
HAL Id: tel-00956587
https://theses.hal.science/tel-00956587

Submitted on 6 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Separation logic : expressiveness, complexity, temporal
extension

Rémi Brochenin

To cite this version:
Rémi Brochenin. Separation logic : expressiveness, complexity, temporal extension. Other [cs.OH].
École normale supérieure de Cachan - ENS Cachan, 2013. English. �NNT : 2013DENS0033�. �tel-
00956587�

https://theses.hal.science/tel-00956587
https://hal.archives-ouvertes.fr

École Normale Supérieure de Cachan
École Doctorale Sciences Pratiques

Thèse soumise pour l’obtention du diplôme de doctorat,
dans le domaine de l’informatique,

avec une soutenance le 25 Septembre 2013

Logique de séparation:
expressivité, complexité, extension temporelle

Rémi Brochenin,
sous la direction de Stéphane Demri et Étienne Lozes

Panel:
Stéphane Demri Directeur de Recherche, LSV, CNRS Directeur
Peter Habermehl Maître de Conférences, LIAFA, Univ. Paris Diderot Rapporteur
Didier Galmiche Professeur, LORIA, Univ. Henri Poincarré Rapporteur
Arnaud Durand Professeur, IMJ, Univ. Paris Diderot Examinateur
Jacques Blanc-Talon Docteur, Direction Générale de l’Armement Examinateur

Recherche réalisée au Laboratoire Spécification et Vérification
et financée par la Direction Générale de l’Armement

2

Court Résumé

Cette thèse étudie des formalismes logiques exprimant des propriétés sur des programmes.
L’intention originale de ces logiques est de vérifier formellement la correction de programmes
manipulant des pointeurs. Dans l’ensemble, il ne sera pas proposé de méthode de vérification
applicable dans cette thèse; nous donnons plutôt un éclairage nouveau sur la logique de sépa-
ration, une logique pour triplets de Hoare. Pour certains fragments essentiels de cette logique,
la complexité et la décidabilité du problème de la satisfiabilité n’étaient pas connus avant ce
travail. Aussi, sa combinaison avec certaines autres méthodes de vérification était peu étudiée.

D’une part, dans ce travail nous isolons l’opérateur de la logique de séparation qui la rend
indécidable. Nous décrivons le pouvoir expressif de cette logique, en la comparant à des
logiques du second ordre. D’autre part, nous essayons d’étendre des fragments décidables
de la logique de séparation avec une logique temporelle et avec l’aptitude à décrire les données.
Cela nous permet de donner des limites à l’utilisation de la logique de séparation. En parti-
culier, nous donnons des limites à la création de logiques décidables utilisant ce formalisme
combiné à une logique temporelle ou à l’aptitude à décrire les données.

3

4

École Normale Supérieure de Cachan
École Doctorale Sciences Pratiques

Thesis submitted for the degree of doctorate,
in the field of computer science,

with a defense on September the 25th, 2013

Separation Logic:
Expressiveness, Complexity, Temporal Extension

Rémi Brochenin,
under the supervision of Stéphane Demri and Étienne Lozes

Panel:
Stéphane Demri Directeur de Recherche, LSV, CNRS Supervisor
Peter Habermehl Maître de Conférences, LIAFA, Univ. Paris Diderot Reviewer
Didier Galmiche Professeur, LORIA, Univ. Henri Poincarré Reviewer
Arnaud Durand Professeur, IMJ, Univ. Paris Diderot Examiner
Jacques Blanc-Talon Docteur, Direction Générale de l’Armement Examiner

Research conducted in Laboratoire Spécification et Vérification
and supported by Direction Générale de l’Armement

6

Abstract

This thesis studies logics which express properties about programs. These logics were orig-
inally intended for the formal verification of programs withpointers. Overall, no automated
verification method will be proved tractable here; rather, we give a new insight on separation
logic. The complexity and decidability of some essential fragments of this logic for Hoare
triples were not known before this work. Also, its combination with some other verification
methods was little studied.

Firstly, in this work we isolate the operator of separation logic which makes it undecidable.
We describe the expressive power of this logic, comparing itto second-order logics. Secondly,
we try to extend decidable subsets of separation logic with atemporal logic, and with the ability
to describe data. This allows us to give boundaries to the useof separation logic. In particular,
we give boundaries to the creation of decidable logics usingthis logic combined with a temporal
logic or with the ability to describe data.

7

8

Contents

Introduction 11
A Context . 11

A.1 Verification . 11
A.2 Verification of Programs with Pointers 12
A.3 Separation Logic . 13

B Questions Addressed in this Thesis 14
B.1 Complexity of Separation Logic .14
B.2 Expressiveness of Separation Logic 15
B.3 Data . 15
B.4 Towards a Temporal Separation Logic 16

C Contributions of this Thesis 17
C.1 Magic Wand and Separation Logic . 17
C.2 Ordered Data and Separation Logic17
C.3 Temporal Separation Logic . 17

1 Preliminaries 19
1.1 Memory Model . 20

1.1.1 Memory States . 20
1.1.2 Memory Shapes . 22
1.1.3 Simple Memory States . 22
1.1.4 Simple Memory Shapes . 23

1.2 First and Second-Order logic on Simple Memory Shapes 23
1.2.1 Conventions on Variables .. 23
1.2.2 Second-Order Logic . 24
1.2.3 Conventions on Formulas and Languages 25

1.3 Separation Logic .27
1.3.1 Definition . 27
1.3.2 Fragments of Separation Logic on Memory Shapes 29
1.3.3 A Separation Logic for Simple Memory States 29
1.3.4 Separation Logic on Simple Memory Shapes 30

1.4 Simple Predicates in Separation Logic 30
1.4.1 Allocated Memory Cells . 30
1.4.2 Predecessors and Arithmetical Constraints 30
1.4.3 Reachability and List Predicates 31

9

2 On the Almighty Wand 33
2.1 A Decidable Fragment with a Restricted Wand 35

2.1.1 A Complexity Result without Wand 35
2.1.2 A Restricted Use of the Wand . 37
2.1.3 Preliminaries to the Translation 38
2.1.4 The Translation . 41

2.2 Advanced Arithmetical Constraints with the Wand 43
2.2.1 Comparing Two List Lengths . 44
2.2.2 Comparing the Numbers of Predecessors 45

2.3 Equivalence to Second-Order Logic 53
2.3.1 Preliminaries . 53
2.3.2 Encoding Environments . 57
2.3.3 The Translation . 65
2.3.4 Correctness . 66

