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l’Université de Franche–Comté
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Bruno Bouchard (Rapporteur), Université Paris–Dauphine
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l’honneur de rapporter cette thèse ainsi que Clément Dombry, Emmanuel
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Résumé

Les marchés financiers occupent une place prépondérante dans l’économie.

La future évolution des législations dans le domaine de la finance mondiale

va rendre inévitable l’introduction de frictions pour éviter les mouvements

spéculatifs des capitaux, toujours menaçants d’une crise. C’est pourquoi nous

nous intéressons principalement, ici, aux modèles de marchés financiers avec

coûts de transaction.

Cette thèse se compose de trois chapitres. Le premier établit un critère

d’absence d’opportunité d’arbitrage donnant l’existence de systèmes de prix

consistants, i.e. martingales évoluant dans le cône dual positif exprimé en

unités physiques, pour une famille de modèles de marchés financiers en temps

continu avec petits coûts de transaction.

Dans le deuxième chapitre, nous montrons la convergence des ensembles

de sur-réplication d’une option européenne dans le cadre de la convergence

topologique des ensembles. Dans des modèles multidimensionnels avec coûts

de transaction décroissants à l’ordre n−1/2, nous donnons une description de

l’ensemble limite pour des modèles particuliers et en déduisons des inclusions

pour les modèles généraux (modèles de KABANOV).

Le troisième chapitre est dédié à l’approximation du prix d’options

européennes pour des modèles avec diffusion très générale (sans coûts de

transaction). Nous étudions les propriétés des pay-offs pour pouvoir utiliser

au mieux l’approximation du processus de prix du sous-jacent par un pro-

cessus intuitif défini par récurrence grâce aux itérations de PICARD.
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Introduction

La théorie des marchés financiers multi-actifs avec coûts de transaction per-

met une modélisation réaliste dans laquelle les objets, prix des actifs contin-

gents, portefeuilles, stratégies, etc. sont à valeurs vectorielles. Deux visions

se coordonnent : une expression en unités physiques des actifs sous-jacents

ou leur cotation dans une monnaie de référence, le numéraire. Cette vecto-

rialisation remplit le fossé entre, d’une part, les mathématiques financières

traditionnelles qui ne considèrent qu’un actif en terme de numéraire et d’autre

part, la vision mathématique intuitive de l’économie. Nous nous placerons

dans des modèles pouvant être assimilés à des modèles de devises dont l’étude

approfondie est l’objet du livre [24].

La notion de cône de solvabilité émerge immédiatement. Il s’agit de

la partie de l’espace dont les positions permettent de ne plus avoir de dette

sur aucun actif, en transférant de la richesse entre les coordonnées tout en

s’acquittant des coûts de transaction. Cette notion est primordiale lors de

la modélisation. Outre le fait qu’elle contraint les stratégies de portefeuille,

elle détermine le cône dual positif. Celui-ci, exprimé en unités physiques,

accueille, sous de bonnes hypothèses, des martingales qui ont une proximité

avec le processus vectoriel de prix des actifs sous-jacents. Ces martingales

sont nommées systèmes de prix consistants et permettent le calcul des prix

de recouvrement des options européennes. En effet, le théorème de sur-

réplication donné dans l’article [23] donne une caractérisation de tels capitaux

initiaux. Il est basé sur la comparaison entre le niveau de richesse de ces

derniers et l’espérance du prix de l’actif à répliquer dont la valeur est évaluée

par les systèmes de prix consistants.
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Cette thèse suit ce cheminement. Nous nous intéressons à un critère

donnant l’existence de systèmes de prix consistants, puis travaillons sur les

prix de sur-réplications de l’option européenne.

La première partie porte sur la théorie de l’arbitrage dans les modèles

continus. L’opportunité d’arbitrage est la possibilité, par un portefeuille

auto–finançant démarrant sans richesse initiale, d’arriver à une position sol-

vable non nulle, i.e. d’engendrer des profits à coup sûr. L’hypothèse d’absence

d’opportunité d’arbitrage dans les modèles de marchés financiers est com-

munément acceptée dans le monde de la finance, tant par les praticiens que

par les théoriciens. En effet, les arbitragistes font disparâıtre toute oppor-

tunité d’arbitrage quasi instantanément, et par conséquent les modélisations

n’en tiennent pas compte. Cette théorie de l’absence d’arbitrage a pour but

de donner l’existence de systèmes de prix consistants.

Dans les modèles discrets sans friction, il s’agit du théorème de Dalang–

Merton–Willinger [7], donnant l’existence d’une probabilité équivalente sous

laquelle le prix est une martingale. Dans le cadre des coûts de transaction, la

théorie s’est développée autour d’une adaptation probabiliste du théorème de

séparation d’Hahn–Banach. En effet, la martingale considérée est le proces-

sus d’espérance conditionnelle d’une variable aléatoire qui sépare l’ensemble

des valeurs terminales de portefeuille (à capital initial nul) de l’ensemble des

variables aléatoires à coordonnées positives. Nous citerons en particulier le

théorème pour le critère d’absence d’arbitrage robuste NAr établi dans les

articles [27, 33].

Dans les modèles continus, quantité de ces théorèmes ne se généralisent

pas. Par conséquent des hypothèses plus fortes du type “No Free Lunch”

(NFL-NFLVR-NFLBR) sont introduites et étudiées dans les différentes ver-

sions du “théorème fondamental de l’évaluation d’actif” (F.T.A.P.). Dans

l’article [9], l’existence de martingales est montrée dans le cadre sans coûts

de transaction, et plus récemment avec friction dans [10].

Nous proposons un critère simple d’absence d’arbitrage qui a l’avantage

de s’exprimer de manière analogue avec le temps discret. La caractérisation
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de l’hypothèse d’absence d’arbitrage concerne toute une famille de modèles

continus avec coûts de transaction, et donne l’existence de systèmes de prix

consistants pour la famille de modèles. Ce résultat repose sur une discrétisa-

tion de l’intervalle de temps par des temps d’arrêts. Sur ces suites, nous

appliquons le théorème d’absence d’arbitrage NAr discret et une étude grâce

à la convergence presque sûre permet l’extension au temps continu.

Le second chapitre est une étude de la limite des ensembles de

sur-réplication d’une option européenne dans une suite de modèles multi-

dimensionnels discrets avec coûts de transaction tendant vers zéro avec le

pas de temps. Depuis la thèse de Bachelier, “Théorie de la Spéculation”

(1900) et les formules de Black-Scholes [2], le paradigme de la finance est

continu alors qu’en réalité, les actualisations se font le long d’une grille de

dates discrètes prédéfinie. Le lien entre ces deux mondes est nécessaire et

mène à certains paradoxes. Il est bien connu que l’observation discrète des

évolutions du prix du sous-jacent (de plus en plus fréquente) n’entrâıne pas

la convergence du prix de l’option vers le prix théorique du modèle continu.

L’idée naissante des travaux de Black–Scholes et de Leland [31] est qu’une

certaine friction est implicite dans les marchés. C’est ainsi que la convergence

du prix de l’option est prouvée, dans les modèles de Leland–Lott, du discret

vers le continu, grâce à l’introduction de coûts de transaction décroissants.

Nous nous intéressons, comme dans Kusuoka [30], à la limite des prix

de sur-réplication d’une option européenne “étendue” dans des suites de

modèles discrets où les coûts de transaction décroissent à l’ordre n−1/2. Les

prix des sous-jacents sont modélisés par des processus très simples basés sur

des marches aléatoires qui convergent en loi vers un mouvement Brownien

géométrique. De manière étonnante, dans le modèle limite, il faut évaluer

l’option non pas sur l’unique système de prix consistant du modèle complet

conduit par le mouvement Brownien géométrique, mais par rapport à un

ensemble de martingales au “comportement” proche dudit système de prix

consistants.

Nous considérons des modèles de marchés multidimensionnels et regar-
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dons la convergence de tout l’ensemble de sur-réplication généré par chacun

des modèles de la suite, étendant ainsi le résultat dans [30]. Dans des modèles

simplifiés, nous regardons la limite des ensembles de sur-réplication dans le

cadre de la topologie des fermés de R
1+d, voir [1, 20], topologie qui coincide

avec la célèbre topologie de Hausdorff sur les compacts. Le théorème lim-

ite s’appuie sur le théorème de sur-réplication qui donne une représentation

de ces ensembles par les systèmes de prix consistants. Ainsi, une démarche

“duale” nous fait utiliser la théorie de la convergence faible sur l’espace de

Skorohod détaillée dans les livres [3, 22]. La convergence faible des systèmes

de prix consistants permet en effet de montrer que le critère de sur-réplication

est vérifié pour l’ensemble des vecteurs limites. Les ramifications concernant

des modèles plus généraux suivent.

Dans le troisième chapitre, nous proposons une approximation du prix

d’options à pay-off assez général, sans coûts de transaction, grâce à une

approximation du prix du sous-jacent. Ce prix peut être conduit par un

processus avec diffusion très générale. Une erreur théorique est calculée grâce

à l’erreur quadratique moyenne de l’approximation.

Les formules de Black–Scholes [2] sont le point de départ des méthodes

de recouvrement de l’option européenne. Dans ce marché, l’évolution du prix

du sous-jacent est supposée suivre un mouvement Brownien géométrique, où

la volatilité est constante. Malheureusement les tests statistiques rejettent ces

modèles et des processus de diffusion plus élaborés apparaissent. Différents

modèles avec volatilité locale sont étudiés, les volatilités smiles et skew [11, 5],

les volatilités stochastiques [21], etc.

Avec la complexité des équations différentielles stochastiques générées

par ces modèles, des simulations numériques s’imposent. Dans [4, 29], on

utilise la méthode de Monte-Carlo pour des schémas aux différences finies.

En particulier le schéma d’Euler, intuitif et simple, souffre d’un manque de

précision et converge, sans hypothèses fortes, à l’ordre n−1/2. Les schémas

plus rapides deviennent, quant à eux, bien moins transparents.

Dans les articles [13, 14], des schémas utilisant les itérations de Picard

14



permettent d’approcher le processus de diffusion par étapes successives grâce

à une fonction déterministe. Cette méthode est suivie d’un développement

en polynômes d’Hermite et de l’itération d’intégrales stochastiques grâce à la

formule de chaos de Wiener–Ito. Cependant il n’est pas clair que les termes

au-delà des trois considérés soient aisément calculables et de fait, l’acuité de

l’approximation est illustrée par des simulations numériques mais n’est pas

théoriquement calculée.

Nous proposons, à la suite des itérations de Picard, une approximation

des diffusions successives grâce à la discrétisation du mouvement Brown-

ien. Nous sommes alors confrontés à la difficulté du manque de précision de

l’approximation. Lorsque nous arrêtons les itérations à l’ordre 2, le résultat

tient son intérêt du fait que le processus approximant reste continu pour

éviter la perte de vitesse théorique d’ordre n−1/2 due à la discrétisation

de l’intégrale stochastique. Puisque les pay-offs de l’option “européenne”

(généralisée) ne nécessitent que le calcul à certaines dates discrètes, il est

possible d’utiliser des simulations type Monte–Carlo. Par conséquent ce

schéma, aussi simple que le schéma d’Euler, offre une vitesse de convergence

plus rapide que pour ce dernier sans hypothèse restrictive, dès lors que l’on

accepte une erreur systématique dans l’esprit de celle des schémas de [13, 14].

Dans le cas où nous considérons davantage d’itérations, notre approxi-

mation est de l’ordre n−1/2, perdant l’erreur systématique précédente. Cette

partie d’étude s’ouvre sur plusieurs horizons de recherche, en particulier

sur la question d’une approximation plus élaborée du processus de diffu-

sion itéré pour obtenir de meilleures vitesses de convergence ou encore sur

l’approximation d’autres processus tel le modèle C.I.R..
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Notations

Thoughout the text, we shall use the following notations.

• for a vector v = (v0, v1, · · · , vd) ∈ R
1+d

|v| := max
0≤i≤d

|vi|;

• for vectors v, w ∈ R
1+d

vw =
d∑

i=0

viwi;

• the canonical vectors of Rd are denoted by ei and 1 := (1, . . . , 1).

• the max-norm ball of radius ε with center at 1 := (1, . . . , 1) is denoted

by 1+ Uε, where

Uε := {x ∈ Rd : max
i

|xi| ≤ ε},

• for a matrix c = (cij)1≤i,j≤d

ci := (ci1 · · · cid)

and the notation c′ stands for the transposed matrix;

• for a sequence of random variables (ξn)n∈N the symbol O(n−a) means

that there exists a positive constant κ such that na|ξn| ≤ κ a.s. for any

n;

17



• D(Rd) is the Skorohod space of the cádlág functions x : [0, T ] → R
d

while C(Rd) denotes the space of continuous functions taking values in

R
d with the uniform norm

||x||T = sup
t≤T

|xt|.

• for a process H, we write in short

H ·Wt :=

∫ t

0

HudWu;

• for a random variable ζ, we set the Lp-norm

||ζ||p = (E|ζ|p)1/p .

For a sake of simplicity, we use the following abuse of notation: from line

to line, a constant K, κ or C may designate different constants which are

independent of any variables except, may be, fixed parameters of the problem

like the maturity date T for instance. Otherwise, we may use the notation

Cm when the constant Cm depends on a parameter m but may also change

from line to line.

18



Part I

Arbitrage Theory
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The arbitrage theory for financial markets with proportional transac-

tion costs is one of the most advanced and interesting domains of mathe-

matical finance. It success is due to a geometric viewpoint which provides

an appropriate language to attack problems. The approach based on convex

geometry not only makes arguments much more transparent comparatively

with traditional, “parametric”, modeling but also allows to put problems in

a more general mathematical framework. To the date, for the discrete-time

setting there is a plethora of criteria for various types of arbitrage, see Chap-

ter 3 of the book [24]. In a surprising contrast, for continuous-time models

only a few results on the no-arbitrage criteria are available. In the recent

paper [19] Guasoni, Rásonyi, and Schachermayer established an interesting

result in this direction. They formulated the question on sufficient and nec-

essary conditions for the absence of arbitrage not for a single model but for

a whole family of them. Namely, they considered two-asset models with a

fixed continuous price process and constant transaction costs tending to zero.

In a rather spectacular way, the resulting no-arbitrage criterion happens to

be very simple: the NAw-property holds for each model if and only if each

model admits a consistent price system. The advantage of such a formulation

is clear: topological properties, common in this theory, are not involved. It

looks very similar to the no-arbitrage criterion for the model with finite Ω,

see Th. 3.1.1 in the book [24] and Th. 3.2 in the original paper [25].

Apparently, this result merits to be put in the mainstream of the theory

of financial markets with transaction costs. In the present note we extend,

using the now “standard” geometric approach, the main theorem of [19] to

the case of multi-asset models. The paper [19] serves us as the roadmap.

Cette partie est issue de l’article [17], coécrit avec Youri Kabanov.
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Chapter 1

The Main Result

1.1 Main Result

Let ε ∈]0, 1] and let Kε∗ := R+(1 + Uε), where we recall the notation

Uε := {x ∈ Rd : maxi |xi| ≤ ε}. That is, Kε∗ is the closed convex cone in Rd

generated by the max-norm ball of radius ε with center at 1 := (1, . . . , 1).

We denote by Kε the (positive) dual cone of Kε∗.

Let (Ω,F , (Ft), P ) be a stochastic basis and let S = (St)t≤T be a con-

tinuous semimartingale with strictly positive components. We consider the

linear controlled stochastic equation

dV i
t = V i

t−dY
i
t + dBi

t, V i
0 = 0, i ≤ d,

where Y i is the stochastic logarithm of Si, i.e. dY i
t = dSi

t/S
i
t , Y

i
0 = 1, and

the strategy B is a predictable càdlàg process of bounded variation with

Ḃ ∈ −Kε. The notation Ḃ stands for (a measurable version of) the Radon–

Nikodym derivative of B with respect to ||B||, the total variation process of

B.

A strategy B is ε-admissible if for the process V = V B there is a

constant κ such that Vt + κSt ∈ Kε for all t ≤ T . The set of processes V

corresponding to ε-admissible strategies is denoted by ATε
0 while the notation

ATε
0 (T ) is reserved for the set of random variables VT , V ∈ ATε

0 .
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Using the random operator

φt : (x
1, ..., xd) 7→ (x1/S1

t , ..., x
d/Sd

t )

define the random cone K̂ε
t = φtK

ε with the dual K̂ε∗
t = φ−1

t Kε∗. Put

V̂t = φtVt. We denote by MT
0 (K̂

ε∗ \ {0}) the set of martingales Z such that

Zt ∈ K̂ε∗
t \ {0} for all t ≤ T .

Theorem 1.1.1 We have:

ATε
0 (T )∩L0(Rd

+,FT ) = {0} ∀ ε ∈]0, 1] ⇔ MT
0 (K̂

ε∗ \{0}) 6= ∅ ∀ ε ∈]0, 1].

The strategy of the proof of Theorem 1.1.1.

To prove the nontrivial implication (⇒) we exploit the fact that the

universal NAw-property holds for any imbedded discrete-time model. Us-

ing the criterion for NAr-property we deduce from here in Section 1.2 the

existence of a “universal chain”, that is there exists a sequence of stopping

times τn increasing stationary to T and such that Mτn
0 (K̂ε∗ \ {0}) 6= ∅ for

all ε ∈]0, 1] and n ≥ 1. In an analogy with [19], we relate with this “uni-

versal chain” functions F i(ε), i ≤ d, and check that there is, for each i, an

alternative: either F i = 0, or F i(0+) = 1. This is the most involved part of

the proof isolated in Section 1.3. If all F i = 0, the sets Mτn
0 (K̂ε∗ \ {0}) are

non-empty and we conclude. If there is a coordinate i for which F i(0+) = 1,

there exists a strict arbitrage opportunity, see Section 1.4. In Section 2.2 we

discuss the properties of richness of the set of consistent price systems.

1.2 Universal Discrete-Time NAw-property

We say that the continuous-time model has universal discrete-time NAw-

property if for any ε > 0, N ≥ 2, and an increasing sequence of stopping

times σ1, . . . , σN with values in [0, T ] and such that σn < σn+1 on the set

{σn < T}, we have that

L0(Rd
+,FT ) ∩

N∑

n=1

L0(−φσnK
ε,Fσn) = {0}.
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Proposition 1.2.1 Suppose that the model has the universal discrete-time

NAw-property. Then there is a strictly increasing sequence of stopping times

τn with P (τn < T ) → 0 as n → ∞ such that for any N and ε ∈]0, 1] the set

MτN
0 (K̂ε∗ \ {0}) is non-empty.

Proof. Define recursively the increasing sequence of stopping times:

σ0 = 0,

σn = σε
n := inf{t ≥ σn−1 : max

i≤d
| lnSi

t − lnSi
σn−1

| ≥ ln(1 + ε/8)},

for n ≥ 1. This sequence has the following property which we formulate as

a lemma.

Lemma 1.2.2 For any integer N ≥ 1 there exists Z ∈ MσN
0 (K̂ε∗ \ {0}).

Proof. To avoid a new notation we suppose without loss of generality that

S = SσN . Let Xn := Sσn . By our assumption and in virtue of the crite-

rion for the NAr-property there is a discrete-time martingale (Mn)n≤N with

Mn ∈ L∞(φ−1
σn
Kε/4∗ \ {0}), see Th. 3.2.1 in [24] or Th. 3 in [27]. Put

Zt := E(MN |Ft) and Z̃t := φtZt. Let us check that Z ∈ MσN
0 (K̂ε∗ \ {0}).

On the set {t ∈ [σn−1, σn]}

Z̃t = E(φtφ
−1
σn
Z̃σn |Ft).

