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Introduction

This thesis mainly deals with the development of a strategy for the optimal design of ad-
vanced engineering structures and, more precisely, the optimal design of modular systems.

Two questions immediately arise: what is a modular system? And why do we focus
on the design of modular systems? Let us start by trying to give an answer to the first
question: a modular system is a system composed by “elementary units” (the modules)
where each module is characterised by the same vector of unknowns (the constitutive
parameters or design variables of the module) that can get different values for each module.
Hence, the modules composing the system share the same general vector of unknowns,
but they can be defined by different values of these unknowns.

The researches made within this thesis essentially concern a special class of engineer-
ing modular systems: structures. Modular structures are widely used in engineering,
especially in aeronautics, helicopter and automotive fields. Classical examples of modular
systems are:

e laminates made of n elementary plies, where each ply represents the module char-
acterised by different constitutive parameters like, for instance, the material of the
layer, its thickness and the fibre orientation angle;

e the structural parts of an aircraft, namely the stiffened panels composing the fuse-
lage or the wings, where each panel can be seen as a modular system where the
elementary unit is the stiffener;

e the hybrid active/passive systems, generally composed of a plate whose vibrations
are damped by bonding in some well-chosen regions some viscoelastic (passive damp-
ing) or piezoelectric (active/passive damping) patches where each patch represents
the module;

e ctc.

The optimisation of a modular system is, often, an hard task which can be math-
ematically formalised as a non-classical optimisation problem. When dealing with this
kind of problems the goal is to optimise the system, on one hand in terms of the number
of modules N and on the other hand in terms of the constitutive parameters of each



module. From a mathematical point of view, this means to look for a global optimum
configuration of the system over a search space having a variable dimension N,,., where
the total number of design variables N, strictly depends on the number of modules N
composing the system. In addition, the unknowns can be of different nature: continuous,
discrete and so on.

Therefore, in order to deal with the optimal design of modular systems, we need to
conceive a procedure that includes on one side the number of modules N among the design
variables of the problem (this implicitly corresponds to solve an optimisation problem
defined over a domain of variable dimension N,,., i.e. a variable number of unknowns
have to be determined), while on the other side it has to be able to deal with design
variables of different nature.

Considering all the previous aspects and taking into account the fact that, often,
the optimisation problems of modular systems are highly non-linear and non-convex, we
decided to develop a numerical strategy in the framework of metaheuristics, and more
precisely, in the context of genetic algorithms (GAs).

Nevertheless, standard GAs are not able to deal with optimisation problems of modu-
lar structures when they are stated in the most general way, i.e. they are not able to face
optimisation problems defined over a search space having a variable dimension. In order
to overcome such an issue, in this thesis we try to go beyond the classical structure of the
standard GA, by introducing the concept of species and also by developing new genetic
operators allowing the reproduction among individuals of different species: such operators
will allow the parallel evolution of species and individuals. Our choice was inspired by an
extended interpretation of the Darwinian concept of the evolution of the species. These
particular operators have been developed in the framework of the genetic code BIANCA
(Biologically Inspired ANalysis of Composite Assemblages), originally developed by Vin-
centi et al. to solve design problems of composite laminated structures [1, 2].

As we will discuss in Chapter 1, in BIANCA, the concept of species is linked to the
number of individual’s chromosomes which is, on its turn, linked to the number of modules
composing the system and, hence, to the overall number of design variables which uniquely
defines the behaviour of the system.

In some sense, we have been guided in this choice by a double natural paradigm:
the evolution of individuals and of species. This consideration has conducted us to a
simultaneous two-level Darwinian strategy. For this reason, the first part of this thesis
concerns the development of new genetic operators able to deal with optimisation problems
of modular systems and to include the number of modules among the design variables of
the problem. These operators introduce substantial changes into the reproduction phase
which represents the heart of the numerical procedure of a GA. In other words, they
modify the phases of crossover and mutation by extending them and, thus, allowing the
reproduction between individuals belonging to different species.

In this way, the new genetic operators are actually problem-independent since they



are strictly related to the concept of species that transcends the physical nature of the
problem at hand. Therefore, BIANCA becomes a GA that allows the parallel evolution
of species and individuals.

The points of originality and innovation of this first part of the thesis are several and
articulated at different levels. The first one is the proposed numerical strategy, which is
fully “genetic” and completely problem-independent. Another new feature introduced in
the code BIANCA is the generalisation to the multi-constraint case of a new constraint-
handling technique called Automatic Dynamic Penalisation (ADP) strategy, firstly pre-
sented in [1], which belongs to the class of penalty-based strategies. The key-point of
the ADP method is that it is a very general technique that automatically chooses and
updates the penalty coefficients, without the intervention of the user.

In the second part of the thesis, the algorithm has been applied to the solution of some
problems. The main topic of the thesis being the design of modular structures, we have
considered the following problems: the design of laminates with the least number of layers
satisfying some given requirements, the design of stiffened composite structures having the
least weight, the design of hybrid elastomer/composite laminates for maximising damping
and, finally, the design of composite plates with bonded elastomer patches, also in this
case for the optimisation of damping. We have also applied our strategy to a different
kind of problem which does not concern the design of modular systems, i.e. the problem
of identifying the constitutive properties of piezoelectric devices.

The previous problems share a common point of innovation: in all the considered cases
the problem is formulated in the most general way without any simplifying hypotheses,
unlike what is normally done, especially for the design of composite structures.

