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RESUME EN FRANÇAIS 

 

La stimulation cérébrale profonde (SCP) est désormais une option thérapeutique possible 
pour les patients atteints de troubles neurologiques comme la maladie de Parkinson, des 
tremblements, la dystonie, l'épilepsie .... Néanmoins, si la SCP semble être efficace pour corriger 
des troubles du mouvement (la maladie de Parkinson, la dystonie …)[1], les résultats obtenus 
dans le cadre de l'épilepsie sont moins évidents [2]. Une grande variabilité interindividuelle des 
effets des neurostimulations est souvent rapportée. Alors qu’un protocole de stimulation 
intracérébral peut diminuer la fréquence de crises d’épilepsie chez un patient donné, une 
procédure similaire peut  au contraire être aggravante chez un autre patient. Cela est 
vraisemblablement dû, entre autre,  au choix des paramètres de stimulation qui se base, en 
partie, sur certains réglages empiriques identifiés chez les patients parkinsoniens. Cette 
approche empirique est la conséquence d’une compréhension incomplète des mécanismes 
neuronaux qui sous-tendent les effets modulateurs de l’activité neuronale induits par la 
stimulation [3]. 

CONTEXTE BIOMEDICAL ET ENONCE DU PROBLEME 
L’épilepsie est un trouble neurologique qui touche 1% de la population mondiale. Ce syndrome 

affecte plus particulièrement les enfants, les adolescents et les personnes âgées et la  
sémiologie des crises diffère d’un patient à un autre. Les crises sont la seule manifestation 
clinique de la maladie. Elles sont l’expression d’un dysfonctionnement, aigu et transitoire 
(quelques secondes à quelques minutes) de l’activité électrophysiologique du cerveau, lié à la 
fois à une hyperexcitabilité et une hypersynchronisation des cellules neuronales.  

Sur le plan thérapeutique, les traitements antiépileptiques actuels sont symptomatiques. Ils ne 
guérissent pas l’épilepsie mais contribuent à la diminution de la fréquence des crises. 
Cependant, malgré l’existence d’une multitude de médicaments antiépileptiques sur le marché, 
un tiers des patients épileptiques ne répondent pas aux traitements médicamenteux et sont 
ainsi considérés pharmaco-résistants. Presque deux tiers de ces patients présentent une forme 
focale d’épilepsie [4]. L’intervention chirurgicale reste possible pour certains d’entre eux. 
Pourtant, la résection de la zone épileptogène n’est toujours pas possible pour des 
considérations anatomiques et fonctionnelles. Dans ce contexte, la SCP représente  une 
alternative thérapeutique. Or, les protocoles de stimulations efficaces  ne sont actuellement pas 
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identifiés. Les efforts cliniques déployés pour les étudier suivent souvent des approches 
empiriques. 

Dans ce contexte, les objectifs de cette thèse sont  les suivants : 

1) Etudier, sur le plan théorique, les effets de la stimulation électrique sur la 
dynamique neuronale épileptique à  partir de modèles biomathématiques  

2) Progresser dans la compréhension des mécanismes neuronaux qui sous-tendent les 
effets modulateurs observés. 

3) Etablir des règles pouvant guider  le choix des paramètres de stimulation. 
4) Procéder à une validation expérimentale, si possible, des résultats théoriques 

obtenus.   

APPROCHE PROPOSEE 
Chez les patients épileptiques, les signaux électroencéphalographiques recueillis sur le cuir 

chevelu ou de manière intracérébrale, même en l’absence de crises, révèlent une dynamique 
électrique anormale caractérisée par la récurrence d’activités spécifiques. Ces activités, 
regroupées sous le terme d’activités intercritiques, désigne la dynamique épileptique en dehors 
des crises. Cette thèse porte notamment sur l’analyse des effets modulateurs de l’activité 
intercritique par le courant de stimulation.  

La méthodologie générale proposée, pour atteindre les objectifs mentionnés, repose sur 
l’utilisation conjointe de la modélisation biomathématique, l’analyse des signaux réels 
(cliniques/expérimentaux), l’analyse des systèmes dynamiques non linéaire et l’expérimentation 
animale. La Figure 1 résume le travail entrepris pendant la thèse et son organisation dans le 
manuscrit. Deux configurations de SCP sont étudiées dans ce manuscrit : la stimulation indirecte 
en courant alternatif (Partie 1) et la stimulation directe en courant continu (Partie 2). 

Pour chaque configuration, un modèle biomathématique  des structures cérébrales impliquées 
dans les dynamiques épileptiques étudiées est proposé. Mathématiquement parlant, il s’agit 
d’un système dynamique non linéaire décrit par un ensemble d’équations différentielles 
ordinaires du premier ordre comportant un terme stochastique (bruit d’entrée). Ensuite, chaque 
modèle est optimisé pour reproduire plus fidèlement possible les dynamiques temporelles 
observées dans les signaux électrophysiologiques réels. Pour cette identification de paramètres, 
des algorithmes de traitement et de caractérisation des signaux ont été développés. 
Finalement, l’analyse du  modèle sous stimulation permet l’identification les mécanismes 
potentiellement impliqués et de mieux comprendre les effets induits, notamment par rapport  
aux paramètres utilisés (fréquence, intensité, polarité, durée).  
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Figure 1. Organisation du manuscrit et travail accompli. La thèse s’organise en deux parties, chacune traitant d’un 
protocole de stimulation. La Partie 1 concerne la stimulation indirecte en courant alternatif. La Partie 2 concerne la 
stimulation directe en courant continu. Les deux études utilisent une même approche méthodologique (le 
traitement du signal et la modélisation computationnelle) et sont aussi fortement liées aux données réelles : soit 
chez l’homme (Partie 1) soit chez la souris épileptique (Partie 2). Les résultats suggèrent une forte dépendance des 
effets et des mécanismes de la stimulation sur les paramètres des protocoles utilisés : la fréquence dans le premier 
cas (Partie 1) et la polarité dans le deuxième (Partie 2). 

PARTIE 1 : CAS DE LA STIMULATION INDIRECTE EN COURANT ALTERNATIF (CA) 
Dans la première partie de la thèse, un cas particulier de stimulation indirecte en courant 

alternatif a été étudié. Il s’agit de la stimulation du thalamus dans le cadre d’une épilepsie 
corticale focale. Cette partie a pour objectif d’étudier les effets de la stimulation électrique d’un 
noyau gris central l’activité pathologique d’une région néocorticale. La première étape a 
consisté en la conception d’un modèle mésoscopique de la boucle thalamocorticale. Le modèle 
proposé est une version étendue de certains modèles préexistants. Il adopte une architecture 
tri-modulaire semblable à celle généralement utilisée dans les modèles déjà publiés. Cette 
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architecture est décrite dans la figure 2. Les trois modules (cortical, thalamique, et réticulaire) 
sont représentés dans le modèle. Chaque module est composé d’une ou plusieurs sous 
populations neuronales. Plusieurs aspects nouveaux ont été implémentés : (1) la prise en 
compte des effets de la stimulation au niveau sous-cortical, représentée par une entrée de 
contrôle en boucle ouverte, (2) la modélisation explicite de deux mécanismes cellulaires 
(dépression synaptique à court terme (DCT) et l'inhibition antérograde (FFI)) essentiels dans les 
dynamiques thalamcorticales et (3) une implémentation du compartiment cortical qui reproduit 
au mieux les dynamiques épileptiques. 

 
Figure 2. L’architecture tri-modulaire du modèle. Les modules cortical, thalamique, et réticulaire sont représentés 
dans le modèle. Chacun est composé d’une ou plusieurs sous populations neuronales interconnectées via des 
synapses excitatrices ou inhibitrices. 

Une base de données clinique provenant du bilan pré-chirurgical intracérébral effectué chez 
un patient présentant une épilepsie pharmacorésistante d’origine corticale focale a été utilisée 
pour optimiser les paramètres du modèle (distance entre la sortie du modèle et les signaux 
réels, correspondant à un potentiel de champ local ou local field potential ; LFP). Trois 
paramètres clés (parmi une quarantaine de paramètres) ont été optimisés, les autres étant 
réglés selon des considérations physiologiques. L’algorithme automatique d’optimisation a 
requis la mise au point d’une méthode de traitement et de caractérisation des signaux réels 
hors et pendant la stimulation thalamique. Cette méthode s’est basée sur une décomposition 
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atomique adaptative des signaux ( Matching Pursuit – MPTK [5]).  Il a permis l’évaluation de la 
distribution de l’énergie du signal dans les sous bandes classiques de l’EEG (δ, …, γ). Ce même 
algorithme a été ensuite utilisé pour calculer le vecteur de caractéristiques de la sortie du 
modèle pour chaque valeur parcourue du vecteur de paramètres. Les paramètres optimaux 
retenus sont ceux qui minimisent la distance euclidienne entre le vecteur de caractéristiques 
calculé sur signal simulé et celui calculé sur signal réel. 

Le comportement dynamique du modèle optimisé a été ensuite analysé en fonction de la 
fréquence du signal d’entrée (signal de stimulation) permettant de contrôler les dynamiques 
simulées. Les portraits de phase ont été explorés. L’intermittence des dynamiques simulées a 
été quantifiée en fonction de la fréquence de stimulation sur l’intervalle [0.5 ; 150 Hz]. 

L’algorithme de traitement du signal proposé a permis la classification (k-means ; distance 
de Mahalanobis) des effets de la SCP observés chez le patient. Les résultats de cette étape ont 
montré que les effets s’organisent en trois groupes : la stimulation à basses fréquences (SBF ; 2 
Hz), la stimulation à moyennes fréquences (SMF ; 50 Hz) et la stimulation à hautes fréquences 
(SHF ; 70, 100, 150 Hz). Par ailleurs, les effets de la SMF coïncident avec le groupe d’activités 
interictales observées hors stimulation (HS).  

Au niveau modélisation, les résultats de cette étude ont montré la dépendance en fréquence 
des effets de la stimulation indirecte en CA du thalamus sur la dynamique corticale. Des 
hypothèses sur plusieurs mécanismes ont pu être formulées. La Figure 3 montre les portraits de 
phases du modèle pour les quatre conditions de stimulation décrites précédemment (HS, SBF, 
SMF, et SHF). Ces portraits de phases révèlent les bifurcations, dépendantes de la fréquence du 
signal de stimulation, des  dynamiques modélisées. La stimulation à BF réduit largement 
l’ampleur des oscillations spontanées dans le modèle observées en condition HS. Par contre, la 
stimulation à MF aggrave ces oscillations. La stimulation à HF abolit ces oscillations et ramène le 
comportement dynamique du modèle sur un point fixe qui traduit une activité 
physiologiquement plus proche de la normale. 

Cette approche nous a permis de montrer que le comportement dynamique du système 
change de manière non linéaire en fonction de la fréquence de stimulation. L’intervalle 
]20;  60 𝐻𝑧] conduit à une amplification des oscillations dans le modèle alors que pour des 
fréquences inférieures à 20 Hz ou supérieures à 60 Hz, ces oscillations « pathologiques » sont 
largement amorties voire abolies.  
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Figure 3. Les portraits de phase du modèle pour les quatre conditions de stimulation : Hors Stimulation (HS), 
Stimulation à basses fréquences (BF ; ici 2 Hz), à moyennes fréquences (MF ; ici 50 Hz) et à hautes fréquences (HF 
ici 100 Hz). Le système oscille sur un cycle hors stimulation. Ce cycle est réduit dans le cas de la stimulation à BF, 
aggravé à MF et aboli à HF. Cela montre que l’entrée de stimulation induit, dans le modèle, le même type de 
bifurcations que celle observées dans les signaux EEG intracérébraux acquis chez le patient. 

L’étude du modèle computationnel a mis en évidence plusieurs mécanismes 
neurophysiologiques pouvant expliquer les effets dépendants de la fréquence de  stimulation. 
La stimulation thalamique à basse fréquence (BF) inhibe l’activité corticale épileptique en 
renforçant à la fois l’inhibition interneuronale antérograde corticale et en provoquant une 
dépression à court terme des synapses excitatrices thalamo-corticales. Ces mécanismes  
permettent de diminuer l’excitabilité du module cortical observée à BF.  

La stimulation à fréquence moyenne (MF) renforce, au contraire, les oscillations épileptiques 
dans la boucle thalamo-corticale en augmentant  la dépolarisation des neurones inhibiteurs 
lents du module réticulaire et surtout des neurones excitateurs thalamo-corticaux. Enfin, la 
stimulation thalamique à haute fréquence (HF) réduit l’activité épileptique corticale en 
supprimant la sortie thalamique (par stimulation des neurones du noyau réticulaires inhibant les 
cellules thalamo-corticales). 

PARTIE 2 : CAS DE LA STIMULATION DIRECTE EN COURANT CONTINU (CC) 

Dans la deuxième partie de ma thèse, nous avons étudié les effets de la stimulation directe de 
la zone épileptogène en courant continu (CC) dans le contexte de l’épilepsie mésiale du lobe 
temporal (EMLT), une forme fréquente d’épilepsie pharmaco-résistante. Dans cette partie, les 
effets polarisants de la stimulation sont étudiés en fonction de la polarité du courant, au niveau 
biomathématique et expérimental.  

Notre étude se base sur un modèle computationnel d’hippocampe préalablement  développé 
dans notre équipe [6], (structure cérébrale impliquée dans l’initiation des crises dans ce type 
d’épilepsie).  
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Nous avons apporté deux modifications au modèle préexistant. Une implémentation de 
l’interface électrode-électrolyte [7] au niveau des trois sous populations de neurones 
représentées dans le modèle (cellules pyramidales, interneurones médiant des courants 
gabaergiques à cinétique lente, et interneurones médiant des courants gabaergiques à 
cinétique rapide) a été proposée. Le signal de stimulation a été modulé par un coefficient de 
pondération propre à chaque population avant d’être ajouté au potentiel membranaire moyen. 
Cette implémentation modifie  la polarisation membranaire en fonction de l’entrée de 
stimulation. D’autre part, nous avons également implémenté une entrée afférente excitatrice 
au niveau des cellules principales qui permet d’obtenir des transitions  dynamiques, entre une 
activité de fond et une activité à type de décharge épileptique soutenue (quelques secondes). 
Les lois statistiques qui définissent les caractéristiques d’occurrence de ces décharges 
(intervalles entre décharges et durée des décharges) ont été identifiées à partir des données 
expérimentales acquises chez la souris épileptique (modèle kaïnate in vivo). Cela a nécessité la 
mise au point d’un algorithme de détection et de caractérisation de ces décharges. L’algorithme 
de Page-Hinkley [8], également utilisé dans notre équipe, a été retenu pour détecter les 
décharges épileptiques dans les signaux acquis expérimentalement. Il a permis de détecter 
automatiquement les instants de début et de fin de ces décharges paroxystiques et ainsi 
d’estimer leur durée. 

Les résultats computationnels ont suggéré (1) que les statistiques d’occurrence des décharges 
paroxystiques suivent une loi gamma (2) et que les effets de la simulation sont dépendants de la 
polarité du courant injecté. Dans le modèle, deux effets ont été observés. D’une part,  une 
réduction significative de la durée et de l’énergie des décharges paroxystiques pour un courant 
hyperpolarisant (effet anti-epileptique). D’autre part, une amplification de ces décharges 
paroxystiques paroxystiques pour un courant dépolarisant (effet pro-épileptique). 

Une procédure expérimentale a été entreprise dans le modèle animal pour i) identifier les lois 
statistiques d’occurrence des décharges épileptiques et ii) (in)valider les hypothèses générées à 
partir du modèle biomathématique quant aux effets de la stimulation en courant constant sur 
l’occurrence de ces décharges. Une stimulation de longue durée (50 s) à faible intensité (1 μA) a 
été appliquée dans l’hippocampe. L’activité hippocampique (LFP) suivant cette stimulation a été 
enregistrée et analysée. Les résultats ont montré qu’il existe une polarité de stimulation qui 
réduit significativement les décharges paroxystiques dans l’hippocampe épileptique, 
conformément à la prédiction du modèle. Cependant, la polarité inverse n’a pas induit de 
modifications significatives de l’occurrence de décharges, comme prédit. Une étude préliminaire 
in vitro a montré que les mécanismes qui sous-tendent les effets observés in vivo et dans le 
modèle peuvent être liés à des mécanismes de polarisation de la membrane des neurones. 
Cependant d’autres mécanismes plus complexes liés aux réseaux neuronaux stimulés semblent 
aussi être impliqués. 
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CONCLUSION 
Ce travail a permis la caractérisation des effets de deux protocoles différents de stimulation 

électrique,  indirecte et directe. 

Dans la première partie du manuscrit on montre que les effets et les mécanismes de 
stimulation indirecte en courant alternatif sont dépendants de la fréquence choisie. Ce travail 
représente la première étude qui caractérise les effets de ce type de stimulation sur une plage 
de fréquences aussi large (0.5 – 150 0Hz). A basse fréquence, les résultats computationnels 
suggèrent que les stimulations qui diminuent l’activité épileptiques impliquent à la fois la 
dépression synaptique à court terme et l’inhibition antérograde au niveau thalamocortical. Ces 
mécanismes jouent un rôle majeur dans la boucle thalamocorticale. Ils interviennent pour 
affiner la réponse corticale à l’entrée thalamique, comme cela a été montré dans le cadre de 
l’adaptation sensorielle [9]  et dans  les dynamiques thalamocorticales [10].   

Notre étude montre qu’il existe une plage de fréquence, de valeur intermédiaire (20-60Hz) qui 
ne diminue pas l’activité épileptique mais qui au contraire peut l’aggraver. Dans la littérature, 
les mécanismes neurophysiologiques de la stimulation à fréquence intermédiaire ne sont pas 
bien établis. Pourtant, ces effets sont souvent utilisés en clinique  pour déclencher des crises 
lors de l’exploration pré-chirurgicale afin de localiser la zone épileptogène. D’ailleurs, des 
stimulations répétitives aux alentours de 60 Hz sont aussi utilisées provoquer une 
épileptogénèse chez les rongeurs (modèle kindling) [11], ce qui corroborent les résultats décrits 
dans cette thèse 

Enfin les  stimulations à hautes fréquences sont également capables de diminuer l’activité 
épileptique. Nos résultats suggèrent que ce type de stimulation inhibe la structure ciblée en 
dépolarisant toutes les sous populations de neurones qui la constitue. Cela a été récemment 
montré par Kendall et al. 2011 [12] dans le cadre de la stimulation thalamique. Ces auteurs ont 
rapporté l’augmentation du glutamate (un neurotransmetteur excitateur) pendant la 
stimulation à HF. En même temps, l’activité électrophysiologique de cellules thalamiques a été 
inhibée. 

Dans la deuxième partie du manuscrit, nous nous sommes attachés à tester et à valider 
expérimentalement des hypothèses générées à partir d’un modèle computationnel sur les 
effets de stimulations en courant continu de faible intensité. En fait, à part un enregistrement 
accidentel des effets de la stimulation de longue durée en CC [13], ce type de protocole n’avait 
jamais été testé in vivo et cela malgré un certain nombre d’ études in vitro qui montrent son 
efficacité pour la suppression des décharges épileptiques [14-17]. En conclusion, les résultats de 
cette partie indiquent qu’il existe une polarité de stimulation capable de réduire l’intensité et la 
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durée totale des décharges épileptiques. Ces résultats  confirment la dépendance des effets de 
la stimulation par rapport à la polarité de stimulation. 
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Introduction 

Epilepsy is a neurological disorder characterized by the recurrence of seizures which are 
the expression of underlying pathological cerebral dynamics. Epilepsy touches about 1% of 
the world population. In France, about 7 in 1000 individuals suffer from epilepsy with more 
than 100 new cases declared each year. In fact, given the spectrum of the various forms of 
seizure semiology and evolution, epilepsy may be referred to as a syndrome rather than a 
well-defined disease. This diversity reflects the complexity and the multitude of 
pathophysiological cellular and network processes that underlie epileptic syndromes. This 
may consequently explain the high percentage (20 – 30%) of drug-resistant epileptic patients 
who do not benefit from the use of antiepileptic drugs prescribed nowadays. While epilepsy 
surgery presents a therapeutic alternative for these patients, it implies the resection of the 
epileptogenic zone and this may not always be possible for anatomical and functional 
considerations. In this context, deep brain stimulation (DBS) emerges today as a potential 
antiepileptic alternative for patients with drug-resistant focal epilepsy.  

Nevertheless, if DBS seems to be efficient in the context of movement disorders 
(Parkinson’s disease, tremor, dystonia …), the results obtained in the context of epilepsy are 
much less evident. Inter-patient variability is often a reported issue of DBS in epilepsy. The 
same stimulation protocol that may lead to seizure freedom in a patient can double the 
seizure frequency in another. In fact, this owes to the empirical tuning of stimulation 
parameters in epileptic patients based on the encouraging empirical results obtained in the 
context of Parkinson’s disease. However, this sub-optimal empirical approach is a direct 
consequence of the lack of tangible knowledge concerning the mechanisms through which 
stimulation modulates neural dynamics in general and epileptic dynamics in particular. 
Indeed, the optimal control of epileptic dynamics by stimulation currents requires a mature 
understanding of the parameter-dependent stimulation mechanisms involved in 
neuromodulation. In this account, three fundamental issues should be particularly explored: 
the choice of the 1) stimulation target, 2) current type (AC vs. DC), 3) stimulation signal 
parameters (duration, intensity, frequency). 

This thesis aims at progressing in the direction of uncovering the mechanisms of 
neuromodulation by electrical currents and establishing the relationships governing the 
dependence of these mechanisms on stimulation parameters. Only two possible 
intracerebral stimulation configurations are explored, indirect AC (alternating current) 
stimulation and direct DC (direct current) stimulation of the ictal onset zone. 
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To accomplish these objectives, a general methodology combining computational 
modeling, signal processing, system analysis and experimental data acquisition was adopted. 
The first step consisted in proposing a physiologically-plausible model of the brain 
structure(s) involved in the considered stimulation context. Then, a suitable real 
electrophysiological dataset was used to optimize the model parameters/structure to 
guarantee realistic epileptic simulated dynamics. For this, adapted signal processing 
methodologies were proposed to quantify the real and the simulated electrophysiological 
signals. Finally, the analysis of the resulting optimized nonlinear dynamical system in 
response to an adequate stimulation input allowed the establishment of hypothetical 
stimulation parameter/stimulation effect relationships. Moreover, insights on the underlying 
mechanisms could be obtained. 

In this dissertation, the problem is posed and addressed from a dynamical systems point 
of view. 

 The manuscript is organized as follows: 

Chapter 1 reviews the state of the art of neuronal systems from three perspectives: 
structure, function and control. On the structural aspect, a historical note on the evolution of 
the perception of the central nervous system and neuronal systems is presented. This 
includes the pioneer modeling attempts of these systems. On the functional aspect, this 
chapter highlights the importance of electrophysiological signals in interpreting neural 
function and dysfunction. The biomarkers of dysfunction in certain neurological disorders, 
particularly in epilepsy, are emphasized. And finally, neural control by stimulation is detailed 
from a physical as well as a clinical perspective.  

In Chapter 2 the problem statement is presented. The objectives of this thesis based on 
a synthetic view of the state of the art of clinical neurostimulation for epilepsy are then 
described. This chapter emphasizes the contrast between the variability of the stimulation 
outcome and the empirical tuning of stimulation parameters. Thereby, an alternative 
methodology is proposed to study and optimize stimulation protocols. 

The rest of the manuscript is divided into two parts.  

In part 1 (chapters 3 to 5), the frequency-dependent effects of indirect AC stimulation 
are addressed. The application context is clinical and relates to thalamic DBS and its 
modulatory effects on cortical epileptic activity. In chapter 3, a computational mesoscopic 
lumped-parameter model of the thalamocortical loop is proposed. The proper 
implementation details of the model are hereby detailed. Chapter 4 presents the clinical 
dataset used for model optimization. In this chapter, we also describe the time-frequency 
signal processing methodology used for quantifying the frequency content of the real and 
simulated signals. This methodology is based on an adaptive time-frequency decomposition 
algorithm of the processed signals (namely, Matching Pursuit). The detected time-frequency 
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atoms are arranged in pre-defined frequency bands. Then the spectral distribution is used to 
elaborate a feature vector (frequency band contribution to the total signal’s energy). 
Calculated on real cortical epileptic signals, this vector was used to optimize the model’s 
output. The optimization algorithms and the stimulation effect tuning are detailed in this 
chapter. Finally, the results of this first part (Part 1) are presented in chapter 5. They show 
the bifurcation of the model (in the phase plane) when the frequency of the stimulation 
input varies. Further analysis of the system’s behavior allowed the description of the 
intermittency in the model’s behavior as a function of the stimulation frequency. Finally a 
number of hypotheses concerning the frequency-dependent mechanisms of thalamic DBS 
(like feedforward inhibition and short-term depression) were also concluded. The methods 
used as well as the results obtained in this part are further discussed in the subsequent 
discussion section. 

In part 2 (chapters 6 to 8) the direct DC stimulation of the ictal onset zone is 
investigated. The study is done in the context of mesio-temporal lobe epilepsy (MTLE), a 
frequent form of drug-resistant epilepsy. It aims at identifying the polarity-dependent effects 
of DC stimulation. Chapter 6 presents the computational tools used to accomplish the 
modeling study. An existing model of the hippocampal CA1 region, developed in our team, 
was used. The model was amended in order to reproduce dynamical transitions between 
background activity and sustained epileptic discharges. To proceed, the duration and 
occurrence times of discharges were identified from real local field potential (LFP) signals 
recorded in a mouse model of MTLE (also used for experimental tests). Stimulation inputs 
were also integrated to the pre-existing computational model. 

Chapter 7 presents the computational results obtained from the model analysis. From 
this analysis, an experimental protocol is proposed aimed at attenuating epileptic activity. 
Chapter 8 reports the experimental validation of the computational model prediction. 
Results suggest that, for a certain current polarity, low-intensity DC currents applied at the 
ictal onset zone can significantly diminish the occurrence of hippocampal paroxysmal 
discharges in vivo as predicted computationally. The results of this part are further discussed 
in the subsequent discussion section. 

Finally, this manuscript ends with a general conclusion that summarizes the major 
findings and suggests some future perspectives and challenges. 
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Chapter 1: Neuronal Systems – Structure, 
Function and Control: Background 

1 NEURONAL DYNAMICS: A SYSTEMS VIEW 
From a systems view, a neuron can be described as a nonlinear dynamical system that 

can switch state between two states, “resting” and “firing”, depending on the intensity 
of the incoming disturbances (electrophysiologically termed as postsynaptic potentials; 
PSPs). Such a transition or bifurcation, is only possible when the neuron is excitable, that 
is near to the firing threshold. Otherwise, this dynamical system maintains its 
equilibrium and the neuron remains quiescent. In fact, this systems description of 
neuronal dynamics is the result of years of experimental observations and debates 
concerning the structural as well as the functional organization of the central nervous 
system. Nowadays, computational representations of neuronal dynamics (models) 
substantiate, on different levels of detail, this systems view. The objectives of these 
modeling attempts can be classified into major groups: (1) understanding neuronal 
dynamics; cellular and network, and (2) controlling these dynamics by external stimuli 
such as electric stimulation and pharmaceutical molecules (medications). 

In this chapter, a brief glance at the evolution of the scientific understanding of the 
structural/functional organization of the nervous system is firstly presented. Then, the 
various attempts in modeling the underlying neuronal dynamics are reviewed. And 
finally, the state of the art regarding the control of neuronal dynamics by stimulation is 
detailed. 

1.1 DISCOVERING THE CONCEPT OF THE NEURON 
Due to the absence of adequate technology, the nineteenth century witnessed 

continuous debates on the organization of the nervous system. In fact, one group of 
researchers, the reticularists, believed that the nervous system was built up of a large 
network of tissue, or reticulum, of fused processes of nerve cells. On the other hand, the 
second group argued that the nervous system consisted of interacting distinct nerve 
cells. However, it was not before the 1870s, when Golgi discovered the Golgi 
impregnation (staining), that credible evidence concerning the cellular structure of the 
nervous system became available. Paradoxically, despite discovering a technique that 
stained neurons in their whole entirety, Golgi still believed that his results prove that 
the nervous system consisted of a continuous network [1].  
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Figure 1. Golgi staining method applied on hippocampal tissue (work of Golgi: 
http://neurophilosophy.wordpress.com/2006/08/29/the-discovery-of-the-neuron). 

Later in the late 1880s, Cajal improved the Golgi method and used it to stain a chick 
cerebellum. Cajal was the first to report that the axons in his samples ended in the gray 
matter and that their endings coincided with dendritic terminals. Consequently he 
formulated the law of dynamic polarization according to which information flows in a 
unidirectional way in a neuron (from the dendrites to the cell body and to the axon). 
This was probably the first electrophysiological note on neuronal activity viewed at the 
cellular basis and the incontrovertible evidence on the cellular structure of the nervous 
system [1]. 

1.2 THE EARLIEST MODELS OF NEURONAL DYNAMICS 
Although that the discovery of the neuron dates back to the end of the nineteenth 

century, one would imagine that computational models of neurons are much more 
modern. Nevertheless, the first computational representation of neural behavior is 
credited to the French neuroscientist Louis Lapique back in 1907, the integrate-and-fire 
neural model [2]. This first representation of the neuron as a dynamical system took into 
consideration its capacitive and resistive properties (see the schema of the authentic 
model in Figure 2). In fact, for adjusting the parameters of his model, Lapique developed 
his proper non polarizable electrodes and experimentally measured neuronal 
capacitance and resistance. However, this basic neuronal model did not take into 
consideration realistic electrophysiological elements that underlie neuronal dynamics 
such as ion channels, transmembrane currents, synaptic transmission, etc. 

Later in 1952, Hodgkin and Huxley published a new formalism of neuronal dynamics, 
the famous Hodgkin-and-Huxley model [3] that remains until today a fundamental work 
in computational neuroscience. This formalism described the nonlinear electrical 
dynamics of the excitable membrane of the giant axon of the squid as a function of 
sodium, potassium and leakage currents. This model, built on the cellular (microscopic) 
level, was based on previous experimental results [4, 5] that explored the dynamic 
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electrical characteristics of the squid axon membrane as expressed by the experimental 
relations between the input current intensity and the membrane potential voltage. 

 

Figure 2. Initial integrate-and-fire model. Adapted from Lapique in 1907 [2]. 

As the integrate-and-fire model, the Hodgkin-Huxley model relies also on the 
capacitive properties of the neuronal membrane. However, it takes into consideration 
the dynamics of ion channels which are also present in the cell membrane. Hodgkin and 
Huxley’s major discovery is that ion channels are controlled by gating variables which 
depend on the membrane voltage (so called active voltage-dependent ion channels) and 
which define their conductance 𝑔𝑖𝑜𝑛. The general equation of the Hodgkin-Huxley single 
compartment neural model is expressed as: 

𝐶
𝑑𝑉
𝑑𝑡

=  − 𝐼𝑙𝑒𝑎𝑘 −  𝐼𝑁𝑎 −  𝐼𝑘 +  𝐼𝑖𝑛𝑗𝑒𝑐𝑡 

or 

𝐶
𝑑𝑉
𝑑𝑡

=  −𝑔𝑙𝑒𝑎𝑘(𝑉 − 𝐸𝑙𝑒𝑎𝑘) − �̅�𝑁𝑎𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) −  �̅�𝐾𝑛4(𝑉 − 𝐸𝐾) + 𝐼𝑖𝑛𝑗𝑒𝑐𝑡  

where 𝐶 is the membrane capacitance, 𝑉 is the difference between the intracellular and 
the extracellular potential, and 𝐼𝑙𝑒𝑎𝑘, 𝐼𝑁𝑎, 𝐼𝑘, 𝐼𝑖𝑛𝑗𝑒𝑐𝑡 are the respective leakage, 
sodium, potassium and peripheral currents and where Eion denotes the reversal 
potential the considered ion (also known as the Nernst potential). The leakage 
current 𝐼𝑙𝑒𝑎𝑘 is a lumped representation of all of the time-independent contributions 
(passive) to the membrane current. These equations show the dependence of the 
membrane potential 𝑉 on the activation and inactivation parameters of sodium and 
potassium ion channels (𝑚, 𝑛, ℎ). These parameters are themselves defined by a set of 
first-order nonlinear differential equations that will not be detailed in this dissertation.  

The Hodgkin-Huxley model describes the variation of membrane potential at a certain 
location on the axon and does not take account of the spatial propagation of action 
potentials. More sophisticated microscopic neuronal models followed these pioneering 
works. They actually represent the different neural components (the soma, the 
dendrites and the axon) in separate distinct compartments. These models are known as 
multi-compartment models, because each neural component (soma, axon, dendrites) 
can be represented by one [6] or several compartments [7].  
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1.3  POPULATIONS OF SINGLE NEURON MODELS 
Later on, models were extended to represent networks of interacting neurons in order 

to study neural network dynamics. On this account, the work of Traub and his 
colleagues [8] largely contributed this research trend. Using this approach, thousands of 
single neuron models are interconnected through synapses. Synaptic transmission is 
modeled by adding synaptic currents 𝐼𝑠𝑦𝑛 to the sum of membrane ion currents. This 
representation takes into consideration the activated ion channels due to the release of 
a neurotransmitter in the synaptic cleft. A simple formal model for 𝐼𝑠𝑦𝑛  can be 
expressed as: 

𝐼𝑠𝑦𝑛 =  𝑔𝑠𝑦𝑛(𝑡). 𝑥. (𝑉 − 𝐸𝑠𝑦𝑛) 

where 𝑔𝑠𝑦𝑛 and 𝐸𝑠𝑦𝑛determine the characteristics of the modeled synapse (the 
conductance and the reversal potential respectively) and where 𝑥 represents the 
postsynaptic activation in response to presynaptic action potentials. 

The high physiological precision of this type of models is not costless. In fact, the 
higher the complexity of the proposed model the more difficult the mathematical 
analysis of its behavior. Therefore, at this level of modeling, studying the underlying 
mechanisms of the modeled processes is not always possible. In this thesis, another 
type of models was used to study network dynamics: neural mass models. 

1.4 NEURAL MASS MODELS  
In many brain regions, neurons are organized as homogenous units of similar 

properties. This fact dates back to the late 1950s when it was evidenced by the pioneer 
contributions of Mountcastle [9] as well as those of Hubel and Wiesel [10]. These 
scientists pointed out the existence of cortical neuronal aggregates formed by 
neighboring neurons lying in narrow vertical columns extending from cortical layer II 
through VI. These scientific observations proved the hypothesis of the functional 
organization of these cortical layers into elementary units or populations (cortical 
columns) that share similar morphological and functional features. In fact, the 
electrophysiological characterization of these neuronal columns showed that the 
neurons of each population respond similarly and synchronously to brief peripheral 
stimuli, and that they consequently share the same dynamics. This discovery led to the 
computational representation of a neuronal assembly as a single dynamic entity [11], a 
neuronal population or mass as termed by W. Freeman [12].  

The theoretical bases of such macroscopic representations of neuronal populations 
date back to the early 1970s when Wilson and Cowan first proposed a “macroscopic” 
deterministic model of neuronal populations’ dynamics [13]. Based on the hypothesis of 
spatial proximity of the modeled neurons and the redundantly dense inter-neuronal 
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interaction, this first model only dealt with the temporal dynamics of the neuronal 
population viewed as a whole. It suggested that the neuronal aggregate can be 
represented as distinct neural subpopulations (excitatory or inhibitory) interacting 
through synaptic transmission. Then, a subpopulation can be described as a nonlinear 
dynamical system of two first-order differential equations. The nonlinearity intervenes 
at the level of synaptic transmission where threshold and saturation effects are 
represented. Consequently, the resulting model represents the “average” activity (e.g. 
average postsynaptic potentials, average firing rate) of the modeled population without 
explicitly representing the exact activity at the cellular level. 

Formally, each subpopulation is built of two functions, the input and the output 
function or the pulse-to-wave and the wave-to-pulse function as termed by Freeman 
[12]. The input function transforms the input mean firing rate into a mean postsynaptic 
potential. This transfer function can be expressed as: 

𝐻(𝑠) =  𝑊 �𝑠 +
1

𝜏𝑤
�

2

�  

where  𝑊 ∙ 𝜏𝑤
2 represents the static gain of the synaptic filter 𝐻 and 𝜏𝑤 represents the 

time constant (controlling both the rise and decay times) of its impulse response, 
expressed as: 

ℎ(𝑡) =
𝑊
𝜏𝑤

∙ 𝑡 ∙ 𝑒−𝑡/𝜏𝑤 

Generally speaking, parameters 𝑊 and 𝜏𝑤 are adjusted in such a way that the impulse 
response, ℎ(𝑡), of the filter matches the dynamics of real postsynaptic potentials. When 
this second-order transfer function is used, it can be easily shown that the decay time of 
the modeled PSP corresponds then to 3.146. 𝜏𝑤. (This is further explained in chapter 3). 

On the other hand, the output function transforms the sum of mean postsynaptic 
potentials into an output mean firing rate. This function takes into account the 
nonlinear characteristics (threshold and saturation effects) of the neural response. 
Generally, a sigmoidal form is used which can be expressed as: 

𝑆(𝑣) = 2𝑒0
(1 +  𝑒𝑟(𝑣0−𝑣))�  

where 2𝑒0 is the maximum firing rate, 𝑣0 is the postsynaptic potential corresponding to 
a firing rate of 𝑒0, and 𝑟 is the steepness of the sigmoid. Indeed, the most valuable 
contribution of Wilson and Cowan to mesoscopic neuronal modeling is probably the use 
of the sigmoid function to model the response of a given neuronal population to 
incoming postsynaptic potentials. 



     

14 | P a g e  
 
 

This modeling approach allowed the representation of quite extended neuronal 
networks with a relatively low computational complexity as compared to the 
microscopic approach. Following the work of Wilson and Cowan [13], several predictive 
models of the activity of distinct brain structures were elaborated to analyze their 
neural dynamics in details. Freeman developed a neural mass model of the olfactory 
system [14] based on previous histological and physiological studies [15, 16] and 
furthermore used it to interpret physiological EEG recordings in this system. Freeman 
and his colleagues proved that their neural mass model can simulate realistic EEG as 
that observed in distinct compartments like the olfactory bulb or the piriform cortex  
[17]. However, unlike the Wilson and Cowan model [13], the lumped neuronal 
aggregates implemented in Freeman’s model were either inhibitory or excitatory at a 
time. 

Concurrently, Lopes Da Silva developed a  model based on the same concepts [18] to 
study and explain the mechanisms of generation of the cortical alpha rhythm as 
experimentally observed in dogs. At the same time, Nunez [19] proposed a neural mass 
model to study the dynamics of cortical oscillations. Later, these pioneer contributions 
were further developed and enriched by many research groups in distinct contexts. For 
instance, this type of modeling proved efficient for studying the state changes in brain 
dynamics [20], the evoked potentials in the visual cortex [21], the human alpha rhythm 
[22], the effect of anesthesia on the encephalogram [23] and above all the dynamics of 
interictal to ictal transition in epilepsy [24-28]. Although the basic input/output 
functions may slightly vary from one model to another, the level of detail and the 
general approach remain similar.  

In conclusion, all the above models were used to model neuronal dynamics, yet that 
was not practically possible without the advent of a tool for experimentally assessing 
neuronal dynamics. As Lapique invented his own electrodes to measure the capacitive 
characteristics of a neuron in order to adjust the parameters of his model [2], more 
complex electrophysiology-based techniques were invented prior to the description of 
electrophysiology-based models.  

2 ASSESSING NEURONAL FUNCTION USING ELECTROPHYSIOLOGY 
Information transfer and processing in neuronal systems is mediated by electrical 

currents. Therefore, measuring and interpreting electrophysiological signals can be 
useful in assessing neural function and thereby dysfunction. This can be particularly 
helpful for developing a better understanding of the dynamics of neuronal processing as 
well as the dynamics of neuronal disorders like epilepsy.   

Nowadays, electrophysiology-based techniques are used in clinics as well as in 
laboratories in two different ways. Firstly, in clinics, such techniques constitute 
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necessary elements of the diagnostic process. They include noninvasive techniques like 
EEG (electroencephalography), MRI (Magnetic Resonance Imaging), and fMRI 
(functional MRI) as well as invasive techniques notably intracerebral EEG (iEEG) and 
ECoG (electrocorticography). Using these diagnostic tools, clinicians look for well-known 
electrophysiological signatures or biomarkers of neurological disorders in order to 
further complete the diagnosis (location of affected brain regions, specific subtype of 
the disorder…). In epilepsy, for example, neurologists use scalp EEG recordings to 
identify epileptogenic electrophysiological signatures (spikes, spike-wave complexes, 
paroxysmal discharges …) in order to define the affected brain regions. Once defined, an 
intracerebral EEG (iEEG) exploration can be done in order to confirm and delineate the 
affected regions and to ultimately propose a resective surgery to suppress seizures (if 
possible). In sleep apnea, clinicians use EEG recordings as well as other multimodal 
electrophysiological signals (ECG, EMG…) to assess sleep stages and quality and 
therefore complete the diagnostic process [29].  

Secondly, electrophysiology-based techniques are used for the investigation of 
neuronal function in experimental studies. These techniques vary in function of the 
experimental procedure (in vivo vs. in vitro) and the considered level of organization 
(isolated cells, brain slices, whole structure, whole brain). So while EEG/iEEG or LFP 
(local field potential) recordings can be used to evaluate the average neuronal activity of 
large-scale cell aggregates in the living animal (in vivo), patch clamp techniques are 
usually used for single cell electrophysiological recordings. In experimentation, these 
techniques usually aim at studying new potential biomarkers of known neural disorders 
[30, 31], or at studying innovative techniques for controlling these pathological 
dynamics. This is particularly the case of the pioneer studies of the effects of electrical 
stimulation on epileptic dynamics in animal models (see [32] for review). 

It should be noted that these recording techniques can be technically divided into two 
groups: intracellular and extracellular recording techniques. This generally depends on 
the size and the position of the recording electrode(s). 

2.1 INTRACELLULAR ELECTROPHYSIOLOGICAL RECORDINGS 
As intracellular recordings require the presence of the recording electrode in the 

intracellular space of the neuron, these techniques entail the use of very small 
electrodes, generally termed microelectrodes. Microelectrodes and microelectrode 
arrays permit the recording of single-cell membrane dynamics. Many techniques can be 
classified under this group including the patch-clamp, the current-clamp and the 
voltage-clamp techniques. However, as these recording techniques are devoted to 
single-cell preparations, the dynamics of extended systems (neural networks) cannot 
really  be assessed using these techniques. 
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Nevertheless, at this level, intracellular recordings can be particularly useful in studying 
the cellular mechanisms of neuronal function/dysfunction and control at the level of a 
single neuron. Intracellular recordings were used to study the electrophysiological 
characteristics of excitable tissue. This is for instance the case of cortical malformations 
(medically termed dysplasia) [33]. In a different context, intracellular recordings were 
also used to measure the response of different types of neurons (pyramidal cells, basket 
interneurons …) to external electric fields [34-36]. 

 
Figure 3. High-density recording of unit activity in the somatosensory cortex of the rat ([37] no requested 
permission).  (a) The eight-shank silicon probe system. Each shank is equipped with 8 iridium recording 
sites at the edges of the tip. Note the micro dimensions of the recording system. (b) A sample short 
recording of both field and unit activity. Each shank recordings (color-coded) correspond to a distinct 
neural ensemble. This is evidenced by the presence of spikes on several sites of the same shank and the 
lack of spikes on the sites of other shanks. (c) Based on spike occurrence and amplitude, the silicon probe 
was used to isolate the position of the firing separate neurons. In the figure, a two-dimensional view of 
the identified clusters (color-coded) at one shank is presented.       

2.2 EXTRACELLULAR ELECTROPHYSIOLOGICAL RECORDINGS 
Generally speaking, all techniques designed to measure the electrophysiological 

activity at the systems level are based on the measurement of extracellular fields. In 
fact, a scalp electrode as well as an intracerebral electrode measures the cumulative 
electric current contributions of all neighboring active cellular processes. This is 
expressed as a resultant potential 𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 measured at the recording electrode [38].  
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EEG/iEEG signals are recorded by relatively large electrodes either at the surface of the 
scalp (diameter 1 – 15 mm, and thickness ∼ 2 mm) or directly through intracerebral 
cylindrical contacts (diameter ∼ 0.8 mm and length ∼ 2 mm), whereas lower level 
extracellular recordings are measured through microwires (diameter ∼ 0.1 mm). In any 
case, recorded signals are extracellular fields. It was originally thought that PSPs were 
the only contributors to these extracellular signals. But more recent studies showed that 
unfiltered signals also reflect the summation of APs from nearby cells (located at a few 
tens of microns from the electrode contact). In particular, the frequency band used to 
analyse extracellular fields is essential. At low frequency, the filtered signal (i.e. LFP or 
EEG) is mainly related to slow synaptic events that can be recorded quite far from the 
sources (even on the scalp). At higher frequencies, the fast extracellular currents 
involved in the generation APs are visible, especially on electrodes adjacent to recorded 
cells. This is why, for instance, HFOs [250-600 Hz] are visible on extracellular fields 
recorded with depth electrodes when the frequency band is broad (up to 2 kHz). See for 
instance Bedard et al. 2006 [39]: “Local field potentials (LFPs) are routinely measured 
experimentally in brain tissue, and exhibit strong low-pass frequency filtering 
properties, with high frequencies (such as action potentials) being visible only at very 
short distances (approximately 10 micron) from the recording electrode.” 

The major advantages of using extracellular techniques to measure network activity 
are threefold: (1) the mechanisms by which single neuronal currents sum up to a 
recorded voltage are quite well-understood (2) the state of the neuronal system is not 
altered (spontaneous recordings in vivo) during the recording process and (3) such 
recordings are the least invasive and the least expensive. So how are extracellular 
recordings used to assess neural function and dysfunction?  

2.3 ASSESSING FUNCTION/DYSFUNCTION USING EXTRACELLULAR SIGNALS (EEG/IEEG) 
Information processing in the brain is achieved through neural coding/decoding 

processes. Communication between functionally connected neural assemblies passes by 
oscillations and synchronization, which are two essential features of neural (de)coding 
[40]. Typically, oscillations characterize neuronal information processing in response to 
a certain stimulus, while the synchronization of oscillations reflects the precise temporal 
dynamics of neural communications, particularly between distant neural assemblies 
[41]. These are the working hypotheses of cognitive neurosciences. For example, while 
an expected visual stimulus invokes an alpha oscillation in the cat cortex, an unexpected 
one elicits gamma oscillations [40].  

2.3.1 ELECTROPHYSIOLOGICAL OSCILLATORY SIGNATURES OF NEURONAL PATHOLOGY (MOVEMENT AND 

NEUROPSYCHIATRIC DISORDERS) 
So, as certain oscillations mark the neural information processing in the normal brain, 

several neurological disorders are marked by characteristic oscillatory activity (see [41] 
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for general review). These characteristic electrographic signatures that are recordable 
by extracellular scalp or intracerebral electrodes contribute to the assessment of 
neuronal dysfunction in the diseased brain. 

Case of Parkinson’s disease. Clinical observations as well as animal studies showed that 
Parkinson patients as well as pathologically equivalent animal models present an 
abnormal increase in oscillatory β band dynamics in a specific brain motor network 
connecting the basal ganglia, and particularly the following nuclei GPe, GPi and STN, 
with the motor cortex [42, 43]. Moreover, this abnormal synchronization is found to be 
entrained by a basal ganglia pacemaker formed between the subthalamic nucleus (STN) 
and the external globus pallidus (GPe) [44]. 

Case of other movement disorders. Recent evidence showed that the abnormal 
synchronization in the basal ganglia circuits is also a pathophysiological marker of other 
movement disorders such as dystonia, tremor, and Tourette syndrome (see [41] for 
review). Apparently, a decrease in the LFP power in the antikinetic frequency band (11 – 
30 Hz) compared to an increase in that of the tremor-related band (3 – 10 Hz) is 
common in patients with movement disorders.  

Case of neuropsychiatric disorders. Neuropsychiatric disorders, notably Alzheimer’s 
disease, are characterized by a decrease in cognitive capabilities/function. In terms of 
the electrographic signature, the disease has been found to be characterized by a 
widespread decrease in synchronization in the α, β, and γ bands [45] compared to an 
increase in the δ band synchronization [46]. The loss of β-band synchronization has been 
shown to be correlated to cognitive impairment in Alzheimer’s disease [47]. 

2.3.2 ELECTROGRAPHIC SIGNATURES OF EPILEPTIC DYNAMICS 
Unlike Parkinson’s disease, dystonia, and other movement disorders, the 

electrographic signatures of epileptic dynamics are not unique to all epileptic patients 
and may vary as a function of time patient-wise. However, epileptic dynamics can be 
divided into three main categories: interictal, preictal and ictal dynamics. As ictal 
dynamics refer to the electrographic seizure dynamics, preictal dynamics describe the 
EEG dynamics just before seizure onset, and finally interictal activity designates 
electrographic dynamics between two consecutive seizures. Given that epileptic 
patients may have a seizure frequency inferior to one seizure/week, assessing the 
epileptiform aspect of the recorded EEG depends generally on the interpretation of 
interictal dynamics as reflected by interictal epileptiform discharges (Figure 4).  

Interictal epileptiform discharges (IEDs) range from transient to more sustained 
processes observed in the epileptic brain. They can be classified under the following 
categories: 
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• Sharp wave: a transient electrographic event with a pointed peak clearly 
distinguishable from background activity. The duration of a sharp wave ranges 
between 70 – 200 ms. 

• Spike: a sharp wave but with shorter duration (20 – 70 ms). 
• Spike-and-wave complex: an electrographic event characterized by a spike 

followed by a slow wave (positive and/or negative). 
• Polyspike-and-slow wave complex: multiple consecutive spike occurrences 

followed by a slow wave. 

IEDs are also termed paroxysmal discharges due to their brutal occurrence (onset and 
end). These discharges generally occur as rhythmic or semi-rhythmic bursts but also as 
isolated events. Noteworthy, bursts of rhythmic activity that last as long as a few 
seconds are often interpreted as electrographic seizures rather than interictal 
discharges. An increase in the rhythmicity of these discharges may also indicate the 
close onset of a seizure. The resulting electrographic activity designates preictal 
discharges preceding seizure onset.  

 

Figure 4. Different Types of epileptic EEG patterns. Adapted and translated from [48]. No permission 
requested. 

IEDs differ by epileptic syndrome. In fact, the morphology of IEDs is as important as the 
semiology of seizures in determining the type of the considered epileptic syndrome. 
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While frontal epilepsies are mostly characterized by fast oscillations and slow-wave 
complexes recorded from the frontal lobe electrodes, parietal-occipital epilepsy is 
characterized by polyspike-and-wave complexes recorded by the parietal lobe 
electrodes, and absence seizures are characterized by bursts of spike-and-wave 
generalized discharges, of frequency 3 – 5 Hz [48].  

3 CONTROLLING (PATHO-)PHYSIOLOGICAL NEURONAL DYNAMICS BY 

ELECTRICAL STIMULATION: STATE OF THE ART 
In fact, pathological neuronal dynamics are produced by abnormal neuronal signaling 

and synchrony as aforementioned. In terms of the control theory, electrical stimulation 
is the input stimulus aimed at controlling the pathological output of a complex 
dynamical system, the pathological neural network. As implied, this stimulation input 
can be simply used in an open-loop configuration when destined at studying the 
system’s response to a given stimulation signal or even in a feedback closed-loop 
configuration in more advanced applications. Noteworthy, the closed-loop configuration 
requires a good knowledge of the neural system’s response to defined stimulation 
paradigms. In the literature, open-loop stimulation protocols constitute the majority of 
existing stimulation trials. 

Besides its clinical applications for the control of disease dynamics (epilepsy, 
Parkinson’s disease, tremor, dystonia, depression …), open-loop noninvasive electrical 
stimulation, such as transcranial current stimulation (tCS), emerges today as a cognitive 
enhancement [49] and as a neurohabilitation tool in healthy individuals (see [50, 51] for 
reviews). Actually, the efficacy of tCS in cognitive function enhancement in healthy 
subjects is reported for different cognitive tasks (reading, associative language learning, 
semantic and phonetic fluency, picture naming, recognition memory)[52]. However, a 
crucial question remains unanswered: how does stimulation exactly modulate neural 
dynamics in the normal and the diseased brain? Basic insights are based on the 
modulation of the excitability/inhibition ratio of the stimulated cortical region. tDCS 
(D=direct) for example is thought to increase (anodal stimulation [53]) or decrease 
(cathodal stimulation [54]) cortical excitability, thus modulating cortical activity levels. 
So how does the stimulation input intervene with the intrinsic dynamics of the neural 
system? And what are the effects of certain parameters of stimulation on the 
modulatory outcome? 

To answer the above questions, the theoretical stimulation-induced electric field 
formalism following Maxwell’s equations and the consequent theoretical effects of 
stimulation on neural dynamics are first reviewed. Then, actually reported effects of 
stimulation as a function of stimulation parameters and categories are then presented.  
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3.1 STIMULATION-INDUCED ELECTRIC FIELD 
Neural tissue is surrounded by a low resistivity extracellular medium (about 50 Ω∙cm). 

Besides, the resistivity of neural tissue itself is relatively low (300 – 800 Ω∙cm). Indeed, 
stimulation currents injected into neural tissue induce an electric field that may 
interfere with intrinsic neural currents and properties. Understanding the theoretical 
effects of induced stimulation fields is essential for deciphering its effects on excitable 
neural tissue. 

3.1.1 IN A VOLUME CONDUCTOR 
Given that stimulation frequencies never attain 10 kHz, the current density, the 

induced potential and the electric field distributions can be estimated using the quasi-
static formalism of Maxwell’s equations: 

∇ ∙ 𝐽 + 𝜕𝜌
𝜕𝑡

= 0 or  ∇ ∙ 𝐽 = 0 in a homogeneous medium           (1) 

∇ ∙ 𝜀𝐸 =  𝜌             (2) 

𝐽 =  𝜎𝐸                                                                      (3) 

𝐸 =  −∇𝑉             (4) 

 where 𝐸 (𝑉 ∙ 𝑚−1)is the electric field derived as the gradient of the potential 
distribution 𝑉. 𝐽 (𝐴 ∙ 𝑚−2) is the current density, and 𝜎 (𝛺 ∙ 𝑚), 𝜀 (𝐹 ∙ 𝑚−1), and 
𝜌 (𝐶 ∙ 𝑚−3) are the conductivity, the permittivity, and the charge density respectively. 
Solving the above equations is possible when the analytical expression of the voltage 
distribution 𝑉 is well-defined. In the case of a monopolar electrode placed in an infinite 
conductive medium and delivering a current of intensity 𝐼, solving Poisson’s equation 

∆𝑉 = − 𝜌
𝜀�  (derived from equations (2) and (4)) with a Dirichlet boundary condition 

𝑉 =  0 at infinity is sufficient to determine 𝑉. The solution is then expressed as: 

𝑉 =  1
4𝜋𝜎𝑟 �                                                         (5) 

In 1976, McNeal derived the same equation of the voltage distribution induced by one 
monopolar stimulation electrode using an electric network representation of a 
mylineated fiber [55] and under the assumption that the myelin sheath is a perfect 
insulator. Evidently, McNeal supposed that the extracellular medium is electrically 
homogenous. Equation (5) can be generalized to the case of 𝑛 monopolar electrodes 
expressed as: 

𝜑 =  1
4𝜋𝜎� ∑ 𝐼𝑖 𝑟𝑖

�𝑛                                                                   (6) 

where 𝐼𝑖 is the current delivered by the ith electrode, and 𝑟𝑖 is the distance of between 
the latter and the recording point. 
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Consequently, depending on the stimulation setup, the type and number of 
stimulation electrodes, it is possible to determine the electric field lines induced in the 
vicinity of a homogenous conductive medium. It is the induced electrical field that 
influences neural membrane properties and consequently neural dynamics [36]. More 
elaborated Bessel-function-based analytical solutions to the Poisson equation in more 
complex geometries including cylindrical intracerebral electrodes in an infinite medium 
or multipolar sources in the case of spherical human head models have been derived 
(see [56] for review).  

3.1.2 IN THE VICINITY OF EXCITABLE TISSUE 
It is evident that the simplistic geometrical approaches presented in the previous 

subsection are not representative of the dielectric heterogeneity and the complex 
geometry that can be encountered in neural tissue. Eventually, when confronted to 
more realistic geometries and/or heterogeneities in the dielectric properties of the 
stimulated neural medium, analytical solutions do not generally exist. Numerical 
methods can be then used, within certain limits, to calculate the induced potential field 
and consequently the electric field distribution.  

Finite element modeling and similar approaches have been generally used to estimate 
the volume of activated tissue around the stimulation electrodes [57] and to 
consequently predict the neuronal system’s output (spinal cord motoneurons) as a 
function of stimulation frequency and waveform [58]. Recent studies use these 
modeling approaches to design and optimize microelectrode array neural prosthesis 
[59]. These electrical field modeling approaches seem to be promising as model 
estimations have been recently reported to match the experimentally measured 
potential field [59]. 

In conclusion, stimulation currents induce exogenous electric field distributions in the 
vicinity of neural tissue which leads to the polarization of the membrane potential 
depending on the orientation and intensity of induced field [36]. This is probably due to 
the passage of some current lines through the cell bodies of the stimulated neurons, 
provoking depolarization when the current flows outwards, and hyperpolarization when 
the current flows inwards (see [60] for review). Moreover, the transmembrane potential 
variations in response to stimulation currents was computationally modeled and studied 
in [61, 62]. These studies used detailed multi-compartmental models of the whole 
neuron [61] or of the neural axon [62] to show that the transmembrane potential (𝑉𝑚) 
varies in function of the orientation as well as the intensity of the induced extracellular 
voltage (𝑉𝑒). This was expressed as an inhomogeneous equation in [62]: 

𝜆2 ∆2𝑉𝑚
∆𝑥2� −  𝜏 𝑑𝑉𝑚

𝑑𝑡� − 𝑉𝑚 =  −𝜆2 ∆2𝑉𝑒
∆𝑥2�         (7) 
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where ∆𝑥 is the length of the affected axonal compartment, 𝜏 is the membrane time 
constant and 𝜆 is the membrane space constant. The latter is a function of the 
geometric and electrical properties of the membrane. Equation (7) shows that the 
transmembrane potential depends clearly on the extracellular induced potential 
distribution and on the directionality of the electrical field; only longitudinal field 
components exert an effect on transmembrane potential 𝑉𝑚.  

Nevertheless, since the effect of stimulation is generally measured on the network 
level by extracellular recordings, the simple polarization effect may sum up spatially and 
temporally giving rise to the clinically and experimentally observed complex stimulation-
induced network dynamics. Consequently, the response of the neural system to an 
external stimulus depends largely on its intrinsic properties: structural, electrical and 
dynamical. Another important extrinsic factor is the way stimulation is applied to the 
system. In the next subsection, three different parameters of stimulation configuration 
and their probable contribution to neural modulation are discussed. 

3.2 ELECTRICAL STIMULATION CATEGORIES 
In practice, the stimulation input intervenes differently with the neural system’s 

dynamics based on the actual implementation of stimulation. Three criteria may have a 
determinant role; the invasiveness of stimulation (transcranial vs. intracerebral), the 
choice of the stimulated target whether within or outside the pathological zone (direct 
vs. indirect stimulation) and the type of the stimulation current (direct current, DC, vs. 
alternating current, AC). 

3.2.1 INTRACEREBRAL VERSUS TRANSCRANIAL CURRENT STIMULATION 
Choosing the degree of invasiveness of stimulation usually depends on the clinical 

context, particularly the location of the desired stimulation target and the type of the 
pathological dynamics. Transcranial current stimulation (tCS) is generally used for 
stimulating cortical regions while intracerebral stimulation usually targets deep brain 
structures. While the membrane polarization effect holds true for both stimulation 
applications, it is worth noting that stimulation currents induce different field 
distributions due to the differences in electrode dimensions and the electrode-tissue 
interface. While tCS employs ring or disc electrodes of 0.4 cm radius at the skin-contact 
surface, it has been computationally (finite element method) shown that the induced 
electric field may extend over the cortical surface [63]. Conversely, clinical intracerebral 
stimulation electrodes (cylindrical contacts 1.5 mm long and 1.27 mm diameter) have 
been shown to have a local direct effect on the neural ensemble several millimeters 
around the stimulating electrode [64], while the stimulation current is directly injected 
into the targeted cerebral structure. 

Given its invasiveness, intracerebral stimulation is reserved for the modulation of 
pathological dynamics and consequently its use has never been reported in healthy 
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subjects. Transcranial stimulation, on the other hand, has both clinical and cognitive 
applications as discussed earlier in this section. In the core of this work, only clinical 
applications of electrical stimulation aiming at modulating pathological dynamics will be 
discussed. 

3.2.2 AC VERSUS DC STIMULATION 
In the present clinical context, the degree of invasiveness of the stimulation technique 

usually determines the stimulation current parameters. Intracerebral stimulation, 
particularly deep brain stimulation (DBS), is usually associated with AC stimulation and 
has never been clinically used with DC stimulation signals to the best of our knowledge. 
High-frequency stimulation (HFS) trains are often reported to modulate disease 
dynamics in the context of movement disorders encountered  in Parkinson’s disease, 
dystonia and tremor (see [65] for review). Nevertheless, more complex results are 
usually associated to DBS for epilepsy, where the impact of the same stimulation 
protocol does not seem to have the same effect on epileptic dynamics. 

Conversely, tCS is often related to DC stimulation. Transcranial direct current 
stimulation (tDCS) is currently reported to have positive results on disease dynamics 
when used for Parkinson’s disease, tinnitus, chronic pain, stroke, and even childhood 
psychosis, as well as on normal cognitive enhancement [50]. Yet, the effectiveness of 
transcranial alternating current stimulation tACS is also reported in the context of 
motor, sensory and cognitive processing [51]. 

The choice of the current type, direct/alternating, is thought to actually determine the 
way neuronal activity is modulated. The modulatory effects of AC stimulation, whether 
by sinusoidal waveforms or pulse trains, are highly dependent on several stimulation 
parameters, particularly, the frequency of the stimulation signal, the targeted cerebral 
structure and its implication in the pathological network, in the case of pathological 
dynamics, or a certain cognitive network, in the case of normal dynamics (cognitive 
enhancement tasks). 

 Whether transcranial or intracerebral, at low stimulation frequencies (< 10 Hz), AC 
stimulation has been reported to influence the firing rate of the underlying neuronal 
systems through frequency-locked entrainment of endogenous oscillations in vitro at 
extremely slow AC stimulation signals (0.075 – 0.375 Hz) [66]. Similarly, the in vivo 
recordings as well as the computational modeling of cortical LFPs in response to 
thalamic DBS show a frequency-locked modulation of LFP cortical signals related to the 
frequency of the applied pulse train in the range 1 – 10 Hz [67]. Since, direct 
thalamocortical pathways exist between the stimulated and the recorded structures, 
the triggering of endogenous thalamic firing patterns by stimulation frequency is highly 
probable.  
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At higher stimulation frequencies, the modulatory effects of AC stimulation signals 
suggest a depressive inhibitory effect on the cell bodies of the stimulated target [68-71]. 
The mechanisms of this inhibition are still controversial and will be discussed in chapter 
2. Paradoxically, this inhibitory effect is often associated with a recurrent increase of 
firing of the inhibited structure, with each pulse time-locked to a stimulus pulse [72]. 
This somato-axonal decoupling of neural cells of the subthalamic nucleus (STN) during 
HFS was first demonstrated computationally by McIntyre and his colleagues in 2004 
[73]. Conversely, a more recent study of the same group showed that the inhibition of 
pathological oscillations in the thalamocortical loop during HFS was mediated by a 
stimulation-induced depolarization of the stimulated thalamic nucleus [74]. To 
conclude, modulatory effects of AC stimulation can vary as a function of the frequency 
of stimulation. Similarly, distinct cellular mechanisms may be engaged (see chapter 2). 

Concerning DC stimulation, it has been reported that transcranial direct currents 
directly polarize the transmembrane potential of the underlying neural populations 
depending on the current polarity, cathodal and anodal stimulation [53, 54, 75]. This has 
been equally established in vitro as several studies showed an increase in neuronal 
excitability during anodal stimulation compared to a decrease in neuronal excitabiliy 
during cathodal stimulation [34-36, 60]. The effects of DC stimulation can be interpreted 
as a rebalancing of the excitation/inhibition ratio of the targeted neural system. 

3.2.3 DIRECT VERSUS INDIRECT STIMULATION 
The last factor that may highly determine the impact of stimulation on neuronal 

dynamics is the choice of the electrode position with respect to the pathological 
network. Two possibilities exist. The first one consists in implanting the stimulation 
electrodes in a structure implicated in the generation of the pathological dynamics, such 
as the ictal onset zone in partial epilepsies or in a structure of the basal-ganglia network 
(motor cortex, STN, globus pallidus …) in Parkinson’s disease [76]. In this case, the 
considered configuration is termed as direct stimulation in this manuscript. The second 
possibility consists in placing the stimulation electrodes in a cerebral structure 
presenting efferent outputs to the pathological network. This configuration, termed as 
indirect stimulation in this dissertation, modulates pathological network dynamics by 
modulating the synaptic input. So what are the reported effects of both stimulation 
configurations on disease dynamics? 

3.3 STIMULATION FOR MOVEMENT DISORDERS 
Despite the empirical approach undertaken to tune the stimulator’s parameters, deep 

brain stimulation for movement disorders is nowadays a highly effective therapeutic 
procedure. In this section, the pathological network structure of movement disorders is 
highlighted and then the reported stimulation effects are reviewed. 
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3.3.1 THE NETWORK STRUCTURE OF MOVEMENT DISORDERS 
The pathological oscillatory dynamics associated with movement disorders whether 

hyperkinetic (e.g. tremor) or hypokinetic (e.g. rigidity) have been shown to propagate 
over extended cerebral networks essentially including the basal ganglia, the subthalamic 
nucleus, the striatum, and the motor cortex [42-44]. Figure 5, adapted from [77], 
presents the block diagram of these interlaced networks. In Parkinson’s disease, for 
example, an excessive synchronization in the in the basal ganglia – cortical loop with 
coupled beta band oscillations in the globus pallidus, the motor cortex, and the 
subthalamic nucleus is often reported [78-81]. This synchronization of neuronal activity 
is equally reported in the ventrolateral thalamus, ventral anterior thalamus and in the 
centromedian-parafascicular complex of the thalamus [82]. The pedunculopontine 
nucleus (PPN) is also thought to be an active element of the dynamical network of 
Parkinson’s disease as well as other movement disorders such as tremor and dystonia 
[83].  

 

Figure 5.  The cerebral network involved in the pathologic dynamics of movement disorders as presented 
in [77]. The lightning bolts represent actually used targets for neuromodulation. Paradoxically, the 
stimulation of any of these targets has been reported to alleviate the disease dynamics. The line thickness 
indicates the relevant proportion of each projection. Colors represent the type of the neurotransmitter-
mediated transmission (see legend upper left corner). Line terminals represent the degree of axonal 
branching of a particular cell type. Abbreviations STN: Subthalamic nucleus, GPe: globus pallidus externus, 
GPi: globus pallidus internus, SNr: Substantia nigra pars reticulate, SNc: Substantia nigra pars compacta, 
SMA: supplementary motor cortex, CMA: cingulate motor area, PMC: premotor cortex, M1: primary 
motor cortex, RTh: reticular nucleus of the thalamus, VA: ventroanterior thalamus, VL: ventrolateral 
thalamus, CM: centromedian nucleus, Pf: parafascicular nucleus of the thalamus, Vim: ventral 
intermediate nucleus of the thalamus, PN: pontine nuclei, DCN: deep cerebellar nuclei, PPNd: 
pedunculopontine nucleus pars dissipatus, PPNc: pedunculopontine nucleus pars compacta.  
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In effect, the actually used stimulation targets for movement disorders (as indicated in 
Figure 5) are generally part of the pathological network. In this context, the stimulation 
configuration that works best is direct stimulation of certain components of the 
pathological network. Nevertheless, this direct stimulation exerts indirect stimulation 
effects on the network dynamics leading to the alleviation of motor symptoms.  

3.3.2 MODULATORY EFFECTS OF ELECTRICAL STIMULATION 
The first modulatory effects of electric deep brain stimulation in the context of 

Parkinson’s disease date back to the 1960s when Hassler and his colleagues [84] 
reported that high-frequency stimulation (HFS; 25 – 100 Hz) of the globus pallidus 
suppressed tremor in PD patients whereas low-frequency stimulation (LFS; < 25 Hz) 
applied at the same location elicited contralateral tremor. Since then, several successive 
clinical trials (Table 1) showed the effectiveness of electrical stimulation applied to 
different cerebral structures of the basal ganglia-thalamocortical networks (Figure 5) in 
the improvement of motor symptoms [85]. In brief, as described in clinical studies of 
Parkinson, the choice of stimulation parameters relies on the anti-tremor effects of HFS 
(130 – 185 Hz) in the ventral intermediate nucleus (Vim) of the thalamus reported by 
Benabid in 1993 [86]. Effectively, stimulation parameters are empirically tuned around 
these values in order to obtain a visual reduction in motor symptoms [87-92]. This owes 
to the visible motor symptoms of movement disorders, which allows an online tuning of 
the stimulator during the surgical procedure. 

Table 1 provides a brief list of DBS clinical trials reported between 1960 and 2005. In 
fact, the table reflects the frequent use of STN, GPe, GPi, and Vim as stimulation targets. 
The results reported converge to the global effectiveness of HFS (> 100 Hz) STN, GPe 
and GPi DBS in improving major motor symptoms (tremor, rigidity, akenisia,…). 
Conversely, Vim stimulation only reduced tremor. This stimulation target seems mostly 
adapted to tremor-predominant PD and essential tremor patients. 

