M. Abramowitz and I. A. , Stegun, éditeurs. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, de Applied Mathematics Series. National Bureau of Standards, tenth édition, 1964.

I. Agnolin and J. , Roux : Internal states of model isotropic packings. III. Elastic properties, Physical Review E, vol.76, issue.6

B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics, vol.31, issue.2, pp.459-466
DOI : 10.1063/1.1730376

K. J. Arrow and L. , Hurwicz et H. Uzawa, éditeurs. Studies in linear and non-linear programming, de Stanford Mathematical Studies in the Social Sciences, 1958.

I. Babu?ka, The finite element method with Lagrangian multipliers, Numerische Mathematik, vol.12, issue.3, pp.179-192, 1973.
DOI : 10.1007/BF01436561

P. W. Barber and S. C. , Hill : Light Scattering by Particles : Computational Methods de Advanced series in applied physics, World Scientific, vol.2, 1990.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200
DOI : 10.1006/jcph.1994.1159

F. Bertrand, P. A. Tanguy, and F. Thibault, A three-dimensional fictitious domain method for incompressible fluid flow problems, International Journal for Numerical Methods in Fluids, vol.7, issue.6, pp.719-736, 1997.
DOI : 10.1002/(SICI)1097-0363(19970930)25:6<719::AID-FLD585>3.0.CO;2-K

F. Collino, P. Joly, and F. Millot, Fictitious Domain Method for Unsteady Problems:, Journal of Computational Physics, vol.138, issue.2, pp.907-938, 1997.
DOI : 10.1006/jcph.1997.5849

URL : https://hal.archives-ouvertes.fr/inria-00073735

F. Collino and C. Tsogka, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, GEOPHYSICS, vol.66, issue.1, pp.294-307
DOI : 10.1190/1.1444908

R. Courant, K. Friedrichs, and H. Lewy, On the partial dierence equations of mathematical physics. AEC research and development report NYO?7689, AEC Computing and Applied Mathematics Center, vol.100, 1928.

M. J. Crocker, Handbook of acoustics, 1998.

M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Revue fran??aise d'automatique informatique recherche op??rationnelle. Math??matique, vol.7, issue.R3, pp.33-75, 1973.
DOI : 10.1051/m2an/197307R300331

P. A. Cundall and O. D. , A discrete numerical model for granular assemblies, G??otechnique, vol.29, issue.1, pp.47-65
DOI : 10.1680/geot.1979.29.1.47

T. A. Davis and I. S. Du, An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.1, pp.140-158, 1997.
DOI : 10.1137/S0895479894246905

B. Delaunay, Sur la sphère vide Bulletin de l' Académie des Sciences de l'URSS -Classe des sciences mathématiques et naturelles, pp.793-800, 1934.

C. Depollier, Éléments d'acoustique. Cours de l, 2008.

M. Duranteau, Dynamique granulaire à l'état critique, Thèse de doctorat, 2013.

H. C. Elman and G. H. Golub, Inexact and Preconditioned Uzawa Algorithms for Saddle Point Problems, SIAM Journal on Numerical Analysis, vol.31, issue.6, pp.1645-1661, 1994.
DOI : 10.1137/0731085

L. Euler, Introduction à l'analyse infinitésimale, Barrois, vol.1

E. G. Flekkøy and H. J. Herrmann, Lattice boltzmann models for complex fluids. Physical A : Statistical Mechanics and its Applications, pp.1-11, 1993.

A. Fortin and A. Garon, Les éléments finis : de la théorie à la pratique. ØØÔÔ »»ÛÛÛºÑÑØØØÔÔкÔÓÐÝÑØк »ÅÌÀÀ¾¼»»»ºÔÔÔ, 1997.

S. Gautier and D. , Scattering from a fractal surface: acoustical experiments and comparison with near-nadir models, Icarus, vol.167, issue.2, pp.453-463
DOI : 10.1016/j.icarus.2003.10.004

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.1309-1331
DOI : 10.1002/nme.2579

V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan Journal of Industrial and Applied Mathematics, vol.33, issue.3, pp.487-514, 1995.
DOI : 10.1007/BF03167240

R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrande multiplier method Comptes rendus de l' Académie des Sciences -série I -Mathématiques, pp.693-698, 1998.

