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Court Résumé

Cette theése étudie des formalismes logiques exprimant gsi@tés sur des programmes.
L'intention originale de ces logiques est de vérifier forimmlent la correction de programmes
manipulant des pointeurs. Dans I'ensemble, il ne sera pgsopé de méthode de vérification
applicable dans cette these; nous donnons plutot un égairauveau sur la logique de sépa-
ration, une logique pour triplets de Hoare. Pour certaiagrfrents essentiels de cette logique,
la complexité et la décidabilité du probleme de la satidiitébon’étaient pas connus avant ce
travail. Aussi, sa combinaison avec certaines autres rdéthde vérification était peu étudiée.

D’une part, dans ce travail nous isolons I'opérateur de d@glee de séparation qui la rend
indécidable. Nous décrivons le pouvoir expressif de cettggue, en la comparant a des
logiques du second ordre. D’autre part, nous essayonsndi&ales fragments décidables
de la logique de séparation avec une logique temporellesetlaptitude a décrire les données.
Cela nous permet de donner des limites a l'utilisation dedague de séparation. En parti-
culier, nous donnons des limites a la création de logiquegldBles utilisant ce formalisme
combiné a une logique temporelle ou a I'aptitude a décrseltanées.
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Abstract

This thesis studies logics which express properties ab@mgrams. These logics were orig-
inally intended for the formal verification of programs wipbinters. Overall, no automated
verification method will be proved tractable here; ratheg, give a new insight on separation
logic. The complexity and decidability of some essentialyfnents of this logic for Hoare

triples were not known before this work. Also, its combipatiwith some other verification

methods was little studied.

Firstly, in this work we isolate the operator of separatiogi¢ which makes it undecidable.
We describe the expressive power of this logic, comparitmstecond-order logics. Secondly,
we try to extend decidable subsets of separation logic wighmgooral logic, and with the ability
to describe data. This allows us to give boundaries to thelseparation logic. In particular,
we give boundaries to the creation of decidable logics uiisjogic combined with a temporal
logic or with the ability to describe data.
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Introduction

A Context

A.1 Verification

Mistakes are frequent in programming and may have dramatisefjuences. A famous ex-
ample is the crash of Ariane 5 due to a division by zero. Foweafication aims at making
mathematically certain that programs do what they are dedrio. A mathematical proof of
the correctness of a program could be much more reliabletéstimg it intensively, or exam-
ining the code carefully. Proving correctness of a programahds however a lot moréerts
from the programmers or the people in charge of writing trexdations and assertions.

We are interested in the part of formal verification thatrafies at automatically generating
mathematical proofs of programs. In other words, it aimsr@ating programs checking that
other programs match a specification. Rice’s theorem telthat this problem is undecidable.
Formal verification hence either focuses on specific featofehe programs or is not fully
automated. Still, the complexity of verification tasks isgerlly high.

Indeed, programs often have a very elaborate design, whéghfar instance use concur-
rency, use recursive procedure calls, rely on arithmetpgrties, or manipulate recursive data
structures. Such programs usually have an infinite stateesphich make them hard to ver-
ify by naive state space exploration. Additionally, the fogurations of such programs may be
hard to describe, especially in the case of complex datatstes. Nonetheless, the verification
problem may be decidable for some infinite-state systensiténa very active area of formal
verification to identify such infinite-state systems (aslaixs the book chapter of Burkart et
al. [32]), such as Petri nets, timed automata, etc. Howeavknjte-state systems most of the
time have undecidable verification problems, and one ugsaaths at defining subclasses of
programs and specifications for which the verification peabls decidable.

Let us briefly present three formal verification techniqu@se method is abstract interpreta-
tion, which approximates the steps of the execution of anaragn a sound - but not complete
- way. The set of possible configurations of the system, pbssifinite, is abstracted into an

abstract domain in which each element represents a set sibpwsonfigurations. Then the

program is simulated on the abstract domain. This techriigqisebeen formally described by
Cousot and Cousot in [40]. As an example of an existing tomlgughis method, we can quote
Astrée, presented by Blanchet et al. in [14]. Among the abstinterpretation techniques,
we should give two examples of special interest regardimgttiesis, as they study recursive
structures as well as data: the works of Bouajjani et al. @ ghd of Gulwani, McCloskey

and Tiwari in [57] both use abstract interpretation as welgaidance from the user so as to
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generate annotations of programs.

Another method is model-checking, where the input of thegymam doing automated for-
mal verification is generally an automaton, or another abstn of a program. An exam-
ple of use of the model-checking method is Regular ModeleKimg, described by Bouajjani
et al. in [23]. In this framework, the models are abstractgdrbes or words, for instance
a word can naturally represent singly-linked lists. Setsnoidels are abstracted by tree or
word automata. Then, program instructions can be abstrdigtéransducers. Also, with the
model-checking method, temporal logics allow to work in leey convenient framework of
programs-as-formulas, and decision procedures for lbgicdlems can be directly used for
formal verification. Indeed, in this framework programs aadlvas formulas can be turned
into automata, and conversely; as a consequence, chediah¢he automaton model of the
program satisfies a property is done by computing whethgrpiregriate states are reached
in an automaton. This automata-based approach stems f@ifiarttious result showing the
equivalence between monadic second-order logic and Bintbiaata as far as definability of
languages of infinite words are concerned, shown by Bucld1h [An example of application
of this method is the Spin tool, presented by Holzmann in.[@&ir last chapter is related to
this method.

Finally, an interesting framework for formal verificatioa Hoare logic, introduced by
Hoare in [58]. Hoare logic is a proof system based on asseritalled Hoare triples of the
form {f;}instr{f,} (Tri) whereinstr is an instruction or a prograni, is the precondition
stated in some logical formalism, afidis the postcondition. The precondition is assumed to
be true before the execution bfistr, and the postcondition has to be true after the execution
of instr under the assumption thgtheld before. The formulas of these triples are usually
provided by the user, hence the input is an annotated prqodmainthey may also be automat-
ically synthesized. Annotated programs are then verifiedi®cking that each triple is valid.
In practice, a formuld, can be computed such thidf}instr{f,} is valid, and for which the
validity of the Hoare triple in(Tri) reduces to the one of the logical entailmé&nt f, (Ent).
Examples of tools using this method are the Key System, pteddy Ahrendt et al. in [1],
and Why, presented by Filliatre and Marché in [50]. Chap2essd 3 of this thesis are related
to this method.

From this last perspective, formal verification in Hoareidatan be reduced to a purely logical
problem, and decidability results for logics are a prior ptementary guide for the creation of
logics whose aim is formal verification, before the studyrattability.

A.2 \Vrification of Programs with Pointers

Programming languages with explicit memory managemeanh as C, expose the programmer
to many sources of potential bugs, apart from the more usoalgms studied by formal veri-
fication. Firstly, there are problems related to the use aingve data structures such as lists,
doubly-linked lists, trees, etc. These are for instanceititeesired creation of cycles in a recur-
sive structure, or memory leaks. Secondly, many bugs arécdile nature of pointers. These
are for instance: null pointer dereferences, danglingteosn or undesired aliasing. Avoiding
these problems is important for the safety of a program,tfodticiency, for its termination,
and last but not least for its security — think abouffeuoverflow attacks or non-interference
requirements.
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These specific problems need specific answers, for checkiagfe properties. Exam-
ples of such properties can be very simple to state, for mestahat there is no null pointer
dereference, or that no block of memory is freed more thae onicthat a critical part of the
memory can never be reached. It can be also less straightfdne specify, for instance that
the output of a program is a binary search tree. Providing&bwerification methods for fault
detection in such programs that manipulate recursive nitidia structures is a long-standing
open problem. From the theoretical point of view, these o present the same challenges
as infinite-state systems, even for singly-linked listserEhis indeed a potentially infinite set
of memory states for these programs, due to the recursiveenaf lists, and this makes the
problem of the reachability of a program point undecidablthe approaches of Bardin, Finkel
and Nowak in [8] and of Bouajjani et al. in [17].

We will mostly focus on shape properties. The term “shapéreeto the data structures in
which all data are ignored, and only the graph of links matte8hape properties aim at de-
tecting faults due to in-depth properties of the heap, fetance we may want to check that
a program does not create a cycle in an acyclic list. A sing@l@ample of shape property is
that the memory heap keeps the shape of a tree all along itsitexe. The non-existence of
memory leaks also belongs to this category of propertiesap&tanalysis focuses on shape
properties. It is a well established approach for the statalysis of programs with recursive
data structures. The main idea is to summarize a set of shj@ehing a recursive structure,
for instance by storing the fact that there am@ested nodes, instead of storing all of theodes

of a list, while doing the verification. Prominent logicsthave been used as abstract domains
for such an analysis are pointer assertion logic presentdesen et al. in [63], three-valued
logic assertions presented by Lev-Ami and Sagiv in [69], arenrecently separation logic
(leading to the tools Space Invader presented by Yang engQli], and Xisa presented by
Rival and Chang in [85]).

Extensions of shape analysis have been proposed for ogderaperties, stability prop-
erties, and size properties; to cite a few of these extermsithere are the shape graphs by
Bouajjani et al. in [17], the three-valued logic approachloginov, Reps and Sagiv in [70],
and the separation logic approach by Nguyen et al. in [77jvé¥er, fully automatic analyses
that are data sensitive are hard to design. The recent app®already mentioned above of
Bouajjani et al. in [20] and of Gulwani, McCloskey and Tiwari[57], rely on user-defined
annotations in expressive logics for graphs with data, anggse to leverage the amount of
annotations by guessing some of them by means of shape esalys

In all of these works, it is insightful to have a good undemsiag of the expressiveness of the
logical formalism which is used, as well as of the complegitgolving the entailment problem
(Ent) for this formalism.

A.3 Separation Logic

As already mentioned, aliasing is one of the features oftpoimanipulating programs which
introduces a lot of complexity into the verification procelSer instance, a same field in mem-
ory can be accessed by several variables or even by sevezatith The complexity of aliasing
is particularly sensible in the proofs based on Hoare logeparation logicqL) is an extension
of Hoare logic which has the ability to isolate the part of themory over which a program
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works, so that the rest of the memory becomes irrelevanti®ptoof of the program. This
principle, often called local reasoning, makes the fornaaification of programs rather mod-
ular and achieves a better scalability of both fully autamshape analyses and user-guided
proofs.

The original assertion languagg, which we may call from time to time separation logic as
well, extends first-order logic with two substructural centives. The first one, the separating
conjunction (), is the key ingredient for expressing concisely non-algroperties. The
second one, the separating implicatien) (@lso known as the magic wand, is the adjunct of
the first one, and finds its roots in the logic of bunched ingtiens which is an ancestor of
SL. The logic of Bunched implications has been introduced fiys©’Hearn and Pym in [79]
and then by Pym in [81]. Separation logic has been introdasetispecial case of the bunched
implications logic on specific models by Reynolds in [84] dslitiag and O’Hearn in [61]. The
operators o8L make the specification of thefect of instructions of programs with pointers
very easy and readable for humans.

Several fragments &L have been studied from the decidability point of view, intjgatar in
the work of Calcagno, Yang and O’Hearn [36, 35]. The earlyksan the decidability oL
have shown undecidability in large categories of casesaisly for fragments over models
with multiple selectors. An interesting fragment of sepiaralogic is of special interest from
the complexity point of view, the so-called symbolic heapsaduced by Berdine, Calcagno
and O’'Hearn in [11]. Although few features of the originapagation logic are present, it has
deserved a special attention thanks to its implementatidhe Smallfoot tool described by
Berdine, Calcagno and O’Hearn in [13]. Indeed, its compyeis tractable as it has recently
been proved that logical entailment can be decided in pohyabtime for this fragment by
Cook et al. in [38].

Almost all of the decidable fragments do not include the magand connective in their
syntax. This restriction makes sense for what user-definedtations are concerned, since
these annotations usually express rather simple propddieh as the presence of two lists
without alias). Nevertheless the magic wand can play an itaporole in many problems that
separation logic has to face, and is needed for instancaunefiinference, abduction, closure
under interferences, or the ramification rule.

One of the most challenging problems in separation logic gove decidability for classes of
properties that can be expressed with the magic wand as wigessible. Additionally, it is
specially interesting to study the root of this logical laage, with all of its features.

B Questions Addressed in this Thesis

This thesis aims at improving the understanding of the &iesdanguage of separation logic
from the complexity and expressiveness points of view, wadpect to three tferent aspects:
the magic wand, the properties involving data constraanid,the temporal properties.
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B.1 Complexity of Separation Logic

The complexity of the satisfiability, the model-checkingg walidity and the entailment prob-
lems have been intensively studied until quite recentlparticular in the articles mentioned in
the previous section [36, 35, 84, 38]. For instance, firdeoseparation logic over heap models
with at least two selectors — or record fields — is known to k#egidable from [36]. This result
is there shown even with no separating connectives, by tongnt of finite satisfiability for
classical predicate logic with one binary relation, whislproved undecidable by Trakhtenbrot
in [88].

The magic wand connective can make any of the above-meutnodlems quite diicult
to decide (note that these problems are often inter-retiutilpresence of magic wand). The
expressive power of is increased by the first-order quantificatic8L. without magic wand
is known to be equivalent to a classical propositional lagiirst-order quantifiers are dis-
abled, as proved by Lozes in [72], whereas no adjunct elitimnaolds forSL with first-order
guantifiers as proved by Dawar, Gardner and Ghelli in [41] laozks in [73]. The same gap
exists with respect to decidabilitgl without first-order quantifiers is decidable, but it becomes
undecidable if first-order quantifiers are taken into actoun

These results however crucially rely on cells having twarddields. On the other hand,
many of the case studies that are addressed by separationdols have to deal with singly-
linked lists only. The complexity a$L with the magic wand for memory models with only one
record field, despite being a natural question, was opendeia work.

B.2 Expressiveness of Separation Logic

Another natural question about separation logic is howritgares with second-order logi®Q)

and its fragments. This is a very natural question for attldase reasons. Firstly, separating
conjunction and its adjunct are essentially second-oroi@nectives (see also a similar concern
on graphs with spatial logics in the work of Dawar, Gardnet &felli in [42]), which clearly
makesSL be a fragment 0£0. Secondly, many properties on heaps require second-agiet |

for instance to express recursive predicates, or list aew groperties. Thirdly§0 is usually
expressive enough to enforce the completeness of the Hmce &nd a better understanding of
the relationship betweesi andSO could serve to derive the completeness of the proof system
of separation logic.

There are well-known examples of correspondences betvoggeslinspired by computer
science problems and more mathematical logics. The cédzbkamp’s theorem [64] states
that linear-time temporal logid.{L) is as expressive as first-order logic; h&m. has only
the strict until and since operators. This result is refing@&Etessami, Vardi and Wilke in [49]
where it is shown that unaiyTL is as expressive as first-order logic restricted to two iicidial
variables. Similarly, the Janin-Waluckiewicz theorem|[§tates that the modal mu-calculus is
equivalent to the bisimulation-invariant monadic seconder logic.

However, no correspondence between separation logic andnathematical logic was
known before the work that has led to this thesis. Kuncak andr explored the relationships
between a logic with separation operators and a secona-ogle in [67], but they considered
as models arbitrary first-order structures, and not thedstah finite heap model GiL.
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B.3 Data

As mentioned above, standard analyses on recursive datdwsgs restrict their attention to
shape properties, excluding properties that deal with titeah content of these structures.
Decidable logics handling data exist, of which Presburgithraetic is a standard example,
but interactions between data and memory shapes are vatydaandle. Defining decidable
formalisms on models with recursive structures and datarng ehallenging.

For instance, first order logic over finite data words is knaavbe undecidable, as proved
by Bojahczyk et al. in [15], and can be encoded with limited syntasources if the model
contains lists labelled with data. Additionally, all theriwal verification methods we are aware
of in this field use approximation techniques, strong restms on the syntax or strong restric-
tions on the data. The approximation techniques are agturadjeneral abstract interpretation
techniques which prevent completeness of the method, suitteavork of Berdine et al. [10].
An example of work based on strong restrictions of the syigt#éixe logic of McPeak and Nec-
ula in [76], a first order logic which can handle lists but does$ contain the negation of the
equality between locations. An example of restriction om ttodel is the work of Yorsh et
al. in [92], which can handle complex memory shapes but agsuhe data belongs to a finite
domain.

An interesting question for logics dealing with data is teritlfy decidable fragments which
are expressive. In the context of separation logic, ourtiuebecomes: what are the restric-
tions that should be considered 8h to make it decidable and still expressive enough for
annotating classical list programs with data properties?

B.4 Towards a Temporal Separation Logic

The assertion language is a state logic, mostly because it is the assertion langokgeéloare
logic, and Hoare logic traditionally deals with state aseas.

It is however tempting to introduce some forms of temporasoming in the assertion lan-
guage of separation logic. There are two main motivation#fig; firstly, recent semantics of
Hoare logic are based on the interpretation of programsas transformers, and not just state
transformers, as explains the work of Hoare et al. [59]; sdlyo temporal reasoning may help
describing recursive data structures by means of progestier the traces of the programs that
traverse them.

Among temporal logicsLTL, presented by Pnueli in [80], is often one of the favorites,
mostly because of the equivalent decidable decision pnubleased on automata that have
been developed around it, and which are described in thesaarkardi and Wolper [89]. In
the context of traces of data-manipulating prograbTs, has been extended so as to express
relations between data atfidirent points of the execution. These extensions often doatpl
the design of equivalent automata fdrfL, and may even sometimes introduce undecidability.
Although these extensions are relatively well studied fatadmodels such as integers, the
classification of these extensionsldiL. in computational complexity classes is relatively little
studied for heap data structures.

The introduction of temporal reasoning in separation logises several questions: First,
as arithmetical constraints in temporal logics are knowaasily lead to undecidability, (see
for instance the works of Bouajjani, Echahed and Haberngdj| pf Comon and Cortier [37],
or of Demri and Gascon [44]) how can the logic be kept decelabl'hen, what semantics
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should the logic have, how can it be encoded into automathhaw expressive should the
data constraints across time be?

C Contributions of this Thesis

This thesis presents new results about the decidabilgygdmplexity, and the expressive power
of separation logic formalisms that include either the magnd, data constraints, or temporal
reasoning.

C.1 Magic Wand and Separation Logic

In chapter 2, we investigate decidability, complexity ardressive power issues for first-order
separation logic with one record field. We consider on thelwredSL without restrictions —
including the magic wand, and on the other h&hdvithout the magic wand. The main result
we establish is the8L is as expressive &9. As a by-product, this shows the undecidability of
SL. We refine this result by showing théit without the separating conjunction is as expressive
asSL, in other words that the magic wand can simulate the sepgratinjunction.

By contrast, we establish thsit without the magic wand is less expressive than the monadic
fragment ofSO; we also establish th&L without magic wand is decidable, although with a non-
elementary complexity. We extend this result for restdatases where the magic wand occurs
in formulas. We also generalize our main result to heaps avitarbitrary number of fields: for
k € N, we show thakSL, the separation logic over heaps wihecord fields, is equivalent to
kSO, the second-order logic over heaps wkthecord fields.

C.2 Ordered Data and Separation Logic

In chapter 3, we propose a general approach for reducinghtigges handling ordering prop-
erties to pure shapes, and stress some natural limitatierghauld put on data properties in
order to check them automatically. To our knowledge, no ipetd dealing with data had ever
been integrated to separation logic while preserving @dglidy as well as correctness before
our work. We establish decidability for (first-order) segtéon logic with a predicate that al-

lows to compare two successive data in a list. We then congideextension where two data
in arbitrary positions may be compared, and establish thiecidability in general. We also

replace long distance comparisons by guarded comparidareta, allowing to compare the

data pointed to by a program variable to any other data, whioliides an interesting decid-
able logical fragment. We finally consider the extensiorhie magic wand and prove that, in
contrast with the data-free case, even a very restrictedfube magic wand already introduces
undecidability.

C.3 Temporal Separation Logic

In chapter 4, we will introduce a temporal lodgitL™" whose underlying assertion language is
the quantifier free fragment of separation logic and the taadpogic on the top of it is the stan-
dard linear-time temporal logicTL. We analyze the complexity of various model-checking and
satisfiability problems foLTL™", considering various fragments of separation logic (idirig
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pointer arithmetic), various classes of models (with ohaiit constant heap), and the influence
of making the initial memory shape a part of the input of thegbem. We will have a com-
plete picture based on these criteria. Our main decidglodgult ispspace-completeness of the
satisfiability problems on two fragments of our logic. We ewrer establisi?-completeness
or £-completeness of various problems by reducing standatulgnts for Minsky machines,
and we eventually give a rather detailed picture of the cewxip of this approach to temporal
reasoning in separation logic.
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Chapter 1

Preliminaries

Introduction

Contents of this Chapter

In this section, we introduce mathematical notions which e used throughout the whole
document, in particular a model of the memory, a definitiansteparation logic and some ex-
amples of its expressiveness. This section will mainly ¢giasic information about separation
logic.

Structure of the Chapter

First, we will introduce a general definition of memory stateour model of the memory — of
which we will define three subsets used as simpler classe®déist memory shapes, simple
memory shapes and simple memory states. Each of thesexctdssedels will be used later in
one of the three main chapters. Figure 1.1 are summarizedddels and their characteristics.
They diter on the ability to contain data in fields of a cell, and on tbegibility of the presence
of more than one address field in one memory cell.

Then, we introduce first-order and second-order logic onsih®plest of these models,
simple memory shapes. In the meanwhile, we also explainanwantions on variables as well
as general definitions about formulas and logics.

Then, we introduce separation logic. There will first be therfal definition of a general
separation logic. This will allows us to define formally itgevators able to modify the model,
that we have described without being precise yet. Simil@rlhe models, we will introduce
three fragments of separation logic, with or without dat@hwr without multiple selectors,
corresponding to the three main chapters of this thesignkeats of these fragments, accord-
ing to additional characteristics, will be introduced. g 1.2 summarizes the fragments of
separation logic introduced in the whole document, withrtfeatures and their models, for a
reference purpose.

Finally, we provide examples of properties that can be esgwé in our formalisms. We start
with simple properties on allocation of memory cells, anthvgimple arithmetical constraints
on the amount of predecessors of a vertex in the graph onerohodels is equivalent to. We
will end this section with the definition of reachability piieates and lemmas proving their
semantics.
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several selector

sone selector

with data

Heaps,,

Heaps,

without data

Heaps,

Figure 1.1: Models

Heaps

several | pointer data and | location of

- 0 1 | selectors arithmetic| comparisons definition
SL v v v 1.3
SL, v v v 1.3
SLs v v v v 1.3
SLgy v v v v v v 1.3
SL” v v 1.3
SL™ v v 1.3
SL% — v v 2.1
SL<" resticted | v/ v 2.1
SLshert v v . 3.1
SLR ™ -3 v v g 3.3
gLguarded VY resticed 3.2
SLy*" v |V v 3.2
SL,o"9°d v v restricted 3.2
SL, v v v 1.3
SL v v 1.3
SLYF v v v 1.3
SLLF 1.3

Figure 1.2: Fragments of separation logic

Note that there is additionally a table of notations at the @frthe thesis.

1.1 Memory Model

1.1.1 Memory States

Let us introduce our model of memory. It captures featurggoframs with pointer variables
that use pointer arithmetic and records, as well as data &moordered set.

Definition

We assume a countably infinite detr of first-order variables (although, obviously, for a given
formula we need only a finite amount). We will range over Valea withw, x, y, z. For further
information about variables, see section 1.2.1.
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We assume an infinite sebc of locations, thought of as address indexes. We assume that
Loc = N as we want to model pointer arithmetic. In our abstractiany, iateger is a valid
address, there is noil special address as our logical formalisms will all be ablsitoulate
its presence if necessary, and the memory has an infiniterambaddresses which allows an
unbounded size of the stored information. We will range ovgurals withm, i, j, k, n.

We assume a disjoint, infinite, totally ordered §Rit, <) of data, and range over a partic-
ular datum witho.

In order to model field selectors of a cell, we consider an itdfisetLab of labels, we will
range over labels withnext, datum.

We will usePowi¢;, (I) to denote the set of finite subsetsIofWe useSet; — ¢, Set, to
denote the set of partial functions with finite domain fronubset ofSet; to Set,, and— i+
the set of the ones of finite non-empty domain.

The setsStores of stores andieaps,, of heaps are then defined as follows:

Stores £ Var — Loc
Heaps,, = Loc —gj, (Lab —¢ne (LocUDat))

We will range over a store witk and over a heap with. We callmemory stat@ couple
(s,h) € Stores x Heaps,,. A heap can be equivalently understood as a finite subset of
N x Lab x (Loc UDat). Given a finite seK of variables (for instance occurring in a given
formula), we can assume that a memory state is finite by céstgithe domain of the store to
X.

In a memory state, each allocated address contains a meeihga each cell can contain
several fields. Fields of a cell andéfsets for pointer arithmetic are both available in our models
but are not related, so our models could be more concretadasimg) labels as fisets and
relying on pointer arithmetic. However, for our classifioatof several problems, it will be
useful to consider pointer arithmetic independently. Augisrepresentation of a heap of our
general models can be seen in figure 1.3, where the first ra@septs the addresses for pointer
arithmetic, and the boxes below represent the cells, eititérfield selectors when allocated
or with the(® symbol when not allocated.

Subscripts

We will use these models in thredidrent contexts, for which we define thre#éient subsets

of Heaps,,, leading to three diierent sets of models. We use the subscrigtdenote the heaps
which allow several selectors, and the subscrifi denote that heaps can contain data as well
as addresses.

Handling Heaps

We writeDom (h) to denote the domain &f andIm(h) to denote its image. Far C Dom(h),
We writeh;; to denote the restriction éfto I.

Intuitively, in memory states, each index is thought of agaimy point on some record cell
containing several fields. Cells are either not allocatedllocated with some record stored
in. In a memory statés, h), the memory cell at index is allocatedif i € Dom(h); in this
case the stored recordhgi) = {l, — ji,...,l — jn}. Forinstance, in the figure 1.3, if we
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next : 4 l; : o4

datum : o, 5 : 1
0 l; : o3 0 0

ls : 04

g : 2

Figure 1.3: Visual representation of a memory state

call the represented headpthenDom(h) = {1, 3}; alsoh(1) = {next + 4,datum — o,} and
h(3) ={l; > 04,l5 > 1,1, > 03,15 > 04,1y — 2}

A heaph with domain{iy,...,i,} is sometimes represented by the set of memory cells
{i; > h(iy),...,in > h@}.

Two heapsh,, h, are said to belisjoint, notedh; Lh,, if their domains are disjoint; when
this holds, we writén; o h, to denote the disjoint unialy, W h,.

Sizes

The size of the store with respect to a finite set of variabl&sC Var, written sizey(s), is
defined agX| x max(1+log(1+s(x)) : s(x) €N, xe€X).

Similarly, the size of the heah with respect to a finite set of labels C Lab, which
we will write size; (h), is defined agDom(h)| X |L| X max(1 + log(1 +h@) D) : i €
Dom(h), h(i) (D) is defined and (i) (I) € N).

The size of the memory states,h) with respect ta&X andY, written sizex; ((s,h)), is
sizex(s) +size; (h).

1.1.2 Memory Shapes

We define memory shapes as the abstraction of a memory heggitiog the whole data com-
ponent of all cells, while retaining the graphical aspectm@mory shapés a pair(s,h) €
Stores x Heaps, where:

Heaps, = Loc —¢j, (Lab —¢in+ LoC)

This model can be seen as a finite directed graph whose edgéabatled, so that two
edges originating from the same vertex always have digtibet's.

1.1.3 Simple Memory States

They represent the memory state of programs manipulatigjyslinked lists and data. We
define asimple memory statas a pair(s,h) € Stores x Heaps, whereHeaps, is the set of
the heaps in which all the allocated memaory cells have exaet labels, one calledext and
always containing a location, the other caltetum and always containing a datum. It can be
equivalently defined as:
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Heaps, = Loc —¢j, (Loc X Dat)

This model can also be seen as the graph of a unary functidrnfvvite domain, in which
each edge is labelled with a datum.

We write fst andsnd to denote the first and second projection on a product set.cAsse-
gquencefst(h(i)) is the location in the memory cdll(i) whereasnd (h(i)) is the datum.
We can equivalently writl (i) (next) for £st (h(i)) andh(i) (datum) for snd(h(i)).

The setbat can be instantiated in various ways. As an example, prograarspulating
ordered lists of naturals can be modeled choobing= N with the standard order. In order to
ensureDat N Loc = @, we can simply chooseat = N’ = {0’,1’,2/,...}withi’ < j iffi < j
in (N, <). The same holds for lists of reals, lists of integers, andrso o

Also,Dat could be thought of as the state of a lock at the current nbdejg the identifier
of the thread holding the node (or some constant for an dtailack). Here, the ordering
on data is not relevant, but the equality between data is.s&ch a model, one may want to
express, for instance, that every thread holds the locks mibat two nodes of a list, and that
these nodes are necessarily consecutive.

1.1.4 Simple Memory Shapes

They represent the shapes of the memory for programs maiiipgisingly-linked lists. They
are equivalent to a model in which all the allocated memolg tmve only one labehext. A
simple memory shaps a pair(s,h) € Stores x Heaps where:

Heaps = Loc —yjn LoC

This model can be seen as the graph of a unary function witle fil@main.

We will write Shape (-) for the obvious map from heaps of simple memory states tosheap
of simple memory shapes — with the domairshtpe (h) equal to the domain df

Loc — Loc

Shape(h) = " i)

1.2 Firstand Second-Order logic on Simple Memory Shapes

1.2.1 Conventions on Variables
We have already defined the countably infinite\sat.

Program Variables

Variables can be interpreted as both variables from therpanog or logical variables quantify-
ing over locations. The main fiierence between these two types of variables is that program
variables are not quantified in formulas. We safely ideritigm and will usev to emphasize
that a variable should be understood as a program variabke s&t of program variables will

be calledProgvar and is included irvar.
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Special Variables

In this paragraph we define a set of variables and functiomggting fresh variables from this
set, which will be very useful in several proofs, as havirggfrvariables will then make things
much simpler. We define the special variald@gcialvar as an infinite subset afar such
thatVar\Specialvar is also infinite. Unless otherwise stated, a variable shbeldnderstood
as belonging td’ar \ Specialvar. In the remainder, we will assume two fixed injections
(X,1) € Var \ Specialvar X N  (x,1) € Specialvar, andi € N + (i) € Specialvar
such that for alk, i andj, (x, 1) # (j).

Data Variables

We assume a s@atvar of data variables, ranged over wih A valuation interpreting data
variables is a functioe : Datvar — Dat. In general, the lettes will be used to describe an
environment generated by quantifications. Concerning daiables, they will never be free
variables in the formulas which are instances of the problesa will study.

Second-Order Variables

In order to define second-order formulas, we consider a jaf@tvar = (Secvar;) ;s Of
second-order variables, denoted ByQ that will be interpreted as finite relations ovesc.
Each variable irSecvar; is interpreted as at-ary relation. Asecond-order environmeit
is an interpretation of the second-order variables suchftineeveryP € Secvar;, E(P) is
a finite subset of.oc*. Since second-order variables quantify over finite retetjche ver-
sion of second-order logics we shall consider is usualliedateak We will sometimes call
environment a second-order environment, when the cordexdtiambiguous.

The value of a second-order variable, a relation on integeisbe represented with the
letterR. If the variable specifically belongs &ecvary, it can then be represented byJ orK,
which will more generally be used to represent sets of imgege

1.2.2 Second-Order Logic
Formulas

We range over formulas describing memory heaps fattg.
Formulas of (weak) second-order logié are defined by the grammar below:

fi==f|fAf|IXfIX>y|x=y|AP.f]QXy,..., %)

whereP, Q are second-order variables aQde Secvar,. We writeMSO [resp.DS0] to denote
the restriction ofSO to second-order variables Becvar; [resp. Secvar,]. A sentencas
defined as a formula with no free occurrence of second-ordeahles. As free first-order
variables are considered as program variables, this is whgam define a formula with free
first-order variables as a sentence.

We define the first-order fragmeR0, as the restriction 0$0 to the formulas with no oc-
currence of second-order variables.

Let fct be a unary function. Thefict[i — j] has as domaibom(fct) U {i}, and is
defined byfct [i — j1(i) = j and for alli’ € Dom(fct) \ {i}, fct[i - jI1({’) = fct(d).

24



Satisfaction Relation

The satisfaction relation fa80 is defined below with an environmeBtas argument (below
P € Secvary).

(s,h),E Ego dP. f iff thereis a finite subs&tof Loc™",

such that(s,h),E[P — R] kg, f
(s,h),E Eso P(Xy,..., %)

iff  (s(Xy),...,s(X,)) € E(P)

(s,h),E Ego —f iff not(s,h),E kg f
(s,h),EEsofAQ iff  (s,h),EEs fand(s,h),EFEs g
(s,h),E Ego IX. f iff thereisl € Loc such that(s[x — I],h),E kg, f
(s,h),EfFsox—>y iff h(s(xX)) =s(y)
(s,h),EEFsox=Yy iff  s(x) =s(y)

Whenf is a sentence, we writés, h) ko f to denote(s, h), E s, f for any environmenk
sinceE has no influence on the satisfactionfoT his particularly applies t80 formulas.

Shorthands

We will write P € Q for Yx.P(x) = Q(x),aswellaP c QforP € Q A Ax.P(x) A =Q(X),
and use all set operatoPsnN Q, P U Q,, etc. defined in a standard way. We will also use the
composition of predicatexPQy for 9z.xPz A zQy. We will make use of standard notations
for the derived connectiveg v, =, & . Let us also mention that the equality= y could be
encoded byP.(P(x) & P(y)), obtained by the principle of identity of indiscernibles.

1.2.3 Conventions on Formulas and Languages
Fragments

Let Frag andFrag’ be two fragments of logics defined on the same set of memoryelsod
We say thatFrag’ is at least as expressive Bsag (written Frag C Frag’) whenever for
every sentencée Frag, there isf’ € Frag’ such that for every memory stae,h), we have
(s,h) F fiff (s,h) F f. We writeFrag = Frag’ if Frag C Frag’ andFrag’ C Frag. A
translationfrom Frag to Frag’ is a computable functiomr : Frag — Frag’ such that for
every sentencke Frag, for every memory shapés, h), we have(s,h) k fiff (s,h) F tr(f).

Free Variables

We write Freevar (f) to denote the set of free variables occurring in the fornfiulehe proof
of lemma 1.2.3.1 is by an easy verification.

Lemma 1.2.3.1.For all simple memory shapa,(h), SO formulag, environment& and store
s, if S|Freevar(g) = SllFreevar(g)’ then(s,h),E Fso g iff (s, h),E ks 0.
Substitutions

In the latter, we may use the notatibly < g’] for the formulaf in which the subformula or
the variabley’ replaces each occurrencegf
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Another useful substitution is[i « i’] [resp. E[i < i’]], which denotes the store
obtained froms [resp. the environment obtained frdthby replacing every occurrence of
by i’ in the range of these functions.

Let us define formallys’ = s[i « i’]. For anyx € Var, if s(x) = i thens’(x) = 1’
otherwises’ (x) = s(x).

Let us define formalfE[i « i’]. LetP € Secvar. Let (iy,...,i,) € Loc®; leti] = iy
wheniy # i andi; = i’ otherwise. Then(i),...,i;) € E[i « i"1(P) iff (i,...,1i,) €
E(P).

Lemma 1l.2.3.2.Let (s,h) be a simple memory shagebe an environment, arglbe a formula
in DSO. Leti, i’ be locations such that

— i¢Dom(h) U Im(h).
— 1" ¢ Dom(h) U Im(h) U{s(x) : x € Freevar(g)}.

— i’ is not in the finite graph di (P) for any second-order variabReoccurring ing.
Then(S[l «— l,],h),E[l — 1’] |=SO g |ﬂ: (S,h),E '=SO g

Proof. The proof is by a simple induction on the subformulagyofLet g’ be a subformula
of g. Assume that the lemma holds for any strict subformulg’ofWe must prove that the
lemma holds foy’. The inductive cases, when the outermost connectiyg f boolean or a
guantification, are obvious. Let us study the base gasex — y. The other base cases are
simpler.

By the semantics(s[i « i’],h),E[Qi « i'] Fs X — y iff h(s[i « i'1(x)) =
s[i « i’]1(y). Asi ¢ Dom(h) andi’ ¢ Dom(h), we haves[i « i’](x) € Dom(h) iff
s(x) € Dom(h).

— If s(x) ¢ Dom(h) thens[i « i’] (x) ¢ Dom(h) and none of(s[i < i’],h),E[i «
i’] and(s,h),Eis a model ofy’.

— If s(x) e Dom(h), then, ad ¢ Dom(h), s[i « i’]1 (X) =s(x) andh(s[i « 1’1 (X)) =
h(s(x)).

x If (s,h),E is a model ofg’ thenh(s(x)) = s(y), and asi ¢ Im(h), we have
s[i« i]J(y) =s(y).

x If (s,h),E is not a model ofy thenh(s(x)) # s(y). If s(y) # i thens[i «
i’1(y) =s(y),soh(s[i « i'T(x)) #s[i « i'1(y). If s(y) =1, thens[i «
i’1(y) =1i’, sosincel’ ¢ Im(h) we haveh(s[i « 1’1 (X)) # s[i « i’J(y). In
both case<s[i « i’],h),E[i « i’] is not a model ofy'.

Sizes

The size of the formul$ written| f |, is the length of the strinffor some reasonably succinct
encoding of variables and integers with a binary representa\We will use the mayp - | for
other syntactic objects such as formulas of our temporat lgd formulas of separation logic.
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Atomic formulas k,x’ € Var, i € N, | € Lab, v € Datvar)

atom ::= x=X| x+i='x (atomic formulas)
| val(x) <v| val(x) >v (ordered data)
State formulas
fi.:= atom
[fog| f--g| emp (spatial fragment)
| fAg]| —f (classical fragment)
| Ix.f| Av.f (first-order)
Satisfaction
(s,h),e g Ix.f iff there isi € Loc such that(s[x — i],h),e kg f
(s,h),e g 3Av.f iff there iso € Dat such that(s,h),e[v - o] kg f
(s,h),e g x=X iff s(x) =s(x)

(s,h),e sy x+io!X iffh(s(X) +1i) ) =s(x)
(s,h),e g val(x) <v iffh(s(x))(datum) < e(v)
(s,h),e g val(x) >v iffh(s(x)) (datum) > e(v)

(s,h),e Fsz emp iff Dom(h) =0

(s,h),e g fyof, iff 3h;,h, s.tth=h;o0h,, (s,h;) kg f; and (s, hy) Eg s
(s,h),eEq f, = fy iff forallh’, if h L h’ and(s,h’) kg f; then(s,hoh’) kg fs
(s,h),eEq f AT, iff (s,h) Eg. f; and(s,h) Eg 1,

(s,h),e g —fy iff not (s,h) kg f;

Figure 1.4: The syntax and semanticsbf, with pointer arithmetic and records

1.3 Separation Logic

1.3.1 Definition

We now introduce the separation logRL(,). As for the heaps, we will use the subscriftio
denote fragments &Lg, which deal with several selectors, ando denote fragments which
deal with data as well as pointers. The syntax of the logievergin figure 1.4. We range over
formulas of separation logic withg.

In short, separation logic is about reasoning on disjoiapise The models of this logic are
the memory states defined above.

Semantics

A formulafo g with the separating conjunctiostates that holds on some portion of the mem-
ory heap andy holds on a disjoint portion. A formula— g with the separating implication
(usually called thenagic wandl states that the current heap, when extended with any disjoi
heap verifyingf, will verify g. Consequently;s is a universal modality whereasas an exis-
tential flavour. In a visual representation, one can stases#mantics as in figure 1.5.

Boolean operators are understood as such. Derivable civesfcv g and—f are defined
through their straightforward abbreviations of the inéddboolean operators.
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® ks fog when there arg and D
such thai® = ©, as well ax kg fand D E g.

D Es f-og when any suchtha Eg fis also such thap E g.