Nevertheless, despite the undeniable advances in stimulation technologies destined at 
controlling the visible motor symptoms of movement disorders, little work has been 
done on the modulation of the underlying pathological neural dynamics by stimulation 
currents (typically the synchronous beta band oscillations propagating in the basal 
ganglia-thalamocortical network [93]). Consequently, existing DBS solutions are limited 
to open-loop chronic stimulation. Patients are generally asked to turn off the stimulator 
overnight to avoid unnecessary use of the stimulator’s battery [87-92]. Closed-loop 
control of the dynamics of movement disorders has been only recently raised [94, 95]. 
This will require the exploration of the electrophysiological dynamics of pathological 
neural systems in this particular context which will probably lead to a better 
understanding of the underlying cellular mechanisms. 
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3.4 STIMULATION FOR EPILEPSY 
Movement disorders are characterized by the continuous clinical manifestations of 

motor symptoms, whereas the unique clinical manifestation in epilepsy is the 
recurrence of seizures. Consequently, while stimulation parameters can be tuned as a 
function of the improvement in motor symptoms in patients with movement disorders, 
per-operative parameter tuning is almost impossible in epileptic patients. In fact, the 
literature of DBS for epilepsy shows that some DBS stimulation protocols were initially 
designed based on empirical insights gained from the previous clinical studies of DBS in 
the context of movement disorders [96] or epilepsy [97, 98] and/or from experimental 
trials [99](see [32, 100] for review).  
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Study Target Stimulation Parameters Reported Results 

Hassler et al. 
1960 [84] GP fs < 100 Hz 

fs < 25 Hz elicited contralateral tremor in PD 
patients 
25 < fs <100 Hz suppressed tremor 

Benabid et al. 
1993 [86] Vim 

P.W. = 60 µs 
fs = 130 – 185 Hz 
Is = 0.2 – 1 mA 

Identification of optimal anti-tremor stimulation 
frequencies in PD, essential tremor, and 
dyskinesia patients. Best results were obtained 
for PD patients. 

Hubble et al. 
1997 [87] Vim 

P.W. = 116.9 ± 86.1 µs 
fs = 161.9 ± 29.1 Hz 
Vs = 3.01 ± 1.05 V 

Significant reduction in motor symptoms in 19 
patients with ET and 10 patients with PD over a 
3-months follow-up period. 

Limousin et al. 
1998 [88] STN 

P.W. = 60 µs 
fs = 130 – 185 Hz 
Vs = 2 – 2.8 ± 0.6 V 
Vs was progressively 
increased during the long 
term follow up 

Long term improvement in scores for akinesia, 
rigidity, and tremor of the upper and lower 
limbs and for impairment in arising from chair, 
gait, and postural stability in 24 patients when 
off medications (12-month follow up) 

Benabid et al. 
2000 [90] STN 

P.W. = 60 µs 
fs = 130 Hz 
Vs = 2 – 3.5 V 

Cumulative results in reported from 100 clinical 
cases (5 years follow up): 
Average % improvement in motor symptoms 
41.6% improvement in akinesia 
48.6% improvement in rigidity 
27% improvement in tremor 

Østergaard 
[92] et al. 2002  STN 

P.W. = 60 µs 
fs = 130 – 200 Hz 
Vs = 3.1 ± 0.4 V 

Average improvement in motor symptoms in 
26/26 PD patients whether on or off medications 
over a 3-month and a 12-month follow up. 

Vesper et al. 
2002 [89] STN 

P.W. = 86 – 209 µs 
fs = 133 – 134 Hz 
Vs = 2.3 – 3.1 V 

Improved motor function over 12-month follow 
up – Decreasing medication doses (38 patients) 

Putzke et al. 
2003 [101] Vim 

3 year follow up 
Paramters were modified 
over time 
P.W. ≈ 80 ms 
fs ≈ 148 – 165 Hz 
Vs ≈ 2.5 – 4 V 

Long-term stability of stimulation-induced 
reduction in tremor in 19 patients (57 – 98%) 

Vitek et al. 
2004 [102] GPi/GPe 

P.W. = 200 µs 
fs  < 30, 50, 100, 200, and 
300 Hz 
Is = 0.25 – 2 mA 

Improvement in motor signs for both GPe and 
GPi stimulation for fs > 100 Hz. 
Worsening of motor symptoms was mostly 
coherent with fs ≤ 60 Hz (GPe), or fs = 1 – 30 Hz 
(GPi) 

Hamani et al. 
2005 [91] STN 

P.W. = 60 – 120 µs 
fs = 130 – 185 Hz 
Vs ≈ 3 V 

Systematic study of (more than 150 patients) 
Results after 5 years of stimulation (off 
medications) 
81% improvement in tremor 
65% improvement in rigidity 
47% improvement in akinesia 
39% improvement in postural instability 

Table 1. A list of some of DBS clinical studies reported in the context of movement disorders. Stimulation 
parameters for each study are provided. Abbreviations: P.W.: pulse width, fs: stimulation frequency, Vs: 
stimulation voltage, Is: stimulation current, PD: Parkinson’s disease, ET: Essential tremor.   
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Ever since the first reported clinical study of deep brain stimulation for epilepsy [103], 
the golden standard for determining the efficacy of a certain stimulation protocol has 
been the reduction in the frequency of clinical seizures, of course in the absence of 
adverse effects (see Table 2). Nevertheless, the well-structured electrographic 
biomarkers of interictal epileptic dynamics (see section 2.3.2) may allow the study of the 
modulatory effects of stimulation currents on electrophysiological interictal epileptic 
dynamics [104, 105], even though this is not always the case in large scale (> 10 
patients) clinical studies [106, 107], where the assessment of efficacy relies on 
subjective patient-reported seizures (statistical analysis of personal seizure diary). 

Study Target Stimulation  Epilepsy/Seizure Type Reported Results 

Cooper et 
al. 1973 

[103] 

Anterior 
cerebellum 

Chronic cerebellar 
LFS (10 Hz) 

Unblind study 

32 patients with 
secondary generalized 

seizures 

More than 50% reduction in 
seizure frequency 

Seizure suppression in 18/32 
patients lasting up to 3 years 

Wright et 
al. 1984 

[98] 

Cerebellar 
cortex 

Chronic cerebellar 
LFS (10 Hz), peak 

Is = 1 – 7 mA 
Double-blinded 

study 

12 patients with severe 
epilepsy: 

Complex partial 
seizures, complex 

absence seizures, grand 
mal, atonic seizures 

Only 1 patient out of 12 
presented a slight seizure 
reduction. Results are in 

contradiction with the results 
of Cooper et al. [103] 

Velasco 
et al. 
1987 
[108] 

CM 

2-hours/day 
biphasic stimulation 

(1/5 minutes) 
P.W. = 0.1 ms 

fs = 60 – 100 Hz 
Is =  0.8 – 2 mA 
6 to 37 months 

follow up 
Unblind study 

5 patients with 
generalized tonic-clonic 

seizures plus other 
complex seizures 
(partial complex, 

astatic, 
and myoclonic) 
Slow interictal 

dynamics (polyspike 
wave complex 3 – 4 Hz) 

3 months after daily 
stimulation: 

80 – 100% reduction in 
generalized tonic-clonic 

seizures 
60 – 100% reduction in 

complex seizures 
Reduction in IED recorded in 

the CM as well as by scalp 
EEG 

Fisher et 
al. 1992 

[97] 
CM 

2-hours/day 
biphasic stimulation 

(1/5 minutes) 
P.W. = 0.9 ms 

fs = 65 Hz 
Is =  0.7 mA 

7 patients with 
refractory epilepsy : 

Generalized or 
multifocal seizure foci 

No significant reduction in 
seizure frequency was 

reported in any of the 7 
patients. 

Benabid 
et al. 

2002 [96] 
STN Chronic HFS 

30 months follow up 

5 year old girl with a 
focal centroparietal 
cortical dysplasia. 

Voltage-dependent reduction 
(80%) of the severity and 

frequency of seizures. 

Velasco 
et al. 
2007 
[109] 

Hippocampus 
or 

Amygdalo-
hippocampal 

junction 

Bilateral chronic 
cyclic stimulation (1 
min left – 4 min rest 

– 1 min right) 
P.W. = 450 µs 

fs = 130 Hz 
Is =  300 µA 

Double-blinded 
study 

9 MTLE patients 
with/without HS follow 

up > 18 months 
Complex partial seizures 

 

Patients without HS (5/9) 
> 95 % seizure reduction 

Patients with HS (4/9): 50 –
 70 % seizure reduction. 
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Boëx et 
al. 2007 

[104] 

Amygdala/ 
Hippocampus 

P.W.= 450 µs/phase 
fs = 5 or 130 Hz 

Vs =  1V 
Stimulation 3 – 6 

hours/day 

3 patients with MTLE 
 

130 Hz: significant reduction 
of the interictal spike rate in 
2/3 patients, reduction trend 

in 1 patient 
5 Hz: Overall increase in 

interictal spike rate (trend) in 
2/3 patients, no effect in 1 

patient. 

Miatton 
et al. 
2011 
[110] 

Hippocampus 

Amygdalo-
Hippocampal 
stimulation 

P.W. = 450 µs 
fs = 130 Hz 

Vs =  1 – 2.5 V 

10 patients with drug-
resistant MTLE 

53 – 57% reduction in seizure 
frequency 

Valentin 
et al. 
2013 
[111] 

CM 

P.W. = 90 µs 
fs =60 Hz 
Vs =  5 V 

Unblind study 

11 patients with frontal 
epilepsy and 

generalized seizures 

12-months follow up: 
> 50% seizure reduction 

66-months follow up: 
5/6 patients had > 50% 

seizure reduction including 3 
seizure free 

Table 2. Selected list of clinical trials of DBS for epilepsy. Abbreviations: LFS: low-frequency stimulation, HFS: 
high-frequency stimulation, Is: stimulation current, fs: stimulation frequency, Vs: stimulation voltage, P.W.: 
pulse width, MTLE: mesial-temporal lobe epilepsy, CM: centromedian thalamic nucleus, STN: subthalamic 
nucleus, ANT: Anterior thalamic nucleus, HS: hippocampal sclerosis. 

Herein, the selected studies presented in Table 2 show the variability of the stimulated 
targets that could be used in the context of epilepsy. In certain studies [107, 109, 110], 
the stimulation target is located in the epileptogenic zone; direct stimulation (the 
hippocampus, the amygdalo-hippocampal junction in temporal lobe epilepsy). In other 
studies, the stimulation target is external to the pathological region such as the 
stimulation of STN in the case of a focal centroparietal malformation [96], the 
stimulation of the CM in case of frontal seizures [111]. The reported results are 
promising in both direct and indirect stimulation configurations.  

Unfortunately, the study of DBS effects on epileptic dynamics will remain empirical as 
long as no clear guidelines are established for the choice of stimulation type 
(direct/indirect) as a function of the epilepsy syndrome and its corresponding seizure 
types. In the following sections, two main categories of epilepsy syndromes are 
highlighted. Present knowledge concerning their corresponding electrographic interictal 
dynamics as well as the impact of stimulation currents on these dynamics is hereby 
reviewed.  

Case of focal epileptogenic lesions and malformations. Partial (focal) epilepsy is often 
associated to acquired brain lesions and inborn malformations [112]. These focal 
alterations in the structure of the cerebral tissue lead to focal neuronal hyperexcitability 
that is later on expressed in partial epileptic seizures [113]. The developmental aspect of 
these epileptic syndromes makes it difficult to attribute particular electrographic 
patterns for all types of epileptogenic lesions and malformations. Nevertheless, a 
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certain type of inborn malformations, known as focal cortical dysplasia (FCD), has a 
confirmed epileptic character with particular epileptiform patterns [114]. Epilepsies 
associated to focal cortical dysplasias are generally drug-resistant.  

The histopathology of FCD [115] reveals an abnormal disorganization of cortical layers 
associated with hypertrophic or enlarged neural cells often trailing into the white 
matter. These enlarged neurons, termed balloon cells, are characterized by displaced 
nucleus, lack of dendrites or axons. In fact, this abnormal chaotic structure of FCDs is of 
unknown developmental causes and contributes to the hyperexcitability of the lesioned 
tissue. However, despite this disorganization, FCDs retain sufficient connectives for 
initiating epileptic seizures [33]. 

 

Figure 6. Electrophysiology of focal cortical dysplasia (FCD).  (A) MRI scan of a patient with drug-resistant 
epilepsy showing FCD in the right hemisphere (circled knob-shaped) as compared to the normal 
contralateral cortex (black arrow). (B) ECoG recordings of FCD dynamics showing semi-rhythmic 
continuous spikes and polyspikes. Adapted from [114] without permission.  

The electrographic interictal markers of FCD. Clinical studies [112, 114, 116, 117] of 
FCD’s epileptogenicity  highlighted its characteristic IEDs (interictal epileptic discharges). 
EcoG, iEEG, as well as scalp EEG recordings converge to the following set of epileptic 
dynamics: (1) repetitive electrographic seizures of prolonged rhythmic trains, (2) 
repetitive bursting discharges, (3) sustained continuous or semi-continuous rhythmic 
spike or polyspike trains (see Figure 6 [114]).  
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In view of its developmental aspect, FCDs vary largely among patients particularly in 
terms of their location in the neocortex and their structure. For this reason, DBS studies 
in this context are limited to clinical case reports [96, 105]. 

Case of mesial-temporal lobe epilepsy syndrome. 

Temporal lobe epilepsy is the most common form of partial epilepsies in adults (∼60% 
[118]). Mesial-temporal lobe epilepsy (MTLE) constitutes one of the most common 
forms temporal lobe epilepsies [119]. MTLE is characterized by the recurrence of focal 
seizures involving mesial temporal lobe structures (hippocampus, amygdala, entorhinal 
neocortical regions, brainstem, …). MTLE with hippocampal onset represents 80% of all 
temporal lobe seizures [118]. Most cases of MTLE are associated with hippocampal 
sclerosis (HS; 60% - 70% of MTLE patients [120]), and are medically drug-resistant.  

The electrographic interictal signatures of MTLE [118]. The interictal epileptic 
discharges (IEDs) associated with MTLE include recurrent anterior temporal spikes and 
sharp waves with maximum amplitude at the temporal basal electrodes of EEG scalp 
recordings. In addition, intermittent slow delta waves are also common at these 
electrodes. They generally designate electrographic seizures with no clinical 
manifestations. Otherwise, hippocampal intracerebral recordings showed the 
recurrence of spontaneous interictal ripples or fast ripples in patients with MTLE [121]. 
These are termed high-frequency oscillations (HFOs) and are nowadays considered as a 
potential biomarker of epileptogenicity [122]. Noteworthy, the form of the spikes, sharp 
and slow delta waves can vary largely among patients. 

Finally, drug-resistance in MTLE and its high prevalence among epileptic patients led to 
the exponential increase in the number of clinical and experimental trials aiming at 
controlling mesial-temporal epileptic dynamics. Deep brain stimulation of mesial-
temporal structure has long been one of the explored trails (see [123] for review). 
Selected clinical studies are listed in Table 3. The majority of these studies tested the 
efficacy of high-frequency direct stimulation of the ictal onset zone. Effectively, the 
choice of the stimulation frequency is usually justified by its anti-tremor effects in 
Parkinson patients, firstly reported by Benabid et al. in 1993 [86], and by its 
subsequently reported antiepileptic effects in animal models (see [124] for review) as 
well as in clinical trials [125]. However, in view of the unresolved problem of resistance 
to therapy, non-responders or symptom worsening are frequently reported in HFS 
studies. Overpassing this problem constitutes the ultimate challenge for DBS 
technologies. 
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Study Patients Stimulation 
Target 

Stimulation 
Parameters Stimulation Outcome Other Remarks 

Vnock et al. 
2002 [126] 

3 patients with 
MTLE 

Amygdala-
hippocampal 
stimulation 

fs = 130 -200Hz 
PW = 450µs 

Vs =1V 

Significant reduction in interictal discharge 
occurrence and seizure frequency 

The stimulation frequency was set to 130Hz for the three 
patients, but had to be increased to 200Hz in one of them 

in order to observe antiepileptic effects 

Boon et al. 
2007 [107] 

12 patients with 
MTLE 

Ictal onset zone 
determined 
patient-wise 

fs = 130Hz 
PW = 450µs 

Vs determined 
patient-wise 

Seizure reduction ≥ 50% for 10/12 patients 
1/12 patient seizure free (1 year follow up) 

1/12 patient 90% seizure reduction 
1/12 patient non-responder 

Unilateral MTL ictal onset → ipsilateral amygdala- 
hippocampal DBS 

Bilateral MTL ictal onset → bilateral hippocampal DBS 

Fisher et al. 
2010 [127] 

(SANTE trial) 

110 randomized 
patients with 

refractory epilepsy 
(only 66 MTLE) 

Anterior Nucleus 
of the Thalamus 

(ANT) 

fs = 145Hz 
PW = 90µs 

Vs ≈ 5V 

Patients with temporal seizure onset obtained 
the highest seizure reduction results 

54% of all patients (110) had a seizure 
reduction ≥ 50% 

3-month blinded phase (Vs = 0 or 5V) followed by 9-
month unblended phase 
Stimulated 35 patients 

Control 30 patients 

McLachlan et 
al. 2010 [128] 

2 patients with 
MTLE 

Hippocampus 
(Ictal onset zone) 

fs = 185Hz 
PW = 90µs 

Vs ≈ 0.5V (tuned 
minimal value) 

33% decrease in seizure frequency during 
stimulation phase 

25% decrease in seizure frequency during the 
washout phase 

3-month chronic stimulation period, followed by 3-month 
washout period 

(Bilateral hippocampal stimulation) 

Boex et al. 
2011 [129] 

8 patients with 
MTLE (2 with HS) 

Amygdala-
hippocampal 
stimulation 

(Ictal onset zone) 

fs = 130Hz 
PW = 450µs 

Vs ≈ 1-2V 

67-88% significant seizure reduction in the HS 
patients (bipolar stimulation 0.5V intensity) 

2/8 patients were seizure free 
2/8 were non responders 

2/8 non-lesional patients > 70% seizure 
reduction 

(average follow up 43 months) 

The cathode was determined as the closest electrode to 
the most epileptogenic site and the anode was the one 

closer to the second most epileptogenic site (patient 
wise) 

Inter patient Variability later discussed in function of the 
location of the stimulating electrodes in [130] 

Koubeissi et 
al. 2013 [131] 

11 patients with 
MTLE Fornix 

fs = 1Hz 
PW = 100µs 

(bipolar) 
Is = 8mA/phase 

92% reduction in seizure frequency lasting two 
days after the end of stimulation in 

responding patients (8/11) 
>75% decrease in spike occurrence during the 

stimulation sessions 

Stimulation sessions done as part of the surgical 
evaluation of intractable epilepsy 

Cukiert et al. 
2013 [132] 

9 patients with 
MTLE 

Hippocampus 
(unilateral or 

bilateral 
stimulation 
determined 
empirically 

fs = 130Hz 
PW = 300µs 
Vs ≈ 1-3.5V 

7/9 patients had a seizure reduction > 60% 
4/9 patients had a 100% reduction of 

generalized tonico-clonic seizures 
1/9 only 12% seizure reduction 

1/9 was a non-responder 

Mean reduction in complex partial seizures for 
responders: 86.5% 

Mean reduction in tonico-clonic seizures: 100% (4 of 4 
patients) 

Table 3. Selected studies of deep brain stimulation for mesial-temporal lobe epilepsy (MTLE)  
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Chapter 2: Problem Statement and 
Objectives 

 Forty years have passed since the first clinical trial of DBS for drug-resistant epilepsy 
[103] yet, as shown in the previous chapter, deep brain stimulation technologies may reduce 
seizure frequency but do not cure epilepsy. Actually, on clinical grounds, only three stimulation 
devices were approved for clinical use in drug-resistant patients throughout these years: the 
vagus nerve stimulator in 1997 [133], the Medtronic® neurostimulator of the anterior nucleus 
of the thalamus (ANT) in 2010 [127] and the responsive neurostimulation device RNS 
Neuropace® in 2013 [134]. Noteworthy, even approved, these devices do not guarantee the 
improvement in seizure frequency or the absence of adverse side effects. With vagus nerve 
stimulation, only 39% of the stimulated patients achieved a seizure reduction of at least 50% 
[133]. With the Medtronic® neurostimulator, only 54% of the patients reported a seizure 

reduction superior to 50% [127]. The RNS stimulator of Neuropace® has been accorded a mere 
37.9% seizure reduction in the stimulated group versus 17% in the control group [134]. In these 
three cases, a number of complications and seizure worsening has been reported. 

1 PROBLEM STATEMENT: STIMULATION PARAMETERS, OUTCOME AND 

MECHANISMS 
The previous chapter shows the contrast between the large number of clinical trials of 

DBS for epilepsy and the wide spectrum of the possible stimulation outcome (seizure 
freedom, reduction in seizure frequency, non-responder, seizure worsening). 
Understanding and resolving this variability can probably lead to an improvement of DBS 
technologies for epilepsy. 

1.1 THE VARIABILITY 
As illustrated in Table 2 and Table 3 (previous chapter), the choice of the stimulation 

parameters remains globally bound to homogenous intervals; in most cases the stimulation 
frequency is superior to 100Hz, the pulse width is of the order of microseconds, the 
stimulation current is of the order of milli-amperes and the stimulation voltage is always 
inferior to 5V. These voltage/intensity parameters depend on the type of the clinical 
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stimulator used. Although that both current or voltage source stimulators exist in clinics, 
recent studies highlight the proved safety of current source stimulator as compared to 
voltage source stimulators [135]. 

Despite the homogeneity of the stimulation parameters, the stimulation outcome strongly 
varies among patients (or groups of patients). For the same stimulation trial, very few (< 
10 %) patients never experience seizures during the stimulation follow-up (up to 5 years), 
about half the population (30 – 55 %) report at least 50 % reduction in seizure frequency, 
about 10 % are non-responders, and few others experience a worsening in seizure 
frequency and severity (see previous chapter). Many factors may be at the origin of this 
variability: the choice of the stimulation category (see chapter 1 section 3.2) and 
parameters, the inter-patient anatomical and pathological differences either on the level of 
the epileptogenic zone, the seizure semiology or the precision in the position of the 
stimulating electrodes ….  

The empirical approach usually adopted to determine stimulation parameters ahead of a 
clinical trial is rather restrictive than constructive. Even the fine tuning of stimulation 
parameters around a priori fixed values patient-wise does not always guarantee 
antiepileptic effects. Nevertheless, in view of our current, and still limited, understanding of 
the mechanisms by which stimulation currents modulate neuronal dynamics, whether 
normal or pathological, such empirical approach seems clinically the most adapted for drug-
resistant patients in whom surgery is contraindicated

1.2 THE POORLY-UNDERSTOOD MECHANISMS 
Today, the precise direct and network mechanisms of neural modulation by DBS remain 

elusive [77]. The majority of the studies exploring DBS mechanisms usually address those 
related to HFS (> 100 Hz) given its common use in the clinical context (for examples see [68, 
73, 136, 137]). When identified, these mechanisms seem to vary as a function of the 
employed experimental setup: functional imaging, neurophysiological recording, 
neurochemistry and biology-inspired computational modeling [138].  

Functional imaging studies highlight neural activation in the stimulated network during 
HFS; thalamic stimulation of patients with essential tremor showed increased activity in the 
thalamus, the motor cortex, and basal ganglia with respect to baseline activity [139-141]. 
Regarding neurophysiological observations, the reported results can be divided into two 
contradictory classes: the inhibition of neuronal activity by HFS versus the increase of 
neuronal activity by stimulation. These results depend on the recording site. The inhibition 
of intrinsic neuronal activity was recorded in the stimulated nuclei [69, 142, 143], whereas a 
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neuronal activation was reported when the stimulation electrodes recorded efferent nuclei 
of the stimulated target [144, 145]. This indicates that the mechanisms of direct and 
indirect stimulation can be completely distinct.  

Recent evidence from neural network modeling suggests that HFS induces a functional 
decoupling of the somatic and axonal activity in stimulated neuronal populations [73]. 
Stimulation may induce the inhibition of intrinsic somatic activity as well as axonal 
excitation (coupled to the stimulation frequency) at the same time. The origin of the 
reported somatic inhibition is related to GABAergic (GABAB) mechanisms. This may imply 
the dual coexistence of inhibition and excitation in the stimulated nucleus: the inhibition of 
the intrinsic activity of the latter, versus the activation of its efferent nerve fibers 
(orthodromic activation), which consequently excites efferent nuclei. 

Although that the inhibition of the stimulated target seems to be a probable direct effect 
of stimulation, the mechanisms underlying this inhibition remain controversial. Among the 
many studies reported over the last decade, identified mechanisms regarding the inhibitory 
effect include: local depolarization blockade [68], synaptic depression due to 
neurotransmitter depletion [146, 147], synaptic inhibition [70], stimulation-induced 
increase in glutamate levels in the stimulated target and consequent activation of inhibitory 
neurons (feedback inhibition)[74]. 

Few studies indirectly addressed the mechanisms of low-frequency stimulation on neural 
dynamics [148-150]. These studies, initially aimed at studying the mechanisms of cortical 
adaptation in response to a thalamic stimulation in the context of sensory integration, 
reported a transient synaptic depression at thalamocortical synapses following trains of 
thalamic LFS (< 10 Hz). Interestingly, this short-term depression was linked to NMDA 
receptors formed at the cortical level by ascending thalamocortical fibers [149].  

Finally, intermediate-frequency stimulation (IFS; 20 – 60 Hz) has long been used in the 
context of presurgical evaluation of patients with drug-resistant epilepsy in order to map 
dysfunctional (the epileptogenic network) and functional brain areas. It has long been 
observed that this type of stimulation can induce epileptic afterdischarges in animal models 
of epilepsy [151]. However, to the best of our knowledge, the mechanisms related to these 
stimulation frequencies have never been specifically explored. A very recent function 
imaging study shows that maximal cortical activation is attributed to DBS frequencies in the 
range 40 – 100 Hz [152].  

As far as DC stimulation is concerned, stimulation mechanisms are summarized by 
polarization effects (see chapter 1 section 3.2.2). However, these studies are limited to 
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transcranial electrical stimulation. DC DBS has never been tested on human patients due to 
the lack of appropriate knowledge concerning the effective electrical safe dose to be used. 
DC stimulation is associated with electrode polarization, tissue damage, irreversible charge 
accumulation, excitotoxicity … (see [153] for review). 

This brief review suggests that the spectrum of involved mechanisms is quite large and 
that distinct stimulation-induced cellular/network processes can be triggered as a function 
of stimulation frequency. Besides, the mechanisms underlying frequency-dependent effects 
remain almost unexplored. This is notably the case of IFS, which is the least associated to 
possible antiepileptic effects. Similarly, the mechanisms of LFS and DC stimulation remain 
less explored than those of HFS. 

1.3 HOW TO OPTIMIZE STIMULATION 
The optimization of stimulation outcome requires a mature understanding of the 

underlying mechanisms of neuromodulation by electrical currents. Since the present 
scientific knowledge of these eminent biophysical and neurophysiological processes 
remains incomplete, the empirical tuning of stimulation parameters cannot be overpassed. 
Noteworthy, the clinical exploration of all possible ranges of parameters (frequency, 
current intensity, pulse width …) and configurations (DC/AC, direct/indirect …) is practically 
impossible due to ethical, technical and clinical limitations. Then, the challenge is to define 
alternative methodologies that allow for the exploration of vast ranges of stimulation 
parameters and configurations in order to establish a better-defined relationship between 
stimulation parameters and stimulation effects from the one side and stimulation 
parameters and mechanisms on the other side 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = Ϥ(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 = Ϻ(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

 where Ϥ and Ϻ represent to-be-defined functions of stimulation parameters. The 
qualitative or quantitative definition of these relationships/functions can assist the 
optimization of stimulation protocols. 

2 OBJECTIVES: OPTIMIZE STIMULATION OUTCOME 
The objectives of this thesis are (1) the development of an alternative computational  test 

ground for studying the mechanisms of generation of real epileptic dynamics in well-
defined contexts, (2) the consequent identification of the stimulation parameters-outcome 
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and the parameters-mechanisms relationships and finally (3) the establishment of 
guidelines for optimizing stimulation outcome. 

2.1 OPTIMIZE STIMULATION PARAMETERS AND EFFECTS 
Following the different stimulation configurations, various parameters can be considered 

for an eventual optimization. During this PhD thesis, my work was focused on two major 
under-explored stimulation configurations. The first one concerns the case of indirect AC 
intracerebral stimulation. In this case, the contribution of the stimulation frequency to the 
modulatory effects is assessed. The second case concerns the DC direct stimulation of the 
ictal onset zone. Stimulation polarity and duration are particularly studied.   

2.1.1 CASE OF INDIRECT AC INTRACEREBRAL STIMULATION 
Indirect AC intracerebral stimulation is probably the most common clinical stimulation 

intervention reported in the context of epilepsy. This stimulation configuration is aimed at 
modulating the epileptic network activity or the epileptic focus activity by targeting a deep 
brain (or intracerebral) structure. However, as far as the stimulation parameters are 
concerned, this configuration is often limited to high-frequency stimulation (HFS; > 100 Hz). 
In spite of a 10 % rate of non-responders and a 50 % rate of significant reduction in seizure 
frequency, the effects of lower stimulation frequencies are not seriously explored.  

For this stimulation configuration, this work aims at identifying the frequency-dependent 
stimulation outcome as well as mechanisms on a wider frequency range.  

2.1.2 CASE OF DIRECT DC INTRACEREBRAL STIMULATION 
DC direct stimulation of the ictal onset zone has never been explored earlier clinically or 

experimentally in vivo. This owes to the monophasic aspect of this type of stimulation that 
is usually associated with tissue damage [154]. It is proved that at certain current 
intensities, DC stimulation can provoke electrode polarization through faradaic reactions 
leading to harmful metal deposit in the stimulated tissue [153]. Other mechanisms related 
to brain damage by DC stimulation currents include metabolic processes such as 
excitotoxicity and electrochemical phenomena such as tissue heating [135]. 

Despite the discouraging assumptions, low-intensity DC direct stimulation is explored in 
this work. The objective is to assess the contribution of low-intensity current polarity and 
duration to stimulation outcome in the perspective of translating results to non-invasive 
tDCS.   
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3 GENERAL METHODOLOGY 
In order to achieve the announced objectives, an interdisciplinary work is undertaken in 

this thesis. The general methodology relies on the conjoint use of computational modeling, 
real data acquisition, signal processing, and nonlinear system analysis (Figure 7). 

3.1 COMPUTATIONAL MODELING 
Computational neuroscience is an interdisciplinary science at the interface of 

neuroscience, mathematics, physics and engineering. This research domain favors cross-
talk among these various disciplines thus allowing the integration of distinct forms of new 
and detailed knowledge (e.g. experimental neurobiology/neurophysiology, dynamics of 
“complex” or nonlinear systems, electrical engineering) into a single entity, a computational 
model. Thereby, the latter can be a useful tool not only to reproduce and explain 
experimental/clinical observations but also to generate experimentally testable hypotheses 
about underlying mechanisms. In effect, computational neuroscience encompasses studies 
ranging from the cellular and molecular levels (microscopic models) to studies at the 
systems’ level (mesoscopic and macroscopic models). The level of representation actually 
follows the nature of the studied experimental context and the desired level of exploration 
of the targeted mechanisms.  

In the context of epilepsy, computational neuroscience has been particularly useful. In 
fact, micro-, macro- and mesoscopic models of epileptic neuronal interactions somehow 
contributed to our current understanding of major epileptic dynamics particularly in the 
context of ictal transition and the generation of epileptogenic biomarkers (e.g., high 
frequency oscillations (HFOs) and spike-wave complexes) [155]. Computational models 
were later used to predict seizures as well as the efficacy of antiepileptic drugs but with not 
much success (see [156] for review). Over the past decade, computational modeling 
particularly gained ground in the domain of “therapeutic” deep brain stimulation (DBS) in 
an attempt to uncover its underlying mechanisms and therefore optimize its clinical 
efficiency [157].  

Noteworthy, the computational approach is particularly fruitful when it is well grounded 
in experimental/clinical data [158]. In fact, it has been evidenced that 1300 out of ~600,000 
configurations of a four-compartment model could be used to approximate the 
physiological properties of a biological neuron as simple as the lateral pyloric neuron of the 
stomatogastric ganglion of decapod crustaceans [159]. 
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Figure 7. A schematic representation of the general methodology. 1) Real neurophysiological knowledge is 
used in order to computationally model realistic epileptic dynamics then 2) electrophysiological 
experimental/clinical data is processed and characterized in order to optimize the model’s parameters. 3) The 
analysis of the resulting nonlinear dynamical system gives rise to computational observations of 
neurophysiological phenomena (mechanistic insights, physiological processes…). New hypothesis concerning 
the underlying neurophysiological processes (of neuromodulation in our case) can then be elaborated. 4) The 
experimental validation of these hypotheses is mandatory for the generation of new knowledge or for the 
consequent enhancement/modification of the computation model when the tested hypotheses are rejected.  

For this reason, a special attention was made in this work to reconcile the computational 
modeling aspects with the neurosciences experimental/clinical ground reality. Therefore, 
when considering each stimulation context, a neurophysiology-based model of the 
concerned brain structure/network is proposed. Similarly, a physiologically-plausible 
implementation of stimulation inputs is equally included. 

3.2 ELECTROPHYSIOLOGICAL DATA ACQUISITION/EXPERIMENTATION AND SIGNAL PROCESSING 
Once an adapted model is properly implemented, electrophysiological data is used to 

optimize the model’s parameters. In this work, two data types are used: clinical and 
experimental electrophysiological signals. Clinical intracerebral EEG (iEEG) signals are 
recorded during the pre-surgical intracerebral evaluation of the epileptogenic zone in a 
drug-resistant patient. Experimental LFP signals are acquired as a part of an experimental 
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setup designed to study epileptic dynamics in vivo (mouse model) and to analyze/explain 
the consequent modulatory effects of DC currents on these dynamics. 

Adequate signal processing methods are defined for each data type. A time-frequency 
adaptive method (Matching Pursuit – MPTK [160]) is used to analyze the frequency content 
of real iEEG signals and a rupture detection algorithm (Page-Hinkley test) is used to detect 
transient interictal discharges in experimental LFPs. These different approaches were 
elaborated to quantify the “epileptic aspect” of actual electrophysiological signals. This 
aspect was either characterized by its proper spectral distribution when MPTK was used or 
by the occurrence, intensity and duration of the detected epileptic interictal transients 
when Page-Hinkley was used. In both cases, the quantified “epileptic aspect” allowed for 
model parameter optimization (distance between simulated and real signals) and thus for 
the optimal reproduction of epileptic dynamics in the model based on real data.  

3.3 NONLINEAR SYSTEM ANALYSIS 
The resulting nonlinear dynamical system is finally analyzed in order to explore the 

mechanisms of generation of stimulation effects. The phase plane is explored, the activity 
maps are computed and/or the intermittency of the model’s output is studies as a function 
of the parameters of the stimulation input.  

In the case of AC indirect stimulation, the effect of the frequency of the stimulation signal 
on the model’s dynamics is defined. Besides, mechanistic insights concerning the observed 
bifurcations are concluded. In the case of DC direct stimulation, the effect of the polarity of 
the stimulation input on the model’s dynamics is explored. The sensitivity of these effects 
to the coefficient of impact on the concerned neuronal subpopulations is also expressed in 
activity maps. Only for the second stimulation case, the experimental validation of the 
model’s predictions is accomplished (preliminary experimental study). 

3.4 GENERAL OVERVIEW OF THE WORK ACCOMPLISHED DURING THIS PHD THESIS 
Figure 8 summarizes the work accomplished during this PhD thesis. It shows the two 

studied stimulation contexts and their consequent results. As illustrated, both 
investigations made use of the same family of methods (computational modeling and signal 
processing). They both relied on real electrophysiological data. Finally, they both implied 
parameter-dependent effects of stimulation.  
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Figure 8. Major contributions and organization of the presented work. In this thesis, two major stimulation 
protocols were studied in the perspective of a possible clinical translation of the revealed results. The same 
general methodology was used in these two investigations, described each in a separate part of this 
dissertation. The first studied stimulation protocol (Part 1, in orange), AC indirect stimulation, involved the 
development of an extended mesoscopic model of the thalamocortical loop that includes the implementation 
of major cellular processes (such as feedforward inhibition and short-term depression). The model parameters 
were then optimized using an adequate clinical dataset observed in the intracerebral EEG (iEEG) recordings of 
a patient with focal epilepsy. Suitable time-frequency methods (based on Matching Pursuit) were used to 
characterize the spectral distribution of actual and simulated signals for model optimization. The results 
suggested frequency-dependent effects and mechanisms of stimulation. The second investigation (Part 2, in 
blue) of this work concerned the DC direct stimulation protocols. Computationally, an existing model of the 
hippocampus developed in our team [161] was amended to accomplish this work. The statistical identification 
of IED occurrence from experimental LFP recordings allowed a better representation of IED occurrence. For 
this, the Page-Hinkley test was used to detect the peaks of IEDs. The results showed a polarity-dependent 
modulation of IED occurrence. An experimental protocol was then designed and performed to validate these 
results.  
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In Part 1 of this manuscript, AC indirect stimulation protocols are studied particularly in 
the thalamocortical network. An adequate model of the thalamocortical loop is proposed. It 
constitutes an extended version of existing models including an explicit implementation of 
two major cellular mechanisms of cortical adaptation in this network, namely short-term 
depression and feedforward inhibition. The model makes use of an adequate dataset of 
clinical intracerebral EEG (iEEG) recordings observed during the preoperative iEEG 
exploration in a patient with focal epilepsy. The stimulation effects as well as the 
spontaneous epileptic dynamics observed in this dataset were characterized using an 
adequate time-frequency signal processing algorithm, based on Matching Pursuit. The 
quantified features were used to optimize the model’s output. The results suggested 
frequency-dependent effects and mechanisms of stimulation 

In the second part of the manuscript (Part 2), the mechanisms and effects of DC direct 
stimulation protocols are explored. For this, an existing model of the hippocampus [161] 
developed in our team was adapted to accomplish the computational part of this study. 
Real LFP recordings in a mouse model (kainate model) of mesial-temporal lobe epilepsy 
(MTLE) were used to statistically identify the occurrence IEDs in the epileptic hippocampus. 
This allowed a better representation of the transition between background activity and 
epileptic discharges in the model. A rupture detection algorithm (Page-Hinkley test) was 
used to detect the occurrence of these IEDs in real and simulated signals. The results 
showed a polarity-dependent modulation of IED occurrence in the simulated signals. A 
polarity-dependent stimulation mechanism (membrane polarization) was implemented to 
obtain these results. An experimental protocol was then designed to verify the existence of 
these polarity-dependent effects in vivo. The same mouse model was used for this 
validation. The results are detailed in Chapter 8. 
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PART 1: FREQUENCY-DEPENDENT EFFECTS OF 
INDIRECT THALAMIC STIMULATION ON CORTICAL 

EPILEPTIC DYNAMICS 
 

 

 

 

 

 

 

 

 

 

 

The objectives of Part 1 can be summarized by (1) understanding the mechanisms of 
generation of epileptic thalamocortical dynamics, (2) exploring the contribution of the 
stimulation frequency to the modulation of these dynamics and (3) proposing a clinical 
implication for the ensued computational results. Firstly, a physiologically-plausible 
computational model of the thalamocortical loop is proposed. A real clinical dataset of thalamic 
DBS observed in a patient with drug-resistant epilepsy is then used to optimize the model’s 
parameters to guarantee a realistic epileptic output. For this, a signal processing method based 
on an adaptive signal decomposition algorithm (Matching Pursuit) is used to characterize real 
and simulated signals. Later on, an exhaustive optimization procedure is employed to determine 
the optimal model parameters. And finally, the behavior of the resulting nonlinear dynamical 
system is analyzed as a function of the frequency of the stimulation input. The results suggest a 
frequency-dependent modulation of the model’s output. Further analysis highlighted frequency-
dependent mechanisms of indirect AC stimulation. 
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Chapter 3: A Computational Model of the 
Thalamocortical Loop 

This chapter first reviews the existing models of the thalamocortical loop. Then our own 
implementation of a stimulation-driven model of this brain network is detailed. The latter was 
further used to explore the mechanisms by which DBS modulates epileptic cortical activity. 

1 MESOSCOPIC MODELS OF THE THALAMOCORTICAL LOOP 
The international league against epilepsy defines epileptic dynamics as related to 

“abnormal excessive or synchronous neuronal activity in the brain” [162]. Moreover, it is 
evidenced that thalamocortical dynamics participate into synchronization processes that 
allow for  the generation of normal (e.g. sleep spindles) as well as pathological oscillatory 
activity (e.g. epileptic discharges) [163]. Given this reported synchrony of neuronal activity 
in thalamocortical networks, particularly in the epileptic context (e.g. spike-wave epileptic 
discharges), a particular interest was attributed to the mesoscopic neural modeling in this 
chapter. Actually, a lumped representation of interacting neuronal populations was 
adopted for modeling the dynamics of the thalamocortical system in this thesis. 

1.1 THE THALAMOCORTICAL LOOP 
The thalamus (Figure 9) is a highly compartmentalized midline brain structure of two 

bilateral halves, lying between the midbrain and the neocortex. It is made up of various 
nuclei with various and often independent functions. All thalamic nuclei, except the 
reticular thalamic nucleus (RTN), present reciprocal ipsilateral neuronal projections to 
particular cortical regions depending on their functions (motor, somatosensory …). The 
RTN, which is structurally a thin shell of GABAergic cells surrounding the thalamus, forms 
efferent inhibitory connections (GABAergic) to the corresponding thalamic nuclei from 
which it receives glutamatergic input. In the normal brain, all cortical regions receive inputs 
from the thalamus [164].  

Generally speaking, a thalamocortical loop can be defined as the interacting neural system 
formed by the reciprocal neuronal projections existing between the thalamus and the 
cortex, passing by the reticular nucleus. Various thalamocortical loops connect different 
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regions of the cerebral cortex to distinct thalamic nuclei in order to assure certain brain 
functions (e.g., sleep rhythms, consciousness, sensory integration…). This explains the 
scientific interest in this type of neuronal networks, and therefore the wholesome of 
scientific studies, computational included, that it ensued over the past two decades (see 
[73] for review), especially when it concerns thalamocortical dysfunction (epilepsy, cortical 
lesions and trauma, tremor… and more recently schizophrenia[165, 166]).  

 
Figure 9. The Thalamic Nuclei (http://en.wikipedia.org/wiki/Thalamic_reticular_nucleus). Dorsal, mid-section 

and rear view. Note that the thalamic reticular nucleus forms a capsule around the thalamus laterally.  
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1.2 THALAMOCORTICAL MODELS: STATE OF THE ART 
Besides microscopic models, the literature about computational neuroscience is rather 

rich regarding mesoscopic models of the thalamocortical loop. Models proposed so far 
share the same generic tri-modular architecture consisting of a cortical, a reticular and a 
thalamic module (Figure 10). Moreover, one can admit that each of these models can be 
viewed as an evolution of the preceding ones in an attempt to suitably address the 
objectives of a particular study. For instance, the models described in [67, 167-169] are 
extended forms of a sequence of previously published models of cortical dynamics [20, 170, 
171] to which a reticular and a thalamic module were added.  

Similarly, the thalamocortical model described by Adhikari and his colleagues [67] is the 
most recent form of Robinson’s model [26]. Being the first mesoscopic model to explore 
thalamic DBS effects on cortical activity, the model contribution included adding a single 
stimulation input on the thalamic module, herein representing the ventral thalamic 
nucleus. Formally, the stimulation current was actually summed with the incoming “axonal 
flux” [67], otherwise termed the incoming firing rate, arriving at the thalamic module.  

Equally important, another series of models [27, 172, 173] of the thalamocortical loop 
evolved in the direction of the thalamic model of Lopes Da Silva [18]. The major 
advancements introduced by [27] to the initial model of Lopes Da Silva [18] include the 
extension of the thalamic model into a thalamocortical model by adding a cortical module, 
and the modeling of the low-threshold calcium current potentially responsible for burst 
firing in thalamic cells.  

 

Figure 10. Generic architecture of the thalamocortical model composed of three interconnected modules, a 
cortical, a thalamic and a reticular module. Each module includes one or several neuronal subpopulations.  
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2 IMPLEMENTING A STIMULATION-DRIVEN MODEL OF THALAMOCORTICAL 

DYNAMICS 

In order to study the effects and mechanisms of thalamic stimulation on cortical epileptic 
dynamics, we developed a stimulation-driven model of the thalamocortical loop. The 
model’s architecture is in conformity with the aforementioned previously published models 
[27, 174-176], yet it included three main adaptations to better account for stimulation-
induced dynamics. In brief, these adaptations can be summarized by the implementation of 
1) a novel cortical module (to simulate rhythms specific to dysplasia), 2) subcortical 
stimulation inputs and 3) two cellular mechanisms potentially involved in stimulation-
induced dynamics. These mechanisms are the feedforward inhibition (FFI) and the short 
term depression (STD).    

2.1 MODEL ARCHITECTURE 
This section provides a detailed overview of the different aspects of the model’s 

architecture, starting from the global network perspective and tracing down to the 
neuronal subpopulation concept. The proper architecture of each module is then depicted 
and the different mechanisms explicitly modeled to study the effects of thalamic DBS are 
equally detailed.  

2.1.1 FROM A GLOBAL NETWORK VIEW 
From a global perspective, the model architecture was designed of three main blocks, i.e. 

modules, also present in former models of the thalamocortical loop [26, 27, 167-169, 173]: 
a cortical, a thalamic and a reticular module. These modules allowed for the physiological 
representation of the cerebral structures undoubtedly involved in the thalamocortical 
network dynamics: the cerebral cortex, the thalamus, and the reticular thalamic nucleus. In 
effect, the cortical, thalamic and reticular modules simulate the dynamics of a cortical 
neuronal population, a nonspecific thalamic nucleus and the reticular thalamic nucleus, 
respectively.  

2.1.2 ON THE LEVEL OF A SUBPOPULATION 
Each module is constituted of one or more subpopulations of neurons each representing 

an aggregate of highly interconnected neurons sharing the same features and temporal 
dynamics. A given subpopulation can be either excitatory or inhibitory. Formally, the 
temporal dynamics of each subpopulation are described by two transfer functions: the 
input/output functions. The validity of these two functions was experimentally investigated 
and presented in W. Freeman’s “Tutorial on neurobiology: From single neurons to brain 
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chaos” [12]. This author termed them “pulse-to-wave” and “wave-to-pulse” function 
respectively. 

 

Figure 11. Modeling the thalamocortical loop.  (A) The tri-modular model architecture inspired form the 
literature of thalamocortical models and in conformity with (B) the corresponding physiological 
representation.  

As its name (pulse-to-wave function) indicates, the input function converts the incoming 
presynaptic average density of action potentials (pulses) into an average postsynaptic 
membrane potential (PSP), either excitatory (EPSP) or inhibitory (IPSP) depending on the 
presynaptic subpopulation. The input function can be mathematically represented by a 
linear second order low-pass filter as detailed Jansen and Rit [21]: 

                                                         𝐻(𝑠) =  𝑊 �𝑠 + 1
𝜏𝑤

�
2

�                  (8) 

where 𝑠 is the Laplace variable, 𝑊/𝜏𝑤
2   is the filter’s static gain, and 1/𝜏𝑤 (expressed in s-1) 

is the filter’s center frequency. The impulse response of this filter is given by: 

                                              ℎ(𝑡) =  𝑊
𝜏𝑤

. 𝑡. 𝑒−𝑡 𝜏𝑤�            (9) 

Once the filter parameters 𝑊 and 𝜏𝑤 are well adjusted, the impulse response ℎ(𝑡) 
approximates the shape and kinetics of real postsynaptic potentials (PSP). From the 
physiological point of view, the value assigned to 𝑊 adjusts the synaptic sensitivity by 
determining the peak of modeled PSPs. This peak mathematically corresponds to the 
maximum of the function ℎ(𝑡) and is equal to 𝑊. 𝑒−1. As for parameter 𝜏𝑤, it is directly 
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linked to synaptic kinetics i.e. it determines the rise and decay time of the modeled 
subpopulation. In effect, the rise time (𝑡𝑟𝑖𝑠𝑒) of ℎ(𝑡) is defined as the time required for 
ℎ(𝑡) to attain its maximal value. The value of 𝑡𝑟𝑖𝑠𝑒 can be derived as follows: 

                                                             ℎ′(𝑡𝑟𝑖𝑠𝑒) = 0 

⇒  𝑒−𝑡𝑟𝑖𝑠𝑒
𝜏𝑤 −

𝑡𝑟𝑖𝑠𝑒

𝜏𝑤
. 𝑒−𝑡𝑟𝑖𝑠𝑒

𝜏𝑤 = 0 

⇒ �1 −  
𝑡𝑟𝑖𝑠𝑒

𝜏𝑤
� = 0 

                                         ⇒  𝑡𝑟𝑖𝑠𝑒 =  𝜏𝑤                    (10) 

Similarly, the decay time 𝑡𝑑𝑒𝑐𝑎𝑦 can be derived from ℎ(𝑡). As 𝑡𝑑𝑒𝑐𝑎𝑦 corresponds to the 
time required by ℎ(𝑡) to fall down to 36% (1 − 𝑒−1) of its peak, the exact value of 𝑡𝑑𝑒𝑐𝑎𝑦 
can be obtained by graphically solving the function ℎ(𝑡) = 𝑒−1. ℎ(𝑡𝑟𝑖𝑠𝑒). The decay time can 
be thus proven equal to 3.146. 𝜏𝑤. Indeed, the adequate adjustment of parameter 𝜏𝑤 is 
indispensable for ensuring physiologically-plausible values of the rise and decay times of 
modeled PSPs. As a matter of fact, the physiological ranges of values for these parameters 
can be defined based on studies concerning the in vitro features of recorded PSPs (for 
examples see [177, 178]). Figure 12-A depicts the form taken by the impulse response of 
filter 𝐻(𝑠) in the cortical module. 

Finally, it is worth noting that an alternative more detailed implementation of the input 
function was introduced by Bojak and Liley in [23] and described in detail by Molaee-
Ardekani et al. [179]. It replaces the aforementioned mono-exponential impulse response, 
by a bi-exponential impulse response with two time constants 𝜏𝑤1 and 𝜏𝑤2. Therefore, it 
allows for the separate adjustment of the rise and decay time of the modeled 
subpopulation, and consequently offers a better approximation of actual PSPs. However, 
the mono-exponential function proved sufficient for this study. 

As for the output function, or the “wave-to-pulse” function, it converts the sum of average 
excitatory and inhibitory postsynaptic membrane potentials, 𝑣, into an average density of 
outgoing action potentials 𝑆(𝑣), also known as the mean firing rate of the concerned 
subpopulation. Formally, the output function is implemented as a static nonlinear sigmoid 
of the form: 

𝑆(𝑣) = 2𝑒0
(1 +  𝑒𝑟(𝑣0−𝑣))�                                          (11) 
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where 2𝑒0 is the maximum firing rate, 𝑣0 is the postsynaptic potential corresponding to a 
firing rate of 𝑒0, and 𝑟 is the steepness of the sigmoid. Initially proposed by Wilson and 
Cowan [13], this function accounts for threshold and saturation effects that occur at the 
somas and initial axonal segments of the modeled neurons. As aforementioned, Freeman 
could experimentally measure this function in vitro owing to the fact that it is a population 
property [12]. The form of this function is represented in Figure 12-B. 

 
Figure 12. The form of the model’s functions in the cortical module. (A) The impulse response of the input 
transfer function in the cortical module for the three types of synaptic transmission represented AMPAergic 
(𝐴𝑐 and 𝜏𝑎𝑐) and GABAergic transmission (𝐵𝑐 , 𝐺𝑐 and 𝜏𝑏𝑐, 𝜏𝑔𝑐) in the three subpopulations. (B) The form of the 
output sigmoidal function in the model. 

2.1.3 THE CORTICAL MODULE 
The cortical module was designed in accordance with an existing model of the neocortex 

[180] proven to generate both normal and epileptiform dynamics. Formally, it included a 
subpopulation of pyramidal principle cells (P; 𝑊 =  𝐴𝑐,𝜏𝑤 =  𝜏𝑎𝑐in Equation 8), and two 
inhibitory subpopulations representing the soma- and proximal-dendrite targeting 
interneurons (𝐼1

𝑐  , GABAA,fast currents; 𝑊 =  𝐺𝑐,𝜏𝑤 =  𝜏𝑔𝑐in Equation 8),  and the dendrite-
targeting interneurons (𝐼2

𝑐, GABAA,slow currents; 𝑊 =  𝐵𝑐,𝜏𝑤 =  𝜏𝑏𝑐in Equation 8). 

Regarding pyramidal collateral excitation, the implementation followed the model 
proposed in [21]. Hence the excitatory feedback loop passed by a supplementary excitatory 
population, P’, analogous to P (P’; 𝑊 =  𝐴𝑐,𝜏𝑤 =  𝜏𝑎𝑐in Equation 8). However, unlike P, this 
population establishes exclusive synaptic projections from and to the subpopulation P. For 
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simplicity, the model representation (Figure 11) does not schematize P’. However, the 
Simulink implementation of this module depicted in  

 takes it into consideration.  

 

Figure 13. The Simulink implementation of the cortical module. Note the existence of a supplementary 
excitatory population P’ used to model collateral excitation as in [21].  

In comparison to other models, the hereby implemented cortical module exhibits 
extended features. First it integrates cortical inhibition unlike other thalamocortical models 
[169, 181] that limit this module to a single pyramidal population. Moreover, this cortical 
inhibition is associated with two types of inhibitory subpopulations instead of a single 
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inhibitory population as implemented previously [168]. Furthermore, supplementary 
mechanisms were implemented in the cortical module at the thalamocortical interface, 
namely feedforward inhibition and short term depression. These will be further detailed in 
section 2.2.  

2.1.4 THE THALAMIC MODULE 
The thalamic module was limited to a single excitatory neuronal population (TC; 𝑊 =

 𝐴𝑇ℎ,𝜏𝑤 =  𝜏𝑎_𝑇ℎ in Equation 8) highly interconnected with the cortical module. It 
represents the set of excitatory thalamic cells that innervate the cerebral cortex, termed 
thalamocortical (TC) cells in neurophysiology. In the model, this subpopulation receives 
excitatory input from the cortical pyramidal subpopulation P, and sends back excitatory 
input onto the three cortical subpopulations P, 𝐼1

𝑐 and 𝐼2
𝑐. Thalamic inhibition is supplied by 

the reticular subpopulations which receive excitatory input from the TC cells in return.  
2.1.5 THE RETICULAR MODULE 

The reticular module was used to simulate the neuronal dynamics of the reticular thalamic 
nucleus. As confirmed by neurophysiology [182], this nucleus exclusively mediates 
GABAergic currents. Hence, its implementation comprised two inhibitory neuronal 
populations 𝐼1

𝑅𝑡 and 𝐼2
𝑅𝑡  to account for fast (𝐼1

𝑅𝑡; 𝑊 =  𝐺𝑇ℎ, 𝜏𝑤 =  𝜏𝑔_𝑇ℎin Equation 8) and 
slow (𝐼2

𝑅𝑡;𝑊 =  𝐵𝑇ℎ, 𝜏𝑤 =  𝜏𝑏_𝑇ℎ in Equation 8) GABA mediated transmission projecting 
exclusively onto the thalamic module. As aforementioned, these two subpopulations 
receive excitatory input from both the thalamic (𝑊 =  𝐴𝑇ℎ,𝜏𝑤 =  𝜏𝑎_𝑇ℎin Equation 8) and 
the cortical (𝑊 =  𝐴𝑇ℎ,𝜏𝑤 =  𝜏𝑎_𝑇ℎin Equation 8) modules. 

2.2 IMPLEMENTING PHYSIOLOGICALLY-RELEVANT MECHANISMS 
Despite the fact that the model architecture was inspired from existing models, it 

presented a three-fold novelty: 1) the implementation of thalamocortical feed-forward 
inhibition, 2) short-term depression and 3) RC depolarizing stimulation effects. 

2.2.1 FEED-FORWARD INHIBITION 
Cortical interneurons comprise approximately 20% of the cortical neuronal population 

[183]. These GABAergic cells modulate cortical excitability by two well-known mechanisms: 
feedback and feedforward inhibition (see [184] for review). Figure 14 illustrates the inter-
neuronal projections constituting the hardware of these inhibitory processes. pyramidal 
principal cells and interneurons exhibit mutual synaptic projections. Interneurons receive 
excitatory input from principal cells and, in return, they send inhibitory projections onto 
them. Thus, pyramidal cells excite interneurons and are inhibited by them. This is the 
mechanism of feedback inhibition. 
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Figure 14. Cortical inhibitory circuits. Feedback inhibition is a local circuit mechanism generated by the mutual 
projections existing between the principal cells and local interneurons. Pyramidal principal cells send 
excitatory input onto the local interneurons. In return, interneurons send an inhibitory input onto principal 
cells. Every time a pyramidal cell excites an interneuron, it gets inhibited in return. Feedforward inhibition 
relies on long-range excitatory input formed on interneurons and principal cells at the same time. This 
incoming excitatory input induces in the pyramidal population EPSPs followed by IPSPs lagging by a di-synaptic 
delay. Depending on the temporal window separating two consecutive incoming action potentials, these 
EPSPs can be either summed or dampened to induce excitation or inhibition respectively. 

On the thalamocortical level, cortical cells receive excitatory input from long-range axons 
originating from thalamic and other subcortical nuclei as well as from other long-range 
cortico-cortical axons. These excitatory inputs target cortical principal cells as well as 
interneurons thus forming feedforward inhibitory circuits (see Figure 14). These afferent 
thalamocortical fibers form stronger excitatory connections on interneurons than on 
principal cells. Therefore, the minimal level of thalamocortical input may generate 
inhibition [185, 186]. As individual EPSPs induced by action potentials coming from 
individual thalamocortical fibers are insufficient to provoke a cortical firing, the generation 
of a cortical response to thalamic input necessitates the temporal summation of incoming 
EPSPs. Consequently, it has been shown that the mechanisms of thalamic feedforward-
inhibition depend on the temporal integration window within which these EPSPs can be 
summated [187]. Formally, at the cortical level, a single EPSP caused by an excitatory 
thalamic input arrives with a monosynaptic delay at the synaptic terminals formed at both 
principal cells and interneurons. Consequently, the targeted interneurons induce an IPSP at 

.

.

. .

.

Feedback inhibition Feedforward inhibition 
(FFI)
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the postsynaptic terminal of the principal cells lagging by a di-synaptic delay. In fact, given 
that the amplitude of the IPSP is way larger than that of the EPSP, the timing of the next 
EPSP determines summation or damping of EPSPs. Figure 15 describes the possible 
outcomes in a principal cell due to incoming action potentials (APs) in the presence and 
absence of FFI. Depending on the timing of the consecutive AP, two induced EPSPs may 
sum up (Figure 15-E) and thus overpass the AP generation threshold or not (Figure 15-D). 
Arriving during the prominent IPSP, the EPSP will be dampened and the principal cell cannot 
overpass the firing threshold. However, arriving just after the first EPSP, the temporal 
summation of consequent EPSPs is possible and the cell may reach the spike generation 
threshold [188, 189].  

Feed-forward inhibition (FFI) is a thalamocortical regulatory mechanism that has a major 
role in shaping cortical response to thalamic input [190] in the context of sensory stimuli as 
well as during spontaneous thalamocortical oscillations [191]. Thus, it may be implicated in 
the deep brain stimulation mechanisms responsible for modulating epileptic 
thalamocortical dynamics. These were the arguments for implementing FFI in the model. 
Physiologically, it implies that the TC cells of the thalamic module extend excitatory 
projections not only to the pyramidal population (P) but also to the two inhibitory 
populations 𝐼1

𝑐  and 𝐼2
𝑐 of the cortical module.  

Consequently, simulated thalamocortical impulses elicit synchronous EPSPs in the three 
cortical subpopulations (P, 𝐼1

𝑐  and 𝐼2
𝑐). In response to their activation by this thalamocortical 

input, 𝐼1
𝑐  and 𝐼2

𝑐  evoke inhibitory postsynaptic potentials (IPSPs) at their postsynaptic 
terminals soon after. Eventually, this inhibitory input, arriving onto the P subpopulation 
with a di-synaptic delay, rapidly dampens the thalamically-evoked EPSPs shortly after their 
onset thus limiting the temporal integration window of cortical excitability. 

Figure 16 shows the outcome, in the model, of a single or two consecutive EPSP(s). These 
simulations were performed in the model section containing the pyramidal (P) and the fast 
interneurons (𝐼1

𝑐) loop. The EPSPs were simulated and input to both populations using a 
pulse generator and an excitatory 𝐻 filter. The same EPSP amplitude was used on both 
subpopulations. We can affirm that the model accounts for the temporal integration 
window because the time of arrival the second EPSP determines whether consecutive 
EPSPs sum up (Figure 16-B and C). The major effect that changes in the model, in the 
presence/absence of FFI is the baseline level of excitability (not illustrated). Peculiarly, the 
general form and amplitude of the overshoot does not change. In conclusion, it can be 
deduced that this time dependence can be translated into a frequency-dependence of this 
mechanism. This was not formally studied in this thesis. 
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Figure 15. The temporal considerations of feedforward inhibition. (A) A single action potential (AP) arriving at a 
principal cell induces a consequent EPSP which is not sufficient to overpass the AP generation threshold. (B) In the 
presence of FFI, this EPSP will be followed by an IPSP. (C) If two Aps arrive in a relatively short duration, they may 
be summed in the absence of FFI. (D) However, if the second EPSP is induced during a prominent IPSP, the EPSPs 
won’t sum up, and the AP threshold won’t be overpassed. (E) However, if the second AP arrives just after the first 
one, the consecutive EPSPs may also sum up and overpass the AP threshold. (F) APs arriving sufficiently far from 
each other induce independent responses of the same type of that induced in B). 
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Figure 16. Feedforward inhibition in the model (sample simulations). These signal segments were simulated 
between the pyramidal (P) and the fast interneurons (𝐼1

𝑐) subpopulations. Input EPSPs were also 
simulated. The blue trace refers to the sum of PSPs induced in the principal cell population, in green the 
induced IPSP and in black the induced EPSP. (A) The response to a single EPSP, (B) two consecutive EPSPs 
with 20 ms separation and (C) and 6 ms separation. Note that that the in case B) the EPSP arrives in the 
prominent IPSP and is then dampened. In C) the two EPSPs sum up.  
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2.2.2 SHORT TERM DEPRESSION 
Short term plasticity is a mechanism of transient activity-dependent modulation of 

synaptic efficacy. While short term facilitation indicates a transient increase in synaptic 
efficacy, short term depression denotes the progressive decrease of synaptic efficacy, and 
consequently the elicited postsynaptic response, during repetitive presynaptic activity (see 
[192] for review).  

Generally speaking, short term plasticity is often related to cellular interactions lying at 
the presynaptic terminal. In particular, short term depression is usually related to vesicle 
depletion due to episodes of repetitive/intense firing as evidenced by experimental studies 
[193, 194]. Actually, computational implementations of short term depression (STD), based 
on the vesicle depletion hypothesis, have been frequently used on the microscopic level 
(see [192] for review). However, to the best of our knowledge, such implementation has 
not been proposed yet, at mesoscopic or macroscopic level. 

As a matter of fact, experimental studies of thalamocortical adaptation indicate that 
transient episodes of short term depression are induced by thalamic low-frequency 
stimulation [150]. Speechley and colleagues [149] observed a 40% transient decrease in 
cortical EPSPs after brief trains of low-frequency stimulation (LFS) in the absence of 
GABAergic inhibition. Short-term depression is thought to be an essential mechanism of 
cortical adaptation to thalamic input [150]. Figure 17 (adapted from [150]) depicts 
experimentally acquired data showing the cortical adaptation to a periodic thalamic bursts 
of frequency 4 Hz. Note that the cortical responses are rapidly dampened at this 
stimulation frequency. The responses are barely detectable after 4 s of stimulation (Figure 
17-B). Given the importance of this mechanism in thalamocortical dynamics, a macroscopic 
implementation of STD was attempted in this work based on the experimental results 
reported by Speechley in 2007. Specifically, a vesicle-depletion model of STD was 
exclusively implemented at the interface of thalamocortical synapses (TC → P) since the 
effects were observed under the effect of a GABA receptor antagonist [149]. Equally, our 
implementation suggested that intense low-frequency thalamic firing provokes a transient 
short-term depression in the efficacy of these synapses. 
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Figure 17. Rapid adaptation of cortical LFP to thalamic input at whisker stimulation of 4 Hz (adapted from 
[150]).  (A) Simultaneous recordings from the barrel cortex (CTX) and the thalamus (VPM) during a 4 Hz 
stimulation of the primary whisker of the rat. Note the rhythmic thalamic activity in response to stimulation 
and the damping of cortical responses over time. (B) Intracellular recording of a cortical pyramidal neuron in 
the barrel cortex during the same stimulation paradigm. Lower panel, multiple repetitions of the response 
shown in B. Note the absence of action potentials in the last two illustrated group responses. (C) Average of 
responses shown in B. (D) Onset response amplitudes normalized to the first response. (E) Frequency 
dependence of rapid adaptation in barrel cortex. Significant adaptation is reported at 2, 8, and 4 Hz.  

Technically, STD was modeled by means of a time-varying function κ(t) that determines 
the normalized efficacy of (TC → P) synapses. κ(t) varies between 0.6 and 1 in function of 
the intensity/frequency of the mean density of thalamic action potentials 𝑑𝐴𝑃(𝑡). The value 
of κ(t) is multiplied by the amplitude of thalamocortical EPSPs at (TC → P) synapses 
(determined by W = Ac’ in Equation 8) and thus dynamically modulates their efficacy. 
Formally, the dynamic evaluation of κ(t) consists of two steps, filtering then thresholding. 
First, 𝑑𝐴𝑃(𝑡) is low-pass filtered (cutoff frequency fc = 10Hz) to limit STD effects to low-

frequency thalamic input. Then the filtered signal 𝑑𝐴𝑃
𝑓 (𝑡) is compared to a mean firing 

threshold 𝜗 in order to assure that STD can only be produced following a high release of 
cortical glutamate. Every supra-threshold firing entrains an exponential decrease (𝜏 = 8s) of 
κ(t) from κ(t0)  to 0.6. The duration of this decrease was extended to 0.5s after each 
thalamic supra-threshold firing. In the absence of this excessive firing, κ(t) exponentially 
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returns to 1 (𝜏 = 8s) and maintains its value until the next arrival of a supra-threshold firing. 
κ(t) is formally described by the following dynamics: 

𝜅(𝑡) = �
0.4�𝑑𝐴𝑃

𝑓 (𝑡) >  𝜗�. (𝑢(𝑡)−𝑢(𝑡−0.5))
2

𝑒−𝑡/𝜏 + 0.6

0.4�𝑑𝐴𝑃
𝑓 (𝑡) <  𝜗�. (1 − 𝑒−𝑡 𝜏⁄ ) + 0.6

             (12) 

where u(t) is the Heaviside function. 

 
Figure 18. Dynamical response of the 𝜿(𝒕) function to one pulse of duration (0.5 ms). (A) A synthetic white 
noise input function was applied to the input of the STD Simulink® block. A pulse was added at t = 10 s. (B) 
The first step consists in low-pass filtering this signal. (C) Then any threshold crossing is detected. (D) This 
detected event incurs an exponential decrease in the value of 𝜅(𝑡) that lasts 0.5 s only. An exponential 
increase follows the end of this descent. Note that a single pulse cannot cause significant depression. 

Figure 18 depicts the dynamical values of 𝜅(𝑡) function in response to a synthetic white 
noise signal including a single pulse occurrence. As illustrated, the input signal is first 
filtered, then whenever a pulse is detected (Figure 18-C), 𝜅(𝑡) undergoes an exponential 
descent that lasts 0.5 s at the end of which it returns exponentially to its initial value, 1 
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(Figure 18-D). Noteworthy, a single pulse does not incur significant depression in the value 
of 𝜅(𝑡). 

 
Figure 19. Dynamical response of the 𝜿(𝒕) function to a series of pulses arriving at a1.5 Hz frequency. (A) A 
synthetic white noise input signal was applied to the STD block of the model. A train of pulses at 1.5 Hz was 
added to this signal. (B) First, the signal is filtered. (C) Then, any threshold crossing is detected. (D) Finally, at 
each detected crossing, the 𝜿(𝒕) function undergoes an exponential decrease from its actual value that lasts 
only 0.5 s. In this case, the arriving pulses incur a cumulative depression of the value of 𝜿(𝒕), which attains the 
value of 0.7 in 30 s. At the end of this pulse detection, the 𝜿(𝒕) function increases exponentially to its initial 
value. 

Figure 19 shows the dynamical values of the 𝜅(𝑡) function for a pulse train of duration 
30 s and frequency 1.5 Hz. It depicts the cumulative depression incurred due to close pulse 
repetitions. At the end of the pulse train, the function 𝜿(𝒕) restores its initial rest value 
of 1. 

2.2.3 STIMULATION INPUTS 
As evidenced by experimental studies, the transmembrane potential of stimulated 

neurons varies linearly with the intensity of stimulation current (or electric field) which can 
be either depolarizing or hyperpolarizing depending on current polarity [36, 195]. In effect, 
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an injected stimulation electric current induces an electric field, which consequently 
imposes a potential gradient ∆𝑉 in the affected space (neural tissue). On the cellular level, 
at a given point in space, ∆𝑉 corresponds to the deviation of the membrane potential 𝑉𝑚 
from its resting value 𝑉𝑟; ∆𝑉 =  𝑉𝑚 − 𝑉𝑟. This linear relationship between the induced 

electric field  𝐸 ����⃗ and the potential gradient ∆𝑉 has been illustrated by the "𝜆. 𝐸�⃗ " model 
[196], where 𝜆 is the membrane space constant. This model, well-grounded in the 
biophysics of compartment models, estimates the membrane potential variation in function 
of the electric field induced by the electrical stimulation. 