2.4 Extensions with More Than one Selector 71

3 Beyond Shapes: Lists with Ordered Data 77
3.1 Decidability of Short-Distance Comparisons 78

3.1.1 Method . 78
3.1.2 Constraints . 80
3.1.3 Recursive Translation .. 85

3.2 Long-Distance Comparisons 87
3.2.1 An Undecidability Result .. 87
3.2.2 Decidability of Guarded Long-Distance Comparisons 90

3.3 Magic Wand and Restricted Magic Wand 93

4 Reasoning about Sequences of Heaps 99
4.1 Preliminaries .100

4.1.1 Temporal Models and Programs .100
4.1.2 Temporal Extension: our Logic .. 102
4.1.3 Satisfiability and Model-Checking 103
4.1.4 Basic Results . 104

4.2 Separation Logic: Complexity and Abstraction 105
4.2.1 Syntactic Measures . 105
4.2.2 Complexity of Quantifier-Free Separation Logic 109

4.3 Decidable Problems by Abstracting Computations 115
4.3.1 Symbolic Models . 115
4.3.2 Omega-Regularity and Polynomial Space Upper Bound 116
4.3.3 Other Decidable Problems .119

4.4 Undecidability Results 122

Conclusion 131

Table of Notations 133

Bibliography 142

10

Introduction

A Context

A.1 Verification

Mistakes are frequent in programming and may have dramatic consequences. A famous ex-
ample is the crash of Ariane 5 due to a division by zero. Formalverification aims at making
mathematically certain that programs do what they are intended to. A mathematical proof of
the correctness of a program could be much more reliable thantesting it intensively, or exam-
ining the code carefully. Proving correctness of a program demands however a lot more efforts
from the programmers or the people in charge of writing the specifications and assertions.

We are interested in the part of formal verification that attempts at automatically generating
mathematical proofs of programs. In other words, it aims at creating programs checking that
other programs match a specification. Rice’s theorem tells us that this problem is undecidable.
Formal verification hence either focuses on specific features of the programs or is not fully
automated. Still, the complexity of verification tasks is generally high.

Indeed, programs often have a very elaborate design, which may for instance use concur-
rency, use recursive procedure calls, rely on arithmetic properties, or manipulate recursive data
structures. Such programs usually have an infinite state space which make them hard to ver-
ify by naive state space exploration. Additionally, the configurations of such programs may be
hard to describe, especially in the case of complex data structures. Nonetheless, the verification
problem may be decidable for some infinite-state systems, and it is a very active area of formal
verification to identify such infinite-state systems (as explains the book chapter of Burkart et
al. [32]), such as Petri nets, timed automata, etc. However,infinite-state systems most of the
time have undecidable verification problems, and one usually aims at defining subclasses of
programs and specifications for which the verification problem is decidable.

Let us briefly present three formal verification techniques.One method is abstract interpreta-
tion, which approximates the steps of the execution of a program in a sound - but not complete
- way. The set of possible configurations of the system, possibly infinite, is abstracted into an
abstract domain in which each element represents a set of possible configurations. Then the
program is simulated on the abstract domain. This techniquehas been formally described by
Cousot and Cousot in [40]. As an example of an existing tool using this method, we can quote
Astrée, presented by Blanchet et al. in [14]. Among the abstract interpretation techniques,
we should give two examples of special interest regarding this thesis, as they study recursive
structures as well as data: the works of Bouajjani et al. in [20] and of Gulwani, McCloskey
and Tiwari in [57] both use abstract interpretation as well as guidance from the user so as to

11

generate annotations of programs.
Another method is model-checking, where the input of the program doing automated for-

mal verification is generally an automaton, or another abstraction of a program. An exam-
ple of use of the model-checking method is Regular Model-Checking, described by Bouajjani
et al. in [23]. In this framework, the models are abstracted by trees or words, for instance
a word can naturally represent singly-linked lists. Sets ofmodels are abstracted by tree or
word automata. Then, program instructions can be abstracted by transducers. Also, with the
model-checking method, temporal logics allow to work in thevery convenient framework of
programs-as-formulas, and decision procedures for logical problems can be directly used for
formal verification. Indeed, in this framework programs as well as formulas can be turned
into automata, and conversely; as a consequence, checking that the automaton model of the
program satisfies a property is done by computing whether inappropriate states are reached
in an automaton. This automata-based approach stems from the famous result showing the
equivalence between monadic second-order logic and Büchi automata as far as definability of
languages of infinite words are concerned, shown by Büchi in [31]. An example of application
of this method is the Spin tool, presented by Holzmann in [60]. Our last chapter is related to
this method.

Finally, an interesting framework for formal verification is Hoare logic, introduced by
Hoare in [58]. Hoare logic is a proof system based on assertions called Hoare triples of the
form {f1}instr{f2} (Tri) whereinstr is an instruction or a program,f1 is the precondition
stated in some logical formalism, andf2 is the postcondition. The precondition is assumed to
be true before the execution ofinstr, and the postcondition has to be true after the execution
of instr under the assumption thatf1 held before. The formulas of these triples are usually
provided by the user, hence the input is an annotated program, but they may also be automat-
ically synthesized. Annotated programs are then verified bychecking that each triple is valid.
In practice, a formulaf′

2
can be computed such that{f1}instr{f′2} is valid, and for which the

validity of the Hoare triple in(Tri) reduces to the one of the logical entailmentf′
2
⊢ f2 (Ent).

Examples of tools using this method are the Key System, presented by Ahrendt et al. in [1],
and Why, presented by Filliâtre and Marché in [50]. Chapters2 and 3 of this thesis are related
to this method.

From this last perspective, formal verification in Hoare logic can be reduced to a purely logical
problem, and decidability results for logics are a prior complementary guide for the creation of
logics whose aim is formal verification, before the study of tractability.

A.2 Verification of Programs with Pointers

Programming languages with explicit memory management, such as C, expose the programmer
to many sources of potential bugs, apart from the more usual problems studied by formal veri-
fication. Firstly, there are problems related to the use of recursive data structures such as lists,
doubly-linked lists, trees, etc. These are for instance theundesired creation of cycles in a recur-
sive structure, or memory leaks. Secondly, many bugs are dueto the nature of pointers. These
are for instance: null pointer dereferences, dangling pointers, or undesired aliasing. Avoiding
these problems is important for the safety of a program, for its efficiency, for its termination,
and last but not least for its security – think about buffer overflow attacks or non-interference
requirements.

12

These specific problems need specific answers, for checking specific properties. Exam-
ples of such properties can be very simple to state, for instance that there is no null pointer
dereference, or that no block of memory is freed more than once, or that a critical part of the
memory can never be reached. It can be also less straightforward to specify, for instance that
the output of a program is a binary search tree. Providing formal verification methods for fault
detection in such programs that manipulate recursive mutable data structures is a long-standing
open problem. From the theoretical point of view, these programs present the same challenges
as infinite-state systems, even for singly-linked lists. There is indeed a potentially infinite set
of memory states for these programs, due to the recursive nature of lists, and this makes the
problem of the reachability of a program point undecidable in the approaches of Bardin, Finkel
and Nowak in [8] and of Bouajjani et al. in [17].