Note that

(1 + ε/8)−2 ≤ Si
σn

Si
t

=
Si
σn−1

Si
t

Si
σn

Si
σn−1

≤ (1 + ε/8)2.

Therefore,

(1 + ε/8)−2E(Z̃i
σn
|Ft) ≤ Z̃i

t ≤ (1 + ε/8)2E(Z̃i
σn
|Ft).

But E(Z̃σn |Ft) = E(φσnMn|Ft) ∈ cone (1+ Uε/4) \ {0}, i.e. the components

of E(Z̃σn |Ft) take values in the interval with the extremities λ(1±ε/4) where
λ > 0 depends on n and ω. Thus,

1− ε ≤ (1 + ε/8)−2(1− ε/4) ≤ Z̃i
t/λ ≤ (1 + ε/8)2(1 + ε/4) ≤ 1 + ε.
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This implies the assertion of the lemma. ✷

To finish the proof of the proposition, we proceed exactly as at the end

of proof of Th. 1.4 in [19]. Namely, we take a sequence of εk ↓ 0. For each

n ≥ 1 we find an integer Nn,k such that

P (σεk
Nn,k

< T ) < 2−(n+k).

Without loss of generality we assume that for each k the sequence (Nn,k)n≥1

is increasing. The increasing sequence of stopping times τn := mink≥1 σ
εk
Nn,k

converges to T stationary: P (τn < T ) ≤ 2−n. Applying the lemma with εk

we obtain that for the process S stopped at σεk
Nn,k

there exists an εk-consistent

price system. The latter, being stopped at τn, is an εk-consistent price system

for Sτn . ✷

We call the sequence (τn) which existence was established above uni-

versal chain.

1.3 Properties of Universal Chains

We explore properties of a universal chain assuming that P (τn < T ) > 0 for

all n.

Let us introduce the set TT of stopping times σ such that P (σ < T ) > 0

and, for some n, the inequality σ ≤ τn holds on {σ < T}. This set is non

empty: by the adopted hypothesis it contains all τn.

Let σ ∈ TT and let n be such that σ ≤ τn holds on {σ < T}.
We denote by Mi(σ, ε, n) the set of processes Z such that:

(i) Z = 0 on {σ = T};

(ii) Z is a martingale on [σ, τn], i.e. E(Zτn |Fϑ) = Zϑ for any stopping time

ϑ such that σ ≤ ϑ ≤ τn on {σ < T};

(iii) Zt(ω) ∈ int K̂ε∗
t (ω) when σ(ω) < T and t ∈ [σ(ω), τn(ω)];
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(iv) EZi
σI{σ<T} = 1.

Note that the process Z = Z̃I{σ<T}/EZ̃
i
σI{σ<T} belongs to Mi(σ, ε, n)

provided that Z̃ ∈ Mτn
0 (int K̂ε∗).

Let F i(ε) := supσ∈TT
F i(σ, ε) where

F i(σ, ε) := lim
n

inf
Z∈Mi(σ,ε,n)

EZi
τnI{τn<T}.

We also put

f i(σ, ε, n) := ess inf
Z∈Mi(σ,ε,n)

E((Zi
τn/Z

i
σ)I{τn<T}|Fσ).

Lemma 1.3.1 For any Z ∈ Mi(σ, ε, n) there is a process Z̄ ∈ Mi(σ, ε, n+1)

such that Z̄τn = Zτn.

Proof. To explain the idea we suppose first that Z ∈ Mi(σ, ε′, n) for some

ε′ < ε. Take δ > 0 and a process Z̃ ∈ Mi(σ, δ, n + 1). Define the process Z̄

with components

Z̄j := ZjI[0,τn[ +
Zj

τn

Z̃j
τn

Z̃jI[τn,T ].

Note that

φtZt = λt(1 + u1t , . . . , 1 + udt ), t ∈ [σ, τn],

φtZ̃t = λ̃t(1 + ũ1t , . . . , 1 + ũdt ), t ∈ [τn, τn+1],

where maxj |uj| ≤ ε′, maxj |ũj| ≤ δ and λt, λ̃t > 0. It follows that Z̄ belongs

to Mi(σ, ε̄, n+ 1) with

ε̄ =
(1 + ε′)(1 + δ)

1− δ
− 1.

Since ε̄ < ε for sufficiently small δ = δ(ε′), the result follows.

In the general case we consider the partition of the set {σ < T} on

Fτn-measurable subsets Ak, on which the process Z evolves, on the interval

[σ, τn], in the cones K̂εk∗, where εk := (ε−1/k)∨0. As above, take processes

Z̃k ∈ Mi(σ, δk, n+1) with δk = δ(εk). Then the process Z̄ with components

Z̄j := ZjI[0,τn[ +
∑

k

Zj
τn

Z̃kj
τn

Z̃kjIAk
I[τn,T ]

meets the requirements. ✷
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Lemma 1.3.2 The sequence (f i(σ, ε, n))n≥0 is decreasing and its limit

f i(σ, ε) ≤ F i(ε).

Proof. By Lemma 1.3.1 for any Z ∈ Mi(σ, ε, n) there is a process

Z̄ ∈ Mi(σ, ε, n + 1) such that Z̄τn = Zτn . Using the martingale property of

Z̄ we get that

E((Zi
τn/Z

i
σ)I{τn<T}|Fσ) = E((Z̄i

τn/Z̄
i
σ)I{τn<T}|Fσ)

≥ E((Z̄i
τn+1

/Z̄i
σ)I{τn+1<T}|Fσ).

It follows that f i(σ, ε, n) ≥ f i(σ, ε, n+ 1).

Suppose that the claimed inequality f i(σ, ε) ≤ F i(ε) fails. Then there

exist a non-null Fσ-measurable set A ⊆ {σ < T} and a constant a > 0 such

that for all sufficiently large n

f i(σ, ε, n)IA ≥ (F i(ε) + a)IA.

Define the stopping time σA := σIA + TIAc and note that for any

Z ∈ Mi(σ, ε, n) the process ZIA/EZIA is an element of Mi(σA, ε, n). Since

E(ξ|Fσ)IA = E(ξ|FσA
)IA, we have the bound

f i(σA, ε, n)IA ≥ f i(σ, ε, n)IA.

Thus, for any Z ∈ Mi(σA, ε, n) and sufficiently large n

EZi
τnI{τn<T} = EZi

σA
E((Zi

τn/Z
i
σA
)I{τn<T}|FσA

) ≥ F i(ε) + a

in contradiction with the definition of F i(ε). ✷

Lemma 1.3.3 Let σ ∈ TT be such that σ ≤ τn0 on the set {σ < T} and let

ε, δ > 0. Then there are n ≥ n0, Γ ∈ Fσ with P (Γ) ≤ δ, and Z ∈ Mi(σ, ε, n)

such that Zi
σ = η := I{σ<T}/EI{σ<T} and

E(Zi
τnI{τn<T}|Fσ) ≤

I{σ<T}

EI{σ<T}

[(F i(ε) + δ)IΓc + IΓ].
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Proof. Recall that the essential infimum ξ of a family of random variables

{ξα} is the limit of a decreasing sequence of random variables of the form

ξα1 ∧ ξα2 ∧ ... ∧ ξαm , m → ∞. Thus, for any a > 0 the sets {ξαk ≤ ξ + a}
form a covering of Ω. Using the standard procedure, one can construct from

this covering a measurable partition of Ω by sets Ak such that ξαk ≤ ξ + a

on Ak.

Thus, for any fixed n ≥ n0 there are a countable partition of the set

{σ < T} into Fσ-measurable sets An,k and a sequence of Zn,k ∈ Mi(σ, ε, n)

such that

E((Zn,k,i
τn /Zn,k,i

σ )I{τn<T}|Fσ) ≤ f i(σ, ε, n) + 1/n on An,k.

Put, for t ∈ [σ, τn],

Z̃n
t := η

∞∑

k=1

1

Zn,k,i
σ

Zn,k
t IAn,k .

Then Z̃n ∈ Mi(σ, ε, n), Z̃n,i
σ = η, and

E(Z̃n,i
τn I{τn<T}|Fσ) = ηE((Z̃n,i

τn /η)I{τn<T}|Fσ) ≤
I{σ<T}

EI{σ<T}

[f i(σ, ε, n) + 1/n].

Note that f i(σ, ε, n) + 1/n decreases to f i(σ, ε) ≤ F i(ε). By the Egorov

theorem the convergence is uniform outside of a set Γ of arbitrary small

probability. The assertion of the lemma follows from here immediately. ✷

Proposition 1.3.4 For any ε1, ε2 we have the inequality

F i(ε1)F
i(ε2) ≥ F i((1 + ε1)(1 + ε2)/(1− ε2)− 1). (1.3.1)

Either F i = 0, or there is ci ≥ 0 such that F i(ε) ≥ e−ciε1/3 for all sufficiently

small ε.

Proof. Fix δ > 0 and a stopping time σ ≤ τn0 on the set {σ < T}. According
to the above lemma there are n ≥ n0 and Z1 ∈ Mi(σ, ε1, n) such that

EZ1i
τnI{τn<T} ≤ F i(ε1) + δ.
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Using the same lemma again (but now with τn playing the role of σ), we

find m > n and Z2 ∈ Mi(τn, ε2,m) with Z2i
τn = I{τn<T}/EI{τn<T} such that

outside of a set Γ ∈ Fτn with P (Γ) ≤ δ we have the bound

E(Z2i
τmI{τm<T}|Fτn) ≤

I{τn<T}

EI{τn<T}

[(F i(ε2) + δ)IΓc + IΓ].

Define on [σ, τm] the martingale Z with Zj
t := Z1j

t on [σ, τn] and

Zj
t := Z2j

t Z
1j
τn/Z

2j
τn on [τn, τm], j = 1, . . . , d. Then

φtZ
1
t = λ1t (1 + u11t , . . . , 1 + u1dt ), t ∈ [σ, τn],

φtZ
2
t = λ2t (1 + u21t , . . . , 1 + u2dt ), t ∈ [τn, τm],

where maxj |u1j| ≤ ε1, maxj |u2j| ≤ ε2 and λ1t , λ
2
t > 0. It follows that

Z ∈ Mi(σ, (1 + ε1)(1 + ε2)/(1− ε2)− 1,m).

Note also that

EZi
τmI{τm<T} = P (τn < T )EZ2i

τmZ
1i
τnI{τm<T}

≤ P (τn < T )EZ1i
τnI{τn<T}E(Z

2i
τmI{τm<T}|Fτn).

Hence,

EZi
τmI{τm<T} ≤ (F i(ε1) + δ)(F i(ε2) + δ) + EZ1i

τnI{τn<T}IΓ.

The inequality (1.3.1) follows from here.

Note that for ε1, ε2 ∈]0, 1/4]

(1 + ε1)(1 + ε2)

1− ε2
− 1 =

ε1 + 2ε2 + ε1ε2
1− ε2

≤ 4(ε1 + ε2).

Since F is decreasing, we obtain from (1.3.1) that

F i(ε1)F
i(ε2) ≥ F i(4(ε1 + ε2))

for all ε1, ε2 ∈]0, 1/8]. Using Lemma 1.3.5 below with f = lnF i, we get the

needed bound. ✷
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Lemma 1.3.5 Let f :]0, x0] → R be a decreasing function such that

f(x1) + f(x2) ≥ f(4(x1 + x2)), ∀ x1, x2 ≤ x0. (1.3.2)

Then there is c > 0 such that f(x) ≥ −cx1/3 for x ∈]0, x0].

Proof. In the non-trivial case where f(x0) < 0, the constant

κ = − infx∈]x0/8,x0] f(x)/x is strictly greater than zero. Iterating the inequal-

ity 2f(x) ≥ f(8x) we obtain that 2nf(x) ≥ f(23nx) for all x ∈]0, 2−3nx0] and

all integers n ≥ 0. Therefore,

f(x)

x
≥ 22n

f(23nx)

23nx
=

1

4
x
2/3
0

(
23(n+1)

x0

)2/3
f(23nx)

23nx
.

For x ∈]2−3(n+1)x0, 2
−3nx0], the right-hand side dominates −cx−2/3 with the

constant c := κx
2/3
0 /4. Thus, the inequality f(x)/x ≥ −cx−2/3 holds on

]0, x0]. ✷

1.4 Proof of Theorem 1.1.1

(⇐) The arguments are standard. For any ξ ∈ φTA
Tε
0 (T ) and

Z ∈ MT
0 (K̂

ε∗ \ {0}) we have EZT ξ ≤ 0 and this inequality is impossible

for ξ ∈ L0(Rd
+,FT ), ξ 6= 0.

(⇒) In view of Proposition 1.2.1 we need to consider the case where the

universal chain is such that P (τn < T ) > 0 for every n and we can apply the

results on functions F i. Now the claim follows from the assertions below (cf.

Prop. 3.7 and Th. 3.7 in [19]).

Proposition 1.4.1 If
∑

i F
i(ε) = 0 for all ε ∈]0, 1], then the set

MT
0 (K̂

ε∗ \ {0}) is non-empty.

Proof. Fix ε ∈]0, 1] and define a sequence of εk ↓ 0, such that ε̄N ↑ ε where

ε̄1 = ε1,

ε̄N := (1 + ε1)
N∏

k=2

1 + εk
1− εk

− 1, N ≥ 2.
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We extend arguments of the proof of Proposition 1.3.4 in the following way.

Namely, we construct inductively an increasing sequence of integers (nN)N≥0

with n0 = 0 and a sequence of Z(N) ∈ MτnN
0 (K̂ ε̄N∗ \ {0}) such that for

N = kd+ r where 0 ≤ r ≤ d− 1

EZ(N) r+1
τnN

I{τnN
<T} ≤ 2−N . (1.4.3)

Since F 1(ε) = 0, Lemma 1.3.3 ensures the existence of Z1 ∈ M1(0, ε1, n1)

with

EZ11
τn1
I{τn1<T} ≤ 2−1.

Put Z(1) := Z1. Take now δ1 > 0 such that

EZ(1)2
τn1

I{τn1<T}IA ≤ 2−3

for every A ∈ Fτn1
with P (A) ≤ δ1. Using again Lemma 1.3.3 (now for

the second coordinate), we find an integer n2 > n1, a set Γ1 ∈ Fτn1
with

P (Γ1) ≤ δ1 ∧ 2−3, and a process Z2 ∈ M2(τn1 , ε2, n2) such that

Z22
τn1

= I{τn1<T}/EI{τn1<T} and

E(Z22
τn2
I{τn2<T}|Fτn1

) ≤
I{τn1<T}

EI{τn1<T}

[2−3 + IΓ1 ].

Put Z
(2)j
t = Z

(1)j
t on [0, τn1 ] and Z

(2)j
t = Z2j

t Z
(1)j
τn1

/Z2j
τn1

on ]τn1 , τn2 ],

j = 1, . . . , d. Note that Z(2) ∈ Mτn2
0 (φ−1cone {1+ Uε̄2} \ {0}) and

EZ(2)2
τn2

I{τn2<T} = P (τn1 < T )EZ22
τn2
Z(1)2

τn1
I{τn2<T}

≤ P (τn1 < T )EZ(1)2
τn1

I{τn1<T}E(Z
22
τn2
I{τn2<T}|Fτn1

) ≤ 2−2.

We continue this procedure passing at each step from the coordinate j to the

coordinate j + 1 for j ≤ d− 1 and from the coordinate d to the first one.

Since P (τn = T ) ↑ 1, there is a process Z such that ZτnN = Z(N)

for every N . The components of Z are strictly positive processes on [0, T ].

The condition (1.4.3) ensures that they are martingales. Therefore,

Z ∈ MT
0 (K̂

ε∗ \ {0}). ✷

Proposition 1.4.2 Suppose that
∑
F i 6= 0. Then there is ε ∈]0, 1] for which

the property NAwε (the notation is obvious) does not hold.
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Proof. At least one of functions, say, F 1, is not equal identically to zero.

According to Proposition 1.3.4, we have the bound F 1(ε) > e−cε1/3 for all

sufficiently small ε. Hence, there is a stopping time σ dominated by certain

τn0 on the set {σ < T} such that

inf
Z∈M1(σ,ε,n)

EZ1
τnI{τn<T} > e−cε1/3

for all sufficiently large n. Then for every Z ∈ M1(σ, ε, n) we have that

E(Z1
τnI{τn=T}|Fσ) ≤ 1− e−cε1/3 .

Let us consider the sequence of random variables ξn ∈ L0(Rd,Fτn) such that

the components ξn2 = · · · = ξnd = 0 and

ξn1 = −I{σ<T} + (1− e−cε1/3)−1I{σ<T,τn=T}.

Clearly,

E(Zτnξ
n|Fσ) ≤ −I{σ<T} + (1− e−cε1/3)−1E(Z1

τnI{τn=T}|Fσ)I{σ<T} ≤ 0.

We have the inequality EZτnξ
n ≤ 0, and, therefore, by the superhedging

theorem (see Th. 3.6.3 in [24]), ξn is the terminal value of an admissible

process V̂ = V̂ B in the model having σ and τn as the initial and terminal

dates, respectively. Note that on the non-null set {σ < T} the limit of ξn1

is strictly positive. To conclude we use the lemma below which one can get

by applying, on each interval [0, τn], the Komlós-type result (Lemma 3.6.5 in

[24], Lemma 3.5 in [23]) followed by the diagonal procedure. ✷

Lemma 1.4.3 Suppose that ξn = V̂ n
τn where V̂ n + 1 ∈ K̂ε and ξn → ξ a.s.

as n → ∞. Then there is a portfolio process V̂ such that V̂ + 1 ∈ K̂ε and

ξ = V̂T .
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Chapter 2

Financial Application

2.1 Comments on financial applications.

It is easily seen that for the case d = 2 our model is exactly the same as

that of [19] and our theorem is Th. 1.1 therein. The only difference is that

we use the ”old-fashion” definition of the value processes. The reader is

invited to verify that one can use the more sophisticated one as defined in

[24] (following the original paper [6]) and get the same result. In the financial

interpretation the cones Kε and K̂ε are the solvency regions in the terms of

the numéraire and physical units, respectively, V and V̂ are value processes,

elements of MT
0 (K̂

ε∗\{0}) are ε-consistent price systems, etc. The condition

“ATε
0 (T ) ∩ L0(Rd

+,FT ) = {0} for all ε” can be referred to as the universal

NAw-property.

In the case d > 2 the considered cones Kε and Kε∗ do not correspond

to a financial model (though sometimes the traditional terminology is still in

use). What is important, our result can be applied to a wide class of finan-

cially meaningful models, even with varying transaction costs. To see this,

let us consider the family of models of currency markets with the solvency

cones given by the matrices of transaction costs coefficients Λε = (λεij) as

follows:

K(Λε) = cone {(1 + λεij)ei − ej, ei, 1 ≤ i, j ≤ d}.
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Suppose that for every ε ∈]0, 1] there is ε′ ∈]0, 1] such that K(Λε) ⊆ Kε′

and, vice versa, for any δ ∈]0, 1] there is δ′ ∈]0, 1] such that Kδ ⊆ K(Λδ′).

It is obvious that under this hypothesis Theorem 1.1.1 ensures that for the

currency markets the NAw(Λε)-property holds for every ε ∈]0, 1] if and only

if an ε-consistent price system does exist for every ε ∈]0, 1]. The hypothesis

is fulfilled if Λε → 0 and the duals K∗(Λε) have interiors containing 1, e.g.,

in the case where all λεij = ε. Adding some extra arguments one can easily

get the following corollary of the main theorem for the family of models with

the efficient friction condition.