 
Figure 20. Biphasic versus monophasic pulse stimulation in the model. (A) A biphasic pulse stimulation and its 
corresponding form at the output of the RC low-pass filter block accounting for the electrode-electrolyte 
interface. Note that the amplitude of the positive part is greater than the negative part. We assume that the 
effect of a larger positive displacement incurs more effects (related to depolarization) on the model’s 
dynamics that a negative less important displacement. (B) A monophasic pulse stimulation was adopted in the 
model. The 1 ms pulse duration is extended to 4.8 ms by the RC low-pass filter block.  

The model presented in this work takes into account this axiom and represents it in a less 
straightforward approach as space is not represented, conversely to detailed compartment 
models. Stimulation inputs were integrated in the model at the level of both the thalamic 
and reticular module. They directly affected the subpopulation mean membrane potential 
at the level of the sigmoid (output) function. Moreover, to take into consideration a 
potentially different impact of stimulation on the three concerned subpopulations, the 
stimulation signal was weighted by a characteristic coefficient at the input of each 
subpopulation, respectively STC, SIrt1 and SIrt2 at the input of TC, 𝐼1

𝑅𝑡 and 𝐼2
𝑅𝑡. The stimulation 
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signal, destined to represent the corresponding 𝜆. 𝐸�⃗  variation, was modeled as a 
monophasic pulse train of adjustable frequency, intensity and pulse width. The pulse width 
was set to 1ms as in clinical DBS. Noteworthy, a monophasic rather than a biphasic pulse 
train was adopted in the model. Figure 20 illustrates the difference between these two 
possibilities. We assume that the first pulse polarity (positive) in a biphasic pulse 
contributes more to the observed response in the model than a negative smaller amplitude 
negative pulse. This owes to the implementation of an RC block at the interface of the 
stimulator and the subpopulations accounting for the electrode-electrolyte interface. Thus, 
the stimulation signal was low-pass filtered (fc > 160Hz) by this block. The pulse effect was 
thereby extended to 4.8 ms by this step. This accounts for the average time of 
repolarization in stimulated sub-populations of cells. 
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Chapter 4: Electrophysiological 
Observations and Signal Analysis for Model 

Optimization 
The first step in studying the theoretical effects of stimulation on epileptic neural dynamics 

is realistically simulating these dynamics in the model. Only then, hypotheses on stimulation 
effects and subsequent optimized protocols can be made. To proceed, we used a real clinical 
dataset to tune the model parameters. First, a signal processing algorithm was implemented to 
quantitatively analyze stimulation effects. Then, the quantified information, expressed as 
feature vectors, was used to define an optimization procedure aimed at tuning the model 
parameters in order to guarantee a realistic output. 

1 THE CLINICAL OBSERVATION 
The clinical dataset used in this study was limited to a unique patient who underwent 

thalamic DBS during the presurgical intracerebral EEG exploration (iEEG performed under 
stereotaxic conditions) at the Epilepsy Surgery Unit, Rennes University Hospital [197]. This 
particular patient was chosen for two main reasons: 

  

(1) The pronounced frequency-dependent response to stimulation observed during the 
preoperative diagnostic intracerebral EEG (iEEG) exploration at low-frequency (LFS; 

Figure 21. MRI of the Patient showing the 
location of the focal cortical dysplasia in 
the premotor cortex of the patient. 
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2 Hz), intermediate-frequency (IFS; 50 Hz) and high-frequency (HFS; 70, 100 and 
150 Hz) stimulation. 

(2) The existence of the epileptogenic zone in a limited area of the premotor cortex 
(Figure 21). 

This patient suffered from partial drug-resistant epilepsy since the age of two. MRI scans 
as well as EEG scalp recordings showed the presence of a probable developmental neural 
malformation in the premotor cortex of the patient. This particular malformation known as 
focal cortical dysplasia (FCD) is well-known for its epileptogenic electrophysiological 
signature including (a) continuous rhythmic or semi-rhythmic spikes, (b) paroxysmal bursts 
of high frequency spikes and (c) recurrent electrographic seizures [114]. Moreover, the 
continuous rhythmic spiking associated with dysplasia suggests that an “intradysplastic 
pacemaker” [114] operates in a self-sustained, hyperexcitable and unstoppable fashion  and 
is sufficient to provoke an epileptic syndrome. 

 

Figure 22. Frequency-dependent stimulation effects: real data.  (A) Position of the electrode in the FCD. (B) 
Position of the electrode in the CMN. C. Real iEEG segments representing the recorded LFP of the FCD in the 
absence of stimulation, as well as during the stimulation of CMN at different frequencies.   

Based on various clinical studies [198-203] reporting the modulation of epileptic cortical 
activity by stimulation of the centromedian thalamic nucleus (CMN), it was decided by 
neurosurgeons to implant a depth electrode in this nucleus (Figure 22-B), as potentially 
beneficial for the patient who gave his informed consent. 
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During the presurgical exploration, the stimulation of the CMN induced frequency-
dependent modulation of the pathological activity of the FCD (see [197] for more clinical 
details). Interestingly, low-frequency stimulation (LFS; 2 Hz, 4 mA) as well as high-frequency 
stimulation (HFS; 70, 100, and 150 Hz, 0.8 mA) desynchronized the pathological rhythmic 
activity of the FCD while intermediate-frequency (IFS; 50 Hz, 0.8 mA) didn’t visibly affect it 
(Figure 22-C). In fact, assessing the variability of stimulation effects and understanding its 
intricate causes in function of the frequency of stimulation can move a step further the 
frequency-dependence of the epileptic system response to the stimulation control input. 

Noteworthy, this observation is quite rare since (1) DBS electrodes are rarely implanted in 
the thalamus for ethical reasons and (2) FCDs vary in type and position in the brain. Their 
developmental aspect makes it quite impossible to find two epileptic patients presenting 
exactly the same dysplastic morphology and semiology. And apparently, this highly 
influences stimulation outcome and leads to a significant inter-patient variability. 
Moreover, it is uncommon to implant depth-EEG electrodes in this thalamic nucleus. As this 
is the first reported observation of the effects of CMN stimulation on focal paroxysmal 
activity in a human patient using depth-EEG electrodes, recruiting more patients with the 
same clinical semiology was not fruitful. Consequently, this dataset was not only used to 
quantitatively describe actual stimulation effects but also to automatically optimize the 
proposed model’s output in order to computationally explore their underlying mechanisms. 

2 SIGNAL PROCESSING 
The use of signal processing techniques was necessary (1) to quantify the clinically-

observed effects of stimulation in the real iEEG signals, and (2) to define a suitable feature 
vector-based cost function for model parameter optimization. 

2.1 GENERAL ALGORITHM 
The choice of the signal analysis method was driven by the non-stationary aspect of iEEG 

signals. Consequently, a time-frequency analysis method was privileged. Figure 23-A 
illustrates the feature extraction methodology that was adopted. iEEG signals recorded in 
the FCD (which correspond to local field potentials and thus denoted by LFPsFCD) in the 
absence of stimulation and under different stimulation conditions were decomposed using 
an orthogonal matching pursuit algorithm (Matching Pursuit Toolkit – MPTK – [160]). 
Consequently, a suitable multi-scalar dictionary of Gabor, Fourier and Dirac atoms was first 
defined to account for real iEEG signal components. 
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At its output, the MPTK algorithm provides the table of parameters of the detected time-
frequency atoms (~200 atoms for every 3s of iEEG); atom type, central frequency (𝑓), 
phase (𝜑), scale (𝜁), amplitude (𝐶), and position (𝑝). Identified atoms were then 
reconstructed using the extracted parameter table and the corresponding analytical 
expression of the atom type. The general analytical form is given by: 

𝐶 ∙ 𝑒−𝜋((𝑡−𝑝)
𝜁� )2

∙ cos (2𝜋𝑓𝑡 + 𝜑) 

This general expression was used to reconstruct the detected Gabor atoms. Fourier atoms 
were reconstructed using a similar expression where the Gaussian window is replaced by a 
rectangular one: 

𝐶 ∙ (𝑢(𝑡 − 𝑝) − 𝑢�𝑡 − (𝑝 + 𝜁)�) ∙ cos (2𝜋𝑓𝑡 + 𝜑) 

𝑢(𝑡) is the Heaviside function. As for the Dirac it was simply reconstructed by 𝐶 ∙ 𝛿(𝑡 − 𝑝), 
where 𝛿(𝑡) is a Dirac at position 𝑝 = 0, and of amplitude 𝐶 = 1. 

Finally, the reconstructed atoms were associated to a given frequency band depending on 
their central frequency. These frequency bands corresponded to the classical EEG bands as 
defined in healthy adults (δ1 [0 – 1.9Hz], δ2 [1.9 – 3.4 Hz], θ1 [3.4 – 5.4 Hz], θ2 [5.4 – 7.4 Hz], 
α1 [7.4 – 10 Hz], α2 [10 – 12 Hz], β1 [12 –18 Hz], β2 [18 – 24 Hz], γ [24 – 128 Hz]). Finally, a 
9D feature vector 𝑉�⃗ 𝐹 (Figure 23-A in green) was defined from the normalized energy 
distribution in these frequency bands, itself computed as the sum of averaged (over time) 
atom energies relative to the total signal energy. 𝑉�⃗ 𝐹  can be expressed as follows: 

𝑉�⃗ 𝐹(𝑖) =
1

𝑁(𝑖) ∑ ‖𝑠𝑖(𝑗)‖2𝑁(𝑖)
𝑗=1

∑ 𝑉𝐹����⃗ (𝑖)9
𝑖=1

�  

where 𝑁 is the number of samples of the decomposed signal, 𝑠𝑖  is the reconstructed signal 
of the ith band ( 1 to 9 corresponding respectively to δ1, δ2, θ1, θ2, α1, α2, β1, β2 to γ). 
Noteworthy, the energy of the detected Dirac atoms was automatically attributed to the 9th 
band for simplicity. 

2.2 MATCHING PURSUIT 
Matching Pursuit (MP) is part of a class of parsimonious signal analysis algorithms known 

as atomic decompositions. These algorithms suppose that any signal 𝒚 can be expressed as 
a linear sum of elementary signal components 𝒈𝒊, called atoms, chosen from a predefined 
dictionary 𝐷: 
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𝑦 =  ∑ 𝜔𝑖𝑔𝑖
𝑀
𝑖=1   where  𝑔𝑖 ∈ 𝐷  and ‖𝑔𝑖‖ = 1 

Usually, the predefined dictionary is overcomplete and extremely redundant in this type of 
applications.   

 

First introduced in 1993 by Mallat and Zhifeng [204], matching pursuit (MP) was proposed 
for pattern extraction in noisy signal applications. It was later used to analyze seizure 
activity [205] in 1998. Further in 2001, the same Polish group introduced the notion of 

Figure 23. Feature extraction for parameter optimization. (A) The feature extraction algorithm. (B) The parameter 
optimization algorithm 
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stochastic time-frequency dictionaries for matching pursuit [206]. The authors argued that 
MP must be more and more used to analyze and characterize EEG signals. They introduced 
the notion of stochastic time-frequency dictionaries for MP to guarantee unbiased MP 
decompositions. Concurrently, MP was used for encoding audio signals [160]. Later on, its 
algorithm was adapted to decrease computation time. The fastest existing MP algorithm 
nowadays is the MPTK of [160]. 

Basic Algorithm. The basic algorithm of MP operates in the following manner: 

(1) Dictionary definition 𝐷 =  (𝑔𝛾(𝑡))𝛾∈Г defined in an Hilbert space H, such that 

�𝑔𝛾� = 1, and 𝛾𝑖 = �𝑠𝑖 ,  𝑢𝑖 ,  ξ𝑖� is the atom parameter vector (scale 𝑠𝑖, temporal 

translation 𝑢𝑖, and modulation frequency ξ𝑖 
(2) Initialization 𝑖 = 0, 𝑦𝑖 =  𝑦0 = 𝑦 
(3) Evaluation of the inner product between the signal 𝑦𝑖(𝑡) and each dictionary atom 

(𝑔𝛾(𝑡))𝛾∈Г , ��𝑦𝑖 , 𝑔𝛾�� for every 𝛾 ∈ Г. 
(4) Choose the dictionary atom that maximizes the inner product. 
(5) Calculate the residual 𝑅, which can be expressed as 𝑅 = 𝑦𝑖 −  �𝑦𝑖 , 𝑔𝛾0�𝑔𝛾0. (𝑅 is 

orthogonal to 𝑔𝛾0). 
(6) Replace 𝑦𝑖+1 by 𝑅 (𝑦𝑖+1 = 𝑅). 
(7) Stop when i) the number of maximal iterations or ii) the desired the energy ratio 

between the original signal and the current residual is attained. Else repeat steps 
(3) to (7). 

In the initial algorithm the dictionary 𝐷 =  (𝑔𝛾(𝑡))𝛾∈Г is a countable subset of atoms 
generated from a single mother wavelet 𝑔(𝑡) as follows  

𝑔𝛾(𝑡) =  
1

√𝑠
𝑔(

𝑡 − 𝑢
𝑠

)𝑒−𝑖ξ𝑡 

Current algorithms such as MPTK allow the use of different types of mother wavelets to 
generate 𝐷.  

2.3 THE MODEL OPTIMIZATION ALGORITHM FOR SIMULATING EPILEPTIC FCD ACTIVITY 
The feature extraction algorithm described earlier in section 2.1 was used to characterize 

20 real iEEG signal segments (of duration 5s each) representing the epileptic dynamics of 

the FCD in the absence of stimulation. The average feature vector, denoted 𝑉�⃗ 𝐹,𝑟𝑒𝑎𝑙, was 
used for model tuning.  
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Besides the time constants associated with excitatory/inhibitory postsynaptic potentials 
which can be physiologically constrained, the model has more than 37 unknown 
parameters. Moreover, the time needed for the simulation and the characterization of 20s 
signal is of the order of 2s. Given the computational complexity of an automatic global 
optimization procedure in these circumstances, some parameters had to be fixed a priori 
(fixed parameters) while some other parameters were left to vary (free parameters). The 
free parameters were limited to the average EPSP/IPSP amplitude parameters of the 
cortical module (𝐴𝑐 , 𝐵𝑐 , 𝐺𝑐). This choice was motivated by the real dataset recorded from 
the thalamocortical system and in which the malformation is limited to the premotor cortex 
(chapter 4 section 1). Consequently, the equivalent parameters of the thalamic and 
reticular modules (𝐴𝑇ℎ, 𝐵𝑇ℎ , 𝐺𝑇ℎ, 𝐴𝑅𝑡) were tuned as close as possible to “standard values” 
usually used in neuronal population models. Noteworthy, the connectivity parameters and 
the PSP amplitude parameters (𝐴𝑐 , 𝐵𝑐 , 𝐺𝑐) are dependent (they are multiplied by each 
other in the ODEs governing the model’s dynamics). That is, optimizing (𝐴𝑐 , 𝐵𝑐 , 𝐺𝑐) can also 
be interpreted as optimizing the connectivity parameters.  

Once the reference feature vector 𝑉�⃗ 𝐹,𝑟𝑒𝑎𝑙 and the free model parameters are defined, the 
optimization algorithm is executed as described in Figure 23B. For each triplet (𝐴𝑐, 𝐵𝑐 , 𝐺𝑐), 
the corresponding feature vector 𝑉�⃗ 𝐹,𝑚𝑜𝑑𝑒𝑙 was calculated then compared to 𝑉�⃗ 𝐹,𝑟𝑒𝑎𝑙. The 
optimization procedure aimed at finding the triplet (�̂�𝑐 , 𝐵�𝑐 , 𝐺�𝑐) that minimizes a cost 
function simply corresponding to the Euclidean distance the real and the simulated feature 
vectors 𝑑�𝑉�⃗ 𝐹,𝑟𝑒𝑎𝑙 , 𝑉�⃗ 𝐹,𝑚𝑜𝑑𝑒𝑙� when parameters 𝐴𝑐, 𝐵𝑐 and 𝐺𝑐 span a predefined range of 
values according to an exhaustive Brute-Force procedure. 

2.4 MODEL TUNING FOR SIMULATING STIMULATION EFFECTS 
As mentioned earlier (Chapter 3, section 2.2.3), the modeled stimulation signal is 

weighted by a characteristic coefficient at the input of each subpopulation, respectively STC, 
SIrt1 and SIrt2 at the input of TC, 𝐼1

𝑅𝑡 and 𝐼2
𝑅𝑡. Therefore, based on the hypothesis that 

stimulation effects depend on the current’s impact on each of the subcortical 
subpopulations, these three parameters were manually tuned in the range of [-5, 5] each in 
order to reproduce the desired effects. In fact, this manual procedure was sufficient to 
reproduce stimulation effects observed in one patient. However, extending the study to a 
larger group of patients would have made imperative an automated parameter fitting 
procedure based on the spectral characteristics of real EEG signals. 

Noteworthy, impact limits [-5, 5] were chosen based on the fact that the extreme values 
−5 and 5 are sufficient to reproduce maximum hyperpolarization/depolarization of the 



     

74 | P a g e  
 
 

considered subpopulation respectively. However, the same signal processing method 
described earlier was then used to compare modeled to real signals.   
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 Chapter 5: Results of Part 1 

1 QUANTIFICATION OF STIMULATION EFFECTS IN REAL SIGNALS 
The application of the aforementioned signal processing algorithm (Chapter 4, section 2) 

to real iEEG signals confirmed the clinical visual inspection of stimulation effects. Indeed, 
the energy distribution among the iEEG frequency bands changed significantly depending 
on stimulation frequency. 

1.1 ENERGY DISTRIBUTION 
1.1.1 SPONTANEOUS INTERICTAL ACTIVITY (LFPSFCD) 

The recorded spontaneous activity of the FCD (LFPsFCD) presents an abnormal energy 
distribution as compared to that of a normal iEEG signal. The latter was chosen from the 
iEEG signals of the same patient recorded on a different electrode far from the FCD, and 
showing no interictal activity. As Figure 24 shows, the energy distribution of the 
pathological signal presents a flagrant abnormal peak (> 60%) in the band contribution (δ2 + 
θ1) corresponding to the frequency range [1.5 − 5.4 Hz]. The γ band contribution 
(frequency > 24 Hz) seems to double in the pathological context when compared to the 
normal context. 

          
Figure 24. Energy Distribution (%) of Pathological (LFPsFCD) Signal vs. Normal Signal. Note the enrormous energy 

peak at δ2 + θ2 band.  
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Still, the three consecutive peaks of energy of the interictal activity (LFPsFCD) at δ2 + θ1 
(1.9 – 5.4 Hz), α (7.4 – 10 Hz), and γ (> 24 Hz) correspond to the three major components of 
our signal and mark its epileptic aspect. In fact, reconstructing uniquely these three bands 
well approximates the initial signal (Figure 25). Finally, this characterization was a useful 
tool for measuring the effectiveness of stimulation effects. 

 
Figure 25. Reconstructed Signal vs. Sum of Major Bands (δ2 + θ1, α, and γ). The sum of the major bands is a 

sufficient representation of the initial signal.  

1.1.2 STIMULATION EFFECTS 
As the interictal dynamics of the FCD seem to repeat in a stationary manner with a period 

of almost 1/3 second, it seems sufficient to consider real activity segments as small as one 
second for the proposed signal processing algorithm. Given the fact that the patient was 
stimulated only once at each specified stimulation frequency (2, 50, 70, 100 and 150 Hz), 
considering real iEEG segments as short as 1 s for the quantitative study was practical.  

In practice, 20 real signal segments each of 5 seconds duration representing the interictal 
FCD dynamics were used to describe the “No Stimulation” condition. As for the 2Hz-
Stimulation condition, the patient underwent only one thalamic stimulation trial of 60 
seconds at a regular frequency of 2Hz. Only 36 seconds of the iEEG signal recorded in the 
FCD during stimulation were considered for this type of stimulation. However, stimulation 
segments of 4 seconds each were defined for further analysis using the signal processing 
algorithm defined earlier. As for the other four reported stimulation frequencies (50, 70, 
100, and 150 Hz), the patient underwent only one exploitable stimulation (during interictal 
activity) of 5s/stimulation frequency. For this, three stimulation cortical iEEG segments of 
1.75s each (0.1s overlap) were defined for each stimulation type. Finally, these stimulation 
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segments were processed, and statistically compared to the “No Stimulation” condition 
using a t-test.  

 

 Figure 26. Frequency-dependent 
modulation of the signal’s energy 
distribution during stimulation. Each 
graph represents the distribution of 
given stimulation condition as 
compared to the no stimulation 
condition. Note the absence of effect 
for the 50 Hz stimulation condition. 
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As demonstrated in Figure 26, stimulation elicits a significant frequency-dependent 
modulation of the signal energy content. Accordingly, the 2, 70, 100, and 150 Hz 
stimulation conditions significantly diminish the abnormal “δ2 + θ1” peak present in the 
spontaneous activity, while the 50 Hz stimulation condition does not affect the contribution 
of the major frequency bands δ2 + θ1, α, and γ. However, the signal energy redistribution 
varies as a function of the stimulation frequency. Notably, the decrease in the “δ2 + θ1” 
peak seems the least important for the 2 Hz stimulation condition. Another “peculiar” peak 
arises at θ2 in the case of the 70 Hz and the 150 Hz stimulation conditions. Moreover, the 
energy distribution of the iEEG signal segments during the 100 Hz stimulation conditions 
seem to mostly match those of the normal signal presented earlier in Figure 24. 
Noteworthy, as reported in the clinical report, it is the effects of the 100 Hz stimulation that 
last the longest (16s) after the end of stimulation compared to 0.5s for the 150 Hz 
stimulation trial and 2s for the 70 Hz stimulation trial. 

1.2 THREE STIMULATION GROUPS 
The limited number of experimental observations per stimulation necessitated the use of 

another form of data analysis and presentation to better mark the stimulation-driven 
bifurcations in the patient’s thalamocortical system. Consequently, the 9D feature vectors 
were reduced to 3D feature vectors which then classified by k-means into three groups. 

1.2.1 THE 3D SPACE 
In order to graphically visualize stimulation effects, a 3D space containing one of the three 

major LFPsFCD characteristic frequency bands at each axis was defined as follows (𝑥, 𝑦, 𝑧) =
(𝐸δ2 + θ1, 𝐸θ2+𝛼+𝛽1, 𝐸𝛽2+𝛾). Consequently, a 3D feature vector (𝑉�⃗ 𝐹_3𝐷) was constructed for 

each signal segment from the initially calculated 9D vector (𝑉�⃗ 𝐹). 

𝑉�⃗ 𝐹_3𝐷 = [𝑉�⃗ 𝐹(2) + 𝑉�⃗ 𝐹(3),  𝑉�⃗ 𝐹(4) + 𝑉�⃗ 𝐹(5) + 𝑉�⃗ 𝐹(6) + 𝑉�⃗ 𝐹(7),  𝑉�⃗ 𝐹(8) + 𝑉�⃗ 𝐹(9)] 

The resulting 3D feature vectors were then represented as points in the 3D space as 
depicted in Figure 27-A. The visual inspection of this representation sounds sufficient to 
affirm the considerable change caused by the different stimulation frequencies, except for 
the 50 Hz frequency. Actually, the distribution of points in the 3D frequency space is not 
random but clustered, indicating that the frequency content of LFPsFCD segments is 
modulated in function of the stimulation frequency. In addition, some clusters are very 
close. This is typically the case for i) the no stimulation (yellow) and the 50 Hz stimulation 
conditions (red) on the one hand, and ii) the 70 Hz (violet) and 150 Hz (cyan) stimulation 
conditions on the other hand. In this representation, the resemblance between the features 
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of the spontaneous interictal activity LFPsFCD and that produced at 50 Hz stimulation is 
made sufficiently evident. 

1.2.2 FEATURE VECTOR CLASSIFICATION AND STIMULATION CLUSTERS 
To go beyond the visual clustering of the plotted points, the 3D feature vectors were 

classified into three groups using the k-means algorithm with a Mahalanobis distance. The 
classification was initialized using Forgy’s random initialization method (random choice of 
initial means) and repeated 1000 times. The clusters that minimize the global intra-cluster 
inertia were considered as the optimal clusters. These are represented in Figure 27-B. 

 

Figure 27. 3D Space and Clustering.  (A) The projection of 3D feature vectors into the 3D frequency space. (B) 
The k-mean clusters corresponding to stimulation effects. In yellow the co-clustering of the no stimulation 
(NS) condition and the intermediate-frequency stimulation (IFS; 50 Hz) condition, in green the low-frequency 
stimulation (LFS; 2 Hz) cluster, and in blue the high-frequency stimulation (HFS; > 70 Hz) cluster.  

The 3D feature vectors of real iEEG signal segments were thus automatically classified into 
three clusters. The first cluster contains those corresponding to iEEG segments recorded 
during low-frequency stimulation (LFS). The second cluster groups all feature vectors 
corresponding to segments recorded during high frequency stimulations (HFS, > 70 Hz).  
And finally, in the third cluster, segments recorded under the no stimulation and the 
intermediate stimulation frequency (IFS, 50 Hz) conditions are merged together, suggesting 
that this stimulation frequency does not reduce the “epileptiform aspect” of the activity 
reflected in the LFP. 

In conclusion, this classification procedure allowed the definition of three groups of 
stimulation effects that will be computationally studied in order to (1) better understand 
the frequency-dependent mechanisms of action of thalamic stimulation and thus (2) 
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optimize the stimulation frequency such that epileptic activity is reduced as much as 
possible. 

2 REPRODUCTION OF REAL EPILEPTIC LFPS DURING AND IN THE ABSENCE OF 

STIMULATION 
The model optimization algorithm described earlier in section 2.3 was used to tune the 

model’s output in the absence of stimulation. Then, model parameters for reproducing 
stimulation effects were tuned manually. 

 
Figure 28. Normalized Euclidian distance between VF,real and VF,model . Best fit (gray disk) between simulated and real 
LFPsFCD was obtained for (A) AC = 6, (B) BC = 14, and (C) G C = 16.5. (D) For these modified values of excitation and 
inhibition, the simulated signal exhibits similar characteristics as the iEEG signal recorded in the FCD. For standard 
values of excitation and inhibition (AC = 3, BC = 50, GC = 22), the model generates background EEG activity.  

2.1 SIMULATING EPILEPTIC FCD ACTIVITY 
As a first step, we verified the ability of the model to generate signals that resemble those 

recorded from the FCD in the considered patient (LFPsFCD). The optimization procedure, led 



     

81 | P a g e  
 
 

us to identify a minimal distance and thus an optimal parameter vector (�̂�𝑐 , 𝐵�𝑐 , 𝐺�𝑐) = (6, 14, 
16.5) for which simulated signals under the no stimulation condition have similar features 
as compared with those of real signals (Figure 28). 

2.2 SIMULATING STIMULATION EFFECTS 
As mentioned earlier (Chapter 4 section 2.4), stimulation effects were reproduced by 

manually tuning three model parameters STC, SIrt1 and SIrt2 respectively representing the 
impact of stimulation of the three subcortical subpopulations TC, 𝐼1

𝑅𝑡 and 𝐼2
𝑅𝑡. Once 

determined, these three parameters were considered constant for all stimulation 
frequencies. Then, the resulting simulated signals (Figure 29) were processed using the 
same MPTK-based algorithm as that used for processing actual LFPsFCD. Similarly, the 
corresponding 3D feature vectors were later calculated and projected in the same 
frequency 3D space (Figure 30). 

 
Figure 29.  Real and simulated signals for the different stimulation conditions 

As shown in Figure 29, although the simulated LFPsFCD do not exactly match actual signals, 
they present similar features. Indeed, under the no stimulation (NS) and the IFS condition 
the model generates rhythmic slow oscillations (δ2) with superimposed faster activity (α 
and γ), as observed in real data. For LFS and HFS conditions, strong modulation of this 
activity was also obtained in the model. At LFS, in the model, the slow wave activity was 
strongly reduced but spike events occurred in the signals at the instant times of stimulation, 
mimicking, to some extent, comparable events also present in actual LFPsFCD. Finally, at HFS, 
slow oscillations (δ2) were abolished in the model which generates quasi-normal 
background activity. This simulated activity was also comparable to real activity observed 
for HFS stimulation but disclosed visibly less γ activity.  

Figure 30 shows the projection of feature vectors of simulated LFPsFCD in the 3D frequency 
space (“M” triangles). As depicted, simulated signals obtained for LFS, IFS and HFS were 
close to corresponding clusters obtained from real signals for the exact same computation 
of feature vectors. Indeed, qualitatively similar bifurcations – to those observed in the real 
dataset – were produced in the model when similar stimulation conditions were imposed. 
These bifurcations are quantified in Figure 30. 
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3 MODEL ANALYSIS 
In addition to the manual aspect of the parameter tuning for reproducing the desired 

stimulation effects, a system analysis study was undertaken in order to: 

(1) Study the stability of the system’s output in the neighborhood of its optimal 
parameters. 

(2) Identify the necessary model conditions for reproducing the simulated stimulation 
effects. 

(3) Identify the corresponding mechanisms of the simulated stimulation effects in an 
attempt to optimize stimulation frequency. 

 

Figure 30. The feature vectors of simulated signals (triangles) projected in 3D frequency space with the feature 
vectors of real iEEG signals (Squares). 

3.1 INDICATIVE STUDY OF PARAMETER SENSITIVITY  
The indicative study of parameter sensitivity was done to complement the qualitative 

aspect of the optimization of stimulation parameters STC, SIrt1 and SIrt2. These three 
parameters supposed fixed, this study aimed at determining the impact of random changes 
affecting the parameter vector 𝛩 = (𝐴𝑐, 𝐵𝑐 , 𝐺𝑐 , 𝐴𝑇ℎ, 𝐵𝑇ℎ , 𝐺𝑇ℎ, 𝐴𝑅𝑡) on the model’s output 
(simulated cortical LFPs). Effectively, this extended parameter vector included the triplet 
(𝐴𝑐, 𝐵𝑐 , 𝐺𝑐) of EPSP/IPSP amplitude parameters in the cortical module as well as their 
analogous parameters in the thalamic (𝐴𝑇ℎ, 𝐵𝑇ℎ , 𝐺𝑇ℎ) and reticular (𝐴𝑅𝑡) modules. Thus, 
parameter vector 𝛩 determines the excitability properties in the three model modules. 
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Figure 31. Indicative Study of Parameter Sensibility. Model output sensitivity to variations of excitatory and 
inhibitory key parameters. Realizations of parameter vector 𝛩 = (𝐴𝑐 , 𝐵𝑐 , 𝐺𝑐 , 𝐴𝑇ℎ, 𝐵𝑇ℎ, 𝐺𝑇ℎ , 𝐴𝑅𝑡) were randomly 
(uniform law) generated around the optimal parameter vector 𝛩�  over a variation domain defined by (1 ± 𝜇)∙
𝛩� . For 𝜇 ≤ 0.2 (±20% variation), stimulation effects are preserved in the model for A) no stimulation, B) low-
frequency stimulation, C) intermediate-frequency stimulation, and D) high-frequency stimulation.  

Consequently, in order to study the model output robustness, each parameter of vector 𝛩 
was considered as an independent random variable 𝛩(𝑛) following the uniform law on the 
interval [(1 − 𝜇) ∙ 𝛩�(𝑛), (1 + 𝜇) ∙ 𝛩�(𝑛)] where 𝜇 𝜖 {0.05, 0.1, 0.15, 0.2} and 𝑛 is the vector’s 
index. The mean of this uniform law, 𝛩�(𝑛), represents the optimal value of its 
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corresponding parameter. In short, optimal parameters (�̂�𝑐, 𝐵�𝑐 , 𝐺�𝑐) correspond to the 
optimized triplet of cortical excitability while parameters (�̂�𝑇ℎ, 𝐵�𝑇ℎ, 𝐺�𝑇ℎ, �̂�𝑅𝑡) correspond 
to standard values attributed to the parameters of thalamic/reticular excitability. 

 
Figure 32. Quantitative Representation of model output when 𝜇 = 0.05. The circles represent the 3D feature 
vectors of the real LFPs. Asterisks represent the 3D feature vectors of the randomly simulated model output. The 
quantitative features of the model output remains close enough to the clusters of real quantified stimulation 
effects.  

Ten random simulations of each scenario were done for each value of 𝜇. Representative 
signals are demonstrated in Figure 31. As shown in this figure, the simulated signals 
obtained under the four stimulation conditions (NS, LFS, IFS, HFS) stay “quite robust” (in the 
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sense that waveforms are conserved) when parameters stay in the range [𝛩�  ±  𝜇 ∙ 𝛩�]  with  
0 ≤  𝜇 ≤ 0.2 (± 20% variation). 

Moreover, the simulated signals for the preceding study (𝜇 = 5%) were processed and 
projected in the same 3D space as that of the clusters defined earlier on real signals. As 
depicted in Figure 32, the 3D feature vectors of the randomly simulated signals remain 
close enough to the clusters of real quantified stimulation effects. Apparently, minimal 
variability is evident for the HFS condition. 

3.2 MODEL PHASE PORTRAITS 
The modulation of the model output features by the stimulation input is linked to the 

bifurcations of model dynamics induced by this input. Particularly, the modulation of 
thalamic dyanmics is at the heart of the observed effects. Unfortunately, thalamic LFPs are 
not available in the clinical dataset due to stimulation artefacts. But, the thalamic TC firing 
as well as LFPs are accessible in the model (which is a big advantage) as stimulation-induced 
artifacts can be be easily withdrawn from simulated signals. Moreover, the states of both 
the thalamic and the cortical modules resume the thalamocortical system’s instantensous 
state during stimulation. Consequently, the phase space of two model variables a thalamic 
(TC firing) and a cortical (cortical LFP – population P) was explored in the four different 
condtions (NS, LFS (2 Hz), IFS (50 Hz), and HFS (100 Hz)). The phase portraits (TC cell firing 
vs. cortical LFP) illustrated in Figure 33 confirmed the visual inspection of signals simulated 
at the two modules. For the no stimulation (NS) and for the intermediate frequency 
stimulation (IFS) conditions, phase portraits were found to be quite similar. They indicated 
the presence of mixed slow/fast oscillations in both signals. For the low frequency 
stimulation (LFS) condition, oscillations in the simulated LFP in the FCD were reduced. They 
came along with short-duration, abrupt and rhythmic augmentations of the TC firing 
corresponding to stimulation pulses. Finally, for the high frequency stimulation (HFS) 
condition, oscillations in both types of activity stayed confined to small amplitude values.  

In conclusion, the phase portraits of two key variables in the model, thalamic firing and 
cortical local field potential (LFP), prove that stimulation evokes model bifurcations 
quantitatively similar to those observed in the patient’s iEEG signals. Indeed, the cycles in 
the phase portrait obtained for the NS condition changed into a fixed point under the HFS 
condition. Along the same line, the LFS phase portrait seems nearer to a fixed point 
functioning mode when taking the cortical LFP uniquely into consideration.  Finally for IFS, 
the resulting phase portrait denotes an even more oscillatory activity than that of the NS 
condition. 
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Figure 33. Phase portraits (FCD activity vs. CM firing) for the four stimulation conditions: NS, LFS (2 Hz), IFS (50 Hz), 
and HFS (100 Hz). During the NS condition, the system oscillates on a limit cycle. Cortical activity is diminished 
during LFS, whereas thalamic firing increases transiently following stimulation pulses. Cortical activity barely 
changes during IFS whereas thalamic firing increases. HFS switches the model form a limit cycle functioning mode 
to a more normal fixed point mode.  

3.3 QUANTIFYING MODEL BIFURCATIONS: THE HIGH TO LOW FIRING RATIO (HTOLR) 
At this point of the study, the effects of thalamic stimulation on FCD dynamics are well-

defined and characterized both in simulated and real signals. Yet, the ultimate question of 
frequency optimization for clinical use is still immature. For this, we had to quantitatively 
determine the model output over a large frequency range (0.5 to 150 Hz) rather than at 
fixed frequency values (2, 50 and 100 Hz). Consequently, a simpler measure of model the 
output had to be defined. And the final choice was output intermittency. 

 

Figure 34. Model intermittency.  (A) The firing rate of TC cells depends on the frequency of the stimulation 
input (Δ1: time interval for which this firing is lower than a threshold Λ, Δ2: time interval for which this firing is 
higher than Λ). (B) Evolution of the “High to Low Firing Ratio” (HtoLR) as a function of stimulation frequency.  
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 In dynamical systems, intermittency is the irregular alteration of phases of apparently 
periodic and chaotic dynamics. An intermittent phenomenon can be observed in the 
studied thalamocortical system especially during the NS condition. Measuring this 
phenomenon provides a simple representation of the model’s state (more interestingly the 
thalamic output) as a function of the frequency of the stimulation input. 

First of all, a qualitative inspection of the thalamic firing rate during the four different 
stimulation conditions was imperative. The corresponding simulated signals, demonstrated 
in Figure 34-A, show that the thalamic output dramatically differs depending on the 
stimulation frequency. Under the no stimulation condition (NS), the firing rate continuously 
oscillates around a certain value (referred to as Λ, Figure 34-A). At LFS, the firing rate was 
found to be lower, except at the stimulation times where it abruptly and transiently 
increased. At IFS, a balance was observed between time intervals for which the TC firing is 
above and below Λ. Finally, at HFS, the output of TC cells was found to be very low, i.e. 
systematically under the threshold Λ. Based on these observations, two variables were 
calculated from the simulated thalamic firing. These correspond to two time intervals, ∆1 
and ∆2, for which the TC cells firing rate is either below/above the threshold Λ respectively 
(for illustration see Figure 34-A). These quantities were calculated as a total 
(∑ ∆1 and ∑ ∆2 ) per duration of simulation, the latter being equal for all stimulation 
conditions. Subsequently, the ratio of these two quantities was calculated for every 
stimulation frequency in the range 0.5 – 150 Hz. This range was denoted the “High-to-Low 
Firing Ratio” or HtoLR.  

𝐻𝑡𝑜𝐿𝑅 =  ∑ ∆2 
∑ ∆1 �  

The HtoLR provides an indication on the amount of time the TC cells spend at a high firing 
rate (up state) relatively to the amount of time they spend at a low firing rate (down state). 
The higher this ratio the higher the proportion of time the system spends at the up state 
and vice versa.  

Figure 34-B provides the evolution of the HtoLR when the frequency of the stimulation 
input changes progressively from 0 to 150 Hz in the model.  As depicted, these simulations 
indicated that three stimulation frequency ranges have different effects on the firing of TC 
cells. First, from 0 to 20 Hz, the down state is predominant. Then, an abrupt jump was 
observed around 22 Hz indicating that beyond this value, the firing rate dramatically 
increased. Interestingly, from 55 Hz to 65 Hz, a progressive decrease of the HtoLR was 
observed. Then, after 70 Hz, the ratio is equal to zero indicating that TC cells did not fire 
anymore.  
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3.4 THE NECESSARY ELEMENTS 
A recurrent question asked to any model is the following: what are the elements that are 

absolutely necessary for the reproduction of the observed effects? In other words, it the 
proposed model a minimal model that only integrates the essence of observed 
phenomena? To address this difficult issue, we followed an empirical approach according to 
which implemented elements/mechanisms were sequentially turned off one at a time to 
observe the resulting model output.   

First of all, removing FFI from the model by removing the thalamic projection onto the 
two cortical interneurons resulted in the failure to reproduce the LFS effects. Similarly, 
removing the STD mechanism by establishing a standard h function at the interface of TC 
and P populations resulted in the failure to reproduce LFS effects. This confirmed that both 
FFI and STD mechanisms are necessary in the model to suppress the epileptic activity of the 
FCD when LFS is being utilized. 

 

Figure 35. Conditions to reproduce frequency-dependent stimulation effects.Model output in the case where 
one and only one of the implemented mechanisms (FFI, STD, depolarization of IRt

2, and IRt
1 respectively) is 

absent. LFS effects are not reproduced when the model does not account for FFI and STD. HFS effects require 
the depolarization of both reticular populations IRt

2 and IRt
1. Suppression of epileptic activity is observed at IFS 

when IRt
2 interneurons are removed. Red dotted lines indicate situations where simulated signals do not 

match real ones for given stimulation condition.  
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Secondly, the impact of stimulation on the different subcortical neuronal populations was 
altered to determine its effects. Two hypotheses were made. The first one suggested that 
the stimulation current does not affect the dynamics of the fast inhibitory reticular 
population 𝐼1

𝑅𝑡 . Consequently, SIrt1 was set to zero thus limiting stimulation effects to the 
thalamocortical TC population and to the slow inhibitory reticular population 𝐼2

𝑅𝑡 . 
Conversely, the second one suggested that the stimulation currents only impact the 
thalamocortical TC population and to the fast inhibitory reticular population 𝐼1

𝑅𝑡 , and thus 
SIrt2 was set to zero. Running model simulations under the first hypothesis provoked 
instability of the HFS effect. The model output oscillated from time to time during HFS. 
Deploying the second hypothesis resulted in an inversion of the effects of IFS and HFS. 
Results are depicted in Figure 35. 

In conclusion, results indicated that the RtN inhibitory interneurons targeting TC cells 
(both  𝐼1

𝑅𝑡 and 𝐼2
𝑅𝑡 subpopulations) must be affected (i.e. depolarized) by the stimulation to 

obtain a suppression of epileptic activity when HFS is being used, as observed in the 
patient. Third, and interestingly, an unexpected effect was observed at IFS when the 
depolarization of 𝐼2

𝑅𝑡
 interneurons was removed from the model. Indeed, epileptic activity 

was abolished in this case, which is really unlikely to occur during actual stimulation as both 
subtypes of neurons are expected to be affected by the direct stimulation of the CM 
thalamic nucleus. 

4 THE MECHANISMS: COMPUTATIONAL INSIGHTS 
The totality of the preceding results computational and electrophysiological point toward 

one direction: “The frequency of stimulation does matter!”. One can actually expect to see 
a nonlinearity of the cortical response to the frequency of thalamic stimulation (Figure 34-
B). Moreover, the mechanisms activated by stimulation seem to be themselves frequency-
dependent. In the following paragraphs, the mechanisms identified in this study are 
summarized. 

4.1 THE NO STIMULATION “INTERICTAL” DYNAMICS 
The spontaneous interictal dynamics observed in the clinical dataset were successfully 

reproduced in the model by changing the excitability characteristics of the cortical module. 
Indeed, the optimal parameters vector showed a major increase of 100% in the amplitude 
of cortical EPSPs Ac, contrasted by a consequent decrease of cortical inhibition (72% and 
25% of the values of Bc and Gc respectively).  
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4.2 LOW-FREQUENCY STIMULATION (LFS, F < 20 HZ) 
For the low-frequency stimulation (LFS, f < 20 Hz) condition, two mechanisms were found 

to play a major role for the abortion of epileptic activity in the FCD by decreasing cortical 
excitability: short-term depression (STD, i.e. decreased excitatory synaptic efficacy in 
thalamus-to-cortex connections) and feed-forward inhibition (FFI, i.e. excitation of 
inhibitory cortical interneurons by TC cells) (Figure 36-B). Actually, thalamocortical 
ascending fibers directly target principal pyramidal neurons as well as cortical interneurons 
inducing EPSPs in pyramidal principal cells as well as GABAergic interneurons [190]. While 
the arriving EPSPs were weakened by the STD mechanism, the IPSPs mediated to cortical 
pyramidal by cortical interneurons by FFI refrained cortical excitability. 

 
Figure 36. Frequency-dependent mechanisms underlying DBS. (A) Under the no stimulation (NS) condition, 
the thalamocortical loop is responsible for pathological oscillatory rhythms observed in the FCD. (B) For low-
frequency stimulation (LFS), feed-forward inhibition (FFI, i.e. excitation of inhibitory cortical interneurons by 
TC cells) and short-term depression (STD, i.e. decreased excitatory synaptic efficacy in thalamus-to-cortex 
connections) was found to play a major role for the abortion of epileptic activity in the FCD. (C) For the 
intermediate-frequency stimulation (IFS) condition, thalamic output is reinforced (increase of TC cells firing) 
leading to an increase of the average excitatory post-synaptic potential (EPSP) on cortical pyramidal cells and 
to no “anti-epileptic” effect. (D) For high-frequency stimulation (HFS), the direct and sustained excitation of 
reticular nucleus (RtN) interneurons leads to dramatic decrease of TC cells firing rate and to a suppression of 
epileptic activity.  
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4.3 INTERMEDIATE-FREQUENCY STIMULATION (IFS, 20 < F < 70 HZ) 
For the intermediate-frequency stimulation (IFS, 20 < f < 70 Hz) condition, results 

indicated that the thalamic output is reinforced (increase of TC cells firing) and leads to an 
increase of the average excitatory post-synaptic potential (EPSP) on cortical pyramidal cells 
(Figure 36-C). This effect corresponds to an increase of the spatiotemporal summation of 
unitary EPSPs.  In this case, both the cortical excitability and the gain in the excitatory 
thalamocortical loop is increased, leading to “no antiepileptic” effect. 

4.4 HIGH-FREQUENCY STIMULATION (HFS, F > 70 HZ) 
Finally, for the high-frequency stimulation (HFS, f > 70 Hz) condition, the direct and 

sustained excitation of reticular nucleus (RtN) interneurons leads to strong inhibition of TC 
cells and thus to dramatic decrease of their firing rate. Despite the fact that TC neurons are 
also affected by stimulation, the response of reticular GABAergic neurons to stimulation 
and the higher efficiency of GABA-mediated currents ensure that IPSPs override EPSPs on 
TC cells. In this case, the reduced excitatory input to cortical pyramidal cells also leads to a 
suppression of epileptic activity (Figure 36-D). 
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Conclusion and Discussion on Part 1 

 

In this study, a computational model of the thalamocortical loop was developed and 
analyzed in order to interpret the response of a specific neuronal system to an input stimulus, 
i.e. a pulse train characterized by its frequency. More specifically, this response corresponds to 
the indirect stimulation response, or in systems terms, the response of a given model’s module 
to an input stimulus affecting another interconnected module. This necessitated the parallel 
definition of a signal processing methodology capable of precisely describing the real as well as 
the simulated signal content. 

1 THE MODEL’S ARCHITECTURE 
In view of the high complexity of the thalamocortical system, performing exactly the same 

study at the microscopic level would have been much more tedious and of a higher 
computational complexity. Actually, to our knowledge, the implementation of a 
microscopic model of focal cortical dysplasia has never been reported. And this is most 
probably due to the unique “random” architecture (cell types/ neuronal cell orientation/ 
synaptic projections) of this developmental lesion that would make it quite difficult to 
model at the cellular level. On the other hand, the advantage of macroscopic modeling is 
the dramatic reduction in the number of model parameters while staying relatively close to 
the physiological representation of the considered neuronal system. Only a single 
constraint remains: in the modeled system, synchronous dynamics of its constituting 
elements, typically the neuronal cells, is assumed. In fact, in the context of epilepsy, this 
assumption is common as synchronous continuous rhythmic or semirhythmic spikes and 
polyspikes constitute an electrophysiological signature of epileptogenic systems in general 
and of FCD in particular (see Chapter 1 section 3.4).  

Regarding the model’s architecture, as aforementioned, it followed the same general tri-
modular architecture used previously by several research groups to model thalamocortical 
dynamics [22, 26, 27, 74, 167, 168, 172, 173]. However, the implementation of an 
alternative version was inevitable in order to:  

(1) guarantee the reproduction of realistic epileptic activity  
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(2) implement stimulation biophysical effects and stimulation-activated mechanisms  

Consequently, the cortical module of the proposed model was extended in order to better 
approximate the temporal dynamics of epileptic signals recorded in the FCD. This 
modification consisted in the use of two types of interneurons (mediating GABAergic IPSPs 
with slow and fast kinetics on cortical principal cells), as reported in a previous study [180]. 
In effect, previously published models simplified the cortical module to a single population 
of pyramidal cells [176, 207], or coupled the latter with a single inhibitory subpopulation 
[175]. It was firstly Suffczynski and his colleagues [27] who implemented two different 
types of inhibitory GABAergic synapses originating from a single population of interneurons 
in the cortical module. Similarly, the reticular module was extended into two independent 
populations of inhibitory neurons instead of a single population as implemented by the 
preceding models [22, 26, 27, 74, 167, 168, 172, 173]. Effectively, this turned out to be 
necessary for identifying the mechanisms of stimulation. 

In order to account for stimulation effects, the “∆𝑉 =  𝜆 ∙ 𝐸” neural membrane 
polarization model was adopted [208]. According to this model, the perturbation of the 
mean membrane potential of a neuron ∆𝑉 is a linear function of the induced stimulation 
electrical field 𝐸 in its neighborhood, 𝜆 is termed “polarization length” [209]. This “𝜆 ∙ 𝐸” 
assumption was already used in neural mass models in the context of low-intensity direct 
hippocampal stimulation to anticipate seizures [210] as well as in the analysis of the 
stimulus-response relationship of DBS in healthy animals [211]. Noteworthy, this 
assumption is valid for static electric fields. For alternating current stimulation [212], this 
expression is given by:  

∆𝑉 =  𝜆 ∙ 𝐸
�(1 + 𝜔2𝜏2)�  

where 𝜔 = 2𝜋𝑓 and 𝜏 is the polarization time constant. However, in this study, we 
neglected the extended form supposing that ∆𝑉 ≅  𝜆 ∙ 𝐸 for extremely small values of 𝜏. In 
brief, in the proposed model stimulation inputs were implemented at the level of the mean 
PSP of each subcortical population. The stimulation impact coefficients were not weighted 
by frequency-dependent coefficient to represent the complete form of the “𝜆 ∙ 𝐸” model. 
And this issue should probably be taken into consideration in future studies. 

However, it is worth mentioning that in our model, the three subtypes of neurons (TC cells 
and both subpopulations of inhibitory neurons in the RtN) are depolarized by the 
stimulation, as suggested in [179] and conversely to [211] where only principal cells are 
impacted. 
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Concerning the implemented mechanisms, it is worth noting that short-term depression 
has never been implemented on the macroscopic level before. The cellular aspect of 
synaptic depression makes its implementation less evident on this modeling level. 
However, this becomes possible when short-term depression is regarded as part of the 
postsynaptic dynamics directly related to the mean firing rate at the population’s input. 
From the same perspective, Modolo and his colleagues [213] modeled long-term plasticity 
in a neural mass model of cortical dynamics. Finally, concerning feed-forward inhibition 
(FFI), even though it basically existed in a previously published model [27], it was never 
explored as a potential mechanism involved in deep brain stimulation. 

2 SIGNAL PROCESSING AND REPRESENTATION 
In a fundamental reference on electrophysiology [214], Prof. F. Lopes Da Silva writes: 

“Every experienced electroencephalographer has his or her personal approach to EEG 
interpretation. (…) there is an element of science and an element of art in a good EEG 
interpretation; it is the latter that defies standardization”. In this study, time-frequency 
parameterization of EEG data (MP) was used to calculate the spectral estimate of EEG data; 
real and simulated. As this choice is not as common for EEG analysis, it is hereby discussed 
and justified by scientific arguments. 

2.1 USING FFT – COMPARING THE OPTIMAL MODEL OUTPUTS 
It should be noted that spectral estimates (precisely, the power spectrum) were already 

used in the characterization of real datasets for optimizing model parameters [215]. This 
was equally the first method that we attempted to use in this study. Using the Fast Fourier 
transform, the average power spectrum from 0 to 150 Hz was calculated (256 data points 
were calculated on a 4s window for 50% overlap). This spectrum was then transformed into 
a 9D feature vector representing the normalized power in the classical iEEG bands. 

In order to test the precision of this approach, the cortical module was uniquely 
considered in the absence of stimulation. An average power spectrum of a simulated signal 
of 20s duration was calculated. The average power spectrum replaced the feature vector 
𝑉�⃗ 𝐹,𝑟𝑒𝑎𝑙 in the model optimization procedure presented in chapter 4, section 2.3. During the 
first test, the variance of the unspecific cortical input (p(t)) was set to zero. Using the 
simulated signal as a reference signal for parameter optimization, the FFT-based feature 
vector was sufficient for the identification of the exact parameters used for simulating this 
signal. However, when the variance of the input white noise p(t) was increased to 3, the 
identified optimal parameters didn’t match those used for simulating the reference signal. 
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This was the reason that put at doubt the precision of the FFT-based feature vector for 
model optimization. 

 

Figure 37. Optimizing the model output: MP vs. FFT.  (A) The plot of the real reference signal and the optimal 
simulated signals obtained using the FFT-based feature vector (classical power spectrum) and the MP-based 
feature vector respectively. Note that the first simulated signal seems to be significantly faster than the real signal. 
The second simulated signal seems to better match real dynamics. (B) The bar plot of the FFT-based feature vectors 
of the real reference signal and the model optimal signal. (C) The bar plot of the MP-based feature vectors of the 
real reference signal and the model optimal signal. The optimal distance obtained is less than that measured for the 
FFT-based feature vectors.  

To confirm these doubts, test simulations were run at the end of this study in order to 
compare the optimal model signal for the “no stimulation” condition using the MP-based 
feature vector versus the power spectrum feature vector. The visual inspection of these 
signals confirmed that the MP-based feature vector is better adapted to optimize model 
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parameters and that the resulting simulated signal better resembles the real one (Figure 
37-A). Moreover, while the energy distribution of both feature vectors (MP-based and FFT-
based) does not seem to vary drastically, the Euclidean distance between the optimal and 
the reference signal is much smaller in the case of the MP-based feature vector (Figure 37-B 
and C). 

2.2 CLASSICAL TIME FREQUENCY APPROACHES – THE LIMITATIONS 
Actually, when the FFT-based characterization failed to meet the required precision, the 

classical time-frequency methods (Wigner-Ville transform, periodogram, wavelet 
decompositions) were all considered as possible alternatives. However, the Wigner-Ville 
transform and the periodogram were not explored for the following reasons: 

(1) They are time-shift dependent. Thus, it is not evident to calculate the distance 
between 2D feature vectors of out of phase signals using these transforms. 

(2) This could have been done by considering only the average energy content as a 
function of the frequency. But, this would have eventually led to the same 
observations obtained for the FFT-based feature vector. 

For these reasons, we only explored the wavelet decompositions.  

The first tackled algorithm was the discrete wavelet transform (DWT) using daubechies 4 
wavelets. Using this algorithm, the choice of the frequency bands was limited to the dyadic 
scale. As shown in  

Figure 38, we could not obtain the 9D feature vector but a 5D feature vector. This 5D 
vector corresponds to the approximate definitions of the bands (δ, θ, α + β1, β2 and γ).  

Surely, this method imposed also a minimum number of samples available in order to 
attain the lowest band decompositions (δ and θ). This thereby constrained the data analysis 
procedure (at least 210 samples/ decomposed signal). Each 4s (fs = 256 Hz) of stimulation 
were then treated as an inseparable signal, and the population of stimulation signals was 
diminished into a unique signal segment/stimulation frequency. However, the basic 
problem was that using these approximations, the distinct features observed in the real 
iEEG signals during the different stimulation trials were rendered less obvious (Figure 39). 
Following these results, LFS effects can be then misinterpreted as ineffective.  

One can argue that the continuous wavelet transform (CWT) would have solved the 
problem of band definition. Yet, this does not resolve the problem of the minimal number 
of samples required for each decomposition. And it was for this reason that this approach 
was not pushed further. 
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Apart from these fruitless trials with wavelet decompositions, the major drawbacks of 
using wavelet decompositions go beyond the aforementioned constraints. P. Durka 
compared these algorithms against adaptive approximations and matching pursuit in [216]. 
In this work, orthogonal wavelet decompositions (e.g. DWT) are shown to be time-shift 
variant, i.e, the same signal is decomposed differently if a time shift is added (see [216] for 
illustrations). However, although that this limitation is not present in the CWT, other 
problems arise, notably the occurrence of cross terms and the highly redundant 
representation. 

 

Figure 38. The dyadic scale used for the DWT and the corresponding decomposed frequency bands (δ, θ, 
α + β1, β2 and γ).  
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Figure 39. The 3D frequency space as made possible by the DWT transform. The 3D feature vector 
corresponding to the LFS condition coincides with the feature vectors of the NS effects. The characteristic 
peak at the δ2 + θ1 band does not exist for the feature vectors of the NS condition. This seems to have been 
replaced by high-frequency components at the β2 and γ bands.  

2.3 THE ADVANTAGES OF MATCHING PURSUIT (MP) 
Besides the lack of cross terms, matching pursuit (as an adaptive time-frequency 

parameterization) exhibits several advantages over classical time-frequency 
representations. These advantages include (1) a high time and frequency resolution, (2) an 
exact characterization of the frequency, position, amplitude, width (scale), and phase of the 
detected structures (atoms), and finally (3) the possibility of using different atom types in 
the same decomposition (Fourier, Gabor, Dirac, …).  

The aforementioned characteristics of MP are the reasons behind the precision of the 
method, its time-shift invariance, and its transversal usability in different contexts (from 
audio applications such as audio signal coding to biomedical applications such as EEG 
analysis).  
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The possibility of detecting a diverse 
mixture of atoms is illustrated in Figure 
40. Four synthetic signals were 
generated, two sin waves of frequency 5 
and 10 Hz respectively, and two 
symmetric Gabor atoms of duration 12 s 
and frequency 12 Hz (Figure 40-A). 
These atoms were summed up into a 
test signal (Figure 40-B). This signal was 
decomposed using a properly defined 
dictionary and the detected atoms were 
analytically reconstructed in the 
corresponding bands. Figure 40-C shows 
8 different bands with the 
corresponding reconstructed atoms. The 
sin wave of frequency 5 Hz was 
reconstructed in the δ2+θ1 band, the sin 
wave of frequency 10 Hz was 
reconstructed in the α1 band (7.4 – 
10 Hz), and finally the two Gabor atoms 
were exactly detected and 
reconstructed in their corresponding 
position in the α2 band (10 – 12.4 Hz). 
Noteworthy, the MP-based feature 
vector was calculated for both the initial 
and the reconstructed signal. These two 
were exactly equal. 

 
Figure 40. MP precisely detects different signal 
components.  (A) Synthetic atoms used for testing 
MP and are summed together in a (B) test signal. (C) 
The detection of the initial atoms and their 
reconstruction in the corresponding frequency 
bands. 
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The high precision and the malleability of the MP decompositions were behind the choice 
of using it in this study. After all, using this type of decompositions, no constraints were 
imposed on the definition of the considered frequency bands. Moreover, defining the δ1 

band between 0.1 and 1.9 Hz offered an alternative method to de-trend the signal. 

2.4 THE 3D SPACE 
Even though the 3D signal representation could have been illustrated using a principal 

component analysis (PCA) algorithm, we opted for a more physiologically-relevant 
representation based on the energy content in aggregates of iEEG bands. However, it 
should be noted that the same clear separation between the stimulation conditions was 
also obtained using PCA (Figure 41). In this dimension reduction, simulated signals under 
the four stimulation conditions were also taken into consideration. 

 
Figure 41. PCA automatic dimension reduction from 9D to 3D feature vectors. The space of the three principal 
components shows a clear separation between the stimulation groups. Note that, with this representation the 
IFS group seems dispatched from the NS group. The simulated signals remain relatively close to their 
corresponding groups.  
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3 THE FREQUENCY-DEPENDENCE OF THE IDENTIFIED MECHANISMS 
Besides all the technical and methodological aspects presented in this study, its major 

contribution remains the identification of probable mechanisms responsible for the actually 
observed stimulation effects. More precisely, its ultimate novelty resides in the fact that it 
addresses these mechanisms on a large frequency range [0.5 – 150 Hz] compared to 
previous studies that usually address high-frequency stimulation (> 100 Hz) [74, 217] or less 
often low-frequency stimulation (< 10 Hz). On the other side, no previous studies addressed 
systematically the mechanisms of intermediate-frequency stimulation (≈ 50 Hz). 
Nonetheless, conducting this study over this extended frequency range remains built on a 
valid electrophysiological observation [197] recorded in the cortex of a drug-resistant 
epileptic patient during the pre-surgical evaluation that made use of intracerebral 
recordings.   

3.1 THE NO STIMULATION CONDITION 
As demonstrated in the model, under the NS condition, excitation among pyramidal cells 

had to be increased and inhibition had to be reduced in the cortical compartment for 
producing “pathological” oscillatory rhythms, as observed in the FCD of the patient. As 
these results point out the cortical origin (FCD) of these abnormal dynamics they do not 
neglect the involvement of the thalamocortical loop in their generation. In fact, these 
findings are in line with histological studies showing that these typical oscillations are 
generated in altered brain tissue, where inhibition is partially deteriorated or 
dysfunctioning [218], and where excitation is heavily increased [33]. In addition to neuron 
alterations in the dysplastic tissue [115], FCD must keep sufficient projections to - and input 
from - other brain structures (in this case, the thalamus) in order to propagate its 
pathological dynamics [33]. As mentioned before, the presence of connections with 
subcortical structures was a necessary condition in the model for producing pathological 
oscillations resembling those actually recorded in the FCD. 

3.2 THE LOW-FREQUENCY STIMULATION CONDITION 
As revealed by the model, the mechanisms of action of low-frequency stimulation (LFS) 

seem to be of higher complexity when compared to those of high-frequency stimulation 
(HFS). In fact, the implication of a dual mechanism of FFI and STD is but a highly probable 
hypothesis. As aforementioned, the coexistence of these two mechanisms in the model was 
the necessary condition for the reproduction of LFS effects. However, as it was 
computationally possible to increase the impact of STD by making the depressive effect on 
thalamocortical synapses last longer (in time) or be of higher intensity (> 40% depression of 
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the amplitude of cortical EPSPs), this study respects the reported physiological limits of this 
phenomenon following a thalamic electrical LFS [150]. In the same experimental context as 
[150], LFS trains in adult anaesthetized rats provoked transient long-term depression of 
thalamocortical synapses; this was measured by up to 40% drop in cortical EPSPs after LFS 
trains and under the effect of GABA antagonist [149]. Otherwise, STD could have solely 
explained the effects of LFS if a higher depression in the amplitude of corticothalamic EPSPs 
was computationally allowed in our study. 

   As mentioned above, while respecting the imposed physiological limit of STD, the LFS 
effects could not be reproduced by the model without incorporating also FFI. Actually, 
thalamocortical ascending fibers directly target pyramidal neurons as well as cortical 
GABAergic interneurons inducing EPSPs in both cell types [190]. In the model, while less 
efficient (STD) thalamic EPSPs arrive directly onto pyramidal neurons, IPSPs induced by 
thalamic stimulation also arrive on pyramidal neurons (FFI) lagging by 1 to 2ms. This short 
latency between the onset of thalamocortical excitation and the onset of feed-forward 
inhibition presents a temporal “window of opportunity” for pyramidal cells to integrate 
excitatory and inhibitory inputs, thus keeping the transmembrane potential below firing 
threshold. In the literature, neuroanatomical and neurophysiological studies [184] showed 
the functional importance of FFI in regulating cortical dynamics by controlling cortical 
excitability [219]. And it is the dual FFI and STD that regulates cortical excitability during LFS 
in our model. 

3.3 THE INTERMEDIATE-FREQUENCY STIMULATION CONDITION 
Provided that no previous studies addressed the mechanisms of intermediate-frequency 

stimulation (IFS, 20 < f < 70 Hz), it is directly enriching to computationally prove that this 
stimulation frequency increases the magnitude of thalamic firing and enhances 
corticothalamic oscillations. The paradox is that its only necessary condition is the 
depolarization of reticular slow inhibitory neurons 𝐼2

𝑅𝑡by stimulation. As depolarizing 
inhibitory populations by stimulation current normally increases the inhibitory drive, 
depolarizing this particular population seems to increase the amplitude of the intermittency 
in thalamic firing. In this case, both cortical as well as thalamic excitability increased.  

Nevertheless, it is worth noting that 50 Hz stimulation frequency is classically used during 
the pre-surgical evaluation of patients with intractable partial epilepsy in order to trigger 
seizures and delineate the epileptogenic zone [220, 221]. The same frequency range is also 
known to provoke afterdischarges and was actually used in the kindling model of epilepsy 
[151, 222]. 
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3.4 THE HIGH-FREQUENCY STIMULATION CONDITION 
Finally, concerning high-frequency stimulation (HFS, f > 70 Hz), several studies (for review 

see [223]) addressed its probable mechanisms. However, as the experimental context 
(epilepsy, Parkinson, dystonia …) and the stimulated target (GPe, STN, …) vary from one 
study to another, the identified mechanisms also vary and are sometimes contradictory. 
Today, the mechanisms by which DBS modulates neuronal dynamics, whether normal or 
pathological remain controversial [223]. Whether HFS acts by local depolarization blockade 
[68], synaptic depression due to neurotransmitter depletion [146, 147], or synaptic 
inhibition [70] or whether it disrupts the thalamocortical network’s dysrhythmia [74, 217] 
the answer is far from being definitive. 

In our study, the significant reduction of thalamic firing due to HFS seems to explain 
abolishment of the cortical pathological oscillations as well as those of the thalamocortical 
network. Actually, this result corroborates reported stimulation studies where HFS 
(>100 Hz) was associated with significant decrease in epileptiform discharges in vitro, and 
reduction in seizure frequency in responding patients [106, 198]. 

 Concerning the underlying mechanism, our model suggested that this antiepileptic effect 
relies completely on the depolarization of both types of reticular inhibitory neural 
populations. This hypothesis is in line with recent findings suggesting that HFS of the globus 
pallidus (GPi) in dystonia patients decreased its firing by stimulation-evoked GABA release 
from afferent fibers and thereby the enhancement of inhibitory synaptic transmission by 
HFS [71]. Similarly, HFS (100 Hz – 130 Hz) of the STN neurons in vitro showed a suppression 
of the activity of the majority of neurons by the reinforcement of inhibitory responses [70]. 
Other HFS studies also provided evidence on the inhibition of GPi output during HFS in 
human patients [69] as well as the disruption thalamocortical network’s dysrhythmia [74, 
217].   

3.5 THE STIMULATION EFFECTS CURVE 
In conclusion, the aspiration of any DBS researcher, whether a physicist an engineer or a 

clinician, is to draw a clear relationship between the parameters and the effects of 
stimulation. In this study, it was possible to draw such a relationship in the form of the 
HtoLR curve that indicates that the effects of stimulation are probably non-linearly related 
to the frequency of the stimulation signal. Moreover, there might be a critical frequency 
range to avoid per patient in order to optimize stimulation effects. The remaining challenge 
is how to generalize this type of curves over the different brain regions and for any patient 
at any time.        
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4 THE LIMITATIONS 
Just like any study, this one has its limitations. Starting by to the level of modeling, the 

model predicts macroscopic effects of the frequency-dependent mechanisms of thalamic 
DBS. In fact, the mesoscopic level does not allow the exploration of the elementary cellular 
mechanisms underlying the “radical” stimulation-evoked bifurcations of the neural 
dynamics in the thalamocortical system. In other words, the proposed model cannot 
predict whether the thalamocortical pathological delta waves of the FCD are caused by the 
interplay of cellular currents – namely the hyperpolarization-activated cation current Ih and 
the transient low-threshold Ca2+

 current – or other microscopic electrophysiological 
mechanisms [224]. Similarly, the model cannot predict if similar-level mechanisms reinforce 
thalamocortical oscillations during IFS. Shortly, the dynamics of specific neural currents and 
their implication in DBS mechanisms cannot be explained using this type of models. 

Moreover, the representation of neurons as neuronal populations does not allow the 
testing of the hypotheses of direct activation of neuronal axons by stimulation versus 
somatic inhibition [223], neither the mechanisms of orthodromic/antidromic propagation 
of action potentials due to stimulation [225-227]. On a more macroscopic scale, the model 
cannot study the different effects of DBS in function of the structural properties of the 
targeted neurons; axonal nodes, branching points, and the diameter of daughter branches. 
Besides, the model does not integrate the spatial anatomy of cortical layers and different 
thalamic nuclei. It is limited to one cortical column, one homogeneous neural population of 
a thalamic nucleus, and two representative neural populations of the reticular nucleus. And 
thereby, it does not take into consideration the orientation of the stimulation electrode nor 
the induced electric field with respect to the axonal orientations.  

Finally, the fact that this work takes into consideration only one dataset clinically observed 
in a single epileptic patient is also a weak point of this study. This is due to the fact that 
such informative clinical datasets stay relatively rare since many conditions have to be met 
(patient candidate to surgery, presence of a FCD, electrodes positioned in appropriate 
structures). However, as the goal of this study was to computationally explore the effects of 
thalamic stimulation on cortical dynamics in order to develop a more profound 
comprehension of the underlying network mechanisms this clinical limitation can be 
considered secondary. 

5 CONCLUSION 
Nowadays, DBS for epilepsy is still in its early stages of development. However, in spite of 

the unfortunate lack of tangible results concerning its effects on epileptic dynamics, we 
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believe that deep brain stimulation techniques hold a high unexploited “antiepileptic” 
potential that may be useful in patients with drug-resistant partial epilepsy and in whom 
surgery is contraindicated. Thus, resolving the issue of optimizing stimulation protocols 
(parameters) turns out to be equally urgent as crucial. On this account, computational 
models constitute effective as well as simplifying tools that provide an efficient framework 
to i) account for the many and essential factors that may intervene during stimulation 
procedures and ii) analyze the links between these factors in a formal manner. This 
computational approach is particularly fruitful when the developed models are well 
grounded in experimental/clinical data [179]. However, as this study experimentally relies 
on a unique dataset recorded form a single patient, further experimental validation was 
sought. Consequently, an equivalent animal model of FCD was searched in vain as the 
existing dysplasia models are not focal but extended over the whole cortex (see review in 
[228]). As this solution was not possible, an alternative experimental test was defined in 
order to verify the exactitude of the manner stimulation was implemented in the model. 
The consequent results and observations are in Part 2. 