Figure 1.5: Visual representation of the semantics of sejoar operators

Formulasatom are atomic formulas The formulax + i<'x’ states that the value of the
field | of the record stored at the address pointec lbyith offseti is equal to the value of the
expressiorx. If the offset of a pointer i®, we writex—'x’; if additionally | = next, we can
simply writex < x’. Finally,x — (y,v) will be used forx — y A val(x) = v. The formula
x = X' states the equality between the values of the two variable$emp means that the
current heap has no memory cell allocated.

The semantics of formulas are formally defined by the satisfa relationEs; in figure 1.4.
We can note that our level of granularity implies that a rdocell cannot be decomposed in
disjoint parts by separation operators.

Validity and Satisfiability

We will not study formulas with free data variables — exceysabformulas of studied formulas.
We can write(s, h) kg finstead of(s, h), e Eg. f whenf has no free data variable. A formula
fis valid iff for every memory statés, h), we have(s,h) kg f (written g f). Satisfiability is
defined duallyf is satisfiableff there is a memory states, h), such that(s,h) kg f.

Remarks on the Wand

We also introduce a slight variant of the dual connectivetiier magic wand, also called the
septraction f = g is defined as the formula((f) - (=(g))). itis easy to check that
(s,h) Eg f; =1, iff there ish’ L h such that(s,h’) ks f; and(s,hoh’) Fg f,. Septraction
is an existential version of magic wand. Hence, the septraciperator is quite natural since
it states the existence of a disjoint heap satisfying a fterand for which the addition to the
original heap satisfies another formula.

The connectives is theadjunctof o, meaning thai(f, of,) = f;is valid iff f, = (f, —
f3) is valid. Still, observe that there is no obvious way to defirend - from each other
since typically the formula( (f; ofy) = f3) & (f; = (f, = f3)) is not valid. This shall
be strengthened in the sequel by establishing $hawithout wand is decidable where&g
without separating conjunction is not.

Shorthands

We use the notatiox— o for Ay.x — y. The notatioma will actually have a wider use, always
in the meaning of an existential quantification over thealala, label or integer that should be
in the place of the square. In the case of figures like figuregzadsymbol represents a location
that is not represented by any otlesymbol, variable (likex in figure 2.4), or integer (like ,

in figure 2.4)..
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We will use equality over vector&, ..., X,) = (Yi,...,Ya).

If the considered fragment of the language contains firstragdantifications and is defined
on single a model with single selectdte@ps, or Heaps) thenemp, which means that the
domain of the heap is empty, can be definedrap = —3x. —=3y. x < y. In this case it can be
omitted from the syntax.

The version of separation logic we have introduced doesaramnull, the usual constant
for exceptions, interpreted il such that any is undefined for the valugil. Any formula
f possibly with the constamiull can be translated into a formufaof SL such that is satisfiable
iff f is satisfiable. Indeed, d, = (=3z. null — z), thenf' can be defined a3 null. g, A f”
with f” beingf completed withg, in each left member of a subformula with the magic wand
as outermost connectivaull is understood here as a distinguished variable. In the §egeae
will not use the constamtull.

1.3.2 Fragments of Separation Logic on Memory Shapes
State Formulas

We define the set dftate formulasSLg with the grammar below. It is a separation logic on
memory shapes. It has no quantification as it will be used aptgr 4, where it will be mixed
with LTL. In the remainder, we focus on several specific fragmentsieseparation logic.

fi==f|fAf|x+ioly|x=y|emp|fof|f-of

Note that the size of the information held in a memory celleghrer fixed, nor bounded.

Fragments

We say that a formulais in thecord fragmen¢SL*¥) if all its subformulas of the form+i—'x’
usei = 0. In other words, pointer arithmetic is removed, but all otieatures are still present,
in particular memory cells have multiple selectors throtighr labels.

We say that a formula is in thelassical fragmen(SLS") if it does not contain any of the
connectives and—.

Thelist fragmentSLLF is part of the classical fragment in which all subformutasi—'x’
usei = 0 andl = next. In other words, memory cells have a single selector, wrsaimilar
to only being able to describe simple memory shapes.

Clearly, the classical and record fragments are incomperahile the list fragment is
included in both of them.

Finally, SL_ is SL¢ with no -~ connective.

1.3.3 A Separation Logic for Simple Memory States
Definition
We now define the assertion langua&dg. Formulas ofL, are defined by the grammar below.
They allow to describe lists with ordered data.
foi==f|fAf] IXF]| AV | X > y|val(X) <v|val(X) >v|x=y|fof

Note that due to the memory mod#aps,, the natural semantics @l (x) < vimpliesin
particulardz.x < z.
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Comparison Predicates

In the chapter dealing witBL,, we will define several fragments of it, in particular depend
ing on how restricted are the comparisons that we choosdaw.al’he comparisons will be
restricted to a few predicates, not allowing quantificatbtwer data variables outside of these
predicates.

The predicateval (x) < val(y) = dv.(val(x) < v Aval(y) > v) asserts that the value
stored at the locatior is smaller than the one storedyatWe call this predicatéong-distance
comparison We moreover say that a long-distance comparisayuerdedif it is val(w) <
val(y) orval(x) > val(w) wherew is a program variable, hence a free variable.

We can now define the predicates—».y = x <=y A val(x) <val(y) andx <.y
accordingly; we call these predicat@sort-distance comparisons

1.3.4 Separation Logic on Simple Memory Shapes

Formulas of first-order separation logic with one sele8ioare defined by the grammar below:
fi=of|fAf|IXFIX > y|x=y|fof|fof

We write SL” [resp. SL™] to denote the restriction &L without the magic wand [resp.
without the separating conjunction].

1.4 Simple Predicates in Separation Logic

1.4.1 Allocated Memory Cells

Let us illustrate the expressive power on simple examplég. formula—emp - -emp means
that at least two memory cells are allocated. The formubx’, defined as: (-emp o —emp) A
x—'x’, is the local version of—'x": (s,h) g x—'X iff Dom(h) = {s(x)} andh(s(x)) (I) =
s(x’). The formula(x—'x) - 1 is satisfied by(so,h,) whenever there is no heap with
h, Lh, such that the variable is already allocated in the hedp. We will call this formula
alloc(x). If the magic wand is not part of the considered logical laagg) theralloc(x) can
be defined asdly. x — y. Also, one can specify that the domain of the heap is resttiti the
value ofx and mapsittothatof. x — y £ x < yA=3y. (y # xAalloc(y)). This last predicate
can also be defined asecisely (x < y), whereprecisely (f) denoteg A = (fodx,y.x < y).

1.4.2 Predecessors and Arithmetical Constraints

A predecessoof the locationi in the simple memory statés,h) is a locationi’ such that
h(i’) = i. A predecessor of the variabkeis a predecessor af(x). Given a memory state
(s,h) and a locationi we write Ei to denote the cardinal of the gdt € Loc : h(i’) = i}.
We call#i thenumber of predecessoo$ the locationi in (s, h)).

There are formulas iSL”, namelyfix > n and#x = n, such that{x > n [resp. fix = n]
holds true exactly in memory states such tkdtas at leash predecessors [resp. exactly
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predecessors]. For instangi®,> n can be defined in the following ways:

n times n

Ay.y—>x)o...0(dy.y > x)oT or IXy,...,Xy. Axi # Xj /\Axi — X

i#j i=1

It is worth noting that the first formula has a unique addiéibrariabley butn occurrences of
whereas the second formula has no separating connectityasadditional variables.

Observe thasL does not contain explicitly arithmetical constraints a6y, 75, 25]. How-
ever, in section 2.2 we show how to compare the number of pesders of two distinct loca-
tions. Similar developments can be performed to comparketigths of diferent lists but this
will come as a corollary of the equivalence betw&erandSo.

1.4.3 Reachability and List Predicates

Reachability in a graph is a standard property that can beesgpd in monadic second-order
logic. In separation logic, often a built-in predicate fist$ is added, sometimes notedx, y).
Adapting some technique used in the spatial logic for grgp8g we show below how this
very predicate can be expressedin as well as the reachability predicate—* y.

Definitions

A locationi’ is adescendanfresp. strict descendahof i if there isn > 0 [resp.n > 0] such
thath" (i) = i’ (h" (i) is not always defined).

A cyclic listin a memory statés, h) is a non-empty finite sequenke, ..., k, (n > 1) of
locations such that (k,) = k; and for everyi € {1,...,n— 1}, h(k;) = k;,;. A memory
state(s,h) is alist segmenbetweerx andy if there are locationgs, ..., k, (n > 2) such that
s(X) = ky, s(y) = ky, ky # kg, DomCh) = {kq,...,k,_4}, and for everyi € {1,...,n — 1},
h(kl) =K.

Formulas

The semantics of the formula below is given in lemma 1.4 \8Hgse proof is given at the end

of this section.
X =%y 2 f#x=0Aalloc(x)

Ay = 1 A =alloc(y)
AVz.z #y = (§z=1 = alloc(z))
AVz. Bz <1

Lemma 1.4.3.1.Let (s,h) be a simple memory shapés,h) ks x —** yiff his undefined
for s(y) and there are unique heahg h, such thath; th, = h, (s,h;) is a list segment
betweerx andy and (s, h,) can be decomposed uniquely as a (finite) collection of cyislis.

Proof. We want to prove lemma 1.4.3.1. A locatioris sharedwhenevefii > 2. A locationi
is initial [resp.final] wheneveri € Dom(h) \ Im(h) [resp.i € Im(h) \ Dom(h)]. It is easy to
show that(s,h) kg x —©* yif and only if

— s(x) isinitial,
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— s(y) isfinal,
— s(y) is the only final location,
— h has no shared location.

It is easy to check that i is of the formh, o h, with the properties stated in lemma 1.4.3.1,
then it satisfies the formula <—*“* y, which shows one implication. Let us prove the other
implication.

Assume(s,h) Es x —*y. SinceDom(h) is finite, the set of descendantssfx) forms
either a cyclic list, or a lasso (a list segment followed byyal€) or a list ended by a final
location. Since there are no shared locations, there isssojand since (x) is initial, it does
not belong to a cyclic list. Se(x) has a descendant that is final. It can onlydig), soh
contains a list segment fros(x) to s(y). To end the proof, we must show that the rest of the
heap contains cyclic lists only. This is equivalent to sat tho location dierent froms (x) is
initial. The proof is by contradiction. Suppose thais an initial location distinct frons (x).
Then by the same reasoning as §fix), we haves(y) is a descendant df, so two distinct
paths reacls (y), which contradicts the absence of shared locations. |

Now, thanks to this predicate, we can introduce additiooahfilas inSL" that are useful
in the sequel, whose semantics is provided in lemma 1.4.3.2.

IS(X,y) 2 X—=*yA=(x—=*yo-emp)
Xty £ (X=yAx—y)V (Tols(x,y))
X'y 2 X=yVxe—'y

Lemma 1.4.3.2.Let (s,h) be a simple memory shape.

() (s,h) ks Is(x,y) iff (s,h) is a list segment betweenandy.
(I (s,h) Fs. x =* y[resp.(s,h) Fs. x =" y]iffyisadescendant [resp. strict descendant]

of x.
Remarks

We could also define these formulas as follows::

x 'y for x=yVv(To( x> A @Y A=) A=y > D)
/\VZ.(XiZ/\in):*((ZHD)'{:)(D%Z))))
X'y for Jzx—>zAz"y

Additionally we can define the binary predicatecls (x, y) that characterises a heap com-
posed of a single list segment with data sorted in the deicigasder.

decls(x,y) for (x=yAemp) V Xy
vV precisely(Ay . x >y Ay S yAVZ.(z>'Yy) = (2>, 0))
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Chapter 2

On the Almighty Wand

Introduction

Contribution of this Chapter

In this chapter, we address simultaneously the decidglilitmplexity, expressive power, and
minimality of SL with and without magic wand.

We show thaBL is as expressive &9. This is refined by showing th&L without the sep-
arating conjunction is as expressivesas whence undecidable too. Our proof also shows that
the two formalisms have the same conciseness modulo Ibgadtspace translations. More-
over, we generalize these results to non-linear recursite structures: we will definkSL, a
separation logic over heaps with exadtly- 1 record fields in each memory cell, and show it
equivalent tkSo0, the second-order logic over these heaps.

As a by-product, we get thaL is undecidable even if it has a unique selector, (solving an
open problem stated in the article of Galmiche and Méry [5Bicl adopts a proof-theoretic
perspective orsL), and thatSL is not a minimal logic as the magic wand can simulate the
separating conjunction (but it does not have the adjunctietion).

We also establish th&L without the magic wand is decidable, but with a non-elenmgnta
complexity (this lower bound is obtained by reduction froatisfiability for the first-order
theory over finite words whose complexity is proved by Stoeker in [87], and holds already
with three variables). Decidability is shown by reductiomteak monadic second-order theory
of one unary total function that is shown decidable by Rahif8R]. As a by-product, we
obtain that the entailment problem considered by Berdiag&gno and O’Hearn in [11] for a
fragment ofSL is decidable. We also establish that decidability can bainbt with a restricted
use of the magic wand containing its usage occurring in Hbleeeproof systems involving
separation logic.

Figures 2.2 and 2.1 contain together our decidability testdncerning models with one
selector. Figure 2.2 is a sketch of the expressivenesdsasuicerning undecidable logics —
each arrow represents a logarithmic space translationré&® 1 is similar for decidable logics
—the solid arrow represents a logarithmic space translatiol the dotted arrow is a polynomial
time translation.
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SL whose magic wand is restricted

SL without magic wand

(

MSO

Figure 2.1: Translations proving decidability

L~

SL without separating conjunction

Figure 2.2: Translations proving undecidability

Structure of the Chapter

In section 2.1.1, we show th&L restricted to the separating conjunction (called heg&in
is decidable with non-elementary complexity. The compielower bound is obtained by
reduction from the first-order theory over finite words and tiecidability is obtained by a
logarithmic space reduction into weak monadic secondrdhdm®ry for one unary function. In
section 2.1.2, we extend this decidability result with d@rreted use of the magic wand.

Section 2.2 contains many technical contributions aboatekpressive power &L, in
particular we show how to express advanced arithmeticadtcaints about the memory heap
in SL restricted to the magic wand (called her&iti~). These results are essential to show in
section 2.3 thabSo C SL™. We conclude from this result th&t.™, SL, DSO andS0 have the
same expressive power (via logarithmic space translatidiss implies undecidability of the
validity problem for any of these logics, by the undecidigpibf classical predicate logic with
one binary relation proved by Trakhtenbrot in [88]. Sectoh extends these resultsKBL.

This section presents results originally published in [Jand in [29].
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2.1 A Decidable Fragment with a Restricted Wand

In this first section, we first show thaL." satisfiability is decidable but with non-elementary re-
cursive complexity. Then we will study a restricted use<athat will be shown to be decidable
through a translation tMSO0.

2.1.1 A Complexity Result without Wand

We will here translatsSL" to MSO, shown decidable below, before showing the complexity of
SL" through a reduction from the first-order theory of finite war@®ur result will be explained
in theorem 2.1.

In fact, as conjectured in [27], it has been later shown Misatis strictly more expressive
thanSL” by Antonopoulos and Dawar in [3]. They have proid cannot specify that for
somen the a model ha3n allocated cells with no predecessor. They then concludsdsthce
MSO can,MSO is strictly more expressive thai.”.

Additionally, as a corollary of our result, one can obtainadternative decidability proof
of the entailment problem for the fragmentsif considered in [11], theymbolic heaps frag-
ment The symbolic heaps fragmentS& deprived of the- andVv operators and of universal
guantification, but containing a list predicate. Its emtaiht problem was first shown to be in
co~p [11], and more recently in polynomial time in [38]. We havéaddished decidability for
a fragment oKL larger than the symbolic heaps fragment but of higher coxitgle

Lemma 2.1.1.1.MS0 satisfiability is decidable.

Proof. The weak monadic second-order theory of unary functionsagtieory over structures
of the form (Domain, fct,=) whereDomain is a countable domairfct is a unary function,
and= is equality, see [82]. This theory, which we will c&i§0¢., is decidable, see for in-
stance [16, Corollary 7.2.11]. Since in such a logical laagguit is possible to express that
Domain is infinite and to simulate thafct is a partial function with finite domain (use a
monadic predicate symbol to be interpreted as the finite doofatct), one can specify that
(Domain, fct,=) augmented with a first-order valuation is isomorphic to apheBased on
these elementary facts, we define a translatiogo_uso,.. (P, ), computable in logarithmic
space, such thatMs0 sentencé is satisfiableft

infinity
(—dP. Vx. P(x)) AJP. trysomuso., (P, )

is satisfiable in the weak monadic second-order theory ofumaey function. The translation
trysonso., (P, ) is defined as follows:

trysooms0,, (Po X = y) =2P(X) A fct(X) =y
Tryuso—msos, (P, X =Y) =X=Yy
tryusooms0, (P, QX)) = Q(X)

trysonmsos, (P, ) IS homomorphic for the boolean connectives and for quaatibos. o

Using a technique similar to the proof of lemma 2.1.1.1, we translateSL" into MSO,
which will entail decidability forSL".
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Lemma 2.1.1.2.SL” C MSO via a logarithmic space translation.

Proof. Any formulafin SL" is satisfiableff
HP (VX P(X) (=4 (Hy X — Y)) A trSLSepﬁMSO(P’f)
is satisfiable wherersg; s _,us0 (P, -) is defined with the following clauses:

— trgse_uso (P, X > y) ZP(X) AX >y,
— trgse_uso(P,Xx=y) £Xx=Yy,

— Trgpser _,us0 (P, fo g) = HQ, Q,. P = Q W Q, A tXrgser_yuso (Q, f) A tXrgpser M50 (Q,, g) where
P =QuwQ is an abbreviation fo¥x. (P(x) & (Q) VQ (X)) A=(Q(x) AQ (X)).

trsse_yso (P, -) IS homomorphic for the boolean connectives and for firseogiantification.
O

As a corollary of the two previous lemma,” satisfiability is decidable.

In order to show that satisfiability i$L." is not elementary recursive, we explain below how
to encode finite words as simple memory shapes. ALet{a,, ..., a,} be a finite alphabet.
A finite word wd is usually represented as the first-order structyte. . .,| wd |}, <, (Pa) aca)
whereP, is the set of positions labelled by the letter Similarly, the wordwd can be repre-
sented as a simple memory shagey, h,q) in which

— Xpeg " Xeng holds true andx,ey andxenq are distinguished variables marking respec-
tively, the beginning and the end of the encodingvdf(they do not encode any of its
letters),

— the list segment induced from the satisfactiorx@f, —* Xenq has exactlyl wd | +2 lo-
cations. Also, any location of positione {2,...,| wd | +1} in the list segment (hence
excludings,q (xpeg) @nds,q(Xeng)) has exactlyk predecessors i, (j) holds; addi-
tionally we call this locationi; — 1. Sinces,q (Xpeg) ands,q (Xeng) dO NOt encode any
position inwd, there is no constraint on them.

In figure 2.3, we represent a simple memory shape encodingjrtite word a;asasa;.
Throughout the chapter, a simple memory shéqé) is encoded as a graph representing the
heap such that there is an edge froro i’ iff h(i) = i’. Locations are represented by letters
i (representing themselves), variabtgsepresenting (x)) or a joker locatioro (representing
an unspecified location flierent from all the other locations present in the graph)a@ugh the
graph ofh is fully specified, we may omit irrelevant variables in thenmesentation of s, h).

In figure 2.3, note that each position of the word correspdo@sunique location in the simple
memory shape. For instance, the locatignhas one predecessor encoding the fact that the
fourth letter in the word is precisely the first lettey. The locationi; has3 predecessors
encoding that fact that the third letter of the word is prelgighe third letter isa;.

Similarly, any simple memory shage, h) containing a list segment betwergy andxeng
and such that any location on the list segment thatfie@int froms (Xyeq) ands(xeng) has
at most|A| predecessors corresponds to a unique finite word with theeadacoding. In this
direction, the simple memory shape may contain other dunaegtions but they are irrelevant
for the representation of the finite word. Moreover, a simpkmory shape can encode only
one word sinc&,.y andxeng are end-markers ange, can only have one successor.
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Xbeg

i1 > i2 > i3 > i4
O O O

Xend

Figure 2.3: Memory state encoding the finite wakd,asa;

Theorem 2.1.SL” satisfiability is decidable and not elementary recursit@rdstriction with
five variables is also not elementary recursive.

Proof. Satisfiability of the first-order theory of finite words [87 not elementary recursive
(this result holds already with three variables). Let usuoedthis problem, that we will call
FO,rqs tO satisfiability inSL”. Let g, be the formula specifying a word model:

(Xbeg st Xend) A (YX. (Xbeg " X) A (X " Xend) = ﬂX < |A|)

It is then easy to show that given a first-order formutaver the signaturé<, (P,) .ca), fis
satisfiable over finite word$figyorg A trro,,,. -sisr () is satisfiable irBL" wheretry,, . s
is defined as follows:

trFOwords_’SLSEP (X < y) (X r_)+ y)
TR0, 1 (YX. 9) ¥X. (Xpeg =" X) A (X =7 Xend) = TIFo, g st (9)
trFOwords—)SLSEP (Pai (X)) = ﬁx = i.

Remember thafx = i is a shortcut for a formula iSL" of size proportional ta. (see sec-
tion 1.4.3). The translationr,, . .sis» IS homomorphic for boolean connectives. Similarly,
x —* y andfix < |A| belongs tSL" (see section 1.4.3). One can check thatifntains at most
three variables, thegyorg A tryo, . s (f) contains at most five variables. O

It is probable that the number of variables can be reducdtidumhile preserving non-
elementarity, for instance by identifying the limits of therds by unique patterns instead of
distinguished variables — but it is not very essential & flaint.

2.1.2 A Restricted Use of the Wand

We have as of now seen tr&it” satisfiability is decidable, whereas satisfiability for il will
be shown to be undecidable. Howe\&dr, is certainly not the largest decidable fragmensof
In the sequel of this section, we investigate another detidextension oSL" thanks to a re-
stricted use of the magic wand; quantification over disjbedps is done only for heaps whose
domain has cardinality smaller than some fixeftletails will follow). Since the forthcoming
extension is closed under negation, this also corresparasdstricted use of the operater

Let us defineSL™ ™ as an extension c§L.” by adding the binary operators, for every
n € N. Unlike the plain operators, a formula with outermost connective, quantifies over

37



disjoint heaps for which the cardinality of the domain is bded byn. The integem in the
connective—, is encoded in a unary system.

Definition 2.1.2.1.Let SL™ " be the logic defined by the grammar below and whose formulas
are interpreted over simple memory shapes:

fi==f|fAT|IXT|X—>y|Xx=y|fof]|f-o,f

Additionally, (s,h) Fs. fi—uf, iff for all b’ L h such thafDom(h')| < n, if (s,h") Fg f;
then(s,hol’) kg fo.

SL™ ™ allows to encode the restricted use of the magic wand in tharédlike proof sys-
tems as in the backward-reasoning form rule (MUBR) recdiieldw, see also [84]:

{Fz. x> 2)o((xy) = D} [xX] :=y{f}

The precondition of this rule states with the subformtitax — z that the variablex is
allocated, and states thanks to the separating conjurtb@nx — y) — fholds on the model
whose heap is modified so that the celxas removed. The subformula — y) —= f states
for this modified model that: if a new cell pointing yds added undex with the magic wand,
thenf will hold. Removing the cell undet with o so as to replace it with a new cell pointing to
y with — is a trick to apply the instructiofix] :=y to the model. Therefore, the precondition
checks that its model modified Hy] :=y satisfied.

It is easy to show thatx — y) — fis equivalent to(x — y)-—; f. Typically whenever the
left argument of a formula with outermost connectivéhas only models of bounded size, this
trick can be applied again. Let us push a bit further this.idea

2.1.3 Preliminaries to the Translation
Bounding the Cardinal of Heap Domains

Definition 2.1.3.1. Let SL"™ be the fragment o$L defined by the grammar below and whose
formulas are also interpreted over simple memory shapes:

fri=l|x—>ylemp|fof|fVi|fAf|Ixf

LetSL=" be the logic defined by the grammar below and whose formuéaalso interpreted
over simple memory shapes:

0:=g|lgAg|IXg[Ix—=y|x=y|lgoglg=g|f-=g
wherek € N, andf € SL™™,

The satisfaction relation is defined as §irwith the help of definition 2.1.2.1.

Observe thasL"™ can express formulasze = k andsize < k with semanticsi(s,h) kg
size <k iff IDom(h)| < k and (s, h) g size = k iff [Dom(h)| = k. The formulasize = k with
k > 1 is equivalent to the following formuladx,, ..., . ((Ay.x; = y) o...0(Ty.x - y)).
Also, the formulasize < k withk > 1 is equivalentto the following formula&mpv'/;, size =
k. Fork = 0, they are both equivalent tmp.
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Lemma 2.1.3.2.For anyf € SL™, if (s,h) kg fthenDom(h)| <| f .

The proof is by a straightforward structural induction. &rcomputing f | from f can be
done in polynomial time, we obtain the following reductitat becomes especially interesting
after showing decidability ofL™ .

Lemma 2.1.3.3.There is a polynomial time reduction from satisfiability &r" to satisfiabil-
ity for SL™ ™,

In order to establish the above lemma, it isfgient to observe thdt— g is equivalent to
f-9g whenevef € SL™™ andg € SL.

Fictitious Heaps

In order to show decidability fosL" ", we define a reduction intsL". The translation is
based on a simple observation: since a formula with outercmsnective—, requires the
disjoint heaps to have a domain size of at mgsthese new heaps can be encoded by a set
of pairs of variables of cardinality. Hence, a heap of size at mastisjoint from (s, h)

can be represented symbolically, or fictitiously, by astet {(y;,z,),..., (Ya, Z4)} Such that
{s(y1),...,s(yn)} NDom(h) = 0 ands(y;) = s(y;) impliess(z;) = s(z;), naturally encod-
ing the heah (Sh) = {s(y;) — s(z;) : s(y;) # s(yy), 1 <1i <n}. We assume a variabig
which is not allocated, and will be introduced as such at ggriming of the translation; this
can be seen as an equivalent of tind constant. The seth = {(y1,24), ..., (Yn, zn) } Will rep-
resent a heap with at mastmemory cells, even thougdh contains exactly pairs. However,
whenevers (y;) = s(y,), the pair(y;, z;) does not encode any new memory cell. In terms of
formulas,(y;, z;) encodes a memory ceffiy; # y, holds true. This shall be intensively used
in forthcoming formulas. Let us provide now the formal defons.

Definition 2.1.3.4. A fictitious heapSh for the simple memory shapes, h) is a finite set of
pairs of variable$(y;,z), ..., (Y, Zy) } Such that

— {s(y1),...,s(yn)} NDom(h) = 0.
— For1 <i,j<n,s(y;) =s(y;) impliess(z;) = s(z;).

The heap represented B ish(Sh) = {s(y;)  s(z;) : s(y;) #s(yy), 1 <1 <n}.
Observe thaDpom(h(Sh) )| < nandh(Sh) L h. Shis said to be ofengthn.

Lemma 2.1.3.5.Given a simple memory shage, h) andh’ such thah’ L h andDom (h’)| <
n, there existsh a fictitious heap for(s’,h) of lengthn such thath’ = h(Sh), for somes’
which may difer froms at most for the variables occurring $h.

The proof is by an easy verification by symbolically repreégenh’ with new variables.
The use of new variables makes it necessary to use a newsstoreapplying the definition of
h(Sh) which is dependent on the store. The sterenay have to be dlierent froms so as to
have enough variables whose value i$edent from that ofy,.

Below we introduce simple formulas useful to separate ditics heap or to extend a fic-
titious heap by another fictitious heap. Given the fictitibesapssh = {(y;,z,),..., (Yn,Za) },
Sh' = {(yi,z]),..., (yi,zt Y} andsh® = {(y%,22),..., (y2,z2 )}, we writeSh = Sh* o Sh® to
denote the conjunction of the formulas below:
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h(Sh) is included inh (Sh') U h(Sh?):

A CV yi=yd v\ yi=ys)

1<i<n 1<j<ng 1<j<ny

h(Sh') Uh(Sh?) is included inh(Sh):

CA Oy =\ yi=y) A CA G2y = C\/yi =y

1<j<ng 1<i<n 1<j<ng 1<i<n

h(Sh!) andh(Sh?) encode a function:

[\ Gi=vi=z=z0n N\ Of=yp ==z

1<j,j’<no 1<j,j’<ny

h(sh') andh(Sh?) are disjoint:

A\ (O #y0) VO #ye)) = (o #y2)

1<j<ng 1<j’<ny

We provide a few lemmas whose easy proofs are omitted, exeetite last one. All the
proofs would be similar and similarly simple, the last oneses as an exemple. The lemmas,
will be helpful to prove correctness in section 2.1.4.

Lemma 2.1.3.6.Let Sh be a fictitious heap of length for (s,h) and let the fictitious heaps
Sh' = {(y},z]),..., (yi .z )} andsh? = {(y2,zD),..., (y2,z2 )} be such that their variables
do not occur irSh. Lets’ be a store that may fier froms at most for the variables occurring
in Sh* and Sh?. Assume moreover thats’,h) Es; Sh = Sh'oSh?. Then,Sh! andSh? are

fictitious heaps for(s’,h), h(Sh!) L h(Sh?) andh(Sh') ch(Sh?) = h(Sh).
Again, the proof is by easy verification and we can also getraese property.

Lemma 2.1.3.7.Let Sh be a fictitious heap of lengtinfor (s,h). Leth; oh, = h(Sh). There
exist fictitious heapSh' andsh? for (s’,h) such that variables ish, Sh* andSh? are mutually
disjoint, s” may difer froms at most for the variables occurring $h' andSh?, h, = h(Sh'),
h, = h(Sh®) and(s’,h) ks Sh = Sh* o Sh?.

Let us now consider the corresponding lemmas to build disjoeaps.

Lemma 2.1.3.8.Let Sh' be a fictitious heap fo¢s, h), Sh andsh? be fictitious heaps fofs, h)
whose variables do not occur $h', and such thats’,h) Es. Sh = Sh'coSh?, wheres’ may
differ froms at most for the variables occurring $h andSh?. Then,Sh andSh? are fictitious
heaps for(s’,h).

We can also get a converse property.

Lemma 2.1.3.9.Let Sh! be a fictitious heap fofs, h) and,h’ be disjoint fromh ch(Sh') and
the cardinal of its domain is less thanThere exists a fictitious he&h? of lengthn for (s’,h)
such that’ = h(Sh?), ' ch(Sh') = h(Sh* USh?) and(s’,h) g (Sh'USh?) = Sh'cSh? (s’
may difer froms at most for the variables occurring $h?).

40



Proof. Let Sh' be a fictitious heap for(s,h) andh’ be disjoint fromhoh(Sh!), so that
the cardinal of its domain is less than Let {i;,...,ix} = Dom(h’), hencek < n. Let
{(y;,z),... (yt ,z2 )} = Sh',

LetSh? = {(y2,22),... (y2,22)}, withy?,...,y2,22,..., 22 new variables. Let’ (y,) bei,
if m < k ands(y,) otherwise. Lek’(z,) beh’ (i) if m < k ands (y,) otherwise.

Then clearlyh’ = h(Sh?). Also:

h(Sh! U Sh?)

h({(y],zD), ... (YA, Za DY U{(Y4,2D), ... (Y2, 2]

= {s'(yp) P s'(z)) : s'(yy) #5' (Yo), 1 <k <ny}
U’ (y2) 5 8" (22) = s'(y2) #5' (¥o), 1 <k <n}

= {s'(y) P s'(2) : s'(yh) #5'(Yo), 1 <k <my)
ofs’(y2) s (22) : s'(y2) #5s'(Yo), 1 <k <n}

= h(Sh") oh(Sh?)

= h’oh(Sh?)

Finally, (Sh* USh?) = Sh'oSh?is (Sh' USh?) C (Sh' o Sh?) A (Sh!oSh?) C (Sh'usSh?).
By its definition, (Sh* 0 Sh®) C (Sh' U Sh?) is Ayeyyt, .. v, 2yt Vigian Y5 =YDV (Vigiany? =
y). Wheny € {yj,....ys,Yi,...,ya}, then eithety € {yj,....yx } andy} = yis true in
s’ for somej, ory € {y2,...,y3} andyJ? = y is true ins’ for somej. As a consequence,
(s,h) Eg. (Sh'oSh?) c (Sh' U Sh?). Similarly, one can show thd, h) g (Sh' U Sh?) C

(Sh'oSh?). O

2.1.4 The Translation

The recursive translation function is of the fotmg; seem—n_,g;se0 (g, Sh,m) wWhereg is a subfor-
mula to be translatedsh has the format of some fictitious heap amd {0, 1} is a flag that
specifies whethey is evaluated undér(Sh) (m = 0) or underhoh(Sh) (m = 1).

Definition 2.1.4.1. A formulaf is translated intaly,. (trs;seem—n_,gse0 (f, 0, 1) A =alloc(yy) ),
where the recursive mafrg; seem—n_g e, is defined as follows:

— trSLSQPs‘“W—“_,SLSEP (X = X/, Sh, m) = X = X’.

— tIgpsepmw-—n_ gy sep (X — X,, Sh, 1) = (X — X,) V LIg] sepmi-n_,g] sep (X — X,, Sh, O) .

—_ trSLsep,mw—n_)SLSED (X — X’, Sh, O) é \/ y ?& yo AN y =XANZ-= X’.
(y,z)eSh

— trgseemn_gsee IS homomorphic for boolean connectives and first-order tifieation.
— trSLsep,mw—n_)SLsep (g—Dog/, Sh, m) = trSLSQPs‘“W—ﬂ_,SLSEP (g, 0, O) A trSLsep,mw—n_>SLsep (g/, Sh, m)
— trgsemn_gser (—,0’, Sh,m) forn > 1 is defined as

VY oo Y 2y, 2.

(((ShuUSh’) = ShoSh" A Ay ,yesy malloc(y))
= (trgpsermn_gsep (g, Sh’, 0) A trgpsepmin_,grse0 (g', Sh U Sh',m)))

wherey’,...,y;. 2}, ...,z is a sequence ¢ pairs of fresh variables which defines the
fictitious heash'.
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— trgseomn_gse (g0 @', Sh,m) with Sh of lengthn is defined as

1 1 4,2 2 1 1 52 2
Ay Yae Vi Yae 2y e s Zna 255 - o5 Zye

(trs]_sep,mw*n_)s]_sep (g, Shl, m) 0 trs]_sep,mw*n_)s]_sep (g,, Sh2, m)) A Sh = Sh1 0 Sh2
wherey:, ..., yi,y2,...,y3,z}, ...,z 22 ..., Z2 is a sequence ofn pairs of fresh vari-

s “n»

ables which defines the fictitious heafis andSh? of lengthn.

Even though in the worst-case there is an exponential nuofhveays to divide a heap into
two disjoint heaps, our translation remains in polynomirakt as the integet in the operator
-, IS encoded in a unary system. The soundness of the tramsistjnaranteed by the lemma
below whose proof is by structural induction and uses theipos lemmas.

Lemma 2.1.4.2.Let Sh be a fictitious heap foKs,h). For all formulasg in SL™™", we
have(S,h(Sh)) |=SL g |ﬁ (S,h) |=SL trs]_seP,mW—n_,s]_SEp (g,Sh,O) and (S,hDh(Sh)) |=SL g |ﬁ
(s,h) sy trspseemn_gser (g, Sh, 1).

Proof. The proof is by structural induction an The base case for atomic formulas is by an
easy verification as well as the cases in the induction stepdolean connectives and first-
order quantification. We treat below the cage g, o g,, the casey = g;—+,9, can be treated
analogously using lemmas 2.1.3.8 and 2.1.3.9. The induttygpothesis is of the following
form: for everyg’ whose size is strictly smaller than the sizegofif Sh’ be a fictitious heap
for (s”,h”), then we haveés”,h(Sh’)) ks g’ iff (s”,h”) s trsseem—n_gseo (g, Sh’, 0) and
(s”,h” 0h(Sh")) ks ¢’ iff (s”,h”) Fg trgisemn_gseo (g, Sh’, 1).

Suppose(s,h(Sh)) kst gi1o0g,. There exist heapls; andh, such that; ch, = h(Sh),
(s,hy) Fst g; and (s,hy) kst go. By lemma 2.1.3.7, there exist fictitious heagis and
Sh, (with fresh variables) fol(s’,h) such thats’ may difer from s at most for the variables
occurring inSh; U Shy, h; = h(Sh;) andh, = h(Sh,). Since eaclsh; is a fictitious heap for
(s’,h;), by the induction hypothesi€s’,h) s trgsemn_gser (g, Shy,0) and (s’,h) Fgp
trgseemn_,grser (gg, Shy, 0). Moreover,(s’,h) ks Sh = Sh, o Sh, (observe that satisfaction of
Sh = Sh, o Sh, depends only on the store). Hence,

1 1 2 2 1 1 2 2
(s,h) Fsy Ay, Vo, Vi s Yan 2y oo oy 2o 25, .o o, Z1.

(trs]_sepvmw—“ﬁs]_sep (gl’ Shl, O) o trs]_sep,mw—ﬂ_,s]_sep (gg, Shg, O)) A Sh= Sh1 o Shg

wherey:, ..., yL Y2, ...,y 21, ..., zL, 22, ..., Z2 is the sequence of variables definigigy and
Sh,. As a consequence, we can state ttxah) g trspseomin_gpseo (g1 0go, Sh, 0).

Similarly, suppose(s,hoh(Sh)) [Es. 91009.. There existhy, hy, h} andh) such that
h; ohy, = h(Sh), h,oh, = h, (s,h,ch;) Eg g; and (s,h,ohy) kg g,. By lemma 2.1.3.7,
there exist fictitious heapgh; andsSh, (with fresh variables) fofs’,h) such thas’ may diter
from s at most for the variables occurring §h,, Sh,, h; = h(Sh;) andh, = h(Sh,). Since
eachsh; is a fictitious heap for(s’,h;), by the induction hypothesigs’,h} th(Sh;)) ks
trgpsepmin_gpser (gq, Shy, 1) and (s’,h, 0h(Shy)) sy trgpsesmn_gser (9o, Shy, 1). Addition-
ally, (s’,h) Fg. Sh = Sh, 0 Sh,. Hence,

1 1 2 2 1 1 2 2
(s,h) Fsy Ay, Vo, Vi Yan 2y, ooy 2o 25, .. o, 2.

(trs]_sepvmw—“ﬁs]_sep (91, Shl, 1) ul trs]_sep,mw—ﬂ_,s]_sep (gg, Shg, 1)) A Sh = Sh1 ul Shg

S0, (s,h) [Esp trgpsepmin_gser (g1 00, Sh, 1),
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NoOw Suppos€s, h) Fs; trgsem-—n_g s (gy 00y, Sh, 0), that is

(s,h) By Ayl ... yh Y2, ..y z, . 28,23, Z2
(trs]_sep,mw*n_)s]_sep (g, Shi, m) n] trs]_sep,mw*n_)s]_sep (g,, Sh2, m)) A Sh = Sh1 0 Sh2

whereyi, ...,y y3, ...y, z1,...,2zL, 22, ..., z2 corresponds to the sequence of fresh variables
from the fictitious heapSh® andsSh?. Hence there exists a stosethat may difer froms at
most for the variables occurring 8h' andSh? such that

(s',h) Eq (trspsemn_giser (g1, ShY, 0) o trgpsesmn_gse (ga, Sh% 0)) A Sh = Sh!oSh?

From the induction hypothesis, we havs’,h(Sh;)) Fs. g; and (s’,h(Shy)) Fs. g.. By
lemma 2.1.3.6h(Sh;) L h(Shy) andh(Sh;) ch(Shy,) = h(Sh). As a consequence, we
have (s’,h(Sh)) Es. g:00,. Since variables ish! andSh? do not occur ing; o g,, we get
(s,h(Sh)) Es. 91 00o.

Similarly, from (s, h) g trgsem—n_gser (gy 0go, Sh, 1), One can reach the conclusion that
(s,hoh(Sh)) ks g1o09, by using lemma 2.1.3.6. O

This leads to the main result of this section.

Lemma 2.1.4.3.There is a polynomial time reduction frofL™ = satisfiability problem to
SL” satisfiability problem.

