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TITRE DE LA THÈSE EN FRANÇAIS  
 
      ÉTUDE DU MICROENVIRONNEMENT MÉDULLAIRE ET DES COMPLEXES D’ADHÉRENCE 
FOCALE DANS LE MYÉLODYSPLASIES ET LÉUCÉMIES 

 
RESUMÉ DE LA THÈSE EN FRANÇAIS 
 
      Les syndromes myélodysplasiques (SMD) sont considérés comme des maladies clonales des 
cellules souches hématopoïétiques (CSH). Le microenvironnement joue un rôle important par ses 
contacts direct avec les cellules progénitrices hématopoïétiques (CPH). 
Notre objectif était d'évaluer les défauts de croissance des cellules stromales mésenchymateuses 
(CSM) dans les MDS, d’explorer les molécules d’adhérence impliquées, et d'effectuer des corrélations 
avec leurs dysfonctionnements de croissance et les anomalies des CPH. 
Les CSM de MDS sont intrinsèquement pathologiques, montrant une baisse continue de la 
prolifération pendant 14 jours de culture et une capacité clonogénique réduite. Ces anomalies sont 
corrélés à une diminution des molécules d'adhérence CD44 et CD49e. Par ailleurs, le potentiel 
clonogénique des CPH est contrôlé par des mécanismes d'adhérence dépendant du stroma, CD49e 
pouvant être une des molécules impliquées. 
L’analyse en immunofluorescence des protéines d'adhérence focale (FA), paxilline et pFAK [Y397], et 
des deux protéines régulatrices, HSP90αβ et p130CAS permet l'identification d’anomalies qualitatives 
et quantitatives. Une expression accrue de paxilline, pFAK et HSP90αβ et leur forte co-localisation 
nucléaire dans les CSM d'anémie réfractaire avec excès de blastes (AREB) sont corrélées avec un 
avantage prolifératif et un impact négatif sur la capacité clonogénique de CPH. 
Ces résultats ouvrent des possibilités intéressantes : la signalisation via les protéines FA pourrait être 
impliquée dans les interactions HPC-MSC ; par ailleurs, FAK étant une  protéine cliente d’HSP90, les 
inhibiteurs d’HSP90 sont une potentielle thérapie adjuvante dans les myélodysplasies. 

 
 
TITRE DE LA THÈSE EN ANGLAIS  
 
      STUDY OF MARROW MICROENVIRONMENT AND FOCAL ADHERENCES IN 
MYELODYSPLASTIC SYNDROMES AND LEUKEMIAS 
 
RESUMÉ DE LA THÈSE EN ANGLAIS 
 
Myelodysplastic syndromes (MDS) are regarded as clonal disorders of haematopoietic stem cells 
(HSC). Recent evidence demonstrates that stromal microenvironment, in addition to HSC defects, 
plays a particular role via its direct contact with haematopoietic precursor cells (HPC). This thesis 
aims at evaluating the putative growth deficiencies of mesenchymal stromal cells (MSC) from MDS 
individuals compared with normal controls, exploring their adhesion profile, assessing the adhesion 
process-involved molecular substrates, and establishing correlations with their growth patterns and 
HPC dysfunctions. Functional assays revealed that MSC from MDS are intrinsically pathological, 
show a continuous decline of proliferation over a 14-day culture and a reduced clonogenic capacity in 
the absence of signals from HPC. MSC growth defects significantly correlate with decreased CD44 
and CD49e expression. Moreover, stroma-dependent adhesion mechanisms control HPC clonogenic 
potential and CD49e might be one of the molecules involved in this process. Qualitative and 
quantitative abnormalities of focal adhesion (FA) proteins paxillin and pFAK [Y397] and of two 
regulatory proteins, HSP90αβ and p130CAS were identified via immunofluorescence analysis. 
Paxillin, pFAK [Y397] and HSP90αβ increased expression, besides its stronger nuclear colocalization 
in MSC from RAEB correlates with a consistent proliferative advantage and has a negative impact on 
HPC clonogenic capacity. These results open interesting opportunities, e.g. HPC-to-MSC interactions 
involve FA proteins signalling, and, as FAK is an HSP90αβ-client protein, it may enhance the utility 
of HSP90αβ inhibitors as adjuvant therapy in MDS. 
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Chapter I – Preliminary Basis: The Bone Marrow Haematopoietic Niche 
 

 

I-1. Embryogenesis and early stem cell development 
 

Stem cells are undifferentiated cells defined by their ability at the single cell level to 

both self-renew and differentiate in order to produce mature progeny cells, including both 

non-renewing progenitors and terminally differentiated effector cells.  

Stem cells have been classified by their developmental potential as: totipotent (able to 

give rise to all embryonic and extra-embryonic cell types, such as trophectodermal cells, 

which give rise to the subsequent cell lineages that produce the placental tissues and 

components of the yolk sac), pluripotent (able to give rise to all cell types of the embryo 

proper), multipotent (able to give rise to a subset of cell lineages), oligopotent (able to give 

rise to a more restricted subset of cell lineages than multipotent stem cells), and unipotent 

(able to contribute only one mature cell type) (Figure 1). Pluripotent embryonic stem (ES) 

cells were first isolated by in vitro cell culture derived from the inner cell mass (ICM) of 

blastocysts [1]. In vivo, the ES cells create the three embryonic germ layers: ectoderm 

(believed to give rise to skin and neural lineages), mesoderm (believed to generate blood, 

bone, muscle, cartilage, and fat), and endoderm (believed to contribute at tissues of the 

respiratory and digestive tracts) [1].  

Recently, a new category of cells, in-vitro-reprogrammed induced pluripotent stem 

cells (iPS) were generated from human somatic cells using the four transcription factors 

(Oct4, also called Oct3/4 or Pou5f1, SOX2, NANOG, and LIN28), which can reprogramme a 

somatic genome back into an embryonic epigenetic state [2], [3], [4]. These induced 

pluripotent human stem cells have normal karyotypes, express telomerase activity, cell 

surface markers and genes that characterize human ES cells, and maintain the developmental 

potential to differentiate into all three primary germ lines [2]. Noteworthy is that the iPS 

production can be suppressed by the p53-p21 pathway [3]. 

The common marker of multiple stem cell populations is the high level activity of 

ATP binding cassette (ABC) transporter proteins, and although the biological significance of 

this property is unclear, it has been useful in the enrichment of stem cells from multiple 

tissues by virtue of their enhanced efflux of the fluorescent dye Hoechst 33342 (the so-called 

“side population”, SP cells) [1]. In addition, other metabolic markers / dyes such as 

rhodamine123 (which stains mitochondria), Pyronin-Y (which stains RNA), and BAAA 

1 
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(indicative of aldehyde dehydrogenase enzyme activity) are imprints of the functional stem 

cell activity [5]. 

 
Figure 1. Schematic representation of stem cell hierarchical tree 

iPS: induced Pluripotent Stem cells; HSC: haematopoietic stem cells; CLP: 
common lymphoid progenitors; CMP: common myeloid progenitors;  GMP: 
granulocyte / macrophage progenitor; MEP: megakaryocyte / erythroid 
progenitor; MSC: mesenchymal stromal cells. Adapted from: Wagers A. J. 
& Weissman I. L., Cell 2004, and Junying et al, Science 2007 
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I-2. Haematopoiesis 

 

I-2.1. Overview 

 

Haematopoiesis is a multiple-step process, in which a relatively small population of 

haematopoietic stem cells (HSC) give rise, after a sequentially maturation stage, to all types 

of blood cells (Figure 2) [6]. 
 

 

Figure 2. Schematic diagram of haematopoietic maturation stages 

The different cells identified have been clustered into three families according to the 
type of assay which served for their identification: in vivo transplantation assay or 
cytometry selection and Long Term Culture-Initiating Cell Assay (LTC-IC cultures) (the 
left panel), in vitro colony assays in methylcellulose culture system (middle panel), and 
morphological classification (right panel). Adapted from: Domen J., Wagers A. &  
Weissman I. L., Stem Cell Information 2011 

 

The HSC is currently best characterized as a multipotent stem cell population [1]. 

The HSC pool represents only 0.05% of the whole bone marrow [7] and is able to maintain 

haematopoiesis over a lifetime based on its two fundamental features, slow division and high 

self-renewal rate [6]. A possible explanation for these slow division kinetics might be to 

reduce the risk of mutagenesis and defects during cell division [8], and it is also a prerequisite 

3 

http://stemcells.nih.gov/StemCells/Templates/StemCellContentPage.aspx?NRMODE=Published&NRNODEGUID=%7b7AFDD683-9069-48C0-BE22-D198F606D1E9%7d&NRORIGINALURL=%2finfo%2f2006report%2f2006Chapter2%2ehtm&NRCACHEHINT=NoModifyGuest#note1#note1
http://stemcells.nih.gov/StemCells/Templates/StemCellContentPage.aspx?NRMODE=Published&NRNODEGUID=%7b7AFDD683-9069-48C0-BE22-D198F606D1E9%7d&NRORIGINALURL=%2finfo%2f2006report%2f2006Chapter2%2ehtm&NRCACHEHINT=NoModifyGuest#note2#note2
http://stemcells.nih.gov/StemCells/Templates/StemCellContentPage.aspx?NRMODE=Published&NRNODEGUID=%7b7AFDD683-9069-48C0-BE22-D198F606D1E9%7d&NRORIGINALURL=%2finfo%2f2006report%2f2006Chapter2%2ehtm&NRCACHEHINT=NoModifyGuest#note3#note3
http://stemcells.nih.gov/StemCells/Templates/StemCellContentPage.aspx?NRMODE=Published&NRNODEGUID=%7b7AFDD683-9069-48C0-BE22-D198F606D1E9%7d&NRORIGINALURL=%2finfo%2f2006report%2f2006Chapter2%2ehtm&NRCACHEHINT=NoModifyGuest#note3#note3
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for maintaining haematopoiesis during a life-time, otherwise the stem cell pool might be 

rapidly depleted [6].   

The phenotype recognized for the HSC highly enriched mouse population, which 

includes all multipotent progenitors, is Thy-1.1lowSca-1hiLineage (Lin)-/low [7]. 

In humans, a small subset of HSC is capable of long-term repopulation upon 

transplantation (LT-HSC). These cells can be enriched by their immunophenotype as 

CD34+CD38-Thy-1-Rh123low [9], they are usually dividing very slowly, provide a 

multilineage haematopoietic engraftment ability [10], and the next compartment comprises 

short-term repopulating stem cells (ST-HSC) that sustain haematopoiesis only for a limited 

several-week span (i.e., 4-10 weeks) after transplantation and these may correspond to a 

CD34+CD38- phenotype [6], [7]. The progenitor cells (such as CMP) are included in the 

CD34+CD38+ cell fraction. In the later stages, CD34 expression is absent and lineage specific 

markers are expressed [6]. 

Recent evidence also indicates the existence of a CD34- HSC, which seems likely to 

be quiescent, capable to convert into CD34+ phenotype upon activation with 5-fluorouracil (5-

FU) or after culture and, after transplantation, could revert into CD34- phenotype again [9]. 

Recent experiments using CD34- cord blood cells that are in the G0 state show that these cells 

have more than 1000-fold potential to form GM-CFC, a 250-fold higher BFU-E forming 

capacity, and 600-fold higher expansion potential compared to G1 cells [9], [11]. Moreover, 

these most primitive HSC show marrow repopulating ability, resistance of 5-FU, and low 

retention of rhodamine-123 (Rh123) [9], [12]. 

The dual function of self-renewal and differentiation is regulated by asymmetric cell 

divisions, where one daughter cell retains the stem cell function, whereas the other 

differentiating cells become a faster proliferating precursor cell [6], [13]. Alternatively, cells 

can undergo symmetric divisions to produce either two identical, self-renewing cells, or two 

differentiated daughter cells [6], [13]. The pool of HSC and progenitor cells is regulated by a 

feedback mechanism that is related to the number of mature cells in the blood (Figure 3) [6].  
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Figure 3. Self-renewal and differentiation in human haematopoiesis 

Haematopoietic differentiation is a multiple-step process. A small group of long term 
repopulating haematopoietic stem cells (LT-HSC) replicates very slowly. The down-
stream compartments are increasingly committed to a specific lineage and have a 
fate-rate replicating capacity. Some of the progeny have to self-renew to keep the 
pool of haematopoietic stem and progenitor cells. The percentages of self-renewal 
versus differentiation are regulated by a feedback mechanism that is related to the 
number of mature cells in the blood (A). The stem cells can divide by either 
asymmetric or symmetric modes of division, and the balance between these two 
modes is controlled to produce appropriate numbers of stem cells and differentiated 
daughters (B). SP: side-population, 5-FU: 5-fluorouracil, DR: class II human 
leukocyte antigens molecules, Rh123: rhodamine-123 MPC: multipotent progenitor 
cells, CPC: committed progenitor cells. Adapted from: Marciniack-Czorchra A., 
Stiehl T., Wagner W., Aging 2009 

 
(1) CD34 is a cell surface glycoprotein and functions as a cell-cell adhesion factor. It may also mediate the 
attachment of stem cells to bone marrow extracellular matrix or directly to stromal cells. In experiments on mice, 
CD34 has proved useful to distinguish between HSCs with long-term marrow repopulating ability (CD34low/- c-
kit+ Sca-1+ Lin-), named also (CD34-KSL), and the progenitors with short-term reconstitution capacity (CD34+ c-
kit+ Sca-1+ Lin-) or (CD34+KSL). The CD34-KSL cells express only the following genes GATA-2, IL-1R alpha, 
IL-2R gamma, AIC-2B (colony stimulating factor 2-receptor, beta, low-affinity [granulocyte-macrophage]), c-
kit, EPO-R, and c-mpl. In contrast, the CD34+KSL express all the cytokine receptor genes, which have 
specificity for haematopoietic lineage, except IL-2R beta, IL-7R alpha, and IL-9R alpha. Clonal culture analysis 
showed that CD34-KSL cells were more potent in proliferation and multilineage differentiation capacities than 
CD34+KSL cells. Moreover, the clone-sorted CD34-KSL and CD34+KSL, cultured in the presence of SCF, IL-3, 
and EPO showed that CD34-KSL cells required much more time to undergo the first cell division than 
CD34+KSL. Taken together, these data support the claim that CD34-KSL cells are at a higher rank in 
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haematopoietic hierarchy than CD34+KSL cells [14]. In humans, CD34 marker could differentiate two 
populations of HSC: the CD34- are quiescent cells, which possess colony-forming potential in short-term assays, 
maintain long-term colony forming potential in in vitro cultures and allow the differentiation of blood cell 
lineages; and the CD34+ HSC which preserve all these features, but provide the major contribution to 
haematopoietic engraftment in NOD / SCID mice [9], [10]. 
 
(2) Lin-/low signify that HSCs are negative for the markers that are used for detection of lineage commitment [7]. 
 
(3) CD38 is a nonlineage-restricted type II transmembrane glycoprotein, which serves as an ectoenzyme 
catalyzing the synthesis and hydrolysis of cyclic ADP-ribose. The enzymatic functions of CD38 contribute to an 
array of its immunoregulatory functions. Ligation of CD38 with agonistic antibodies induce diverse effects in 
haematopoietic cells ranging from growth stimulation to induction and prevention from apoptosis, induction of 
cytokines production, activation of kinases, and phosphorylation of certain proteins. The CD38 antigen was 
found to have a rather unique distribution pattern, being predominantly expressed by progenitors, and early 
haematopoietic cells, then lost during maturation, and re-expressed during cell activation. The expression of 
membrane CD38 is modulated by certain physiological and pharmacological agents such as cytokines, and 
lectins [15]. 
 
 (4) Thy-1 (CD90) expression is restricted to, on average, 1-4% of human foetal liver, cord blood (CB), and bone 
marrow, and binding to these cells types is essentially restricted to a very small subset of lymphoid cells and 
approximately 25% of CD34+ cells. The function of Thy-1 on HSCs is unknown, but it has been postulated to be 
involved in cellular recognition, adherence, and cell activation due to its involvement in the release of 
intracellular Ca2+ and phosphorylation of cytoplasmic proteins. Thy-1 may be important in stromal adherence, 
possibly providing a growth inhibitory signal. The lower expression of Thy-1 on circulating CD34+ cells from 
umbilical CB may result from a reduced requirement for adherence [16]. 
 

 

I-2.2. HSC Plasticity  

 

Recent evidence has largely hailed the possibility to “transdifferentiate” the plastic 

bone marrow or circulating stem cells to non-haematopoietic tissue [17]. Transdifferentiation 

describes the conversion of a cell of one tissue lineage into a cell of an entirely distinct 

lineage, with concomitant loss of the tissue-specific markers and function of the original cell 

type, and acquisition of markers and functions of the transdifferentiated cell type [1]. The 

lineage conversion can occur directly, by activating an otherwise dormant differentiation 

programme to alter the lineage specificity of the cell (Figure 4A) or could occur via de-

differentiation of a tissue-specific cell to a more primitive, multipotent cell and subsequent re-

differentiation along a new lineage pathway (Figure 4B) [1]. 

 

The lineage conversion between HSC and neural stem cells (NSC) has been accepted 

so far. Thus, Sigurjonsson et al. proved that CD34+ HSC from adult human donors could 

produce neurons efficiently if they are introduced into the lesions of spinal cord of the 

developing chicken embryo [18]. Moreover, Bjornson et al. showed that genetically labelled 

NSC, after transplantation into irradiated hosts, could produce a variety of blood cell types, 

including myeloid and lymphoid cells as well as early haematopoietic cells [19]. 
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Figure 4. Schematic diagram depicting potential mechanisms involved in adult HSC-

NSC plasticity. Adapted from: Wagers A. J. & Weissman I. L., Cell 2004 

 

I-2.3. Haematopoiesis regulation networks 

 

The production of differentiated haematopoietic cells is tightly regulated by intrinsic 

(Figure 5) and extrinsic factors (Figure 6) [20].  

 

Intrinsic regulators 

 

The multipotent haematopoietic cells, prior to differentiation, express genes associated with 

the erythroid lineage (β globin), and with the myeloid lineage (myeloperoxidase) at low 

levels, the myeloid transcription factors (PU.1 and C/EBPα), lymphoid (GATA-3), and  

myeloid receptors such as c-fms, the G-CSF receptor and the alpha chain of the GM-CSF 

receptor. These observations are consistent with the concept of multilineage priming in stem 

cells. In this context, lineage commitment requires not only that the appropriate gene 

expression programme is enhanced, but also that alternate lineages are repressed [20]. 

Imbalances of this equilibrium induce the disease. For example, the ectopic activation of PU.1 

expression in the erythroid lineage inhibits erythroid differentiation and causes 
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erythroleukaemia. The misexpression of the stem cell leukaemia (SCL) transcription factor in 

T lineage cells conduces to thymocyte differentiation arrest and T-cell leukaemia. The 

absence of E2A and Pax5 transcription factors disturb the development of committed pro-B 

cells [20]. 

To summarise, HSCs express lineage affiliated genes, which are enhanced or 

repressed upon the degree of maturation [21]. The haematopoietic transcription factors drive 

cell fate acting cooperatively, as the SCL transcription complex, antagonistic, i.e. the GATA-

1 / PU.1, GATA-1 / FOG, or SCL-E2A in the lymphoid lineages, as well as the auto-

regulatory pathways [20]. The transcriptional regulation is sensitive to intrinsic perturbations. 

For example, the E2A transcription factor is essential to B lineage development (commitment 

and proper B-cell differentiation), and the E2A locus is often concerned by chromosomal 

translocations in B-cell leukaemias [22]. In the thymus, E2A collaborates with HEB, another 

basic helix-loop-helix (bHLH) transcription factor, to drive thymocyte differentiation. The 

oncogenes that are involved in T cell acute lymphoblastic leukaemia (T-ALL) have been 

shown to directly associate with E2A and HEB in thymocytes, and to inhibit their 

transcriptional proprieties [23]. Moreover, there are evidences that the B- versus T-cell fate is 

dependent on the level of E2A activity, B-cell commitment being more sensitive to E2A 

dosage than T-cell lineage commitment [20]. 

Other examples include inactivating mutations of GATA-1 in megakaryoblastic 

leukaemia [24] and of PU.1 in acute myeloid leukaemia (LAM) [25]. In addition, the early 

lineage commitment is sensitive to PU.1 dosage governing B cell as well as macrophage 

developments. Thus, low levels of PU.1 are compatible with B-cell fate, while high PU.1 

levels is specific to macrophage switch [26]. Moreover, high levels of PU.1 favour the 

macrophage fate over the granulocyte fate [27]. 
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Figure 5. Transcription factors implicated in haematopoietic lineage development 

LMO2: LIM-only protein, E2A: Ebox binding protein, SCL: stem cell leukaemia, 
HEB: HeLa Ebox Binding protein, EBF: early B cell factor, GATA-1/2/3: GATA 
binding protein, C/EBP/α and β: CAAT/enhancer binding protein, Pax5: paired 
domain protein, FOG: Friend of GATA, From: Hoang T., Oncogene 2004 

 

Extrinsic regulators 

 

Environmental signalling could occur through direct HSC-MSC interaction, or 

through the action of soluble mediators (Figure 6). In the absence of these signals, 

haematopoietic cells undergo a default pathway of apoptosis [20]. Thus, there are soluble 

factors that could contribute to the decision between self-renewal and differentiation. For 

example, leukaemia inhibitory factor (LIF) through LIF-STAT3 contributes together with 

bone morphogenetic protein (BMP)-Smad pathway to the decision of maintaining the 

totipotency of ES in vitro, or, to adopting a neural fate [28]. Other cytokines have a regulator 

role of haematopoietic cell differentiation through the alteration of transcription factor dosage, 

thereby shifting the transcription network towards a particular pathway [20]. For example, the 

dosage of GM-CSF influences the choice between a macrophage and a granulocyte fate, by 

regulation of PU.1 expression in multipotent CMP, and in committed myeloid progenitors 

(GMP) [20]. Similarly, the G-CSF receptor induces granulocyte differentiation through 

upregulation of transcription factor C/EBPα [29] and by altering the ratio of C/EBPα versus 

PU.1 in favour of the granulocyte lineage [27]. Furthermore, the vascular endothelial growth 

factor (VEGF) has proved to have an anti-apoptotic role during the development of the 
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primitive erythroid lineage, and this effect is mediated the SCL transcription factor [30]. 

Similary, c-kit through Jak-STAT signalling pathway suppress apoptosis in haematopoietic 

cells [31]. Moreover, c-kit prevents progression in the B lineage at the level of transition from 

pro-B to pre-B by down-regulation of E12 transcription factor, a product of the E2A locus 

[32]. In conclusion, the combinatorial interaction between cell-extrinsic cues and cell-intrinsic 

processes consolidates the lineage choice and drive cells to differentiation and maturation 

pathways.  

 
Figure 6. Extrinsic factors implicated in the fate of HSC and other haematopoietic 

progenitors 

Wnt: Wnt signalling protein, Dl, Ser: Delta, serrate (Notch ligands), BMP: bone 
morphogenic protein, Shh: Sonic Hedgehog, VEGF: Vascular endothelial growth 
factor, SF: Steel factor, KL: Kit ligand, SCF: Stem cell factor, LIF: Leukaemia 
inhibitory factor, GM-CSF: Granulocyte/macrophage colony stimulating factor, G-
CSF: Granulocyte colony stimulating factor, M-CSF: Macrophage colony 
stimulating factor, Tpo: Thrombopoietin, Epo: Erythropoietin. From: Hoang T., 
Oncogene 2004 

 

 

I-2.4. Epigenetic mechanisms regulating normal haematopoiesis 

 

The molecular processes governing hematopoiesis involve the interplay between lineage-

specific transcription factors, listed above, and a series of epigenetic tags, including DNA 

methylation and covalent histone tail modifications [33]. The DNA in eukaryotic chromatin is 

packed by histones into arrays of repeating units called nucleosomes. Each nucleosome 

contains a nucleosome core, where the DNA is wrapped around a histone octamer, consists of 

(H3)2-(H4)2 tetramer and two dimers H2A-H2B, and a stretch of relatively unconstrained 

DNA called the linker DNA. The nucleosome cores occlude the DNA from many DNA-
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binding factors, playing a significant role in chromatin packing and gene regulation. In 

addition, the post-translational modifications of chromatin (such as acetylation, 

phosphorylation, methylation, ubiquitination, polyADP-ribosylation), commonly known as 

“histone code”, are capable of affecting its structure and gene transcription, and are catalysed 

by opposing families of enzymes, allowing the developmental potential of HSCs to be 

dynamically regulated. Thus, during development, in normal conditions, cells undergo a 

process whereby they lose pluripotency and become committed to a more-restricted cell type. 

This pathway involves three steps of chromatin remodelling: first, transcriptional repressors 

are recruited to OCT4; second, heterochromatin is generated by the methylation of H3K9 and 

the subsequent binding of heterochromatin protein 1 (HP1) to this histone modification; and 

third, the underlying DNA is methylated [34] (Figure 7). Although the histone modification 

takes place as a secondary event, the repressive chromatin structure is easily reversed by 

altering the cell environment, and only the DNA methylation can ultimately stabilizes OCT4, 

bringing it in the inactive state [34]. 

 
 

Figure 7. Mechanisms involved in disabling the pluripotency genes 

In ES cells, pluripotency genes — such as octamer-binding transcription factor 4 (OCT4; 
named also OCT3 or POU5F1) and NANOG — have unmethylated CpG islands, and the 
histones that package these genes have specific modifications, including acetylation of 
histones H3 and H4 and methylation of histone H3 lysine 4 (H3K4). With the onset of 
differentiation, histone methyltransferase G9A (also known as EHMT2) is recruited, together 
with a histone deacetylase (HDAC), and this causes deacetylation of local histones and 
demethylation of H3K4. In the next step, G9A catalyses the methylation of H3K9, and this 
modification serves as a binding site for the heterochromatin protein 1 (HP1), thus 
generating a form of local heterochromatin. Finally, G9A recruits DNA methyltransferase 3A 
(DNMT3A) and DMNT3B, which mediate de novo methylation of the underlying DNA.  
Ac, acetyl; Me, methyl. From: Cedar H. & Bergman Y., Nature Reviews. Immunology 2011 
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 I-2.4.1. DNA methylation 

 

DNA methylation in vertebrates occurs in the cytosine residues of CG dinucleotides, and this 

process is associated with transcriptional silencing. This silencing can be achieved by either 

repressing the binding of transcription factors (Figure 8A) or by recruiting proteins that 

specifically bind to methylated CGs (methyl-CG–binding proteins, e.g., MeCP2), which can 

further recruit histone deacetyltransferases (HDACs) and corepressors (Figure 8B) [35]. This 

process is catalysed by a family of enzymes including DNMT1, which preferentially targets 

hemi-methylated DNA and is required for “maintenance” methylation during DNA 

replication; and DNMT3A and DNMT3B which are required for de novo methylation [33]. In 

addition, the 5-methylcytosine dioxygenase TET proteins promote DNA demethylation in 

mammalian cells through a process that requires the base excision repair pathway [34]. 

Recent evidence shows that DNA methylation has a direct role in regulating HSC self-

renewal and commitment to lymphoid versus myeloid cell fates [34]. Meis homeobox 1 

(Meis1), involved in haematopoiesis lineage development, is unmethylated in multipotent 

progenitor cells (MPPs), but seems to progressively become hypermethylated and 

transcriptionally silenced during differentiation progresses [34]. 

 
Figure 8. Effects of DNA methylation on gene expression 

From: Ling C. & Groop L., Diabetes 2009 

 

On the other side, many genes in HSCs or MPPs are initially methylated and thereafter 

undergo to selective demethylation in a lineage-specific manner. For lymphoid lineage, these 
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genes include Lck, which undergoes demethylation in T cells and encodes a SRC family 

kinase that is responsible for initiating signalling downstream of the T cell receptor, and POU 

domain class 2-associating factor 1 (Pou2af1), that encodes a B cell-specific co-activator and 

undergoes demethylation in B cells. In granulocyte-macrophage progenitors, the genes that 

undergo specifically demethylation are myeloperoxidase (Mpo), and CXC-chemokine 

receptor 2 (Cxcr2) [34].  

 

I-2.4.2. Histone acetylation and deacetylation 

 

Acetylation is the result of equilibrium between two opposing activities: histone 

acetyltransferases (HATs) which acetylate the lysine residues on histones and loosen up 

histone-DNA interactions to allow gene expression, and histone deacetylases (HDACs) that 

catalyze removal of acetyl groups from lysine residues and strengthen up histone-DNA 

interactions to prevent gene expression. Acetylation of core histones has been correlated with 

cellular processes, including chromatin assembly, DNA repair, and recombination (reviewed 

by Gregoretti I. V.) [36]. The ability of histone acetylation to regulate gene expression occurs 

via the direct effect of chromatin structure modification, which serves to neutralize the charge 

between histone tails and the DNA backbone, and also by serving as a docking site for 

regulatory factors [33]. Moreover, many HDACs are at least partially cytoplasmic; some 

fractions of these proteins can act on non-histone substrates, including the cytoskeletal protein 

tubulin and transcription factors (i.e. p53) [36]. 