Proposition 2.1.1 Suppose that Λε → 0 and intK∗(Λε) 6= ∅ for all ε ∈]0, 1].
Then

NAw(Λε) ∀ ε ∈]0, 1] ⇔ MT
0 (K̂

∗(Λε) \ {0}) 6= ∅ ∀ ε ∈]0, 1].

Proof. (⇒) Let δ ∈]0, 1] and w ∈ K∗(Λδ). Then wi/wj ≤ 1 + λδij → 1 as

δ → 0. It follows that K∗(Λδ′) ⊆ Kδ∗ for some δ′ ∈]0, 1]. For the primary

cones the inclusion is opposite. Thus, the assumed no-arbitrage property

implies the no-arbitrage property in the formulation of Theorem 1.1.1. Take

now ε ∈]0, 1] and a vector v ∈ intK∗(Λε) ∩ U1. We define the operator

ψv : (x
1, ..., xd) 7→ (v1x1, ..., vdxd).

Choose δ ∈]0, 1] such that ψv(1 + Uδ) ⊂ K∗(Λε). By virtue of

Theorem 1.1.1 there is Z ∈ MT
0 (K̂

δ∗ \ {0}). The process ψvZ is a mar-

tingale. Since ψvZ = φψvφ
−1Z, it is an element of MT

0 (K̂
∗(Λε) \ {0}).

For the proof of the reverse implication see the beginning of

Section 1.4. ✷

2.2 Richness of the Set of Consistent Price

Systems

The following condition of “richness” of consistent price systems plays an

important role in the continuous-time theory of financial markets with trans-
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action costs.

Bε Let ξ ∈ L0(Rd,Ft). If Ztξ ≥ 0 for all Z ∈ MT
0 (K̂

ε∗ \ {0}), then
ξ ∈ K̂ε

t (a.s.).

Simple argument (see, e.g., [24], 3.6.3) shows that Bε is fulfilled for the

model with constant transaction costs if S admits an equivalent martingale

measure. Its minor changes leads to the next result which seems to be useful

interesting in the setting of families of models with vanishing transaction

costs:

Proposition 2.2.1 Suppose that MT
0 (K̂

ε∗ \ {0}) 6= ∅ for all ε ∈]0, 1]. Then
the condition Bε holds for all ε ∈]0, 1].

Proof. Take w ∈ intKε∗ with |w| = 1. For all sufficiently small δ > 0 we

have the inclusion w+Uδ ⊂ Kε∗. Take Z ∈ MT
0 (K̂

δ∗ \ {0}) and consider the

martingale Zw = (w1Z1, . . . , wdZd). Note that φtZt = ρtZ̃t where ρt > 0 and

Z̃t ∈ 1 + Uδ. Then φtZ
w
t = ρtw̃t where w̃

i
t = wiZ̃i

t . According to our defini-

tion, w̃t takes values in w + Uδ ⊂ Kε∗. Therefore, Zw ∈ MT
0 (K̂

ε∗ \ {0}) and
Zwξ ≥ 0. The inequality implies that w̃tηt ≥ 0 where ηt(ω) = φ−1

t (ω)ξ(ω).

Letting δ → 0, we obtain that also wηt ≥ 0. The latter inequality holds for

all w ∈ Kε∗. Hence, φ−1
t ξ ∈ Kε and ξ ∈ K̂ε

t . ✷

34



Part II

Limit Behavior of Option

Hedging Sets under

Transaction Costs
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Though continuous trading is a part of the standard paradigm of mod-

ern finance, in practice, usually, portfolio revisions are done along a discrete–

time greed. In the case of proportional transaction costs the agents know the

order of total number of transactions and agree between them on a transac-

tion costs coefficient: for more frequent revisions one can expect a smaller

level of the latter. It is well-known that the straightforward discrete-time

approximation for the option price (suitably defined) may not lead to a ”the-

oretical” price generated by the continuous-time model. One of the remedy

is to modify the model as was suggested in the pioneering work by Leland

[31] and studied afterwords by a number of authors (see the book [24] and

references therein and also more recent papers [8], [32]). In the Leland–

Lott model the transaction costs are decreasing with the rate n−1/2. The

terminal values of portfolios approximate the pay-off of the option and the

limit of their initial values is declared to be a fair option price accepted by

practitioners as realistic.

In [30] Kusuoka considered a sequence of discrete-time two-asset mod-

els where the transaction costs are also decreasing with the rate n−1/2. He

calculated the limit of super-replication prices which happens to be differ-

ent from that of the limiting continuous-time model based on a geometric

Brownian motion.

The aim of this paper is to place the Kusuoka approach in the now stan-

dard geometric formalism of the theory of markets with transaction costs as

presented in [24]. The main idea of the theory is to consider all objects as

vector-valued: initial endowments, portfolios, contingent claims etc. and ap-

peal to ”physical units” in conjunction with quotes in terms of the numéraire.

”Vectorization” of the theory fills the gap between the approach of classical

mathematical finance (where everything is expressed in money) and that of

mathematical economics (where the vectors of commodities can be consid-

ered as the primary objects). Accordingly, the initial endowments which

allows the investor to run a self-financing portfolio to super-replicate a con-

tingent claim is a subset of R1+d where d is a number of risky assets. In this

mainstream, the contingent claim of interest is a quantity of physical units.
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The hedging theorem, which is a fundamental result of the theory, gives a

dual description of this set in terms of the so-called consistent price systems,

i.e. martingales evolving in the dual to the solvency cones in physical units.

A sequence of models generates the sets of hedging endowments and the aim

is to find a limit for a sequence of these sets.

In the following chapter, we focus on models of ”stock” market where it

is assumed that all transactions pass through the money. Consequently, we

consider a rather specific sequence of simple polyhedral conic models given by

transaction costs penalizing direct transactions between assets. In the case

d = 1, it is essentially the same as that of Kusuoka. The minor difference is in

the use, to express the price processes, of the ”stochastic” exponential instead

of classical one. We prove that the sequence of sets Γn of hedging endowments

converges to a limit in the sense of closed topology and we describe the limit.

This makes clearly the difference between our result and that of [30]: Kusuoka

considered the limiting behavior of xn where (xn, 0) ∈ R
2 are the points

laying in the intersection of the boundary of Γn with the axis of abscissae

(that is, corresponding to the minimal initial endowments in money and

zero in stock), while we study the limiting behavior of the whole sets. In

the multidimensional setting, for a sequence of models given by a general

matrix with transaction costs coefficients of the form n−1/2Λ, our theorem

combined with dominance considerations gives bounds for Li Γn and Ls Γn,

the topological lim inf Γn and lim supΓn. The precise limiting behavior of Γn

in this case remains an open problem.

Cette partie est issue des articles [15, 16].
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Chapter 3

The Multidimensional

Mainstream

3.1 Model and main result

We consider a sequence of models of stock market with traded numéraire

(”money”) and d stocks. All the orders are ”buy ith stock” or ”sell ith

stock”, that is the transactions pass through money. The operations on the

ith stock are charged with the same proportional transaction cost coefficients

λni. Namely, increasing the value of the ith position in one unit of the

numéraire leads to diminishing in 1+λni the money account while decreasing

the ith position in 1+λni unit of the numéraire increases the money account

in one unit. We fix as transaction cost parameter the d-dimensional vector

λ ∈]0,∞[d and the sequence

λn = λ
√
T/n.

Price processes

We define in this subsection continuous–time models whose price pro-

cesses are piecewise constant on the intervals forming uniform partitions

of [0, T ]. Of course, these models are in one-to-one correspondence with
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discrete–time models. Fix, as the basic parameters, vectors µ ∈ R
d,

σ ∈]0,∞[d and put, for n ≥ 1,

µn = µT/n, σn = σ
√
T/n.

We consider, on some probability space (Ω,F , P ), a double indexed

family of i.i.d. random variables {ξik; k ≤ n, 1 ≤ i ≤ d}, where ξik take

values in {−1, 1} and P (ξik = 1) = 1/2. Put

tk = tnk := kT/n.

Define the process Sn
t = (Sn0

t , Sn1
t , · · · , Snd

t ) where Sn
0 = 1 := (1, · · · , 1),

Sn0
t = 1 and, for i ≥ 1,

Sni
t =

k∏

m=1

(
1 + µni + σniξim

)
, t ∈ [tk, tk+1[, 0 ≤ k ≤ n− 1, (3.1.1)

for sufficiently large n. We associate with this process its natural filtration

Fn = (Fn
t ) where Fn

t := σ{Sn
r , r ≤ t}. In this setting the stochastic basis

(Ω,F ,Fn, P ) together with the process Sn models the price evolution of one

non-risky and d risky assets, the latter measured in the non-risky one serving

as the numéraire.

Transaction costs

The solvency region is defined by the cone

Kn = cone
{(

1 + λni
)
ei − e0,

(
1 + λni

)
e0 − ei, 1 ≤ i ≤ d

}
,

where, consistently with current notations, e0 is the first canonical vector of

R
1+d. Its (positive) dual cone is

Kn∗ =

{
w ∈ R

1+d :
1

1 + λni
≤ wi

w0
≤ 1 + λni, 1 ≤ i ≤ d

}
.

The dynamics of the portfolio value is given the (d+1)-dimensional piecewise

constant process V defined as the solution of linear controlled stochastic

equation

V0 = v ∈ Kn, dV i
t = V i

t−dS
ni
t /S

ni
t− + dBi

t, 0 ≤ i ≤ d,
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where the components of the control B (the strategy of portfolio revisions)

are

Bi =
n∑

k=1

Bi
kI]tk−1,tk],

where Bi
k is Fn

tk−1
-measurable and ∆Btk = Btk − Btk−1

∈ L0(−Kn,Fn
tk−1

).

The set of such processes V with initial value v is denoted by An
v while the

notation An
v (T ) is reserved for the set of their terminal values VT .

Using the diagonal random operator

φn
t : (x0, x1, · · · , xd) 7→ (x0, x1/Sn1

t , · · · , xd/Snd
t )

define the random cone K̂n
t = φn

tK
n (describing the solvency region in terms

of physical units) with the dual K̂n∗
t = (φn

t )
−1Kn∗ which can be represented

in a more explicit way as

K̂n∗
t =

{
w ∈ R

1+d :
1

1 + λni
Sni
t ≤ wi

w0
≤ (1 + λni)Sni

t , 1 ≤ i ≤ d

}
. (3.1.2)

Hedging sets

Our aim is to price a European option which pay-off expressed in term

of physical units is of the form F (Sn). The function F : D(R1+d) → R
1+d
+

is supposed to be bounded and continuous in the Skorohod topology on

D(R1+d). Let Γn be the set of initial endowments from which one can start a

self-financing portfolio process with the terminal value dominating the con-

tingent claim F (Sn), i.e.

Γn = {v ∈ R
1+d : (φn

T )
−1F (Sn) ∈ An

v (T )}.

Let Q = Qλ be the set of probability measures Q on {1} × C(Rd) (en-

dowed with the Borel σ-algebra) which are the distributions of the continuous

martingales Ut = (1, U1
t , · · · , Ud

t ), t ∈ [0, T ] such that

U i = E(Li) = eL−
1
2
〈Li〉,
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where Li are square integrable continuous martingales with the absolute con-

tinuous characteristics satisfying

max{σi(σi − 2λi), 0} ≤ d〈Li〉
dt

≤ σi(σi + 2λi), (3.1.3)

〈Li, Lj〉 = 0, i 6= j. (3.1.4)

We send the reader to [22], Chapter 1 for more detailed information on

quadratic characteristics and notations.

Remark 3.1.1 Without loss of generality we may assume that the processes

Li are stochastic integrals with respect to a d-dimensional Brownian motion.

Indeed, according to [28], Theorem 3.4.2, there is a filtered probability space

(Ω,F ,F, R) with a Brownian motion B and the matrix-valued process g such

that R-a.s. we have Li = gi · B with

〈Li, Lj〉t =
∫ t

0

(gg′)ijds.

We put

Γ := Γ(λ) :=
{
v ∈ R

1+d : sup
Q∈Qλ

EQ (wTF (w)− 1v) ≤ 0
}
.

The reference to λ will be omitted when there is no ambiguity.

Convergence of sets and main result

Recall basic definitions concerning the topology of closed convergence

on the space of closed subsets of R1+d, see, e.g., [1], [20].

Let En be a sequence of subsets of R1+d. Then:

(i) A point v ∈ R
1+d belongs to the topological lim sup, denoted Ls En,

if for every neighborhood V of v there are infinitely many n with

V ∩ En 6= ∅.

(ii) A point v ∈ R
1+d belongs to the topological lim inf, denoted Li En,

if for every neighborhood V of v, we have V ∩En 6= ∅ for all but finitely

many n.
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(iii) If Ls En = Li En = E, then the set E is called the closed limit of the

sequence En.

The set E is the closed limit of En if the following properties hold:

(i) For any v ∈ E, there exists a sequence of vectors vn ∈ En, such that

vn → v.

(ii) For any convergent subsequence of a sequence of vectors vn ∈ En, the

limit v belongs to E.

The main result of the paper is the following statement.

Theorem 3.1.2 The set Γ is the closed limit of the sequence of the sets Γn.

3.2 Hedging theorem and weak convergence

We denote by Mn the set of normalized consistent price systems for the nth

model, i.e. of the Fn-martingales Z such that Zt ∈ K̂n∗
t \ {0} and Z0

0 = 1.

According to [24], Chapter 3,

Γn =
{
v ∈ R

1+d : vZ0 ≥ EZTF (S
n) for all Z ∈ Mn

}
. (3.2.5)

This identity is the so-called hedging theorem claiming that one can super-

replicate the contingent claim if and only if the value of the initial endow-

ments is not less than the expectation of the value of the contingent claim

whatever a consistent price system is used to the comparison. The theorem

holds under the assumption of the existence of a strictly consistent price

system, fulfilled for our models.

We obtain our convergence result for Γn by using the representation

(3.2.5) and the theory of weak convergence of measures.

Tightness

Let us consider a sequence Zn ∈ Mn. The strictly positive martin-

gale Zn0 is the density process of the probability measure Qn = Zn0
T P and
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the components of the processes Mn := Zn/Zn0 are strictly positive Qn-

martingales with respect to the filtration Fn. We show that the sequence

Mn is Qn-tight or, more precisely, that the sequence of laws L (Mn|Qn) is

tight.

To simplify formulae we use for the averaging with respect to Qn the

symbol En instead of EQn
.

In view of (3.1.2)

1

1 + λni
Sni ≤Mni ≤ (1 + λni)Sni, 1 ≤ i ≤ d. (3.2.6)

Let us define the piecewise constant processes Ln (”stochastic loga-

rithms” of Mn)

Lni := (Mni
− )−1 ·Mni,

which jumps only at the points tk, k ≥ 1. Namely, we have:

∆Lni
tk

= (Mni
tk−1

)−1∆Mni
tk

= (Mni
tk−1

)−1(Mni
tk

−Mni
tk−1

) (3.2.7)

= exp(∆ lnMni
tk
)− 1.

Lemma 3.2.1 We have the following asymptotics:

||∆ lnMn||T = O(n−1/2), (3.2.8)

||∆Ln||T = O(n−1/2), (3.2.9)

||∆ lnMn −∆Ln||T = O(n−1), (3.2.10)

sup
k≤n

∣∣En[∆ lnMn
tk
|Fn

tk−1
]
∣∣ = O(n−1). (3.2.11)

Proof. Directly from the definition (3.1.1) of the process Sn we have the

bounds

ln
(
1 + µni − σni

)
≤ ∆ lnSni

tk
≤ ln

(
1 + µni + σni

)
, i ≥ 1,

allowing us to derive from (3.2.6) the inequalities

−2 ln
(
1+λni

)
+ln

(
1+µni−σni

)
≤ ∆ lnMni

tk
≤ 2 ln

(
1+λni

)
+ln

(
1+µni+σni

)
,
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implying (3.2.8) in virtue of the assumed asymptotics for coefficients. The

relation (3.2.9) follows from (3.2.7) and (3.2.8).

Since

Φ1(z) := ln(1 + z)− z = O(z2), z → 0,

the relation (3.2.9) implies that

||Φ1(∆L
ni)||T = O(n−1).

Noting that

∆ lnMni
tk

= ∆Lni
tk
+ Φ1

(
∆Lni

tk

)
,

and taking into account that

En[∆Lni
tk
|Fn

tk−1
] = 0,

we obtain (3.2.10) and (3.2.11). ✷

Lemma 3.2.2 Let m ≥ 1 be an integer. Then

sup
n
En||Mn||2mT <∞, sup

n
En|| lnMn||2mT <∞. (3.2.12)

There exists a constant κ such that for any n and l ≤ n we have the bound

En sup
k≤n−l

∣∣〈Mni〉tk+l
− 〈Mni〉tk

∣∣2 ≤ κ(l/n)2 = κT 2(tk+l − tk)
2. (3.2.13)

Proof. Using (3.2.7), the binomial formula, the martingale property of Lni,

and the estimate (3.2.9) we have:

En(Mni
tk
)2m = En(Mni

tk−1
)2m(1 + ∆Lni

tk
)2m

= En(Mni
tk−1

)2m

(
1 +

2m∑

j=1

(
2m

j

)
(∆Lni

tk
)j

)

= En(Mni
tk−1

)2m

(
1 +

2m∑

j=2

(
2m

j

)
(∆Lni

tk
)j

)

≤ En|Mni
tk−1

|2m(1 + cmn
−1)2m,
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for some constant cm > 0. It follows that

En(Mni
T )2m ≤ (1 + cmn

−1)2mn ≤ const,

and the Doob inequality implies that

sup
n
En||Mn||2mT <∞.

Put Xn
tk
:= lnMn

tk
− En[lnMn

tk
|Fn

tk−1
]. By (3.2.11)

||∆ lnMn −Xn||T = sup
k≤n

∣∣∣En[∆ lnMn
tk
|Fn

tk−1
]
∣∣∣ = O(n−1). (3.2.14)

Combining this with (3.2.8) we obtain that

||Xn||T = O(n−1/2). (3.2.15)

By the Burkholder–Davis–Gundy inequality

En

∣∣∣∣∣
∑

j≤k

Xn
tj

∣∣∣∣∣

2m

≤ CmE
n

(
∑

j≤n

Xn2
tj

)m

, k ≤ n,

and the claim (3.2.12) follows from (3.2.15).

Let k ∈ [0, n]. For any l ≤ n−k we get, using the relation (3.2.9) which

provides us a deterministic bound for ||∆Ln||T , that

〈Mni〉tk+l
− 〈Mni〉tk =

l∑

i=1

En
(
(∆Mni

tk+i
)2|Ftk+i−1

)

=
l∑

i=1

En
(
(Mni

tk+i−1
)2(∆Lni

tk+i
)2|Ftk+i−1

)

≤ cln−1||Mni||2T ,

where c is a constant. The inequality (3.2.13) now follows obviously from this

estimate because by virtue of (3.2.12) the sequence En||Mni||4T is bounded

by a constant. ✷

For a function α ∈ D(R) we define the modulus of continuity w(α, δ),

δ > 0, by the formula

w(α, δ) := sup{|αt+h − αt| : t ∈ [0, T − δ], h ∈ [0, δ]}.

The inequality (3.2.13) implies the following estimate:
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Corollary 3.2.3 There is a constant κ > 0 such that for for any δ > 0 we

have, for all sufficiently large n, the inequality

En
∣∣w(〈Mni〉, δ)

∣∣2 ≤ κ(δ + T/n)2. (3.2.16)

Lemma 3.2.4 For i 6= j

sup
k≤n

∣∣∣En[∆Lni
tk
∆Lnj

tk
|Fn

tk−1
]
∣∣∣ = O(n−3/2).