Therefore, the present thesis is organised as follows:

e in Chapter 1, after a literature overview on the different types of metaheuristic
(and in particular on the evolutionary strategies), and a recall of the mathematical
foundations of GAs, we introduce the GA BIANCA, describing its classical features
and the new ones that we have developed in the framework of the present thesis.
In particular, we detail the new genetic operators that perform the crossover and
mutation among individuals belonging to different species and we also describe the
very general ADP constraint-handling technique implemented within BIANCA. We
test the ADP strategy with some well-known benchmark problems taken from the
literature. Then, we briefly describe the structure of the interface between BIANCA
and external software which can be used when the value of the objective function
and/or constraints cannot be computed analytically, but it has to be evaluated using
numerical codes (for example finite element codes). Finally, we briefly discuss the
architecture and the main features of the BIANCA Graphical User Interface (GUI)
that has been created in order to develop a tool that can be easily handled and
employed by the user which wants to use the code BIANCA;

e in Chapter 2 the problem of identifying the electromechanical properties of piezoelec-



tric devices is studied. We propose a method to predict the whole three-dimensional
set of electromechanical properties of active plate structures. The elastic properties
of the patches, along with their piezoelectric properties, have significant effect on
the dynamic response of the global structure; the inverse problem of the identifi-
cation of those properties is stated as a constrained minimisation problem of an
error function expressing the difference between the measured eigenfrequencies and
the corresponding numerical values. Hence, this strategy relies on the dynamic re-
sponse of the structure in terms of undamped natural frequencies and makes use of
BIANCA. The numerical simulation is carried on for a laminated plate with surface
mounted piezoelectric patches, in order to validate the accuracy and the reliability
of the proposed numerical tool. This problem does not belong to the class of opti-
misation problems of modular systems, thus the new genetic operators that perform
the crossover and mutation between different species are no longer required since
the overall number of design variables (i.e. the electromechanical properties of the
piezoelectric material) is fixed a priori;

in Chapter 3 the problem of designing laminates having the minimum number of
layers for obtaining given elastic properties is addressed. In this study, the problem
is treated and solved in a general case, since no simplifying hypotheses are made
on the type of the stacking sequence. This is a non-linear programming problem,
where a unique objective function includes all the requirements to be satisfied by the
solutions. The optimal solutions are found in the framework of the polar-genetic
approach, since the objective function is written in terms of the laminate polar
parameters, while BIANCA is used as numerical tool. The design variables include
the number of layers, the layers orientations and the layers thickness. Some examples
concerning some prescribed elastic symmetries, like orthotropy, bending-extension
uncoupling, quasi-homogeneity and so on, are carried out in order to show the
effectiveness of the proposed approach;

in Chapter 4 a problem concerning a least-weight wing-box section is studied. The
case-study considered is the least weight design of a stiffened wing-box section for
an aircraft structure. The method is based on the use of the polar formalism and
on the GA BIANCA and it is organised as a two-level approach. At the first level
of the procedure, the optimal structure is designed as it was composed by a single
equivalent layer, while a laminate realising the optimal structure is found at the
second level. The method is able to automatically find the optimal number of
modules, no simplifying assumptions are used and it can be easily generalised to
other problems;

in Chapter 5 the problem of designing the damping capabilities of hybrid elas-
tomer/composite laminates is studied. The goal of the procedure is to maximise
the first N modal loss factors of the laminate subject to constraints on the stiffness
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and on the weight of the plate. The problem is considered in the most general case:
no simplifying hypotheses are made on the behaviour of the hybrid laminate, thus
allowing us to consider as design variables the number of layers (both of the elastic
and viscoelastic layers), their thickness and orientations as well as the position of
the viscoelastic plies within the stacking sequence. The proposed approach relies on
one hand, upon the dynamic response of the structure in terms of natural undamped
frequencies and modal loss factors, and on the other hand on the use of BIANCA
as optimisation tool. The method is applied to the design of a rectangular plate;

e in Chapter 6 the problem of designing the damping capabilities of laminated plates
with bonded viscoelastic patches is studied. As in Chapter 4, also in this case we
adopt a two-level procedure for the design of hybrid elastomer/composite modular
structures. The goal of the procedure consists again in maximising the first N
modal loss factors of the plate subject to constraints on its bending stiffness, on
its weight along with geometric constraints on the position of the rubber patches
bonded over the plate. The problem is considered in the most general case: no
simplifying hypotheses are made on the behaviour of the structure, thus allowing us
to consider as design variables the number of viscoelastic patches, their sizes, their
positions over the plate, besides the laminate thickness and polar parameters. Once
again the second-level phase concerns the design of the laminated plate that has
to be designed in order to have the optimal elastic properties and thickness issued
from the first-level design problem.

Each Chapter composing this document corresponds to a scientific paper published
and/or submitted to an International Journal. The only exception is Chapter 4 that
corresponds to two scientific publications. A complete list of these publications is provided
at the end of the manuscript.

A last remark about the structure of each Chapter. The Chapters concerning the
engineering applications, namely Chapters from 2 to 6, are characterised by a complete,
but not exhaustive, literature overview on the problem at hand and all of them are ended
with some conclusive remarks.

The general conclusions and some future perspectives concerning the numerical genetic
strategy used in this thesis are provided at the end of this manuscript.
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Chapter 1

On the use of genetic algorithms in
engineering applications

1.1 Introduction

1.1.1 Literature overview

Many researchers and scientists in the field of mechanics and mathematics are used to
live into a “mathematical” world governed by precise laws based on cause-effect relation-
ships. For this reason, they are, very often, unable to adapt their vision and their way
of conceiving the world to the one proposed by biologists wherein the “hazard” plays a
crucial role and imposes itself as a “master” of the natural evolution.

The encounter between mechanics and biology is not a present fact, but goes back to
some great scientists of the past, founders of the modern sciences, namely Galilei, Hooke
and Maupertuis, see [3].

Among the wide class of studies that Galilei conducted in the fields of mechanics and
mathematics, he was the first which tried to apply its results on the problem of maximal
dimensions not only to the structures, but also to the trees and animals dimensions [4].
For its part, Hooke can be viewed as one of the founders of the modern biology [5], be-
cause he introduced in 1665, for the first time, the term “cell” to describe the repetitive
texture of the cork, observed with a microscope built by himself.

Maupertuis [6] was the first that formulated and demonstrated the transmission of genetic
traits by the father and mother together, and he was also the first that formulated exact
predictions about the transmission of a peculiar trait, namely the polydactyly in a Berlin
family, and the albinism observed in black populations in Senegal, see [7]. Moreover, he
was the first that had the intuition about the mutation as the main cause of the species
diversity.

Nevertheless, these three great scientists can be counted among the early initiators of me-
chanics (and generally they are known for this) and it is anecdotal and, in a certain sense,
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emblematic to look at what they did in biology, showing themselves that the distance
between the two sciences is very small.

The concept of Natural Selection was developed and introduced, independently, in the
second half of the 19" century by Darwin [8] and Wallace [9]. The famous naturalist
Charles Darwin [8] defined Natural Selection or Survival of the Fittest as the

“... preservation of favorable individual differences and variations, and the
destruction of those that are injurious.”

