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Résumé

Les marchés financiers occupent une place prépondérante dans 1’économie.
La future évolution des législations dans le domaine de la finance mondiale
va rendre inévitable 'introduction de frictions pour éviter les mouvements
spéculatifs des capitaux, toujours menacants d’une crise. C’est pourquoi nous
nous intéressons principalement, ici, aux modeles de marchés financiers avec

colts de transaction.

Cette these se compose de trois chapitres. Le premier établit un critere
d’absence d’opportunité d’arbitrage donnant ’existence de systemes de prix
consistants, i.e. martingales évoluant dans le cone dual positif exprimé en
unités physiques, pour une famille de modeles de marchés financiers en temps

continu avec petits cotits de transaction.

Dans le deuxieme chapitre, nous montrons la convergence des ensembles
de sur-réplication d’une option européenne dans le cadre de la convergence
topologique des ensembles. Dans des modeles multidimensionnels avec cotits

de transaction décroissants & Pordre n~1/2

, nous donnons une description de
I’ensemble limite pour des modeles particuliers et en déduisons des inclusions

pour les modeles généraux (modeles de KABANOV).

Le troisieme chapitre est dédié a l'approximation du prix d’options
européennes pour des modeles avec diffusion tres générale (sans couts de
transaction). Nous étudions les propriétés des pay-offs pour pouvoir utiliser
au mieux l'approximation du processus de prix du sous-jacent par un pro-

cessus intuitif défini par récurrence grace aux itérations de PICARD.
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Introduction

La théorie des marchés financiers multi-actifs avec couts de transaction per-
met une modélisation réaliste dans laquelle les objets, prix des actifs contin-
gents, portefeuilles, stratégies, etc. sont a valeurs vectorielles. Deux visions
se coordonnent : une expression en unités physiques des actifs sous-jacents
ou leur cotation dans une monnaie de référence, le numéraire. Cette vecto-
rialisation remplit le fossé entre, d’une part, les mathématiques financieres
traditionnelles qui ne consideérent qu’un actif en terme de numéraire et d’autre
part, la vision mathématique intuitive de I’économie. Nous nous placerons
dans des modeles pouvant étre assimilés a des modeles de devises dont 1’étude

approfondie est 1'objet du livre [24].

La notion de cone de solvabilité émerge immédiatement. Il s’agit de
la partie de I'espace dont les positions permettent de ne plus avoir de dette
sur aucun actif, en transférant de la richesse entre les coordonnées tout en
s’acquittant des couts de transaction. Cette notion est primordiale lors de
la modélisation. Outre le fait qu’elle contraint les stratégies de portefeuille,
elle détermine le cone dual positif. Celui-ci, exprimé en unités physiques,
accueille, sous de bonnes hypotheses, des martingales qui ont une proximité
avec le processus vectoriel de prix des actifs sous-jacents. Ces martingales
sont nommées systemes de priz consistants et permettent le calcul des prix
de recouvrement des options européennes. En effet, le théoreme de sur-
réplication donné dans 'article [23] donne une caractérisation de tels capitaux
initiaux. Il est basé sur la comparaison entre le niveau de richesse de ces
derniers et ’espérance du prix de 'actif a répliquer dont la valeur est évaluée

par les systemes de prix consistants.
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Cette these suit ce cheminement. Nous nous intéressons a un critere
donnant l'existence de systemes de prix consistants, puis travaillons sur les

prix de sur-réplications de l'option européenne.

La premiere partie porte sur la théorie de 'arbitrage dans les modeles
continus. L’opportunité d’arbitrage est la possibilité, par un portefeuille
auto—financant démarrant sans richesse initiale, d’arriver a une position sol-
vable non nulle, i.e. d’engendrer des profits a coup sur. L’hypothese d’absence
d’opportunité d’arbitrage dans les modeles de marchés financiers est com-
munément acceptée dans le monde de la finance, tant par les praticiens que
par les théoriciens. En effet, les arbitragistes font disparaitre toute oppor-
tunité d’arbitrage quasi instantanément, et par conséquent les modélisations
n’en tiennent pas compte. Cette théorie de 'absence d’arbitrage a pour but

de donner 'existence de systemes de prix consistants.

Dans les modeles discrets sans friction, il s’agit du théoreme de Dalang—
Merton—Willinger [7], donnant 'existence d’une probabilité équivalente sous
laquelle le prix est une martingale. Dans le cadre des cotits de transaction, la
théorie s’est développée autour d’une adaptation probabiliste du théoreme de
séparation d’Hahn—Banach. En effet, la martingale considérée est le proces-
sus d’espérance conditionnelle d’une variable aléatoire qui sépare ’ensemble
des valeurs terminales de portefeuille (& capital initial nul) de I'ensemble des
variables aléatoires a coordonnées positives. Nous citerons en particulier le
théoreme pour le critere d’absence d’arbitrage robuste N A" établi dans les
articles [27, 33].

Dans les modeles continus, quantité de ces théoremes ne se généralisent
pas. Par conséquent des hypotheses plus fortes du type “No Free Lunch”
(NFL-NFLVR-NFLBR) sont introduites et étudiées dans les différentes ver-
sions du “théoreme fondamental de I’évaluation d’actif” (F.T.A.P.). Dans
larticle [9], l'existence de martingales est montrée dans le cadre sans cotuts

de transaction, et plus récemment avec friction dans [10].

Nous proposons un critere simple d’absence d’arbitrage qui a 'avantage

de s’exprimer de maniere analogue avec le temps discret. La caractérisation
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de I'hypothese d’absence d’arbitrage concerne toute une famille de modeles
continus avec colts de transaction, et donne l'existence de systemes de prix
consistants pour la famille de modeles. Ce résultat repose sur une discrétisa-
tion de l'intervalle de temps par des temps d’arréts. Sur ces suites, nous
appliquons le théoreme d’absence d’arbitrage N A" discret et une étude grace

a la convergence presque stre permet 1’extension au temps continu.

Le second chapitre est une étude de la limite des ensembles de
sur-réplication d’une option européenne dans une suite de modeles multi-
dimensionnels discrets avec cotlts de transaction tendant vers zéro avec le
pas de temps. Depuis la these de Bachelier, “Théorie de la Spéculation”
(1900) et les formules de Black-Scholes [2], le paradigme de la finance est
continu alors qu’en réalité, les actualisations se font le long d’une grille de
dates discretes prédéfinie. Le lien entre ces deux mondes est nécessaire et
mene a certains paradoxes. Il est bien connu que 'observation discrete des
évolutions du prix du sous-jacent (de plus en plus fréquente) n’entraine pas
la convergence du prix de l'option vers le prix théorique du modele continu.
L’idée naissante des travaux de Black—Scholes et de Leland [31] est qu’une
certaine friction est implicite dans les marchés. C’est ainsi que la convergence
du prix de l'option est prouvée, dans les modeles de Leland—Lott, du discret

vers le continu, grace a 'introduction de cotits de transaction décroissants.

Nous nous intéressons, comme dans Kusuoka [30], a la limite des prix
de sur-réplication d’une option européenne “étendue” dans des suites de
modeles discrets ol les cotits de transaction décroissent & I'ordre n='/2. Les
prix des sous-jacents sont modélisés par des processus tres simples basés sur
des marches aléatoires qui convergent en loi vers un mouvement Brownien
géométrique. De maniere étonnante, dans le modele limite, il faut évaluer
I’option non pas sur 'unique systeme de prix consistant du modele complet
conduit par le mouvement Brownien géométrique, mais par rapport a un
ensemble de martingales au “comportement” proche dudit systeme de prix

consistants.

Nous considérons des modeles de marchés multidimensionnels et regar-
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dons la convergence de tout ’ensemble de sur-réplication généré par chacun
des modeles de la suite, étendant ainsi le résultat dans [30]. Dans des modeles
simplifiés, nous regardons la limite des ensembles de sur-réplication dans le
cadre de la topologie des fermés de R4, voir [1, 20], topologie qui coincide
avec la célebre topologie de Hausdorff sur les compacts. Le théoreme lim-
ite s’appuie sur le théoreme de sur-réplication qui donne une représentation
de ces ensembles par les systemes de prix consistants. Ainsi, une démarche
“duale” nous fait utiliser la théorie de la convergence faible sur ’espace de
Skorohod détaillée dans les livres [3, 22]. La convergence faible des systemes
de prix consistants permet en effet de montrer que le critére de sur-réplication
est vérifié pour ’ensemble des vecteurs limites. Les ramifications concernant

des modeles plus généraux suivent.

Dans le troisieme chapitre, nous proposons une approximation du prix
d’options a pay-off assez général, sans cotits de transaction, grace a une
approximation du prix du sous-jacent. Ce prix peut étre conduit par un
processus avec diffusion tres générale. Une erreur théorique est calculée grace

a I'erreur quadratique moyenne de l'approximation.

Les formules de Black—Scholes [2] sont le point de départ des méthodes
de recouvrement de 'option européenne. Dans ce marché, I’évolution du prix
du sous-jacent est supposée suivre un mouvement Brownien géométrique, ou
la volatilité est constante. Malheureusement les tests statistiques rejettent ces
modeles et des processus de diffusion plus élaborés apparaissent. Différents
modeles avec volatilité locale sont étudiés, les volatilités smiles et skew [11, 5],

les volatilités stochastiques [21], etc.

Avec la complexité des équations différentielles stochastiques générées
par ces modeles, des simulations numériques s’imposent. Dans [4, 29], on
utilise la méthode de Monte-Carlo pour des schémas aux différences finies.
En particulier le schéma d’Euler, intuitif et simple, souffre d’'un manque de

1/2

précision et converge, sans hypotheses fortes, a 'ordre n="/=. Les schémas

plus rapides deviennent, quant a eux, bien moins transparents.

Dans les articles [13, 14|, des schémas utilisant les itérations de Picard
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permettent d’approcher le processus de diffusion par étapes successives grace
a une fonction déterministe. Cette méthode est suivie d'un développement
en polynomes d’Hermite et de I'itération d’intégrales stochastiques grace a la
formule de chaos de Wiener—Ito. Cependant il n’est pas clair que les termes
au-dela des trois considérés soient aisément calculables et de fait, I’acuité de
I’approximation est illustrée par des simulations numériques mais n’est pas

théoriquement calculée.

Nous proposons, a la suite des itérations de Picard, une approximation
des diffusions successives grace a la discrétisation du mouvement Brown-
ien. Nous sommes alors confrontés a la difficulté du manque de précision de
I’approximation. Lorsque nous arrétons les itérations a l'ordre 2, le résultat
tient son intérét du fait que le processus approximant reste continu pour
éviter la perte de vitesse théorique d’ordre n~'/? due a la discrétisation
de l'intégrale stochastique. Puisque les pay-offs de l'option “européenne”
(généralisée) ne nécessitent que le calcul a certaines dates discretes, il est
possible d’utiliser des simulations type Monte—Carlo. Par conséquent ce
schéma, aussi simple que le schéma d’Euler, offre une vitesse de convergence
plus rapide que pour ce dernier sans hypothese restrictive, des lors que 1'on

accepte une erreur systématique dans 'esprit de celle des schémas de [13, 14].

Dans le cas ou nous considérons davantage d’itérations, notre approxi-
mation est de 'ordre n=/2, perdant I'erreur systématique précédente. Cette
partie d’étude s’ouvre sur plusieurs horizons de recherche, en particulier
sur la question d’une approximation plus élaborée du processus de diffu-
sion itéré pour obtenir de meilleures vitesses de convergence ou encore sur

I’approximation d’autres processus tel le modele C.I.R..
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Notations

Thoughout the text, we shall use the following notations.

e for a vector v = (v°, v}, ,09) € RIF4
lv| := max |v'[;
0<i<d

e for vectors v, w € R*+¢

d
vw = Z v'w';
i=0
e the canonical vectors of R? are denoted by e and 1 := (1,...,1).
e the max-norm ball of radius € with center at 1 := (1,...,1) is denoted

by 1 + U., where

U.:={r ¢ R*: max|2’| < ¢},
(2

e for a matrix ¢ = (¢V)1<; j<a
e e
and the notation ¢’ stands for the transposed matrix;

e for a sequence of random variables ({"),en the symbol O(n~%) means
that there exists a positive constant x such that n%|{"| < k a.s. for any

n;

17



e D(RY) is the Skorohod space of the cadldg functions z : [0,7] — R?
while C(R?) denotes the space of continuous functions taking values in

R? with the uniform norm

||#]lz = sup |z].
t<T

e for a process H, we write in short

t
H-W,:= / H,dW,;
0

e for a random variable (, we set the LP-norm
1
1<Hl = (BI¢P)

For a sake of simplicity, we use the following abuse of notation: from line
to line, a constant K,k or C' may designate different constants which are
independent of any variables except, may be, fixed parameters of the problem
like the maturity date 1" for instance. Otherwise, we may use the notation
C,, when the constant C, depends on a parameter m but may also change

from line to line.
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Part 1

Arbitrage Theory
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The arbitrage theory for financial markets with proportional transac-
tion costs is one of the most advanced and interesting domains of mathe-
matical finance. It success is due to a geometric viewpoint which provides
an appropriate language to attack problems. The approach based on convex
geometry not only makes arguments much more transparent comparatively
with traditional, “parametric”, modeling but also allows to put problems in
a more general mathematical framework. To the date, for the discrete-time
setting there is a plethora of criteria for various types of arbitrage, see Chap-
ter 3 of the book [24]. In a surprising contrast, for continuous-time models
only a few results on the no-arbitrage criteria are available. In the recent
paper [19] Guasoni, Résonyi, and Schachermayer established an interesting
result in this direction. They formulated the question on sufficient and nec-
essary conditions for the absence of arbitrage not for a single model but for
a whole family of them. Namely, they considered two-asset models with a
fixed continuous price process and constant transaction costs tending to zero.
In a rather spectacular way, the resulting no-arbitrage criterion happens to
be very simple: the N A“-property holds for each model if and only if each
model admits a consistent price system. The advantage of such a formulation
is clear: topological properties, common in this theory, are not involved. It
looks very similar to the no-arbitrage criterion for the model with finite €2,
see Th. 3.1.1 in the book [24] and Th. 3.2 in the original paper [25].

Apparently, this result merits to be put in the mainstream of the theory
of financial markets with transaction costs. In the present note we extend,
using the now “standard” geometric approach, the main theorem of [19] to

the case of multi-asset models. The paper [19] serves us as the roadmap.

Cette partie est issue de l'article [17], coéerit avec Youri Kabanov.
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Chapter 1

The Main Result

1.1 Main Result

Let ¢ €]0,1] and let K** := R4(1 + U.), where we recall the notation
U. = {z € RY: max; 7’| < e}. That is, K¢* is the closed convex cone in R¢
generated by the max-norm ball of radius ¢ with center at 1 := (1,...,1).
We denote by K¢ the (positive) dual cone of K=*.

Let (Q, F, (Ft), P) be a stochastic basis and let S = (S;):<r be a con-
tinuous semimartingale with strictly positive components. We consider the

linear controlled stochastic equation
dVi =VidY! +dB;, Vy=0, i<d,

where Y is the stochastic logarithm of S?, i.e. dY; = dS!/S!, Yi = 1, and
the strategy B is a predictable cadlag process of bounded variation with
B € —K*. The notation B stands for (a measurable version of) the Radon—

Nikodym derivative of B with respect to ||B||, the total variation process of
B.

A strategy B is e-admissible if for the process V = VB there is a
constant x such that V; + kS; € K¢ for all t < T. The set of processes V'
corresponding to e-admissible strategies is denoted by AZ® while the notation

ALe(T) is reserved for the set of random variables Vp, V € Al*.
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Using the random operator
Gt (), o) i (2 /S, S0

define the random cone IA(f = ¢, K° with the dual [A(f* = ¢,'K**. Put
V, = ¢,V,. We denote by MT(K=*\ {0}) the set of martingales Z such that
Z, € K\ {0} for all t < T,

Theorem 1.1.1 We have:

ATE(TYNLO(REL, Fr) = {0} Ve €l0,1] & MI(K=\{0}) #0 Ve €0,1].