Proof. By lemma 2.1.4.2, for every simple memory sh&geh), we have(s,hoh(0)) Fs. g
iff (s,h) Fsp trgsepmn_gser (g, D, 1) Wheretrg semn_gse (g, 0, 1) is anSL” formula andd
denotes the empty fictitious heap. Moreover, we have sednttigemrn_g s (g,0,1) can
be built in polynomial time assuming that the natural nurskae represented with a unary
encoding ing. Sincehoh () is equal toh, the formulasy and trg;seemn_,g se0 (g, 0, 1) hold
true at the same states. m|

The following theorem is a consequence of lemma 2.1.4.3 mguke decidability ofL"
satisfiability (see section 2.1.1).

Theorem 2.2. SL™ = satisfiability is decidable.
We then obtain the following interesting corollary.

Theorem 2.3. Satisfiability forSL*" is decidable.

2.2 Advanced Arithmetical Constraints with the Wand
In this section, we show ho8L ™ can be used to express the following property (P-nb):

The numbetix of locations that point to the locatiasXx) is at most the number

fiy of locations that point ta (y) augmented by some constant

The reason for expressing this property will become cldarggction 2.3. We may however
try to provide a few motivations:
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— since we want to express &lb properties, we may already train ourselves with express-
ing this particulaiSO property;

— most importantly, more than a pure exercise, this propeidyspa crucial role in the
encoding ofS0 in SL;

The proof thatSL™ can express the above property (P-nb) is subject to tedhrocapli-
cations, but its essence is not so intricate, and it is béltistrated by encoding other kinds
of cardinality constraints. For this reason, we make a slighour in our presentation by first
sketching the encoding of the following property (P-nb’):

The length of the list starting atis equal to the length of the list startingyat

The property (P-nb’) turns out to be a bit simpler to definentiild-nb), and it already
provides the key ingredients for expressing (P-nb). Thaperty (P-nb’) will not be used
anywhere else and could have been skipped, but we belieas & pedagogical value to show
how it can be expressed. We first sketch the encoding of (Pimbéction 2.2.1, and then move
in section 2.2.2 to the proof, with full details, of the entmgof (P-nb) inSL™

2.2.1 Comparing Two List Lengths

Let us restrict our attention to simple memory shapes coego$ two acyclic lists starting
at x andy respectively, with no other allocated cells, and with thdiadnal constraint that
no location is reachable frommandy simultaneously. We aim now at expressing the fact that
both lists have the same lengitusing the magic wand. To do so, we can say that there exist
n locationsiy,..., i, that are not allocated and for which there is a one-one quoretence
between these locations and the ones of the list starting @td on the other hand there is
another one-one correspondence between these sameriscatid the ones of the list starting
aty. As illustrated by figure 2.4, the gain for considering ndoedted cells is that the one-one
correspondence can be materialized by allocaiing. ., i, so that each of them points to the
cell itis in correspondence with. The trickiest point isritte®w to materialize the guess of the
locationsi,, ..., i, in such a way that it is possible to refer to them later withoanfusing
them with the cells that were initially allocated. To do s& may observe that in the original
heap, all locations have at most one predecessor. We candimitify some extra locations
iy, ..., 1, if we impose them to admit exactly two predecessors.

As a reminder which applies to all the figures using the syrbial indicate a location in
this section and in section 2.3esymbol represents a random location that is not represented
by any othero symbol, variable (likex in figure 2.4), or integer (liké, in figure 2.4).

With these intuitions in mind, the property that the lengtithe list starting ak is equal to
the length of the list starting gtcan be expressed by a formula of the form below:

fo 0 ((fi-19(x,y)) A (f;—=g9(y,x)))
where:

— f, expresses that all the locations have either 2 predecessors,
— f, expresses that all the locations have either 1 predecessor,
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Figure 2.4. How to compare the length of two lists: situaty@r, y), with heap part satisfying
fy in bold, and heap part satisfyirigin dotted line

— g(x,y) expresses the situation depicted in figure 2.4:

1. all the locations reachable fraxrhave exactly two immediate predecessors, except
x that has one predecessor only;

2. among the predecessors of the locations reachablexroine ones which are not
reachable fronx have exactly two immediate predecessors, and these twodinme
ate predecessors do not have immediate predecessors;

3. all extra allocated locations are only the ones of theylist

We claim that there exist such formulgsf;, andg(x,y) in SL, although we do not plan
to provide details herein. We shall do it for constraintswhihe numbers of predecessors.
Before doing so, let us first notice that it is noffitiult to adapt this technique to express richer
constraints on the length of two lists, as for instance tlogerty that one list is one cell longer
than another one, and thus using a reduction to counter megkimilar with [25], this entails
the undecidability ofSL™. However, we were not able to encode by using cardinality
constraints on list lengths, but rather on comparing thebemnhof predecessors offidirent
locations.

Let us also remark that the above construction relies ondbethat in the considered
heaps, all the locations have at most one predecessor. gretiezal case, it could be harder to
distinguish the locations that are initially allocatedhe heaps, and the ones that correspond to
the guessed locatioris, . .., i,. This last point justifies why the construction presenteithat
next section is a bit more technical. Actually, we shall retya reduction to heaps where all
the locations have at least three predecessors. Howegdreyhdeas are essentially the same.

2.2.2 Comparing the Numbers of Predecessors

In this section, we show ho®L™ can express properties of the foffxn+ m R iy + m’ with
m,m € N andR € {=,>, <} wherefix denotes the number of predecessors ¢f) in a heap.
This is a key property in the forthcoming proof establishihgt weak second-order logic is
equivalent tosSL™. Note thatix R m can be easily expressedd$n™, even without magic wand
(indeedm is a fixed value), as shown in section 1.4.2. By contrast, esging a constraint
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fix R fy+mis natural in second-order logic, for instance by introdgain adequate finite binary
relation between the predecessors@nd those of). We show below that this can be done
also inSL™ but requires much more work.

In a nutshell, expressing constraints of the fdismm R iy +m’ will be done as follows. First,
thanks to boolean connectives it ii$tient to express properties of the foﬁm+ m < ﬂy +m’
with m,m’ € N (strictly speaking, we can assume that m’ = 0). Moreoverﬁx +m<fy+mw
is precisely equivalent to the fact that for alle N, fy - m < n impliesfx —m’ < n (indeed
i < i’ iff for everyj > 0, we havei’ < j impliesi < j). Quantification over the set of
natural numbers will be simulated by a quantification ovejadnt heaps in which is exactly
the cardinal of their domains. Such a quantification is perga thanks to the magic wand and
we require that disjoint heaps are segmented and currepti®iflaoded (to be defined below).

Definition 2.2.2.1. A simple memory shapés, h) is segmentedheneveDom (h) NIm(h) =0
and no location has strictly more than one predecessor.
(s,h) isfloodedwhen no location has one or two predecessors.

The stores is irrelevant for these concepts. As an example, the lwap figure 2.6
restricted to cells labelled lyis segmented. These conditions on heaps are needed inorder t
guarantee that the heaps obtained from the original heafhardisjoint heaps easily determine
which part of the heap has been added. A nice feature is tedfatit of being flooded or
segmented can be naturally expressedlin’ (see lemma 2.2.2.2 below). Finally, any heap
such thatfx, fy > 3 can be extended to a flooded heap without modifying the nusnbier
predecessors forandy, respectively. This explains why the term ‘flooded’ has beleosen.

In the caseix < 2 or fly < 2, we perform a simple case analysis and we obtain boolean

combinations of constraints of the forfr R m” or fy R m” (that can be easily handled, details
will follow).

Lemma 2.2.2.2.There are formulaBooded andseg in SL™ such that for every simple mem-
ory shape(s,h),

() (s,h) ks flooded iff (s,h) is flooded,
(1) (s,h) Eg segiff (s,h) is segmented.

Proof. It is easy to check that the formulas below do the job.

— flooded £ V¥x. (ix =0V fx > 2).
—seg 2 YX,y. X>y=> Hy=1A-(32.Z2>XVYy—>2z))).

Note that the formulagx = 0, ix > 2 andfly = 1 are indeed formulas without separating
connectives. m)

Now, we present a few crucial definitions about specific pasten simple memory shapes,
namely markers.

Definition 2.2.2.3.A [resp. strict] markerin the model(s, h) is a sequence of distinct locations
i,i,,...,1, for somen > 0 such that

— h(iy) =1 [resp. andom(h) = {io,...,i,4}],
— foreveryj € {1,...,n},h(i;) = i, andfi; = 0
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Figure 2.5: A simple memory shape witl2anarker and &-marker

Ho«— O <[
O

— Elo =n.
The marker is said to be aegreen with endpointi (n-marker).

Markers have simple structure with natural graphical regnéation. In figure 2.5, we
present a simple memory shapeontaining &2-marker and &-marker, both having the same
endpointi. Note that there are disjoint heapsandh, such that = h; oh,, h; has a strict
2-marker anch, has a stricB-marker.

Definition 2.2.2.4. A simple memory shapés,h) is said to bek-markedwhenever there is
no location inDom (h) that does not belong to a marker of degkeeMoreover, it isstrictly
k-marked when no distinct markers share the same endpoiaiggng).

Markers are essential building blocks to express a constodithe formfix — m < n with
m,n € N. Before presenting the formal treatment, let us explairptirgciple of the encoding.
Assume thah, is a flooded heap (that is, no location has one or two predex®sands; is a
segmented heap such that

1. h; andh, are disjoint,

2. [Dom(hy)| =n,

3. h; oh, does not contain locations with two predecessors,

4. if a locationi has exactly one predecesdoin h, 0 h, theni’ has no predecessor and
does not belong tbom (h; ohy).

Hence,h, oh, is almost flooded since the only reason for not being floodegbssibly to
contain isolated memory cells frohy. Figure 2.6 presents two hedpsandh, satisfying the
above conditions. Cells of the hehp are labelled by2. Note also thah, o h, is not flooded
because of some isolated cells framsuch asi — 1i’.

Obviously,h; och, does not contain ang-marker and in particular no predecessor of any
location is the endpoint of songemarker.

Definition 2.2.2.5. A m-completionof h; ch, consists in adding a disjoint he&p = h’ oh/
such that

1. h! is 1-marked,

2. hy is strictly 2-marked and contains exactiydistinct2-markers.
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Figure 2.6:h,; andh, satisfying the conditions 1.-4.

Consider the number @fmarkers in the healp, oh, och’ resulting from such a completion.
First, observe that strictly more thare-markers can be present since an isolated memory cell
from h, and ai-marker fromh; may produce @-marker inh; ch, och’ (see the locations;,

i,, i3 andi, in figure 2.7). Second, observe that at leastittiemarkers fronh’ are still in
h, oh, oh’, because the definition ofprevents @-marker from combining with a-marker to
form a3-marker. Observe also that the insertion of markers of destréctly less thas in the
almost flooded heap allows to safely identify them as mariketise new heap. Consequently,
there are at most + m predecessors af(x) in figure 2.7 that are endpoints @fmarkers in
h,;oh,oh’.

Definition 2.2.2.6.We say thah; o h, oh’ is x-completedvhenever all the predecessorsgk)
are endpoints of-markers.

Figure 2.7 presentsacompletion oth, o h, (cells inh; are those pointing t and cells in
h, are labelled by whereas the cells of the=completion are represented by dotted arrows).
Moreover, the total resulting heap xscompleted: every predecessorofs an endpoint of
some2-marker.

It is easy to observe th&lx —m < n iff there is am-completionh’ of h, th, such that

h, oh, oh’ is x-completed (see the exact statement in lemma 2.2.2.9). leethtn2.7 below
states that the heaps obtained by completion can be spenified-.

Lemma 2.2.2.7.There are formulasompleted (x) andcomplete, (m > 0) in SL™ such that
for every simple memory shapgg, h),

(1) (s,h) sy completed (x) iff all the predecessors e{x) are endpoints a-markers,

(IV) (s,h) kst complete, iff there aréh,,h, such thath = h, oh,, (s,h,) is 1-marked and
(s,hy) is strictly 2-marked with exactlyn distinct2-markers.

Proof. The formulas below do the job.
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Figure 2.7: A2-completion that leads to>acompleted heap

() completed(x) is equal to:

Vy.yeosx= (Az.z > yAllz=2AVZ.Z > z=#7 =0))

(IV) In order to definecomplete,, we perform a case analysis and introduce below a few for-
mulas. Firstg, = T and letg, be the formula below:

[ T S VR

(/\Xiixj)/\(/\((yif—>xi)/\ﬂyi=2/\Vz.z;>yi:>1iz=O))

i#]j i=1
Ou A —On+1 States that the heap contains exaatB-markers with disjoint endpoints. Let
Jeasesbe the formula below:

¥x. alloc(x) = (gl (¥) V g2, () Vgl 0O Vg2 4 (x)

wheregl . (x) [resp. g.,, (X)] states thah(s(x)) [resp.h(h(s(x)))] is the endpoint
of somei-marker. By way of exampley.,, (x) is defined as follows:

IX=1A (VY. (y>X) 28y=0) A (dy. x> yA-dz.y > 7)
The formulacomplete,, is defined as the conjuncti@a A —Qu+1 A Jcases
O

Note that the heap restricted to dashed edges in figure Asfiestomplete, — it is com-
posed of twa-markers and twa-markers.

Definition 2.2.2.8.Two heaps,, h, are said to beompletely disjoinif (Dom(h,) UIm(h;))N
(Dom(h,) UIm(hy)) = 0. Moreover, a pair of heapy,, h,) is said to becompatiblevhenever
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— (s,hy) is flooded,
— (s,h,) is segmented,
— h, andh, are completely disjoint.

Note thath, andh, from figure 2.6 are not compatible sint@(h,) N Im(hy) # 0.
Lemma 2.2.2.9 below presents the formal statement relatibe intuitive explanations that
were already presented.

Lemma 2.2.2.9.Let s be a store andhy, h,) be a compatible pair of heaps such thdiasi
predecessors i for somei > 1. Then,(i) (s,h;0hy) Fs. complete, & completed (x) iff
(i) [pom(hy)| > (i —m).

Proof. Proof of (i) — (ii).

Assume (i). Leth] be ani-marked heaph, be a strict2-marked heap with exactly 2-
markers, andh = h; oh,oh) oh) with (s,h) s, completed(x). Then, the set of endpoints
from 2-markers inh includesh;* (s(x)) and its cardinalj satisfiesj > i. Markers of degree
2 witnessing the satisfaction @bmpleted (x) do not come fronh; sinceh; is flooded. So,
either they come directly frorh), or they are markers of degreewhich have been converted
into markers of degree thanks to isolated cells froh,. Letk be the number of converted
markers, therj < k +m. Since none oh;, h), contributes to the conversion of armarker, the
amount of converted markers is boundedimym (h,)|, that is|Dom(h,) | > k. Consequently,

i-m<j—m<k<|Dom(hy)|.

Proof of (i) — (i).

Assume (ii). In the sequel, we shall introduce locationg #ra involved in2-markers; the
exponents below in the locations refer to the following mited positions in the schema for
2-markers (of course ands could have been permuted):

Q ]
N
(@)

)

@

By lettingn, = i — m, we haveDom(h,)| > n,. The set of locationa;* (s(x)) (set of
predecessors af(x) in h,) containsn, + m elements that can be writtely, .. ., i;?om. Since
IDom(h,y)| = |Im(hy)|, there exist at least, locationsi?,...,iJ in Im(h,). Moreover, since
K = Dom(h, nhy) U Im(h, oh,) is finite, there exist distinct locationi§’, . . ., iy that are notin
K. Leth] be the heap disjoint fronth, o h,) with the memory cells below:

h) = {i1® - i?,iiD - i?,...,i?o - i?o,ifi - if?o}

Leth) be a heap disjoint fronth; oh, oh) that containsa instances ob-markers, with end-
pointsi’ .....,iy ., respectively. Itis easy to check thé&s, hich)) Es complete, and

(s,h; nhyoh)oh)) kg completed(x), which is sdficient to guarantee (i). O

Satisfying that for allh € N, fy —m < n impliesfix — m’ < n suggests a simple contest
between two players: Spoiler aims at disproving that thestwamt holds, and Duplicator tries
to prove it. The whole play of the contest is depicted on figliBe The steps of contest go as
follows:
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Figure 2.8: A contest won by Duplicatat;
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1. We start with an initial healy, without any hypothesis; #ix < 2 or fly < 2, the contest is
over (these cases are handled elsewhere), otherwise ttesstoray start.

2. Spoiler reduces to the case of a flooded heapwnvhole heap on the second frame of
figure 2.8) by adding cells (the five black arrows in the sedoauthe) in a controlled way
— this will be formalized later.

3. Spoiler picks a segmented hdap(the three black arrows in the third frame) such that
IDom (h,) | equalsn and (h;, h,) is compatible.

4. Spoiler proves thdly — m < n using the previous scenario (frame of the second line).

5. Then Duplicator plays and wins if it can profee— m’ < n (note that Duplicator wins on
figure 2.8).

Figure 2.8 summarizes a contest with a successful outconizufolicator.

The above contest supposes that it is possible to charaeténe heapi, och, such that
(hy, hy) is compatible.

We now extend little the notion of a compatible pair of heapa single heap. Note that a
compatible heap according to the following definition is asnflooded.

Definition 2.2.2.10.A heaph is said to becompatiblevhenever there exi&t, andh, such that
h = h; oh, and (hy, h,) is compatible.

Lemma2.2.2.11 L et (s,h) be asimple memory shape. The hiapcompatibleff (s,h) s
compatible with:

compatible £ (¥YX,y. X > yAfly=1) = (Bx =0 A =alloc(y))) A (=(3x. ix = 2)).

The proof of lemma 2.2.2.11 is by an easy verification. It remao define the formula
comtest(x,y,m,m’) that defines a contest and that is essential to establishde?i.12 be-
low.

flooded A ((seg A fix =0 A ly = 0) - (compatible

= ((complete, < completed(y)) = (complete,, = completed(x))))).

Lemma 2.2.2.12.Form,m’ > 0, there is a formul#in SL™ of quadratic size im+m’ such that
for every simple memory shapge, h), we have(s,h) kg fiff ix +m < fy +m’.

Proof. By packing the previous developments, we shall show that
(PROP) When is flooded,(s, h) ks comtest(x,y, mm’) iff fx +m < fy + m’.

Even thoughh is not necessarily flooded, whér > 3 andfly > 3 it can be safely extended
to a flooded heap without modifying the number of predecessbx andy. Whenfix < 2
or fly < 2 such an extension is not anymore possible. Neverthelesssbyple case analysis,
fx+m < fy+m’ is equivalent to/;, (fx = i Aly > i+m-m)V /i,y =1 Afx < i+m’ —m),
which can be easily expressedSh™. Let us considef fspecial V fmain With foain = (X =
0Afy=0) = comtest(x,y,m,m’) and

fspecialé\/(ﬁx=i Ady>i+m-m) Vv \/(ﬁy=i AdX <i+m —m)

i<2 i<2

First, it is clear thafix + m < fly + m’ and @ix < 2 or fly < 2) is equivalent to(s,h) Eg; fspecial-
Now, suppose thatx > 3 andfly > 3. Assuming that (PROP) holds, we have the following
equivalences:
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(1) (s,h) Fs. (Ix=0AHy=0) - comtest(x,y,mm’).

(2) There is a heap’ L h such that(s,h’) gz (Ix = 0 Afly = 0) and (s,hoh’) Eg
comtest(x,y,m,m’).

(3) There ish’ L hsuch that(s,h’) ks (#x = 0 A fly = 0) and(s,hoh’) g flooded and
fy +m’ > fix +m (in hoh’) by (PROP).

(4) By +m’' > fx+minh.

Observe thaffx andily in h are equal to their values lo b’ since(s,h’) kg (ix = 0Afly = 0).
Moreover, (4) implies (3) since it is always possible to edi@ simple memory shape into a
flooded one while preservirfx andfly (whenfix > 3 andily > 3).

It remains to show that (PROP) holds true. The statementswvbaie equivalenth(is as-
sumed to be flooded):

1. (s,h) s comtest(x,y,m,m’).

2. for every segmented disjoint helg such that(s, he) kg fix =y = 0, if (s,hohe) Eg
complete, = completed(y) and the heapohe is compatible, ther(s,hohe) ks
complete,, - completed(x).

3. for every segmented disjoint heap such that(s,he) Fs. #ix = #ly = 0, there exist
h’ohe’ = hohe such that(h’, he’) is compatible and the number of predecessors of
andy inh are equal to those afandy in /', if [Dom(h’)| > fiy—m, thenDom(h’)| > #ix—m'.

4. for everyn > 0, we haven > fly — m in h impliesn > fix — ' in h.

5. fx+m < fy +m.

Lemma2.2.2.11 is used from (1) to (2). Lemma 2.2.2.9 is usethE equivalence between

(2) and (3). Moreover, one needs to observe thatflooded he is a disjoint segmented heap,
(s,he) Eg fix = fy = 0 andh ohe is compatibleff there aréh’ che’ = hohe such thatth’, he’)
is compatible and the number of predecessorssasfdy in h are equal to those ofandy in h'.

Equivalence between (3) and (4) is due to the fact that foryave> 0 there is a heape such
that|Dom(he)| =n, (h,he) is compatible ands, he) kg #x = fy = 0. m|

In section 2.3, only constraints of the foffn+m < fly + m’ with m,m’ < 3 are used. In par-
ticular, this means that for the forthcoming formulas usiglyanced arithmetical constraints,
m+m’ can be viewed as a constant.

2.3 Equivalence to Second-Order Logic

First, by combininglemma 2.3.1.2 and lemma 2.3.1.1, wdlre#t DSO is at least as expressive
as SL and that there is a logarithmic-space translation figimnto DSO (logarithmic space
reductions are closed under compositions). Then, we wilhsthe converse.

2.3.1 Preliminaries
Separation Logic is Less Expressive than Second-Order Logi

Here, we recall standard translations. Before showing racl@ results in the sequel of this
section, we show below th&0 can be encoded in its fragmeyg0 by representing multiedges
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by finite sets of edges (lemma 2.3.1.1), and then we explainSiccan be encoded intg0 by
simply internalizing the semantics (lemma 2.3.1.2).

Lemma 2.3.1.1.There is a logarithmic space translation frémto DSO (henceS0 C DSO0).

Proof. We use the standard graphical representation of a multigraguple(i,,...,i,) is
represented by edges(i;,1i), ..., (i,, i) for some locatiori. To each variabl® in Secvar,,
we associate distinct variables,, ..., P, in Secvar,. Let us define the maprsy_,pso, hO-
momorphic for boolean connectives and first-order quaatibn, such thatrs,_,ps0 preserves
the semantics:

trsopso (AP. @) £ APy, ..., Py. trsopso(9)

trsopso (P (Xq,...,%X,)) = Jy. /\ P; (Xi,¥).
i=1
Correctness of the translation is relating on simple pribggon relations. Indeed, IRf, ..., R,
ben finite binary relations and be a finiten-ary relation (oveiLoc). We say thatR;,...,R,)
corresponds t®& whenever for all(i,,...,i,) € Loc®, (i4,...,1,) € Riff there isi € Loc
such that fort <k <n, (iy,1) € R,. We have the following properties:

1. For all finite binary relation®,,...,R,, there is a finiten-ary relationR such that the
n-uple (Ry,...,R,) corresponds ta.

2. Reciprocally, for every finite-ary relatiorR, there aren finite binary relation®,...,R,
such that(R4, ...,R,) corresponds t@.

Lemma 2.3.1.2.There is a logarithmic space translation fréinto SO (henceSL C S0).

Proof. For all variablesP, Q, Q’ in Secvar,, let us define thes0 formulas below with free
occurrences o, Q, Q":

— init(P) £ V¥X,y.XxPy © X >y,

— heap(P) £ Vx,y,z. xPy A xPz = y = z (functionality),

- P=QuQ" = VX,y. XPy & (xQy Vv xQ'y)) A =(XQy A xQ'y).
Let f be a formula inSL andP be a variable irSecvar,. One can show that for every sim-
ple memory shapés,h), we have(s,h) kg fiff (s,h) Eso AP. init(P) A trs _so(P,f)

wheretrg; 5o IS inductively defined as followstgs; 5o (P, -) is homomorphic for boolean
connectives and first-order quantification):

trsso (P, X = y)
trsioso(P,gog’)
trgso(P,g 9"

XPy

J4Q,Q.P=QoQ A trss0(Q,09) A trsgs0(Q’,9")

YQ.((3Q'. heap(Q') AQ' =QuP) Aheap(Q) A trg_s50(Q,9))
= (3Q". heap(Q) A Q" =QuP A trs.s50(Q’,9"))

> 1> 1>

In the above clauses, the second-order varialasdQ’ are fresh. O
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A Syntactic Convention

In the sequel, without any loss of generality, we requiré tha sentences iDSO satisfy the
Barendregt convention as far as the second-order varialdesoncerned.

Definition 2.3.1.3. A sentence that contains the second-order varidbles ., P, satisfies the
extended Barendregt conventjaifor all j, any quantification ovelP; occurs within the scope
of each ofPy, ...,P;_;.

Typically, we exclude sentences of the fodR,. 4P,. f. Observe that any sentencebis0
can be transformed in logarithmic space into an equivakmiegice verifying this convention.
The quantifier deptlof the occurrence of a subformudan f is therefore the maximal such
that this occurrence is in the scope#;; additionally by convention it is zero if it is not in
the scope of any quantification.

Encoding Environments as Specific Parts of the Simple Memorghape

Before defining the translation of 80 sentencd, let us explain how environments can be
encoded irSL. First, let us introduce some terminology.

Definition 2.3.1.4. We say that a location is anextremityin a given heap ifi has at least one
predecessor and no predecessar bés a predecessor.

The following formula states that(x) is an extremity:
extr(x) £ (=3y. (y > xAJzz—>y)) A (dy.y < Xx)

In the particular case of a marker, an extremity is the locetihat points to the endpoint of
the marker.

Definition 2.3.1.5. An environment heajs a heap containing a finite set of markers.

Environment heaps will usually be writtén. Its markers are usually distinct from a heap
h to which we want to add them; thénwill be referred to as the original heap.

Environment heaps will be used to encode environments. Tdia idea is that a pair of
locations(i, i’) belongs to the interpretation of a dyadic second-ordeabégiifi andi’ are
the endpoints of two markers bf that have respectively degreeandk + 1.

Let us illustrate this idea on a simple example. Assume we Yea@xpress irsL the pure
S0 sentence “all finite orders have a minimal element”, staiethb formulavP.f.,;, (P), with
1Emin(P) =

VX, y.P(X,y) = (P(X,x) AP(y,y))
A XY (P(XYy) AP(Y, X)) = X=Yy = AX.VY.P(y,x) = x =Y.
A VX Y,2.(P(X,y) AP(y,2)) = P(X,2)

We could actually illustrate the idea with any otl88r sentence using or&0 variable only,
with this variable quantified in outermost position. IBsix, y) be theSL formula

Px,y) 2 X,y .(XoXAY oy A +1=Hy).
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This formula expresses thatandy are the endpoints of two markers of consecutive degrees.
To any hearh, we can associate the binary relatién composed of pairs of such locations.
Conversely, any finite binary relation on locations is rzedi by somé®,. As a consequence,
the SO formula VYP.fyi, (P) is valid if and only if theSL formulaemp = (T - fmn (P)) is
valid as well — note that it is also equivalentftg, (P) being valid, but we want to underline
the idea that on80 quantification can be encoded by one applicationof

The generalization of this encoding to arbitrary formulkaises several problems. The first
problem is to distinguish the environment heap from theioalgone. As a remark, in the
example above, this is solved by restricting ourselves toraginal empty heap, but this is
not possible in general. In the previous section, we soltslissue by first extending the
original heap to a flooded heap, and then by using markers all siegrees (one or two) that
were clearly distinct from the original heap. The same agginas not possible here, because
one may need arbitrarily large degrees. Transforming agirai heap into a flooded one in
a controlled way is possible for counting the number of pcedsors (see section 2.2), but it
might be much more dlicult if the property of interest is not just a property on thember of
predecessors, but an arbitrary second-order propertyalRbiese reasons, we adopt &eient
strategy, and we ensure that the degree of a markier i strictly greater than the maximal
number of predecessors of any location from the originaph&bnetheless, our investigation
on counting the number of predecessors is precious (seers@c®), and will be used when
expressing that two endpoinisi’ are consecutively marked.

The second problem is, given a pdir, i’) of locations marked by markers of consecutive
degrees, to determine the second-order varidblghose interpretation contairis, i’). In the
example above, we only had one second-order varidpblit we may not reduce to the case
of a unique second-order variable in general). To do so, vips®a some more structure hn
First, for any natural number, there is at most one extremity with degrem h..

Definition 2.3.1.6. Thespectrunof h, is the finite set of natural numbetigor which there is a
marker of degreea in h.. A cleanspectrum is additionally a set of natural numbers of the form
{n | np <n<n; andn #ny, +1 (mod 3)} for somen,y,n; € N.

Second, we require that the spectrunhgfdepicted as a marking of the sequence of natu-
rals, has the following shape, which corresponds to the itiefirof a clean spectrum:

empty empty
—_— —
...0000@0e0@0e0000---000000000O0---0O0000000CO0,,,

A symbol ‘e’ on positionn indicates the presence of a marker of degregnd ©’ its absence.
This simple and regular structure makes the charactewizafiwell-formed environment heaps
easier at every step of the translation (in particular,\etiare the environment is extended by a
new quantified second-order variable). In order to identirkers that are attached to a given
second-order variable,

1. we ensure that the markers of a given second-order varialidw each others in a given
interval,
2. these intervals do not overlap for two distinct secordkorariables,

3. there is no unused space between these intervals.
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This is achieved by introducing, for eaéh), two variablesz; andz: that are placed on the
upper and lower bound of the interval of the interpretatibRp For technical reasons mainly
related to bootstrapping, we shall also consider the twiingjsished variables; andz;. So,
the spectrum ali. can be graphically depicted as

fz; Bz Bz i

N
L
B

2 fz; #z3 iz
°

...0000O0 ® O o ® O0e@®:--:-0 ce---@06@ .~--O..O.nOOOO_,,
N——
bootstrap code ofe, code ofp,

2.3.2 Encoding Environments

First, let us show how to express structural properties ath@ienvironment heap. Thanks to
lemma 2.2.2.12, advanced arithmetical constraints areeegpd in the proof of lemma 2.3.2.1
below.

Lemma 2.3.2.1.There is a formul@senvir(z, z’) in SL™ such that the conditions below hold
true iff (s,h.) Es. psenvir(z,z’):

— fz<fz,fz=fz +2 mod 3 andz andz’ are extremities.
— foralliin [f#z,...,421,

« if i = fz+ 1 (mod 3) then there is no extremityin (s, h.) such thatij = 1,

« If 1% fz+1 (mod 3), then there is exactly one locatigrsuch thatj is an extremity
andf{j = i. This unique locatiorj belongs tdom(h,).

Proof. The formulapsenvir(z,z’) is the conjunction of the formulas below expressing the
following properties:

1. fz < iz’ andz,z’ are extremitiesfiz < #z A extr(z) A extr(z’).
2. There is no extremity whose number of predecessors id txegherfiz + 1 or fz’ — 1.

(m3x. extr(x) Aflz+1=#x) A (=3x. extr(x) Az’ =1+ §x)

3. There is an extremity whose number of predecessors i$ Egima+ 2 [resp.fz’ — 2].

Ax. extr(x) Afz+2=#x A Ix. extr(x) Az =2+Hx

4. For every extremity whose number of predecessors is strictly bet\/\fgeamdﬂz’, there
is an extremity whose number of predecessors is equal tergith 1 or fix — 1.

VX, [extr(x) Atix >z Alx <#z2’] = (Ay. ffy=1+fx Vv dy. ly +1 = #x)

5. Constraint on two extremities whose numbers of predecgesse consecutive:
Vx.Vy. [extr(x) Aextr(y) A (Bx > #z) A (BIx <#Z') A (By > #i2) A

By <#z) A Qy+1=#0]1 =
(Y. Yy =1+8) A @Y.y =2+8)A
(Y fy +1=fy) A Gy Hy +2=1Hy)]
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Figure 2.9: A simple environment encoding the p@iri)

6. There are no two distinct extremities with an equal nunolb@redecessors.

Yx[extr(x) Ax >z Ax < 2] = =3y, (extr(y) AX=8y AX #Y)

Itis then easy to check that the above conjunction satisfeestatement.

By induction onk ranging fromt to (fz’—H#z—2) /3, one can show that there is no extremity
iin (s,he) suchthafli = iz+3k—2, and there are extremitiésandi’ such thaffi = fz+3k—1
andfi = #z + 3k. This concludes the proof. |

Consequently, if's,h.) Fs; psenvir(z,z’), thenh, has a clean spectrum:

bz iz
0000000 ---000000000---00000

Definition 2.3.2.2. The simple memory shape, h.) is called gpseudo-environmeiietween
z andz’ if (s,h.) Es. psenvir(z,z’)

Definition 2.3.2.3. An environment betweenandz’ is a simple memory shapes, h.) such
that
(P1) (s,he) Es. psenvir(z,z').
(P2) Ifi € Dom(h,), then eithed orh, (i) is an extremity irh,.
(P3) For every extremity in h,, i € Dom(h,) andh. (i) ¢ Dom(h,).
(P4) For every extremity in h., iz < i < fz’.
Roughly speaking(s,h.) is a finite set of markers with the above-mentioned spectrum.
Figure 2.9 presents a simple environment with= 1 andfiz’ = 6, which allows to encode a

single pair (i,1) in the present figure). Note that in full generality, the nembf pairs that
can be encoded by an environment betweandz’ is equal to(#iz’ — iz — 2) /3.

Lemma 2.3.2.4.There exists a formulanv(z, z’) € SL™ such that for every simple memory
shape(s,h), we have(s,h) kg env(z,z’) iff (s,h) is an environment betweemandz’.

Proof. Let us consider the conjuncti@mv(z, z’) of the formulas below.
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(F1) psenvir(z,z’).

(F2) ¥x. (alloc(x) = (extr(x) v dy.x < y Aextr(y))).
(F3) Vx. extr(x) = (alloc(x) A dy.x < y A —alloc(y)).
(F4) ¥x. extr(x) = (#z < x Aix < #Z7').

Each formula (B captures the condition (P m|

Consequently, if(s,h.) Fs. env(z,z’), thenh, is equal to a set of markers of the clean
spectrum
bz iz

000000 ---0000000C0F0O ---000O00
Definition 2.3.2.5. A j-marked environmens a simple memory shape, h) such that

(PMO) (s,h) is an environment betweerj andzJ?.
(PMl)~ For ?verxvariablez in{z,.. .,zJ?} U{z;,.. .,zJ?_l}, s(x) is an extremity in(s,h) and
fz; < fix < ﬂzj?.
(PM2) Forj >i>0,fz; , +1=4§z.
Consequently, wherfs,h) is a j-marked environment, the spectrum lgf contains the
following values:

i
crcO®0000

5

o\
MV
==

fzg bz b5 ﬁ ﬁ
[ ]

<
3
cee---0O @ @€ O0e0---0 cCe---@0 [

Moreover, if (s,h’) is anotherj-marked environment with identical store, tHemandh’ have
the same spectrum.

Definition 2.3.2.6 below specifies how a heap can be dividemlarbase part and an envi-
ronment part with constraints on the valdes iz;, ..., #z;§z;. These values are helpful to
determine the range of marker degrees that should be coeditteencode the interpretation
of second-order variables.

Definition 2.3.2.6. A simple memory shapés,h) is j-well-formedfor somej > 0 iff there
are heapy, h. with h = hy, o h, satisfying the properties below:

(WF1) (s,h.) is aj-marked environment.

(WF2) There is no location such thafii in (s, hy) is strictly greater thazs — 2 in (s, h).
(WF3) Dom(he) N ImChy) =0

(s,hy) is called theébase partand (s, h,) theenvironment part

Condition (WF3) guarantees that whes\ h) is j-well-formed, for every extremity in h.,
fi in he is equal tofi in h. Consequently, any extremity Inwith more tharﬂz predecessors
has all predecessors bom(h.). Moreover, (s,h) Eg psenV|r(zo,zJ>) that is(s,h) is a
pseudo-environment betweepandz.

We establish below a few lemmas that are helpful in the sequel

Lemma 2.3.2.7.Let h, be the environment part of somjewell-formed simple memory shape.
For every locationi € Im(h,), eitheri is an extremity irh. or there isi’ such thah. (i) = i
andi’ is an extremity.
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Note that the above property holds true for any environmatiMe shall use it forj-well-
formed simple memory shapes only.

Proof. If i € Im(h,), then there is a locatioi¥ such thath.(i’) = i. By (P2) on(s,h,),
eitherh, (i’) is an extremity o’ is an extremity. O

Lemma 2.3.2.8 below states unicity of decomposition wheimgle memory shape i$-
well-formed.

Lemma 2.3.2.8(Unicity). Whenever(s,h) is j-well-formed with base pait, and environ-
ment parth,, there is no(h;,hy) # (hy,he) such that(s,h) is j-well-formed with base part
h{ and environment pat;.

Proof. Letk, = (EZJ? — Ezg —2)/3andK ={k : k # 1 (mod 3) and0 < k < 3 xk, +2} be the
spectrum oh, andhy;. Indeed,(s,h.) and (s, h;) are bothj-marked environments and there
are preciselyK| extremitiesi in (s,h) such thatizg < #i < fz;. For eachk € K, we write

i, to denote the unique extremity such that = Ezg + k. Notice that each locatioiy has no
predecessor ihy, by definition 2.3.2.6(WF3)i, = s(z5) andigg., = s(z7).

The setbom(h,) contains at least the following locations: for evérg K, the locationi
and theﬁzg + k predecessors df, in h. Let I, be the set of the above locations. Assume there
is somei € (Dom(h,) \ I;). By (P2), eitheri orh. (i) is an extremity irh. (let us call iti’).
Since each predecessor of some location,irs also inI; andi ¢ I,, i is not a predecessor
of an element i;. Consequentlyj’ is an extremity that does not belong{tq : k € K} (let
us call this sel,). Sincefizs < #i’ < EZJ> eitheri’ has as many predecessors as an element in
I, orfi’ = fizg + 1 (mod 3). This entails thats,h.) does not satisfpsenvir (z5,z;) which
leads to a contradiction. Consequenilgm(h,) = I, h. = hy, (restriction ofh to I,) and
hy, = hyomm\1,) - O

In the sequel, wheks, h) is j-well-formed, by defaulh. denotes the environment part and
h, the base part.

We state below a crucial result, basically stating that mgldin environment heap toja
well-formed simple memory shape leads t¢ja+ 1) -well-formed simple memory shape. This
is central to interpret a new second-order variable (extgnithe environment part) and this can
be performed thanks te: (details will follow).

Lemma 2.3.2.9(Composition) Let (s,h) be a j-well-formed simple memory shape and
(s’,h)) be a simple memory shape such that

1. hy is disjoint fromh ands’ differs froms at most for the variables,, andzZ,,.
s'(zj,,) ands’(z7,,) do not belong t®@om(h) U Im(h).
(s’,hy) is an environment betweer,, andzZ,,.
(s, hohy) ko fiz] +1 = iz5,,.
Dom(h,) N Im(h) = 0.

a bk 0N

Then,(s’,hoh)) is (j +1)-well-formed with the base pal, and the environment patit o h?,.

The proof of lemma 2.3.2.9 is tedious and requires some égqrovide the details below.
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Proof. We will refer to an item of the lemma by the wolhgpothesisFor instance, hypothesis
(5) is:Dom(h,) N Im(h) = 0.
The proof mainly rests on establishing the property below.

(PROP1) Any extremity ifh, or in h, is an extremity irhoh with exactly the same number
of predecessors.

Consequently, this implies that in the simple memory sh@apehoh’,) we have the following
relationships:

(PROP2) ﬂzg < ﬂzJ> =fzs —1<fz7 -1, ﬂzg +2=fz>.. (mod 3) andfizs,, = ﬂzg (mod 3).

j+1 j+1 j+1 j+1
Assuming (PROP1) and (PROP2), let us check the conditiams fiefinition 2.3.2.6 for
ensuring that(s’,hoh.) is (j + 1)-well-formed with base pati,. After doing that, we shall
establish that (PROP1) holds true.
First, we show thats’,h. oh.) is a (j + 1)-marked environment.