During hematopoiesis, lineage-restricted transcription factors regulate specific gene-

expression patterns by recruiting HAT or HDAC complexes to the promoters of target genes. 

For example, during erythropoiesis, erythroid-specific transcription factors including GATA-

1, which is essential for red lineage maturation and survival, directly recruit HAT-containing 

complexes to the b-globin locus to stimulate transcriptional activation. Specifically, GATA-1 

recruits CREB-binding domain (CBP) to the β-globin gene locus, resulting in the acetylation 

of histones H3 and H4, and facilitating high-globin gene expression. GATA-1 itself is also 

acetylated on conserved lysine residues by CBP, which leads to enhance its transcriptional 

activity [33]. 
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I-2.5. Haematopoiesis Functional Assays 

 

Functional tests used to explore haematopoiesis have been conceivable to identify and 

evaluate separately the various classes of haematopoietic progenitors. Thus, the standardized 

short-term colony assays quantify the lineage-committed myeloid precursors, but 

identification of primitive cells, having the ability to repopulate durably myeloid and 

lymphoid lineages and preserving the self-renew capacity, still largely depends on in vivo 

assays. Whatever the assay, should measure two cardinal parameters: cell proliferation 

(measured by the number of cells produced), and the differentiation potential (estimated by 

the number of different lineages represented in its progeny) [37]. 

 

In vitro assays 

Short-term in vitro assays 

 

The prototypes of the short-term assays are semi-solid colony assays, or CFC assays, 

which identify and quantify lineage-restricted progenitors in well-standardized conditions 

(according to the manufacturer’s instructions; see www.stemcell.com/technical/manuals.asp). 

The individual progenitors, called colony-forming cells (CFCs), cultured in a suitable 

semi-solid matrix, such as methylcellulose or collagen supplemented with nutrients and 

cytokines, proliferate during 14 to16 days at 37°C to form discrete cell clusters or colonies 

with specific characteristic (composition, size, colour, disposition) (Figure 9).  
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Figure 9. Human haematopoietic CFC assays in MethoCult® media:  

Procedure diagram 

From: Human Colony-Forming Cell Assay Using MethoCult®, 
Technical Manual, Stem Cell Technologies, Catalog #28404, 2004 

 

Colony evaluation and enumeration can be done in situ by light microscopy or by 

plucking individual colonies and then staining the cells using cytochemical and 

immunocytochemical methods. The classes of human haematopoietic progenitors detected 

using MethoCult® media include (Figure 10):  

 

CFU-GEMM: Colony-forming unit-granulocyte, erythroid, macrophage, megakaryocyte 

reflect a multipotential progenitor that produces colonies, which contain erythroblasts and 

cells of at least two other recognizable lineages. Due to their primitive nature, CFU-GEMM 

tend to produce large colonies of >500 cells (Figure 10 A). 
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CFU-GM: Colony-forming unit-granulocyte, macrophage. The colonies contain at least 20 

granulocyte cells (CFU-G), macrophages (CFU-M) or cells of both lineages (CFU-GM) 

(Figure 10 B). CFU-GM colonies arising from primitive progenitors may contain thousands 

of cells in single or multiple clusters (Figure 10 C). 

 

BFU-E: Burst-forming unit-erythroid. It produces a colony containing >200 erythroblasts in a 

single cluster or in multiple ones and can be sub-classified based on the number of cells / cell 

clusters per colony. BFU-E is more immature progenitors than CFU-E and requires EPO and 

cytokines with burst-promoting activity such as Interleukin-3 (IL-3) and Stem Cell Factor 

(SCF) for optimal colony growth (Figure 10 D). 

 

CFU-E: Colony-forming unit-erythroid. It produces 1-2 cell clusters containing a total of 8-

200 erythroblasts. CFU-Es are mature erythroid progenitors that require erythropoietin (EPO) 

for differentiation (Figure 10 E). 

 

CFU-Mk: Colony-forming unit-megakaryocyte (Figure 10 F). These colonies contain 3 or 

more megakaryocytic cells. Although megakaryocytic progenitors can be cultured in 

methylcellulose-based medium containing the appropriate growth factors, it is difficult to 

distinguish CFU-Mk based on cellular and colony morphology (Figure 10 G). Therefore, the 

manufacturer recommends that CFU-Mk be enumerated in collagen-based, MegaCult®-C 

following staining of megakaryocytes in dehydrated gels by immunocytochemical staining 

[38].  
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Figure 10. Representative pictures for human haematopoietic colonies (Giemsa stain) 

 

Frequencies of CFC among human CD34+ bone marrow cells average 15% in the 

CD34+CD38+ fraction, and 5% in the more immature CD34+CD38- population, respectively. 

[37]. 

Short-term colony assays are not adequate for the detection of more immature 

progenitors because the lifespan of these cells in viscous medium (methylcellulose, agar, or 

plasma clot) does not extend beyond 3 weeks, which is too short a span for stem cells to 

produce a differentiated progeny, and it cannot be renewed. The semi-solid cultures could be 

employed to evaluate the myeloid precursors. Surprisingly, the colony assays for lymphoid 

progenitors have not been well-defined [37]. 

CFCs can proliferate and generate colonies in liquid cultures, too, in the presence of 

the same cytokines, but identification of their progeny will require flow cytometry analysis 

and the benefit of an easy scoring of several progenitors in the same dish would be lost [37]. 
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Long-term assays 

 

In vitro long-term assays for HSCs include Long-Term Culture-Initializing Cell (LTC-

IC) assay and Cobblestone Area Forming Cell (CAFC) one. LTC-IC assays are based on the 

ability of HSCs, but not more mature progenitor cells, to form and maintain a population of 

progenitor cells with clonogenic potential over at least a five-week culture period [5]. Most 

human LTC-IC is CD34+ CD38low/- [37]. 

CAFC assays measure the ability of the most primitive progenitor cells (in vivo 

repopulating cells, HSCs, and day 12 CFU-S) to grow under stromal cell layer where they 

proliferate cyclically and release their progeny (CFC and differentiated cells) in the non-

adherent fraction (Figure 11) [5], [37]. These cells could be maintained for several months in 

mice and 8 to 10 weeks in humans [37]. 

 
Figure 11. Representative image for CAFC assays 

Cobblestone area-forming cell (CAFC) integrates tightly in the 
adherent layer where they cyclically proliferate and release their 
progeny during 8-10 weeks (Magnification, x 1000) 
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I-3. Bone marrow microenvironment or stroma  

 

I-3.1. Overview  

 

The bone marrow microenvironment is an ensemble of structures, which provide the basic 

framework, nutritional supply, the waste removal system for haematopoiesis, and the 

specialized support of self-renewal and differentiation for the haematopoietic precursors.  

This system belongs to the vascular network, bone marrow innervation, bone marrow (BM) 

stroma, and extracellular matrix. 

The marrow vasculature consists principally of a network of sinuses that originate at the 

endosteum from cortical capillaries and terminate in collecting vessels that enter the systemic 

venous circulation [39]. The marrow does not have lymphatic drainage [40]. 

Bone marrow innervation occurs with myelinated and non-myelinated nerves that enter 

through the nutrient canals. Some innervation also occurs through epiphyseal and 

metaphyseal foramina. Nerve bundles follow the arterioles with branches serving the smooth 

muscle of the vessels or, occasionally, terminating in the haematopoietic tissue amongst 

haematopoietic cells. [40]. 

 

I-3.2. Histology of the Bone Marrow 

 

The bone marrow in adults is found within the cancellous bone of the axial skeleton, girdle 

bones, and some areas of the metaphyses [41]. 

It consists of haematopoietic tissue islands surrounded by vascular sinuses interspersed 

within a meshwork of trabecular bone. 

 

Trabecular bone is enclosed by a complex layer of diverse cells:  

- osteoblasts, 

- osteoclasts, 

- and flat, simple or two-layered, nonactivated bone-lining cells (BLCs) [40]. 

The trabecular surfaces are covered by a layer of endosteal cells. Occasional multinucleate 

osteoclasts are also a normal finding at trabecular margins [42].  

The inner surface of the bone cavities and the outer surface of the cancellous bone spicules 

within the cavities are covered by an endosteal lining consisting of a single layer of flat 

“bone-lining cells” supported by a thin layer of reticular connective tissue, osteoblasts and 

osteoclasts (Figure 12) [40].  
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Figure 12. Histology of the bone marrow 

Osteoc: osteoclasts, hemat c: haematopoietic cells, barrier c: barrier cells, 
blc: bone-lining cells, osteobl: osteoblasts, adipo: adipocytes, advent c: 
adventitial reticular cells, eryth isl: erythroblastic islands, meg: 
megakaryocytes. From: Weiss L. & Geduldig U., Blood 1991 
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The sinuses (vascular spaces) of the marrow are thin-walled, lined with flat specialized 

endothelial cells, which prevent the premature escape of immature cells into the peripheral 

blood. The basal lamina of venous sinuses is incomplete and in combination with a thin or not 

basement membrane, allowing mature cells to pass through the wall of the sinuses [40], [43]. 

Haematopoietic tissue islands (Haematon Units / Buffy coat) are composed from 

haematopoietic cells in interaction with the bone marrow microenvironment to form the so-

called bone marrow haematopoietic stem cell niches. 

Haematopoietic stem cells and lineage-restricted progenitor cells (HPCs) are not randomly 

distributed in the BM, but there are localized according to their differentiation stage. The 

majority of true HSCs are found at the endosteum in contact with osteoblasts, whereas more 

committed progenitors accumulate in the central BM [44]; erythropoiesis takes place in 

distinct anatomical units (erythroblastic islands), granulopoiesis occurs in less distinct foci, 

and megakaryopoiesis occurs adjacent to the sinus endothelium [40]. The barrier cells hold 

many haematopoietic cells, notably putative stem cells and differentiating megakaryocytes. 

The massed barrier cells are disposed in a crescent, progressing deep into the marrow. Barrier 

cells, especially in haematopoietic zones containing very early differentiating stages, may 

insinuate long, slender processes between and around endothelium and adventitial tunics. The 

blood-marrow barrier is thereby augmented, impeding emigration and immigration of 

circulating cells, preventing the premature release of immature haematopoietic cells to the 

circulation as well. In contrast, profiles of vascular sinuses can be made entirely of a simple 

layer of barrier cells stretched quite thin, except at the perikaryon. These lie in haematopoietic 

zones containing late differentiating forms ready for delivery to the circulation, their wall 

being crossed by blood cell-filled apertures. They are structurally suited to facilitate delivery 

of blood cells to the circulation [40]. 

 

Stromal Cells includes all cell types that are located between the outer surfaces of marrow 

blood vessels and the bone surfaces that encase the haematopoietic space and tissue [45]. The 

stromal cells compose the supportive tissues of the bone marrow [42]. 

In this family are included: 

• Westen-Bainton cells / adventitial reticular cells / stromal fibroblasts / barrier cells / 

pericytes (modified fibroblasts that produce the reticulin framework of the bone marrow) 

• adipocytes ( cells which store energy in the form of fat) 

• endothelial cells 

• bone lining cells (inactive osteoblasts[45]), osteocytes[41], and osteoblasts[40]. 
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Westen-Bainton cells, adventitial reticular cells (ARCs), pericytes, stromal fibroblasts, 

and barrier cells cover two sides on the surface of bone, in particular the surface of bone to 

the adventitial surface of vascular sinuses and extend en bloc into the marrow [40]. Their 

name as well as their origin raises vivid controversy. Thus, after Krebsbach et al. the Westen-

Bainton cells (name attributed by Westen and Baiton in 1979) are referred to by a variety of 

descriptive terms (reticular cells, adventitial reticular cells, and stromal fibroblasts (Figure 13) 

[45]. The recent evidence claimed that MSCs, named also CFU-F, are either identical to or 

derived from pericytes, if it taking into account the similarities in their physical relationship to 

the vasculature, the cellular response to growth factors, and expression of similar phenotypic 

markers [41], [46], [47], [48]. Moreover, Bianco P et al. suggested in 2001 that ARCs 

themselves “can be seen as bona fide specialized pericytes of venous sinusoids in the 

marrow” linking both cells together [49]. On the other hand, another controversial hypothesis 

has recently held that pericytes may arise directly from endothelial cells or their progenitors 

[50], [51]. 

In terms of morphology, there are similarities between BM MSCs with long projection and 

BM adventitial reticular cells (Figure 13) [52]. Another suggestive description, cells with 

“extensive, elongated, and attenuated cell processes” support the alternative use of the term 

“reticular” [43], [45]. 

Likewise, in terms of phenotype, both types of cells are similar, the MSCs sorted based on 

STRO-1+ CD106+ or STRO-1+ CD146+ phenotype expressed α smooth muscle actin or were 

positive for 3G5 antigen, which are considered to be specific for pericytes [52], [53], [54]. 

Other phenotypic markers shared by ARCs, BLCs, and MSCs STRO-1+CD106+CD146+ are: 

CD271 (low-affinity nerve growth factor receptor [LNGFR]), stromal cell-derived factor-1 

(SDF-1) or Chemokine (C-X-C motif) ligand 12 (CXCL12), and several teams include also, 

few stromal / fibroblast markers: CD10, CD13, D7-FIB [52], [53]. Moreover, cytochemical 

stain proves their positively for alkaline phosphatase [52], [53], types I and III collagen, and 

osteonectin [45].  

Another observation was that pericytes isolated from bovine retinal capillaries are STRO-1+ 

and exhibit the potential for differentiation into a variety of cell types including osteoblasts, 

adipocytes, chondrocytes, and “more mundane fibroblasts” [55], [56], [57]. Presumptive 

pericytes in every developing tissue also express angiopoietin-1, which signals through Tie-2 

expressed by endothelial cells, and this signalization seems to be indispensable for vessel 

stabilization and integrity and for pericyte recruitment [41], [58].  
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Figure 13. Morphological similarities between BM MSCs with long projections and 

ARCs 

CD10 immunostaining of BM trephine biopsy. BM MSCs: bone marrow mesenchymal 
stromal cells, ARCs: adventitial reticular cells, BLCs: bone lining cells, P: pericytes. 
From:  Jones E. and McGonagle D., Rheumatology 2008 

 

The barrier cells are activated cells, displaying organelles associated with intense protein 

synthesis and secretory activity [40]. 

Recently, evidence has been produced that phenotype-purified human ARCs are able to 

generate osteoblasts [41] and adipocytes [41], [59] and to self-renew into new adventitial 

reticular cells and CFU-Fs in vivo [41].  

Apparently, both in humans and mice, perisinusoidal “reticular” cells (human ARCs, and 

murine CXCL 12-abundant reticular (CAR) Nestin+ cells, which seem to be equivalent 

populations) play a significant role in regulating HSCs, also [41], [60].  

Reticular cells send branches stretching from the bone surface to the adventitial surface of 

vascular sinuses (Figure 13, sinus 2) [40]. These cells synthesize reticular (argentophilic) 

fibres that, along with their cytoplasmic processes, extend into the haematopoietic 
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compartments and form a meshwork on which haematopoietic cells rest. The cell bodies, their 

broad processes, and their fibres constitute the reticulum of the marrow [39]. 

 

Adipocytes 

In postnatal marrow, the marrow adipocytes (Figure 15) develop directly from ARCs around 

sinusoids (Figure 14) [41]. 

 
 

 

Figure 14. Model of adipocyte differentiation from ARCs. 

From: Bianco P., Blood 2011 

 

Adipocytes express leptin, osteocalcin and prolactin receptors during their differentiation, 

thereby promoting haematopoiesis and influencing osteogenesis [39], [61], [62], [63], [64]. 

Adipocyte maturation in vitro is inhibited by stromal-derived cytokines such as IL-1 and IL-

11 [39], [65], [66]. 

Marrow adipocyte leptin may modulate adjacent haematopoietic progenitor growth [39], [67]. 

Adipocyte differentiation by marrow stromal cells is inhibited by bone morphogenetic 

proteins and leptin, supporting the reciprocal regulation of osteogenesis and adipogenesis in 

the marrow microenvironment [39], [68], [69]. 

 

Endothelial cells  

Endothelial cells (Figure 15) of capillary vessels are responsible for regulating of HSCs 

traffic, allowing to haematopoietic mature cells to pass in circulation. Through the synthesis 

of growth factors, they also contribute to boosting haematopoiesis. Likewise, they enhance 

bone regeneration in the osseous defects; by their involvement in the formation of blood 
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vessels that supply oxygen and nutrients to developing bone tissue. However, it has been 

suggested, more recently, that endothelial cells may play a more direct role in bone 

development and formation, through their interactions with osteoprogenitor cells and, under 

certain conditions, their production of specific bone inductive factors [44], [70]. Marrow 

endothelial cells express von Willebrand factor antigen [39], [71], type IV collagen, and 

laminin [39], [72]; they also constitutively express two adhesion molecules: VCAM-1 and E-

selectin [39], [73]. Other receptors that may mediate marrow cellular trafficking include 

fractalkine, an endothelial membrane-bound chemokine, also upregulated by cytokines [39], 

[74]. Marrow sinusoidal endothelium specifically expresses sialylated CD22 ligands, which 

are homing receptors that recirculate B lymphocytes [39], [75]. 

 

Bone cells 

Osteoblasts, osteoclasts, and elongated flat cells with a spindle-shaped nucleus (flat bone-

lining cells) form the marrow endosteal lining [39], [76]. Resting endosteal cells express 

vimentin, tenascin, alpha smooth-muscle actin, osteocalcin, CD51, and CD56 [39], [77]. 

Cultured human bone cells express high levels of α1/β1, α3/β1, and α5/β1 integrins [39], [78]. 

Endosteal cells provide a homing niche for newly transplanted haematopoietic stem cells [39], 

[79]. Mesenchymal stromal cells positive for the STRO-1 antibody can differentiate into 

adipocyte, chondrocytic, and osteogenic cells [39], [80], [81], [82], [83], and similar 

osteogenic potential is found in STRO-1 positive vascular pericytes [39], [57]. This process of 

mesenchymal stromal cell to osteogenic differentiation is associated with the loss of the 

activated leukocyte adhesion molecule (CD166) [39], [84]. 

 

Osteoblasts 

Bone-forming osteoblast progenitor cells (Figure 15), like stromal precursors, reside in the 

CD34 negative, STRO-1 positive marrow cell population [39], [85], [86], [87]. Bone 

morphogenetic protein 2, b-FGF, and TGF-b promote the growth and differentiation of these 

cells [39], [85], [88]. 

Osteoblasts expand early haematopoietic progenitor survival in long-term cultures and secrete 

haematopoietic growth factors such as macrophage colony stimulating factor (M-CSF), 

granulocyte colony stimulating factor (G-CSF), GM-CSF, IL-1, and IL-6 [39], [89], [90]. 

Osteoblasts also produce haematopoietic cell-cycle inhibitory factors such as TGF-b, which 

may contribute to their intimate role in stem cell regulation within the marrow 

microenvironment [39], [91]. 
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Osteoclasts 

Bone-resorbing osteoclasts (Figure 15) are derived from haematopoietic progenitors (CD34 

positive, STRO-1 negative) and branches from the monocyte-macrophage lineage early 

during the differentiation [39], [92], [93]. KIT ligand and M-CSF act synergistically on 

osteoclast maturation [39], [94], and M-CSF is essential for the proliferation and maturation 

of osteoclast progenitors [39], [95]. Osteoprotegerin (OPG), or osteoclastogenesis inhibitory 

factor, is a cytokine of the tumour necrosis factor receptor superfamily, which inhibits 

osteoclast differentiation [39], [96]. Osteoclast maturation requires osteoprotegerin ligand 

(TRANCE / RANKL), an osteoclast differentiation and activation factor (ODF) elaborated by 

stromal cells and osteoblasts [39], [97]. Cross-linking antibodies to the adhesion receptor 

CD44 inhibit osteoclast formation in primary marrow cultures treated with 1 alpha 25-

dihydroxyvitamin D3 [39], [98]. Similarly, blocking the expression of cadherin-6 interferes 

with heterotypic interactions between osteoclasts and stromal cells, impairing their ability to 

support osteoclast formation [39], [99]. 

 

Accessory cells (monocytes, macrophages, T cells) are progeny of haematopoietic stem cells 

[100]. Macrophages fulfil functional roles: haematopoietic growth factors synthesis, store iron 

for haemoglobin production, and carry out phagocytosis of debris [40]. 
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Figure 15. Bone marrow stromal cells 

Wright-Giemsa Stain of bone marrow osteomedullary biopsy. 
A) Adipocyte (Magnification x 400), B) Endothelial cell (Magnification x 600), C) Fibroblast 
(Magnification x 600), D) Osteoblasts (Magnification x 400), E) Osteoclast (Magnification x 
1000), F) Macrophage (Magnification x 600) 
 

Extracellular matrix (ECM) molecules are synthesized and secreted by microenvironmental 

cells and include collagens (types I, III, IV, and V), glycoproteins (fibronectin, laminin, 

thrombospondin, hemonectin, and tenascin), and glycosaminoglycans (hyaluronic acid and 

chondroitin, dermatan, and heparan sulfate). Besides providing structure to the marrow space, 

and a surface for cell adhesion, the microenvironment is important for haematopoietic cell 

homing, engraftment, migration, and the response to physiologic stress and homeostasis 

[100].  

Recent findings prove that ECM is part of the BM microenvironmental niche, being involved 

in regulation of the balance between replication and differentiation of MSCs in response to 

appropriate signals [101]. 

 

Several mechanisms are supposed to facilitate the expansion of marrow-derived MSCs and 

prevent their differentiation (i.e. into osteoblasts): 

- ECM modulates the activity of growth factors by controlling proteolytic activation of 

latent factors (i.e., transforming growth factor-β [TGF-β]); 
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- ECM interacts with cell surface receptors preventing the cognate ligand binding (i.e., 

as in the case of epidermal growth factor (EGF) receptor), or by sequestration of 

differentiation factors such as platelet-derived growth factor (PDGF) and bone 

morphogenetic proteins (BMPs), or of Wnt proteins (which are involved in MSC 

differentiation through LRP5 and LRP6 binding the glycosaminoglycans of the ECM); 

- ECM may also bind the growth-promoting factors from the serum; 

- and, ECM could enhance the function of putative accessory cells that support MSCs 

replication [101]. 

There is evidence that denatured collagen type I (DC) matrix promotes the maintenance of in 

vitro osteogenic differentiation of MSC by influencing the retention of early osteogenic 

functions in the late passage cells during ex vivo expansion [102]. 

The same ability to preserve MSC adipogenic potential during the late passage of MSCs ex 

vivo, expanded on the DC matrix in contrast with the MSCs expanded in culture plastic tissue 

was demonstrated by Mauney J. R. et al. in 2005 [103]. 

The mechanism most likely involved in influencing the ability of the DC matrix to promote 

retention of adipogenic differentiation potential of MSCs in vitro is the maintenance of certain 

replicative ageing-functions (i.e., cell proliferation capacity, inducibility of stress-protective 

proteins) [103].  

 

I-3.3. Mesenchymal Stromal Cells  

 

Mesenchymal stromal cells are progenitors of skeletal tissue components, such as bone, 

cartilage, the haematopoiesis-supporting stroma, and adipocytes. In addition, they could be 

experimentally induced to undergo neural or myogenic differentiation [49].  

 

I-3.3.1. Terminology  

 

Over the time, numerous terms were assigned to describe the adherent cells derived from 

many adult tissue sources displaying fibroblast-like morphology: precursors of non-

haematopoietic tissue, colony forming unit-fibroblast (CFU-F), bone marrow stromal [stem] 

cells [BMSCs] and/or stromal precursors cells (SPCs), RS-1, RS-2, mMSCs (RS: recycling 

stem cells) (m: mature), multipotent adult progenitor cells (MAPCs) [104], fibrocytic cells, 

fibrocyte, fibrocytic colony, fibroblast, fibroblast colony, precursors for fibroblast colonies, 

fibroblast-like colonies, stellate colonies, fibroblastoid stromal cells, stromal cells, CD34 -/low 

haematopoietic stem cell clones with mesenchymal stem cell characteristics, circulating 
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skeletal stem cells, CD34-CD105+ mesenchymal cell lines, CD34-negative fibroblast-like cell 

lines, CD34-negative CD105-positive cell line, and mesenchymal stem cells [105], to 

enumerate just some of them. 

Therefore, the literature surrounding the MSC is challenging and valuable information could 

be lost (Table 1). 

 

Table 1 Citations in PubMed as of 17 August 2011 

 

Search name Citations 
CFU-F (colony-forming unit fibroblastic) 457 
Marrow stromal cells 10042 
Mesenchymal stem cells 15073 
Mesenchymal stromal cells 4107 
MSCs 5608 
 

Adapted from: Prockop D. J., Molecular Therapy 2009 

 

A position statement of the International Society for Cytotherapy proposed to use the term 

“multipotent mesenchymal stromal cells” [106].  

 

I-3.3.2. Cytomorphology and cytomorphometry  

 

The primary low density plated cultures from BM MSCs showed heterogeneous groups of 

large flat cells, smaller spindle-shaped cells, and small round cells (Figure 16) [107], [108], 

[109], [110]. 
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Figure 16. MSCs morphology and morphometry 
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Moreover, some authors have made associations between the morphology of these cells and a 

possible hierarchy. Thus, spindle-shaped cells were designated as type I cells or as rapidly 

self-renewing cells (RS-MSCs), and those large as slowly replicating cells (SR-MSCs) arising 

from the type I cells when the cultures expand to confluency [111], [112], [113]. 

Until now, there have been limited data regarding the distribution of cell sizes in MSC 

populations. Using the simple criteria of size and granularity, Zohar et al. identified two 

major subpopulations of MSCs. The first, with smaller cells in the lowest 15% FSC and the 

lowest 15% SSC, proved to be a slowly cycling population that did not express 

differentiation-related markers and that displayed a high proliferative activity, multi-

potentiality, and capacity for self-renewal upon plating. The second population, more 

numerous, had large cells with the highest 15% FSC and highest 15% SSC, lacked self-

renewal capacity, and had limited proliferative capacity [114]. In agreement with this, Colter 

et al. affirmed that the rapid expansion of MSCs in culture depends on the presence of a 

minor population of small cells [115].  

A size-sieved method, using a 3-µm pore plate, also allowed the isolation of two populations. 

The first was a population of cells with a size greater than 3 µm. Cells in this population 

revealed a fibroblast-like morphology, self-renewal capacity, and multilineage potential, 

specific features for MSCs. The second population of cells was smaller than 3 µm, polygonal 

in shape and had limited renewal capacity [116]. Finally, Staszkiewicz et al. found that the 

size of ear-derived MSCs ranged from 8.1 to 26.6 µm in diameter, with the majority of the 

population (~72%) between 12 and 20 µm [117].  

 

I-3.3.3. Cytochemistry  

 

The common opinion is that human CFU-F are positive for vimentin [48], [105], [118], [119], 

[120], type I and type III collagen [ 105], [121], [122], type IV collagen [105], [122], 

fibronectin [105], [118], [120], [122], fibrin [105], [118], acid phosphatase [105], [121], 

[122], α-Naphthyl-acetate esterase, α-Naphthyl-butyrate esterase [105], [121], periodic acid 

Schiff (PAS) [105], [122], Sudan Black [105], [122]. Likewise, part of MSCs from primary 

cultures express smooth muscle (sm) α-actin [105], [120]. 
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I-3.3.4. Phenotype   

 

To date, there is no consensus regarding a single surface antigen that could identify the 

MSCs. For this reason, a panel of several positive and negative markers should be employed 

to characterize these cells. The International Society for Cellular Therapy proposed for MSC 

characterization three positive markers. i.e., CD73 (ecto-5’-nucleotidase, SH3, SH4), CD105 

(endoglin, SH2), and CD90, and the absence of expression for haematopoietic related markers 

such us CD45, CD34, CD14, and CD11b [106]. 

CD73 it has been demonstrated to be highly specific to characterize MSCs, and useful for the 

development of robust in vitro MSC assays [52], [82]. However, another marker, STRO-1, is 

worth noting, because it proved to have an enrichment capacity in CFU-Fs approximately 

100-fold when compared with MSCs isolated by plastic adherence [53], [123].  

Nonetheless, even though MSCs are widely thought to be CD45 negative, note that other 

authors have reported that CFU-Fs are CD45 med/low [120], [124]. Moreover, there is evidence 

that freshly isolated MSCs display the greatest percentage of CD45-positive cells, whereas 

MSCs expanded in culture over more passages almost completely lose their expression of this 

marker [117], [125]. 