At this stage, the face value of the model is satisfactory. However, the experimental 
validation of the model predictions is the missing block in this study. Eventually, the next 
step is obviously to test the model predictions using animal models. At an early stage, 
experiments can be undertaken in healthy rodents with electrodes implanted in the 
cerebral cortex and in the thalamus. Hence, the modulation of cortical rhythms during/after 
direct thalamic stimulation at various frequencies and for controlled vigilance states (sleep, 
awake, resting, and exploratory) can be assessed in control conditions. In these controls, 
some drugs can be used to alter some parameters related to synaptic transmission (in a 
more or less specific manner) which have a correspondence in the model, on the other 
hand. Then, refined experimental models could be introduced to get closer to the epilepsy 
context including models of developmental dysplastic lesions (see review in [228]). 
Hopefully, this combined computational/experimental approach will be helpful in disclosing 
some of the highly intricate effects of DBS either at the local or at the network level.  
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PART 2: POLARITY-DEPENDENT EFFECTS OF DC 
HIPPOCAMPAL STIMULATION ON HIPPOCAMPAL 

EXCITABILITY 
 

 

 

 

The objective of Part 2 is exploring the polarization effects of direct current (DC) stimulation 
on the dynamics of hippocampal paroxysmal discharges in the context of mesial temporal lobe 
epilepsy. Three stimulation parameters are particularly addressed: current polarity, duration 
and intensity. In order to fulfill this objective, a physiologically-relevant computational model of 
the hippocampal CA1 region is firstly adopted. Then, a real dataset of experimentally recorded 
HPDs in an animal model of mesial temporal lobe epilepsy is used to implement a realistic 
algorithm of HPD generation in the aforementioned computational model. For this, a rupture 
detection method based on the Page-Hinkley test is used to characterize HPD occurrence, 
duration and intensity in the real signals. Furthermore, the statistical laws governing the 
generation of HPDs are identified and implemented in the model. Later on, stimulation inputs 
are integrated to the model by modeling the electrode-electrolyte interface. Finally, the 
resulting nonlinear dynamical system is analyzed as a function of the polarity of the stimulation 
input. The computational results suggest a polarity-dependent modulation of the HPD 
occurrence; one polarity diminishes HPD duration, intensity and occurrence and the opposite 
polarity significantly increases these HPD features.  

Experimentally, a stimulation protocol is proposed to verify the model’s predictions. 
Preliminary safety tests concerning stimulation-induced heating are performed before the 
experimental test of low-intensity DC stimulation in vivo. Experimental results suggest that for 
every stimulated animal there exists a polarity that diminishes HPD duration, intensity and 
occurrence, as predicted by the model. Nonetheless, the opposite polarity does not seem to 
influence HPD generation. Moreover, stimulation duration seems to be primordial for assuring 
stimulation safety as well as stimulation results Complimentary intracellular recordings are 
presented to show that neuronal polarization of all circuit components (interneurons as well as 
CA1 principal cells) may explain these results.  
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Chapter 6: Low-Intensity DC Stimulation of 
the Ictal Onset Zone – Computational Tools 

Mesio-temporal lobe epilepsy (MTLE) syndrome constitutes the most common form of 
focal drug-resistant epilepsies (~20% of epileptic patients). It is characterized by the recurrence 
of focal seizures in the mesio-temporal limbic structures [119] and is often associated with 
hippocampal sclerosis (45% to 70% of MTLE patients variable from one study to another [229-
231]). The origin of MTLE is thought to be a neural accident occurring in early childhood 
[232](such as febrile seizures, head trauma, intracerebral infections or ischemic episodes [233, 
234]). This initial insult is generally followed by years of latency before the onset of the first 
spontaneous seizure [234]. As patients with MTLE respond poorly to antiepileptic drugs, 
defining alternative therapeutic interventions is of significant importance.  

A recent study [131] reported a long lasting 92% reduction of seizure frequency following 
low-frequency stimulation (LFS; 1 Hz) of the fornix in 8 patients with MTLE. As this is the unique 
population study of the effects of LFS on seizure frequency in MTLE patients, other less 
conventional stimulation protocols such as the low-intensity DC stimulation of the seizure onset 
zone has never been clinically tested or reported. In this view, hippocampal deep brain DC 
stimulation may convey an unexplored antiepileptic alternative for MTLE patients with 
hippocampal sclerosis, especially the non-responders to other types of stimulation. However, 
the particularity, as well as the difficulty, of this procedure is the definition of the sufficient 
“electric dose” to be locally delivered to the diseased hippocampus in order to control its 
epileptic dynamics without provoking collateral damages. In Part 2 of this thesis manuscript, this 
particular type of stimulation is explored in order to study (1) its possible experimental 
implementation, (2) its effects on epileptic dynamics, and (3) its probable risks and limitations. 

In this chapter, we first address the state of the art of low-intensity DC stimulation and its 
theoretical as well as experimental effects on neuronal dynamics and properties. Then, we 
propose a computational and an animal model in order to computationally reproduce the 
epileptic activity observed in the experimental model and to further explore the effects of DC 
stimulation currents on these epileptic dynamics.   
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1 DC STIMULATION PROTOCOLS  
Several studies provide experimental in vitro evidence of the polarizing effects of weak 

steady electric currents/fields on neuronal excitability [36, 235-240]. In the following 
sections, these effects are firstly revised and then a thorough discussion of a possible in vivo 
application is presented. 

1.1 IN VITRO EFFECTS OF DC ELECTRIC FIELDS: STATE OF THE ART 
Whether using CA1 pyramidal cell cultures, as in [239], or hippocampal slices, as in [36], 

the aforementioned studies confirm that DC electric fields can depolarize/hyperpolarize the 
impacted neuronal populations. Moreover, the advantages of using hippocampal slices 
reside in the laminar (radial) organization of the hippocampal region (Figure 42) which is as 
simple as that of the columnar organization of the cerebral cortex. This well-defined 
organization allows the study of the effects of a DC field in function of the orientation of the 
stimulated neurons without modifying the network structure.     

 
Figure 42. Schematic representation of the hippocampal organization [241]. 

In the most recent among the cited studies [36], the authors succeeded in measuring the 
“linear” relationships between the extracellular stimulation field and the neuron response. This 
was done in hippocampal rat slices. The most prominent results are hereby listed: 

(1) Large negative fields (cathode at the alveus side of CA1) of intensity beyond – 80 mV mm-1 
induced epileptiform discharges in 19 out of the 24 tested slices (extracellular recording). 
However, positive fields never induced such discharges over the tested intensity range 
(< 200 mV mm-1). 
 

(2) As negative/positive fields increased/decreased the amplitude of population spikes 
(extracellular recording) evoked by the stimulation of the oriens interneurons (OR), both 
polarities increased the amplitude of population spikes evoked by the stimulation of LM 
interneurons (the interneurons of stratum lacunosum-moleculare). 
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Figure 43. Effects of uniform weak DC electric field on 
single CA1 neurons.  (A) In the presence of a positive 
field CA1 neurons fire less action potentials. (B) The 
linear relationship between transmembrane potential/ 
AP threshold and applied field intensity. (C) The 
generation of AP is hindered in oriens interneurons 
(OR) in presence of a positive field. (D) The presence of 
a large uniform electric field is sufficient to increase the 
amplitude of the stimulation-evoked AP in LM 
interneurons for both polarities. Adapted from [36].  

(3) Intracellular recordings showed that 
negative applied fields on single CA1 
pyramidal cells increased their 
transmembrane threshold while 
decreasing the threshold for action 
potential generation (AP threshold). 
Positive applied fields led to opposite 
observations. The figure illustrating the 
effects on CA1 pyramidal cells is adapted 
from [36] and presented in Figure 43. 

These results remain in accordance with 
previous studies of the same group confirming 
that currents parallel to the cell axis (termed 
“soma-depolarizing currents”) increase neural 
excitability when the stimulation field makes 
the apical dendrites layer more positive than 
the cell body layer. Similarly, currents 
perpendicular to the cell axis had no pertinent 
effect on the neuronal response [240]. The 
proved effect of field polarity in 
depolarizing/hyperpolarizing CA1 pyramidal 
cells in vitro constitutes the major motivation 
for testing the validity of this hypothesis in a 
computational model of the CA1 region and in 
vivo later on. 
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1.2 THE HYPOTHETICAL BASIS OF NEURONAL POLARIZATION BY DC CURRENTS 
Polarizing stimulation operates in function of the polarity and orientation of the applied 

electric field/current (see [60] for review). As aforementioned, this was proved 
experimentally by several studies [36, 235-240]. This was also demonstrated 
computationally by modeling the effect of the stimulation field on single cells [61]. 
Considering a simplified version of the Hodgkin-Huxley model, a cell compartment can be 
modeled as a capacitor 𝐶𝑚 in parallel with a series combination of a battery 𝐸𝑟 and a 
resistor 𝑅𝑚 simulating the combined resistance at rest of all membrane ion channels 
(Figure 44-A).  

 
Figure 44. Computational effects of current polarity on neural excitability.  (A) At rest the transmembrane 
potential Vm is equal to th resting potential Er. (B) An inward current flowing across the membrane decreases 
Vm by -istim∙Rm. It then hyperpolarizes the membrane at this point. (C) Conversely, an outward current flowing 
out of the membrane increases Vm by istim∙Rm thus causing membrane depolarization.  

At rest, the transmembrane potential 𝑉𝑚, defined as the difference between the 
intracellular potential 𝑉𝑖  and the extracellular potential 𝑉𝑒, is equal to the resting 
potential 𝐸𝑟. When neurons are placed under the effect of an electric field, current lines will 
flow through the conductive medium (brain tissue) following the Maxwell equations (see 
Chapter 1 section 3.1). Some of the current lines will pass through the cell bodies. In this 
case, it has been evidenced that inward stimulation currents will generate 
hyperpolarization by driving the transmembrane potential away from threshold (Figure 44-
B). Conversely, outward stimulation currents will cause depolarization by driving the 
transmembrane potential nearer to threshold (Figure 44-C) [60]. Note that the global effect 
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is driven by the hyperpolarization/depolarization of the soma (AP generation site) and not 
the dendrites. 

 
Figure 45. Schematic representation of the effects of injected currents on neuronal excitability as a function of 
electrode types and polarity. In the case of large field electrodes: (A) the depolarizing field and the (B) 
hyperpolarizing field configurations. In the case of localized bipolar electrodes: (C) the depolarizing field and 
the (D) hyperpolarizing field configurations.  

Stimulation electrodes are usually of two types: either large field electrodes (usually used 
in in vitro setups), or localized field electrodes, monopolar or bipolar (usually used in in vivo 
setups). In the case of field electrodes (in vitro; see Figure 45-A and B), the effect of the 
induced uniform electric field depends on the position of the parallel plates with respect to 
the somato-dendritic axis. In consequence, stimulation has no effect if current lines are 
perpendicular to the cell axis, and conversely, it exerts a maximum effect on neuronal 
excitability when these lines are parallel to the cell axis. In Figure 45-A, the current enters 
the cell through the apical dendrites and leaves it in the somatic and basilar region 
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generating depolarization. The global effect of the field is a depolarizing effect. Conversely, 
in Figure 45-B, the current enters the cell through the soma and basal dendrites generating 
somatic hyperpolarization and therefore abolishing neural firing. 

As for bipolar electrodes (Figure 45-C and D), for simplicity, the induced electric field lines 
can be considered equivalent to those generated by an electric dipole in a homogenous 
medium. In such a configuration, neurons lying between the two electrodes receive the 
maximum polarizing effects if the axis joining the two electrodes lies perfectly parallel to 
the somato-dendritic axis. Nevertheless, in the neighborhood of the electrodes, neurons 
may have a higher probability of falling on a field lines aligned with their axes especially 
when neuronal orientation is uncertain (in vivo electrode implantation) or highly variable (in 
the case of interneurons for example). Yet, in the case of well-known structural 
organizations such as the CA1 region of the hippocampus, it can be assumed that when 
bipolar electrodes are implanted on the opposite sides of CA1 (stratum pyramidale), the 
polarity of stimulation can theoretically provoke depolarizing (Figure 45-C) as well as 
hyperpolarizing electric fields (Figure 45-D) in vivo. For this, the anode (⨁) should be 
implanted, anatomically, just above the somatic layer. Noteworthy, if the electrodes are 
implanted on the same side of the CA1 region, the hyperpolarizing effect will be 
theoretically replaced by a depolarizing effect. 

 

Figure 46. Schematic representation of the stimulation electrodes ideally situated on the two sides of the CA1 
region. 

A possible in vivo implementation of this type of stimulation can be performed by placing 
the two tips of the bipolar electrode in the hippocampus of epileptic animals. The two tips 
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should be situated on the opposing sides of the cell bodies layer in the CA1 region (see 
Figure 46). Consequently, several questions could be experimentally addressed: 

(1) Can in vivo DC stimulation modify the excitability of the epileptic hippocampus? 
(2) Do opposite stimulation polarities induce opposite effects in vivo (hyperpolarization 

vs. depolarization)? 
(3) What is the minimal/maximal intensity and duration of stimulation needed to obtain a 

significant reduction in epileptiform discharges? 

Noteworthy, low-intensity DC stimulation has never been intentionally tested in vivo given 
the probable damage associated with monophasic stimulation [154] and related to the 
irreversible chemical redox reactions that take place at the electrode surface during long 
duration DC current stimulation [153]. However, it has been reported that DC currents as 
low as 10 – 15 µA applied for 15 minutes per day significantly increased the seizure 
threshold in fully kindled rats [242]. This effect termed “quenching effect” was accidently 
obtained due to a DC leak at the stimulator output. Interestingly, the authors reported that 
the DC stimulation effects were reversible, and that no evident histological or anatomical 
damage was ensued. 

However, before experimentally testing these hypotheses in the freely moving animal, a 
computational exploration is first performed. The proposed computational model was 
coupled with real LFP signals recorded in an animal model of MTLE in order to: 

(1) Reproduce realistic epileptic dynamics in the model using real LFP experimental 
signals. 

(2) Computationally study the effects of stimulation in the model. 
(3) Experimentally validate the model’s predictions later on. 

2 A COMPUTATIONAL MODEL OF TEMPORAL LOBE EPILEPSY 
Two major approaches are described in the literature for modeling hippocampal dynamics 

and subsequently simulating the ensued local field potentials (LFPs) contributing to 
iEEG/EEG recordings. These are the ‘detailed’ versus the ‘lumped’ modeling approaches. 
Single neuron characteristics, whether structural (axon, dendrites, cell body) or functional 
(type, specific ion channels, connectivity …), are taken into consideration in ‘detailed’ 
models of the hippocampus [7, 243-245]. Conversely, lumped models represent the 
hippocampal dynamics as the interaction of several neural subpopulations [161], analogous 
to those introduced in Part 1 chapter 3 section 2.1.2. In the past years, both approaches 
were developed in our team giving rise to a microscopic detailed [245] and a macroscopic 
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lumped [161] model of the hippocampus CA1 region. The lumped model of the 
hippocampus [161] was used for studying effects of direct DC stimulation on hippocampal 
dynamics. 

2.1 COMPUTATIONAL MODEL OF THE HIPPOCAMPUS 
The aforementioned population model is more specifically a model of the CA1 region of 

the hippocampus. In [161], the authors demonstrate that, depending on the 
excitability/inhibition parameters, this model can reproduce real normal and epileptic 
dynamics (sporadic spikes, sustained discharges of spikes, slow rhythmic activity …), actually 
observed in hippocampal recordings.    

 
Figure 47. The architecture of the hippocampus model as presented by [161]. a) The schematic representation of 
the model as three interacting subpopulations. The excitatory interactions are represented by a plus sign (+) and 
the inhibitory by a minus sign (-). b) The block diagram of the model. c) Impulse response of the synaptic 
transmission (h) blocks. 
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2.1.1 General Architecture 
The general architecture of the model is provided in Figure 47 (adapted from [161]). As 

illustrated, it is built of three interacting subpopulations: one pyramidal cell population, and 
two interneuron populations (both inhibitory, but mediating GABAergic currents with 
different – slow and fast - kinetics). Each of these populations is described by the two 
transfer functions introduced in Part 1 chapter 3 section 3.1.2, the input function h(t) and 
the sigmoidal output function S(v). This system can be described by a set of ten nonlinear 
first order differential equations (see [161] for details). In this chapter, a real animal model 
of MTLE is used to include HPD generation to this well-established mesoscopic model of the 
CA1 region. 

3 AN EXPERIMENTAL MODEL OF MESIO-TEMPORAL LOBE EPILEPSY 
Animal research has long contributed to the scientific and medical advances we witnessed 

during the last century, and continues to assist the comprehension and control of the 
dynamics of diseases nowadays. Most often, this scientific practice is guided by strict ethical 
frameworks aimed at decreasing unnecessary animal sufferings as well as limiting 
unnecessary experimentations. In France, the first law code of animal experimentation was 
introduced in 1976 defining the animal as a “sensible being capable of feeling pain”. In 
1986, the European Union's Directive 86/609/EEC established a common European chart of 
animal research regulations. This chart was reviewed and updated in 2013 following the 
new European Directive 2010/63/UE. From then on, all new experimental 
protocols/procedures have to be submitted to a regional ethical comity then to a national 
ethical comity before being approved.   

3.1 KAINATE MODEL OF MESIO-TEMPORAL LOBE EPILEPSY 
In view of its proved resemblance to human MTLE with hippocampal sclerosis, the kainate 

mouse model [246] was used in this study to model realistic epileptic hippocampal 
dynamics and consequently study the effects of DC hippocampal DBS on these dynamics.  

3.1.1 MODEL DESCRIPTION 
Kainic acid (KA) is a natural chemical first isolated from seaweed (Digenea simplex) in 

Japan back in 1953 [247]. KA is a natural agonist of ionotropic AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid) and kainate receptors (KAR), the latter discovered later in 
1976 [248]. These two types of synaptic receptors constitute along with NMDA (N-Methyl-
D-aspartic acid) and metabotropic glutamate receptors the four types of glutamatergic 
synaptic receptors of the central nervous system. Being an agonist of two main 
glutamatergic receptors, KA presents an excitatory effect on neuronal function and was 
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among the first chemoconvulsants used to create rodent models of MTLE. KA is 
administered systematically or through intracerebral perfusion to incur sustained 
depolarization in the brain. 

The animal model used in this study was first described by Suzuki and his colleagues in 
1995 [246]. The actual experimental protocol consisted of the unilateral injection of a small 
quantity of Kainic acid directly into the dorsal hippocampus of an adult mouse during a 
stereotactic surgical procedure. Following kainate administration and after awakening from 
anesthesia, the mice experience a status epilepticus that ends spontaneously after several 
hours. In most cases, the animal regains a normal behavior. However, over the 3 weeks 
following the injection, KA induces a set of histological and electrographic alterations in the 
injected hippocampus. Histologically, KA causes a gradual pattern of cell loss and synaptic 
reorganization prominent with the hippocampal sclerosis of MTLE patients (see [249] for 
details on histological modifications). 

Concerning the electrographic changes in hippocampal activity, a clear shift towards 
excessive excitability is evidenced [250, 251]. Typical epileptiform discharges (spike-wave 
and polyspike-wave discharges) start appearing in the recorded iEEG. These discharges 
present a sporadic aspect at the beginning of the epileptogenesis (first two weeks after 
injection) and evolve into epileptiform bursts of high frequency spikes and sharp waves by 
the end of the third week. These epileptiform discharges, usually termed hippocampal 
paroxysmal discharges (HPDs), get more frequent throughout epileptogenesis [250].   

3.1.2 HIPPOCAMPAL PAROXYSMAL DISCHARGES: SPECIFIC BIOMARKERS OF EPILEPTOGENICITY 
A recent study of the intra-hippocampal kainate model classified the epileptogenesis 

process into six stages depending on certain features of the recorded hippocampal 
discharges [252]. The illustration published in [252] is presented in Figure 48. In brief, after 
the KA intra-hippocampal injection and at the end of the subsequent status epilepticus, the 
activity of the injected hippocampus will change into a chronic epileptiform activity in the 
three weeks (on average) that follow KA injection. During the first stage of this evolution, 
no particular epileptiform activity is detected in the recorded iEEG. The arrival of 
sporadically distributed spikes marks stage 2. When stage 3 is attained, these spikes get 
organized into brief bursts of spike discharges lasting from 6 to 11s. Then, at stage 4, these 
discharges start lasting longer (12 to 17s). Finally, the chronic form of epilepsy is attained by 
stage 5. At this stage, the aforementioned hippocampal discharges last more than 18s. 
These discharges presenting electrographic seizures are termed Hippocampal Paroxysmal 
Discharges (HPDs). And finally, stage 6 is attained when these HPDs last longer than 40s and 
are thereby generalized to the cerebral cortex provoking convulsive tonico-clonic seizures. 
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Figure 48.  The different 
electrographic signatures of 
the different stages of 
epileptogenesis defined by 
Heinrich and his colleagues in 
[252]. EEGs were recorded in 
injected mice during the first 
16 days of epileptogenesis. 
For each panel, the upper 
trace represents the EEG 
recorded in the injected 
hippocampus and the lower 
one corresponds to the EEG 
recorded between the left 
and right frontoparietal 
cortical electrodes. (A) Stage 
1: Low-voltage background 
activity in absence of theta 
oscillations and epileptiform 
discharges. (B) Stage 2: 
Sporadic hippocampal spikes. 
(C) Stage 3: Short 
hippocampal spike discharges 
of duration 6 to 11s. (D) Stage 
4: Long hippocampal 
discharges of duration 12 to 
17s. (E) Stage 5: Appearing of 
recurrent hippocampal 
electrographic seizures of 
duration superior to 18s. 
These seizures are defined as 
hippocampal paroxysmal 
discharges. (F) Stage 6: The 
HPDs recorded in stage 5 are 
prolonged and can last up to 
40s. These discharges can 
propagate to the cerebral 
cortex. Adapted from [252]. 
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Noteworthy, a more recent study, published by our team, reported that the morphology 
of sporadic isolated spikes changes with the progression of the disease.An 
electrophysiological marker of epileptogenesis is proposed [30] as based on the amplitude 
of the spike and on the area of the negative wave. 

 In this work, any epileptiform dynamic ranging from the isolated sporadic spike to HPDs 
will be considered as a marker of the epileptic feature in the diseased hippocampus. At this 
stage, any stimulation-induced change in the occurrence/characteristics of such events will 
be considered as potentially interesting. 

3.2 EXPERIMENTAL KAINATE PROTOCOL AND SIGNAL ACQUISITION 
All the experiments described in this part were conducted on 80 ± 10 days old C57BL/6J 

(B6) adult male mice housed in individual cages with food and water ad libitum and kept in 
a 21±1°C and 12-h light/dark cycle conditions. All animal procedures were conducted in 
accordance with the European Communities Council Directive of 24 November 1986 
(86/609/EEC). 

Under general anesthesia conditions (chloral hydrate 400 ml/kg i.p.), the animals undergo 
intra-hippocampal kainate injection (50 nl of a 20 mM solution of kainic acid (KA), or the 
equivalent of 20mM of KA) into the right dorsal hippocampus (AP = -2 mm ; ML = -1,5 mm ; 
DV = -2 mm with bregma as reference according to Franklin & Paxinos atlas). After intra-
hippocampal KA injection, a bipolar electrode is inserted into the injected hippocampus just 
underneath the injection site (AP = -2 mm ; ML = -1,5 mm ; DV = -1,9 mm). Another bipolar 
electrode is implanted in the contralateral hippocampus and a supplementary monopolar 
electrode is implanted as a reference. This stereotaxic surgical procedure was performed by 
the research assistant of the animal experimentation (G. Dieuset) of our laboratory (LTSI). 

After three weeks of epileptogenesis, the animals undergo their first iEEG video recording 
using a video-EEG clinical monitoring system (Deltamed). The recorded signals were 
sampled at 2 kHz, and hardware-filtered by a high-pass filter (0.16 Hz cutoff frequency) 
integrated into the signal acquisition system. Only animals presenting hippocampal 
paroxysmal discharges at day 21 after the KA injection were considered for the rest of the 
stimulation experimental validation protocol described in the next chapter. The recorded 
baseline LFP signals were then used to model hippocampal discharges in the model.  
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4 METHODS FOR EPILEPTIC SIGNAL ANALYSIS 
Distinct types of epileptic events were observed in the iEEG signals recorded in animals 

(variable duration spike bursts and hippocampal paroxysmal discharges, isolated single 
spikes and sharp waves) in short periods of time (1-2 seconds; see Figure 49). Although 
these different events may be evoked by distinct cellular mechanisms, all of them were 
considered for quantifying the epileptic character of the recorded signal.  

4.1 IEEG SIGNAL QUANTIFICATION 
In order to determine the level of excitability of epileptogenic zone (injected 

hippocampus) as function of time, an iEEG signal quantification procedure was defined. This 
quantification procedure consisted of three steps: 

1. Detecting the occurrence of these epileptic events 
2. Defining the relevant features (duration/occurrence/intensity/energy…) that 

characterize these events 
3. Studying the evolution of these features in response to stimulation 

4.1.1 DETECTION OF HPDS USING THE PAGE-HINKLEY METHOD 
In the literature, many detection algorithms were previously described and used in the 

context of automated seizure or spike detection (see [253] for review). These algorithms 
can be categorized into more than 6 groups (methods based on morphological patterns, 
independent component analysis, or wavelet decompositions, on clustering, or on artificial 
neural networks,…). Our choice took into account the brutal onset of the encountered 
epileptic events by a (poly)spike or a sharp wave. For this reason, rupture detection 
methods were considered. Moreover, given the fact that the Page-Hinkley [254] algorithm 
was already implemented, tested, and optimized for spike detection in our lab, this choice 
reduced the algorithm implementation time for the purpose of this work. Consequently, 
the Page-Hinkley algorithm was used for the detection of the onset of the recorded 
epileptiform events. 

The algorithm. The Page-Hinkley algorithm is a sequential analysis technique (statistical 
test) initially designed for monitoring change detection [255]. In the following, the Page-
Hinkley test (PHT) is used to detect changes in the average of a temporal 
sequence 𝜗(𝑡), 𝑡 ∈ {1, … , 𝑛} representing the LFP recorded in the injected hippocampus.  

Consider a sequence 𝜀(𝑡), 𝑡 ∈ {1, … , 𝑛} of 𝑛 mutually independent random variables 
following the same normal distribution of mean 𝜇 = 0. Then 𝜗(𝑡), 𝑡 ∈ {1, … , 𝑛} can be 
tested against the null hypothesis: 
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𝐻0 ∶  𝜗(𝑡) =  𝜇0 +  𝜀(𝑡), 𝑡 ∈ {1, … , 𝑛} 

In this case, 𝐻0 corresponds to the absence of epileptic transients. Whenever 𝐻0 is 
rejected at instant 𝑟, a rupture is detected, and the hypothesis 𝐻1,𝑟 is retained. 

𝐻1,𝑟 =  �𝜗(𝑡) =  𝜇0 +  𝜀(𝑡), 𝑡 ∈ {1, … , 𝑟 − 1}
𝜗(𝑡) =  𝜇1 +  𝜀(𝑡), 𝑡 ∈ {𝑟, … , 𝑛}          𝐻1 =  � 𝐻1,𝑟

𝑟=2,…,𝑛

 

where 𝜇0 and 𝜇1 (𝜇0 <  𝜇1) are the mean values of the corresponding distributions to the 
absence/ occurrence of a rupture at instant 𝑟. While 𝜇0 and 𝜇1, and therefore the average 
rupture, 𝜈 =  𝜇1 − 𝜇0,for the detection of an epileptic event can be determined (optimized) 
on a learning dataset a priori, 𝑟 is the only unknown variable to be determined online. In 
such cases, the maximum likelihood ratio (generally denoted by the Greek letter Ʌ) is 
usually employed. Ʌ is generally expressed as follows: 

Ʌ = 𝐿𝑛 �
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑜𝑟 𝐻1

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑜𝑟 𝐻0
� = 𝐿𝑛(

𝐿(𝐻1)
𝐿(𝐻0)

) 

In this case, Ʌ can be expressed as follows: 

Ʌ𝑛(𝑟) = 𝐿𝑛 �
∏ 𝑃0�𝜗(𝑡)�𝑟−1

𝑡=1 ∙ ∏ 𝑃1�𝜗(𝑡)�𝑛
𝑡=𝑟

∏ 𝑃0�𝜗(𝑡)�𝑛
𝑡=1

� = 𝐿𝑛 �
∏ 𝑃1�𝜗(𝑡)�𝑛

𝑡=𝑟

∏ 𝑃0�𝜗(𝑡)�𝑛
𝑡=𝑟

� 

 where 𝑃0 and 𝑃1 are the probability density distributions of the random variables 
𝜗(𝑡), 𝑡 ∈ {1, … , 𝑛} in the absence/presence of a rupture. 𝑃0 corresponds to a normal 
distribution of mean 𝜇0 (𝑁(𝜇0, 𝜎)). 𝑃1 corresponds to a normal distribution of mean  𝜇1 
(𝑁(𝜇1, 𝜎)). Then Ʌ𝑛(𝑟) can be simply reduced to:  

Ʌ𝑛(𝑟) =  
𝜇1 − 𝜇0

𝜎2 �(𝜗(𝑡) −
𝜇1 − 𝜇0

2
)

𝑛

𝑡=𝑟

=  
1

𝜎2 𝑆𝑟
𝑛(𝜇0, 𝜈) 

where 

𝑆𝑟
𝑛(𝜇0, 𝜈) =  𝜈 � �𝜗(𝑡) − 𝜇0 −

𝜈
2

�
𝑛

𝑡=𝑟

 

Then, maximizing the likelihood ratio Ʌ𝑛(𝑟) corresponds to maximizing 𝑆𝑟
𝑛(𝜇0, 𝜈) in order 

to estimate the instant of rupture: 

�̂� = argmax
2≤𝑟≤𝑛

 𝑆𝑟
𝑛(𝜇0, 𝜈) 
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Whenever the detected maximum exceeds a fixed threshold 𝑠 at an instant 𝑟, a rupture is 
declared at this instant. This can be formulated as follows:  

Ʌ𝑛(�̂�) = max
2≤𝑟≤𝑛

 𝑆𝑟
𝑛(𝜇0, 𝜈)  

𝐻0
≶

𝐻1,𝑟

  𝑠 

An equivalent form of the detector can also be expressed as 

Ʌ𝑛(�̂�) = 𝑆1
𝑛(𝜇0, 𝜈) − min

2≤𝑟≤𝑛
 𝑆1

𝑟(𝜇0, 𝜈)  
𝐻0
≶
𝐻1

  𝑠 

Note that whenever a rupture is declared, the minimum of 𝑆1
𝑟(𝜇0, 𝜈)  should be 

recalculated before an upcoming detection. The mean 𝜇0 is generally estimated online as 
the mean of the recorded signal over a sliding window of fixed duration or over a window 
of incremental duration (𝑡 ∈ {1, … , 𝑛}). The average rupture amplitude 𝜈 is usually fixed as 
the minimal amplitude of observed rupture events while 𝑠 is usually optimized to minimize 
false alarms. The performance of the detector largely depends on the choice of parameters 
𝜈 and 𝑠. 

This algorithm is already implemented in our team’s EEG analysis software called 
Amadeus. It accounts for a refractory period after the detection of a rupture, i.e. no further 
detection is allowed in a user-defined time-window after each rupture. Another feature 
integrated to the detector is a preprocessing step. It aims at increasing the contrast 
between transient sharp events and background activity through band-pass filtering the 
signal (20 < fcutoff < 80 Hz). This pass band allows the filtering of much of the background 
activity while reinforcing the energy of the epileptiform events. Furthermore, the detector’s 
parameters have been previously optimized for the detection of spikes and discharges in 
clinical EEG [254]. The optimal parameters published in [256] are presented in Table 4 
alongside with the parameters that were used in this study. Note that these optimal 
parameters (Table 4 – second column) were tuned patient-wise depending on the 
morphology of the detected events [256]. 

The slight detector parameter tuning (Table 4 – 3rd column) allowed the detection of 
basically all epileptic events observed in the signals (see Figure 50 for an illustration). 
Nevertheless, all automatically detected events were then manually verified for non-
detections and false alarms (e.g. stimulation artifacts). Periods of amplitude saturation (due 
to the animal’s active exploration of the cage) were excluded a priori. 

 



     

124 | P a g e  
 
 

 
 
 

 
Figure 49. Distinct epileptic events observed in the iEEG of the recorded animals. Upper panel, an example of a 120s-iEEG signal recorded from the injected 
hippocampus at day 27 (after injection). Hippocampal paroxysmal discharges/spike bursts (yellow arrows), single spikes (green arrows), and sharp waves (blue 
arrows) can occur in the interval of a minute. Lower panel, zoom on major epileptic events, from left to right, two examples of single spikes and an example of 
an HPD preceded by three sharp waves. Although that these epileptic events may possibly pass through distinct cellular mechanisms, they were considered 
equally for quantifying the epileptic character of the recorded signals.  
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Figure 50. The Page-Hinkley Test. (A) A real segment of a non-preprocessed iEEG signal recorded from the injected hippocampus (black). Violet stem plot 
represents the events detected by the Page-Hinkley algorithm. These correspond to the peaks detected in the epileptic events (isolated single spikes, HPDs, sharp 
waves, etc.). Further analysis of the occurrence of these peaks allowed the automatic detection of the epileptic event’s onset/end, whether it is a discharge or an 
isolated event. (B-C) Axiom (a): an epileptic peak indicates an ongoing epileptic event starting at least 0.1 s ahead of, and lasting at least 0.4 s after, the detected 
rupture. The dotted lines indicate the time slots attributed to each rupture. (B) Case of a paroxysmal spike followed by a negative wave. (C) Case of a peak in a 
continuous discharge.  
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 Optimal Parameters [256] Tuned Parameters 
Number of pass band filters 3 3 

Pass band 20 – 40 Hz 20 – 40 Hz 
𝝂 10∙μ0 30 
𝒔 20∙μ0 30 

Refractory period 0.1 s 0.2 s 
Table 4.List of parameters provided and tested in [256] for the detection of clinical epileptic events, as well as 
the parameters slightly modified for enhancing the detection of epileptic events in experimental iEEG 
recordings. 

As the Page-Hinkley test allowed the detection of the brutal onset (peak) of every 
epileptic discharge, further processing was needed to detect the onset/end of conventional 
epileptic events (discharges, spikes, sharp waves, etc.). The event detection algorithm was 
then built on the following axioms: 

a. Each detected peak reveals an ongoing epileptic event starting at least 
0.1 s before and lasting 0.4 s after the detected rupture. 

b. Two consecutive peaks, p1 and p2, are said to belong to the same 
discharge if their hypothetical time slots (onset-end) overlap or are 
separated by less than 0.5 s. This is equivalent to Heinrich’s definition for 
the classification of hippocampal discharges [252], suggesting that if two 
spikes are separated by less than 1s they belong to the same discharge.  

c. If b. is true, then the detected time slots of p1 and p2 are merged into a 

single slot �tonset𝑝1
tend𝑝2

�. 

Running this algorithm (see pseudo code Table 5) on the recorded LFP signals allowed the 
detection of the time slots corresponding to epileptic dynamics (all types included). 

5 MODEL ADAPTATION FOR THE GENERATION OF HPDS 
While the model’s parameters can be adjusted to produce sustained spike discharges or 

background activity using the activity maps provided in [161], they had to be modified such 
that the model output dynamically alternates background activity and sustained 
hippocampal discharges as observed in real LFP signals as illustrated in Figure 49. 
Consequently, an extension was proposed. 

5.1 EXPERIMENTALLY IDENTIFYING THE DURATION AND FREQUENCY OF OCCURRENCE OF HPDS 
 In order to model the occurrence of HPDs, herein considered of all possible durations 

(> 0.5 s), two supposedly independent random variables were defined (see Figure 51-A): 



     

127 | P a g e  
 
 

(1) ∆𝐻𝑃𝐷: representing the duration of detected HPDs. 
(2) ∆𝐵𝐾𝐺: representing the inter-HPD intervals as measured between consecutive HPDs. 

Consequently, in order to identify the statistical distributions followed by these two 
random variables, measures of ∆𝐻𝑃𝐷 and ∆𝐵𝐾𝐺 were estimated from real iEEG 
recordings, over sufficiently long durations (∼ 2 hours) for a given animal. The histograms 
of the two RV could be plotted (see Figure 51-B and C). At first sight, the identified 
histograms evoked a possible exponential distribution. However, given that neither the HPD 
duration nor the inter-HPD duration can be null, a gamma distribution was privileged. The 
probability density function 𝑓(𝑥, 𝑎, 𝑏) of a random variable 𝑋 following a gamma 
distribution is of the form  

𝑋~𝛤(𝑎, 𝑏)         𝑓(𝑥, 𝑎, 𝑏) =  
𝑏𝑎𝑥𝑎−1𝑒−𝑏𝑥

(𝑎 − 1)!
 

 
Figure 51. The experimental identification of the statistical laws of ∆𝑯𝑷𝑫 and ∆𝑩𝑲𝑮.  (A) Illustration of 
different values of the two random variables ∆𝑯𝑷𝑫 and ∆𝑩𝑲𝑮. (B) The histogram of ∆𝑩𝑲𝑮 fitted to a 
gamma probability density distribution (PDF). (C) The histogram of ∆𝑯𝑷𝑫 fitted to a gamma probability 
density distribution (PDF). The fitted distributions’ parameters are given in the illustration.  
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Pseudo Code 1. Epileptic Event Delimitation over a sliding window 
Input parameters: the LFP signal 𝜗(𝑡), the peak tag table 𝜏𝑝(𝑡) given by Page-Hinkley, duration of 
sliding window 𝑡𝑤𝑖𝑛, sampling frequency 𝑓𝑠 – length(LFP) = twin = 60 s for simulated signals 
Output parameters: the event tag table 𝜏∆𝐸𝐷(𝑡) indicating the time slots of detected discharges in twin 
intervals 

for j = 0: 𝑡𝑤𝑖𝑛: length(𝜗 𝑓𝑠⁄ ) −  𝑡𝑤𝑖𝑛 
lower_index = find(𝜏𝑝 > 𝑗 ); 
 upper_index = find(𝜏𝑝 < 𝑗 + 𝑡𝑤𝑖𝑛 ); 
 𝜏𝑝𝑗 = 𝜏𝑝(𝑙𝑜𝑤𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ∶ 𝑢𝑝𝑝𝑒𝑟_𝑖𝑛𝑑𝑒𝑥); 

%% Determine the time slots of detected peaks 
 for i = 1:length(𝜏𝑝𝑗) 

 𝜏∆𝑝(𝑖, 1) =  𝜏𝑝𝑗(𝑡) − 0.1 
 𝜏∆𝑝(𝑖, 2) =  𝜏𝑝𝑗(𝑡) + 0.4 

end 
%% Determine continuous epileptic events 

for i = 1:length(𝜏𝑝𝑗) 
 𝜏∆𝑝(𝑖, 1) =  𝜏𝑝𝑗(𝑡) − 0.1 
 𝜏∆𝑝(𝑖, 2) =  𝜏𝑝𝑗(𝑡) + 0.4 

end 

detect  = 𝜏∆𝑝(2: 𝑒𝑛𝑑, 1) − 𝜏∆𝑝(1: 𝑒𝑛𝑑 − 1,2); %% Determine the inter slot duration 
decision = detect(:) < 0.5; %% Compare the inter slot duration to 0.5 
%% Continuous discharges are then detected by sequences of ones “1” 
make_decision = decision(1: 𝑒𝑛𝑑 − 1) −  decision(2: 𝑒𝑛𝑑);  
index_discharge_onset = find(make_decision == -1)+1; 
index_discharge_end = find(make_decision == 1)+1; 

𝜏∆𝐸𝐷,𝑗 =  𝜏∆𝑝 ; %% Initialize the table of epileptic discharge tags 

if index_discharge_onset(1) > index_discharge_end(1) %% The first discharge starts at the first 
detected peak 

index_discharge_onset = [1; index_discharge_onset];  
end 

if  length(index_discharge_onset) > length(index_discharge_end) %% The last discharge includes the 
last peak 

index_discharge_end = [index_discharge_end; length(𝜏∆𝑝)]; 
end 

for i = length(index_discharge_end):-1:1 
𝜏∆𝐸𝐷,𝑗 (index_discharge_onset(i),2) =𝜏∆𝑝(index_discharge_end(i),2); %% Combine continuous peaks 
𝜏∆𝐸𝐷,𝑗 (index_discharge_onset(i)+1: index_discharge_end(i)) = [];%% Delete the redundant peaks 

end 
𝜏∆𝐸𝐷 (: , : , 𝑗

𝑡𝑤𝑖𝑛
+ 1) = 𝜏∆𝐸𝐷,𝑗 ; 

𝜏𝑝𝑗𝑗 (: , : , 𝑗
𝑡𝑤𝑖𝑛

+ 1) = 𝜏𝑝𝑗 ; 
End 
Table 5. Pseudo code for defining the onset and end of isolated (spikes and sharp waves)/continuous epileptic 
events (discharges). The implementation was done in Matlab®. 
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Note that, having chosen a gamma distribution, a more or less exponential distribution 
has not been excluded (a=1). Parameter identification has been performed using the 
Statistics toolbox in Matlab® (GUI fitting tool dfittoll). Moreover, the choice of the gamma 
function to fit the distribution of the duration of ictal and interictal events has already been 
reported in [257]. The identified parameters and the fitted probability density functions are 
illustrated in Figure 51. 

5.2 IMPLEMENTING DYNAMICAL CHANGES OF HPDS IN THE MODEL 
Early in 1984, Johnston and Brown [258] showed that epileptiform burst discharges in the 

hippocampus are rather network driven than endogenous. They claimed that network-
driven paroxysmal depolarizing shifts (PSDs) underlie these events. Consequently, a non-
endogenous implementation of HPD generation is herein proposed. 

 

Figure 52. Flowchart of HPD simulation diagram. Adding K to p(t) causes a brutal augmentation of the mean of 
the noise input to the hippocampal principal cells with a duration ∆t

HPD
. This means an increase in the 

system’s excitability for ∆t
HPD

. An HPD is simulated during this phase.  
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Given that the previously introduced hippocampus model represents uniquely the CA1 
region, a network-driven depolarization of the pyramidal cells of CA1 implied the 
implementation of an external input PSD signal arriving at the input function (presynaptic 
terminals) of the pyramidal subpopulation. Then, this external PSD signal was added to the 
input noise p(t) arriving at the pyramidal subpopulation (see Figure 47) following the 
algorithm illustrated in Figure 52.  

This algorithm, implemented in Simulink®, can be described as follows: 

(1) Initialization: At t = 0, generate a value for ∆𝑯𝑷𝑫 and another for ∆𝑩𝑲𝑮. 
(2) Dynamically simulate the model till t = ∆𝑩𝑲𝑮. Between t = ∆𝑩𝑲𝑮 and t 

=∆𝑯𝑷𝑫 + ∆𝐵𝐾𝐺 , a fixed step K is added to the nonspecific noise p(t).  
(3) The end of the step K triggers the random generator in order to generate the 

next values of ∆𝑯𝑷𝑫 and ∆𝑩𝑲𝑮. 
(4) Again, between t = t0 +∆𝑩𝑲𝑮 and t = t0 +∆𝑯𝑷𝑫 + ∆𝐵𝐾𝐺 , a fixed step K is 

added to the nonspecific noise p(t). t0 designates the instant at which the last 
values of ∆𝑯𝑷𝑫 and ∆𝑩𝑲𝑮 were generated. 

(5) Back to step 3 
(6) The simulation can be either manually ended by the user or automatically by 

Simulink if a simulation time is specified 

The sudden arrival of K can be assimilated to the closing and opening of an automatic 
switch commanded by two random gamma generators, one for generating a random 
closing time and one for the switch opening time (Figure 53). If the model parameters are 
tuned such that the model generates isolated spikes from time to time (critical zone of 
functioning), then an HPD will be generated every time K is added to p(t). This can be done 
using the activity maps provided with the model implementation by the authors [161]. This 
implementation takes into consideration the epileptogenicity (increase in excitability) of the 
injected hippocampus as well as the exogenous cause of paroxysmal depolarization shifts.  

6 IMPLEMENTING THE STIMULATION INPUTS 
Given the polarizing effects of DC stimulation on the targeted structure (see Chapter 6), 

stimulation inputs were directly summed to the mean transmembrane potential of the 
impacted subpopulations. As illustrated in Figure 53, this corresponds to summing 
stimulation inputs with the mean PSPs just before the sigmoidal output function S(v) of the 
stimulated subpopulation. Consequently, the subpopulation will be depolarized if a positive 
long duration pulse is added to its mean transmembrane potential. Conversely, it will by 
hyperpolarized by a negative long duration pulse. Stimulation inputs were then 
incorporated in the model at the level of pyramidal cell population as well as the two 
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inhibitory neural populations. Noteworthy, the same stimulation principle was employed in 
thalamic DBS in Part 1. 

 
Figure 53.Block diagram of the model indicating the emplacement of stimulation inputs before the sigmoidal 
function of each population, as well as that of the PSD (paroxysmal depolarization shift) input. The PSD input 
is schematically represented as a switch K.  

However, a more explicit implementation of the electrode-electrolyte interface has been 
provided for this part. This implementation accounted for the charge accumulation at the 
interface; it also provided a compensation for possible short-term plastic effects following 
stimulation. Figure 54 provides a schematic representation of the implemented interface. A 
faradaic impedance 𝑍𝑓 in parallel with a double layer capacitance 𝐶𝑑𝑙 model the interface 
between the cerebral fluid and the implanted electrode. In series with this interface, the 
solution resistance 𝑅𝑠, also termed the access resistance, represents the resistance of the 
cerebral fluid/tissue between the two tips of the bipolar electrode. This implementation is 
in line with the literature of electrode models and stimulation protocols (see [153] for 
review). 
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Determining the values of  𝑍𝑓 and 𝐶𝑑𝑙 depends largely on the chemical composition of the 
used electrodes. In [153], the authors classify iEEG electrodes into two categories; ideally 
polarizable versus ideally non-polarizable electrodes. For ideally polarizable electordes, the 
value of the faradaic impedence  𝑍𝑓 is infinite. Therefore, such an electrode can be could be 
modeled as a pure capacitor in series with the solution resistance 𝑅𝑠. In this case, no 
electron transfer occurs during an eventual stimulation pulse. Therefore, stimulation is 
carried out uniquely through capacitive action (see Figure 55 (a) adapted from [153]). 
Conversely, for an ideally non-polarizable electorde, the faradaic impedence has zero 
resistance. Therefore, only the solution resistance appears in the model, as current flows 
readily through faradaic reactions (see Figure 55 (a)). The stimulation current is then 
accomodated through electron flow (charge injection), charge accumulation as well as 
metal deposits may form in the stimulated site. This is a desired situation for a recording or 
reference electrode, so that the electrode potential remains near equilibrium and is not 
perturbed upon the flow of nearby stimulation currnets. 

 
Figure 54.The implementation of the electrode-electrolyte interface in the model.Three resistive components 
k1, k2, and k3 model the distinct stimulation impact on the three subpopulations. 𝒁𝒇 and 𝑪𝒅𝒍 were tuned 
manually.  

However, ideal electrodes do not exist in real life. So, real electrodes can either be highly 
polarizable/non-polarizable. A highly polarizable electode is one that can accommodate a 
large amount of injected charge on the double layer before Faradiac reactions are initiated, 
and thus is well-adapted to be used as a stimulation electrode. A highly non-polarizable 
electrode has a very small faradaic resistance  𝑍𝑓, and may thereby be irreversibly corroded 
by the flow of a long-duration stimulation current. Highly polarizable electrodes are 
characterized by a low exchange current density (∼10-9 A/cm2), conversely to highly non-
polarizable electrodes that are characterized by a large exchange current density (∼10-3 
A/cm2). In conclusion, and according to [153], all real electrodes may be modeled with a 
finite faradaic impedence  𝑍𝑓 in parallel with a capacitor 𝐶𝑑𝑙 as shown in Figure 55 (b). 
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The recording electrodes used in the experimental KA model are made of stainless steel. 
Actually, stainless steel electrodes are widely used in experimental neuroscience given their 
inoxidable character when placed in aqueous solutions. The AC-impedance characteristics 
of stainless steel electrodes are also well studied in function of the frequency of the 
stimulation current [6-9]. 

 

Figure 55. Modeling the electrode-electrolyte solution.  (a) Two possible mechanisms of charge injection: 
faradaic vs. capacitive. (b) General model of a real metal electrode in aqueous solution. Adapted from [153]. 

For tested frequency ranges of stimulation current (e.g. 0.01 Hz – 1000 kHz or 1 Hz – 
10 kHz), the measured impedance ( 𝑍𝑓 and 𝐶𝑑𝑙) always decreases linearily as a function of 
the stimulation frequency. At low frequencies, the magnitude of  𝑍𝑓 seems to increase as 
the intensity of the stimulation current decreases. Similar results are reported for the 
capacitance of 𝐶𝑑𝑙 [6, 8]. In an aqueous NaCl solution,  the double layer capacitance 𝐶𝑑𝑙 of a 
stainless steel electrode is of the order of 10 – 20 mF/cm2, and the magnitude 𝑍𝑓 is of the 
order of 1 MΩ/cm2 at a 1 mHz stimulation frequency [6]. 

In the model, these values were slightly tuned in order to guarantee a compensation for a 
short-term effect persisting after stimulation.  𝑍𝑓 was tuned to 0.1 MΩ and 𝐶𝑑𝑙  was tuned 
to 1 mF. The time constant of RC electrode-electrolyte interface was then 100 s. Finally, 
considering a 2 S/m average conductivity of grey matter [259],  𝑅𝑠 was calculated as 
the resistance between the two tips of the bipolar electrode each of diameter 125 μm, 
and separated by 350 μm. The retained value was then 18.15 kΩ. 
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Pseudo Code 2. Measuring the features of epileptic dynamics 
Input parameters: the LFP signal 𝜗(𝑡), the peak tag table/ interval 𝜏𝑝𝑗𝑗 , duration of sliding window 
𝑡𝑤𝑖𝑛, sampling frequency 𝑓𝑠, the event tag table 𝜏∆𝐸𝐷(𝑡) 
Output parameters: features table 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
for j = 1:size(𝜏∆𝐸𝐷, 3) %% For every 𝑡𝑤𝑖𝑛 minute interval 

𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(1, 𝑗) = sum(𝜏∆𝐸𝐷 (: ,2, 𝑗) −  𝜏∆𝐸𝐷 (: ,1, 𝑗)) ; %% First calculated feature, the total duration of 
discharge in the  𝑡𝑤𝑖𝑛 minute interval 
𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(2, 𝑗) = length(𝜏∆𝐸𝐷 (: ,2, 𝑗)) ; %% Second calculated feature, the total number of discharge in 
the  𝑡𝑤𝑖𝑛 minute interval 
𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(3, 𝑗) = length(𝜏𝑝𝑗𝑗 (: , : , 𝑗)) ; %% Third calculated feature, the total number of peaks in the  
𝑡𝑤𝑖𝑛 minute interval 
𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(4, 𝑗) = 0; %% Initialization for of fourth feature for calculating the total energy of discharge 
in the  𝑡𝑤𝑖𝑛 minute interval 
for i = 1:length(𝜏∆𝐸𝐷 (: , : , 𝑗)) 

𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(4, 𝑗)
=  𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(4, 𝑗)

+ 
1
𝑁

�𝜗(𝜏∆𝐸𝐷(𝑖, 1) ∗ 𝑓𝑠: 𝜏∆𝐸𝐷(𝑖, 2) ∗ 𝑓𝑠).∗  𝜗(𝜏∆𝐸𝐷(𝑖, 1) ∗ 𝑓𝑠: 𝜏∆𝐸𝐷(𝑖, 2) ∗ 𝑓𝑠) 
%% N is the number of samples in discharge i. 

end 
end 
Table 6. Pseudo code for measuring the epileptic features of an iEEG signal ϑ(t). The code was implemented in 
Matlab®. 

7 COMPUTATIONAL ANALYSIS OF STIMULATION EFFECTS 
Once the model was tuned for the generation of realistic HPDs similar to those observed 

in vivo, the next step was to study the effects of stimulation in function of its impact (k1, k2, 
and k3) on the three stimulated subpopulations P, IFSI, and IHDI.  

As the model was implemented in Simulink®, the used stimulation signal was delivered by 
a pulse generator, whose intensity and pulse duration were set to 1 µA and 50 s 
respectively. The choice of the intensity was deduced from an experimental study assuming 
that a 1 µA current intensity is the minimum required to diminish epileptiform discharges in 
the recorded LFP in vitro [35]. The model activity maps were then constructed for defined 
ranges of k1, k2, and k3. These activity maps represented the quantified epileptic features of 
the simulated LFP in the minute following stimulation. 

7.1 QUANTIFYING EPILEPTIC FEATURES IN SIMULATED LFP SIGNALS 
In the minute following the end of the simulated stimulation pulse, HPDs were detected 

using the pseudo code described in Table 5. Once detected, measuring the epileptic 
features of the simulated LFP signals in each time window (twin = 60 s) consisted of 
measuring, the occurrence of epileptic dynamics, their intensity, and duration. The 
occurrence was measured as the number of detected discharges/peaks in the processing 
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window (of duration 𝑡𝑤𝑖𝑛). The duration of these events represented the lumped duration of 
epileptic dynamics in the same window. And finally, the intensity feature corresponded to 
the energy of epileptic events in this window. This can be simply expressed as 

𝐸𝑡𝑤𝑖𝑛 =  �
1

𝑁(𝑖)
�� 𝜗𝑗

2

𝑁(𝑖)

𝑗=1

𝐷

𝑖=1

 

where 𝐷 is the number of detected discharges and 𝑁(𝑖) is the number of samples of the ith 
discharge and𝜗𝑗 is the LFP signal components constituting the jth band. The pseudo code of 
this algorithm is given in Table 6. 
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Chapter 7: Computational Results of Part 2 

The computational study performed in the previous chapter gave rise to interesting 
observations concerning the effect of current polarity on hippocampal epileptic dynamics. The 
hippocampus model [161] was successfully used to reproduce hippocampal paroxysmal 
discharges in the absence of as well as in response to stimulation. The results are hereby 
detailed. 

1 SIMULATING HPDS 
Realistic epileptic hippocampal dynamics could be simulated in the model by manually 

tuning the parameters A, B, and G corresponding to the amplitudes of the EPSPs/IPSPs that 
could be generated in the model as well as tuning the parameter K corresponding to the 
amplitude of the input PSD. The initial values were set according to the model activity maps 
presented in [161]. As aforementioned, the onset/duration of hippocampal paroxysmal 
discharges (HPDs) were experimentally identified and parameterized. 

Figure 56 presents a 400 s simulated signal segment as well as a real iEEG signal segment 
corresponding to the no stimulation condition. The simulated and simulated HPDs occurring 
in these signal segments are also illustrated. It can be assumed that the model can mimic 
realistic hippocampal activity. 

1.1 MODEL ACTIVITY MAPS 
In order to estimate the approximate values of k1, k2 and k3 (Figure 54)necessary for the 

reproduction of the polarization effects of DC stimulation, the model activity maps were 
computed on empirically predefined parameter. The activity maps represent the number of 
detected peaks/min (Figure 57), the total discharge duration/min (Figure 58), the total 
discharge energy/min (Figure 59) recorded during the minute following a stimulation pulse 
of duration 50 s and intensity 1 µA. Five stimulation simulations were performed for each 
triplet (k1, k2, k3), then the average of the features computed over the five simulations were 
traced in the activity maps. 
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Figure 56. Modeling HPDs.  (A) Real and (B) simulated hippocampal iEEG segments. Note the abrupt passage from 
background to epileptiform activity in both simulated and real hippocampal LFP. Zoom on a (C) real and a (D) 
simulated HPD. Note the spike-and-wave complex in both real and simulated HPDs.  
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Figure 57.Model activity maps representing the average number of peaks (calculated over 5 simulations) in 
the minute following a stimulation pulse of duration 50 s and intensity 1 µA for different values of k1,k2 and k3. 
Note the excessive increase in peak occurrence for extremely negative values of k2 and k3 with simultaneous 
extremely positive values of k1 and vice versa. It can be concluded that the effect of k3 is predominant over 
that of k2. It is actually sufficient to obtain an increase/ a decrease of peak occurrence even if k2 is null.  

As depicted in the activity maps, the highest levels of excitability in the model are related 
to the positive values of k1, coupled to negative values of k3 when k2 is extremely negative 
(≤ -10; bottom lower corners of the maps). Similarly, when the value of k3 is extremely 
positive (≥ 10), negative values of k1 seem sufficient to hyperpolarize the system. To 
exclude these extreme conditions that were not observed in real iEEG recordings, only 
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middle panel maps were considered for the optimization of stimulation effects (k2 = [-5, 0, 
5]). 

 
Figure 58. Model activity maps representing the average duration (s) of discharge (calculated over 5 
simulations) in the minute following a stimulation pulse of duration 50 s and intensity 1 µA for different values 
of k1,k2 and k3. Note the excessive increase in HPD duration for extremely negative values of k2 and k3 with 
simultaneous extremely positive values of k1 and vice versa. It can be concluded that the effect of k3 is 
predominant over that of k2. It is actually sufficient to obtain an increase/ a decrease in total HPD duration 
even if k2 is null.  

1.2 SIMULATED STIMULATION EFFECTS 
For reproducing stimulation effects, we supposed that inverting the polarity of the 

stimulation current systematically implies inverting the sign of parameters k1, k2 and k3. So 
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the challenge was finding the triplet (k1, k2, k3) that induces model hyperpolarization and 
consequently the triplet -(k1, k2, k3) that depolarizes the model dynamics in certain limits. 
The triplet (k1, k2, k3) was set to (-30, 5, 5), in order to avoid the change in the discharge 
morphology during stimulation. Examples of simulation results are illustrated in figures 
Figure 60,Figure 61 and Figure 62. Each signal corresponds to the model output during an 
independent simulation. Note that, in the model, the depolarization effects are more 
marked than hyperpolarization effects. This could be avoided, if the polarity constraint on 
interneurons is relaxed. If we suppose that interneurons are always depolarized by 
stimulation for both polarities given their unstructured organization, the marked 
stimulation effect can be avoided.  

The stimulation effects were then studied as a function of the stimulation polarity in the 
model. Three groups were defined: the no stimulation group, the hyperpolarizing 
stimulation group and the depolarizing stimulation group. One hundred simulations were 
then performed per group. The simulated signals were then analyzed, and the boxplots 
corresponding to the number of detected peaks/min, the total duration of discharge/min 
and the discharge energy/min were plotted in Figure 63. The hyperpolarizing polarity seems 
to divide by two the preceding quantities whereas the depolarizing polarity seems to at 
least double their values. Using a stimulation current intensity of 0.5 µA does not seem to 
affect the model dynamics. This was verified by tracing the boxplots of 100 trials per group 
in case the pulse amplitude is set to 0.5 µA (not illustrated). 

1.3 THE THEORETICAL EQUIPOTENTIAL LINES INDUCED BY STIMULATION 
Given the current intensity, the theoretical intra-electrode distance, the induced potential 

lines can be estimated when considering homogeneous the conductivity of the electrode 
neighborhood. In a 2D plane, this can be mathematically expressed as: 

𝑉(𝑟1, 𝑟2) =
𝐼

4𝜋𝜎
∙ (

1
𝑟1

−
1
𝑟2

) 

where 𝑟1 and 𝑟2 are the distances between the considered point and the anode or the 
cathode respectively. Parameter 𝜎 corresponds to the conductivity of the considered 
medium. The theoretical values of function 𝑉(𝑟1, 𝑟2) are depicted in Figure 64. A current, as 
small as 1 µA, can induce a potential difference of the order of 10 mV between the tips of 
the stimulation electrode.  

Equipotential lines can be used to estimate the electric field lines as well as the 
temperature gradient induced by the simulation current. The electric field lines can be 

classically obtained given the conventional potential-electric field expression 𝐸���⃗ =  −∇V. 
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Figure 65 illustrates the electric field lines that could be determined accordingly. Calculating 
the electric field density around the stimulation electrodes, it can be shown that the 
minimal field intensity 0.1 mm away from the electrodes remains as high as 30mV/mm, 
which is comparable in value to the electric field used in the pilot study discussed earlier in 
chapter 6 [36]. 

 

Figure 59. Model activity maps representing the average energy of discharge (calculated over 5 simulations) in 
the minute following a stimulation pulse of duration 50 s and intensity 1 µA for different values of k1,k2 and 
k3.Note the excessive increase in the energy of total HPDs for extremely negative values of k2 and k3 with 
simultaneous extremely positive values of k1 and vice versa. It can be concluded that the effect of k3 is 
predominant over that of k2. It is actually sufficient to obtain an increase/ a decrease in total HPD energy even 
if k2 is null.  
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Concerning the heat diffusion during stimulation, this can be described by the following 
differential equation [260]: 

𝜌𝐶𝑝
𝜕𝑇
𝜕𝑡

=  ∇(𝑘∇𝑇) −  𝜌𝑏𝜔𝑏𝐶𝑏(𝑇 − 𝑇𝑏) + 𝑄𝑚 + 𝜎|∇𝑉|2 

where 𝜌 is the brain tissue density, 𝐶𝑝 is the specific heat of the brain tissue (J kg-1 °C-1), 𝑘 
is the thermal conductivity of the brain tissue (W m-1 °C-1), 𝜌𝑏 is the blood density (kg m-3),  
𝜔𝑏 is the blood perfusion (ml s-1 ml-1), 𝐶𝑏 is the specific heat of the blood (J kg-1 °C-1), 𝑇𝑏 is 
the body core temperature (°C), 𝑄𝑚 is the metabolic heat source term (W m-3), 𝜎 is the 
conductivity of the brain tissue (S m-1) and  ∇𝑉 is the potential gradient induced by 
stimulation. Note that the first term of the equation,∇(𝑘∇𝑇), represents the dissipation of 
heat through the thermal conductivity of the brain. The second term represents heat 
diffusion through blood perfusion, 𝜌𝑏𝜔𝑏𝐶𝑏(𝑇 − 𝑇𝑏). The third term represents intrinsic 
heat generation through metabolic processes, 𝑄𝑚. Only the last term corresponds to the 
stimulation induced heating, 𝜎|∇𝑉|2. It is directly related to the magnitude of the potential 
gradient induced by the stimulation current. 

The simplest thermal model of stimulation can be considered through neglecting 
metabolic processes as well as blood perfusion. The simplified thermal model can then be 
expressed as: 

𝜌𝐶𝑝
𝜕𝑇
𝜕𝑡

=  ∇(𝑘∇𝑇) + 𝜎|∇𝑉|2 

Considering that the stimulation induced heating reaches its max at a point tmax after the 
onset of the stimulation current. The maximum attained temperature can be then 
estimated by calculating the steady state solution of the above equation: 

∇(𝑘∇𝑇) + 𝜎|∇𝑉|2 = 0 

The implications of the above equation consist in directly relating the process of heat 
diffusion to the amplitude of the voltage gradient induced by stimulation. The resolution of 
heat diffusion equations in the context of deep brain stimulation constitutes an uprising 
concern in the field. Experimental and computational data show that stimulation-induced 
heating depends on the root mean square voltage (rms) of the stimulation signal [260]. 
Besides, across a wide range of stimulation wave forms (sine wave, square wave, or DBS 
stimulation) the peak temperature rise reported for an rms value of 2V is of 0.2°C. 
Consequently, as long as low-intensity currents are used for DC stimulation protocols, no 
harmful stimulation-induced heating should be expected in the targeted brain tissue.   
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Figure 60. Ten examples of possible model dynamics in the absence of stimulation. Simulated signals correspond to 

LFPs  
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Figure 61. Ten examples of the model output when “depolarizing” stimulation is applied. Note the increase in HPD 

duration and intensity as well as in peak occurrence.  
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Figure 62. Ten examples of the model output when “hyperpolarizing stimulation” is applied. Note the decrease in 

HPD duration as well as in peak occurrence.  
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Figure 63. Boxplots of simulated iEEG signals in the absence and during hyperpolarizing and depolarizing 
stimulation. 
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Figure 64. The theoretical equipotential lines induced during the 1µA DC stimulation, for an intra-electrode 
distance of 350µm in a homogenous medium of conductance 0.35 S/m. The red and blue spheres represent 
the anode and the cathode emplacements respectively. The numbers on the potential lines indicate their 
corresponding value in mV. The maximum induced voltage gradient between the two electrode tips is of the 
order of 10 mV. 

 
Figure 65. The electric field lines induced by stimulation superimposed over the induced potential map (V).  
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Chapter 8: Experimental Validation 

As the results of the computational study were encouraging (see chapter 8), an 
experimental procedure was designed to verify the computational predictions as well as the 
safety of this type of stimulation.  Noteworthy, the indirect implication of this experimental 
validation is the validation of the stimulation inputs implementation in the model: stimulation 
polarizes the transmembrane potential. 

In this chapter, the experimental preliminary safety tests are first explained, and then the in 
vivo experimental setup, including the stimulation protocols and data analysis, is detailed. 
Finally, the observed experimental results are reported. 

1 PRELIMINARY SAFETY TEST: STIMULATION-INDUCED HEATING 
DC stimulation may provoke tissue damage through five possible mechanisms: chemical, 

thermal, mechanical, electroporation, and excitotoxicity [135]. Consequently, a preliminary 
test protocol was performed before the start of in vivo experiments in order to verify 
thermal “safety” of DC stimulation protocols. 

A bipolar stimulation electrode was implanted in a freshly extracted C57BL/6J (B6) mouse 
brain. The monitor temperature probe of an automatic temperature controller (TC-324B 
Warner Instrument Corporation) was inserted between the two tips of the stimulation 
bipolar electrode (Figure 66). The experiment was conducted in a temperature controlled 
room (21±1°C). The test stimulation pulse was only given when the recorded temperature 
reached a stable baseline in the absence of stimulation. 

 

Figure 66. Verifying temperature rise during stimulation. A temperature probe was inserted between the two 
tips of a bipolar stimulation electrode. These were then implanted in a freshly extracted mouse brain in vitro. 
Temperature change was recorded during long-duration stimulation pulses.   
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Different stimulation current intensities (0.1mA, 0.5mA, 1mA, 1.5mA, and 4mA) were 
gradually tested over 100 s durations. After the end of each 100 s pulse, stimulation was 
paused until the stabilization of the recorded temperature. Each stimulation current 
intensity was tested twice.  

 

Figure 67. The thermal heating recorded for different stimulation current intensities applied for 100s. (A) 0.1 mA, 
(B) 0.5 mA, (C) 1 mA and (D) 1.5 mA. Each stimulation 100 s pulse was tested twice at every current intensity.  
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The in vitro thermal safety test discarded the neural death risk due to the thermal heating 
associated to DC stimulation only when stimulation current remained relatively small 
(< 0.1 mA). The results are illustrated in Figure 67 and Figure 68. 

 

Figure 68. Thermal heating produced by high current intensity DC stimulation (4 mA) applied for (A) 100 s and 
(B) 200 s respectively. The recorded temperature elevation is higher than 4°C.  

In fact, as no heating was recorded during a stimulation of current intensity 0.1 mA, a 
0.5 mA stimulation pulse provoked a temperature elevation of approximately 0.3°C. 
Moreover, when the stimulation current intensity was increased to 1 – 1.5 mA, a 1°C 
thermal elevation was recorded. Noteworthy, an increase in temperature of about 1°C can 
exert profound effects on a single neuron and on the neural network functioning [261-263]. 
Enormous temperature elevations of approximately 4°C were recorded for currents of 4 mA 
intensity (Figure 68). Increasing the stimulation duration also contributed to an increase in 
temperature only if a stable temperature was not reached by the end of 100 s. 

After the end of the stimulation pulse, the temperature of the stimulated tissue drops 
exponentially. It should be noted that, when such experiments are conducted in a freshly 
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extracted brain, an essential mechanism that contributes to tissue cooling, blood perfusion, 
is absent and heat is dissipated uniquely through the thermal conductivity of the brain 
[264]. 

2 THE EXPERIMENTAL PROTOCOL 
At day 27 after the KA intra-hippocampal injection (see chapter 6 section 3.2), the 

confirmed epileptic animals were scheduled for a 4-hour baseline video-iEEG recording 
using a clinical monitoring system (Deltamed). This was intended for quantifying the basal 
epileptic activity of each animal before any experiment. After establishing a baseline 
recording for the considered animal, stimulation sessions were programmed between day 
28 and day 40 (after injection) with no a priori on electric field polarities with respect to 
CA1 (due to the uncertainties in the implantation procedure). In effect, due to the possible 
imprecision of the manual electrode implantation procedure, we could not verify a priori 
that the implanted electrodes have exactly the configuration illustrated in chapter 6 Figure 
46. Each animal underwent 4 to 5 stimulation sessions in order to test the intra-individual 
variability of the stimulation outcome. A GRASS Technologies S88X stimulator was used in 
all stimulation sessions. The recorded LFPs were sampled at 2 kHz, and hardware-filtered by 
a high-pass filter (0.16 Hz cutoff frequency) integrated into the signal acquisition system. 

2.1 THE PROTOCOL VARIANTS 
Three stimulation protocol variants were used. Each animal underwent only one type of 

protocol variants repeated over 4 to 5 stimulation sessions. These variants denoted P1, P2 
and P3, are illustrated in Figure 69. Stimulation current was limited to 1 µA, the equivalent 
to one tenth of the DC current intensity used in [242] and reported to provoke no tissue 
damage. Similarly, the results of the aforementioned thermal safety tests show that the 
tissue induced-heating at this low current intensity is negligible. Stimulation duration was 
limited to an intermittent 400s total per day. In fact, it has been shown that tissue damage 
increases linearly with stimulation duration when using monophasic HFS (high-frequency 
stimulation; 130 Hz) [154]. This is related to an irreversible charge accumulation at the 
cathodal electrode.  