We will mostly focus on shape properties. The term “shape” refers to the data structures in
which all data are ignored, and only the graph of links matters. Shape properties aim at de-
tecting faults due to in-depth properties of the heap, for instance we may want to check that
a program does not create a cycle in an acyclic list. A similarexample of shape property is
that the memory heap keeps the shape of a tree all along its execution. The non-existence of
memory leaks also belongs to this category of properties. Shape analysis focuses on shape
properties. It is a well established approach for the staticanalysis of programs with recursive
data structures. The main idea is to summarize a set of objects forming a recursive structure,
for instance by storing the fact that there aren nested nodes, instead of storing all of then nodes
of a list, while doing the verification. Prominent logics that have been used as abstract domains
for such an analysis are pointer assertion logic presented by Jensen et al. in [63], three-valued
logic assertions presented by Lev-Ami and Sagiv in [69], or more recently separation logic
(leading to the tools Space Invader presented by Yang et al. in [91], and Xisa presented by
Rival and Chang in [85]).

Extensions of shape analysis have been proposed for ordering properties, stability prop-
erties, and size properties; to cite a few of these extensions, there are the shape graphs by
Bouajjani et al. in [17], the three-valued logic approach byLoginov, Reps and Sagiv in [70],
and the separation logic approach by Nguyen et al. in [77]. However, fully automatic analyses
that are data sensitive are hard to design. The recent approaches already mentioned above of
Bouajjani et al. in [20] and of Gulwani, McCloskey and Tiwariin [57], rely on user-defined
annotations in expressive logics for graphs with data, and propose to leverage the amount of
annotations by guessing some of them by means of shape analyses.

In all of these works, it is insightful to have a good understanding of the expressiveness of the
logical formalism which is used, as well as of the complexityof solving the entailment problem
(Ent) for this formalism.

A.3 Separation Logic

As already mentioned, aliasing is one of the features of pointer-manipulating programs which
introduces a lot of complexity into the verification process. For instance, a same field in mem-
ory can be accessed by several variables or even by several threads. The complexity of aliasing
is particularly sensible in the proofs based on Hoare logic.Separation logic (SL) is an extension
of Hoare logic which has the ability to isolate the part of thememory over which a program

13

works, so that the rest of the memory becomes irrelevant for the proof of the program. This
principle, often called local reasoning, makes the formal verification of programs rather mod-
ular and achieves a better scalability of both fully automatic shape analyses and user-guided
proofs.

The original assertion languageSL, which we may call from time to time separation logic as
well, extends first-order logic with two substructural connectives. The first one, the separating
conjunction (✱), is the key ingredient for expressing concisely non-aliasing properties. The
second one, the separating implication (−✱) also known as the magic wand, is the adjunct of
the first one, and finds its roots in the logic of bunched implications which is an ancestor of
SL. The logic of Bunched implications has been introduced firstby O’Hearn and Pym in [79]
and then by Pym in [81]. Separation logic has been introducedas a special case of the bunched
implications logic on specific models by Reynolds in [84] andIshtiaq and O’Hearn in [61]. The
operators ofSL make the specification of the effect of instructions of programs with pointers
very easy and readable for humans.

Several fragments ofSL have been studied from the decidability point of view, in particular in
the work of Calcagno, Yang and O’Hearn [36, 35]. The early works on the decidability ofSL
have shown undecidability in large categories of cases, especially for fragments over models
with multiple selectors. An interesting fragment of separation logic is of special interest from
the complexity point of view, the so-called symbolic heaps introduced by Berdine, Calcagno
and O’Hearn in [11]. Although few features of the original separation logic are present, it has
deserved a special attention thanks to its implementation in the Smallfoot tool described by
Berdine, Calcagno and O’Hearn in [13]. Indeed, its complexity is tractable as it has recently
been proved that logical entailment can be decided in polynomial time for this fragment by
Cook et al. in [38].

Almost all of the decidable fragments do not include the magic wand connective in their
syntax. This restriction makes sense for what user-defined annotations are concerned, since
these annotations usually express rather simple properties (such as the presence of two lists
without alias). Nevertheless the magic wand can play an important role in many problems that
separation logic has to face, and is needed for instance in frame inference, abduction, closure
under interferences, or the ramification rule.

One of the most challenging problems in separation logic is to prove decidability for classes of
properties that can be expressed with the magic wand as wide as possible. Additionally, it is
specially interesting to study the root of this logical language, with all of its features.

B Questions Addressed in this Thesis

This thesis aims at improving the understanding of the assertion language of separation logic
from the complexity and expressiveness points of view, withrespect to three different aspects:
the magic wand, the properties involving data constraints,and the temporal properties.

14

B.1 Complexity of Separation Logic

The complexity of the satisfiability, the model-checking, the validity and the entailment prob-
lems have been intensively studied until quite recently, inparticular in the articles mentioned in
the previous section [36, 35, 84, 38]. For instance, first-order separation logic over heap models
with at least two selectors – or record fields – is known to be undecidable from [36]. This result
is there shown even with no separating connectives, by containment of finite satisfiability for
classical predicate logic with one binary relation, which is proved undecidable by Trakhtenbrot
in [88].

The magic wand connective can make any of the above-mentioned problems quite difficult
to decide (note that these problems are often inter-reducible in presence of magic wand). The
expressive power of−✱ is increased by the first-order quantification:SL without magic wand
is known to be equivalent to a classical propositional logicif first-order quantifiers are dis-
abled, as proved by Lozes in [72], whereas no adjunct elimination holds forSL with first-order
quantifiers as proved by Dawar, Gardner and Ghelli in [41] andLozes in [73]. The same gap
exists with respect to decidability:SLwithout first-order quantifiers is decidable, but it becomes
undecidable if first-order quantifiers are taken into account.

These results however crucially rely on cells having two record fields. On the other hand,
many of the case studies that are addressed by separation logic tools have to deal with singly-
linked lists only. The complexity ofSL with the magic wand for memory models with only one
record field, despite being a natural question, was open before our work.

B.2 Expressiveness of Separation Logic

Another natural question about separation logic is how it compares with second-order logic (SO)
and its fragments. This is a very natural question for at least three reasons. Firstly, separating
conjunction and its adjunct are essentially second-order connectives (see also a similar concern
on graphs with spatial logics in the work of Dawar, Gardner and Ghelli in [42]), which clearly
makesSL be a fragment ofSO. Secondly, many properties on heaps require second-order logic,
for instance to express recursive predicates, or list and tree properties. Thirdly,SO is usually
expressive enough to enforce the completeness of the Hoare logic, and a better understanding of
the relationship betweenSL andSO could serve to derive the completeness of the proof system
of separation logic.