Regarding the CD45 functions in non-hematopoietic cells, this molecule serves as a negative 

modulator of growth factor receptor tyrosine kinases, in addition to its well-established role as 

an activator of tyrosine kinases src family [126]. 

Endothelial-related markers have also been reported to be expressed by MSCs, although these 

markers excite also controversy: PECAM-1 (CD31), P-selectin (CD62P), factor VIII-related 

antigen, and thrombomodulin [127], [128]. In terms of HLA-molecules, MSCs express HLA-

1, and do not express HLA-DR [120]. 

Table 2 summarize the other phenotypic markers and growth factors expressed by MSCs 

amplified in culture [129]. 
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Table 2 Phenotypic characterization and expression of growth factors of human MSCs  

 
Common name CD designation Detection  
Adhesion molecules*    
  ALCAM CD166 Pos  
  ICAM-1 CD54 Pos  
  ICAM-2 CD102 Pos  
  ICAM-3 CD50 Pos  
  E-selectin CD62E Neg  
  L-selectin CD62L Pos  
  P-selectin CD62P Neg  
  LFA-3 CD58 Pos  
  Cadherin 5 CD144 Neg  
  PECAM-1 CD31 Neg  
  NCAM CD56 Pos  
  HCAM CD44 Pos  
  VCAM CD106 Pos  
  Hyaluronate receptor CD44 Pos  
Growth factors and cytokine receptors*    
  IL-1R (α and β) CD121a,b Pos  
  IL-2R CD25 Neg  
  IL-3R CD123 Pos  
  IL-4R CD124 Pos  
  IL-6R CD126 Pos  
  IL-7R CD127 Pos  
  Interferon γR CDw119 Pos  
  TNF-α-1R CD120a Pos  
  TNF-α-2R CD120b Pos  
  FGFR  Pos  
  PDGFR CD140a Pos  
  Transferrin receptor CD71 Pos  
Integrins*    
  VLA-α1 CD48a Pos  
  VLA-α2 CD49b Pos  
  VLA-α3 CD49c Pos  
  VLA-α4 CD49d Neg Expressed in long term bone marrow cellule without induction 
  VLA-α5 CD49e Pos IL-6 
  VLA-α6 CD49f Pos IL-7 
  VLA-β chain CD29 Pos IL-8 
  β4 integrin CD104 Pos IL-11 
  LFA-1 α chain CD11a Neg IL-12 
  LFA-1 β chain CD18 Neg IL-14 
  Vitronectin R α chain  CD51 Neg IL-15 
  Vitronectin R β chain CD61 Pos LIF 
  CR4 α chain CD11c Neg M-CSF 
  Mac1 CD11b Neg Flt-3 ligand 
Additional markers*   SCF 
  T6 CD1a Neg Induced by IL-1 
  CD3 complex CD3 Neg IL-1 
  T4, T8 CD4, CD8 Neg IL-1β 
  Tetraspan CD9 Pos IL-6 
  LPS receptor CD14 Neg IL-8 
  LewisX CD15 Neg IL-11 
  - CD34 Neg IL-11 
  Leukocyte common antigen CD45 Neg G-CSF 
  5’ terminal nucleotidase CD73 Pos GM-CSF 
  B7-1 CD80 Neg LIF 
  HB-15 CD83 Neg Not expressed 
  B7-2 CD86 Neg IL-2 
  Thy-1 CD90 Pos IL-3 
  Endoglin CD105 Pos IL-4 
  MUC18 CD146 Pos IL-10 
  BST-1 CD157 Pos IL-13 

 

Adapted from: Deans R.J. and Moseley A. B., Experimental Hematology 2000 
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I-3.3.5. Schematic model depicting mesenchymal stromal cell proliferation and 

differentiation  

 

The MSCs are generally thought to be resident in the perivascular compartment of many 

tissues, in fat, skin, muscle, and other locations [130], [131]. 

Their proliferation process involves two distinct cellular compartments.  

In the first compartment, MSCs undergo transcriptional modification, generating precursor 

cells without apparent changes in phenotype and self-renewal capacity. This process 

especially interests the MSCs residing in adult bone marrow, which are quiescent and growth 

arrested in G0/G1 outside stimulation with growth factors. In vitro, upon stimulation, the 

multipotent, uncommitted MSCs undergo asymmetric division, giving rise to two daughter 

cells, one being the exact replica of the mother cell and maintaining multilineage potential, 

and the other daughter cell becoming a precursor cell, with a more restricted developmental 

programme. In this model, the precursor cell continues to divide symmetrically, generating 

more tripotent and bipotent precursor cells. These tripotent and bipotent precursor cells are 

morphologically similar to the multipotent MSCs, but differ in their gene transcription 

repertoire, and therefore, still reside in the stem cell compartment. The progression of MSCs 

to precursor cells is considered the first step in stem cell commitment. The transition or exit 

from the ‘stem cell compartment’ to the ‘commitment compartment’ occurs when precursor 

cells continue to divide symmetrically to generate unipotent progenitor cells, simultaneous 

with the acquisition of lineage specific properties, rendering them fully committed mature 

cells with distinguishable phenotypes [104]. 

There are eight genes whose expression is increased during all three mesenchymal lineage 

differentiations (multi-, bi-, and unipotent), suggesting that they represent the putative master 

control genes. These genes were identified as period homolog 1 (PER1), nebulette (NEBL), 

neuronal cell adhesion molecule (NRCAM), FK506 binding protein 5 (FKBP5), interleukin 1 

type II receptor (IL1R2), zinc finger protein 145 (ZNF145), tissue inhibitor of 

metalloproteinase 4 (TIMP4), and serum amyloid A2. The function of these genes cover a 

broad range of cellular processes, including cell adhesion, protein folding, organization of 

actin cytoskeleton, as well as inflammatory response [104]. 

The lineage committed cells of MSCs can fabricate a spectrum of specialized mesenchymal 

tissues including bone, cartilage, muscle, marrow stroma, tendon, ligament, fat (Figure 17) 

and a variety of other connective tissues [131], [132].  
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Figure 17. Schematic model of mesengenic process 

The stepwise cellular transitions from the putative MSC to highly differentiated 
phenotypes.From: Caplan A. I. and Bruder S. P., Trends in Molecular Medicine 2001 
 

Their commitment to a lineage can be induced by a number of stimuli (Table 3) [133].  

 

Table 3 Inductive factors for in vitro mesenchymal lineage differentiation 

 

Lineage Inductive factors 
Adipocyte dexamethasone, indomethacin, insulin, methylisobutylxanthine, thiazolidinedione 
Chondrocyte ascorbate, bone morphogenetic protein 6, dexamethasone, transforming growth 

factor β 
Endothelial ascorbate, epidermal growth factor, fibroblast growth factor 2, vascular endothelial 

growth factor 
Hematopoietic 
support 

co-culture models 

Muscle (cardiac) 5-azacytadine 
Muscle (skeletal) low serum concentration, horse serum 
Muscle (smooth)  
Osteoblast ascorbate, bone morphogenetic protein, dexamethasone,  

1,25 dihydroxy vitamin D3 
Tendon mechanical stimuli 

 

Adapted from: Gimble J. M., Transfusion Medicine and Hemotherapy 2008 
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I-3.3.6. Plasticity of Mesenchymal Stromal Cells  

 

It is difficult to establish a hierarchy between MSC subpopulation, and apparently, there are 

differences between the proper MSCs and the plastic adherent cells that are isolated from 

marrow using different protocols and assigned different names. To date, the marrow-isolated 

adult multilineage inducible (MIAMI) cells that were isolated from marrow of vertebral 

bodies under low oxygen, and which keep the differentiation potential into neural cells are 

considered to be the nearest of embryonic stem (ES) cells [134]. It includes very small 

embryonic-like (VSEL) stem cells, which were isolated from murine bone marrow by positive 

selection using the chemokine receptor CXCR4, and the multipotent adult progenitor cells 

(MAPCs) isolated from human bone marrow under low oxygen and low serum [134]. These 

cells express genes such as Oct-4 (characteristic of ES) and Dickkopf-1 (DKK-1, an inhibitor 

of the canonical Wnt signalling pathway) [134]. Recently, L Basciano et al. showed that in 

vitro exposure of MSC to hypoxia enhanced (4-60 fold) the expression of the genes involved 

in extracellular matrix assembly (SMOC2), neural and muscle development (NOG, GPR56, 

SNTG2, LAMA), and epithelial development (DMKN). In conclusion, hypoxia maintains the 

cells undifferentiated and, in parallel, enhances the expression of genes involved in the 

development of various, mesodermal and non-mesodermal cell lineages. In this respect, 

hypoxia may increase both the multipotency and the trans-differentiation potential (plasticity) 

of MSC [135]. 

 

I-3.3.7. MSCs create their own niches in vitro cultures 

 

During expansion on cultures, MSCs undergo different changes and create an in vitro niche. 

Within this niche, cells play different roles. Thus, Prockop DJ noticed in early phases of MSC 

cultures a population of spindle-shaped cells (type 1, or RS-MSCs) that express surface 

proteins with an inhibitory influence on cell adhesion [such as α6-integrin and podocalyxin-

like protein (PODXL)]. These cells are highly motile, secrete DKK-1, and serve as nurse cells 

for other subpopulations; hence, they are key elements of the rapid growth phase [134]. As 

the colonies expand, secretion of Dkk-1 decreases and expression of PODXL and the related 

proteins are lost. The colonies then enter a near stationary or plateau phase, as the colonies 

become more tightly packed and develop distinct inner and outer regions [134], [136]. The 

inner regions are populated with the more commitment precursors, but this stage is readily 

reversible, in that replating either the inner or outer regions generates single cell–derived 

colonies with the same characteristics as the initial colonies [134], [136]. At each replating of 
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a colony at clonal density, the daughter colonies are heterogeneous in both size and their 

potential to differentiate as is represented in Figure 18 [134], [137], [138]. The reversibility of 

the cultures, however, markedly decreases if the colonies are allowed to expand to 

confluency, in that there is a dramatic decrease in clonogenicity (from 90% CFUs-F to 

<20%), and also stands out a decrease in the potential for multilineage differentiation, and 

increased expression of epitopes such as STRO-1 and GD-2 [134], [139]. 

However, even in confluent cultures resulting after several passages, a fraction of the cells 

remain clonogenic, suggesting that there is persistence of one or more in vitro niches 

containing different subpopulations [134]. 

 

 
 

 

Figure 18. Schematic model depicting the changing properties of human MSCs 

expanded in culture. From: Prockop DJ, Molecular Therapy 2009 

 

In suspension, MSCs are spherical and become spindle-shaped after adherence to culture 

surfaces. The cells then undergo a lag period followed by a rapid growth with doubling time 

(DT) of <12 hours that is driven by expression of the Wnt inhibitor Dkk-1. During the rapid 

growth period, the small rapidly self-renewing MSCs (RS-MSCs) express a characteristic set 

of surface epitopes, including podocalyxin-like protein (PODXL). They are weakly positive 

to STRO-1 and are highly clonogenic. As single cell-derived colonies expand, they develop 
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distinct inner and outer regions that define in vitro niches. The colonies reach a near 

stationary phase with DT of over 20 hours. The cells begin to lose expression of PODXL, 

express higher levels of STRO-1, and decrease in clonogenicity. If cells are lifted before 

confluency and replated at low density, the sequence is resumed through four to seven 

passages. 

 

I-3.3.8. Isolation and in vitro expansion of Mesenchymal Stromal Cells 

 

To date, assaying the two principal properties of MSCs, the clonal self-renewal and the 

multilineage differentiation potential is extremely challenging due to the low frequencies of 

clonogenic progenitors found in most tissues (e.g., mesenchymal clonogenic frequency in 

human BM is 1:104 to 1:106 depending on age [130]. Thus, several strategies have been 

employed to enhance and maintain the multilineage potential of MSCs, such as culturing cells 

with specific growth factors, enriching cells prior to initial plating, and / or culturing cells in a 

non-contact suspension culture configuration [104]. The initial proliferation of BM MSCs 

require the presence of minimum four growth factors, platelet-derived growth factor, basic 

fibroblast growth factor, transforming growth factor-β, and epidermal growth factor [105], 

[139]. Among these, fibroblast growth factor (FGF) play a crucial role in the self-renewal, 

maintenance, and proliferation of a variety of stem cells, HSCs, MSCs, neural stem cells, and 

ES cells [107], [140], [141], [142], [143], [144], [145], [146], and preferentially selects for the 

survival a particular subset of MSCs with a higher self-renewal potential [104]. Enrichment of 

a more homogeneous MSC starting population, particularly those that have a multilineage 

differentiation potential (i.e., quadra- vs. bipotent cells) could also prolong MSCs life span 

during in vitro expansion [104]. 

Numerous attempts have been made to develop more specific procedures for the selection of 

different MSC subpopulations. The most common isolation methods use the MSCs’ 

“specific”, surface epitopes or adhesion molecules.  

 Of the first category, the broad investigated markers were STRO-1, and CD73. 

Although stromal precursor antigen-1 (STRO-1) is widely regarded as a marker of early 

mesenchymal stromal precursor cells, it is also expressed on the surface of other human bone 

marrow (BM) cells that include glycophorin-A+ nucleated red cells and a small subset of 

CD19+ B-cells; however, it is not expressed on HSCs [123]. This has raised many questions 

about its use as a specific marker in MSC sorting protocols [52], [147]. Plasma membrane-

bound ecto-5’-5’nucleotidase (CD73) has been proposed as the most useful molecule for 

developing robust in vitro MSC assays [147]. However, Simmons et al. reported that the 
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STRO-1+/glycophorin A- population has a substantial clonogenic capacity (approximately 

100-fold, enriched in colony-forming unit-fibroblast [CFU-F]). These cells are capable of 

generating adherent cell layers containing multiple cell types, including adipocytes, smooth 

muscle cells, and fibroblastic elements; furthermore, this population displays a greater ability 

to maintain the normal development of the human myeloid lineage than the stromal cells that 

are commonly isolated from unmanipulated BMs [123]. More recently, Gronthos et al. 

provided evidence that osteogenic precursors are present in the STRO-1+ fraction of human 

BM cells [148]. Psaltis et al. also found a strong correlation between the amount of STRO-1 

with mRNA expression of transcription factors related to cellular proliferation and 

differentiation, which have been associated with an immature, stem-like phenotype [149].  

CD73 expression has also been observed in different cells, and its physiological role is to 

metabolize adenosine 5’-monophosphate (AMP) to adenosine [150]. CD73 acts as a signal-

transducing molecule in the human immune system (specifically, it acts as a co-stimulatory 

molecule in T cell activation), and it has been shown to be involved in controlling 

lymphocyte-endothelial cells interactions [151]. It has been hypothesized that CD73 

expression in both tumour and host cells protects the tumour from incoming anti-tumour T 

cells and suppresses T cell functions through the CD39 (ecto-ATPase)-CD73 axis [19]. Much 

less is known about CD73 role in MSC biology, but its impact on cell-matrix interactions in 

chicken fibroblasts has been described [152].  

The gold standard assay utilized to identify MSCs is the colony forming unit-fibroblast (CFU-

F) assay that, at minimum, identifies adherent, spindle-shaped cells that proliferate to form 

colonies [153]. 

In this respect, in the following lines, we present the protocol provided by StemCell 

Technologies. 

 

Processing of Cells and the CFU-F Assay 

 

1. When working with a fresh bone marrow (BM) sample, the cells need to be processed to 

remove the red blood cells or enrich desired cells prior to culture. Choose one of the 

following methods: 

• Ammonium chloride lysis (to remove the red blood cells) 

• Isolation of the mononuclear cells by Ficoll-Paque™ density gradient separation 

• Enrichment of mesenchymal stem cells using the RosetteSep® Human Mesenchymal 

Stem Cell Enrichment Kit 

2. After processing, wash the cells by adding 10 mL of PBS with 2% FBS to the cell pellet. 
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Centrifuge the cells at 300 x g (~1200 rpm) for 10 minutes at 20°C. Remove the supernatant 

and resuspend the cells in 1 - 2 mL of Complete MesenCult® Medium (Human). 

3. If working with BM cells processed with ammonium chloride or Ficoll-Paque™, perform a 

nucleated cell count (using 3% Acetic Acid with Methylene Blue) and dilute the cells to a 

stock cell concentration of 2 x 106 cells/mL in Complete MesenCult® Medium (Human).  

If working with enriched mesenchymal cells isolated using the RosetteSep® Enrichment Kit 

for Human Mesenchymal Stem Cells, perform a cell count and dilute cells to a stock cell 

concentration of 5 x 105 cells/mL in Complete MesenCult® Medium (Human). 

4. Plate three different cell densities by adding 1.0 mL, 0.5 mL, and 0.25 mL of the cells at 

stock concentration to separate 100 mm tissue culture-treated dishes (or T-25 cm2 tissue 

culture flasks) prefilled with Complete MesenCult® Medium (Human) to a total volume of 10 

mL. For ficolled or lysed BM cells, this will yield final cell count of 2 x 106 cells, 1 x 106 cells 

and 0.5 x 106 cells in 10 mL of medium. For RosetteSep®-enriched cells this will yield final 

cell count of 5 x 105 cells, 2.5 x 105 cells and 1.25 x 105 cells in 10 mL of medium. 

Plating three concentrations will ensure that the resulting numbers of colonies can be scored, 

as there are differences in the proliferative potential of CFU-F from various bone marrow 

samples. 

5. Place the 100 mm dishes (or T-25 cm2 tissue culture flasks) into a 37°C humidified 

incubator with 5% CO2 in air and >95% humidity for 14 days. 

Maximum colony size and numbers are typically observed at 14 days [154]. 

 

Suggested Procedure for Staining and Enumeration of CFU-F-Derived Colonies 

Staining 

1. Remove the medium from cultures of CFU-F grown in 100 mm tissue culture dishes 

or T-25 cm2 tissue culture flasks and discard into the bio-hazardous waste. The 

adherent colonies will remain attached to the plate. 

2. Wash the culture dishes or flasks twice using PBS to remove any remaining medium. 

Discard the PBS from the two washes into the bio-hazardous waste. 

3. Add 5 mL of methanol to each culture dish or flask for 5 minutes at room temperature. 

a) Addition of methanol fixes the cells to the tissue culture dishes or flasks. 

4. Remove the methanol and discard into the bio-hazardous waste. Let the culture dishes 

or flasks air dry at room temperature. 

5. Add 5 mL of Giemsa Staining Solution to each culture dish or flask and leave for 5 

minutes. 
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6. Remove the Giemsa Staining Solution and rinse the culture dishes or flasks with 

distilled water to remove non-bound stain. Rinse until water remains clear. 

7. Discard the distilled water into the bio-hazardous waste and allow the tissue culture 

dishes or flasks to dry at room temperature. 

 

Enumeration 

CFU-F colonies from human cells are typically between 1 - 8 mm in diameter and may be 

scored macroscopically. 

Photographs of representative CFU-F-derived colonies are shown in Section 3.3. Ensure that 

there is a linear relationship between the cell numbers plated and the resulting colony 

numbers, by confirming that there are twice as many colonies when 2 x 106 cells are plated as 

compared to 1.0 x 106 cells. Likewise, there should be twice as many colonies when 1.0 x 106 

cells are plated as compared to 0.5 x 106 cells. Ideally there should be 10 - 40 colonies per 

100 mm dish or 

T-25 cm2 flask. Linearity may not be observed outside this range, as the cells would have 

been under or overplated. 

Each bone marrow sample is unique for that donor and the number of CFU-F may depend on 

a number of factors including age, presence of disease, and previous treatments given to the 

patient [154]. 

 

I-3.3.9. Functional assays for Mesenchymal Stromal Cells  

 

In order to test the growth abilities of isolated MSCs, two properties are tracked: the 

clonogenic and the proliferative potential. 

Clonogenic potential→ Clonogenic assay or colony formation assay is an in vitro cell 

survival assay based on the ability of a single cell to grow into a colony. The colony is 

defined to consist of at least 50 cells. → CFU-F assay and Plating efficiency of different 

subsets evaluation. 

PE is the ratio of the number of colonies to the number of cells seeded: 
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Proliferative potential → Proliferation assay 

Doubling time (time for one mitosis / division) → t/n, t = time for the MSCs plated at 1000 

cells / 25 cm2 to reach 80% of confluency, n = number of population doublings (means 

number of mitosis necessary to reach at 80% of confluency). The number of population 

doubling is calculated using formula n = log (x/y)/ log 2, x = number of cells plated initial, y 

= number of cells at 80% of confluency. 
 

Multilineage differentiation potential of MSCs is usually evaluated by the MSCs capacity to 

differentiate into three main lineages: osteogenic, adipogenic, and chondrogenic (Figure 19).  

 
Figure 19. Multilineage differentiation pontential of MSCs 

A) von Kossa stain of mineralized deposits in MSCs cultures indicate osteogenic differentiation 
(Magnification x 200); B) Oil red-O staining indicate the presence of lipids in adipocyte cells 
within two weeks of adipogenic induction (Magnification x 200); C) Aggregate of collagen in 
cultures indicate chondrogenic differentiation (Magnification x 200). From: Gronthos et al., 
Journal of Cell Science 2003 
 

I-3.4. Mechanisms of action of stromal cells on hematopoiesis  

 

The haematopoietic niche comprises complex interactions between multiple cells and 

molecules. 

A key player of these interactions is the osteoblast. This was proved by Nilsson S. K. et al., 

using labelled HSCs that had been transplanted in vivo, and were re-found near the 

endosteum, where osteoblasts are also located [155]. In addition, the osteoblasts ablation 

results in a rapid and strong reduction in BM cellularity and a ten-fold reduction in the 

number of HSCs present in the BM [44].  

Lodgement at the endosteal niche is driven by a calcium gradient and an array of osteoblast-

mediated adhesive interactions [44]. The osteoblasts promotes HSCs migration to and 

lodgement at the endosteal HSC niche through adhesive molecules which it produces such as 

42 



54 
 

osteopontin, N-cadherin, transmembrane c-KIT ligand stem cell factor (tm-SCF), and the 

polysaccharide hyaluronic acid involved in HSCs keeping at the endosteum [44]. 

Moreover, they signalize and regulate the survival / quiescence / proliferation of HSCs 

through expression of some receptors. Thus, through parathyroid-related peptide receptor 

(PTH1R) and activation of the protein kinase A (PKA) pathway, increase the Jagged 1 

(JAG1) expression, which signals through Notch receptors on adjacent HSCs promoting their 

self-renewal [156]. Conversely, bone morphogenetic protein (BMP) binds to BMP receptors 

A and B expressed by osteoblasts, and promotes quiescence of HSCs. Likewise, osteoblasts 

synthesize Dkk1 (an inhibitor of Wnt signalling), and angiopoietin 1 (ANG-1), which binds to 

receptor tyrosine kinase TIE2 expressed on HSCs promoting HSC maintenance in the bone 

marrow [44], [156]. Moreover, the osteoblasts express the vascular cell adhesion molecule 1 

(VCAM-1) which contributes to HSCs immobilization, protect from apoptosis and promote 

quiescence (Figure 20) [156].  

Recently, an “endothelial HSC niche” has been described [44]. Thus, some HSCs that express 

CD150 are found in direct contact with the many endothelial sinuses that irrigate the BM. It is 

not clear, however, whether these HSCs that locate to endothelial sinuses represent cells in 

transit (as HSCs permanently leak into the circulation and home back to the BM) or whether 

they represent a separate HSC pool that is regulated differently. What is clear, however, is 

that these HSCs that lodge in specific endothelial niches must utilize a separate array of 

adhesive interactions from the HSCs. Indeed, unlike osteoblasts, BM endothelial cells that 

compose this endothelial niche express neither osteopontin, nor N-cadherin. Instead, they 

express high levels of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), 

VCAM-1/CD106, P-selectin, and E-selectin whose ligands are all expressed at the surface of 

HSCs. Similar to the adhesion molecules expressed in the endosteal niches, P- and E-selectin-

mediated adhesion regulates HSCs survival, proliferation, and differentiation. Thus, the two 

anatomically distinct HSC niches, endosteal and endothelial, must regulate HSC turnover 

differently [44]. 
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Figure 20. Molecular interactions between HSCs and osteoblasts at the endosteal HSC 

niche. From Benjamin J. F. et al., Curr Opin Support Palliat Care 2008 

 

Another observation is that the adipocytes have a predominantly suppressive influence on 

haematopoiesis within the bone marrow microenvironment [157]. BM adipocytes are less 

haematopoiesis-supportive in vitro than their undifferentiated stromal or pre-adipocytic 

counterparts are. This is partly due to reduced production of growth factors such as GM-CSF 

and G-CSF [157], [158], [159]. Moreover, adipose tissue secretes neuropillin-1, lipocalin 2, 

adiponectin, and TNF alpha, each of which can impair haematopoietic proliferation [157]. Of 

note, TNF alpha and adiponectin inhibit progenitor activity despite the positively influence on 

the most primitive HSCs, suggesting that adipocytes prevent haematopoietic progenitor 

expansion while preserving the haematopoietic stem cell pool [157], [160], [161]. 
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I-4. Conclusion 

 

Recent data implicate cytokines, growth factors, adhesion molecules and signalling receptors 

as key elements in detecting and translating the extrinsic cues provided by the haematopoietic 

microenvironmental niches. Thus, these microenvironmental factors supply a specific set of 

molecules that determine or regulate the haematopoietic stem cell fate (Figure 21).  

 

 
Figure 21. The hematopoietic stem cell microenvironment 

Interactions between HSCs and components of their 
microenvironmental niche regulate stem cell fate. Adapted 
from: Watt S., Br. J. of Haematology 2001 

 

Understanding these mechanisms involved in the control of the normal development of 

haematopoiesis, it is essential to identify those whereby bone marrow (BM) 

microenvironment contribute to the intramedullary abortion of haematopoietic precursors by 

apoptosis, and for selection of neoplastic haematopoietic clone(s), resistant to apoptosis and 

able to express factors promoting its (their) own growth, proliferation and migration. 
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Chapter II- The Myelodysplastic Syndromes 
 

II-1. The Myelodysplastic Syndromes: Introduction 

 

The myelodysplastic syndromes (MDS) represent a heterogeneous group of myeloid 

neoplasms characterized by abnormal differentiation and maturation of myeloid cells, bone 

marrow failure, manifested by peripheral blood cytopenias and hypercellular bone marrow, 

although in one quarter of the cases the bone marrow could be hypocellular, and a genetic 

instability with enhanced risk to transform to acute myeloid leukaemia (AML) [162], [163]. 

The incidence of MDS disease is estimated of 4 / 100,000 per year, but rises to 30 / 100,000 

for people over 70 years [164]. In children, the annual incidence is 1-2 / million [165]. The 

median age decreased dramatically in recent years being 51 years in a recently published 

study, and the distribution of MDS subtypes demonstrated a markedly low incidence of MDS 

with deletion 5q (0.9%) [166]. In terms of gender, distribution is slowly greater in males 

[164]. 

Evolution to AML is about 20% and median survival is around 28 months [167].  

 

II-2. Clonal hematopoiesis in Myelodysplatic Syndromes 

 

To date, the dilemma of clonality seems far from being resolved. A clonal nature of the 

myeloid lineage is largely accepted, but the involvement of a lymphocytic lineage remains 

debatable [170]. The MDS clonality seems to be the result from a pre-malignant or malignant 

transformation, unlike the benign nature of haematopoiesis clonality from aplastic anaemia, 

and from paroxysmal nocturnal haemoglobinuria, where it is assumed that is due to 

contraction of the stem cell pool [171]. 

Tiu R. et al., have summarized the theories, which can be put forward to explain the initial 

steps in the evolution of clonal stem cell diseases such as MDS. The defective stem cells may 

exist in a quiescent form and the abnormal stem cells carrying the genetic defect are more 

likely to be recruited for proliferation and to initiate the clonal evolution in the context of an 

overall depletion of the stem cell pool (Figure 22) [171]. 
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Figure 22. Mechanism leading to clonal expansion in bone marrow failure 

Three possible hypotheses to explain evolution of clonal disease are illustrated. 
A stem cell may gain a lesion that, in the appropriate environment, leads to 
clonal expansion due to positive selection. Alternatively, under conditions of 
stem cell depletion, defective stem cells are more likely to be recruited 
initiating clonal evolution. From: Tiu R. et al., Leukemia 2007 

 

In MDS, the acquisition of a genetic defect by an individual stem cell lead to the clonal 

expansion which may be the primary event leading to the gradual displacement of normal 

haematopoiesis. If chromosomal defects arise after stem cell recruitment, the early progenitors 

rather than true stem cells are subject to chromosomal damage and act as a source of clonal 

expansion (Figure 23) [171]. 

 
 

Figure 23. The nature of haematopoietic clonality in MDS.  