To compare, we calculated the total injected charge density during a “safe” stimulation 
duration (5 minutes) for a maximal allowed current 𝐼𝑚𝑎𝑥 = 100μ𝐴 for a monophasic 
monopolar high-frequency stimulation (pulse width = 60µs; cathodal electrode area = 
177∙10-6) as defined by [154], as well as the theoretical total injected current for a DC 
stimulation of duration 100s, and intensity 1µA using the following expression for the 
charge density per phase (as defined in [265]): 
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𝐶ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑚𝐴) ∙ 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ(𝑚𝑠)

𝑐𝑎𝑡ℎ𝑜𝑑𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑎𝑟𝑒𝑎 (𝑐𝑚2)
 

Evidently, the resulting charge density/phase for DC stimulation (phase = 100 s) turned 
out to be enormous with respect to the previously calculated “safe” dose. Consequently, 
we made the following assumption: in monophasic stimulations, the phase (polarity) is 
never inverted; so charge accumulation may be a consequence of charge accumulation due 
to consecutive stimulations with the same polarity, which explains the linear relation with 
stimulation duration [154]. For this, we assume that the total charge density injected during 
a monophasic stimulation session can be expressed as a function of the total stimulation 
duration for all stimulation frequencies (DC to HFS):  

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (μ𝐴) ∙ 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑠)

𝑐𝑎𝑡ℎ𝑜𝑑𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑎𝑟𝑒𝑎 (𝑐𝑚2)
 

 
Given this approach, it can be concluded that the maximal harmless total charge density 

that can be identified from [154] is equal to 1.322∙106 µC/cm2. If this is set as a maximal 
allowed charge density injection, then the maximum allowed DC stimulation time at an 
intensity of 1 µA should be inferior to 160 seconds (given that the cathodal electrode 
diameter used in this study is 125µm) in a relatively short time (< 5 min). This upper 
stimulation duration was respected in all stimulation protocols. 

Protocol P1. Protocol P1 consisted of alternating stimulation pulses of inverse polarities, 
termed S1/S2, but of constant duration of 100s. Each two pulses were separated by a period 
of no-stimulation lasting 300s. This silence period was designed for recording the neural 
system’s response after a stimulation of polarity S1 or S2. (S1 represented by a positive pulse 
and S2 by a negative pulse in Figure 69). Alternating pulses of opposite polarities was 
initially provided for inverting charge accumulation. 

Protocol P2. Since stimulation pulses were separated by a large duration, inverting charge 
accumulation was probably not guaranteed by inverting stimulation polarities. 
Consequently, P2 was rather designed for maximally separating stimulation effect 
interferences and residuals caused by the succession of S1/S2 stimulation pulses. Formally, 
P2 consisted of delivering 4 50s-pulses of polarity S1 each two separated by a 5 minutes no-
stimulation period. This was followed by a rest period of approximately 1 hour. Then 
another 4 50s-pulses of polarity S2 each two separated by a 5 minutes no-stimulation period 
were delivered. Again, the 300s no-stimulation period was reserved for recording the 
system’s response to the delivered stimulation pulse. 
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Protocol P3. Finally, in order to conduct a preliminary test on the relation between 
stimulation duration and efficacy, protocol P3 was defined. It consisted of delivering 
consecutive S1/S2 pulses separated by a 300s no-stimulation period. This was repeated by 
successively incrementing pulse durations [5, 10, 20, 30, 40, 50s]. 

 

Figure 69. The different stimulation protocols used in this study. In protocol P1, polarity is inversed at each 
stimulation pulse. Stimulation duration is fixed to 100 s. In protocol P2, only one polarity is tested at a time. A 
“no stimulation” duration of approximately 1 hour is used to separate the polarity trials. Finally, in protocol P3, 
the effect of the duration is explored. Stimulation polarity is inverted at every stimulation pulse and pulse 
duration is gradually increased during the stimulation session. A 300 s no stimulation (NS) duration separates 
consecutive pulses and is intended for measuring the system’s response.  

2.2 DATABASE 
Only 5 mice were included in this study, and only one protocol was tested per mouse. 

Table 7 resumes the protocol used by mouse and the number of repetitions (stimulation 
sessions) of each protocol. No matter what the protocol used, stimulation responses after 
each stimulation pulse were supposed independent from all other stimulation trials. 
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Consequently, each stimulation pulse corresponded to an independent trial of a polarity-
specific or (duration-specific) stimulation.  

Mouse ID Protocol Number of Repetitions 
K143 P1 5 
K148 P3 5 
K155 P2 5 
K168 P2 5 
K171 P2 5 

Table 7. Mouse Database detailing the used protocol variant and the number of repetitions of stimulation sessions. 

2.3 HISTOLOGICAL VERIFICATION 
Upon the completion of all stimulation sessions, stimulated mice were injected with a 

lethal dose of chloral hydrate. Their brains were removed from the skull and directly frozen 
in isopentane (2-methylbutane) at -35°C. The frozen brains were then cut in coronal 
sections of 20 µm on a cryostat that were collected on gelatin-coated strips.  

Then, tissue sections were stained using the Nissl staining method in order to verify (1) 
the position of the electrodes, (2) the neural dispersion provoked by the perfusion of KA 
and (3) the absence of collateral damages or neural death that could be provoked by DC 
stimulation. In brief, the Nissl staining method suggests that brain slides be immersed in a 
0.1% cresyl violet solution for 8 minutes, then dehydrated in increasing concentrations of 
ethanol. Finally, the slides are cleared through the immersion in two consecutive butan-1-ol 
baths (8 minutes each), and cover-slipped in a resin layer between two glass strips. The 
histological verification was simply done using a Nikon microscope. 

This procedure allowed the verification of the electrode position in the hippocampus, as 
well as the kainate-induced hippocampal histopathology and finally the effect of the 
stimulation currents on hippocampal tissue. 

3 QUANTIFYING STIMULATION EFFECTS 
In order to assess the epileptic degree of the injected hippocampus at different instants, 

the same lumped features assessed computationally were measured in the real LFP signals 
in the absence of stimulation and at the end of stimulation. These features included the 
total duration, the intensity, and the number of discharges, as well as the number of 
detected peaks in a pre-defined time interval. To proceed, the iEEG recordings of each 
animal passed the following steps: 

a. Pre-selection 



     

156 | P a g e  
 
 

b. Tagging 
c. Processing 
d. Statistical Analysis 

Pre-selection. During the first step, the iEEG recordings of the considered animal were 
checked for the presence of episodes of restless activity (notably during the active 
exploration of the cage). These episodes were excluded due to the existence of iEEG 
movement artifacts, and consequently amplifier saturation episodes. Not to mention, 
during active episodes, epileptic events are rarely observed in the iEEG recordings. 
Consequently, only iEEG signals recorded during the restfulness of the animal were 
included in the study. Only the signals recorded from the injected hippocampus were 
studied. 

Tagging. The selected iEEG recordings were then tagged for stimulation trials. After each 
stimulation pulse, the instant at which the stimulation artifact ends was manually tagged 
with stimulation pulse duration and polarity (S1/S2). Then, peaks were detected using the 
Page-Hinkley test. As aforementioned, peak detection is verified manually to avoid 
detecting stimulation artifacts.  

Processing. The preselected signals, along with their corresponding stimulation and peak 
tag tables were then preprocessed as follows:  

i. A processing window length twin was defined (twin = 2 minutes). 
ii. For no stimulation iEEG recordings, the epileptic measurements were calculated 

over a sliding window of 2 minutes duration (0% overlap – see Figure 70-A). 
iii. As for stimulation responses, the epileptic measurements were calculated over a 

2-minutes fixed interval starting at the stimulation end tag (see Figure 70-B).  In 
other words, the response of each stimulation pulse was calculated over a single 2-
minutes interval. 

The pseudo code used for the tagging ongoing epileptic events over a fixed-interval window 
is the same as the one given in Table 5. An algorithm similar to that presented in Table 5, 
but with a fixed window, was used for detecting discharge time slots after stimulation 
pulses (Figure 70-B). Once detected, measuring the epileptic features of the iEEG signals in 
each time window consisted of evaluating the occurrence of epileptic dynamics, their 
intensity, and duration using the same algorithm used for simulated signals Table 6. 
However, for every 𝑡𝑤𝑖𝑛 interval, the moving average of the recorded LFP signal is 
estimated using a window of 1 second. It is then filtered form the signal before extracting 
the aforementioned features. This was uniquely done on real signals in order to filter 
stimulation artifacts. 
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Figure 70. The processing of iEEG signals over fixed-window intervals.  (A) Case of no stimulation, the iEEG signal is processed over a sliding fixed length 2-
minute intervals (0% overlap). (B) Case of stimulation, fixed 2-min intervals are defined starting at the stimulation end tag of every stimulation pulse. The 
considered 2-min signal is then pre-processed to filter the stimulation artifact (B lower panel), before any further quantification. The same preprocessing step is 
applied on no stimulation intervals in to avoid preprocessing bias.  
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4 STATISTICAL Analysis. 
 For all stimulated animals, a control features dataset has been calculated, per animal, 

in the absence of stimulation over about 2 hours of iEEG recordings considered at 
different days of the protocol. These iEEG recordings generally correspond to the pre-
stimulation baseline recordings. Each 𝑡𝑤𝑖𝑛 minutes interval corresponding to a 
supposedly independent trial of the same random variable.  

Then, for every animal, each stimulation response (calculated after each stimulation 
trial) was attributed to a stimulation group according to its polarity (S1/S2), and its 
duration (case of protocol P3). These stimulation responses corresponded to the sum of 
stimulation trials done during the n stimulation sessions for a given animal. Below is a 
table of the number of repetitions per group per animal (Table 8). 

Mouse ID #NS #S1 #S2 

K155 119 12 10 

K168 120 19 20 

K171 144 18 20 

K148 
40 s 110 4 3 

50 s 110 2 1 

K143 100 s 100 8 6 

Table 8. Number of 2-min processing intervals for every animal. Only one processing window is attributed to 
each stimulation trial (pulse).Abbreviations, NS: No stimulation; S1: stimulation polarity S1; S2: stimulation 
polarity S2. 

Given the little number of stimulation repetitions, the choice of the statistical test was then 
limited to a non-parametric test: the Mann Whitney Wilcoxon test. Statistical testing was 
directly performed in Matlab® using the ranksum function of the statistical toolbox. 
Consequently, a p-value could have been calculated for each stimulation polarity and for 
each animal. 

 

5 THE EXPERIMENTAL OBSERVATIONS 
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In view of the small number of stimulated animals versus the variants of the 
stimulation protocol, the results presented in this chapter can be interpreted in a 
preliminary perspective. In the following pages, the experimental results are presented 
and discussed. 

5.1 IN VIVO EFFECTS 
The visual inspection of the recorded iEEG signals in the absence of and directly after 

the end of stimulation was not sufficient to confirm an eventual effect of stimulation 
polarity. As for stimulation duration, one conclusion can be made: when stimulation 
duration is as long as 100 s, the recorded iEEG signals after stimulation seem to be less 
epileptic for both stimulation polarities. Figure 71 to Figure 73, illustrate sample signals 
recorded in the absence of stimulation (Figure 71), and others recorded after distinct 
stimulation trials of duration 100 s, and of polarity S1 (Figure 72) and S2 (Figure 73) 
respectively. Given that the scale is approximately doubled for Figure 72 and 9, the 
intensity of the present discharges of all types (isolated or continuous) is highly 
dampened. No further results could be concluded from the visual inspection of the 
signals. Sample iEEG signals for other stimulated animals are presented in Anpendix B. 

5.2 THE EFFECTS OF STIMULATION POLARITY 
LFP signals were analyzed using the methods defined in chapter 7 over an analysis 

window of 120 s. Then, the computed features over the different stimulation conditions 
(No Stimulation (NS), S1 stimulation and S2 stimulation) were represented in boxplots. 
The boxplots (Figure 74 and Figure 75) show that an S1 stimulation polarity tends to 
diminish HPD occurrence and duration when applied for 40s in mouse K148, and for 50s 
in mice K155 and K168. Conversely, the S2 stimulation polarity does not seem to have an 
effect. As for mouse K171, the boxplots show that the S2 stimulation polarity may 
provoke an antiepileptic effect when applied for 50 s. For this mouse, the S1 stimulation 
duration does not seem to have an effect. As for mouse K143 (Figure 76), both 
stimulation polarities seem to provoke a more or less an antiepileptic effect when 
applied for 100 s. A hyperpolarization antiepileptic effect was assumed when a 
stimulation polarity diminishes the occurrence, duration, as well as the intensity of 
epileptic events. 

Further statistical investigation using the Mann-Whitney non-parametric test (5% 
significance level) showed that the antiepileptic effects revealed in the boxplots of the 
stimulated animals are significant for mice K148, K155, and K171. For details, the 
statistical test was operated per animal on the total duration of HPDs feature. The 
results are detailed in Table 9. 
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Figure 71.Example signal segments (mouse K143) in the absence of stimulation. Note the recurrence of HPDs 

and isolated sharp waves and spikes.  
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Figure 72 Signals recorded just after the end of 100 s S1 stimulation (mouse K143) during different sessions. 

Note the reduction in number and intensity of HPDs in the recorded signals. This was observed for both 
polarities.  

 
Figure 73. Signals recorded just after the end of 100 s S2 stimulation (mouse K143) during different sessions. 
Note the reduction in number and the intensity of HPDs in the recorded signals. This was observed for both 

polarities.  
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Figure 74. Boxplots of the signal features of mice K148 (number of trials: NS = 220, S1 = 4, S2 = 3) and K155 
(number of trials NS = 238, S1 = 12, S2 = 10) in the absence and just after the end of a stimulation pulse of 
polarity S1/S2. Features computed over 120 s windows. Note the visible decrease in epileptic features (HPD 
duration, number of peaks and total energy of HPD/minute) for an S1 stimulation polarity in both mice. An S2 
stimulation polarity does not present a significant effect.  

5.3 THE EFFECTS OF STIMULATION DURATION 
Given the visual damping effect of iEEG signals after a stimulation of 100 s duration 

(mouse K143), a further analysis of the evolution of the discharge intensity longtime 
after the end of the stimulation session was performed. The results revelead an 
irreversible damping of the intensity of discharge/minute when the stimulation duration 
is of the order of 100 s. A slight recovery in the discharge intenisty (1/3 of the initial 
value) was observed 4 days after the last stimulation session (see Figure 77). However, 
this recovery was anhilated by a subsequent stimulation session at Day 57. No further 
recovery was observed in the following month. This is probably due to the KA-provoked 
cell despersion in CA1, more than 90 days after the injection. Consequently, stimulation 
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sessions were limited to 45 days after KA-injection. Moreover, in order to assess the 
contribution of the stimulation duration to stimulation effects, the protocol variant P3 
was designed and tested on mouse K148. Eventually, a more robust experimental 
validation should be performed in the future to verify the results illustrated in Figure 78.  
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Figure 75. Boxplots of the signal features of mice K168 (number of trials: NS = 240, S1 = 19, S2 = 20) and 
K171 (number of trials NS = 288, S1 = 18, S2 = 20) in the absence and just after the end of a stimulation 
pulse of polarity S1/S2. Note that the a hyperpolarizing effect of S1 for mouse K168 is not evident. Features 
computed over 120 s windows. Note the visible decrease in epileptic features (HPD duration, number of 
peaks and total energy of HPD/minute) for an S2 stimulation polarity in mouse 171. An S1 stimulation 
polarity does not present a significant effect. On the other hand mouse K168 does not seem to respond to 
DC stimulation. Note that later histological verification showed the presence of the stimulation electrodes 
in the CA3 hippocampal region for this mouse.  
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Figure 76. Boxplots of the signal features of mouse K143 (number of trials: NS = 200, S1 = 8, S2 = 6) in the 
absence and just after the end of a stimulation pulse of polarity S1/S2. Features computed over 120 s 
windows. Note the visible decrease in epileptic features (HPD duration, number of peaks and total energy 
of HPD/minute) for both stimulation polarities in this mouse.  

Figure 78 represents the boxplots of stimulation effects in three groups, the NS group, 
the S1 and the S2 stimulation polarity group. The two latter groups represent the iEEG 
signal features in function of the stimulation duration [5, 10, 20, 30, 40, 50 s]. 
Apparently, stimulation durations as short as 5 – 20 s do not have an effect. However, a 
stimulation duration around 30 – 40 s seems to diminish epileptic features for an S1 
polarity, and to slightly reinforce HPD generation for an S2 polarity. However, 
stimulation durations of 50 s seem to be the limit of stimulation polarity effect. Both 
polarities relatively diminish the epileptic features in the recorded signals. This is 
particularly obvious for the total duration of discharge and the number of peaks feature. 
As for the intensity of discharge feature, it seems that the energy of total discharge 
starts falling when the stimulation duration is as short as 20 s. 
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Souris #NS #S1 #S2 
Ranksum_S1 Ranksum_S2 

h p sum h P sum 

K155 119 12 10 1 0.0161 490 0 0.9333 660 

K168 120 19 20 0 0.7475 1277 0 0.6065 1497 

K171 144 18 20 0 0.9299 1450 1 0.0221 1194 

K148 
40s 110 4 3 1 0.0429 98 0 0.7546 153 

50s 110 2 1 1 0.0230 9 0 0.2958 22 

K143 100s 100 8 6 1 0.0218 240 0 0.5071 272 

Table 9. The results of the Mann-Whitney test per animal. Illustrated: the number of trials in the absence 
of stimulation (#NS), after a stimulation polarity S1/S2 (#S1, #S2 respect.), the p-value, the sum (Mann-
Whitney test), and the null hypothesis ([0, 1] = [not rejected, rejected]). Note that the decrease in the 
epileptic features of the recorded LFP is significant in mice K148, K143, K155 and K171. This resultseemed 
to be independent of the used stimulation protocol. 

 
Figure 77. A unique observation of the evolution of the intensity of discharge through stimulation and 
baseline sessions when excessive stimulation duration is used (100 s). Each point represents the intensity 
of the discharge in the considered minute (sliding window 0% overlap). The blue/red points correspond to 
the S1/S2 stimulation polarities respectively. Note the brutal fall of discharge intensity following the first S1 

stimulation at Day 43 (after KA injection). The discharge intensity is never recovered due to the daily 
stimulation sessions between Day 43 and Day 46. However, after a 4-days stimulation pause (Day 50), the 
discharge intensity slightly recovers to 1/3 of its initial value. A stimulation session at Day 57 re-diminishes 
the discharge intensity. For this reason, stimulation duration was set to values inferior or equal to 50 s.  
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Figure 78. The effects of stimulation duration and polarity on the iEEG signal features. Results observed in 
mouse K148 (NS = 100; S1: N5s = 5, N10s = 5, N20s = 5, N30s = 5, N40s = 4, N50s = 2; S2: N5s = 5, N10s = 5, N20s = 5, 
N30s = 4, N40s = 3, N50s = 1). Features computed over 60 s windows.  

Noteworthy, mouse K148 underwent spontaneous convulsive seizures during the 300 s 
inter-stimulation intervals after a stimulation pulse of polarity S2 and of duration 5, 20, 
and 30 s. This was observed during one stimulation session and was not reproduced 
when the particular stimulation pulse was repeated later in the stimulation session. 
Since the 50 s stimulation repetitions are limited in number (Table 9) for mouse K148, 
stimulation repetitions of duration 40 s were represented in Figure 74. 

5.4 ELECTRODE POSITION AND STIMULATION EFFECTS ON HIPPOCAMPAL TISSUE 
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The histological verification of the electrode position and the stimulation effects was 
not possible for 3 out of 5 mice due to unexpected problems with the cresyl violet 
coloration. The irreversible aspect of the Nissl staining method did not permit the re-
coloration of the mal-colored sections. Figure 79 shows the only visible structure on a 
mal-colored coronal section of mouse K155. It probably represents the electrode trace 
in the stimulated lesioned hippocampus. A radial brownish neural proliferation of 
dimensions (300 µm x 200 µm) can be seen in this section. 

 
Figure 79. The electrode trace in the injected hippocampus in a mal-colored section of mouse K155.A radial 

gliosis can be observed around in the tissue.  

Fortunately, the histological sections of mice K168 and K171 were successfully 
performed and stained (Figure 81 and Figure 80 respectively). Figure 80 shows selected 
coronal sections of mouse K171. On the first section, the two hippocampi can be seen 
with an arrow indicating the position of the recording electrode in the non-injected 
hippocampus. Note the slight cellular disorganization around this electrode (Figure 80-
A). The second section shows the position of the recording/stimulation electrode in the 
lesioned hippocampus (right side). Visibly the purple stain (Figure 80-B) showing the 
trace of this electrode is much more prominent than that of the contralateral 
hippocampus.  
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Figure 80. Histological coronal sections of mouse K171. (A) A coronal section showing the trace of the recording 
electrode of the contralateral (not injected) hippocampus (see red arrow) and (B) and an equivalent section showing 
the emplacement of the stimulation electrode in the injected (right) hippocampus (see red arrow). (C) Zoom on the 
electrode trace in the contralateral hippocampus. Note the slight neural proliferation around the electrode trace. (D) 
Zoom on the injected hippocampus. Note the cell dispersion in the denate gyrus, and the extensive cell loss in the CA1 
and CA3 layers. (E, F) Two examples of two coronal sections showing the electrode trace in the CA1 region. This trace 
is consistent with the one observed in the CA3 region of mouse K168.  

These sections show equally the cellular dispersion in the denate gyrus, the CA1 and 
the CA3 layers of the injected hippocampus (Figure 80-D) as compared to the 
contralateral non-injected hippocampus (Figure 80-C). The radial violet stain at the level 
of the stimulation electrodes is mostly prominent with a cellular proliferation, a gliosis, 
between the two tips of the electrode (Figure 80-D and E). 
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In mouse K168, the cell dispersion in the injected hippocampus could be verified. As 
for the electrode position, it happened to be in the CA3 region rather than in the CA1 
region (Figure 81-A). This may explain the less significant stimulation results obtained 
for this mouse. Around the electrode position, a spherical cellular proliferation of radius 
250 µm can also be reported (Figure 81-B). 

 

Figure 81. Histological coronal sections of mouse K168. (A) Electrode position in the CA3 region of the injected 
hippocampus. Note the cell dispersion in the right hippocampus (KA-injeced). (B) Electrode trace in the CA3 region. 
Note the radial pattern of cell proliferation probably induced between the two tips of the stimulation electrode.  

5.5 IN VITRO VERIFICATION 
Extracellular recordings provide a lumped measurement of the underlying neuronal 

activity. Therefore, only based on LFP recordings, it is difficult to guarantee that the 
observed changes in HPDs are only caused by membrane polarization effects. The 
absence of some other mechanisms also participating into these HPD changes cannot be 
completely ruled out. Thus, in vivo recordings were complemented by in vitro 
experiments in order to better assess cell- and network-related mechanisms occurring 
under low-intensity DC stimulation. 

 Moreover, to our knowledge, the effects of radial long-duration (> 1 s) electric fields, 
induced by microwires, on the membrane potential of stimulated neurons have never 
been studied. For these two reasons, the following in vitro verification of the 
intracellular effects underlying the measured in vivo stimulation effects was undertaken. 
Rat organotypic hippocampal slices were then used in order to verify the existence of DC 
stimulation polarizing effects in the context of radial currents. Patch clamp recordings in 
whole cell configuration were done. The cells were patched in the pyramidal layer. A 
bipolar stimulation electrode was placed on either side of the CA1 layer (e.g. one 
electrode tip in the stratum oriens and the other in the Stratum radiatum layer).  
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Figure 82. Patch Clamp recordings in whole cell configuration of organotypic rat hippocampal slices from 
pyramidal CA1 neurons. (A) The experimental setup. Cells were patched in the pyramidal layer. A bipolar 
stimulation electrode was placed on either side of the pyramidal cell layer. (B) Pyramidal neurons were 
injected with Biocytin and were recorded in current clamp mode. The resting membrane potential, the 
cellular morphology and the presence of dendritic spine were the identifying characteristics of a 
pyramidal cell. (C) In normal excitability condition (ACSF), the value of the resting membrane potential of 
a CA1 pyramidal cell is increased or decreased depending of stimulation polarity.  

Intracellular cell recordings were performed using a glass pipette containing a 
microelectrode. In normal excitability conditions (ACSF), a DC stimulation current of 8µA 
was delivered by pulses of alternating phases of 30 s each. The recorded membrane 
potential of a pyramidal CA1 cell was then modulated by the current polarity, increasing 
during negative polarity and slightly decreasing during the positive one (Figure 82-C). 
Otherwise, in high excitability conditions (decrease in extracellular Mg2+ concentrations 
with 10µM of Bicuculine), the effects were slightly altered. A positive polarity 100 s 
stimulation pulse at 15µA did not change the resting membrane potential whereas a 
negative polarity 100 s stimulation pulse elicited enormous spike-like events (Figure 83-
A). Similarly, the intracellular recordings from a basket cell (interneuron) revealed 
equivalent stimulation results. While a positive polarity 100 s stimulation pulse at 15µA 
did not change the resting membrane potential, a negative 100 s stimulation pulse at 
the same intensity induced an enormous long-lasting depolarization of the resting 
membrane potential (see Figure 83-B). 

Then, in order to verify whether the observed effects are dependent on network 
dynamics rather than membrane polarization, similar experiments were repeated in the 
presence of the voltage-gated sodium channel blocker TTX (1µM). Consequently, 
depolarization effects were reproduced but at significantly higher current intensities (> 
50 µA). When tested in basket cells, a linear relation between the current intensity and 
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the membrane potential deviation could be observed. Depending on the polarity, the 
resting membrane potential of basket cells could be either hyperpolarized or 
depolarized. 

 

Figure 83. Patch Clamp recordings in whole cell configuration of organotypic rat hippocampal slices. (A) In 
high excitability conditions (low extracellular Mg2+ and 10µM Bicuculline), one stimulation polarity 
induced spike-like activity while the opposite polarity had no effect. (B) The effect of DC stimulation on a 
basket cell (interneuron). Basket cells were labeled with biocytin, they were characterized by the absence 
of dendritic spines, a more depolarized resting potential and a typical firing pattern. One polarity induced 
a prominent depolarization of basket cells while the other barely had an effect.  
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Figure 84. Patch Clamp recordings in the presence of the voltage-gated sodium channel blocker TTX 
(1µM).  (A) Higher stimulation current intensities were necessary for inducing a direct polarization in the 
absence of synaptic transmission suggesting that the effects stimulation are independent of the neuronal 
network activity. (B) Hyperpolarizing basket cells was only possible for extremely high current intensities. 
The effect seems to increase linearly with the stimulation intensity. Inverting stimulation polarity reverses 
hyperpolarization to a depolarization.   

Finally, this in vitro part can be resumed by the following three conclusions: 

(1) Direct bipolar DC stimulation currents can depolarize/hyperpolarize 
pyramidal CA1 cells. 

(2) These currents equally polarize interneurons. 
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(3) The major effect at low current intensities can be attributed to more 
complex network effects rather than the simple polarization of individual 
somatic transmembrane potentials. Actually, the observed effects depend 
on synaptic transmission. Nevertheless, a dominant effect exists leading 
either to an increase or a decrease of the stimulated neuronal system 
excitability.  
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Conclusion and Discussion on Part 2 

1 POSITION WITH RESPECT TO EARLIER STUDIES 
Except the “quenching” effects of low-intensity intracerebral DC stimulation (10µA – 

15 minutes/day) accidently observed in adult rats during the kindling protocol due to 
the stimulator leakage [242], no in vivo experiments of low-intensity DC stimulation has 
ever been reported. Conversely, a number of in vitro studies addressed the polarizing 
effects of DC stimulation [34-36, 237, 238] on CA1 neural dynamics. In the following 
paragraphs, our results are confronted with the state of the art of polarizing stimulation. 

1.1 IN VIVO OBSERVATIONS 
In this part, our results show that a certain polarity of long-duration (> 30 s and ≤ 50s) 

DC current applied on the epileptogenic zone can be identified in the perspective of 
diminishing epileptiform discharges in vivo. In a similar perspective, the modulation of 
epileptiform activity with intra-cerebrally applied electric fields in chronically implanted 
animals seems to be possible according to two recent studies [266, 267]. In both studies, 
low frequency (≈ 9 Hz [266], 0.25 Hz [267]) applied electric fields modulated the seizure 
dynamics of the stimulated animals. Nevertheless, the duration of the DC stimulation 
pulse was inferior to 10 s in all the tested protocols [267], otherwise a sinusoidal 
waveform was used [266]. No histological damage was reported in the three 
aforementioned studies. 

In fact, Richardson and his colleagues [267] showed that a cylindrical electrode placed 
axially in the hippocampus, induces a polarizing radial electric field that is aligned with 
the CA3 pyramidal cells, and can then modulate their activity. In this work, the 
experiments were done in freshly KA-injected rats under anesthesia. The authors report 
an induced excitation of the field activity of CA3 pyramidal cells exclusively for the 
negative phase of stimulation when a phasic stimulation of frequency 0.025 Hz, pulse 
width 10 s, and amplitude 1.2 mA is used. Similar results were obtained when the 
stimulation signal was replaced by a sinusoidal signal of frequency 0.2 Hz and amplitude 
1.25 mA was used. Conversely, the authors reported the suppression of the field activity 
only for a phasic stimulation of 0.25 Hz, of pulse duration 1 s and of intensity 0.01 mA. 
The inverse phase elicited excitation. 

Similarly, Sunderam and his colleagues tested the effects of low frequency induced 
electric fields on seizure modulation in chronically implanted rats [266]. In this study, 
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the authors used a low-frequency (9, 11 or 15 Hz) sinusoidal stimulation signal of 
amplitude 110 µA to entertain chemically induced seizures (tetanus toxin). The authors 
prove that the chemically-induced seizures are phase-locked to the stimulation signal. In 
conclusion, seizure dynamics were modulated by the stimulation signal. 

Moreover, none of the preceding studies reported histological damage related to 
stimulation. Conversely, the histological verification presented in the previous chapter 
(section 5.4) showed a radial cellular proliferation around the stimulation electrodes. No 
further verification has been performed to study the nature of this proliferation at the 
moment. Yet future protocols can be designed to clarify this point. 

1.2 IN VITRO OBSERVATIONS 
Extracellular recordings of CA1 activity showed that subthreshold anodal currents, with 

an average amplitude of 3.9µA (minimum 1µA), were sufficient to suppress 
spontaneous epileptiform field activity [35]. Conversely, cathodal currents prolonged 
the duration of ictal events. Similarly, anodal electric fields exerted a similar effect on 
the activity of CA1 pyramidal cells in hippocampal slices [36, 238]. Field recordings 
showed an increase in the AP threshold of CA1 pyramidal cells placed in hyperpolarizing 
fields vice versa [36].  

On the intracellular recordings of CA1 pyramidal cells [34] revealed a direct 
hyperpolarizing effect on neuronal membrane when electric currents are applied for 
short durations (10 ms). The suppressive effects lasted 1 s after the end of stimulation, 
and proved independent of field polarity and network signaling (synaptic transmission 
and Ca2+ current influx). This effect was dependent on the orientation of the induced 
electric field with respect to the somato-dendritic axis; the most significant effects 
obtained when these two are aligned. These results suggested that the prolonged 
suppression of epileptiform activity may be related to stimulation-induced changes in 
the membrane properties including the attenuation of Na+ current dependent signals. 
Nevertheless, long-duration (> 20s) DC stimulation intracellular recordings were never 
reported in the literature. Consequently, the intracellular recordings presented in the 
previous chapter during 100 s stimulation episodes add up a new element to the 
understanding of the polarizing effects of stimulation. 

Eventually, the in vitro results reported in this study are probably the unique reported 
results concerning the effect of radial long-duration electric fields on pyramidal CA1 
neurons as well as interneurons measured by intracellular electrodes. These results 
suggest a possible polarization of neural membranes by radial stimulation currents. This 
polarization may affect both principal cells and interneurons. Yet, the privileged 
explanation of the observed effects highlights a more complex network mechanism 
rather than simple polarization.  
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2 POLARIZATION OR A NETWORK EFFECT 
Actually, when analyzing jointly the in vivo, the in vitro, and the computational results 

presented in the previous chapter, we directly get the conclusion that the mechanisms 
of the diminution of the field epileptic activity may be more complicated than a simple 
polarity-dependent polarization of the transmembrane potential of the stimulated 
neurons. Hereby, the different results are confronted and analyzed. 

Concerning the computational results, the model output is dependent on the polarity 
of the stimulation signal. This is particularly true when the inversion of the current 
polarity is modeled as the inversion of the sign of the impact factors on the pyramidal 
cell subpopulation as well as the two interneuron subpopulations. Hereby, the effect of 
a depolarizing 1 µA current was reflected in the increase (almost doubling) of discharge 
occurrence, duration and consequently intensity. Conversely, a hyperpolarizing current 
of the same intensity only divided by two the discharge occurrence, duration and 
intensity. In conclusion, depolarization effects were more marked in the model than the 
hyperpolarization effects. 

On the experimental aspect, the in vivo experimental results presented earlier indicate 
that stimulation polarity has a preferential suppressive effect of epileptiform activity. 
While a certain current polarity diminishes epileptiform discharges in LFP signals, the 
opposite polarity does not seem to have a significant effect on discharge patterns. This 
is particularly true when stimulation duration is sufficiently long but inferior to 50 s. If 
this duration constraint is not respected, stimulation results in a suppressive effect for 
both stimulation current polarities. 

Finally, as hinted by the preliminary in vitro results presented in the preceding chapter, 
polarizing effects are not outstanding in the normal excitability condition. They can be 
seen as mere positive/negative fluctuations of the transmembrane potential depending 
on current polarity. However, in excitable tissue, a preferential depolarization effect has 
been observed in both pyramidal and basket cells (a type of interneurons) for a specific 
polarity, the opposite polarity having barely any effect. Besides, these results 
demonstrate that polarization effects are more marked in the absence of synaptic 
transmission in the patched hippocampal slices. However, enormous current intensities 
(> 50 µA) had to be used in order to observe an effect. 

On first sight, the reconciliation of the aforementioned results (computational and 
experimental: in vivo and in vitro) might seem tricky. However, if we suppose that the 
intensity of the electric current used in vivo is sufficient to provoke a local polarization 
(depolarization/hyperpolarization) of the pyramidal cells/interneurons theoretically 
lying between the two tips of the stimulation electrode, we can assume that the results 
obtained computationally should be theoretically observed in vivo. However, since this 
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is not the case, we can imagine that other mechanisms may be responsible. It has been 
reported that the LM interneurons (the interneurons of stratum lacunosum-moleculare) 
of the hippocampus are easily depolarized under the effect of external electric fields 
independently from the field polarity [36]. In which case, a class of interneurons is 
expected to be depolarized by the stimulation current independently from the current 
polarity. Therefore, the depolarization of these interneurons can be expected to 
compensate the depolarization of pyramidal cells during cathodal stimulation, and to 
reinforce the hyperpolarization effect during anodal stimulation. In the model, under 
this hypothesis, the depolarizing effect of cathodal stimulation can be avoided. 

In conclusion, the polarization effects of low-intensity DC stimulation can be 
interpreted in a network perspective that necessitates the presence of the polarizing 
current effect alongside with the intrinsic network components in order to suppress 
epileptiform activity. 

3 FUTURE IMPLICATIONS OF THE RESULTS 
During the stimulation protocol, it was observed that 4 pulses of hyperpolarizing 

stimulation of duration 50 s and intensity 1 µA distributed over an interval of 20 min 
allowed the attenuation of the occurrence of epileptic paroxysmal discharges in the 
following 30 – 45 minutes. This implies a reversible relatively long-lasting suppressive 
effect of stimulation. Consequently, three aspects need to be better-defined and 
verified before this protocol can be used in clinics. The first one concerns the precision 
in the stimulation electrode implantation site. The second consists of the validation of 
the polarity-effect relationship. The third consists of a further verification of safety 
issues. That is, once the hyperpolarizing stimulation polarity is well-defined and 
validated experimentally, the adapted monophasic stimulation bipolar electrode 
characteristics should be chosen to minimize any possible faradaic electrode 
polarization on the long-term. Only then, chronic closed-loop low-intensity DC 
stimulation protocols can be tested for efficacy and long-term safety issues. 
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Figure 85. Simulated Boxplots of HPD occurrence during polarizing stimulation under the hypothesis that FSI 
are always depolarized by stimulation. It can be deduced that the effect of the depolarizing stimulation is less 
marked than the one shown in the previous simulated boxplot (Figure 63). This is a potential element to take 
into consideration in a future study.  

Another less invasive clinical implication of the presented results can be imagined. It 
concerns the application of transcranial polarizing long-duration DC stimulation (tDCS) 
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on focal epileptogenic lesions such as focal cortical dysplasias (such as the clinical case 
presented in Chapter 4). 

4 LIMITATIONS AND PERSPECTIVES 
Eventually, this study has some limitations that can be outcome in the future. First, the 

manual electrode implantation procedure and kainate injection result in an imprecision 
in the electrode emplacement with respect to the CA1 level. As demonstrated earlier in 
Chapter 6, if the two tips of the stimulating electrode are placed both above or below 
the CA1 layer, polarizing field directions will be most likely inverted. Consequently, the 
definition of a hyperpolarizing, respectively depolarizing, polarity depends on the exact 
electrode position. If ever this technical difficulty is impossible to overcome, different 
pre-stimulation test protocols should be defined in order to define these polarities. 

Whenever this first issue is resolved, an elaborated experimental protocol can be 
defined to overcome the present variability in the protocol variants. The simplest 
protocol would be to define two groups of animals each of n = 10. Each group receives a 
unique polarity, duration and intensity stimulation pulses. After a defined number of 
stimulation sessions, LFP signals will be quantified in order to verify the exactitude of 
the polarity-antiepileptic effect relationship. It is expected that one group experiences a 
global diminution in discharge occurrence in response to stimulation whereas the other 
experiences no significant change at best. Histological verifications should be 
meticulously performed over all stimulated animals in order to verify the safety of the 
choses stimulation parameters. 

Even when the efficacy and the histological safety of the protocol are verified, one 
more elaborated test should be performed before a potential clinical translational path 
is possible; behavioral tests. This would be the only way to verify that this type of 
stimulation does not have adverse side effects on memory, learning or even motor 
functions. 
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General Conclusion and Perspectives 

 In this thesis, the effects of stimulation on neuronal epileptic activity were addressed 
from a well-balanced computational-experimental/clinical coupled approach. This approach 
allied computational modeling, signal processing, nonlinear dynamical systems analysis and 
experimental data analysis/acquisition. This permitted the further exploration of the effects 
and mechanisms of stimulation currents as a function of their consequent parameters. Two 
parts describe this investigation in two distinct stimulation configurations: indirect AC 
stimulation and direct DC stimulation. 

 The first part of the manuscript investigated the frequency-dependent effects of 
thalamic deep brain stimulation (DBS) on cortical dynamics. This is probably one of the most 
used indirect stimulation settings in the clinical context of focal epilepsy. An adequate model 
of the involved cerebral network, thalamocortical loop, has been developed (Chapter 3). 
Two major mechanisms of neural adaptation in the thalamocortical network, feedforward 
inhibition and short term depression, were equally implemented. The development of a 
matching pursuit based algorithm permitted the quantification of the frequency content of a 
rare dataset of thalamic DBS in a patient with drug-resistant epilepsy (Chapter 4). 
Consequently, the quantified data was used to optimize the model’s parameters in the 
absence as well as during stimulation. This algorithm proved more precise than classical FFT-
based characterization. 

 The results (Chapter 5) of this first study quantitatively proved the frequency-
dependent effects of AC indirect stimulation in the thalamocortical network as observed in 
the clinical dataset. Computationally, the proposed model successfully reproduced the 
observed epileptic dynamics as well as stimulation effects. Then, the study of the dynamical 
system’s behavior in the phase plane of two major model variables, thalamic firing and 
cortical LFP, showed that the stimulation input induces in the model the same bifurcations 
observed due to stimulation in the actual dataset. Furthermore, the quantification of the 
intermittency of the same two variables on an extended stimulation frequency range (0.5 – 
150 Hz), given by the high-to-low firing ratio (HtoLR), showed that stimulation frequency can 
abruptly change the model’s behavior. A critical frequency range (20 – 60 Hz) was identified 
to reinforce undesired pathological epileptic oscillations in the thalamocortical system. 
Moreover, frequency-dependent stimulation mechanisms were identified in the model. 

 The rare clinical context of thalamic DBS did not allow the recruitment of other 
patients with drug-resistant focal epilepsy. However, despite the insufficient availability of 
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clinical data, it can be assumed that this model can be used patient-wise conjointly with a 
clinical exploratory thalamic stimulation session for establishing comparable simulated 
epileptic dynamics, and a consequent frequency-HtoLR pattern starting from three different 
actual stimulation frequencies. This would allow a conjoint clinical-computational approach 
for optimizing stimulation frequency. Nevertheless, the applicability of such proposition 
remains bound to a solid experimental validation that should be performed in advance.     

 The second part of this dissertation provides a more complete study of the polarity-
dependent effects of direct DC hippocampal stimulation in the context of MTLE. This 
investigation starts with a computational study of these effects in a well-established model 
of hippocampal dynamics already developed in our team (Chapter 6). Two innovative 
amendments are added to this model. Firstly, a new implementation of HPD occurrence 
depending on the statistical identification of HPD onset and duration probability from 
experimental data was proposed. And secondly, a more plausible electrochemical 
representation of stimulation inputs inspired from previous descriptions of the electrode-
electrolyte interface was implemented. Furthermore, to accomplish this computational 
study, a spike-detection and quantification algorithm based in the Page-Hinkley algorithm 
was adopted. 

 The computational results (Chapter 7) suggest a clear polarity-dependence of 
stimulation effects in the model. The depolarization of principal cells by cathodal stimulation 
with the slight concurrent hyperpolarization of the interneuron subpopulations during a 50 s 
DC pulse resulted in an increase of epileptic features (HPD duration and intensity as well as 
peak occurrence) in the simulated LFP. Conversely, the opposite stimulation polarity induced 
a decrease in these three quantitative features. 

 Two preliminary experimental protocols were then proposed in order to verify the 
exactitude of polarity-dependent effects in vivo and to further validate the underlying 
membrane polarization mechanisms in vitro using intracellular recordings (Chapter 8). The in 
vivo results showed the existence of a privileged polarity for significantly diminishing the 
occurrence of electrophysiological epileptic biomarkers in the recorded LFP signals. 
Nevertheless, the opposite polarity did not induce a significant effect in these signals. The 
histological verification of the electrode position indicated an induced cellular proliferation 
at the stimulation site that was proved to be not of thermal origin. The consequent cellular 
recordings of transmembrane potential under the effect of radial stimulation currents 
showed that somatic membrane polarization is only possible for high stimulation currents. 
Furthermore, they indicated the possible existence of a more complex complimentary 
network mechanism inducing the in vivo observed effects. 

 In the perspectives of this study, a more detailed study of DC stimulation effects in a 
microscopic model of the hippocampus is probably worth considering. A more physiological 
modeling of membrane polarization as a function of the position from the stimulation 
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electrode can be performed. Besides, a more extended experimental study is also planned 
on a larger number of animals and with less variant protocol definitions. This new study 
should take into consideration the electrode position a priori. Moreover, each group of 
animals will receive only one stimulation polarity in order to discard the hypothesis of effect 
overlapping and accumulation among consecutive stimulation pulses of varying polarities. In 
the same perspective, a more elaborated in vitro study on a higher number of neurons can 
be also planned.  

  

 

  

  



     

186 | P a g e  
 
 

  



     

187 | P a g e  
 
 

References 
 

 

[1] J. A. De Carlos and J. Borrell, "A historical reflection of the contributions of Cajal and Golgi to 
the foundations of neuroscience," Brain Research Reviews, vol. 55, pp. 8-16, 2007. 

[2] L. Lapique, "Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une 
polarization," J Physiol Pathol Gen, vol. 9, pp. 620-635, 1907. 

[3] A. L. Hodgkin and A. F. Huxley, "A quantitative description of membrane current and its 
application to conduction and excitation in nerve," The Journal of Physiology, vol. 117, pp. 
500-544, August 28 1952. 

[4] A. L. Hodgkin, A. F. Huxley, and B. Katz, "Measurement of current-voltage relations in the 
membrane of the giant axon of Loligo," J Physiol, vol. 116, pp. 424-448, April 28, 1952 1952. 

[5] K. S. Cole, "Dynamic electrical characteristics of the squid axon membrane.," Arch. Sci. 
Phtsiol., vol. 3, pp. 253-25, 1949. 

[6] D. Golomb, C. Yue, and Y. Yaari, "Contribution of persistent Na+ current and M-type K+ 
current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling 
study," J Neurophysiol, vol. 96, pp. 1912-26, Oct 2006. 

[7] M. Migliore, M. Ferrante, and G. A. Ascoli, "Signal propagation in oblique dendrites of CA1 
pyramidal cells," J Neurophysiol, vol. 94, pp. 4145-55, Dec 2005. 

[8] R. Traub and R. Wong, "Cellular mechanism of neuronal synchronization in epilepsy," Science, 
vol. 216, pp. 745-747, May 14, 1982 1982. 

[9] V. B. Mountcastle, "Modality and topographic properties of single neurons of cat's somatic 
sensory cortex," J Neurophysiol, vol. 20, pp. 408-34, Jul 1957. 

[10] D. H. Hubel and T. N. Wiesel, "Shape and arrangement of columns in cat's striate cortex," J 
Physiol, vol. 165, pp. 559-68, Mar 1963. 

[11] H. R. Wilson and J. D. Cowan, "Excitatory and inhibitory interactions in localized populations 
of model neurons," Biophys J, vol. 12, pp. 1-24, Jan 1972. 

[12] W. J. Freeman, "Tutorial on neurobiology: From single neurons to brain chaos," International 
Journal of Bifurcation and Chaos, vol. 02, pp. 451-482, 1992. 

[13] H. R. Wilson and J. D. Cowan, "Excitatory and Inhibitory Interactions in Localized Populations 
of Model Neurons," Biophysical Journal, vol. 12, pp. 1-24, 1972. 

[14] W. J. Freeman, "A model of the olfactory system. In M. A. B. Brazier, D. O. Walter, & D. 
Schneider (Eds.), Neural modeling, pp. 41-62. Los Angeles: Univ. of California.," 1973. 

[15] W. J. Freeman, "Measurement of oscillatory responses to electrical stimulation in olfactory 
bulb of cat," J Neurophysiol, vol. 35, pp. 762-79, Nov 1972. 

[16] W. J. Freeman, "Depth recording of averaged evoked potential of olfactory bulb," J 
Neurophysiol, vol. 35, pp. 780-96, Nov 1972. 

[17] W. J. Freeman, "Simulation of chaotic EEG patterns with a dynamic model of the olfactory 
system," Biol Cybern, vol. 56, pp. 139-50, 1987. 

[18] F. H. Lopes da Silva, A. Hoeks, H. Smits, and L. H. Zetterberg, "Model of brain rhythmic 
activity. The alpha-rhythm of the thalamus," Kybernetik, vol. 15, pp. 27-37, May 31 1974. 

[19] P. L. Nunez, "The brain wave equation: a model for the EEG," Mathematical biosciences, vol. 
21, pp. 279-297, 1974. 

[20] J. J. Wright, R. R. Kydd, and G. J. Lees, "State-changes in the brain viewed as linear steady-
states and non-linear transitions between steady-states," Biol Cybern, vol. 53, pp. 11-7, 1985. 



     

188 | P a g e  
 
 

[21] B. H. Jansen, G. Zouridakis, and M. E. Brandt, "A neurophysiologically-based mathematical 
model of flash visual evoked potentials," Biol Cybern, vol. 68, pp. 275-83, 1993. 

[22] C. J. Stam, J. P. Pijn, P. Suffczynski, and F. H. Lopes da Silva, "Dynamics of the human alpha 
rhythm: evidence for non-linearity?," Clin Neurophysiol, vol. 110, pp. 1801-13, Oct 1999. 

[23] I. Bojak and D. T. Liley, "Modeling the effects of anesthesia on the electroencephalogram," 
Phys Rev E Stat Nonlin Soft Matter Phys, vol. 71, p. 041902, Apr 2005. 

[24] F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, "Epileptic fast activity can be 
explained by a model of impaired GABAergic dendritic inhibition," Eur J Neurosci, vol. 15, pp. 
1499-508, May 2002. 

[25] F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel, "Relevance of nonlinear lumped-
parameter models in the analysis of depth-EEG epileptic signals," Biol Cybern, vol. 83, pp. 
367-78, Oct 2000. 

[26] P. A. Robinson, C. J. Rennie, and D. L. Rowe, "Dynamics of large-scale brain activity in normal 
arousal states and epileptic seizures," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 65, p. 
041924, Apr 2002. 

[27] P. Suffczynski, S. Kalitzin, and F. H. Lopes Da Silva, "Dynamics of non-convulsive epileptic 
phenomena modeled by a bistable neuronal network," Neuroscience, vol. 126, pp. 467-84, 
2004. 

[28] D. T. Liley and I. Bojak, "Understanding the transition to seizure by modeling the epileptiform 
activity of general anesthetic agents," J Clin Neurophysiol, vol. 22, pp. 300-13, Oct 2005. 

[29] L. Wang, P. Y. Kim, D. E. McCarty, C. Frilot Ii, A. L. Chesson Jr, S. Carrubba, and A. A. Marino, 
"EEG recurrence markers and sleep quality," Journal of the Neurological Sciences, vol. 331, 
pp. 26-30, 2013. 

[30] C. Huneau, P. Benquet, G. Dieuset, A. Biraben, B. Martin, and F. Wendling, "Shape features of 
epileptic spikes are a marker of epileptogenesis," Epilepsia, (in press) 2013. 

[31] J. Engel, A. Pitkänen, J. A. Loeb, F. Edward Dudek, E. H. Bertram, A. J. Cole, S. L. Moshé, S. 
Wiebe, F. E. Jensen, I. Mody, A. Nehlig, and A. Vezzani, "Epilepsy biomarkers," Epilepsia, vol. 
54, pp. 61-69, 2013. 

[32] T. Wyckhuys, P. J. Geerts, R. Raedt, K. Vonck, W. Wadman, and P. Boon, "Deep brain 
stimulation for epilepsy: knowledge gained from experimental animal models," Acta 
neurologica Belgica, vol. 109, pp. 63-80, 2009. 

[33] M. Avoli, J. Louvel, D. Mattia, A. Olivier, V. Esposito, R. Pumain, and M. D'Antuono, 
"Epileptiform synchronization in the human dysplastic cortex," Epileptic Disord, vol. 5 Suppl 
2, pp. S45-50, Sep 2003. 

[34] R. Mikkelsen, M. Andreasen, and S. Nedergaard, "Suppression of epileptiform activity by a 
single short-duration electric field in rat hippocampus in vitro," J Neurophysiol, vol. 109, pp. 
2720-31, Jun 2013. 

[35] R. J. Warren and D. M. Durand, "Effects of applied currents on spontaneous epileptiform 
activity induced by low calcium in the rat hippocampus," Brain Res, vol. 806, pp. 186-95, Sep 
28 1998. 

[36] M. Bikson, M. Inoue, H. Akiyama, J. K. Deans, J. E. Fox, H. Miyakawa, and J. G. Jefferys, 
"Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in 
vitro," J Physiol, vol. 557, pp. 175-90, May 15 2004. 

[37] G. Buzsaki, "Large-scale recording of neuronal ensembles," Nat Neurosci, vol. 7, pp. 446-51, 
May 2004. 

[38] S. Murakami and Y. Okada, "Contributions of principal neocortical neurons to 
magnetoencephalography and electroencephalography signals," J Physiol, vol. 575, pp. 925-
36, Sep 15 2006. 

[39] C. Bedard, H. Kroger, and A. Destexhe, "Model of low-pass filtering of local field potentials in 
brain tissue," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 73, p. 051911, May 2006. 



     

189 | P a g e  
 
 

[40] K. E. Andreas, F. Pascal, and S. Wolf, "Dynamic predictions: Oscillations and synchrony in top–
down processing," Nature Reviews Neuroscience, vol. 2, pp. 704-716, 2001. 

[41] A. Schnitzler and J. Gross, "Normal and pathological oscillatory communication in the brain," 
Nat Rev Neurosci, vol. 6, pp. 285-96, Apr 2005. 

[42] A. Raz, E. Vaadia, and H. Bergman, "Firing patterns and correlations of spontaneous 
discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine vervet model of parkinsonism," J Neurosci, vol. 20, pp. 8559-8571, 2000. 

[43] R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, "High-frequency 
Synchronization of Neuronal Activity in the Subthalamic Nucleus of Parkinsonian Patients 
with Limb Tremor," The Journal of Neuroscience, vol. 20, pp. 7766-7775, October 15, 2000 
2000. 

[44] P. Dietmar and T. K. Stephen, "A basal ganglia pacemaker formed by the subthalamic nucleus 
and external globus pallidus," Nature, vol. 400, pp. 677-682, 1999. 

[45] C. J. Stam, A. M. van Cappellen van Walsum, Y. A. Pijnenburg, H. W. Berendse, J. C. de Munck, 
P. Scheltens, and B. W. van Dijk, "Generalized synchronization of MEG recordings in 
Alzheimer's Disease: evidence for involvement of the gamma band," Journal of clinical 
neurophysiology : official publication of the American Electroencephalographic Society, vol. 
19, pp. 562-574, 2002. 

[46] T. Koenig, L. Prichep, T. Dierks, D. Hubl, L. O. Wahlund, E. R. John, and V. Jelic, "Decreased 
EEG synchronization in Alzheimer’s disease and mild cognitive impairment," Neurobiology of 
Aging, vol. 26, pp. 165-171, 2005. 

[47] C. J. Stam, Y. Van Der Made, Y. A. L. Pijnenburg, and P. Scheltens, "EEG synchronization in 
mild cognitive impairment and Alzheimer's disease," Acta Neurologica Scandinavica, vol. 108, 
pp. 90-96, 2003. 

[48] A. Crespel, P. Gélisse, M. Bureau, and P. Genton, "Atlas de l'électroencéphalographie." vol. II: 
Les épilepsies de l'EEG aux syndromes, J. L. Eurotext, Ed., ed Paris, 2006. 

[49] M.-F. Kuo and M. A. Nitsche, "Effects of Transcranial Electrical Stimulation on Cognition," 
Clinical EEG and Neuroscience, vol. 43, pp. 192-199, July 1, 2012 2012. 

[50] B. Krause, J. Marquez-Ruiz, and R. C. Kadosh, "The effect of transcranial direct current 
stimulation: a role for cortical excitation/inhibition balance?," Front Hum Neurosci, vol. 7, p. 
602, 2013. 

[51] C. S. Herrmann, S. Rach, T. Neuling, and D. Struber, "Transcranial alternating current 
stimulation: a review of the underlying mechanisms and modulation of cognitive processes," 
Front Hum Neurosci, vol. 7, p. 279, 2013. 

[52] B. Krause and R. Cohen Kadosh, "Can transcranial electrical stimulation improve learning 
difficulties in atypical brain development? A future possibility for cognitive training," 
Developmental Cognitive Neuroscience. 

[53] M. A. Nitsche and W. Paulus, "Sustained excitability elevations induced by transcranial DC 
motor cortex stimulation in humans," Neurology, vol. 57, pp. 1899-901, Nov 27 2001. 

[54] M. A. Nitsche, M. S. Nitsche, C. C. Klein, F. Tergau, J. C. Rothwell, and W. Paulus, "Level of 
action of cathodal DC polarisation induced inhibition of the human motor cortex," Clin 
Neurophysiol, vol. 114, pp. 600-4, Apr 2003. 

[55] D. R. McNeal, "Analysis of a Model for Excitation of Myelinated Nerve," Biomedical 
Engineering, IEEE Transactions on, vol. BME-23, pp. 329-337, 1976. 

[56] S. Joucla and B. Yvert, "Modeling extracellular electrical neural stimulation: from basic 
understanding to MEA-based applications," J Physiol Paris, vol. 106, pp. 146-58, May-Aug 
2012. 

[57] C. C. McIntyre and W. M. Grill, "Finite element analysis of the current-density and electric 
field generated by metal microelectrodes," Ann Biomed Eng, vol. 29, pp. 227-35, Mar 2001. 



     

190 | P a g e  
 
 

[58] C. C. McIntyre and W. M. Grill, "Extracellular stimulation of central neurons: influence of 
stimulus waveform and frequency on neuronal output," J Neurophysiol, vol. 88, pp. 1592-
604, Oct 2002. 

[59] S. Joucla and B. Yvert, "Improved focalization of electrical microstimulation using 
microelectrode arrays: a modeling study," PLoS One, vol. 4, p. e4828, 2009. 

[60] D. M. Durand and M. Bikson, "Suppression and control of epileptiform activity by electrical 
stimulation: a review," Proceedings of the IEEE, vol. 89, pp. 1065-1082, 2001. 

[61] D. Tranchina and C. Nicholson, "A model for the polarization of neurons by extrinsically 
applied electric fields," Biophys J, vol. 50, pp. 1139-56, Dec 1986. 

[62] F. Rattay, "Analysis of models for external stimulation of axons," IEEE Trans Biomed Eng, vol. 
33, pp. 974-7, Oct 1986. 

[63] A. Datta, M. Elwassif, F. Battaglia, and M. Bikson, "Transcranial current stimulation focality 
using disc and ring electrode configurations: FEM analysis," J Neural Eng, vol. 5, pp. 163-74, 
Jun 2008. 

[64] N. Yousif and X. Liu, "Investigating the depth electrode–brain interface in deep brain 
stimulation using finite element models with graded complexity in structure and solution," 
Journal of Neuroscience Methods, vol. 184, pp. 142-151, 2009. 

[65] G. Pizzolato and T. Mandat, "Deep brain stimulation for movement disorders," Front Integr 
Neurosci, vol. 6, p. 2, 2012. 

[66] F. Fröhlich and D. A. McCormick, "Endogenous Electric Fields May Guide Neocortical Network 
Activity," Neuron, vol. 67, pp. 129-143, 2010. 

[67] M. H. Adhikari, J. H. Heeroma, M. di Bernardo, B. Krauskopf, M. P. Richardson, M. C. Walker, 
and J. R. Terry, "Characterisation of cortical activity in response to deep brain stimulation of 
ventral-lateral nucleus: modelling and experiment," Journal of neuroscience methods, vol. 
183, pp. 77-85, Sep 30 2009. 

[68] C. Beurrier, B. Bioulac, J. Audin, and C. Hammond, "High-frequency stimulation produces a 
transient blockade of voltage-gated currents in subthalamic neurons," J Neurophysiol, vol. 85, 
pp. 1351-6, Apr 2001. 

[69] J. O. Dostrovsky, R. Levy, J. P. Wu, W. D. Hutchison, R. R. Tasker, and A. M. Lozano, 
"Microstimulation-induced inhibition of neuronal firing in human globus pallidus," J 
Neurophysiol, vol. 84, pp. 570-4, Jul 2000. 

[70] M. Filali, W. D. Hutchison, V. N. Palter, A. M. Lozano, and J. O. Dostrovsky, "Stimulation-
induced inhibition of neuronal firing in human subthalamic nucleus," Exp Brain Res, vol. 156, 
pp. 274-81, Jun 2004. 

[71] L. D. Liu, I. A. Prescott, J. O. Dostrovsky, M. Hodaie, A. M. Lozano, and W. D. Hutchison, 
"Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia 
patients," J Neurophysiol, vol. 108, pp. 5-17, Jul 2012. 

[72] L. Garcia, J. Audin, G. D'Alessandro, B. Bioulac, and C. Hammond, "Dual effect of high-
frequency stimulation on subthalamic neuron activity," J Neurosci, vol. 23, pp. 8743-51, Sep 
24 2003. 

[73] C. C. McIntyre, W. M. Grill, D. L. Sherman, and N. V. Thakor, "Cellular effects of deep brain 
stimulation: model-based analysis of activation and inhibition," J Neurophysiol, vol. 91, pp. 
1457-69, Apr 2004. 

[74] H. L. Kendall, L. H. Frederick, C. Su-Youne, C. L. Dongchul, W. R. David, C. M. Cameron, and C. 
L. James, "High frequency stimulation abolishes thalamic network oscillations: an 
electrophysiological and computational analysis," Journal of Neural Engineering, vol. 8, p. 
046001, 2011. 

[75] D. Ukueberuwa and E. M. Wassermann, "Direct Current Brain Polarization: A Simple, 
Noninvasive Technique for Human Neuromodulation," Neuromodulation: Technology at the 
Neural Interface, vol. 13, pp. 168-173, 2010. 



     

191 | P a g e  
 
 

[76] A. L. Benabid and N. Torres, "New targets for DBS," Parkinsonism & Related Disorders, vol. 
18, Supplement 1, pp. S21-S23, 2012. 

[77] M. D. Johnson, S. Miocinovic, C. C. McIntyre, and J. L. Vitek, "Mechanisms and targets of 
deep brain stimulation in movement disorders," Neurotherapeutics, vol. 5, pp. 294-308, Apr 
2008. 

[78] P. Brown and D. Williams, "Basal ganglia local field potential activity: character and functional 
significance in the human," Clin Neurophysiol, vol. 116, pp. 2510-9, Nov 2005. 

[79] R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, "Synchronized neuronal 
discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity," J 
Neurosci, vol. 22, pp. 2855-61, Apr 1 2002. 

[80] R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, "High-frequency 
synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with 
limb tremor," J Neurosci, vol. 20, pp. 7766-75, Oct 15 2000. 

[81] C. Hammond, H. Bergman, and P. Brown, "Pathological synchronization in Parkinson's 
disease: networks, models and treatments," Trends in neurosciences, vol. 30, pp. 357-364, 
2007. 

[82] M. Magnin, A. Morel, and D. Jeanmonod, "Single-unit analysis of the pallidum, thalamus and 
subthalamic nucleus in parkinsonian patients," Neuroscience, vol. 96, pp. 549-64, 2000. 

[83] P. A. Pahapill and A. M. Lozano, "The pedunculopontine nucleus and Parkinson's disease," 
Brain, vol. 123, pp. 1767-1783, September 1, 2000 2000. 

[84] R. Hassler, T. Riechert, F. Mundinger, W. Umbach, and J. A. Ganglberger, "Physiological 
observations in stereotaxic operations in extrapyramidal motor disturbances," Brain, vol. 83, 
pp. 337-50, 1960. 

[85] A. L. Benabid, S. Chabardes, J. Mitrofanis, and P. Pollak, "Deep brain stimulation of the 
subthalamic nucleus for the treatment of Parkinson's disease," The Lancet Neurology, vol. 8, 
pp. 67-81, 2009. 

[86] A. L. Benabid, P. Pollak, E. Seigneuret, D. Hoffmann, E. Gay, and J. Perret, "Chronic VIM 
thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal 
dyskinesias," Acta Neurochir Suppl (Wien), vol. 58, pp. 39-44, 1993. 

[87] J. P. Hubble, K. L. Busenbark, S. Wilkinson, R. Pahwa, G. W. Paulson, K. Lyons, and W. C. 
Koller, "Effects of thalamic deep brain stimulation based on tremor type and diagnosis," 
Movement Disorders, vol. 12, pp. 337-341, 1997. 

[88] P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A.-L. Benabid, 
"Electrical Stimulation of the Subthalamic Nucleus in Advanced Parkinson's Disease," New 
England Journal of Medicine, vol. 339, pp. 1105-1111, 1998. 

[89] J. Vesper, F. Klostermann, F. Stockhammer, T. Funk, and M. Brock, "Results of chronic 
subthalamic nucleus stimulation for Parkinson’s disease: a 1-year follow-up study," Surgical 
Neurology, vol. 57, pp. 306-311, 2002. 

[90] A.-L. Benabid, A. Koudsié, A. Benazzouz, V. Fraix, A. Ashraf, J. F. Le Bas, S. Chabardes, and P. 
Pollak, "Subthalamic Stimulation for Parkinson's Disease," Archives of Medical Research, vol. 
31, pp. 282-289, 2000. 

[91] C. Hamani, E. Richter, J. M. Schwalb, and A. M. Lozano, "Bilateral subthalamic nucleus 
stimulation for Parkinson's disease: a systematic review of the clinical literature," 
Neurosurgery, vol. 56, pp. 1313-21; discussion 1321-4, Jun 2005. 

[92] K. Østergaard, N. Sunde, and E. Dupont, "Effects of bilateral stimulation of the subthalamic 
nucleus in patients with severe Parkinson's disease and motor fluctuations," Movement 
Disorders, vol. 17, pp. 693-700, 2002. 

[93] P. Brown, "Abnormal oscillatory synchronisation in the motor system leads to impaired 
movement," Curr Opin Neurobiol, vol. 17, pp. 656-664, 2007. 



     

192 | P a g e  
 
 

[94] S. Little and P. Brown, "What brain signals are suitable for feedback control of deep brain 
stimulation in Parkinson's disease?," Ann N Y Acad Sci, vol. 1265, pp. 9-24, 2012. 

[95] P. Afshar, A. Khambhati, S. Stanslaski, D. Carlson, R. Jensen, S. Dani, M. Lazarewicz, J. Giftakis, 
P. Stypulkowski, and T. Denison, "A translational platform for prototyping closed-loop 
neuromodulation systems," Frontiers in Neural Circuits, vol. 6, 2013-January-22 2013. 

[96] A. L. Benabid, L. Minotti, A. Koudsie, A. de Saint Martin, and E. Hirsch, "Antiepileptic effect of 
high-frequency stimulation of the subthalamic nucleus (corpus luysi) in a case of medically 
intractable epilepsy caused by focal dysplasia: a 30-month follow-up: technical case report," 
Neurosurgery, vol. 50, pp. 1385-91; discussion 1391-2, Jun 2002. 

[97] R. S. Fisher, S. Uematsu, G. L. Krauss, B. J. Cysyk, R. McPherson, R. P. Lesser, B. Gordon, P. 
Schwerdt, and M. Rise, "Placebo-controlled pilot study of centromedian thalamic stimulation 
in treatment of intractable seizures," Epilepsia, vol. 33, pp. 841-51, Sep-Oct 1992. 

[98] G. D. Wright, D. L. McLellan, and J. G. Brice, "A double-blind trial of chronic cerebellar 
stimulation in twelve patients with severe epilepsy," J Neurol Neurosurg Psychiatry, vol. 47, 
pp. 769-74, Aug 1984. 

[99] I. S. Cooper, I. Amin, and S. Gilman, "The effect of chronic cerebellar stimulation upon 
epilepsy in man," Trans Am Neurol Assoc, vol. 98, pp. 192-6, 1973. 

[100] S. Saillet, M. Langlois, B. Feddersen, L. Minotti, L. Vercueil, S. Chabardes, O. David, A. 
Depaulis, C. Deransart, and P. Kahane, "Manipulating the epileptic brain using stimulation: a 
review of experimental and clinical studies," Epileptic Disord, vol. 11, pp. 100-12, Jun 2009. 

[101] J. D. Putzke, R. E. Wharen, Jr., Z. K. Wszolek, M. F. Turk, A. J. Strongosky, and R. J. Uitti, 
"Thalamic deep brain stimulation for tremor-predominant Parkinson's disease," Parkinsonism 
Relat Disord, vol. 10, pp. 81-8, Dec 2003. 

[102] J. L. Vitek, T. Hashimoto, J. Peoples, M. R. DeLong, and R. A. E. Bakay, "Acute stimulation in 
the external segment of the globus pallidus improves parkinsonian motor signs," Movement 
Disorders, vol. 19, pp. 907-915, 2004. 

[103] I. S. Cooper, "Effect of chronic stimulation of anterior cerebellum on neurological disease," 
Lancet, vol. 1, p. 206, Jan 27 1973. 

[104] C. Boëx, S. Vulliémoz, L. Spinelli, C. Pollo, and M. Seeck, "High and low frequency electrical 
stimulation in non-lesional temporal lobe epilepsy," Seizure, vol. 16, pp. 664-669, 2007. 

[105] A. Pasnicu, Y. Denoyer, C. Haegelen, E. Pasqualini, and A. Biraben, "Modulation of paroxysmal 
activity in focal cortical dysplasia by centromedian thalamic nucleus stimulation," Epilepsy 
Research, p. in press, 2013. 

[106] R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry, R. Gross, K. Oommen, I. Osorio, J. Nazzaro, 
D. Labar, M. Kaplitt, M. Sperling, E. Sandok, J. Neal, A. Handforth, J. Stern, A. DeSalles, S. 
Chung, A. Shetter, D. Bergen, R. Bakay, J. Henderson, J. French, G. Baltuch, W. Rosenfeld, A. 
Youkilis, W. Marks, P. Garcia, N. Barbaro, N. Fountain, C. Bazil, R. Goodman, G. McKhann, K. 
Babu Krishnamurthy, S. Papavassiliou, C. Epstein, J. Pollard, L. Tonder, J. Grebin, R. Coffey, N. 
Graves, and S. S. G. the, "Electrical stimulation of the anterior nucleus of thalamus for 
treatment of refractory epilepsy," Epilepsia, vol. 51, pp. 899-908, 2010. 

[107] P. Boon, K. Vonck, V. De Herdt, A. Van Dycke, M. Goethals, L. Goossens, M. Van Zandijcke, T. 
De Smedt, I. Dewaele, R. Achten, W. Wadman, F. Dewaele, J. Caemaert, and D. Van Roost, 
"Deep brain stimulation in patients with refractory temporal lobe epilepsy," Epilepsia, vol. 
48, pp. 1551-60, Aug 2007. 