There are well-known examples of correspondences between logics inspired by computer
science problems and more mathematical logics. The celebrated Kamp’s theorem [64] states
that linear-time temporal logic (LTL) is as expressive as first-order logic; hereLTL has only
the strict until and since operators. This result is refined by Etessami, Vardi and Wilke in [49]
where it is shown that unaryLTL is as expressive as first-order logic restricted to two individual
variables. Similarly, the Janin-Waluckiewicz theorem [62] states that the modal mu-calculus is
equivalent to the bisimulation-invariant monadic second-order logic.

However, no correspondence between separation logic and any mathematical logic was
known before the work that has led to this thesis. Kuncak and Rinard explored the relationships
between a logic with separation operators and a second-order logic in [67], but they considered
as models arbitrary first-order structures, and not the standard, finite heap model ofSL.

15

B.3 Data

As mentioned above, standard analyses on recursive data structures restrict their attention to
shape properties, excluding properties that deal with the actual content of these structures.
Decidable logics handling data exist, of which Presburger arithmetic is a standard example,
but interactions between data and memory shapes are very hard to handle. Defining decidable
formalisms on models with recursive structures and data is very challenging.

For instance, first order logic over finite data words is knownto be undecidable, as proved
by Bojánczyk et al. in [15], and can be encoded with limited syntactic resources if the model
contains lists labelled with data. Additionally, all the formal verification methods we are aware
of in this field use approximation techniques, strong restrictions on the syntax or strong restric-
tions on the data. The approximation techniques are actually in general abstract interpretation
techniques which prevent completeness of the method, such as the work of Berdine et al. [10].
An example of work based on strong restrictions of the syntaxis the logic of McPeak and Nec-
ula in [76], a first order logic which can handle lists but doesnot contain the negation of the
equality between locations. An example of restriction on the model is the work of Yorsh et
al. in [92], which can handle complex memory shapes but assumes the data belongs to a finite
domain.

An interesting question for logics dealing with data is to identify decidable fragments which
are expressive. In the context of separation logic, our question becomes: what are the restric-
tions that should be considered onSL to make it decidable and still expressive enough for
annotating classical list programs with data properties?

B.4 Towards a Temporal Separation Logic

The assertion languageSL is a state logic, mostly because it is the assertion languageof a Hoare
logic, and Hoare logic traditionally deals with state assertions.

It is however tempting to introduce some forms of temporal reasoning in the assertion lan-
guage of separation logic. There are two main motivations for this; firstly, recent semantics of
Hoare logic are based on the interpretation of programs as trace transformers, and not just state
transformers, as explains the work of Hoare et al. [59]; secondly, temporal reasoning may help
describing recursive data structures by means of properties over the traces of the programs that
traverse them.

Among temporal logics,LTL, presented by Pnueli in [80], is often one of the favorites,
mostly because of the equivalent decidable decision problems based on automata that have
been developed around it, and which are described in the works of Vardi and Wolper [89]. In
the context of traces of data-manipulating programs,LTL has been extended so as to express
relations between data at different points of the execution. These extensions often complicate
the design of equivalent automata forLTL, and may even sometimes introduce undecidability.
Although these extensions are relatively well studied for data models such as integers, the
classification of these extensions ofLTL in computational complexity classes is relatively little
studied for heap data structures.

The introduction of temporal reasoning in separation logicraises several questions: First,
as arithmetical constraints in temporal logics are known toeasily lead to undecidability, (see
for instance the works of Bouajjani, Echahed and Habermehl [21], of Comon and Cortier [37],
or of Demri and Gascon [44]) how can the logic be kept decidable? Then, what semantics

16

should the logic have, how can it be encoded into automata, and how expressive should the
data constraints across time be?

C Contributions of this Thesis

This thesis presents new results about the decidability, the complexity, and the expressive power
of separation logic formalisms that include either the magic wand, data constraints, or temporal
reasoning.

C.1 Magic Wand and Separation Logic

In chapter 2, we investigate decidability, complexity and expressive power issues for first-order
separation logic with one record field. We consider on the onehandSL without restrictions –
including the magic wand, and on the other handSL without the magic wand. The main result
we establish is thatSL is as expressive asSO. As a by-product, this shows the undecidability of
SL. We refine this result by showing thatSL without the separating conjunction is as expressive
asSL, in other words that the magic wand can simulate the separating conjunction.

By contrast, we establish thatSLwithout the magic wand is less expressive than the monadic
fragment ofSO; we also establish thatSLwithout magic wand is decidable, although with a non-
elementary complexity. We extend this result for restricted cases where the magic wand occurs
in formulas. We also generalize our main result to heaps withan arbitrary number of fields: for
k ∈ N, we show thatkSL, the separation logic over heaps withk record fields, is equivalent to
kSO, the second-order logic over heaps withk record fields.

C.2 Ordered Data and Separation Logic

In chapter 3, we propose a general approach for reducing the shapes handling ordering prop-
erties to pure shapes, and stress some natural limitations we should put on data properties in
order to check them automatically. To our knowledge, no predicate dealing with data had ever
been integrated to separation logic while preserving decidability as well as correctness before
our work. We establish decidability for (first-order) separation logic with a predicate that al-
lows to compare two successive data in a list. We then consider the extension where two data
in arbitrary positions may be compared, and establish the undecidability in general. We also
replace long distance comparisons by guarded comparisons of data, allowing to compare the
data pointed to by a program variable to any other data, whichprovides an interesting decid-
able logical fragment. We finally consider the extension with the magic wand and prove that, in
contrast with the data-free case, even a very restricted useof the magic wand already introduces
undecidability.

C.3 Temporal Separation Logic

In chapter 4, we will introduce a temporal logicLTLmem whose underlying assertion language is
the quantifier free fragment of separation logic and the temporal logic on the top of it is the stan-
dard linear-time temporal logicLTL. We analyze the complexity of various model-checking and
satisfiability problems forLTLmem, considering various fragments of separation logic (including

17

pointer arithmetic), various classes of models (with or without constant heap), and the influence
of making the initial memory shape a part of the input of the problem. We will have a com-
plete picture based on these criteria. Our main decidability result ispspace-completeness of the
satisfiability problems on two fragments of our logic. We moreover establishΣ0

1
-completeness

or Σ1
1
-completeness of various problems by reducing standard problems for Minsky machines,

and we eventually give a rather detailed picture of the complexity of this approach to temporal
reasoning in separation logic.