From: Tiu R. et al., Leukemia 2007 
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If the clonal defect arises in a stem cell, all three lineages derived from that stem cell carry the 

lesion. Most of the lesions do not involve the lymph-haematopoietic stem cells, thus the 

lymphocytes are usually polyclonal. In some cases, the progenitor cells rather than stem cells 

are the initial source of clonal evolution. Both stem cell and progenitor-derived clones can 

variably contribute to the formation of mature progeny production.  

However, this hypothesis (mechanical displacement of normal haematopoiesis) cannot 

explain the mechanism of cytopenia installed early in the disease.  

Of note is, while telomeric erosion may accompany the persistence of a singular clone, by 

itself, telomere shortening is not a limiting factor for the long-term function of the defective 

stem cell. Likewise, activation of telomerase activity may be a part of this process, preventing 

simply depletion of the malignant stem cell [171]. 

In MDS, clonal evolution has a malignant character and is associated with the stepwise 

acquisition of a more aggressive phenotype, likely due to secondary defects acquired in the 

process of gradual clonal and subclonal selection. Additional defects may provide a growth 

advantage; facilitate immune escape and apoptosis resistance [171]. 

An increased prevalence of MDS in the elderly population is consistent with the accumulation 

of abnormal stem cells or deletion / depletion of normal stem cells. The best evidence for the 

pre-existence of many defective stem or progenitor cells could be provided if cytogenetic 

analysis is individually performed on purified precursors at the time when haematopoiesis is 

still polyclonal [171]. 

Another question that arises is which level of haematopoietic ontogenesis is initially affected 

by the clonal chromosomal defects. In MDS, the answer depends on the type of lesion taken 

into consideration. Thus, the cytogenetic abnormalities of chromosomes 5, 7, and 20 have 

been shown to be present in early multipotent CD34+ CD38- Thy1+ cells [170]. In contrast, 

trisomy 8 was found only in myeloid lineage-restricted progenitors [170], [171]. In MDS with 

deletion 20q abnormality apparently the common precursor for myeloid and B-lymphocytes is 

affected [171]. 

However, in MDS the aberrant clone is capable to produce mature progeny. Thus, the 

differentiated progeny may correspond to a mixture of both clonal and normal cells, and the 

ability to produce differentiated progeny may depend on the type of the genetic lesion that in 

certain circumstances may result in a total maturation block. Of note is that lack of a clonal 

marker in all or some of the mature cells may not exclude clonality. Instead, a pathogenic 

chromosomal abnormality may just be a secondary lesion affecting only a subclonal 

population [171]. 
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Another possibility is that the primary lesion is acquired at the level of the haematopoietic 

stem cells, while additional, secondary defects occur in progenitor cells [171]. 

 

II-3. Aetiology and pathophysiology of Myelodysplatic Syndromes 

 

II-3.1 Aetiology of MDS 

 

Traditionally, MDS is considered as either primary (idiopathic) or secondary after exposure to 

benzene [172], [173], occupational chemicals, particularly petroleum products, diesel 

derivatives, exhausts, organic solvents, fertilizers, nitro-organic explosives, [172], [174], 

semi-metals (arsenic and thallium), cereal dusts [175], [176], [177], prior treatment with 

radiation [172], [178], or chemotherapy agents [172], [179], to mention only the best 

documented secondary causes. 

Additional data implicates exposure to tobacco [172], [180], excessive alcohol [172], [181], 

viral infections [172], [182], or autoimmune disorders [172], [183] as potential associations 

with MDS. 

In light of several epidemiologic studies, there are evidences about a complex genetic 

predisposition in MDS, involving the DNA polymorphisms in genes that mediate DNA repair 

and those, which metabolize environmental carcinogens [175], [184]. 

Thus, the polymorphisms for two genes: for NAD(P)H: Quinone Oxidoreductase (NQO1), 

which plays a critical role in detoxifying benzene metabolites [175], [185], [186], and for 

glutathione S-transferases (GST) are strongly associated with an increased incidence of 

haematological malignancies [175], [187], [188], [189]. 

 

II-3.1 Pathophysiology of MDS 

 

Recent research has revealed a further dimension to this pathophysiology, with extrinsic 

immunological and microenvironmental factors compounding the intrinsic stem cell defect 

and contributing to the pancytopenia and possibly to leukemic progression. 

Table 4 summarizes the pathophysiology of MDS in relation to environmental factors 

exposures. 
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Table 4 Myelodysplatic Syndromes pathophysiology 

 
Theories of 
Pathophysiology  
involved in MDS 
Development 

Potential targets/Component Involved 
 Overall Result of Abnormality 

Environmental/Aging 
Aging Increased BM apoptosis Decreased haematopoietic stem cell pool 

Environmental 
Exposures 

 Smoking  
 Radiation  
 Benzene  
 Viral infection  
 Chemotherapy 

 Direct toxicity to haematopoietic stem 
cells  
o Genotoxic: O2 free radicals, DNA 

damage  
o Non-Genotoxic: Immune modulation 

(Immunoglobulin/complement 
alteration)  

Telomere 
Abnormalities 

 Potential decreased telomerase and subsequent telomere shortening  Impaired ability to renew stem cell pool 
 Genetic Instability 

Genetic Alterations 

Cytogenetic 
Abnormalities 

Common Abnormalities:  Abnormalities: typically unbalanced 
genetic loss  

 Numerous theories of tumour suppressor 
loss  

 Multi-Hit progression from low risk MDS 
to AML  

 Genetic Instability 

 5q- 
 Y-  
 7q-Monosomy7  
 11q23  
 P53 mutations 
 Complex Cytogenetics 

 20q- 
 Trisomy 8 
 17p Syndrome  
 3q  
 Ras mutations 

Epigenetic 
Modulation 

 Hypermethylation:  
o Calcitonin gene; p15INK4B; ER; E-Cadherin  

 Acetylation Alterations: 
o Cell cycle components: p21WAF1  
o Alteration of differentiation and apoptotic machinery  
o Alterations of angiogenesis 

 Methylation and acetylation abnormalities 
lead to silencing of genes important in cell 
cycle, differentiation, apoptosis, 
angiogenesis  

Microscopic 
Genetic 
Alterations 

 Comparative Genomic Hybridization:  
 Single Nucleotide Polymorphism (SNPs):  

o NQO1; Glutathione S-transferase; G-CSF Receptor; Microsatellite 
instability  

 Dysfunction of enzymes required for 
detoxification, DNA mismatch repair, or 
differentiation  

Altered Bone Marrow Microenvironment 
Altered Bone 
Marrow 
Microenvironment 
Cytokines 

 Upregulation of:  
 TNF-α, IFN-gamma , TGF-beta, IL-1B, IL-6, IL-11 

 Alteration of growth, differentiation, 
angiogenesis  

 Immune modulation  

Alterations in 
Apoptosis via 
Signalling 

Increased TNF-α levels:  
 Increased Apoptosis: Low Risk MDS 

o Binding to TNFRI-oligomerization - TRADD/FAD association - 
activation of Caspase cascade - increased apoptosis  

 Decreased Apoptosis: High Risk MDS 
o Binding to TNFRII - TRAF-2 interaction - activation of NFkB - 

apoptosis inhibition  
FAS: Increased Apoptosis  
 Increased FAS binds to FAS-Ligand - trimerization - activation of FADD - 

association with Caspase 8 - triggering protease/caspase cascade cleaving 
DNA repair proteins  

BCL-2 alterations:  
 Oncogene Interactions  

o Inhibits c-myc: required for progression from G1/S  
o Interacts with Raf-1 and Ras 

 Increased apoptosis and proliferation in 
early stage MDS leading to hypercellular 
marrow with peripheral cytopenias  

 Decreased apoptosis and increased 
proliferation in later stage MDS leading to 
progression to AML  

Increased 
Angiogenesis 

 Increased VEGF 
 Possible Increase:  

o gFGF, EGF, and Angiogenin 

 Increased Microvessel Density (MVD); 
role in pathogenesis not clearly elucidated 
but associated with progression to AML 

Immune 
Dysregulation  

 T cell Expansion  
o Skewed Vβ and J regions  
o Increased Cytotoxic T cells CD8+, CD28-, CD57+  

 B cell alterations  
o Clonal B cell expansion/connection with increased frequency of 

autoimmune phenomena in MDS  

 Increased T cells leading to potential 
attack on haematopoietic stem cells  

 Aetiology: Possible chronic antigenic 
stimulation 

Abnormal 
Differentiation 

 Cell Cycle Maturation arrest: Ex: p16 alt.  
 Altered Proliferation: Ex: p15INK4B  
 Transcription Factors alt: GATA-1/GATA-2 

 Impaired maturation  
 Cytopenias  
 Progression to leukaemia  

Adapted from: Warlick E.D. and Smith B.D., Current Cancer Drug Targets 2007 
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Marrow Microenvironment  

 

To date, the role of microenvironment in MDS pathogenesis is controversial, being largely 

considered a disease of HSC. However, in recent years there is increasing evidence about the 

cellular microenvironment involvement in the pathogenic process, both by the secretory 

component and especially by direct interaction with HSC. Thus, in a previous study, Boudard 

et al. have reported growth defects of stromal cells isolated from MDS patients, resulting in 

low confluency, associated in some cases with caspase-3 activation and increases of 

angiogenesis [190]. The present work was focused on cell adhesion-mediated MDS 

pathogenesis. 

 

Apoptosis, Dysplasia  

 

Despite increased proliferation of the BM cells, there is an increased rate of programmed cell 

death. Indeed, some of the dysplastic appearance may be explained by apoptotic changes 

[175], [191], [192].  

Certain types of behaviour related to apoptosis within the MDS disorders can be 

distinguished: 

- in refractory anaemia (RA) / refractory anaemia with ringed sideroblasts (RARS), 

apoptosis always exceeded proliferation, whereas in refractory anaemia with excess of 

blasts (RAEB), this ratio equalized on account to increased proliferation; 

- progression to RAEB in transformation (RAEB-t) / MDS-related acute myeloid 

leukaemia (AML), or MDS/AML was associated with a significant reduction in 

apoptosis, and proliferation; 

These observations are supported by the fact that in RA / RARS compared with normal 

settings, the ratio between pro-apoptotic (Bax/Bad) versus anti-apoptotic (Bcl-2/Bcl-X) 

proteins is increased, whereas the disease progression was associated with a significant 

decrease of this ratio, due primarily to Bcl-2 high expression [193], [194]. 

Likewise, Kurotaki H and colleagues noticed that the suppression of apoptosis is the result of 

enhances bcl-2 expression besides the p53 accumulation in haematopoietic precursors 

selected from MDS-related acute myeloid leukaemia [195]. 

Moreover, an increased expression of CD95 (Fas) and CD95L (Fas-L) was noticed in 

CD34+ cells selected from the newly diagnosed MDS patients [196], [197], [198].  

51 



63 
 

The increased apoptosis observed in MDS was correlated also with increased levels of 

caspase-3, which are significantly higher in RA and RARS than in chronic myelomonocytic 

leukaemia (CMML), RAEB and RAEB-t [199], [200]. 

 

Cytokines 

 

Two possible mechanisms could be responsible for the increased rate of apoptosis 

encountered in the early stages of MDS, i.e., the apoptosis induced by soluble factors, 

cytokines synthesized by marrow mononuclear cells and mesenchymal stromal cells, and 

those related by direct cellular contact [175], [197], [201], [202], [203], [204]. In MDS, many 

studies link over-synthesis of TNF-α by BM MNCs to cell death [175], [202], [205], [206]. 

Furthermore, this cytokine was proved to have an inhibitory effect to both normal and MDS 

haematopoietic colony growth, indicating that residual normal haematopoiesis can also be 

blocked in MDS [175], [202], [203]. 

IFN-γ, IL-1, and TGF-β [175], [201], [207] as well as undefined factors produced by 

stromal cells have also been implicated in causing apoptosis [175], [208], but their role in 

producing marrow failure has not been well established. The identification of TNF-α as a key 

cytokine in cell death regulation and the increased susceptibility of MDS cells to TNF-α were 

the basis of several clinical trials of TNF-α inhibitors, which support their use to improve 

cytopenia [175], [201].  

Moreover, the significantly higher levels of the caspase-3 were detected in the BM MNCs 

selected from MDS patients, which correlate with TNF-α level of cultures supernatant and 

with increased apoptotic index of haematopoietic precursors [209]. 

These observations were sustained also by Arimura K, in 2004, who noticed that matrix 

metalloproteinase inhibitors (MMPIs) could inhibit the apoptosis priming in MDS BM cells 

via the inhibition of TNF-α and probably by soluble FasL secretion [210]. 

 

Angiogenesis 

 

Data showing a significant increase of BM microvascular density (MVD) in MDS 

compared with normal controls have been reported. Surprisingly, it has been shown that 

MVD significantly decreases upon transformation to acute leukaemia and that MVD is 

significantly lower in de novo AML than in MDS [211]. 

Moreover, the bone marrow microvascular density correlates with significant increases of 

serum levels of pro-angiogenic cytokines, such as basic fibroblast growth factor (b-FGF), 
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hepatocyte growth factor (HGF) and tumour necrosis factor-alpha (TNF-α) [208], vascular 

endothelial growth factor (VEGF) [213], angiogenin, angiopoietin-1, platelet-derived growth 

factor, EGF(epidermal growth factor), and TGF-alpha and beta (transforming growth factor-

alpha and transforming growth factor-beta) in MDS patients compared with normal settings 

[214]. Most of these angiogenic factors appear to be secreted by the neoplastic haematopoietic 

cells and appear to promote the growth and proliferation of the leukemic cells in an autocrine 

fashion. More importantly, angiogenic factors play a significant role in the clinical behaviour 

and outcome of both AML and MDS [214]. 

VEGF seems to be the best prognostic factor for evaluating the microvascular density, 

because high levels of this cellular protein were proved to correlate with short survival in 

MDS patients [215]. Likewise, endothelial cells release increased amounts of VEGF-C, 

another VEGF family member, in response to leukaemia-derived pro-angiogenic and pro-

inflammatory cytokines such as b-FGF and IL-1, respectively. In turn, interaction of VEGF-C 

with its receptor VEGFR-3 (FLT-4) promotes the survival and proliferation of a subset of 

blast cells, and protects them from chemotherapy-induced apoptosis [216]. 

  

Immune Dysfunction in MDS 

 

Hamblin et al. have raised the possible association between MDS with an autoimmune 

process, noting the emergence of autoantibody production, and monoclonal lymphocyte 

proliferation in some patients with MDS [175], [217]. The occasional finding of T cell 

clonality in MDS has been interpreted as evidence of T cell involvement in the stem cell 

disorder [175], [218]. MDS also shares some of the features of acquired aplastic anaemia 

(AA), a disease with well-known autoimmune aetiology [175], [219]. Both in AA and MDS, 

plasma TNF-α and IFN-γ levels are high and T cell-mediated myelosuppression held [175], 

[220]. The inhibitory effects of T lymphocytes on autologous granulocyte [175], [221], [222] 

or erythroid colony growth [175], [223] were also reported. These observations strongly 

suggest that, as in AA, an autoimmune T cell-mediated myelosuppression contributes to the 

cytopenia of MDS and that might be considered an immunosuppressive treatment in MDS 

which could restore the marrow functionality.  

 

A Model of Disease Progression in MDS 

 

A hypothetical model of MDS disease progression was proposed a decade ago [170], [175]. 

Transformation of normal stem cells induces danger signals or antigenic changes, hence an 
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autoimmune T cell response directed against the marrow cells. Both MDS clones and normal 

marrow cells, at various stages of differentiation, are directly inhibited by CD8+ T 

lymphocytes causing varying degrees of stem cell failure. The persisting autoimmune attack 

results in chronic overproduction of pro-apoptotic cytokines, especially TNF-α. This synthesis 

affects committed or mature cells and may contribute to a dysplastic morphology and 

increased apoptosis in the marrow. Despite the increased cell proliferation in MDS, the 

marrow fails to export sufficient cells into the blood because intramedullary apoptosis 

mechanism prevails over proliferation [175]. 

 

 Bone marrow microenvironment as contributor to drug resistance 

 

The soluble factors produced by bone marrow cells mediate the tumour cells homing, survival 

and proliferation, and the integrin-mediated adhesion sequesters the tumour cells to the 

microenvironmental niche [224]. All these processes are involved in the environment-

mediated drug resistance. We summarize in the following some mechanisms responsible for 

the acquired resistance. 

The BM stromal cells are regarded the main source of chemokine. They constitutively express 

the stromal cell-derived factor-1 (SDF-1 or CXCL12), implicated in tumour cells homing 

through the CXCR4 / SDF-1 axis, and in tumour cells survival and adhesion through CXCR7 

binding. Moreover, the CXCR4 binding promotes enhances of VLA-4-mediated adhesion to 

the extracellular matrix components such fibronectin in solid tumours [224]. 

There are evidences that inhibitors of this pathway block tumour homing and engraftment, 

and reverse the cell adhesion-mediated drug resistance of tumours. 

Other evidence is that integrin expression pattern is altered in tumour cells. They are involved 

in pathogenic process in two ways, i.e., by increasing the proliferation, migration and survival 

of cancerous cells, and by adhesion-mediated quiescence, which may contribute to the failure 

of standard cytotoxics in eradication of the tumour cells adhered to bone marrow stromal cells 

or to the extracellular matrix. 

The principal actor of this group is β1 integrin whose increased expression in invasive breast 

cancers or in small cell lung cancer negatively correlated with patient survival [224], [225], 

[226]. Likewise, the β1 integrin adhesions regulate the stability and trafficking of mediators 

and inhibitors of apoptosis through a decrease of Bim stability or by interactions with Bcl-2 

proteins. 

Others integrins are noticed to be involved in carcinogenesis, including α3, α4, αV, and β7 

[224]. 
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II-4. Cytogenetic and Molecular abnormalities  

 

II-4.2 Cytogenetic Abnormalities 

 

A typical feature of MDS is the presence of invariant chromosomal abnormalities, which, 

with some exceptions (e.g., chronic myelomonocytic leukaemia [CMML]), atypical chronic 

myeloid leukaemia (aCML) are mostly unbalanced [171]. The clonal chromosomal defects 

affect certain chromosomes more frequently (Table 5). The resulting loss of heterozygosity 

(LOH) or duplications are related to malignant transformation [171].  

Table 5. Invariant balanced and unbalanced chromosomal abnormalities detected by 

metaphase karyotyping and FISH 

 

Type of lesion % of cases Chromosome lesions Entity 
Balanced Rare Inv3 

t(3;5) 
t(3;3) 
t(5;12) 
t(5;17) 
t(5;12) 
t(5;21) 
t(11q23;v) 

Primary MDS, MDS/MPD (CMML) 
Primary MDS 
Primary MDS 
CMML 
CMML 
CMML 
CMML 
Therapy related MDS 

Unbalanced ~6-25 
2-8 
5-21 
5 
8-24 
~1-12 

Del 5 / del 5q 
Del Y 
Trisomy-8 
Del 17p 
Complex karyotype 
Del 7 / del 7q 

Primary MDS 
CMML 

Normal 40-60 Normal cytogenetics Primary MDS 
CMML 

CMML: chronic myelomonocytic leukaemia; MDS: Myelodysplastic syndrome; 
MPD: myeloproliferative syndrome. Adapted from: Tiu R. et al., Leukemia 2007 

 

The metaphase cytogenetics (MC) is largely employed to identify the cytogenetic 

aberrations, which have an important role for the MDS diagnostic, prognostic, and therapeutic 

decision. While karyotypic abnormalities are the gold standard of MDS diagnosis, however, 

approximately 50% of cases do not show the chromosomal defects in routinely applied tests 

[171]. 

An alternative solution for the poor proliferation of dysplastic cells, which could be 

responsible for the low sensitivity of this method, is represented by interphase fluorescent in 

situ hybridization (FISH), as it does not require cell division, and consequently, cell 

cultures, being more sensitive than traditional metaphase cytogenetics, allow detection of 
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smaller sized clones [171], [227], [228]. However, the latter benefit is still controversial 

[229]. 

Several FISH strategies could increase the method sensibility, such as combined control and 

target probes to detect genomic deletions or amplifications, dual fusion probes to identify the 

specific translocations, and break-apart probes to evaluate gene rearrangements [229]. 

However, the FISH is more reliable for the detection of duplications rather than deletions of 

chromosome fragments [171]. The major drawback of FISH is the limited number of probes 

directed towards the suspected targets [171]. The current FISH panels for MDS include 

probes for detections of -5/del(5q), -7/del(7q), del(20q) and trisomy 8 [229]. 

In order to improve the sensitivity of cytogenetic analysis, new karyotyping technologies have 

been developed including single nucleotide polymorphism array-based karyotyping (SNP-

A) and oligonucleotide array-based comparative genomic hybridization array (CGH-A). 

The major advantages of such technologies are the precise genomic scanning and the fact that 

they do not require cell division [171]. SNP-A karyotyping is useful in detecting loss of 

heterozygosity (LOH), even in cases without loss of ploidy, such as uniparental disomy 

(UPD), in evaluating abnormal clone dimensions relative to the total cell population present in 

the sample, and facilitating identification of cryptic lesions in bone marrow failure cases with 

normal or abnormal cytogenetics [171], [229]. Moreover, the SNP arrays may allow the 

identification of the invariant lesions associated with specific clinical phenotypes [171]. 

Comparative genomic hybridization (CGH) allows detecting changes of chromosome copy 

number by hybridization techniques between normal and tumour cells [172].  

The parallel use of a combination of the three cytogenetic technologies – i.e., MC, FISH, and 

SNP-A – improved the detection rates of genetic abnormalities encountered in patients with 

MDS (e.g. for del(5q), -7/del(7q), trisomy 8, and del(20q) the detection rate being increased 

to 35% (MC+FISH), 38% (MC+SNP-A), 38% (FISH+SNP-A) and 39% when all three 

methods were applied [229]. 

 

II-4.1 Molecular Abnormalities 

 

Chromosomal aberrations and genetic mutations play a pivotal role in the pathogenesis of 

MDS and MDS / AML. According to a proposed multistep pathogenesis of leukemia, after 

the initial damage of the progenitor cell, several additional alterations may affect these cells, 

providing them with a growth advantage (reviwed in Blau O et al [230]). The most frequent 

mutations along with their bilogical and clinical significance encountered in these pathologies 

are summarized in Table 6 [175], [231], [232], [233], [234], [235], and [236]. 
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Table 6. Recurrent gene mutations in MDS and MDS/AML settings 

Genetic 
mechanism 

Gene CRS Cells affected 
by mutation 

Biologic and clinical 
significance 

Outcomes 
at diagnosis 

Haploinsufficiency RPS14 5q33 CD34+ cells Abnormal erythroid 
differentiation and 
apoptosis [233] 

Unknown 
[233] 

miR-145 and  
miR-146 

5q33 
CDR 

NA Thrombocytosis [233] Unknown 
[233] 

Egr1 5q31 NA Enhances stem-cell self-
renewal [233] 

Unknown 
[233] 

HSPA9 5q31.2 CD34+ cells Delayed erythroid 
maturation and increased 
apoptosis [233] 

Unknown 
[233] 

Mutations in 
regulators of DNA 
methylation 

DNMT3A 2p HSC/ 
Unfractiona-
ted BM 
samples 

Contribute to clonal 
dominance [233] 

Decreased 
survival [233] 

TET2 4q NA Impaired 5hmC 
production* [233] 

Unknown 
[233] 

IDH1/IDH2 2q/15q NA Synthesis of 2-
hydroxyglutarate which 
impares histone 
demethylase activity; 
Inhibit 5hmC production 
by TET2 [233] 

Decreased 
survival [233] 

Mutations affecting 
histone function 

EZH2** 7q36.1 NA Transcriptional repression 
[233] 

Relatively 
poor 
survival [233] 

UTX*** Xp11.23 NA NA Unknown 
[233] 

ASXL1 20q NA Regulation of histone 
function [233] 

Poor 
prognosis[236] 

Secondary MDS and 
MDS/AML 
or 
Therapy-related MDS 

TP53 17p NA Mutations in the tumour 
suppressor [234] 

Decreased 
survival [233] 

RUNX1 21q NA Impairment of HSC 
differentiation [234] 

Decreased 
survival [233] 

N/KRAS 1p/12p NA Mutations in the signal 
transducer RAS [234] 

Unknow [233] 

FLT3-ITD 13q CD34+ cells Impairment of HSC 
differentiation [234] 

Decreased 
survival [233] 

NPMc 5q NA Impairment of normal 
cellular homeostasis [234] 

Unknow [233] 

MDS/MPN Overlap 
Syndromes 

CBL 11q NA Marker of 
myelomonocytic clonal 
dominance without impact 
on clinical outcome [236] 

Unknow [233] 

JAK2 9p NA Myeloid neoplasm 
associated with ringed 
sideroblasts and/or 
thrombocytosis [235] 

Unknow [233] 

 

* 5’-hydroxymethylcytosine (5hmC); DNA methyltransferase converts unmethylated cytosine 
to 5mC. 5mC is converte to 5hmC by the TET proteins in the presence of αKG generated by 
the IDH enzymes; ** EZH2 (enhancer of zeste homolog 2), a polycomb group protein that 
methylates histones H3 (at K27) and H1 (at K26); *** UTX, an X-linked polycomb gene that 
encodes an H3K27 demethylase; NA indicates not available 
Adapted from: Graubert T. & Walter M.J., Hematology Am. Soc. Hematol. Educ. Program. 

2011 

57 



69 
 

A new mutation of SF3B1 gene was noticed in MDS cases, especially in the cases with 

presence of ring sideroblasts (RS) [236], [237]. This mutation was associated with better 

overall and leukemia-free survival [237]. SF3B1 is located on chromosome 2q33.1 and 

encodes for a protein SF3B1, which associates with SF3A and 12S RNA to form the U2 small 

nuclear ribonucleoprotein particles, and that is believed to play a role in pre-mRNA splicing 

and associated transcription [237]. The occurrence of a somatic mutation of SF3B1 causes 

mitochondrial iron overload, ineffective erythropoiesis, and anemia, typical myelodysplastic 

features of RARS. The subsequent occurrence of a somatic mutation of JAK2 or MPL 

involves the acquisition of myeloproliferative features, including thrombocytosis (Figure 24) 

[235].  

 

 
Figure 24. Schematic representation of the multiple-step molecular pathogenesis of 

RARS-T 
 
(supporting the fact that the true MDS/MPN is a combination of SF3B1 and JAK2 or MPL 
mutations). Adapted from: Cazzola M. et al, Blood 2011. 
 

The disease progression was associated with progressive methylation and transcriptional 

inactivation of the cell cycle regulatory genes (e.g. p15INK4b) [171], [238], [239]. 

Recent evidences sustain the presence of the cytogenetic aberration in MSCs selected from 

MDS patients, but to a lesser extent than in the haematopoietic compartment (16% in MSC vs 

37% in HCs), and more surprising these genetic abnormalities were distinct compared with 

those detected in leukemic blast [230]. The MSC chromosomal abberation were detected 

more often in MDS younger patients (median, 59 years) with poor prognostic. The median 
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follow-up time among patients with and without chromosomal aberrations in MSC was 19 

and 33 months, respectively [230]. Chromosomes 1 and 7 were more frequently involved in 

MSC structural aberrations, and the most frequent aberrations were partial deletions and 

numerical aberrations in MDS cases. The structural aberrations (such as translocations and 

inversions) are the privilege of AML cases [230]. Surprisingly, is noted that the MSCs of 

AML patients with FLT3 and / or NPM1 mutations were devoid of these mutations [230]. A 

great disadvantage of this test is the fact that the abnormal MSC clones were detected in a 

small number of analyzed metaphases (2-5 cells); "the large clones" involving 6-23 aberrant 

metaphases [230]. 

A potential explanation for this disadvantage is the selection of an "unstable" MSC clone 

which may facilitate the expansion of malignant cells [230]. 

 

II-5. Classification 

 

The MDS classifications were conceived to perform a prognostic stratification of these 

heterogeneous entities. The initial FAB (French-American-British) system developed in the 

mid-1970s proposed the MDS subgroups definition using the cellular morphology. The FAB 

system focused on three criteria: percentages of blasts in BM, PB, and of BM sideroblasts. 

Bennett et al., refined the system, in 1982, by introducing two supplementary parameters, i.e., 

the actual monocyte counts in PB and the presence of Auer rods in blasts [172].  

To improve prognostic utility, the World Health Organization (WHO) published in 2001 a 

new standard classification system, which taken in consideration the cytogenetics findings  

[240]. Thereafter WHO classification has undergone a major revision in 2008, and the most 

relevant changes are: 

- grouping in the “Refractory cytopenia with unilineage dysplasia (RCUD)”category of 

all cases which exhibit unilineage myeloid dysplasia; 

- removing the “RCMD-RS = refractory dysplasia with multilineage dysplasia and 

ringed sideroblasts” entity; 

- substituting “CMML = Chronic myelomonocytic leukaemia” with Myelodysplastic / 

myeloproliferative neoplasm (MDS / MPN); 

- employing the percentages of circulating blasts to discriminate RAEB-1 of MDS 

unclassified (MDS-U);  

- introducing the entity “Therapy-related secondary myeloid neoplasms” to regroup the 

AML and MDS chemotherapy related cases; 
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- adding a provisional entity, refractory cytopenia of childhood (RCC), which include 

children with cytopenia(s) with less than 2% blasts in the peripheral blood and less than 5% in 

the bone marrow and evidence of dysplasia in two or more lineages (Table 7) [241], [242]. 