[108] F. Velasco, M. Velasco, C. Ogarrio, and G. Fanghanel, "Electrical stimulation of the 
centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary 
report," Epilepsia, vol. 28, pp. 421-30, Jul-Aug 1987. 

[109] A. L. Velasco, F. Velasco, M. Velasco, D. Trejo, G. Castro, and J. D. Carrillo-Ruiz, "Electrical 
Stimulation of the Hippocampal Epileptic Foci for Seizure Control: A Double-Blind, Long-Term 
Follow-Up Study," Epilepsia, vol. 48, pp. 1895-1903, 2007. 



     

193 | P a g e  
 
 

[110] M. Miatton, D. Van Roost, E. Thiery, E. Carrette, A. Van Dycke, K. Vonck, A. Meurs, G. 
Vingerhoets, and P. Boon, "The cognitive effects of amygdalohippocampal deep brain 
stimulation in patients with temporal lobe epilepsy," Epilepsy Behav, vol. 22, pp. 759-64, Dec 
2011. 

[111] A. Valentin, E. Garcia Navarrete, R. Chelvarajah, C. Torres, M. Navas, L. Vico, N. Torres, J. 
Pastor, R. Selway, R. G. Sola, and G. Alarcon, "Deep brain stimulation of the centromedian 
thalamic nucleus for the treatment of generalized and frontal epilepsies," Epilepsia, Sep 13 
2013. 

[112] A. Palmini, A. Gambardella, F. Andermann, F. Dubeau, J. C. da Costa, A. Olivier, D. Tampieri, 
P. Gloor, F. Quesney, E. Andermann, and et al., "Intrinsic epileptogenicity of human 
dysplastic cortex as suggested by corticography and surgical results," Ann Neurol, vol. 37, pp. 
476-87, Apr 1995. 

[113] Y. Bozzi, S. Casarosa, and M. Caleo, "Epilepsy as a neurodevelopmental disorder," Frontiers in 
Psychiatry, vol. 3, 2012-March-19 2012. 

[114] A. Palmini, "Electrophysiology of the focal cortical dysplasias," Epilepsia, vol. 51 Suppl 1, pp. 
23-6, Feb 2010. 

[115] S. M. Sisodiya, S. Fauser, J. H. Cross, and M. Thom, "Focal cortical dysplasia type II: biological 
features and clinical perspectives," Lancet Neurol, vol. 8, pp. 830-43, Sep 2009. 

[116] A. Gambardella, A. Palmini, F. Andermann, F. Dubeau, J. C. Da Costa, L. F. Quesney, E. 
Andermann, and A. Olivier, "Usefulness of focal rhythmic discharges on scalp EEG of patients 
with focal cortical dysplasia and intractable epilepsy," Electroencephalogr Clin Neurophysiol, 
vol. 98, pp. 243-9, Apr 1996. 

[117] S. Noachtar, O. Bilgin, J. Remi, N. Chang, I. Midi, C. Vollmar, and B. Feddersen, "Interictal 
regional polyspikes in noninvasive EEG suggest cortical dysplasia as etiology of focal 
epilepsies," Epilepsia, vol. 49, pp. 1011-7, Jun 2008. 

[118] W. O. t. Tatum, "Mesial temporal lobe epilepsy," J Clin Neurophysiol, vol. 29, pp. 356-65, Oct 
2012. 

[119] J. Engel, Jr., "Introduction to temporal lobe epilepsy," Epilepsy Res, vol. 26, pp. 141-50, Dec 
1996. 

[120] N. C. de Lanerolle, J. H. Kim, A. Williamson, S. S. Spencer, H. P. Zaveri, T. Eid, and D. D. 
Spencer, "A retrospective analysis of hippocampal pathology in human temporal lobe 
epilepsy: evidence for distinctive patient subcategories," Epilepsia, vol. 44, pp. 677-87, May 
2003. 

[121] A. Bragin, C. L. Wilson, R. J. Staba, M. Reddick, I. Fried, and J. Engel, Jr., "Interictal high-
frequency oscillations (80-500 Hz) in the human epileptic brain: entorhinal cortex," Ann 
Neurol, vol. 52, pp. 407-15, Oct 2002. 

[122] J. Jacobs, P. LeVan, C.-É. Châtillon, A. Olivier, F. Dubeau, and J. Gotman, "High frequency 
oscillations in intracranial EEGs mark epileptogenicity rather than lesion type," Brain, vol. 
132, pp. 1022-1037, April 1, 2009 2009. 

[123] J. F. Tellez-Zenteno and S. Wiebe, "Hippocampal Stimulation in the Treatment of Epilepsy," 
Neurosurgery clinics of North America, vol. 22, pp. 465-475, 2011. 

[124] T. Wyckhuys, P. J. Geerts, R. Raedt, K. Vonck, W. Wadman, and P. Boon, "Deep brain 
stimulation for epilepsy: knowledge gained from experimental animal models," Acta Neurol 
Belg, vol. 109, pp. 63-80, Jun 2009. 

[125] X.-L. Zhong, J.-T. Yu, Q. Zhang, N.-D. Wang, and L. Tan, "Deep brain stimulation for epilepsy in 
clinical practice and in animal models," Brain Research Bulletin, vol. 85, pp. 81-88, 2011. 

[126] K. Vonck, P. Boon, E. Achten, J. De Reuck, and J. Caemaert, "Long-term 
amygdalohippocampal stimulation for refractory temporal lobe epilepsy," Ann Neurol, vol. 
52, pp. 556-565, 2002. 



     

194 | P a g e  
 
 

[127] R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry, R. Gross, K. Oommen, I. Osorio, J. Nazzaro, 
D. Labar, M. Kaplitt, M. Sperling, E. Sandok, J. Neal, A. Handforth, J. Stern, A. DeSalles, S. 
Chung, A. Shetter, D. Bergen, R. Bakay, J. Henderson, J. French, G. Baltuch, W. Rosenfeld, A. 
Youkilis, W. Marks, P. Garcia, N. Barbaro, N. Fountain, C. Bazil, R. Goodman, G. McKhann, K. 
Babu Krishnamurthy, S. Papavassiliou, C. Epstein, J. Pollard, L. Tonder, J. Grebin, R. Coffey, N. 
Graves, and S. S. Group, "Electrical stimulation of the anterior nucleus of thalamus for 
treatment of refractory epilepsy," Epilepsia, vol. 51, pp. 899-908, May 2010. 

[128] R. S. McLachlan, S. Pigott, J. F. Tellez-Zenteno, S. Wiebe, and A. Parrent, "Bilateral 
hippocampal stimulation for intractable temporal lobe epilepsy: Impact on seizures and 
memory," Epilepsia, vol. 51, pp. 304-307, 2010. 

[129] C. Boex, M. Seeck, S. Vulliemoz, A. O. Rossetti, C. Staedler, L. Spinelli, A. J. Pegna, E. Pralong, 
J. G. Villemure, G. Foletti, and C. Pollo, "Chronic deep brain stimulation in mesial temporal 
lobe epilepsy," Seizure, vol. 20, pp. 485-90, Jul 2011. 

[130] P. Bondallaz, C. Boëx, A. O. Rossetti, G. Foletti, L. Spinelli, S. Vulliemoz, M. Seeck, and C. Pollo, 
"Electrode location and clinical outcome in hippocampal electrical stimulation for mesial 
temporal lobe epilepsy," Seizure, vol. 22, pp. 390-395, 2013. 

[131] M. Z. Koubeissi, E. Kahriman, T. U. Syed, J. Miller, and D. M. Durand, "Low-frequency 
electrical stimulation of a fiber tract in temporal lobe epilepsy," Ann Neurol, pp. n/a-n/a, 
2013. 

[132] A. Cukiert, C. M. Cukiert, J. A. Burattini, and A. M. Lima, "Seizure outcome after hippocampal 
deep brain stimulation in a prospective cohort of patients with refractory temporal lobe 
epilepsy," Seizure. 

[133] R. S. Fisher, G. L. Krauss, E. Ramsay, K. Laxer, and J. Gates, "Assessment of vagus nerve 
stimulation for epilepsy: report of the Therapeutics and Technology Assessment 
Subcommittee of the American Academy of Neurology," Neurology, vol. 49, pp. 293-7, Jul 
1997. 

[134] M. J. Morrell and R. N. S. S. i. E. S. Group, "Responsive cortical stimulation for the treatment 
of medically intractable partial epilepsy," Neurology, vol. 77, pp. 1295-304, Sep 27 2011. 

[135] S. Sunderam, B. Gluckman, D. Reato, and M. Bikson, "Toward rational design of electrical 
stimulation strategies for epilepsy control," Epilepsy Behav, vol. 17, pp. 6-22, Jan 2010. 

[136] K. H. Lee, F. L. Hitti, S. Y. Chang, D. C. Lee, D. W. Roberts, C. C. McIntyre, and J. C. Leiter, "High 
frequency stimulation abolishes thalamic network oscillations: an electrophysiological and 
computational analysis," J Neural Eng, vol. 8, p. 046001, Aug 2011. 

[137] E. Kim, B. Owen, W. R. Holmes, and L. M. Grover, "Decreased afferent excitability contributes 
to synaptic depression during high-frequency stimulation in hippocampal area CA1," J 
Neurophysiol, vol. 108, pp. 1965-76, Oct 2012. 

[138] C. C. McIntyre, M. Savasta, L. Kerkerian-Le Goff, and J. L. Vitek, "Uncovering the 
mechanism(s) of action of deep brain stimulation: activation, inhibition, or both," Clin 
Neurophysiol, vol. 115, pp. 1239-48, Jun 2004. 

[139] A. R. Rezai, A. M. Lozano, A. P. Crawley, M. L. Joy, K. D. Davis, C. L. Kwan, J. O. Dostrovsky, R. 
R. Tasker, and D. J. Mikulis, "Thalamic stimulation and functional magnetic resonance 
imaging: localization of cortical and subcortical activation with implanted electrodes. 
Technical note," J Neurosurg, vol. 90, pp. 583-90, Mar 1999. 

[140] A. O. Ceballos-Baumann, "Functional imaging in Parkinson's disease: activation studies with 
PET, fMRI and SPECT," J Neurol, vol. 250 Suppl 1, pp. I15-23, Feb 2003. 

[141] J. S. Perlmutter, J. W. Mink, A. J. Bastian, K. Zackowski, T. Hershey, E. Miyawaki, W. Koller, 
and T. O. Videen, "Blood flow responses to deep brain stimulation of thalamus," Neurology, 
vol. 58, pp. 1388-94, May 14 2002. 

[142] A. Benazzouz, D. M. Gao, Z. G. Ni, B. Piallat, R. Bouali-Benazzouz, and A. L. Benabid, "Effect of 
high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the 



     

195 | P a g e  
 
 

substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat," 
Neuroscience, vol. 99, pp. 289-95, 2000. 

[143] C. H. Tai, T. Boraud, E. Bezard, B. Bioulac, C. Gross, and A. Benazzouz, "Electrophysiological 
and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles 
neuronal activity in the subthalamic nucleus and the substantia nigra reticulata," FASEB J, vol. 
17, pp. 1820-30, Oct 2003. 

[144] M. E. Anderson, N. Postupna, and M. Ruffo, "Effects of high-frequency stimulation in the 
internal globus pallidus on the activity of thalamic neurons in the awake monkey," J 
Neurophysiol, vol. 89, pp. 1150-60, Feb 2003. 

[145] T. Hashimoto, C. M. Elder, M. S. Okun, S. K. Patrick, and J. L. Vitek, "Stimulation of the 
subthalamic nucleus changes the firing pattern of pallidal neurons," J Neurosci, vol. 23, pp. 
1916-23, Mar 1 2003. 

[146] K. Z. Shen, Z. T. Zhu, A. Munhall, and S. W. Johnson, "Synaptic plasticity in rat subthalamic 
nucleus induced by high-frequency stimulation," Synapse, vol. 50, pp. 314-9, Dec 15 2003. 

[147] E. Kim, B. Owen, W. R. Holmes, and L. M. Grover, "Decreased afferent excitability contributes 
to synaptic depression during high frequency stimulation in hippocampal area CA1," J 
Neurophysiol, Jul 5 2012. 

[148] B. Jiang, Y. Akaneya, Y. Hata, and T. Tsumoto, "Long-term depression is not induced by low-
frequency stimulation in rat visual cortex in vivo: a possible preventing role of endogenous 
brain-derived neurotrophic factor," J Neurosci, vol. 23, pp. 3761-70, May 1 2003. 

[149] W. J. Speechley, J. L. Hogsden, and H. C. Dringenberg, "Continuous white noise exposure 
during and after auditory critical period differentially alters bidirectional thalamocortical 
plasticity in rat auditory cortex in vivo," Eur J Neurosci, vol. 26, pp. 2576-84, Nov 2007. 

[150] S. Chung, X. Li, and S. B. Nelson, "Short-term depression at thalamocortical synapses 
contributes to rapid adaptation of cortical sensory responses in vivo," Neuron, vol. 34, pp. 
437-46, Apr 25 2002. 

[151] G. V. Goddard, "Development of epileptic seizures through brain stimulation at low 
intensity," Nature, vol. 214, pp. 1020-1, Jun 3 1967. 

[152] H.-Y. Lai, J. R. Younce, D. L. Albaugh, Y.-C. J. Kao, and Y.-Y. I. Shih, "Functional MRI reveals 
frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or 
internal globus pallidus," NeuroImage, vol. 84, pp. 11-18, 2014. 

[153] D. R. Merrill, M. Bikson, and J. G. R. Jefferys, "Electrical stimulation of excitable tissue: design 
of efficacious and safe protocols," Journal of Neuroscience Methods, vol. 141, pp. 171-198, 
2005. 

[154] B. Piallat, S. Chabardès, A. Devergnas, N. Torres, M. Allain, E. Barrat, and A. L. Benabid, 
"Monophasic But Not Biphasic Pulses Induce Brain Tissue Damage During Monopolar High-
Frequency Deep Brain Stimulation," Neurosurgery, vol. 64, pp. 156-163 
10.1227/01.NEU.0000336331.88559.CF, 2009. 

[155] F. Wendling, F. Bartolomei, F. Mina, C. Huneau, and P. Benquet, "Interictal spikes, fast ripples 
and seizures in partial epilepsies – combining multi-level computational models with 
experimental data," European Journal of Neuroscience, vol. 36, pp. 2164-2177, 2012. 

[156] W. W. Lytton, "Computer modelling of epilepsy," Nat Rev Neurosci, vol. 9, pp. 626-37, Aug 
2008. 

[157] C. C. McIntyre, S. Miocinovic, and C. R. Butson, "Computational analysis of deep brain 
stimulation," Expert Rev Med Devices, vol. 4, pp. 615-22, Sep 2007. 

[158] F. Wendling, F. Bartolomei, F. Mina, C. Huneau, and P. Benquet, "Interictal spikes, fast ripples 
and seizures in partial epilepsies - combining multi-level computational models with 
experimental data," Eur J Neurosci, vol. 36, pp. 2164-77, Jul 2012. 



     

196 | P a g e  
 
 

[159] A. L. Taylor, J.-M. Goaillard, and E. Marder, "How Multiple Conductances Determine 
Electrophysiological Properties in a Multicompartment Model," The Journal of Neuroscience, 
vol. 29, pp. 5573-5586, April 29, 2009 2009. 

[160] S. Krstulovic and R. Gribonval, "Mptk: Matching Pursuit Made Tractable," in IEEE 
International Conference on Acoustics, Speech and Signal Processing, Toulouse, 2006, pp. 496 
- 499. 

[161] F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, "Epileptic fast activity can be 
explained by a model of impaired GABAergic dendritic inhibition," European Journal of 
Neuroscience, vol. 15, pp. 1499-1508, 2002. 

[162] R. S. Fisher, W. van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel, Jr., 
"Epileptic seizures and epilepsy: definitions proposed by the International League Against 
Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)," Epilepsia, vol. 46, pp. 470-2, 
Apr 2005. 

[163] J. R. Huguenard and D. A. McCormick, "Thalamic synchrony and dynamic regulation of global 
forebrain oscillations," Trends Neurosci, vol. 30, pp. 350-6, Jul 2007. 

[164] B. Greenstein and A. Greenstein, Color Atlas of Neuroscience. Stuttgart . New York, 2000. 
[165] N. D. Woodward, H. Karbasforoushan, and S. Heckers, "Thalamocortical dysconnectivity in 

schizophrenia," Am J Psychiatry, vol. 169, pp. 1092-9, Oct 2012. 
[166] S. G. Ewing and A. A. Grace, "Deep brain stimulation of the ventral hippocampus restores 

deficits in processing of auditory evoked potentials in a rodent developmental disruption 
model of schizophrenia," Schizophrenia Research, vol. 143, pp. 377-383, 2013. 

[167] M. Breakspear, J. A. Roberts, J. R. Terry, S. Rodrigues, N. Mahant, and P. A. Robinson, "A 
unifying explanation of primary generalized seizures through nonlinear brain modeling and 
bifurcation analysis," Cereb Cortex, vol. 16, pp. 1296-313, Sep 2006. 

[168] J. A. Roberts and P. A. Robinson, "Modeling absence seizure dynamics: Implications for basic 
mechanisms and measurement of thalamocortical and corticothalamic latencies," J Theor 
Biol, vol. 253, pp. 189-201, 2008. 

[169] V. Crunelli, D. W. Cope, and J. R. Terry, "Transition to absence seizures and the role of 
GABA(A) receptors," Epilepsy Res, vol. 97, pp. 283-9, Dec 2011. 

[170] P. A. Robinson, C. J. Rennie, and J. J. Wright, "Propagation and stability of waves of electrical 
activity in the cerebral cortex," Physical Review E, vol. 56, pp. 826-840, 1997. 

[171] J. J. Wright, P. A. Robinson, C. J. Rennie, E. Gordon, P. D. Bourke, C. L. Chapman, N. 
Hawthorn, G. J. Lees, and D. Alexander, "Toward an integrated continuum model of cerebral 
dynamics: the cerebral rhythms, synchronous oscillation and cortical stability," Biosystems, 
vol. 63, pp. 71-88, 2001. 

[172] P. Suffczynski, S. Kalitzin, G. Pfurtscheller, and F. H. Lopes da Silva, "Computational model of 
thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention," 
Int J Psychophysiol, vol. 43, pp. 25-40, Dec 2001. 

[173] F. H. Lopes da Silva, "Event-related neural activities: what about phase?," in Prog Brain Res 
vol. Volume 159, N. Christa and K. Wolfgang, Eds., ed: Elsevier, 2006, pp. 3-17. 

[174] F. H. Lopes da Silva, "Event-related neural activities: what about phase?," in Progress in brain 
research. vol. Volume 159, N. Christa and K. Wolfgang, Eds., ed: Elsevier, 2006, pp. 3-17. 

[175] J. A. Roberts and P. A. Robinson, "Modeling absence seizure dynamics: Implications for basic 
mechanisms and measurement of thalamocortical and corticothalamic latencies," Journal of 
theoretical biology, vol. 253, pp. 189-201, 2008. 

[176] V. Crunelli, D. W. Cope, and J. R. Terry, "Transition to absence seizures and the role of 
GABA(A) receptors," Epilepsy Research, vol. 97, pp. 283-9, Dec 2011. 

[177] M. E. Calcagnotto, M. F. Paredes, T. Tihan, N. M. Barbaro, and S. C. Baraban, "Dysfunction of 
Synaptic Inhibition in Epilepsy Associated with Focal Cortical Dysplasia," The Journal of 
Neuroscience, vol. 25, pp. 9649-9657, October 19, 2005 2005. 



     

197 | P a g e  
 
 

[178] J. S. Nettleton and W. J. Spain, "Linear to Supralinear Summation of AMPA-Mediated EPSPs in 
Neocortical Pyramidal Neurons," J Neurophysiol, vol. 83, pp. 3310-3322, June 1, 2000 2000. 

[179] B. Molaee-Ardekani, J. Marquez-Ruiz, I. Merlet, R. Leal-Campanario, A. Gruart, R. Sanchez-
Campusano, G. Birot, G. Ruffini, J. M. Delgado-Garcia, and F. Wendling, "Effects of 
transcranial Direct Current Stimulation (tDCS) on cortical activity: A computational modeling 
study," Brain Stimul, Feb 28 2012. 

[180] B. Molaee-Ardekani, P. Benquet, F. Bartolomei, and F. Wendling, "Computational modeling 
of high-frequency oscillations at the onset of neocortical partial seizures: from 'altered 
structure' to 'dysfunction'," Neuroimage, vol. 52, pp. 1109-22, Sep 2010. 

[181] F. Marten, S. Rodrigues, O. Benjamin, M. P. Richardson, and J. R. Terry, "Onset of polyspike 
complexes in a mean-field model of human electroencephalography and its application to 
absence epilepsy," Philos Transact A Math Phys Eng Sci, vol. 367, pp. 1145-61, Mar 28 2009. 

[182] D. Pinault, "The thalamic reticular nucleus: structure, function and concept," Brain research 
reviews, vol. 46, pp. 1-31, 2004. 

[183] D. L. Meinecke and A. Peters, "GABA immunoreactive neurons in rat visual cortex," J Comp 
Neurol, vol. 261, pp. 388-404, Jul 15 1987. 

[184] J. S. Isaacson and M. Scanziani, "How inhibition shapes cortical activity," Neuron, vol. 72, pp. 
231-43, Oct 20 2011. 

[185] L. L. Glickfeld and M. Scanziani, "Distinct timing in the activity of cannabinoid-sensitive and 
cannabinoid-insensitive basket cells," Nat Neurosci, vol. 9, pp. 807-15, Jun 2006. 

[186] C. C. Stokes and J. S. Isaacson, "From dendrite to soma: dynamic routing of inhibition by 
complementary interneuron microcircuits in olfactory cortex," Neuron, vol. 67, pp. 452-65, 
Aug 12 2010. 

[187] D. P. Lloyd, "Facilitation and inhibition of spinal motoneurons," J Neurophysiol, vol. 9, pp. 
421-38, Nov 1946. 

[188] H. A. Swadlow, "Fast-spike Interneurons and Feedforward Inhibition in Awake Sensory 
Neocortex," Cerebral Cortex, vol. 13, pp. 25-32, January 1, 2003 2003. 

[189] H. A. Swadlow, T. Bezdudnaya, and A. G. Gusev, "Spike timing and synaptic dynamics at the 
awake thalamocortical synapse," Prog Brain Res, vol. 149, pp. 91-105, 2005. 

[190] F. Pouille and M. Scanziani, "Enforcement of temporal fidelity in pyramidal cells by somatic 
feed-forward inhibition," Science, vol. 293, pp. 1159-63, Aug 10 2001. 

[191] B. V. Atallah and M. Scanziani, "Instantaneous modulation of gamma oscillation frequency by 
balancing excitation with inhibition," Neuron, vol. 62, pp. 566-77, May 28 2009. 

[192] M. H. Hennig, "Theoretical models of synaptic short term plasticity," Front Comput Neurosci, 
vol. 7, p. 45, 2013. 

[193] J. Xu and L.-G. Wu, "The Decrease in the Presynaptic Calcium Current Is a Major Cause of 
Short-Term Depression at a Calyx-Type Synapse," Neuron, vol. 46, pp. 633-645, 2005. 

[194] D. L. Brody and D. T. Yue, "Release-independent short-term synaptic depression in cultured 
hippocampal neurons," J Neurosci, vol. 20, pp. 2480-94, Apr 1 2000. 

[195] L. J. Bindman, O. C. Lippold, and J. W. Redfearn, "The Action of Brief Polarizing Currents on 
the Cerebral Cortex of the Rat (1) during Current Flow and (2) in the Production of Long-
Lasting after-Effects," J Physiol, vol. 172, pp. 369-82, Aug 1964. 

[196] P. C. Miranda, L. Correia, R. Salvador, and P. J. Basser, "Tissue heterogeneity as a mechanism 
for localized neural stimulation by applied electric fields," Phys Med Biol, vol. 52, pp. 5603-
17, Sep 21 2007. 

[197] A. Pasnicu, Y. Denoyer, C. Haegelen, E. Pasqualini, and A. Biraben, "Modulation of paroxysmal 
activity in focal cortical dysplasia by centromedian thalamic nucleus stimulation," Epilepsy 
Research, vol. 104, pp. 264-268, 2013. 

[198] A. L. Velasco, F. Velasco, F. Jiménez, M. Velasco, G. Castro, J. D. Carrillo-Ruiz, G. Fanghänel, 
and B. Boleaga, "Neuromodulation of the Centromedian Thalamic Nuclei in the Treatment of 



     

198 | P a g e  
 
 

Generalized Seizures and the Improvement of the Quality of Life in Patients with Lennox–
Gastaut Syndrome," Epilepsia, vol. 47, pp. 1203-1212, 2006. 

[199] F. Velasco, A. L. Velasco, M. Velasco, F. Jimenez, J. D. Carrillo-Ruiz, and G. Castro, "Deep brain 
stimulation for treatment of the epilepsies: the centromedian thalamic target," Acta 
Neurochir Suppl, vol. 97, pp. 337-42, 2007. 

[200] F. Velasco, M. Velasco, A. L. Velasco, F. Jimenez, I. Marquez, and M. Rise, "Electrical 
stimulation of the centromedian thalamic nucleus in control of seizures: long-term studies," 
Epilepsia, vol. 36, pp. 63-71, Jan 1995. 

[201] M. Velasco, F. Velasco, and A. L. Velasco, "Centromedian-thalamic and hippocampal electrical 
stimulation for the control of intractable epileptic seizures," J Clin Neurophysiol, vol. 18, pp. 
495-513, Nov 2001. 

[202] M. Velasco, F. Velasco, A. L. Velasco, F. Brito, F. Jimenez, I. Marquez, and B. Rojas, 
"Electrocortical and behavioral responses produced by acute electrical stimulation of the 
human centromedian thalamic nucleus," Electroencephalogr Clin Neurophysiol, vol. 102, pp. 
461-71, Jun 1997. 

[203] M. Velasco, F. Velasco, A. L. Velasco, F. Jimenez, F. Brito, and I. Marquez, "Acute and chronic 
electrical stimulation of the centromedian thalamic nucleus: modulation of reticulo-cortical 
systems and predictor factors for generalized seizure control," Arch Med Res, vol. 31, pp. 
304-15, May-Jun 2000. 

[204] S. G. Mallat and Z. Zhifeng, "Matching pursuits with time-frequency dictionaries," Signal 
Processing, IEEE Transactions on, vol. 41, pp. 3397-3415, 1993. 

[205] P. J. Franaszczuk, G. K. Bergey, P. J. Durka, and H. M. Eisenberg, "Time–frequency analysis 
using the matching pursuit algorithm applied to seizures originating from the mesial 
temporal lobe," Electroencephalogr Clin Neurophysiol, vol. 106, pp. 513-521, 1998. 

[206] P. J. Durka, D. Ircha, and K. J. Blinowska, "Stochastic time-frequency dictionaries for matching 
pursuit," Signal Processing, IEEE Transactions on, vol. 49, pp. 507-510, 2001. 

[207] F. Marten, S. Rodrigues, P. Suffczynski, M. P. Richardson, and J. R. Terry, "Derivation and 
analysis of an ordinary differential equation mean-field model for studying clinically recorded 
epilepsy dynamics," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 79, p. 021911, Feb 2009. 

[208] B. Molaee-Ardekani, J. Márquez-Ruiz, I. Merlet, R. Leal-Campanario, A. Gruart, R. Sánchez-
Campusano, G. Birot, G. Ruffini, J.-M. Delgado-García, and F. Wendling, "Effects of 
transcranial Direct Current Stimulation (tDCS) on cortical activity: A computational modeling 
study," Brain Stimul, vol. 6, pp. 25-39, 2013. 

[209] T. Radman, R. L. Ramos, J. C. Brumberg, and M. Bikson, "Role of cortical cell type and 
morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro," 
BRAIN STIMULATION: Basic, Translational, and Clinical Research in Neuromodulation, vol. 2, 
pp. 215-228.e3, 2009. 

[210] P. Suffczynski, S. Kalitzin, F. L. da Silva, J. Parra, D. Velis, and F. Wendling, "Active paradigms 
of seizure anticipation: computer model evidence for necessity of stimulation," Phys Rev E 
Stat Nonlin Soft Matter Phys, vol. 78, p. 051917, Nov 2008. 

[211] M. H. Adhikari, J. H. Heeroma, M. di Bernardo, B. Krauskopf, M. P. Richardson, M. C. Walker, 
and J. R. Terry, "Characterisation of cortical activity in response to deep brain stimulation of 
ventral-lateral nucleus: modelling and experiment," J Neurosci Methods, vol. 183, pp. 77-85, 
Sep 30 2009. 

[212] G. Matteo, L. Micaela, A. Francesca, and D. I. Guglielmo, "Modeling electromagnetic fields 
detectability in a HH-like neuronal system: stochastic resonance and window behavior," Biol 
Cybern, 2005. 

[213] J. Modolo, A. W. Thomas, and A. Legros, "Neural mass modeling of power-line magnetic 
fields effects on brain activity," Front Comput Neurosci, vol. 7, 2013. 



     

199 | P a g e  
 
 

[214] E. Niedermayer and F. H. Lopes da Silva, Electroencephalography Basic Principles, Clinical 
Applications and Related Fields, 1999. 

[215] D. L. Rowe, P. A. Robinson, and C. J. Rennie, "Estimation of neurophysiological parameters 
from the waking EEG using a biophysical model of brain dynamics," Journal of theoretical 
biology, vol. 231, pp. 413-33, Dec 7 2004. 

[216] P. J. Durka, "From wavelets to adaptive approximations: time-frequency parametrization of 
EEG," Biomed Eng Online, vol. 2, p. 1, Jan 6 2003. 

[217] C. C. McIntyre and P. J. Hahn, "Network perspectives on the mechanisms of deep brain 
stimulation," Neurobiol Dis, vol. 38, pp. 329-337, 2010. 

[218] M. E. Calcagnotto, M. F. Paredes, T. Tihan, N. M. Barbaro, and S. C. Baraban, "Dysfunction of 
synaptic inhibition in epilepsy associated with focal cortical dysplasia," J Neurosci, vol. 25, pp. 
9649-57, Oct 19 2005. 

[219] L. Gabernet, S. P. Jadhav, D. E. Feldman, M. Carandini, and M. Scanziani, "Somatosensory 
integration controlled by dynamic thalamocortical feed-forward inhibition," Neuron, vol. 48, 
pp. 315-27, Oct 20 2005. 

[220] J. Talairach, J. Bancaud, G. Szikla, A. Bonis, S. Geier, and C. Vedrenne, "[New approach to the 
neurosurgery of epilepsy. Stereotaxic methodology and therapeutic results. 1. Introduction 
and history]," Neurochirurgie, vol. 20 Suppl 1, pp. 1-240, Jun 1974. 

[221] P. Jayakar, L. A. Alvarez, M. S. Duchowny, and T. J. Resnick, "A safe and effective paradigm to 
functionally map the cortex in childhood," J Clin Neurophysiol, vol. 9, pp. 288-93, Apr 1992. 

[222] R. J. Racine, "Modification of seizure activity by electrical stimulation. II. Motor seizure," 
Electroencephalogr Clin Neurophysiol, vol. 32, pp. 281-94, Mar 1972. 

[223] C. C. McIntyre, M. Savasta, L. Kerkerian-Le Goff, and J. L. Vitek, "Uncovering the 
mechanism(s) of action of deep brain stimulation: activation, inhibition, or both," Clinical 
Neurophysiology, vol. 115, pp. 1239-48, Jun 2004. 

[224] M. Steriade, D. A. McCormick, and T. J. Sejnowski, "Thalamocortical oscillations in the 
sleeping and aroused brain," Science, vol. 262, pp. 679-85, Oct 29 1993. 

[225] C. Hammond, H. Bergman, and P. Brown, "Pathological synchronization in Parkinson's 
disease: networks, models and treatments," Trends Neurosci, vol. 30, pp. 357-64, Jul 2007. 

[226] B. Degos, J. M. Deniau, A. M. Thierry, J. Glowinski, L. Pezard, and N. Maurice, "Neuroleptic-
induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-
frequency stimulation of the subthalamic nucleus," J Neurosci, vol. 25, pp. 7687-96, Aug 17 
2005. 

[227] A. D. Dorval, G. S. Russo, T. Hashimoto, W. Xu, W. M. Grill, and J. L. Vitek, "Deep brain 
stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson's disease," J 
Neurophysiol, vol. 100, pp. 2807-18, Nov 2008. 

[228] P. A. Schwartzkroin and H. J. Wenzel, "Are developmental dysplastic lesions epileptogenic?," 
Epilepsia, vol. 53 Suppl 1, pp. 35-44, Jun 2012. 

[229] M.-C. Lee, G.-M. Kim, Y.-J. Woo, M.-K. Kim, J.-H. Kim, S.-C. Nam, J.-J. Suh, W.-K. Chung, J.-S. 
Lee, H.-I. Kim, H.-Y. Choi, and S. U. Kim, "Pathogenic significance of neuronal migration 
disorders in temporal lobe epilepsy," Human Pathology, vol. 32, pp. 643-648, 2001. 

[230] Commission on Neurosurgery of the International League Against Epilepsy, H. G. Wieser, W. 
T. Blume, D. Fish, E. Goldensohn, A. Hufnagel, D. King, M. R. Sperling, H. Lüders, and T. A. 
Pedley, "Proposal for a New Classification of Outcome with Respect to Epileptic Seizures 
Following Epilepsy Surgery," Epilepsia, vol. 42, pp. 282-286, 2001. 

[231] J. Maher and R. S. McLachlan, "Febrile convulsions: Is seizure duration the most important 
predictor of temporal lobe epilepsy?," Brain, vol. 118, pp. 1521-1528, December 1, 1995 
1995. 



     

200 | P a g e  
 
 

[232] G. W. Mathern, T. L. Babb, B. G. Vickrey, M. Melendez, and J. K. Pretorius, "The clinical-
pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe 
epilepsy," Brain, vol. 118 ( Pt 1), pp. 105-18, Feb 1995. 

[233] F. Cendes, F. Andermann, F. Dubeau, P. Gloor, A. Evans, M. Jones-Gotman, A. Olivier, E. 
Andermann, Y. Robitaille, I. Lopes-Cendes, and et al., "Early childhood prolonged febrile 
convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI 
volumetric study," Neurology, vol. 43, pp. 1083-7, Jun 1993. 

[234] J. Engel, Jr., "Mesial temporal lobe epilepsy: what have we learned?," Neuroscientist, vol. 7, 
pp. 340-52, Aug 2001. 

[235] C. Y. Chan, J. Hounsgaard, and C. Nicholson, "Effects of electric fields on transmembrane 
potential and excitability of turtle cerebellar Purkinje cells in vitro," J Physiol, vol. 402, pp. 
751-71, Aug 1988. 

[236] R. S. Ghai, M. Bikson, and D. M. Durand, "Effects of applied electric fields on low-calcium 
epileptiform activity in the CA1 region of rat hippocampal slices," J Neurophysiol, vol. 84, pp. 
274-80, Jul 2000. 

[237] J. G. Jefferys, J. Deans, M. Bikson, and J. Fox, "Effects of weak electric fields on the activity of 
neurons and neuronal networks," Radiat Prot Dosimetry, vol. 106, pp. 321-3, 2003. 

[238] J. Lian, M. Bikson, C. Sciortino, W. C. Stacey, and D. M. Durand, "Local suppression of 
epileptiform activity by electrical stimulation in rat hippocampus in vitro," J Physiol, vol. 547, 
pp. 427-34, Mar 1 2003. 

[239] C. P. Taylor and F. E. Dudek, "Excitation of hippocampal pyramidal cells by an electrical field 
effect," J Neurophysiol, vol. 52, pp. 126-42, Jul 1984. 

[240] J. G. Jefferys, "Influence of electric fields on the excitability of granule cells in guinea-pig 
hippocampal slices," J Physiol, vol. 319, pp. 143-52, 1981. 

[241] S. R. y. Cajal, Histologie du système nerveux de l’homme & des vertébrés. Paris, 1911. 
[242] S. R. Weiss, A. Eidsath, X. L. Li, T. Heynen, and R. M. Post, "Quenching revisited: low level 

direct current inhibits amygdala-kindled seizures," Exp Neurol, vol. 154, pp. 185-92, Nov 
1998. 

[243] R. D. Traub and R. K. Wong, "Cellular mechanism of neuronal synchronization in epilepsy," 
Science, vol. 216, pp. 745-7, May 14 1982. 

[244] P. F. Pinsky and J. Rinzel, "Intrinsic and network rhythmogenesis in a reduced Traub model 
for CA3 neurons," J Comput Neurosci, vol. 1, pp. 39-60, Jun 1994. 

[245] S. Demont-Guignard, P. Benquet, U. Gerber, and F. Wendling, "Analysis of intracerebral EEG 
recordings of epileptic spikes: insights from a neural network model," IEEE Trans Biomed Eng, 
vol. 56, pp. 2782-95, Dec 2009. 

[246] F. Suzuki, M. P. Junier, D. Guilhem, J. C. Sorensen, and B. Onteniente, "Morphogenetic effect 
of kainate on adult hippocampal neurons associated with a prolonged expression of brain-
derived neurotrophic factor," Neuroscience, vol. 64, pp. 665-74, Feb 1995. 

[247] S. T. Murakami, Tsunematsu; Shimizu, Zensho, "The effective principle of Digenea simplex 
Aq. I. Separation of the effective fraction by liquid chromatography," Yakugaku Zasshi, vol. 
73, pp. 1026-8 1956. 

[248] J. R. Simon, J. F. Contrera, and M. J. Kuhar, "Binding of [3H] kainic acid, and analogue of 
Lglutamate, to brain membranes," J Neurochem, vol. 26, pp. 141-7, Jan 1976. 

[249] V. Bouilleret, F. Loup, T. Kiener, C. Marescaux, and J. M. Fritschy, "Early loss of interneurons 
and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of 
mesial temporal lobe epilepsy," Hippocampus, vol. 10, pp. 305-24, 2000. 

[250] V. Riban, V. Bouilleret, B. T. Pham-Le, J. M. Fritschy, C. Marescaux, and A. Depaulis, 
"Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis 
in a mouse model of temporal lobe epilepsy," Neuroscience, vol. 112, pp. 101-11, 2002. 



     

201 | P a g e  
 
 

[251] P. Vincent and C. Mulle, "Kainate receptors in epilepsy and excitotoxicity," Neuroscience, vol. 
158, pp. 309-23, Jan 12 2009. 

[252] C. Heinrich, S. Lahteinen, F. Suzuki, L. Anne-Marie, S. Huber, U. Haussler, C. Haas, Y. Larmet, 
E. Castren, and A. Depaulis, "Increase in BDNF-mediated TrkB signaling promotes 
epileptogenesis in a mouse model of mesial temporal lobe epilepsy," Neurobiol Dis, vol. 42, 
pp. 35-47, Apr 2011. 

[253] R. Harner, "Automatic EEG spike detection," Clin EEG Neurosci, vol. 40, pp. 262-270, 2009. 
[254] J. Bourien, J. J. Bellanger, F. Bartolomei, P. Chauvel, and F. Wendling, "Mining reproducible 

activation patterns in epileptic intracerebral EEG signals: application to interictal activity," 
Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 304-315, 2004. 

[255] E. S. PAGE, "CONTINUOUS INSPECTION SCHEMES," Biometrika, vol. 41, pp. 100-115, June 1, 
1954 1954. 

[256] J. Bourien, "Analyse de distributions spatio-temporelles de transitoires dans des signaux 
vectoriels. Application à la détection-classification d'activités paroxystiques intercritiques 
dans des observations EEG," PhD, UFR Siences et Propriétés de la matière, Université Rennes 
1, Rennes, 2003. 

[257] P. Suffczynski, F. H. L. da Silva, J. Parra, D. N. Velis, B. M. Bouwman, C. M. van Rijn, P. Van 
Hese, P. Boon, H. Khosravani, M. Derchansky, P. Carlen, and S. Kalitzin, "Dynamics of epileptic 
phenomena determined from statistics of ictal transitions," Biomedical Engineering, IEEE 
Transactions on, vol. 53, pp. 524-532, 2006. 

[258] D. Johnston and T. H. Brown, "The synaptic nature of the paroxysmal depolarizing shift in 
hippocampal neurons," Annals of Neurology, vol. 16 Suppl, pp. S65-71, 1984. 

[259] G. Schmid, G. Neubauer, and P. R. Mazal, "Dielectric properties of human brain tissue 
measured less than 10 h postmortem at frequencies from 800 to 2450 MHz," 
Bioelectromagnetics, vol. 24, pp. 423-430, 2003. 

[260] M. M. Elwassif, A. Datta, A. Rahman, and M. Bikson, "Temperature control at DBS electrodes 
using a heat sink: experimentally validated FEM model of DBS lead architecture," J Neural 
Eng, vol. 9, p. 046009, Aug 2012. 

[261] V. R. Khan and I. R. Brown, "The effect of hyperthermia on the induction of cell death in 
brain, testis, and thymus of the adult and developing rat," Cell stress & chaperones, vol. 7, 
pp. 73-90, 2002. 

[262] H. M. Hoffmann and V. E. Dionne, "Temperature dependence of ion permeation at the 
endplate channel," The Journal of General Physiology, vol. 81, pp. 687-703, May 1, 1983 
1983. 

[263] F. R. Pierau, M. R. Klee, and F. W. Klussmann, "Effect of temperature on postsynaptic 
potentials of cat spinal motoneurones," Brain research, vol. 114, pp. 21-34, 1976. 

[264] M. M. Elwassif, Q. Kong, M. Vazquez, and M. Bikson, "Bio-heat transfer model of deep brain 
stimulation-induced temperature changes," J Neural Eng, vol. 3, pp. 306-15, Dec 2006. 

[265] F. Velasco, J. D. Carrillo-Ruiz, F. Brito, M. Velasco, A. L. Velasco, I. Marquez, and R. Davis, 
"Double-blind, Randomized Controlled Pilot Study of Bilateral Cerebellar Stimulation for 
Treatment of Intractable Motor Seizures," Epilepsia, vol. 46, pp. 1071-1081, 2005. 

[266] S. Sunderam, N. Chernyy, J. Mason, N. Peixoto, S. L. Weinstein, S. J. Schiff, and B. J. 
Gluckman, "Seizure modulation with applied electric fields in chronically implanted animals," 
Conf Proc IEEE Eng Med Biol Soc, vol. 1, pp. 1612-5, 2006. 

[267] K. A. Richardson, B. J. Gluckman, S. L. Weinstein, C. E. Glosch, J. B. Moon, R. P. Gwinn, K. Gale, 
and S. J. Schiff, "In vivo modulation of hippocampal epileptiform activity with radial electric 
fields," Epilepsia, vol. 44, pp. 768-77, Jun 2003. 

 

 



     

202 | P a g e  
 
 

 

 

 

 

 

 

 

 

 
  



     

203 | P a g e  
 
 

TABLE OF CONTENTS 

 
Introduction ................................................................................................................................................................ 5 

Chapter 1: Neuronal Systems – Structure, Function and Control: Background .......................................................... 9 

1 Neuronal Dynamics: A Systems View ................................................................................................................ 9 

1.1 Discovering the Concept of The Neuron....................................................................................................... 9 

1.2 The Earliest Models of Neuronal Dynamics ................................................................................................ 10 

1.3 Populations of Single Neuron Models ........................................................................................................ 12 

1.4 Neural Mass Models ................................................................................................................................... 12 

2 Assessing Neuronal Function Using Electrophysiology ................................................................................... 14 

2.1 Intracellular Electrophysiological Recordings ............................................................................................. 15 

2.2 Extracellular Electrophysiological Recordings ............................................................................................ 16 

2.3 Assessing Function/Dysfunction Using Extracellular Signals (EEG/iEEG) .................................................... 17 

2.3.1 Electrophysiological Oscillatory Signatures of Neuronal Pathology (Movement and 
Neuropsychiatric disorders) ................................................................................................................................. 17 

2.3.2 Electrographic Signatures of Epileptic Dynamics ............................................................................... 18 

3 Controlling (Patho-)physiological Neuronal Dynamics by Electrical Stimulation: State of The Art ................ 20 

3.1 Stimulation-Induced Electric Field .............................................................................................................. 21 

3.1.1 In a Volume Conductor ...................................................................................................................... 21 

3.1.2 In The Vicinity of Excitable Tissue ...................................................................................................... 22 

3.2 Electrical Stimulation Categories ................................................................................................................ 23 

3.2.1 Intracerebral versus Transcranial Current Stimulation ...................................................................... 23 

3.2.2 AC versus DC Stimulation ................................................................................................................... 24 

3.2.3 Direct versus Indirect Stimulation ..................................................................................................... 25 

3.3 Stimulation for Movement Disorders ......................................................................................................... 25 

3.3.1 The Network Structure of Movement disorders................................................................................ 26 

3.3.2 Modulatory Effects of Electrical Stimulation ..................................................................................... 27 

3.4 Stimulation for Epilepsy .............................................................................................................................. 28 

Chapter 2: Problem Statement and Objectives ......................................................................................................... 35 

1 Problem Statement: Stimulation Parameters, Outcome and Mechanisms .................................................... 35 

1.1 The Variability ............................................................................................................................................. 35 

1.2 The Poorly-Understood Mechanisms ......................................................................................................... 36 

1.3 How to Optimize Stimulation ..................................................................................................................... 38 

2 Objectives: Optimize Stimulation Outcome .................................................................................................... 38 

2.1 Optimize Stimulation Parameters and Effects ............................................................................................ 39 



     

204 | P a g e  
 
 

2.1.1 Case of indirect AC intracerebral Stimulation .................................................................................... 39 

2.1.2 Case of direct DC intracerebral Stimulation ...................................................................................... 39 

3 General Methodology ..................................................................................................................................... 40 

3.1 Computational Modeling ............................................................................................................................ 40 

3.2 Electrophysiological Data Acquisition/Experimentation and Signal Processing ......................................... 41 

3.3 Nonlinear System Analysis .......................................................................................................................... 42 

3.4 General overview of the work accomplished during this PhD thesis ......................................................... 42 

Chapter 3: A Computational Model of the Thalamocortical Loop ............................................................................ 47 

1 Mesoscopic Models of the Thalamocortical Loop .......................................................................................... 47 

1.1 The Thalamocortical Loop .......................................................................................................................... 47 

1.2 Thalamocortical Models: State of The Art .................................................................................................. 49 

2 Implementing a Stimulation-Driven Model of Thalamocortical Dynamics ..................................................... 50 

2.1 Model Architecture .................................................................................................................................... 50 

2.1.1 From a Global Network View ............................................................................................................. 50 

2.1.2 On The Level of a Subpopulation ....................................................................................................... 50 

2.1.3 The Cortical Module ........................................................................................................................... 53 

2.1.4 The Thalamic Module ........................................................................................................................ 55 

2.1.5 The Reticular Module......................................................................................................................... 55 

2.2 Implementing Physiologically-Relevant Mechanisms ................................................................................ 55 

2.2.1 Feed-forward Inhibition ..................................................................................................................... 55 

2.2.2 Short Term Depression ...................................................................................................................... 60 

2.2.3 Stimulation Inputs .............................................................................................................................. 63 

Chapter 4: Electrophysiological Observations and Signal Analysis for Model Optimization ..................................... 67 

1 The Clinical Observation ................................................................................................................................. 67 

2 Signal Processing ............................................................................................................................................. 69 

2.1 General Algorithm ...................................................................................................................................... 69 

2.2 Matching Pursuit ........................................................................................................................................ 70 

2.3 The Model Optimization Algorithm for Simulating Epileptic FCD Activity ................................................. 72 

2.4 Model Tuning for Simulating Stimulation Effects ....................................................................................... 73 

Chapter 5: Results of Part 1 ....................................................................................................................................... 75 

1 Quantification of Stimulation Effects in Real Signals ...................................................................................... 75 

1.1 Energy Distribution ..................................................................................................................................... 75 

1.1.1 Spontaneous Interictal Activity (LFPsFCD) ........................................................................................... 75 

1.1.2 Stimulation Effects ............................................................................................................................. 76 

1.2 Three Stimulation Groups........................................................................................................................... 78 

1.2.1 The 3D Space ..................................................................................................................................... 78 



     

205 | P a g e  
 
 

1.2.2 Feature Vector Classification and Stimulation Clusters ..................................................................... 79 

2 Reproduction of Real Epileptic LFPs During and in the Absence of Stimulation ............................................. 80 

2.1 Simulating Epileptic FCD Activity ................................................................................................................ 80 

2.2 Simulating Stimulation Effects .................................................................................................................... 81 

3 Model Analysis ................................................................................................................................................ 82 

3.1 Indicative Study of Parameter Sensitivity ................................................................................................... 82 

3.2 Model Phase Portraits ................................................................................................................................ 85 

3.3 Quantifying Model Bifurcations: The High to Low Firing Ratio (HtoLR) ..................................................... 86 

3.4 The Necessary Elements ............................................................................................................................. 88 

4 The Mechanisms: Computational Insights ...................................................................................................... 89 

4.1 The No Stimulation “Interictal” Dynamics .................................................................................................. 89 

4.2 Low-Frequency Stimulation (LFS, f < 20 Hz) ............................................................................................... 90 

4.3 Intermediate-Frequency Stimulation (IFS, 20 < f < 70 Hz) .......................................................................... 91 

4.4 High-Frequency Stimulation (HFS, f > 70 Hz) .............................................................................................. 91 

Conclusion and Discussion on Part 1 ......................................................................................................................... 93 

1 The Model’s Architecture ............................................................................................................................... 93 

2 Signal Processing and Representation ............................................................................................................ 95 

2.1 Using FFT – Comparing the Optimal Model Outputs .................................................................................. 95 

2.2 Classical Time Frequency Approaches – The Limitations ........................................................................... 97 

2.3 The Advantages of Matching Pursuit (MP) ................................................................................................. 99 

2.4 The 3D Space ............................................................................................................................................ 101 

3 The Frequency-Dependence of The Identified Mechanisms ........................................................................ 102 

3.1 The No Stimulation Condition .................................................................................................................. 102 

3.2 The Low-Frequency Stimulation Condition .............................................................................................. 102 

3.3 The Intermediate-Frequency Stimulation Condition ................................................................................ 103 

3.4 The High-Frequency Stimulation Condition .............................................................................................. 104 

3.5 The Stimulation Effects Curve .................................................................................................................. 104 

4 The Limitations .............................................................................................................................................. 105 

5 Conclusion ..................................................................................................................................................... 105 

Chapter 6: Low-Intensity DC Stimulation of the Ictal Onset Zone – Computational Tools ..................................... 109 

1 DC Stimulation Protocols .............................................................................................................................. 110 

1.1 In Vitro Effects of DC Electric Fields: State of The Art .............................................................................. 110 

1.2 The Hypothetical Basis of Neuronal Polarization by DC Currents ............................................................ 112 

2 A Computational Model of Temporal Lobe Epilepsy .................................................................................... 115 

2.1 Computational Model of The Hippocampus ............................................................................................ 116 

2.1.1 General Architecture ....................................................................................................................... 117 



     

206 | P a g e  
 
 

3 An Experimental Model of Mesio-Temporal Lobe Epilepsy .......................................................................... 117 

3.1 Kainate Model of Mesio-Temporal Lobe Epilepsy .................................................................................... 117 

3.1.1 Model Description ........................................................................................................................... 117 

3.1.2 Hippocampal Paroxysmal Discharges: Specific Biomarkers of Epileptogenicity .............................. 118 

3.2 Experimental Kainate Protocol and Signal Acquisition ............................................................................. 120 

4 Methods for Epileptic Signal Analysis ........................................................................................................... 121 

4.1 iEEG Signal Quantification ........................................................................................................................ 121 

4.1.1 Detection of HPDs Using The Page-Hinkley Method ....................................................................... 121 

5 Model Adaptation for the Generation of HPDs ............................................................................................ 126 

5.1 Experimentally identifying the duration and frequency of occurrence of HPDs ...................................... 126 

5.2 Implementing dynamical changes of HPDs in the model ......................................................................... 129 

6 Implementing the Stimulation Inputs ........................................................................................................... 130 

7 Computational Analysis of Stimulation Effects ............................................................................................. 134 

7.1 Quantifying Epileptic Features in Simulated LFP Signals .......................................................................... 134 

Chapter 7: Computational Results of Part 2 ............................................................................................................ 137 

1 Simulating HPDs ............................................................................................................................................ 137 

1.1 Model Activity Maps ................................................................................................................................. 137 

1.2 Simulated Stimulation Effects................................................................................................................... 140 

1.3 The Theoretical Equipotential Lines Induced By Stimulation ................................................................... 141 

Chapter 8: Experimental Validation ........................................................................................................................ 149 

1 Preliminary Safety Test: Stimulation-Induced Heating ................................................................................. 149 

2 The Experimental Protocol ........................................................................................................................... 152 

2.1 The Protocol Variants ............................................................................................................................... 152 

2.2 Database ................................................................................................................................................... 154 

2.3 Histological Verification ............................................................................................................................ 155 

3 Quantifying Stimulation Effects .................................................................................................................... 155 

4 Statistical Analysis. ........................................................................................................................................ 158 

5 The Experimental Observations .................................................................................................................... 158 

5.1 In Vivo Effects ........................................................................................................................................... 159 

5.2 The Effects of Stimulation Polarity ........................................................................................................... 159 

5.3 The Effects of Stimulation Duration ......................................................................................................... 162 

5.4 Electrode Position and Stimulation Effects on Hippocampal Tissue ........................................................ 168 

5.5 In Vitro Verification .................................................................................................................................. 171 

Conclusion and Discussion on Part 2 ....................................................................................................................... 177 

1 Position with Respect to Earlier Studies ....................................................................................................... 177 

1.1 In Vivo Observations ................................................................................................................................. 177 



     

207 | P a g e  
 
 

1.2 In Vitro Observations ................................................................................................................................ 178 

2 Polarization or a Network Effect ................................................................................................................... 179 

3 Future Implications of the Results ................................................................................................................ 180 

4 Limitations and Perspectives ........................................................................................................................ 182 

General Conclusion and Perspectives ..................................................................................................................... 183 

References ............................................................................................................................................................... 187 

Table of Contents .................................................................................................................................................... 203 

Table of Figures ....................................................................................................................................................... 209 

Appendix A. Thalamocortical Model Simulink Implementation ............................................................................. 213 

Appendix B. Experimental Signals (Part 2) .............................................................................................................. 219 

Appendix C. Publications ......................................................................................................................................... 227 

 

 

  



     

208 | P a g e  
 
 

 

  



     

209 | P a g e  
 
 

TABLE OF FIGURES 
 

Figure 1. Golgi staining method applied on hippocampal tissue (work of Golgi: 
http://neurophilosophy.wordpress.com/2006/08/29/the-discovery-of-the-neuron). ...................................... 10 

Figure 2. Initial integrate-and-fire model. Adapted from Lapique in 1907 [2]............................................................. 11 
Figure 3. High-density recording of unit activity in the somatosensory cortex of the rat ([37] no requested 

permission). ......................................................................................................................................................... 16 
Figure 4. Different Types of epileptic EEG patterns. Adapted and translated from [48]. No permission requested. . 19 
Figure 5.  The cerebral network involved in the pathologic dynamics of movement disorders as presented in 

[77]. ..................................................................................................................................................................... 26 
Figure 6. Electrophysiology of focal cortical dysplasia (FCD). ...................................................................................... 32 
Figure 7. A schematic representation of the general methodology. ........................................................................... 41 
Figure 8. Major contributions and organization of the presented work. .................................................................... 43 
Figure 9. The Thalamic Nuclei (http://en.wikipedia.org/wiki/Thalamic_reticular_nucleus). ...................................... 48 
Figure 10. Generic architecture of the thalamocortical model .................................................................................... 49 
Figure 11. Modeling the thalamocortical loop. ............................................................................................................ 51 
Figure 12. The form of the model’s functions in the cortical module.......................................................................... 53 
Figure 13. The Simulink implementation of the cortical module. ................................................................................ 54 
Figure 14. Cortical inhibitory circuits. .......................................................................................................................... 56 
Figure 15. The temporal considerations of feedforward inhibition. ............................................................................ 58 
Figure 16. Feedforward inhibition in the model (sample simulations). ....................................................................... 59 
Figure 17. Rapid adaptation of cortical LFP to thalamic input at whisker stimulation of 4 Hz (adapted from 

[150]). .................................................................................................................................................................. 61 
Figure 18. Dynamical response of the 𝜅(𝑡) function to one pulse of duration (0.5 ms). ............................................. 62 
Figure 19. Dynamical response of the 𝜅(𝑡) function to a series of pulses arriving at a1.5 Hz frequency. .................. 63 
Figure 20. Biphasic versus monophasic pulse stimulation in the model. .................................................................... 64 
Figure 21. MRI of the Patient showing the location of the focal cortical dysplasia in the premotor cortex of the 

patient. ................................................................................................................................................................ 67 
Figure 22. Frequency-dependent stimulation effects: real data.................................................................................. 68 
Figure 23. Feature extraction for parameter optimization. (A) The feature extraction algorithm. (B) The 

parameter optimization algorithm ...................................................................................................................... 71 
Figure 24. Energy Distribution (%) of Pathological (LFPsFCD) Signal vs. Normal Signal. ................................................ 75 
Figure 25. Reconstructed Signal vs. Sum of Major Bands (δ2 + θ1, α, and γ). ............................................................. 76 
Figure 26. Frequency-dependent modulation of the signal’s energy distribution during stimulation. Each graph 

represents the distribution of given stimulation condition as compared to the no stimulation condition. 
Note the absence of effect for the 50 Hz stimulation condition. ........................................................................ 77 

Figure 27. 3D Space and Clustering. ............................................................................................................................. 79 
Figure 28. Normalized Euclidian distance between VF,real and VF,model . ....................................................................... 80 
Figure 29.  Real and simulated signals for the different stimulation conditions ......................................................... 81 
Figure 30. The feature vectors of simulated signals (triangles) projected in 3D frequency space with the feature 

vectors of real iEEG signals (Squares). ................................................................................................................. 82 
Figure 31. Indicative Study of Parameter Sensibility. .................................................................................................. 83 
Figure 32. Quantitative Representation of model output when 𝜇 = 0.05. ................................................................. 84 
Figure 33. Phase portraits (FCD activity vs. CM firing) for the four stimulation conditions: NS, LFS (2 Hz), IFS 

(50 Hz), and HFS (100 Hz). ................................................................................................................................... 86 
Figure 34. Model intermittency. .................................................................................................................................. 86 
Figure 35. Conditions to reproduce frequency-dependent stimulation effects. ......................................................... 88 



     

210 | P a g e  
 
 

Figure 36. Frequency-dependent mechanisms underlying DBS. ................................................................................. 90 
Figure 37. Optimizing the model output: MP vs. FFT. .................................................................................................. 96 
Figure 38. The dyadic scale used for the DWT and the corresponding decomposed frequency bands ...................... 98 
Figure 39. The 3D frequency space as made possible by the DWT transform. ............................................................ 99 
Figure 40. MP precisely detects different signal components. .................................................................................. 100 
Figure 41. PCA automatic dimension reduction from 9D to 3D feature vectors. ...................................................... 101 
Figure 42. Schematic representation of the hippocampal organization [241]. ......................................................... 110 
Figure 43. Effects of uniform weak DC electric field on single CA1 neurons. ............................................................ 111 
Figure 44. Computational effects of current polarity on neural excitability. ............................................................. 112 
Figure 45. Schematic representation of the effects of injected currents on neuronal excitability as a function of 

electrode types and polarity. In the case of large field electrodes: .................................................................. 113 
Figure 46. Schematic representation of the stimulation electrodes ideally situated on the two sides of the CA1 

region. ............................................................................................................................................................... 114 
Figure 47. The architecture of the hippocampus model as presented by [161]. ....................................................... 116 
Figure 48.  The different electrographic signatures of the different stages of epileptogenesis defined by Heinrich 

and his colleagues in [252]. ............................................................................................................................... 119 
Figure 49. Distinct epileptic events observed in the iEEG of the recorded animals. ................................................. 124 
Figure 50. The Page-Hinkley Test. .............................................................................................................................. 125 
Figure 51. The experimental identification of the statistical laws of ∆𝐻𝑃𝐷 and ∆𝐵𝐾𝐺. .......................................... 127 
Figure 52. Flowchart of HPD simulation diagram. ..................................................................................................... 129 
Figure 53.Block diagram of the model indicating the emplacement of stimulation inputs before the sigmoidal 

function of each population, as well as that of the PSD (paroxysmal depolarization shift) input. ................... 131 
Figure 54.The implementation of the electrode-electrolyte interface in the model. ................................................ 132 
Figure 55. Modeling the electrode-electrolyte solution. ........................................................................................... 133 
Figure 56. Modeling HPDs. ......................................................................................................................................... 138 
Figure 57.Model activity maps representing the average number of peaks (calculated over 5 simulations) in the 

minute following a stimulation pulse of duration 50 s and intensity 1 µA for different values of k1,k2 and k3. 139 
Figure 58. Model activity maps representing the average duration (s) of discharge (calculated over 5 

simulations) in the minute following a stimulation pulse of duration 50 s and intensity 1 µA for different 
values of k1,k2 and k3. ........................................................................................................................................ 140 

Figure 59. Model activity maps representing the average energy of discharge (calculated over 5 simulations) in 
the minute following a stimulation pulse of duration 50 s and intensity 1 µA for different values of k1,k2 

and k3. ................................................................................................................................................................ 142 
Figure 60. Ten examples of possible model dynamics in the absence of stimulation. .............................................. 144 
Figure 61. Ten examples of the model output when “depolarizing” stimulation is applied. ..................................... 145 
Figure 62. Ten examples of the model output when “hyperpolarizing stimulation” is applied. ............................... 146 
Figure 63. Boxplots of simulated iEEG signals in the absence and during hyperpolarizing and depolarizing 

stimulation. ....................................................................................................................................................... 147 
Figure 64. The theoretical equipotential lines induced during the 1µA DC stimulation, for an intra-electrode 

distance of 350µm in a homogenous medium of conductance 0.35 S/m. The red and blue spheres 
represent the anode and the cathode emplacements respectively. The numbers on the potential lines 
indicate their corresponding value in mV. The maximum induced voltage gradient between the two 
electrode tips is of the order of 10 mV. ............................................................................................................ 148 

Figure 65. The electric field lines induced by stimulation superimposed over the induced potential map (V). ....... 148 
Figure 66. Verifying temperature rise during stimulation. ........................................................................................ 149 
Figure 67. The thermal heating recorded for different stimulation current intensities applied for 100s. ................ 150 
Figure 68. Thermal heating produced by high current intensity DC stimulation (4 mA) ........................................... 151 
Figure 69. The different stimulation protocols used in this study. ............................................................................ 154 



     

211 | P a g e  
 
 

Figure 70. The processing of iEEG signals over fixed-window intervals. .................................................................... 157 
Figure 71.Example signal segments (mouse K143) in the absence of stimulation. ................................................... 160 
Figure 72 Signals recorded just after the end of 100 s S1 stimulation (mouse K143) during different sessions. ....... 161 
Figure 73. Signals recorded just after the end of 100 s S2 stimulation (mouse K143) during different sessions. ...... 161 
Figure 74. Boxplots of the signal features of mice K148 (number of trials: NS = 220, S1 = 4, S2 = 3) and K155 

(number of trials NS = 238, S1 = 12, S2 = 10) in the absence and just after the end of a stimulation pulse of 
polarity S1/S2. ..................................................................................................................................................... 162 

Figure 75. Boxplots of the signal features of mice K168 (number of trials: NS = 240, S1 = 19, S2 = 20) and K171 
(number of trials NS = 288, S1 = 18, S2 = 20) in the absence and just after the end of a stimulation pulse of 
polarity S1/S2. ..................................................................................................................................................... 165 

Figure 76. Boxplots of the signal features of mouse K143 (number of trials: NS = 200, S1 = 8, S2 = 6) in the 
absence and just after the end of a stimulation pulse of polarity S1/S2. ........................................................... 166 

Figure 77. A unique observation of the evolution of the intensity of discharge through stimulation and baseline 
sessions when excessive stimulation duration is used (100 s). ......................................................................... 167 

Figure 78. The effects of stimulation duration and polarity on the iEEG signal features. Results observed in 
mouse K148 (NS = 100; S1: N5s = 5, N10s = 5, N20s = 5, N30s = 5, N40s = 4, N50s = 2; S2: N5s = 5, N10s = 5, N20s = 5, 
N30s = 4, N40s = 3, N50s = 1). ................................................................................................................................. 168 

Figure 79. The electrode trace in the injected hippocampus in a mal-colored section of mouse K155. ................... 169 
Figure 80. Histological coronal sections of mouse K171. ........................................................................................... 170 
Figure 81. Histological coronal sections of mouse K168. ........................................................................................... 171 
Figure 82. Patch Clamp recordings in whole cell configuration of organotypic rat hippocampal slices from 

pyramidal CA1 neurons. .................................................................................................................................... 172 
Figure 83. Patch Clamp recordings in whole cell configuration of organotypic rat hippocampal slices. ................... 173 
Figure 84. Patch Clamp recordings in the presence of the voltage-gated sodium channel blocker TTX (1µM). ....... 174 
Figure 85. Simulated Boxplots of HPD occurrence during polarizing stimulation under the hypothesis that FSI 

are always depolarized by stimulation. ............................................................................................................. 181 
 

  



     

212 | P a g e  
 
 

  



     

213 | P a g e  
 
 

 

Appendix A. Thalamocortical Model 
Simulink Implementation 

In this appendix the block diagrams corresponding to Simulink® implementation of the 
thalamocortical model are presented. The implemented version can be provided upon 
request. Table A1-1 shows the values of the model parameters. Figure A1-1 shows the 
general model architecture. Four basic blocks are illustrated in the model diagram: the three 
modules and the synaptic depression block. 

The diagram of the cortical module is previously presented in Chapter 3, and will not be 
included in this appendix. 

Parameter Value Interpretation 
AC 6 (optimized, pathological) 

3 (normal) mV 
Amplitude of the cortical average EPSP 

AC’ κ(t).AC  mV Amplitude of the cortical average EPSP in response to 
thalamic input (only on subpopulation P) 

BC 14 (optimized, pathological) 
50 (normal) mV 

Amplitude of the cortical average IPSP (GABAA,slow 
mediated currents) 

GC 16.5 (optimized, pathological) 
22 (normal) mV 

Amplitude of the cortical average IPSP (GABAA,fast 
mediated currents) 

ATh 3.5 mV Amplitude of the thalamic average EPSP 
BTh 30 mV Amplitude of the thalamic average IPSP (GABAA,slow and 

GABAB receptors) 
GTh 22 mV Amplitude of the thalamic average IPSP (GABAA,fast 

receptors) 
ARt 3.5 mV Amplitude of the reticular average EPSP 
𝜏𝑎𝑐  1/80 s Time constant of cortical glutamate-mediated synaptic 

transmission. 
𝜏𝑏𝑐  1/35 s Time constant of cortical GABA-mediated synaptic 

transmission (GABAA,slow receptors) 
𝜏𝑔𝑐  1/180 s Time constant of cortical GABA-mediated synaptic 

transmission (GABAA,fast receptors) 
𝜏𝑎𝑇ℎ  1/100 s Time constant of thalamic glutamate-mediated synaptic 

transmission 
𝜏𝑏𝑇ℎ  1/20 s Time constant of thalamic GABA-mediated synaptic 

transmission (GABAA,slow and GABAB receptors) 
𝜏𝑔𝑇ℎ  1/150 s Time constant of thalamic GABA-mediated synaptic 
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transmission  (GABAA,fast receptors) 
𝜏𝑎𝑅𝑡 1/100 s Time constant of reticular glutamate-mediated synaptic 

transmission 
𝜈0, 𝑒0, 𝑟 𝜈0 = 6 mV, 𝑒0 = 2.5 s-1, 

𝑟 = 0.56 mV-1 
Parameters of the nonlinear sigmoid function  
(transforming the average membrane potential to an 
average density of action potentials) 

𝐶𝑃−𝑃′  135 Collateral excitation connectivity constant 
𝐶𝑃′−𝑃  108 Collateral excitation connectivity constant 
𝐶𝑃−𝐼2

𝑐  33.75 P to 𝐼2
𝑐 connectivity constant 

𝐶𝐼2
𝑐−𝑃  33.75 𝐼2

𝑐 to P connectivity constant 
𝐶𝑃−𝐼1

𝑐  40.5 P to 𝐼1
𝑐  connectivity constant 

𝐶𝐼1
𝑐−𝐼2

𝑐  13.5 𝐼1
𝑐  to 𝐼2

𝑐  connectivity constant 
𝐶𝐼1

𝑐−𝑃  91.125 𝐼1
𝑐 to P connectivity constant 

𝐶𝑇𝐶−𝑃  120 TC to P connectivity constant 
𝐶𝑇𝐶−𝐼1

𝑐  30 TC to 𝐼1
𝑐 connectivity constant 

𝐶𝑇𝐶−𝐼2
𝑐  45 TC to 𝐼2

𝑐 connectivity constant 
𝐶𝑇𝐶−𝐼1

𝑅𝑡 20 TC to 𝐼1
𝑅𝑡 connectivity constant 

𝐶𝑇𝐶−𝐼2
𝑅𝑡 20 TC to 𝐼2

𝑅𝑡connectivity constant 
𝐶𝑃−𝐼1

𝑅𝑡  30 P to  𝐼1
𝑅𝑡   connectivity constant 

𝐶𝑃−𝐼2
𝑅𝑡  30 P to 𝐼2

𝑅𝑡connectivity constant 
𝐶𝑃−𝑇𝐶  20 P to TC connectivity constant 

𝐶𝐼1
𝑅𝑡−𝑇𝐶  35 𝐼1

𝑅𝑡 to TC connectivity constant 
𝐶𝐼2

𝑅𝑡−𝑇𝐶  5 𝐼2
𝑅𝑡  to TC connectivity constant 

μP1 0 Mean of nonspecific cortical input 
μP2 70 Mean of nonspecific subcortical input 
σP1 20.√6 Standard deviation of nonspecific cortical input 
σP2 35.√6 Standard deviation of nonspecific subcortical input 
STC 5 Stimulation impact on subpopulation TC 
SRt1 4 Stimulation impact on subpopulation IRt

1 
SRt2 4 Stimulation impact on subpopulation IRt

2 
fs 1Hz – 150Hz Frequency of the stimulation signal (pulse train) 

Afs 1 Stimulation signal amplitude 
Table A1. Model Parameters 
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Figure A2. The model’s block diagram in Simulink®. It is composed of four basic blocks: the three modules and the synaptic depletion block. 
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Figure A3. The implementation details of the CM block (thalamic module in the model’s formal description). 