18

Chapter 1

Preliminaries

Introduction

Contents of this Chapter

In this section, we introduce mathematical notions which will be used throughout the whole
document, in particular a model of the memory, a definition for separation logic and some ex-
amples of its expressiveness. This section will mainly givebasic information about separation
logic.

Structure of the Chapter

First, we will introduce a general definition of memory states – our model of the memory – of
which we will define three subsets used as simpler classes of models: memory shapes, simple
memory shapes and simple memory states. Each of these classes of models will be used later in
one of the three main chapters. Figure 1.1 are summarized themodels and their characteristics.
They differ on the ability to contain data in fields of a cell, and on the possibility of the presence
of more than one address field in one memory cell.

Then, we introduce first-order and second-order logic on thesimplest of these models,
simple memory shapes. In the meanwhile, we also explain our conventions on variables as well
as general definitions about formulas and logics.

Then, we introduce separation logic. There will first be the formal definition of a general
separation logic. This will allows us to define formally its operators able to modify the model,
that we have described without being precise yet. Similarlyto the models, we will introduce
three fragments of separation logic, with or without data, with or without multiple selectors,
corresponding to the three main chapters of this thesis. Fragments of these fragments, accord-
ing to additional characteristics, will be introduced. Figure 1.2 summarizes the fragments of
separation logic introduced in the whole document, with their features and their models, for a
reference purpose.

Finally, we provide examples of properties that can be expressed in our formalisms. We start
with simple properties on allocation of memory cells, and with simple arithmetical constraints
on the amount of predecessors of a vertex in the graph one of our models is equivalent to. We
will end this section with the definition of reachability predicates and lemmas proving their
semantics.

19

several selectorsone selector
with data Heapssv Heapsv

without data Heapss Heaps

Figure 1.1: Models

several pointer data and location of
−✱ ✱ ∃ selectors arithmetic comparisons definition

SL X X X 1.3
SLv X X X 1.3
SLs X X X X 1.3
SLsv X X X X X X 1.3
SL

✱
X X 1.3

SL−
✱

X X 1.3
SL

✱,−✱n −✱n X X 2.1
SL<n restricted X X 2.1
SLshortv X X ֒→≤ 3.1
SLR,−

✱1

v −✱1 X X ֒→R 3.3
SL
guarded
v X X restricted 3.2

SL
long
v X X X 3.2

SL
longeq
v X X restricted 3.2

SL
✱

s X X X 1.3
SLCLs X X 1.3
SLRFs X X X 1.3
SLLFs 1.3

Figure 1.2: Fragments of separation logic

Note that there is additionally a table of notations at the end of the thesis.

1.1 Memory Model

1.1.1 Memory States

Let us introduce our model of memory. It captures features ofprograms with pointer variables
that use pointer arithmetic and records, as well as data froman ordered set.

Definition

We assume a countably infinite setVar of first-order variables (although, obviously, for a given
formula we need only a finite amount). We will range over variables withw, x, y, z. For further
information about variables, see section 1.2.1.

20

We assume an infinite setLoc of locations, thought of as address indexes. We assume that
Loc = N as we want to model pointer arithmetic. In our abstraction, any integer is a valid
address, there is nonil special address as our logical formalisms will all be able tosimulate
its presence if necessary, and the memory has an infinite amount of addresses which allows an
unbounded size of the stored information. We will range overnaturals withm, i, j, k, n.

We assume a disjoint, infinite, totally ordered set(Dat,≤) of data, and range over a partic-
ular datum witho.

In order to model field selectors of a cell, we consider an infinite setLab of labels, we will
range over labels withl, next, datum.

We will usePowfin(I) to denote the set of finite subsets ofI. We useSet1 ⇀fin Set2 to
denote the set of partial functions with finite domain from a subset ofSet1 to Set2, and⇀fin+
the set of the ones of finite non-empty domain.

The setsStores of stores andHeapssv of heaps are then defined as follows:

Stores , Var→ Loc

Heapssv , Loc⇀fin (Lab⇀fin+ (Loc ∪ Dat))

We will range over a store withs and over a heap withh. We callmemory statea couple
(s, h) ∈ Stores × Heapssv. A heap can be equivalently understood as a finite subset of
N × Lab × (Loc ∪ Dat). Given a finite setX of variables (for instance occurring in a given
formula), we can assume that a memory state is finite by restricting the domain of the store to
X.

In a memory state, each allocated address contains a memory cell, and each cell can contain
several fields. Fields of a cell and offsets for pointer arithmetic are both available in our models
but are not related, so our models could be more concrete considering labels as offsets and
relying on pointer arithmetic. However, for our classification of several problems, it will be
useful to consider pointer arithmetic independently. A visual representation of a heap of our
general models can be seen in figure 1.3, where the first row represents the addresses for pointer
arithmetic, and the boxes below represent the cells, eitherwith field selectors when allocated
or with the∅ symbol when not allocated.

Subscripts

We will use these models in three different contexts, for which we define three different subsets
of Heapssv, leading to three different sets of models. We use the subscripts to denote the heaps
which allow several selectors, and the subscriptv to denote that heaps can contain data as well
as addresses.

Handling Heaps

We writeDom(h) to denote the domain ofh andIm(h) to denote its image. ForI ⊆ Dom(h),
We writeh|I to denote the restriction ofh to I.

Intuitively, in memory states, each index is thought of as anentry point on some record cell
containing several fields. Cells are either not allocated, or allocated with some record stored
in. In a memory state(s, h), the memory cell at indexi is allocatedif i ∈ Dom(h); in this
case the stored record ish(i) = {l1 7→ j1, . . . , ln 7→ jn}. For instance, in the figure 1.3, if we

21

1 2 3 4 5 6 · · ·

next : 4 l1 : o1
datum : o2 l5 : 1

∅ l7 : o3 ∅ ∅ · · ·

l8 : o4
l9 : 2

Figure 1.3: Visual representation of a memory state

call the represented heaph, thenDom(h) = {1, 3}; alsoh(1) = {next 7→ 4, datum 7→ o2} and
h(3) = {l1 7→ o1, l5 7→ 1, l7 7→ o3, l8 7→ o4, l9 7→ 2}.

A heaph with domain{i1, . . . , in} is sometimes represented by the set of memory cells
{i1 7→ h(i1), . . . , in 7→ h(in)}.

Two heapsh1, h2 are said to bedisjoint, notedh1⊥h2, if their domains are disjoint; when
this holds, we writeh1 ✱ h2 to denote the disjoint unionh1 ⊎ h2.

Sizes

The size of the stores with respect to a finite set of variablesX ⊆ Var, written sizeX(s), is
defined as|X| × max(1 + log(1 + s(x)) : s(x) ∈ N, x ∈ X).