Table 7. Peripheral blood and bone marrow findings in MDS (The 2008 revision of 

WHO classification) 

Entity Blood findings BM findings 
Refractory cytopenia with 
unilineage dysplasia (RCUD): (-
RA refractory anaemia; -RN 
refractory neutropenia; -RT 
refractory thrombocytopenia) 

Unicytopenia or 
bicytopeniaa 

No or rare blasts (< 
1%)b 

Unilineage dysplasia: 
≥ 10% of the cells in one myeloid 
lineage,  
< 5% blasts,  
< 15% of erythroid precursors are ring 
sideroblasts 

Refractory anaemia with ring 
sideroblasts (RARS) 

Anaemia 
No blasts 

≥15% of erythroid precursors are ring 
sideroblasts, 
Erythroid dysplasia only,  
< 5% blasts 

Refractory anaemia with 
multilineage dysplasia (RCMD) 

Cytopenia(s) 
No or rare blasts (< 
1%) b 
No Auer rods 
< 1 x 109/L monocytes 

Dysplasia in ≥ 10% of the cells in ≥ 2 
myeloid lineages (neutrophil and/or 
erythroid precursors and/or 
megakaryocytes), 
< 5% blasts in marrow, 
No Auer rods, 
± 15% ring sideroblasts 

Refractory anaemia with excess 
blasts-1 (RAEB-1) 

Cytopenia(s) 
< 5% blasts b 
No Auer rods 
< 1 x 109/L monocytes 

Unilineage or multilineage dysplasia 
5-9% blasts 
No Auer rods 

Refractory anaemia with excess 
blasts-2 (RAEB-2) 

Cytopenia(s) 
5-19% blasts 
Auer rods ± 
< 1 x 109/L monocytes 

Unilineage or multilineage dysplasia 
10-19% blasts 
Auer rods ± 

Myelodysplastic syndrome-
unclassified (MDS-U) 

Cytopenia(s) 
< 1% blasts 

Unequivocal dysplasia in < 10% of cells 
in one or more myeloid lineages when 
accompanied by a cytogenetic 
abnormality considered as presumptive 
evidence for a diagnosis of MDS (listed 
in Table 6) 

MDS associated with isolated 
del(5q) 

Anaemia 
Unusually normal or 
increased platelet count 
No or rare blasts (< 
1%) 

Normal to increased megakaryocytes 
with hypolobulated nuclei 
< 5% blasts 
Isolated del(5q) cytogenetic abnormality 
No Auer rods 

aBicytopenia may occasionally be observed. Cases with pancytopenia should be classified as 
MDS-U. bThe cases with marrow myeloblast percentage <5%, but a mean of 2% to 4% 
myeloblasts in the blood, should be included in RAEB-1. Cases of RCUD and RCMD with 1% 
myeloblasts in the blood should be classified as MDS-U. cCases with Auer rods and <5% 
myeloblasts in the blood and less than 10% in the marrow should be classified as RAEB-2. 
Although the finding of 5% to 19% blasts in the blood is, in itself, diagnostic of RAEB-2, 
cases of RAEB-2 may have <5% blasts in the blood if they present Auer rods or 10% to 19% 
blasts in the marrow or both. Similarly, cases of RAEB-2 may have <10% blasts in the 
marrow, but may be diagnosed using the other two findings: Auer rods and / or 5-19% blasts 
in the blood. Adapted from Vardiman J. W. et al., Blood 2009 
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II-6. Prognostic 
 

Throughout the years, a decisive observation, such as a high number of BM blasts correlating 

with more rapid haematological deterioration and with severe clinical behaviour, cont inues to 

be applied even today in the prognostic staging system [243]. 

Greenberg et al., in 1997, established a prognostic score using the multivariate analysis of 

clinical and biological features resulted by evaluation of 816 patients. In order to calculate a 

prognostic risk score, the IPSS system uses three clinical factors: percentage of marrow 

blasts, karyotype, and number of cytopenias (Table 8). 

 

Table 8. IPSS Prognostic Score System 

 

Prognostic 
variable 

Score value 

Low Intermediate High Int-1 Int-2 
0 0.5 1.0 1.5 2.0 

BM blasts (%) <5 5-10 - 11-20 21-30 
Cytogenetics* Good Intermediate Poor - - 
Cytopenias** 0/1 2/3 - - - 

 

*good prognosis: normal, 5q-, 20q-, -Y; poor prognosis: complex aberrations, -7,7q-; 
intermediate prognosis: all others, **haemoglobin <10g/dl, trombocytes <100x109/l, absolute 
neutrophil count <1.5x109/l. Adapted from: Haferlach T. and Kern W., Springer Berlin 
Heidelberg 2006 
 

Based on this score, the median survival times were 5.7, 3.5, 1.2, 0.4 years for the IPSS risk 

groups “Good”, “Intermediate-1”, “Intermediate-2”, and “High”, respectively [175]. 

 

 

 

 

 

 

 

 

 

 

61 



73 
 

Chapter III- Focal adhesion proteins 

 

III-1. Introduction 

 

Focal adhesions (FAs), named also focal contacts, comprise dynamic groups of structural and 

regulatory proteins that link transmembrane receptors, such as integrins, to cell cytoskeleton 

and mediate signals involved in cell attachment, migration, differentiation, proliferation, and 

gene expression [244], [245].  

This family consists of over 50 molecules that can be divided into three groups according to 

their cellular location and their role within this family (Table 9) [244], [246]. 

 

Table 9. Focal adhesion components 

 

Location Focal adhesion proteins 
Extracellular Collagen, fibronectin, heparan sulfate, laminin, proteoglycan, 

vitronectin 
Transmembrane Integrins 18α and 8β (24 combinations in humans), LAR-PTP 

receptor, layilin, syndecan-4 

Cytoplasmic 

Structural 

Actin, α-actinin, EAST, ezrin, filamin, fimbrin, kindling, lasp-
1, LIM nebulette, MENA, meosin, 
nexilin, paladin, parvin, profilin, ponsin, radixin, talin, tensin, 
tenuin, VASP, vinculin, vinexin 

Enzymatic 

Protein tyrosine kinase: Abl, Csk, FAK, Pyk2, Src 
Protein serine/threonine kinase: ILK, PAK, PKC, 
Protein phosphatase: SHP-2, PTP-1B, ILKAP 
Modulators of small GTPase: ASAP1, DLC-1, Graf, 
PKL, PSGAP, RC-GAP72 
Others: calpain II, PI3-K, PLCγ 

Adapters 
p130Cas, caveolin-1, Crk, CRP, cten, DOCK180, DRAL, 
FRNK, Grb 7, Hic-5, LIP.1, LPP, Mig-2, migfilin, paxillin, 
PINCH, syndesmos, syntenin, Trip 6, zyxin 

 

Adapted from: SuHaoLo, Development Biology 2006 

 

Focal adhesions, unlike other structures involved in cell adhesion (gap junctions, tight 

junctions, desmosome, and hemidesmosome), are not detected as prominent structure under 

usual electron microscopy [245]. However, immunoelectron microscopy revealed that focal 

adhesions are dynamic structures which form at the anchorage site of cells to extracellular 

matrix (ECM), along with adhesion complexes, fibrillar adhesions, and podosomes (Figure 

25) [244], [246]. 
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Figure 25. Cell adhesion model 

(A) Overview of cell-to-cell and cell-to-extracellular matrix (ECM) adhesions. 
Figure adapted from http://www.erin.utoronto.ca 
(B) Molecular architecture of focal adhesions formed at the anchorage site of cell to ECM.  
From Mitra S. K., Nature reviews: Molecular Cell Biology 2005 
 

III-2. The components of focal adhesions 

 

III-2.1 Adhesion receptors 

 

Two main types of receptors mediate the interactions between cells and various components 

of the ECM: the integrins and syndecans. 

In the following, we present in detail the integrins best characterized in the literature. 

Integrins are heterodimeric transmembrane receptors consisting of noncovalently linked α and 

β subunits [246], [247], which belong to cell adhesion molecules (CAM’s) family [248]. A 

combination between these subunits (which generate 24 different integrins) confers the ligand 

specificity [246], [249].  

Integrins play important roles in cell adhesive interactions during normal physiological 

processes, e.g., embryonic development and wound repair, and during the progression of 

63 



75 
 

diseases such as cancer [250]. Integrin ligands are not passive adhesive molecules; they are 

active participants in the cell adhesive process that leads to signal transduction. The focal 

adhesion kinase is phosphorylated in response to cell adhesions involving β1, β2, β3 

intracellular domains of integrins, and thereafter, it initiates signal transduction pathways. 

Migration, the assembly of an F-actin cytoskeleton at focal contacts, cytoplasmic changes of 

calcium ion concentration, modulation of proliferation and gene expression [250] are among 

the processes that belong to intracellular responses, involving integrins, such as α5 β1 integrin 

largely expressed by cells.  

Equally, these adhesions play a particular role in the growth and differentiation of 

haematopoietic stem cells. Integrins of the beta 1 family, mostly α4β1 integrin, very late 

activation antigen-4 (VLA-4), and α5β1 integrin (VLA-5) are best characterized and have been 

identified on committed progenitor cells as well as on more primitive stem cells. The 

emerging importance of the synergy between integrins and cytokine signalling pathways in 

the regulation of haematopoietic differentiation constitute a new paradigm in cell biology 

[251]. 

 

III-2.2 Focal Adhesion Kinase (FAK) Protein 

 

FAK is a ubiquitously expressed protein-tyrosine kinase of 125-kDa, which consists of three 

domains: FERM (protein 4.1, ezrin, radixin and moesin homology) domain, a catalytic, kinase 

domain, and a focal adhesion targeting (FAT) domain. The FERM domain mediates 

interactions of FAK with different growth receptors like epidermal growth factor receptor 

(EGF receptor), platelet-derived growth factor receptor (PDGF), the tyrosine kinase ETK, and 

ezrin, the molecule connecting the actin cytoskeleton to the plasma membrane. The FAT 

domain recruits other proteins of focal contacts, such as integrins, paxillin, and talin, to kinase 

association in promoting motility and survival signals. This domain links also FAK to guanine 

nucleotide-exchange factors (GEFs) and induces the Rho activation. The last domain, towards 

carboxy-terminal region, FAT, contains three proline-rich regions designed to bind the 

proteins containing SH3 domains (Src-homology-3), such as p130Cas, the GTPase regulator 

associated with FAK (GRAF) and the Arf-GTPase-activating protein ASAP1. Likewise, FAK 

can be phosphorylated on several tyrosine residues, such as Tyr 397, 407, 576, 577, 861, and 

925, and this leads to subsequent binding of Src, phospholipase Cγ (PLCγ), suppressor of 

cytokine signalling (SOCS), growth-factor-receptor bound protein 7 (GRB7), the Shc adaptor 

protein, p120 RasGAP and the p85 subunit of phosphatidylinositol 3-kinase (PI3K). The 

phosphorylation at Tyr 925 creates site for GRB2 binding. An inhibitor of FAK catalytic 
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activity is FIP 200 (FAK-family interacting protein of 200 kDa), which binds the catalytic 

region.  

In conclusion, situated at the intersection of many signalling pathways, FAK is a critical 

tyrosine kinase involved in a variety of processes vital for cellular physiology (Figure 26) 

[245], [252]. 

 

 
Figure 26. Schematic diagrams of FAK structure. 

From Golubovskaya V.M. and Cance W.G., International Review of Cytology 2007 

 

III-2.3 FAK-protein binding partners 

 

FAK phosphorylation at Tyr397 site promotes Src binding, and thereafter their 

conformational activation, which finally leads to a dual–activated FAK-Src signalling 

complex. This complex is involved in phosphorylation of other proteins including two 

scaffolding molecules, paxillin and p130 Crk-associated substrate (CAS). Paxillin and 

p130CAS recruit other molecules to adhesions and regulate the organization of the actin 

cytoskeleton favouring the cell spreading and migration [245], [253]. Likewise, this 

cytoskeletal changes leads to subsequent activation of RAS-MAPK (mitogen-activated 

protein kinase) signalling proteins involved in cell survival [252]. 

Subcellular-localization studies revealed that p130CAS localize in different cellular 

compartments and its phosphorilation status influences cellular adhesion and cell-cycle 

progression [254]. 
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Thus, nonphosphorylated p130CAS localize mainly to the cytosol, whereas the 

phosphorylated p130CAS is found in membranous, nuclear, and insoluble cytoskeletal 

fractions. Recent studies have proved that p130CAS proteins are involved in the loss of cell 

attachment observed in cell-cycle progression, as well as in cell morphological modelling 

[254]. Thus, p130CAS (-/-) fibroblasts are flat, round-shaped, and display specific characters 

of altered actin organization [254]. 

Paxillin is other protein, which shuttles between the cytoplasm and nucleus, fulfilling 

different functions in relation to its localization. Thus, the paxillin nuclear localization is 

regulated by FAK phosphorylation of the LIM domains which stimulate DNA synthesis and 

cell proliferation through suppression of H19 (a tumour-suppressor gene) and promoting Igf2 

(gene insulin-like growth factor 2) transcription [255].  

 

III-3. FAK functionality in cells 

 

III-3.1 Motility 

 

Experiments using FAK (-/-) cells show its implication not only in formation of focal 

adhesions, but also in their turnover that is essential for cell spreading and movement [256]. 

Specifically, the SH2 domain of Src, targeting Src to focal adhesions, and Tyr397 activity, as 

well as PI3K has been shown to be critical for FAK-mediated cell motility [252], [257], 

which can be blocked by the tumour suppressor gene PTEN through FAK dephosphorylation 

[252], [258]. 

 

III-3.2 Invasion and metastasis 

 

FAK has been proved to regulate the invasive activity of both normal and Src-transformed 

fibroblasts through reconstruction of 3D-matrix adhesions [259]. While promoting the 

assembly of Src-CAS-CRK-DOCK180 complex in v-Src-transformed fibroblasts, the FAK 

results in RAC1 and JNK activation and subsequent increase of MMP2 and MMP9 

expression promoting the MMP-mediated matrix degradation [259], [260], [261].  
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III-3.3 Survival 

 

FAK plays a crucial role in survival signalling and has been linked to anoikis (detachment-

induced apoptosis) [252], [262]. There is evidence supporting the antiapoptotic role of FAK 

by way of two mechanisms:  

a) induction of inhibitor-of-apoptosis proteins (IAPs) through AKT and NF-kB survival 

pathways [252], [263];  

b) preventing apoptosis by keeping the caspase-3 inactive [264], or by p53 FAK 

regulation [265]. 

 

III-3.4 Proliferation 

 

FAK could contribute directly on cell proliferation by three ways:  

a) by activation the RAS-ERK-MAPK (mitogen-activated protein kinase) pathway 

through FAK-Src signalling complex [252], [259]. FAK as well as Src are dependent 

on the chaperone HSP90 for their conformational stability and proper functions [266], 

[267], [268]. In addition, HSP90 can induce itself FAK phosphorilation and its 

activation in a RhoA-ROCK-dependent manner, i.e. in response to VEGF stimulation 

[269];  

b) by AKT signalization through PI-3K activation [252], [270]; 

c) and, finally, by blocking paxillin nuclear export and stimulation of DNA synthesis and 

cell proliferation [255].  

 

III-3.5 Angiogenesis 

 

Takahashi et al. showed that VEGF induces FAK phosphorylation, which is accompanied by 

FAK translocation from perinuclear sites to the focal adhesions, and promotes its association 

with adaptor proteins Shc, Grb-2, and c-Src [252], [271]. This association has been shown to 

be important for promoting angiogenesis through FAK-Grb-MAPK signalling pathway [252], 

[272], [273]. 
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III-4. FAK in tumorigenesis  

 

III-4.1 FAK levels affect carcinogenesis 

 

The cellular FAK expression is ubiquitous, Weiner et al., in 1993, proved that low levels of 

FAK mRNA exist in normal tissues, while the primary and metastatic tumours significantly 

overexpressed FAK [252], [274]. FAK expression increases in a stepwise fashion in cell lines 

derived from various stages of the mouse skin carcinogenesis model [259], [275]. Recent 

evidence based on the use of an Inducible Cre-LOX model, which deletes FAK expression 

specifically in epidermal cells and in the hair follicles, has revealed that FAK contributed to 

both tumour formation, and the acquisition of malignancy [264]. 

 

III-4.2 FAK phosphorylation in cancer  

 

FAK phosphorylation at different sites can be an imprint of tumour transformation of tissues 

and could explain some aspects of cancer behaviour [259]. Thus, the phosphorylation of FAK 

at Tyr397 site has been noticed in invasive tumours, but not in normal epithelium for instance 

[259], [276]. Likewise, other studies have shown increases of phospho-FAK-Tyr397 in 

different tumour types, such as carcinomas (cervical [277] and squamous cell carcinoma of 

larynx [278], as well as in haematological cancers [279], [280]. Moreover, FAK-Tyr397 

phosphorylation is followed by the phosphorylation of other catalytic domains, such as 

Tyr576, Tyr577, Tyr407, Tyr861, Tyr925, which allow the full enzymatic activity of FAK or 

recruiting other signalling pathways [259].  

FAK-Tyr925 phosphorylation was reported in colon cancers and was associated with E-

cadherin deregulation during Src-induced epithelial-mesenchymal transition [259], [281]. In 

addition, FAK-Tyr861 phosphorylation is the imprint of VEGF stimulation and could be 

involved in tumour vascularisation [259], [269], and [282]. These differences of FAK 

phosphorylation favour the activation of different signalling pathways downstream (Figure 

27). Phosphorylation at Tyr397 and Tyr925 causes the increased complex formation between 

FAK and its SH2-proteins, such as SRC, SHC, p85 (a phosphatidylinositol 3-kinase 

regulatory subunit), phospholipase Cγ (PLCγ), growth factor receptor bound protein 7 

(GRB7), GRB2, p120RHOGAP, which leads to mediate the signalling pathways involved in 

growth and survival [259]. The Src-specific FAK-Tyr925 phosphorylation is proposed to link 

FAK to the Ras-MAPK pathway, which is associated with adhesion changes responsible for 

epithelial-mesenchymal transition [283]. 
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Figure 27. FAK phoshorylation regulates downstream signalling pathways.  

From McLean G.W., Nature reviews: Cancer 2005 

 

 

III-4.3 Model of the possible contributions of FAK in cancer development 

 

FAK might contribute to cancerogenesis through four pathways: 

 

a) FAK contribution to growth through the RAS–MAPK (mitogen-activated protein 

kinase) pathway [252], [259]; 

b) FAK-mediated induction of the invasive pathway involving signalling to RAC1 and 

JUN N-terminal kinase (JNK) and matrix metalloproteinases (MMPs) [259], [260], 

[261]; 

c) by preventing apoptosis downstream of integrin or growth-factor-receptor signalling, 

via two mechanisms: keeping caspase-3 in inactive form [264], or by p53 FAK 

regulation [265];  

d) by protecting cells from anoikis, probably by FAK ability to sequester receptor-

interacting protein (RIP) from the death-receptor machinery [259] (Figure 28). 
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Figure 28. Model of the possible contributions of FAK in carcinogenesis.  

From McLean G.W., Nature reviews: Cancer 2005 

 

III-4.4 FAK expression in haematological malignancies 

 

Recher et al., in 2004, noticed in 42% of AML cases FAK over-expression in CD34+ selected 

cells, which correlates with an increase of migration from marrow to the circulating 

compartment, confers drug resistance, and negatively influences clinical outcome [279]. 

Moreover, in AML cells, FAK is phosphorylated constitutively on Tyr-397 residue [284]. To 

date, three possible hypothesis would explain this aberrant expression: a) in AML cells, 

8q22–8q24 chromosomal region (containing FAK gene) is amplified in about 20% of cases 

[285]; b) the FAK phosphorylation could be induced by the aberrant expression of integrins 

[286], by chemokine receptor signalling pathways [287], by expression of Ras oncogenes 

[288], or autocrine production of haematopoietic growth factors such as stem cell factor 

[289]; c) and, finally, FAK phosphorylation may be facilitated by diminution of regulatory 

phosphatases activity, such as SHP-2 or PTEN [290], [291]. 

70 



82 
 

In line with this study, Tavernier-Tardy and colleagues confirm FAK over-expression in 

CD34+cells selected from AML patients (with a 65.5% median percentage of positive cells). 

In addition, the prognostic analysis confirms the negative impact of this marker for overall 

patient survival, thus ranking among the phenotypic prognostic markers [292]. 

 

III-5. FAK targeted therapy 

 

Two companies have developed ATP-competitive inhibitors to FAK, such as TAC-544 and 

TAE-226 (Novartis), and PF-228 (Pfizer). TAE-226 inhibits FAK, Pyk2, and the insulin-like 

growth factor I (IGF-I) receptor, blocks cell proliferation in culture, prevents cell invasion 

through Matrigel, and increases apoptosis in xenotropic tumour models. Until now, these 

molecules have proven effective in glioma and ovarian mouse models [265]. 
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Chapter IV- Heat shock proteins 
 

IV-1. Introduction 

 

Heat shock proteins (HSPs) are a group of proteins, which act as molecular chaperones, 

binding other proteins in order to ensure their proper folding in the cytosol, endoplasmic 

reticulum, and mitochondria [293], [294]. They are also involved in intracellular transport of 

client proteins, in repairing or in proteasome degradation of those partially denatured by 

exposure to environmental stresses [294], [295], in controlling regulatory proteins, and in 

refolding of misfolded proteins [294]. 

 

IV-2. Heat shock protein 90 structure and functional features related to the 

conformational structure 

 

HSP90 is one of the most abundant cellular chaperone proteins, formed by three structural 

domains: a highly conserved ATP binding domain near its N-terminus, the middle domain 

which is the major site of client protein binding, and the C-terminal domain which contains 

the dimerization interface and a conserved motif responsible for binding TPR-containing co-

chaperones (Figure 29) [294], [296], [297]. 

HSP90 differs from other chaperones by the fact that its client proteins are tyrosine kinases 

(p185erbB2[Her-2/neu], FAK, Akt), serine/threonine kinases (Cdk-4 and Raf-1), transcription 

factors (steroid hormone receptors, mutated p53, HIF-1α, or transcription factors responsible 

for regulating oncoproteins FLT3, BCR-ABL, EGFR, CRAF, BRAF, MET, VEGFR) [266], 

[267], [268], [294], [296], [297]. 

The HSP90 dimerization is necessary so that HSP90 may be active and exercise its various 

functions. It is mainly present as homodimer form α-α or β-β, but there are also heterodimeric 

forms [298]. 

An interesting observation is the fact that, although HSP90 is abundantly expressed in most 

cells, only tumour cells contain HSP90 complexes in an activated high-affinity conformations 

unlike the normal cells where it is in a latent uncomplexated state [297]. This stronger 

association of client proteins to HSP90 in tumour cells might suggest a protective mechanism 

involved in its saving from proteasome recycling. 

72 



84 
 

 
Figure 29. Structure of HSP90 dimer.  

Adapted from Whitesell L. and Lindquist S.L., Nat Rev Cancer 2005 

 

IV-3. HSP90 in tumorigenesis 

 

The HSP90 is a potential target of anticancer therapy due to its involvement in various 

signalling pathways, cell proliferation, and survival, through regulation of a vast array of 

client proteins described above (Figure 30) [294], [299]. 

In the following, we review some signalling pathways involved in cancer development of 

which HSP90 is part: 

- HSP90 controls the Akt kinase activity, involved in cancer progression by its 

stimulation in cell proliferation and by suppressing apoptosis; 

- HSP90-BCL-ABL complexes conduce to resistance to traditional chemotherapeutic 

agents; 

- HSP90-mutated p53 complexes conduce to disruption of normal transcriptional 

activity of this protein involved in cell cycle arrest and apoptosis; 

- HSP90 controls the ubiquitination and proteasome degradation of HIF-1α (a 

transcription factor that controls the expression of many genes, and thus, of their 

protein products which play a crucial role in tumour growth, angiogenesis, glucose 

transport and glycolysis); 

- HSPs (including HSP90) controls steroid-dependent processes, by their associations in 

complexes, which are required to maintain the receptor in a conformation capable to 

binding hormone; 
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- HSP90 through its implication in the turnover of growth factors and other proteins, 

contributes to resistance to anti-growth signals, to promotion of angiogenesis, tissue 

invasion and metastasis [297]. 

 

 
 

Figure 30. Model of the possible contributions of HSP90 in carcinogenesis.  

From Campos L. Personal Communication AERES 2010 

 

In AML CD34+ cells, the levels of HSP90 correlated with the percentages of CD34, p170, and 

bcl-2 positive cells, and its over-expression represents an imprint of poor-prognosis and of 

resistance to chemotherapy. Elevated levels of HSP90 were also found in samples exhibiting 

an autonomous growth in liquid culture or which form spontaneous colonies. A concomitant 

activation of phosphatidylinositol 3-kinase (PI3K) / Akt pathways was observed in these cases 

[300]. 

Likewise, in MDS cases with poor prognosis, Duval et al. reported the over-expression of 

HSP27, HSP60, HSP70, HSP90, and HSP110 mainly in CD34+ cells. 

Indeed, the expression of all HSPs, except HSP70, correlates with FAB subtype, IPSS score, 

Bcl-2 related proteins, CD34, P glycoprotein (Pgp) expression, and with bone marrow blast 
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percentage. All this evidence denotes that their expression could be employed to pursue the 

disease progression [301]. 

Significantly higher levels of HSP90 (mean percentage of positive cells (38.3%), FAK 

(33.8%), phosphorylated FAK (31.4%), accompanied by phosphorylated Akt (26.7%) were 

traced in mononuclear cells (MNCs) and CD34+ cells from RAEB patients compared with 

those from RA (7.5%, 4.9%, 3.4% and 5.5%, respectively) or CMML patients (22.1, 19.8, 

17.2, and 15.8%, respectively) (p<10−5) [280]. 

The addition of 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG [5mM]), for 24 hours 

in liquid culture of BM MNCs selected from MDS patients, conduces to the downregulation 

of HSP90, pFAK and pAKT expression in this cells during the first 12 hours, followed by 

increased apoptosis at 24 hours [280]. 

This would indicate that HSP90 over-expression found in refractory anaemia with excess 

blasts (RAEB) is an unfavourable prognostic factor because it indicates resistance to 

apoptosis of both normal cells and the blasts. 

 

IV-4. HSP90 as a drug target 

 

The antiproliferative activity of HSP90 inhibitors (radicicol and geldanamycin) is thought to 

occur due to Src inhibition, ERB-B2 degradation, modulation of oestrogen and progesterone 

receptors, signalling inhibition of AKT, PI3K, or FLT3 pathways, modulation of 

angiogenesis, by preferential degradation of mutant BRAF (a client protein of HSP90 which 

is mutated in most myeloma cases or in colon cancers), or mutant EGFR (such as in lung 

cancer), by abrogation of ZAP-70 activity and by inhibition of P-glycoprotein function [299]. 
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I. Overview to Experimental Part 
 
To date, the myelodysplastic syndromes are regarded as clonal disorders of haematopoiesis. 

Nonetheless, in recent years the role of stroma in etiopathogenesis of these diseases ought to 

be considered. 

Data regarding this topic have been scarce and contradictory so far largely due to the 

complexity of the network of cells and molecules constituting marrow microenvironment. On 

the other hand, the scarcity of the date is due to the huge impact of isolation methods on the 

composition of MSC preparations that cause tremendous differences in the results of different 

groups. The most common isolation methods are based on the ability of MSCs to adhere to 

plastic or on the use of MSCs surface epitopes, such as specific markers or adhesion 

molecules. 