Proof. Note that

En[∆Lni
tk
∆Lnj

tk
|Fn

tk−1
] = En[(∆Lni

tk
−∆ lnMni

tk
)∆Lnj

tk
|Fn

tk−1
]

+ En[∆ lnMni
tk
∆Lnj

tk
|Fn

tk−1
].

Using first the estimate (3.2.9) and then (3.2.10) and (3.2.11) we get the

result. ✷

Lemma 3.2.5 For k ≤ l ≤ n we have the following inequalities :

−2En[lnMni
tl

− lnMni
tk
|Fn

tk
] ≤ (tl − tk)σ

i(σi + 2λi) + λi2Tn−1 + (tl − tk)Rn,

−2En[lnMni
tl

− lnMni
tk
|Fn

tk
] ≥ (tl − tk)σ

i(σi − 2λi)− λi2Tn−1 − (tl − tk)Rn,

where Rn = O(n−1/2) does not depend on k and l.

Since lnM is a Qn-supermartingale we have also that

−2En[lnMni
tl

− lnMni
tk
|Fn

tk
] ≥ 0.

Proof. Fix i 6= 0. Combining (3.2.10) and (3.2.11), we get that

sup
j≤n

∣∣∣lnMni
tj

− En[lnMni
tj
|Fn

tj−1
]−∆Lni

tj

∣∣∣ = O(n−1). (3.2.17)

Put

Φ2(z) := ln(1 + z)− z + z2/2 = O(z3), z → 0.

According to (3.2.9),

||Φ2(∆L
ni)||T = O(n−3/2). (3.2.18)
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Recalling ln(1 + ∆Lni) = ∆ lnMni it is easy to check the identity

2∆ lnMni
tj

− 2∆Lni
tj
+ (lnMni

tj
− En[lnMni

tj
|Fn

tj−1
])2

= 2Φ2(∆L
ni
tj
) + (lnMni

tj
− En[lnMni

tj
|Fn

tj−1
]−∆Lni

tj
)2

+ 2∆Lni
tj
(lnMni

tj
− En[lnMni

tj
|Fn

tj−1
]−∆Lni

tj
).

Using (3.2.18), (3.2.17), and (3.2.9) we obtain that

sup
j≤n

∣∣∣En[2(∆ lnMni
tj
) + (lnMni

tj
− En[lnMni

tj
|Fn

tj−1
])2|Fn

tj−1
]
∣∣∣ = O(n−3/2).

This relation combined with (3.2.8) and (3.2.11) gives us the following bound

sup
j≤n

∣∣∣En[2(∆ lnMni
tj
) + (∆ lnMni

tj
)2|Fn

tj−1
]
∣∣∣ = O(n−3/2). (3.2.19)

Putting Y ni := lnMni − lnSni and using (3.2.6), we get that

||Y ni||T ≤ ln(1 + λni) ≤ λni, (3.2.20)

and

∆ lnMni
tj

+ Y ni
tj−1

= lnMni
tj

− lnSni
tj−1

= Y ni
tj

+ ln
(
1 + µni + σniξij

)
.

With these observations we obtain the bound

sup
j≤n

∣∣∣En[(∆ lnMni
tj

+ Y ni
tj−1

)2 − (Y ni
tj
)2|Fn

tj−1
]

−(σni)2 − 2σniEn[Y ni
tj
ξij|Fn

tj−1
]
∣∣∣ = O(n−3/2). (3.2.21)

Having the identity

2∆ lnMni
tj

+∆(Y ni
tj
)2

= [2∆ lnMni
tj

+ (∆ lnMni
tj
)2]− [(∆ lnMni

tj
+ Y ni

tj−1
)2 − (Y ni

tj
)2]

+ 2Y ni
tj−1

∆ lnMni
tj
,

we deduce from (3.2.11), (3.2.19), (3.2.20) and (3.2.21) the relation

sup
j≤n

∣∣∣En[2∆ lnMni
tj

+∆(Y ni
tj
)2|Fn

tj−1
]

+(σni)2 + 2σniEn[Y n
tj
ξij|Fn

tj−1
]
∣∣∣ = O(n−3/2).
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Taking into account the bounds

|Y ni
tj
ξij| ≤ λni, ∆|(Y ni

tj
)2| ≤ (λni)2 = (λi)2Tn−1,

we obtain, for some constant κ > 0 which does not depend on k, that

−2En[∆ lnMni
tj
|Fn

tj−1
] ≤ (σni)2 + 2σniλni + En[∆(Y ni

tj
)2|Fn

tj−1
] + κn−3/2,

−2En[∆ lnMni
tj
|Fn

tj−1
] ≥ (σni)2 − 2σniλni + En[∆(Y ni

tj
)2|Fn

tj−1
]− κn−3/2.

It follows that for any m ≤ n− k we have the inequalities

−2En[lnMni
tk+m

− lnMni
tk
|Fn

tk
] ≤ mn−1Tσi(σi + 2λi)

+En[(Y ni
tk+m

)2 − (Y ni
tk
)2|Fn

tk
] + κmn−3/2,

−2En[lnMni
tk+m

− lnMni
tk
|Fn

tk
] ≥ mn−1Tσi(σi − 2λi)

+En[(Y ni
tk+m

)2 − (Y ni
tk
)2|Fn

tk
]− κmn−3/2

implying the claim of the lemma with Rn = κT−1n−1/2. ✷

The next lemma concludes this technical section with a tightness result

on sequences of martingales from Mn.

Lemma 3.2.6 Let Zn ∈ Mn, Mn := Zn/Zn0, and Qn := Zn0
T P . The se-

quence of probability measures Q̃n := L (Mn|Qn) is tight and each limit point

belongs to Q.

Proof. We shall use the same terminology as in [22] and write ”a sequence

Mn is Qn-tight” etc. with understanding that this is a statement concerning

the laws Q̃n.

We apply Th. VI.4.13 and Prop. VI.3.26 of [22] to prove that the

sequence Mn is Qn-C-tight. Indeed, the sequence of initial values Mn
0 is

bounded, the sequence of processes
∑

i〈Mni〉 is C-tight by virtue of Th. 15.5

in [3] (its assumption is ensured by Corollary 3.2.3) and

Qn (||∆Mn||T > δ) ≤ 1

δ2
En ||∆Mn||2T ≤ 1

δ2
En||∆Ln||2T ||Mn||2T → 0, n→ 0,
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by virtue of (3.2.9) and (3.2.12). Thus, the assumptions of the indicated

references are verified.

Take an arbitrary limit point Q. By above, it charges only

{1} × C(Rd). Abusing the notation, we write that Q is a weak limit of

the whole sequence Q̃n = L (Mn|Qn). By virtue of (3.2.12) the sequence of

random variables ||Mn||T is uniformly integrable (with respect to Qn) and,

therefore, the coordinate process w = (wt)t∈[0,T ] is a Q-martingale with re-

spect to the natural filtration, see [22], IX.1. It remains to check (3.1.3) and

(3.1.4).

Fix s < t ≤ T . Obviously with Lemma 3.2.5, we have

−2En
[
lnMni

t − lnMni
s +

1

2
σi
(
σi + 2λi

)
(t− s)

∣∣Fn
s

]
≤ κ√

n
,

−2En
[
lnMni

t − lnMni
s +

1

2
σi
(
σi − 2λi

)
(t− s)

∣∣Fn
s

]
≥ κ√

n
,

with the constant κ > 0 which does not depend on t and s. Let the function

g : [0, T ] × D(R1+d) → R+ be bounded continuous in the product of the

usual topology on [0, T ] and the Skorohod topology on D(R1+d) and non-

anticipating, i.e. w 7→ gt(w) is σ{ws, s ≤ t}-measurable for any t. By virtue

of (3.2.12), the uniform integrability of the sequence || lnMn||T , we have:

lim
n→∞

−2EQ̃n

gs(w)
(
lnwi

t − lnwi
s +

1

2
σi
(
σi + 2λi

)
(t− s)

)
≤ 0,

and

lim
n→∞

−2EQ̃n

gs(w)
(
lnwi

t − lnwi
s +

1

2
σi
(
σi − 2λi

)
(t− s)

)
≥ 0.

This leads to the bounds

−2EQgs(w)
(
lnwi

t − lnwi
s

)
≤ EQgs(w)σ

i
(
σi + 2λi

)
(t− s),

and

−2EQgs(w)
(
lnwi

t − lnwi
s

)
≥ EQgs(w)σ

i
(
σi − 2λi

)
(t− s).

Since (wi
t)t∈[0,T ] is a continuous Q-martingale, the Itô formula implies that

〈lnwi〉 is the bounded variation part of the semi-martingale (−2 lnwi
t)t∈[0,T ].

So,

〈lnwi〉t − 〈lnwi〉s = −2EQ[lnwi
t − lnwi

s|Fs],
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and we have

σi
(
σi − 2λi

)
EQ

∫ T

0

gt(w)dt

≤ EQ

∫ T

0

gt(w)d〈lnwi〉t

≤ σi
(
σi + 2λi

)
EQ

∫ T

0

gt(w)dt,

for any bounded continuous and non-anticipating function

g : [0, T ] × D(R1+d) → R+. This proves (3.1.3). The property (3.1.4) is

a direct consequence of Lemma 3.2.4. In view of [22], Corollary VI.6.30, we

have the convergence of the (sub)sequence

L
((
Mn, 〈Mn〉

)∣∣Qn
)
→ L ((w, 〈w〉)|Q) .

Since Ln is the d-dimensional martingale corresponding to the stochastic

logarithm of Mn, we observe that

〈
Lni, Lnj

〉
=

(
Mni

− M
nj
−

)−1 ·
〈
Mni,Mnj

〉
.

From (3.2.12) follows the tightness of the sequence

L (((MniMnj)−1, 〈Mni,Mnj〉)|Qn).

We deduce the convergence of the stochastic integrals, see [22], Th. VI.6.22

with VI.6.6, and we get

L
(〈
Ln

〉∣∣Qn
)
→ L

(〈
lnw

〉∣∣Q
)
.

Corollary 3.2.4 implies that

〈
Lni, Lnj

〉
= O

(
n−1/2

)
,

and (3.1.4) follows. ✷

Construction of dual martingales

In this paragraph, we shall show that each probability measure of Q
can be approximated in the sense of Lemma 3.2.6. More precisely, we ap-

proximate the probability measures of a subset Q̃ of Q. These probability
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measures are characterized by a convenient representation. Nevertheless,

Lemma 3.2.7 below shows that this restriction is not fundamental.

We define Q̃ the following subset of Q.

Let g be a non-anticipating bounded function on [0, T ] × D(Rd) with

values in the set of the real d× d matrices such that gg′ is diagonal and

0 ∨ σi(σi − 2λi) + δ ≤ (gg′)ii ≤ σi(σi + 2λi)− δ, (3.2.22)

for some δ > 0, and for some κ > 0,

|gijt (α)− gijs (β)| ≤ κ(|t− s|+ ||α− β||T ), (3.2.23)

for i, j ≤ d, t, s ∈ [0, T ], v, w ∈ D(Rd). Let B be a d-dimensional Brownian

motion under a probability R. Define the d-dimensional R-martingale N

with the components

N i = E(gi(B) · B). (3.2.24)

For such processesN , we define Q̃ the set of laws L ((1, N)|R) on {1}×C(Rd).

The following lemma states that the laws of Q can be approximated by

the laws of Q̃ in a certain sense.

Lemma 3.2.7 Let Q ∈ Q and consider the standard representation as in

Remark 3.1.1. Namely, let B a Brownian motion under a probability R and

g a process such that

L
((

1, E(g1 · B), · · · , E(gd · B)
)∣∣R

)
= Q.

There exists a sequence of matrix-valued non-anticipating continuous bounded

functions (gm)m∈N with gmgm′ diagonal and satisfying the conditions (3.2.22)

(3.2.23) with the property

ER max
1≤i≤d

∣∣∣∣E(gi · B)− E(gmi(B) · B)
∣∣∣∣

T
→ 0, 1 ≤ i ≤ d.
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Proof. According to Section 3.4, we can construct such a sequence of func-

tions (gm)m∈N with
∑

i(g
mij)2 ≥ cmi > 0 and

ER

∫ ∣∣gijt − gmij
t (B)

∣∣2 dt→ 0.

The result follows using the Burkholder–Davis–Gundy inequality. ✷

Now, a constructive way of approximating the laws of Q̃ is given in the

following lemma. We shall use the notations

diag σ =




σ1 0
. . .

0 σd


 , ξk =




ξ1k
...

ξdk


 .

Lemma 3.2.8 Let Q ∈ Q̃. There exists a sequence Zn ∈ Mn such that,

L
(
Mn

∣∣Qn
)
→ Q,

where Mn = Zn/Zn0 and Qn = Zn0
T P.

Proof. Following the above definition of Q̃, consider the Brownian motion

B under the probability R and the process g such that L ((1, N)|R) = Q,

where N is given by (3.2.24).

Let

Kn
tk
=

1

2

(
gntkg

n
tk

′diag σ−1 − diag σ
)
,

gntk = gtk−1

(
k−1∑

l=0

∆Bn
tl
I[tl,∞[

)
,

∆Bn
tk
= (gntk)

−1∆Ln
tk
, ∆Lni

tk
= (Mni

tk−1
)−1∆Mni

tk
.

Note that gntk is invertible since gntkg
n
tk

′ is symmetric positive definite.

For every n ≥ 1, we define the d + 1-dimensional process Mn whose

zero component is equal identically to unit while others are constant on each

interval [tk, tk+1[ with

Mni
tk

= Sni
tk

(
1 +

√
T/nKnii

tk
ξik

)
, 1 ≤ i ≤ d.
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Using the bounds (3.2.22) we easily deduce that for every i ≥ 1 and

sufficiently small δ > 0 we have the inequalities

1− λni +
√
T/n

δ

2σ
≤Mni

tk
≤ 1 + λni −

√
T/n

δ

2σ
≤ 1 + λni.

For sufficiently large n

1

1 + λni
=

1

1 +
√
T/nλi

≤ 1−
√
T/nλi +

√
T/n

δ

2σ
= 1− λni +

√
T/n

δ

2σ

and we conclude from the resulting bounds that the process Mn takes values

in K̂λn∗ \ {0} for large n and Mni = E((gn · Bn)i) for i ≥ 1.

To compute the martingale measure of Mn, we need the expression of

the stochastic logarithm of Mni for i ≥ 1,

∆Lni
tk
=

Mni
tk

Mni
tk−1

− 1 =
(1 + µni + σniξik)

(
1 +

√
T/nKnii

tk
ξik

)

1 +
√
T/nKnii

tk−1
ξik−1

− 1.

After simple transformation we have:

∆Lni
tk
=

√
T/n

1 +
√
T/nKnii

tk−1
ξik−1

((
σi +Knii

tk
+ µniKnii

tk

)
ξik

+
√
T/n(µi + σiKnii

tk
)−Knii

tk−1
ξik−1

)
.

It is easily seen that Mn and, a fortiori, Bn are Qn-martingales for the

probability measure

Qn = ET (qn)P =
n∏

k=1

(1 + ∆qntk)P,

∆qntk = −
d∑

i=1

√
T/n(µi + σiKnii

tk
)−Knii

tk−1
ξik−1

σi +Knii
tk

+ µniKnii
tk

ξik.

The following formula defines the process Zn which is a (strictly) consistent

price system in the nth model:

Zn
t = E

[
ET (qn)| Fn

tk

]
Mn

tk
, t ∈ [tk, tk+1[.

It remains to check the convergence of the sequence L (Mn|Qn) to Q. This

will be deduced from the converge in law of the processes Bn to a Brownian
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motion. So we shall compute the quadratic characteristics of Bn and use a

version of the central limit theorem in the Skorohod space.

Note that

En
[
∆Bn

tk
∆Bn

tk
′
∣∣Fm

tk−1

]
= E

[
(1 + ∆qntk)∆B

n
tk
∆Bn

tk
′
∣∣Fn

tk−1

]

= (gntk)
−1En

[
∆Ln

tk
∆Ln

tk
′
∣∣Fn

tk−1

]
(gntk)

−1′.

By virtue of Lemma 3.2.4,

sup
k≤n

∣∣∣En[∆Lni
tk
∆Lnj

tk
|Fn

tk−1
]
∣∣∣ = O(n−3/2), i 6= j.

It remains to compute En[∆Lni2
tk

|Fn
tk−1

], i ≤ d. We use the following esti-

mations in order to simplify computations below. According to (3.2.23), we

have:

||∆gn||T = O(n−1/2), ||∆Kn||T = O(n−1/2).

Moreover, using the Taylor expansion formulae leads to the relations

sup
k≤n

∣∣(1 + ∆qntk)−
(
1 + [(diag σ +Kn

tk
)−1Kn

tk
ξk−1]ξk

)∣∣ = O(n−1/2), (3.2.25)

and

sup
k≤n

∣∣∣∆Ln
tk
−

√
T/n

[
(diag σ +Kn

tk
)ξk −Kn

tk
ξk−1

]∣∣∣ = O(n−1). (3.2.26)

Note that we used the matrix form of the processes for the sake of a simplified

presentation. We make the following estimate:

sup
k≤n

∣∣∣∣E[(1 + ∆qntk)(∆L
ni
tk
)2|Fn

tk−1
]

− (T/n)E
[(
1 + (σi +Knii

tk
)−1Knii

tk
ξik−1ξ

i
k

)

(
(σi +Knii

tk
)ξik −Knii

tk
ξik−1

)2∣∣∣Fn
tk−1

]∣∣∣ = O(n−3/2).

After a direct computation, we get an explicit formula for the approximating

term in the above expression:

E
[(

1 + (σi +Knii
tk

)−1Knii
tk
ξik−1ξ

i
k

) (
(σi +Knii

tk
)ξik −Knii

tk
ξik−1

)2∣∣∣Fn
tk−1

]

= (σi +Knii
tk

)2 −Knii2
tk

.
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We obtain the key relation

En[∆Bn
tk
∆Bn

tk
′|Fn

tk−1
] =

T

n
Id +Rn

k , (3.2.27)

with the family of matrices {Rn
k , k ≤ n, n ∈ N} satisfying

sup
i,j≤d, k≤n

|Rnij
k | = O(n−3/2).

Finally, note that

gtk(B
n) = gntk+1

.

According to the Central Limit Theorem, [22], Theorem VIII.3.33, we have

L (Bn|Qn) → L (B|R), by virtue of (3.2.27) and the estimation

||∆Bn||T = O(n−1/2), which implies the conditional Lindeberg condition.

We deduce that

L (Bn, g(Bn)|Qn) → L (B, g(B)|R).

Set

Xn = g−(B
n) · Bn, X = g(B) · B.

By virtue of [22], Th. VI.6.22 with Cor. VI.6.30, it follows that the above

stochastic integrals converge in law. We get the convergence

L

(
Xn, [Xn],

∑
Φ(∆Xn)

∣∣∣Qn
)
→ L (X, [X], 0|R), (3.2.28)

where Φ is the R
d-valued function defined by

Φi(x) = ln(1 + xi)− xi +
(xi)2

2
.

It remains to check that the convergence described in (3.2.28) implies the

convergence of the stochastic exponential. Since each limit process is contin-

uous, we can study the convergence of each coordinate separately. We then

refer to the following Lemma 3.2.9. The result is proved. ✷

Lemma 3.2.9 Let Xn, X be scalar adapted processes where X is continuous

and such that

L

(
Xn, [Xn],

∑
Φ2(∆X

n)
∣∣∣Qn

)
→ L (X, [X], 0|Q) ,
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with Φ2(x) = ln(1 + x)− x+ x2

2
. Then we have the following convergence in

law of stochastic exponentials:

L (E(Xn)|Qn) → L (E(X)|Q).