In nature, individuals have to adapt to their environment in order to survive within a
process known as natural evolution, wherein those features that make an individual more
suited to compete and survive are preserved when it reproduces, and those ones which
make it weaker are removed. Such features are controlled, at the genotype level, by
units called genes which form, on their turn, structures called chromosomes. Through
subsequent generations not only the fittest individuals survive, but also their fittest genes
which are passed to their descendants during the sexual recombination process. This is a
very complex and articulated but effective process which includes the meiotic cell divisions,
the crossover phase, the mutation phase and the dominance mechanism. However, it is
worth noting that in nature the mutation mechanism is almost always a deadly event and,
in any case, it happens “accidentally”.

During the last forty years, an increasing interest in problem solving systems based

on the principles of evolution and hereditary has been emerged. Such systems are char-
acterised by a population of potential solutions, they use some selection processes based
on the fitness of individuals and some particular genetic operators. Among these systems
we can include Evolution Algorithms (EAs) [10, 11, 12], i.e. algorithms that imitate the
principles of natural evolution for parameter optimisation problems, Fogel’s Evolutionary
Programming [13] which is an exploring search technique within a space of finite-state
machines, Glover’s Scatter Search techniques [14] that, starting from an initial population
of reference points, create a new generation of offspring through weighted linear combina-
tions. Besides these techniques, one of the most popular and well-known evolution-based
strategies is the Holland’s Genetic Algorithm (GA) [15, 16].
More recently, other types of evolution-based search techniques have been developed. In
literature we can find, for example, Bacteriologic algorithms (BAs) [17] inspired by evolu-
tionary ecology and, more particularly, bacteriologic adaptation; Gaussian adaptation [18]
(normal or natural adaptation, abbreviated NA to avoid confusion with GA) algorithms
which rely on a certain theorem valid for all regions of acceptability and all Gaussian
distributions: the NAs efficiency is defined as information divided by the work needed
to get the information [18]. Because the NA maximises the average fitness rather than
the fitness of the individual, the landscape is smoothed such that valleys between peaks
may disappear, therefore it has a certain “ambition” to avoid local peaks in the fitness
landscape.
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An useful and common term often used for all the evolution-based systems cited before-
hand is Evolution Programs (EPs).

The idea of evolution programming is not new and many researchers have studied and
dealt with this subject in the last forty years. Several EPs have been conceived and devel-
oped for many different problems. However, despite many different EPs can be formulated
to deal with a given problem, and even though these EPs can differ for several features
(e.g. representation of the single individual, operators for transforming the individuals,
methods for creating the initial populations and so on), all EPs share a common principle:
a population of individuals undergoes a certain number of transformations and, during
this evolution, each individual “fights” to survive.

Besides EPs, several kinds of metaheuristics can be found in literature. For example,

among the so-called swarm intelligence we have: the Ant Colony Optimisation (ACO)
method [19] which uses many ants (or agents) to pass through the solution space and find
locally productive areas; the Particle Swarm Optimisation (PSO) strategy [20] which em-
ploys a population (swarm) of candidate solutions (particles) moving in the search space,
and the movement of the particles is influenced both by their own best-known position and
swarm’s global best-known position; the Intelligent Water Drops (IWD) algorithm [21]
which is an optimisation algorithm inspired from natural water drops which change their
environment to find the near optimal or optimal path to their destination (in this method
the memory is the river’s bed and what is modified by the water drops is the amount of
soil on the river’s bed).
Other Metaheuristic methods, falling within the class of stochastic optimisation meth-
ods, are Simulated Annealing (SA) [22] and Tabu Search (TS) [23] algorithms. The SA
method is a global optimisation technique that goes through the search space by testing
random mutations on an individual solution. A mutation that increases fitness is always
accepted. A mutation that lowers fitness is accepted probabilistically based on the dif-
ference in fitness and a decreasing temperature parameter. The TS strategy is similar to
the simulated annealing method. While simulated annealing generates only one mutated
solution, tabu search generates many mutated solutions and moves to the solution with
the lowest energy of those generated. In order to prevent cycling and encourage greater
movement through the solution space, a tabu list is maintained of partial or complete
solutions.

In this Chapter, we do not discuss the different features characterising each Meta-
heuristic, neither we do not talk about any philosophical and/or conceptual differences
between the various Metaheuristics. Rather we will focus our attention on EPs and, par-
ticularly, on a special class of EPs: the Genetic Algorithms. There is a huge literature on
GAs, we cite only the fundamental texts of Holland [15], Goldberg [16], Michalewicz [12],
Renders [24] and the independent contribution of Rechenberg [25].

GAs are search techniques, based on a simulation of the Darwinian concept of survival
of the fittest and upon genetics, which operate on a population of points defined within
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the definition domain of the considered problem [16, 15]. The GAs belong to the class of
Artificial Intelligences (AI).

In these last thirty years, GAs have gained increasing popularity and have been ex-
tensively applied in the field of structural optimisation.

As an example, concerning the topology optimisation of structures, we can find, amongst
others, the works of Chapman et al. [26] which use a GA for continuum topology opti-
misation with domain refinement, Lin and Hajela [27, 28] and Ryoo and Hajela [29] that
use a GA for large scale problems and truss topology optimisation problems, Kim and
Weck [30] which developed a Variable Chromosome Length GA (VCL-GA) and applied
this technique to structural topology optimisation problems, i.e. a short cantilever pro-
blem and a bridge problem.

In the field of composite materials, GAs have been successfully applied to a wide class
of problems. Several authors have considered different laminate design problems (rather
complete but not exhaustive reviews on the state of the art can be found in [31, 32, 33]).
Here we cite only the works of Le Riche and Hatfka [34], Todoroki and Hatfka [35] and Liu
et al. [36] on the design of composite plates in order to maximise the first buckling load
using the lamination parameters, and also the works of Muc [37], Tabakov [38], Nagendra
et al [39], Kaletta and Wolf [40], Lillico et al [41] and Bisagni and Lanzi [42] which have
employed GAs to study the problem of designing the least-weight composite stiffened pan-
els. Still in the field of the optimal design of composite structures, we note the work of
Vannucci [43] who has considered the problem of designing the general elastic properties
of a laminate. In that work, a general approach based on polar tensor invariants was pro-
posed: no simplifying hypotheses nor special stacks or orientations were used, hence the
method allows to find a general solution to a given problem. This approach was applied
in other works and extended in [1] to the constrained optimisation of laminated plates
and in [44] to the optimal design of laminates with given elastic moduli.