Despite controversies [302], previous work has shown that adherent layers of BM stromal 

cells from patients with myelodysplasia achieved confluency at a significantly slower rate 

than those of normal donors [168], [190], [303]. Boudard et al. also showed that the stromal 

layer defects in MDS are associated in some cases with caspase-3 activation and increased 

angiogenesis [190]. Moreover, there is evidence that these abnormalities affect the 

functionality of haematopoietic compartment. Thus, in 2001, Tauro et al. showed that the 

stromal defects in MDS are of heterogeneous origin: altered matrix molecules and changes in 

superoxide cellular levels, which may contribute to abnormal survival and development of 

haematopoietic cells [304]. Thereafter, Tauro’s team showed that this abnormal function of 

stromal cells in patients with MDS may contribute to increased apoptosis of haematopoietic 

cells within the marrow microenvironment and this effect appears to be due to the close HSC-

to-stromal cells contacts, rather than the release of soluble factors [304]. The haematopoietic 

deficiencies have been also related to the abnormal expression of soluble factors, such as IL-

1β [190], [303], TNFα, and VEGF [190]. Long-term bone marrow cultures on 

myelodysplastic stroma revealed two broad patterns of haematopoietic progenitor cells (HPC) 

growth: a first group of cases included the patients whose cultures showed an abnormally low 

production of HPCs rapidly declining, i.e. within four weeks, to levels outside the normal 

range. The second group is the one where HPCs proliferation maintained within the normal 

range for at least seven weeks, albeit at the lower range limit [302]. In Coutinho et al. study, 

there was a predominance of RA and RSA cases, over other MDS (FAB classified) subtypes, 

of which the HPC cultures present comparatively normal growth [302]. 
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Regarding the surface antigenic profile of MDS stromal cells vs. normal controls, there are 

not many references, although most of these antigens are adhesion molecules, having an 

important role in mediating MSCs-HPCs contacts. 

Thus, Lopez-Villar et al. noticed a diminution of endoglin (CD105) and integrin β4 chain 

(CD104) expression on MDS-MSCs [164]. Moreover, the same study indicates that the 

microenvironmental changes are accompanied by genomic aberrations of MSCs selected from 

MDS patients [168], [305]. 

Likewise, the BM microenvironment place ought to be considered as a contributor to drug 

resistance.  

In this respect, the MDS-derived AML is known to be challenging from the therapeutic 

viewpoint due to the selection of tumour cell clones that express a multi-resistance phenotype 

and poor response to chemotherapy. The tumour microenvironment might influence drug 

response and the emergence of drug resistance in both haematological malignancies and solid 

tumours that metastasize to the bone marrow [224], [306]. Identification of 

microenvironmental targets, which enable the development of drugs that can be used in 

association with traditional agents to diminish the environment-mediated drug resistance, may 

be the response in these cases [224]. 

The present work aims to clarify some aspects related to adhesion deficiencies of MSCs in 

MDS settings, as well as their impact on its proliferation rate and on haematopoietic 

compartment. 
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II. Materials and Methods 
 
II-1. Patients and healthy donors 
 

Signed institutional review board–approved written informed consent was obtained from all 

patients and control subjects.  

BM aspiates from twelve normal, thirty-five MDS, and three AML-MDS marrow samples 

were included in the study group. 

According to 2008 World Health Organization (WHO) classification, the MDS patient’s 

assignment to different groups was: Refractory cytopenia with unilineage dysplasia [RCUD] 

in thirteen cases, Refractory cytopenia with multilineage dysplasia [RCMD] in nine cases, 

Refractory anaemia with excess blasts-1 [RAEB-1] in nine cases, and Refractory anaemia 

with excess blasts-2 [RAEB-2] in four cases. 

Nine of MDS patients with a mean age of 76 years (range, 56-85) and 4 control subjects with 

a mean age of 59 years (range, 39-69 years) were selected for focal adhesion protein’s 

characterization.  

Samples were obtained in the absence of any treatment.  

Patient diagnosis was performed by cytological evaluation of BM smears after May-

Grünwald-Giemsa staining and cytogenetic analysis.  

Patients’ clinical and biological characteristics are describes in Table 10.  
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II-2. Cell Cultures 
 

II-2.1. Culture-Expanded Mesenchymal Cells 
 

1) Heparinised BM specimens are ficollated with LymphoprepTM (AXIS-SHIELD PoC 

AS, Oslo, Norway) by centrifugation at 1500r/min, 30 min, 20oC, acceleration-

deceleration 2; 

2) Cells were washed 2 times: first time with RPMI 1640 medium (Eurobio, Les Ulis, 

France) and second time in Phosphate Buffered Saline (PBS) (Sigma-Aldrich) by 

centrifugation at 1500r/min, 10 min; 

3) Number of cells were counted in Türk camera; 

4) 2 - 2.5 millions of cells were added by T25 culture flask (25 cm2) in 10 ml 

MesenCult® Complete Medium (StemCell Technologies, Vancouver, BC, Canada); 

5) Cells were incubated for 3 days at 37oC in an atmosphere of 95% air and 5% CO2; 

After 1-2 days of cultures, cells which did not adhere or which are detached progressively 

are removed by changing medium: ½ new medium and ½ supernatant from 1st culture 

(BM stromal cells are isolated from haematopoietic cells due to their capacity to adhere to 

plastic surfaces); 

6) Thereafter, the medium was changed twice weekly and replaced with half-new 

medium and half supernatant removed by culture until confluency is reached (80% 

confluency was obtained in 30-35 days). 

7) After 80% confluency is reached, cells are harvested. Culture medium was removed 

and cells were washed once with RPMI 1640 without FCS. MesenCult® Dissociation 

Kit (StemCell Technologies) (2-3ml / 25cm2 flask, warmed in advance) was used to 

detached cells from culture flasks: cells are incubate in MesenCult®-ACF Enzymatic 

Dissociation Solution (StemCell Technologies, Catalog #05427) at 37oC until they 

were detached (2-3 minutes usually; under microscopic control). The flasks were 

gently tapped to detaching the remaining cells. 

8) 3 mL MesenCult®-ACF Enzyme Inhibition Solution (StemCell Technologies) was 

added in each flask to inhibit reaction. Cells were collected into a 25 mL conical tube 

and wash with 5 ml MesenCult Complete Medium (StemCell Technologies) 

supplemented with 20% Fetal calf serum (FCS, GIBCO® Invitrogen). 

9) The viability and number of cells were quantified using trypan blue exclusion test. 
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II-2.2. Lab-Tek Cultures  
 
After sorting, cells were collected in MesenCult®/ FCS (1:1) medium. Cells (1x103 per well) 

were plated on Lab-Tek®II Chamber Slides (Nalge Nunc International Corp.) in 0.5 ml 

MesenCult® medium and allowed to reach 70-80% confluence over 2 weeks. 

 

II-2.3.  Human Haematopoietic Colony-Forming Cell Assays 
 
The detection and counting of erythroid burst-forming units (BFU-E) and colony-forming 

units-granulocyte-macrophage (CFU-GM) was performed in MethoCult® H4434 

methylcellulose-based medium (StemCell Technologies). For this purpose, mononuclear cells 

containing the haematopoietic progenitors were separated from BM aspirates using density 

gradient centrifugation (1.077 g/cm3) on Lymphoprep™ (FreseniusKabi). After centrifugation, 

1.25 x 104 BM mononuclear cells were resuspended in 1.2 ml MethoCult® (StemCell 

Technologies) and cultured at 37 °C and 5% CO2 in 35-mm culture dishes (StemCell 

Technologies) for 14 days. Each sample was processed in duplicate. The colonies were then 

counted and classified based on morphological features by light microscopy. 

 

II-3. Morphologic and morphometric analysis 
 

II-3.1. Stroma Layers Stain 
 
1. The medium was removed from cultures. 

2. The adherent colonies which remain attached to the plate were washed twice using PBS. 

3. 5 mL of Methanol (Merck Chemicals Catalog # 106035, Frankfurt, Darmstadt, Germany) 

were added by flask for 5 minutes at room temperature (methanol fixes the cells to the tissue 

culture dishes or flasks). 

4. The methanol is discarded and the culture flasks are dried in air, at room temperature. 

5. 5 mL of Giemsa Staining Solution (EMD Chemicals Catalog #R03055, USA) are added in 

each culture flask and leave for 5 minutes. 

6. Finally, the Giemsa Staining Solution is removed and the culture flasks are rinsed with 

distilled water to remove non-bound stain.  

7. The tissue culture flasks are allowed to dry at room temperature. 
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II-3.2. Evaluation of stroma layer composition 

 
The stroma layer composition at 80% confluency was evaluated under an inverted microscope 

[Inverted (TissueFAXSi®) System, TissueGnostics GmbH (Vienna, Austria)] with a 

magnification x 40. 

 
II-3.3. Morphometrical evaluation of stromal cells from primary cultures 

 
Images were acquired in TIFF format using a PixelLINK PL-A622C/622000227 camera 

[Aegis Electronic Grup, Inc.], with an x 20 air objective. The field of view's (FOV) with 

dimensions of 650 x 489 µm, at a resolution of 1600x1200 pixels, were acquired from each 

flask. These images were then imported into MapInfoProfessional® 6.5 (Pitney Bowes 

Business Insight [formerly MapInfo Corp], USA), in order to perform measurements. Cells 

and nuclei were measured and values were translated from pixels in µm according to ratio: x 

[1 pixel / 1 µm in MapInfo] = 0.406 µm microscopically (x value). The calibration of 

measurements and the equivalence ratio has been established using the square (1 mm) of 

Burker-Türk camera. 

 

II-4. Flow cytometry 

II-4.1. Cell Preparation 

The MSCs amplified during 30 to 35 days were harvested using the MesenCult® Dissociation 

Kit (StemCell Technologies), collected in glass tubes containing 5 ml MesenCult® (StemCell 

Technologies) with 20% FCS and filtered through a 70 μm cell strainer.  

The cell number was determined using trypan blue solution (0.4% PBS).  

 II-4.2. Antibody staining 

Cells processed above were pelleted and resuspended in 50 µl washing buffer and stained, on 

ice for 30 minutes.  

Sources and isotypes of antibodies used are detailed in Table 11.  

Cell viability was evaluated by staining with 1 µl of Propidium iodide (PI, Sigma, Poole, 

UK), 1 mg/ml, prior to FACS acquisition.  

Data were acquired using a FACS Canto I cytometer and analyzed using DIVA software 

(Becton Dickinson).  

 
 
 

82 



95 
 

Table 11 Antibody clones, isotype and source 
 
Name Source Clone Conjugate Isotype 
MSCs specific markers 
anti-STRO-1 Santa Cruz 

Biotechnology 
sc-
47733 

FITC Mouse 
IgM 

anti-CD73 BD PharmingenTM AD2 PE Mouse 
IgG1 

Endothelium-related markers 
anti-CD31 BD PharmingenTM M89D3 Alexa Fluor® 488 Mouse 

IgG2a 
anti-CD106 BD PharmingenTM 51-10C9 FITC Mouse 

IgG1 
Hematopoietic-related markers 
anti-CD45 BD PharmingenTM 2D1 PerCP Mouse 

IgG1 
anti-CD16 BD PharmingenTM B73.1 PE-CyTM7 Mouse 

IgG1 
Adhesion markers 
anti-CD29 BD PharmingenTM MAR4 PE-CyTM5 Mouse 

IgG1 
anti-CD54 BD PharmingenTM HA58 APC Mouse 

IgG1 
anti-CD44 BD PharmingenTM 515 PE Mouse 

IgG1 
anti-CD49e BD PharmingenTM IIA1 PE Mouse 

IgG1 
anti-CD144 BD PharmingenTM 55-7H1 PE Mouse 

IgG1 
 

 

II-5. Cell Selection 

 II-5.1. EasySep Immunomagnetic Selection Procedure 

We performed immunomagnetic positive sorting using STRO-1 and CD73 marker expression 

in order to discrimate potential distinct cell subpopulations.  

The fraction of STRO-1+ cells was immunodepleted for CD73 by exploiting the differences in 

epitope density and the avidity of STRO-1 mAb, the STRO-1+CD73- cells bearing a higher 

number of epitope sites (Figure 31). 
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Figure 31. Experimental strategy of STRO-1 / CD73 Immunomagnetic Selection 
 

Thus, MSCs, detached as previously described, were stained with mouse Anti-Human CD32 

(Fcγ RII) blocker, then with FITC-conjugated mouse Anti-Human STRO-1, 3.0 μg/ml for 107 

cells for 1 hour on ice. Labelled cells were processed by adding EasySep® FITC Selection 

Cocktail 100 μg/ml of cells and EasySep® Magnetic Nanoparticles and by using the EasySep® 

magnet (StemCell Technologies). Following the isolation of the STRO-1 positive fraction, the 

remaining cells were stained with PE-conjugated mouse Anti-Human CD73 mAb (BD 

Pharmingen), 3.0 μg/ml for 107 cells, kept for 1 hour on ice, then passed through all the 

remaining steps (previously described) using EasySep® PE Selection Kit to select the CD73-

positive population (StemCell Technologies). All steps were monitored for purity and 

viability using flow cytometry.  

The initial viabilities of the harvested cell fractions, as evaluated by trypan blue exclusion, 

were 79.6 ± 10.6% for normal stromal cells, 77.6 ± 7.26% for RC stromal cells, and 67.4 ± 

10.2% for RAEB stromal cells.  

After selection, the STRO-1+ and CD73+ fractions were enriched to >95% (96.34±2.26 for 

STRO-1+ and 97.74±0.95 for CD73+ cells); percentages were evaluated by cytometry from 

the singlets gate after excluding dead PI+ cells.  

Four rounds of selection were performed for each population sorted. 
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II-6. Immunofluorescence 

 II-6.1. Cytospin Preparation 
 
Cells remaining after flow-cytometry acquisition were spin down and resuspend at 5000 

cells/µl in 4% PBS buffered paraformaldehyde solution containing 10 µg/ml DAPI.  

10 µl of this suspension are placed on a glass slide and covered with a coverslip. 

Double-stained preparations were visualized under a DM Microscope (Leica, Heidelberg, 

Germany) at 40 x, and respectively 100 x magnification, using a double band pass-

interference filter (Omega Optical Inc, Brattleboro, VT). 

II-6.2. Culture Slides Preparation 

The cells were washed thoroughly to remove residual media and were fixed in 

paraformaldehyde 4% w/v (Merck Chemicals Catalog, Frankfurt, Darmstadt, Germany) for 

10 minutes at room temperature (RT).  

II-6.3. Antibody Staining of Slides 

Non-specific background staining was blocked with antibody (Ab) buffer containing  PBS 

(1x) / FCS (1% w/v) / BSA (bovine serum albumin, Sigma-Aldrich, St Louis, MO, USA, 

0.1% w/v) for 1 h. Cells were then permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) in 

PBS for 20 min before Ab application. Primary antibodies were diluted in Ab buffer before 

application as follows: FITC-conjugated mouse anti-human STRO-1 mAb (final dilution 

1:50), and PE-conjugated mouse anti-human CD73 mAb (1:25), FITC-conjugated mouse anti-

human Paxillin monoclonal Ab (mAb) (final dilution 1:50, clone 349/Paxillin, BD 

Bioscience), PE-conjugated mouse anti-human CD73 mAb (1:25, clone AD2, BD 

Pharmingen™), unconjugated rabbit anti-phospho-specific FAK [pY397] polyclonal Ab, 

(1:100, Invitrogen Corporation); mouse anti-human p130CAS mAb (1:40, clone 35B.1A4, 

Santa Cruz Biotechnology, Inc.), PE-conjugated mouse anti-human HSP90α/β mAb (1:40, 

clone F-8, Santa Cruz Biotechnology, Inc.), FITC-conjugated mouse anti-human IgG2a,k 

mAb (1:50, clone G155-178, BD Pharmingen™), PE-conjugated mouse anti-human IgG1,k 

mAb (1:40, clone MOPC-21, BD Pharmingen™), rabbit anti-human IgG polyclonal Ab 

(1:100, DakoCytomation). Secondary antibodies (Invitrogen Corporation) were used at 

following dilutions: FITC-conjugated goat anti-mouse IgG (H+L) 1:50, PE-conjugated goat 

anti-mouse IgG (H+L) 1:25, Alexa Fluor 633-conjugated goat anti-rabbit IgG (H+L) 1:100 in 

Ab buffer. Incubation was performed overnight for primary antibodies and for 2 h for 

secondary antibodies at 4°C, in a moist chamber. Fixation was stopped by washing the cells 3 

times with in PBS, pH 7.2.  
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Before acquisition, nuclear staining with 4' 6-Diamidino-2-phenylindole (DAPI, 1 μg/ml) was 

performed for 30 minutes at 4 °C.  

Slides were mounted in Faramount Aqueous Mounting Medium (Dako Denmark).  

 II-6.4. Relative Fluorescence Measurements  
 
Triple-stained preparations were visualised under an Axio Observer Z1 microscope (Carl 

Zeiss, Inc.) at 100X magnification. Signals were recorded simultaneously by three 

photomultiplier tubes (PMT 1–3). The images (TIFF format) were captured with a PixeLINK 

PL-A622C/622000227 camera (Aegis Electronic Group, Inc.) by taking multiple exposures 

through bandpass optical filter sets appropriate for FITC, Texas Red, Alexa Fluor 633 and 

DAPI using a 100X Plan Apochromat objective. 

Analysis and quantification of immunofluorescence staining was performed using ImageJ 

software (http://rsb.info.nih.gov/ij/).  

Five representative fields were analysed per filter and per slide.  

Data recorded for an average of 25 cells per group were exported to Excel (Microsoft) for 

further analysis.   

 II-6.5. Protein Clustering Analysis 

The Origin 7.0 (Microcal Software) charts were used to display the percentage of co-

localisation between the analysed proteins in each of 10 spindle-shaped cells and 10 large 

cells per group. The scatter plots and the colour co-localisation maps were generated by 

ImageJ software.  

The degree of co-localisation was evaluated using the various co-localisation coefficients, and 

proteins belonging to the same complex were identified using the Intensity Correlation 

Quotient (ICQ) and intensity correlation plots (ICA) as previously described [307], [308], 

[309].  

Depending on the value of the coefficient ICQ it can be distinguished 3 patterns of staining: 

random staining ICQ~0 (-0,1<ICQ<0,1), segregated staining 0>ICQ≥-0.5, the segregated 

pattern is assigned to those proteins with the asynchrony or complementary staining (the 

proteins belonging to different complexes or structures), and dependent staining 

0<ICQ≤+0.5. The dependent staining is assigned to the proteins how are the parts of the same 

complex and their staining intensities should vary in synchrony [307], [309]. 

  
II-6.6. Cell cycle and Apoptosis evaluation using DAPI Nuclear Counterstain 

 

Total amount of DNA in cells was obtained by multiplying the number of intensity pixels 

corresponding to the signal light output of DAPI staining with nuclei area. A histogram 
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stretching was applied then (all pixel values from the ROIs were divided by a constant value) 

in order to obtain a compact set of values from highly dispersed initial values.  

 Apoptosis was evaluated by assessing the number of cells containing nuclear changes 

indicative for this process (cells with irregular edges around the nucleus, chromatin 

condensation and nuclear fragmentation). 

 

II-6.7. Confocal microscopy 
 
Confocal microscopy was carried out in MSCs cultured on Lab-Tek slides processed as 

described previously for common fluorescence. Images were acquired using confocal spectral 

TCS-SP2 microscope (Leica, Heidelberg, Germany). 

 

II-7. Functional Assays 

 

To assess the growth characteristics of the two major MSCs subpopulations, STRO-1+CD73- 

and STRO-1-CD73+, proliferation and clonogenicity tests were performed.  

 II-7.1. Proliferation Tests 

To do so, 1x103 viable MSCs (quantified using the trypan blue exclusion test) were plated in 

25 cm2 flasks, and the number of cells was counted on days 1, 7, and 14. We then calculated 

the proliferation index (the difference between the number of harvested cells and the initial 

plated number) and the doubling time (the duration of one mitosis) estimated by the ratio of 

the time necessary for 1x103 MSCs to reach 80% confluency and the number of population 

doublings. The number of population doublings was obtained using the following formula: n 

= log (x/y) / log2, where “x” is the number of initial seeded MSCs and “y” is the cell harvest 

number [310], [311]. 

 II-7.2. Clonogenicity Tests 

The clonogenic potential of MSCs was established with plating efficiency (PE) or CFU 

efficiency assays. After 14 days of culture, the medium was removed and the colonies were 

fixed in methanol and treated with Giemsa stain. The colony numbers were then scored. A 

colony was defined as consisting of at least 50 cells. PE was the ratio of the number of 

colonies formed to the number of cells seeded x 100% [312].  

 
 
II-8. Data standardization and statistical interpretation 
 
In the present thesis, we used two types of statistical analysis: descriptive and comparative. 

Statistical analysis consisted in determining the arithmetic mean, standard deviation (SD), 
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standard error (ES), and variation coefficients (%). Student’s t-test (p) was employed to 

compare the parameters among the groups and was calculated using SPSS software (SPSS 

13.0 Chicago, http://www.spss.com) and Microsoft Excel 2003.  

Differences between the groups were considered to be significant when p≤0.05. 
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III.1. Intrinsic growth deficiencies of mesenchymal stromal cells in 

myelodysplastic syndromes 

 
-Stem Cells and Development- 

 
-In press- 

 
 

Stromal microenvironment is a target of the oncogenesis process as instrument in the control 

of hypoxia, acidosis and interstitial homeostasis balance, indisputable links of tumor 

progression. The first article exploited the fundamental information regarding the intercellular 

dialogue (MSC-MSC and HPC-MSC) in order to define their physiological role in bone 

marrow microenvironment equilibrium. His reactivity was observed during progression in the 

MDS risk groups, each of these entities surprising us by behaviors harmonized to 

haematopoietic partner requirements. 

Briefly the experimental schedule for this article was: 

1) MSCs isolated from plastic-adherent BM MNCs were amplified until 30-35 days in 

cultures. 

2) Morphometric-morphologic analyses were conducted on stromal cells isolated from MDS 

vs. normal primary cultures. 

3) Thereafter, stromal cells were detached, and two steps of positive selection were performed 

in order to discriminate the STRO-1+ from CD73+ MSCs.  

4) Purity and viability were monitored using flow cytometry and immunofluorescence assays. 

5) Cell yield and growth characteristics were evaluated for each fraction and for MSCs 

selected from MDS compared to normal controls. 

6) Statistic analysis were employed to determine correlations between MSC phenotypic 

abnormalities with MSC growth, and, with haematopoietic compartment dysfunctions (Figure 

32). 
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Figure 32. Experimental strategy of MSCs selection and functional assays 
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III.1-1. Relevance of morphological and morphometric evaluation of BM 
stromal cells from MDS settings vs. normal counterpart 
 

Three culture systems were used to isolate and examine in vitro characteristics of stromal 

cells in MDS settings compared to normal controls.  

In principle, the RPMI-1640 supplemented with 10% FCS, as well as MesenCult® media 

allowed the development of a fibroblastic stromal layer without haematopoietic cells [154], 

[313]. MyeloCult® HT5100 medium allows the development of a stromal layer with 

haematopoietic progenitors [314].  

Cell confluency was scored from 0 to 3, corresponding to a stromal layer covering from < 

25% (score 0), 25-50% (score 1), 50-70% (score 2), and > 75% of the area of the culture flask 

(score 3), respectively.  

After four weeks, confluency of adherent layers was observed in all normal cultures, in all 

systems.  

In Refractory cytopenia, 50% of cases (11/22) show deficiencies to reach confluency, 

particularly in RPMI-1640 medium, but also in MyeloCult® HT5100:  

- confluency 0 in two cases,  

- confluency 1 in six cases, and  

- confluency 2 in three cases (Figure 33).  

 
Figure 33. Representative exemples for stromal cells cultures at week 4 in RPMI-1640 

A) Normal cells (score confluency 3); B) 50% confluency in RA case (confluency 2); C) no 
confluence in a RCMD case (score 0) (Magnification 20 x) 
 

Likewise, in AML cases, low confluency (score 0 and 1) was noticed in two cases (2/3), and 

in RAEB group these abnormalities were more rare and not as important (in 2/13 cases, 

confluency score 2) 
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Of note is the fact that in MDS layers exhibited spontaneous lysis in 35 (12-48) days of 

cultures, in RPMI-1640 especially. 

In RAEB MSC cultures are noticed also:  

- the colonies architecture disorganization, with clusters of aberrant proliferation, 

and,  

- giant “amorphous” deposits in cultures. 

Although, prior us, some authors has described these deposits in other haematological 

malignancies, or in BM metastasis, as fine meshwork of reticular fibres or reticulin / type III 

collagen, elastin [315], or tenascin [316], their relevance remains obscure. However, the 

presence of tenascin is regarded as an imprint of pathological states of the bone marrow [316]. 

 
The morphometrical evaluation of MSC primary cultures has revealed the different 

distribution of the three morphotypes of MSC (small, rounded-shaped; thin spindle-shaped; 

and large, flat cells) in MDS layers compared with normal settings; with the preponderance of 

the small-rounded morphotype, on the detriment of large, flat cells, which is considered the 

onset of terminal differentiation. 

 
III.1-2. BM stromal cells phenotype (MDS vs. Normal controls)  
 
The phenotypic evaluation of MSC layer composition highlights increased percentages of 

STRO-1+ cells in 20 to 30 days of culture that co-expressed CD106 and CD31 in the RAEB 

and RC groups. Moreover, this issue persisted in the MDS groups until 60 days, when cell 

autolysis occurred. 

Likewise, under the MDS condition, the CD73+ subsets of MSCs, presents a significant 

reduction of all studied adhesion markers: VLA5 or α5β1 integrin (CD49e, CD29), ICAM-1 

(intercellular adhesion molecule 1) or CD54, and of extracellular matrix protein (CD44), but 

the statistical significance was reach only for the CD44, and CD49e.  

 
III.1-3. Growth particularities of BM MSCs selected from MDS vs. normal 
 
The MSC production in STRO-1+ and CD73+ cell cultures from MDS marrows was deficient. 

The average proliferation index for MSCs selected from RC marrows after 2 weeks of culture 

was 17 times lower for STRO-1 fractions and 2.23 times lower for CD73+, compared with the 

average MSC output in normal controls. A 6.5-fold drop in STRO-1+ fractions and a 2.4-fold 

decrease in CD73+ cells were also recorded in the RAEB group. 

In addition, the clonogenic ability of the fractions selected from MDS settings was strongly 

diminished and the differences were more obvious for the STRO-1+ CD73- cells. 

92 



106 
 

Thus, the MSCs selected from the RC group showed a clonogenic capacity that was 3.5 times 

lower for STRO-1+CD73-, and approximately 2 times lower for STRO-1-CD73+ compared 

with normal counterparts. The same decline was noticed for RAEB selected cells compared 

with normal cells (approximately 4 times lower for STRO-1+CD73- fractions and 1.65 times 

lower for STRO-1-CD73+ cells, respectively. 

In conclusion, the relative proliferation of MDS cultures is the result of a division process that 

is continuous, but occurs at a low rate and without the ability to generate the normal 

functional progenitors required to form colonies. 

Moreover, a positive relationship was observed between the reduced intensity of CD44 

expression in STRO-1+CD73+ cells in the RC and RAEB groups and the CFU efficiency 

obtained for CD73+ subsets of cells. In addition, the increased level of CD49e expression 

noticed in STRO-1+CD73+ and STRO-1-CD73+ cells was inversely correlated with the DTs 

calculated for STRO-1+ and CD73+ fractions sorted from the same RAEB cases samples.  

This evidence supports the theory that MSC expansion is an adhesion-dependent process and 

that CD44 and CD49e molecules are involved in this process.  

Likewise, a linear correlation between decreasing CD49e MFIR in MSCs (approximately 2-

fold) and a 2-fold decline in the number of CFU-GM and BFU-E colonies was also noticed in 

the haematopoietic compartment of RAEB group.  

These observations confirm the haematopoietic growth-supportive role of the MSC layers and 

show that this role is α5-integrin-dependent, suggesting that MSCs derived from MDS are 

functionally incompetent in supporting normal HPC proliferation and differentiation.  

Statistical analysis showed that the myeloid expansion is the most affected aspect. 
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III.2. Focal adhesion protein abnormalities in myelodysplastic 
mesenchymal stromal cells 

 
-Experimental Cell Research- 

 
   -Vol. 317 (2011) 2616 – 2629- 
 

 
Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular 

microenvironment is essential to maintain ‘stemness’.  

In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in 

a wide variety of human tumours. Thus, was noticed the role of FAK Tyr397 phosphorylation 

in promoting cell survival, cell proliferation and cell invasion by FAK–Src signalling 

pathway, and the recruitment of FAK and paxillin to β1 integrin to promote cancer cell 

migration via mitogen activated protein kinase activation [265], [317], [318]. 

 In this study, we assessed the expression levels and cellular localisation of focal 

adhesion (FA) proteins in normal and dysplastic stroma, in order to determine whether their 

expression correlated with the progression to malignancy.   

In this order, CD73-positive mesenchymal stromal cells (MSCs) were immunostained for 

paxillin, pFAK [Y397], HSP90α/β and p130CAS, and analysed for reactivity, intensity and 

cellular localization. Immunofluorescence microscopy allowed us to identify qualitative and 

quantitative differences, and subcellular localisation analysis revealed that in pathological 

MSCs, paxillin, pFAK [Y397], and HSP90α/β formed nuclear molecular complexes.  

 Through these experiments, we found a significant relationship between the levels of 

expression of FA proteins, their nuclear co-localisation, and the proliferative potential of 

MSCs.  