 

 

 

Figure A4. The implementation details of the reticular nucleus block (reticular module in the model’s formal 
description). 
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Figure A5. The implementation details of the short term depression (by synaptic depletion) block. Upper panel, the 
thalamic firing is low-pass filtered (10 Hz). Then it is compared to a certain threshold (0.8 in this figure), 
representing the upper limit of permissible firing with no STD effects. This parameter has been tuned manually. The 
subsequent subsystem calculates the fluctuation coefficient. Lower panel, whenever the filtered thalamic firing 
overpasses the threshold a step response of duration transport delay (0.45 s) is input to an RC circuit. This 
calculates an exponentially decreasing function varying between 1 and 0.6 in order to represent the decrease in 
synaptic efficacy. This function denoted “fluctuation coeff” in the block’s diagram is dynamically multiplied with the 
thalamocortical EPSPs arriving at the principal cell population of the cortical module. It represents function κ(t) 
analytically detailed in chapter 3 section 2.2.2, and given in Table A1 in this appendix.  
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Appendix B. Experimental Signals (Part 2) 

 

Figure B1. Spontaneous epileptiform discharges in K148 
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Figure B2. Recorded LFP in K148 after 40s S1 stimulation pulses. Note the visual change in discharge patterns after 

a stimulation pulse of polarity S1.  
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Figure B4. Spontaneous epileptiform discharges in K155  
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 Figure B5. Recorded LFP in K155 after 50s S1 stimulation pulses. Note the damping of HPDs 

 
Figure B6. Recorded LFP in K155 after 50s S2 stimulation pulses. Note the recurrence of HPDs 
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Figure B7. Spontaneous epileptiform discharges in K168  
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Figure B8. Recorded LFP in K168 after 50s S1 stimulation pulses. No significantly visible effect. 

 
Figure B9. Recorded LFP in K168 after 50s S2 stimulation pulses. No significantly visible effect 
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Figure B10. Spontaneous epileptiform discharges in K171  
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Figure B11. Recorded LFP in K171 after 50s S1 stimulation pulses. 

 
Figure B12. Recorded LFP in K171 after 50s S2 stimulation pulses. Note the decrease in HPD generation.  
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A number of studies showed that deep brain stimulation (DBS) can modulate the activity
in the epileptic brain and that a decrease of seizures can be achieved in “responding”
patients. In most of these studies, the choice of stimulation parameters is critical to
obtain desired clinical effects. In particular, the stimulation frequency is a key parameter
that is difficult to tune. A reason is that our knowledge about the frequency-dependant
mechanisms according to which DBS indirectly impacts the dynamics of pathological
neuronal systems located in the neocortex is still limited. We address this issue using both
computational modeling and intracerebral EEG (iEEG) data. We developed a macroscopic
(neural mass) model of the thalamocortical network. In line with already-existing models,
it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical
cells and reticular neurons. The novelty was to introduce, in the thalamic compartment,
the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique
data set recorded in a patient (drug-resistant epilepsy) with a focal cortical dysplasia
(FCD). In this patient, DBS strongly reduced the sustained epileptic activity of the FCD
for low-frequency (LFS, < 2 Hz) and high-frequency stimulation (HFS, > 70 Hz) while
intermediate-frequency stimulation (IFS, around 50 Hz) had no effect. Signal processing,
clustering, and optimization techniques allowed us to identify the necessary conditions
for reproducing, in the model, the observed frequency-dependent stimulation effects.
Key elements which explain the suppression of epileptic activity in the FCD include: (a)
feed-forward inhibition and synaptic short-term depression of thalamocortical connections
at LFS, and (b) inhibition of the thalamic output at HFS. Conversely, modeling results
indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.

Keywords: DBS, thalamocortical model, computational, centromedian nucleus, FCD, premotor cortex, epilepsy

INTRODUCTION
Deep brain stimulation (DBS) for Parkinson’s disease (PD) and
other movement and psychiatric disorders—including dystonia,
tremor, and depression—is clinically used today as a conventional
therapeutic procedure for the alleviation of symptoms (Sillay and
Starr, 2009). Since the early 90s, neurologists also attempted to
apply DBS to other neurological disorders, typically to intractable
epilepsies in order to suppress—or at least dramatically reduce—
the occurrence of seizures [see recent review in Boon et al.
(2009)]. These studies followed early scientific evidence showing
potentially beneficial effects of DBS on epileptic neural dynam-
ics in animal models (Reimer et al., 1967; Hablitz, 1976) as well
as in patients (Cooper et al., 1973; Davis et al., 1982; Wright and

Abbreviations: CMN, Centromedian Nucleus; DBS, Deep Brain Stimulation;
EPSP, Excitatory Postsynaptic Potentials; FCD, Focal Cortical Dysplasia; FFI, Feed-
Forward Inhibition; GPi, Globus Pallidus; HFS, High Frequency Stimulation; iEEG,
Intracerebral EEG (depth electrodes); IFS, Intermediate Frequency Stimulation;
IPSP, Inhibitory Postsynaptic Potentials; LFP, Local Field Potential; LFPsFCD, Local
Field Potentials recorded in the FCD; LFS, Low Frequency Stimulation; NS,
No Stimulation; PMC, Premotor cortex; RtN, Reticular thalamic Nucleus, STD,
Short-Term Depression; STN, Subthalamic Nucleus.

Weller, 1983). However, contrary to PD, the optimal “antiepilep-
tic parameters” of DBS for reducing the frequency of seizures are
much more variable among patients and the number of non-
responders to stimulation still perplexes scientists. Moreover, in
responding patients, the fine tuning of stimulation parameters in
a patient-specific manner remains indispensable for maximizing
antiepileptic effects. On that account, many fundamental ques-
tions are frequently raised: where and when to stimulate, at which
frequency, at which current intensity, and with which current
waveform?

The answers to these questions remain bound to our cur-
rent, and still limited, understanding of the mechanisms by which
DBS modulates neuronal dynamics, whether normal or patholog-
ical. Today, the precise mechanisms of neuronal modulation by
DBS remain elusive. In addition, these mechanisms are controver-
sial as observed effects are sometimes opposite (McIntyre et al.,
2004b). Among the many studies reported over the last decade,
identified mechanisms regarding HFS include: local depolariza-
tion blockade by HFS (Beurrier et al., 2001), synaptic depres-
sion due to neurotransmitter depletion (Shen et al., 2003; Kim
et al., 2012), synaptic inhibition (Filali et al., 2004), disruption of
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the thalamocortical network’s dysrhythmia (McIntyre and Hahn,
2010; Kendall et al., 2011). As far as LFS is concerned, some stud-
ies described a transient synaptic depression that alters synaptic
transmission (Jiang et al., 2003; Speechley et al., 2007). Finally,
IFS is routinely used in the context of presurgical evaluation of
patients with drug resistant epilepsy to map epileptogenic and
functional brain areas. It has long been observed that this type of
stimulation is prone to trigger epileptic afterdischarges (Goddard,
1967). This brief overview shows that the spectrum of involved
mechanisms is very large and that distinct stimulation frequencies
trigger distinct cellular/network processes. More precise insights
into these processes will come with increased knowledge about
both biophysical and neurophysiological effects of stimulation
currents on underlying neuronal systems.

However, the access to cellular and network mechanisms
induced by DBS is rather difficult in animal models of epilepsy
and (almost) impossible in patients especially in large-scale sys-
tems like the thalamocortical loop. An alternative approach is
the use of computational models based on physiological data to
first reproduce and then explain changes in cerebral activity as
a function of stimulation conditions (stimulation site, intensity,
and frequency). This is precisely the objective of this study, with a
special focus on the distinct effects of DBS frequency on cortical
epileptic dynamics.

Our investigation combines computational modeling and clin-
ical data. We explored stimulation effects in a lumped-parameter
mesoscopic neural mass model of the thalamacortical loop,
inspired from previously published models (Suffczynski et al.,
2004; Lopes Da Silva, 2006; Roberts and Robinson, 2008; Crunelli
et al., 2011).

Although these models are lumped representations of under-
lying neuronal systems, they offer a number of advantages in the
context of this study. First, neural mass models include subpop-
ulations of principal excitatory cells and inhibitory interneurons.
Second, these models were shown to produce realistic activity as
observed in LFPs or EEG under normal (Freeman, 1973; Lopes
Da Silva et al., 1974) or epileptic conditions [review in Lytton
(2008); Wendling (2008)]. Third, main parameters (mean mem-
brane potential and firing rate) provide access to the investigation
of several stimulation-induced (patho)physiological mechanisms.
For instance, a neural mass model was successfully used in the
context of direct low-intensity pulse stimulation in the hippocam-
pus to explain the behavior of evoked responses during the
transition to seizures (Suffczynski et al., 2008).

In particular, using this model, we analyzed the neurophysio-
logical effects induced by direct thalamic stimulation on epileptic
cortical dynamics at low frequency (LF, < 20 Hz), intermediate
frequency (IF, 20–70 Hz) and high frequency (HF, 70–130 Hz).
Model parameters were tuned to reproduce a typical pathological
oscillatory activity observed in a neocortical lesion (focal corti-
cal dysplasia, or FCD) in a patient with drug-resistant epilepsy.
Intracerebral EEG (iEEG) signals observed during thalamic stim-
ulation (centromedian nucleus) of this patient revealed particu-
larly pronounced frequency-dependent modulation of the FCD
pathological activity. Therefore, this data set offered the unique
opportunity to identify key model parameters for which such
a frequency-dependent modulation could be reproduced and,

subsequently to get insights regarding the mechanisms under-
lying the modulatory effects, in the FCD, of thalamic stimu-
lation. Results revealed that LFS favors feed-forward inhibition
and short-term depression at the cortical level and that HFS
inhibits the thalamic activity, while IFS reinforces reticulotha-
lamic oscillations thus entraining cortical pathological epileptic
dynamics.

MATERIALS AND METHODS
In this section, we present (1) the neurophysiologically-relevant
computational model that we developed to study thalamic DBS,
(2) the real depth-EEG dataset used for model tuning and, (3)
the signal processing methods used for characterizing real and
simulated EEG signals.

MODEL OF THE THALAMOCORTICAL LOOP
In order to study the effects of thalamic DBS on cortical dynamics,
we implemented a physiologically-plausible mesoscopic model
of the thalamocortical loop. This model accounts for the aver-
age activity of both cortical and thalamic compartments which
include various types of neuronal populations interacting via
synaptic transmission. This modeling approach was first pro-
posed in the early 70s (Wilson and Cowan, 1972) and further
enriched in order to interpret electrophysiological recordings and
study brain dynamics, in the olfactory (Freeman, 1973) and the
thalamocortical (Lopes Da Silva et al., 1974) system, for instance,
as well as the dynamics of cortical oscillations (Nunez, 1974). This
approach was then developed by other research groups in the con-
text of state changes in brain dynamics (Wright et al., 1985), visual
evoked potentials (Jansen et al., 1993), dynamics of the human
alpha rhythm (Stam et al., 1999) or pathophysiological mecha-
nisms of ictal transitions in epilepsy (Wendling et al., 2000, 2002;
Suffczynski et al., 2001; Robinson et al., 2002; Liley and Bojak,
2005; Breakspear et al., 2006). Later, neural mass models were
also used in studies dealing with the connectivity among cortical
regions and the impact of model parameters on the power spec-
trum of EEG or MEG signals (Robinson et al., 1997; David and
Friston, 2003; Zavaglia et al., 2006).

Model architecture
The model architecture was inspired from previously published
models of the thalamocortical loop (Suffczynski et al., 2004; Lopes
Da Silva, 2006; Roberts and Robinson, 2008; Crunelli et al., 2011).
In a global view, the model was built of three interconnected
compartments: a cortical compartment, a thalamic compartment,
and a reticular compartment, in accordance with previously pub-
lished models (Figure 1A) and with anatomical data (Figure 1B).
Each compartment includes one or several subpopulation(s) of
neurons, either excitatory or inhibitory. Generally speaking, the
input/output functions of a considered subpopulation are rep-
resented by two mathematical equations that were respectively
named “pulse-to-wave” (input) and “wave-to-pulse” (output) by
Walter Freeman (Freeman, 1992). The former is a linear transfer
function that converts the presynaptic average density of affer-
ent action potentials into an average postsynaptic membrane
potential (PSP), either excitatory (EPSP) or inhibitory (IPSP).
The output function is a static nonlinear function (sigmoid) that
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FIGURE 1 | Model of the thalamocortical loop. (A) The model
architecture comprises three main compartments: cortical, thalamic, and
reticular. The cortical compartment includes three subpopulations: P
(pyramidal principal neurons), IC1 (soma- and proximal-dendrite targeting
interneurons mediating GABAA, fast currents), and IC2 , (dendrite-targeting
interneurons mediating GABAA, slow currents). The thalamic compartment
represents a generic thalamic nucleus including a subpopulation of
excitatory thalamocortical (TC) cells. The reticular nucleus (RtN)

compartment is made up of two GABAergic neuronal populations
(IRt

1 , GABAA, fast currents and IRt
2 , GABAA, slow ). Excitatory synaptic

transmission among the considered subpopulations is glutamatergic
(GLU). (B) Anatomical connectivity of the CMN, PMC, and RtN. This
diagram represents the anatomy of a particular thalamocortical loop
interconnecting the CM thalamic nucleus, the PMC, and the RtN.
Connectivity patterns were inferred from the literature. It is compatible
with the thalamocortical model diagram presented in (A).

provides the average pulse density of action potentials fired by
neurons depending on the sum of EPSPs and IPSPs at the input.
This non-linear function accounts for threshold and saturation
effects that take place at the somas and initial axonal segments of
considered cells.

Formally, the input function is represented by a second order
low-pass filter H(s) = W/(s+1/τw)2 (where s is the Laplace
variable). The impulse response of this filter is given by

h(t) = W

τw
· t · e−t/τw (1)

Parameters W and τw are tuned such that h(t) approxi-
mates the shape of real excitatory (glutamatergic) or inhibitory
(GABAergic) postsynaptic potentials (Lopes Da Silva et al., 1976).
The quantity W .τ2

w is the static gain of filter h. Lumped param-
eter τw (expressed in s) is linked to the kinetics of synaptic
currents. It determines both the rise time (trise = τw) and the
decay time (tdecay = 3.146τw) of the second order filter impulse
response h and it is usually adjusted with respect to the phys-
iological rise and decay times of actual PSPs (Molaee-Ardekani
et al., 2010). Given the time constantτw, parameter W can be used
to adjust the sensitivity of synapses (the maximal PSP amplitude
is W.e−1). An alternative implementation of the h function was
introduced in Bojak and Liley (2005) and is described in detail
in Molaee-Ardekani et al. (2013). It is based on a bi-exponential
pulse-to-wave function with two time constant parameters. This
implementation allows for the separate adjustment of the rise
and decay times of PSPs, and therefore a better approximation of
actual PSPs in some circumstances. Besides, the output function

is represented by S(v) = 2e0

1+er(v0−v) , where 2e0 is the maximum fir-

ing rate, v0 is the postsynaptic potential corresponding to a firing
rate of e0 and r is the steepness of the sigmoid.

The cortical compartment
The cortical compartment was inspired from an existing model
of the neocortex which proved its capability of generating both
normal and epileptiform activity. Readers may refer to Molaee-
Ardekani et al. (2010) for details. In brief, the cortical com-
partment integrates a subpopulation of pyramidal cells (P, W =
AC, τw = τac in Equation 1) and two inhibitory neuronal popu-
lations (Ic

1 and Ic
2, Figure 1A) representing soma- and proximal-

dendrite targeting interneurons (GABAA, fast currents, W =
GC, τw = τgc in Equation 1) and dendrite-targeting interneu-
rons (GABAA, slow currents, W = BC, τw = τbc in Equation 1),
respectively. Pyramidal collateral excitation was implemented as
in Jansen et al. (1993).

In addition, these three cortical subpopulations receive exci-
tatory input from the thalamic compartment. Therefore, feed-
forward inhibition (FFI) is represented in the model as the two
subpopulations of interneurons project to the pyramidal subpop-
ulation (see The Thalamic and Reticular Compartments paragraph
below).

Short-term synaptic depression (STD)
STD is present in the neocortex (Boudreau and Ferster, 2005). It
can be potentially involved in the context of direct stimulation
of the thalamus as TC cells directly project to cortical pyrami-
dal cells. Consequently, this mechanism was implemented at the
interface of thalamic/cortical compartments. To our knowledge,
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an implementation of STD in neural mass models has not been
proposed before.

In our model, we represented a modulatory effect of the
amplitude of the average EPSP (parameter AC ’) at the level of
subpopulation P depending on the density of action potentials
[dAP(t)] coming from the thalamic compartment. This modu-
latory effect was obtained by multiplying AC ’ by a time-varying
coefficient κ(t) ∈ [0.6, 1] where the function describing the evo-
lution of κ(t) was derived from Chung et al. (2002). This study
shows that: (i) cortical EPSPs drop by 40% under periodic low-
frequency intense thalamocortical (TC) cell firing and, (ii) this
drop in cortical EPSP is directly linked to transient depression of
thalamocortical monosynaptic projections to pyramidal neurons.

In line with these observations, STD was implemented as fol-

lows. First, signal d(t)
AP is low-pass filtered (cutoff frequency =

10 Hz) to restrict the STD effect to LFS. Then, from each time tη at

which the filtered signal d
f
AP(t) exceeds a firing rate equal to η, the

κ(t) coefficient undertakes an exponential decay given by κ(t) =
κη · e−t/τ where κη = κ(t−η ) and where t−η is the time instant that
just precedes tη. The decrease of κ(t) is limited to the time inter-
val [tη + 0.45 s] and cannot exceed 40%, total. Parameters η and
τ were set to 0.8 and 8 s, respectively.

The thalamic and reticular compartments
The thalamic compartment was limited to one population of exci-
tatory neurons (known as glutamatergic thalamocortical - TC
- cells) receiving glutamatergic EPSPs (W = ATh, τw = τaTh in
Equation 1) from cortical pyramidal cells (P) and GABAergic
IPSPs with slow (W = BTh, τw = τbTh in Equation 1) and fast
(W = GTh, τw = τgTh in Equation 1) kinetics from the reticular
compartment (RtN). Here, we increased the time constant (τbTh)
with respect to τbc to account for both GABAA, slow- and GABAB-
receptor mediated currents in a single variable. TC cells directly
target both cortical pyramidal cells and interneurons. The acti-
vation of these GABAergic interneurons subsequently promotes
inhibition of pyramidal cells after a di-synaptic delay. Therefore,
TC cells activation induces first an EPSP followed later on by an
IPSP on cortical pyramidal cells, resulting in feed-forward inhibi-
tion (FFI). The RtN compartment comprised two inhibitory sub-
populations, namely IRT

1 and IRT
2 which both receive excitatory

input from the cortical (W = ARt, τw = τaRt in Equation 1) and
the thalamic (W = ARt , τw = τaRt in Equation 1) compartments.

Simulation of stimulation effects
Stimulation currents induce a perturbation of the membrane
potential of neurons. At cellular level, this effect can be accounted
for by the “λE model”, which is well grounded in the bio-
physics of compartment models (Rattay, 1998; McIntyre et al.,
2004a; Manola et al., 2005, 2007) (see Miranda et al., 2009 for
a review) and supported by in vitro experiments (Bikson et al.,
2004; Frohlich and McCormick, 2010). This model �V ≈ �λ.�E
approximates the membrane potential variation �V as a linear
function of the electrical field �E induced by stimulation (�λ repre-
senting the membrane space constant). In our neural mass model,
the situation is less straightforward as space is not explicitly rep-
resented, conversely to detailed or mean-field models. However,
within a certain range of intensity values, it has been shown that

the membrane potential variation �V is modified in a linear way
with respect to the electrical field which is itself proportional
to the stimulation intensity (Bikson et al., 2004). These consid-
erations led us to also assume a linear variation for the mean
membrane potential as a function of stimulation intensity, in
stimulated sub-populations of neurons. In addition, stimulation
was represented by a train of periodic monophasic depolarizing
pulses. The pulse width was fixed to 1 ms (as in clinics). Pulses
were low-pass filtered to account for the average time of repolar-
ization (set to 4.8 ms) in stimulated sub-populations of cells. The
resulting stimulation signal was added to the mean membrane
potential of neuronal sub-populations included in the thalamic
(TC) and reticular (IRT

1 and IRT
2 ) compartments of the proposed

model. The depolarizing effect was weighted by three coefficients
STC , SRt1 and SRt2 (Table 1) accounting for the possibly different
stimulation impact at the thalamic and reticular level.

Model parameters, outputs, and implementation
Parameter values as well as physiological interpretation are pro-
vided in Table 1. Note that each synaptic connection in the model
is weighted by a connectivity constant denoted by CSP1−SP2 where
SP1 and SP2, respectively, denote the source and target subpopu-
lations. In addition, two Gaussian noise inputs pP(t)∼ N(μP, σP)
and pTC(t)∼ N(μTC, σTC) were used to represent nonspecific
inputs on pyramidal and thalamocortical cell subpopulations.
Finally, signals simulated at the level of pyramidal cells in the
cortical compartment and at the level of TC cells in the thalamic
compartment were chosen as model outputs. They correspond
to the sum of PSPs at each compartment respectively. The tem-
poral dynamics of these signals provide a good approximation
of actual LFPs. The model was implemented in Simulink®,
and all other complementary scripts were implemented
in MATLAB®.

REAL DATA FOR MODEL TUNING
We used real clinical data to tune the model into a func-
tioning mode which simulates pathological activity. The clin-
ical data set was limited to a unique patient who underwent
thalamic DBS during the presurgical intracerebral EEG explo-
ration (iEEG performed with depth electrodes implanted under
stereotaxic conditions) at the Epilepsy Surgery Unit, Rennes
University Hospital. This particular patient was chosen for
two main reasons: (1) the pronounced frequency-dependent
stimulation effects observed during his preoperative diagnos-
tic iEEG exploration at LF, IF and HF in addition to (2) the
existence of an epileptogenic zone in a limited area of the
premotor cortex (PMC).

In brief, this patient suffered from partial drug-resistant
epilepsy since the age of two. MRI scans and EEG recordings
pointed out the existence of a neuronal malformation known
as FCD in the PMC at the origin of seizures. This type of
cortical malformation is known for its epileptogenic features
like neuronal hyperexcitability and hypersynchronization and its
characteristic epileptiform discharges (continuous, rhythmic or
semirhythmic spikes, and polyspikes) (Avoli et al., 2003; Palmini,
2010) as shown in Figure 2C. Based on various clinical stud-
ies reporting the modulation of epileptic cortical activity by the
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Table 1 | Model parameters, values and interpretation.

Parameter Value Interpretation

AC 6 (optimized, pathological)
3 (normal) mV

Amplitude of the cortical average EPSP

AC’ κ(t).AC mV Amplitude of the cortical average EPSP in response to thalamic input (only on
subpopulation P)

BC 14 (optimized, pathological)
50 (normal) mV

Amplitude of the cortical average IPSP (GABAA,slow mediated currents)

GC 16.5 (optimized,
pathological)
22 (normal) mV

Amplitude of the cortical average IPSP (GABAA,fast mediated currents)

ATh 3.5 mV Amplitude of the thalamic average EPSP

BTh 30 mV Amplitude of the thalamic average IPSP (GABAA,slow and GABAB receptors)

GTh 22 mV Amplitude of the thalamic average IPSP (GABAA,fast receptors)

ARt 3.5 mV Amplitude of the reticular average EPSP

τac 1/80 s Time constant of cortical glutamate-mediated synaptic transmission.

τbc 1/35 s Time constant of cortical GABA-mediated synaptic transmission (GABAA, slow receptors)

τgc 1/180 s Time constant of cortical GABA-mediated synaptic transmission (GABAA, fast receptors)

τaTh 1/100 s Time constant of thalamic glutamate-mediated synaptic transmission

τbTh 1/20 s Time constant of thalamic GABA-mediated synaptic transmission (GABAA, slow and
GABAB receptors)

τgTh 1/150 s Time constant of thalamic GABA-mediated synaptic transmission (GABAA, fast receptors)

τaRt 1/100 s Time constant of reticular glutamate-mediated synaptic transmission

ν0, e0, r ν0 = 6mV, e0 = 2.5 s−1

r = 0.56mV−1
Parameters of the nonlinear sigmoid function (transforming the average membrane
potential to an average density of action potentials)

CP−P ′ 135 Collateral excitation connectivity constant

CP ′−P 108 Collateral excitation connectivity constant

CP−IC2
33.75 P to IC2 connectivity constant

CIC2 −P 33.75 IC2 to P connectivity constant

CP−IC1
40.5 P to IC1 connectivity constant

CIC2 −IC1
13.5 IC1 to IC2 connectivity constant

CIC1 −P 91.125 IC1 to P connectivity constant

CTC−P 120 TC to P connectivity constant

CTC−IC1
30 TC to IC1 connectivity constant

CTC−IC2
45 TC to IC2 connectivity constant

CTC−IRt
1

20 TC to IRt
1 connectivity constant

CTC−IRt
2

20 TC to IRt
2 connectivity constant

CP−IRt
1

30 P to IRt
1 connectivity constant

CP−IRt
2

30 P to IRt
2 connectivity constant

CP−TC 20 P to TC connectivity constant

CIRt
1 −TC 35 IRt

1 to TC connectivity constant

CIRt
2 −TC 5 IRt

2 to TC connectivity constant

μP1 0 Mean of nonspecific cortical input

μP2 70 Mean of nonspecific subcortical input

σP1 20.v6 Standard deviation of nonspecific cortical input

σP2 35.v6 Standard deviation of nonspecific subcortical input

STC 5 Stimulation impact on subpopulation TC

SRt1 4 Stimulation impact on subpopulation IRt
1

SRt2 4 Stimulation impact on subpopulation IRt
2

fs 1Hz – 150Hz Frequency of the stimulation signal (pulse train)

Afs 1 Stimulation signal amplitude

Model parameters used to reproduce LFPsFCD. Stimulation impact parameters STC , SRt1 and SRt2 are set to zero during the simulation of the NS scenario. These

parameters are held constant for all other stimulation scenarios.
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FIGURE 2 | Frequency-dependent stimulation effects: real data. iEEG
signals recorded during presurgical depth-EEG exploration in a patient with
drug-resistant epilepsy. (A) MRI data showing the FCD (focal cortical
dysplasia in the PMC) and the electrode trajectory. The red dot marks the
position of the depth electrode in the FCD. (B) Zoom on the FCD. (C) DBS
of the CMN modulated the pathological activity of the FCD in a
frequency-dependent manner. LFS (2 Hz) and HFS (≥70 Hz) suppressed
pathological oscillations. IFS (50 Hz) had no effects.

stimulation of the CM nucleus (Velasco et al., 1995, 1997, 2000,
2001, 2007), it was decided by neurologists and neursosurgeons to
implant a depth electrode in this nucleus, as potentially beneficial
for the patient who gave his informed consent.

During the presurgical exploration, the stimulation of the tha-
lamic CM nucleus (CMN) induced frequency-dependent modu-
lation of the pathologic activity of the FCD (Figure 2). Readers
may refer to (Pasnicu et al., 2013) for detailed information.
Interestingly, LFS (2 Hz, 4 mA) and HFS (70, 100, and 150 Hz,
0.8 mA) desynchronized the pathological activity of the FCD,
while IFS (50 Hz, 0.8 mA) barely affected it. These segments of

signals corresponding to either typical pathological activity or
modulated activity (depending on stimulation conditions) were
used to optimize the model parameters.

PROCESSING OF REAL AND SIMULATED SIGNALS
The use of signal processing techniques was necessary (i) to
quantify the above-described effects of stimulation in real iEEG
signals, and (ii) to define a feature-vector-based cost function for
model parameter optimization. Figure 3A illustrates the feature
extraction methodology. iEEG signals recorded in the FCD in
absence of stimulation (LFPsFCD) and under different stimulation
conditions were decomposed using an orthogonal matching pur-
suit algorithm [matching pursuit toolkit—MPTK—(Krstulovic
and Gribonval, 2006)]. First introduced in 1993 (Mallat and
Zhifeng, 1993), matching pursuit is signal processing algorithm
used to decompose any time series into a linear sum of wave-
forms selected from a predefined dictionary based on a mother
wavelet. To proceed, a proper multi-scalar dictionary of Gabor,
Fourier, and Dirac atoms was first defined to account for real
iEEG signal components (time-frequency atoms are waveforms
well localized in both the time and the frequency domains). In line
with (Krstulovic and Gribonval, 2006), the multi-scalar dictio-
nary was formed by translation in time and amplitude/frequency
modulation of atoms (defined as Gabor and Fourier functions
in our case), over ten different user-defined time scales (i.e. the
atom durations, ranging from 0.125 to 5 s). Then, the algorithm
provided a table of time-frequency parameters associated to the
detected atoms (atom type, central frequency, phase, scale, ampli-
tude, position). Identified atoms were reconstructed using the
extracted parameter table and their analytical expression. They
were then associated to a given frequency band depending on
their central frequency. These frequency bands corresponded to
the classical EEG bands as defined in normal adults (δ1 [0 –
1.9Hz], δ2 [1.9 – 3.4 Hz], θ1 [3.4 – 5.4 Hz], θ2 [5.4 – 7.4 Hz], α1

[7.4 – 10 Hz], α2 [10 – 12 Hz], β1 [12 –18 Hz], β2 [18 – 24 Hz],
γ [24 – 128 Hz]) (Figure 3A, blue). Finally, a 9D feature vector
VF was defined from the normalized energy distribution in these
frequency bands, itself computed as the sum of averaged (over
time) atom energies relative to the total signal energy (Figure 3A,
green).

MODEL OPTIMIZATION UNDER THE “NO STIMULATION” CONDITION
In order to simulate LFPsFCD, we optimized the excita-
tion/inhibition ratio of the cortical compartment. Thus, the
average EPSP/IPSP amplitude parameters of the cortical com-
partment {AC , BC , GC} were considered as free parameters
while all other model parameters were set to fixed values
(Table 1). The optimization method is illustrated in Figure 3B.
For each triplet {AC , BC , GC}, the feature vector VF, model of
the model’s output signal (cortical compartment’s LFP) was cal-
culated and compared to VF, real, i.e., the feature vector com-
puted from the average of the 20 feature vectors, each com-
puted on a 5 s signal segment of real LFPsFCD. Feature vectors
VF, model and VF, real were computed as described in section
Processing of Real and Simulated Signals. The optimization pro-

cedure aimed at finding the triplet
{�

AC,
�

BC,
�

GC

}
that min-

imizes a cost function simply corresponding to the Euclidean
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FIGURE 3 | iEEG signal processing. (A) Feature vector extraction. Input
signals were characterized using the matching pursuit (MP) method
(dictionary of Gabor, Fourier, and Dirac atoms). Parameters of detected atoms
(atom type, central frequency fc , scale, phase, amplitude, and position) are
extracted by MP from input signals. Detected atoms are then associated with
frequency bands (δ1 to γ) depending on their proper central frequency.
Sub-band (δ1 to γ) signals were reconstructed from the sum of corresponding

atoms, themselves obtained by fitting parameters into their analytic
expression (see top left: input and reconstructed signals). The normalized
energy vector [E(δ1) . . . E(γ)]/(E(δ1) + . . . + E(γ)] was chosen as the feature
vector for further optimization of model parameters. (B) The model’s free
parameters AC , BC , and GC were optimized by minimizing the distance
between the feature vector VF, model of the simulated cortical LFP and the
average of real feature vectors VF, real of LFPsFCD.

distance d(VF, real, VF, model) when parameters AC , BC , and GC

span pre-defined ranges of values according to a Brute-Force
procedure.

RESULTS
In this section, results regarding the identification of cellu-
lar mechanisms underlying the modulation of cortical activity
by thalamic DBS are reported. First, the model capability to
reproduce signals similar to those recorded from the FCD in
the patient was assessed, under two conditions (no stimula-
tion and during stimulation). Three mechanisms contributing
to frequency-dependant stimulation effects could be identified.
Then, simulations were performed to analyze the marginal or
joint contribution of these mechanisms at low, intermediate or
high frequency stimulation.

SIMULATION OF LFPsFCD UNDER NO STIMULATION CONDITION
As a first step, we verified the ability of the model to gen-
erate signals that resemble those recorded from the FCD in
the considered patient (LFPsFCD). This procedure, described in
sections Processing of Real and Simulated Signals and Model
Optimization Under the “No Stimulation” Condition, led us to
identify a minimal distance (Figures 4A–C) and thus an optimal

parameter vector
{�

AC,
�

BC ,
�

GC

}
= {6, 14, 16.5} for which sim-

ulated signals under the no stimulation condition have similar
features as compared with those of real signals (Figure 4D).

SIMULATION OF LFPsFCD UNDER STIMULATION CONDITIONS
Actual LFPsFCD recorded at various stimulation frequencies (2,
50, 70, 100, and 150 Hz) were first characterized using the
matching pursuit method described in section Processing of
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FIGURE 4 | Model parameter optimization. Normalized Euclidian
distance between VE, real and VE, model . Best fit (gray disk) between
simulated and real LFPsFCD was obtained for (A) AC = 6, (B) BC = 14,
and (C) GC = 16.5. (D) For these modified values of excitation and

inhibition, the simulated signal exhibits similar characteristics as the iEEG
signal recorded in the FCD. For standard values of excitation and
inhibition (AC = 3, BC = 50, GC = 22), the model generates background
EEG activity.

Real and Simulated Signals (Figure 3A). Results are shown in
Figure 5A where feature vectors of segments of LFPsFCD are
represented in a 3D space where axes correspond to merged typ-
ical EEG frequency bands (δ2 to θ1, θ2 to β1, β2 to γ). Results
show that the distribution of points in the 3D frequency space
is not random but clustered, indicating that the frequency con-
tent of LFPsFCD segments depends on the stimulation frequency.
In addition, some clusters are very close. This is typically the
case for i) the no stimulation (yellow) and the 50 Hz stimula-
tion conditions (red) on the one hand, and ii) the 70 Hz (violet)
and 150 Hz (cyan) stimulation conditions on the other hand.
To go beyond the qualitative clustering performed by visual
inspection of 3D plots, a K-means clustering algorithm imple-
mented in MATLAB and using a Mahalanobis distance was used
to automatically detect the three types of stimulation effects.
Initial centroids were randomly chosen. The optimal cluster-
ing that globally minimizes intra-cluster inertia is presented in
Figure 5B. LFPsFCD segments were automatically classified into
three subgroups. The first subgroup contains LFPsFCD segments
obtained for low-frequency stimulation (LFS). The second sub-
group gathers all segments recorded for high frequency stim-
ulations (HFS, > 70 Hz). And finally, in the third subgroup,
segments obtained under the no stimulation and the interme-
diate stimulation frequency (IFS, 50 Hz) conditions are merged

together, suggesting that this stimulation frequency does not
reduce the “epileptiform aspect” of the activity reflected in the
LFP.

Based on this characterization of local field potentials recorded
in the FCD (LFPsFCD), parameters STC , SRt1 and SRt2 were man-
ually tuned to lead the model to generate simulated signals which
have spectral characteristics similar to those of actual LFPsFCD.
Such a manual procedure was sufficient to reproduce stimulation
effects observed in one patient. However, extending the study to
a larger group of patients would have made imperative an auto-
mated parameter fitting procedure based on the spectral charac-
teristics of real EEG signals as in Rowe et al. (2004). Figure 5B
shows the projection of representative simulated LFPsFCD in the
3D frequency space (“M” triangles). As depicted, simulated sig-
nals obtained for LFS, IFS and HFS were close to corresponding
clusters obtained from real signals for the exact same computation
of feature vectors. Shown in Figure 5C, these representatives sim-
ulated LFPsFCD do not perfectly match actual signals. However,
qualitatively similar bifurcations were observed in the model
when the stimulation conditions are changed. Indeed, under the
no stimulation (NS) and the IFS condition the model generates
rhythmic slow oscillations (δ) with superimposed faster activity
(β, γ), as observed in real data. For LFS and HFS conditions,
strong modulation of this activity was also obtained in the model.
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FIGURE 5 | Characterization and classification of real and simulated

data. (A) 3-dimensional (3D) projection of feature vectors (VF, real )
corresponding to different stimulation conditions. This projection was
obtained by summing some coordinates of initial 9D feature vectors to
get 3D vectors [E(δ2)+E(θ1), E(θ2)+E(α1)+E(α2)+E(β1),
E(β2)+E(γ)]/ [E(δ1)+ · · · + E(γ)]. Each vector was then represented by a
point in the 3D space (δ2+θ1, θ2 + α1 + α2 + β1, β2 + γ).Three main
classes can be visually identified. (B) Clusters obtained using the

k-means algorithm (Mahalanobis distance). The three clusters correspond
to (i) low-frequency stimulation (LFS) effects (green squares), (ii) no
stimulation (NS) and intermediate-frequency stimulation (IFS) effects
(yellow squares), and (iii) high-frequency stimulation (HFS) effects (blue
squares). Simulated signals corresponding to the four types of scenarios
(NS, LFS, IFS, and HFS) were also projected in the same space
(triangles). (C) Two-second segments of real and simulated signal during
NS, LFS, IFS, and HFS.

At LFS, in the model, the slow wave activity was strongly reduced
but spike events occurred in the signals at the instant times of
stimulation, mimicking, to some extent, comparable events also
present in actual LFPsFCD. Finally, at HFS, slow oscillations (δ)
were abolished in the model which generates quasi-normal back-
ground activity. This simulated activity was also comparable to
real activity observed for HFS stimulation but disclosed less γ

activity. Note that these are the effects which were quantified in
Figure 5B. The qualitative optimization procedure of parame-
ters STC , SRt1, and SRt2 was then complemented by an evaluation
of parameter sensitivity aimed at studying the impact of ran-
dom changes affecting the parameter vector � = {AC , BC , GC ,
ATh, BTh, GTh, ARt} on simulated signals. Parameter vector �

determines the excitability properties in the three model com-
partments. As shown in Figure 6, results show that the simulated
signals obtained under the four stimulation conditions (NS, LFS,
IFS, HFS) stay “quite robust” (in the sense that waveforms are

conserved) when parameters stay in the range [
�

� ± ζ.
�

�] with
0 ≤ ζ ≤ 0.2.

MECHANISMS UNDERLYING FREQUENCY-DEPENDANT STIMULATION
EFFECTS
Three main mechanisms implemented in the model are required
to mimic actually observed effects of the CM nucleus stimula-
tion. These mechanisms are the following: (i) the presence of
feed-forward inhibition (FFI) at the level of thalamic projections

to the FCD, (ii) the presence of short-term depression (STD) at
the level of the thalamocortical glutamatergic synapses and, (iii)
the depolarization of RtN inhibitory interneurons targeting TC
cells.

This result raises an additional question: to what extent
the joint effect of these mechanisms is necessary to reproduce
frequency-dependant stimulation effects (LFS, IFS, and HFS).
In order to assess their individual contribution, we performed
simulations where each mechanism was either present in—or
removed from—the model (the model parameters remaining
unchanged). Results are displayed in Figure 7. First, they con-
firmed that both FFI and STD mechanisms are jointly nec-
essary in the model to suppress the epileptic activity in the
FCD when LFS is being used since the withdrawal of either
STD or FFI leads the model to generate epileptic activity at
LFS. Second, results indicated that the RtN inhibitory interneu-
rons targeting TC cells (both IRT

1 and IRT
2 subpopulations)

must be affected (i.e., depolarized) by the stimulation to obtain
a suppression of epileptic activity when HFS is being used,
as observed in the patient. Third, and interestingly, an unex-
pected effect was observed at IFS when the depolarization of
IRT
2 interneurons was removed from the model. Indeed, epilep-

tic activity was abolished in this case, which is really unlikely
to occur during actual stimulation as both subtypes of neurons
are expected to be affected by the direct stimulation of the CM
nucleus.
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FIGURE 6 | Evaluation of parameter sensitivity. Model output sensitivity to
variations of excitatory and inhibitory key parameters. Realizations of
parameter vector � = {AC , BC , GC , ATh, BTh, GTh, ARt } were randomly
(uniform law) generated around the optimal parameter vector �0 over a

variation domain defined by (1 ±ζ). �0. For ζ ≤ 0.2 (±20% variation),
stimulation effects are preserved in the model for (A) no stimulation,
(B) low-frequency stimulation, (C) intermediate-frequency stimulation, and
(D) high-frequency stimulation.

These results were complemented by a deeper analysis of the
thalamic output (i.e., the firing rate of TC cells) in response to
stimulation at low, intermediate and high frequency. Results are
provided in Figure 8. First, they showed that the thalamic out-
put dramatically differs depending on the stimulation frequency
(Figure 8A). Under the no stimulation condition, the firing rate
continuously oscillates around a certain value (referred to as
�, Figure 8A). At LFS, the firing rate was found to be lower,
except at the stimulation times where it abruptly and transiently
increased. At IFS, a balance was observed between time inter-
vals for which the TC firing is above and below �. Finally, at
HFS, the output of TC cells was found to be very low, i.e., sys-
tematically under the threshold �. From these observations, we
could define (i) two time intervals, �1 and �2, for which the
TC cells firing rate is either below �(�1) or above � (�2)
and (ii) a “high to low firing” ratio (HtoLR) which provides
an indication on the amount of time the TC cells spend fir-
ing (up state) relatively to the amount of time they do not fire
(down state). Figure 8B provides the evolution of the HtoLR
when the stimulation frequency is progressively changing from 0
to 150 Hz in the model. As depicted, these simulations indicated
that three stimulation frequency ranges have dramatic effects on
the firing of TC cells. First, from 0 to 20 Hz, the down state

is predominant. Then, an abrupt jump was observed around
22 Hz indicating that beyond this value, the firing rate dramat-
ically increased. Interestingly, from 55 to 65 Hz, a progressive
decrease of the HtoLR was observed. Then, after 70 Hz, the ratio
is equal to zero indicating that TC cells did not fire anymore.
Finally, in order to relate the thalamic activity with the corti-
cal activity, we plotted the phase portraits (TC cell firing vs.
cortical LFP) as illustrated in Figure 8C. Results confirmed the
visual inspection of signals simulated at the two sites. For the
no stimulation (NS) and for the intermediate frequency stimu-
lation (IFS) conditions, phase portraits were found to be quite
similar. They indicated the presence of mixed slow/fast oscilla-
tions in both signals. For the low frequency stimulation (LFS)
condition, oscillations in the simulated LFP in the FCD were
reduced. They came along with short-duration, abrupt and rhyth-
mic augmentations of the TC firing corresponding to stimulation
pulses. Finally, for the high frequency stimulation (HFS) condi-
tion, oscillations in both types of activity stayed confined to small
amplitude values.

DISCUSSION
We modeled the thalamocortical loop in order to investigate
frequency-dependent effects of electrical stimulation performed
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FIGURE 7 | Conditions to reproduce frequency-dependent

stimulation effects. Model output in the case where one of the
implemented mechanisms (FFI, STD, depolarization of IRt

2 , and IRt
1 „

respectively) is removed at a time. LFS effects are not reproduced
when the model does not account for FFI and STD. HFS effects

require the depolarization of both reticular populations IRt
2 and IRt

1 .
Suppression of epileptic activity is observed at IFS when IRt

2
interneurons are removed. Red dotted lines indicate situations where
simulated signals do not match real ones for given stimulation
condition.

in the thalamus and aimed at modulating the neocortical activ-
ity. We chose to elaborate our model at a mesoscopic level, i.e.,
intermediate between microsocopic and macroscopic.

Regarding the model architecture, we followed a similar
approach to that used in previously proposed models of the tha-
lamocortical loop (Robinson et al., 2002; Suffczynski et al., 2004;
Breakspear et al., 2006; Roberts and Robinson, 2008; Marten et al.,
2009; Crunelli et al., 2011). Our model includes three main com-
partments: cerebral cortex, reticular nucleus and thalamic relay.
Subpopulations of neurons and interneurons located in these
three structures interact via excitatory and/or inhibitory synaptic
connections. The novelty with respect to aforementioned stud-
ies is threefold. First, we modified the cortical compartment in
order to better approximate the temporal dynamics of epileptic
signals recorded in the FCD. This modification consisted in the
use of two types of interneurons (mediating GABAergic IPSPs
with slow and fast kinetics on cortical principal cells), as reported
in a previous study (Molaee-Ardekani et al., 2010). Second, our
model accounts for the direct effects of electrical stimulation. At
this stage, we used the �V ≈ �λ.�E assumption according to which
the perturbation of the mean membrane potential of neurons
is a linear function of the electrical field magnitude induced by
bipolar stimulation. This “λE” assumption was already used in
neural mass models in the context of low-intensity direct hip-
pocampal stimulation to anticipate seizures (Suffczynski et al.,
2008) as well as in the analysis of the stimulus-response relation-
ship of DBS in healthy animals (Adhikari et al., 2009). However,
it is worth mentioning that in our model, the three subtypes of
neurons (TC cells and both subpopulations of inhibitory neurons
in the RtN) are depolarized by the stimulation, as suggested in

(Molaee-Ardekani et al., 2013) and conversely to (Adhikari et al.,
2009) where only principal cells are impacted. And third, our
model includes two well-known mechanisms at the cortical level:
feed-forward inhibition (FFI) and short-term depression (STD).

As in any modeling approach, our approach has some limita-
tions. First, the chosen modeling level does not allow for analyzing
sub-cellular mechanisms involved in stimulation-evoked changes.
Similarly, it does not account for direct activation of axons by
stimulation versus somatic inhibition (McIntyre et al., 2004b),
nor for the mechanisms of orthodromic/antidromic propaga-
tion of action potentials due to stimulation (Degos et al., 2005;
Hammond et al., 2007; Dorval et al., 2008). Second, a strong
assumption in the type of model we used (neural mass) is related
to the intrinsic synchronization among neurons included in a
given sub-population. This assumption does not allow for rep-
resenting either de- or weakly-synchronized firing patterns that
may be observed during epileptic activity, in particular during
high frequency oscillations that can be encountered in FCDs
(Brázdil et al., 2010). Nevertheless, we could accurately repro-
duce the abnormal rhythms generated in the FCD suggesting that
main pyramidal cells have a relatively synchronized activity in
this epileptogenic tissue. Third, regarding plasticity-related mech-
anisms, we only implemented short-term effects (i.e., STD) and
neglected long-term plastic changes that may be induced by DBS
(Shukla et al., 2013).

Despite these limitations, we could identify a number of
mesoscopic factors which could explain the frequency-dependent
mechanisms of thalamic stimulation. The model was tuned using
electrophysiological data recorded in a patient in whom the cen-
tromedian nucleus (CMN) stimulation was particularly efficient
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FIGURE 8 | Model behavior as a function of the stimulation

frequency. (A) The firing rate of TC cells depends on the
stimulation frequency (�1: time interval for which this firing is
lower than a threshold �, �2: time interval for which this firing is

higher than �). (B) Evolution of the “High to Low firing Ratio”
(HtoLR) as a function of stimulation frequency. (C) Phase portraits
(FCD activity vs. CM firing) for the four stimulation conditions (NS,
LFS, IFS, and HFS).

to reduce the epileptic activity of a FCD located in the premo-
tor cortex, in a frequency-specific manner. The main findings are
summarized in Figure 9.

“NO STIMULATION” (NS) CONDITION
In the model, under the NS condition, excitation among pyra-
midal cells had to be increased and inhibition had to be reduced
in the cortical compartment for producing “pathological” oscilla-
tory rhythms, as observed in the FCD. The thalamocortical loop
was found to be responsible for these pathological dynamics,
characteristic of FCDs. These findings are in line with histologi-
cal studies showing that these typical oscillations are generated in
altered brain tissue, where inhibition is partially deteriorated or
dysfunctioning (Calcagnotto et al., 2005), and where excitation is
heavily increased (Avoli et al., 2003). In addition to neuron alter-
ations in the dysplastic tissue (Sisodiya et al., 2009), FCD keeps
sufficient projections to—and input from—other brain struc-
tures to propagate pathological dynamics (Avoli et al., 2003). As
mentioned, the presence of connections with subcortical struc-
tures was a necessary condition in the model for producing

pathological oscillations resembling those actually recorded in the
FCD (Figure 9A).

LOW-FREQUENCY STIMULATION (LFS) CONDITION
For the low-frequency stimulation (LFS, f < 20 Hz) condition,
two mechanisms were found to play a major role for the abor-
tion of epileptic activity in the FCD: short-term depression (STD,
i.e., decreased excitatory synaptic efficacy in thalamus-to-cortex
connections) and feed-forward inhibition (FFI, i.e., excitation of
inhibitory cortical interneurons by TC cells) (Figure 9B).

STD was reported in previous studies concerning cortical
adaptation to thalamic stimulation, and suggesting that electrical
LFS of TC cell axons in vivo resulted in a 40% reduction in cor-
tical EPSPs (Chung et al., 2002). In the same context, LFS trains
in adult anaesthetized rats provoked transient long-term depres-
sion of thalamocortical synapses; this was measured by up to 40%
drop in cortical EPSPs after LFS trains and under the effect of
GABA antagonist (Speechley et al., 2007).

As mentioned above, the LFS effects could not be repro-
duced by the model without incorporating also FFI. Actually,
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FIGURE 9 | Frequency-dependent mechanisms underlying DBS. (A)

Under the no stimulation (NS) condition, the thalamocortical loop is
responsible for pathological oscillatory rhythms observed in the FCD. (B) For
low-frequency stimulation (LFS), feed-forward inhibition (FFI, i.e., excitation of
inhibitory cortical interneurons by TC cells) and short-term depression (STD,
i.e., decreased excitatory synaptic efficacy in thalamus-to-cortex connections)
was found to play a major role for the abortion of epileptic activity in the FCD.

(C) For the intermediate-frequency stimulation (IFS) condition, thalamic
output is reinforced (increase of TC cells firing) leading to an increase of the
average excitatory post-synaptic potential (EPSP) on cortical pyramidal cells
and to no “anti-epileptic” effect. (D) For high-frequency stimulation (HFS), the
direct and sustained excitation of reticular nucleus (RtN) interneurons leads
to dramatic decrease of TC cells firing rate and to a suppression of epileptic
activity.

thalamocortical ascending fibers directly target pyramidal neu-
rons as well as cortical GABAergic interneurons inducing EPSPs
in both cell types (Pouille and Scanziani, 2001). In the model,
while less efficient (STD) thalamic EPSPs arrive directly onto
pyramidal neurons, IPSPs induced by thalamic stimulation also
arrive on pyramidal neurons (FFI) lagging by 1–2 ms. This short
latency between the onset of thalamocortical excitation and
the onset of feed-forward inhibition presents a temporal “win-
dow of opportunity” for pyramidal cells to integrate excitatory
and inhibitory inputs, thus keeping the transmembrane poten-
tial below firing threshold. In the literature, neuroanatomical
and neurophysiological studies (Isaacson and Scanziani, 2011)
showed the functional importance of FFI in regulating corti-
cal dynamics by controlling cortical excitability (Gabernet et al.,
2005). Our study suggests that LFS regulates cortical excitability
by a dual mechanism of FFI and STD (Figure 9B).

INTERMEDIATE-FREQUENCY STIMULATION (IFS) CONDITION
For the intermediate-frequency stimulation (IFS, 20 <

f < 70 Hz) condition, results indicated that the thalamic
output is reinforced (increase of TC cells firing) and leads to an
increase of the average excitatory post-synaptic potential (EPSP)
on cortical pyramidal cells (Figure 9C). This effect corresponds
to an increase of the spatiotemporal summation of unitary
EPSPs. In this case, both the cortical excitability and the gain in
the excitatory thalamocortical loop is increased, leading to “no
anti-epileptic” effect. We did not find much studies using DBS
stimulation in the intermediate frequency range of (20–60 Hz) in
the context of epilepsy. Nevertheless, it is noteworthy that 50 Hz
stimulation frequency is classically used during the presurgical
evaluation of patient with intractable partial epilepsy in order to

trigger seizures and delineate the epileptogenic zone (Talairach
et al., 1974; Jayakar et al., 1992). The same frequency range is also
known to provoke afterdischarges and was actually used in the
kindling model of epilepsy (Goddard, 1967; Racine, 1972).

HIGH-FREQUENCY STIMULATION (HFS) CONDITION
Finally, for the high-frequency stimulation (HFS, f > 70 Hz) con-
dition, the direct and sustained excitation of reticular nucleus
(RtN) interneurons leads to strong inhibition of TC cells and
thus to dramatic decrease of their firing rate. Despite the fact
that TC neurons are also affected by stimulation, the response
of reticular GABAergic neurons to stimulation and the higher
efficiency of GABA-mediated currents ensure that IPSPs over-
ride EPSPs on TC cells. In this case, the reduced excitatory
input to cortical pyramidal cells also leads to a suppression of
epileptic activity (Figure 9D). This result corroborates reported
stimulation studies where HFS (>100 Hz) was associated with
significant decrease in epileptiform discharges in vitro, and reduc-
tion in seizure frequency in responding patients (Velasco et al.,
2006; Fisher et al., 2010). This hypothesis is in line with recent
findings suggesting that HFS of the globus pallidus (GPi) in dys-
tonia patients decreased its firing by stimulation-evoked GABA
release from afferent fibers and thereby the enhancement of
inhibitory synaptic transmission by HFS (Liu et al., 2012).
Similarly, HFS (100 Hz–130 Hz) of the STN neurons in vitro
showed a suppression of the activity of the majority of neu-
rons by the reinforcement of inhibitory responses (Filali et al.,
2004). Other HFS studies also provided evidence on the inhibi-
tion of GPi output during HFS in human patients (Dostrovsky
et al., 2000) as well as the disruption thalamocortical network’s
dysrhythmia (McIntyre and Hahn, 2010; Kendall et al., 2011).
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CONCLUSION
In epilepsy research, it is well-admitted that there is, unfor-
tunately, a lack of tangible results regarding the effects of
electrical stimulation in the brain. Therefore, the very crucial
issue of choosing the “optimal” stimulation parameters remains
unsolved, whatever the stimulation procedure. Although com-
putational models are always based on a number of simplifying
assumptions, we think that they provide an efficient framework to
(i) account for the many and essential factors that may intervene
during stimulation procedures and (ii) analyze the links between
these factors in a formal manner. This approach is particularly
fruitful when models are well grounded in experimental/clinical
data (Wendling et al., 2012). This is somehow a weak point of this
study since we could make use of data sets recorded in one patient
only. However, it should be mentioned that these very informa-
tive data sets stay relatively rare since many conditions have to be
met (patient candidate to surgery, FCD, electrodes positioned in
appropriate structures).

At this stage, the face value of the model is satisfactory. The
next step is obviously to test the model predictions using animal

models. Experiments can be undertaken in rodents with elec-
trodes implanted in the cerebral cortex and in the thalamus.
First, we could start with control animals to assess the modula-
tion of cortical rhythms during/after direct thalamic stimulation
at various frequencies and for controlled vigilance states (sleep,
awake, resting, exploratory). In these controls, some drugs can
be used to alter some parameters related to synaptic transmission
(in a more or less specific manner) which have a correspondence
in the model, on the other hand. Then, refined experimental
models could be introduced to get closer to the epilepsy context
including models of developmental dysplastic lesions [see review
in Schwartzkroin and Wenzel (2012)]. Hopefully, this combined
computational/experimental approach will help us to disclose
some of the highly intricate effects of DBS either at local or at
network level.
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Abstract

Epileptic seizures, epileptic spikes and high-frequency oscillations (HFOs) are recognized as three electrophysiological markers of
epileptogenic neuronal systems. It can be reasonably hypothesized that distinct (hyper)excitability mechanisms underlie these
electrophysiological signatures. The question is ‘What are these mechanisms?’. Solving this difficult question would considerably
help our understanding of epileptogenic processes and would also advance our interpretation of electrophysiological signals. In this
paper, we show how computational models of brain epileptic activity can be used to address this issue. With a special emphasis on
the hippocampal activity recorded in various experimental models (in vivo and in vitro) as well as in epileptic patients, we confront
results and insights we can get from computational models lying at two different levels of description, namely macroscopic (neural
mass) and microscopic (detailed network of neurons). At each level, we show how spikes, seizures and HFOs can (or cannot) be
generated depending on the model features. The replication of observed signals, the prediction of possible mechanisms as well as
their experimental validation are described and discussed; as are the advantages and limitations of the two modelling approaches.

Introduction

Drug-resistant partial epilepsies refer to a group of chronic neurolog-
ical disorders that cannot be treated pharmacologically. By definition,
partial epilepsies are characterized by recurrent seizures generated in a
focal or multi-focal zone relatively well circumscribed in the brain and
often referred to as the epileptogenic zone (EZ). From the clinical
point of view, the accurate delineation of the EZ is the essential
diagnostic step in prospect of surgery, which is, to date, the only
therapeutic option that can lead to a total suppression of seizures.
In some specialized Epilepsy Surgery Units, a direct exploration of

brain regions is performed using intracerebral (i.e. depth) electrodes
[stereo-electroencephalogram (EEG) or depth-EEG recordings; Ban-
caud & Talairach, 1973]. This method has long been considered as the
‘gold standard’ for EZ identification. It provides data about both
interictal and ictal brain activity with an excellent temporal resolution
in the form of time series signals corresponding to local field potentials
(LFPs) generated by explored regions.
Although the direct recording of LFPs from brain regions has

dramatically advanced the assessment of the EZ, the demand is still
high for diagnostic methods allowing for better interpretation of these
signals, in terms of underlying pathophysiological mechanisms
(Stefan et al., 2006).
Generally speaking, three main types of electrophysiological events

are observed in depth-EEG signals recorded from the epileptic brain,

namely seizures, spikes and high-frequency oscillations (HFOs). In
partial epilepsies, seizures involving temporo-mesial and ⁄ or neocortical
structures are most often characterized by a tonic onset phase (so-called
rapid discharges) followed by a clonic phase marked by a highly
rhythmic activity synchronized across vast and distant regions. Rapid
discharges (classically in the upper beta and gamma bands of the EEG,
i.e. 25–100 Hz) have long been considered as the hallmark of the EZ
(Talairach & Bancaud, 1966; Fisher et al., 1992; Wendling et al., 2003;
Bartolomei et al., 2008). Epileptic spikes have also been recognized as
potentially useful markers of epileptogenic areas as these transient
paroxysmal events are being generated in very early stages in
experimental models of epileptogenesis (White et al., 2010) and are
very often (if not always) observed during interictal periods in patients
(review in Rodin et al., 2009). However, the diagnostic value of
epileptic spikes remains controversial as their relation to seizures is not
elucidated yet (Hufnagel et al., 2000; Asano et al., 2003; Avoli et al.,
2006; Marsh et al., 2010; Staley et al., 2011). Finally, over the past
decade, the significance of HFOs in epilepsy, especially fast ripples
(FRs), has been a topic of increasing interest (recent review in Zijlmans
et al., 2011). FRs are transient low-amplitude fast oscillations (250–
600 Hz) observed in signals recorded with intracerebral electrodes.
Seminal studies reported the presence of FRs in experimental models of
epilepsy (Bragin et al., 1999b), as well as in the human epileptic brain
(Bragin et al., 1999a). FRs were also hypothesized as unique to brain
areas capable of generating spontaneous seizures (Jacobs et al., 2009),
and their clinical value has been confirmed in recent papers (Jacobs
et al., 2010; Worrell & Gotman, 2011).
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In the light of results reported in aforementioned studies, one can
reasonably assume that seizures, epileptic spikes and HFOs corre-
spond to distinct mechanisms of (hyper)excitability within underlying
neuronal networks that generate observed electrophysiological signals.
The question is ‘Which ones?’. Solving this difficult question would
considerably help our understanding of epileptogenic processes and
would also advance our interpretation of the above-mentioned
electrophysiological signatures of these processes.

In this paper, we address this issue through the use of computational
models of brain epileptic activity developed in our team. But our intent
is to go beyond the simple review of models we introduced over the
past 10 years. For the first time, we confront results and insights we
got from such models lying at different levels of description, namely
macro- and microscopic. At each level, we show how spikes, seizures
and HFOs can (or cannot) be generated depending on the model
features. With a special emphasis on the hippocampal activity, the
replication of observed signals, the prediction of possible mechanisms
and their experimental validation are described and discussed; as are
the advantages and limitations of the two modelling approaches.

Materials and methods

Experimental data recorded from hippocampus

The objective of this section is to present the electrophysiological
features of epileptic events under study (epileptic spikes, FRs and
seizures). The events shown in this study were extracted from
electrophysiological data collected in animal models (in vivo, in vitro)
and in a patient with temporal lobe epilepsy (TLE), as described
below.

In vivo data

Experiments were conducted on 80 ± 5-day-old C57BL ⁄ 6J (B6) male
mice. All animal procedures were conducted in accordance with the
European Communities Council Directive of 24 November 1986
(86 ⁄ 609 ⁄ EEC). Mice were stereotaxically injected under general
anaesthesia (chloral hydrate 400 mL ⁄ kg i.p.) with low dose of kainic
acid (KA; 50 nL of a 20 mm solution in 0.9% NaCl) into the right
dorsal hippocampus (anteroposterior = )2; mediolateral = )1.5; dor-
soventral = )2 mm), with bregma as reference according to the
Franklin & Paxinos atlas (Paxinos & Franklin, 2001). Control mice
were injected with saline solution under the same protocol. After
intrahippocampal injection, all mice were implanted with a bipolar
electrode inserted into the injected hippocampus (anteroposteri-
or = )2; mediolateral = )1.5; dorsoventral = )1.9 mm), and two
monopolar surface electrodes were placed over the right frontoparietal
cortex and over the cerebellum (reference electrode). LFPs were
recorded on a video-EEG monitoring system (Deltamed�). Signals
were sampled at 2048 Hz (16 bits). Upon completion of the
experiments, histological analyses were performed to verify the
location of the KA injection, the location of the hippocampal electrode
and the pattern of neuronal loss ⁄ dispersion of dentate gyrus granule
cells. This mouse model of TLE was previously described (Suzuki
et al., 1995) to reproduce histological characteristics similar to those
found in hippocampal sclerosis described in human mesial TLE, such
as cell loss, granule cell dispersion, astrogliosis and mossy fibre
sprouting (Bouilleret et al., 1999). Moreover, studies of epileptogen-
esis in this model revealed that sporadic epileptic spikes change as a
function of time as the brain evolves towards the chronic epileptic
state characterized by the repetition of spontaneous seizures (Huneau
et al., 2010).

Hippocampal organotypic slices

Hippocampal slice cultures were prepared from 6-day-old Wistar rats as
described previously (Gahwiler et al., 1997), following a protocol
approved by the Veterinary Department of the Canton of Zurich. Briefly,
hippocampi were dissected and transverse slices (375 lm thick) were
maintained on a glass coverslip in individual tubes filled with culture
medium. Each tube was then placed in a roller drum in an incubator at
36 �C for 2 weeks. After 2–3 weeks in vitro slices were transferred to a
recording chamber on an upright microscope (Axioscope FS, Zeiss,
Oberkochen, Germany). Hippocampal slice cultures are a particularly
valuable in vitro model to study some cellular mechanisms of epilepsy.
Because of the inevitable damaging of axons during the preparation of
acute brain slices (ex vivo), many projection pathways are kept more
intact in cultured slices as compared with ex vivo slices. Indeed, during
the preparation of brain slice culture, the density of synapses first
decreases just after the brain cut, but then synaptic structures gradually
redevelop (in situ synaptogenesis). Therefore, the degree of connectivity
between neurons in culture increases with time. It is more prominent than
that of acute brain slices and it was shown to be closer to the in vivo
situation (Gahwiler et al., 1997). The hippocampal circuitry within these
cultures is well preserved and is able to support synchronized network
activity. The cellular network develops in such a way that synaptic
inhibition and excitation are balanced appropriately (Thompson et al.,
2005). Thus, the high degree of interneuronal and pyramidal connectivity
in organotypic slice cultures, and the spontaneous synaptic activity,
facilitate the induction of epileptic activity. Indeed, applications of
convulsivants, including bicuculline, picrotoxin, tetraethylammonium, or
low Mg2+- or high K+-containing saline, can trigger both interictal and
ictal-like burst discharges that are synchronized throughout large cell
populations (Scanziani et al., 1994). These bursts appear essentially
identical to those evoked in vivo or in acutely prepared hippocampal
slices (Thompson et al., 2005).
Both intracellular and extracellular recordings were performed to

measure interictal- and ictal-like activity in organotypic slices.
Intracellular activity of CA1 pyramidal neurons was recorded in the
whole cell configuration of the patch-clamp technique. Recording
pipettes (3–6 MX) were filled with an intracellular solution containing
the following (in mm): K-gluconate, 135; KCl, 4; HEPES, 10;
Na2-phosphocreatine, 10; Mg-ATP, 4; Na-GTP, 0.3; pH 7.2,
291–293 mOsm. Simultaneous field recordings were obtained with
an extracellular electrode [glass pipette filled with normal artificial
cerebrospinal fluid (ACSF), 1 MX] positioned in CA1 stratum
radiatum. The field recording pipette was placed into the same area
as the patch-clamp pipette (4–6 MX). Current-clamp mode was used
and signals were amplified with an Axopatch 200B amplifier (Axon
Instruments, Foster City, CA, USA), filtered at 2 kHz, stored and
visualized with pClamp9 software (Axon Instruments). Signals were
analogue-filtered at 10 kHz and sampled at 100–300 kHz. Stimulation
(100 ls, 10–40 lA, every 10 s) was applied with a glass pipette filled
with ACSF placed in CA3 pyramidal layer. When requested,
recordings were performed continuously in gap-free mode in order
to obtain an entire period of spontaneous ictal- and interictal-like
activity. Slices were superfused continuously at a rate of 1–2 mL ⁄ min
with normal ACSF equilibrated with 95% O2 ⁄ 5% CO2 containing (in
mm): NaCl, 124; KCl, 2.5; NaHCO3, 26; NaH2PO4, 1.25; glucose, 10;
CaCl2, 3; MgCl2, 2; pH 7.4, at a bath temperature of 34 �C.

Guinea-pig-isolated brain preparation

For the purpose of this study, we used data recorded from an isolated
brain preparation that is an acute model of temporal lobe ictogenesis
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(courtesy of Dr M. de Curtis, Istituto Neurologico Carlo Besta, Milan,
Italy). Brains of Hartley guinea-pigs (150–200 g; Charles River,
Calco, Italy) were isolated and maintained in vitro according to the
standard procedure described elsewhere (Muhlethaler et al., 1993;
Avoli et al., 2006). In brief, animals were anaesthetized with sodium
tiopental (125 mg ⁄ kg i.p., Farmotal; Pharmacia) and transcardially
perfused with a cold (4–10 �C) oxygenated (95% O2, 5% CO2)
complex saline solution composed of (in mm): NaCl, 126; KCl, 3;
KH2PO4, 1.2; MgSO4, 1.3; CaCl2, 2.4; NaHCO3, 26; glucose, 15;
HEPES, 2.1; 3% dextran M.W. 70 000 (pH 7.1). Brains were rapidly
dissected out and transferred in the recording chamber where they
were perfused through the basilar artery with the same solution
(5.5 mL ⁄ min, pH 7.3, 15 �C). The experiments were performed at
32 �C after gradually raising the temperature by steps of 0.2 �C ⁄ min.
Extracellular recordings were performed in the hippocampus (CA1
region) with 16-channels silicon probes (100 lm contact separation;
CNCT, University of Michigan, Ann Arbor, MI, USA). Probes were
inserted in the tissue as perpendicular as possible to the lamination of
the structure according to a guinea-pig stereotaxic atlas. At the end of
the electrophysiological experiments, electrolytic lesions were made
by passing a 30 lA current for 30 s between the two deepest contacts
of the silicon probes. Brains were then fixed and cut with a vibratome
in 75–100-lm-thick coronal sections to verify the position of the
electrodes. The experimental protocol was reviewed and approved by
the Committee on Animal Care and Use, and by Ethics Committee of
the Istituto Nazionale Neurologico.

Clinical data

The intracerebral stereo-EEG recording used in this study was
performed in a patient with mesial TLE. For simplicity, only signals
recorded from contacts located in the hippocampus (Amon’s horn) are
shown and analysed in the present study. It is worth mention that these
signals are very representative of those recorded from the hippocam-
pus in mesial TLE. Signals were recorded on a 128-channel
Deltamed� system and were sampled at 1024 Hz. The positioning
of electrodes was determined from available non-invasive information
and hypotheses about the localization of the patient’s EZ. Implantation
accuracy was per-operatively controlled by telemetric X-ray imaging.
A post-operative computer tomography (CT) scan without contrast
product was used to verify both the absence of bleeding and the
precise 3D location of electrode contacts. After stereo-EEG explora-
tion, intracerebral electrodes were removed, and magnetic resonance
imaging (MRI) was performed on which the trajectory of each
electrode remained visible. Finally, a CT-scan ⁄ MRI data fusion was
performed to anatomically locate each contact along each electrode
trajectory. The stereo-EEG exploration was carried out as part of
normal clinical care of the patient who gave informed consent about
the use of data for research purposes.