Similarly, the size of the heaph with respect to a finite set of labelsL ⊆ Lab, which
we will write sizeL(h), is defined as|Dom(h)| × |L| × max(1 + log(1 + h(i)(l)) : i ∈

Dom(h), h(i)(l) is defined andh(i)(l) ∈ N).
The size of the memory state(s, h) with respect toX andY, written sizeX,L((s, h)), is

sizeX(s) + sizeL(h).

1.1.2 Memory Shapes

We define memory shapes as the abstraction of a memory heap forgetting the whole data com-
ponent of all cells, while retaining the graphical aspect. Amemory shapeis a pair(s, h) ∈
Stores × Heapss where:

Heapss , Loc⇀fin (Lab⇀fin+ Loc)

This model can be seen as a finite directed graph whose edges are labelled, so that two
edges originating from the same vertex always have distinctlabels.

1.1.3 Simple Memory States

They represent the memory state of programs manipulating singly-linked lists and data. We
define asimple memory stateas a pair(s, h) ∈ Stores × Heapsv whereHeapsv is the set of
the heaps in which all the allocated memory cells have exactly two labels, one callednext and
always containing a location, the other calleddatum and always containing a datum. It can be
equivalently defined as:

22

Heapsv , Loc⇀fin (Loc × Dat)

This model can also be seen as the graph of a unary function with finite domain, in which
each edge is labelled with a datum.

We writefst andsnd to denote the first and second projection on a product set. As aconse-
quence,fst(h(i)) is the location in the memory cellh(i) whereassnd(h(i)) is the datum.
We can equivalently writeh(i)(next) for fst(h(i)) andh(i)(datum) for snd(h(i)).

The setDat can be instantiated in various ways. As an example, programsmanipulating
ordered lists of naturals can be modeled choosingDat = N with the standard order. In order to
ensureDat ∩ Loc = ∅, we can simply chooseDat = N′ = {0′, 1′, 2′, . . .} with i′ ≤ j′ iff i ≤ j
in (N,≤). The same holds for lists of reals, lists of integers, and so on.

Also, Dat could be thought of as the state of a lock at the current node, that is the identifier
of the thread holding the node (or some constant for an available lock). Here, the ordering
on data is not relevant, but the equality between data is. Forsuch a model, one may want to
express, for instance, that every thread holds the locks of at most two nodes of a list, and that
these nodes are necessarily consecutive.

1.1.4 Simple Memory Shapes

They represent the shapes of the memory for programs manipulating singly-linked lists. They
are equivalent to a model in which all the allocated memory cells have only one label,next. A
simple memory shapeis a pair(s, h) ∈ Stores × Heaps where:

Heaps , Loc⇀fin Loc

This model can be seen as the graph of a unary function with finite domain.

We will write Shape(·) for the obvious map from heaps of simple memory states to heaps
of simple memory shapes – with the domain ofShape(h) equal to the domain ofh

Shape(h) ,
Loc ⇀ Loc

i 7→ fst(h(i))

1.2 First and Second-Order logic on Simple Memory Shapes

1.2.1 Conventions on Variables

We have already defined the countably infinite setVar.

Program Variables

Variables can be interpreted as both variables from the programs or logical variables quantify-
ing over locations. The main difference between these two types of variables is that program
variables are not quantified in formulas. We safely identifythem and will usew to emphasize
that a variable should be understood as a program variable. The set of program variables will
be calledProgvar and is included inVar.

23

Special Variables

In this paragraph we define a set of variables and functions providing fresh variables from this
set, which will be very useful in several proofs, as having fresh variables will then make things
much simpler. We define the special variablesSpecialvar as an infinite subset ofVar such
thatVar\Specialvar is also infinite. Unless otherwise stated, a variable shouldbe understood
as belonging toVar \ Specialvar. In the remainder, we will assume two fixed injections
(x, i) ∈ Var \ Specialvar × N 7→ 〈x, i〉 ∈ Specialvar, andi ∈ N 7→ 〈i〉 ∈ Specialvar
such that for allx, i andj, 〈x, i〉 , 〈j〉.

Data Variables

We assume a setDatvar of data variables, ranged over withv. A valuation interpreting data
variables is a functione : Datvar → Dat. In general, the lettere will be used to describe an
environment generated by quantifications. Concerning datavariables, they will never be free
variables in the formulas which are instances of the problems we will study.

Second-Order Variables

In order to define second-order formulas, we consider a family Secvar = (Secvari)i≥0 of
second-order variables, denoted byP,Q that will be interpreted as finite relations overLoc.
Each variable inSecvari is interpreted as ani-ary relation. Asecond-order environmentE
is an interpretation of the second-order variables such that for everyP ∈ Secvari, E(P) is
a finite subset ofLoci. Since second-order variables quantify over finite relations, the ver-
sion of second-order logics we shall consider is usually called weak. We will sometimes call
environment a second-order environment, when the context is not ambiguous.

The value of a second-order variable, a relation on integers, will be represented with the
letterR. If the variable specifically belongs toSecvar1, it can then be represented byI, J or K,
which will more generally be used to represent sets of integers.

1.2.2 Second-Order Logic

Formulas

We range over formulas describing memory heaps withf or g.
Formulas of (weak) second-order logicSO are defined by the grammar below:

f := ¬f | f ∧ f | ∃x. f | x ֒→ y | x = y | ∃P. f | Q(x1, . . . , xn)

whereP,Q are second-order variables andQ ∈ Secvarn. We writeMSO [resp.DSO] to denote
the restriction ofSO to second-order variables inSecvar1 [resp. Secvar2]. A sentenceis
defined as a formula with no free occurrence of second-order variables. As free first-order
variables are considered as program variables, this is why we can define a formula with free
first-order variables as a sentence.

We define the first-order fragmentFO, as the restriction ofSO to the formulas with no oc-
currence of second-order variables.

Let fct be a unary function. Thenfct[i 7→ j] has as domainDom(fct) ∪ {i}, and is
defined byfct[i 7→ j](i) = j and for alli′ ∈ Dom(fct) \ {i}, fct[i 7→ j](i′) = fct(i′).

24

Satisfaction Relation

The satisfaction relation forSO is defined below with an environmentE as argument (below
P ∈ Secvarn).

(s, h), E |=SO ∃P. f iff there is a finite subsetR of Locn,
such that(s, h), E[P 7→ R] |=SO f

(s, h), E |=SO P(x1, . . . , xn)
iff (s(x1), . . . , s(xn)) ∈ E(P)

(s, h), E |=SO ¬f iff not(s, h), E |=SO f
(s, h), E |=SO f ∧ g iff (s, h), E |=SO f and(s, h), E |=SO g
(s, h), E |=SO ∃x. f iff there isl ∈ Loc such that(s[x 7→ l], h), E |=SO f
(s, h), E |=SO x ֒→ y iff h(s(x)) = s(y)
(s, h), E |=SO x = y iff s(x) = s(y)

Whenf is a sentence, we write(s, h) |=SO f to denote(s, h), E |=SO f for any environmentE
sinceE has no influence on the satisfaction off. This particularly applies toFO formulas.