R. Glowinski and S. Lapin, Solution of a Wave Equation by a Mixed Finite Element - Fictitious Domain Method, Computational Methods in Applied Mathematics, vol.4, issue.4, pp.431-444
DOI : 10.2478/cmam-2004-0024

R. Glowinski, T. Pan, and J. Periaux, A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, vol.111, issue.3-4, pp.3-4283, 1994.
DOI : 10.1016/0045-7825(94)90135-X

R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph, A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.
DOI : 10.1006/jcph.2000.6542

R. Glowinski, T. W. Pan, and J. Periaux, A Lagrange multiplier/fictitious domain method for the Dirichlet problem ??? Generalization to some flow problems, Japan Journal of Industrial and Applied Mathematics, vol.92, issue.1, pp.87-108, 1995.
DOI : 10.1007/BF03167383

R. Glowinski, T. W. Pan, and J. Periaux, Fictitious domain methods for incompressible viscous flow around moving rigid bodies, éditeur : The Mathematics of Finite Elements and Applications, MAFELAP Conference, 1996.

R. Glowinski, T. W. Pan, and J. Périaux, Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Computer Methods in Applied Mechanics and Engineering, vol.151, issue.1-2, pp.181-194, 1998.
DOI : 10.1016/S0045-7825(97)00116-3

R. Glowinski, T. W. Pan, R. O. Wells-jr, X. Et, and . Zhou, Wavelet and Finite Element Solutions for the Neumann Problem Using Fictitious Domains, Journal of Computational Physics, vol.126, issue.1, pp.40-51
DOI : 10.1006/jcph.1996.0118

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the StrmerVerlet method, Acta Numerica, vol.12, pp.399-450, 2003.
DOI : 10.1017/S0962492902000144

E. Heikkola, Y. A. Kuznetsov, P. Neittaanmäki, and J. Toivanen, Fictitious Domain Methods for the Numerical Solution of Two-Dimensional Scattering Problems, Journal of Computational Physics, vol.145, issue.1, pp.89-109
DOI : 10.1006/jcph.1998.6014

H. J. Herrmann and S. Luding, Modeling granular media on the computer, Continuum Mechanics and Thermodynamics, vol.10, issue.4, pp.189-231, 1998.
DOI : 10.1007/s001610050089

H. Hertz, Über die berührung fester elastischer körper Journal für die reine une angewandte Mathematik, pp.156-171, 1881.

M. R. Hestenes, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, pp.409-436
DOI : 10.6028/jres.049.044

R. Hickling and N. M. Wang, Scattering of Sound by a Rigid Movable Sphere, The Journal of the Acoustical Society of America, vol.39, issue.2, pp.276-279, 1909887.
DOI : 10.1121/1.1909887

H. H. Hu, Direct simulation of flows of solid-liquid mixtures, International Journal of Multiphase Flow, vol.22, issue.2, pp.335-352, 1996.
DOI : 10.1016/0301-9322(95)00068-2

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, issue.3, pp.90-95
DOI : 10.1109/MCSE.2007.55

D. Imbert, Imagerie sismique 3D de structures complexes, 2010.

D. Imbert and S. Mcnamara, Fictitious domain method to model a movable rigid body in a sound wave, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.3-4267
DOI : 10.1515/jnum-2012-0014

URL : https://hal.archives-ouvertes.fr/hal-00825762

M. Israeli and S. A. , Approximation of radiation boundary conditions, Journal of Computational Physics, vol.41, issue.1, pp.115-135, 1981.
DOI : 10.1016/0021-9991(81)90082-6

P. Joly and L. Rhaouti, Fictitious domains, H(div) finite elements and Neumann condition : the inf-sup condition. Comptes rendus de l' Académie des Sciences -série I - Mathématiques, pp.1225-1230, 1999.

S. Ker, Y. L. Gonidec, and D. Gibert, Multiscale seismic attributes: source-corrected wavelet response and application to high-resolution seismic data, Geophysical Journal International, vol.190, issue.3, pp.1746-1790
DOI : 10.1111/j.1365-246X.2012.05601.x

URL : https://hal.archives-ouvertes.fr/insu-00912447

K. Khadra, P. Angot, S. Parneix, and J. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stockes equations, 8<651 : :AID-FLD61>3.0.CO, pp.651-684, 2000.

D. Koslo, D. Kessler-desaubies, A. Tarantola, and J. Zinn-justin, Seismic numerical modeling éditeurs : Oceanographic and Geophysical Tomography, Houches Summer Session, pp.249-312, 1990.

W. Kutta, Beitrag zur näherungsweisen Integration totaler Dierentialgleichungen, Zeitschrift für Mathematik und Physik, pp.435-453, 1901.

P. D. Lax, A. N. Bers, S. Bochner, and F. John, Milgram : Parabolic equations, éditeurs : Contributions to the Theory of Partial Dierential Equations, pp.167-190, 1954.