In addition, GAs have been quite successfully applied to a wide class of optimisation
problems that do not belong to the field of mechanics, for instance wire routing, schedul-
ing, adaptive control, game playing, cognitive modeling, traveling salesman problems,
database query optimisation, optimal control problem and so on (see [45, 46, 47, 48, 49,
50]).

Nevertheless, in this section we do not claim to provide a complete and exhaustive state
of the art about all possible engineering applications wherein GAs have been successfully
applied. An adequate literature overview concerning some peculiar real-world engineer-
ing applications will be given at the beginning of the next Chapters of the present thesis,
depending on the considered application.

In this Chapter we want to provide, on one side a brief overview on GAs, their funda-
mental operators and the mathematical foundations which underlie the formulation of the
standard GA. On the other side, we describe the main features of the GA BIANCA (Blo-
logical ANalysis of Composite Assemblages), originally developed by Vincenti et al. [1, 2],
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and particularly we detail the new features and the new genetic operators conceived and
developed in the framework of this thesis in order to deal with a special class of optimi-
sation problems: the design problems of engineering modular structures. When dealing
with this kind of problems two main difficulties arise: one one side we have to determine
the optimal number of modules composing the modular system, and on the other side,
each module has to be optimised with respect to its constitutive parameters, namely any
geometrical, material and other physical variables characterising the module.

To deal with this class of problems the standard GA needs of some modifications
in terms of representation of informations restrained in the single individual, i.e. the
structure of the genotype, along with the creation of some peculiar genetic operators able
to optimise, simultaneously, the number and the characteristics of each module. The
problem of modular structures will be described in details in Chapters 3, 4, 5 and 6. We
remark that, in this Chapter we focus our attention on the presentation and description
of the new genetic operators by analysing the effect that they have on the individuals
restrained in the populations during their evolution along the generations.

Along with the previous aspects we introduce, in the second part of the Chapter,
a brief overview on the handling constraints techniques, usually adopted in the frame-
work of genetic-based optimisation strategies, that can be found in the literature. After
introducing the most common methods, we explain in detail an original technique for
handling constraints implemented within BIANCA, i.e. the Automatic Dynamic Penal-
isation (ADP) method, originally presented in [1] and extended and generalised in the
present work. Some benchmark problems, taken from the literature, are considered to
show the effectiveness of the proposed technique.

Moreover, since in the most part of the real-world engineering optimisation problems
the objective and constraint functions cannot be evaluated in a closed analytical form,
while it is often possible to have an estimation of such functions via a numerical process,
e.g. via a Finite Element (FE) calculation, we decided to develop an interface between
BIANCA and some well-known FE commercial codes. Finally, a detailed description of
this interface along with a short presentation of the Graphical User Interface (GUI), that
we have developed in order to use the code BIANCA more easily, end the Chapter.

1.1.2 Genetic Algorithms (GAs): a brief description

Genetic Algorithms were introduced and studied first by Holland and his co-workers and
students, see [15, 16].

As said beforehand, GAs are search algorithms based on one side on the Darwinian
concept of the Natural Selection and on the other side upon the mechanisms of genetics.
In a certain sense, GAs make their own the concept of the Survival of the most adapted
structures (Survival of the Fittest) to a given environment and they employ a pseudo-
random exchange of informations in order to create an exploration algorithm that shows
some characteristics of the Natural Selection.
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Even though they start from a pseudo-random exchange of informations and, con-
sequently, from a pseudo-random exploration, GAs are not purely random algorithms:
they effectively and smartly handle the information obtained through the exploration in
order to investigate upon the possible presence and position of new and more performing
individuals towards which the evolution is naturally oriented.

As previously said, the GA is based on a pseudo-random exploration of the domain
of the problem at hand, and starting from this kind of search it handles in an effective
way the information in order to find the desired solution. Nevertheless, it can be noticed
that a pseudo-random search does not implies a blind exploration or, in other words, an
exploration without directions.

In his book, Michalewicz [12] describes in a concise and ironic way the idea that
underlies the GAs:

“The idea behind the genetic algorithms is to do what nature does. Let
us take rabbits as an example: at any given time there is a population of
rabbits. Some of them are faster and smarter than other rabbits. These
faster, smarter rabbits are less likely to be eaten by foxes, and therefore more
of them survive to do what rabbits do best: make more rabbits. Of course,
some of the slower, dumber rabbits will survive just because they are lucky.
This surviving populations of rabbits starts breeding. The breeding results in
a good mixture of rabbit genetic material: some slow rabbits breed with fast
rabbits, some fast with fast, some smart rabbit with dumb rabbits, and so on.
And of the top of that, nature throws in a ¢ wild hare ’ every once in a while
by mutating some of the rabbit genetic material. The resulting baby rabbits
will (on average) be faster and smarter than these in the original population
because more faster, smarter parents survived the foxes. (It is a good thing
that the foxes are undergoing similar process - otherwise the rabbits might
become too fast and smart for the foxes to catch any of them).”

GAs employ a vocabulary taken from genetics. The population evolving along the
generations is composed of individuals and each individual, on its turn, is composed of
chromosomes which constitute the individual’s genotype. Very often, in standard GAs,
the individual shows a genotype made of a single-chromosome, i.e. a haploid individual.
This fact might be a little misleading: in nature, each cell of a given organism, belonging
to a particular species, presents a certain number of chromosomes (e.g., man has 46
chromosomes). Such chromosomes are organised according to diploidy: each chromosome
has a double, but only the genetic information restrained in one of the two is used,
according to the biological mechanism of dominance. For more details and information
on haploidy, diploidy, dominance and other related issues, in connection with GAs, the
reader is referred to [16, 51]. Every chromosome is made of genes arranged in linear
succession: each gene controls the inheritance of a particular character and it is located
in a precise position within the chromosome (such positions are called loci).
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GAs employ an alphabet of cardinality & (usually, in standard GAs k = 2, i.e. they
employ a binary alphabet) to code the information restrained in the individuals’ genotype.
Each genotype codes a particular phenotype (i.e. the physical expression of the individual’s
genotype whose meaning is defined externally by the user) and represents a potential
solution to the considered optimisation problem. In organisms, the phenotype includes
physical characteristics, such as eyes color, hair color and so on, whilst in the framework
of GAs the phenotype represents the set of all possible values (real, discrete and so on)
that the variables of the considered problem can assume.