Proof. The claim follows by observing that

E(X) = G
(
X, [X],

∑
Φ2(∆X)

)
,

with

G(x, y, z) = exp
(
x− y

2
+ z

)
.

Since G is continuous on (D(R3), ||.||T ), we get the result. ✷

3.3 Proof of the main result

We shall prove Theorem 3.1.2 using the sequential version of the definition

of the closed convergence.

Preliminary remarks

We start with some general remarks and tools which link the technical

ideas from Section 3.2 with superhedging issues.

First, observe that for any Z ∈ Mn we have the two-side inequalities

1

1 + |λn| ≤ Zi
0 ≤ 1 + |λn| (3.3.29)

and
1

1 + |λn|S
ni ≤ Zi/Z0 ≤ (1 + |λn|)Sni. (3.3.30)

In the following lines, we link superhedging and the particular convergence

described in Lemmata 3.2.6 and 3.2.8. Let Zn ∈ Mn be such that

L (Mn|Qn) → Q,

for Mn := Zn/Zn0 and Qn := Zn0
T P .
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Lemma 3.3.1 The sequence Sn is Qn-tight and

EnMn
TG(S

n) → EQwTG(w),

for any bounded continuous function G : D(Rd+1) → R
d+1.

Proof. The inequalities (3.3.30) imply the following two bounds,

|| lnSn||T ≤ ln(1 + λni) + ||lnMn||T ,

and

||Sn −Mn||T ≤ ||Mn||T O(n−1/2). (3.3.31)

Hence, the sequence Sn is Qn-tight since the sequence Mn is. Let G :

D(Rd+1) → R
d+1 be a bounded continuous function. Fix ε > 0. Then

there exists a compact set of D(Rd+1), such that

Qn
(
Mn ∈ Kε, Sn ∈ Kε

)
≥ 1− ε.

Take a sequence of Lipschitz functions Gm convergent to G pointwise. This

convergence is uniform on compacts. in particular, |G− Gm| ≤ ε on Kε for

sufficiently large m.

We have, using the Cauchy–Schwarz inequality:

En
∣∣Mn

T

∣∣∣∣G(Mn)−G(Sn)
∣∣ ≤ 2ε1/2 max |G|

(
En

∣∣∣∣Mn
∣∣∣∣2

T

)1/2

+ 2εEn
∣∣∣∣Mn

∣∣∣∣
T
+ Cε

mE
n
∣∣∣∣Mn

∣∣∣∣
T
||Sn −Mn||T ,

where the Lipschitz constant Cε
m does not depend on n. Taking the limit in

n we get, in virtue of (3.3.31) and Lemma 3.2.2 that the limit of the left-

hand side is smaller than ε multiplied by a constant. Since ε is arbitrary, the

lemma is proven. ✷

It follows from Lemma 3.3.1 that for any v ∈ R
1+d,

EZn
T (F (S

n)− v) → EQ (wTF (w)− 1v) (3.3.32)

since we have

EZn
T (F (S

n)− v) = EnMn
T (F (S

n)− v).
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We end the preliminaries paragraph by observing that for each v, δ > 0,

Zn ∈ Mn, we have

EZn
T (F (S

n)− (v + δ1)) ≤ EZn
T (F (S

n)− v)− d

1 + |λn|δ.

The financial meaning of this inequality is obvious: larger initial investment

in all assets helps to hedge the European option.

Proof of Theorem 3.1.2

(i) Fix v ∈ Γ. We have to find a subsequence vn ∈ Γn such that vn → v.

To this end, choose Zn ∈ Mn such that

EZn
T (F (S

n)− v) +
1

n
≥ sup

Z∈Mn

EZT (F (S
n)− v).

By virtue of Lemma 3.2.6, eventually applied to a subsequence of (Zn), there

exists Q ∈ Q such that

lim sup
n

EZn
T (F (S

n)− v) = EQ (wTF (w)− 1v) ≤ 0.

It follows that there is a positive sequence δn → 0 such that

EZn
T (F (S

n)− v) ≤ δn.

Increasing the initial capital v to vn where

vn = v + (1 + |λn|)1
d

(
δn +

1

n

)
1,

we get the desired sequence vn ∈ Γn such that vn → v.

(ii) Show that for a convergent (sub)sequence (vn)n∈N, v
n ∈ Γn, its

limit v belongs to Γ. Let ε > 0. By virtue of Lemma 3.2.7, we can choose

Q ∈ Q̃ such that

EQ (wTF (w)− 1v) ≥ sup
Q∈Q

EQ (wTF (w)− 1v)− ε.

According to Lemma 3.2.8, together with (3.3.32), there is a sequence

Zn ∈ Mn such that

lim inf
n

EZn
T (F (S

n)− v) = EQ (wTF (w)− 1v) .
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We conclude that this quantity is nonpositive using the boundedness of Zn
0 ,

(3.3.29). Indeed,

lim inf
n

EZn
T (F (S

n)− v) = lim inf
n

EZn
T (F (S

n)− vn) + lim inf
n

Zn
0 (v

n − v) ≤ 0.

Since ε is arbitrary, v belongs to Γ. This ends the proof. ✷

Remark 3.3.2 In [30], the value of interest in Γn is the minimal initial

endowment in money (with a zero position in any stocks) needed to hedge the

option, i.e.

xn = sup
Z∈Mn

EZTF (S
n) = min

{
v0 : v ∈ Γn ∩ R+e

0
}
.

It is easily seen that this quantity converge to

x = sup
Q∈Q

EQwTF (w) = min
{
v0 : v ∈ Γ ∩ R+e

0
}
.

We refer to Theorem 4.2.2 below for more information.

3.4 Appendix

In this section, we give the sketch of the approximation of the integrand

process g in Remark 3.1.1 by the integrand processes of interest in Q̃ involved

in Lemma 3.2.7. The first Lemma gives argument for the approximation with

”Lipschitz” function satisfying (3.2.23), the second explains how to restrict

the bounds of (gg′)ii as in (3.2.22).

Lemma 3.4.1 Let B a Brownian motion under a probability R and F the

filtration generated by the process B. Let g be a scalar bounded F-adapted pro-

cess. There exists a sequence of non-anticipating bounded functions (gm)m∈N

on [0, T ]× D(Rd) satisfying the conditions

inf |g| ≤ |gm| ≤ sup |g|, (3.4.33)

|gmt (α)− gms (β)| ≤ κm(|t− s|+ ||α− β||T ), (3.4.34)
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for some κm > 0, such that

ER

∫
|gt − gmt (B)|2 dt→ 0.

Proof. We introduce the notation for α ∈ D(Rd):

αt
0 = αI[0,t] + αtI]t,T ].

The approximations hold in the following steps. Fix ε > 0.

• There exist n0 and Borelian functions gn on (D, d) such that:

ER

∫ ∣∣∣∣∣gt −
n0∑

0

gn(Btn
0 )I]tn,tn+1]

∣∣∣∣∣

2

dt ≤ ε,

see Th. 4.41 in [1]. Moreover, since g is bounded, we can suppose that

gn are uniformly bounded by a constant Cg and we have

|gn − gm| ≤ K|tn − tm|,

where K = 2(n0/T )Cg.

• According to Th. 4.33 in [1], each gn is (everywhere) pointwise limit

of continuous functions on (D, d). Invoking Cor. 3.15 in [1], such

a function is (everywhere) pointwise limit of sequences of Lipschitz

functions on (D, d) with the same bounds as gn. It follows that there

exists some Lipschitz functions g̃n such that,

ER

∫ ∣∣∣gt −
∑

g̃n(Btn
0 )I]tn,tn+1]

∣∣∣
2

dt ≤ 2ε.

So, each g̃n is Lipschitz on (D, d).

• We set, for δ > 0 small enough

ft(α) = g̃n(αtn
0 ), t ∈ [tn + δ, tn+1]

and use a linear interpolation on [tn, tn + δ]. Thus, we have f non-

anticipating and

|ft(α)− fs(α)| ≤ Kδ|t− s|,

for some constant Kδ depending on δ.
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Now, we can verify that f satisfies (3.4.34). Set κ the biggest of the above

Lipschitz constants and t ≤ s, we have

|ft(α)− fs(β)| ≤ κ|t− s|+ |ft(α)− ft(β)|.

Since f(t, ·) is κ-lipschitzienne, we have

|ft(α)− ft(β)| ≤ κd(αt
0, β

t
0) ≤ κ‖α− β‖T .

Since ε is arbitrary, choosing a sequence εm → 0, one can get the sequence

gm of interest iterating the procedure. Which prove the result.✷

Remark 3.4.2 Because the approximation of the matrix valued process g in

Remark 3.1.1 by gm is defined componentwise, gmgm′ is not necessary diag-

onal. Nevertheless, for m large enough, we can find a Lipschitz orthogonal

matrix valued function close to the identity matrix such that (Mgm)(Mgm)′

is diagonal.

Lemma 3.4.3 Let g be real d× d matrix such that gg′ is diagonal and

0 < ci ≤ (gg′)ii ≤ C i.

There exists a sequence gn of d× d matrices such that gngn′ is diagonal and

ci + δn ≤ (gngn′)ii ≤ C i − δn,

for some decreasing sequence δn > 0, δn → 0, such that |g − gn| → 0.

Proof. Fix n > 0, suppose that

C1 − δn ≤ (gg′)11 ≤ C1.

There exists εδn > 0 such that

(1− εδn)(gg
′)11 ≤ C1 − δn.
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Set

gn = diag




√
1− εδn

1
...

1



g.

It is easily seen that we have εδn → 0. The argument extend to other

coordinate and for the lower bounds.✷
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Chapter 4

Ramification

It is easily seen that for the case d = 1, our model is essentially the same as

that of [30] and, hence, contains some novelty even for the model with one

risky asset, see Remark 3.3.2 above. Inspecting the proofs above one can

observe that the arguments still work when

λn = O(n−1/2), µn = O(n−1), σn = O(n−1/2).

One can easily extend the reasoning to non symmetric transaction costs,

see Chapter 4.2 below.

4.1 General Models

In the case d ≥ 2, the considered cones Kn correspond to a model of stock

market where all transactions pass through the money. Nevertheless, it pro-

vides some information also for more general models. Namely, let us consider

as an example the family of models of currency markets given by transaction

cost matrices Λn = Λ
√
T/n, where the solvency cones are

K(Λn) = cone
{(

1 +
√
T/nλij

)
ei − ej, ei, 0 ≤ i, j ≤ d

}
.

Note that we can embed our models into currency markets with trans-
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action costs matrices

Λ(λn) =




0 λn1 · · · λnd

λn1 0 λnij
... λnij

. . .

λnd 0



,

where the transaction costs penalize direct exchanges, that is

1 + λnij ≥ (1 + λni)(1 + λnj).

This remark leads to the following asymptotic bounds:

Proposition 4.1.1 With obvious notations, we have the following inclu-

sions:

Γ
(
λ
)
⊆ Li Γn

(
Λn

)
⊆ Ls Γn

(
Λn

)
⊆ Γ (λ) ,

where

λi = max{λi : (Λ(λ)− Λ)ij ≤ 0, (Λ(λ)− Λ)ji ≤ 0 j 6= i},
λ
i

= min{λi : (Λ(λ)− Λ)ij ≥ 0, (Λ(λ)− Λ)ji ≥ 0 j 6= i}.

4.2 Non Symmetric Transaction costs

In this section, we concisely sum up argument to explain how to deal with

non symmetric transaction costs in Section 3 (or in the paper [16]). The

presentation may sightly differ. Indeed we shall detail with care the links

between the traditional argument used in [30] with the geometric approach

of the more involved paper [16], or equivalently Section 3, restricted to two-

asset models.

4.2.1 Model and main result

We consider 2-asset models of currency market with transaction costs fol-

lowing the ideas of the book [24]. The first non-risky asset will serve as the
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numéraire, the second is risky. An asset can be exchanged to the other pay-

ing the proportional transaction costs. That is to increase the value of the

jth position in one unit (of numéraire), one need to diminish in (1+λij) unit

(of numéraire) the ith position. Namely, the models are given by transaction

costs matrices. We fix as basic parameter the 2-square matrix Λ with zero

diagonal and positive entries. We consider the transaction cost matrix for

the n-th model

Λn = Λ
√
T/n.

Price processes

We define in this subsection continuous-time models whose price pro-

cesses are piecewise constant on the intervals forming uniform partitions

of [0, T ]. Of course, these models are in one-to-one correspondence with

discrete–time models. Fix the drift and volatility parameters µ ∈ R,

σ ∈]0,∞[ and put, for n ≥ 1,

µn = µT/n, σn = σ
√
T/n.

On the probability space (Ω,F , P ), we consider, for each n, a family of

i.i.d. random variables {ξk; k ≤ n}, where ξk take values in {−1, 1} and

P (ξk = 1) = 1/2. Put

tk = tnk := kT/n.

The process Sn2 models the price evolution of one unit of the risky security

measured in units of the first non-risky asset serving as numéraire. We define

the process Sn
t = (Sn1

t , Sn2
t ) where Sn1

t = 1 and

Sn2
0 = 1, Sn2

t =
k∏

m=1

(1 + µn + σnξm) , t ∈ [tk, tk+1[,

for sufficiently large n (to insure that Sn2 > 0). In this setting the stochastic

basis is (Ω,F ,Fn, P ) where the filtration Fn = (Fn
t ) is Fn

t := σ{Sn
r , r ≤ t}.
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Transaction costs

The solvency region is the cone defined by

KΛn

= cone
{(

1 + λn12
)
e1 − e2,

(
1 + λn21

)
e2 − e1

}
,

that is KΛn
is the set of positions which can be converted, paying transaction

costs, to get only non-negative amount on each asset. The (positive) dual

cone is the set

KΛn∗ =

{
w ∈ R

2 :
1

1 + λn21
≤ w2

w1
≤ 1 + λn12

}
,

which is the set of vectors with a non-negative scalar product with any vector

of KΛn
.

The piecewise constant process V solving the linear controlled stochas-

tic equation

V0 = v ∈ KΛn

, dV i
t = V i

t−dS
ni
t /S

ni
t− + dBi

t, i = 1, 2,

models the portfolio value process with strategy B, where the components

of the control B are

Bi =
n∑

k=1

Bi
kI]tk−1,tk],

Bi
k is Fn

tk−1
-measurable and ∆Btk = Btk −Btk−1

∈ L0(−KΛn
,Fn

tk−1
). The set

of such processes V with initial value v is denoted by An
v while the notation

An
v (T ) is reserved for the set of their terminal value VT .

Using the random diagonal operator

φn
t : (x1, x2) 7→ (x1, x2/Sn2

t )

define the random cone K̂Λn

t = φn
tK

Λn
with the dual K̂Λn∗

t = (φn
t )

−1KΛn∗.

Hedging sets

Our aim is to price a European option. We shall consider a two-

dimensional pay-off. The first asset is an amount of money in numéraire,

whereas the second is a quantity of physical units. The pay-off is of the
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form F (Sn) with the function F : D(R2) → R
2
+ supposed to be bounded and

continuous in the Skorohod topology on D(R2). Let Γn be the set of initial

endowments from which one can start a self-financing portfolio process with

the terminal value dominating the contingent claim F (Sn), that is

Γn = {v ∈ R
2 : (φn

T )
−1F (Sn) ∈ An

v (T ) a.s.}.

We denote by Mn the set of all Fn-martingales Z such that

Zt ∈ K̂Λn∗
t \ {0} a.s. and Z1

0 = 1. According to [24], Chap. 3,

Γn =
{
v ∈ R

2 : vZ0 ≥ EZTF (S
n) for all Z ∈ Mn

}
. (4.2.1)

This identity is the so-called hedging theorem claiming that one can super

replicate the contingent claim if and only if the value of the initial endow-

ments is not less than the expectation of the value of the contingent claim

whatever a consistent price system is used to the comparison. The theorem

holds under the assumption of the existence of a strictly consistent price

system, fulfilled for our models.

Limit sets and main results

In analogy with the use of consistent price systems for the hedging the-

orem, we shall define the following set of martingales. Let B be a Brownian

motion. We define M as the set of processes (1,M),

M = E(g · B),

where g is a predictable adapted process whose square admits the following

bounds:

σ(σ − 2λ) ≤ g2 ≤ σ(σ + 2λ),

with λ be the mean of the transaction costs coefficients,

λ =
λ12 + λ21

2
.

We put

Γ =
{
v ∈ R

2 : vZ0 ≥ EZTF (Z) for all Z ∈ M
}
.
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The main results of this note are the following. In the formulation of

Theorem 4.2.1 below, we could refer to convergence in the closed topology

of the subsets of R2, see [20]. We provide a simple but equivalent character-

ization in terms of sequences.

Theorem 4.2.1 We have the convergence results,

(i) for any v ∈ Γ, there is a sequence vn ∈ Γn, such that vn → v,

(ii) for any convergent subsequence of the sequence vn ∈ Γn, the limit be-

longs to Γ.

We also give the following auxiliary result. In [30], the value of interest

in Γn is following:

xn = min
{
v1 : v ∈ Γn ∩ R+e

1
}
.

This is the minimal initial capital with a zero position in the risky asset

which hedge the option.

Theorem 4.2.2 The sequence {xn} converges to x where

x = min
{
v1 : v ∈ Γ ∩ R+e

1
}
.

4.2.2 Weak convergence

We obtain our convergence result for Γn by using the representation (4.2.1)

and the theory of weak convergence of measures. In order to make argument

more transparent, it is useful to consider a family of rather simpler polyhedral

conic models in the spirit of Part I (or paper [17]). Indeed, there exists a

sequence of positive numbers κn = O(n−1/2) such that KΛn∗ ⊂ Kκn∗, where

Kκ∗ := R+(1+ Uκ) Uκ := {v ∈ R
2 : |v| ≤ κ}.

That is, Kκ∗ is the closed convex cone in R
2 generated by the max-norm ball

of radius κ with center at 1.
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Let a sequence Zn ∈ Mn. It is easily seen that Zn takes values in the

cone (φn)−1Kκn∗. The strictly positive martingale Zn1 is the density process

of the probability measure Qn = Zn1
T P and the process Mn := Zn2/Zn1 is

a strictly positive Qn-martingale with respect to the filtration Fn. Observe

that
1− κn

1 + κn
Sn2 ≤Mn ≤ 1 + κn

1− κn
Sn2. (4.2.2)

We shall show that the sequence Mn is Qn-tight.

It is worth to note that there is a one-to-one correspondence between

Mn and the set of ”preconsistent price systems” of Kusuoka [30], it is par-

ticularly clear with the proposition 2.14 therein.

Let us define the piecewise constant processes (”stochastic logarithms”

of Mn)

Ln := (Mn
−)

−1 ·Mn.

Note that Ln has jumps only at the points tk,

∆Ln
tk
= (Mn

tk−
)−1∆Mn

tk
= (Mn

tk−1
)−1(Mn

tk
−Mn

tk−1
), k ≥ 1.

Tightness

The following lemma collects the basic asymptotics needed to check the

tightness of the laws L (Mn|Qn) on the Skorohod space.