The strategy of the proof of Theorem 1.1.1.

To prove the nontrivial implication (=) we exploit the fact that the
universal N AY-property holds for any imbedded discrete-time model. Us-
ing the criterion for N A"-property we deduce from here in Section 1.2 the
existence of a “universal chain”, that is there exists a sequence of stopping
times 7, increasing stationary to T and such that M7 (K= \ {0}) # 0 for
all € €]0,1] and n > 1. In an analogy with [19], we relate with this “uni-
versal chain” functions F'(¢), i < d, and check that there is, for each i, an
alternative: either F* = 0, or F(0+) = 1. This is the most involved part of
the proof isolated in Section 1.3. If all F* = 0, the sets M (K= \ {0}) are
non-empty and we conclude. If there is a coordinate i for which F*(0+) = 1,
there exists a strict arbitrage opportunity, see Section 1.4. In Section 2.2 we

discuss the properties of richness of the set of consistent price systems.

1.2 Universal Discrete-Time N A“-property

We say that the continuous-time model has universal discrete-time N A"™-
property if for any ¢ > 0, N > 2, and an increasing sequence of stopping
times oy,...,0y with values in [0,7] and such that o, < 0,41 on the set
{0, < T}, we have that

N
LR, Fr)n Y L(—¢,, K, F,,) = {0}.
n=1

22



Proposition 1.2.1 Suppose that the model has the universal discrete-time
N A" -property. Then there is a strictly increasing sequence of stopping times
T, with P(1,, <T) — 0 as n — oo such that for any N and € €]0,1] the set
MY (K= \ {0}) is non-empty.

Proof. Define recursively the increasing sequence of stopping times:

0-0:()7

on = o, =inf{t >0, : méij(\ln Si—InS. | >In(l+¢/8)},

for n > 1. This sequence has the following property which we formulate as

a lemma.
Lemma 1.2.2 For any integer N > 1 there exists Z € MSY (K< \ {0}).

Proof. To avoid a new notation we suppose without loss of generality that
S = 5. Let X,, := S5,,. By our assumption and in virtue of the crite-
rion for the N A"-property there is a discrete-time martingale (M,,),<y with
M, € L=(¢, K=/* \ {0}), see Th. 3.2.1 in [24] or Th. 3 in [27]. Put
Z, = E(My|F,) and Z, := ¢,Z,. Let us check that Z € MZY (K= \ {0}).
On the set {t € [0y,—1,0,]}

E(¢10,, Zo, | Fr)-
Note that ' g
Sf,n f,n .S
(14+¢/8)2 < 5 S’ SZ - < (14¢/8)%
Therefore,

(1+¢/8)°E(Z,,|F) < Zi < (1+¢/8)°B(Z,, | F).

But E( on|Ft) = E(bo, My|F;) € cone (1 + Uy ) \ {0}, i.e. the components
of E(Z,,|F;) take values in the interval with the extremities A(1+&/4) where
A > 0 depends on n and w. Thus,

l—e<(1+¢/8)2(1—¢/4) < ZI/N<(1+¢/8)%(1+¢/4) <1+e.
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This implies the assertion of the lemma. O

To finish the proof of the proposition, we proceed exactly as at the end
of proof of Th. 1.4 in [19]. Namely, we take a sequence of ¢ | 0. For each
n > 1 we find an integer IV, ;, such that

P(o,  <T) <2 "h,

Without loss of generality we assume that for each k the sequence (N, x)n>1
is increasing. The increasing sequence of stopping times 7, := ming>q af\’;mk
converges to T stationary: P(7, < T) < 27". Applying the lemma with e
we obtain that for the process S stopped at afv’“n’k there exists an £;-consistent
price system. The latter, being stopped at 7, is an £;-consistent price system
for S™. O

We call the sequence (7,) which existence was established above uni-

versal chain.

1.3 Properties of Universal Chains

We explore properties of a universal chain assuming that P(7, < T') > 0 for

all n.

Let us introduce the set T of stopping times o such that P(oc < T) > 0
and, for some n, the inequality o < 7, holds on {o < T'}. This set is non

empty: by the adopted hypothesis it contains all 7,,.
Let o € 7r and let n be such that ¢ < 7,, holds on {¢ < T'}.

We denote by Mi(c,e,n) the set of processes Z such that:
(i) Z=0on{o =T},

(ii) Z is a martingale on [0, 7,], i.e. E(Z,,|Fy) = Zy for any stopping time
¥ such that o <9 < 7, on {o < T};

(i) Z(w) € int K&*(w) when o(w) < T and t € [o(w), 7(w)];
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(iv) BEZ: Igery = 1.

Note that the process Z = ZI{KT}/EZ;I{KT} belongs to M(a, e, n)
provided that Z € M (int K&*).
Let F'(e) := sup, e, F'(0,€) where
Fi(o,e):=lim inf EZ! I om.
(0,¢€) := lim serf B2y Iy
We also put

(o,e,n) = inf  E((Z /Z) I oy |Fy).
Ploem)=es it B(Z,/Z) )| F)

Lemma 1.3.1 For any Z € M¥(o,e,n) there is a process Z € M(o,e,n-+1)
such that Z™ = Z™.

Proof. To explain the idea we suppose first that Z € M*(o,&’,n) for some
¢’ <. Take § > 0 and a process Z € M'(0,8,n + 1). Define the process Z

with components '
_ ) J
77 = ZJI[O,Tn[ + ~§n ZJI[Tn,T]-

Note that
0Z =M1 4ul, . T4+ud), te€ o)
0iZy = MNA+al, . 1+ad), b€ [T Tusa],
where max; [u/| < &, max; |@/] < and A, X > 0. It follows that Z belongs
to M'(0,&,n + 1) with

(1+¢)(1+6)
1-0

Since & < ¢ for sufficiently small 6 = §(¢’), the result follows.

— 1.

g =

In the general case we consider the partition of the set {o < T} on
F,, -measurable subsets Ay, on which the process Z evolves, on the interval
[0, 7], in the cones K*, where &), := (¢ — 1/k) V0. As above, take processes
JARS Mi(o, 0, n+1) with 6, = §(e;). Then the process Z with components
Z

=52 Ladir

77 = ij[()jn[ + Z
k
meets the requirements. O
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Lemma 1.3.2 The sequence (f'(0,e,n)),>0 is decreasing and its limit
fi(o,e) < Fi(e).

Proof. By Lemma 1.3.1 for any Z € M(o,e,n) there is a process
7 € Mi(o,e,n + 1) such that Z™ = Z™. Using the martingale property of
7 we get that

E((Z;,/Z) z<ny|Fo) = E((Zy,)Z) iz, <1y | Fo)
> E(Z;,.,/ 2z <ry| o).

— Tn+1

It follows that f*(o,e,n) > f'(o,e,n + 1).

Suppose that the claimed inequality f(o,e) < F'(¢) fails. Then there
exist a non-null F,-measurable set A C {o < T} and a constant a > 0 such

that for all sufficiently large n
fi(o,e,n)Ix > (F'(e) + a)l,.

Define the stopping time o4 = oly + T14c and note that for any
Z € M¥(o,e,n) the process ZI4/EZI, is an element of M%(04,¢,n). Since
E(&|Fy)Ia = E(§|Fs,)1a, we have the bound

fi(on,e,n)Is > fi(o,e,n)14.
Thus, for any Z € M¥(c4,¢,n) and sufficiently large n
EZ; Iin,<ry = EZ,, E(Z;, /2, ) racrt| Fos) 2 F'() +a

in contradiction with the definition of F'(e). O

Lemma 1.3.3 Let o € Tr be such that 0 < 7,, on the set {o < T} and let
,0 > 0. Then there are n > ngy, I € F, with P(T') <4, and Z € M'(0,¢&,n)
such that Z. = n := Iiyery/Elgy<ry and

, I,
E(Z! It oyl Fy) < =<1

Fi(e) + &) Ire + Ir].
< By (') 0+ L]
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Proof. Recall that the essential infimum & of a family of random variables
{£€*} is the limit of a decreasing sequence of random variables of the form
EMNE2N L ANE m — oo. Thus, for any a > 0 the sets {{** < €+ a}
form a covering of (2. Using the standard procedure, one can construct from
this covering a measurable partition of Q by sets A* such that &% < & 4 a

on AF.

Thus, for any fixed n > ng there are a countable partition of the set
{o < T} into F,-measurable sets A™* and a sequence of Z™* € Mi(a,e,n)

such that
B((Z24 ) Z72%9) [, oy | Fo) < f'(0,2,m) + 1/n on A™,

Put, for t € [0, 7],

n - 1 n,k
Zt = HZWZt7 ]An,k.
k=1 9

Then Z" € Mi(o,e,n), Z™ =7, and

o o Iy @-
E(Zﬂr}j[{Tn<T}|FU) = WE((Z:'L,;l/n)[{Tn<T}’~FO') S o<t} [f (Ua g, n) + 1/”]
EI{O’<T}

Note that fi(o,e,n) + 1/n decreases to fi(o,e) < Fi(¢). By the Egorov
theorem the convergence is uniform outside of a set I' of arbitrary small

probability. The assertion of the lemma follows from here immediately. O

Proposition 1.3.4 For any €1,e9 we have the inequality
F'(e1)F'(e2) > F'(1+e1)(1 +e9)/(1 —&2) — 1). (1.3.1)

Either F' =0, or there is ¢ > 0 such that Fi() > e~ for all sufficiently

small €.

Proof. Fix § > 0 and a stopping time o < 7,,, on the set {oc < T'}. According

to the above lemma there are n > ny and Z' € M%(0,&1,n) such that

EZM <y < F'(e1) 4 0.
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Using the same lemma again (but now with 7,, playing the role of o), we
find m > n and Z* € M'(7,, €2, m) with Z2' = I, . /EI{;, <} such that
outside of a set I' € F, with P(I') < § we have the bound

A I, ,
B(Z3 Lirery|Fr) < 7 [(F'(e2) + ) Ipe + I,
" EIT T
{mn<T}
Define on [0,7,] the martingale Z with Z/ = ZY on [o,7,] and

zZl = ijZig/ng on [Ty, Tml, 5 =1,...,d. Then
o Z =N+t 14w, te o,
G Z2 = N1+, 14w, t € [T, Tl

where max; [u¥| < g7, max; [u¥| < ey and A}, A? > 0. It follows that
Z e Mi(o,(14+e)(14e)/(1 —e5) — 1,m).

Note also that

EZi Iip.ery = P(ra <T)EZZ Z} 1, <1y
< Pty < T)EZ ey B(Z2 Lz <y | Fr)-

Hence,
EZ Iiz,<ry < (F'(e1) + 6)(F'(e2) + 0) + EZ} I 17, <y I,
The inequality (1.3.1) follows from here.

Note that for €1, ey €]0,1/4]

(1+€1)(1—|—€2) | — €1+2€2+€1€2

1—82 1—62

S 4(81 + 82).

Since F is decreasing, we obtain from (1.3.1) that
Fi(€1)Fi(€2) Z FZ<4(€1 + 62))

for all e1,&, €]0,1/8]. Using Lemma 1.3.5 below with f = In F", we get the
needed bound. O
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Lemma 1.3.5 Let f:]0,20] — R be a decreasing function such that
f(@1) + f(z2) = f(d(z1 + 22)), Vg, 29 < o. (1.3.2)

Then there is ¢ > 0 such that f(z) > —ca'/?® for x €]0, zq).

Proof. In the non-trivial case where f(zp) < 0, the constant
k= —infue)ag/8,20) () /2 is strictly greater than zero. Iterating the inequal-
ity 2f(z) > f(8x) we obtain that 2" f(x) > f(23"z) for all z €]0,273" x| and

all integers n > 0. Therefore,

f(x) > 22nf(23n1‘) _ 1x2/3 <23(n+1))2/3 f(23”m)'

To 23ny

r 23n g, 470

For o €]273(" Vg0, 273" 2], the right-hand side dominates —cz =%/ with the
constant ¢ = kxy/®/4. Thus, the inequality f(z)/z > —cx~2/3 holds on

10, x0]. O

1.4 Proof of Theorem 1.1.1

(<) The arguments are standard.  For any ¢ € ¢pAL(T) and
Z € MI(K=\ {0}) we have EZr¢ < 0 and this inequality is impossible
for ¢ € L°(RYL, Fr), £ # 0.

(=) In view of Proposition 1.2.1 we need to consider the case where the
universal chain is such that P(7, < T) > 0 for every n and we can apply the
results on functions F*. Now the claim follows from the assertions below (cf.
Prop. 3.7 and Th. 3.7 in [19]).

Proposition 1.4.1 If >, F'(e) = 0 for all ¢ €]0,1], then the set
M{(f{f* \ {0}) is non-empty.

Proof. Fix ¢ €]0,1] and define a sequence of ¢; | 0, such that &y 1 & where
g1 = €1,
al 1+ Ek

EN = (1+€1)H1

k=2

~1, N>2.
— €L
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We extend arguments of the proof of Proposition 1.3.4 in the following way.
Namely, we construct inductively an increasing sequence of integers (nx)n>o
with ng = 0 and a sequence of Z™) € M{™ (Ke*\ {0}) such that for
N =kd+r where 0 <r<d-1

EZMN ™ g, ey <27V (1.4.3)

Since F'(g) = 0, Lemma 1.3.3 ensures the existence of Z!' € M!(0,&1,n1)
with
11 1
EZTnl‘[{Tn1<T} <27
Put ZM .= Z'. Take now ¢; > 0 such that

EZ\ I, cryls <27°

Tn 1

for every A € F, ~with P(A) < ¢;. Using again Lemma 1.3.3 (now for
the second coordinate), we find an integer ny > nq, a set I'} € Fr,, with
P(Ty) < 6 A 273 and a process Z?> € M?*(7,,,69,m9) such that
Z22 [{Tn1<T}/EI{Tn1<T} and

Tnl
[{Tn1<T} -3
B(Z2 T, ery| o) < 2D 95 4 gy
EI{Tn1<T}
Put Z27 = ZM7 on [0,7,,] and 227 = szﬁ,llij/sz on |Tuy, Tnyls

j=1,...,d. Note that Z® € M (¢ cone {1 + U} \ {0}) and

EZ( 2 I{Tn2<T} - P(Tm < T)Ezzi Z£i32]{rn2<T}
< Py, < T)EZ§22I{Tn1<T}E(Zfi Iir, <my | Fr) <272

We continue this procedure passing at each step from the coordinate j to the

coordinate j 4+ 1 for j < d — 1 and from the coordinate d to the first one.
Since P(r, = T) 1 1, there is a process Z such that Z™~ = ZW)

for every N. The components of Z are strictly positive processes on [0, 7.

The condition (1.4.3) ensures that they are martingales.  Therefore,

Z € MI(K=\ {0}). O

Proposition 1.4.2 Suppose that Y F'" # 0. Then there is € €0, 1] for which
the property N AY® (the notation is obvious) does not hold.
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Proof. At least one of functions, say, F'!, is not equal identically to zero.
According to Proposition 1.3.4, we have the bound F'(g) > e==""" for all
sufficiently small €. Hence, there is a stopping time ¢ dominated by certain
Tpo ON the set {o < T} such that

) _eel/3
inf EZ'I > e
ZeM(oe,n) o A <T}

for all sufficiently large n. Then for every Z € M!(c,e,n) we have that

—cel/
BE(Z: Ipeqy| Fp) <1 — e
Let us consider the sequence of random variables " € L°(R9, F,, ) such that

the components £"? = - - = " = (0 and

1/3

& = —Igery + (1= e ) igerm oy

Clearly,

1/3

E(Z.,&"F,) < —Ipery + (L — e ") E(Z} It =1y | Fo) o<y < 0.