 In addition, the increased levels of pFAK [Y397] in MSCs isolated from MDS patients 

were inversely correlated with the clonogenicity of haematopoietic progenitor cells (HPCs).  

 

Together, our findings suggest that assessment of the subcellular FA protein co-localisation in 

MSCs selected from MDS patients in combination with HPC clonality studies are potential 

tools that could be employed to identify MDS patients with disease progression and to guide 

therapy. 
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Figure 34. Experimental strategy of focal adhesion proteins evaluation on CD73+ MSCs 

Lab-Tek cultures 
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III.2-1. Focal adhesion proteins evaluation in MSCs selected from MDS 
settings vs. normal bone marrows 
 

Multicolour fluorescent microscopy has proven to be a successful technique for FA protein 

analysis. It allowed us to assess the intracellular localization of proteins, and to understand the 

spatial relationship between these proteins via colocalization analysis. 

A first remark was the bright nuclear expression of pFAK [Y397] in pathological MSCs, but 

not in focal adhesion contacts as we had expected. Over 80% of RAEB MSCs showed nuclear 

expression of pFAK [Y397]. 

For HSP90αβ expression, an increased level, directly correlated with pFAK [Y397] up-

regulation was found in MSCs cells from RAEB group (2.62-fold in S-MSCs and 3.82-fold in 

L-MSCs). HSP90αβ immunostaining of CD73+ MSCs cultures show that this chaperone is 

abundantly expressed in the cytoplasm, but a nuclear immunoreactivity was also noticed. 

About 30% of normal MSCs also showed an HSP90αβ nuclear expression. 

Difference from normal for RAEB MSCs consists in an overall greater expression of 

cytoplasmic staining and increased percentages of nuclear HSP90αβ positive cells (around 

80%).  

Similar percentages of paxillin positive cells were counted for all three groups.  

Cellular distribution of this protein display two patterns of reactivity, diffuse cytosolic and 

nuclear, with remarkable differences between groups. Thus, 97-98% of RAEB MSCs shows a 

nuclear pattern of expression for paxillin and a paranuclear staining was revealed by large 

cells as well. In normal cells, the same cytoplasmic and nuclear disposition was distinguished, 

but 70% from paxillin positive cells have nuclear expression. In RC group, only 14-15% of 

paxillin positive cells have also a nuclear reactivity. 

Despite the low intensities and diffuse cytoplasmic staining for p130CAS observed in all 

groups, a slight increase of the number of p130CAS positives cells was found in RC and 

RAEB groups as compared to the normal group (92%, and 96%, respectively, vs. 73%). 

The co-localisation analysis of HSP90α/β with paxillin provides compelling evidence that 

staining for paxillin varies in synchrony with that for HSP90αβ, consistent with the formation 

of a complex within restricted, small areas of nuclear regions of 80-90% from RAEB S-MSCs 

and in 20-30% of normal S cells. Likewise, pFAK [Y397] strongly colocalize at paxillin and 

HSP90αβ in RAEB cells, while their normal counterparts display a weaker co-localization of 

pFAK [Y397] to paxillin in approximatively 40 % of studied cells, and no co-localization 

pFAK [Y397]-HSP90αβ. For RC S-MSCs we noticed very low percents of co-localization 
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between these three proteins (from 0.08% to 0.18%) associated to an exclusive staining 

pattern. 

Moreover, unlike normal L-MSCs, the large cells from RAEB group had preserved an 

increased level of expression for pFAK [Y397] and a high co-localization of this protein to 

paxillin and HSP90αβ. The coeficients calculated for their co-localization in RAEB L-MSCs 

support the fact that the staining intensities vary in synchrony; consequently, these proteins 

are parts of the same complex (an average of 8% of co-localization was obtained for paxillin-

HSP90αβ, 14% for paxillin-pFAK [Y397], and 9% for pFAK [Y397]-HSP90αβ pairs. 

The significance of the particular expression of these proteins, as well as their nuclear 

colocalisation are the subjects of the following chapters. 

 
III.2-2. Role of Paxillin-pFAK [Y397]-HSP90 signalling pathway in MSCs 
proliferation 
 

Recent evidences have shown that FA proteins, mainly FAK are involved in cell growth 

signalling pathways [265]. 

Herein, we bring compelling evidences that strong paxillin nuclear immunoreactivity, and its 

highly co-localization to pFAK [Y397] and HSP90αβ in RAEB MSCs, with formation of 

functional active complexes with nuclear disposition, was correlated with a proliferative 

advantage in S-MSCs (p<0.01, r=0.79, Spearman test) and less significant in L-MSCs 

(p<0.05, r=0.64) (Figure 35). 

 
 

Figure 35. Correlations between paxillin expression and the proliferation rates 
of CD73+ selected MSCs 
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III.2-3. The impact of increased expression of pFAK [Y397] in MSC on 
MSC-HPC relationship 

 
 

We have also noticed that increased levels of expression for pFAK [Y397] in MSCs, correlated 

with a decreased proliferation capacity of HPCs in same patients, i.e., 4-fold lower number of 

BFU-E and CFU-GM as compared to the normal counterpart, were detected in RAEB group 

and 1.5-fold in RC group, respectively. This dysfunction detected in the haematopoietic 

compartment was related rather to the level of pFAK [Y397] expression in MSCs compartment 

than to the percentage of positive cells for this marker (Figure 36).  

This was revealed by the fact that comparable percentages of positive cells in RAEB and RC 

MSCs cultures (97% vs. 93%) did not have the same impact on the clonogenic ability of 

haematopoietic precursors. This lies in the differences of pFAK [Y397] intensity of expression 

between the two groups, which reversely correlated to colony-forming cells (CFC) capacities 

in haematopoietic compartment (p<0.001, r=-0.60 for RAEB group, and p=0.001, r=-0.31 for 

RC group, Spearman test). 

 
Figure 36. pFAK [Y379] expression in MSC vs. the clonogenic potential of HPCs selected 

from same cases 
 
Left chart shows the mean number of BFU-E and CFU-GM from each group. The right chart 
shows the percentage of pFAK positive MSCs cells (columns, values should be compared with 
left scale), and the relative intensity of expression for pFAK in L-MSCs cells (dashed line) 
and in S-MSCs (continuous line) in the three studied groups (lines and diamond symbols, 
values should be compared with right scale). 
 
In conclusion, our results allowed us to propose a physiopathological model where a 

hyperexpression of phosphorylated FAK [Y397] in MSCs contribute to its growth dysfunction 

via paxillin-pFAK [Y397]-HSP90 signaling pathway. Moreover, these abnormalities of FA 

proteins train the alteration of the dialogue between MSC and haematopoietic cells, fact that 

support the previously stated hypothesis that MDS is a disease of “bad seeds in bad soil”.  
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III.3. Heat-Shock-Protein (HSP)-90 is overexpressed in high-risk 
myelodysplastic syndromes and associated with higher expression and 

activation of Focal Adhesion Kinase (FAK) 
 
    - Haematologica- 

         -Submitted- 

 
 

This article proposes the assessment of three key proteins involved in cell signalling, FAK, 

HSP90, and Akt, in the haematopoietic component of MDS settings. Surprisingly is the fact 

that the percentages of blasts directly correlate with the HSP90, Akt, FAK, and pFAK 

expression on HPC. Moreover, the patients' survival, as well as the time to transformation into 

overt leukemia was significantly shorter in MDS cases with higher levels of expression for 

these proteins in blasts or HPC. These data raises the possibility of using these tests as 

prognostic tools in MDS. Thereafter we found that 17-AAG (an inhibitor of HSP90) 

diminishes the CD34+ and HPC survival in liquid culture, especially in high-risk MDS cases. 

Short-term exposure to 17-AAG also down regulates pAKT and pFAK levels. Overall, these 

data support the implication of this signalling network in MDS and AML pathogenesis and 

raises the possibility their exploitation as therapeutic target through HSP90 inhibition. 
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ABSTRACT 

 

Myelodysplastic syndromes (MDS) are characterized by a high risk of evolution into acute 

myeloid leukaemia (AML). The pathogenesis of this evolution is still unclear. Some studies 

indicate that aberrant activation of survival signalling pathways is involved. The 90-kDa heat 

shock protein (HSP90) is implicated in the conformational maturation, stabilization and 

degradation of different protein kinases and has therefore a key role in signal transduction.  

Focal Adhesion Kinase (FAK), a non-receptor tyrosine kinase, is involved in the integrin-

mediated signal transduction pathway. The aim of our study was to investigate the role of 

HSP90 in MDS pathogenesis and evolution, and its potential role in protein signalling and 

FAK activation. 

The expression of HSP90, phosphorylated Akt (pAkt), FAK and phosphorylated FAK 

(pFAK) were assessed by multicolour flow cytometry in bone marrow (BM) mononuclear 

cells (MNC) and gated CD34-positive (CD34+) cells from 177 MDS samples at diagnosis. 

The levels of all proteins studied were significantly higher in MNC from patients with 

refractory anaemia with excess of blasts (RAEB) than in MNC from patients with refractory 

anaemia (RA) or chronic myelomonocytic leukemia (CMML). The same difference was 

observed in CD34+ cells. High levels of HSP90, FAK, pFAK and pAKT were associated with 

shorter survival and increased risk of progression to acute leukaemia.  

The effects of inhibition of HSP90 were evaluated in 25 RAEB samples by incubating cells 

with 17-AAG, an inhibitor of HSP90. A downregulation of HSP90, pFAK and pAKT was 

observed in MNC and CD34+ cells at 12 hours, associated with increased apoptosis as 

assessed by activated caspase 3 and annexin V expression. 

Our data suggest the implication of HSP90 in the pathogenesis of MDS with excess of blasts 

and evolution to overt leukaemia, in association with FAK and Akt activation. Moreover this 

signalling network could be a therapeutic target through HSP90 inhibition. 
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INTRODUCTION 

 

The myelodysplastic syndromes (MDS) are a heterogeneous group of diseases with regard to 

initial presentation and evolution (1). Patients with MDS usually present with one or several 

peripheral cytopenias despite a normo- or hypercellular bone marrow (BM). This apparent 

paradox has been linked to an excessive intramedullary apoptosis (2-4) but mechanisms 

underlying this phenomenon are not fully understood yet. We and others have demonstrated 

that apoptosis results from the activation of caspases, particularly caspase 3 (5, 6).  The 

microenvironment is also implicated in the pathogenesis through the secretion of proapoptotic 

cytokines (Fas and Trail) (7, 8). Increased apoptosis is observed in all forms of MDS, but is 

higher in patients with better prognosis and comparatively lower in patients with an excess of 

blasts (5, 6).  

Apoptosis is a tightly regulated phenomenon, and caspase activation is controlled by the bcl-

2-family proteins. Indeed we showed that the apoptotic disorder was associated with an 

imbalance between proteins of the bcl-2 family, with an upregulation of anti-apoptotic 

proteins bcl-2 and bcl-XL in the forms with excess of blasts  (9).  More recently the role of 

Heat Shock Proteins (HSP) in cell protection and apoptosis regulation has been demonstrated. 

HSP are a group of highly conserved proteins, which act as molecular chaperones in order to 

ensure the proper folding of synthesized proteins, or their refolding under denaturating 

conditions (10). They also play a role in protein degradation via the proteasome machinery. A 

member of the HSP family, HSP90 is abundantly expressed in the cytoplasm of most human 

cells. HSP90 exists in two main isoforms: HSP90α, inducible, and HSP90β, constitutive (11). 

It exerts its role by forming a multiprotein complex with high ATPase activity, in cooperation 

with cochaperones, including HSP70 (12). HSP90 clients are implicated in cell cycling, 

receptor function, signal transduction and apoptosis. High levels of HSP90α protein or HSP90 

mRNA have been reported in many types of cancer cells, such as pancreatic carcinomas, 

breast cancer, ovarian cancer, lung and renal cancer, gastric cancer (reviewed in 13).  

Furthermore, HSP90 exists mainly in the activated (complexed) form in cancer cells, whereas 

in non malignant cells only a small part of HSP90 is activated (14). 

More limited data are available regarding the expression of HSP90 in haematological 

malignancies and particularly in acute leukemia and MDS : high expression of HSP90 protein 

and HSP90α RNA has been reported by Yufu et al in leukemia cell lines and a small series of 

acute leukemia patients  (15). We recently reported on the expression of HSP90 in a larger 

series of patients with acute myeloid leukaemia (AML) (16). Higher HSP90 levels, as 

assessed by flow cytometry, were associated with a poor prognosis and with higher 
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expression of activated signal transduction proteins PI3K, AKT and ERK. Other reports show 

that HSP90 is necessary for the maintenance of oncoproteins such as bcr-abl (17), mutated c-

kit (18), and flt3 (19, 20). 

HSP90 activation and functional properties necessitate the binding of ATP to a specific 

pocket. The benzoquinone ansamycins herbimycin A and geldanamycin are potent inhibitors 

of HSP90, binding tightly to the ATP pocket and preventing the formation of an active HSP90 

complex (21). The less toxic geldanamycin-derivative 17-allylamino-demethoxy 

geldanamycin (17-AAG) presents a much higher (up to 100-fold) affinity for HSP90 

complexes than for uncomplexed HSP90, which confers to this drug a highly specific anti-

tumoral activity (22).  17-AAG (tespimycin) and  other HSP90 inhibitors are now considered 

as targeted therapy for cancer (23).  

  In a preliminary study, we have shown that HSP27, 70 and 90 are over-expressed in 

advanced MDS as compared to early MDS and normal BM (24). This suggests their possible 

implication in MDS pathogenesis and evolution. Here we report on the clinical and biological 

significance of HSP90 expression in a series of 177 patients with MDS. We evaluated the 

expression of HSP90 and of relevant client proteins (pAKT, implicated in cell survival and 

autonomous growth, and pFAK, implicated in tissue invasion and metastasis) at diagnosis and 

in some cases after evolution to a higher grade MDS or to overt AML. The use of multicolour 

flow cytometry allowed us to specifically study subsets of cells (ie CD34). We show that 

HSP90 and FAK are overexpressed in high risk cases, and that CD34+ cells are highly 

sensitive to the HSP90 inhibitor 17-AAG. 
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MATERIALS AND METHODS 

 

Patients 

One hundred and seventy-seven  patients with MDS and chronic myelomonocytic leukemias 

(CMML) at diagnosis were included into this study between January 2006 and October 2010. 

All patients gave an informed consent. Diagnosis was carried out according to WHO 

recommendations (25) and confirmed by two separate observers. As we included CMML 

cases, the FAB classification was also used to distinguish sub-groups (26). Cytogenetics was 

available for 152 cases. Detailed clinical and biological characteristics are given in Table 1. 

 

MDS and control cells 

Cells were collected by bone marrow aspiration into heparin-containing vials. Mononuclear 

cells (MNC) were  separated on a Ficoll gradient (Eurobio, Les Ulis, France), washed twice 

with phosphate-buffered saline (PBS), resuspended in RPMI 1640 (Eurobio) and incubated 

for two hours at 37°C on sterile plastic dishes. Non adherent cells were then recovered, 

washed twice in PBS and immediately processed for further studies.  

As controls, normal marrow cells were harvested from 6 healthy bone marrow donors and 

processed identically. 

 

CD34+ cells  

Normal and MDS CD34+ cells were isolated by an immunomagnetic method using the direct 

CD34 Progenitor Cell Isolation Kit (Miltenyi Biotec). More than 90% of the isolated cells 

were CD34-positive (CD34+) after cytometry analysis. 

 

 

Cultures 

Short-term liquid cultures 

Non-adherent MNC and CD34+ cells were incubated in RPMI1640 at 37°C in fully 

humidified atmosphere with 5% CO2 in the presence of different concentrations of 17 AAG, 

or of DMSO for controls) for 24 hours.  17-AAG was purchased from Sigma-Aldrich Corp. 

(St. Louis, MO), diluted in dimethylsulfoxide (DMSO) and stored at –20°C before use.  

After these treatments, cells were washed in PBS and viable cells were enumerated using a 

trypan blue exclusion test.  

All experiments were performed in triplicate. 
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Clonogenic assays  

Normal and MDS/CMML MNC were incubated in triplicate in methylcellulose and growth 

factor-containing culture medium (STEMα.ID, STEMα, Saint-Clément-les-Places, France). In 

some experiments cultures were performed in the presence of 17-AAG (or DMSO alone for 

control) which was added into the culture medium to obtain the appropriate final 

concentration. CFU-GM and BFU-E were scored after 14 days of incubation.  
 

Antigen expression and flow cytometry 

The samples were surface-stained with CD45-PE-Cy5 (clone J33, Beckman-Coulter France, 

Villepinte, France) and CD34-FITC (clone 8G12, BD Biosciences, San José, CA, USA) 

antibodies for 15 mn at room temperature. Then, the cells were washed and fixed with 3.7% 

paraformaldehyde for 20 mn. The staining of intracellular proteins was performed after 

permeabilization in 0.2% Triton X100 (15 mn at room temperature). The specific antibodies 

for this study were HSP90-phycoerytrin (PE)-conjugated antibody (Clone F8 SCL3-119 

which recognizes both HSP90alpha and beta isoforms, Santa Cruz Biotechnology, Santa 

Cruz, CA), FAK-PE (clone H-1, Santa Cruz), pFAK-PE (clone K73-480, BD Biosciences), 

pAkt (S473)–AL FL647 (clone M-89-61, BD Biosciences), Akt-AL FL647 (mouse, clone 

55PKBa/Akt, BD Biosciences). Cells were incubated for 1 hour at room temperature, washed 

and re-suspended in PBS before analysis. The isotype controls used for the phospho-proteins 

were matched to the primary antibodies at identical concentrations (27). Cell populations 

were gated according to CD45/side scatter (SSC) analysis.  

Flow cytometry analysis was performed with a Becton-Dickinson FACS Canto II cytometer, 

using the DIVA software. At least 10000 events were analyzed. Results were expressed as 

mean fluorescence intensity ratios (MFIR) (ratio of stained sample/control). 

 

Apoptosis 

 Annexin V staining 

Untreated and drug-treated cells were incubated with Annexin-V fluorescein and propidium 

iodide (PI) (DakoCytomation) in HEPES buffer. After incubation for 15 min in the dark, cells 

were analyzed by flow cytometry.  Live cells were determined by PI exclusion. Early 

apoptotic fraction was determined by annexin-V-positive and PI-negative stain. 

 

Activated caspase-3 expression  

Cytospins were also used to study the caspase-3 activation by Alkaline Phosphatase-Anti 

Alkaline Phosphatase-(APAAP) technique. We used an amplification combination of alkaline 
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phosphatase (AP) and avidin-biotinyled enzyme complex (ABC) technique (Vectastain 

Universal mouse and rabbit kit, Vector Laboratories, Burlingame, CA). Cytospins were fixed 

for 90 seconds with acetone at room temperature. They were rehydrated in PBS for 5 min. 

Non-specific binding was blocked with horse serum during 20 minutes. Then slides were 

incubated for 30 minutes with polyclonal rabbit anti active caspase-3 clone (Cell Signaling, 

Beverly, MA), washed twice in PBS for 5 minutes and incubated with biotinyled horse anti-

mouse or rabbit secondary antibody for 30 minutes, rinsed again for 5 minutes in PBS, and 

reincubated for 30 minutes with biotinyled alkaline phosphatase complex (ABC reagent). 

After a new step washing in PBS slides were incubated with an appropriate enzyme substrate 

solution (Fast red) until optimal red granular reaction (20-30 minutes). Slides were rinsed 

respectively with PBS and distilled water before a counterstain nuclear step consisting of an 

incubation for 7 minutes with Meyer’s Haematoxylin (Dako). After washing in distilled 

water, PBS, and distilled water again, slides were finally mounted in Fluorotech aqueous 

media (Valbiotech, Paris, France). Controls were performed by replacing the primary rabbit 

antibody by an irrelevant antibody of the same isotype. Slides were examined using X10 

magnification by two observers. Cells were considered stained if any diffuse reddish 

cytoplasmic staining could be identified. A scale of three levels of red staining was used to 

assess intensity of staining : 0 for no staining, 1 for weak staining, 2 for strong staining and 3 

for very strong staining. The percentage of positive cells (strong or very strong staining) was 

determined after counting 100 cells. 

 

Statistical analysis 

Mann-Whitney (or Kruskall-Wallis) non parametric tests were used to compare the means of 

two (or more) groups. Proportions were compared by Chi-square test (or Fisher's test when a 

group comprised less than 10 units). Correlations were performed using a Spearman rank 

correlation test.  

Survival curves were plotted according to the Kaplan-Meir method. Survival duration of 

different groups was compared by the log-rank test. Multivariate analysis of survival was 

performed using a Cox regression model. 

Statistical tests were computed by the IBM SPSS statistical software and data plots were 

performed using the Prim5 software. 
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RESULTS 

 

Expression of HSP90, FAK, pFAK and pAKT 

Expression of HSP90 was weak in MNC and in the “blast” gate (CD45dim/SSClow) of normal 

marrow cells. We also observed a low expression of FAK and pFAK. pAKT was not detected 

above control level in normal MNC. Results were similar in normal CD34+ cells for all 

proteins studied. 

In MDS MNC cells HSP90 and other protein levels were significantly higher in high-risk 

cases according to FAB classification (Fig. 1). When cases were stratified according to WHO 

classification, the expression was higher in RAEB-I + RAEB-II (pooled together) versus other 

forms. The expression of HSP90 was also higher in RAEB-II vs RAEB-I (p < 0.05) and there 

was a trend for higher levels in RCMD versus RA (with or without ringed sideroblasts) 

(p=0.06). Similar results were obtained considering percent positive cells instead of MFIR 

(data not presented). There were also significant differences regarding cytogenetics sub-

groups. HSP90, FAK, and pFAK  levels were lower in good prognosis than in intermediate 

and poor prognosis forms (fig. 2). pFAK levels were also more elevated in poor prognosis 

forms than in intermediate. The same differences were observed in CD34+ cells, but, in 

addition pAKT levels were also different in god versus intermediate or poor prognosis groups. 

5q- cases expressed similar levels as other good prognosis cases. Finally, although these  

proteins were not detected only in the “blast” gate (CD45/SSC low) of MNC cells, we 

observed a weak linear correlation between the percentage of blasts (as assessed by cytology 

or by cytometry) and the expression of HSP90, pAKT, FAK and pFAK (r2=0.62 to 0.71).  

These proteins were also expressed at significantly higher levels in CD34+ cells than in 

CD34-negative MNC (p<10-4 for all proteins). We therefore compared the level of expression 

in CD34+ cells in the different sub-types of MDS and in CMML. Again, we observed a 

higher expression of HSP90, pAKT, FAK and pFAK in RAEB than in RA/RAS, CMML 

exhibiting intermediate levels (Figure 1). This shows that the differences regarding expression 

in MNC cells were not only due to the higher percentage of blasts or CD34+ cells in high-risk 

cases. 

 

Predictive value 

Because of the correlation with other relevant clinical factors such as cytogenetics and 

percentage of blasts we studied the prognostic value of HSP90, pAKT, FAK and pKAK 

expression. For univariate analysis, patients were arbitrarily placed into two categories : high 

level (MFIR equal to or above median value) or low level (MFIR below median value). 
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Survival duration and time to transformation into overt leukemia were significantly shorter in 

patients with high expression of HSP90, pAKT, pFAK and FAK (fig 3). For all those 

intracellular proteins, the percent of positive cells were significantly higher in the groups of 

increasingly poor prognosis as defined by the IPSS (Table 2). In multivariate analysis, we 

studied the effects of known parameters such as age, cytogenetics (or IPSS), percentage of 

blasts and marker expression. Only cytogenetics (or IPSS), percentage of blasts and percent of 

CD34+ cells remained independent prognostic factors.  

 

Transformation into AML 

Transformation occurred in 87 cases in total, after a mean delay of 386 days. Nineteen cases 

could be reevaluated at the time of transformation. This included 9 cases with a diagnosis of 

RA and 10 RAEB. The blast percentage was 6.5% (±5.9) at diagnosis and 42% (±16) after 

transformation.  

As presented in Figure 4, the levels of HSP90, FAK, pFAK and pAKT were significantly 

higher after transformation than at diagnosis. This was the case in MNC (p<10 -4) and more 

interestingly in CD34+ cells (p<10-4). 

 

Inhibition of HSP90 (Figure 5) 

The effects of inhibition of HSP90 were studied by exposing MNC to 17-AAG for up to 24 

hours. Thirty-nine cases of RAEB expressing high levels of HSP90 were studied. In the 

presence of 2 µM 17-AAG, the percentages of viable cells at 12 and 24 hours were 

respectively 60 and 32 of control without 17-AAG. At a concentration of 5 µM, the 

percentage of viable cells was 38% at 12 hours, and no viable cell could be recovered at 24 

hours. 17-AAG significantly increased the percentage of apoptotic cells, as assessed by 

activated caspase-3 expression and annexin V binding. After 12 hours of exposure to 17-AAG 

5 µM, more than 90% cells were apoptotic. In clonogeneic assay, the yield of colonies was 

heterogeneous in the absence of 17 AAG (mean number ± SD of CFU-GM, clusters and 

BFU-E : 60 ± 80, 139 ± 136,  19 ± 14 respectively.  At a concentrartion of 5 µM, 17-AAG 

completely inhibited the growth of all types of colonies in semi-solid medium.  

The effects of 17-AAG on protein expression was studied after 12 hours of culture. The same 

staining technique was used as for uncultured cells. In addition, we also assessed the 

expression of HSP70, , which has been reported to be upregulated in the presence of HSP90 

inhibitors. The levels of HSP90, FAK, pFAK and pAKT were significantly in the presence of 

2 and 5 µM of 17-AAG. This effect was more evident in CD34+ cells than in MNC. By 

contrast, expression of HSP70 was not significantly modified in both cell types.  
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DISCUSSION 

In this paper, we show that high expression of HSP90 is associated with more advanced 

disease and worse clinical prognosis. As expected, this was significantly correlated with other 

known  prognostic features such as cytogenetics and blast percentage which appear to be of 

importance in multivariate analysis. One interesting point is the fact that CD34+ cells from 

advanced cases also expressed the higher levels, when compared to CD34+ cells of good 

prognosis cases or normal marrows. This implies that progression to advanced disease is 

associated with a distinct transduction pathways profile at the CD34+ progenitor level, where 

an imbalance between proliferation and apoptosis has already been described (28). In line 

with this observation, we also show that when patients could be retested at the time of 

transformation into overt leukemia, the expression of HSPs ang signaling molecules was 

significantly increased.  This is also consistent with the already known overexpression of 

HSP90 in acute myeloid leukemia (15, 16).  

We also studied the expression of the activated forms of known clients of HSP90, pAKT and 

pFAK. These proteins are implicated in signal transduction and their constitutive activation is 

a hallmark of transformation in many cancer models. Again a higher expression was observed 

in MNC and in CD34+ cells of MDS with poor prognosis or adverse cytogenetics. Indeed 

high expression of HSP, FAK and pAKT was associated with higher risk of transformation 

and poor survival. High levels of HSP and FAK are predictive of resistance to chemotherapy 

in AML as shown by our group (16) and others (29). More controversial data exist regarding 

the prognostic significance of pAKT activation in AML cells. While we (16) and others (30) 

have observed a poor prognosis, Bardet et al showed that pAKT expression as detected by 

flow cytometry implied a better prognosis, that was observed independently of cytogenetics, 

although pAKT was higher in CBF and intermediate cases (31). These discrepancies may be 

the consequence of different technical approaches, but mainly due to the fact that different 

sites of phosphorylation were assessed in these studies. Again, we show that levels in CD34+ 

cells were higher at time of evolution to AML than at diagnosis, irrespective of the initial 

classification of MDS. Taken together, these findings favor a role for these proteins in disease 

initial type and in the pathogeny of evolution into overt AML.  