Lemma 4.2.3 We have the following asymptotic relations:

||∆ lnMn||T = O(n−1/2), (4.2.3)

||∆Ln||T = O(n−1/2), (4.2.4)

||∆ lnMn −∆Ln||T = O(n−1), (4.2.5)

sup
k≤n

∣∣EQn

[∆ lnMn
tk
|Fn

tk−1
]
∣∣ = O(n−1). (4.2.6)
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Proof. We derive from (4.2.2) the bounds

− 2 ln
1 + κn

1− κn
+ ln (1 + µn − σn)

≤ ∆ lnMn

≤ 2 ln
1 + κn

1− κn
+ ln (1 + µn + σn) ,

implying (4.2.3). In view of the relation

∆Ln
tk
= exp(∆ lnMn

tk
)− 1,

we get (4.2.4). Setting

Φ1(z) := ln(1 + z)− z = O(z2), z → 0,

the asymptotic

||Φ1(∆L
n)||T = O(n−1)

is a consequence of (4.2.4). Note that

∆ lnMn
tk
= ∆Ln

tk
+ Φ1

(
∆Ln

tk

)
,

and (4.2.5), (4.2.6) follows. ✷

Lemma 4.2.4 Let Zn ∈ Mn, Mn := Zn2/Zn1, and Qn := Zn1
T P . Then:

(i) the sequence Mn is Qn-C-tight;

(ii) the sequence Sn is Qn-tight and

∣∣∣∣Sn2 −Mn
∣∣∣∣

T
≤ ||Mn||T O(n−1/2). (4.2.7)

Proof. Following the lines of Section 3 (or [16]) or [30], Lemma 4.8, we get

bounds for the processesMn and their bracket’s oscillations. That is, for any

m > 1, we have

sup
n
EQn ||Mn||2mT <∞ and sup

n
EQn || lnMn||2mT <∞, (4.2.8)
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and the following estimate for the increments of quadratic characteristics:

EQn

sup
k≤n−l

∣∣〈Mn〉tk+l
− 〈Mn〉tk

∣∣2 ≤ C(l/n)2, l ≤ n, (4.2.9)

where the constant C does not depend on l, n. The tightness of the sequence

L (Mn|Qn) follows, see [22]. Furthermore, we can deduce from Lemma 4.2.3

that the jumps tend to zero, which shows that each limit point of the sequence

of laws L (Mn|Qn) is continuous by virtue of Proposition VI.3.26 in [22].

From (4.2.2), we easily deduce (4.2.7) and the following,

|| lnSn2||T ≤ ln
1 + κn

1− κn
+ ||lnMn||T .

Which proves the second assertion. ✷

Identification of the limit laws

In this paragraph, we show that each limit law of the sequence

L (Zn/Zn1|Qn) is the law of a process in M. With the definition of the

processes of M, one can see that we need an estimation of the quadratic

variation process of Ln. This is the aim of Lemma 4.2.5 below.

Lemma 4.2.5 We have the following asymptotic relations:

−2EQn

[lnMn
tk+l

− lnMn
tk
|Fn

tk
] ≤ (l/n)Tσ(σ+2λ)+Rn, l ≤ n, k ≤ n− l,

−2EQn

[lnMn
tk+l

− lnMn
tk
|Fn

tk
] ≥ (l/n)Tσ(σ− 2λ)−Rn, l ≤ n, k ≤ n− l,

where the positive sequence Rn = O(n−1/2) does not depend on k and l.

Proof. The proof of the lemma stands on the following two estimations:

sup
k≤n

∣∣∣EQn

[2(∆ lnMn
tk
) + (∆ lnMn

tk
)2|Fn

tk−1
]
∣∣∣ = O(n−3/2), (4.2.10)

sup
k≤n

∣∣∣EQn

[(∆ lnMn
tk
+ Y n

tk−1
)2 − (Y n

tk
)2|Fn

tk−1
] (4.2.11)

−σn(σn + 2EQn

[Y n
tk
ξk|Fn

tk−1
])
∣∣∣ = O(n−3/2),
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where

Y n := lnMn − lnSn2 − λn12 − λn21

2
.

We start proving (4.2.10). Define the function

Φ2(z) := ln(1 + z)− z + z2/2 = O(z3), z → 0.

We get the following obvious identity:

2∆ lnMn
tk
− 2∆Ln

tk
+ (lnMn

tk
− EQn

[lnMn
tk
|Fn

tk−1
])2

= 2Φ2(∆L
n
tk
) + (lnMn

tk
− EQn

[lnMn
tk
|Fn

tk−1
]−∆Ln

tk
)2

+ 2∆Ln
tk
(lnMn

tk
− EQn

[lnMn
tk
|Fn

tk−1
]−∆Ln

tk
).

Due to Lemma 4.2.3, we have the following asymptotics

sup
k≤n

∣∣∣lnMn
tk
− EQn

[lnMn
tk
|Fn

tk−1
]−∆Ln

tk

∣∣∣ = O(n−1),

||Φ2(∆L
n)||T = O(n−3/2).

Using this, we get

sup
k≤n

∣∣∣EQn

[2(∆ lnMn
tk
) + (lnMn

tk
− EQn

[lnMn
tk
|Fn

tk−1
])2|Fn

tk−1
]
∣∣∣ = O(n−3/2).

This relation in conjunction with (4.2.3) and (4.2.6), gives us the first asymp-

totic bound (4.2.10).

We recall the following bounds

−λn21 ≤ − ln(1 + λn21) ≤ lnMn − lnSn2 ≤ ln(1 + λn12) ≤ λn12.

Using this, we obtain that

||Y n||T ≤ λn, (4.2.12)

where λn =
√
T/n λ. By the relation

Y n
tk−1

+∆ lnMn
tk
= Y n

tk
+ ln

(
1 + µn + σnξk

)
,

we get the second main relation (4.2.11).

72



Now, we use (4.2.10) and (4.2.11) to complete the proof. With the

expression

2∆ lnMn
tk
+∆(Y n

tk
)2

= [2∆ lnMn
tk
+ (∆ lnMn

tk
)2]− [(∆ lnMn

tk
+ Y n

tk−1
)2 − (Y n

tk
)2]

+ 2Y n
tk−1

∆ lnMn
tk
,

we deduce from (4.2.6), (4.2.10), (4.2.11), and (4.2.12) the key relation

sup
k≤n

∣∣∣EQn

[2∆ lnMn
tk
+∆(Y n

tk
)2|Fn

tk−1
]

+σn(σn + 2EQn

[Y n
tk
ξk|Fn

tk−1
])
∣∣∣ = O(n−3/2).

It remains to observe that

|2σnY n
tk
ξk| ≤ 2σnλn, k ≤ n.

Hence there exists a positive constant κ such that

− lσn(σn + 2λn)− κln−3/2

≤ 2EQn

[lnMn
tk+l

− lnMn
tk
|Fn

tk
] + EQn

[(Y n
tk+l

)2|Fn
tk
]− (Y n

tk
)2

≤ −lσn(σn − 2λn) + κln−3/2.

Using (4.2.12) and the inequality ln−3/2 ≤ n−1/2, we get

− lσn(σn + 2λn)− κn−1/2 − (λn)2

≤ 2EQn

[lnMn
tk+l

− lnMn
tk
|Fn

tk
]

≤ −lσn(σn − 2λn) + κn−1/2 + (λn)2.

This completes the proof. ✷

Lemma 4.2.6 Let Zn ∈ Mn and let Qn := Zn1
T P . For each cluster point Q

of the sequence L (Zn/Zn1|Qn), there exists a process Z ∈ M with

Q = L (Z).
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Proof. Setting Q̃n = L ((1,Mn)|Qn), Lemma 4.2.4 asserts that each cluster

point Q of the tight sequence Q̃n charges only {1} × C(R). On this set, the

canonical process {(1, wt); t ∈ [0, T ]} is a martingale under Q with respect

to its natural filtration because of (4.2.8), see [22]. We shall show that the

quadratic characteristics of logarithm of its second component is absolute

continuous (with respect to Lebesgue measure) Q-a.s., with the bounds

σ(σ − 2λ)dt ≤ d〈lnw〉t ≤ σ(σ + 2λ)dt. (4.2.13)

Equivalently, since {wt; t ∈ [0, T ]} is a Q-martingale, 〈lnw〉 is the bounded

variation part of the semi-martingale {−2 lnwt; t ∈ [0, T ]} and we show that

σ
(
σ − 2λ

)
EQ

∫ T

0

gt(w)dt

≤ EQ

∫ T

0

gt(w)d〈lnw〉t

≤ σ
(
σ + 2λ

)
EQ

∫ T

0

gt(w)dt,

for any function g : [0, T ]×D(R) → R+ which is bounded, continuous in the

product of the usual topology on [0, T ] and the Skorohod topology on D(R)

and adapted, i.e. gt(w) is σ{ws, s ≤ t}-measurable for any t. The claim

follows from Lemma 4.2.5 and (4.2.8). We have :

lim sup
n→∞

EQ̃n

gs(w)
(
− 2(lnwt − lnws)− σ

(
σ + 2λ

)
(t− s)

)
≤ 0,

and

lim inf
n→∞

EQ̃n

gs(w)
(
− 2(lnwt − lnws)− σ

(
σ − 2λ

)
(t− s)

)
≥ 0.

Which lead to

−2EQgs(w)(lnwt − lnws) ≤ EQgs(w)σ
(
σ + 2λ

)
(t− s),

and

−2EQgs(w)(lnwt − lnws) ≥ EQgs(w)σ
(
σ − 2λ

)
(t− s).

Hence Q on C(R2) is such that the (continuous) martingale part of

{lnwt; t ∈ [0, T ]} has a quadratic characteristic process 〈lnw〉 satisfying
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(4.2.13). From [28], Theorem 3.4.2, Q admits the following standard repre-

sentation. There exist B, a standard Brownian motion under a probability

ν, and an adapted process g such that

σ(σ − 2λ) ≤ g2 ≤ σ(σ + 2λ), 1 ≤ i ≤ d,

and

L (1, E(g · B)| ν) = Q.

✷

Construction of discrete martingales

The aim of the following section is to show that processes of M can

be approximated by consistent price systems in Mn. The following lemma

gives a constructive way of approximating the martingales of a subset of M.

Lemma 4.2.7 Let B be a Brownian motion. Let g be an adapted continuous

bounded function : [0, T ]× D(R) → R
+ \ {0} such that, for some δ > 0,

δ ∨ σ(σ − 2λ) + δ ≤ g2 ≤ σ(σ + 2λ)− δ, (4.2.14)

|gt(w)− gs(v)| ≤ κ(|t− s|+ ||w − v||T ), (4.2.15)

for t, s ∈ [0, T ], v, w ∈ C(R). Define the martingale

M = E(g(B) · B).

Then there exists a sequence Zn ∈ Mn such that

L (Zn/Z1n|Qn) → L ((1,M)|Q),

with Qn = Z1n
T P.

Proof. We consider the piecewise constant process

Mn
tk
=

1 + 1/2λn12

1 + 1/2λn21

(
1 +Kn

tk

√
T/nξk

)
Sn2
tk
, 0 ≤ k ≤ n,
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with Kn the predictable process defined by

Kn
tk

=
1

2σ
(gntk)

2 − σ

2
, (4.2.16)

gntk = gtk−1

(
(Bn

tl
)k−1
l=0

)
,

where the process Bn is piecewise constant with the jumps

∆Bn
tk

= (gntk)
−1∆Ln

tk
, (4.2.17)

∆Ln
tk

= (Mn
tk−1

)−1∆Mn
tk
.

The proof consists in two steps. The first one is to construct from Mn a

sequence of consistent price systems in Mn. The second step is to check the

convergence.

According to (4.2.14),

−λ+ ε ≤ Kn ≤ λ− ε,

for some ε > 0. Using the Taylor expansion formulae, we get the bounds

1− λn21 + εR1
n ≤ 1 + 1/2λn12

1 + 1/2λn21

(
1 +Kn

tk

√
T/nξk

)
≤ 1 + λn12 − εR1

n,

where R1
n = O(n−1/2) and R1

n > 0 for large n. It is easily seen that

1

1 + λn21
Sn2 ≤Mn ≤ (1 + λn12)Sn2

for sufficiently large n. These inequalities show that (1,Mn) takes values in

K̂Λn∗\{0} for sufficiently large n. Our aim now is to determine the martingale

measure of Mn. We compute the stochastic logarithm of Mn,

∆Ln
tk

=
Mn

tk

Mn
tk−1

− 1

=
(1 + µn + σnξk)(1 +Kn

tk

√
T/nξk)

1 +Kn
tk−1

√
T/nξk−1

− 1

=

√
T

n

(σ +Kn
tk
+ µnK

n
tk
)ξk + µ

√
T/n+ σnK

n
tk
−Kn

tk−1
ξk−1

1 +
√
T/nKn

tk−1
ξk−1

.
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Observe that Mn is a Qn-martingale where Qn is given by

Qn = E(qn)TP, △qntk = −
µ
√
T/n+ σnK

n
tk
−Kn

tk−1
ξk−1

(σ +Kn
tk
+ µnKn

tk
)

ξk,

recalling that for a piecewise constant process q,

E(q)t =
∏

s≤t

(1 + ∆qs).

Setting

Zn
t = E

[
E(qn)T | Fn

tk

]
(1,Mn

tk
), tk ≤ t < tk+1,

we get a sequence of martingales taking values in K̂Λn∗, that is a sequence

of consistent price systems.

In view of (4.2.17), we have the expression

Mn = E(gn · Bn).

We shall use a version of the Central Limit Theorem to show the convergence

of L (Bn|Qn) to the law of a Brownian motion. We need to compute the in-

crements of the quadratic variation process of Bn, that is EQn
[(∆Bn

tk
)2|Fn

tk−1
].

First, according to (4.2.15) and (4.2.17), observe that

||∆Bn||T = O(n−1/2), ||∆Kn||T = O(n−1/2).

It follows that

sup
k≤n

∣∣∆Ln
tk
−

√
T/n

[
(σ +Kn

tk
)ξk −Kn

tk
ξk−1

]∣∣ = O
(
n−1

)
, (4.2.18)

and

sup
k≤n

∣∣∣∣∆q
n
tk
− Kn

tk
ξk−1ξk

σ +Kn
tk

∣∣∣∣ = O
(
n−1/2

)
. (4.2.19)

Having in mind the expression

EQn[
(∆Bn

tk
)2
∣∣Fn

tk−1

]
= (gnk )

−2E[(1 + ∆qntk)(∆L
n
tk
)2|Fn

tk−1
],

we deduce from (4.2.18) and (4.2.19),

EQn[
(∆Bn

tk
)2
∣∣Fn

tk−1

]
=
T

n
(gntk)

−2
(
(σ +Kn

tk
)2 − (Kn

tk
)2
)
+Rn

tk
,
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where ||Rn||T = O(n−3/2). Finally, with the definition of Kn, (4.2.16), it is

easily seen that

EQn[
(∆Bn

tk
)2
∣∣Fn

tk−1

]
=
T

n
+Rn

tk
.

Note also that the sequence Bn satisfies the conditional Lindeberg hypothesis,

Property VIII.3.31 in [22]. By the use of the Central Limit Theorem, [22],

VIII.3.33, we get the existence of a Brownian motion B such that

L
(
Bn, g(Bn)

∣∣Qn
)
→ L (B, g(B)).

The announced convergence can be checked through the convergence of the

stochastic exponential, and then the convergence of L (Mn|Qn) to the law

of the process M holds. ✷

Note that approximating processes of Lemma 4.2.7 allows us to ap-

proximate processes of M. Indeed, let Z ∈ M, Z2 = E(g · B). It is easily

seen that we can construct a sequence of functions (gm)m∈N satisfying the

assumptions of Lemma 4.2.7 with

E

∫
|gt − gmt (B)|2 dt→ 0.

Using the Burkholder–Davis–Gundy inequality, we get that

E
∣∣∣∣E(g · B)− E(gm− (B) · B)

∣∣∣∣
T
→ 0.

4.2.3 Proof of the main results

Preliminary remarks

We first give some general remarks and tools which link the technical

ideas from Section 4.2.2 with super hedging issues.

Remind the assertion (4.2.2), that is for any Z ∈ Mn,

1− κn

1 + κn
≤ Z2

0 ≤ 1 + κn

1− κn
, (4.2.20)

and, more generally,

1− κn

1 + κn
Sn2 ≤ Z2/Z1 ≤ 1 + κn

1− κn
Sn2.
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Now we show that the particular convergence described in Lemmata

4.2.4 and 4.2.7 is consistent with the hedging theorem. Let Zn ∈ Mn be

such that for Mn := Zn2/Zn1 and Qn := Zn1
T P we have

L ((1,Mn)|Qn) → L (Z),

for some Z ∈ M. It follows from Lemma 4.2.4.2 that for any v ∈ R
2,

EZn
T (F (S

n)− v) → EZT (F (Z)− v), (4.2.21)

since

EZn
T (F (S

n)− v) = EQn

(1,Mn
T )(F (S

n)− v).

We end this paragraph observing the fact that increasing the initial

capital both on the first and the second asset helps to hedge the European

option. Indeed, for each v, δ > 0, Zn ∈ Mn, we have

EZn
T (F (S

n)− (v + δ1)) ≤ EZn
T (F (S

n)− v)− 2
1− κn

1 + κn
δ. (4.2.22)

Moreover, this bound is uniform on the choice of the consistent price system.

Proof of Theorem 4.2.2

The proof of this theorem is similar to the one given in [30]. Note that

xn = sup
Z∈Mn

EZTF (S
n),

and

x = sup
Z∈M

EZTF (Z).

We proceed by establishing the following two inequalities:

lim sup
n

xn ≤ x, lim inf
n

xn ≥ x.

For the first one, we fix the sequence Zn ∈ Mn such that

EZn
TF (S

n) ≥ xn − 1/n.
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According to Lemmata 4.2.4 and 4.2.6, there exist a subsequence Znk and a

process Z ∈ M such that

lim sup
n

EZn
TF (S

n) = lim
k
EZnk

T F (Snk) = EZTF (Z) ≤ x.

Conversely, we fix ε > 0 and choose Z ∈ M such that

EZTF (Z) ≥ x− ε.

By virtue of Lemma 4.2.7, there exists a sequence Zn ∈ Mn such that

lim inf
n

EZn
TF (S

n) = EZTF (Z).

Since ε is arbitrary, we get lim inf xn ≥ x, and Theorem 4.2.2 is proved.

Proof of Theorem 4.2.1, Assertion 1

The proof of Theorem 4.2.1 follows the same reasoning based on choos-

ing the best candidate between the consistent price systems. However, the

fact that we consider convergence of sets makes the demonstration more in-

volved. Here we prove the first assertion.

Fix v ∈ Γ, we shall construct a sequence vn ∈ Γn such that vn → v.

Choose a sequence Zn ∈ Mn such that

EZn
T (F (S

n)− v) +
1

n
≥ sup

Z∈Mn

EZT (F (S
n)− v).

As a consequence of Lemmata 4.2.4 and 4.2.6, there exists Z ∈ M such that

lim sup
n

EZn
T (F (S

n)− v) = EZT (F (Z)− v) ≤ 0.

It follows that there is a positive sequence δn → 0 such that

EZn
T (F (S

n)− v) ≤ δn.

Define vn by increasing the initial capital v to

vn = v +
1

2

1 + κn

1− κn

(
δn +

1

n

)
1.
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Having in mind (4.2.22), it is easily seen that for any Z ∈ Mn, we have:

EZT (F (S
n)−vn) ≤ EZT (F (S

n)−v)−
(
δn +

1

n

)
≤ EZn

T (F (S
n)−v)−δn ≤ 0.

So we constructed the desired sequence vn ∈ Γn such that vn → v.

Proof of Theorem 4.2.1, Assertion 2

It remains to show that for a convergent (sub)sequence vn ∈ Γn, the

limit v belongs to Γ. Fix ε > 0 and choose Z ∈ M such that

EZT (F (Z)− v) ≥ sup
Z∈M

EZT (F (Z)− v)− ε.