We have the inequality £Z, " < 0, and, therefore, by the superhedging
theorem (see Th. 3.6.3 in [24]), £" is the terminal value of an admissible
process V = VB in the model having ¢ and 7, as the initial and terminal
dates, respectively. Note that on the non-null set {o < T} the limit of £™
is strictly positive. To conclude we use the lemma below which one can get
by applying, on each interval [0, 7,,], the Komlés-type result (Lemma 3.6.5 in
[24], Lemma 3.5 in [23]) followed by the diagonal procedure. O

Lemma 1.4.3 Suppose that " = ‘772 where V' +1 € K¢ and & — € a.s.
as n — oo. Then there is a portfolio process V such that V +1 € K° and
E=Vr.
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Chapter 2

Financial Application

2.1 Comments on financial applications.

It is easily seen that for the case d = 2 our model is exactly the same as
that of [19] and our theorem is Th. 1.1 therein. The only difference is that
we use the ”old-fashion” definition of the value processes. The reader is
invited to verify that one can use the more sophisticated one as defined in
[24] (following the original paper [6]) and get the same result. In the financial
interpretation the cones K° and K¢ are the solvency regions in the terms of
the numéraire and physical units, respectively, V' and V are value processes,
elements of Mg(f( =\ {0}) are e-consistent price systems, etc. The condition
“AFE(T) N L°(RY, Fr) = {0} for all £” can be referred to as the universal
N A" -property.

In the case d > 2 the considered cones K® and K** do not correspond
to a financial model (though sometimes the traditional terminology is still in
use). What is important, our result can be applied to a wide class of finan-
cially meaningful models, even with varying transaction costs. To see this,
let us consider the family of models of currency markets with the solvency
cones given by the matrices of transaction costs coefficients A® = (A7) as

follows:
K<AE) = Cone{(l + )\zE])el - eja €, 1 S 27] S d}
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Suppose that for every e €]0,1] there is & €]0, 1] such that K(A®) C K¢
and, vice versa, for any ¢ €]0, 1] there is &' €]0,1] such that K% C K(A%).
It is obvious that under this hypothesis Theorem 1.1.1 ensures that for the
currency markets the N A" (A®)-property holds for every € €]0, 1] if and only
if an e-consistent price system does exist for every ¢ €]0,1]. The hypothesis
is fulfilled if A — 0 and the duals K*(A®) have interiors containing 1, e.g.,
in the case where all Af; = ¢. Adding some extra arguments one can easily
get the following corollary of the main theorem for the family of models with

the efficient friction condition.

Proposition 2.1.1 Suppose that A° — 0 and int K*(A®) # 0 for alle €]0,1].
Then

NA®(A®) Ve€lo,1] < MI(K*(A)\{0})£0 Ve e]o,1].

Proof. (=) Let § €]0,1] and w € K*(A°). Then w'/wi < 1+ X}, — 1 as
§ — 0. It follows that K*(A%) C K% for some &' €]0,1]. For the primary
cones the inclusion is opposite. Thus, the assumed no-arbitrage property
implies the no-arbitrage property in the formulation of Theorem 1.1.1. Take

now ¢ €]0, 1] and a vector v € int K*(A®) N U;. We define the operator

Choose 0 €]0,1] such that v,(1 + Us) < K*(A®). By virtue of
Theorem 1.1.1 there is Z € MT(K% \ {0}). The process 1,7 is a mar-
tingale. Since 1h,Z = ¢th,¢~'Z, it is an element of MT(K*(A%)\ {0}).

For the proof of the reverse implication see the beginning of
Section 1.4. O

2.2 Richness of the Set of Consistent Price
Systems

The following condition of “richness” of consistent price systems plays an

important role in the continuous-time theory of financial markets with trans-
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action costs.

B Let £ € LO(RL F). If Z,£ > 0 for all Z € MT(K**\ {0}), then
¢ € K7 (as.).

Simple argument (see, e.g., [24], 3.6.3) shows that B is fulfilled for the
model with constant transaction costs if S admits an equivalent martingale
measure. [ts minor changes leads to the next result which seems to be useful
interesting in the setting of families of models with vanishing transaction

costs:

Proposition 2.2.1 Suppose that MT(K=\ {0}) # 0 for all = €]0,1]. Then
the condition B¢ holds for all ¢ €0, 1].

Proof. Take w € int K** with |w| = 1. For all sufficiently small § > 0 we
have the inclusion w + Us C K=*. Take Z € MZ (K% \ {0}) and consider the
martingale Z¥ = (w'Z',... w'Z%). Note that ¢,Z, = p;Z; where p, > 0 and
Z; € 1+ Us. Then ¢, 2" = pyiiy where @ = wZ!. According to our defini-
tion, w, takes values in w + Us C K=*. Therefore, Z* € MOT(I?E* \ {0}) and
Z%¢ > 0. The inequality implies that @;m, > 0 where n,(w) = ¢; *(w)&(w).
Letting 6 — 0, we obtain that also wn, > 0. The latter inequality holds for
all w € K**. Hence, ¢; '¢ € K° and £ € [/(\'f O
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Part 11

Limit Behavior of Option
Hedging Sets under

Transaction Costs
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Though continuous trading is a part of the standard paradigm of mod-
ern finance, in practice, usually, portfolio revisions are done along a discrete—
time greed. In the case of proportional transaction costs the agents know the
order of total number of transactions and agree between them on a transac-
tion costs coefficient: for more frequent revisions one can expect a smaller
level of the latter. It is well-known that the straightforward discrete-time
approximation for the option price (suitably defined) may not lead to a ”the-
oretical” price generated by the continuous-time model. One of the remedy
is to modify the model as was suggested in the pioneering work by Leland
[31] and studied afterwords by a number of authors (see the book [24] and
references therein and also more recent papers [8], [32]). In the Leland-
Lott model the transaction costs are decreasing with the rate n~/2. The
terminal values of portfolios approximate the pay-off of the option and the
limit of their initial values is declared to be a fair option price accepted by

practitioners as realistic.

In [30] Kusuoka considered a sequence of discrete-time two-asset mod-
els where the transaction costs are also decreasing with the rate n='/2. He
calculated the limit of super-replication prices which happens to be differ-
ent from that of the limiting continuous-time model based on a geometric

Brownian motion.

The aim of this paper is to place the Kusuoka approach in the now stan-
dard geometric formalism of the theory of markets with transaction costs as
presented in [24]. The main idea of the theory is to consider all objects as
vector-valued: initial endowments, portfolios, contingent claims etc. and ap-
peal to "physical units” in conjunction with quotes in terms of the numéraire.
”Vectorization” of the theory fills the gap between the approach of classical
mathematical finance (where everything is expressed in money) and that of
mathematical economics (where the vectors of commodities can be consid-
ered as the primary objects). Accordingly, the initial endowments which
allows the investor to run a self-financing portfolio to super-replicate a con-
tingent claim is a subset of R'*¢ where d is a number of risky assets. In this

mainstream, the contingent claim of interest is a quantity of physical units.
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The hedging theorem, which is a fundamental result of the theory, gives a
dual description of this set in terms of the so-called consistent price systems,
i.e. martingales evolving in the dual to the solvency cones in physical units.
A sequence of models generates the sets of hedging endowments and the aim

is to find a limit for a sequence of these sets.

In the following chapter, we focus on models of "stock” market where it
is assumed that all transactions pass through the money. Consequently, we
consider a rather specific sequence of simple polyhedral conic models given by
transaction costs penalizing direct transactions between assets. In the case
d = 1, it is essentially the same as that of Kusuoka. The minor difference is in
the use, to express the price processes, of the ”stochastic” exponential instead
of classical one. We prove that the sequence of sets I'" of hedging endowments
converges to a limit in the sense of closed topology and we describe the limit.
This makes clearly the difference between our result and that of [30]: Kusuoka
considered the limiting behavior of z,, where (z,,0) € R? are the points
laying in the intersection of the boundary of I'" with the axis of abscissae
(that is, corresponding to the minimal initial endowments in money and
zero in stock), while we study the limiting behavior of the whole sets. In
the multidimensional setting, for a sequence of models given by a general
matrix with transaction costs coefficients of the form n~%2A, our theorem
combined with dominance considerations gives bounds for LiI™ and LsT™,
the topological liminf I'™ and lim sup I'”. The precise limiting behavior of I

in this case remains an open problem.

Cette partie est issue des articles [15, 16].

37



Chapter 3

The Multidimensional

Mainstream

3.1 Model and main result

We consider a sequence of models of stock market with traded numéraire
("money”) and d stocks. All the orders are "buy ith stock” or ”sell ith
stock”, that is the transactions pass through money. The operations on the
1th stock are charged with the same proportional transaction cost coefficients
A", Namely, increasing the value of the ith position in one unit of the
numéraire leads to diminishing in 1+ A\™ the money account while decreasing
the ith position in 14 \™ unit of the numéraire increases the money account
in one unit. We fix as transaction cost parameter the d-dimensional vector

A €]0, 00[® and the sequence
A= \/T/n.

Price processes

We define in this subsection continuous-time models whose price pro-
cesses are piecewise constant on the intervals forming uniform partitions

of [0,7]. Of course, these models are in one-to-one correspondence with
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discrete-time models. Fix, as the basic parameters, vectors p € R,

o €]0,00[? and put, for n > 1,
w" = pT/n, o" =oy/T/n.

We consider, on some probability space (€2, F, P), a double indexed
family of i.i.d. random variables {&i; k& < n, 1 < i < d}, where &, take
values in {—1,1} and P(¢, = 1) = 1/2. Put

tr =t} == kT/n.

Define the process Sp = (Sp0, S0 ... Srd) where Sp = 1 := (1,---,1),
S0 =1 and, for i > 1,
k

m=1
for sufficiently large n. We associate with this process its natural filtration
F» = (F") where F := o{S, r < t}. In this setting the stochastic basis
(Q, F,F", P) together with the process S™ models the price evolution of one
non-risky and d risky assets, the latter measured in the non-risky one serving

as the numéraire.
Transaction costs
The solvency region is defined by the cone
K" = cone {(1 + )\m)ei — e (1 + )\m)eo —€, 1<i< d} ,

where, consistently with current notations, €° is the first canonical vector of

R*4. Its (positive) dual cone is

1 i
K”*:{weRHd-— =

: . <14+ N 1<i<dp.

The dynamics of the portfolio value is given the (d+ 1)-dimensional piecewise
constant process V' defined as the solution of linear controlled stochastic

equation
Vo=ve K" dVi=V'dS"/SM +dB!, 0<i<d,
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where the components of the control B (the strategy of portfolio revisions)

are n
B'= Z Bliﬂ]tk—1,tk}7
k=1

where Bj is F{' -measurable and ABy = By, — B;,_, € L°(—K", F]'_).
The set of such processes V' with initial value v is denoted by A7 while the

notation A(T) is reserved for the set of their terminal values V.

Using the diagonal random operator
¢? : (xoaxla"' de) = (JIO,.TI/S?I,"- 7xd/S?d)

define the random cone }?f = ¢p K™ (describing the solvency region in terms
of physical units) with the dual l?t”* = (¢7)"' K™ which can be represented
in a more explicit way as

W

Tk 1 ni ni ni .
Kt —{wER1+d:mSt §E§(1—I—)\ )St y 1§Z§d} (312)

Hedging sets

Our aim is to price a European option which pay-off expressed in term
of physical units is of the form F(S™). The function F : D(R*4) — R
is supposed to be bounded and continuous in the Skorohod topology on
D(R4). Let I'™ be the set of initial endowments from which one can start a
self-financing portfolio process with the terminal value dominating the con-

tingent claim F'(S™), i.e.
" ={veR™: (¢})7'F(S") € AYT)}.

Let @ = Q* be the set of probability measures Q on {1} x C(R?) (en-
dowed with the Borel g-algebra) which are the distributions of the continuous
martingales U; = (1,U},--- ,UZ), t € [0, T] such that

U' = (L) = 2D

Y
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where L are square integrable continuous martingales with the absolute con-

tinuous characteristics satisfying

max{c'(c" —2)\"),0} < d<d[; )

< o'(o" +2)\Y), (3.1.3)
(L', L) =0, i# . (3.1.4)

We send the reader to [22], Chapter 1 for more detailed information on

quadratic characteristics and notations.

Remark 3.1.1 Without loss of generality we may assume that the processes
L' are stochastic integrals with respect to a d-dimensional Brownian motion.
Indeed, according to [28], Theorem 3.4.2, there is a filtered probability space

(Q, F,F, R) with a Brownian motion B and the matriz-valued process g such
that R-a.s. we have L' = ¢* - B with

t
<Li7Lj>t:/ (99')"ds.
0
We put

[:=T(\):= {v cR™: sup E? (wpF(w) —1v) < O}.
Qeo*

The reference to A will be omitted when there is no ambiguity.
Convergence of sets and main result

Recall basic definitions concerning the topology of closed convergence

on the space of closed subsets of R, see, e.g., [1], [20].

Let E™ be a sequence of subsets of R!*?. Then:

(i) A point v € R belongs to the topological lim sup, denoted Ls E,,,

if for every neighborhood V' of v there are infinitely many n with
VNE™# (.

(i) A point v € R belongs to the topological lim inf, denoted Li E,,,
if for every neighborhood V' of v, we have VN E™ # () for all but finitely

many n.
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(iii) If Ls E, = Li E, = E, then the set E is called the closed limit of the

sequence E£".
The set F is the closed limit of E™ if the following properties hold:

(i) For any v € E, there exists a sequence of vectors v" € E™, such that

v — 0.
(ii) For any convergent subsequence of a sequence of vectors v € E™, the

limit v belongs to F.

The main result of the paper is the following statement.

Theorem 3.1.2 The set I' is the closed limit of the sequence of the sets I'™.

3.2 Hedging theorem and weak convergence

We denote by M™ the set of normalized consistent price systems for the nth
model, i.e. of the F"-martingales Z such that Z, € K \ {0} and 20 = 1.
According to [24], Chapter 3,

" ={veR": vZ, > EZpF(S") forall Z € M"}. (3.2.5)

This identity is the so-called hedging theorem claiming that one can super-
replicate the contingent claim if and only if the value of the initial endow-
ments is not less than the expectation of the value of the contingent claim
whatever a consistent price system is used to the comparison. The theorem
holds under the assumption of the existence of a strictly consistent price

system, fulfilled for our models.

We obtain our convergence result for I'" by using the representation

(3.2.5) and the theory of weak convergence of measures.
Tightness

Let us consider a sequence Z"™ € M™. The strictly positive martin-

gale Z™ is the density process of the probability measure Q" = Z7°P and

42



the components of the processes M™ := Z"/Z™ are strictly positive Q"-
martingales with respect to the filtration F”. We show that the sequence
M™ is QQ"-tight or, more precisely, that the sequence of laws Z(M"|Q") is
tight.

To simplify formulae we use for the averaging with respect to Q" the
symbol E™ instead of E%".

In view of (3.1.2)

1
L+ A

SM< MM < (1 + A S™, 1<i<d. (3.2.6)

Let us define the piecewise constant processes L" (”stochastic loga-
rithms” of M™)
. — )

which jumps only at the points ¢, £ > 1. Namely, we have:

ALY = (M)

th—1

= exp(Aln M) — 1.

)flAMZZL' — (an

tk—1

)THM - M) (3.2.7)

Lemma 3.2.1 We have the following asymptotics:

[Aln M™|p = O(n~Y?), (3.2.8)

1AL [r = O(n™?), (3.2.9)
[Aln M" — AL"||p = O(n™"), (3.2.10)
sup |[E"[AIn M |FE )| = O(n™). (3.2.11)

k<n

Proof. Directly from the definition (3.1.1) of the process S™ we have the

bounds
In(1+p"—=0")<AISY <In(l14p"+0"™), i>1,

allowing us to derive from (3.2.6) the inequalities

—2In (14+A™)+In (14+p"—0™) < Aln M < 2In (14+A™) +In (1+p"+0™),
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implying (3.2.8) in virtue of the assumed asymptotics for coefficients. The
relation (3.2.9) follows from (3.2.7) and (3.2.8).