The evolution of a population of individuals along the generations corresponds to a
search through a space of potential solutions. Such a search requires a balance among
two objectives: exploring the whole domain and exploiting the best solutions within this
space [16]. Tt can be noticed that GAs belong to a class of domain independent search
strategies which realise an effective balance between exploration and exploitation of the
search space.

In the next subsection we will explain the behaviour of the standard GA as well as its
main genetic operators.

1.1.3 The standard GA

The standard GA is composed by the union of 3 fundamental operators:

1. the selection operator;
2. the crossover operator;

3. the mutation operator.

Let us introduce, firstly, the selection operator. Such an operator acts according to a
precise rule: if we consider a population of size Ny,q (i.e. composed of Ny, individuals),
using the value of the fitness function of each individual, the selection operator selects,
with a higher probability, the individuals having a high value of the fitness function. It
can be noticed that the N;,, individuals composing the population are randomly created
in the initial generation (this is just one choice among the different methods of creating
the initial population that can be found in the literature, see for example [12]).

The fitness function is a particular function which can be defined in different ways de-
pending on the considered optimisation problem, being the fitness closely related to the
objective function. The fitness plays the same role that the environment plays within the
framework of the Natural Selection: the fitness function gives a numerical value at each
individual-point of the design space, and consequently the most adapted individuals (i.e.
points which are candidates to be potential optimal solutions) will be the points having
higher values of the fitness function. After assigning a fitness value to each individual
of the population, the selection operator determines which individuals will take part into
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the real reproduction process, which will have, as a final result, the creation of the new
generation of individuals. Even though the fitness function can be defined in different
ways, generally such a function represents a “filter” which on one side can influence the
GA convergence process and on the other side (depending on the definition employed for
its expression) can “normalise” the optimisation process (for example the fitness can be
defined in such a way that the worst individual has a fitness equal to 0 while the best one
has a fitness equal to 1).

An easily way to realise a selection operator consists in using a purely random-process
known as roulette-wheel selection. Let us consider, as an example, a population made of
4 individuals. The fitness values for each individual and the percentage of its fitness with
respect to the global fitness of the population (i.e. the sum of each individual’s fitness)
are listed in Table 1.1.

ID of individual Fitness % of the fitness with respect to the total fitness

1 10 0.1 (10%)
2 10 0.1 (10%)
3 20 0.2 (20%)
4 60 0.6 (60%)
Total fitness 100 1.0 (100%)

Table 1.1: Fitness values and percentages for every individual of the population

The roulette-wheel selection operator is built as follows: at each individual corresponds
a portion of the wheel equal to the percentage of its fitness with respect to the total fitness
of the population. Generally speaking, if the population is composed of N;,4 individuals
we have Nj,q values of the fitness {fi, fa, ..., fn,.,}: s0, the k™ individual will occupy a
portion of the wheel proportional to the ratio:

f
= Nj : (1.1)

> fi
i=1

where fj, is the fitness of the k'* individual. The roulette-wheel for the example described
above is shown in Fig. 1.1.

The selection operator simply works by turning the roulette-wheel. It seems obvious
that, according to this schema (which is only one among the different ways to realise the
selection operator), the individuals which have greater probability of reproduction (and
hence to pass their traits to the next generation) are those which show higher values of the
fitness function. Since we assume that, during the evolution process along the different
generations, the size of the population is constant and equal to Nj;,q, to give rise to the
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10%

20% 60%

Figure 1.1: Roulette-wheel for the example listed in Table 1.1.

reproduction process we need to turn the wheel exactly Nj,q times. At each turn of the
wheel, an individual is extracted according to the portion that it occupies on the wheel
and an exact copy of this individual is then realised.

The next phase of the process is the crossover phase, so let us describe the crossover
operator. Such a operator achieves, concretely, the creation of new individuals. After the
choice of the N;,4 individuals for the reproduction process by the selection operator, the
crossover phase takes place and it is articulated in two steps:

e the N;,; individuals are randomly coupled, forming in this way the couples of par-
ents;

e for both individuals composing the generic couple, every single gene of each chro-
mosome of the individual’s genotype is randomly cut, with a probability p..oss, in
one ore more locations (the same positions for each homologous gene of the couple
genotype): at this point two new individuals are created by mixing and crossing
the information restrained in the genes composing the chromosomes of the parents’
genotype.

The effect of the crossover operator on two homologous genes of the parents’ couple is
depicted in Fig. 1.2. In this example we tacitly assume that the GA employs an alphabet
of cardinality k = 2 to code the information. In this case, the position of the cut randomly
occurs between the third and the fourth bit of the chain.

At the end of the crossover phase we obtain, by recombination of the V;,;/2 couples
of parents, the N;,; individuals composing the new generation.
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Figure 1.2: Effect of the crossover operator on two homologous genes of the parents’
couple.

The third and last phase of the process is the mutation phase wherein the mutation
operator acts on the structure of the individuals’ genotype. Such a operator acts in a
random way, with a probability p.: (often this probability is very low), at the level
of the genes of the new individuals generated after the crossover phase. The mutation
operator works on the single bit of the chain, by switching it from 0 to 1 or vice-versa.
The effect of the mutation operator is shown in Fig. 1.3. We can see that, in this case,
the mutation randomly occurs on the fifth bit.

1011 1 1101100 - 1011 0 1101100

Position of the -
mutation Unmutated gene Mutated gene

Figure 1.3: Effect of the mutation operator on the bits of the single gene.

The main aim of the mutation process consists in increasing biodiversity among the
individuals composing the population. In addition, it can be noticed that such a process
represents a random search process in the space of individuals’ genes and plays the role
of a second-order adaptation mechanism within the whole genetic search process, see [16].
It is worth noting that introducing and increasing biodiversity, through the mutation
mechanism, within the population is a crucial point for what concerns the GA search
process: in fact, through the biodiversity it is possible to avoid a premature convergence
of the algorithm towards local minima and/or pseudo-optimal solutions, a phenomenon
often called genetic drift.