Shorthands

We will write P ⊆ Q for ∀x.P(x) ⇒ Q(x), as well asP (Q for P ⊆ Q ∧ ∃x.P(x) ∧ ¬Q(x),
and use all set operatorsP ∩ Q, P ∪ Q,, etc. defined in a standard way. We will also use the
composition of predicates:xPQy for ∃z.xPz ∧ zQy. We will make use of standard notations
for the derived connectives∀,∨,⇒,⇔ . Let us also mention that the equalityx = y could be
encoded by∀P.(P(x) ⇔ P(y)), obtained by the principle of identity of indiscernibles.

1.2.3 Conventions on Formulas and Languages

Fragments

Let Frag andFrag′ be two fragments of logics defined on the same set of memory models.
We say thatFrag′ is at least as expressive asFrag (written Frag ⊑ Frag′) whenever for
every sentencef ∈ Frag, there isf′ ∈ Frag′ such that for every memory state(s, h), we have
(s, h) |= f iff (s, h) |= f′. We writeFrag ≡ Frag′ if Frag ⊑ Frag′ andFrag′ ⊑ Frag. A
translationfrom Frag to Frag′ is a computable functiontr : Frag → Frag′ such that for
every sentencef ∈ Frag, for every memory shape(s, h), we have(s, h) |= f iff (s, h) |= tr(f).

Free Variables

We writeFreevar(f) to denote the set of free variables occurring in the formulaf. The proof
of lemma 1.2.3.1 is by an easy verification.

Lemma 1.2.3.1.For all simple memory shape (s, h), SO formulag, environmentE and store
s′, if s|Freevar(g) = s

′
|Freevar(g), then(s, h), E |=SO g iff (s′, h), E |=SO g.

Substitutions

In the latter, we may use the notationf[g ← g′] for the formulaf in which the subformula or
the variableg′ replaces each occurrence ofg.

25

Another useful substitution iss[i ← i′] [resp. E[i ← i′]], which denotes the store
obtained froms [resp. the environment obtained fromE] by replacing every occurrence ofi
by i′ in the range of these functions.

Let us define formallys′ = s[i ← i′]. For anyx ∈ Var, if s(x) = i thens′(x) = i′

otherwises′(x) = s(x).
Let us define formallyE[i ← i′]. Let P ∈ Secvar. Let (i1, . . . , in) ∈ Locn; let i′

k
= ik

whenik , i andi′
k
= i′ otherwise. Then(i′

1
, . . . , i′n) ∈ E[i ← i

′](P) iff (i1, . . . , in) ∈

E(P).

Lemma 1.2.3.2.Let(s, h) be a simple memory shape,E be an environment, andg be a formula
in DSO. Let i, i′ be locations such that

− i < Dom(h) ∪ Im(h).

− i′ < Dom(h) ∪ Im(h) ∪ {s(x) : x ∈ Freevar(g)}.

− i′ is not in the finite graph ofE(P) for any second-order variableP occurring ing.

Then(s[i← i′], h), E[i← i′] |=SO g iff (s, h), E |=SO g.

Proof. The proof is by a simple induction on the subformulas ofg. Let g′ be a subformula
of g. Assume that the lemma holds for any strict subformula ofg′. We must prove that the
lemma holds forg′. The inductive cases, when the outermost connective ofg′ is boolean or a
quantification, are obvious. Let us study the base caseg′ = x ֒→ y. The other base cases are
simpler.

By the semantics,(s[i ← i′], h), E[i ← i′] |=SO x ֒→ y iff h(s[i ← i′](x)) =

s[i ← i′](y). As i < Dom(h) andi′ < Dom(h), we haves[i ← i′](x) ∈ Dom(h) iff
s(x) ∈ Dom(h).

− If s(x) < Dom(h) thens[i ← i′](x) < Dom(h) and none of(s[i ← i′], h), E[i ←
i′] and(s, h), E is a model ofg′.

− If s(x) ∈ Dom(h), then, asi < Dom(h), s[i← i′](x) = s(x) andh(s[i← i′](x)) =

h(s(x)).

∗ If (s, h), E is a model ofg′ thenh(s(x)) = s(y), and asi < Im(h), we have
s[i← i′](y) = s(y).

∗ If (s, h), E is not a model ofg′ thenh(s(x)) , s(y). If s(y) , i thens[i ←
i′](y) = s(y), soh(s[i ← i′](x)) , s[i ← i′](y). If s(y) = i, thens[i ←
i′](y) = i′, so sincei′ < Im(h) we haveh(s[i ← i′](x)) , s[i ← i′](y). In
both cases(s[i← i′], h), E[i← i′] is not a model ofg′.

�

Sizes

The size of the formulaf, written | f |, is the length of the stringf for some reasonably succinct
encoding of variables and integers with a binary representation. We will use the map| · | for
other syntactic objects such as formulas of our temporal logic and formulas of separation logic.

26

Atomic formulas (x, x′ ∈ Var, i ∈ N, l ∈ Lab, v ∈ Datvar)
atom ::= x = x′ | x + i֒→lx′ (atomic formulas)

| val(x) ≤ v | val(x) ≥ v (ordered data)

State formulas
f ::= atom

| f ✱ g | f −✱ g | emp (spatial fragment)
| f ∧ g | ¬f (classical fragment)
| ∃x.f | ∃v.f (first-order)

Satisfaction
(s, h), e |=SL ∃x. f iff there isi ∈ Loc such that(s[x 7→ i], h), e |=SL f
(s, h), e |=SL ∃v. f iff there iso ∈ Dat such that(s, h), e[v 7→ o] |=SL f
(s, h), e |=SL x = x′ iff s(x) = s(x′)
(s, h), e |=SL x + i֒→lx′ iff h(s(x) + i)(l) = s(x′)
(s, h), e |=SL val(x) ≤ v iff h(s(x))(datum) ≤ e(v)
(s, h), e |=SL val(x) ≥ v iff h(s(x))(datum) ≥ e(v)
(s, h), e |=SL emp iff Dom(h) = ∅

(s, h), e |=SL f1 ✱ f2 iff ∃ h1, h2 s.t.h = h1 ✱ h2, (s, h1) |=SL f1 and(s, h2) |=SL f2
(s, h), e |=SL f1 −✱ f2 iff for all h′, if h ⊥ h′ and(s, h′) |=SL f1 then(s, h ✱ h′) |=SL f2
(s, h), e |=SL f1 ∧ f2 iff (s, h) |=SL f1 and(s, h) |=SL f2
(s, h), e |=SL ¬f1 iff not(s, h) |=SL f1

Figure 1.4: The syntax and semantics ofSLsv with pointer arithmetic and records

1.3 Separation Logic

1.3.1 Definition

We now introduce the separation logic (SLsv). As for the heaps, we will use the subscripts to
denote fragments ofSLsv which deal with several selectors, andv to denote fragments which
deal with data as well as pointers. The syntax of the logic is given in figure 1.4. We range over
formulas of separation logic withf, g.