Since
®1(2) :=In(1+2) — 2 = O(z?), z— 0,

the relation (3.2.9) implies that
1@L(AL™)[|r = O(n7).

Noting that
Aln M = ALY + @ (ALY),

and taking into account that
E"ALY|F ] =

we obtain (3.2.10) and (3.2.11). O

Lemma 3.2.2 Let m > 1 be an integer. Then
supE”||M"HT < 00, supE"HlnM"HT < 00. (3.2.12)
There exists a constant k such that for any n and | < n we have the bound

E™ sup | (M™)

k<n—l

— (M), [P < K(U/n)? = KT (ths — )% (3.2.13)

tk+l

Proof. Using (3.2.7), the binomial formula, the martingale property of L™,
and the estimate (3.2.9) we have:

En(Mt'rIzcz)Qm — E (an )2m(1+ALm)2m

te—1
ni 2m 2m nz
= E"(M) Z ALY
—\J
2
J

S En|Mm |2m(1+cmn 1)2m

te—1

tk—1

— E" (Mm Zm( +
Jj=
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for some constant ¢, > 0. It follows that
EM(MPY?™ < (1 + ¢n™ )™ < const,
and the Doob inequality implies that
sup B[ M"|[7" < co.

Put X} :=In M} — E"[Iln M |F;,_ ]. By (3.2.11)

||A1nM"—X”||T:§gE E"AW M} |F_ ]| =0(n™"). (3.2.14)
Combining this with (3.2.8) we obtain that

| X" |p = O(n~Y?). (3.2.15)

By the Burkholder-Davis—Gundy inequality

2m m
> Xy ngE”<ZX[;2>, k<n,

J<k Jj<n

and the claim (3.2.12) follows from (3.2.15).

E’I’L

Let k € [0,n]. For any | < n—k we get, using the relation (3.2.9) which

provides us a deterministic bound for ||AL"||7, that

<Mm> _<Mm>tk = ZEn AMm |Ek+i71)

Lt thti

_ Z E (M (ALY )| F.. )
< cln‘lllM’“HT,

where ¢ is a constant. The inequality (3.2.13) now follows obviously from this
estimate because by virtue of (3.2.12) the sequence E"||M™||} is bounded

by a constant. O

For a function a € D(R) we define the modulus of continuity w(«, §),

0 > 0, by the formula

w(a, d) :=sup{|ogsn —ay| : t € 1[0, T — 0], h €]0,4]}.
The inequality (3.2.13) implies the following estimate:
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Corollary 3.2.3 There is a constant k > 0 such that for for any 6 > 0 we
have, for all sufficiently large n, the inequality

E"w({M™),8)]* < k(8 + T/n)*. (3.2.16)

Lemma 3.2.4 Fori +#j

O(n 7).

sup
k<n

BrALALY R )| =

Proof. Note that

EMALYALY|\Fr ] = E"[(ALY — Aln M ALY|F ]
+ E"AIn MALY|F .

Using first the estimate (3.2.9) and then (3.2.10) and (3.2.11) we get the

result. O

Lemma 3.2.5 For k <[ <n we have the following inequalities :

—2E"[In M} —In M| F] < (6 —ti)o' (0" + 2X°) + X?Tn" + (8, — ti) Rn,
—2E"[In M{" —In M| FY] > (i —ty)o' (0" — 2X°) = X?Tn~' — (t; — ty) Ry,

where R,, = O(n~?) does not depend on k and .

Since In M is a Q"-supermartingale we have also that

—2E"In M} —In M| F] >0

Proof. Fix i # 0. Combining (3.2.10) and (3.2.11), we get that

sup |In M} — E"[Iln M| F ] = ALYl = O(n™). (3.2.17)

1<n

Put
Oy(2) :i=In(1+2) — 2 + 2%/2 = O(2?), z — 0.

According to (3.2.9),
|| @2 (AL™) |7 = O(n3/?). (3.2.18)
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Recalling In(1 + AL™) = Aln M™ it is easy to check the identity
2AIn Mp' = 2ALY + (In MY — E™[In M| F} | ])?
=20y (ALY) + (In M — E"[In M| F] | — ALY)?
+ 2ALY (In My — EMln M| FE ] — ALY,
Using (3.2.18), (3.2.17), and (3.2.9) we obtain that

= O(n=%?).

sup
Jj<n

This relation combined with (3.2.8) and (3.2.11) gives us the following bound

E"[2(AIn M) + (In M7 — E"[In M| F) 1)\ 7]

sup
Jj<n

Putting Y™ := In M™ — In S™ and using (3.2.6), we get that

E"2(Aln M) + (Aln M;;l’)2|fg_1]] = O(n~?/?). (3.2.19)

Y| < In(1 + A™) <A™, (3.2.20)
and
Aln MZ}Z + Yt;‘fl = In M[J” —In Sfji_l
= Y;Z” + In (1 + ™+ amgg)
With these observations we obtain the bound

sup | E"[(Aln M + Y/ )* — (V)| A

j<n
—(0™)? — 20mlE”[Yt?i£;|}"gil] =0(n~*?%). (3.2.21)
Having the identity
2AIn M7 + A(Y])?
= 2AIn M} + (Aln MP)*) = [(Aln My + Y7 )? = (V)]
+2Y Aln MY,
we deduce from (3.2.11), (3.2.19), (3.2.20) and (3.2.21) the relation

sup |[E"[2AIn M[]” + A(Yt71)2|}“t" ]

-1
j<n !

+(0™)? + 20" EM Y| FE )| = O(n™?).
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Taking into account the bounds
Yl < AT AV < () = (NPT
we obtain, for some constant x > 0 which does not depend on k, that

—2E" Al MP|F ] < (0™) 420N + EMA(Y)PF ]+ kn,
—2E"AIn M F ] > (0™)? = 20" N + EM[AYFE ] — kn

It follows that for any m < n — k we have the inequalities

—2E"[In MZ:‘_W —InMP|F] < mn'To' (0" + 2)\Y)
BV, )P = (V2 FR] + w2,

—2E"In My —InMJY|F] > mn~'To' (0" —2X)
BTV )2 = (Y2 F) — mmn

letm k
implying the claim of the lemma with R, = xT~'n~2. O

The next lemma concludes this technical section with a tightness result

on sequences of martingales from M™.

Lemma 3.2.6 Let Z" € M", M" := Z"/Z™, and Q™ := Z*P. The se-
quence of probability measures Q" := L (M™|Q™) is tight and each limit point
belongs to Q.

Proof. We shall use the same terminology as in [22] and write "a sequence
M™ is QQ"-tight” etc. with understanding that this is a statement concerning
the laws Q™.

We apply Th. VI.4.13 and Prop. VI.3.26 of [22] to prove that the
sequence M" is Q"-C-tight. Indeed, the sequence of initial values M[' is
bounded, the sequence of processes >, (M™) is C-tight by virtue of Th. 15.5
in [3] (its assumption is ensured by Corollary 3.2.3) and

Q (IAM"|p > 6) < B [AM|E < S EMIALM M 50, 00,
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by virtue of (3.2.9) and (3.2.12). Thus, the assumptions of the indicated

references are verified.

Take an arbitrary limit point (). By above, it charges only
{1} x C(R?). Abusing the notation, we write that @ is a weak limit of
the whole sequence Q" = Z(M™ Q™). By virtue of (3.2.12) the sequence of
random variables ||M"||y is uniformly integrable (with respect to Q") and,
therefore, the coordinate process w = (wy)ico,r) is a QQ-martingale with re-
spect to the natural filtration, see [22], IX.1. It remains to check (3.1.3) and
(3.1.4).

Fix s <t <T. Obviously with Lemma 3.2.5, we have

—2E" [In M — In M7 + %ai(ai +2X) (- 5)|F7] < %
K
%7
with the constant £ > 0 which does not depend on ¢ and s. Let the function
g : [0,7] x D(R**Y) — R, be bounded continuous in the product of the

usual topology on [0,7] and the Skorohod topology on D(R'*¢) and non-

—2E"[In M} —In M + %Ui(ai —2X\)(t — 9)|F] >

anticipating, i.e. w +— g;(w) is o{ws, s < t}-measurable for any t. By virtue

of (3.2.12), the uniform integrability of the sequence || In M"||r, we have:

n—oo

lim —2EQngs(w)(ln w! — Inw’ + %ai (" +2X)(t —s)) <0,
and

lim —QEQngs(w)(lnwi — Inw’ + %O'i (" —=2X)(t —s)) > 0.

n—o0

This leads to the bounds
—2E9g,(w) (Inw; — Inw}) < E9g,(w)o? (o8 +2X)(t — ),
and
—2E%g,(w)(Inw; —Inw!) > E%g,(w)o’(a" — 2X)(t — s).
Since (wi)te[o’T] is a continuous ()-martingale, the Ito formula implies that
(Inw") is the bounded variation part of the semi-martingale (—2Inw;)iejo 7).

So,
(Inw'); — (Inw')y = —2E°[Inw! — Inwi|F,),

49



and we have
. . . T
o' (o' — ZAZ)EQ/ ge(w)dt
0 ., |
< EQ/ gr(w)d(Inw"),
0
< o'(o' +2)\)E° / ge(w)dt,
0

for any  bounded continuous and  non-anticipating  function
g : [0,T] x D(R**?) — R,. This proves (3.1.3). The property (3.1.4) is
a direct consequence of Lemma 3.2.4. In view of [22], Corollary VI.6.30, we

have the convergence of the (sub)sequence
2 (M AM)| Q") = £ ((w, (w))] Q)

Since L™ is the d-dimensional martingale corresponding to the stochastic

logarithm of M", we observe that
(L7 LY = (MM MM (M7 M7,
From (3.2.12) follows the tightness of the sequence
L((M™M™) 78 (M, M) Q™).

We deduce the convergence of the stochastic integrals, see [22], Th. VI.6.22
with VI1.6.6, and we get

Z((LMQ") = Z((Inw)|Q).
Corollary 3.2.4 implies that
]
and (3.1.4) follows. O
Construction of dual martingales

In this paragraph, we shall show that each probability measure of Q
can be approximated in the sense of Lemma 3.2.6. More precisely, we ap-

proximate the probability measures of a subset O of Q. These probability
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measures are characterized by a convenient representation. Nevertheless,

Lemma 3.2.7 below shows that this restriction is not fundamental.

We define Q the following subset of Q.

Let g be a non-anticipating bounded function on [0, 7] x D(R?) with

values in the set of the real d x d matrices such that g¢’ is diagonal and
0V oi(och —2X) +6 < (gg)" < o' (0" +2\") — 6, (3.2.22)
for some 9 > 0, and for some x > 0,

97 (@) = g7 (B)| < w(Jt = s| + |l = BlIr), (3.2.23)

fori,7 <d, t,s €[0,T], v,w € D(R?). Let B be a d-dimensional Brownian
motion under a probability R. Define the d-dimensional R-martingale N

with the components

N'=&(¢'(B) - B). (3.2.24)

For such processes N, we define Q the set of laws .Z((1, N)|R) on {1} x C(R%).

The following lemma states that the laws of O can be approximated by

the laws of O in a certain sense.

Lemma 3.2.7 Let Q € Q and consider the standard representation as in
Remark 3.1.1. Namely, let B a Brownian motion under a probability R and

g a process such that

There exists a sequence of matriz-valued non-anticipating continuous bounded

functions (¢™)men with g™ g™

(8.2.23) with the property

diagonal and satisfying the conditions (3.2.22)

ERmaXHg(gi-B)—S(gmi(B)-B)HT—>0, 1<i<d.

1<i<d
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Proof. According to Section 3.4, we can construct such a sequence of func-
tions (¢™)men with Y ,(¢™7)* > ¢™ > 0 and

ER/ }gzj — glmj(B)‘th — 0.
The result follows using the Burkholder—-Davis—Gundy inequality. O
Now, a constructive way of approximating the laws of Q is given in the
following lemma. We shall use the notations
o' 0 3
diago = , & =

Lemma 3.2.8 Let Q € Q. There exists a sequence Z™ € M™ such that,
2MQ") = @,

where M™ = Z"/Z™ and Q" = Z}OP.

Proof. Following the above definition of Q, consider the Brownian motion
B under the probability R and the process g such that Z((1, N)|R) = @,
where N is given by (3.2.24).

Let

K] == (g7 g diago™" — diago) ,

k—1
9= g, (Z AB;:f[tl,oo[) :

=0

| —

AB; = (g{;)*lAL”

. o .
tes ALY = (Mg ) AM]".
Note that g7’ is invertible since g; g’ is symmetric positive definite.

For every n > 1, we define the d + 1-dimensional process M"™ whose
zero component is equal identically to unit while others are constant on each

interval [ty, txy1[ with
M= S (1 n \/T/nK{Z"f,i) o 1<i<d
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Using the bounds (3.2.22) we easily deduce that for every ¢ > 1 and

sufficiently small 6 > 0 we have the inequalities

. ) . . ) .
1—A"+ \/T/nQ— <M< T4+ A" — \/T/nz— <14 2™
o g

For sufficiently large n

1 ) ‘ )
e 1_ T ‘ T _— = 1— n T -
VT /n\' + /n20 A"+ /nQU

1+ 14 /T JnXi ~
and we conclude from the resulting bounds that the process M"™ takes values

in KA\ \ {0} for large n and M™ = E((g™ - B")") for i > 1.

To compute the martingale measure of M", we need the expression of

the stochastic logarithm of M™ for i > 1,

Ay (Lt i+ omie)) (14 /T/nK e )
ALY = 1 1= — —1
Mtk 1 ]_ + T/an]lCZZlgk—l

After simple transformation we have:

= o'i
14 /T/nKpi € (

4 KtT;;’L’L n'LKnm> fk

T+ oK)~ K6

It is easily seen that M™ and, a fortiori, B™ are (Q"-martingales for the

probability measure
Q" =¢&r(q")P =[]+ Aq)P,
k=1

- Z T/n u + oK) — Kg;“lék_lgi
- Knu + IumKnu k-

The following formula deﬁnes the process Z" which is a (strictly) consistent

price system in the nth model:

Z? - [ ( )| ] tk7 le [tkvtk+1['

It remains to check the convergence of the sequence Z(M"|Q™) to Q. This

will be deduced from the converge in law of the processes B" to a Brownian
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motion. So we shall compute the quadratic characteristics of B™ and use a

version of the central limit theorem in the Skorohod space.

Note that

1/

— (gn)'E" [AL:;AL"’ n 1} (g1)™"
By virtue of Lemma 3.2.4,

O(n=*2), i#j.

sup
k<n

E"[A L’”AL"]] o=

It remains to compute E"[ALY?|F ], i < d. We use the following esti-
mations in order to simplify computations below. According to (3.2.23), we

have:

1Ag" |7 = O(n™"?),  [[AK"|lr = O(n~'7%).

Moreover, using the Taylor expansion formulae leads to the relations

sup |(1+ Aq?) — (1 + [(diago + KJ) 'K Ga)&) | = O(n/2), (3.2.25)

k<n

and

sup
k<n

ALY —+/T/n [(diago + K] )& — K &1 ‘ =0(m™).  (3.2.26)

Note that we used the matrix form of the processes for the sake of a simplified

presentation. We make the following estimate:

sup
k<n

B[(1+ Aggy )(ALT)|F, ]

— (T/n)E [(1+ (o' + K2ty Kig_6)
(o + Keh - Kiei)®| 7|

After a direct computation, we get an explicit formula for the approximating

= O(n’3/2).

term in the above expression:

B [(1+ (o' + Kp) g6 (0 + Kiie - Kiei)®| 7|
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We obtain the key relation

k

T
E'ABLABY|F | = —lu+ R, (3.2.27)
with the family of matrices { R}, k < n, n € N} satisfying

sup  |R7| = O(n=??).

ij<d, k<n

Finally, note that
94, (B") =gy, .-
According to the Central Limit Theorem, [22], Theorem VIII.3.33, we have
Z(B"Q") — ZL(B|R), by virtue of (3.2.27) and the estimation
I|AB"||z = O(n~%/?), which implies the conditional Lindeberg condition.
We deduce that

Z(B",9(B")|Q") = Z(B,g(B)|R).