(P1) Letus prove thats’,h. oh,) ks psenvir(zg, z3,,). Below, the numbers of predecessors
are relative to(s’, h, ohy). Leti e {fizg, ..., fz3,,}.

x Assumei = ﬁzg +1 (mod 3). By contradiction, suppose that there is a location
such thati’ is an extremity andli’ = i. Theni’ is an extremity withi predecessors
either inh, or inh,, which leads to a contradiction sin¢g’, h.,) is an environment
betweere;,, andz;,, and(s,h.) is an environment betweery andz;.

« Assumei # fizg + 1 (mod 3). If i € {fiz5,....#z}), then by (PROP1) there is

a unique extremityi, such thatii, = i. Otherwise { € {Ez;l,...,ﬁz;l}), by
(PROP1), there is a unique extremify?" such thagii®" = i.

(P2) Suppose thdte Dom(h, oh.). Two cases are distinguished below.

x 1 € Dom(hg).
We distinguish again two subcases sihde j-well-formed.

- In the casel is an extremity inh,, the locationi is an extremity inhoh/ by
(PROP1). Consequently,is an extremity irh, oh’.
- Inthe casén (i) is an extremity irh,, the proof is analogous.

* 1 € Dom(h.).
The proof is analogous.

(P3) Leti be an extremity ith.. Let us show thah(i) ¢ Dom(h.oh.). Since(s,h) is j-
well-formed,h(i) ¢ Dom(h.). By contradiction, suppose thati) € Dom(h.). Then,
eitherh(i) is an extremity inh, or h(i) is a predecessor of an extremityin h.,. In
the first case, it leads to a contradiction since the extiemdfh, are not inIm(h.), by
hypothesis (5). In the second cas@s not an extremity ith o h, which is in contradiction
with (PROP1). Consequently(i) ¢ Dom(he oh)).

Let i be an extremity irh;. Since (s’,h,) is an environment betweer],, andz;, ,
we know thath, (i) ¢ Dom(h.). It remains to check that,(i) ¢ Dom(h.). By con-
tradiction, suppose théat, (i) € Dom(h,). Then there id’ € {h,(i),h(h,(i))} such
thati’ is an extremity irh.. By (PROP1),i’ is an extremity irh, ch,. This leads to a
contradiction since has predecessorsig ohy.
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(P4) Leti be an extremity irh.. We haveﬁz <fi< ﬂz < ﬁzJ+1 since (s,h) is j-well-

formed and (PROP1). Let be an extremity irh,. The valuedi, 1sz+1 and 1sz+1 do
not change fronh; to hoh. Since(s’,hy) is an environment betweer],, andz]

ﬂzj+1<ﬂ1<ﬁz .Soin(s’,hoh)), wehavqu <ﬂz <fi<iz

j+1?
j+1s

(PM1) By (PROP1), for each variabiein {zg, ...,z;,;} U {z;,...,z},,}, the valueix remains
unchanged fronh or h; to hoh!. Considering thah is j-well-formed,h, is an environ-
ment betweerx< andz and(s hoh)) Est ﬁz +1 = ﬂzm, we conclude that for

everyx € {z5,... U {zo, ..+ 23} s(x) is an extremity an¢iz <fx < iz

J+1} j+1s

(PM2) Let0o <i < j+1.Ifi < j,thensinces,h) is j-well-formed we obtains,h) Fs; Ezj+
1= 1jz1+1 By (PROP1)(s’,hoh)) ks #z;+1 = #z5,, (s’ ands agree for these variables).
If i = j +1, then hypothesis (4) precisely states thslt hoh.,) s, ﬂz +1=4z°

j+1e

It remains to verify the conditions (WF2) and (WF3).

(WF2) Sinceh andhch; have the same base part afidh) is j-well-formed, we get that there
is no locationi such thatii in (s,hy) is strictly greater thaﬂz —2in (s,hoh,) (equal
to iz — 2in (s,h) by (PROP1)).

(WF3) Since(s,h) is j-well-formed, we havebom(h.) N Im(h,) = 0. By hypothesis (5),
Dom(h,) N Im(h) = 0. ConsequentlyDom (he 0h,) N Im(h,) =0

Now, let us prove that (PROP1) holds true. First, we provecteg® when an extremity is a

location of the forms’ (z) withk € {0,..., j + 1} and¢ € {<,>}. By hypothesis (2)s’(z;,,)
ands’(z},,) do not belong tam(h). So the valueﬂz andﬂzj?+1 remain unchanged from
(s’,h)) to (s’,hoh.). Now letk € {0,...,j} and¢ € {<,>}. Assume thaﬁz; has changed

from (s’,h) to (s’,hoh)). Consequentlys’ (z;) € Im(hy). By lemma 2.3.2.7, there are two
possibilities.

1. s’(z}) is an extremity in(s’, hy).
As (s hy) is an environment between,, andz;, ,, every extremity belongs @om (hy),
whences’ (z;) € Dom(hy). This Ieads to a contradiction sinkeandh; are disjoint:
s'(zy) € Dom(he) since(s,h) is j-well-formed.

2. Thereis alocatiofh such thah, (i) = s’(z;) (also equal te(z;)) andi is an extremity.
Sos’(zp) is not an extremity ithchy, WhICh also leads to a contradiction.

Consequently, for alt € {0, ..., j}and¢ € {<, >}, ﬁz; is unchanged frorh tohoh,. Based
on these preservations and sin@, hy) is an environment betweer],, andz;,,, (s’,h) is
j-well-formed and(s’,hoh)) ks ﬂzJ? +1= ﬁz;ﬂ, we can conclude (PROP2).

Before treating the proof for other types of extremitiesukeprovide a few basic definitions
and facts. We define the natural numheysm, andm; as follows:

3my = (EZ;+1 ﬁZO) -2 3m, = (ﬂz - ﬂzo) -2 3mg = (ﬁZJ+1 a2;+1) -2

Notice thatm; = m; —m, — 1. These values are simply related to the spectrum below vthere
first value isfizg and the last one i&;l
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m, pairs inhe m3 pairs inh,

00000 0:--- 000000000000 ---000O00

m; =my+mz+1 pairs inh 0hy

Forn > 1, letK, = {k : k # 2 (mod 3) and0 < k < 3n + 2} and we posd,, = K,,,

Jm, = K, @andJ,, = {n+ (3my +3) : n € K, }. Since(s,h,) is an environment betweeay
andzJ? (remember(s,h) is j-well-formed) and(s’,h.) is an environment betweaj+1 and
zj?ﬂ, we get that(s’,hoh)) kg psenvir(zg,zj?ﬂ). So, for evenyk € J,,, there is a Iocatioﬂlf
verifying the properties below iks’,hoh)):

- Biy =lz5 + &,

- i, is an extremity,

— there is no locatior such thafii = i}, i # i} andi is an extremity.

Notice thatfiy,, = fz3,, —2in (s’ hoh)), 15, ., =5 (z}) andiy, ., = s'(z5,,).

Similarly, as(s’,h) Es. psenvir(z;, zJ?), for everyk € 1,,, there is a location, verifying
the properties below iis’, h):

— Hi=Hz5 + Kk,

— 1y IS an extremity,

— there is no locatior such thatii = fiiy, i # ix andi is an extremity.

Observe that all the extremitiesi are either of the forniy, ors’(z5) ors’ (zJ?). More-
over,fis, = EzJ> —2in (s’,h).

.Fipally, as(s’,hg? EsL pse.nvir(z;l,zj?ﬂ), for everyk € J,,, there is a locationi}®"
verifying the properties below is’, h,):

— Eiﬂew = (EZ;H — (3m, +3)) +k,

— ip®"is an extremity,

— there is no locatior such thatii = i, i # it andi is an extremity.

Observe that all the extremities hf are either of the formiy*", or s’(z3,,) or s’(zZ,,).
We can establish ?dditional arithmetical propertigigy” = 1sz?+1 —2in (s’,h)) and§ip®” in
(s’,h}) is equal tajzs +kin (s’,hoh)).

We are going to prove that for ad € J,,, ix = i, and for allk € 3, i}*" = 1i,.
This will terminate the proof of (PROP1) since the only extittes inh, are{iy : k €
In, }U{s" (25,87 (2)} and the only extremities i, are{i}*” : k € In}U{s"(25,,), 8" (25,0}
The proof is by contradiction and we distinguish two casesleof them will lead to a contra-
diction):

(case one) There ls€ 1, such thatiy # 1.

(case two) There ik € J,, such thati}®” # i .
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(case one) Let us first establish thgte Im(h,) (proof by contradiction). Suppose thit ¢
Im(hy). So,ﬁiﬁ remains unchanged frorfs’,h) to (s’,hoh}). Asin (s’,hoh)), we have
fzs <Hil < ﬁzj andzs andz; remain unchanged fror(s’, h) to (s’,hoh), we can infer that
#zs < Hi, < fiz in (s",h). Additionally, as in(s’,hoh,), we havefi, = fizg +k, this is also
true in (s’,h). Finally, asi, is an extremity in(s’,hoh)), it is also an extremity ir(s’, h).
Consequentlyj, = iy, which leads to a contradiction. We have establishedithat Im(h,).
By lemma 2.3.2.7, there are two possibilities:

— 1, is an extremity irhy.
Consequently, i, we havefi, > #iz7, . Asfzs,, remains unchanged froifs’, h,) to

~ ~J+1' - j+1
(s’,hohy), inhohg we obtaingi, > #z5,, = #z7 + 1, which leads to a contradiction.

— There is a locationi, such thati, is an extremity inh, andh, (i,) = i,. Soi, is
not an extremity irh, and it cannot either be an extremityhwh’, which leads to a
contradiction.

(case two) Lek be the smallest element af, such thatif® # i . In (s’,hoh}), we know
thatfi, > fz;,, > fz;. Moreover, ad is an extremity in(s’,h=hy), eitheriy is an extremity
in (s’,h) too ori, has no predecessor {3’,h). Since no extremity ofs’,h) has more than
Ezj? predecessors (in bothandhoh), the locationi, cannot have all of its predecessors in
Dom(h). Leti, be one of the predecessorsig¢fthat belongs t@om(h,), that ish, (i,) = i,.

Let us recall that(s’, hy) is an environment betweer],, andz;,,. Sincei, € Dom(hy),

there isi € {io, h, (io)} such that irh,:

(@) iis an extremity,
(b) i € Dom(h.),
(c) Bz;,, < Hi <iz;,,,

(d) no other extremity has exactfy predecessors.

Indeed, the condition (a) comes from (P2), the conditionsafid (d) both come from the
(s".hy) ks psenvir(z3,,,z3,,), and (c) from satisfaction of (P4).

In the casel = i, 1, is not an extremity irh, and hence, is not an extremity irhohy.
This leads to a contradiction. Consequently, we haveh/ (i,) = i,. Let us conclude the
proof.

In h,, the locationi, is an extremity. As(s’,h,) is an environment betweert,, and

-0 n -0 I . . -0
z7,,, we havei, € Dom(hy) andfizj,, < #i, < fz7,, in (s’,hy). Sinces(z;,,) # i and

s(z3,,) # i, we obtainizs,, < #i, <#z7,, ink".
So there isk, € Jn, such thati, = i}*". We have that the valugi}*" changes fronh;
to hohy, and thereforelf® # i . Sinceﬁi§§w can only increase frorh, to hoh}, we can

conclude thail® in (s, hy) is strictly smaller thafit® = §i in (s’,hohy). By definition
of the locationsi, andi{®", we obtaink, < k, which leads to a contradiction by minimality of

k. O
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2.3.3 The Translation

In this section, we provide the translation fr@®0 into SL™. First, we introduce additional
formulas that will be useful in the translation process. slwiorth observing that in order
to translate first-order quantification, we should guaraniat first-order variables are not
interpreted as locations from the domain of the environnpamt. Typically, the number of
predecessors af (x) andh(s(x)) (if it exists) should be less thaﬁzg and none of these
locations is an extremity. The formutetonmark(-) is introduced for this purpose:

notonmark(x) = = (Ay. (y=xVx <—=y) A (fy > #iz5) Aextr(y)).

Lemma 2.3.3.1.Assume(s, h) is a j-well-formed simple memory shape. Thég,h) Fs
notonmark (x) iff s(x) ¢ Dom(h,).

Proof. As (s,h) is j-well-formed, by definition 2.3.2.6, for any locatian we havei e
Dom(h.) iff there is a locationi’” € {i,h(i)} such that in the heah., we haveﬁi’ > Ez;
andi’ is an extremity. Moreover, by definition 2.3.2.6, we get ia tearh thatfi’ > Ezg and

i’ is an extremity. Assume that(x) € Dom(h.), then thanks to the explanations just above,
(s,h) Fg notonmark(x).

Now, by contradiction, suppose thatx) ¢ Dom(h.) and (s,h) Fs. notonmark(x). Then
there isi € {s(x),h(s(x))} such thatfi > H#z5 andi is an extremity, by definition of
notonmark. Furthermore, by definition 2.3.2.6(WF3), the locatibris not an extremity in
h., all of its predecessors areliy. Then by definition 2.3.2.6i > ﬂzg — 2, which leads to a
contradiction. O

The formularelation; x defined below is helpful to build environments.

Lemma 2.3.3.2.Let j > 0 andX be a finite set of variables disjoint frofag, z, . . .,zJ?,zJ?}.
Then, there is a formuleelation; x such that for every simple memory sha@h), we have
(s,h) g relation;x iff (s,h) is an environment betweaf and zJ? and for everyx € X,
s(x) ¢ Dom(h).

The formularelation; x is simply

relation; x = env(zj, zJ?) A /\ —alloc(y).
yeX

We will additionally need the formulaol (x), which means that (x) ¢ Dom(h) U Im(h).
It is defined as:
isol(x) = -dy. X > y) V (y <= x)

The translation of the formul written translationps_,smw (f), is defined with the help
of the translatiorntryso_sim (3, ) wherej records the quantifier depth. The translation is de-
fined so that(s(x), s(y)) belongs to the interpretation & whens(x) ands(y) are end-
points of markers with consecutive degrees bet\/\ﬁegrandﬂzj.

<

translationpgse_ s (f) = Jz5 z5. isol(z5) Aisol(zg) A

[((Vx. alloc(x) = (X =z VX —=ziVx=2z;VXx=2z5)) ANalloc(z;) Aalloc(z5)) =
(VXX # 25 AX#2z5 = (Hzg > 2+8x)) A (Bz5 =2 +Hz5) Aextr(zg) Aextr(z;)A
trpsosem (0,1))1]
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In order to define recursively the mappso_.s;=, note that iftrpsy_,spw (j, P; (X, y)) occurs
theni > j, and that by the extended Barendregt conventiamgf,_s;~ (j, AP;.g) occurs then
i=j+1. Also, trpso_stm (j,-) is homomorphic for boolean connectives.

trpsomsm (J,X=Yy) = X=Yy

trpsomsim (3, X DY) = Xy

trpsonsm (3,Pi (X, y)) £ 32,7 (2= x) A (Z = y) A (Hz>H#z20) A B2 <z A
(B2 =1 +8z) Aextr(z) Aextr(z')

trpsonsmw (3, AX. ) = Ax. notonmark (x) A trpso_sim (j,9)

trpsomsem (3, APj41.9) = dz3,,. z},,. isol(z3,,) Aisol(z],,) A

(relationjﬂ,Freevar(g) — (psenVir(Z(f, Z;+1) A ﬁZj +1= ﬁ2§+1

AtTpsomsim (7 +1,09)))

In order to translatélP;.;. g, we introduced two locations whose numbers of predecessors
determine the bounds for the degrees for any marker usedtalera pair for the interpretation
of P;. There is a way to add markers (expressed thanks to the dbreeg that guarantees
that the new part of the heap encodes the interpretatioreofahableP;., by using the above
formularelation;,, x.

Observe thatranslationpgo_,s m (f) andf have the same first-order free variables.

2.3.4 Correctness

Before stating the correctness of the translatipanslationpsy_,s;m (), we need to formally
define how to extract an environment fromj-avell-formed simple memory shape (but now,
that is easy).

Definition 2.3.4.1. Let (s,h) be aj-well-formed simple memory shape, and gt be the
associated environment heap. The environriesitracted fronh is

E(P;) 2 {(h.(i),h.(i")) : Hz7 < i, Bi+1 =i, §i’ <z} inh.)
forallie{1,...,]j}.

Correctness ofranslationpsg_,sim (+) is based on lemma 2.3.4.2 below. The proof shall
use several results established earlier.

Lemma 2.3.4.2.Let f be aDSO formula using the extended Barendregt conventionghd a
subformula of at quantifier depthj. Let (s,h) be aj-well-formed simple memory shape, with
base part(s, h,) and environment pargs, h.), such that for eack € Freevar(g), s(x) ¢
Dom(h.). LetE; be the environment extracted fram. Then,(s,h) Fs. trpsoosim (3, 9) iff

(s,hy),E;j Fso 0.

Proof. Let us start by a preliminary definition. We say that a logatiooccursin a binary
relationR when there is a location’ such that(i,i’) € Ror (i’,i) € R. Letf be aDSO
sentence satisfying the extended Barendregt conventianwait to show by induction og
that given:

— g is a subformula of of quantifier depthyj,
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— (s,h) is j-well-formed with base pait, and environment pati. such that for every
variablex € Freevar(g), we haves (x) ¢ Dom(h,),

— E; isthe environmenP; — Ry,...,P; — R;} extracted fronh,,

— no location occurring iR, U ... UR; belongs tdom (h,),
we have:(s,h) sy trpsosim (3,9) iff (s,hy), Ej Fso 0.

Base cases.

The base cases= y andx < y are by an easy verification sinaepso_,s;w (j, ) restricted
to them is the identity map. Let us consider the more intergdiase case, that is whegn=
Pk(x,y) with k < J

(=) Suppose thats,h) Fs. trpsomsiw (3, P(X,y)). Then, in the heap, the locations
s(x) ands(y) have predecessorshithat are also extremities, let us call them respectivgly
andi,. In the heaph, we havefizg < #i, = fli, — 1 < #z; - 1. By definition 2.3.2.6, both,
andi, have predecessors bom(h,) and all of their predecessors are als®ém(h.). Since
z: andz; have also all of their predecessordism (h, ), we havelzs < fi,, fi. + 1 = #i, and
#i, < fiz; in h.. By definition 2.3.4.1, we geth(i,),h(i,)) € Ry, thatis(s(x),s(y)) € Ry.
Consequently(s,hy), E; Fso Pk (X, y).

(<) Suppose thats,hy),E; Fso Px(X,y). By the definitions ofrs, andE;, we have
(s(x),s(y)) € R. Sos(x) ands(y) have respectively predecessdgsandiy in Dom(h,). In
the hearh,, i, andi, are extremities anfizs < i, = fiiy — 1 < #z; — 1. By definition 2.3.2.6,
the predecessors of any location amai(@;), iy, iy ands(z;) belong toDom(h.). So the
above inequalities and equality are also truk.iBy definition 2.3.2.6, the locationss(z;), iy,
iy ands(z;) are extremities ih. So (s,h) s trpsossim (3, P (X, y)).

Induction step.

Our induction hypothesis is the following: for every subfiag’ of size strictly less than
the size ofg, for j € {0,...,n} (n is the quantifier depth of) and for anyj-well-formed
simple memory shapeés, h) such that for every variablee Freevar (g), we have(s,h) g
trpsonsim (3,97 Iff (s,hy), Ej Fso 9

Caselg=31x.¢".
The statements below are equivalent:
(0) (s,h) Es trpsomsem (3,3 g7,

(1) there isi € Loc such that(s’,h) s trpso_sim (j,g’) and (s’,h) Es. notonmark(x)
Wlth s'=s [X = i] (by deflnltlon OftrDsqume),

(2) there isi € Loc such that(s’,h) Fs trpsoosim(j,g’) andi ¢ Dom(h.) with s’ =
slx il (by lemma 2.3.3.1),

(3) thereisi € Loc such that(s’, hy),E; Fso 9" andi ¢ Dom(h,) with s” = s[x — i] (by
induction hypothesis sindereevar (g’) C Freevar (3x. g’) U {x}),

(4) thereisi € Loc such that(s’,h,), E;j Fso 9’ With s” = s[x = i],
(5) (s,hyp),E; Eso g (by definition ofs).
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Let us justify below why (4) implies (3). Suppose (4) ainde Dom(h.). Since(s,h) is
j-well-formed,i ¢ (Dom(h,) U Im(hy)). Sinceloc is an infinite set, there is a location
i” € (Loc\ (Dom(hy) U Im(h,) UDom(he)) such thati” does not occur ifR; U...UR;). By
lemma 1.2.3.2(s[x = i'1,hy,),E;[i « i'] k5o g'. Suppose by contradiction thatoccurs
in R, for somel < k < j. So,i has a predecessor that is an extremitpam (h,) and by (P3),

i ¢ Dom(h.), which leads to a contradiction. Hendg,[i « i’] = E;. We have established
that (s[x — i’]1,h;),E; Fso 9" andi’ ¢ Dom(h,).

Case 29 =4dP;.1. 0.
()

— (Introduction) Suppose thats,hy),E; Eso dP;+1. g’. By definition of the satisfaction
relationks, there isR € Powg;, (Loc?) such that(s,hy,),E; [P+ — R] Es @'. Since
we aim at having locations i, that do not interfere with the store, we need to be more
restrictive abouR.

— (ReplacingR by somer’) We build below a finite binary relatiakl from R such that no lo-
cation inDom(h,) occurs irR’ and (s, hy), E; [Pj.1 — R’] Eso 9’. More preciselyR’ will
be obtained fronRk by replacing its image under a permutation of the set of lonatthat
leaves the locations is andh, fixed. The relatiorR’ is constructed by successively re-
placing the locations ibom (h.) that occur also iR. Suppose that for soniec Dom (h,),
i occurs also irR. By the induction hypothesis, for every varialde= Freevar(g’),
i # s(x). By definition 2.3.2.6 on(s,h), we havei ¢ (Dom(h,) U Im(hy)). So
i ¢ (Dom(hy) U Im(h,) U {s(x) : x € Freevar(g)}). Asi € Dom(h,) andE; is
extracted fronh,, i does not occur i(R; U ... UR;). Moreover, for every locatiot’
that does not occur iR; U ... UR;, we haveE; [i « i'] = E;.

Since{s(x) : x € Freevar(g')}), Dom(h), Im(h) andRy,...,R; are finite sets, there is
i’ € Loc such that:

% 1’ ¢ (Dom(hy) U ImChy) U{s(x) : x € Freevar(g’)}) andi’ ¢ Dom(h,),
* 1’ does not occur iR, U ... UR;.

By lemma 1.2.3.2, there i ¢ Dom(h,) such that(s[i « i’],hy),E;[Pj.q — RI[1 «
i’] Eso 9. Asi ¢ {s(X) : x € Freevar(g)}, we also have [i <« i’] = s. LetR” be
R[i « i’]. SinceE;[i « i’] = E;, we obtain(s, hy), E; [Pj+1 — R”] Eso 0.

If ko > 1 locations inDom(h,) occur inR, thenk, — 1 locations inDom (h,) occur inR”.
By applying the above transformatidy times we can build a relatioR’ such that no
location inDom (h,) occurs inR” and (s, hy), E; [P+ — R'] Fso 0.

Hence, (s,hy),E; Eso dPj.4. g’ iff there is a finite binary relatioR € Powg;, (Loc?)
such that(s, hy), E; [P+, — R] Eso @’ and no location imom (h,) occurs inR.

— (Defining (s’,h,)) Let us builds’ andh, such that

(A) (s’,hy) is an environment betweer},, andz, ;.

(B) (s’,hoh)) is (j +1)-well-formed with the environment paltt o h,.
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Suppose thak containsm; > 0 pairs, sayR = {(i},i7),..., (i; iy )}. Let us build an

> tmy

environment(s’, h,) whose spectrum, fau, = EzJ> + 1, can depicted as

m; times the patterrf eeo’

mo my+3my +2
e o (o000 ...0 00) °

Its set of natural numbetsis equal tolm,, my + 3m; +2} U {my + 3k +2,my +3k+3 : 0 <
k<m — 1}

Alocationi is said to bdreshif i ¢ ({i;, i} : 1 <k <m}UDom(h) UImh) U{s(x) :

x € Freevar(g')}). By finiteness of the involved objects, letbe the following set of
fresh locations (there is no need to provide here preciseesil{i,, : m3 € J} U {i:g :
my € J, 1 <m <mg}VU{ig, i, ,,} The stores’ is defined froms by only imposing
thats’(z;,,) = iy ands’(z],,) = i} ,,. The heafh; has domairk and it is defined as
follows:

5 W (i) = iy, forms € J and1 <mj < m,

* h;(im2+3k+2) = lf{ andh;(im2+3k+3) = l{{’ fOt’ 0< k < m, — 1,
s h, (in,) = 1§ andhy (ineamsa) = 1) 4s-
By an easy (and long) verification, one can check that (A) &)d6ld true. Moreover,
the relations extracted froim. oh (see the definition 2.3.4.1) are precisBly...,R;,R
and for everyx € Freevar(g'), s’(x) ¢ Dom(h.oh,). By the induction hypothe-
sis, (s’,hy),Ej[Pjs = R] Fgo @' iff (s, hohy) kg trpsomsim (j +1,9"). Thanks to
lemma 1.2.3.1(s’,hoh)) g trpso_sm (j +1,9).

By (A), (s’,hy) Fsu relation;.s greevar(gy- Additionally, by definition ofif andi; .,

we have(s’,h) kg isol(z;l) and (s’,h) kg isol(z;l). Finally, since(s,hoh))
is (j + 1)-well-formed, we hav&s,hoh,) s psenvir(zg,z;l) (lemma 2.3.2.1) and

(s,hohy) kg §2; +1 = fz5,,. Asa conclusion(s,h) kst trpsomsem (5, IPjer. 7).

(=)
Suppose thats,h) Es. trpso-sim (i, AP541. g'). In other words, there are locatiotisi’ ¢
(Im(h) UDom(h)), and a disjoint heah, Lh such that the claims below are true

h, is disjoint fromh ands’ differs froms at most for the variables;,, andz?,,.

1 (5<
S (Zj+1

) =1iands’(z],,) =i’ do not belong t@om(h).
(s’,hy) is an environment betweer],, andz;, ;.
(s, hoh) kg 25 +1 = 25

j+1°
Dom(h.) N Im(h) = 0.

a M w b PRe

These claims essentially follow from the definition of for@urpso_,spw (j, IP541. "), the
only difficult part being claim 5. Let us detail this last point: whilemgingh andh., no new
marker can be created so any markehirh. is a marker either fronh, or fromh, with the
same degree. Moreovérph, satisfiespsenvir(zg, z3,,), so the spectrum df. is included in
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the one ohoh.. Combining these two facts, it follows that all markershpfare still markers
of the same degree o h,, and in particular claim 5 holds.

Now, claims 1-5 are precisely the assumptions from lemm&223&nd as a consequence
(s’,hoh)) is (j+1)-well-formed. Observe that (5) is consequence of (3). Sstcroh) Es.
trpsosim (j,g’) and for everyx € Freevar(g’) s(x) ¢ Dom(h, oh)), we can then apply the
induction hypothesis and obta(s, hy,), E;.; Fso 9’, thatis(s,hy), E; Fso AP;j41. 9" WhereE;.,
is extracted fronh, ohy. O

Here is our main result about the expressive poweLof
Theorem 2.4.SL™ = SL = SO = DSO.
Proof. The proof follows from the following properties:

— SL™ C SL andDSO C SO by simply considering syntactic fragments.
— SL C DSO andSO C DSO by lemma 2.3.1.1 and lemma 2.3.1.2.
- DSOC SL™,
It remains to show thaiSo C SL™ by using lemma 2.3.4.2. Lébe aDSO sentence. Without
any loss of generality, we can assume fitas no free occurrence of first-order variables of the
form z; (otherwise, other auxiliary variables are used) &gdtisfies the extended Barendregt
convention since evemS0 sentence can be reduced to an equivalent one in logarithpaces
Let (s,h) be a simple memory shape. The statements below are equivalen
- (S, h) '=SL translationDso_,Sme (f),
— Therearé, L h, i, i’ ands’ = s[z5 — i,z; — i’] such that
* 1 andi’ ¢ Dom(h) U Im(h),
% 1,1’ € Dom(h’) and for every locatiori” € Dom(h)) \ {i,i’}, we haveh, (i”) €
{1,1'}.
+ In (s, hohl), #z; = 2+ §z5 and for everyi” € Dom(h), we havellzs > 3+ fi”.
* 1 andi’ are extremities in(s’,hoh).
* (s’,hohy) Fs. trpsossim (0,).
(by definition oftranslationpsg_,s;m (+) andps;)
— There ardr’ L h, i andi’ such that

+ (s’,hoh)) is an environment withiz; = 2 + fiz;.
* (s, hoh’) s trpsoosim (0,1).

(by definition 2.3.2.6 and lemma 2.3.2.8)
— There ardr’ L h, i andi’ such that

+ (s’,hohy) is an environment witkiz; = 2 + fiz;.
% (s’,h), Ey Eso f fOr any environmenk, extracted fronh,

e"

(by lemma 2.3.4.2)
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— (s,h) Ego fsince

+ the variablegg andz; do not occur irf andf is a sentence.
« h!, can always be built sindeis essentially a finite structure.

O

Observe that all the equivalences are obtained with Idgart space translations. Conse-
guently,

Theorem 2.5.SL™ satisfiability problem is undecidable.

Proof. We have seen that for every sentence suchftiraDS0, there is an fective way to
computef’ in SL™ such thaf andf’ hold on exactly the same simple memory shapes. In order
to show undecidability o$L.™, it is sufficient to provide a reduction from finitary satisfiability
for classical predicate logic restricted to a single binagdicate symbol (see [88]) D$0. Let

f be a first-order formula built over the binary predicate sgh®. One can easily show that

is satisfiableft

3AP. 3Q. (Vxy. Q(X,y) = P(X,X) AP(y,y)) A trrog, preq—pso (P

is satisfiable. The mapreo,, ,...-oso IS the identity map for atomic formulas, homomorphic
for boolean connectives, and performs a relativizatiorfifst-order quantification as follows:
TR0y prea—Ds0 (VX @) = VX, P(X,X) = tryo, ,..-ps0(Q9). The intention is obviously that
P (x,x) holds true whenever belongs to the finite model. O

Undecidability ofSL™ can be obtained much more easily by encoding the haltingg@mob
for Minsky machines by using the fact thit = #ly and#x = fly + 1 can be expressed 8L~
(section 2.2). Indeed, computations of lengtitan be encoded as lists of length; three
successive locations encode a configuration of the macmdea two of those locations,
counter values are encoded by the numbers of predecessmsrem 2.5 is obtained with the
stronger resuls§L™ = DSO sinceDSO is undecidable.

2.4 Extensions with More Than one Selector

In order to express advanced arithmetical constraintsgseton 2.2) or to encode finite sets
of pairs of locations (see section 2.3), we have introduaiditianal parts in the heaps via

markers. In order to distinguish these auxiliary markessifthe original heap, we have decided
to use markers of small degree (as in section 2.2) or markéassge degree (as in section 2.3).
However, in the presence of memory cells with strictly méw@ntone selector it is even easier
to identify these auxiliary markers; for example, the meyrawllsi — i’ introduced in a heap

to check arithmetical constraints or to encode environseah be replaced by memory cells

of the form
(k—-1) times

—
i i’ ke,..., ko
wherek, is a location that is not present in the original heap (thabisn Im (h) UDom (h)). We

write kSL [resp.kS0] to denote the variant &L [resp.S0] with k selectors. In that case, a heap
h is defined as a partial functidn : Loc — Lock with finite domain. The atomic formulas

71



of the formx <— vy from SL are replaced bx < vy;,...,yx. Obviously1SL [resp. 1S0]
corresponds tSL [resp. SO]. We write kSO¥ to denote the restriction &S0 to second-order
variables inSecvar,.. S01S0? = DSO.

In the rest of this section, we assume tkat 1. We dedicate the rest of this section to
show theorem 2.6 below can be proved by adapting what we did fmique selector. We
may overload symbols but no confusion should occur. The kase requires special care but
a simpler direct proof is possible f&r # 1. Indeed, fork = 1 the identification of auxiliary
memory cells is performed thanks to structural propertieeras fok > 1, this could be done
by simply checking the presence of distinguished values.

Theorem 2.6.For everyk > 1, kSL = kSL™ = kSO.

We establish theorem 2.6 by adapting the proofkfcr 1. However, a simpler proof for
k > 1 is possible but it would require aftierent approach. First, an obvious adaptation of the
proof of lemmas 2.3.1.2 and 2.3.1.1 allows us to show thersiamt below.

Lemma 2.4.0.3.kSL C kSO*** andkS0**! C kS0?.

It remains to show thakS0? C kSL™. The basic observation is that all the auxiliary
memory cellsi — i’ introduced in a heap to check arithmetical constraints oertcode
environments are replaced by memory cells of the form

(k—1) times

—
i i ke,..., ko

wherek, is a location that is not present in the original heap. Olesédmat it is easy to check
that a memory cell is auxiliary by simply inspecting the grese ofk,. We shall also enforce
that in a new memory celi’ is different fromk, and the(k — 1) remaining locations are each
ko.

Before explaining the adaptation, we introduce alterratigfinitions:

Definition 2.4.0.4. — Given (s,h) and a location, we write i to denote the cardinal of
{i” € Loc : h(i’") = (4,...)} (number ofl-predecessorsf the locationi in (s,h)).

We writex < y as a shortcut fofly,, ..., Y. X = Y, Yo, ..., Yi.

A [resp. strict] markerin (s, h) is a sequence of distinct locationsi,, . .., i, for some
n > 0 (all distinct fromk,) such that

k-1 times
—
x h(iy) = (4,Kko,...,ko) [resp. anddomCh) = {i,,...,i4}],
k-1 times
. ~
x foreveryi € {1,...,n},h(i;) = (io,ko,...,ko) andfi; =0,

* Elo =n.

We define arextremityas a location in a heap such thdthas at least one-predecessor
and nol-predecessat’ of i appears in some tuple froim (h).

Let fy, be the formula specifying that auxiliary memory cells ar¢haf above shape:

k
fiy = VX Xy ey Xie X S Xqy ooy X = (X # Xiy A Xy ixko/\/\xi=xko)
i=2
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Following the developments from section 2.2, we can shovwdhawing lemma.

Lemma 2.4.0.5.Form,’ > 0, there is a formul&in kSL:D of quadratic size im+m’ such that
for every memory shapés,h), we have(s,h) kg fiff ix+m < ffy +m'.

We consider the formula from section 2.2 in which we add toléfeargument of any
subformula with outermost connective eitikeor —o the conjuncft,,. The concerned formulas
are those which introduce markers in the heap. Moreovegnmescases, formulas of the form
x < y for the one selector case from section 2.2 are replacex &y y, X, . . ., Xx, When
markers are involved.

Let us consider the reduction frok0? into kSL. Given a sentence ikRS0? satisfy-
ing the extended Barendregt convention and witsecond-order variables, its translation
translation ., . (f) is defined below whereranslation/ , , . (f) is a variant of
the maptranslationpgsy_sm (f) for the one selector case and where the definition of the in-
ductive auxiliary translationr,sg:_,.s;« (j, g) is modified as follows.

Note thatnotonmark(x) is defined bynotonmark(x) = = (Jy. X = Yy, Xk,5 ..., Xg, VY
X, Xios - -5 Xy ) A X # Xi,. Als0, the formulaisol (x) is now an abbreviation foisol (x) =

VYY1 Ve (Y S Vi, Vi) = (Y #X) A A (v # X)),

>

translation’

kso? kst (F) Wi, -

= (3IX, X4, ..., X
(X Xgyoo X)) A (X=X, V VEL X5 =%))
Atranslation , o . (f)
(f) = dzj z3. isol(z;) Aisol(z5) A
[((Vx. alloc(X) = (X =z VX > ZiVX=2Z;VX=25))
Aalloc(zg) A alloc(z5))
Ay, =
((Wxx#z5; AX#2z5 = (Hzg >2+8x)) A (Hzg = 2+4z5)
Aextr(zg) Aextr(zg) A tryso2gsem (0,1))]
trisoz ks (3, X =Y) = X=y
trsoz s (3, X < y) = X =Yy
trysooisew (3, P36 Y)) 2 32,2, (2> x) A (Z = y) A Bz > #25) A (2 < #iz))A
(#z' =1 +42) Aextr(z) Aextr(Z')
trso? ks (3, IX. @) = Ax. notonmark (x) A trysez_sew (3,9)
trisoz ks (3, IPj.9) = Jz7, ), 27, is01(z5, ) Alisol(z3, DA
((relationj+1,Freevar(g) A fko) =
(psenvir(zg,z3,,) Az +1 =z,
Atrysozsisem (5 +1,9)))

L 144
translatlonksog_)kSme

Additionally, relation;.; reevar (g andpsenvir(zg, z7,,) are slightly updated in order to take
into account that the markers are made of memory cells ofdhme f — i’, ko, ..., ko.

By adapting definition 2.3.4.1 with-predecessors, we can then state a lemma similar to
lemma 2.3.4.2 leading to theorem 2.6.
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Conclusion

Summary of this Chapter

We have mainly studied first-order separation logic with eakectorSL for which we have
shown the following results:

SL” is decidable with non-elementary complexity.

SL™ ™ andSL<", extendingSL" with bounded magic wand are also decidable.
SL is as expressive as weak second-order 18Qic

SL™ is as expressive &. as a by-product of our proof technique.

SL satisfiability is undecidable.

abrwnNPRE

This solves two central open problems: the decidabilitfustafSL and the characterization of
its expressive power. Moreover, the above results abouesgjye power extend naturally to the
case withk selectors, for somk > 1: kSL = kSL™ = kSO0. Figure 2.10 contains, summarized,
our decidability results concerning models with one seledtigure 2.11 is an updated sketch
of the expressiveness results — solid arrows represenaatiogic space translation and dotted
arrows are polynomial time translations.

Related Work

The closest work to ours is certainly the work of Antonopsudnd Dawar [3] on the compar-
ison of the expressive power of monadic second-order logicthe spatial logic for graphs:
they showed that the graph logic, and as a consequinces strictly less expressive thaiso.
Although the questions solved in this work do not overlaprdseilts presented herein, it adopts
a point of view quite similar to the one we presented and giviesre complete picture of the
topic.

The magic wand is rarely considered by the literatur§brwhich our result may explain
from the complexity point of view. The magic wand is howevéteo behind the scene in
recent developments 8L.. For instance, the bi-abduction problem presented by Gamnogs,
Kanovich and O’Hearn in [56] can be seen as a specializeioveo$ the satisfiability problem
for SL with magic wand. As a parallel to this work, results statirtber the absence of adjunct
elimination or the undecidability of satisfiability for lag including a form of magic wand
have been independently established for the boolean légicreched implications by Larchey-
Wendling and Galmiche in [68], propositionsL by Brotherston and Kanovich in [30], or
context logic by Calcagno, Gardner and Zarfaty in [34]. Thaimdifference with our work
is that the models of these logics include formal proposélovariables that can be used to
axiomatize the models in any desired way, whereas we alergjito the heap model.

Even without the magic wand, the decidability we obtainadsfo’ is with non-elementary
complexity. The infeasible complexity of separation lgggwen propositional as shown by
Lozes in [73] explains why, in practice, tools work with syotib heaps, which have been
proved tractable by Cook et al. in [38].