By virtue of Lemma 4.2.7 and (4.2.21), there is a sequence Zn ∈ Mn such

that

lim inf
n

EZn
T (F (S

n)− v) = EZT (F (Z)− v).

Note that

lim inf
n

EZn
T (F (S

n)− v) = lim inf
n

EZn
T (F (S

n)− vn) + lim inf
n

Zn
0 (v

n − v),

and

lim inf
n

Zn
0 (v

n − v) = 0,

since Zn
0 is bounded, (4.2.20). We can conclude that

EZT (F (Z)− v) ≤ 0

and since ε is arbitrary, v belongs to Γ. This ends the proof. ✷
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Part III

Approximative Hedging
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Option pricing gathers finance industry needs and Quantitative Fi-

nance. The complexity of models increases to match the real world, as for

example in the papers [5, 11, 21]. Simulation methods have to be developed

with two aims, a good accuracy and a low computational cost. In the books

[4, 29], many finite difference schemes are considered. They are simulated by

Monte-Carlo Methods which compute the mean by generating a big number

of asset price realizations. These methods suffer from the difficulty of gen-

erating the Brownian sample paths, since the discretization of the process

implies a loss of accuracy.

Other methods study the density of the option price at the exercise

date. This is the subject of the famous paper by Black–Scholes [2]. In

the papers [13, 14], the asset price evolutions are approximated by Picard

iterations. A scheme using an expansion with the Wiener–Ito Chaos formula

is introduced. The density of the first three terms are then approximated.

The accuracy of this method is illustrated by numerical simulations but not

theoretically studied.

We use the so-called Picard iterations in a rigorous framework. We in-

troduce a discretized scheme which can be simulated by Monte-Carlo meth-

ods. This studying part provides a very basic scheme to be compared with

the Euler scheme. We first focus on the second term in the Picard iterations.

In this case, the scheme is mainly relevant to (“generalized”) European op-

tions. Even if a systematic error, in the spirit of the one in [13, 14], has

to be accepted, we obtain a good convergence speed, namely n−1. For the

higher Picard iterations, though we loose the systematic error, the conver-

gence speed is worse than n−1/2. Further research has to study faster schemes.

This part is organized as follows. In the following section, we present

the mainstream of the option hedging and we rigorously introduce the ap-

proximation of the asset price by Picard iterations and the discretization

scheme. In a second section, we discuss the case of the second iteration, in-

troducing assumption on the pay-off function. In a third section, we discuss

about general case. A subsidiary section gathers some integrability properties
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and various tools.

Cette partie fait l’objet d’un article en préparation en coécriture avec

Emmanuel Lépinette.
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Chapter 5

Approximation by Picard

Iterations

5.1 The Model

Let (Ω,F ,F = (Ft)t∈[0,T ], P ) be a continuous–time stochastic basis satisfying

the usual assumptions (in particular complete) supporting a standard Brow-

nian motion W , i.e. Ft := σ(Ws : s ≤ t) ∨ N where N is the family of all

sets of P -measure zero.

According to Th. 2.2 in [12], p. 104, we have the following.

Proposition 5.1.1 Suppose that σ : [0, T ]×R+ → R and r : [0, T ]×R+ → R

are two Lipschitz functions. Then, the s.d.e.

dSt = Stσ(t, St)dWt + Str(t, St)dt, S0 = x,

has a unique strong solution.

In the sequel, we make the following assumption on the Lipschitz func-

tions σ and r.

Assumption 5.1.2 Assume that the function r is bounded and

0 < σ2(t, y) ≤ L(1 + ln(ln(y))1y>1), ∀t ∈ [0, T ], ∀y ∈ R+.
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Assumption 5.1.2 essentially stands for the existence of the moments of

supt∈[0,T ] St, see Section 8.1.

5.1.1 The Option

The above process S models the price evolution of the underlying asset. We

aim at approximating the valuation of the option with the pay-off G(S) where

G : C(R+) → R+ is supposed to satisfy :

|G(α)−G(β)| ≤ C sup
t∈[0,T ]

|αt − βt|, α, β ∈ C(R+). (5.1.1)

We assume, without restriction, that P is the risk-neutral measure so that

the valuation of the contingent claim is v = EG(S). This means that r has to

be considered as the interest rate of the bank account. Hence, the following

assumption on r is natural.

Assumption 5.1.3 We suppose that r(s, ·) =: rs is deterministic and bounded.

We set

F (t) = x exp

(∫ t

0

rudu

)
.

For an integrand H, we write (when it does make sense)

St(H) = F (t) exp

(
H ·Wt −

1

2

∫ t

0

H2
udu

)
.

For n ∈ N, we set τn = {t0 = 0, t1 = T/n, t2 = 2T/n, · · · tn = T} the

uniform partition of the time interval [0, T ]. For a process X, we denote by

Xn the piecewise constant process

Xn
t = Xti , ti ≤ t < ti+1,

Xn
T = XT .
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5.2 The General Approximation

The aim of the current section is to use an approximation S̃ of S in the

valuation of the option. It is important to note that the theoretical conver-

gence speed of the option approximation relies on the following norm of the

difference between S and S̃. Since (5.1.1) holds, we have

|EG(S)− EG(S̃)| ≤ E|G(S)−G(S̃)| ≤ C

∥∥∥∥∥ sup
t∈[0,T ]

∣∣St − S̃t

∣∣
∥∥∥∥∥
2

.

That is, we always study the mean squared error when introducing a new

scheme. The approximation of interest is obtained in three steps. The first

one consists in bounding the volatility. The second one uses the so-called Pi-

card iterations, a recursive scheme where we approximate the solution of the

s.d.e. satisfied by S by the solution of s.d.e.’s with iterated (bounded) diffu-

sion. The third step is the approximation of the diffusion by a discretization

method, see Section 5.2.3 and Chapters 6, 7 below.

5.2.1 Bounded Diffusion

We first bound the diffusion process σ with the parameter κ. Let κ ∈ R+,

with κ ≥ rs, ∀s ∈ [0, T ], and κ > x = S0. Consider Y κ the unique solution

to the s.d.e.

Y κ
0 = 0,

dY κ
t = σ(t, xeY

κ
t ∧ κ)dWt + rtdt−

1

2
σ2(t, xeY

κ
t ∧ κ)dt.

Note that Sκ := xeY
κ
satisfies

Sκ
0 = x

Sκ
t := x exp

[∫ t

0

σ(u, Sκ
u ∧ κ)dWu +

∫ t

0

ru −
1

2
σ2(u, Sκ

u ∧ κ)du
]
.

Throughout the paper, we also denote Y such that S = xeY . The

following lemmata state the convergence of Sκ to S.
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Lemma 5.2.1 Sκ converges pointwise on [0, T ] to S.

Proof. Consider the stopping times

τκ := inf{t : |St| ≥ κ} ∧ T.

Then, the stopped processes Sτκ and (Sκ)τ
κ
satisfy the same s.d.e.. It follows

that St = Sκ
t on t ∈ [0, τκ]. As τκ → ∞, we conclude. ✷

Lemma 5.2.2 Suppose that Assumption 5.1.2 holds, there are some con-

stants Cp such that for all p ≥ 1

E sup
t∈[0,T ]

(St)
2p + sup

κ
E sup

t∈[0,T ]

(Sκ
t )

2p ≤ Cp,

and therefore, for all l ≥ 1 there are constants Cl such that

E sup
t∈[0,T ]

(Sκ
t − St)

2 ≤ Cl

κl
.

Proof. The proof of the first property is postponed in Section 8.1. For the

second one, observe that

E sup
t∈[0,T ]

(
Sκ
t − St

)2
= E sup

t∈[0,T ]

(
Sκ
t − St

)2
1τκ<t

≤ E sup
t∈[0,T ]

(
Sκ
t − St

)2
1τκ<T

≤ E sup
t∈[0,T ]

(
Sκ
t − St

)2
1supt∈[0,T ] St≥κ

≤
√
E sup

t∈[0,T ]

(
Sκ
t − St

)4
√
E
(
supt∈[0,T ] St

)2l

κ2l
.

Which yields the result. ✷

5.2.2 Picard Iterations

The idea of the following scheme is to construct successive solutions Sκ,m of

s.d.e.’s with iterated diffusion such that Sκ,m converge to Sκ. To do so, we
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introduce

Sκ,0 = x,

Sκ,m+1
t := x exp

[∫ t

0

σ
(
u, Sκ,m

u ∧ κ
)
dWu +

∫ t

0

ru −
1

2
σ2

(
u, Sκ,m

u ∧ κ
)
du

]
.

We set

Y κ,m
t := logSκ,m

t − log x.

As a matter of fact, this process satisfies the following s.d.e.

dY κ,m+1
t = σ

(
t, xeY

κ,m
t ∧ κ

)
dWt + rtdt−

1

2
σ2

(
t, xeY

κ,m
t ∧ κ

)
dt.

To this end, we use the short notation

σm
s := σ

(
s, xeY

κ,m−1
s ∧ κ

)
= σ

(
s, Sκ,m−1

s ∧ κ
)
, m > 0.

The following lemmata state the convergence results of Sκ,m to Sκ in L2. We

first focus on the fourth moments of the error between Y κ,m and Y κ.

Lemma 5.2.3 The sequence Y κ,m converges in L2 to Y κ such that

∥∥∥∥sup
u≤t

∣∣Y κ
u − Y κ,m

u

∣∣
∥∥∥∥
2

≤ C(1 + |x|)
∞∑

j=m

(κC)j
√
T

j

√
j!
, (5.2.2)

∥∥∥∥sup
u≤t

∣∣Y κ
u − Y κ,m

u

∣∣
∥∥∥∥
4

≤ C(1 + |x|)
∞∑

j=m

(κC)j
(T 1/4)j

(j!)1/4
. (5.2.3)

Proof. The following useful inequality is easily stated for α ≥ 2,

∣∣xα/2 − yα/2
∣∣ ≤ α

2
(max(|x|; |y|))α/2−1 |x− y|.

We deduce that
(∫ t

0

(
σm+1
s

)2 −
(
σm
s

)2
ds

)2

≤ C

∫ t

0

(
σm+1
s − σm

s

)2
ds,

using the Jensen inequality. Together with the Burkholder–Davis–Gundy

inequalities, we obtain that

E sup
u≤t

∣∣Y κ,m+1
u − Y κ,m

u

∣∣2 ≤ CE

∫ t

0

sup
u≤s

∣∣σm+1
u − σm

u

∣∣2ds.
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Observe that |σ(t, eX ∧ κ)− σ(t, eY ∧ κ)| ≤ κC|X − Y |, hence
∣∣σm+1

u − σm
u

∣∣ ≤ κC
∣∣Y κ,m

u − Y κ,m−1
u

∣∣, ∀u ∈ [0, T ].

We get

E sup
u≤t

∣∣Y κ,m+1
u − Y κ,m

u

∣∣2 ≤ κ2C

∫ t

0

E sup
u≤s

∣∣Y κ,m
u − Y κ,m−1

u

∣∣2ds.

With Lemma 8.2.1, we deduce that

E sup
u≤t

∣∣Y κ,m+1
u − Y κ,m

u

∣∣2 ≤ (κ2C)mE sup
u≤t

∣∣Y κ,1
u − Y κ,0

u

∣∣2 t
m

m!

≤ C(κ2C)m
tm

m!
(1 + x2), (5.2.4)

where C does not depend on m. We deduce (5.2.2). Similarly we get (5.2.3)

and the claim follows. ✷

It is worth to note that the mean squared error of (5.2.2) and (5.2.3)

can be turned into the rest of exponential expansion series.

Corollary 5.2.4 We have the following bounds

E sup
u≤t

∣∣Y κ
u − Y κ,m

u

∣∣2 ≤ C(1 + x2)
∞∑

j=m

(2κ2CT )j

j!
,

E sup
u≤t

∣∣Y κ
u − Y κ,m

u

∣∣4 ≤ C(1 + x4)
∞∑

j=m

(8κ4CT )j

j!
.

Proof. By virtue of Lemma 8.2.3, we get the inequality

E sup
u≤t

∣∣Y κ
u − Y κ,m

u

∣∣2 ≤
∞∑

j=m

2jE sup
u≤t

∣∣Y κ,j+1
u − Y κ,j

u

∣∣2,

and we get the first inequality from (5.2.4) and similarly the second one. ✷

We use the above bounds to evaluate the mean squared error between

Sκ and Sκ,m.

Lemma 5.2.5 For every κ, there exists a constant Cκ such that

E sup
t∈[0,T ]

(
Sκ
t − Sκ,m

t

)2 ≤ Cκ

√
E sup

t∈[0,T ]

(Y κ
t − Y κ,m−1

t )4.
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Proof. By virtue of the Burkholder–Davis–Gundy inequalities, we have

E sup
u∈[0,t]

(
Sκ
u − Sκ,m

u

)2 ≤ CE

∫ t

0

(Sκ
s σs − Sκ,m

s σm
s )

2 ds

+2E

∫ t

0

(Sκ
s rs − Sκ,m

s rs)
2 ds,

where, by an abuse of notation, σs := σ(s, Sκ
s ∧ κ), recalling that

σm
s := σ(s, Sκ,m−1

s ∧ κ). The first term is bounded from above as follows

E

∫ T

0

(Sκ
s σs − Sκ,m

s σm
s )

2 ds ≤ 2E

∫ T

0

(Sκ
s (σs − σm

s ))
2 ds

+ 2E

∫ T

0

(σm
s (S

κ
s − Sκ,m

s ))2 ds.

Observe the inequalities |σ(t, y)|+ |rt| ≤ mκ if |y| ≤ κ and

|σ(t, xeX ∧ κ)− σ(t, xeY ∧ κ)| ≤ κC|X − Y |, (5.2.5)

for t ∈ [0, T ]. We recall that, according to Lemma 5.2.2

sup
κ
E sup

t∈[0,T ]

(Sκ
t )

2p ≤ Cp.

Therefore,

E sup
u∈[0,t]

(
Sκ
u − Sκ,m

u

)2 ≤ 6κC
√
E sup

u≤T

∣∣Y κ
u − Y κ,m−1

u

∣∣4

+6mκ

∫ t

0

E sup
u≤s

(Sκ
u − Sκ,m

u )2 ds.

It remains to use Gronwall’s Lemma to deduce that

E sup
t∈[0,T ]

(Sκ
t − Sκ,m

t )2 ≤ 6κC exp(6mκT )
√
E sup

t≤T
|Y κ

t − Y κ,m−1
t |4.

And the result follows. ✷

It is worth to mention, with the current notations, that we can write

Sκ,m = S(σm).
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5.2.3 Approximation of the Diffusion

We shall now approximate σ by a recursive method. Here is the starting

point of, we hope, various fruitful approximation methods. As an example,

we consider a very simple discretization, considering the sample path of the

Brownian motion only at a few dates. Though very basic, this method is

known for being coarse. We shall discuss about its accuracy in the following

two chapters. Fix κ ∈ R+. Set τn = {t0 = 0, t1 = T/n, t2 = 2T/n, · · · tn = T}
the uniform partition of order n of the time interval [0, T ]. We define the

following scheme. Suppose that T/n ≤ 1. To alleviate notation, we write for

the process σ

||σ||t :=
(∫ t

0

σ2
rdr

)1/2

.

Consider the piecewise constant processes recursively defined by

σ̃1
t = σ(ti, x ∧ κ), ti ≤ t < ti+1,

σ̃m
t = σ

(
ti, F (ti) exp

(
σ̃m−1 ·Wti −

1

2
‖σ̃m−1‖2ti

)
∧ κ

)
, ti ≤ t < ti+1.

Remark 5.2.6 It is worth to mention that even if the processes σ̃m are piece-

wise constant, the processes S(σ̃m) are not. Indeed

St(σ̃
m) = F (t) exp

(
σ̃m ·Wt −

1

2

∫ t

0

(σ̃m
u )

2du

)

= F (t) exp
(
σ̃m ·Wti + σ̃m

ti
(Wt −Wti)−

1

2
‖σ̃m‖2ti −

1

2
(σ̃m

ti
)2(t− ti)

)

= F (t)Sti exp
(
σ̃m
ti
(Wt −Wti)−

1

2
(σ̃m

ti
)2(t− ti)

)
,

for ti ≤ t < ti+1. Nevertheless, it is possible to get simulations for the process

Sn(σ̃m).
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Chapter 6

The Case m = 2

In the case m = 2, even with the coarse approximation of the Brownian

motion process, the accuracy is still good. Theorem 6.3.1 below reads as

follows. Under assumptions on the pay-off function, accepting a certain non

reducible error, the rate of convergence of the approximation is n−1. In

analogy with [13, 14], numerical simulations would illustrate the accuracy of

the method. Nevertheless, we think that the systematic error is not much

worse than the one in [13, 14].

6.1 Approximation

We shall approximate σ2, the second iterated volatility defined in Paragraph

5.2.2, by the “recursive” discretization method of Paragraph 5.2.3. That is,

we stop the iterations in Section 5.2.3 in the special case m = 2. Fix κ ∈ R+.

We define the following scheme. Set n ∈ N and τn the sequence {ti := iT/n}.
We suppose that T/n ≤ 1. Consider the piecewise constant processes defined

by

σ̃1
t = σ(ti, x ∧ κ), ti ≤ t < ti+1,

σ̃2
t = σ

(
ti, F (ti) exp

(
σ̃1 ·Wti −

1

2
‖σ̃1‖2ti

)
∧ κ

)
, ti ≤ t < ti+1.
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6.2 Consistency with Discretization

We introduce here a property on the pay-off function. Namely, we consider

pay-off functions that suit well when the asset price is approximated by a

piecewise constant process active only on a uniform partition of the time

interval. We formulate the condition in a technical sense since we target,

with further research, a larger class of pay-off functions, for example pay-off

depending on the asset price at a few dates, etc. Further investigation on

the pay-off functions are needed.

We need a condition which allows us to consider a “discretized” version

of the underlying asset price, when this one is given by the Picard iterations.

Set n ∈ N and τn the sequence {ti := iT/n}. We say that the pay-off G is

consistent with discretization if

|EG(S(σ2))− EG(Sn(σ2))| ≤ Cκ

n
.

At least, the European call pay-off satisfies the consistency with dis-

cretization property. Indeed, the pay-off of the European call option with

strike K is of the form G(S) where G(α) = e−
∫ T
0 rtdt(αT − K)+. Since G

depends only on the terminal value of α, we clearly have

G(S(σ2)) = G(Sn(σ2)).

6.3 Accuracy

The accuracy of our approximation is given in the following Theorem. One

can see that with the above “discretization” property, the rate of convergence

is higher than the one we could expect with the current approximation of

the Brownian motion.

Theorem 6.3.1 Assume that Assumptions 5.1.2 and 5.1.3 hold and suppose

that G is consistent with discretization. Fix κ ∈ R+ and n ∈ N. Then, for

l ≥ 1, there are some constants Cl, Cκ and ǫκ > 0 such that

|EG(S)− EG(Sn(σ̃2))| ≤ Cl

κl
+
Cκ

n
+ ǫκ,
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where εκ := εκ,2 is the second term of a decreasing sequence εκ,m → 0 as

m→ ∞, see term (6.4.2) below.

