaction models, but the analysis
functionality chosen via the tool does not support this kind of analysis. In some cases, choosing a very
abstract model is not totally a wrong choice. For instance, the analysis functionality chosen via Rt-
Druid (i.e. the analysis test) o�ers the possibility to use a sensitivity analysis (which is a dimensioning
technique) technique allowing to tune the system design. This kind of analysis cannot yet be applied
to a transaction model.

The second scenario shown on Figure 5.1 happens when the analysis process fails. Then, this failure
can be due to the analytical model if it is not supported by the analysis tools (e.g. the Cheddar tool
[SLNM04] does not support the transaction model).

The failure could be also related to the transformation of the design models from the modeling tools
to the analysis tools, but the correctness of the transformation itself is out of the scope of our work.

I.2.b. Issue 2: design methodologies and semantics gap

Problem Statement In the current standard design languages, one impediment to integrate schedul-
ing analysis is that the underlying design model is quite unlike the analytical models used in real-time
analysis theory, which are assumed in the underlying tools. To overcome this semantic gap, several
methodologies (like [MTPG11] or [HG10]) propose to use only some concepts focusing on the schedul-
ing analysis to get analytical models, but those concepts do not have necessarily the same semantics
inside di�erent methodologies.

The model-driven engineering enables to automatize the transferring process of timing requirements
from design languages to analysis tools by using transformation languages like ATL [rg13] or Acceleo
[Com] (see Figure 5.2). Then, the current model-based utilization produces tool-driven analytical
models. So, instead of allowing designers to have precise models and to help them to perform complex
analysis techniques, this way of utilization directs designers to have abstract models dedicated to
speci�c implemented analysis tools.

Example Focusing only on the modeling and analysis areas, we suppose that we have two models
expressed in MARTE and representing the same real-time system. The �rst one respectsmethodology 1
and the second one respectsmethodology 2(as it is shown in Figure 5.2). If we were to analyze the �rst
model with the Analysis Tool 1, that could be possible after a transformation process. If we maintain
the same model and we transform it to another input formalism tool (e.g.Analysis Tool 2), that cannot
be analyzed, becauseAnalysis Tool 2 supports the same design language, but supports it according to
another methodology. Therefore, we cannot compare analysis results because we did not analyze the
same input models. The same scenario may be repeated with another design language/methodology
and other analysis tools.
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Figure 5.2: Example of methodologies usage with MARTE language

I.2.c. Issue 3: expressiveness and precision-level

Problem Statement During the modeling phase of a hard real-time system, the designers acquire
information to specify a design with di�erent entities and functionalities regardless of the resources
utilization. Then, the speci�ed design would be expressed in a mathematical model in order to be
analyzed. As the mathematical model represents a hard real-time system, it can be characterized by
the worst-case scenario of the resources utilization to check the resources availability and the satisfaction
of the entities constraints. By following this classical conception progress of a real-time system from
the modeling phase to the analysis phase, a pessimism and a resource over-dimensioning could be
generated due to the estrangement between the abstract model and the practical application. So,
the system modeling has to provide accurate modeling concepts, which are able to provide very clear
abstract models without any misunderstanding concerning the system's timing behavior. However,the
problem is that usually the more expressive the model is, the more complex is the schedulability test.
Then, the time complexity of the analysis is a very important point that designers need to take into
consideration.
Figure 5.3 shows an example of two models (Model1 and Model2) related to the same system. The
analysis results ofModel2 are closer to the practical system than the analysis results ofModel1. This
di�erence is related to the expressiveness ofModel2, which is more expressive thanModel1. However,
to analyze a model such asModel2 requires the choice of suitable tests. This task is not trivial for
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