Heap properties are formalized in various logical langsdg8, 69, 84, 24, 92] and sepa-
ration logic is just one prominent example of these logicewEler, we focus on expressive
power and decidability issues rather than on formal vetifica Verification methods and log-
ics for verifying programs with singly-linked lists can bauihd for instance in [11, 22, 83].
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Decidable

SL"” —theorem 2.1
SL™ ™ —theorem 2.2
SL<" —theorem 2.3

Undecidable |

SL, SL™ — theorem 2.5

Figure 2.10: Decidability results

/C\
SL<n SLD’_DH

(lemma 2.1.3.3)

(lemma 2.1.4.3)

— C T~

u]

SL MSO
= # (by [3])

C (lemma 2.1.1.2)

m

SL™
C (lemma 2.3.4.2<

DSO

m

SL
> C (lemma 2.3.1.2)

SO

\/

C (lemma 2.3.1.1)

Figure 2.11: Translations

The relationships between logics on graphs with separé&eigres and second-order logic
are presented by Dawar, Gardner and Ghelli in [42]. Also |atiomship between separation
logic and hyperedge-replacement grammars on a class ofdrgpds representing memory

shapes is established by [48].

Perspectives

Note that we used the loose version of points-to and as faeasaw judge, our results involv-
ing SL without separating conjunction are dependent on usingdbsel points-to. It is easy
to obtain tight points-to from loose points-to and loosengsito from tight points-to when the
separating conjunction belongs to the studied logicalnfragt, hence any result about a frag-
ment containing the separating conjunction can probabbdagted. But, when the separating
conjunction is not present and the points-to predicategisttiwe conjecture that obtaining
loose points-to is impossible, as well as expressing thatlainess has a predecessor in a heap
which has strictly more than one allocated address. If thesgerties are actually impossible
to express, itis then flicult to express interesting properties about heaps whictagostrictly
more than one allocated address. As a consequence, wetcoejénat separation logic without

separating conjunction and with tight points-to is not gsressive aSL™".
Finally, we conjecture th&L with only two variables can encod®.
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Chapter 3

Beyond Shapes: Lists with Ordered Data

Introduction

Contribution of this Chapter

We are now going to study a separation logic on simple mentatgs that are models which
additionally to their single location selector contain aadéeld in each cell. Adding data to
the model, we hope to extend our decidability results of iptev chapter to models which
correspond to the memory states of programs manipulatidgred lists. Separation logic
was introduced for the verification of programs, and progrginerally handle more than a
memory shape as they are likely to additionally handle datainstance in an ordered list.
Taking our inspiration from this fact, the decidability vés of this chapter will make the
results of previous chapter able to deal with such a stractur

In this chapter, we are going to use predicates for compansdata stored in the model; a
reminder of these predicates is available in figure 3.1 flaremce.

As we have just shown in the previous chapter that the magiclwabrings undecidability,
the languagsL, we study does not contain the magic wand. On the other hankdaweshown
the fragment withouts is decidable, as well as the fragment with restricted wand Here,
we will prove that on models with data, a fragment without amnd is decidable too, but the
fragment with restricted wand is not. Additionally, the q@anison of data has to be restricted
to short distance and guarded long distance so as to mauhktaidability when the wand is
dropped. The results are summarized in figure 3.2.

The decidability result comes from a reduction to monadeoed-order logic over func-
tional graphs. The translation is strongly inspired by the ¢or separation logic over lists
without data of chapter 2, but involves some non-trivial ptinations for ensuring the consis-
tency of data abstraction. The undecidability results &taioed by reduction from first-order
logic over finite data words, which was proved undecidabl®bjansczyk et al. in [15], and
was further studied with an approach of temporal logicsénvtiork of Demri, Lazt and Nowak
in [46].

Structure of the Chapter

In section 3.1, we establish the decidability of the shostatice comparison. Section 3.2
deals with the case of guarded and non-guarded long-destaomaparison. Finally, section 3.3
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Short distance comparison| x <.y andx <.y
Long distance comparison val(x) < val(y)
Guarded long distance comparison  val(x) < val(w)

Figure 3.1: Comparison predicates

Undecidable | SL, with long distance comparison
SL, with short distance comparison and the restricted wand
Decidable | SL, with short distance comparison

SL, with short distance comparison and guarded long distantganson

Figure 3.2: Decidability and undecidability results

explains the undecidability of the logic in the presencehefrestricted magic wand.
This chapter presents results originally published in [6].

3.1 Decidability of Short-Distance Comparisons

In this section, we establish the decidability of a fragnarsL, with short-distance compari-
son.

Definition 3.1.0.6. The fragmensLst*t is defined by the following grammar:
fii==f|fAf|IXFIX D Y| XDy |[X—o,y|X=y]|fof

The semantics of the operators and atomic formulas of thignfient is defined in sec-
tion 1.3. Note that the operater does not belong to this grammar.

3.1.1 Method

The decidability of satisfiability foBLs"** is obtained by reduction to the satisfiability g0
over simple memory shapes.

Colored Shapes

We have to abstract the values taking care of their local @isgns. To do so, we use a colored
shape, with three colors on the edges’, “ >', and =". Formally, the colors are on vertices,
but each edge can be non-ambiguously identified to its soxdex in our model. In logical
terms, these colors will be defined by two second-order bbag noted® andQ, and we will
observe the color’ if both P andQ hold for the source location of the edge; if P holds but
notQ, and >’ if Q holds but notP. The case where neith€rnor Q holds is irrelevant since
we assumed a total order on data values, so we should conistegpossible choices fér and

Q to avoid this situation. Moreover, some extra constrainlisbe involved by the necessity to
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Figure 3.3: A concrete heap (1), its colored abstractiong@)l the associated graph of con-
Stl’alnts (3), herap = {i3, i4, i6’ 17} andRQ = {il’ i4, i5, i6’ 17}

manipulate only colored shapes for which it is possible sygasdata respecting the colors (for
instance, a cycle ok’ cannot be assigned data).

The Graph of Constraints

Given a shapés, h), and the interpretatior®,Rqo C Dom(h) of the second-order variables
mentioned before, we define the associated graph of camstaE (I, J) where:

— The set of vertices is the quotient obom (h) by the equivalencg ~ i’ relating locations
connected by a non orienteds’-labeled path in the colored shape. Note that each
equivalence class contains at most one locatievhose image undér lies outside the
equivalence class & In such a situation[k] denotes this equivalence class.

— The set of edges is the set of pairs of equivalence clas$€k], [k’]) such that

x eitherh(k) = k’ and the color ork is ‘>’
* orh(k’) =k and the color ok’ is ‘<’

Figure 3.3 gives an example of a colored shape and its agsod@eaph of constraints. Note
that an edge towards a dangling pointer cannot be colorédhasis in fact the unique situation

in which one allows-P A =Q. The graph of constraints helps us to decide whether or not it
is possible to assign values to a colored shape: indeedpibidem is equivalent to defining

a topological order on the graph of constraints, which iswkmeo be equivalent to this graph
being acyclic. What remains to be explained now is:

— how to define the graph of constraints4go0,
— how to express acyclicity,

— how to treat separating conjunction.

The Reduction

The reduction fromSL3""* to MSO is defined by the functionranslationg sy, () £
HPHQHQOCOHS(P, Q, Qo) A trs]_‘slhort_mso (f, P, Q, Qo) Whel’e
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— Qo is an extra second-order variable that is needed to defineutihent focus, that is the
sub-heap of the original heap on which the (sub)formula isetuly evaluated.

— trgsmore_yso IS @N auxiliary reduction that works assuming tRaQ andQ, have been
correctly guessed, updating these parameters apprdprdienc is translated.

— cons are constraints imposed ) Q andQ, to guarantee that the first guess is a valid
one:Rq, is the domain of the heap, aRd andRq define a colored shape to which one
may assign values.

3.1.2 Constraints

We impose three constraints, included in three formuass (P, Q, Q,) = cons1(P,Q, Qy) A
cons2 (P, Q,Q,) Acons3(P,Q, Q)

1. the only admitted color on a monochromatic cycle=sigthis is indeed equivalent to the
acyclicity condition on the graph of constraints):

cons1(P,Q,Q,) 2 VQ; CQ,. loop(Q;) = (Q:CP & Q;CQ)
whereloop(Q,) is defined asetofloops(Q;) A YQ, ¢ Q,.—setofloops(Q,), where

setofloops (Q1) iSVX.Q; (x) = Ay.Q,(y) Ay — X

2. every edge that should be colored is colored with“>" or * =’

cons2(P,Q,Qy) £ VX. (Qo(X) A (Ay.Qo(Y) AX>Vy)) & (P(X) VQX))

3. Rq, is the domain of the heap:

cons3(P,Q,Qp) = Yx.(x—>0O) & Qu(x).

Definition 3.1.2.1. We say that a locatiom is anincreasing (resp. decreasingpde if there
arei’,i” € Loc ando4, 0, € Dat such thah’'(i) = (i’,0,),h’'(i’) = (1", 0,), ando; < o0,
(resp. o; > 03). We writeDom" (h’) (resp. Dom™ (h’)) to denote the set of increasing (resp.
decreasing) nodes &f, andE, denotes the environmefiP — Dom*(h’), Q +— Dom™ (h’),

Qo — Dom(h’)].

Definition 3.1.2.2. Given a model(s,h) and a environmeri, we define theedge labelled
graphG = (I, J,L) obtained from(s,h) andE as below. LeRp beE(P), Rqg beE(Q) andRq,
beE(Qo)

— Vertices :I = Dom(h)

— Edges:J = {(i,i") |i,i’ € Tandh(i) = i’}. Note that each vertex has at most one
outgoing edge.

— Labels:L((i,i")) =

* ‘<"if i e Rpandi ¢ Rg
« ‘="if i € Rp @andi € Rg
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x > f ié¢Rp andieRQ
« ‘#1f 1 ¢ Rp @andi ¢ Rg

We define the equivalence relatienon the vertices ofs as follows:i ~ i’ if there are
ig,14,...,1, With i = i, andi, = i’ such that(i;_;,1i;) € J andL((i;_4,1;)) is ‘= for
ief{t,...,n.

We defineG’ = (I’,3’) from G as follows:

— I’ =1/ ~. Let the equivalence class bhbe denoted byi].

— ([i1,[i']) e Yifand only if (i,i’) € J with L((i,i")) =< or (i’,i) € J with
LO@, 1)) =">"

Definition 3.1.2.3. A graph G is said to have a&ycleif there exist a sequence of vertices
j1,J2,-..Jn such that each ofj;, j2), (G2, 33), ... (Gno1, Ju)» (Gn, 1) iS an edge. In an edge
labelled graph a cycle is said to bereasing(decreasingif each edge in the cycle is labelled
‘<’or'="(">"or‘=). Itis said to be astrictly increasing(strictly decreasinyif in addition
there is at least one edge which is marked(‘ >"). A graph is said to bacyclicif there is no
cycle in the graph.

A graphG = (I, J) is said to have &opological orderif there exists a maprd : I — Dat
such that if(k, j) is an edge thenrd(k) < ord(j). An edge labelled grapty = (I, 3],L)
can beassigned values respecting edge lalilsere is a mard : I — Dat such that:

if L((1,1")) ='<’thenord(i) < ord(i’),

if L((1,1i’)) ='>"thenord(i) > ord(i’),

if L((i,1")) ='="thenord(i) = ord(i"),

if L((i,1")) ="# thenord(i) andord(i’) are incomparable.

Let us now state here the following well-known property gbdtogical orders, see for
instance [39].

Lemma 3.1.2.4.A directed graph is acyclic if and only if it has a topologicatler.

We can now state lemmas which will lead us to prove the sowswaed completeness of
the three constraints.

Lemma 3.1.2.5.

(@) (s,h),E Eso consl(P,Q, Q) if and only if G has no strictly increasing or strictly de-
creasing cycle (strictly monotonic).

(b) (s,h),E Eso cons2(P,Q,Qo), ifand only ifRp URqg = {i € Rg,|3i’ € Rg,, h(i) =1i'}.
() (s,h),E s cons3(P,Q, Qo) if and only if Rg, = Dom(h).

Proof.
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(a) (Forward direction) Consider a directed graph wheré eactex has at most outdegree
one. In addition let each vertex have indegree at least oa¢hésum of indegrees must
be equal to sum of outdegrees, each vertex must have indagdeeutdegree exactly
equal to one. Itis easy to see that such a graph is made oirdidjoected cycles.

ConsiderRg, € Rg,. If (s,h), [Q; = Ro,] Fso loop(Q;) thenRg, represents the
vertices of a cycle irG assetofloops(Q;) states that each vertex has indegree at least
one. We have already noted tltahas outdegree at most one. HeRge must represent

a set of disjoint cycles. Since no subseRgf satisfies this propertRo, is a single cycle.
Hence we have proved the forward direction of the lemma.

The formulacons1 (P, Q, Q,) says that: if all the edges of a cycle Gfare labelled by
‘<’ or ‘=" —in other words a cycle is an increasing cycle, then the sdge all labelled
by ‘=" — in other words it is not a strictly increasing cycle. Hentigere are no strictly
increasing cycles. Similarly, we can prove there are netbtriecreasing cycles.

(Other direction) LeG have no strictly monotonic cycle. LR, C Ro, represent vertices
of a cycle inG. Rq, C Rp means that each edge is labelled withor * =": the cycle is in-
creasing. Since it can not be strictly increasing, all thgeschre labelled with=". Hence
Ro, € Rq. This shows thai(s,h),E[Q; — Rg,]1 Fso loop(Q;) = ((Vx.Q:(x) =
P(x)) = (Vx.Q:(xX) = Q(x))). Doing similarly for strictly decreasing cycles, we ob-
tain an equivalence. Hence Gfhas no cycle thelis, h),E Fsy YQ; C Q,. loop(Q;) =
((VX.Q: (X)) > PX)) & (Vx.Q:(xX) = Q())).

(b) (Forward direction) From the given condition we knowttadocationi is in Rp or Rg if
and only ifi is in Rq, and there is another locatidn in Ro, such thah (i) = i’, which
is the same as sayiRg U Rq is equal to{i € Rq,|di’ € Rg,,h(i) =1’}

(Other direction) LeRp U Rq = {i € Rg,|di’ € Rq,,h(i) = i’}. Then (s[x
i1,h),E Fso Qo(xX) A (Fy.Qo(y) A x — y) if and only if i € Rg, and there is
i’ € Rg, such thath (i) = i’, which happens if and only i € Rp U Rq. Equivalently,
(s[x—1il,h),E Fso P(X) VQ(X). Hence,(s,h), E Eso VX.(Qo (X) A (Fy.Qo (Y) AX —
y)) © P(Xx) v QX).

(c) (Forward direction) From the given condition we knowttfa any locationi, (s[x +—
il,h),E Fso X — O & Qo (x). Hence,i € Rq, if and only if there isi’ such that
h(i) =1i’. In other wordsj € Rq, if and only if i € Dom(h).

(Other direction) LeRy, = Dom(h). Then (s[x +— il,h), [Qo — Rgol Fso Qo(X)
if and only if i € Rq,, which holds if and only ifi € Dom(h), which is equivalent to
(s[x = il,h) Eso x — O. Hence, ifE(Qy) = Dom(h) then(s[x +— i],h),E Fso
¥YX.Qo(X) © X — 0.

O

Lemma 3.1.2.6.1f (s,h),E Fso cons(P,Q,Q,) thenG has no edges labelled’'and G’ is
acyclic.

Proof. Let (i,i’) be an edge ifi. As (s,h),E Eso cons(P,Q, Q,) and hencgs,h),E s
cons2 (P, Q, Qo), from lemma 3.1.2.5 (b) we know thain R URq. Hence the possibility that
(i,1’) is labelled #' is ruled out.
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As (s,h),E Es, cons(P,Q,Q,) and hence(s,h),E [Eso consl(P,Q,Q,), we know
from lemma 3.1.2.5 (a) tha@ has no strictly monotonic cycle. By contradiction, assuhad t
[i1], [i.1,..., [is] isacycle inG’. Hence there are locatio§, i, i}, 15,15, ...,1s, i) = 1}
such thati; ~ i}, (i;_l,ij) is labelled <" in J or (ij,i;_i) is labelled &' in J for j in
{1,2...n}. Hence, there is an undirected cycleGn a path fromi, to i} and (i}, i,), fol-
lowed by a path froni, to i}, and (i), i3), ..., followed by a path from, to i, and (i, i,).
Since all vertices irG have outdegree at most one, we are going to show that thisaeatbel
cycle is actually a cycle iy itself. Letjo, j1,...,jan = jo be such an undirected cycle. Without
any loss of generality assungg;, jo) is a directed edge.

Letk be the smallest index such th@.+, jx) is not an edge butjy, jx_1) iS. Then both
(Jx, Jr+1) @and (G, ji_1) are edges which leads to a contradiction. Suklegists as otherwise
each of(jy, jk_1) would be an edge, which defines a directed cycle. This shosistth of
the (i, _,,ix) is an edge or each of th&i,,i; ,) is an edge. In either case, it is a strictly
monotonic cycle irG, which is a contradiction. As a consequence, the assumibtadithere is
a cycle inG’ was wrong. O

Lemma 3.1.2.7.Let G have no edges labelled with#." G’ has a topological order if and only
if G can be assigned values respecting edge labels.

Proof. Let G’ = (I’,1’) have a topological order. Hence, there exists a funaiiati : I’ —
Dat such that if([i], [i’]) € J’ thenord’ ([i]) < ord'([i’]). We define the maprd :

I —» Dat byi — ord ([i]). We now showord assigns values respecting edge labels for
G=(I,],L). Letj = (4,i") € J.

- If L(j) ='="theni ~ i’. Hencel[i] = [i’], which meanrd(i) = ord’([i])
ord ([i’]) =ord(i’).

— If L(j) =<’ thenord' ([i]) < ord’'([i’]). Asord(i) = ord’([i]) andord(i’)
ord’ ([i’]) we obtainord(i) < ord(i’).

— If L(j) =>"thenord ([i']) < ord'([i]). Asord(i) = ord'([i]) andord(i’) =
ord’ ([i’]) we obtainord(i) > ord(i’).

Let G = (I,],L) be a graph which can be assigned values respecting edgs laiet
ord : I — Dat. Considerord” : I’ — Dat which maps[i] to ord(i). First we need

to check that this map is well defined. Let~ i’, then there aréy, iy,...,i, with i = i,
andi, = i’ such that(iy_;,ix) € J andL((ix_4,1x)) iS ‘=", or ord(ix_;) = ord(iy), for
k € {1,...,n}. Henceord(iy,) = ord(i;) = ... = ord(i,). As expected, we showed if

i ~ i’ thenord(i) = ord(i’). Finally, we need to check thatd is a topological order. If
([11, [1']) € ¥, then(di,i’) € Jislabelled <’ or (i’,1) € Jis labelled &'. In both cases,
ord(i) <ord(i’). O

Lemma 3.1.2.8.AssumeRqg, = Dom(h), andRp URg = {i € R, | i’ € Rg,,h(i) = i'}.
G = (I,],L) can be assigned values respecting edge labels if and ohlgri ish” satisfying
Shape (h’) = h, Rp =Dom"*(h"), Rg = Dom™ (h") andRq, = Dom(h’).

Proof.
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(Forward direction) Givelt = (I, J,L) that can be assigned values respecting edge labels

using the maprd : I — Dat, we define a heap of simple memory statevhose domain is
the sefl as follows:
h: Loc — LocxDat
i » (h(i),ord(i))

Itis well defined ag = Dom(h) = Dom(h’). By definitionShape (h’) = h. Also,Rq, = Dom(h),
henceRq, = Dom(h’).

— If 1 € Dom* (h'), then there aré’,i” € Loc andm’,m” € Dat such thah’ (i) = (i’,m’),
h'(i") = (1”,m”) andm’ <m”. Asm’ = ord(i),m” = ord(i’) andh(i) =1i’, itis clear
thatord(i) < ord(i’). Hence, by the definition df, i € Rp.

— Leti e Rp. Leti’ be such thah(i) = i’. ASRp C Rg, = Dom(h), actuallyi’ € Dom(h).
As i € Rp, the edge(i,i’) € J is labelled by <’ or ‘=". Henceord(i) < ord(i’).
Hence,i € Dom" (h').

This proveRp = Dom* (h’). The proof forRg = Dom™ (h) is identical.
(Other direction) Givem’, let us defineord as follows:

ord : I — Dat
i - sndth(i))

If (i,1’) € Jis labelled £, theni € Rp andi € Rg. Hence,i € Dom* (h’) andi € Dom™ (h’).
As Shape (h’) = h, we can state that’' (i) = (i’,ord(i)) andh’(i’) = (i”,ord(i’)) for
somei” in Loc. From the definitions obom* andDom~ we know thatord(i) < ord(i’)
andord(i) > (i’). Henceord (i) = ord(i’) as desired. The cases when the labekior
‘>’ are very similar and omitted. The case of label beitigcannot happen aBat has a total

order. O

Lemma 3.1.2.9(Constraints soundnesdj (s,h),E Eso cons(P,Q, Q,) then there is a heap
h’ : Loc — Loc x Dat such thatShape(h’) = h, E(Q,) = Dom(h’), E(P) = Dom*(h’) and
E(Q) =Dom (h').

Proof. Let (s,h),E Eso cons(P,Q,Q,). By lemma 3.1.2.6G has no edges labelled’*and
G’ is acyclic. By lemma 3.1.2.43" has a topological ordering. By lemma 3.1.2G7¢can be
assigned values respecting edge labels. From lemma 3(b)2ad lemma 3.1.2.5 (c) we can
satisfy the hypothesis of lemma 3.1.2.8. Then, by apply@émgrha 3.1.2.8, there I8 such that
Shape (h’) =h, E(P) =Dom" (h’), E(Q) =Dom™ (h") andE(Q,) = Dom(h’). m|

We can now state that our encoding of the shape in the conistigi complete, in other
words that any model with data can be encoded in a model wiitata and an environment
satisfying our requirements.

Lemma 3.1.2.1Q(Constraints completenesgjor all simple memory states with data,h’):

(s, Shape (h")), En Eso cons(P, Q, Qo).
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Proof. Let G be the edge labelled graph obtained frégShape (h’), Ey ). Let us show that
G has no strictly increasing or decreasing cycle. By conttaxh, leti,, i4,...1i, withi, =1,
be a strictly increasing or a strictly decreasing cycle.hiitt loss of generality, we can assume
that it is a strictly increasing cycle, that is: for glle {1,...n}, Shape(h’) (i;_4) = i; and
for all i; € E, (P), and at least one location is not ity (Q). In other words, for allj,
i; € Dom"(h’) and there isk such thatj,_; ¢ Dom™ (h’). Letm,...,m, be the constants
such thath'(ij_;) = (ij,m;). Then, for allj, mj_; < mj, in other wordsm, < m; < m, <

. < m,. Hence all then; must be equal. This is a contradiction witl; < m,. Hence,G
has no strictly increasing or decreasing cycle. By lemma&3®1(a), (s, Shape (h’)), En Fso
cons1(P,Q, Q).

Also, Ey (P) UE, (Q) =Dom" (h’) uDom™ (h’) ={i |there ard’,i” € Loc ando, 0’ € Dat
such thath’' (i) = (i’,0), M ({") = (i”,0) ando < o’} U {i |there arei’,i” € Loc and
0,0 € Dat such that’(i) = (i’,0),h’(i’) = (i”,0’) ando > o’} ={i |there arei’ € Loc
ando € Dat such thah’(i) = (i’,0)} = {i | there isi’ € Loc such thaShape (h’) (i) =i’}
By lemma 3.1.2.5 (b)(s, Shape (h')), E, Eso cons2(P, Q, Qo).

Dom (Shape (h')) = Dom(h’) = Ey (Q,). By lemma 3.1.2.5 (c)(s, Shape (h')),En Fso
cons3(P,Q, Q).

As a consequence of the simultaneous satisfactiao$l (P, Q, Q,), cons2(P, Q, Qo)
andcons3(P, Q, Q,) we can conclude thdts, Shape (h’) ), Ey Fso cons(P, Q, Qo). O

3.1.3 Recursive Translation

The auxiliary recursive translatiorrg; s _,ys, is defined as follows: (1) it is homomorphic on
the cases of A g, —f, Ax.f, andx =y, and (2) for other connectives, parameter®, Q, come
into play:

>

Ty shore s (fA9,P,Q,Qo) Ty shore 50 (f,P,Q, Qo)

A trgpshore s (9, P, Q, Qo)

=g shore_yso (f, P, Q, Qo)

AX. gy srore o (, P, Q, Qo)

X=y

Qo(X) AX=—>Yy

Qo) AQo(Y) AP(X) AX >y
Qo) AQu(W) AQIX) AX >y
AQo1, Qo2-

trgpshore_yso (1, P, Q, Qo1)

A g shore_yso (f2, P, Q, Qo2)

A Qo=Qo1UQo2 A Qo1 NQpp =10

trg shore_yso (=Ff, P, Q, Qo)
trgpshore_yso (IX.F, P, Q, Qo)
trgpshoreyso (X =Y, P, Q, Qo)
Tgp short s X —=vy,P,Q,Q0
T gpshore_yso (X =< Y, P, Q, Qo)
T short ys0 X = Y,P,Q,Qo)
Trgp short 50 (fy of2, P, Q, Qo)

L | | | L | [ I

Lemma 3.1.3.1(Reduction Lemma)For all s, ', for all Rg, € Dom(h’),
(s, Shape (h')), Ey [Qo > Rq,] Fso trshort_uso (F, P, Q, Qo) if and only if (s,hl’RQO) Eo f.

Proof. In order to prove the lemma by induction, let us prove it fooarfulaf, assuming that it
holds for all subformulas df LetRg, € Dom(h’) and let(s,h’) be a simple memory state. We
will show that the lemma holds also férHence, by structural induction we will have proved
the claim forf.

85



(Case whetfiisf; A f5.)

iff
iff
iff
iff

(s,h),E kg trgp short 5o (fy Ay, P,Q, Qo)

(s,h), E Fso trgpshore_yso (f1, P, Q, Qo) A trgpshore o (f2, P, Q, Qo)

(s,h),E Fso trgpsmore_uso (f1, P, Q, Qo) @and (s, h), E kso trg shore_yso (f2, P, Q, Qo)
(s,hl’RQO) Eq fi and(s,hl’RQO) Fse f2 (using the induction hypothesis)

(S,h(RQO) Fsu f1 Ay

(Case wheiffiis =g or Ix.g.) The proof is very similar and omitted.
(Case whelfiisx < y.)

(s,h), E Fso trgpsmort_mso (X = Y, P, Q, Qo)
iff (s,h),EFg0 Qo(X) AX <>y
iff (s,h),E Fso Qo(x) and(s,h),EFso X <>y
iff s(x) € Rg, andh(s(x)) = s(y)
iff hgry (s(X)) =s(y)
iff Shape (hl’RQO) (s(x)) =s(y)

iff (S,thQO) FsL X =Yy

(Case whelfiisx <. y.)

iff
iff
iff
iff
iff

iff

(s,h),E Fso trgpsmore g0 (X = ¥, P, Q, Qo)

(s,h),EFs0 Qo(X) AQo(y) AP(X) AX >y

s(x) € E(P) NRgq,, s(y) € Rq,, andh(s(x)) =s(y)

s(x) € E(P), s(y) € Rq,, andhg, (s(xX)) =s(y)

s(x) € Dom" (hp ) andShape (hp ) (s(x)) =s(y)

there are, o’ € Dat andi” € Loc such thathQO (s(x)) = (s(y),0),
hl’RQO (s(y)) = (i”,0’) ando < o

(S’hl/RQo) |=SL X r_)S y

(Case wheffiis x <. y.) The proof is identical and omitted.
(Case wheffiisx = y.) As the heap is not involved, the lemma holds obviously.
(Case wheffiis f, of,.)

(s,h),E Fso Trgp short w50 (f1 05, P, Q, Qo)

iff there areRq,,,Rq,, € Loc such thaRg, =Rq,, URq,,, R, NRq,, =0,

(S, h) . E '=SO trSLshort_)MSO (fl, P, Q, QOi) and (S, h) . E |=SO trSL‘s;hort_)MSO (fla P, Q, Q01)

iff there arRq,,Rq,, € Loc such thaRg, = Rq,, URq,,, Ra,;, NRq,, =0,

(s, hl’RQo1 ), Est f1 and (s, hllRQoz ), Es fa

iff there aréh,, h,, such thah|RQO =h,; oh,, and settinQRq,, = Dom(h;) :

(s, hl'RQO1 ), Es f1 and (s, hl/RQog ), Fs fa

Iﬂ: (57 hl’RQo)’ '=SL fl Df?

O

Lemma 3.1.3.2.For all formulasf of SLs**, there is(s,h’) such that(s,h’) kg, fif and only
if there is (s, h) such that(s,h) [ translationgsmore_yso (f).
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Proof. We are going to prove the two directions of the if and only ihdiion. Letf be a
formula of SLsPert

(Forward direction.) Assume there(s,h’) such that(s,h’) Fs; f. Using lemma 3.1.2.10 we
obtain:

(s, Shape(h’)), [P ~ Dom' (h"),Q + Dom™ (h"), Qo — Dom(h’)] ks, cons(P, Q, Qo)
Using lemma 3.1.3.1 we know that:

(S, Shape (h/) ), [P N D0m+ (h/), Q — Dom™ (h’), QO = Dom(h’)]
'=SO trSLshort_)Mso (f, P’ Q’ QO)

Combining above two statements we can state:
(s, Shape (h")) Fso AP.3Q.3Qo.cons (P, Q, Qo) A trg;smert_uso (f, P, Q, Qo)

In other wordss itself andh = Shape (h") are such thas,h) kso translationg swrt_uso (f).
(Other direction.) Assume there ®,h) such that(s,h) ks, translationg swor_yso ().
Hence there are seks, Rg andRq, such that

(S, h), [P = RP,Q = RQ’QO i RQ()] '=SO COHS(P, Q, Qo) (31)
(S,h), [P = RP,Q = RQ’QO = RQO] '=50 trSLShort_)MSO(f, P, Q, Qo) (32)

Using equation 3.1 and lemma 3.1.2.9 we can state that thére:i Loc — Loc x Dat
with Shape (h") = h, Ro, = Dom(h"), Rp = Dom" (h’) andRq = Dom™ (h'). Note that, ishas
Dom(h’) = Dom(h).

Knowing equation 3.2, we can use lemma 3.1.3.1 Wwiths, h andE = [P — Rp,Q
Ro, Qo — Rg,], which allows us to conclude th&és, h’) Fs f. O

Thanks to lemma 3.1.3.2 and lemma 2.1.1.1, we have estadlible announced result:

Theorem 3.1. The satisfiability problem fogLs"** is decidable.

3.2 Long-Distance Comparisons

3.2.1 An Undecidability Result
We consider now a fragment 8%, with long-distance comparison.

Definition 3.2.1.1. We call SL;°" the long-distance fragment 6t., defined by the following
grammar:

foi==f|fAf| IXF|AVf| X > y|val(xX) <v]|val(xX) >v|x=y]|fof

We are going to show that, without any further restrictiamg-distance comparisons yield
undecidability, even for a simpler fragment defined below.

Definition 3.2.1.2. We call SL;**** the equality long-distance fragment $if;*"® defined by
the following grammar:

foi==f|fAf]| IXF|X > y]|val(x) =val(y) | x=y|fof.
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The proof of the undecidability &fL,*"?*® goes by reduction to the satisfiability problem of
first-order formulas over data words. Before giving theiitiba of the reduction, we first recall
this logic. Note that, so far, we assumed a total ordebann but this aspect is not essential for
this reduction as equality only is considered, and one mak there ofDat as any arbitrary
infinite set.

Definition 3.2.1.3. We assume a finite sat A finite data wordis a sequenced = wd; . ..wd,,
wherewd; = (a;,0;) € A x Dat; we write| wd | to denote the length € N of wd.
First-order logic over data words defined by:

foo==f[fAf]|IXFla(X) [ X=Y+1]|X ~gaa Y

wherea € A. Variables are interpreted as positions in the word thraughluatiorwva : Var —
{1,...,|wd |}, +1 is the successor function oVl and~g4, relates positions holding the same
datum. More formally:

wd,va Fpo Ix.fifthereisn e {1,...,|wd |} such thatid, va[x — n] g f
wd,va Fro a(X) if ayan = @

wd,va Frpo x=y+1if va(x) =va(y) +1

wd,va Fro X ~data Y If Ovaco = Ovaqy)

Lemma 3.2.1.4(see [15], Prop. 27)The satisfiability problem for a closed sentence of first-
order logic over data words is undecidable.

In order to prove the undecidability 8£..°"?° with the help of lemma 3.2.1.4, we are going
to define a translation from First-order logic over data vea@SL,*"?** such that a formul&
admits a data word model if and only if its translation adrai@mple memory state model. A
data word of length is encoded as a list segment of length placing the sequence of letters
of Ain the even positions, and the data sequence in odd posifibiesix = y+1 can be encoded
byy <2 x, andx ~4aa Y can be encoded byal (x) = val(y).

Theorem 3.2. The satisfiability problem fosL;*"?*% is undecidable.

.....

(A xDat)* be a data word ovefA,Dat). We are going to use the following distinct variables:

Xla ey Xna 235 245 yia .o ’y2|wd|'
We define the set of its heap representation as thHes@td) of models(s,h) such that
Dom(h) = s({X4,...,Xn, Z3, Z4, Y1, - - -, Youa}) @Nd:

— (s,h) Eg val(y;) = val(Xuay) A ... Aval(Yopai-1) = val Xyauap ) A Ajz Val(Xi) #
val (X )

fst(h(s(x1))) =s(Xz),...,fst(h(s(Xp-1))) = s(Xy)

fst(h(s(xy))) =s(z3)
fst(h(s(z3))) =s(y1)
Odd positions of/5: fst(h(s(y;))) =s(y,),..., fst(h(s(Youa-1)))) = s(Youa)

Even positions of5: h(s(y3)) = (s(y3),01),...,h(s(Youqa)) = (s(Z4), Opa)
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Now we define a formulavms that recognizes exactly the memory states that encode the
(A,Dat) words. If we abbreviatsingles = V¥z,2’.z < 2z’ => =z’ < O. andeven(x) =
(singles A x < 0O) o(singles A X < z,):

A

wms £ ((Is(zs,z4) A ((singles A z; < 0O) o(singles A0 < z4)))
D(IS(X]_,ZS) AN /\i;tk VaI(Xi) * VaI(Xk) AN /\i<n Xi > Xi+1 AN Xp & 23))
A (Yx.even(x) = \/; val(x) =val(x;))

The proof is organized as the successive proof of three grpas leading to the end of
the proof.

(Proposition 1)(s,h) Es. wms if and only if (s,h) € He (wd) for some data wordd.
Assume(s, h) s wms. Then (s, h) is a list segment from, to z; made of two parts:

« A list segment fromx, to zs, of lengthn, with, if we call zz x4, for all i < n:
h(s(X;)) = (s(Xij+1),05), for someo;. The value®; are all distinct.

« A list segment frone; to z, such that:

- There is in this list segmentzpartition of the allocated locations such that:
two consecutive locations do not belong to the same partzaadd the pre-
decessor ot, do not belong to the same partition.

- In the even positions, any datum belongs to thdesgt . ., 0,}.

Then the length of the list segmédatzs, z,) is even, and one can read on it& Dat)
word wd, for which (s,h) € He(wd) trivially holds. The converse implication is proved
with the same arguments. This ends the proof of (Proposltjon

We now associate to every formuleof first-order logic over data words a formula of
SL,*"**? that we calltr,,, 1once () @S follows:

ata-wd—>SLy

longeq ( _|f)

FOdata-wd—SLy

—|tI' longeq (f)

FOdata-wa—SLy

Fodata—wd_’SLxlzongeq (fl A f2) trFOdata—wd_’SLxllongeq (fi) /\ trFOdata—wd_’SL\llongeq (f2)
FOdakta_wd_)SL\llongeq (HXf) HXOdd (X) /\ trFOdata_wd_)SL\llongeq (f)
longeq (@ (X)) val(x) = val(x,)

FOdata-wd—SLy

longeq (X = y + 1)

FOdata—wd—SLy

trFOdata—wd_)SL\llongeq (X ~data y)

tr
tr
tr
tr
tr dzy—>zAz—>X

X,y X > X Ay =Yy Aval(x) =val(y’)

1 L (L [ [ L I

whereodd (x) is (singles A x < 0O) o(singles A z; < 0O).
Let s,, denote the valuation that map$o the (2 x va(x) — 1)-th successor ofs.

(Proposition 2)For all data wordsid and valuations for first-order logic over data wovds for
all (s,h) suchthat(s,h) € He(wd) ands = s,,: (s,h) Es. 12 S (f) is equivalent
towd, va Fgo f.

The proof of (Proposition 2) is by straightforward inductio
(Proposition 3)A formula f is satisfiable in first-order logic over data words if and oifily
I5(z3,24) AWMS A try, e (f) @admits a heap model in separation logic.

(Proposition 3) is a consequence of (Proposition 1) ando@dition 2).

Let us finally stress that the formula in (Proposition 3) bel®toSL,"%*%. This proves that
the reduction is correct and ends the proof. O
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3.2.2 Decidability of Guarded Long-Distance Comparisons

We now consider the fragment of formulas where each quaatidic over values is restricted
to values stored in a finite set of cells. We have chosen thaieto be those pointed by the
program variables.

Definition 3.2.2.1. We callSL2"*"*? the guarded long-distance fragmentaf, defined by the
following grammar:

foi= Sf|fAT]IxF|Ivival(w) =v ATf
X > y|Xosy[x—y|val(x) <v]|val(x) >v|x=y]|fof.

Note that guarded long-distance comparisons are quite:wbaly just store the value of
a program variable before the usecofHence we need to add short-distance comparisons as
basic predicates if we still want to use them.

Theorem 3.3. The satisfiability problem fogL2"*"**¢ is decidable.

Let us first sketch the proof. We adapt the proof of theoren82by extending the notions
of colored shapes and graphs of constraints. Every forroute translated will have all its free
variables in a finite subs#@t= {w;,, ..., w,} of Progvar. To every variablev € W, we associate
two second-order variabk,, Q... A colored shape will contain the same sets extended from the
short-distance comparisons with sRfsRQ which contain the allocated locations containing a
datum respectively higher and lower than the one stored i colored shape is then a tuple:

Cs = ((S,h) s RP’RQ’ R\?Vl’R$1""’R\|/D‘/n’R\%n)

whereR?, RQ are finite sets of locations; it isell definedf R” UR®? = Dom(h) N h™ (Dom (h))
andR” URR = Dom(h) for every program variable such thas (w) € Dom(h). Let (s,h) be a
fixed shape. We define the relatieronDom(h) as the smallest equivalence relation such that:

— if k e R NRY ands(w) € Dom(h), thens(w) ~ k;

— if h(k) = k’, andk € R® N R?, thenk ~ k’.

The graph of constraints associated as the pair(J,K) where the vertex sétis the quotient
of Dom(h) by ~, and there is an edge from the equivalence cl&s$ to [k,] if at least one of
the following conditions holds:

either there is (w) € [k;] andk € [k,] such thak € R —R;

or there iss(w) € [k,] andk € [k;] such thak € R} — RS;
or there isk € [k;],k’ € [k,] such thah(k) =k’ andk € R° —R";

or there isk € [k,]1,k’ € [k,] such thah(k’) = k andk’ € RP — RC.

It is possible to check that the graph of constraints anddkeligity condition on it are1S0
definable. We will then adapt the reduction of section 3.1:gwess th&k},s andRQs at start
and check we made a valid guess, and we extend the recuBgaiont rg; sor_yso (f) to @
new recursive translatiotr (f) with the following updates:

sLgwarded_,ygq
trSLguarded_)Mso (3V.V<’:1| (W) =VA f)

Lso (val(x) < val(w))
trSLguarded_)Mso (Val (X) Z Val (W) )

trSL‘g,uarded_)MSO (flv < vallw) 1)
Qo xX) A Qo (w) A QW x) A =Py, x)
Qo(X) AQo(w) AP, (X) A=Qu(X)

trSLguarded

> 1>l
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Proof of the Theorem

To prove theorem 3.3, we will associate, to every fornfuddthe guarded long-distance frag-
ment, a formulecranslationg guraes g, (F), with:

translationg e e, (F) =
EIP, Q, PW1? le, e ey PWn’ QWHEIQ()CO”S(P, Q, P’, Q’, Qo) /\ trSLfi“ardEd—»MSO (f, Qo)

wherecons (P, Q, P/, Q’, Q,) ensures that we guessed a coloring that defines a colored shap
for which it is possible to assign values, atitl suaraea g, (f, Qo) is the translation of the for-
mula on memory states to the colored shape.