The second point raised in our study is the possibility to target in vitro HSP90. HSP90 

inhibitors such as geldanamycin, 17-AAG or 17-DMAG have anti-tumoral activity by 

inhibiting proliferation and inducing apoptosis (32, 33).  In leukemia cells17-AAG alone or in 

combination with chemotherapy inhibits cell growth and induces apoptosis (34). Moreover, in 

specific leukemia subtypes characterized by the presence of mutations or rearrangements of 

genes such as flt-3 or bcr-abl resulting in high expression of constitutively activated 
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oncoproteins, the association of HSP90 inhibitors and targeted drugs is highly effective in-

vitro (35-36). Although the exact mechanism by which HSP90 inhibitors interfere with 

leukemia cell survival is not fully understood, we have also demonstrated that 17-AAG was 

able to induce apoptosis in primary AML cells, in correlation with HSP90 and activated AKT 

levels (16). In MDS, we show that 17-AAG readily inhibits CD34+ and MNC cells survival 

in liquid culture, at least in samples from high grade MDS. Short-term exposure to 17-AAG 

also down regulates pAKT and pFAK levels. This is consistent with the mechanism 17-AAG-

induced apoptosis suggested by Nimmanapalli et al, implicating a modulation of apoptotic 

proteins of the bcl-2 family downstream of Akt, Raf-1 and Src down-regulation (37).    We 

also show in our model a downregulation of FAK and pFAK after exposure to 17-AAG. FAK 

is a cytoplasmic protein tyrosine kinase localised to regions called focal adhesions. Many 

stimuli can induce activation of FAK, including integrins and growth factor. The major site of 

autophosphorylation, tyrosine 397, is a docking site for the SH2 domains of Src family 

proteins. Phosphorylated FAK binds and activates proteins forming the FAK complex, and 

facilitate the generation of downstream signals necessary to regulate cell functions, like 

motility, survival and proliferation. Dysregulation of FAK could participate in the 

development of cancer, and abnormal activation of FAK has been described in AML. Our 

data suggest that FAK, as a client of HSP90, could be indirectly targeted by HSP90 inhibition.  

Epigenetic therapies are increasingly used in MDS. The HDAC inhibitors show a clinical 

activity in high-grade MDS. Acetylation of HSP90 by exposure to histone-deacetylase 

(HDAC)-6 inhibitors results in an inhibition of its chaperone function (38). The combination 

of an inhibitor of HDAC and 17-AAG is highly active in-vitro against cells ofchronic myeloid 

leukemia in blast crisis and AML cells harboring a mutation of flt-3 (39). HDAC6 inhibitors, 

alone or in combination with another HSP90 inhibitor, may represent a potential targeted 

therapy of high risk MDS with possible dual mechanism of action. 
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Table 1 : patient characteristics 
_____________________________________________________ 
 
Median age (range)     66 years (11-91) 
Sex (M/F)            99/78 
WHO classification (N) 
 RA     20 
 RAS     1 
 RCMD     24 
 RCMD-RS    2 
 RAEB-I    38 
 RARB-II    55 
 5q-     14 
   
CMML (N)     23 
 
Cytogenetic prognostic groups (N=152) 
 Good     91  
 Intermediate    32   
 Poor     29 
  
IPSS (N=152) 
 Low     56 
 Intermediate-1    44 
 Intermediate-2    32 
 High     20 
  
 
Median follow-up (days)   593 
Median time to transformation (days) 386  
(87 patients) 
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Table 2 : Expression of HSP90,  pAKT, FAK and pFAK  according to IPSS risk category 
 
    Mean Fluorescence Intensity  Ratio  
   __________________________________________ 
IPSS   HSP90  pAKT  FAK  pFAK 
   __________________________________________ 
 
Low   54  6  16  25 
 
Int-1   73  9  21  29 
 
Int-2   85  13  29  47 
 
High   86  15  34  51 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

Mononuclear cells

HSP90
pAKT

FAK
pFAK

0

50

100

150

200
Diagnosis
Tranformation

M
FI

R

CD34-positive cells

HSP90
pAKT

FAK
pFAK

0

50

100

150

200

250
Diagnosis
Tranformation

M
FI

R

  
 

 



160 
 

Figure 5 
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GENERAL DISCUSSION 
 
The present work is dedicated to the argumentation of the morpho-molecular roles of 

mesenchymal stromal cells (MSCs) in myelodysplastic syndromes (MDS) pathogenesis. 

Myelodysplastic syndromes represent a heterogeneous group of myeloid neoplasms in terms 

of severity, prognostic, progression to acute myeloid leukemia (AML) and therapeutic 

approach solutions. 

The evidence accumulated in recent years significantly improved the understanding of the 

pathogenic mechanisms responsible for the selection of neoplastic hematopoietic clone(s), 

resistant to apoptosis and able to express factors promoting its own growth, proliferation and 

migration. 

The understanding the mechanisms by which neoplasia manages to integrate the stromal 

components in tumorigenesis process represents also a major source of progress. The 

haematopoietic stem cells (HSC)-MSC relationship is a critical point in the haematopoietic 

malignancies pathogenesis, and the current technical approaches provide limited and rather 

slow progresses. 

The complexity of our subject required the integration of the knowledge of several areas: 

haematologic oncology, cytology, immunology and molecular biology, that along with our 

strongly motivation for the subject constituted a solid foundation for developing and 

promoting this doctoral theme. 

Preliminary hypothesis was that the MSCs, the genitors of the all stromal cells have a 

pathologic behaviour in MDS and are unable to generate a microenvironment suitable to 

haematopoietic cells development. 

This project establishes the immunophenotypic profile and the growth patterns of MSCs from 

MDS microenvironment associated to the malignant haematopoietic clone, throughout of the 

MDS disease evolution to acute leukemia, highlighting the distortion aspects related to 

adhesion processes, such as cell proliferation, clonogenic growth and neoangiogenesis. 

With our results we want to extend the current level of knowledge in the MDS field by 

decoding the signalling pathways involving the focal adhesion proteins with impact in 

neoplasia dynamics and to inventory the common or distinctive elements of the tumour-

support system relationship in order to identify the discreet pathogenic models which could be 

employed as therapeutical targets. 
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1. Myelodysplasia could be also a disease of stroma? 

 

The MDS pathophysiology remains a highly controversial topic.  

To date the MDS is generally regarded as clonal disorders of haematopoiesis; the disease 

origin is thought to be in a genetic transformation of haematopoietic stem / progenitor cells.  

However new insights reevaluates the microenvironment place from indifferent spectator to 

principal actor.  

Thereby, there is the histopathologic evidence of the microenvironment disruption in MDS. 

In line with previous data, [168], [190], [303], we noticed the confluence deficiencies and 

spontaneous lysis in 25-50% of MDS stromal cells amplified during 30-35 days in vitro 

cultures, especially in refractory cytopenia (RC) cases. Moreover, stand out also the different 

distribution of the three morphotypes of MSCs (rounded-shaped; thin, spindle-shaped; and 

large, flat cells) in MDS layers compared to normal settings. The slight decrease in the 

number of large, flat cells in refractory cytopenia with unilineage dysplasia (RCUD) settings, 

which is considered the onset of terminal differentiation, in addition to the size differences 

within this population among the different study groups are worth noting. These 

characteristics could indicate maturation defects. 

There are some research teams which attribute the MSC failure in primary cultures from MDS 

on account to the aging mechanisms of (stem) cell population(s) during long-term cultures, 

that induce an decreasing ability to self-renew and to properly differentiation [319]. Our 

evidences are not consistent with this hypothesis because the normal MSC control does not 

reach these changes during the 30 days of cultures. 

In addition, we have arguments that MSC cultures from RAEB fulfill the "dysplasia" criteria 

requested by histopathologic term, which has been definited as “a loss in the uniformity of the 

individual cells, as well as a loss in their architectural orientation” [320]. Thus, the RAEB 

MSC cultures were characterized by a higher rate and disordered proliferation (which no 

longer comply with so-called “the cohesive zone formulation” or “cell–substrate contact 

areas”, that are formed predominantly by larger cells in the middle and are surrounded by a 

cuff of spindle-shape cells to the periphery) [134], [321] reflected in the microscopic image 

by colonies architecture disorganization with clusters of aberrant proliferation. 

Moreover, it seems that these cells have an intense metabolic activity transposed into giant 

“amorphous” deposits in cultures.  

At the cellular level, MDS stromal cells depict dysplastic changes very similar those met in 

haematopoietic compartment, and issues related to altered actin organization, such as thin and 
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flat morphologically altered cells, as Ilić et al. have already reported in mouse FAK (-/-) 

fibroblasts [256].  

In addition, we have compelling arguments that MSC from RCUD settings show a continuous 

decline of proliferation and a reduced clonogenic capacity during 14 days of CFU-F cultures, 

in the absence of signals from hematopoietic cells, and these growth deficiencies are 

significantly correlated with diminution of CD44 and CD49e (α5-integrin) adhesion 

molecules. 

Besides these obvious, the last decade provides evidence about the cytogenetic abnormalities 

of MSCs selected from MDS patients [168], [230], and [305]. Of note is the fact that the MSC 

cytogenetic aberrations differs from the haematopoietic cells chromosomal abnormalities of 

the same subjects [230]. Moreover, the Blau et al. study revealed that only a fraction of the 

culture cells harbor cytogenetic alteration, that support the hypothesis of abnormal MSC 

clones existence, which probably are favored during malignancy advancement. In addition, 

Varga et al. proves a CAFC (cobblestone area-forming cells) frecvencies diminution when 

normal hematopoietic cells were incubated on MDS stromal cells, compared to normal 

stromal layer-containing control cultures [322]. Furthermore, the same team noticed a marked 

reduction in the plasticity of mesenchymal stem cells of MDS patients compared with those of 

normal marrow donors, in neurogenic and adipogenic differentiation ability and 

hematopoiesis supporting capacity in vitro [322]. 

All these evidences are consitent with hypothesis that myelodysplastic stroma environment 

along with intrinsic changes in a hematopoietic stem/progenitor cell clone might equally 

contribute to the abnormal hematopoiesis in MDS. 

 

2. The phenotypic characterization of the MSC niche in in vitro primary cultures 

 

In order to identify the potential phenotypic abnormalities of MSC in MDS settings, our study 

begins with normal MSC cultures assessment.  

The first description of the in vitro MSC niche belongs to Prockop DJ which argues the 

different roles fulfilled by the cellular subpopulations within this niche. He noticed in 

stationary MSC cultures the colonies comprising two major regions, the inner region 

populated by the more commitment precursors, and the outer one formed by a population of 

cells that express surface proteins with an inhibitory influence on cell adhesion [such as α6-

integrin and podocalyxin-like protein (PODXL)]. The last ones are highly motile, secrete 

DKK-1 (an inhibitor of the canonical Wnt signalling pathway), and serve as nurse cells for 

other subpopulations; thus, they are key elements of the rapid growth phase [134].  
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The flow-cytometric approach of MSCs harvested from in vitro primary cultures allows 

discrimination of three types of cells that match in terms of size and granularity those 

identified by morphological and morphometrical evaluation. Moreover, supplementary 

staining with two MSC specific markers, STRO-1 and CD73, complements and supports 

previous data, i.e., in these cultures there are three cellular phenotypes: STRO-1+CD73-, 

STRO-1+CD73+, and STRO-1-CD73+.  

The STRO-1+ cells were CD45low, expressed the vascular endothelial-related markers, CD106 

(VCAM-1) and CD31 (PECAM-1), and had decreased levels of the adhesion markers CD44, 

CD54, CD29, and CD49e.  

This particular expression for the two endothelial-related markers, CD106 and CD31 raised 

the question if they are not the imprint of a population with an anatomical distinct location in 

BM: pericytes which coexist with mesenchymal cells in our cultures? Or their association 

with the STRO-1 molecule it does not mean the fact that this is a potential MSC 

subpopulation, more immature in MSC developmental hierarchical tree? 

The first hypothesis is sustained by Bianco P et al. in 2001, and Short B et al. in 2003 that 

interprets the CD106 expression, previously reported in umbilical cord blood (UCB) and BM-

derived MSCs [323], [324], as the imprint of a particular location (the nearby outer surfaces 

of blood vessels) and may share an identity with the vascular pericytes [49], [55]. Moreover, 

this hypothesis is supported by the co-expression of α smooth muscle actin or 3G5 antigen on 

these cells, which is recognized as a specific marker for pericytes [53].  

The second hypothesis is supported by Gronthos S et al. in 2003, which described a minor 

subpopulation of STRO+hi VCAM-1+ cells isolated from freshly BM, possessing CFU-F 

forming capacity, which appears to be a non-cycling population in vivo, because the Ki-67 

expression lack on this minor subpopulation, exhibits telomerase activity, and shows an 

undifferentiated phenotype and substantial proliferation in vitro [53]. Moreover, these highly 

proliferative clones derived from single STRO-1+hi VCAM-1+ cells exhibited osteogenic, 

chondrogenic and adipogenic cell differentiation in vitro [53].  Their unlimited potential for 

division and proliferation is also supported by observations that the small number of STRO-1+ 

cells seen in cultures at later points were able to produce adherent cell layers with the same 

cellular composition and phenotype as those generated by STRO+ cells freshly isolated from 

BM [123]. 

Likewise, as previously reported by Simmons PJ et al. in 1994 and Gronthos S et al. in 1996 

[127], [128], we found that the STRO-1+ cells express CD31, too, and possible phenotypic 

pitfalls, which may contribute to the tremendous differences between different groups is the 

fact that PECAM is sensitive to trypsin [308].  
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Thereafter, a low level of CD45 expression in STRO-1+ cells cannot be excluded. A possible 

explanation for this expression may be the fact that, in non-haematopoietic cells, CD45 

functions as a negative modulator of growth factor receptor tyrosine kinases in addition to its 

well-established role as activator of src family tyrosine kinases [126]. 

Unlike the STRO-1 positive cells, the STRO-1-CD73+ were negative for all these markers and 

displayed increased levels of adhesion markers. This difference in the expression of adhesion 

markers may reflect the different roles of these cells within their own in vitro niche.  

Technically, the two fractions could be exploited differently, STRO-1+ cells being more 

robust for carrying out in vitro MSC growth assays, whereas CD73+ cells have proven their 

utility in the evaluation of adhesion profiles. Moreover, PJ Simmons and B Torok-Storb have 

claimed that a STRO-1+ stroma layer represents a good alternative for an in vivo stroma for 

performing assays to evaluate HPC-MSC contacts. The STRO-1 molecule does not affect the 

proliferative abilities of HPCs by itself and it has low affinity for complement. Thus, the 

STRO-1 layer appears to only provide signals when induced by the engagement of other 

adhesion molecules [123]. 

 

Afterwards, the immunomagnetic selection allowed us to isolate the two major 

subpopulations that correspond to those previously described in terms of size and growth 

abilities.  

The first population, STRO-1+ CD73-, was numerically lower in normal BM controls 

and displayed a rounded shape or long cytoplasmic extensions; in terms of size, cells in this 

population ranged between 5 and 26 µm. In cytometry, the STRO-1+ cells fell to near 50 on 

the FSC. These cells met the criteria for a quiescent, slowly cycling population supported by 

the morphological appearance of resting cells, approximately 2-fold higher clonogenic 

capacity upon plating and 2.3-fold higher proliferation efficiency at 14 days of culture 

compared with the STRO-1- CD73+ fraction.  

On the other hand, the STRO-1-CD73+ fraction included mostly larger (50 to 110 µm, on 

average) and more granular cells with lower proliferative and clonogenic potential. 

 

3. What would be the phenotypic features of MDS cultures? 

 

Under the MDS condition, we noticed a higher number of STRO-1+ cells that 

coexpressed CD106 and CD31 between 20 and 30 days of culture and which persisted until 

60 days in the RC group. From the expression of these markers in relation to MDS 

pathophysiology, two hypotheses can be evoked: the former is related to CD106 upregulation 
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induced by TNFα stimulation [321]; high levels of TNFα are common in MDS [190], and 

MSCs themselves could be responsible for its synthesis in the absence of HPC stimulation. 

The role of this cytokine in the MDS microenvironment is probably related to its capacity to 

induce internal proliferative signals in MSC cells, as previously noted by Kohase et al. [308]. 

The latter is related to CD106 function as a major ligand for selective CD29-mediated HPC-

to-MSC adhesions, and thus, its influence on the HPC mitotic rate and division kinetics [309]. 

The increased expression of CD31+ could be an imprint of the neoformation of blood 

vessels in MDS settings, as Boudard D et al. showed in a previous study [190]. 

 

In addition, in MDS settings, the CD73+ fractions of MSC display a significant reduction of 

adhesion markers, CD29, CD54, CD44, and CD49e. 

 

4. MSC growth deficiencies in MDS are directly correlated with diminution of adhesion 

markers expression: 

 

Furthermore, the functional tests revealed MSC growth abnormalities in the absence of any 

contact with or stimulation by soluble molecules from HPCs and proved the pathological 

nature of stromal precursors in MDS settings.  

Thus, MSC production in STRO-1+ and CD73+ cell cultures from refractory cytopenia with 

unilineage dysplasia (RCUD) and refractory dysplasia with multilineage dysplasia (RCMD) 

marrows was deficient, and, in addition, the clonogenic ability of these fractions was strongly 

diminished. We conclude that the relative proliferation in MSC cultures from RCUD and 

RCMD is the result of a continuous division process occurring at a low rate and lacking the 

ability to generate the normal functional progenitors required to form colonies. By contrast, in 

refractory anaemia with excess of blasts (RAEB) settings, the proliferation rate is moderately 

improved due to the reduced doubling time of STRO-1 cells. However, this was not 

accompanied, at the end point, by complete functional maturity as reflected in the CFU-F 

number. 

Likewise, the diminution of CFU-F capacity of CD73+ fractions in MDS settings that directly 

correlates with the CD44 mitigate on their surface should be pointed out. In addition, the 

doubling time of MSCs from MDS inversely correlate with their expression for CD49e. In 

conclusion, the MSC growth defects were significantly correlated with decreases in CD44 and 

CD49e (α5-integrin) adhesion molecules. 

 

105 



167 
 

5. The diminution of adhesion markers expression on MSC surface interfere with HSC 

clonogenicity 

 

The preliminary results indicate the fact that the clonogenic potential of HPC is controlled by 

adhesion mechanisms dependent on stroma, and α5-integrin is one of the molecules involved 

in this process. This is supported by statistical data which proved that the diminution of α5-

integrin expression in MSC correlate significantly with the decreased clonogenic potential of 

myeloid and erythroid precursors, selected from the same cases, and from both groups, RC 

and RAEB. 

 

In light of these observations, then we intended to decode the focal adhesion (FA) signalling 

pathways and to understand whether adhesion-mediated processes contribute to transduction 

of intrinsic proliferative signals, as well as their impact on HPC-to-MSC interactions. 

 

6. Molecular mechanisms whereby the FA proteins can contribute to the increased 

proliferation of MSCs selected from RAEB settings 

 

The proliferation differences occur in RAEB cultures compared to normal settings can be 

attributed both to smaller cells (S-MSCs) as well as to large, more mature ones (L-MSCs), 

which present the qualitative defects of FA proteins (focal adhesion kinase [FAK], and 

paxillin), such as intensity differences, nuclear localization, and their association in 

complexes. Moreover, the MSCs from RAEB cultures highlight a strong complexation of FA 

proteins to HSP90 in nuclear area, which support a proliferative behaviour of these cells. This 

hypothesis is confirmed by the experiments in which the pharmacologic inhibition of HSP90 

on cells leads to decreased FAK signalling, and consequently, displays growth-inhibitory 

effects similar to FAK inhibition alone [266]. In addition, this high co-localisation to HSP90 

indicates the cessation of proteasome-mediated recycling of these proteins.  

There are some possible molecular mechanisms whereby the pFAK [Y397] / HSP90αβ and 

paxillin co-localization could contribute to the increased rate of proliferation of MSCs (Figure 

37). 
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Figure 37. Model of FAK signalling pathways possibly involved in intrinsic proliferation 

of MSCs 

 

Recent evidences support the FAK contribution to cell growth both by influencing the 

proliferation rate as well as apoptosis also.  

First assumption of the FAK involvement to cell proliferation was activation the RAS-

ERK-MAPK (mitogen-activated protein kinase) pathway through FAK-Src signaling complex 

[252], [259].  

FAK, as well as Src are dependents on the chaperon HSP90 for their conformational stability 

and proper functions [266], [267], [268].  

Also, HSP90 can induce itself FAK phosphorilation and its activation in a RhoA-ROCK-

dependent manner, i.e. in response to VEGF stimulation [325].  

Concomitantly, the HSP90 inhibition ceased also the c-Src phosphorilation, as well as their 

downstream targets paxillin and p130CAS [267].  

The second possibility of FAK [Y397] involving in survival and proliferation is AKT 

signalization through PI-3K activation [252], [270].  
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Finally, FAK binding at paxillin induce its phosphorilation and conformational 

modification, blocking its nuclear export [255]. This particular nuclear localization of paxillin 

have proved that stimulate DNA synthesis and cell proliferation [255], [326], by suppression 

of H19 (a tumor-suppressor gene) transcription and promoting Igf2 expression at the 

translational level [255]. 

Likewise FAK could prevent apoptosis by two mechanisms. There are evidences about p53 

FAK regulation by its FERM domain. Lim et al. proved that loss of FAK on chicken embryos 

lead to p53 activation and the up-regulation of p21 expression (a cell cycle progression 

inhibitor) accompanied by the blocking of MSCs proliferation in the embryo [327]. McLean 

et al. sustain the role of FAK in preventing apoptosis by its requirement to keep caspase-3 

inactive [264]. In addition, FAK-overexpressing cells are resistant to apoptosis induced with 

hydrogen peroxide, etoposide and radiation, and proteome analysis of these cells showed 

increased levels of stress proteins such as HSP90, ribosomal proteins and antioxidant 

enzymes [328]. 

 

7. Molecular mechanisms whereby pFAK expression can influence the clonogenicity of 

haematopoietic precursors (HPC) 

 

 

Another hypothesis that arises from our study is the putative role of FAK [Y397] expression on 

MSCs in HPC-to-MSC interactions and thus its implication in modulating HPC clonogenic 

capacities (Figure 38).   
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Figure 38. Model of the possible contributions of FAK expression to the influence of 

MSCs on the clonogenicity of haematopoietic precursors 

 

There is recent evidence that sustain that FAK regulates integrin expression in human 

fibroblast [329]. Have been discussed three adhesion proteins involved in the HPC-to-MSC 

contact and their place on maintenance of human HPC niche.  Thus, Gottschling et al. showed 

that β1-integrins (CD29) play an essential role in regulating self-renewing HPC divisions 

within the stromal environment and in maintaining “stemness” within the first 72 hours of 

homing [321]. During regenerative stress, also, two complexes of integrins, α4β1-, and α4β7 

are essential for the self-renewal of HSCs [330], [331]. 

Afterwards, CD49e (α5-integrin) was described to be involved in KG1a (human immature 

haematopoietic cell line) adhesion to MSC. Wagner et al. showed KG1a adhesiveness 

impairment by treatment with antibodies against CD49e [332]. In line with this observation, 

we find that the increased levels of pFAK [Y397] reversely correlate with the α5-integrin 

expression, on both types of MSC cells, large and small, and this reduction significantly 

correlate with the diminution of clonogenical potential of HPCs selected from the same 

patients. In addition, Wagner et al., has proved that the expression of CD44 adhesion protein 

109 



171 
 

has implicated in the homing and adhesion of HPCs to MSCs [332]. And, recently, was 

noticed on the MSCs surface the expression for a CD44 isoform, CD44v7, which supports 

haematopoietic progenitor cell homing [333], and for a ligand of CD44v10 molecule 

expressed by HPC, CD44v10 L, which is involved in progenitor cell adhesion and maturation 

[334].  

Finally, there are evidences also about the FAK involvement in kappa B-luciferase activation 

secondary to TNF-α stimulation [335], and consequently, FAK could regulate the 

transcription of various proteins induced by this cytokine. Thus, the CD106 upregulation on 

the MSCs surface, secondary to the TNFα stimulation [336] could influence the selective 

CD29-mediated HPC-to-MSC adhesions, and hence contribute to the HPC mitotic rate control 

and division kinetics [321]. 
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PERSPECTIVES 

 
Several studies remain to complete these results: 

 

The differential expression of the phenotypic markers, STRO-1 and CD73, could be 

used for establishing of a cellular hierarchy in the MSC niche? 

 

In order to establish a putative hierarchy of these subpopulations of MSCs (STRO-1+ CD73- 

and STRO-1- CD73+), it would be necessary the assessement of the expression patterns of 

genes, such as Oct-4 (characteristic of embryonic cells), and DKK-1 (an inhibitor of the 

canonical Wnt signaling pathway). Moreover, the expression of other surface epitopes such as 

the “anti-cell adhesion proteins,” e.g., α6-integrin and podocalyxin-like protein (PODXL), can 

be used for this purpose, as recently suggested by D J Prockop [134]. 

 

The distribution changes of MSC morphotypes in primary culture layers could be 

accompanied by the changes of differentiation potential responsible for the extinction / 

restriction of a mature cell type? 

 

The differentiation capacities of the MSC subpopulations selected from MDS settings 

compared to normal controls could raise new questions about the pathogenesis of these 

diseases. 

 

How integrates our results in the hierarchy of molecular events responsible for the 

common lesion of HSC and MSC? 

 

To clarify whether these dysfunctions are the result of transdifferentiation abnormalities or 

dysfunction of a common precursor cells, further studies should address to the cytogenetic 

characterization and transcriptome decryption of MDS MSCs.  

 

Is α5 integrin involved in HPC division symmetry? 

To confirm the role of α5-integrins in the regulation of HPC fate (i.e., clonogenic potential and 

self-renewing divisions capacity), an in vitro surrogate model for haematopoietic niche could 

be imagined using the co-cultures of MSCs fractions with CD34+CD133+ cells, in the absence 
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or presence of an anti-α5-integrin blocking antibody, as well as conducting tests to evaluate 

cell division symmetry and LTC-IC assays. 

 

Which is the echo of these results in diagnostic customization in MDS? 

 

Correlations between MSCs abnormalities (i.e., adhesion deficiencies, growth dysfunctions, 

abnormal expression of FA proteins) with MDS prognosis and resistance to chemotherapy 

could lead to a new classification of MDS cases into risk groups involving microenvironment 

factors. 
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CONCLUDING REMARKS 

 
1. Our results reinforce the concept “bad seeds in bad soil” that underlies the neoplastic 

evolution in MDS settings. 

 

2. Herein we bring arguments that MSCs isolated from MDS have a pathological behaviour in 

primary and secondary cultures and that they actively contribute in some neoplasic signalling 

pathways involving the adhesion-related processes, such as cell proliferation, apoptosis, 

clonogenic growth and neoangiogenesis. 

 

3. Structural and functional analysis allowed us the identification of morpho- and 

immunophentotypes that could be involved in the conflict between HSC - “adhesive" 

microenvironment, proposing also an in vitro study model of the relationship between these 

two partners. 

 

4. Our preliminary data justify the rising interest concerning the untapped potential of 

microenvironmental prognostic factors as distictive item of MDS lesion, and sustain the 

further validation, in a broader context, of the diagnostic value of microenvironmental entities 

inventory as part of phisiopathological process evaluation in MDS. 

 

5. The perception of the stroma-related disease mechanisms may underlie to the development 

of alternative therapeutic approaches. 
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HSP90 is overexpressed in high-risk myelodysplastic syndromes and 

associated with higher expression and activation of FAK 

 

 -Leukemia Research- 

 

 - Vol. 33 (2009): S45- 

 

 

 
This summary report is one of the first attempts proving our interest to identify new signalling 

pathways responsible for the survival of CD34+ blasts in high-risk MDS, and, which may 

contributes to the progression to leukemia. Among the analyzed proteins, FAK, HSP90 and 

Akt correlated with a poor prognosis, which raises the question whether HSP90 inhibitors 

(FAK and Akt being client-proteins for HSP90) could not be used as alternative therapy in 

MDS? 
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Flow cytometry-based quantification of cytokine levels in plasma and cell 

culture supernatants – study application of the bone marrow (BM) 

microenvironment in acute myeloid leukemia (AML) 

 

- Rev. Med. Chir. Soc. Med. Nat., Iasi- 

 

- Vol. 112(1) (2008): 196-202- 

 

 
 

In this article, we bring compelling evidence that BM MSC from both, AML patients and 

healthy subjects, conferred a substantial beneficial effect on AML cells throughout the HPC-

BM MSC co-culture system. Herein, we investigated the influence of BM MSCs on in vitro 

modulation of cytokine secretion (IL-1b, TNF-a, IL-10, IFN-g, IL-4, IL-5, and IL-2) by AML 

cells, as well as, the supportive capacity of soluble factors synthesized by BM MSCs on AML 

cells. Significant differences were observed between AML-BM MSC and normal-BM MSC 

with respect to IL1b secretion that was upregulated in AML cell cultures, both after 24 and 72 

hours. 
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Congenital Acute Leukemia with Initial Indolent Presentation— 

A Case Report 

  

 - Cytometry B Clinical Cytometry- 

 

 - Vol. 80(2) (2011):130-133- 

 

 

 
In this brief communication, we present a case report of a congenital acute leukemia at a 

child. This entity is a challenge in terms of diagnosis, disease monitoring, and therapeutic 

decisions due of scarcity of the literature data, and due their unpredictable evolution, 

occasionally even to spontaneous remission. 

In this case, we noticed a blast population without lineage assignment, expressing CD123 

(hIL-3-R), normal karyotype, and displaying a resistant phenotype at conventional 

chemotherapy and to the gemtuzumab ozogamicin therapy. The allogeneic cord blood cell 

transplantation allowed the achievement of cytological and immunocytometric complete 

remission.  
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