6.4 Proof of Theorem 6.3.1

To prove Theorem 6.3.1 we first remark that we have

|EG(S)− EG(Sn(σ̃2))| ≤ |EG(S)− EG(Sκ)| (6.4.1)

+|EG(Sκ)− EG(Sκ,2)| (6.4.2)

+|EG(S(σ2))− EG(Sn(σ2))| (6.4.3)

+|EG(Sn(σ2))− EG(Sn(σ̃2))|. (6.4.4)

Note that since G is consistent with discretization, the term (6.4.3) is smaller

than CT/n. We recall that G is Lipschitz continuous by (5.1.1). That is we

can evaluate the above terms summing the square root of the mean squared

error studied before. Indeed (6.4.1) is bounded with the above Lemma 5.2.2,

ǫκ stands for the quantity (6.4.2) and by the following Lemma 6.4.1 we bound

(6.4.4). It is enough to study the convergence of Sn(σ̃2) to Sn(σ2).

Lemma 6.4.1 We have the following inequality

E sup
t∈[0,T ]

∣∣Sn
t (σ̃

2)− Sn
t (σ

2)
∣∣2 ≤ (κCT )2

n2
+
Cl

κl
.

Proof. Since the family of random variables {σ̃1 ·Wt, σ
1 ·Wt, t ∈ [0, T ]} is

uniformly integrable, there exists C such that, setting

ΓC =

{
sup
t≤T

σ1 ·Wt ≥ C

}⋃{
sup
t≤T

σ̃1 ·Wt ≥ C

}

we have P (ΓC) ≤ Cl/κ
l. It follows that

|S(σ̃2)ti − S(σ2)ti |IΓc
C
≤ Cκ,l

∣∣∣∣
(
σ̃1 − σ1

)
·Wti −

1

2

∫ ti

0

(
σ̃1
s

)2 −
(
σ1
s

)2
ds

∣∣∣∣ .
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With usual argument, we conclude that

Emax
i

|S(σ̃2)ti − S(σ2)ti |2 ≤
√
P (ΓC)

√
E sup

t∈[0,T ]

∣∣S(σ̃2)t + S(σ2)t
∣∣4

+Cκ,l

∫ T

0

E sup
t∈[0,T ]

∣∣σ̃1
t − σ1

t

∣∣2ds.

It is easily seen that

sup
t∈[0,T ]

∣∣σ̃1
t − σ1

t

∣∣2 ≤ (κCT )2

n2
. (6.4.5)

Which ends the proof.✷

Theorem 6.3.1 is proved.
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Chapter 7

The Case m > 2

The good accuracy of the dicretization procedure fails to generalize when

we consider higher iterations than the one described in the previous chapter.

The main problem comes from the fact that (6.4.5) in the proof of Theorem

6.3.1 does not hold any more for m > 2. Then we suffer the lack of precision

of the current approximation of the Brownian motion.

7.1 The Result

In view of the following proofs, it is hopeless to focus only on certain dates of

the approximation of the asset price in order to improve the accuracy. So we

do not need anymore the additional “discretization” property introduced in

Paragraph 6.2. The accuracy of the approximation is stated in the following.

Theorem 7.1.1 Assume that Assumptions 5.1.2 and 5.1.3 hold. Fix

κ ∈ R+, m ∈ N and n ∈ N. Then, for l, p ∈ N, there are some constants

Cl, C, Cκ, Cκ,p such that

|EG(S)− EG(Sn(σ̃m))| ≤ Cl

κl
+ Cκ

√√√√
∞∑

i=m−1

(8κ4C)i

i!
+ Cκ,p

(
1√
n

)(p−1)/p

.
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7.2 Proof of Theorem 7.1.1

In the spirit of the proof of Theorem 6.3.1, we make a survey of the mean

squared errors. We have the following estimation.

Lemma 7.2.1 There exists a constant Cκ,p which does not depend on n and

m such that ∥∥∥∥∥ sup
t∈[0,T ]

|σ̃m
t − σm

t |
∥∥∥∥∥

p

p

≤
(
Cκ,p

n

)(p−1)/2

.

Proof. Observe that
∣∣∣∣∣ supt∈[0,T ]

∣∣σ̃m
t − σm

t

∣∣
∣∣∣∣∣

p

≤ 2p−1

∣∣∣∣max
i≤n

∣∣σ̃m
ti
− σm

ti

∣∣
∣∣∣∣
p

+2p−1

∣∣∣∣∣max
i≤n

sup
t∈[ti,ti+1[

∣∣σm
ti
− σm

t

∣∣
∣∣∣∣∣

p

. (7.2.1)

So, we first evaluate the quantity ‖σ̃m
t − σm

t ‖pp at dates {ti}. Since σ is

Lipschitz, (5.2.5), there exists a constant C such that

∣∣σ̃m
ti
− σm

ti

∣∣ ≤ κC

∣∣∣∣
(
σ̃m−1 − σm−1

)
·Wti −

1

2

∫ ti

0

[(
σ̃m−1
t

)2 −
(
σm−1
t

)2]
dt

∣∣∣∣ .

We deduce that

∥∥∥∥max
i≤n

∣∣σ̃m
ti
− σm

ti

∣∣
∥∥∥∥
p

≤ κC

∥∥∥∥max
i≤n

∣∣(σ̃m−1 − σm−1
)
·Wti

∣∣
∥∥∥∥
p

+κC

(
E

∣∣∣∣
∫ ti

0

(
σ̃m−1
t

)2 −
(
σm−1
t

)2
dt

∣∣∣∣
p)1/p

.

Recall for α ≥ 2 the inequality

∣∣xα/2 − yα/2
∣∣ ≤ α

2
(max(|x|; |y|))α/2−1 |x− y|.

Together with the Jensen inequality, we state that

E

∣∣∣∣
∫ ti

0

(
σ̃m−1

)2 −
(
σm−1

)2
dt

∣∣∣∣
p

≤ κCE

∫ ti

0

∣∣σ̃m−1
t − σm−1

t

∣∣p dt.
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It follows, using Burkholder–Davis–Gundy inequality, that we have

Emax
i≤n

∣∣σ̃m
ti
− σm

ti

∣∣p ≤ (κCp)
p

∫ ti

0

E
∣∣σ̃m−1

t − σm−1
t

∣∣pdt,

for some constant Cp depending on p.

In a second step, we study the second term in inequality (7.2.1). Using

equality (5.2.5), we deduce that

sup
t∈[ti,ti+1[

∣∣σm
ti
− σm

t

∣∣ ≤ C
T

n
+ κC sup

t∈[ti,ti+1[

|Y κ,m−1
ti − Y κ,m−1

t |,

max
i

sup
t∈[ti,ti+1[

∣∣σm
ti
− σm

t

∣∣p ≤ 2p−1(CT )p

np

+2p−1κpC
∑

i

sup
t∈[ti,ti+1[

|Y κ,m−1
ti − Y κ,m−1

t |p.

Once again with Burkholder–Davis–Gundy inequality, it follows that

Emax
i

sup
t∈[ti,ti+1[

∣∣σm
ti
− σm

t

∣∣p ≤ 2p−1T p

np
+ 2p−1Cp

∑

i

(T/n)p/2.

Therefore, we can conclude that

E

∣∣∣∣∣ supu∈[0,t]

|σ̃m
u − σm

u |
∣∣∣∣∣

p

≤ 2p−1(κCp)
p

∫ t

0

E sup
u∈[0,s]

|σ̃m−1
u − σm−1

u |pds

+κpCp(T/n)
(p−1)/2.

Using Lemma 8.2.2, we deduce that

E

∣∣∣∣∣ supt∈[0,T ]

|σ̃m
t − σm

t |
∣∣∣∣∣

p

≤ 2p−1(κCp)
p

(
T

n

)(p−1)/2

.

This ends the proof. ✷

As an evident corollary of the above Lemma 7.2.1, we state the follow-

ing.
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Corollary 7.2.2 We have the following inequalities,
∥∥∥∥∥ sup
t∈[0,T ]

∣∣σm ·Wt − σ̃m ·Wt

∣∣
∥∥∥∥∥
p

≤ Cκ,p

n(p−1)/(2p)
,

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∥∥σm

∥∥2

t
−

∥∥σ̃m
∥∥2

t

∣∣∣
∥∥∥∥∥
p

≤ Cκ,p

n(p−1)/(2p)
.

We then prove the accuracy of the approximation of Sκ,m by S(σ̃m) in

the next lemma.

Lemma 7.2.3 For every κ, there is a constant Cκ, which does not depend

on m, such that
∥∥∥∥∥ sup
t∈[0,T ]

∣∣Sκ,m
t − S(σ̃m)t

∣∣
∥∥∥∥∥
2

≤ Cκ,p

n(p−1)/(2p)
.

Proof. We follow the lines of the proof of Proposition 5.2.5. We have to

observe that S(σ̃m) solves the s.d.e.

dS(σ̃m)t = S(σ̃m)tσ̃
m
t dWt + S(σ̃m)trtdt.

It follows, by the Burkholder–Davis–Gundy inequality, that

E sup
u∈[0,t]

∣∣S(σ̃m)u − Sκ,m
u

∣∣2 ≤ CE

∫ t

0

(S(σ̃m)sσ̃
m
s − Sκ,m

s σm
s )

2 ds

+2E

∫ t

0

((
S(σ̃m)s − Sκ,m

s

)
rs
)2
ds.

Focus on the first term of the above inequality. We have

E

∫ t

0

(S(σ̃m)sσ̃
m
s − Sκ,m

s σm
s )

2 ds ≤ 2E

∫ t

0

(
Sκ,m
s

(
σ̃m
s − σm

s

))2
ds

+2E

∫ t

0

(
σ̃m
s

(
S(σ̃m

)
s
− Sκ,m

s )
)2
ds.

Recall the inequalities

|σ(t, x)|+ |rt| ≤ mκ, if|x| ≤ κ,

|σ(t, xeX ∧ κ)− σ(t, xeY ∧ κ)| ≤ κC|X − Y |.
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We deduce that

E sup
u∈[0,t]

∣∣S(σ̃m)u − Sκ,m
u

∣∣2 ≤ κC

∥∥∥∥∥ sup
t∈[0,T ]

∣∣σm−1 ·Wt − σ̃m−1 ·Wt

∣∣
∥∥∥∥∥

2

p

+κC

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∥∥σm−1

∥∥2

t
−

∥∥σ̃m−1
∥∥2

t

∣∣∣
∥∥∥∥∥

2

p

+6mκ

∫ t

0

E sup
u≤s

(S(σ̃m)u − Sκ,m
u )2 ds.

We conclude, using Gronwall’s Lemma and Lemma 7.2.2. ✷

It remains to sum the errors in analogy with the proof of Theorem 6.3.1.

Namely we have

|EG(S)− EG(Sn(σ̃m))| ≤ |EG(S)− EG(Sκ)| (7.2.2)

+|EG(Sκ)− EG(Sκ,m)| (7.2.3)

+|EG(S(σm))− EG(S(σ̃m))| (7.2.4)

+|EG(S(σ̃m))− EG(Sn(σ̃m))|. (7.2.5)

We recall that G is Lipschitz continuous by (5.1.1). That is we can evaluate

the above terms summing the square root of the mean squared error studied

before. Indeed (7.2.2) is bounded with the above Lemma 5.2.2. Lemma 5.2.5

is used for the bound of (7.2.3). The bound for (7.2.4) is studied in Lemma

7.2.3. Finally, (7.2.5) is straightforwardly bounded by Cκ,p(T/
√
n)(p−1)/p.

The proof of Theorem 7.1.1 is achieved.
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Chapter 8

Integrability of S and various

lemmata

8.1 Integrability of S

We shall show that under Assumption 5.1.2, the moments of S and Sκ exist.

We recall that we write

dYt = σ(t, St)dWt + rtdt−
1

2
σ2(t, St)dt.

First note that if the function r is bounded and σ2(t, x) ≤ L(1+ln(ln(x))1x>1),

we deduce that for all t ∈ [0, T ]

E sup
u≤t

Y 2
u ≤ C + C

∫ t

0

E sup
u≤r

Y 2
u dr <∞.

By Gronwall’s Lemma, we deduce that E supu≤T Y
2
u <∞. Hence the process

∫ ·

0
σ(t, St)dWt is a true martingale.

Lemma 8.1.1 Assume that Assumption 5.1.2 holds, then there exists a con-

stant C independent of κ such that supu≤T ES
κ
u ≤ C.

Proof. In view of the definition of Sκ in Paragraph 5.2.1, we have

Sκ
u/F (u) ≤ Mu where M0 = 1 and M is the local martingale solution to
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the s.d.e.

dMu =Muσ(u, S
κ
u ∧ κ)dWu.

As r is bounded, we get Sκ
u ≤ CxMu. Using a sequence of stopping times

(τn) such that M τn is a true martingale, we deduce that ESκ
u∧τn ≤ Cx and

by Fatou’s lemma we get that ESκ
u ≤ Cx. ✷

Lemma 8.1.2 Assume that Assumption 5.1.2 holds, then for p > 1 there

exists a constant Cp independent of κ such that supu≤T E(S
κ
u)

p ≤ Cp.

Proof. We have, with q to be defined later,

(Sκ
u)

p ≤ CxNue
1
2
(q−p)

∫ u
0 σ2(u,Sκ

u∧κ)du,

where

Nu := exp

(
p

∫ u

0

σ(r, Sκ
r ∧ κ)dWr −

1

2
q

∫ u

0

σ2(r, Sκ
r ∧ κ)dr

)
.

Using the inequality 0 ≤ ab ≤ (a2 + b2), we get that

(Sκ
u)

p ≤ CxÑu + Cxe(q−p)
∫ u
0 σ2(r,Sκ

r ∧κ)dr,

where Ñ = N2 is a local martingale when choosing q = 2p2. Moreover as

the function x 7→ e(q−p)ux is convex, the Jensen inequality and the hypothesis

yields

e(q−p)
∫ u
0 σ2(u,Sκ

u∧κ)du ≤ 1

u

∫ u

0

e(q−p)sσ2(s,Sκ
s ∧κ)ds

≤ Cp +
1

u

∫ u

0

(log(Sκ
s ∨ 1))k(q−p)T ds,

where k is a constant. Using the property

(log(x ∨ 1))k(q−p)T ≤ Cpx, ∀x ≥ 0,

and Lemma 8.1.1, we deduce that E(Sκ
u)

p ≤ Cp. ✷

Corollary 8.1.3 Assume that Assumption 5.1.2 holds, then there exists a

constant Cp independent of κ such that E supu≤T (S
κ
u)

p ≤ Cp.
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Proof. We may assume without loss of generality that p ∈ 2N. We recall

that

Sκ
t = x+

∫ t

0

σ(u, Sκ
u ∧ κ)Sκ

udWu +

∫ t

0

ruS
κ
udu.

Since 0 ≤ σ2(t, x) ≤ C(1 + x) we deduce easily that E supu≤T (S
κ
u)

p ≤ Cp by

using the Burkholder–Davis–Gundy inequalities and Lemma 8.1.2. ✷

Since Sκ converges pointwise on [0, T ] to S, we deduce the following

with Fatou’s Lemma.

Lemma 8.1.4 Assume that Assumption 5.1.2 holds, then there exist con-

stants Cp such that E supu≤T (Su)
p ≤ Cp.

8.2 Various Lemmata

This section gathers a few technical lemmata.

Lemma 8.2.1 Let (gm)m be a sequence of positive functions defined on an

interval [0, T ], T > 0 such that for some C > 0, we have:

gm+1(t) ≤ C

∫ t

0

gm(u)du, 0 ≤ g0 ≤ C.

Then

sup
t∈[0,T ]

gm(t) ≤ Cm t
m

m!
sup

t∈[0,T ]

g0(t).

Proof. The proof stands on the following induction. Set

Cg := sup
t∈[0,T ]

g0(t) ≤ C.

Suppose that

sup
t∈[0,T ]

gn−1(t) ≤ Cn−1 tn−1

(n− 1)!
Cg,

we have

gn(t) ≤ C

∫ t

0

Cn−1 sn−1

(n− 1)!
Cgds.

And the result is stated. ✷
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Lemma 8.2.2 Let (gm)m be a sequence of positive functions defined on an

interval [0, T ], T > 0 such that g1 is bounded and, for some C, C > 0, we

have:

gm+1(t) ≤ C

∫ t

0

gm(u)du+ C.

Then

sup
m

sup
t∈[0,T ]

gm(t) ≤ max( sup
t∈[0,T ]

g1(t);C)eC(1+T ).

Proof. Set K = max(supt∈[0,T ] g
1(t);C). The result is proved by induction.

That is, g1(t) ≤ K exp(Ct). Suppose that gn(t) ≤ K exp(Ct), we have

gm+1(t) ≤ C

∫ t

0

K exp(Cu)du+K = K exp(Ct).

Which yields the result.✷

Lemma 8.2.3 Let a1, · · · ak be real numbers. We have the following inequal-

ities (
k∑

l=1

al

)2

≤
k∑

l=1

2la2l ,

(
k∑

l=1

al

)4

≤
k∑

l=1

8la4l .

Proof. For any real numbers a, b, the inequalities

2ab ≤ a2 + b2,

leads to

(a+ b)2 ≤ 2a2 + 2b2,

which leads to

(a+ b)4 ≤ (2a2 + 2b2)2 ≤ 8a4 + 8b4.

We show the results by evident inductions. ✷
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Les aspects mathématiques des modèles de marchés financiers avec coûts de transaction 
 
 
 Les marchés financiers occupent une place prépondérante dans l’économie. La future évolution des 

législations dans le domaine de la finance mondiale va rendre inévitable l’introduction de frictions pour éviter les 

mouvements spéculatifs des capitaux, toujours menaçants d’une crise. C’est pourquoi nous nous intéressons 

principalement, ici, aux modèles de marchés financiers avec coûts de transaction. 

 Cette thèse se compose de trois chapitres. Le premier établit un critère d’absence d’opportunité d’arbitrage 

donnant l’existence de systèmes de prix consistants, i.e. martingales évoluant dans le cône dual positif exprimé en 

unités physiques, pour une famille de modèles de marchés financiers en temps continu avec petits coûts de transaction. 

 Dans le deuxième chapitre, nous montrons la convergence des ensembles de sur-réplication d’une option 

européenne dans le cadre de la convergence topologique des ensembles. Dans des modèles multidimensionnels avec 

coûts de transaction décroissants a l’ordre n−1/2, nous donnons une description de l’ensemble limite pour des modèles 

particuliers et en déduisons des inclusions pour les modèles généraux (modèles de KABANOV). 

 Le troisième chapitre est dédié a l’approximation du prix d’options européennes pour des modèles avec 

diffusion très générale (sans coûts de transaction). Nous étudions les propriétés des pay-offs pour pouvoir utiliser au 

mieux l’approximation du processus de prix du sous-jacent par un processus intuitif défini par récurrence grâce aux 

itérations de PICARD. 

 
 

Mathematical Aspects of Financial Market Models with Transaction Costs  
 
 
 Financial markets play a prevailing role in the economy. The future legislation development in the field of global 

finance will unavoidably lead to friction to prevent speculative capital movements, always threatening with crisis. That 

is why we are interested in the financial market models with transaction costs. 

 This thesis consists of three chapters. The first one establishes a criterion of absence of arbitrage opportunities 

giving the existence of consistent price systems, i.e. martingale evolving in the dual cone expressed in physical units. 

The criterion holds for a family of financial market models in continuous time with small transaction costs. 

 In the second chapter, we show the convergence of super-replication sets for a European option in the context 

of the topological convergence of sets. In multivariate models with transaction costs decreasing at rate n-1/2, we give a 

description of the limit set for specific models. We deduce inclusions for general models (KABANOV's models). 

 The third chapter is dedicated to the approximation of the European option price for models with very general 

diffusion (without transaction costs). We study properties of the pay-off to make best use of the approximation of the 

underlying asset price, based on PICARD iterations. 
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