(Constraints)Let us first introduce some abbreviations we will use in trgusé IfR; a unary
predicate an®, is a binary relation, we abbreviakdona; (R,,R;) andMona, (Ry,R,) for the
predicates defined by a kind of composition:

— givenR, binary andr; unary,Mona, (R,,R;) (x) holds if and only ifdy.xR,y A Ry (y),

— similarly, givenR, unary anR, binary,Mona, (Ry,R,) (x) holds if and only ifdy.yR,x A
Ri(y).
We define the formula
xtbcy = Qo (X) AQo(Y)A
( Viweproguar (X = WA Py (¥) A Qu(y)
V. (X yAPGO AQ(X)))

that defines the binary relation whose reflexive, symmetaasitive closure is the equivalence
~ we defined in section 3.2. We then define the formula:

X~y 2 VPy.(Po(x) A Monay (P, thc) C Py A Monay (the, Py) € Py) => Py (y)

which characterizes. Indeed, IeR be a relation over integers agde an integer. Assume that
for somek € N we have that for alt C N, if Mona; (R, I) € I andI € Mona,(I,R) andj € I,
thenk € I. Thenk belongs to the intersection of all the s@tsuch thatMona; (R,I) C I,
I C Mona,(I,R) andj € I. Any of these sets contains the equivalence class foir the
reflexive, symmetric and transitive closureRofAlso the equivalence class ¢fitself is such
a set. So the intersection of all these sets is the equivalelass ofj. Sok belongs to the
equivalence class gffor the reflexive, symmetric and transitive closurerof

Then we define the edge relation on the graph of constraints:

A

xedgey = X,y X~X AYy~Y A
X >y APX) A=Q(X))
V(Y o X AQY) A=P(Y))
N \/WeProgvar (X’ =WA I:)w (y/) A _'Qw (y’))
V' Vaeprogvar (Y = WA Qu(X') A =Py (X))

and its transitive closureedge®y = dz. xedgez A VP,.(P,(z) A Mona,(P,,edge) C

Po) => PO (y) .
We finally define theons (P, Q, P’, Q’, Q,) formula as a conjunction :

cons1l(P,Q,P’,Q’,Qy) Acons2(P,Q,P’,Q’",Qy) Acons3(Q,)
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— the graph of constraints is acyclions1(P,Q,P’,Q’,Q,) £ -dx.x edge’ x.

— each edge that should be colored is colored wath“>’ or ‘="

cons2(P,Q,Qo, P’,Q") =

VX.( (Qo(x) & (P(X) VQ(X)) & (Ay.x =y A -Qo(y)))
A(Qo(X) & (Py, (X) V Qu, (X)) & (=Qo(w;) APy, =Qy, =0))
A...
A(Qo(X) & (Py, (X) VQu, (X)) & (=Qo(Wp) APy, =Qu, =0)))

(wheres denotes the exclusive or).
— Rq, is the domain of the heappns3(P,Q, Qo) = VX.(X = O) & Qo (X).

With these definitions, we know by construction ti§ath), E sy cons(P, Q, Qo, P, Q")
if and only if the colored shapes(s,h,E) = (s,h,E(P),E(Q),E(Py,),...,E(Qy,)) is
well defined and its associated graph of constraints is &cycl

(Soundness and completendss) a given memory statés, h), and a given program variable

w, we define

p(sh) _ i e Dom(h) : snd(h()) > snd(h(s(w)))}if s(w) € Dom(h)
W | 0otherwise

Moreover, we define ™ = Dom*(h), andQ"™, Q™ correspondingly. This allows to
define the colored shape associated to a memory state

Cs(s,h) 2 (s,Shape(h),P®™™ Q&M pim . QiM).
Finally, to a memory statés, h), we associate the environment
ESD 2 [P Dom (h),Q ~ Dom™ (h), Py, + Pv(vj’h), .o, Qu, P Qv(vi’h), Qo — Dom(h)].
Let us prove two propositions that ensure soundness andletenpss otons.

— (Constraints soundness) {s,h),E Fso cons(P,Q,P’,Q’, Qo) then there is &’
Loc — Loc X Dat such thatCs(s,h,E) = Cs(s,h’) andE = E” on relevant vari-
ables.

Assume(s,h),E Eso cons(P,Q,P’,Q’,Q,). Then the graph of constraints associated
is acyclic. Thus it admits a topological orderingd : (Dom(h)/ ~) + Dat. It can

be lifted toord : Dom(h) — Dat, and one defines(i) = (h(i),ord(i)). Itis then
straightforward to check thas (s, h,E) = Cs(s,h).

— (Constraints completeness) For all simple memory stath), its shape and its environ-
ment satisfycons, that is (s, Shape (h) ), E®? kg, cons(P, Q,P’, Q’, Qo).

If i ~ i’ in the graph of constraintSs (s, Shape (h), E), then there is a path from

to i’ labeled with ', hencesnd (h(i)) = snd(h(i’)). This allows to definerd :
(Dom(h)/ ~) +— Dat, [i] — snd(h(i)). This obviously defines a topological order,
thusCs (s, Shape (h), E) is acyclic. Other conditions are obviously satisfied.
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ReductiorLet us now state the full translatiarr; guraea g, (f, Qo) of @ formulaf of sepa-
ration logic to a formula ofiSO. The invariant we achieve through this translation is :

Invariant: For alls, h, for all R, € Dom(h),
(S, Shape (h) . Es,h’ [QO = RQo] |=SO trSLguarded_)MSO (f, Qo) iff (S, thQo) |=SL f.

trSLguarded_)MSO (fA g, Qo)
trSLguarded_)MSO (=f, Qo)
trSL‘gluarded_mso (3Ix.1, Qo)
trnguarded_)Mso (X — Y, QO)
trSLguarded_)MSO (x —<Y, QO)
trSLguarded_)MSO (x =Y, QO)
trSL‘g,uarded_)MSO (x=Y,Qo)
so Avval(w) = v Af, Qo)
g quardea_yso (Val (X) < val (W), Qo)
trSLguarded_)MSO (val(x) = val(w), Qo)
trSLguarded_)MSO (fy ofay, Qo)

trSLgUarded_,MSO (f, Qo) A trSLguarded_)Mso (g,Q0)

ﬂtrSLguarded NSO (f, Qo)

Hx.trSLguarded_)MSO (f, QO)

Qo(X) AX >y

Qo(X) AQo(Y) AP(X) AX >y

Qo(X) AQo(Y) AQ(X) AX =y

X=y

I guarded e, (flv « val(w)1, Qo)

Qo (X) A Qo (W) A Qu(X) A =Py (X)

Qo (X) A Qo(W) APy (X) A=Qy(X)

3Q01.3Qo2. Qo = Qo, U Qo2 A Qo1 N Qo =0
A TIg guarded g (f1,P,Q,P’, Q", Qo1)
A TIg guarded g, (f2, P, Q, P, Q", Qo2)

tr nguarded

L | | | 1 | 1 | 1 | |

3.3 Magic Wand and Restricted Magic Wand

Even without data, the logic with the operaterwas proved to be undecidable in the previous
chapter. A decidable separation logic with a restrictedimagnd was presented. Let us write
again the definition of this binary operater, (for n an integer). Unlike the plain operater,
the quantification on disjoint heaps-ef, considers only heaps for which the cardinality of the
domain is bounded by. More formally, we define thats,h) Es; f;—,f, if and only if for all
h’ such that’ L h and| Dom(h’) |< n, if (s,h’) Eg f; then(s,hoh’) kg f,. It can be seen as
an abbreviation off; A 73Xy, ..., Xne1. Az X1 # X5 A Ay Jy.x; — y) = f,. Inthe sequel, we
will prove that, in the context of heaps with data, is suficient to obtain undecidability.

LetR denote an arbitrary binary relation dat. For a given value,, we write{o, o RR o4}
to denote the set of valuese Dat such that: there is, such that botto R o, ando, R o;.
Let us call~; the equivalence relation defined @s ~z o} iff {o,0 RR 0;} = {o,0 RR 0/}.
We consider the atomic formulal (x) R val(y) stating that values stored xnandy compare
throughR. Formally, (s,h) ks val(x) R val(y) iff there areo;,0, € Dat andi,i’ € Loc
such thah(s(x)) = (i,04), h(s(y)) = (i’,0,), ando; R 0,. We now introduce the relation
X —>gpyforx —py2x<yAval(x) Rval(y)

Definition 3.3.0.2. The logicSL® ™ is defined by the grammar:

foi==f|fAf|IXFIX D>y |Xory|Xx=y|fof|fo,f

We are going to prove that satisfiability and validity prahkeare undecidable f@&L? ™,
for anyR € {<, >, =, <,>} - recall that in this chapter the studied orders are in ang tatsl
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orders. We will rely on the previous section, especiallyoteen 3.2, by simulating a long-
distance equality. We first need the following fact:

Lemma 3.3.0.3.LetR € {<, >, =, <, >}. Then~ has an infinite number of equivalence classes.

Proof. If R € {<,>}. Let us first notice thadat is infinite. Let (o;) ;v be an infinite sequence
such thato;Ro;,; for all i or such thab;.;Ro; for all i. If (0;);ev IS such thab;Ro;,, for
all i, then for alli € N and for allj > 0, o; € {0’,0'RR0;.2xj}, bUt0; ¢ {0’,0'RRo;}. SO
{{o’,0'RRo;},i € N} is an infinite set of distinct classes. Similarly, (®;);av is such that
0;+1Ro; for all i then{{o’, 0;RR0’}, i € N} is an infinite set of distinct classes.

If R € {<,>,=}. Theno = o’ implies clearly{o;,0,;RR0} = {o;,0,RR0’}. Let us prove
the other implication. Assumg@;, o;RRo} = {o;,0,RR0’}. We know thaRR is reflexive. So
o € {o4,0:RR0}, and sinc€go;, 0;RRo} C {0;,0;RR0’} we haveoRRo’. SinceR is transitive

oRRo’ is true f oRo’. Similarly o’Ro. Soo = o’. Hence~y is equality, and has infinitely many
equivalence classes sinpet is infinite. |

Let ~ be an equivalence relation ®at with infinitely many equivalence classes.

Definition 3.3.0.4. Let us define thequivalence long-distance fragmdaytthe grammar:
foi==f|fAf|IXF|X—>y]|val(x) ~val(y) | x=y|fof]|fo,f
Next lemma, a slight variation of theorem 3.2, also hold$ia jeneralised framework:

Lemma 3.3.0.5.The satisfiability problem for the equivalence long-disefragment is unde-
cidable.

Proof. By the same encoding as the one of theorem 3.2, one may redatsfability problem
of a first-order sentence over data words, where data is tikenthe infinite quotient set
Dat/ ~g, to the satisfiability problem for the equivalence longtalige fragment. m|

Lemma 3.3.0.6.There is a formuldg (x,x’) € SL*™ such that for all simple memory states
(s,h) with {s(x),s(x’)} € Dom(h):

(s,h) Eq fr(x,x") iff (s,h) Eg. val(x) ~g val(x’)

Let us first sketch the prooft=yg will abbreviate-(f-,—-g). Then(s,h) Es f=g iff
there ish’ such that(s,h’) Fs f, (s,hoh’) Es g and| Dom(h’) |< 1. The operators«,
and-2, will be used to simulate restricted quantifications dvet, respectively universal and
existential. Consider the formufga

3X1.3X2.(_|3X3.X1 — X3V Xy & X3)
A(Xy = X5) =55 ((val(xy) RRval(x)) & (val(xy) RRval(x)))

whereval(x;) RR val(x) abbreviates(x, < Xx) 1 [X; =g X2 A X <= X]. The formulafy
expresses that for abl,, there iso, such thab; R o, R snd(h(s(x))) if and only if there iso,
such thab; R 0, R snd(h(s(x’))), thatisval(x) ~; val(x’). By lemma 3.3.0.3, proving that
the semantics of the formulgis actually the same as thatwfl (x) ~¢ val(x’) implies that the
satisfiability problem oL ™" is an instance of the satisfiability problem of the equivaéen
long distance fragment. By lemma 3.3.0.5, the satisfighplibblem ofSL?™ is undecidable.
We now begin the full proof of lemma 3.3.0.6, where the actue a little different fromf;,.
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Proof.
(Preliminary definitions)We assumgs(x),s(x’)} € Dom(h); let o = snd(h(s(x))) and
o’ =snd(h(s(x'))).
We are going to first define a formula(x, x’) which expresses thaal (x)Rval (x’), where
oRo’ iff {04, 0;RR0} C {04, 0;RR0’}. Assume we have such a formula, then it is be easy to obtain
f(x,x") =, (x,x") Afy(X',x), meaningo;, 0;RRo} = {04, 0;RR0’}. Let us define this formula:

fo (X, X') £ 3AX;. AXs. [2TIX3. X1 < X3 V Xg = X3] A [(Xg = Xg)
(((Xg == X)) (Xy pr X9 A Xy o X)) = ((Xg = X') 4 (X1 =g Xg A Xy g X)) ]

We define alsd; = ((Xy = X) 2 (X; “or Xo A X g X)) andf, = ((Xy — X') 2 (X; —p
Xo A Xg g X))

The formulaf, (x, x") is satisfied by(s, h) iff there arei, andi, not belonging t®om (h)
such that, withs’ = s[x; = 1i;; Xy — 1i,], for all ¥ with domain size at most such that
(s, 1) Es. X1 < X! (s, 0h) Eg f; = fo.

The formulaf, (x, x’) is satisfied by(s, h) iff there arei; andi, not belonging t®om (h)
such that, withs’ = s[x; = 1i;; Xy — 1i,], for all ¥ with domain size at most such that
h' (s’ (X1)) = (s’ (Xy),04) for someo;: (s’,h’ch) g f; = f,.

The formulaf, (x, x’) is satisfied by(s, h) iff there arei; andi, not belonging t®om (h)
such that, for allb; € Dat, if s’ = s[x; — i;;X, — i,] andh’ = [i; — (i;,04)] then:
(s’,h'ch) g f; = 1.

(Semantics of; andf,) Assume(s’,h’) Es. X; < X, andh’ is a good candidate for,, that
ish’ (s’ (x;)) = (s’ (Xy),04) for someo,;, andDom(h’) = {s(x,)}. Let us studyf;, and prove
that (s’,h’ oh) kg f, iff there iso, such thab;Ro, ando,Ro.

Assume(s’,h’oh) satisfiesf;. Then there i} with domain size at most such that
(s’,hY) EsL Xo < x and (s’,hoh’oh]) Fs. X; <r Xa A Xp <o X. Since the domain
size ofh} is at mostil and (s’,h}) Fs. X2 <= X, we know thatbom(h}) = {s’(x,)} and
fst(h! (s’ (x2))) = s’(x). So, since(s’,hoh’oh!) kg X; g Xo A Xo —x X, if we call
0, = snd(h(i,)), we obtaino;Ro, ando,Ro. As a consequence, thereds such thai;Ro,
ando,Ro.

Assume there is, such thab;Ro, ando,Ro. Sincei, is unallocated irh, it is possible to
findh! such thabom (h}) = {s’(xy)} andh? Lh. Then let} be such a heap, witl{’ (s’ (xy)) =
(s’ (x),07). Henceh} has domain size, and is a good candidate for the extension of the heap
in a formula with outermost operatet; . It actually satisfies the left-hand side of the operator:
(s’,hY) Es. X9 — Xx. Also, sincex is allocated inh with snd(h(s’(x))) = o ando,Ro:
(s’,hoh’oh!) Es X2 <ox X. Finally, sincex, is allocated irh/, with snd (h! (s’ (x,))) = 0,
ando;Ro,: (s’,hoh’oh!) Fsp X3 <o Xo. SO (s’,hoh’ ohy) satisfied;.

By the same reasoning, one can prove ttsdth’' oh) satisfiesf, iff there iso, such that
o;Ro, ando,Ro’. As a consequencés’,h’ oh) satisfied; = f, iff: if o,RRo theno,RRo’.

(Conclusion)We have shown in (Preliminary definitions) that the formigk, x’) is satisfied
by (s,h) iff there arei; andi, not belonging tdom(h) such that, for alb,; € Dat, if s’ =
S[Xy = iq; Xy > i,] andh’ = [i; = (i;,07)] then:(s’,h'ch) kg f; = 1.

So, (s,h) Es fo (x,x") iff there arei; andi, not belonging tdom (h) such that, for all
0, €Dat, if s’ =s[x; — i;; X, — i,] andh’ = [i; — (i, 04,)] then: ifo;RRo theno;RRo’.
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In other words,(s,h) Eq fo (X, x") iff there arei; ¢ Dom(h) andi, ¢ Dom(h) such that
for all o4, if 0;RRo theno,;RR0’.

Since it is always possible to find unallocatedandi, asLoc is infinite andDom(h) is
finite, and since ; andi, are not used in “for alb,, if o;RRo theno;RRo’”, we can forget about
them. (s, h) Eq fo(x,x") iff for all o4, If 0;RR0 theno,;RRo’.

That is to say(s,h) Fg fo(x,x’) iff {01, 0;RR0} C {04, 0,RR0’}. This is exactly:(s,h) Fs.
fo (x,x") iff val(x) Rval(x)’. Thenfy = f, (x,x") Afy (X', X) has the semantics we expected

The following theorem is a direct consequence of lemma 3£3.0

Theorem 3.4.For anyR € {<, >, <, >, =}, the validity and satisfiability problems f6L* ™ are
undecidable.

Conclusion

Summary of this Chapter

We have given a wide picture of the decidability status ofgasfiability problem for separa-
tion logic dealing with data.

With the ability to describe lists and quantify over locaso allowing long-distance com-
parisons brings undecidability, and so does allowing therajor-=, even strongly restricted.
Yet, there is a positive result: dropping these two featunekes the satisfiability problem
decidable, still being able to specify local reasoning axuless properties about ordered re-
cursive structures. The decidability also holds when adfisét of references can be compared
to all the rest of the memory. The results are summarized imdig.4.

Related Work

First-order separation logic over heap models with at leagtselectors is known to be unde-
cidable even with no separating connectives, from the resulalcagno, Yang and O’Hearn
in [36] by containment of finite satisfiability for classigatedicate logic with one binary re-
lation — see Trakhtenbrot [88]. On the other hand we havequtdivst-order separation logic
over heaps with one selector to be decidable when the magid i8adropped in the previous
chapter. We have studied in this chapter separation logioashels more complicated than one
selector but simpler than two or more selectors, that areetsaalith one selector plus data.
To our knowledge, nothing was known about first-order sepmardogic with data before the
initial publication of these results, during the reseatwdt ted to this thesis.

Soon after was published the logic Strand by MadhusudatgtBand Qiu [74], which is
dealing with a very similar model tBL,; it describes recursive structures labelled with data
thanks to monadic second-order variables representirgislagdus one second-order variable
representing the memory shape by edges. On top of this mbtle onemory, Strand allows
monadic second-order quantification. Its satisfiabilitgdeésidable when provided with a class
of models, for instance the class of the models represeatiedgree. The composite structures
logic of Bouajjani et al. [18] is also related, as it dealshamibbmposite data structures, with
easily computable postconditions and decidable satisfiator a fragment; itis a more general
framework as it can handle data structures with severat®ete The Celia tool of Bouajjani et
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SLi°™ andSLl"*? _ theorem 3.2
SL®™ for anyR € {<, >, <, >, =} —theorem 3.4
Decidable | SL3"r* —theorem 3.1

spovarded _ theorem 3.3

Undecidable

Figure 3.4: Decidability and undecidability results

al. [19, 20] deals more precisely with lists with data, anthots decidability through abstract
domains.

Our fragmentsL?*®™ js actually able to store the data in locations pointed byymm
variables so as to compare them with other data after a deparaakes them unavailable.
Hence, one can relate this work to other logics handling, @esjaecially logics which can store
an element from the data values so as to be able to compareiheéos later — this feature
can be called th&eeze quantifierAs examples of such logics, one should menti®h with
freeze, studied by Demri and L&zin [45]. About logics dealing with data, this work also
relates with logics on data words, as we used the resultseaftrk of Bojanczyk, Muscholl,
Schwentick, Segoufin and David in [15] so as to prove theoredn Bhese logics give clear
boundaries on the expressiveness of logics containirgydist data if their creator wants them
to remain decidable.

Perspectives

Some ways to restrict the full language are still unexplpfedinstance bounding the amount
of quantified variables. With the same hope to obtain deditiabor satisfiability problems,
one may look at extensions of our decidable fragment.

In particular, we expect our decidability results to extémanore complex data structures
that would have a decidabkso theory (trees, doubly-linked lists, lists of lists, and mgen-
erally tree-width bounded structures), and to more comglxt-distance comparisons (such
asn-th successor or brothers). The restrictions we set mayh&iance be dficient to handle
search-trees. About more complex data structures, thé sihoald be very similar, as long as a
graph of constraints similar to the one we defined can alsobeded in sets. These sets would
again be the value iSO variables. About more complex short-distance comparisomse
categories of addresses would have to be defined and encodetsi Instead of only catego-
rizing compared to the immediate successor Wth>, =} thanks to two sets as we described,
we could categorize compared to the successor and its socesh{<, >, =} x{<, >, =} thanks
to four sets, or even further with more sets.

We did not explore this possibility. If these ideas actugitgvide the expected results, it
would show that a graph of constraints is a good general gdficelogics dealing with sorted
data structures.

Finally, our results are general for any totally orderednitd set, and questions remain
open about partially ordered sets.
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Chapter 4

Reasoning about Sequences of Heaps

Introduction

Contribution of this Chapter

Our aim is to combine the features of temporal logics withdbeciseness of separation logic
for describing the behavior of programs manipulating pesit We introduce a linear-time tem-
poral logic to specify sequences of memory shapes with lyidgrassertion language based
on the quantifier free separation lo@k, inspired from the definition of Reynolds in [84]. Its
models, sequences of memory shapes, can be seen as ant@stfithe evolution of the
memory of a program during its execution. It is a many-din@ma logic, as it has a spatial
dimension to describe memory shapes as well as a temporahdion.

The formal definition of our logic is in figure 4.1. The expléioa of this definition will be
givenin section 4.1. We call the obtained formalism, witlthoseparation and temporal aspects,
LTL™". Our logic addresses a very general notion of models, imofuthe aspects of pointer
arithmetic and recursive structures with records. We migtish the satisfiability problems
from the model-checking problems, as well as distinct sags®s of interesting programs, as
for instance the programs without destructive update.

The most surprising result is therace-completeness of the satisfiability problems where
the heap can vary in time, and we either drop the pointerragtit or the separation connec-
tives. This result is especially tight, as both propos#aidiTL and static separation logic are
alreadyrspace-complete, as proved by Sistla and Clarke in [86] for propasal LTL and by
Calcagno, Yang and O’Hearn in [36] for static separationdoghese results are obtained by
reduction to the non-emptiness problem for Biichi automataroalphabet made of symbolic
memory shapes obtained by an abstraction that we show smehdoanplete, with a similar
technique to that of Lozes in [71], used also by Calcagnogdfearand Hague in [33].

Surprisingly, this abstraction method does not scale toathele logic, due to a subtle
interplay between separation connectives and pointdmaetic. Moreover, we will show un-
decidability results for several problems, for instancesfiability problems when the heap
cannot vary. A summary of the numerous results can be foutiteiconclusion, and the path
we will follow to prove half of the results is presented in figut.7.
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Expressions expr ::
Atomic formulas atom ::

X | Oexpr
expr = expr’ | expr + i—'expr’

State formulas f::= atom| emp]| fog| fog| fAQ]| —f
Temporal formulas t::= f| Ot| tuntilu| tAu| -t
Semantics

mod, n Fypmen Ot iff mod,n+ 1 i t.

mod, n Fppmen  tuntilu iff there iSﬂ1 >n
s.t.mod, n; Fiprer U andmod, n” Fpqmen t for alln’ € [n,n, [

mod, n Fypmen tAU iff mod,n Fyrirer t andmod, n Fpppmen U.
mOd’ n '=LTLmem -t Iﬂ: nOtmOd, n |=LTLmem t.
mod, n Fyppmen f iff s!,h, Es fIO*X « (X, k)] wheremod = (s,, h,) 50 and

s; is defined bys, ((X,k)) = sp.c (X).

Figure 4.1: The syntax and semanticL.GL""

Structure of the Chapter

We define our logid. TL™" and several of its fragments as well as decision problemedn s
tion 4.1. Section 4.2 introduces the symbolic memory shgpssful in section 4.3) and
presents thespace-completeness of the satisfiability and model-checkingolemms for SL
with pointer arithmetic. Section 4.3 is dedicated to theidkguility proof of satisfiability for
various fragments and its consequences for other problensgction 4.4, we mention several
seemingly optimal undecidability results by encoding camapions of Minsky machines.

This chapter presents results originally published in [28H in [28].

4.1 Preliminaries

4.1.1 Temporal Models and Programs
Temporal Models

Temporal models are infinite sequences of memory shapeshwheans they are elements
in (Stores x Heaps,)" and they are understood as infinite computations of progrsitins
pointer variables. We range ovesd for a given model, and its'" statemod (i) will be noted
(si,h;). In order to analyze computations from programs withoutrdetve update, we shall
also consider models with constant heap, that is elemestsoires™ x Heaps..
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[w:=w1] (s,h) 5 (s[wre s(w)]1,h).

[w:=w —=I] (s,ho{im{l—j,...}}) > (slwr jl,hofi-={l—j,... )
withs(w') =1
[w—ol:=w] (s,hofir>{lj,..}}) > (s,hofie-=>{l>sw),.. D

withs(w) =1
(slwr il,hof{i - {l; > s(wy),

[w:=cons(ly : wy,...,Lk :wy) ]| (s,h) e SO D
with i ¢ Dom(h)
[ freew] (s,ho{i~ 0O}) > (s,h)
with s(w) =1
[ skip] (s,h) 5 (s,h)

(slw jl,
ho{i +i’ — {next — j}}))
with s(w’) =1’
[Twli]l :=w'] (s,ho{i’+im {next— j}}) > (s,ho{i’+im {next—> swW)}}H
with s(w) =i’
(swme 1],
[w:=malloc(i) JJ(s,h) 5> hofi’ {next - if},...,
i"+ (1 -1) - {next — i} }P
withi’,...,i’+ (i — 1) ¢ Dom(h)
andif,..., i} , ¢ Dom(h)
[ freew,i ] (s,ho{i’+i > 0O}) > (s,h)
with s(w) =1’

[w:=w[i] ] (s,ho{i+i’ — {next - j}}) >

Figure 4.2: Semantics for instructions

Instructions

The setIns of instructionsused in the programs is defined by the grammar below:

instr ::= x:=y | skip
| =y—>| | x->l:=y | x:=cons(ly : Xq,...,lk : X) | freex
| X :=y[i] | x[i] :=y | x :=malloc(i) | freex,i

The denotational semantisinstr ] of an instructioninstr is defined as a binary re-
lation [ instr ]| € (Stores X Heaps,) X (Stores x Heaps,) in order to deal with the
non-deterministic allocation of new memory cells. It cascabe seen as a function from
(Stores x Heaps,) to Pow(Stores x Heaps,), and we write] instr ]| (s,h) to denote the
image of (s,h) through this function. We list in figure 4.2 the formal derimaal semantics
of our instruction set.

Observe that the instructions:= y[i], x := malloc(i) andx[i] := y deal with the
specific labehext. Boolean combinations of equalities between variablexalled guards
and their set is denoted I&pards.
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Programs

A programP is defined as a tripl€B, d, b;) such thaB is a finite set of control states; is the
initial state andi is the transition relation, a subset®% Guards x Ins xB. We useb 22255, 1
to denote a transition. We say that a prograrwihout destructive updateé transitions are
labeled only with instructions of the form:=y,x :=y — |, andx := y[i]. We writeProg to
denote the set of programs aPwbg* to denote the set of programs without destructive update.
A program is a finite object whose interpretation can be vieagan infinite-state system.
More precisely, given a prograih = (B, d,b;), the transition systerfip = (Config, —) is
defined as followsConfig = Bx (Stores xHeaps,) (set of configurations) antb, (s,h)) —
(b’, (s',h)) iff there is a transitiod 2% b’ € d such that(s,h) F g and (s’,h’) €
[ instr ] (s,h). Note thatSp is not necessarily deterministic. A computation (or excyt
of P is defined as an infinite path 8% starting with control statb;.

4.1.2 Temporal Extension: our Logic

Our logic is a combination dfTL andSLg, a quantifier free fragment ¢iL.. These logics are
combined so that the propositional variable£ Dt are replaced by the formulas $is, which
allow to describe the heap. While the operatorsTif allow to navigate in time, the separation
logic formulas describe the present configuration of thephwdy — with a limited ability to
relate consecutive models. As the separation operatorsrdgibe under the scope of temporal
operators, itis impossible to extend the compositionglitgciple of separation logic toTL™".
Formulas ofLTL™" are defined in figure 4.1 under the nateeporal formulas Their
semantics is defined in the same figure; the satisfactiotioelss mod, n ;e t, wheremod
is a temporal modeh € N andt is a formula. One can note that we use the notaficior the
predicate calledext which is one of the notations found in the literature alddiit along with
the capital letter X. We prefer this choice so as to avoid e af single capital letters which
describe sets in this thesis. Similarly, we usil rather than the capital letter U, and later
we will usesometimes rather than the capital letter F aativays rather than the capital letter
G. Finally, one can note that we clearly distinguish statenfdas from temporal formulas by
usingf andg for state formulas, as for separation logic formulas in @& of the document,
butt andu for temporal formulas.

The temporal operators are the standard next-time operasond until operatountil present
in LTL, see for instance [53, 86]. The formufat means that holds in the next time state.
The formulat until u means that eithen holds ort holds and will continue holding until
holds at some moment in the future, and there exists be a ntaméme future such that
holds. We use standard abbreviations suchaoasetimes (t) for (T until t) or always(t) for
—sometimes(—t).

State formulas oLTL™™ are formulas from the quantifier free separation I&lig, except
that variables can be prefixed by the symlgol - see below for further explanation about this
feature.

Contrarily to the two previous chapters, the atomic forrawdfow pointer arithmetic, and
an unbounded amount of fields through the labels. We alloveaalr the pointer which is
locatedi cells further than a variable, but we do not allow to check éheariable is located
cells further than another variable, as would a formudai = y which is not in our grammar.
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It is important to notice that cells can be seen as havingrakselectors through this pointer
arithmetic, but this is not related to the multiple selestibrat may be available through labels.

The expressiox is interpreted by the value afat the next memory state. While keeping
in mind that encodin@)*x requires memory space proportionalitove use the notation

i times

One should note that the symba@D* is used in two diterent ways. When it is a temporal
operator, it allows to state properties about next timeestargetting about the present one.
But when itis used in a state formula to prefix a variable, dvgay to compare the future value
of a variable with the present memory state. As an exan{gleh;) jci, n Frpmen O (X < y)
holds wherh,.; (next) (su+1 (X)) = spe1 (), but (si, hi)ien, 0 Fromes Ox <= Oy holds when
h, (next) (spe1 (X)) = spey (y). In the formulaO(x — y) the symbol ' is a temporal
operator. An example of formula using a temporal operatar the second use of))’ can
be always (x = Ox), which means that the value of the variakleill never change. Indeed,
(si,hi) jen, 0 Fromes always (x = Ox) iff for all n, we haves, (x) = sp.1 (y).

Given an atomic formulé we writef[O*x « (x, k)] to denote the&L, formula in which
every occurrence of a term of the fox@Fx is replaced by the variablg, k). Similarly, given
a formulaf, we writef[x « (x, 0)] to denote the state formula in which every occurrence of a
variablex is replaced byx, 0).

We can freely use propositional variables, having in minak th propositional variable
should be understood as an ordinary variable, for instarc@ar, whose equality tests with a
fixed special variable; € Specialvar encode the boolean value.

4.1.3 Satisfiability and Model-Checking

The fragments of the quantifier free separation I&jicwe are going to mention are defined in
section 1.3, Given a fragmeRtag of SLg, such asLY or SLLF, LTL"™" (Frag) is the restriction
of LTL™" to formulas in which occur only state formulas built ofag with extended vari-
ablesO*x. We writeSat (Frag) to denote the satisfiability problem foTL™" (Frag): given a
temporal formulain LTL™" (Frag), is there a modedod such thatod, O [ mn t? The variant
problem in which we require that the model has a constant isedgnoted bygat“°"* (Frag).
The variant problem in which we require that the initial meynstate is chosen beforehand as
an input of the problem is denoted byt, ;. (Frag). The problensatS ;; (Frag) is defined
analogously.

The computations of a program can be viewed Hs"" models, using propositional vari-
ables to encode the extra information about the contradstahs said above, so as to encode
propositional variables, we use the special variableFor each control statewe choose one
corresponding variablg,, so that the propositional variable is trd&x; = x,. Then one and
only one of these propositional variables is true at a givement, the one corresponding to
the state in which the program is.

Model-checking aims at checking properties expressibTitf*" along computations of
programs. To a logical fragmergi(, SLS:, SL¥, or SLLF), we associate a set of programs :

init

— for SL andSL¢", all programs;
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— for SL¥, as this logic cannot handle pointer arithmetic, progranitis iwstructions having
the dfseti = 0;

— for SLLF, as this logic can neither handle pointer arithmetic nortipia labels in a cell,
programs with instructions having thé&seti = 0 and only the labehext.

Given one of these fragmenrigag of SLg, we writeMc (Frag) to denote the model-checking
problem forLTL"" (Frag): given a temporal formulain LTL"*" with state formulas built over
Frag and a progran® of the associated set of programs, is there an infinite caatipatnod
of P such thatmod, O Fprmen t (Which we writeP E s t)? This is the existential variant of
the problem. The variant problem in which we require thatgregram is without destructive
update is denoted yc°"s (Frag). The variant problem in which we require that the initial
memory state is chosen beforehand as an input of the probldembted byic, .. (Frag). The
problemMcS>®* (Frag) is defined analogously. We may write (s,h) ki pxe t to emphasize
what is the initial memory state.

Our notationdic (Frag) andSat (Frag) for the problems abowTL"" (Frag) should not
be mistaken with the notatiollgheck (Frag) andSatis (Frag) for the problems abouwrag
itself, which will be defined in section 4.2.2.

4.1.4 Basic Results

Using extended variablé€sx, we may express some programs as formulas. This actualig hol
only for programs without destructive update, that is fog #emantics with constant heap.
Intuitively, we express the control of the program with posjional variables, and define a
formula that encodes the transitions. As a consequencéltbeing result can be derived.

Lemma 4.1.4.1.Let Frag be a fragment amon§L,, SLS, SL¥, or SLIF. There is a loga-
rithmic space reduction froMc"* (Frag) to Sat“"*(Frag) (resp. fromMc{>I3 (Frag) to
Sat{%" (Frag)).

init
Proof. We adapt the proof in [86] for reducirigfL model-checking taTL satisfiability. To a
programP = (B, d, b;), we associate the formulabelow built over the propositional variables
in B:
tp 2 by A always /\(b = ( A b A\ teansie))
beB b’eB\{b} transited;
wheret....si: €Xpresses that transitiaransit is fired between the current state and the next
state andg; is the set of transitions starting at the statdn order to definé . .nsic, we need
to translate instructions and guards into the logic (renemtiat there are limitations on the
instructions). We translate instructions of the form

— Xx:=yintoOx =,

- x:=y > lintoy='Ox,

— x:=y[i] intoy + i>"** O x.
Guards are translated accordingly. It is then standard évghatP Fyppmen tiff t A tp IS
satisfiable. Indeed, it is flicient to prove that for all modelsod, we havemod [yyinen tp iff

mod is a computation oP. It is obvious that computations &fsatisfyts. Additionally, by a
simple induction on time, one can easily show thad k=, 1 = tp IS @ computation oP. O
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We now describe the reasons for which all the problems we thefieed areseace-hard and
contained irt}. In the analytical hierarchy, a problem (or equivalentleadf integers) is irt]
if it is definable by a formula of second-order arithmetichwanly existential set quantifiers in a
prenex normal form. More information on this topic can berfdun [78], for instance. All the
model-checking and satisfiability problems defined in thiagter belong ta} in the analytical
hierarchy. Indeed, the models and computations of progcambe viewed as function$ —
N: by encoding memory states and configurations by naturabeusn our infinite sequences
of memory states can be encoded in sequences of integerse Tiethematical objects are
countable, and finding an actual injection from the set of imigrstates taV is not a challenge,
although details would be tedious. Then, the satisfac&dation between models andL™"
formulas and the transition relations obtained from prog&an be encoded by a first-order
formula. This guarantees that these problems azé&.iAdditionally, all the problems can easily
be showrpspace-hard since they all generaliz&L satisfiability and model-checking [86].

4.2 Separation Logic: Complexity and Abstraction

After defining an abstraction for the fragmesif* of SL, which will be proved sound, we will
be able to decide the complexity of model-checking and f&albitity problems forSLs.

The main approach to get decision procedures to verify tefisiate systems consists of
introducing a symbolic representation for infinite sets affogurations. The symbolic repre-
sentation defined below is motivated by a similar goal. Giadormulat of LTL"", we are
going to define its measunges,, understood as pieces of information about the syntactic re
sources involved in. Indeed, forthcoming symbolic states are finite objectaupatrized by
such syntactic measures.

4.2.1 Syntactic Measures
Definitions of measures and related concepts

The method described below, using test formulas (see dftedéfinition of measures), is in-
spired by [71].
We introduce a series of syntactic limitationsl@i.™" formulas.

— For a state formuld of LTL™", the size of memory potentially examined Hywrit-
ten maxsizes, is inductively defined as followsmaxsizes is 2 for atomic formulas,
maxsize;, for —f;, andmaxsizes, + maxsizey, for f; ofy, f; Af, Oor fy —= f,. Observe
thatmaxsizes <| f |, and thaimaxsize; is actually twice the amount of atomic formulas
contained by.

— Labs € Powgi, (Lab) is the set of labels frorhab occurring inf.

— Var; € Powg, (Var) is the set of variables fromiar occurring inf.

— Offsets; (€ Powgn (D) is the set of natural numbeissuch thatD*x + i<'x’ occurs in
f, wherePowg;, (I) denotes the set of finite subsets of somelset
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A measuremes can now be defined as a tupl@ffsetsyes, maxsizeyes, Labyes, Varyes) €
Powgin (N) X N X Powg;, (Lab) X Powgi, (Var). If [Varges| < maxsizeys then we say thates
is agood measure

The set of measures has a natural lattice structure for timvgse order, which we write
mes < mes’. More precisely, this can be writtef@ffsetsyes, MaXS1iZepes, Labyes, Varyes) <
(Offsetsyey,MaXSizZeyes, Labpey, Varyes ) Iff Offsetsys C OffsetsSyey, Maxsizegs <
maxsizeyes, Labges € Labpes andVar,.s C Vargs. We also writemes [maxsize « 0] to
denote the measumes except that the second compongaksize is 0. We writesize (mes)
to denote the size of the measukes in some reasonable succinct encoding.

The measure of a state formulais the tuplemes; = (0Offsetss, maxsizes, Laby, Vary).
Note that for any formuld, we have|Var,.s| < maxsizey, SO for any formulames; is a
good measure. Thmeasure of a temporal formulaof LTL™", written mesy, is the tuple
(0ffsets;, maxsize,, Lab;, Var;) where:

Offsetsy = Us oecurs it 0T £s€tSH,

Maxsizey = Y occurs i MAXSizey,

Laby = Ut occurs int Labt,

A
Var; = Uroccurs it Var

Note that the measunes; of a temporal formulais always a good measure. This notion will
represent the syntactic resources used by a formula aetuestough for our purposes.

We now introduce the set oést formulaseach of them contains a piece of information about
the model, and a set of these formulas will be used to absirhetp. They argLg formulas
of the forms below:

— alloc(x+1) £ (x+iH"**x) - 1 (x + 1 is allocated).
— size > k= —empuo...o—-emp with k times—-emp (at leastk indexes are allocated).
— x+i=!X, x = x’ (see figure 1.4 for notations).