Y. , L. Gonidec, and D. Gibert, Multiscale analysis of waves reflected by granular media : Acoustic experiments on glass beads and eective medium theories, Journal of Geophysical Research -Solid Earth, vol.112, issue.B5, 2006004518.

L. Gonidec, D. Gibert, and J. Proust, Multiscale analysis of waves reflected by complex interfaces: Basic principles and experiments, Journal of Geophysical Research: Solid Earth, vol.47, issue.B9, pp.4-5, 2002.
DOI : 10.1029/2001JB000558

URL : https://hal.archives-ouvertes.fr/insu-01225182

R. J. Leveque and Z. Li, The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources, SIAM Journal on Numerical Analysis, vol.31, issue.4, pp.1019-1044, 1994.
DOI : 10.1137/0731054

J. Li, T. Arbogast, and Y. Huang, Mixed methods using standard conforming finite elements, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8, pp.680-692
DOI : 10.1016/j.cma.2008.10.002

B. Lombard, Modélisation numérique de la propagation des ondes acoustiques et élastiques en présence d'interface, Thèse de doctorat, 2002.

B. Lombard and J. Piraux, Numerical treatment of two-dimensional interfaces for acoustic and elastic waves, Journal of Computational Physics, vol.195, issue.1, pp.90-116, 2004.
DOI : 10.1016/j.jcp.2003.09.024

URL : https://hal.archives-ouvertes.fr/hal-00004813

B. Lombard, J. Piraux, C. Gélis, and J. Virieux, Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves, Geophysical Journal International, vol.172, issue.1, pp.252-261, 2008.
DOI : 10.1111/j.1365-246X.2007.03620.x

URL : https://hal.archives-ouvertes.fr/hal-00157508

G. I. Marchuk, Splitting and alternating direction methods de Handbook of Numerical Analysis, pp.10-1016, 1990.

B. Maury, A fat boundary method for the Poisson problem in a domain with holes, Journal of Scientific Computing, vol.16, issue.3, pp.319-339, 2001.
DOI : 10.1023/A:1012821728631

S. Mcnamara, Méthode Dynamique Moléculaire Radjaï et F. Dubois, éditeurs : Modélisation numérique discrète de matériaux granulaires, Traité MIM -Mécanique et ingénierie des matériaux, pp.25-48, 2010.

H. M. Mourad and J. , A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces, International Journal for Numerical Methods in Engineering, vol.50, issue.4, pp.772-793
DOI : 10.1002/nme.1788

O. Mouraille and S. Luding, Sound wave propagation in weakly polydisperse granular materials, Ultrasonics, vol.48, issue.6-7, pp.6-7498
DOI : 10.1016/j.ultras.2008.03.009

O. Mouraille, W. A. Mulder, and S. Luding, Sound wave acceleration in granular materials, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.07, pp.10-1088, 2006.
DOI : 10.1088/1742-5468/2006/07/P07023

N. Nerone, M. A. Aguirre, A. Calvo, D. Bideau, and I. Ippolito, Instabilities in slowly driven granular packing, Physical Review E, vol.67, issue.1, p.11302, 2003.
DOI : 10.1103/PhysRevE.67.011302

T. E. Oliphant, Python for Scientific Computing, Computing in Science & Engineering, vol.9, issue.3, pp.10-20
DOI : 10.1109/MCSE.2007.58

J. Parvizian and A. Düster, Finite cell method, Computational Mechanics, vol.219, issue.4???6, pp.121-133
DOI : 10.1007/s00466-007-0173-y

N. A. Patankar, P. Singh, D. D. Joseph, R. Glowinski, and T. , A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.26, issue.9, pp.1509-1524
DOI : 10.1016/S0301-9322(99)00100-7

A. N. Pati, K. Ladipo, D. Paniagua, and R. Glowinski, Three dimensional fluid???structure interaction under pulsatile flow by using distributed Lagrange multiplier method, Mathematical and Computer Modelling, vol.53, issue.1-2, pp.21-41
DOI : 10.1016/j.mcm.2010.07.009

A. Popa, A. Graur, S. G. Pentiuc, C. Turcu, V. Popa et al., An optimization of Gaussian UWB pulses, The 10th International Conference on Development and Application Systems, pp.156-160, 2010.

V. L. Popov, Contact Mechanics and Friction, ch. 5, p, pp.55-70, 2010.

C. Potel and M. Bruneau, Acoustique Générale -Équations diérentielles et intégrales, solutions en milieux fluide et solide, applications, 2006.