Set
X"=g¢_ (B")-B", X=g(B)-B.

By virtue of [22], Th. VI.6.22 with Cor. VI.6.30, it follows that the above

stochastic integrals converge in law. We get the convergence

8% <X”, X7, e(Aax™)

Q”) — Z(X,[X],0|R), (3.2.28)
where ® is the R%valued function defined by

i\2

O'(x) =In(l+2") —z' + %
It remains to check that the convergence described in (3.2.28) implies the
convergence of the stochastic exponential. Since each limit process is contin-

uous, we can study the convergence of each coordinate separately. We then

refer to the following Lemma 3.2.9. The result is proved. O

Lemma 3.2.9 Let X", X be scalar adapted processes where X is continuous
and such that

&z <X”, X7, @y(AXT)

Q") = 2 (X,[x],01Q).
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with ®o(z) =In(1+2) —x + % Then we have the following convergence in

law of stochastic exponentials:

Z(EXM)|Q") = Z(E(X)|Q).

Proof. The claim follows by observing that

E(X) = G (X, [X], ) @2(AX)),

with
G(z,y,z) = exp (x — g +z> )
Since G is continuous on (D(R?), ||.||7), we get the result. O

3.3 Proof of the main result

We shall prove Theorem 3.1.2 using the sequential version of the definition

of the closed convergence.
Preliminary remarks

We start with some general remarks and tools which link the technical

ideas from Section 3.2 with superhedging issues.

First, observe that for any Z € M"™ we have the two-side inequalities

< ZE< 14N 3.3.29
1_|_|)\n|— 0 —= +| | ( )

and
SM < ZM 70 < (14 |A")S™. (3.3.30)

1+ |7
In the following lines, we link superhedging and the particular convergence
described in Lemmata 3.2.6 and 3.2.8. Let Z" € M™ be such that

Z (M Q") = Q,
for M™ := Z"/Z"™ and Q" := Z7°P.
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Lemma 3.3.1 The sequence S™ is Q™-tight and
E"MPG(S™) — EQwrG(w),

for any bounded continuous function G : D(R*H!) — R+,

Proof. The inequalities (3.3.30) imply the following two bounds,
105" < (1 4+ A™) + [[ln M7

and
1™ = M| < |[M™||7O(n~'7?). (3.3.31)

Hence, the sequence S™ is Q"-tight since the sequence M™ is. Let G :
D(R¥1) — R be a bounded continuous function. Fix e > 0. Then

there exists a compact set of D(R?*1), such that
Q"(M"e K°,5" € K°) > 1—ce.

Take a sequence of Lipschitz functions G,, convergent to G pointwise. This
convergence is uniform on compacts. in particular, |G — G,,| < e on K¢ for

sufficiently large m.

We have, using the Cauchy-Schwarz inequality:

n n n n 1/2 n n||2 1/2
B [Mp||GOM™) — G(s™)| < 2¢V2max]|G] (]| M7][})

+ 2eB"||M"| .+ CLEM | M| ]1S™ — M"|,

7 7

where the Lipschitz constant C:, does not depend on n. Taking the limit in
n we get, in virtue of (3.3.31) and Lemma 3.2.2 that the limit of the left-
hand side is smaller than ¢ multiplied by a constant. Since ¢ is arbitrary, the

lemma is proven. O

It follows from Lemma 3.3.1 that for any v € R'*¢,
EZ:(F(S™) —v) = E9 (wrF(w) — 1v) (3.3.32)

since we have

EZHF(S™) —v) = E"MR(F(S™) — v).
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We end the preliminaries paragraph by observing that for each v, § > 0,
Z" € M", we have

d
0.
1+ ||

EZp(F(S") — (v+01)) < EZp(F(S") —v) —

The financial meaning of this inequality is obvious: larger initial investment

in all assets helps to hedge the European option.
Proof of Theorem 3.1.2

(1) Fix v € I'. We have to find a subsequence v" € I'™ such that v™ — v.
To this end, choose Z™ € M™ such that

1
EZ7(F(S") —v)+— > sup EZp(F(S") —v).
n. zZemn

By virtue of Lemma 3.2.6, eventually applied to a subsequence of (Z™), there
exists ) € Q such that

limsup EZ(F(S™) —v) = E9 (wrF(w) — 1v) < 0.
It follows that there is a positive sequence 6" — 0 such that
EZZ(F(S") —v) <™
Increasing the initial capital v to v™ where

1 1
vt =v+ (1+ |)\”|)E (5” + ﬁ) 1,

we get the desired sequence v™ € I'" such that v — wv.

(#7) Show that for a convergent (sub)sequence (v"),en, v™ € I'™, its
limit v belongs to I'. Let ¢ > 0. By virtue of Lemma 3.2.7, we can choose
Q € Q such that

E® (wpF(w) — 1v) > sup E9 (wrF(w) — 1v) — e,
QeQ

According to Lemma 3.2.8, together with (3.3.32), there is a sequence
Z" € M" such that

limninf EZR(F(S™) —v) = EY (wpF(w) — 1v).
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We conclude that this quantity is nonpositive using the boundedness of Zj,
(3.3.29). Indeed,

liminf EZ7(F(S") —v) = liminf EZ}(F(S™) —v") + liminf Z§ (v" —v) < 0.

Since ¢ is arbitrary, v belongs to I'. This ends the proof. O

Remark 3.3.2 In [30], the value of interest in I' is the minimal initial
endowment in money (with a zero position in any stocks) needed to hedge the
option, i.e.

2" = sup EZrF(S") =min{o’: veI"NRe}.
ZeMn

It is easily seen that this quantity converge to
z = sup E%wpF(w) = min {°: velNRye}.
QeQ

We refer to Theorem 4.2.2 below for more information.

3.4 Appendix

In this section, we give the sketch of the approximation of the integrand
process ¢ in Remark 3.1.1 by the integrand processes of interest in @ involved
in Lemma 3.2.7. The first Lemma gives argument for the approximation with
”Lipschitz” function satisfying (3.2.23), the second explains how to restrict
the bounds of (g¢')* as in (3.2.22).

Lemma 3.4.1 Let B a Brownian motion under a probability R and ¥ the
filtration generated by the process B. Let g be a scalar bounded F-adapted pro-
cess. There exists a sequence of non-anticipating bounded functions (g™ )men
on [0, T] x D(R?) satisfying the conditions

inf |g] < |¢™| < sup|g], (3.4.33)
197" (@) — g7 (B)| < Em(|t — 8| + [l = Bl|7), (3.4.34)
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for some k,, > 0, such that

g% [ lo - gr B dt 0.

Proof. We introduce the notation for a € D(R?):
ozé = ol + a1
The approximations hold in the following steps. Fix ¢ > 0.
e There exist ng and Borelian functions ¢g" on (D, d) such that:
Ef /

see Th. 4.41 in [1]. Moreover, since g is bounded, we can suppose that

no 2
gt — ZQ"(BS”)H]tn,th] dt < e,
0

g" are uniformly bounded by a constant C; and we have
19" — g™ < Kty — tml,
where K = 2(no/T)C,.

e According to Th. 4.33 in [1], each ¢g" is (everywhere) pointwise limit
of continuous functions on (D, d). Invoking Cor. 3.15 in [1], such
a function is (everywhere) pointwise limit of sequences of Lipschitz
functions on (D, d) with the same bounds as ¢". It follows that there

exists some Lipschitz functions g" such that,

2
ER/ gy — Z gn(BS")H]tmth] dt S 25.

So, each ¢g" is Lipschitz on (D, d).

e We set, for 6 > 0 small enough
fla) = g"(ag),  tE [ta+ 0, tus]

and use a linear interpolation on [t,,t, + ¢]. Thus, we have f non-
anticipating and

[fila) = fi(a)| < Kt — s,

for some constant Kz depending on §.
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Now, we can verify that f satisfies (3.4.34). Set  the biggest of the above

Lipschitz constants and ¢ < s, we have

[fila) = fs(B)] < &l = s[ + [fula) = fi(B)]
Since f(t,-) is x-lipschitzienne, we have

|fi(@) = fu(B)| < rd(ag, ) < sl = Bz

Since ¢ is arbitrary, choosing a sequence €™ — 0, one can get the sequence

g™ of interest iterating the procedure. Which prove the result.O

Remark 3.4.2 Because the approximation of the matriz valued process g in

Remark 3.1.1 by g™ is defined componentwise, g™g™ is not necessary diag-

onal. Nevertheless, for m large enough, we can find a Lipschitz orthogonal
matriz valued function close to the identity matriz such that (Mg™)(Mg™)'

18 diagonal.

Lemma 3.4.3 Let g be real d X d matriz such that gg' is diagonal and
0<c <(g9)"<C"
There exists a sequence g" of d X d matrices such that g"g™ is diagonal and
¢ +0" < gy < CT =6,

for some decreasing sequence 6, > 0, 6, — 0, such that |g — g"| — 0.

Proof. Fix n > 0, suppose that
Cl _671 S (ggl)ll S Cl.
There exists €5, > 0 such that

(1—e5,)(99)" < C" =6
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Set
A1 — €Sy,

, 1
g" = diag ‘ g.

1

It is easily seen that we have g5, — 0. The argument extend to other

coordinate and for the lower bounds.O
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Chapter 4
Ramification

It is easily seen that for the case d = 1, our model is essentially the same as
that of [30] and, hence, contains some novelty even for the model with one
risky asset, see Remark 3.3.2 above. Inspecting the proofs above one can

observe that the arguments still work when
A" = 0(n?), p=0(n), o" = O0(n"1/?).

One can easily extend the reasoning to non symmetric transaction costs,

see Chapter 4.2 below.

4.1 General Models

In the case d > 2, the considered cones K™ correspond to a model of stock
market where all transactions pass through the money. Nevertheless, it pro-
vides some information also for more general models. Namely, let us consider
as an example the family of models of currency markets given by transaction

cost matrices A" = Ay/T'/n, where the solvency cones are
K(A™) = cone {(1 v \/T/n)\ij) é—e ¢ 0<ij< d} .
Note that we can embed our models into currency markets with trans-
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action costs matrices

0 /\nl . )\nd
a0y
A= |0 7
: )‘ij .
And 0

where the transaction costs penalize direct exchanges, that is
LAY > (L4 A™)(1+A™).

This remark leads to the following asymptotic bounds:

Proposition 4.1.1 With obvious notations, we have the following inclu-
SLONS:
I['(A) CLiI™(A") CLsI"(A") CT()),

where

A= max{\': (AN —A)Y <0, (AN —AY*" <0 j#i},

~t

A= min{\: (AN —-A)Y7 >0, (AN)—AY'">0 j#i}.

4.2 Non Symmetric Transaction costs

In this section, we concisely sum up argument to explain how to deal with
non symmetric transaction costs in Section 3 (or in the paper [16]). The
presentation may sightly differ. Indeed we shall detail with care the links
between the traditional argument used in [30] with the geometric approach
of the more involved paper [16], or equivalently Section 3, restricted to two-

asset models.

4.2.1 Model and main result

We consider 2-asset models of currency market with transaction costs fol-

lowing the ideas of the book [24]. The first non-risky asset will serve as the
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numeéraire, the second is risky. An asset can be exchanged to the other pay-
ing the proportional transaction costs. That is to increase the value of the
jth position in one unit (of numéraire), one need to diminish in (1+ A¥) unit
(of numéraire) the ith position. Namely, the models are given by transaction
costs matrices. We fix as basic parameter the 2-square matrix A with zero
diagonal and positive entries. We consider the transaction cost matrix for
the n-th model

A" = A/T/n.

Price processes

We define in this subsection continuous-time models whose price pro-
cesses are piecewise constant on the intervals forming uniform partitions
of [0,T]. Of course, these models are in one-to-one correspondence with
discrete-time models. Fix the drift and volatility parameters u € R,

o €]0,00[ and put, for n > 1,

w" = pT/n, o" =oy/T/n.

On the probability space (€2, F, P), we consider, for each n, a family of
i.i.d. random variables {{; k < n}, where & take values in {—1,1} and
P& =1)=1/2. Put

ty =t = kT /n.
The process S™ models the price evolution of one unit of the risky security

measured in units of the first non-risky asset serving as numéraire. We define
the process S = (S, S7'?) where S = 1 and

k
S=1 S =Tl 0+ +0"m), 1€ [ttinl,

m=1

for sufficiently large n (to insure that S™ > 0). In this setting the stochastic
basis is (§2, F,F", P) where the filtration F* = (F}") is FJ* := o{S, r < t}.

65



Transaction costs
The solvency region is the cone defined by
KA = cone {(1 + X“Q) el — e, (1 + )\"21) e? — el} ,

that is K" is the set of positions which can be converted, paying transaction
costs, to get only non-negative amount on each asset. The (positive) dual

cone is the set

KA = we]RZ-;<w—2<1+/\”12
B R L2 T ’

which is the set of vectors with a non-negative scalar product with any vector
of KA".
The piecewise constant process V' solving the linear controlled stochas-

tic equation
Vo=ve K", avi =V dsM/S" +dBl, i=1,2,

models the portfolio value process with strategy B, where the components

of the control B are .
B'=) Bl )
k=1

Bj is F'_ -measurable and AB,, = B, — By, , € L°(—K"", F}'

te—1

). The set
of such processes V' with initial value v is denoted by A7 while the notation

A?(T) is reserved for the set of their terminal value V.

Using the random diagonal operator
or « (ah,2%) = (21, 2%/51%)
define the random cone K" = ¢" K" with the dual KA™ = (¢7) 1 KA"™.
Hedging sets

Our aim is to price a European option. We shall consider a two-
dimensional pay-off. The first asset is an amount of money in numéraire,

whereas the second is a quantity of physical units. The pay-off is of the
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form F(S™) with the function F : D(R?) — R? supposed to be bounded and
continuous in the Skorohod topology on D(R?). Let I'™ be the set of initial
endowments from which one can start a self-financing portfolio process with

the terminal value dominating the contingent claim F'(S™), that is
["={veR®: (¢h) 'F(S") € AYT) as.}.

We denote by M™ the set of all F"-martingales Z such that
Z, € KN\ {0} a.s. and Z! = 1. According to [24], Chap. 3,

I"={veR’: vZy > EZF(S") forall Z e M"}. (4.2.1)

This identity is the so-called hedging theorem claiming that one can super
replicate the contingent claim if and only if the value of the initial endow-
ments is not less than the expectation of the value of the contingent claim
whatever a consistent price system is used to the comparison. The theorem
holds under the assumption of the existence of a strictly consistent price

system, fulfilled for our models.
Limit sets and main results

In analogy with the use of consistent price systems for the hedging the-
orem, we shall define the following set of martingales. Let B be a Brownian
motion. We define M as the set of processes (1, M),

M= &(g- B),

where ¢ is a predictable adapted process whose square admits the following
bounds:
o(c —2)\) < g* < oo +2)),

with A be the mean of the transaction costs coefficients,

/\12 + /\21

A
2

We put
I'={veR’: vZy>EZF(Z) foral Z € M}.

67



The main results of this note are the following. In the formulation of
Theorem 4.2.1 below, we could refer to convergence in the closed topology
of the subsets of R?, see [20]. We provide a simple but equivalent character-

ization in terms of sequences.

Theorem 4.2.1 We have the convergence results,

(i) for any v € T, there is a sequence v"™ € I'", such that v" — v,

(ii) for any convergent subsequence of the sequence v € I'", the limit be-

longs to T'.

We also give the following auxiliary result. In [30], the value of interest

in I'™ is following:
2" = min {vl cvel™ OR+61} .

This is the minimal initial capital with a zero position in the risky asset

which hedge the option.

Theorem 4.2.2 The sequence {x,} converges to x where

x:min{vl: UEFHR+61}.