Given a measurmes = (Offsets,maxsize, Labyes, Vargs), We Write Fo t0 denote the
finite set of test formulas defined as follows:

u::=x+i=x | alloc(x) | x=x"| size > k

with i € Offsets, | € Labyes, k € [0,maxsize[ andx, X’ € Varyes.

Given a measurmes = (Offsets,maxsize, Labyes, Vargs) and a memory shapés, h),
we WriteAbs,.s (s,h) = {f € Fres : (s,h) [Eg f} to denote the abstraction 6§, h) with respect
tomes. Given a measunges and two memory shape&s,h) and(s’,h’), we write (s,h) =~
(s’,h") iff Absyes(s,h) = Abs,es(s’,h’), that is, formulas irF,.s cannot distinguish the two
memory shapes. We will later show that a formtigauch thaimes; < mes can not distinguish
(s,h) and(s’,h’) if (s,h) =~ (s’,h).
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Soundness of the Abstraction

Observe that the cardinal ®f.s, is polynomial in| t |. The variable(x, k) will be used in
subsequent developments to deal with the interpretatidimeaiermO*x in the formulas of the
temporal logic.

The proof of lemma 4.2.1.4 below is based on three techrecairias. Before stating them
and proving them, in lemmas 4.2.1.1-4.2.1.3, we assumdélthaheasure haffsets = {0}
since these lemmas will be used for dealing vétf*. Moreover, we introduce the following
definition:

(Offsets,maxsize;, Laby, Var;) + (Offsets,maxsize,, Laby, Var,y) =
(Offsets,maxsize; + maxsize,, Laby, Var; U Var,)

Lemma 4.2.1.1(Distributivity). Letmes be a measure amtks,; andmes, be good measures,
with mes = mes; + mes, and all sets of fisets equal t¢0}. Let (s,h) and (s’,h’) be memory
shapes such thdt,h) ~,.s (s’,h’) and,h;, h, be heaps such that= h; oh,. Then, there
exist heaph) andh), withh’ = h 0h), (s,h;) =, (s’,h}) and(s,hy) =5, (s’,h)).

Proof. Let (s,h), (s’,h’), h;, h, and the measures:s = (0ffsets,maxsize,Lab,, Var,),
mes; = (Offsets,maxsize,,Lab,, Var,;) andmes, = (Offsets,maxsize,, Lab,, Var,) sat-
isfy the hypotheses of the lemma.

We shall define the disjoint heaf$ andh’, by distinguishing the four disjoint sets of
locationsK,, K,, I; andI, corresponding to the following sets:

— Ky =Dom(h}) NIm(s’), K, =Dom(h)) N Im(s’),
— I; =Dom(h)) \ Im(s’), I, = Dom(h}) \ Im(s’).

Let us first separateom (h’) N Im(s’) into two partsK; andK,. Fori € {1, 2}, we define
K; £ s’ (s7*(Dom(h;) NVar,), and we need to show thigat andK, are disjoint. Let us assume
by contradiction that they are not, thus there are somehblasa,y € Var, such thats’ (x) =
s’(y) € Ky NK,, ands(x) € Dom(h;) whereass(y) € Dom(h,). Sinceh; Lh,, s(x) # s(y),
sos, h s x =y, but we already know that',h’ 5, x =y, hence the contradiction.

Now, we shall separate the $&tm(h’) \ Im(s’) into two partsI; andI,. LetJ = Dom(h) \
Im(s), J; = Dom(h,) \ Im(s) andJ, = Dom(h,) \ Im(s). We havel,| + [K;|] = [Dom(h;)]
and|J,| + [K,] = |Dom(h,)|. The setd; andI, shall contain respectivelf,| and|I,| random
elements obom(h’) \ Im(s’) sothatI;| = [Dom(h;)|—|K;|if |[Dom(h)| < maxsize; otherwise
IT;] = min(maxsize;, Dom(h;)|) — [K;|. In order to select the elements bf and I,, we
distinguish diferent cases depending [Dom (h;) | and[Dom (h,)|.

Case 1:pom(h)| < maxsize.
Since(s,h) ~pes (s’,h’), we havgDom(h’)| = [Dom(h)|. HenceDom(h’) \ Im(s’) can
be divided into two parts,, I, such thaff; I, = Dom(h’) \ Im(s’), |I;| = [Dom(h;)|—
Kyl and|I,| = [Dom(h,)| - [Ks|.

Case 2:[Dom(h)| > maxsize.
Consequentlypom (h’)| > maxsize.

Case 2.1:Dom(h,)| > maxsize; and|Dom(h,)| > maxsize,.
There exist,, I, such thafl; W I, = Dom(h’) \ Im(s’), |I;| = [Dom(h;)| - [K;| >
maxsize; — [K;| and|I,| = [Dom(h,)| — |K,| > maxsize, — |Ky|.
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Case 2.2: For somee {1, 2}, [Dom(h;)| < maxsize; and|Dom(hs_;)| > maxsizes_;.
There existl,, I, such thatl; & I, = Dom(h’) \ Im(s’), |I;| = |Dom(h;)| — |K;].
Then|Is_;| = [Dom(hs_;)| — [Ks_;| > maxsizes_; — [Ks_i].

The heah; is defined a%; , and the heap; is defined a&y; , . Sincel, I, K; and
K, are disjoint sets, we have thatUK, andI, UK, are disjoint. Moreovel; U I, UK; UK, =
Dom(h’). Soh’ = hioh). Observe that foi € {1,2}, we havelDom(h;)| > maxsize; iff

IDom(h’)| > maxsize;; alsoDom(h;)| < maxsize; impliesDom(h;)| = [Dom(h})|.

It remains to show thats,h;) =, (s’,h}) and (s,hy) =, (s’,h)). The above
considerations about cardinality entail that for alle {1,2} andk < maxsize;, we have
Size > k € Absy; (s,h;) iff size > k € Abs,, (s’,h}). Itis also easy to check that for all
X =X € Fpes;, X = X' € AbSpes; (s, h;) iff X =X € Abspes; (s',h}).

AsK; = s’(s7(Dom(h;)) N (Vary), if s(x) € Dom(h;) thens’(x) € Dom(h}). Con-
versely, assume’(x) € Dom(h}). Thens’(x) € Dom(h’). As the measurees is a good
measure, for any variablg € Var,, we haves(y) € Dom(h) iff s"(y) € Dom(h’), so
s(x) € Dom(h). Ash = h,oh,, there isj such thats(x) € Dom(h;), which impliesx €
s~' (Dom(h;) NVar,). By the definition oK; we haves’ (x) € K;, and sinces’ (x) € Dom(h/)
we haves’ (x) € K;. So ax;nkK, = 0, we havej = i ands (x) € Dom(h;). Sos(x) € Dom(h;)
iff s"(x) € Dom(h}). Soalloc(x) € Absyes, (s,h;) iff alloc(x) € Absyes; (s”,h}).

The proof for test formulas of the form—'x’ is very similar. O

In the proof of lemma 4.2.1.4, we need lemma 4.2.1.2 belovighvis indeed an instance
of lemma 4.2.2.2.

Lemma 4.2.1.2.Let mes be a measure such thaffsets,.s = {0}. If (s,h) = (s’,h’),
then for allhy Lh, there ishj Lh’ such that(s, hy) ~pes (s’,hy).

Lemma 4.2.1.3(Congruence)Let (s,hy), (s’,h;), (s,hy), (s’,h}) be memory shapes such
thathy,Lh;, hyLh]. Letmes be a measure such theffsets,.s = {0}, and assume that
(s,ho) =pes (s”,hy) and (s, hy) =5 (s’,h)). Then,(s,hoohy) > (s’,hjoh)).

Proof. Let mes be the measur€0ffsets,maxsize, Labyes, Vargs). We shall show that
(s,hoohy) =~ (s’,hjoh]). By symmetry of=,, it is suficient to prove one inclusion,
we will prove thatAbses (s,hoohy) C Abspes(s’,hyoh]). Letf € Absyes(s,hoohy). We
make a case analysis accordingd.to

— If f = size > k for somek < maxsize, thenk < |Dom(h, oh;)|. We want to show that

k < |Dom(hy oh})| which implies thaf € Abs,es (s, hjoh)).

 If Dom(h;)| > maxsize or |[Dom(hy)| > maxsize, thenDom(h})| > maxsize or
IDom(hy)| > maxsize, respectively. So we hayBom(hjoh’)| > maxsize and
IDom(hy oh’)| > k ask < maxsize.

x |f [Dom(h;)| < maxsize andDom(h,)| < maxsize, then we havgdom(h, oh,)|
IDom(h;)| + [Dom(hy)| = [Dom(h})| + [Dom(hy)| = [Dom(hjcoh))|. Sok <
IDom (hy ohf)|.

— If fisx = x/, thens(x) = s(x’). Moreover,f € Absyes(s,h;) iff f € Absyes(s’,h)).
Therefores’ (x) = s’ (x") andf € Absyes (s’,hyoh)).
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— If f = x='X then (hyoh;) (s(x)) () = s(x’). Hence, there id € {0, 1} such that
h; (s(x)) () = s(x’). Since(s,h;) s (s’,h}), we can state that; (s’ (x)) (D) =
s’ (x") and (hy oh’) (s (x)) () = s"(x"). Sof € Absyes (s, hj ohy).

— If f = alloc(x) thens(x) € Dom(h,ch;). Hence, there id € {0, 1} such thats(x) €
Dom(h;). Since(s,h;) =y (s’,h}), s"(x) € Dom(h}) ands’(x) € Dom(hych)),
which entailsf € Absyes (s, hyoh)).

O
Lemma 4.2.1.4 below states that our abstraction is coree¢he fragmentSLS- andSLEF.

Lemma 4.2.1.4(Soundness of the abstractiohptmes be a good measurés,h) and(s’,h’)
be two memory shapes such tifath) ~,.s (s’,h’) [resp. (s,h) ~yesmaxsizeco; (S’,h")]. For
anySL formulaf such thames; < mes andf belongs t&SLEF [resp.SLSH], we have(s, h) kg f
iff (s’,h’) Eg f.

Proof. The proof of lemma 4.2.1.4 for the classical fragment isea#itraightforward. Indeed,
any SLS formula is a boolean combination of test formulas. In ordedéal with the record
fragment, more orts are needed. First note thatmés; < mes then (s,h) =~ (s’,h’)
implies (s,h) >y, (s’,h").

By structural induction ord, we show that if(s,h) =~ (s’,h’), then(s,h) Eg fiff
(s’,h') kg f. The base case whétas one of the forms = x’, x + i<'x’ andemp is by an
easy verification. Similarly, in the induction step, theesagvhen the outermost connective is
boolean are straightforward.

— Assume that(s,h) Es. fwith f = g,o0g,. There are heaps; andh, such thath =
h; ohy, (s,hy) Fs. 91 and (s, hy) Fsi 02 ASmes; > mesy, + mesg, and asmes,, and
mesy, are good measures since they are measures of a state fobyualpplication of
lemma 4.2.1.1, there are hedgsandh;, verifying h’ = hi oh}, (s,h;) =5, (s’,h))
and (s,hy) =es, (s’,h;). By the induction hypothesis, we gés’,h}) ks g; and
(s’,h}) Es. g2. Consequently(s’,h’) kg fsinceh’ = h] oh) andf = g, 0Q,.

— Finally, assume that = g; —= g,. Leth]Llh’ be such that(s’,h}) Fs. gi. Then by
lemma 4.2.1.2, there is a heap such that(s,h;) =~ (s’,h}) andh,Lh, and so
(s,hy) FEst g4 by the induction hypothesis. Then we ha#&ghoh;) ks g,, and by
lemma 4.2.1.3(s’,h’oh}) Fs. 9,. Hence(s’,h') s 91 = Q..

4.2.2 Complexity of Quantifier-Free Separation Logic

In this section, we show that model-checking, satisfighiind validity, forSLg, arepspace-
complete. We use the abbreviatidfisheck (SLs), Satis(SLs) andValid(SLg) for the re-
spective problems. These abbreviations are extended tbragyent of separation logic, for
instanceSatis (SLYF) denotes the satisfiability problem for the record fragment.

pspace-hardness dficheck (SLEF) andSatis (SLLF) is a consequence of [36, Sect. 5.2]. As
SL; strictly containsSLLF, this entails theespace-hardness oficheck (SLg) andSatis (SLg).
Since SLg is closed under negatiomspace-completeness o¥alid(SLg) will follow from
pspACE-cOMpleteness dfatis(SLy).
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In order to show thalicheck (SL,) andSatis(SL,) are inpspace, we establish the lem-
mas below. Lemma 4.2.2.1 establishes a reduction ffoheck (SLs) to Mcheck (SL¥F), so
that we only need to consid6LY" in order to find the complexity of model-checking. Then,
in lemma 4.2.2.2, we will provide a small model property &irff*, leading to thepspace-
easiness oficheck (SL¥) (see lemma 4.2.2.3). Finally, we characterize the comiouiait
complexity of the satisfiability problem thanks to lemma.2.8, which entails a reduction
from Satis(SL;) to Mcheck (SL,).

Lemma 4.2.2.1.There is a logarithmic space reduction fréiecheck (SL) to Mcheck (SLEF).

Proof. Lettrg g (f) be the formula obtained froffrin SL¢ by replacing each occurrence of
x +i=!X by (x,i)='x’. The formulatrg, = (f) belong toSLE. Given a stores, we write
trs s (s) to denote the store such thatg 5w (s) ((x,1)) = s(x) +i. One can show
that for every heap, we have(s,h) g fiff (trg _gx(s),h) ks trg _gx (f). The proof
is by structural induction of O

We need to establish a quite technical lemma. Given a hedgt Im? (h) be the set of
natural numbers such that there arg andl for whichh (i) (I) = i.

Lemma 4.2.2.2.Letmes = ({0},maxsize, Labyes, Varys) be a measure, ariglbe a label that
does not belong to the finite set of labékb,.s. If (s,h) ~,s (s’,h’) andhyLh is a heap,
then there is a hedg, such that:

~ h, L,
- (S,ho) zmes (S/,h6)1

IDom (hy) | < max (maxsize,|Varpes|),

max (Dom (h{)) U Im?(h})) < max(s’(Varys) UDom(h’)) +maxsize + 1,

for alln € Dom(hy), {I : hy(n) (1) is defined C Labyes W {lo}.

The heah; is said to be a small disjoint heap with respectés and (s’,h’) and it can be
represented in polynomial spacesiize (mes) + sizey,y,,, (hy) + sizeyar,.. 1ab,. ((s’,h")).

Proof. Assume that(s,h) ~,.s (s’,h’) andh,Lh. We introduce two disjoint heafs; and
hy, such thaDom(hy;) = Dom(hy) N Im(s), Dom(hy,) = Dom(hy) \ Im(s) andhg = hy; ohy,.
We define the heahj as the disjoint uniorthy, chj, wherehy, andhy, are defined so as to
satisfyDom(h;,) =Dom(h;) N Im(s’) andDom(hy,) = Dom(hy) \ Im(s’).

In the sequeln, = max (s’ (Varys) UDom(h’)) +maxsize + 1 is a location which can be
seen as an equivalent of the vahiel of the null constant — chosen large enough so as not to
be mistaken with any other location by test formulagQf.

— In order to definen,, letY;,..., Yy, be the equivalence classes over theVsat,.s for
the relation~; defined byx ~; y if s(x) = s(y). Since(s,h) ~, (s’,h’), the relation
~¢ defines the same set of equivalence classes. For eachygldesi, be the image
of the variables oft, throughs, andi; throughs’. Then, for eactk € [1,k,] and
| € Dom(hy, (ix)), the heaghy, is defined as follows:

# if | ¢ Labyes, thenhg, (i}) (Io) =ne andhy, (i;) () is undefined,
% if | € Labpes @andhy; (ix) (I) = i, for somen, thenhy, (i;) (1) = i},
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 If | € Labyes @andhg; (i) (1) # i, for all n, thenhy, (i;) () = n,.

The domain ohy, is included inIm(s), sinceIm(sy, ) ={i},...,i}}.

— In order to definen,, let k; = max(0,min(|Dom(hg,)|, maxsize — [Dom(hy;)|)) and
j’l,...,j{{1 be thek; smallest natural numbers disjoint frofd’,..., i} U Dom(h’).
Hence, whenDom(hy;)| > maxsize, we havek,; = 0 and therefore there are no such
natural numbers. OtherwisBom(hg,) = {ji,..., ] } and for eactk € [1,k;], we

definehg, (3;) (ly) = no.

As announced, we defirig as the heafh;, ohy,. Let us show that the hedyj has all the
desired properties.
— Letus check that’ Lhy. First,h’ Lhj, sinceh_Lhy. Secondh’ Lhy, by construction.
— Letus check tha(s,h,) ~,s (s’,hy). We proceed by a case analysis on the form of the
test formulas.
(x =x") Since(s,h) ~pes (s’,h’),s(x) =sX) iff s"(x) = s’ (X).
(alloc(x)) We have equivalences between the propositions below:

% alloc(x) € Absges (s, hg),
* s(x) € Dom(hy),
x there isk such thak € Y, andiy € Dom(hy),
+ there isk such thak € Y, andi; € Dom(hy,),
% alloc(x) € Absyes (s, hy).
(size > k) First, observe thgbom(hy;)| = [Dom(hy,)|. Moreover, by construction, if
IDom (hy) | < maxsize, then|Dom(hy)| = [Dom(hy)|. When|Dom(h,)| > maxsize,

the construction ohy guarantees thabom(hy)| > maxsize. So, for all formulas
size > k with k < maxsize, size > k € Absgs(s,hy) iff size > k €
Abspes (s’ hy).

(x='x") We have the following implications:

X=X’ € AbSpes (s, ho),

there isk such thak € Y, andh, (i) () = s(x'),
there arek, k’ such thah, (iy) (1) = iy,

there arek, k’ such thak € Y, andhg, (i) () =i},
X—'X’ € Abspes (s, h)).

* ¥ ¥ X ¥

Now suppose that—'x’ ¢ Abs,es (s,hy). We distinguish three cases.

1. s(x) ¢ Dom(hy).

From the above case witilloc(x), s’ (x) ¢ Dom(h}) and thereforx—'x’" ¢
Abspes (s’, hy).

2. s(x) € Dom(hy) (with iy = s(x)), | € Dom(hy (iy)) andhy (i) (D # s(x’).
If ho (i) (1) = iy for somek’ € [1,ko], thens'(x') # ij,. If for all k' €
[1,ko], i # ho(ix) () (in particularh, (iy) (1) cannot be equal ta,, cho-
sen large enough for this purpose), then by constructich aghg, (i;) (1) ¢
{i},..., i} }. In both casesy—'x’ ¢ Absyes (s',hy).

3. s(x) € Dom(hy) (with iy = s(x)) andl ¢ Dom(h,(iy)). Consequently, ¢
Dom(h; (i})) and therefore&—'x’ ¢ Absyes (s, hy).
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functionMcheck ( (s, h), f,mes)

(base-cases) ffis atomic, then returigs,h) kg f;

(boolean-cases) If is a conjunctionf; A f,, then return (Mcheck((s,h),f;,mes) and
Mcheck ((s,h), f,, mes) );

Other boolean operators are treated analogously.

(ocase) Iff = f,of,, then returnL if there are noh;,h, such thath = h;ch, and
Mcheck ((s,h,),f;,mes) andMcheck ((s,h,),f;,mes));

(= case) Iff =f; = f,, then returnL if for some small disjoint healy with respect tames and
(s,h) verifying Mcheck ((s,h’),f;,mes), we have notcheck((s,hcoh’), f,,mes);

ReturnT;

Figure 4.3: Model-checking algorithm

Therefore(s,hy) and(s’,h;) have the same abstraction.
— Let us check thapom(h;)| < max(maxsize,|Varys|). We already know thak, <

[Varyes|. If [Dom(hy,)| > maxsize, thenhy, is the empty heap and therefdbem (h;)| <
ko. Otherwise, by constructiofpom (hy, )| + [Dom(h;,)| < maxsize. Consequently,

IDom (hy) | < max (maxsize,|Varpes|).

— Let us check thatax (Dom(h}) U Im?(h})) < max({s’(X) : X € Varyes, s (x) € N} U
Dom(h’)) + maxsize. We have chosen the domain and imagehgfto be included
in the image ofs” plusn,, and therefor®om(hy,) satisfies the above condition. The
image ofhy, is {ne}. The domain oty, is composed of the smallest natural numbers
which neither belong te’ (Varyes), nor toDom(h’). AsDom(hy,) has less thamaxsize
elements, it is bounded by theaxsize™ such natural number, which is bounded by
maxsize + max (s’ (Varg.s) UDom(h')).

— Let us check that for eveny € Dom(h{), {I : hy(n) (1) is defined C Labyes W {lo}. This
condition is satisfied by construction bnf, andhy,.

Lemma 4.2.2.3.Mcheck (SLEF) is in pspack.

Proof. The algorithm is described in figure 4.3. First of all, thecaithm can be imple-
mented in polynomial space since the quantifications are s&&s of exponential size in

f | +sizevar,.. 1ab,.. ((S,h)) wheremes; = (..., Labyes, Varys), and the recursion depth is
linear in| f |. Hence, all the heaps considered in the algorithm are ofnolyal size in

| f| +sizeyar,.. 1ab,.. ((S,h)). It remains to be shown that the algorithm is correct: gives

a good measure arfdwvith mes; < mes, then (s,h) kg fiff Mcheck((s,h),f mes) returns
T. The only point to check in the proof by structural inductisithe case when the outermost
connective is the operater. Whenever(s,h) ¥ f; —= fy, there is a heap, L h such that
(s,hy) Fs. fy and (s,hohy) Fg fo. By lemma 4.2.2.2 with(s’,h’) = (s,h), there is a small
disjoint heaph;, with respect tanes and (s, h) such that(s,h}) ~,s (s,hy). Since the mea-
sure off; is less thames, lemma 4.2.1.4 entailés,h;) Es. f;. Moreover, by lemma 4.2.1.3,

112



(s,hohy) Fa fo. Consequently(s,h) Fs fi — f, iff there is a small heah] such that
(S, h(,-)) '=SL f1 and(S,hDhg) #SL fg. O

The rest of the section is dedicated to the characterizaticdhe complexity of decision
problems forSLs. To do so, we need another technical lemma.

Definition 4.2.2.4. Given a permutatiopmt : Loc — Loc and a heajh, we writepmt - h to
denote the partial function which majpgo the partial functiompmt o (h(i)). When viewing
heaps as finite subsetsi¥fx Lab x Loc, pmt - h is equal to{ (i, l,pmt (j)) : (i,l,j) € h}. We
write pmt o h to denote the heagmt - (hopmt ), which corresponds tipmt (i), I, pmt (j)) :
(i,1,j) € h}.

For instance, given a labeand an addresk, (pmt eh) (i) (I) = pmt (h(pmt~(i)) (1)).
The operatior allows us to rename all the addresses according to the patiorutthe memory
graph keeps the same shape, but vertices are placedferedi addresses. We shall use the
properties below that can be easily checked:

— For all permutationgmt and disjoint heaph; andh,,
pmt e (h; ohy) = (pmt eh;) o(pmt e hy).

— For all permutationgmt and heapa,
pmt~!e(pmtoh) =h.

Lemma 4.2.2.5.Let mes = (Offsets,maxsize,Labys, Vary,s) be a measurd, be a state
formula with measurees and (s,h) be a memory shape. For all permutatipms : Loc —
Loc such that for alk € Var,.s andi € Offsets, pmt (s(x) +1i) = pmt(s(x)) + i, we have
(s,h) g fiff (pmt o s,pmt oh) g f.

Proof. Letfbe anSL; formula,mes be a measure greater thaes;, s be a store ant be a heap.
It is sufficient to show one direction of the equivalence since theratinection is obtained by
application of the first one with the stopait o s and the well-defined inverse bijectipmt *.
Indeed, for allx € Varyes, pmtt ((pmt o s) (x) +1i) = pmt~* ((pmt o s) (X)) +i. Assume that
(s,h) kg f. We show thatpmt o s,pmt e h) kg f. We are going to prove this by induction on
f. The cases with boolean operators are trivial and are aitte is an atomic formula, then
we proceed by a case analysis.

fisx=x: s(x) =s(x) iff pmt (s(x)) =pmt (s(x’)) sincepmt is a bijection orlLoc.

fisx+i='X: thenh(s(x) +i) () = s(x’), and we havemt eh(pmt o s(x) + i) () =
pmt - h(pmt ! (pmt (s(x)) + 1)) (1) = pmt - h(pmt ! (pmt (s(x) + i))) (1) = pmt -
h(s(x) +i) () =pmt (h(s(x) +1i) (1)) =pmt(s(y)) =pmt o s(X'),

fisemp: Dom(pmt e h) is empty tf Dom(h) is empty.

If f=f, of,, then there arl; andh, such thah = h; ch, and (s, h;) Eq f; and (s, h,) s
fo. For each measunees;, we havemes; < mes; < mes. Then, by induction,(pmt o
s,pmtoeh;) Eg. fi. Sincepmteh = pmte(h;chy,) = (pmteh;) c(pmt eh,), we can con-
clude that(pmt o s,pmt eh) Eg f.

If f =1f, —= f,, then leth, be a heap which is orthogonal pmt e h. Assume thatpmt o
s,hy) Es fi. By induction,(pmt o (pmtos),pmt ! e hy) Eg fi, thatis(s,pmt™ e hy) kg f;.
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So (s,ho(pmt ! ehy)) kg fp, and by inductionpmt o s, pmt e (ho(pmt ™ e hy))) kg fo, that
is (pmtos, (pmt eh) o(pmt e (pmt~* o hy))) kg fy, and finally(pmtos, (pmt e h) chy) Eg fo.
So, (pmt o s,pmt oh) Fg f. O

We state below a small memory shape property that happeresdertiral to establish the
results about the forthcomingeace upper bounds.

Lemma 4.2.2.6(Small memory shape property) state formuld in SL; is satisfiableft there
is a stores such that(s, 0) ks, = (f -=1) and for each variablg € Var;, s(x) < (|Vary +
1) x (1 +max (0Offsetsy) ), whered stands for the heap with empty domaiiar; is the set of
variables occuring ifi andOffsets; is the set of indexes such thak + i occurs inf for some
variablex. If 0Offsets;is empty, we can replacex (0Offsets;) by 0.

Proof. First, it is straightforward to show théin SL; is satisfiableff there is a store such
that (s,0) Es. —(f L), where0 is the heap with empty domain. So, we only have to
prove that given aSL state formuld and a stores such that(s,0) ks f, there is a store’
such that(s’,0) Es. f and for eachx € Vary, s’ (x) < ([Varg + 1) x (1 + max(Offsetss))
(the interpretation of other variables is irrelevant). hder to obtain this small store, we are
going to decrease the value of the variables in several .sieqsh step consists of applying a
permutation to the memory graph.

Assume that(s, ) Fs. f and letmaxoffset = 1 + max(0ffsets;). Letx, be a dummy
variable such thas(x,) = 0, andx,,...,x, be an ordering of the variables occurringfin
such that forj € [0,n — 1], s(x;) < s(Xj.1). If there is nok such thats (X.1) > s(x) +
maxoffset, then for allx € Var;, s(x) < (n+1) x (1 + maxoffset).

Otherwise, lek be the smallest index such thax,.;) > s(xy) + maxoffset. Letm =
s(Xg+1) — (s(x) +maxoffset). Let us define the permutatimt based om:

If j < s(xy) +maxoffset thenpmt(j) = j;

If s(Xgs1) < j < s(X,) +maxoffset, thenpmt (j) = j —m;

If j > s(x,) +maxoffset thenpmt(j) = j;

If s(xc) +maxoffset < j < s(x1) then we have to complete this function so as to
obtain a bijectionpmt (j) = j — (s(X¢) + maxoffset) + (s(x,) + maxoffset —m).

Observe that for alk € Var; andi € Offsets;, pmt (s(x) + i) = pmt(s(x)) +i. This
permutation satisfies the hypotheses of lemma 4.2.2.5haisdnay be applied t6s, 0), which
then still satisfies. We apply this type of permutation until there is kauch thats (x.1) >
s (x) +maxoffset. So, by simple multiplication, for ak € Vary, s(x) < (n+1) xmaxoffset.

i

Lemma 4.2.2.7.The model-checking, satisfiability, and validity problefas SLs arepspace-
complete.

Proof. pspace-hardness results are consequences of [36, Sect. 5.2]ps#we upper bound
for Mcheck (SL) is a consequence of lemmas 4.2.2.1 and 4.2.2.3 r3tae: upper bound for
Satis(SL) is obtained by enumerating the small memory shapes(®f-+_1) with empty
heap (see lemma 4.2.2.6) and then using lemma 4.2.2.3. O
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4.3 Decidable Problems by Abstracting Computations

In this section, we establish thepace-completeness ofat (SLS") and Sat (SL¥). To do
S0, we abstract memory shapes whose size is a priori unbdurydgymbolic memory shapes
whose size is bounded. As usual with linear temporal logimporal infinity in models is
handled by Biichi automata recognizing infinite sequenbesmethod is describe in [89]. We
propose below an abstraction that is correctsidf- (allowing pointer arithmetic) and fa&LE*
(allowing all operators from separation logic) taken sapey but that is not exact for the full
languagesL;.

4.3.1 Symbolic Models

We define below symbolic models, which are abstractions afetsofromLTL™", and a sym-
bolic satisfiability relation.

Definitions

Given a measurames, we write A,.s to denote the power set 6f.s; Anes IS thought of as an
alphabet, and elementse A,.s are calledetters A symbolic model with respect toes is
defined as an infinite sequengygmbmod € AL, ..

Given a modehod : N — Stores X Heaps, and a measunges, we Write Abs,,.s (mod) :

N — A, to denote the symbolic model with respectntes such that for everyn € N,
AbSpes (mod) (n) £ {f € Fpes : mod, n Frpmes (X, k) &« O*x1}.

To a lettera, we associate the formuleonj(a) = Ar.f A At —f- FoOr all sym-
bolic modelsSymbmod and formulag such thatmes; < mes, we inductively define the sym-
bolic satisfaction relatiorsymbmod,n F,.s t the same way as the satisfaction relation for
temporal models except for the clause about state subfasr{ake a few sentences further).
For instanceSymbmod,n Fyrren t A U iff Symbmod,n [prmen t and Symbmod,n fpnen U;
also Symbmod, n Fprres t until u iff there isn; > n such thatSymbmod,n; Fipre= u and
Symbmod, n’ ;e t fOr alln” € [n,n; [. The clause about state subformulas is updated as fol-
lows: Symbmod, n Fpes fiff Esp conj(Symbmod (n)) = f[O*x « (x,k)]. We writeLang™®s (t)
to denote the set of symbolic modékgmbmod with respect tames such thaSymbmod, 0 Fyes t.

Soundness
As a corollary of lemma 4.2.1.4, we get a soundness resuditfbabstraction:

Lemma 4.3.1.1.Lett be a formula ofLTL™" (SLEF) [resp. ofLTL™"(SLSM)] andmes a good
measure such thates; < mes. For any modelod, we havemod F;rmen t if and only if
Absmes (mOd) |=mes t [resp-Absmes[maxsiza—O] (mOd) |=mes t]-

Proof. We treat the case € LTL™"(SL¥) (for the caset € LTL™"(SLSH), replace below
mes by mes[maxsize « 0]). The induction step for the cases with boolean and temporal
operators is by an easy verification. Let us check the base tmsa state formula. Suppose
thatmod,n Fyrmen g for an atomic formulag of LTL™™. By definition, Absyes (mod) (n) =

{f € Fres : mod,n Eypmen T[{X,k) « O¥x]}. Let us show thaks, conj(Absyes (mod) (n)) =
g[O*x « (x,k)]. If for some memory shapés,h) ks conj(Abs,es (mod) (n)), then by he
lemma 4.2.1.4(s,h) Eg. gLO*X « (X, k)].
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Suppose now thatbs,es (mod),n Epes 9. Then, s conj(Absyes (mod) (n)) = g[O*X «
(x,k)]. Sincemod,n Fs; conj(Absyes(mod) (n)) [{x,k) < O¥x]1, we havemod,n f;pnen
(g[O* « (x,k)]) [{x, k) « O*x]. This means thatod, n f iz g. O

Note thatAbs,.s iS not surjective; we noteangts; the set of symbolic models with respect
to mes that are abstractions of some model fai."". Consequentlyt in LTL™"(SLY) is
satisfiableff Lang™* (t) N Lang:.;' iS nonempty.

sat

4.3.2 Omega-Regularity and Polynomial Space Upper Bound

In order to show thagat (SL¥) andSat (SLS") are inpspace we shall explain why testing
the non-emptiness dfang™* (t) N Langs,, can be done imspace. Below we always treat the
case forSL®. For SLS", replace every occurrence oés, by mes, [maxsize « 0] and every
occurrence ofies by mes [maxsize « 0].

We are going to show that each of the langudges™*: (t) andLang};;' can be recognized
by a Buchi automaton with exponential size. This Buchi awtton will additionally satisfy
the right properties to establish theeace upper bound. IfA is a Buchi automaton, we note
Lang (A) the language recognized By. Following [89, 43], letA be the generalized Blchi

automaton defined by the structuig B, d, B, Bg) such thatifes > mes;):

— the set of stateB is the set of so-called atoms gfthat are sets of temporal formulas
included in the so-called closure sdt(t) (see [89]). Let us briefly recall that the closure
setcl(t) is the smallest set containinigclosed under subformulas, negations (double
negations are eliminated) and such that(ufuntil u’) € cl1(t), thenO(u until u’) €
cl(t). AsetT C cl1(t) is an atom if

* forunu ecl(®),wehavaue Tandu e TiffuAu €T;
x forue cl(t),we haveu e Tiff —u ¢ T;
x we have(uuntilu’) € Tiff (' € Tor (u,OCuuntilu’) € T)) whenever(u untilu’) €
cl(t).
— the set of initial stateB; iS{T € B : t € T}.
— the alphabed is Apes.

— the transition relation is defined iy € d (T, a) iff

1. for every atomic formul&of T, 5. conj(a) = f[O"X « (x,n)].
2. foreveryOt e c1 (1), Ot e Tifft' e T'.

— The generalized acceptance condition, that is a set of $ettates such that a run
is acceptedff for any set of states in the generalized acceptance condhere is a
state in this set such that this state is visited infinitekgof is defined as follows. Let
{(t; until t}), ..., (t, until t))} be the set of until formulas inl(t). LetBr be equal to
{Bf,....BE} whereB] = {T € B : (t; untilt}) ¢ Tort; e T} for j € {1,....n}. If the
formula does not contain amyntil operator, then the set is empty, and any run in the
automaton is accepting, hence any word for which there isi@sraccepted.
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Let Af** be the Blchi automaton equivalent to the generalized BldionaatonA. This
automaton can be obtained by working wigh| copies of the generalized automaton. The set
of states ofAf** isB x [0, |B¢| — 1]. The initial states arB; x {0}. The final states arg; x {0}.
There is a transitions(b, j), a, (b’, j)) in Af®* iff there is a transitiorib, a,b") in A and:

— if b € B} thenj’ is j + 1 modulo|Bg,
— otherwisej’ is j.

It is easy to observe that!*® is equivalent toA. It is also easy to observe thaf** has
an exponential amount of states in the size& ahd its transition relation can be checked in
polynomial space in the size ofMoreover:

Lemma 4.3.2.1.Lett be a formulairLTL™™ (SLEF) [resp.LTL™"(SLSM) ] and letmes be a good
measure such thaies > mes; [resp. mes [maxsize « 0] > mes;[maxsize « 0]]. Then,
Lang (A;nes) - Langmes (t) [resp.Lang (Aines[maxsueu—o] ) — Langmes[maxsize<—0] (t)]

We can also build a Biichi automatéfis? such that.ang (AL;) = Langhss. ALS? is defined

sat sat* sat

as(A,B’,d’,B},B}), whereA = Apes, B’ = Apes, B, = B, =B’ anda & a” iff:

1. conj(a), conj(a”) are satisfiable, anal= a’,

2. for every formulax,n) = (X’,n’) € Fpes Withn,n’ > 1, (x,n) = (X', n’) € aiff(x,n—1) =
X,n"—1)ea”,
If mes = mes,, thenA%s: is of exponential size in the size bhnd the transition relation can
be checked in polynomial space in the size.dflore importantly, this automaton recognizes
satisfiable symbolic models.

Lemma 4.3.2.2.Let t in LTL™"(SL¥) [resp. LTL™"(SL{M)] andmes = mes; [resp. mes =
mes; [maxsize « 0]]. Then,Lang (A"?) = Lang®s?

sat sat*

Proof. Itis immediate that the abstraction with respeat¢s of any model necessarily belongs
to Lang (A%s?). Therefore, the sdtangts; of abstractions of models with respectues is

sat

included inLang (AT¢3).

The other inclusion is shown by induction. Let¢s = (Offsets,maxsize,Lab,,Var,)
be the measunees;, n, bemax({n : there isx € Var such thatO" x occurs int}) andmaxi
bemax(0ffsets) + 1. Let (a;);«y be an infinite sequence of symbolic memory shapes in
Lang (A"2). We shall build a sequendg;, h;) ;e such thabs,es ((si,hi)ian) = (ai) ien.
So, fori € N, a; = {f € Fpes : mod, i Fipmen f[{x,n) < O"x]}. The construction is by
induction on the positioth € N.

Let us study the base case of the induction that will providalae fors,, . . ., s,,, ho. Since
(ai)ien € Lang(ATS3), conj(ay) is satisfiable. There arsf, andhy satisfying (s;,h) Esp
conj(ay). When dealing with the record fragmenttfsets = {0}), the objects are appropriate
for the initialization:h, = hj and forn € [0,n,] andx € Var,, we sets, (x) = sy ({(x,n)).
Whenoffsets # {0} (maxsize = 0 and we are dealing with the fragmesit), there is no
constraint on the size of the heap. We apply a permutatianwhich maps all the images
of variables to multiples ofiaxi. Forn € [0,n,], we consider the stors, such that for
X € Vary, s, (x) = pmt (s;({(x,n))). The heafh, is defined by enumerating the test formulas

(x,n) + j—=Xx’,n’) andalloc((x,n) + j) of a,, and by defining the heap accordingly. When
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(X,ny + JoX',n') € ag, we definehy (s, (X) + ) (1) = sy (X'); whenalloc({x,n) + j) € ao,
we defineh, (s, (X) + j) (o) = sp(X) + j, for somel, ¢ Lab,. Thanks to the distanagaxi
imposed between the values of variables, and éd.ab,, test formulas about the heap which
are not ina, are not satisfied. Equalities= x’ are preserved since the store has only been
modified by a permutation.

For the inductive step, suppose that we have already defireedtoress,, . . ., Sk, and
heaps,, ..., h for some positiork > 0 satisfying the conditions below: for eveiy< k,

— forall f € Fpes, (sI,h;) Fs fiff f € a;, wheres! : (x,n) = 55, (X);
— Im(s}) CmaxiN, wherekN fork e Nis {k x i,i € N}.

Let us build the storey.,,.; and the heapy.,;. Since(a;)ien € Lang(AL?), conj(ag.s)
is satisfiable. There exists a memory shdpgh’) satisfying (s’,h’) Es. conj(ag.;) and
for all x € Var andn € [0,ng — 1], s"({(X,n)) = Sk.1.n (X). By definition of A%S:, for all
n,n’ € [0,n,— 1] we havex,n+1) = (X’,n’ +1) € a iff (x,n) = (X’,n") € ax+;. Consequently,
foralln,n” € [0,ng — 1], Sks14n (X) = Sparen X) iff s"({X,n)) = s’ (X, n’)). So, there is a
permutatiorpmt identical for the variable&, n) withn € [0,n, — 1] such thaim(pmt o s’) C
maxiN. By construction, foKx,n) € Varyes, pmt (s’ ({x,n))) € maxiN. Forx € Var,, we set
Sk+14n, (X) = pmt (s’ ({X,np)) ).

If we considerSLEF, this permutation satisfies the prerequisites of lemma24&2since
Offsets = {0}. We can definéy,; = pmt eh’. Thanks to lemma 4.2.2.5, we know that both of
these memory shapes satisfy the same test formulas, wiaaxactly those iy, .