Finally, we can assert, according to [12, 16], that a standard GA must have the fol-
lowing five features:

e a genetic representation for potential solutions to a given problem;
e a way to create an initial population of potential solutions;

e an evaluation (objective) function that plays the role of the environment (ranking
solutions in terms of their fitness) along with a selection operator that chooses, ac-
cording to a certain criterion, the individuals involved into the reproduction process;
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e genetic operators that alter the composition of the individuals;

e values for various parameters employed by the GA (population size, crossover prob-
ability, mutation probability and so on).

1.1.4 The schemata within GAs

When dealing with genetic-based search processes, one could be interested to understand
how the similarities or the analogies between the most performing chain of bits (and,
hence, the information coded and restrained in those chains) could help the GA in ex-
ploring the definition domain of the considered problem and, simultaneously, leading the
GA towards potential optimal solutions.

However, how do we assert that two chains (or strings) are similar? In other words, ac-
cording to which criterion we can say that a given chain belongs to a particular “class” of
chains which show some wnvariants concerning the position of particular bits within the
chain itself?

Holland [15, 16] gave an answer to these questions, introducing the definition of
schema. A schema is a “pattern of similarity” among two or more chains (belonging to
different genes of different individuals) describing a set of sub-chains having some analo-
gies between the elements (bits) located in well-defined positions. Generally speaking,
two chains are similar, i.e. they belong to the same schema, if they have some elements
(bits) in the same position within the chain.

To better describe the concept of schema, let us introduce the wildcard symbol x. We
can easily describe the concept of schema using the ternary alphabet composed by the
elements {0, 1, *}. The wildcard symbol * is only a meta-symbol that can assume a value
of either 0 or 1, and it is used to describe the potential schemata included into a chain
of length [.. As an example, the schema %0111 corresponds to the following two chains
of bits: 00111 and 10111. Conversely, we can say that the strings 00111 and 10111 are
similar because they share the same schema *0111.

In the following we assume that the individual’s genotype has only one chromosome.
Let us consider a binary alphabet and a string of bits of length /.. Since every bit can
assume the values %, 0 or 1, the number of potential schemata for a binary alphabet,
included within a chain of length I., is (2 + 1)lc. Generally speaking, for an alphabet
of cardinality k& the number of potential schemata, restrained into a string of length I,
is (k+ 1)l“. Nevertheless, this quantity represents the number of potential schemata
associated to a chain of length [., but not the number of effective schemata.

Starting from these considerations a question arises: how many schemata does the GA
handle in a population of Ny, individuals (i.e. N;,4 chains) of length [.? To understand
how many schemata are handled by the GA for a population of N;,4 chains of length [. we
must know the real structure of each string at each generation. Despite it is not possible
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to know the details of each chain, we can only fix the upper and lower bounds to the
number of effective schemata treated by the GA at each generation.

Holland [16] has demonstrated that the number of effective schemata, for an alphabet
of cardinality k, associated to the single chain of length [, is k. Moreover, the population
is composed of N;,q4 chains: thus, the number of effective schemata associated to a chain of
length [, is, at most, N,q % k' at each generation. Finally, we can assert that the number
of effective schemata, ngchemata, included within a string of length (., for a population of
Nina strings (handled by the GA at each generation) is in the following range:

Nschemata € [klc ) Nind X klc] . (12)

After having clarified that issue, another question arises: what is the effect of each
genetic operator on the number of effective schemata (included within a string of length
le, for a population of Ny,q strings) handled by the GA at each generation? We give an
answer to this question in Section 1.2

1.2 Genetic Algorithms: mathematical foundations

Before describing in details the mathematical aspects that underlie GAs, it is appropriate
to introduce some definitions which will give a more rigorous nature to our discussion.
Without loss of generality, we assume to use a binary alphabet to describe the genotype
of individuals. Such a alphabet is represented as:

V={0,1} . (1.3)

We assume that the population is composed of N;,q mono-chromosome individuals
whose genotype is described by a single chain of bits. In addition all chains have the same
length [.. The population, at the generation ¢, can be expressed as:

{A@)} = {A:(t), Ao(1), .., An,,, (D)} - (1.4)
The elements (bits) of the chain are represented using lower case letters with a sub-

script identifying the position of the element within the chain. Each individual is described
by a string of bits of length [. as follows:

Aj=Aai};, =1, Nina, 1 =1,.., 1 . (1.5)
As an example, the chain of 4 bits A = 0110 can be written as A = ajasazay, with
ap=as =0 and ay = a3 = 1.
To describe all the potential schemata restrained in the population, we introduce the
ternary alphabet:

VT ={0,1,%} . (1.6)
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We remind that the number of potential schemata associated to a string of length
l. is (k + 1)!, where k is the cardinality of the considered alphabet. Since we use a
binary alphabet, the number of potential schemata is 3'c. Moreover, we recall that the
number of effective schemata (associated to a chain of length [.) handled by the GA at
each generation is expressed by Eq. (1.2). However, not all the schemata have the same
meaning. The generic schema is indicated by the letter H. For example, the schema
H{ = 0% 110 * x hold more information than the schema Hy = 0 % % * x % *. In order to
univocally define a schema H, we need to introduce the following quantities:

e order of the schema: it represents the number of fixed bits within the chain and it
is indicated by o(H);

e defining length of the schema: it represents the distance between the first and the
last position of the fixed elements within the chain and it is indicated by 6(H).

As an example, the schema H; = 0% 110 x * is of order o(H;) = 4 and it has a defining
length of 6(H) = 5 — 1 = 4, while the schema Hy = 0 % % * % % x is of order o(H;) = 1
and it has a defining length of §(H) = 1 —1 = 0. It can be noticed that the length of the
whole chain for both schemata is [. = 7. Clearly, the above quantities can vary within
the following ranges:

o(H) € [1,1] :
S(H) € (0,1, — 1]

In the next Subsections, we describe the effect produced by each genetic operator of the
standard GA (i.e. selection, crossover and mutation operators) on the generic schema H.