4.2.2 Weak convergence

We obtain our convergence result for I'™ by using the representation (4.2.1)
and the theory of weak convergence of measures. In order to make argument
more transparent, it is useful to consider a family of rather simpler polyhedral
conic models in the spirit of Part I (or paper [17]). Indeed, there exists a

sequence of positive numbers k™ = O(n~'/2) such that KA"* ¢ K*"*, where
K™ =Ry (1+Uy) U, ={veR*: |v| <k}

That is, K** is the closed convex cone in R? generated by the max-norm ball

of radius k with center at 1.
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Let a sequence Z" € M™. 1t is easily seen that Z" takes values in the
cone (¢")"LK*"*. The strictly positive martingale Z™! is the density process
of the probability measure Q" = ZZ'P and the process M™ := Z"?/Z™ is
a strictly positive QQ"-martingale with respect to the filtration F". Observe

that

1+ k" 1— k"

We shall show that the sequence M™ is QQ"-tight.

Sn2, (4.2.2)

It is worth to note that there is a one-to-one correspondence between
M™ and the set of ”preconsistent price systems” of Kusuoka [30], it is par-

ticularly clear with the proposition 2.14 therein.

Let us define the piecewise constant processes (”stochastic logarithms”
of M™)
L™ =M™ M

Note that L™ has jumps only at the points t;,

ALY = (M) 'AM] = (M]!

te—1

)’1(M[; - M), k> 1.

Tightness

The following lemma collects the basic asymptotics needed to check the
tightness of the laws .Z(M"|Q™) on the Skorohod space.

Lemma 4.2.3 We have the following asymptotic relations:

[AIn M"||; = O(n~?), (4.2.3)

ALz = O(n~Y?), (4.2.4)
IAlnM™ — ALY |y = O(n™Y), (4.2.5)

sup |[E?" [AIn M| F! ]| = O(n™). (4.2.6)

k<n
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Proof. We derive from (4.2.2) the bounds

1+ &"
1—x"

—2In +In(1+p"—0o")

< AlnM"

n

1
<2In

1 1 n n
T T+ "),

implying (4.2.3). In view of the relation
AL} =exp(Aln M) — 1,
we get (4.2.4). Setting
Dy(2) ;== In(1+2) — 2 = O(2?), z— 0,

the asymptotic
1@ (AL")[|r = O(n™)

is a consequence of (4.2.4). Note that
Aln Mj = AL} + @, (AL},
and (4.2.5), (4.2.6) follows. O
Lemma 4.2.4 Let Z" € M™, M" := 7" /Z" and Q™ := Z} P. Then:
(i) the sequence M™ is Q™-C-tight;
(i1) the sequence S™ is Q"-tight and
|57 — M™||, < | M™||, O(n=13). (4.2.7)
Proof. Following the lines of Section 3 (or [16]) or [30], Lemma 4.8, we get

bounds for the processes M"™ and their bracket’s oscillations. That is, for any

m > 1, we have

sup E<" || M"|2" < oo and sup E9" || 1In M™||2" < oo 4.2.8
p T p T )
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and the following estimate for the increments of quadratic characteristics:

E sup [(M™),,,, — (M), | <C(/n)?, — 1<n, (4.2.9)

k<n-—I

where the constant C' does not depend on [, n. The tightness of the sequence
Z(M™|Qm) follows, see [22]. Furthermore, we can deduce from Lemma 4.2.3
that the jumps tend to zero, which shows that each limit point of the sequence
of laws Z(M™|Q") is continuous by virtue of Proposition VI.3.26 in [22].

From (4.2.2), we easily deduce (4.2.7) and the following,

1+ k" n
—+ |[In M"[| .

| In S"2||7 < In T

Which proves the second assertion. O
Identification of the limit laws

In this paragraph, we show that each limit law of the sequence
L(Z"]Z" Q") is the law of a process in M. With the definition of the
processes of M, one can see that we need an estimation of the quadratic

variation process of L™. This is the aim of Lemma 4.2.5 below.

Lemma 4.2.5 We have the following asymptotic relations:

—2E9" In M}, —In M| F['] < (I/n)To(0 +2)\) + Ry, [<n, k<n-—I,

k

—2E9" In M

Ukt1

—In My |F2] > (I/n)To(o —2)\) — Ry, [<n, k<n-—lI,

k

where the positive sequence R,, = O(n~Y?) does not depend on k and .

Proof. The proof of the lemma stands on the following two estimations:

sup [EY" 2(AIn M) + (Aln M| Fr_ )| = O(n™*?), (4.2.10)
k<n
sup EC" (Al M + Y )= (V) F ] (4.2.11)
—o"(0" + 2BV VGl F )| = o),
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where
)\n12 _ )\an

Y":=lnM"—1nS"? — 5

We start proving (4.2.10). Define the function
Py(2) :=In(1+2) — 2+ 22/2 = O(2*), z — 0.
We get the following obvious identity:

2AIn MP — 2AL} + (In M} — E9"[Iln M| F7])>?

= 20,(ALY ) 4+ (In M — B In M |F]'_ ] — AL} )?
+2ALY (In M — E9" In M| F ] — ALY).

Due to Lemma 4.2.3, we have the following asymptotics

sup |In M]' — E®" In M'|F'_ ] — ALY | = O(n™),

k
k<n

[@2(ALY) [l = O(n~*?).
Using this, we get

sup |[E9"[2(Aln M) + (In M. — E9" [In M| F2 D1 F ]| = O(n~%?).

k
k<n

This relation in conjunction with (4.2.3) and (4.2.6), gives us the first asymp-
totic bound (4.2.10).

We recall the following bounds
A< (1AM < InM™ —1n 8™ < In(1 4+ A2 < A2

Using this, we obtain that
Yl < X, (4.2.12)

where \" = /T /n \. By the relation

Y’n

tp—1

+AIln M) =Y, +In (1+u"+a"fk),

we get the second main relation (4.2.11).
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Now, we use (4.2.10) and (4.2.11) to complete the proof. With the

expression

24 In My, + A(Y;1)?
= AWM + (Al MEY] = [(Aln M 4+ Yy )* = (V7))
+2Y" Aln M

te—1 2%

we deduce from (4.2.6), (4.2.10), (4.2.11), and (4.2.12) the key relation

sup |[E9"[2A In M)+ A R

k<n
+o" (0" + 2B Y T ]| = O(n ).
It remains to observe that
20"YE| < 20™A", k <mn.
Hence there exists a positive constant x such that
— 10" (0™ 4 2\") — Kin /2

< 2B M, —In My |Fi]+ B (Y )21 F] - (V)

Lyl k
< —lo™(o™ — 2\") 4 kln =32,

Using (4.2.12) and the inequality In=3/2 < n~'/2 we get

—1lo™(o™ 4 2\") — kn Y2 — (A™)?
< 2E9"[In M

Ukt1

< —lo™(o™ — 2\") + kn V2 4 (A2

— In My | F] ]

k

This completes the proof. O

Lemma 4.2.6 Let Z™ € M"™ and let Q™ := ZZ'P. For each cluster point Q
of the sequence ZL(Z")Z™|Q"), there exists a process Z € M with

Q=22).
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Proof. Setting Q" = .Z((1, M™)|Q™), Lemma 4.2.4 asserts that each cluster
point @ of the tight sequence Q™ charges only {1} x C(R). On this set, the
canonical process {(1,w;); t € [0,7]} is a martingale under ) with respect
to its natural filtration because of (4.2.8), see [22]. We shall show that the
quadratic characteristics of logarithm of its second component is absolute

continuous (with respect to Lebesgue measure) Q-a.s., with the bounds
oo —2N)dt < d(lnw); < o(o + 2\)dt. (4.2.13)

Equivalently, since {wy; t € [0,7]} is a Q-martingale, (Inw) is the bounded

variation part of the semi-martingale {—2Inwy; ¢ € [0,7]} and we show that
T
oo —2)\)E? / g¢(w)dt
0
T
<£° [ gw)dnu),
0

T
<o(oc+ 2/\)EQ/ gi(w)dt,
0

for any function g : [0,7] x D(R) — R, which is bounded, continuous in the
product of the usual topology on [0,7] and the Skorohod topology on D(R)
and adapted, i.e. ¢(w) is o{ws, s < t}-measurable for any ¢. The claim
follows from Lemma 4.2.5 and (4.2.8). We have :

lim sup EQngS(w)( —2(Inw; — Inw,) — o (o +2X)(t —5)) <0,

n—oo
and
liﬁicgf E gy(w)( = 2(Inw, — Inw,) — o(o —2X)(t — s)) > 0.
Which lead to
—2E9g (w)(Inw, — Inw,) < B9 (w)o (o +2X)(t — s),

and
—2E9g (w)(Inw; — Inw,) > E%gy(w)o (o — 2X)(t — s).

Hence @ on C(R?) is such that the (continuous) martingale part of

{Inwy; t € [0,T]} has a quadratic characteristic process (lnw) satisfying
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(4.2.13). From [28], Theorem 3.4.2, ) admits the following standard repre-
sentation. There exist B, a standard Brownian motion under a probability

v, and an adapted process g such that
o(c —2)) < ¢* < oo+ 2)), 1 <1 <d,

and

Z (1,E(g- B)lv) = Q.

O
Construction of discrete martingales

The aim of the following section is to show that processes of M can
be approximated by consistent price systems in M™. The following lemma

gives a constructive way of approximating the martingales of a subset of M.

Lemma 4.2.7 Let B be a Brownian motion. Let g be an adapted continuous
bounded function : [0,T] x D(R) — R* \ {0} such that, for some § > 0,

dVo(o—2\)+6 < g*<a(o+2)\) -4, (4.2.14)
19:10) — gu(0)] < (1t — 5] + [ — oll), (12.15)

fort,s €0,T], v,w € C(R). Define the martingale
M =E&(g(B) - B).
Then there exists a sequence Z™ € M™ such that
L(z2"2™Q") — Z((1, M)|Q),
with Q" = Z3"P.
Proof. We consider the piecewise constant process
Mp = LEL2T (1 +K;;\/T_/n€k) Si2 0<k<n,

B 1/2)m21
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with K™ the predictable process defined by

n 1 n \2 o
Ky, = %(gt,) — (4.2.16)
g = gu_,(B)),
where the process B" is piecewise constant with the jumps
AB} = (gp) 'AL}, (4.2.17)

ALY = (M)

te—1

)TTAM

The proof consists in two steps. The first one is to construct from M" a
sequence of consistent price systems in M"™. The second step is to check the

convergence.

According to (4.2.14),
A+e< K"<\—g¢g,

for some £ > 0. Using the Taylor expansion formulae, we get the bounds

n2l 1 1 + 1/2)\7112 n nl2 1
11—\ +€Rn§m<l+Ktk\/T/nfk>§l+)\ —€Rn,

where R! = O(n~'/2) and R. > 0 for large n. It is easily seen that

1

n2 n nl2 n2

for sufficiently large n. These inequalities show that (1, M™) takes values in
K"\ {0} for sufficiently large n. Our aim now is to determine the martingale

measure of M™. We compute the stochastic logarithm of M",
n i
ALy = -1

(14 p" +0”§k K \/T/n&)
t“\/T_/nk !
B \/f(a—l— D+ K+ p/T/n+ 0, K — K7 i1
-V 1+\/T_/” tr_1Sk—1
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Observe that M™ is a QQ"-martingale where ()" is given by

p/T/n+ o, K — Ki' &

(o + K + unK[Z)

Q" =E&(q")rP, Agy, = — &k

recalling that for a piecewise constant process g,

E(q) =J(1 + Ag).
s<t
Setting
Zp =E[E(q")r| Fi] (LM, e <t <tiga,
we get a sequence of martingales taking values in K A" that is a sequence

of consistent price systems.

In view of (4.2.17), we have the expression
M"™=E&(¢g" - B").

We shall use a version of the Central Limit Theorem to show the convergence
of Z(B™Q") to the law of a Brownian motion. We need to compute the in-
crements of the quadratic variation process of B", that is E<"[(AB} )| F_ .

First, according to (4.2.15) and (4.2.17), observe that

1AB"|lr =0(n"%),  [[AK"||z = O(n"/?).

It follows that

sup [AL, =T /n[(0+ Kp)6 — Kiga] | =0 (n7Y),  (4218)
and Kpeo it
n tk k—1Sk _ _1/2
2;112 Ag;, ik K7 O (n7'?). (4.2.19)

Having in mind the expression

EC[(AB)*|F ] = (g0) I + Agi ) (ALL )| 7L
we deduce from (4.2.18) and (4.2.19),
n n T n n
EQ |: AB ‘ tr— 1:| - gtk> 2 ((J_'_ Ktk>2 - (Ktk) ) + Rtk7
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where ||R"||; = O(n~3/?). Finally, with the definition of K™, (4.2.16), it is
easily seen that

n T
B (B R ) = Ly,

Note also that the sequence B" satisfies the conditional Lindeberg hypothesis,
Property VIII.3.31 in [22]. By the use of the Central Limit Theorem, [22],

VIII.3.33, we get the existence of a Brownian motion B such that
Z(B",9(BM|Q") = Z(B.g(B)).

The announced convergence can be checked through the convergence of the
stochastic exponential, and then the convergence of Z(M"|Q") to the law
of the process M holds. O

Note that approximating processes of Lemma 4.2.7 allows us to ap-
proximate processes of M. Indeed, let Z € M, Z? = E(g - B). It is easily
seen that we can construct a sequence of functions (¢™),en satisfying the

assumptions of Lemma 4.2.7 with
E/ l9: — g/ (B)|* dt — 0.
Using the Burkholder-Davis—Gundy inequality, we get that

E||&(g- B) = E(g™(B) - B)||, — 0.

4.2.3 Proof of the main results

Preliminary remarks

We first give some general remarks and tools which link the technical

ideas from Section 4.2.2 with super hedging issues.

Remind the assertion (4.2.2), that is for any Z € M™,

1—r" 1+ k"
<72 < 4.2.20
L4+rn =70 = 1 — ko ( )
and, more generally,
-k Sn2 < Z2/Z1 < H—’ian'
1+ k" 1—rk"
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Now we show that the particular convergence described in Lemmata
4.2.4 and 4.2.7 is consistent with the hedging theorem. Let Z™ € M™ be
such that for M" := Z"?/Z" and Q" := Z}' P we have

Z (LM Q") = Z(2),
for some Z € M. It follows from Lemma 4.2.4.2 that for any v € R?,
EZ}(F(S™) —v) = EZp(F(Z) —v), (4.2.21)

since

EZ}(F(S") —v) = B9 (1, Mp)(F(S") — v).

We end this paragraph observing the fact that increasing the initial
capital both on the first and the second asset helps to hedge the European
option. Indeed, for each v, 6 > 0, Z™ € M"™, we have

1—k"

EZp(F(S") = (v +01)) < BZp(F(S") —v) = 20—

. (4.2.22)

Moreover, this bound is uniform on the choice of the consistent price system.
Proof of Theorem 4.2.2

The proof of this theorem is similar to the one given in [30]. Note that

x, = sup EZrF(S"),
ZeMn

and

x = sup EZrpF(Z).
ZeM

We proceed by establishing the following two inequalities:

limsupa” < z, liminf z" > x.
n n

For the first one, we fix the sequence Z™ € M"™ such that

EZIF(S™) > 2" —1/n.
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According to Lemmata 4.2.4 and 4.2.6, there exist a subsequence Z"* and a
process Z € M such that

limnsup EZ7F(S") = h;?l EZFF(S™) = EZrF(Z) < .
Conversely, we fix ¢ > 0 and choose Z € M such that
EZrF(Z) >z —e.
By virtue of Lemma 4.2.7, there exists a sequence Z" € M" such that
limninf EZ}F(S") = EZrF(Z).
Since ¢ is arbitrary, we get liminf 2" > x, and Theorem 4.2.2 is proved.