If we are dealing witlSLS", then the definition of.m,+1 €Nsures that the equalities satisfied
are exactly those of.,. This time the prerequisites of lemma 4.2.2.5 are not sadisfnless
Offsets = {0}. We know thamaxsize = 0, which means that the only test formula about size
in ay. iISsize > 0; therefore there is no constraint on the size of the heaph&hp is defined
by enumerating the test formulas of the foran) + j<—'(x’,n’) of a..;, and defining for each
of themhy1 (S0 (X) + 3) (1) = s (X)) ; @and then for each of the test formulas of the form
alloc ({(x,n)+ j) of ay.1, we definehy,; (Sgs14n (X) +3) (o) = Sks14n (X) + 3, fOr some, ¢ Lab,.
Thanks to the distanagaxi between variables, the test formulas about the heap whechar
in ax+; are not satisfied. Equalities= x” are preserved since the store has only been modified

by a permutation. O

Note that we can extend lemma 4.2.1.451q by considering test formulas of the form
x+1 =x"+1’. Sadly, the lemma above is essential and it is not possilgetend it to the whole
logic LTL™", even by allowing test formulas of the fom+ i = x’ + i’, as the resulting sets
of formulas cannot be handled by Bichi automata. Indeed,omgecture that automata with
counters could handle these sets of formulas, but evenasidgtiwould not be helpful to reach
a decidable procedure, as their non-emptiness is undéeidab

Now, we can state our main complexity result.

Theorem 4.1. Sat (SL¥) andSat (SLSH) arepspace-complete.

As a consequence, SincEL™" (SLLF) is a syntactic fragment &fTL™*" (SLYF), the problem
Sat (SLL") is in pseack, and hence isspace-complete.

Proof. The lower bound is fronLTL [86]. Lett be an instance formula &fat (SL¥*) (for
Sat (SLSY) replace belowmes, by mes,[maxsize « 0]). As seen earliett is satisfiable ft
Lang™* (t) N Lang,,, IS nonempty. Hence,is satisfiableff Lang (A;**") N Lang (A5:;") # 0.

sat
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The intersection automaton is of exponential size in the szt and can be checked
nonempty by a non-deterministic on-the-fly algorithm. Taligorithm, for the non-emptiness
problem of Blichi automata, is iocspace, see [89]. The transition relation in the intersec-
tion automaton can be checked in polynomial space in thedite As a consequence, we
obtain a non-deterministic polynomial space algorithmtésting satisfiability of. As a non-
deterministic polynomial space algorithm can be turned @npolynomial space algorithm, see
for instance [4], we get thespace upper bound. m|

4.3.3 Other Decidable Problems

Let Frag be either the classical fragment or the record fragment. rham.1.4.1 provides a
reduction fromMcS®}? (Frag) to Sat{%s (Frag) based on a program-as-formula encoding. As

init init
we will see now, we may also redusat;;;; (Frag) to Sat (Frag) internalizing an approx-
imation of the initial memory shape which the logical langeaannot distinguish from the
initial memory shape. As a consequence,sidrece upper bound foBat (Frag) will entail the

PSPACE Upper bound for botBat$®}; (Frag) andMcS™ (Frag).

init init

Theorem 4.2. The problemsat$°s (SL¥) andMcso®s (SLEF) arepspace-complete. The prob-

init init

lemsSat$ote (SLEY) andMcsors (SLEM) are alsaspace-complete.

init init

As a consequence, sint&L™" (SLLF) is a syntactic fragment dfTL™" (SLEF), the prob-
lemsSat$oe (SLLF) andMcsons (SLLF) are inpspack, and hence arespace-complete.

init init

Proof. We begin with the fragmersL:". By lemma 4.1.4.1 and sinGat{"s (SL¥F) is known

init

to bepspace-hard, it remains to establish therace upper bound foBat$%}? (SLY").

Given a formula and an initial memory shapés,h), we shall build in polynomial time
an instance o$at (SL{"), that is a formulal, € SL{ such that is satisfiable in a model with
initial memory shapes,h) and constant hea}ﬂfltCt is satisfiable by a general model. Since
we have shown th&at (SLE") is in pspace, this guarantees thaat ;s (SLY) is inpspace. The
idea of the proof is to internalize the initial memory shapd the fact that the heap is constant
in the logicSat (SLY). Actually, we will not exactly express that the heap is cansbut the
approximation we use will be flicient for our purpose.

Apart from the variables of the formulattCI is built over additional variables i = {x;

i € Dom(h) UIm(s)}U{x;, : i € Dom(h),| € Dom(h(l))} from Specialvar. The formula

t2, is of the formalways (u; Au, Auz) Aus AU, where the subformulas are defined as follows.

— u, states that the heap is almost equdl ®nce we cannot forbid additional labels in the
logical language. IDom(h) = {i4,..., iy} we define:

| |
u; = ( /\ Xi, > Xi,) 0...0( /\ Xi, > Xi, 1)
leDom(h(iy)) leDom(h(ig))

— u, states which variables are equal and which ones are notnhdejgeon the initial
memory shape. It is a conjunction of simple formulas. As aangxe, fori # j €
Dom(h), a simple formula ofi, is x; # x;. Similarly, if h(i) (I) = j andj € Dom(h),
thenx;, = x; is a simple formula ofi,. Details are omitted.
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— us States that the variables ¥fremain constant:

/\X=OX

— The formulau’ is obtained front by replacing each occurrencexsfs'x’ by

x—'X" A /\ X # Xj.
ieDom(h),l¢Dom(h(i))

The additional conjunction is useful because our logigalleage cannot state that a label
is not in the domain of some allocated address.

— U, States constraints about the initial stereig 2 A X = Xsxo -

It is then easy to check thais satisfiable by a model with initial memory shafeh) and
constant heafti tCt is satisfiable by a general model.

As far as the results for the classical fragment are condetmglemma 4.1.4.1, there is
a logarithmic space reduction froMe<°s (SLSH) to Sat$s (SLE). Also, as done above, one

init init

can reducesat{®® (SLS") to Sat (SLS), with the additional concern of the arithmetic links
between allocated locations, which is easy to handle. fxiesmust add more variables, the
variablesx;_; for i € Dom(h) andQO,x + i—'x’ occurring int for somen and somd. It is
then sdficient to add a formula, in the scope of thalways operator irt', . This formula will
describe all the pointers accessible with the syntactioue®s oft, with the additional ability
of using pointer arithmetic. We do not need to be concerneld thie equalities among these

new variables as the syntax bfL™" does not allow us to check equality between, sagnd

y+1i.
A A A g 3

ieDom(h) leDom(h(i)) {j,Okz+j<'y occurs int for somey, z, | andk}

I>

Usy

Theorem 4.3.Mc{>7s (SLs) is pspace-complete.

As a consequence, SincEL™" (SLLF) is a syntactic fragment &fTL™*" (SLY), the problem
McSons (SL.) is in pspack, and hence isspace-complete.

1n1t

Proof. SinceMc{?1$ (SLE") is a subproblem ofic§"$ (SL), theorem 4.2 entails thespace-
hardness. It remains to prove tkeace upper bound The proof goes by designing a polynomial
space reduction to the model-checking problem for projwosit LTL. Let (P, s, hy,t) be
an instance offc$ (SLY), whereP = (B, d,b;) is a program without destructive updates,
(so0,hyp) is an initial memory shape, ands a temporal formula iLTL™" (SL;). LetS be the
finite set of store¢s : Im(s) C Im(sy) U Im(hy)} restricted to variables occurring ihandt.
Its cardinality is bounded by1Im(s,) U Im(h,) ). All the memory shapes in the transition
systemS; restricted to the configurations reachable from the initiamory shapés,, h,) are
in S x {hy}, sinceP is without destructive updates.

Let wdw be one plus the maximal natural numbesuch thatOx appears int (size of
the window made of consecutive states that need to be coadidemultaneously). We de-
fine the transition grapl = (Bg, —,B:) such that:B; = B x S*¥, B; is the set of tuples
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(b1, S1,S2,...,Swaw) SUCh that(s;,hy),..., (suw. ho) IS @ prefix of a run ofP with initial
memory shapés,, hy), and the transition relatior is defined as follows:
(b, S1,.-4, Swdw) - (b/’ Sli’ Tt S;\rdw)
o [ Swa=s, k=1,...,wdw—1, andIb =51 ed
such that(s;,hy) Fgand(sy,hy) € [ instr [(sy,hy).

We now define the propositional’l. model by associating to each vertex of the transition graph
a set of propositional variables that are true. We deffirsp to be the set of atomic formulas
occurring int, so thatt can be seen as a propositiohdL formula overProp. Then theLTL
model is the vertex-labeled transition graph= (G, L), with

L : Bg — Pow(Prop), (b,si,...,Suaw) — {f€Prop : si,...,Suaho Fs. f}.

By constructionG’, (by, S1, So, ..., Syaw) Frrmen tin LTL for some(by, s;, So, ..., Syaw) € Br
(existential version) if and only iP, (s, hy) Frpren t. The modelG’ can be computed in poly-
nomial space in the size @P, sy, hy, t) in the sense that the (non-deterministic) transition func-
tion and the labelling function are computable in polyndregace. G’ has an exponential size
in the size of(P, sy, hy, 1), but let us explain now why the existence @f, s, Ss, . . ., Suaw) €

B: such thatG’, (by, s4, Sa, ..., Syaw) Furmen t AN be checked in polynomial space. Kgtbe
the automaton recognizing the modelst @iver the seProp of propositions: it has an expo-
nential size in the size ofP, so, ho,t), and so is the product witi’. Now the existence of
(b1, S1,S9, ..., Swaw) € Br suchthats’, (br, s, Ss, ..., Suaw) Frores t reduces to check the non-
emptiness of\; N G’, which is decidable in space proportionaliteg (| A |) + log(| G’ |) by

a non-deterministic on-the-fly algorithm. The problem daeréfore be solved in polynomial
space in the size ofP, s¢, hy,t) by a non-deterministic algorithm, and by Savitch’s theorem
this can be turned into a deterministic polynomial spacerélgm. O

Theorem 4.4.Sat$°"s (SLy) is pspace-complete.

init

Proof. pspace-hardness is a consequence of thiace-hardness o8at$1s (SLS™) sinceSLS" is
a fragment ofL;. In order to get thespace upper bound, we are going to reduce the problem
Sat$ol® (SLy) to SatSo}? (SLEF). Let (so,h),t be an instance dat{%? (SL;). We shall build
an instances/, h),t’ of Sat$%® (SLY).
LetI =Dom(h) U{k—1i e N : k € Dom(h) and O"x+1 occurs int}. We use the injections
(k) for eachk € I, and(x, i) for all x andi occuring int in an expression of the forq)"x + i
(possiblyn or i is equal to zero). These extra variables defined in sectihi tio not occur in
t.
The initial stores; is the extension of, which maps(k) to k, and(x, i) to s, (x) + i.
Finally:
t'= t[O*X+1« O"{x,1i)]
nalways /\ (&) = O (k)
kel
Aalways A /\ (x= (k) & (xi)= (k+1i))
x+iet (k+i)eDom(h)
s, andt’ have a polynomial size in the size of the instaisg h), t.
Assume thats,, h), tis accepted by the problesa s (SL.). Then there i€s; ) ;o SUCh

init

that (s;,h) jen Fummes t. Let s? bes; extended so as to map) to k and(x, j) to s; (x) + j.
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Clearly (s}, h) jen Fromen t[O™X +1 < O™(x, 1)]. Our definition of eacls’ also ensures that
(si,h)jen Frmmen always A; (k) = O (k)) since the value of a variablg) is constantly
equal tok, and that(s/, h) e Frrmes alWays Assict A\ sirepomam X = (k) & (x,1) = (k+1))
since for all positions, the value ¢t + i) is that of(k) plusi and the value ofx, i) is that of
x plusi. So (s}, h)iay Fumme t', and therefors),h),t' is accepted bBat s (SLE).

Now, assume thats), h),t' is accepted bgat$s (SLEF). Thenthere is a sequents,) ;o
such that(s},h)jey Frmmen t'. Then (si,h)iar Frmmen always A; (k) = O <k)), and
so, at each time stath,, we haves’io(<k)) = s,((k)) = k. Moreover, (s},h)jen Frrpmen
always Ayriet A aeriyeponmy (X = (k) © (x,i) = (k+1i), and so, ifk € Dom(h) andO"x + i
occurs int, we haves] , (x) =k —1iiff s| , ((x,1)) =k (Property I).

We writeh’” < h when there is another he&d for whichh = h’ch”. Let us prove by
induction on subformulatg of t that for alli, € N andh’ < h, we have(s’,h")jay, io Frrmes to
iff (s}, h")sen, o Fromen to [O™X + 1 « O™x, 1)]. This will ensure that's’, h) jey, 0 Fpppmen t,
so that(s{,h),t is accepted bgat{s(SL,), from which we will conclude thats,, h),t is
also accepted; indeedY} is the set of variables occurring irthe restrictionsg,, is equal to
Soiy,- Here is the proof by induction:

— IftyisO'x +i='O"y, letk = s}, ((x,1)).

« Suppose thdt ¢ Dom(h). We are going to prove that neithés’, h’) ;cy, i Frrpmes
to [O +1 « O (x,i)], nor (s{,h)iay, 1o Frmen to. First, it is clear that
(s, h)ian, 1o Frmme t,[O™X +1 « O" (x,1)]. Second, assume thereks
Dom(h) such thak’ = s| , (x) +1i. Thanks to (Property I), frorg] , (x) =k’ -1,

we gets] , ((x,i)) =k’, and sdk = k" € Dom(h), which leads to a contradiction.

So there is no suckl, and not(s’, h’) jan, 1o Frrpmen to.
+ Now suppose that € Dom(h). We haves| , (x) =k = sj , ((x,1)) — 1 thanks
to (Property I). Thenh' (s} , () + D () = s} () iff h'(s] , (i) D) =

S,io+n(<y, 0)). And, (s}, h) jen, 1o Frpmmen to iff (8], h") s, 1o Fropmen to [O™X + 1
O™, 1)].

- If t, = f, of,, then there are two heap$ andh), such that(s},h}) ey, 1o Frome f; and
(si,h})ian, 1o Frmmen fo. By the induction hypothesis, and sinite= (h)ch}) ch” =
hio(hjyoh”), we can state that(s],h})icw, io Frmmen f [OPX + 1 « O (x,1)] iff
(s}, h})ien, 1o FLmmen f;; @and the same equivalence is true igr From the two equiva-
lences foh) andh’,, we can conclude the same equivalencenfos h} o h?,.

Other cases of the induction are straightforward. |

If we allow the operator= in the above theorem 4.4, the proof may not be adapted, since
we would have to deal with heaps which are not sub-heapsrothe induction step.

4.4 Undecidability Results

As a preliminary remark, we will use the standard abbrewrai’ for the set of recursively
enumerable sets. A formal definition and more informatioowkihis topic can be found
in[78].

In this section, we show several undecidability results y@ reduction from problems
for Minsky machines. So, we first give the definition of a Mipskachine.
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Definition 4.4.0.1. A Minsky machineM consists of two counters, andc,, and a sequence
of n > 1 instructions of one of the forms below. The instructions barseen as control states,
we call thenb, b’ orb” below.

b: c; :=c¢; +1;gotob’

b: if ¢; = 0 then gotdy’ elsec; := c; — 1; gotob”.

In a non-deterministic machine, after an increment or aetaent, a non-deterministic choice
of the form “gotob’ or gotob”” is performed. The configurations df are triples(b,m;, m,),
whereb € {by,...,b,} andm;,m, > 0 are the current values of the control state and the two
countersc; andc,, respectively. The consecution relation on configuratisrdefined in the
obvious way. A computation dff is a sequence of related configurations, starting with the
initial configuration(1, 0,0).

We will reduce the halting problem and the recurring probfemMinsky machines. The
halting problem consists of determining whether the mazlgian reach a configuration with
control stateb,. The recurring problem consists in determining whetherrtfazhine has a
computation with the control stabg repeated infinitely often.

Different encodings of counters are used here. For instances am&pired from [7]: a
counterc with valuen is represented by a list of lengthpointed to by a variablg. dedicated
to the counter. The same idea is used in the proof of theorem 4.5 below. Adtarely, in
order to show undecidability &fat (SL;), we encode counters by relying on pointer arithmetic
and properties of heaps. In the case of a problem that ins@meexistential quantification on
the initial heap, the maximal value of the counters can besgge as illustrated in the proof
of the theorem below. Finally, the programs without dedivecupdates can simulate finite
computations of Minsky machines on counters bounded byizeeas some parts of the heap
(the length of a list).

Theorem 4.5. For any fragmenFrag € {SLL", SL_, SLS:, SL¥F}, the problemsat <" (Frag)
andMce"s (Frag) arez{-complete. The problemicc(SL;) is alsoz-complete.
Proof. First, let us prove that these problems argfinBy theorem 4.2Sat 52" (SLL) is decid-
able in polynomial space using a finite abstraction arguntéance Sat“** (SL:") is in £ by
adding an existential quantification over the initial meynshape. Similarly, by theorem 4.2,
Mco"* (SLLY) is decidable in polynomial space. HenMe<°"s (SLL") is also inx{. Itis possible
to reason in the exact same way fart <" (Frag) andMc®® (Frag) with Frag € {SLS", SL¥F}
from the decidability results of theorem 4.2, foe<o™s (SL,) andMc<*s (SL,) from the decid-
ability results of theorem 4.3, and feat " (SL.) from the decidability results of theorem 4.4.

Now, let us prove that the problems aghard. AsSat<"s(SLL") is a subproblem of
all the studiedsat“® problems, proving th&%-hardness ofat " (SLLF) will entail the £0-
hardness of all the others. Similarly, s "s (SLLF) is a subproblem of all the studigu<°"s
problems, proving th&%-hardness aficc*s (SLL") will entail thex?-hardness of all the others.
As a consequence, we only need to prove 8wt (SLLF) andMcs(SLLF) arex®-hard.
Additionally, by lemma 4.1.4.1, we only need to show thet*"s (SLL") is x°-hard.

We reduce th&?-complete halting problem for Minsky machinesMo™s (SLL"). The
halting problem consists of determining whetivtcan reach a configuration with control state
by.
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(y # 29,y :=Yy — next)

@ (T,y :=2) @(y==zo,skip)@

Figure 4.4: Checking thatpoints to a list

(X3 # Zo, X3 :=X; — next)

(Xj == Z¢, skip)

Figure 4.5: Simulating a decrement

Let us build a formula and a progran® in Prog®* such that the existence of some memory
shape(sg, hy) for whichP, (so,hy) e tis equivalent to the fact that the machivieeaches
a configuration with control statg,. In order to encode the values of counters, we consider a
variablez pointing to a list ending or, (as shown below) in the initial memory sha@®, h,):

next next next next

A N i o e

The variablez andz, remain constant along any executionfoéind the length of the list is
greater than the maximal value of the counters in some finitgpaitation (hopefully ending at
the instruction corresponding to control statg. We consider also the variablgsandx, and
along any execution df, each variable; points to a cell of the above sequence: the length of
the list starting ak; encodes the value of the countgr Hence, inP, eachx; is initialized as
equal toz,.

The progran® is structured by the following stages:

1. Check that points to a list;
2. Initialize the variables;
3. SimulateM.

Figure 4.4 shows how to perform stage 1 with a simple loop¢tvisan be seen as a while
loop. Observe that checking whether a counter is equal toaaresponds ii¥ to an equality
test withz,. In order to simulatéV, its structure can be embedded in the control graph. of
For instance, a decrement instruction is encodétlbg the transitions shown in figure 4.5. An
increment instruction requires a bit more care and its eingoith P is presented in figure 4.6.
Indeed, the auxiliary variablgsandy’ initialized toz visit the list until meeting; .

In the above encoding, every instructibin M corresponds to a control statelfafHence,
the formulat is simplysometimes(b,,) : as stated earlier, we may encode propositional variable
b, by additional variables dedicated only for this purpose.

It is then easy to show that there is an initial memory shéapeh,) such thatP reaches
the controlb, starting with (sq,h,) iff the machineVl reaches the control stabg. For this
purpose, observe that bdtrandM are deterministic. O
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@ (T,y:=2) ,/ (T,y:=2) /\QY’==X1,X1:=)@
N

y #X;,y :=Y') (T,y :=y — next)

Figure 4.6: Simulating an increment

By contrast, programs with destructive update can work withounded heaps, and by
using the representation of counters as above, they cénfiuldytsimulate a Minsky machine,
even if the initial heap is an empty heap, without any bounthercounters. Then, &9L can
express repeated accessibilitishardness can be obtained.

Theorem 4.6. The problemdic (SL:") andMc, .. (SL:") arexri-complete.

init
As a consequence for more expressive logics, the prohfiertBrag) andMc.

.. (Frag)
init
for Frag € {SLS", SLEF, SL,, SL¢} arex!-hard, and hence!-complete.

Proof. It is possible to reduce the recurring problem for non-deisistic Minsky machines
to Mc (SLY") and toMc, ., (SLL"). This problem isti-hard [2]. The question is whether the
machine has a computation with the control stateepeated infinitely often; and this can be
expressed bglways (sometimes(b,) ) in LTL™",

The proof is quite similar to the proof of theorem 4.5 excéptttthere is no maximal
value of the counters, the initial heap is empty (which carexgressed in.TL™"), and the
behavior of counters is encoded by updating the memory shagenstance, incrementing
amountsto execute := cons(next : x;) (the length of the list pointed by is incremented),
decrementing; amounts to execute := x; — next. Zero tests are encoded by equality tests
with z, and the initial values of the variables is equak$o Details are omitted since there are
no technical dficulties. O

Now, let us explain how to encode increment and decremetit separating connectives
and pointer arithmetic. Observe that expressions of the for= y + 1 are not allowed in
LTL™". We circumvent this obstacle in twoftBrent ways: using non-aliasing expressed by
the separating conjunction, and using the precise poirggsgrtionkx—"¢*'y stating that the
heap contains only one cell, in conjunction with theoperator. We assume a varialzg
with constant valuealways (Oz, = z,)), which can be considered as a substitute forriie
constant.

tD

X++
t,_
to
to

= (qunextzo A X+ 1‘_)nextzo) A ﬁ(oanextzo OX + 1cnex
= (OX + 1(_)nextzo A X(_)nextzo) A = (OX + 1(_)nextzo 0 Xxe—hex
= (OXHnextzo) X+ 1Hnextzo
= (X'_)nextzo) - OX+ 1|_)nextzo

tZO)
tZO)

The formulas based on the separating conjunction correggyess increment and decrement
when the cells at indexesr 1 andOx are allocated, whereas formulas based on the operator
work when the heap is empty.

Theorem 4.7.The problemsat (SL), Sat{;;; (SLs), Sat“"* (SLs) andSatSyi; (SLy) are all
£i-complete.
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Proof. Let Sat." (SLs) be any satisfiability problem among the four studied vasamits an-
nounced, we are going to reduce the recurrence problem foideterministic Minsky ma-
chines toSat. (SLs). In this proof, any model will be writtetiod = (sp, hy) nso.

Lett, be the formulalways (emp A (Oz, = z,) ), which ensures that the heap will always
be empty — the part abom§ being constant is unnecessary but makes the ideasgresenting
null more consistent. Increment and decrement are performeéigha the formulas,,, and
t.~ , respectively. For any modelod such thatmod, 0 k= t,, and for anyi,, we have
mod, iy Fppmen tX‘f_H iff s;,(X;) +1 = s;5,.1(X;). Indeed, the formulaa,(‘f++ is satisfied by the
model ff the pointer existing in the right member of the formula iss$egd by the current model
extended by any heap satisfying the right member. Since thaehhas an empty heap Iy
this happens if and only if the pointer has been added by timelywahich means if and only if
it also satisfies the left member of the wand. By the definitibthe semantics dfTL™", both
sides of the wand are satisfied by the same heap if and onlg gadme memory cell is located
both at the image ofx, 1) through the store] and at one plus the image ®fthrough the
stores;,, wheres’io (X, 1)) = 53,41 (X). In other words, if and only if;, (x;) +1 = 55,41 (X;).
Hence, we have a means to encode increment.

Very similarly,mod, i, Fyymen t,__ ands;, (x;) > 0 iff s5,(x;) — 1 = s3..1 (x;). The fact
that a counter does not change is encodes; by Ox;. Given thatt; = always (Xzero = OXzero)
holds, zero tests are encodedy= Xzero

Given a non-deterministic Minsky machiivg, we writeu, to denote the formula encoding
instructionb. For instance for the instructiom: if c; = 0 then gotd’ elsec; := c; — 1; goto
b” or gotob’”’;” the formulau, is equal to the formula below:

always ((b A X; # Xzerd) = (X = OX2 A (Ob” V. Ob™) AteL ))A

always((b A Xy = Xzero) = (X3 = OX1 A Xy = Oxy AQOb)).

Finally, lett, be a formula stating that each position corresponds to auerégnfiguration
and the first instruction ib;: t, = always (A, (Ap.p (b = =b))) A by.

Hence,(X; = X = Xzere) A to Aty A Ay Up A always (sometimes(b,,) ) is satisfiableff M
has a computation with instructidr repeated infinitely often. O

Theorem 4.8.The problensat (SL,) is £i-complete.

The proof of theorem 4.8 is similar to the proof of theorem éxéept that increment and
decrement are performed with the formuigs andt,__ respectively, and the heap is not always
empty: at each increment or decrement, it has size precisely

Conclusion

Summary of this Chapter

We have introduced a temporal logitTL™" whose assertion language is a quantifier free sep-
aration logic, for which we have introduced five fragmentd aeven decision problems for
each fragment. We have categorized all of these problenesnmstof complexity. Figure 4.8
contains a summary of the results. All problems are categdras complete in their class.
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In a nutshell, we have shown that our model-checking probjemhich encode a halting
problem thanks tauntil, are undecidable when the program has access to a memoryheap
unbounded sizeig, Mc“"s andMc, ..), and decidable otherwis¥d{?;).

Concerning our satisfiability problems, a special care rhagiranted to a subtle interplay
between the temporal features, the separation conneeng$he pointer arithmetic we use.
When this interaction is possible, it leads to undecidgbiiat (SL.) andSat.’(SLs)). When
this interaction is not possible, the problems are decaldlaind only if the control on the heap
is effective on a bounded amount of locations. This amount of ioeatcan be bounded for
two reasons. It is clearly bounded when the initial memorgpis part of the problem and
constant §at$;7). It can also be bounded because the memory cells which ateeanage
of a variable of the studied formula through the store camgbaincontrollably between two
consecutive memory states: in this last case we have beent@llbstract the heap with a
set of formulas describing a heap bounded by the syntad@urees of the studied formula
(Sat (SLEF), Sat (SLSM) andSat (SLEF)).

We obtained all these results from few direct proofs and nsbsequent reductions be-
tween decision problems. Figure 4.7 shows the reductiotvgda®m problems leading to half
of the results. Curved lines represent reductions for pigphiardness in a class. Straight lines

represent reductions for showing that a problem belongs tass.

Related Work

The interest of the model-checking of programs with heapatggistems from early works on
automata-based verification. Decision procedures aranautat the cost of limitations: to
restrict the programming language, see for instance Baidah. in [7], or to define approxi-
mations as done in [90, 47]. Previous temporal logics desidar pointer verification include
in particular: the evolution temporal logic of Yahav et &80], based on the three-valued logic
abstraction method that made the success of the threeeMalgie assertion engine presented
by Lev-Ami and Sagiv in [69]; and the navigation temporalitogf Distefano, Katoen and
Rensink [47], based on a tableau method quite similar to atonaata-based reduction. In
these works, the assertion language for states is quiteaglht includes, for instance, a list
predicate, the quantification over addresses, and a frestpredicate. Because of this high
expressive power, only incomplete abstractions are pexpashereas we stick to exact meth-
ods. Similarly, we should also mention the work of Katoen)lldad Rieger [65], published
in the same year as the work presented in this chapter, wiedepts sound heuristics for the
problem that we callic. . (SLL"). As an additional dference with these works, our work
addresses models with constant heaps and pointer aritymétich has not been done so far
and leads to a tlierent perspective.

The abstractions we made of memory states are similar taresgraphs of Galmiche and
Méry from [54, 55]. We have chosen to use them following theknaf Lozes [73]. The use
we make of them is a variant of the automata-based appro&rolduced by Vardi and Wolper
in [89] for plain LTL and further developed with concrete domains of interpicatdty Demri
and D’Souza in [43]. From a logical perspective, the logi@™" can be seen as a many-
dimensional logic as for instance Gabbay et al. in [52] sitkig"" contains a temporal dimen-
sion and the spatial dimension for memory shapes. Intaegesttamples of many-dimensional
logics can be found in [9, 5, 52, 43].
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PSPACE-COMplete problems £9-complete problems
Satfiis (SL) @\ heo. 4.5
Mcsons (SLLF) %
Theo. 4.1 Mc$ons (SLSH) Mceons (SLCL)
(St U St L —
cons (g RF cons (g RF
e L) o L) e e (SLE)

Straight lines prove a problem belongs to a class, curved lpmove hardness
Figure 4.7: Reductions

Mc Mceo"s | Mc§ots Mc,,;. | Sat Sat®" | Sat{i;
SLLF | zi-c. | x%-c. | pspace-C.| Ii-c. | pspace-C. | Z°-C. PSPACE-C.
th.4.6|th.45|th.42 |th.4.6|th.41 |th.45 |th.4.2
SLYF | xt-c. | x%c. | pseace-c.| Zl-c. | pspace-C. | Z9-C. PSPACE-C.
th.4.6|th.45|th.4.2 |th.4.6|th.41 |th.45 |th.4.2
SLY | xt-c. | x%-c. | pseace-c. | Il-c. | pspace-C. | Zo-C. PSPACE-C.
th. 46| th.45|th.42 |th.4.6|th.41 |th.45 |th.4.2
SL, |xi-c. |x%c. |pseace-c.|Il-c. |Ii-c. £f-c. PSPACE-C.
th.4.6|th.45|th.43 |th.4.6|th.48 |th.45 |th.4.4
SLs | Zj-C. | X9-C. | pspace-C. | Ii-C. | Ii-C. £i-C. £i-C.
th.4.6|th.45|th.43 |th.4.6|th.4.7 |th.4.7 |th.4.7

Figure 4.8: Complexity of reasoning about programs witmpegivariables

Perspectives

Assuming that the heap is constant is subject to promisingldpments. Indeed, it is then
possible to define spatial operators at the same syntaeéicde temporal operators, and write
formulas as for instancéx; = x A ((x = Ox) until (X <= X))) o (y — Xo). Observe
that this formula does not belong I@L™". This might be a way to specify the modularity
of programs without destructive updates, but there arergibimts of interest we will try to
advocate now.

Recursion with Local Parameters

The constant heap semantics provides an original viewfainécursion with local parameters
and local quantification. The design of decision procedurdse presence of general recursive
predicates was introduced by Berdine et al. in [10], as welhaomplete methods of inference
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even though they are apparently good in practice. Completdads have been proposed for
some standard recursive structures such as trees, listiguby-linked lists as by Berdine,
Calcagno and O’Hearn in [12]. But we are not aware of compietéhods for a general form
of recursive data structures defined on top of separatiao,lagd we believed that a logic close
to ours could give an alternative way of specifying recurs@though we did not manage to
characterize an interesting decidable fragment.

In order to be a bit more precise, let us consider the fragmir@cursive separation logic
where all recursive formulas are of the form:

WP (Xq, e Xi) e t (X, X)) VX, X UKy ey Xis Xy e X)) AP, LX), (4.1)

This fragment is rich enough to express singly-linked Jisylic lists, and doubly-linked lists.
However, we conjecture that it is not expressive enoughrémstand directed acyclic graphs.
We conjecture that deciding satisfiability in the fragmehtexursive separation logic men-
tioned above reduces &at“"*(SLs), and the model-checking problem reducesas:s,
considering that (4.1) can be rewritten as:

AKXy oo X OXq,y oo OX))) until (uXy, .., X))

In this perspective, from our results could arise intengstiecidability results for the model-
checking problem of some of the recursive separation logit cal quantifiers. For satisfia-
bility, we expect to define decidable fragments $art“°"** (SL;), for instance considering the
techniques for proving decidability of checking temporadggerties of so-called flat programs
without destructive updates introduced by Finkel, Lozes &angnier in [51]. Another inter-
esting fragment of recursive separation logic is probabé/dne where recursion is guarded
by the separation operatorbut we do not currently see how to treat it in the temporaidog
perspective.

Programs as formulas

Let us speculate a bit more. We may take advantage of expgepsdbgrams as formulas in
order to reduce model-checking problems to satisfiabilitépfems, a known approach since the
work of Sistla and Clarke in [86]. For programs without destive update, we take advantage
of lemma 4.1.4.1. Moreover, we believe we can extend thigltrés programs with updates,
but with a slightly diferent perspective. The constant heap semantics can beiltelpliefine
the input-output relation of programs, even with destuectipdates, provided some conditions
on the way the program read and write over the memory arefisdtisTo do so, we could
study the extension dfTL™" in which two predicates—, and <, are used instead of the
single—, and for which the models are couples of state sequenceswigtant heap, that is
tuples ((s;)is0, ho, hy). Let us define the input-output relati@g’ of a programP as : for all
(so,ho), (s1,h1), (s0,ho)RE%(sy,hy) if there is a run off that starts with(s,, hy) and ends
with (sy,h;). Then we conjecture that for an interesting class of prograis relation is
definable inLTL™" extended with—, and<;. Basically, the encoding of the control of the
program will be the same as for programs without destructpaates, but the encoding of the
instructions will be diferent. For instance, — | :=y implies (Ox) =y whereax :=y — |
impliesy—! O x. A precise encoding remains to be found.
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Conclusion

In chapter 2, we have shown that first-order separation lagfic one selectoSL is unde-
cidable. Also,SL without wand is decidable with non-elementary complexaty,well as its
extension with a restricted magic wandistiently interesting to replace all the occurrences
of the ordinary magic wand in the usual Hoare-style rules tisa it. Finally, we have char-
acterized the expressive power of first-order separatigic lover models with any number of
selectors.

In chapter 3, we have given a wide picture of the decidalsligyus of the satisfiability prob-
lem for separation logic dealing with data. An interestiaguit arose: dropping the restricted
operator=, and restricting data comparisons to local comparisons sialessatisfiability prob-
lem decidable, still being able to specify local reasoning express properties about ordered
recursive structures.

In chapter 4, we have introduced a temporal Idgit™" for which assertion language is
guantifier free separation logic, and provided a complegeastterization of the complexity of
35 satisfiability and model-checking problems we have ddfifiénis draws clear borders not
to be crossed if one wants to adapt separation logic to temhpeasoning while defining a
decidable logic.

We have ideas about how to extend each of the chapters pedsefitst, we conjecture
that SL with only two variables can encod®. Then, we expect our decidability results for
sL9"arded 5 extend to more complex data structures that would havecalataleMSO theory
(trees, doubly-linked lists, lists of lists, and more getigrtree-width bounded structures), and
to more complex short-distance comparisons (sualtthssuccessor or brothers). Finally, we
expect our decidability result f@at (SLE) to extend to branching time, and we think that
there is a way to extendTL™™ so as to express properties in a way more related to a Hoare
logic with preconditions and postconditions.
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Tables of Notations

Unless otherwise indicated below, the capital of a letteroties a set whose elements are de-
noted by the lower case of the same letter— for instanisea letter and is an alphabet. An
exception to this rule are the capital letters of the fantd, etc. Similarly, the first letter a
notation made of multiple letters is a capital lett@ithey denote a set. When a mathematical
object is denoted by a single letter, figure A allows in anyedasknow which type of object is
denoted.

The notations are divided in four figures. Figure A summaribe notations for a certain
type of mathematical object, such as integers or letteggIrEiB summarizes general notations
for a single item or mathematical tool, uniquely defined. urfeggC summarizes the names for
logical formalisms. Figure D summarizes the notationsHermain logical operators.
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a A letter

A An automaton

atom An atomic formula

b A state

C A counter

d A transition function

e A data environment

E A second-order environment
expr An expression

f A formula describing a memory state
Frag A fragment of a logic

g A formula describing a memory state
G A graph

h A heap

i An integer

instr An instruction

j An integer

k An integer

I A label

Lang A language

m An integer

M A Minsky machine

mes A measure

mod A temporal model

n An integer

) A data value

P A second-order variable

P A program

Q A second-order variable

R A relation

s A store

S A transition system

t A temporal formula

tr A translation between logics
u A temporal formula

v A data variable

W A program variable

wd A word

X A first-order variable

y A first-order variable

z A first-order variable

Figure A: Notations for a type of object
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Dat

datum
Datvar
Dom(-)
Freevar(-)
fst ()
Heaps,,
Heaps,
Heaps,
Heaps

Ins

Im(-)

Lab

Loc

max (-)
min(-)

N

next
Pow(-)
Powsgin (+)
Prog
Prog<*
Progvar
Secvar
Shape (-)
snd(-)
Specialvar
Stores

sup (-)

Var

|-

(-, ) and(-)
[-,-]

* —fin °
* T fin+ °
O

O

The set of all data values (see section 1.1.1)

The specific label for data

The set of all data variables (see section 1.2.1)

The domain of a function

The free variables of a formula (see section 1.2.3)

The first element of a pair

The set of all heaps (see section 1.1.1)

The set of all shape heaps (see section 1.1.2)

The set of all simple heaps (see section 1.1.3)

The set of all simple shape heaps (see section 1.1.4)
The set of all program instructions (see section 4.1.1)
The image of a function

The set of all labels (see section 1.1.1)

The set of all locations (see section 1.1.1)

The maximum of a set

The minimum of a set

The set of all integers

The specific label for the successor

The powerset of a set

The finite powerset of a set

The set of all programs (see section 4.1.1)

The set of all programs without destructive update (seemsedtl.1)
The set of all program variables (see section 1.2.1)

The set of all second-order variables (see section 1.2.1)
The shape of a heap (see section 1.1.4)

The second element of a pair

The set of all special variables (see section 1.2.1)

The set of all stores (see section 1.1.1)

The supremum of a set

The set of all first-order variables (see section 1.1.1)
The cardinal of a set or the length of a word

The functions providing fresh variables (see section }1.2.1
The interval between two integers

The set of partial functions from one set to another

The set of partial functions with finite domain

The set of partial functions with nonempty finite domain
The disjoint union of heaps (see section 1.1.1) and a logjpatator
The wildcard symbol (see section 1.3.1)

Figure B: Names and notations of mathematical objects
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DSO The dyadic second-order logic on simple memory shapes 1.2

LTL The linear-time temporal logic

LTL™e™ The temporal logic for sequences on memory shapes we irdeodd.1

MSO The monadic second-order logic on simple memory shapes 1.2
SL The separation logic on simple memory shapes 1.3
SL" SL without wand 1.3
SL™ SL without the separating conjunction 1.3
SL% SL with restricted wand 2.1
SL=" SL with restricted use of the wand 2.1
SL, The separation logic on simple memory states 1.3
Spshort SL, with short-distance comparisons 3.1
SL: ™1 SL, with restricted wand 3.3
spgwarded g1 with guarded long-distance comparisons 3.2
SL," SL, with long-distance comparisons 3.2
SL,°oneed SL, with equality long-distance comparisons 3.2
SLs The separation logic on memory shapes 1.3
SL. SL, without wand 1.3
SL The classical fragment ¢fL 1.3
SLYF The record fragment 8L 1.3
SLLF The list fragment oL 1.3

SLev The separation logic on memory states 1.3
SO The second-order logic on simple memory shapes 1.2

Figure C: Names of logical formalisms — the last column issthetion containing the definition

always The always operator
emp The empty constant
sometimes The sometimes operator

The until operator

The value stored in a variable

The next operator and the next symbol in expressions
The magic wand operator

The existential magic wand operator

The restricted wand operator

The existential restricted wand operator

The separating conjunction operator and the disjoint unfdreaps
The true constant

The points-to predicate

The precise points-to predicate

If4° 0L LL0O5S

Figure D: Main notations for logical operators
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