Electrophysiological features of epileptic spikes, FRs and
seizures

Sporadic epileptic spikes could be observed in the above-described
experimental models (in vivo and in vitro), as well as in depth-EEG
signals recorded from a patient with mesial TLE. Typical examples are
shown in Fig. 1A. As depicted (first three boxes), these spikes
recorded from the hippocampus have common morphological fea-
tures. Their onset is characterized by an initial fast component (the
spike) followed by a slow negative (w.r.t. baseline) wave. The
duration (from onset to baseline return) is of the same order of

magnitude (about one or two hundreds of ms) in the three considered
situations (mouse in vivo, rat in vitro and human). As described in the
Results, we could reproduce the spike shape, both in the lumped-
parameter and in the detailed model of the hippocampus (Fig. 1A,
fourth and fifth box), which are both presented in the next section.
FRs were also observed in real data (experimental and clinical), as

shown in Fig. 1B. As revealed by time–frequency representations
(spectrograms in Fig. 1B), FRs are transient events characterized by
low-amplitude HFOs occurring in a frequency sub-band ranging from
250 to 600 Hz (approximately). Some similarities could also be found
across experimentally or clinically recorded FRs, but to a lesser extent
than epileptic spikes, which really have a stereotyped shape. In
particular, their duration is about a few tens of ms. As also described
in the Results, we recently managed to simulate FRs in a detailed
model of hippocampal activity (presented in the next section).
Interestingly, such a simulation could not be obtained when the
lumped-parameter modelling approach was followed.
Finally, electrophysiological signals recorded during the transition

from interictal to ictal activity in experimental models of epilepsy and
in the considered patient are displayed in Fig. 2. As depicted, the
general time-course of electrophysiological signals recorded in human
(Fig. 2A), in the epileptic freely-moving mouse (Fig. 2B) and in the
isolated guinea-pig brain (Fig. 2C) is quite reproducible. Indeed, these
signals are very typical of those recorded in mesial TLE, particularly
from the hippocampus. Usually, interictal and preictal spikes are
observed before the onset of the seizure marked by the appearance of
higher frequency oscillations (20–30 Hz), which persist for a few
seconds (typically 5–10 s). This early tonic phase of the seizure is then
followed by a clonic phase characterized by the appearance of a slower
and very rhythmic activity (5–10 Hz) of larger amplitude. So far, as
illustrated in Fig. 2D, we could reproduce the above-described
features in the lumped-parameter model (described in the next
section). Finally, Fig. 2E provides time–frequency representations
focused on the onset of seizures for clinical, experimental and
simulated data. As observed, the fast-onset activity is always present
(white arrows in spectrograms), its duration is reduced in the mouse
(about 1 s).

Computational models

Computational neuroscience is an interdisciplinary field of research at
the interface of neurophysiology, neurobiology, mathematics and
physics. In the field of epilepsy, computational modelling approaches
are considerably developed, and models are more and more accepted
by clinicians and research scientists as they provide an efficient way to
gather information into manageable representations of neuronal
systems, to articulate knowledge and to bridge between disciplines
(Lytton, 2008; Soltesz & Staley, 2008; Wendling, 2008). Models are
also recognized as efficient tools for tackling the complexity of
epileptic phenomena as they can account for the many non-linear
mechanisms taking place at multiple levels in neuronal systems, from
sub-cellular to organ levels. Over the past three decades, two
computational modelling approaches have been developing, either at
the lumped (neural mass) or detailed (network of neurons) level.
Readers may refer to Suffczynski et al. (2006), Deco et al. (2008),
Ullah & Schiff (2009) and Coombes (2010) for background and
details about the concepts that led to both modelling approaches. In
brief, the central issue is the scale at which the neuronal population is
considered. According to the lumped-parameter approach (macro-
scopic level), which stems from the pioneering work of Wilson &
Cowan (1972), Freeman (1973) and Lopes da Silva et al. (1974), the
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neuronal population is assumed to be composed of sub-populations of
cells (typically main cells and interneurons) interacting through
synaptic transmission. This approach aims at describing the ‘average
activity’ of the population without explicit representation of signals
generated at the cellular level [typically action potentials (APs) and
single postsynaptic potentials (PSPs)]. This is why the two relevant
variables in lumped-parameter models are: (i) the average density of
APs (i.e. firing rate); and (ii) the average PSPs (either excitatory or
inhibitory) generated at the level of each sub-population included in
the whole population. Conversely, the detailed approach starts from a
finer description of neurons that are then interconnected via synapses
or gap junctions to form networks. This description accounts for the
active and passive properties of the excitable membrane of neurons. It
can be either simple (one compartment) or more sophisticated (i.e.
multi-compartmental) if dendrites, soma and axons are to be
accurately represented, for instance. Most of the detailed models are

still based on Hodgkin & Huxley, (1952) mathematical equations
governing transmembrane currents via voltage-dependent ion channels
(Hodgkin et al., 1952). In the field of epilepsy, the detailed approach
started with Traub’s work (Traub, 1979) and progressively developed,
partly helped by the tremendous increase in computer performance
(computing time and memory) since the 1980s.

A lumped-parameter model of the hippocampal CA1 circuit

Following the lumped-parameter approach, we developed a model for
the hippocampal CA1 subfield. Readers may refer to Wendling et al.
(2002, 2005) for details. Briefly, the neuronal population of CA1 is
assumed to consist of three sub-populations of neurons corresponding
to main (pyramidal) cells and to two types of local inhibitory
interneurons [oriens-lacunosum moleculare (OLM) and basket cells]
projecting to either the peri-dendritic or the peri-somatic region of

A

B

Fig. 1. Epileptic spikes and fast ripples (FRs). (A) Human (hippocampus), in vivo (mouse, hippocampus) and in vitro (rat organotypic hippocampal slice) interictal
spikes recorded with extracellular electrodes. Simulated LFPs generated from microscopic (cellular level) and macroscopic (neuronal population level) computational
models of the hippocampus CA1 subfield. (B) Human (hippocampus), in vivo (mouse, hippocampus) and in vitro (rat organotypic hippocampal slice) FRs recorded
with extracellular electrodes. Simulated LFPs generated by the macroscopic model. Colour-coded maps are time–frequency representations (spectrograms) of
corresponding signals. Hot (respectively, cold) colours correspond to the presence (respectively, absence) of signal energy at a given time (X-axis) and frequency
(Y-axis) point in the time–frequency plane.
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pyramidal cells, as described in White et al. (2000) and Cossart et al.
(2001). An inhibitory connection from OLM to basket cells is also
represented in the model (White et al., 2000), as depicted in the
schematic diagram provided in Fig. 3A. Input to interneurons is
excitatory (glutamate receptor mediated). Feedback to pyramidal cells
is either excitatory (glutamate receptor mediated) or inhibitory
[c-aminobutyric acid (GABA) receptor mediated]. Slow (GABAA,slow)
and fast (GABAA,fast) kinetics are associated to inhibitory PSPs
depending on the location of GABA receptors, either in the peri-
dendritic or peri-somatic region of pyramidal cells (Banks et al., 2000;
Klausberger & Somogyi, 2008). In each sub-population, the mean
membrane potential is converted into an average pulse density of
potentials fired by the neurons using a static non-linear function
(asymmetric sigmoid curve), referred to as the ‘wave-to-pulse’
function. Conversely, the average pulse density of afferent APs is
changed into an average inhibitory or excitatory postsynaptic mem-
brane potential using a linear dynamic transfer function. The impulse
response of this ‘pulse-to-wave’ function was shown to approximate
that of actual PSPs (van Rotterdam et al., 1982). In the model, these
‘pulse-to-wave’ functions introduce the three main parameters that,
respectively, correspond to the amplitude of average (i) excitatory
PSPs (EXC); (ii) slow dendritic inhibitory PSPs (SDI); and (iii) fast
somatic inhibitory PSPs (FSI). Besides, the model also accounts for
the average number of synaptic connections among the three sub-
populations. Finally, the model output corresponds to the summation
of these average PSPs on pyramidal cells, which is assumed to be the
principal contribution to LFPs. A block diagram of the model as well

as the value and the meaning of each model parameter are provided in
(Wedling & Chauvel, 2008; see fig. 23.12 and table 23.3).

A detailed model of the hippocampal CA1 network

More recently and following the detailed approach, we developed a
neuronal network model for the hippocampal CA1 subfield (Demont-
Guignard et al., 2009). We started by developing a two-compartment
‘reduced’ model of the CA1 pyramidal cell in line with Pinsky &
Rinzel, (1994) work on CA3 cells. This single neuron model is
minimal but still biologically inspired. The objective was to find a
good compromise between physiological relevance and computing
time. Based on the Hodgkin & Huxley, (1952) formalism (Hodgkin
et al., 1952), the model entails distinct somatic and dendritic
membrane properties. Transmembrane currents were selected based
on a review of the literature. A validation was performed using
intracellular data recorded in an experimental model (organotypic rat
hippocampal slices). A schematic diagram of the neuron model is
shown in Fig. 3B. In brief, the shape of the AP is mainly controlled by
voltage-dependent sodium, potassium and calcium currents (INa, IKDR,
ICa, low and high threshold). In addition, to replicate physiological
firing rates potassium channels activated by intracellular calcium ions
were added (after-hyperpolarization current IAHP). Similarly, we also
included a rapidly inactivated potassium current (IKA, dendritic
compartment; Hoffman et al., 1997; to reproduce the change of
density of ion channels along the membrane) in consideration of its
potential role in epileptiform activity, as well as a hyperpolarization-

A

B

C

D

E

Fig. 2. Electrophysiological signals recorded during the interictal to ictal transition. (A) Depth-EEG signal recorded from the hippocampus in a patient with TLE.
(B) LFP recorded in a freely-moving chronic epileptic mouse with micro-electrodes implanted in the hippocampus, 4 weeks after the KA injection. (C) LFP recorded
with intra-hippocampal electrode in an isolated brain preparation (guinea-pig) after transient arterial perfusion of bicuculline. (D) LFP simulated with the
macroscopic model when inhibition-related parameter is gradually decreased as a function of time. Total durations of signals shown in (A), (B) and (C) is 120 s.
Duration of signal (D) is 60 s. (E) Time–frequency diagrams focusing on the fast-onset activity (tonic phase of the seizure) for upper signals.
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activated cationic current (Ih, dendrite compartment; Mayer &
Westbrook, 1983) and a muscarinic potassium current (Im; Lancaster
& Adams, 1986; Lancaster & Nicoll, 1987). Regarding basket and
OLM interneurons, we implemented single-compartment models
published in the literature (Hajos et al., 2004). Single neuron and
interneuron models were interconnected via glutamatergic [a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-
d-aspartate (NMDA)] and GABAergic synapses in accordance with
commonly accepted assumptions about location of synapses and
receptors (somatic vs. dendritic) and connectivity patterns in CA1
(Andersen et al., 2007). Finally, the network model is stimulated with
an afferent volley of APs coming from an ‘external array of cells’
(Fig. 3B). The objective was to mimic the excitatory input from CA3
to CA1. In practice, this stimulation of the CA1 network depends on
two parameters: (i) the number of cells, randomly and uniformly
selected in CA1, that are contacted by axons firing APs; and (ii) the
value of the delay between these APs that follows a Gaussian
distribution with mean and standard deviation allowing for adjusting
the synchronicity of APs.

Regarding the model output, we used the dipole theory for
computing the LFP generated by the network. According to this
theory, field signals due to individual neurons and recorded at a
distance from the electrode are proportional to the magnitude of the

net intracellular current dipole in each contributing cell (Geselowitz,
1967; Murakami & Okada, 2006). To proceed, we made three
assumptions. First, the main contribution to the LFP comes from
pyramidal cells due to their spatial arrangement ‘in palisades’. Second,
each pyramidal cell is considered as a point source (current dipole
formed by a sink and a source) positioned within a volume conductor
characterized by a homogeneous conductivity. Third, according to the
superposition theorem, the contributions of all pyramidal cells sum up
instantaneously at the level of the extracellular recording electrode,
placed at the centre of the modelled network. For each cell, this
contribution depends on the cell–electrode distance as well as the
associated dipole moment and orientation.

Lumped-parameter and the detailed model of the hippocampal
CA1 network – implementation details

For the macroscopic model, equations are provided in previously
published papers (Wendling et al., 2002, 2005). A didactic presen-
tation of this class of models can also be found in a book chapter
(Wendling & Chauvel, 2008). In addition, the source code can be
downloaded from the Yale Model Database (http://senselab.
med.yale.edu/modeldb/showmodel.asp?model=97983). For the micro-

A

B

Fig. 3. Computational models intended to reproduce the hippocampal activity (CA1 subfield). (A) Lumped-parameter model of CA1. The neuronal population was
assumed to consist of three sub-populations of neurons corresponding to main (pyramidal) cells and to two types of local inhibitory interneurons [oriens-lacunosum
moleculare (OLM) and basket cells] projecting to either the peri-dendritic or the peri-somatic region of pyramidal cells. Input to interneurons is excitatory
(Glutamatergic). Feedback to pyramidal cells is either excitatory (Glutamatergic) or inhibitory (GABAergic). Slow (GABAA,slow) and fast (GABAA,fast) kinetics are
associated to IPSPs depending on the location of GABA receptors, either in the peri-dendritic or peri-somatic region of pyramidal cells. (B) Detailed model in which
each cell is explicitly represented (CA1 pyramidal cell – two-compartment model; OLM, bistratified basket cells – one-compartment model). The CA1 pyramidal cell
was created based on a precise selection of distinct types of dendritic and somatic ionic channels, according to the literature. Physiological properties of ionic
channels such as kinetic of activation and inactivation, voltage dependence and reversal potential were respected. Single neuron models are synaptically (AMPA-,
NMDA- and GABA-ergic synapses) interconnected into network (about 800 neurons and 200 interneurons). To mimic the excitatory input from CA3 to CA1, the
network model was stimulated with an afferent volley of APs coming from an ‘external array of cells’. GABA, c-aminobutyric acid; Glu, Glutamatergic.
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scopic model, equations are fully described in the 2-pp. appendix
published in Demont-Guignard et al. (2009).

Results

A first requirement in the development of models is to reproduce the
observed phenomena, typically an extracellular activity that closely
resembles that actually recorded. In the case of epileptic spikes, the
‘close resemblance’ means that the simulated events should have the
same morphological features (sharpness and the spike, duration of the
negative wave, in particular) as real spikes. For FRs, simulated signals
should contain oscillations occurring in the ‘correct’ (i.e. actually
observed) frequency band (250–600 Hz). For seizures, models should
reproduce the fast-onset activity observed during the initial tonic phase
as well as the slower activity recorded during the clonic phase. A
second requirement is that model parameters for which a more or less
accurate replication of actual signals is obtained should stay in
‘physiological’ ranges of values. But, this capability to replicate
observations is not sufficient to guarantee that the mechanisms
embedded in the model are those actually occurring in real neuronal
systems. In Marder’s group (Taylor et al., 2009), it has been recently
shown that about 1300 different configurations of a four-compartment
computational model (out of �600 000) were able to well approxi-
mate the electrophysiological properties of a biological neuron, as
simple as the lateral pyloric (LP) neuron of the stomatogastric
ganglion of decapod crustaceans. Thus, mimicking and replicating the
interictal or ictal-like activity of an epileptic neuronal network by
computational modelling is not sufficient. In all cases, further model
validation is also required. This validation can be obtained by
translating model predictions into experimentally testable hypotheses
and, of course, by performing the tests. At least some of the
predictions of the computational model have to be experimentally
tested and validated.
In the following sections, we report the results we could get from

the above-described models in terms of generating spikes, FRs or
seizures. Then, we show examples for which some experimental
validation of model-based assumptions on underlying mechanisms
could be obtained.

Model predictions

Lumped-parameter approach

As mentioned in the Materials and methods, the macroscopic model is
characterized by three main parameters related to synaptic transmis-
sion: (i) average EXC; (ii) average SDI; and (iii) average FSI. We
conducted a parameter sensitivity analysis in the 3D-space defined by
(EXC, SDI, FSI), as reported in Wendling et al. (2002). The basic
procedure is: (i) to perform exhaustive simulations when the three
parameters vary over physiological ranges of values step-by-step; and
(ii) to classify segments of simulated activity obtained for each triplet
based on spectral features. Six different classes were found:
background activity; sporadic spikes; rhythmic spikes; fast-onset
activity; ictal-like activity (alpha range); and ictal-like activity (theta
range). This procedure allowed us to map the activity generated by the
model into the 3D-space corresponding to excitation- and inhibition-
related parameters.
Results showed that the model (Fig. 3A) was able to generate

transient events that closely resemble those recorded either in the
human hippocampus or in animal models (in vivo and in vitro), as
shown in fifth column of Figs 1A and 4B. The simulated epileptic
spike is composed of a first and relatively sharp peak of positive

polarity (w.r.t. baseline) followed by a slower wave of negative
polarity. It was obtained under two conditions – parameter EXC must
be increased and parameter SDI must be decreased, indicating that
epileptic spikes occur in the model for: (i) increased collateral
excitation among pyramidal neurons and increased excitatory drive
onto interneurons; and (ii) decreased inhibitory drive onto pyramidal
neurons from dendritic-projecting interneurons [slow GABAA recep-
tor-mediated inhibitory postsynaptic potentials (IPSPs)]. The model
was also found to generate a fast activity (about 25 Hz; Fig. 4C),
mimicking that observed at the onset of seizure in the hippocampus,
either in patients or in animal models of TLE (Fig. 2). This fast-onset
activity could be obtained when parameter SDI was decreased again,
to a large extent. As illustrated in Fig. 4C, this important drop of
parameter SDI led to a situation where: (i) somatic-projecting
projecting interneurons (producing fast GABAA receptor-mediated
IPSPs) were not inhibited anymore; and (ii) they still received
excitatory drive from pyramidal cells. Finally, a clonic ictal-like
activity could also be reproduced when a slight re-increase of
parameter SDI occurred in the model whilst parameter FSI decreased.
Two types of ictal-like activity could be simulated with a dominant
frequency either about 10 Hz or about 5 Hz (Fig. 4D). A strong
resemblance with the actual clonic activity recorded in the hippocam-
pus was noticed (see Fig. 4D vs. Fig. 2). Interestingly, we were not
able to produce very HFOs in this lumped-parameter model, typically
beyond the gamma frequency (> 80 Hz). Some fast oscillations could
be produced by modifying the rise and decay times of average PSPs
but to unrealistic values, i.e. much lower than those characterizing
actual glutamatergic or GABAergic PSPs. This result suggests that the
simulation of FRs is impossible to achieve in our model under the
constraint that physiological values for time-related parameters (rise
and decay time values of PSPs) are respected.

Detailed approach

As mentioned in the Materials and methods, we built our own CA1
pyramidal cell model, after an accurate selection of dendritic and
somatic ionic currents (and associated conductances) from the
literature. This single pyramidal neuron model was evaluated by
comparing the simulated intracellular activity with real intracellular
activity recorded from pyramidal cells in the in vitro model. Taking
advantage of the abundant literature about the neurophysiological
properties of CA1 pyramidal cells, we tried to respect as much as
possible some of the physiological properties of ionic channels, such
as the kinetics of activation and inactivation, the voltage dependence
and the reversal potentials. This single cell model, although reduced to
two compartments, and extremely simplified compared with a real
neuron, was found to generate fairly realistic signals, as reported in
Demont-Guignard et al. (2009). Qualitatively, our CA1 pyramidal cell
model is able to reproduce basic electrophysiological properties of real
CA1 pyramidal cells, such as AP shape and threshold, spike rate
adaptation upon depolarizing current, sag plus rebound upon hyper-
polarization, an increase in spiking rate upon IKA inhibition (Demont-
Guignard et al., 2009). The CA1 network was built by connecting
these CA1 pyramidal cells in accordance with commonly accepted
assumptions about connectivity patterns (location of synapses and
receptors, synaptic strength, inter-cell distances). The percentage of
pyramidal cells was set at 80%, that of interneurons at 20%, as in vivo
(Andersen et al., 2007). Two main differences between detailed and
lumped models have to be pointed out: (i) the detailed model allows
for topological repartition of individual pyramidal cells and for
possible asynchrony in the activity of simulated neurons; (ii) the
detailed model can simultaneously simulate both the extracellular LFP
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and the intracellular activity of virtually thousands of individual cells.
Thanks to these two properties, we have found that FRs are generated
by small clusters of hyperexcitable and slightly asynchronous bursting
pyramidal cells surrounded by hyperpolarized neurons, as shown in
Fig. 5B. The origin of the hyperexcitability was due to a moderate
increase of glutamatergic conductances (AMPA and NMDA), to a
slight decrease of conductances associated with GABAergic currents,
and to a shift of the GABA reversal potential toward more depolarized
values (Demont-Guignard et al., 2011). The low number of hyperex-
citable neurons, the degree of synchronicity and the network topology
(clustered) was found to be critical to produce FRs about 250 Hz and
up to 500 Hz. The model was also able to reproduce epileptic spikes
relatively similar to human or animal epileptic spikes (Fig. 1), again
not spontaneously but for a physiologically relevant stimulation
mimicking the input from CA3 to CA1, reminding the ‘CA3-driven
interictal activity’ (Avoli et al., 2002). The model could generate
epileptic spikes for a sufficiently large subset (i.e. > 30% of the total
number of cells) of quasi-synchronously firing CA1 pyramidal cells.
To produce realistic epileptic spikes the reversal potential for GABAA

receptor has also been modified to more depolarized values in some
pyramidal cells (Demont-Guignard et al., 2011).

Overall, the number and spatial distribution of involved pyramidal
cells, their degree of excitability and level of synchronization are
critical factors that strongly modify the morphology of the induced
epileptic event that reflects in the LFP (Fig. 5). Interestingly, as
previously reported (Demont-Guignard et al., 2011), a continuum
between ‘normal’ population spike, FR and epileptic spike could be
found depending on synaptic transmission parameters. For increase of
the AMPA and NMDA conductances and decrease of the GABA
conductance, simulated events progressively shifted from normal

population spikes to FRs, from FRs to interictal epileptic spikes
(IESs), and then from IESs to ictal-like activity (not shown). As
presented in the next section, this model prediction could be verified
experimentally.

Model validation

Lumped-parameter approach

An interesting prediction of the lumped-parameter model is related to
the generation of a fast activity that satisfactorily approximates that
observed at the onset of seizures in TLE (human data), in an
experimental model of TLE and in an experimental model of temporal
lobe ictogenesis (guinea-pig), as illustrated in Fig. 2. In the computational
model, this fast activity is obtained when: (i) dendritic-projecting
interneurons do not generate slow IPSPs (GABAA receptor-mediated)
anymore; and (ii) somatic-projecting interneurons still receive some
excitatory drive from pyramidal cells and, in turn, generate fast IPSPs
(GABAA receptor-mediated) onto pyramidal cells. In other words, and
as already reported in Wendling et al. (2002), the model predicts: (i) a
crucial role of inhibitory networks during the transition to seizures in
the hippocampus; and (ii) a prominent contribution of the fast
inhibitory feedback loop in the generation of high-beta, low-gamma
(20–30 Hz) activity, as quantified in the simulated LFP. To some
extent, an experimental validation of these modelling results was
recently brought by M. de Curtis and colleagues (Gnatkovsky et al.,
2008), although these authors focused on the entorhinal cortex (EC),
which is also a limbic structure frequently involved in human TLE
(Molaee-Ardekani et al., 2010a). The objective of these authors was to
analyse the cellular and network mechanisms underlying the gener-

A

D

B
C

Fig. 4. Macroscopic (lumped-parameter) model. Simulation of the transition from interictal to ictal activity. For increased excitation (amplitude of average EPSPs) and
gradual decrease of inhibition (amplitude of average IPSPs), dramatic changes are observed in simulated local field potentials (LFPs). (A) Background activity. (B)
Sporadic spikes. (C) Fast-onset activity. (D) Rhythmic ictal activity. GABA, c-aminobutyric acid; OLM, oriens-lacunosum moleculare; PSD, power spectral density.
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ation of 20–30 Hz oscillations recorded at the onset of TLE seizures.
First, the in vitro isolated guinea-pig brain, they could reproduce such
a pattern in the EC that is quite similar to that observed in the
hippocampus (see example in Fig. 2C and E), i.e. a narrow band
activity characterized by a dominant frequency at about 25 Hz. During
the transition to seizure induced by a transient arterial perfusion of
bicuculline, they performed simultaneous intracellular and extracellu-
lar electrophysiological recordings in the EC (deep and superficial
layers). As a major result, they observed that principal neurons did not
generate APs during the fast-onset activity observed in the LFP, whilst
a sustained firing could be revealed in non-principal neurons that were
likely to be interneurons (so-called ‘putative’ interneurons). In
addition, during the fast activity, they could detect some rhythmic
oscillations in the membrane potential of principal neurons. Results
strongly suggested that these oscillations were due to rhythmic IPSPs
that progressively decreased in amplitude as the fast-onset activity
progressively changed into the slower clonic activity. Coming back to
the lumped-parameter model, we analysed the firing rates of the sub-
populations of neurons during the simulated transition from interictal
to ictal activity obtained for gradual variation of the SDI parameter, as
described in the Results. Very interestingly, the model showed that the
average firing rate at the pyramidal cell sub-population increased
during preictal spikes, dramatically decreased during the fast activity
before increasing again as the ictal clonic activity started. It is also

worth mention that a strong increase of the average firing rate of the
sub-population of interneurons (producing fast IPSPs onto pyramidal
cells) was generated by the model (Fig. 6), corroborating the above-
described experimental observations.

Detailed approach

As mentioned in the Materials and methods, we used rat organotypic
hippocampal slices to perform experimental validation because they
offer a number of advantages, among which the preserved connec-
tivity of both excitatory and inhibitory neurons. In these slices,
depending on experimental procedure, we could produce normal field
potentials, epileptic spikes, FRs or ictal-like activity. For example,
application of 4-AP (100 lm) produced both interictal and ictal-like
activity in 98% of the slices (n = 34, data not shown), as already
observed in Albus et al. (2008). Simultaneous intracellular (patch-
clamp whole-cell recordings) and extracellular (field recordings) were
performed in the CA1 region (Fig. 7A). To reproduce the conditions
used in the detailed computational model, we stimulated the CA3 area
and recorded responses intracellularly from the CA1 pyramidal layer
and extracellularly from CA1 stratum radiatum. When superfused with
control ACSF, stimulation of CA3 axons induced a field PSP
(Fig. 7B), through release of glutamatergic neurotransmitters (AM-
PA ⁄ NMDA). To follow the prediction of the detailed computational

A
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C

Fig. 5. Microscopic (detailed) model. The number and spatial distribution of involved pyramidal cells, their degree of excitability and the network synchronization
are critical factors that strongly modify the morphology of epileptic events induced in the LFP. (A) Field EPSP simulated for ‘normal’ conditions. (B) FR simulated
for altered excitability conditions (small cluster of hyperexcitable pyramidal cells, slightly increased excitation and slightly decreased inhibition). (C) Epileptic spike
simulated for another alteration of excitability conditions (large cluster of hyperexcitable pyramidal cells, markedly increased excitation and decreased inhibition).
AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BAS, basket cell; BIS, bistratified cell; GABA, c-aminobutyric acid; NMDA, N-methyl-d-
aspartate; OLM, oriens-lacunosum moleculare; PYR, pyramidal cell.
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model, we complemented the above-described stimulation (activation
of AMPA receptors and NMDA receptors): (i) by a reduction GABA-
current by using low concentration of GABA receptor antagonist
bicuculline; and (ii) by an indirect increase of NMDA current (by
lowering the extracellular magnesium concentration from 1.2 to
0.3 mm). These procedures led to a fairly reproducible induction of
FRs in LFP recordings (Fig. 7C, top trace), associated with a strong
slow depolarization (on top of which APs were produced) in
simultaneous intracellular recordings (Fig. 7C, bottom trace). During
this stimulation protocol, the further increase of the slice excitability
through the activation of AMPA receptors (supplementary bath
application of a low dose of AMPA) led to the generation of epileptic
spikes as predicted by the computational model (Fig. 7D). Finally, we
could also observe that the additional increase of the excitability of the
slice (bath application of 4-AP, 50–100 lm) or high concentration of
the GABAA receptors antagonist (bicuculline, 50 lm) led to the
generation of ictal-like activity (Fig. 7E).

Discussion and perspectives

The imbalance between excitation and inhibition has long been a
leading concept in epilepsy research (Bernard et al., 1998). According
to this concept, the epileptic tissue is characterized by either an
increase of excitation or a decrease of inhibition at the level of
principal cells, or both. This characteristic property of the epileptic
tissue is probably true. However, we think that the excitation ⁄ inhi-
bition concept is somehow too simplistic, as a plethora of mechanisms
most often non-linear and highly interlinked can lead to hyperexcit-
ability in neuronal systems. We also think that this is precisely on this
issue that computational models can help epilepsy research. Indeed,
biologically inspired models provide a very efficient framework to
integrate many of these mechanisms into a system of constraints based
on neurophysiological knowledge. In addition, when these computa-
tional models are intimately linked with experimental models, not only
those mechanisms potentially leading to epileptic activity can be more
easily identified but also a finer interpretation of observations can be
derived. This model-based interpretation could progressively lead to a
new era where our way of looking at electrophysiological signals

(LFPs, EEG) would change and would get closer to underlying
mechanisms. More particularly, in the context of typical epilepsy-
related signatures (interictal spikes and FRs, seizures) analysed in this
paper, we could get a number of insights regarding hyperexcitability
from both macro- and microscopic computational models. These
insights are discussed below, from a comparative perspective. Then,
the limitations of the present study are addressed and some
perspectives to this work are presented.

Hyperexcitability mechanisms in spikes, FRs and seizures –
what do we learn from models?

In the macroscopic (lumped) model, excitatory processes must
definitively be increased and inhibitory processes must be decreased
in order to produce interictal spikes and ictal activity. Increased
excitation was achieved by increasing the amplitude of average
excitatory postsynaptic potentials (EPSPs) at each glutamatergic
synaptic transmission site in the model (pyramidal to pyramidal cells,
pyramidal cells to interneurons). Regarding inhibition, the situation is
not as simple. The model predicted that GABAA receptor-mediated
inhibition is a crucial factor (as reviewed in Avoli & de Curtis, 2011),
but also that two types (slow and fast) of inhibition (possibly
corresponding to dendritic and somatic inhibition) were necessary to
reproduce the typical phases and the corresponding signal dynamics
observed during the interictal to ictal transition. Inhibition had to be
indeed gradually lowered in the model to get to seizure activity, but
this disinhibition (achieved via the amplitude of slow GABAA IPSPs)
was, in the model, dendritic. The faster peri-somatic inhibition (fast
GABAA IPSPs) had to be maintained at seizure onset in order to
produce fast oscillations in the simulated LFP. It is worth mentioning
that some recent experimental findings support the hypothesis
according to which the fast-onset activity is closely related to the
generation of fast IPSPs onto pyramidal cells (Gnatkovsky et al.,
2008). An interesting finding in the macroscopic model is the
impossibility to generate FRs under the constraint that rise and decay
times of PSPs stay in appropriate physiological ranges. This model
‘incompleteness’ can be explained by several properties of macro-
scopic models, among which the fact that individual cells (and thus

Fig. 6. Macroscopic model of hippocampal activity. The fast-onset activity observed at the onset of seizures is explained by the sustained firing of somatic-
projecting projecting interneurons (fast GABAA receptor-mediated IPSPs). During this fast-onset activity, the average firing rate in the pyramidal cell sub-population
is dramatically reduced. Experimental validation of these findings were reported in Gnatkovsky et al. (2008), although authors focused on the EC. APs, action
potentials; LFPs, local field potentials.
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firing patterns) are not explicitly represented. Indeed, this type of
model assumes a hypersynchronization of the activity of cells
‘merged’ together into a given sub-population. This result indicates
that this hypersynchronization assumption is probably correct for the
spiking, the fast-onset (20–30 Hz) and the rhythmic ictal activity, and
that it may not hold when HFOs like FRs (250–500 Hz) are to be
generated. Recently, we studied ‘chirp-like’ rapid discharges (70–
100 Hz) observed in neocortical seizures using a macroscopic model
similar to that presented here but adapted to the cerebral cortex
(Molaee-Ardekani et al., 2010a). We noticed that it was somehow
difficult to go beyond 110–120 Hz while respecting physiological
values for the kinetics of EPSPs and IPSPs.
In the microscopic (detailed) model, we do not have, at this stage,

many results regarding the simulation of the interictal to ictal transition
(see limitations below). This work-in-progress issue will be addressed

in future studies. Regarding the generation of interictal spikes and
FRs, we learnt that the excitation ⁄ inhibition ratio should also be
increased to produce electrophysiological events resembling those
actually observed. But here again, our results show that there are
multiple manners to alter this ratio, and that subtle changes in the
hyperexcitability of simulated neuronal networks can lead to either
spikes or FRs. In particular, the number of hyperexcitable cells (small
vs. large clusters) is a first determinant factor. In our model, the fact
that GABAergic currents may become depolarizing is also an
important factor in the generation of FRs and, to some extent, in the
generation of spikes. This result corroborates those reported in Cohen
et al. (2002) and shows that depolarizing GABAergic events in
subicular pyramidal cells contribute to interictal-like activity in an
in vitro human subiculum preparation. The weak synchronization of
firing patterns of pyramidal cells in the generation of FRs is also an

A
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E

Fig. 7. Experimental validation of the detailed model predictions. (A) In vitro recordings were performed to test the model prediction about the effect of network
excitability (respective role of glutamatergic and GABAergic neurotransmission) on the generation of distinct interictal (spikes or FRs) and ictal-like activity. (B)
Under control condition (normal excitability), no FRs or epileptic spikes could be generated. (C) As predicted by the model, evoked FRs could be generated with a
moderate increase of excitability, while (D) epileptic spikes could be obtained when excitability was significantly increased. (E) Further increase of excitability
induced seizure-like activity. CA1 responses were induced by electrical stimulation of the CA3–CA1 pathway. Increase of excitability was obtained by the lowering
magnesium level (unblocked NMDA receptors) and adding low concentration of GABAA receptor antagonist (2–4 lm bicuculline). Evoked epileptic spikes could be
generated by adding AMPA (4–6 lm) to the previous condition. Transient seizure-like activity followed by spontaneous epileptic spikes could be obtained by using
either 4-AP (100 lm) or high concentration of bicuculline (40 lm). DG, dentate gyrus; EC, extracellular; GABA, c-aminobutyric acid; IC, intracellular.
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interesting prediction of the model that corroborates recently pub-
lished findings (Ibarz et al., 2010). Finally, our conductance-related
parameter sensitivity analysis revealed that subtle changes in the
synaptic transmission (increase of g_AMPA and g_NMDA, decrease
of g_GABA) could lead to different electrophysiological events
(population spikes, interictal-like spikes, FRs or sustained seizure-like
activity) in the LFP. This prediction, which was experimentally
verified, is interesting as the increase of g_AMPA can be interpreted in
different ways. At a postsynaptic level, it can correspond to changes in
the properties of AMPA receptors (subunit alteration, phosphoryla-
tion, etc.) or to an increased number of channels (insertion of new
channels, synaptic plasticity, long-term potentiation). At a presynaptic
level, it can describe an increased neurotransmitter release. All these
mechanisms are encountered in the epileptic brain.

Macroscopic or microscopic?

Although epilepsy is a complex dynamical disease, it is generally
admitted that epileptic activity corresponds to caricatured quasi-
deterministic mechanisms. For this reason, we think that computa-
tional modelling is particularly adapted to epileptic processes because
these processes are much less subtle than those involved in normal
brain activity. To model epilepsy-related mechanisms, both macro-
and microscopic approaches have their own advantages and limita-
tions. The structure of macroscopic models as well as their parameters
can be relatively easily adapted to the specific cyto-architecture of
brain structures (for instance, the EC; Labyt et al., 2007). They make
it possible to simulate quite extended neuronal systems like the
olfactory system (Freeman, 1978) or the thalamo-cortical loop
(Suffczynski et al., 2001), among others. The recent past years have
witnessed a considerable increase of interest for such approaches. This
is probably because epilepsy is a disease that often involves relatively
extended areas or systems that can hardly be represented at a cellular
level, given the still limited power of computers for simulating large-
scale neuronal networks with explicit representation of all neurons.
However, parameters governing these models are themselves macro-
scopic and are not directly related to cellular or sub-cellular levels, by
definition. In addition, they assume a synchronous activity of cells in
the sub-populations interconnected to model the considered neuronal
population. Our results show that this assumption may not always hold
for all epileptic events. Therefore, we also need more detailed
approaches that provide access to cellular parameters among which
some are hardly accessible experimentally (like the proprieties of
voltage-dependent or leak channels, ionotropic channels, etc.). A nice
feature of detailed models is also to simultaneously generate
intracellular and extracellular activity, for all cell types represented
in the network. However, difficulties in parameter identification
increase with the level of detail, in particular regarding the network
topology (Dyhrfjeld-Johnsen et al., 2007). In addition, there is an
inherent compromise between building more and more detailed
models vs. being able to compute them in short time and using them in
practical situations. To give an idea, in the detailed hippocampus
model, each pyramidal cell is represented by a two-compartment
model accounting for 16 different ionic currents (each based on
Hodgkin–Huxley formalism). We simulated networks including up to
3000 cells and also accounting for three types of synapses (AMPA,
NMDA and GABA). In such networks, the time required to generate
1 s of activity on a quad-core PC is about half an hour. In addition, the
number of parameters is quite high and appropriate strategies must be
defined to ‘globally’ (i.e. at the level of all cells and synaptic
interactions in the network) change the parameters values.

Limitations of this study and future work

In this study, we did not explicitly address the important issue of
interrelating the two described models, as this issue would deserve a
specific study itself. In particular, it may be interesting to investigate
whether mathematical approaches (equation-free, statistical neurodynam-
ics, aggregation of variables) can help us: (i) to reduce the detailed model
into an aggregated model; (ii) to identify the macrodynamic variables and
equations; and (iii) to determine to what extent these variables and
equations correspond to those governing the lumped-parameter model.
This work is still to be done. What we can do, at this stage, is to

establish some qualitative relations between both models. First, because
the two models are intended to reproduce the same neuronal system (the
hippocampal CA1 subfield), they share a number of features. Both
models include main pyramidal cells and different types of interneurons,
although the detailed model adds a subset of bistratified cells that is not
presented in the lumped model. The connectivity patterns (pyr-pyr, pyr-
in, in-pyr, in-in) are comparable. Regarding the synaptic transmission,
both models include glutamatergic and GABAergic synapses. However,
a distinction between AMPA and NMDA receptors is accounted for in
the detailed model, conversely to the lumped model in which the average
EPSP is characterized by a single kinetics. Second, both models have
some limitations. At this stage, none of them implements plasticity-
related effects, although these could be obtained by making some
relevant parameters time-dependent (for instance, the amplitude of PSPs
at macro-level or the conductance values at micro-level). Interneurons are
simplified and limited to two or three types. The input to CA1 is restricted
to CA3. Finally, models do not account for metabolic variables or for
interactions with glial cells that may also be important in epilepsy.
Nevertheless and, despite these limitations, we could find some

similarities in the LFPs generated by both models. In the microscopic
model, we noticed that some model parameter configurations could
lead to sustained rhythmic activity that could correspond to ictal-like
activity. So far, we have not analysed this model bifurcation in detail.
Therefore, at this stage, any comparison with the ictal-like activity
generated by the macroscopic model would be pure speculation.
Conversely, for epileptic spikes, we could simulate quite similar ‘LFP
events’ from both models. Therefore, we are in a situation where the
same system (the hippocampus CA1 subfield), modelled at two
different scales (cellular and population), can produce similar spikes.
In this context, the identification of some relationships between
parameter sets at considered levels of description (cellular and
population) seems achievable. These relationships would help us to
better understand the meaning of aggregated parameters in macro-
scopic models as a function of microscopic ones. We think that this
simulation framework is a first step toward the development of across-
scale approaches and further toward multi-level models.
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Abstract— Despite the growing scientific evidence that 

supports the efficacy of deep brain stimulation (DBS) for 

controlling epileptic seizure dynamics, further research 

remains mandatory to optimize DBS parameters for an 

efficient clinical use. In particular, progress can be expected 

from detailed study of the still poorly understood mechanisms 

that are responsible for the modulation of neural activity by 

DBS. In this work, a computational model of the 

thalamocortical loop was developed to explore the mechanisms 

of thalamic DBS and its effects on cortical dynamics. The 

model was tuned using real intracerebral EEG (iEEG) signals 

recorded in an epileptic patient. Results confirmed the 

dependence of DBS activated mechanisms on the choice of 

stimulation frequency. They revealed that short-term 

depression, feed-forward inhibition, and stimulation-induced 

depolarization of inhibitory reticular neurons seem to be key 

factors of frequency-dependent effects. 

I. INTRODUCTION 

The last decade has witnessed a remarkable advance in 
deep brain stimulation (DBS) technologies for movement and 
neurological disorders. Particularly in epilepsy, clinical trials  
showed that DBS effects remain largely variable from a 
patient to another ([1] for review). These effects depend on 
the choice of stimulation parameters which are patient-
specifically tuned. Indeed, four fundamental issues should be 
resolved to optimize stimulation outcome: the choice of 1) 
the brain structure to be stimulated, 2) the stimulation current 
waveform 3) its frequency and finally 4) its intensity. As the 
choice of current waveform (usually biphasic pulse train) and 
intensity is often restrained for safety considerations, this 
study addresses the frequency-dependence of DBS effects 
and mechanisms in the thalamocortical loop – a brain system 
often targeted by clinical DBS protocols. On that account, a 
coupled clinical/computational approach was adopted in this 
work. First, a computational mesoscopic model of the 
thalamocortical loop was developed based on the literature 
[2, 3]. Intracerebral EEG (iEEG) signals recorded in an 
epileptic patient were used to tune the model parameters in 
order to assess the model face value, and to generate 
mechanistic insights about the impact of DBS on epileptic 
activity. 
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II. METHODS 

A. Neural Mass Model of the Thalamocortical Loop 

We implemented a mesoscopic neural mass model of the 
thalamocortical loop to study the mechanisms underlying the 
modulation of cortical epileptic dynamics by thalamic 
stimulation. This model was inspired from existing models 
[2, 3] and thus followed the general three-module 
architecture; a thalamic, a reticular and a cortical module, 
each composed of one or several neural subpopulations 
(Figure 1). Moreover, three new features were explicitly 
integrated into the model: 1) the implementation of an 
extended cortical module as in [4] including two types of 
GABAergic interneurons, 2) the incorporation of stimulation 
inputs following the “λE” model at the thalamic and reticular 
level [5], thus assuming that stimulation current linearly 
affects the transmembrane potential of the impacted 
subpopulations due to the current-induced electric field, and 
3) the implementation of two mechanisms potentially 
activated by stimulation: thalamocortical feed-forward 
inhibition (FFI) and synaptic short-term depression (STD). 

 

Figure 1.  Model architecture. 

Feed-forward inhibition. FFI implied that the TC cells of 
the thalamic module extend excitatory projections not only to 
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the pyramidal neurons (P) of the cortical module but also 
to the two inhibitory populations �� and ��. Thereby, the three 
cortical populations receive glutamatergic input from the 
same presynaptic source, i.e. TC cells. In response to their 
activation by thalamocortical firing, �� and �� produce 
inhibitory postsynaptic potentials (IPSP) onto the P 
subpopulation.  Thus, the latter receives two types of input 
due to thalamic firing, an excitatory input followed by an 
inhibitory input lagging by a synaptic delay. The inhibitory 
input designates FFI. Nowadays, FFI is a well-admitted 
mechanism in thalamocortical circuitry probably responsible 
for input normalization and sensory integration [6], yet little 
is known about its role in antiepileptic thalamic DBS.  

Short-term depression. Short-term plasticity is a 
mechanism of transient activity-dependent modulation of 
synaptic efficacy. It is often related to cellular interactions 
lying at the presynaptic terminal. As for short-term 
depression, experimental evidence as well as previous 
implementations in microscopic neural models suggest that it 
is particularly related to vesicle depletion after episodes of 
intense/repetitive firing (see [7] for review). To our 
knowledge, such a short-term cellular mechanism has never 
been implemented at the mesoscopic or macroscopic levels.  

Our model accounts for STD at thalamocortical synapses 
(TC → P) following evidence [8] that low-frequency 
stimulation (LFS) trains can provoke up to 40% depression in 
cortical EPSPs recorded in the absence of GABAergic 
inhibition. We consequently implemented a vesicle 
depletion-based STD mechanism at the level of glutamatergic 
cortical synapses formed between subpopulations TC and P. 
This implementation suggested that intense low-frequency 
thalamic firing provokes a transient short-term depression in 
the efficacy of these synapses. Formally, STD was modeled 
as a time varying-function , that varies between 0.6 and 1 
following the intensity/frequency of the mean density of 
thalamic action potentials �� . is multiplied by the 
amplitude (Ac’) of thalamocortical EPSPs at TC → P 
synapses and thus dynamically modulates their efficacy.  

Technically, the implemented mechanism of STD 
involves two steps. First ��  is filtered by a low-pass filter 
(cutoff frequency fc = 10 Hz) to limit the effects to low-

frequency stimulation. Then, the filtered signal ��
�

 is 

compared to a mean firing threshold λ in order to assure that 
STD is produced following a high release of cortical 
glutamate. Every supra-threshold firing of TC cells at instant 

t0 ( ��
�

� ), entrains an exponential decrease (  = 8s) of 

from � to 0.6. The duration of this decrease was 
extended to 0.5s after each thalamic supra-threshold firing. 

is formally described by the following dynamics: 

��
� 	
��

��
� 	
 �⁄

 

where u(t) is the Heaviside function. 

B. Clinical Data to Tune Model Parameters 

To assure a realistic epileptic model output, model 
parameters were optimized using real iEEG signals recorded 
during the pre-surgical evaluation of a patient with drug-
resistant epilepsy at the epilepsy surgery unit of the 

university hospital of Rennes, France [9]. This particular 
dataset was used for two reasons. Firstly, the patient had 
recording electrodes implanted in a cortical malformation 
(focal cortical dysplasia; FCD) particularly known for 
characteristic epileptic discharges [10], and in a thalamic 
nucleus reported as a potentially antiepileptic target for DBS 
[11] (centromedian thalamic nucleus; CMN). Secondly, the 
stimulation of this nucleus during the pre-surgical iEEG 
evaluation modulated the epileptic activity of the FCD in a 
frequency-dependent manner. Briefly, low-frequency (LFS, 
< 2Hz) as well as high-frequency (HFS, > 70Hz) stimulation 
suppressed the almost continuous epileptic activity observed 
in the FCD, while intermediate-frequency stimulation 
(IFS, 50Hz) showed no effect. 

C. Signal Processing and Parameter Optimization 

The matching pursuit algorithm (Matching Pursuit 
Toolkit - MPTK [12] available online at http://mptk.irisa.fr/) 
was used to decompose real and simulated iEEG activity 
into time-frequency components using a multi-scalar 
dictionary of Gabor, Fourier, and Dirac atoms (10 different 
scales ranging from 0.125 to 5s). The atom parameters (type, 
scale ζ, frequency f, amplitude C, phase φ, position p) 
extracted by MPTK were used to analytically reconstruct the 
corresponding atoms in predefined frequency bands 
depending on their characteristic frequency. The general 
analytic expression used for the Gabor atom reconstruction 
is of the form 

	���
	�� �� �
�

 

A Dirac is reconstructed if the scale ζ is null at position p 
and of amplitude C. The decomposition algorithm follows 
exactly the one summarized in [12]. As for the frequency 
bands, they represent the classic EEG bands defined as 
follows: δ1 [0 – 1.9Hz], δ2 [1.9 – 3.4 Hz], θ1 [3.4 – 5.4 Hz], 
θ2 [5.4 – 7.4 Hz], α1 [7.4 – 10 Hz], α2 [10 –12 Hz], β1 [12 – 
18 Hz], β2; [18 – 24 Hz] and γ [24 –128 Hz].  

 

Figure 2.  Simulated and real iEEG signals.  



  

Finally, 9D feature vectors � representing the 
normalized energy distribution in these frequency bands 
were used to characterize real and simulated signals. They 
were extracted as follows: 

� � �
�

���
�

�

���
 

where � is the reconstructed signal in the ith frequency 
band and N is the number of samples in the initial signal.  

Free model parameters were limited to cortical 
excitability and inhibition coefficients [Ac, Bc, Gc], while all 
other parameters were fixed. Brute-Force optimization (over 
pre-defined physiological ranges) was used to adjust the 
model parameters during the no stimulation (NS) condition. 
The cost function was defined as the distance between the 

aforementioned feature vectors � as computed on simulated 
and real iEEG signals in the absence of stimulation. 

III. RESULTS 

A. Simulating Epileptic Dynamics and Stimulation Effects 

Model parameter optimization allowed the definition of a 

triplet � � � �  necessary for generating 

qualitatively similar epileptic dynamics as those observed in 
real iEEG recordings (Figure 2). Actually, the output of both 
cortical and thalamic modules exhibited features comparable 
to those observed in real iEEG signals.  

The different stimulation-induced effects observed in 
actual iEEG signals were reproduced in the model by 
simulating the thalamic stimulation input. The manual 
tuning of the parameters [STC, SIr1, SIr2] – representing the 
multiplicative impact coefficients of stimulation on the 
neural populations of both subcortical modules (TC, 

�

� and �


� ) – allowed the qualitative reproduction of the real 
cortical activity observed during the different stimulation 
conditions (Figure 2). Interestingly, comparable stimulation 
effects could not be reproduced if stimulation effects were 
limited to the thalamic module (SIr1 and SIr2 set to zero).  

B. Stable Model Output 

In order to assess the resemblance of simulated and real 
iEEG signals, and to check the stability of the model output, 
five random simulations (uniform distribution �
� � � ) of each of  the different stimulation 

conditions were generated using a 5% interval around the 

optimal parameters �. The 9D feature vector � of each 

signal, real and simulated, was then reduced into a 3D 

feature vector ��� accounting for the energy in the lower (δ2 
+ θ1), medium (θ2 + α + β1), and higher iEEG bands (β2 + γ). 
The resulting feature vectors of real signals were then 
classified into 3 groups using k-means and projected in the 
same 3D space with the feature vectors of simulated signals. 
Results are depicted in Figure 3. Each point represents the 
3D feature vector of real (circles) and simulated (asterisks) 
iEEG. The simulated signals are visibly close to the 
corresponding k-means clusters of real signals. A net 
decrease in the low-frequency signal component can be 
affirmed for LFS and HFS in real and simulated signals, 
whereas the real and simulated signals corresponding to IFS 

closely resemble those of the NS (no stimulation) condition 
and were thus classified in the same group.  

C. Model Phase Portraits 

Figures 2 and 3 show that, in the model, stimulation 
induced qualitatively comparable effects as those observed 
in the patient’s iEEG signals. To highlight this fact, the 
phase portraits of two key variables in the model, thalamic 
firing and cortical activity (designating the sum of input 
EPSPs/ IPSP arriving to the population P), were plotted in 
the four different conditions NS, LFS, IFS and HFS (Figure 
4). Similar frequency ranges as those used in the clinical 
context were used for illustration. As depicted, in the 
absence of stimulation (NS condition), the thalamocortical 
system oscillates on a limit cycle. During the LFS (4 Hz) 
condition, cortical oscillations are largely diminished while 
the thalamic firing was transiently increased following 
stimulation pulses and diminished afterwards. On the other 
hand, the IFS (40 Hz) stimulation condition seems to be the 
least efficient for model bifurcation. It actually increased 
thalamic firing while the system continued to oscillate on a 
limit cycle. Finally, HFS (130 Hz) completely changed the 
system’s behavior from limit cycle to fixed point. The 
consequent simulated cortical LFP resembles actual normal 
iEEG activity.  

 

Figure 3.  Real signal k-means classification of reduced 3D feature vectors 

��� under NS (no stimulation), low-frequency (LFS), intermediate-

frequency (IFS), and high-frequency (HFS) stimulation conditions. 

Simulated signal feature vectors are projected in the same space.  

D. Mechanisms of Action 

Supplementary simulations were run in order to evaluate 
the necessity of the implemented mechanisms for the 
reproduction of the observed stimulation effects. For this, 
the implemented mechanisms were deactivated one at a 
time. Effectively, the implementation of FFI and STD 
proved necessary to simulate LFS effects. Only coupled, 
these two mechanisms diminish thalamocortical oscillations. 
Unexpectedly, the absence of effects of IFS necessitates the 
depolarization of slow reticular inhibitory neurons �


�  by 
stimulation.  



  

Actually, when simulated, if stimulation impacts only the 
TC and/or �


� neural populations, the model bifurcates to a 
normal functioning mode during IFS. Finally, the 
depolarization of both fast and slow reticular inhibitory 
populations �


�  and �

�  was necessary to reproduce HFS 

effects. Otherwise, HFS cannot modulate epileptic 
dynamics.   

 

Figure 4.  Phase portraits of cortical activity vs. thalamic firing. During the 

no stimulation (NS) condition, the system oscillates on a limit cycle. 

Cortical activity is diminished during low-frequency stimulation (LFS; 

4 Hz), whereas thalamic firing increases transiently following stimulation 

pulses. Cortical activity barely changes during intermediate-frequency 

stimulation (IFS; 40 Hz) whereas thalamic firing increases. High-frequency 

stimulation (HFS; 130 Hz) switches the model from a limit cycle 

functionning mode to a more normal fixed point functionning mode. 

IV. DISCUSSION AND CONCLUSION 

The originality of this study resides in the fact that it 

explores the effects of thalamic DBS on epileptic cortical 

dynamics over a wide range of stimulation frequencies 

(LFS, IFS, and HFS), thus evoking the frequency-

dependence of stimulation effects. 

As for LFS, its effects engage two capital mechanisms, 
STD and FFI. In the presence of GABA antagonist, repetitive 
trains of thalamic LFS provoked a 40% decrease in cortical 
EPSPs in vivo [8]. Actually, LFS effects could not be 
reproduced by the model in the absence of STD 
implementation. The use of IFS (50 Hz) is well-reputed for 
its epileptic potential in the kindling model [13]. The model-
revealed paradox resides in the fact that slow inhibitory 
reticular neurons should be depolarized by stimulation in 
order to maintain the epileptic character of this stimulation. 
On the other hand, HFS condition requires the depolarization 
of both inhibitory reticular populations to suppress epileptic 
activity. The depolarization of these neurons actually 
participates to the diminution of TC firing and thus the 
diminution of cortical epileptic discharges. The suppression 
of the output of the stimulated target during HFS has been 
reported in several previous studies as in [14]. Moreover, the 
use of real iEEG signals to tune the model allowed the 
identification of capital parameters responsible of the 
epileptogenicity of the focal cortical dysplasia (FCD; cortical 
malformation). Actually, cortical excitation parameter Ac had 

to be doubled whereas the inhibition parameters Bc and Gc 
had to be diminished by 72% and 25% respectively in order 
to generate epileptic discharges rather than normal iEEG 
signals. The deterioration or dysfunction of inhibition has 
already been reported in dysplastic tissue [10].  

Indeed, while the effects of IFS and HFS seem to be less 
controversial, LFS antiepileptic effects remain more 
investigational. More complex stimulation protocols might be 
needed to provoke therapeutic effects using LFS [15]. 
Experimental validation of the proposed mechanisms would 
be helpful to verify the model’s predictions. Such 
experiments can be performed in rodents. Electrodes can be 
implanted in the thalamus and in the cortex to 1) verify the 
reproducibility of these effects in control/epileptic animals 
and 2) therefore, experimentally investigate and validate the 
proposed mechanisms.  
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Résumé –  Plusieurs études récentes mettent en évidence le potentiel antiépileptique de la stimulation électrique 
intracérébrale. Cependant, pour la plupart de ces études, le choix des paramètres de stimulation reste souvent 
déterminant pour empêcher l’activité épileptique. La mise au point des paramètres est déterminée de manière 
empirique, non optimisée, s’explique par une connaissance incomplète des mécanismes d’action de la stimulation 
électrique profonde. Cette étude adresse cette problématique en couplant la modélisation biomathématique aux  
données cliniques. Elle concerne plus particulièrement les effets de la stimulation thalamique sur l’activité corticale 
épileptique. Les résultats montrent que l’activité épileptique corticale est fortement modulée en fonction de la 
fréquence de stimulation thalamique. Les différents mécanismes cellulaires responsables de cette modulation sont 
ensuite identifiés et étudiés. 

Abstract – Recent clinical trials and animal studies highlight the antiepileptic potential of Deep Brain Stimulation 
(DBS) on epileptic neural dynamics. However, for the majority of these studies, the choice of stimulation parameters 
remains critical for obtaining antiepileptic effects. This suboptimal empirical approach is due to our limited 
knowledge about the mechanisms by which DBS modulates neuronal dynamics. This study addresses this issue with 
a coupled computational/clinical approach. In particular, we study the effects of thalamic stimulation on epileptic 
cortical activity. The results show that epileptic cortical activity is modulated by thalamic stimulation in a frequency-
dependent manner. The different cellular mechanisms responsible for this modulation are then identified and studied. 

 

1 Introduction 

Depuis deux décennies, plusieurs études (voir [1] 
pour une revue) se sont intéressées aux effets 
antiépileptiques de la stimulation intracérébrale, 
notamment pour diminuer la survenue des crises. Ceci 
est particulièrement utile dans le cas des épilepsies 
partielles pharmaco-résistantes. Pourtant, les approches 
empiriques employées dans ces études n’ont pas 
répondu aux questions les plus fondamentales 
concernant l’optimisation des paramètres de 
stimulation : à quel endroit faut-il stimuler, à quelle 
fréquence, à quelle intensité du courant ? Cet empirisme 
est en partie dû à une compréhension très incomplète 
des mécanismes cellulaires qui sous-tendent la 
stimulation électrique [2], et particulièrement dans le 
contexte des activités épileptiques humaines.  

Dans cette étude, un modèle biomathématique basé 
sur les connaissances neurophysiologiques actuelles est 
proposé pour étudier les effets de la stimulation 
électrique sur les dynamiques neuronales épileptiques. 
Le couplage de ce modèle avec des données cliniques a 
permis l’identification de certains facteurs clés 
responsables de la modulation – observée en clinique – 
de l’activité corticale épileptique par stimulation 
thalamique. Nos résultats montrent qu’en fonction de la  
fréquence de stimulation choisie,  des mécanismes 
cellulaires distincts sont déclenchés suite à la 
stimulation thalamique.  

2 Méthodes et Matériaux 

2.1 Modélisation biomathématique  

Dans ce travail, les effets de la stimulation électrique 
intracérébrale sur la dynamique neuronale de la boucle 
thalamocorticale (particulièrement visée en clinique) 
sont étudiés. Pour se faire, un modèle méso-scopique de 
cette structure cérébrale a été implémenté. 
L’architecture du modèle proposé (Fig. 1) est inspirée 
des modèles précédemment publiés de la boucle 
thalamocorticale [3, 4]. Il se compose de 3 modules 
principaux, cortical, thalamique et réticulaire, chacun 
comportant des sous-populations de neurones. 
Cependant, les aspects nouveaux de ce modèle se 
situent dans : 1) l’intégration des entrées de stimulation 
au niveau des modules thalamique et réticulaire, 2) 
l’implémentation d’un module cortical [5] plus complet 
par rapport aux modèles précédents de la boucle 
thalamocorticale afin de mieux reproduire les 
dynamiques épileptiques observées dans les signaux de 
stéréo-électro-encéphalographiques (SEEG) réels, et 
enfin 3) l’implémentation de deux mécanismes 
potentiellement impliqués pendant la stimulation à 
l’interface des modules thalamique et cortex cérébral, à 
savoir l’inhibition antérograde (TC → Ic

1 et TC → Ic
2) et 

la dépression synaptique à court terme (TC → P). 



Figure 1 : Architecture du modèle 

2.1.1 Implémentation de la stimulation 
Les propriétés électriques des neurones sont sensibles 

aux champs électriques extérieurs ( ) [6]. Plus 
précisément, la variation du potentiel transmembranaire 
( ) des neurones, et par conséquent l’excitabilité 
neuronale, est supposée être une fonction linéaire du 
champ électrique  (  étant un constan 
électrique) [7]. En se basant sur cette hypothèse de 
linéarité, la stimulation électrique a été implémentée de 
la façon suivante dans notre modèle : 1) un train de 
pulses monophasiques de fréquence ajustable a été 
utilisé comme signal de stimulation, 2) à l’entrée de 
chaque sous-population, ce signal a été multiplié par 
une constante d’impact caractéristique de la sous-
population ciblée, soit STC, SRt1, SRt2. Celle-ci décrie 
l’impact du courant de stimulation sur les différentes 
sous-populations cellulaires. Enfin, 3)  le signal 
résultant s’ajoute directement aux variables 
correspondants aux potentiels transmembranaires des 
sous-populations réticulaires et thalamiques. Ainsi donc, 
les pulses de stimulations dépolarisaient les sous-
populations ciblées. 

2.1.2 Les mécanismes cellulaires 
En termes neurophysiologiques, l’inhibition 

antérograde (Feed-Forward Inhibition) est assurée par 
des afférentes glutamatergiques (excitatrices) en 
provenance thalamique qui ciblent à la fois les cellules 
principales (pyramides) et les interneurones inhibiteurs 
du cortex. D’un point de vue neurophysiologique, les 
potentiels d’action générés par les cellules principales 
thalamo-corticales vont engendrer des potentiels post-
synaptiques excitateurs sur ces deux types de cellules en 
même temps. Donc, à chaque décharge thalamique, un 
potentiel postsynaptique excitateur(PPSE) sera suivit 

d’un potentiel postsynaptique inhibiteur (PPSI) sur les 
synapses des cellules pyramidales avec un délai 
disynaptique [8]. Ces données sont prises en compte 
dans le modèle. La dépression à court terme est un 
phénomène neurobiologique d’adaptation de la 
transmission synaptique. Dans cette étude, on 
implémente un modèle de dépression à court terme suite 
à une stimulation à basse fréquence. Selon l’étude [9], il 
existe un effet particulier de ce type de stimulation sur  
les synapses thalamocorticales innervant les cellules 
principales du cortex. Cela se traduit par une dépression 
transitoire de 40% de l’amplitude des PPSE produits par 
ces synapses. Pour cela, Ce mécanisme est  restreint à 
l’interface (TC → P) dans le modèle.  

2.2 Données cliniques 

Pour identifier les paramètres du modèle et ainsi 
générer des signaux de sortie épileptiques pertinents, 
l’ensemble des enregistrements SEEG d’un patient 
épileptique pharmaco-résistant acquis lors du bilan 
SEEG pré-chirurgical a été analysé [10].  

Pendant l’enregistrement, les neurologues ont 
constaté que la stimulation du noyau thalamique 
centromédian (CM) peut affecter l’activité épileptique 
d’une malformation corticale déclarée chez ce patient 
dans le cortex prémoteur droit. Cette malformation, de 
type dysplasie focale corticale, caractérisée par son 
hyperexcitabilité provoque des décharges épileptiques. 
Effectivement, des stimulations à basse fréquence 
(2 Hz ; 4mA), ainsi que des stimulations à haute 
fréquence (70, 100 and 150 Hz ; 0,8mA) ont 
complètement inhibé l’activité épileptique de la 
dysplasie chez ce patient. Cependant, des stimulations à 
moyenne fréquence (50 Hz ; 0,8mA) n’ont aucun effet, 
et peuvent même renforcer les décharges épileptiques de 
la dysplasie.  

La durée de pulse (0,5 ms) ainsi que l’aspect 
biphasique de stimulation ont été conservés pour toute 
fréquence de stimulation. 

2.3 Traitement de données et optimisation du 
modèle 

Les signaux SEEG observés dans la dysplasie hors et 
pendant la stimulation à différentes fréquences ont été 
décomposés en utilisant un algorithme de type 
« matching pursuit » (MPTK- [11]). Pour cela, un 
dictionnaire multi-échelles (10 échelles, 0.125s – 5s) 
d’atomes de Gabor, Fourier et Dirac a été défini pour 
représenter les signaux. En utilisant les paramètres des 
atomes (type, fréquence, échelle, position, phase) extrait 
par MPTK, les signaux correspondants ont été 
reconstruits analytiquement et puis attribués aux sous-
bandes classiques de l’EEG selon la fréquence 
identifiée. Ces sous-bandes de fréquences sont définies 
par δ1 [0 – 1.9Hz], δ2 [1.9 – 3.4 Hz], θ1 [3.4 – 5.4 Hz], 
θ2 [5.4 – 7.4 Hz], α1 [7.4 – 10 Hz], α2 [10 – 12 Hz], β1 
[12 –18 Hz], β2 [18 – 24 Hz] and γ [24 –128 Hz]. En 
résumé, une décomposition parcimonieuse, mais 
exhaustive (200 atomes par 3s du signal), en sous-
bandes du signal initial a été constituée à la fin de cette 



étape. Ensuite, un vecteur 9D de caractéristiques ( ) a 
été défini, correspondant à la distribution normalisée de 
l’énergie du signal  dans les neuf 
sous-bandes fréquentielles . 

 

N est le nombre d’échantillons dans le signal , i 
définit l’indice de et désigne une sous-bande 
fréquentielle. La sortie du modèle a été optimisée par 
une recherche exhaustive menée sur trois paramètres 
clés du modèle : l’excitation (Ac) et l’inhibition corticale 
(Bc, Gc). La distance euclidienne entre la moyenne des 
vecteurs de caractéristiques des signaux réels hors 
stimulation  et le vecteur de caractéristiques du 

signal ainsi simulé pour un triplet donné [Ac, 
Bc, Gc] représente ainsi la fonction du cout choisie pour 
optimiser la sortie du modèle hors stimulation. Par 
conséquent, le triplet [Ac, Bc, Gc]  

qui a permis de minimiser cette 
fonction de coût a été retenu comme le triplet optimal et 
nécessaire pour simuler une activité épileptique 
semblable à celle enregistrée chez le patient. 

3 Résultats 

3.1 Simulation de l’activité corticale hors et 
pendant la stimulation 

L’optimisation des 3 paramètres corticaux a permis la 
reproduction d’une activité simulée « réaliste », c’est à 
dire comparable à celle observée dans la dysplasie hors 
stimulation (Fig. 2). Le triplet [Ac, Bc, Gc] optimal 
présente une augmentation de l’excitation corticale 
(100% de la valeur de Ac) et une diminution de 

l’inhibition (72% et 25% de la valeur de Bc et de Gc 
respectivement) par rapport à un triplet attribué à une 
dynamique normale. 
Pour simuler les signaux observés sous différentes 
conditions de stimulation, trois paramètres désignant 
l’impact de la stimulation sur les sous-populations 
thalamique et réticulaire STC, SRt1 et SRt2 ont été 
manuellement réglés. Ces trois paramètres étaient 
considérés constants pendant toutes les simulations. Le 
signal de stimulation utilisé pour les simulations était un 
train de pulses de durée constante et de fréquence 
réglable selon la condition de stimulation. La sortie du 
modèle montre trois zones de fonctionnement qui 
coïncident avec la stimulation à basse fréquence (BF, 
< 20 Hz), la stimulation à moyenne fréquence (MF, 20 –
 70 Hz) et la stimulation à haute fréquence (HF, 
≥ 70 Hz). 

3.2 Bifurcations du modèle et mécanismes 
impliqués 

La Figure 3 montre les portraits de phase du modèle : 
taux de décharge de la sous-population thalamique TC  
en fonction de l’amplitude de l’activité corticale (à la 
sortie de sous-population P) dans les différentes 
conditions étudiées. La stimulation induit, dans le 
modèle, le même type de bifurcations que celles 
observées lors de la stimulation chez le patient. A basse 
fréquence (Fig. 3B), le taux de décharge de la sous-
population TC augmente considérablement alors que 
l’amplitude de l’activité corticale diminue. A moyenne 
fréquence (Fig. 3C), le portrait de phase est similaire à 
celui obtenu hors stimulation (Fig. 3A), indiquant que 
cette gamme de fréquence a peu d’effets. Enfin, à haute 
fréquence (Fig. 3D), on observe une réduction 
importante des deux quantités représentées avec une 

Figure 2 : Signaux réels et simulés sous les différentes conditions de stimulation 

Figure 3 : Portrait de phase. Taux de décharge de la sous-population thalamique (TC)  en fonction de l’amplitude de l’activité 
corticale (sommation des potentiels post-synaptiques au niveau  de la sous-population P) 

 



suppression quasi-complète des oscillations. Une 
analyse détaillée des mécanismes impliqués dans ces 
trois configurations a conduit aux résultats suivants. 
Pendant la stimulation à basse fréquence, la diminution 
de l’amplitude de l’activité corticale est causée une 
dépression synaptique à court terme (TC → P) qui 
s’ajoute à une inhibition antérograde (TC → IC) 
renforcée. A haute fréquence, la stimulation induit une 
inhibition locale qui supprime la sortie thalamique 
conduisant ainsi à une baisse de l’excitabilité corticale. 
Enfin, à moyenne fréquence, la dépolarisation des 
neurones thalamiques (TC) renforce les oscillations 
pathologiques observées au niveau du cortex. 

4 Discussion et conclusion 

Les résultats présentés dans ce travail sont en 
conformité avec des études précédentes concernant les 
effets de la stimulation à basse [9], moyenne [12], et 
haute fréquence [13]. L’intérêt de cette étude concerne 
l’utilisation d’une approche computationnelle-clinique 
basé sur des hypothèses neurobiologiques récentes pour 
expliquer les effets sur les dynamiques épileptiques, de 
la stimulation électrique de la boucle thalamocorticale 
sur une plage étendue de fréquences de stimulation. 
Cette étude révèle des hypothèses originales quant aux 
mécanismes cellulaires impliqués dans les effets 
fréquence-dépendants de la stimulation électrique 
intracérébrale. 
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