Proof of Theorem 4.2.1, Assertion 1

The proof of Theorem 4.2.1 follows the same reasoning based on choos-
ing the best candidate between the consistent price systems. However, the
fact that we consider convergence of sets makes the demonstration more in-

volved. Here we prove the first assertion.

Fix v € I', we shall construct a sequence v" € I'" such that v — wv.

Choose a sequence Z" € M" such that

1
EZ7(F(S") —v)+— > sup EZp(F(S") —v).
n. zZemn

As a consequence of Lemmata 4.2.4 and 4.2.6, there exists Z € M such that
limsup EZ3(F(S") —v) = EZp(F(Z) —v) <0.
It follows that there is a positive sequence 6" — 0 such that
EZZ(F(S™) —v) <™

Define v™ by increasing the initial capital v to

11 n 1
i P Y
21 —k" n
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Having in mind (4.2.22), it is easily seen that for any Z € M", we have:
1

EZp(F(S™)—v") < EZp(F(S")—v)— (5” + —) < EZ}(F(S")—v)—0" <0.
n

So we constructed the desired sequence v"™ € I'™ such that v — v.

Proof of Theorem 4.2.1, Assertion 2

It remains to show that for a convergent (sub)sequence v € I'", the

limit v belongs to I'. Fix € > 0 and choose Z € M such that

EZp (F(Z)—v) > sup EZy (F(Z) —v) —e.
ZeM

By virtue of Lemma 4.2.7 and (4.2.21), there is a sequence Z" € M" such
that
liminf EZ2(F(S") —v) = EZp(F(Z) — v).

Note that
liminf EZ7(F(S") —v) = liminf EZ7(F(S™) — ") + liminf Z§ (v" — v),

and

liminf Z (v" —v) = 0,
since Z' is bounded, (4.2.20). We can conclude that
EZr(F(Z) —v) <0

and since ¢ is arbitrary, v belongs to I'. This ends the proof. O
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Part 111

Approximative Hedging
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Option pricing gathers finance industry needs and Quantitative Fi-
nance. The complexity of models increases to match the real world, as for
example in the papers [5, 11, 21]. Simulation methods have to be developed
with two aims, a good accuracy and a low computational cost. In the books
[4, 29], many finite difference schemes are considered. They are simulated by
Monte-Carlo Methods which compute the mean by generating a big number
of asset price realizations. These methods suffer from the difficulty of gen-
erating the Brownian sample paths, since the discretization of the process

implies a loss of accuracy.

Other methods study the density of the option price at the exercise
date. This is the subject of the famous paper by Black-Scholes [2]. In
the papers [13, 14], the asset price evolutions are approximated by Picard
iterations. A scheme using an expansion with the Wiener—Ito Chaos formula
is introduced. The density of the first three terms are then approximated.
The accuracy of this method is illustrated by numerical simulations but not

theoretically studied.

We use the so-called Picard iterations in a rigorous framework. We in-
troduce a discretized scheme which can be simulated by Monte-Carlo meth-
ods. This studying part provides a very basic scheme to be compared with
the Euler scheme. We first focus on the second term in the Picard iterations.
In this case, the scheme is mainly relevant to (“generalized”) European op-
tions. Even if a systematic error, in the spirit of the one in [13, 14], has
to be accepted, we obtain a good convergence speed, namely n~!. For the
higher Picard iterations, though we loose the systematic error, the conver-

-1/2

gence speed is worse than n~"/“. Further research has to study faster schemes.

This part is organized as follows. In the following section, we present
the mainstream of the option hedging and we rigorously introduce the ap-
proximation of the asset price by Picard iterations and the discretization
scheme. In a second section, we discuss the case of the second iteration, in-
troducing assumption on the pay-off function. In a third section, we discuss

about general case. A subsidiary section gathers some integrability properties
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and various tools.

Cette partie fait I'objet d’un article en préparation en coécriture avec

Emmanuel Lépinette.
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Chapter 5

Approximation by Picard

Iterations

5.1 The Model

Let (Q, F,F = (Fi)ejo,r), P) be a continuous-time stochastic basis satisfying
the usual assumptions (in particular complete) supporting a standard Brow-
nian motion W, i.e. F; := o(W, : s <t) VN where N is the family of all

sets of P-measure zero.

According to Th. 2.2 in [12], p. 104, we have the following.

Proposition 5.1.1 Suppose thato : [0, T|xR; — R andr : [0,T|xR, - R

are two Lipschitz functions. Then, the s.d.e.
dSt = StO'(t, St)th + St’f’(t, St)dt, SO =,

has a unique strong solution.

In the sequel, we make the following assumption on the Lipschitz func-

tions o and 7.

Assumption 5.1.2 Assume that the function r is bounded and

0 < a*(t,y) < L(1+ In(In(y))1,>1), YVt e [0,T], Vy € R,.
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Assumption 5.1.2 essentially stands for the existence of the moments of

SUPefo,) Ot, See Section 8.1.

5.1.1 The Option

The above process S models the price evolution of the underlying asset. We
aim at approximating the valuation of the option with the pay-off G(S) where
G : C(Ry) — R, is supposed to satisfy :

|G(a) — G(B)| < C sup |y — B, a, € C(R,). (5.1.1)

t€[0,T

We assume, without restriction, that P is the risk-neutral measure so that
the valuation of the contingent claim is v = EG(.S). This means that r has to
be considered as the interest rate of the bank account. Hence, the following

assumption on r is natural.

Assumption 5.1.3 We suppose that r(s,-) =: ry is deterministic and bounded.

F(t) = zexp ( /0 t rudu) |

For an integrand H, we write (when it does make sense)

We set

S,(H) = F(t) exp <H Wy — %/Ot Hﬁdu> .

For n € N, we set 7, = {to = 0,t; = T/n,ty = 2T/n,---t, = T} the
uniform partition of the time interval [0,7]. For a process X, we denote by

X" the piecewise constant process

X = Xy, Uy <t <t
Xn o= X
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5.2 The General Approximation

The aim of the current section is to use an approximation S of S in the
valuation of the option. It is important to note that the theoretical conver-
gence speed of the option approximation relies on the following norm of the
difference between S and S. Since (5.1.1) holds, we have

[EG(S) - BEG(S)| < B|G(S) = G(S)| < C|| sup |8, — 5]

te[0,7)

2

That is, we always study the mean squared error when introducing a new
scheme. The approximation of interest is obtained in three steps. The first
one consists in bounding the volatility. The second one uses the so-called Pi-
card iterations, a recursive scheme where we approximate the solution of the
s.d.e. satisfied by S by the solution of s.d.e.’s with iterated (bounded) diffu-
sion. The third step is the approximation of the diffusion by a discretization

method, see Section 5.2.3 and Chapters 6, 7 below.

5.2.1 Bounded Diffusion

We first bound the diffusion process o with the parameter . Let k € R,
with kK > 7, Vs € [0,T], and k > x = Sy. Consider Y* the unique solution
to the s.d.e.

i o= o,
K 1 K
dY) = o(t,ze’ A kK)dW, + rdt — 502(15, reX" A K)dt.

Note that S* := xze¥" satisfies
Sy = =w

4 t
1
Sy o= xexp {/ O’(U,SS/\K)CZWU—F/ ru—502(u,5{f/\/€)du :
0 0

Throughout the paper, we also denote Y such that S = xe¥. The

following lemmata state the convergence of S* to S.
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Lemma 5.2.1 S* converges pointwise on [0,T] to S.

Proof. Consider the stopping times
% =inf{t: |S{ >k} AT.

Then, the stopped processes S™" and (S*)7" satisfy the same s.d.e.. It follows
that Sy = Sf on t € [0,7%]. As 7" — o0, we conclude. O

Lemma 5.2.2 Suppose that Assumption 5.1.2 holds, there are some con-
stants C, such that for allp > 1

E sup (S)* +sup E sup (S;)* < C,,
te[0,T K t€[0,T]

and therefore, for all | > 1 there are constants C; such that

C
E sup (55— $)° < —.
te[0,T] K

Proof. The proof of the first property is postponed in Section 8.1. For the
second one, observe that
K 2 K 2
E sup (St — St) = F sup (St — St) |
t€[0,T] te[0,T]

< FE sup (Sf—St)217n<T
te[0,7)

K 2
S E Sup (St _St) 1Sllpt€[07T] St>kK
t€[0,T]

2
< \/E sup (Sf _ St)4\/E(supte[0,T] St) .

21
t€[0,7) K

Which yields the result. O

5.2.2 Picard Iterations

The idea of the following scheme is to construct successive solutions S* of

s.d.e.’s with iterated diffusion such that S®™ converge to S*. To do so, we
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introduce

S0 z,
t t 1
S:,m—f—l £ exp {/ U(U’ SrEm A Ii)qu +/ Tu — 502 (u, Srm /i)du .
0 0
We set

Yo" i=1og S;"™ — log x.

As a matter of fact, this process satisfies the following s.d.e.

K,m 1 K,m
OZY;S'{’mJr1 = J(t, ze¥t A K) AW, + rdt — 502 (t, zelt A K,) dt.
To this end, we use the short notation

oy = a(syxeysmw1 A /{) = 0(3, Srm=l A ﬁ), m > 0.

The following lemmata state the convergence results of S*™ to S* in L?. We

first focus on the fourth moments of the error between Y™ and Y*.

Lemma 5.2.3 The sequence Y™ converges in L? to Y* such that

sup ‘Yu” — Yu”’m|

< cu+mw§}mw“7

up 2 2 ik (5.2.2)
. o > (T/4)d

Tg)\yu o 4 < C(1+yx\)2(ﬁc)ﬂ T (5.2.3)

< =

Proof. The following useful inequality is easily stated for a > 2,

N N «Q o/2—
[0/ = 42| < 2 (max(ja; [y))**" o — yl.
We deduce that

t 2 t
( / (a;nﬂ)"’_(a;n)?ds) <c [ (o - o)
0 0

S

using the Jensen inequality.

Together with the Burkholder-Davis—Gundy
inequalities, we obtain that

u<t

t
E'sup ‘Yu"’mﬂ — Yu"“’m|2 < C’E/ sup |O’ZL+1 — UZ‘{QdS.
0 u<ls
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Observe that |o(t,eX A k) — a(t,e¥ A k)| < kC|X — Y], hence

ot — o | < ROV —YEm, Vueo,T).

u

We get

¢
Esup }qu’m“ — Yu”’m‘z < I€2C/ Esup ‘Yu"’m — yml |2ds.
0

u<t u<s

With Lemma 8.2.1, we deduce that

ESUp |Y/£,m+1 . Yun,m‘2 S ( ZC)mEsup |Yn 1 Yj,OF%

u<t u<t

< CO(k 20) — (1 + %), (5.2.4)

where C' does not depend on m. We deduce (5.2.2). Similarly we get (5.2.3)

and the claim follows. O

It is worth to note that the mean squared error of (5.2.2) and (5.2.3)

can be turned into the rest of exponential expansion series.

Corollary 5.2.4 We have the following bounds

=L (22CT
Esup‘Y”” Y”””| <O(1+2° ZH—|),
u<t j=m VE
= (8Kk*CTY
Esup [YF — v |' < 01 + 2 (8x7CT)
u<t j=m ]'

Proof. By virtue of Lemma 8.2.3, we get the inequality

Esup Y.\ — Y“m‘ <Z23Esup‘Y'”+1 Y’”

u<t
j=m

and we get the first inequality from (5.2.4) and similarly the second one. O

We use the above bounds to evaluate the mean squared error between
S and S™™.

Lemma 5.2.5 For every k, there exists a constant C\. such that

E sup (87 —5S;™)" <, \/E sup (Y — Y4,

te[0,T] te[0,T]
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Proof. By virtue of the Burkholder-Davis-Gundy inequalities, we have

t
E sup (SF—5™? < CE / (Sfay — SEMe™) ds
0

s
u€l0,t]

t
+2F / (S%ry — S%™ry)? ds,
0

where, by an abuse of notation, o5 := o(s,SF A k), recalling that

o™ :=o(s, S®™ 1 A k). The first term is bounded from above as follows

T T
E / (Sf, — SEma™)? ds < 2F / (S%(os — 0™))* ds

0 0

T
+ 2F / (6™ (S5 — S%™))? ds.
0
Observe the inequalities |o(t,y)| + |r:| < m,, if |y| < x and

lo(t,ve* AN k) — o(t,ze’ AK)| < KO|X =Y, (5.2.5)

for t € [0, T]. We recall that, according to Lemma 5.2.2

sup E sup (S;)* < O,
K te[0,T)]

Therefore,

E sup (Sﬁ - Sg,m)Z < GHC\/E sup ‘Yu’i _ Yuff,m—1 |4

u€[0,] u<T

t
+6m, / Esup (8% — S5™)? ds.
0

u<s

It remains to use Gronwall’s Lemma to deduce that

1) sup (Sf — vam)Q < 6xC exp(6mHT) \/E' sup |Y;/i o Y;f{,m—1|4.

te[0,T] t<T
And the result follows. O

It is worth to mention, with the current notations, that we can write
Srm = S(g™).

92



5.2.3 Approximation of the Diffusion

We shall now approximate o by a recursive method. Here is the starting
point of, we hope, various fruitful approximation methods. As an example,
we consider a very simple discretization, considering the sample path of the
Brownian motion only at a few dates. Though very basic, this method is
known for being coarse. We shall discuss about its accuracy in the following
two chapters. Fix k € Ry. Set 7, = {to = 0,t; = T/n,to =2T/n,---t, =T}
the uniform partition of order n of the time interval [0,7]. We define the

following scheme. Suppose that T'/n < 1. To alleviate notation, we write for

t 1/2
llo||: == (/ der) :
0

Consider the piecewise constant processes recursively defined by

the process o

5'151 = O'(ti,l'/\li), t; <t <tiy1,

1
o = a(ti,mi)exp(&m—l-wti—;W‘WIZMH)» st <t

Remark 5.2.6 [t is worth to mention that even if the processes "™ are piece-

wise constant, the processes S(¢™) are not. Indeed

S,(™) = F(t)exp (&m.wt—% /0 t(&;”)Zdu)
1

. . . L.
= F(t)exp (6™ Wy, + 6, (W, — W,,) — §||am||i - E(JZ_‘)Z(t — 1))
~m 1 ~m
= F(t)Stl exp (Gti (Wt - Wtz) - §<O-t¢ )2(t — tl)),

fort; <t <t 1. Nevertheless, it is possible to get simulations for the process

S(5™).
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Chapter 6

The Case m =2

In the case m = 2, even with the coarse approximation of the Brownian
motion process, the accuracy is still good. Theorem 6.3.1 below reads as
follows. Under assumptions on the pay-off function, accepting a certain non

reducible error, the rate of convergence of the approximation is n~!.

In
analogy with [13, 14], numerical simulations would illustrate the accuracy of
the method. Nevertheless, we think that the systematic error is not much

worse than the one in [13, 14].

6.1 Approximation

We shall approximate o2, the second iterated volatility defined in Paragraph
5.2.2, by the “recursive” discretization method of Paragraph 5.2.3. That is,
we stop the iterations in Section 5.2.3 in the special case m = 2. Fix k € R,..
We define the following scheme. Set n € N and 7, the sequence {t; := iT'/n}.
We suppose that T'/n < 1. Consider the piecewise constant processes defined
by

5 = otz AK), t <t <ti,

1
G = o (ti,F(ti) exp (51 Wy, — 5”51H?) A ’f) ; by <t <tig1.
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6.2 Consistency with Discretization

We introduce here a property on the pay-off function. Namely, we consider
pay-off functions that suit well when the asset price is approximated by a
piecewise constant process active only on a uniform partition of the time
interval. We formulate the condition in a technical sense since we target,
with further research, a larger class of pay-off functions, for example pay-off
depending on the asset price at a few dates, etc. Further investigation on

the pay-off functions are needed.