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, Lecture Notes in Mathematics, vol.9, pp.292-315, 1977.
DOI : 10.1007/BF01436186

L. Rhaouti, A. Chaigne, and P. Joly, Time-domain modeling and numerical simulation of a kettledrum, The Journal of the Acoustical Society of America, vol.105, issue.6, pp.3545-3562, 1999.
DOI : 10.1121/1.424679

C. Runge, Ueber die numerische Aufl???sung von Differentialgleichungen, Mathematische Annalen, vol.46, issue.2, pp.167-178
DOI : 10.1007/BF01446807

Y. Saad, Numerical Methods for Large Eigenvalue Problems, de Classics in Applied Mathematics. SIAM, deuxième édition, 2011.
DOI : 10.1137/1.9781611970739

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

T. Schwager, Coefficient of restitution and linear???dashpot model revisited, Granular Matter, vol.60, issue.534, pp.465-469, 2007.
DOI : 10.1007/s10035-007-0065-z

R. A. Serway, Physique 3 -Optique et physique moderne, 1992.

J. Sheng and A. E. , An examination of the spherical scatterer approximation in aqueous suspensions of sand, The Journal of the Acoustical Society of America, vol.83, issue.2, pp.598-610
DOI : 10.1121/1.396153

L. Staron, J. Vilotte, and F. Radjai, Preavalanche Instabilities in a Granular Pile, Physical Review Letters, vol.89, issue.20
DOI : 10.1103/PhysRevLett.89.204302

URL : https://hal.archives-ouvertes.fr/hal-00120707

G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis, vol.5, issue.3, pp.506-517
DOI : 10.1137/0705041

M. Strasberg, Gas Bubbles as Sources of Sound in Liquids, The Journal of the Acoustical Society of America, vol.28, issue.1, pp.20-26, 1908212.
DOI : 10.1121/1.1908212

W. C. Swope, H. C. Andersen, H. Berens, and K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, vol.76, issue.1, pp.637-649
DOI : 10.1063/1.442716

S. Temkin and C. Leung, On the velocity of a rigid sphere in a sound wave, Journal of Sound and Vibration, vol.49, issue.1, pp.75-92, 1976.
DOI : 10.1016/0022-460X(76)90758-6

J. Thirot, Y. L. Gonidec, B. Kergosien, B. B. Linde, J. Paczkowski et al., Acoustic emissions in granular structures under gravitational destabilization éditeurs : Acoustics of ordered and disordered granular strctures, 1433 de AIP Conference Proceedings Gdá nsk, Poland, 2012. International Congress on Ultrasonics, pp.143-146, 2011.

V. Tournat, V. Y. Zaitsev, V. E. Gusev, V. Nazarov, and P. Béquin, Probing Weak Forces in Granular Media through Nonlinear Dynamic Dilatancy: Clapping Contacts and Polarization Anisotropy, Physical Review Letters, vol.92, issue.8, p.85502, 2004.
DOI : 10.1103/PhysRevLett.92.085502

URL : https://hal.archives-ouvertes.fr/hal-00171056

C. Tsogka, Modélisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des milieux fissurés, Thèse de doctorat, 1999.

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.159, issue.1, pp.98-103
DOI : 10.1103/PhysRev.159.98

J. Virieux, wave propagation in heterogeneous media: Velocity???stress finite???difference method, GEOPHYSICS, vol.51, issue.4, pp.889-901
DOI : 10.1190/1.1442147

A. Wachs, G. Vinay, G. Ferrer, J. Kouakou, C. Dan et al., PeliGRIFF : a parallel DEM-DLM/FD method for DNS of particulate flows with collisions, International Journal of Aerospace and Mechanical Engineering, vol.4, issue.4, pp.185-191, 2010.

O. R. Walton and R. L. , Viscosity, granular???temperature, and stress calculations for shearing assemblies of inelastic, frictional disks, Journal of Rheology, vol.30, issue.5, pp.949-981
DOI : 10.1122/1.549893

P. C. Waterman and R. Truell, Multiple Scattering of Waves, Journal of Mathematical Physics, vol.2, issue.4, pp.512-537
DOI : 10.1063/1.1703737

F. Jr and . Williamson, Richard Courant and the finite element method : a further look, Historia Mathematica, vol.780, issue.4, pp.369-378, 1980.

V. Y. Zaitesev, P. Richard, R. Delannay, V. Tournat, and V. E. Gusev, Pre-avalanche structural rearrangements in the bulk of granular medium: Experimental evidence, EPL (Europhysics Letters), vol.83, issue.6, pp.295-5075
DOI : 10.1209/0295-5075/83/64003

C. Zhang and R. J. , The immersed interface method for acoustic wave equations with discontinuous coefficients, Wave Motion, vol.25, issue.3, pp.237-26300046, 1997.
DOI : 10.1016/S0165-2125(97)00046-2