(1.7)

1.2.1 Effect of the selection operator on schemata

tth

Let us consider a generic schema H at the generation. Let us suppose that, at this

generation, we have N;,q individuals-chains possessing that schema within the whole

population of size N;,q, with N;,q < N;nq. In other words, we can express the number of
chains having the schema H, at generation t, as:

Nina = Nina (H, 1) . (1.8)

As said beforehand, the selection operator, depending on the values of the fitness

function, chooses a chain within the population and makes an exact copy of it in order

to pass that chain to the next step of the process: the crossover phase. Mathematically
speaking, the i*" chain is selected by the selection operator with a probability:
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pi=5—"> (1.9)

Nind

where f; is the fitness of the " chain, whilst > f; is the fitness of the whole population.
j=1

The fitness of the schema H can be defined as:

~

N’L’nd
i
j=1

f(H) = —. (1.10)
de

Eq. (1.10) means that the fitness of the schema H corresponds to the average value of

the fitness of the N;,4 chains whereto the schema H is associated. The average value of
the fitness of the whole population of chains can be expressed as:

Nina

> [

j=1
Nind .

According to what we already said about the selection of the " chain, we expect that
the schema H will be selected by the selection operator with a probability:

f= (1.11)

p(H) = (1.12)

=t
At this point, in the next generation, i.e. the ¢ + 1 generation, the number of chains
possessing the schema H, due to the action of the selection operator, will be equal to:
Nind (H,t+1) = [de (H,t)p(H)de-l . (113)
where the | | operator is the ceiling function (rounding to the next largest integer). Eq.
(1.13) can be simplified. Indeed, considering Eq. (1.11) and (1.12) we can finally write:
~ ~ H
The schema H is passed to the next generation with a rate proportional to the ratio
between the fitness of the schema H itself (i.e. the average fitness of the chains pos-
sessing that schema), and the average fitness of the whole population. For this reason,
the schemata belonging to a group of individuals-chains having an average value of the
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fitness (evaluated with respect to this group of chains) greater than the average fitness
of the population will be most probably transmitted to the new generation. On the con-
trary, those schemata with a fitness lower than the average fitness of the population will,
probably, extinguish.

Without loss of generality, we can assume that the fitness of the schema H is propor-
tional to the average fitness of the population as follows:

f(H)=f(1+C) , (1.15)

where C' is an arbitrary real constant. In such a case, Eq. (1.14) becomes:

Nina (H,t +1) = [Nya (H, 1) (1 + )] . (1.16)

If we assume, now, that the quantity C' remains unchanged through the generations,
starting from the initial generation, i.e. t = 0, we can assert that, at the current generation
t, the number of chains having the schema H is equal to:
Ning (H,t) = [Ning (H,0) (1 +C)"] . (1.17)
From Eq. (1.17) we can see that the schema H is transmitted along the generations
according to a geometric series relationship. This result has an interesting interpretation:
the schemata which posses a fitness greater than the average fitness of the population will
be passed exponentially to the next generation.
Finally, we remark that if the quantity C' is not constant along the generations, the
number of chains having the schema H, at the current generation ¢, can be expressed as:

~ ~ t

Nina (H,t) = [Nina (H,0) [ (1 + Ci)] - (1.18)
k=0

1.2.2 Effect of the crossover operator on schemata

Let us consider a chain A of length [. = 7, which contains two (among the others) different
schemata H; and Hy as follows:

A = 0111000
Hi = %1 %% x %0

Hy = % % %10 * *

the crossover randomly combines two different chains, A; and A;, by cutting them in a
randomly-chosen position. For a string of length ., there are [.— 1 possible points wherein
the cut can take place. Concerning our example, we have 6 possible points wherein the
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crossover operator can cut the chains. Let us suppose that the cut is done in position 3,
i.e. between the third and the fourth bit of the chain A. The effect of the crossover on
the schemata H; and H, is the following:

A =011/1000
Hy=x%1x/x%xx0
Hy = %% %/10 * %

as it can be noticed, the schema H; is destroyed, while the schema Hs is retained. It is
easy to understand that the schemata with a higher defining length 6(H) have a higher
probability to be destroyed than the ones having a shorter defining length. Considering
our example, the defining length of the schemata H; and Hy are §(H;) = 5 and 0(Hs) = 1,
respectively. The probability of disruption of the schema H; is 6(H;)/(l.—1) = 5/6, while
the one of the schema Hj is §(H2)/(l. — 1) = 1/6.

Generally speaking, if the crossover process takes place with a probability p...ss, the
disruption probability of the generic schema H (i.e. the probability that the crossover will
destroy that schema) can be defined as:

0(H)
l.—1"
The probability of retain the schema H, after the action of the crossover operator, is
defined as the complement to 1 of the disruption probability:

pd(H) = Pcross (].]_9)

d(H)

pSC<H) =1 _pd(H) =1 _pcrossm . (120)

If we assume that, the selection and crossover processes are completely independent,
we can deduce a lower bound for the number of individuals-chains possessing the schema
H passed to the next generation:

~ ~ H 0(H

Nind (H,t—|—1) Z IVde (Hat)% |:]-_pcrossl(—)1:|—| . (121)
From Eq. (1.21) we can conclude that, due to the effect of selection and crossover opera-
tors, the schemata which posses a fitness greater than the average fitness of the population
and reduced defining length will be transmitted exponentially to the next generation.

1.2.3 Effect of the mutation operator on schemata

The mutation operator acts on the single bit of the chain by changing it with a probability
Pmut- 1IN order to transmit a schema H to the next generation, none of the fixed elements
of the chain must be changed.
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It can be noticed that the survival probability of the single bit is 1 — p,,.. Since in
a schema H we have o(H) fixed elements, and since the mutation of the different fixed
elements of the scheme are statistically independent events, the probability of retaining
the schema H, after the action of the mutation operator, is:

psm<H) = (1 _pmut)O(H) : (122)

From Eq. (1.22) we can conclude that the low-order schemata have a higher probability
to be passed to the next generation, after the action of the mutation operator.