We need a condition which allows us to consider a “discretized” version
of the underlying asset price, when this one is given by the Picard iterations.
Set n € N and 7,, the sequence {t; := iT/n}. We say that the pay-off G is
consistent with discretization if

Ci
[EG(S(0?)) — BEG(S™(0%))] < —.
n

At least, the European call pay-off satisfies the consistency with dis-
cretization property. Indeed, the pay-off of the European call option with
strike K is of the form G(S) where G(a) = e~ foT”dt(ozT — K)*. Since G

depends only on the terminal value of a;, we clearly have

G(S(0%)) = G(S"(0%)).

6.3 Accuracy

The accuracy of our approximation is given in the following Theorem. One
can see that with the above “discretization” property, the rate of convergence
is higher than the one we could expect with the current approximation of

the Brownian motion.

Theorem 6.3.1 Assume that Assumptions 5.1.2 and 5.1.3 hold and suppose
that G is consistent with discretization. Fix k € Ry and n € N. Then, for

[ > 1, there are some constants Cy, C,, and €, > 0 such that

BG(S) ~ BAS"(0))] < 4+ = e,

Kl
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where €, 1= €42 15 the second term of a decreasing sequence €y, — 0 as

m — oo, see term (6.4.2) below.

6.4 Proof of Theorem 6.3.1

To prove Theorem 6.3.1 we first remark that we have

|EG(S) — EG(S™(5?))| < |EG(S)— EG(S") (6.4.1)
+|EG(S") — EG(5%%)| (6.4.2)
+|EG(S(0?)) — EG(S™(0?))]  (6.4.3)
+|EG(S™(0%) — EG(S™(6%))|. (6.4.4)

Note that since G is consistent with discretization, the term (6.4.3) is smaller
than CT'/n. We recall that G is Lipschitz continuous by (5.1.1). That is we
can evaluate the above terms summing the square root of the mean squared
error studied before. Indeed (6.4.1) is bounded with the above Lemma 5.2.2,
€, stands for the quantity (6.4.2) and by the following Lemma 6.4.1 we bound
(6.4.4). Tt is enough to study the convergence of S™(52%) to S™(c?).

Lemma 6.4.1 We have the following inequality

~ (I{CT)Q Cl
E sup |S™(6%) — S7(o? 2§—+—.
1€[0.7] ‘ t ( ) t ( )| n2 /{l

Proof. Since the family of random variables {5! - W;,o! - W;, t € [0,T]} is

uniformly integrable, there exists C' such that, setting

I'c = {supal-VVt > C’}U{sup&l-Wt > C’}

t<T t<T

we have P(I'¢) < C;/kl. Tt follows that

t;
(' — o) Wt_%/ (51)% — (o1)%ds] .
0

|S<6-2)tz - S<0-2)ti|IFCC < Cfi,l
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With usual argument, we conclude that

Vv P(T¢ \/E sup |S(62); + S(0?), ‘4

E max |S(6-2)t7,

te[0,T]

+C’,€7l/ E sup ‘at —at‘ ds.

te[0,T)

It is easily seen that

- 2 I{CT)2
sup {atl—crﬂ < ( R
te[0,T] n

(6.4.5)

Which ends the proof.O

Theorem 6.3.1 is proved.
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Chapter 7

The Case m > 2

The good accuracy of the dicretization procedure fails to generalize when
we consider higher iterations than the one described in the previous chapter.
The main problem comes from the fact that (6.4.5) in the proof of Theorem
6.3.1 does not hold any more for m > 2. Then we suffer the lack of precision

of the current approximation of the Brownian motion.

7.1 The Result

In view of the following proofs, it is hopeless to focus only on certain dates of
the approximation of the asset price in order to improve the accuracy. So we
do not need anymore the additional “discretization” property introduced in

Paragraph 6.2. The accuracy of the approximation is stated in the following.

Theorem 7.1.1 Assume that Assumptions 5.1.2 and 5.1.8 hold. Fix
k €R., meNandn € N. Then, forl,p € N, there are some constants
Cy,C,Cy, Cyp such that

|BG(S) = EG(S"(6")| = - + Ci
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7.2 Proof of Theorem 7.1.1

In the spirit of the proof of Theorem 6.3.1, we make a survey of the mean

squared errors. We have the following estimation.

Lemma 7.2.1 There exists a constant C,., which does not depend on n and

b (p—1)/2
< —C””’ ’ .
- n

p

m such that

sup |o¢" — 07"

te€[0,T]
Proof. Observe that
b P
sup }62”—0;”} < ot max‘&l?—crm
t€[0,T] isn
P
+2" lmax sup |0 —o'|| . (7.2.1)
i<n te[ti,ti+1[

So, we first evaluate the quantity |6} — o"|7 at dates {t;}. Since o is

Lipschitz, (5.2.5), there exists a constant C' such that

6™ —om )= 3 [ 1) - (o) e

o7 — o] < wC
1 1

We deduce that

Igglx }&ZL — am ) < kC' I?Szzx}(ﬁmfl — om’l) - Wy, )
ti py\ 1/p
+rC (E / G N i ) .
0

Recall for o > 2 the inequality
N N Q o/
[27/% — /2] < 5 (max(fa; [y)**" | —yl.

Together with the Jensen inequality, we state that

/ 6 = (o) ar

p

t;
E < K,CE/ 67t — oM dt.
0
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It follows, using Burkholder-Davis—Gundy inequality, that we have

t;
Emax |6 — o] < (licp)p/ El5 ! — oyt dt,
0

i<n
for some constant C}, depending on p.

In a second step, we study the second term in inequality (7.2.1). Using
equality (5.2.5), we deduce that

T
-1 -1
sup |of" —o}'| < C—+kC sup |V =Y/
te€[tistita| n te€[tistita|

p—1 p
" P 2r—1(CT)
max sup |0ti—at| S
votets tina] n
_ -1 -1
+2P 1/4”05 sup YT = YETTOP
i te[ts tiva|

Once again with Burkholder-Davis-Gundy inequality, it follows that

» op—17p
Emax sup |JZ7—0;” <

p
2 tE[ti,ti+1[ n

+ 20710, (T n)P2.

Therefore, we can conclude that

p

E

sup |y — 0|
u€[0,t]

¢
< QP_I(KCP)I’/ E sup |67t — o™ HPds
0

u€(0,s]

+/€pCp(T/n)(p_1)/2.
Using Lemma 8.2.2, we deduce that

E

sup [o7" — o¢"
t€[0,T]

p 1)/2
T (p
< 2 (kG (—) |

n

This ends the proof. O

As an evident corollary of the above Lemma 7.2.1, we state the follow-

ing.
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Corollary 7.2.2 We have the following inequalities,

m g Cm
Syl el <
m 12 ~m 12 O’ia
) A =

We then prove the accuracy of the approximation of S®™ by S(¢™) in

the next lemma.

Lemma 7.2.3 For every k, there is a constant C\, which does not depend

on m, such that

C,{ 7p

— n-1/2p)"
2

sup [ S{" — S(5™)y|
te[0,7

Proof. We follow the lines of the proof of Proposition 5.2.5. We have to

observe that S(6™) solves the s.d.e.
It follows, by the Burkholder-Davis—Gundy inequality, that

t
E sup |S(6™), —Sr™* < CE / (S(6™),6™ — S=Ma™)? ds
0

u€(0,t] °
t
128 / (5™, — S7™)r.)? ds.
0

Focus on the first term of the above inequality. We have

t t
E / (S(6™)6™ — S=mo™)?ds < 2E / (SEm (5™ — ™)) ds
0 0
t
+2F / (57(S(E™), — S=™))* ds.
0

Recall the inequalities

o(t, )] + [l < my,iff2] <,

lo(t,ze® AK) —o(t,ze¥ AK)| < KOIX =Y.
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We deduce that
2

E sup |S(&m)u _ Sg,m‘Q < xC | sup |0_m—1 W, — ™ th

u€l0,1] te(0,T) )
2
+C | sup [l = (|5
te[0,T] »
t
—|—6m,$/ Esup (S(6™), — S5™)? ds.
0 u<s

We conclude, using Gronwall’s Lemma and Lemma 7.2.2. O

It remains to sum the errors in analogy with the proof of Theorem 6.3.1.

Namely we have

IEG(S) — BEG(S™(6™)| < |BG(S) — EG(S®)] (7.2.2)
+HEG(S®) — BG(S"™)| (7.2.3)
HEG(S(0™) — EG(S(6™)|  (7.2.4)
EG(S(6™)) — EG(S™(5™))|. (7.2.5)

We recall that G is Lipschitz continuous by (5.1.1). That is we can evaluate
the above terms summing the square root of the mean squared error studied
before. Indeed (7.2.2) is bounded with the above Lemma 5.2.2. Lemma 5.2.5
is used for the bound of (7.2.3). The bound for (7.2.4) is studied in Lemma
7.2.3. Finally, (7.2.5) is straightforwardly bounded by C,,(T//n)®~ /7.

The proof of Theorem 7.1.1 is achieved.
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Chapter 8

Integrability of S and various

lemmata

8.1 Integrability of S

We shall show that under Assumption 5.1.2, the moments of S and S* exist.

We recall that we write
1
dY; = o(t, S))dW; + rdt — 502(75, Sy)dt.

First note that if the function r is bounded and o?(¢, z) < L(1+In(In(x))1,%1),
we deduce that for all ¢ € [0, 7]

t
EsupY? < C+C/ Esup Y dr < oco.
0

u<t u<r
By Gronwall’s Lemma, we deduce that E sup, < Y2 < co. Hence the process
Jo o(t, Si)dW; is a true martingale.

Lemma 8.1.1 Assume that Assumption 5.1.2 holds, then there exists a con-
stant C' independent of k such that sup,.r ES; < C.

Proof. In view of the definition of S* in Paragraph 5.2.1, we have
SE/F(u) < M, where My = 1 and M is the local martingale solution to
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the s.d.e.
dM,, = M,o(u, S; N k)dW,,.

As r is bounded, we get SF < C,M,. Using a sequence of stopping times
(7") such that M™" is a true martingale, we deduce that ES*, , < Cz and
by Fatou’s lemma we get that £S;; < Cz. O

Lemma 8.1.2 Assume that Assumption 5.1.2 holds, then for p > 1 there
exists a constant Cy, independent of k such that sup,.p E(Sg)? < C,.

Proof. We have, with ¢ to be defined later,
(SEP < CN, eha-p Iy oSz rmiin

)

where
N, :=exp (p /Oua(r, SFENR)AW, — %q /Ou a?(r, S¥ A ﬁ)dT) :
Using the inequality 0 < ab < (a® + b?), we get that
(SrHP < CxN, + Crelt P Jo UQ(T’STHM)dT,

where N = N2 is a local martingale when choosing ¢ = 2p2. Moreover as
the function x — el?~P)¥* is convex, the Jensen inequality and the hypothesis

yields
6(q—p) Jo' o (u,SEAR)du < l /u e(q—p)scfQ(s,Sj/\n)dS
u Jo
[ _
< Cp+— / (log(5% v 1))He=PT g,
U Jo
where £ is a constant. Using the property

(log(z v 1)" " ™PT < ¢z, Va >0,

and Lemma 8.1.1, we deduce that E(Sf)P < C,. O

Corollary 8.1.3 Assume that Assumption 5.1.2 holds, then there exists a
constant C, independent of k such that E sup, ., (S5)P < C,.
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Proof. We may assume without loss of generality that p € 2N. We recall
that . .
Sp=ux +/ o(u, Sy A\ K)SEAW,, + / TuS, du.
0 0

Since 0 < 0*(t,z) < C(1+ x) we deduce easily that Esup,p(S5)? < Cp by
using the Burkholder-Davis—Gundy inequalities and Lemma 8.1.2. O

Since S* converges pointwise on [0,7] to S, we deduce the following

with Fatou’s Lemma.

Lemma 8.1.4 Assume that Assumption 5.1.2 holds, then there exist con-
stants Cy, such that Esup,«p(Su)? < Cp.

8.2 Various Lemmata

This section gathers a few technical lemmata.

Lemma 8.2.1 Let (¢™),, be a sequence of positive functions defined on an
interval [0,T], T > 0 such that for some C > 0, we have:

¢
gm+1(t) < C’/ g"(w)du, 0< @ <C.
0

Then

sup g™ (t) < C™— sup ¢°(t).
te[0,7] m! t€[0,T]

Proof. The proof stands on the following induction. Set

C, = sup ¢°(t) < C.
te[0,7

Suppose that

we have .
0

And the result is stated. O

mC’gds.
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Lemma 8.2.2 Let (¢™),, be a sequence of positive functions defined on an
interval [0,T], T > 0 such that g, is bounded and, for some C, C' > 0, we

have:
t —_—
gmti(t) < C/ g"(u)du+ C.
0
Then
sup sup g™ (t) < max( sup g'(t);C)e“U+D),
m t€[0,T) t€[0,7]

Proof. Set K = max(sup,cpq ' (t); C). The result is proved by induction.
That is, g*(t) < K exp(Ct). Suppose that ¢g"(t) < K exp(C't), we have

t
gmti(t) < C/ K exp(Cu)du + K = K exp(Ct).
0

Which yields the result.O

Lemma 8.2.3 Let ay, - - - ay be real numbers. We have the following inequal-

ities

Proof. For any real numbers a, b, the inequalities
2ab < a® + b?,

leads to
(a+b)* < 2a® + 2%,

which leads to
(a+b)* < (2a* + 2b%)* < 8a* + 8b™.

We show the results by evident inductions. O
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Les aspects mathématiques des modeles de marchégafficiers avec codts de transaction

Les marchés financiers occupent une place prépanidé dans I'économie. La future évolution des
Iégislations dans le domaine de la finance mondialeendre inévitable l'introduction de frictioneyr éviter les
mouvements spéculatifs des capitaux, toujours namacd'une crise. C'est pourquoi nous nous iNt&rEss
principalement, ici, aux modéles de marchés firemscavec codts de transaction.

Cette thése se compose de trois chapitres. Leigretablit un critere d’absence d’opportunité Hiaage
donnant I'existence de systémes de prix consistaetsmartingales évoluant dans le cone dual pasiprimé en
unités physiques, pour une famille de modéles dema financiers en temps continu avec petits atgitsansaction.

Dans le deuxieme chapitre, nous montrons la cgevee des ensembles de sur-réplication d’'une option
européenne dans le cadre de la convergence togotogies ensembles. Dans des modéles multidimeessoanec
collts de transaction décroissants a I'ord?& mous donnons une description de I'ensemble limiter des modeéles
particuliers et en déduisons des inclusions paumedéles généraux (modéles de KABANQV).

Le troisieme chapitre est dédié a I'approximatdun prix d’options européennes pour des modéles avec
diffusion trés générale (sans colts de transactols étudions les propriétés des pay-offs pouvpio utiliser au
mieux I'approximation du processus de prix du s@egent par un processus intuitif défini par récncee grace aux
itérations de PICARD.

Mathematical Aspects of Financial Market Models wih Transaction Costs

Financial markets play a prevailing role in themamy. The future legislation development in theldiof global
finance will unavoidably lead to friction to prevespeculative capital movements, always threatewiitig crisis. That
is why we are interested in the financial marketliete with transaction costs.

This thesis consists of three chapters. The dingt establishes a criterion of absence of arbitogpg®rtunities
giving the existence of consistent price systenes,martingale evolving in the dual cone expreseguhysical units.
The criterion holds for a family of financial matkmodels in continuous time with small transactosts.

In the second chapter, we show the convergensepdr-replication sets for a European option incibretext
of the topological convergence of sets. In muliat& models with transaction costs decreasingtatrfé’, we give a
description of the limit set for specific modelse\Weduce inclusions for general models (KABANOVtdeils).

The third chapter is dedicated to the approxinmatibthe European option price for models with vgeneral
diffusion (without transaction costs). We study pgedies of the pay-off to make best use of the @gpration of the

underlying asset price, based on PICARD iterations.

Keywords . Transaction Costs, Multidimensional Models, Eurap&gption, Arbitrage Theory, Super-Replication,
Topological Convergence, Diffusion Process.
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