If we assume that, the selection, crossover and mutation processes are completely
independent, we can deduce a lower bound for the number of individuals-chains possessing
the schema H passed to the next generation:

K[ind (H7 t+ 1) 2 “:[md (H> t) % |:1 - pcrossl(s(THi} (1 - pmut)O(H)—l : (123)

If the mutation probability p.. is very low, i.e. ppw << 1, Eq. (1.23) writes:

~ ~ H
de (H7t+ 1) Z (de (H,t) M {1 — Pcross

I

Z<TH)1 — pmuto(H)}] ) (1.24)

1.2.4 The theorem of schemata and the Implicit Parallelism

After describing the effect of each genetic operator of the standard GA on the generic
schema H, we can enunciate the well-known Holland’s theorem of schemata [15, 16]. This
theorem can be expressed as follows:

Theorem 1.2.1 (Holland’s Theorem of Schemata) The low-order schemata with short
defining length and fitness greater than the average fitness of the population increase ex-
ponentially in successive generations.

Eq. (1.23) or, equivalently, Eq. (1.24) are the natural result of this theorem.

As already discussed in the previous subsections, for a population composed of N;,q
individuals-chains of length [. the GA handles, at each generation, a number of effective
schemata that varies between the bounds expressed by Eq. (1.2). As stated by the
Holland’s theorem of schemata, not all the chains are handled by the GA in the same
way: as an example, the high-order schemata or the ones having long defining length show
a high disruption probability due to the action of the mutation and crossover operators,
respectively.

Nevertheless, Holland defined more precisely the lower bound of Eq. (1.2). Indeed, he
demonstrated [15, 16] that the following assert subsists:
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Theorem 1.2.2 (Holland’s Implicit Parallelism) The number of schemata usefully pro-
cessed by the GA in a population of Ni,q binary strings has a lower bound proportional to
Ni:j@d'

Let us consider a population of size N;,; composed of chains of length [.. We consider
only the subset of chains associated to a particular schema H having a survival probability,
after the crossover operation, greater than or equal to p,.. This fact lead us to evaluate
the defining length of the generic schema H (and hence the length of the subset of chains
possessing this schema) that satisfy the previous condition:

o) 5 =1 < (= D=L (1.25)
lc —1 Peross
where [, is the useful length of the schemata (or the length of the subset of chains) which
have a probability to be retained after the crossover not less than p,..

In order to see how many sub-chains having an useful length [ are contained within
a chain of length [. > [, let us consider the following example. Suppose we have a chain
A of length [, = 10 and a sub-string retaining the scheme H of useful length I, = 5. In
addition, we assume that only the last element of this sub-chain is fixed. As an example,
the sub-chain H could be:

1- DPcross

H = %%%%1,

where the percent sign % is a jolly symbol that can assume the values either 0, 1 or x.
Since the last bit is fixed, one can notice that the number of schemata retained within
the sub-string of useful length [, is 2%~!. For the above example, the number of possible
schemata associated to the sub-chain H is 2°~! = 16. Consider, now, a string A of length
l. = 10, holding the sub-chain H, with the following structure:

A = D%%%1 * * x xx.

How many times the sub-chain H of useful length [, = 5 is contained into the string A?
To give an answer to this question, we can imagine to translate the sub-string H along
the chain A as follows:

A = %% %1 xxxx%x, A = %% %% 1xxxx, A = x %% % %01 xxx, A = +xx% %% %1%,
A =% xx DN%%1*x, A =x***xx%%N%%1.

It can be noticed that the chain A retains the sub-chain H six times. Generally speaking, a
string of length [, retains a sub-string of useful length I, (. — {5+ 1) times. In conclusion,
we can assert that the number of possible schemata of a sub-chain of useful length I
retained within a chain of length . is:
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(I — 1, + 1)2871 . (1.26)

For a population made of N;,4 chains of length [. the number of schemata retained within
a sub-chain of useful length [, is at most:

Nind(lc - ls + 1)213_1 : (1'27)

Nevertheless, Eq. (1.27) still offers an overestimation of the number of schemata retained
within a sub-chain of useful length [, belonging to the population. Suppose, now, to
consider a population of strings of length [. having the following size:

Ning = [25/%] . (1.28)

If we assume that the distribution of the number of schemata is a binomial distribution, we
can easily see that half of these schemata will have an useful length greater than [l;/2].
So, we can conclude that, at each generation, the GA handles a number of schemata
retained within a sub-chain having useful length [, greater than or equal to:

le—1s+1 _ le—1s+1
Nschemata Z I‘%NindQZS l—l = [%NindZZ{I . (129)
Substituting Eq. (1.28) into Eq. (1.29) yields:
le—1s+1
Nschemata = I_( 4 )Nzgnd-l : (130)

Eq. (1.30) demonstrates the validity of the Holland’s assertion (for more details see [16]).
We can conclude that, despite GAs destroy the high-order long schemata due to the
combined action of crossover and mutation operators, they can handle a huge number of
schemata, starting from a relatively low number of chains.

As conclusive remark, it can be noticed that in 1993 Bertoni and Dorigo [52] showed
that the lower-bound on the number of schemata of Eq. (1.30) evaluated by Holland has
not general validity. Indeed, they demonstrated that the Holland’s Implicit Parallelism
is only a particular case of a more general rule found by the authors. Roughly speak-
ing, Bertoni and Dorigo found that the number of schemata handled by the GA, for a
population of Nj,q = 27 chains, is at least of order:

N

Nge emaaz ——nd__ 5 ].31
hemata 2 [ 10g2(de)1 (1.31)

where f(/3) is a particular function defined as:
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(1+% 0<pB<1
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They showed that the Holland’s Implicit Parallelism is a particular case that subsists
when the following condition on the parameter 3 is satisfied: 5 > 1. For a deeper insight
in the matter the reader is addressed to [52].

1.2.5 Advantages and drawbacks of GAs

Very often, in many different fields, GAs have proved to be more effective and robust
than classical deterministic and/or gradient-based methods in the search of solutions for
a given optimisation problem. To understand the reasons behind this fact, we have to
analyse the main differences between classical methods and GAs:

e GAs employ a coding of the optimisation variables of the considered problem, in-
stead of directly using them;

e GAs work on a population of points instead of a single point. For this reason
GAs are well-suited when dealing with non-conver and/or non-smooth optimisation
problems: the distribution of a population of points over the whole design space
prevents the algorithm to converge towards a local minimum;

e GAs are “zero-order” 