In short, separation logic is about reasoning on disjoint heaps. The models of this logic are
the memory states defined above.

Semantics

A formula f ✱ g with theseparating conjunctionstates thatf holds on some portion of the mem-
ory heap andg holds on a disjoint portion. A formulaf −✱ g with theseparating implication
(usually called themagic wand) states that the current heap, when extended with any disjoint
heap verifyingf, will verify g. Consequently,−✱ is a universal modality whereas✱ has an exis-
tential flavour. In a visual representation, one can state this semantics as in figure 1.5.

Boolean operators are understood as such. Derivable connectives f ∨ g and¬f are defined
through their straightforward abbreviations of the included boolean operators.

27

 |=SL f ✱ g when there areG andJ
such that = G#, as well asG |=SL f andJ |= g.

J |=SL f −✱ g when anyG such thatG |=SL f is also such thatG# |= g.

Figure 1.5: Visual representation of the semantics of separation operators

Formulasatom areatomic formulas. The formulax + i֒→lx′ states that the value of the
field l of the record stored at the address pointed byx with offseti is equal to the value of the
expressionx. If the offset of a pointer is0, we writex֒→lx′; if additionally l = next, we can
simply writex ֒→ x′. Finally, x 7→ (y, v) will be used forx 7→ y ∧ val(x) = v. The formula
x = x′ states the equality between the values of the two variables,andemp means that the
current heap has no memory cell allocated.

The semantics of formulas are formally defined by the satisfaction relation|=SL in figure 1.4.
We can note that our level of granularity implies that a record cell cannot be decomposed in
disjoint parts by separation operators.

Validity and Satisfiability

We will not study formulas with free data variables – except as subformulas of studied formulas.
We can write(s, h) |=SL f instead of(s, h), e |=SL f whenf has no free data variable. A formula
f is valid iff for every memory state(s, h), we have(s, h) |=SL f (written |=SL f). Satisfiability is
defined dually:f is satisfiable iff there is a memory state(s, h), such that(s, h) |=SL f.

Remarks on the Wand

We also introduce a slight variant of the dual connective forthe magic wand, also called the
septraction: f −✱

¬ g is defined as the formula¬((f) −✱ (¬(g))). it is easy to check that
(s, h) |=SL f1 −✱

¬ f2 iff there ish′ ⊥ h such that(s, h′) |=SL f1 and(s, h ✱ h′) |=SL f2. Septraction
is an existential version of magic wand. Hence, the septraction operator is quite natural since
it states the existence of a disjoint heap satisfying a formula and for which the addition to the
original heap satisfies another formula.

The connective−✱ is theadjunctof ✱, meaning that(f1 ✱ f2) ⇒ f3 is valid iff f1 ⇒ (f2 −✱

f3) is valid. Still, observe that there is no obvious way to define✱ and−✱ from each other
since typically the formula((f1 ✱ f2) ⇒ f3) ⇔ (f1 ⇒ (f2 −✱ f3)) is not valid. This shall
be strengthened in the sequel by establishing thatSL without wand is decidable whereasSL
without separating conjunction is not.

Shorthands

We use the notationx ֒→ � for ∃y.x ֒→ y. The notation�will actually have a wider use, always
in the meaning of an existential quantification over the variable, label or integer that should be
in the place of the square. In the case of figures like figure 2.4, a� symbol represents a location
that is not represented by any other� symbol, variable (likex in figure 2.4), or integer (likei1
in figure 2.4)..

28

We will use equality over vectors(x1, . . . , xn) = (y1, . . . , yn).
If the considered fragment of the language contains first order quantifications and is defined

on single a model with single selector (Heapsv or Heaps) then emp, which means that the
domain of the heap is empty, can be defined asemp , ¬∃x. ¬∃y. x ֒→ y. In this case it can be
omitted from the syntax.

The version of separation logic we have introduced does not containnull, the usual constant
for exceptions, interpreted bynil such that anyh is undefined for the valuenil. Any formula
f possibly with the constantnull can be translated into a formulaf′ of SL such thatf is satisfiable
iff f′ is satisfiable. Indeed, ifg0 = (¬∃z. null ֒→ z), thenf′ can be defined as∃ null. g0 ∧ f′′

with f′′ beingf completed withg0 in each left member of a subformula with the magic wand
as outermost connective.null is understood here as a distinguished variable. In the sequel, we
will not use the constantnull.

1.3.2 Fragments of Separation Logic on Memory Shapes

State Formulas

We define the set ofstate formulasSLs with the grammar below. It is a separation logic on
memory shapes. It has no quantification as it will be used in chapter 4, where it will be mixed
with LTL. In the remainder, we focus on several specific fragments of this separation logic.

f := ¬f | f ∧ f | x + i֒→ly | x = y | emp | f ✱ f | f −✱ f

Note that the size of the information held in a memory cell is neither fixed, nor bounded.

Fragments

We say that a formula is in therecord fragment(SLRFs) if all its subformulas of the formx+i֒→lx′

usei = 0. In other words, pointer arithmetic is removed, but all other features are still present,
in particular memory cells have multiple selectors throughtheir labels.

We say that a formula is in theclassical fragment(SLCLs) if it does not contain any of the
connectives✱ and−✱.

The list fragmentSLLFs is part of the classical fragment in which all subformulasx + i֒→lx′

usei = 0 andl = next. In other words, memory cells have a single selector, which is similar
to only being able to describe simple memory shapes.

Clearly, the classical and record fragments are incomparable, while the list fragment is
included in both of them.

Finally, SL✱

s is SLs with no−✱ connective.

1.3.3 A Separation Logic for Simple Memory States

Definition

We now define the assertion languageSLv. Formulas ofSLv are defined by the grammar below.
They allow to describe lists with ordered data.

f ::= ¬f | f ∧ f | ∃x.f | ∃v.f | x ֒→ y | val(x) ≤ v | val(x) ≥ v | x = y | f ✱ f

Note that due to the memory modelHeapsv, the natural semantics ofval(x) ≤ v implies in
particular∃z.x ֒→ z.

29

Comparison Predicates

In the chapter dealing withSLv, we will define several fragments of it, in particular depend-
ing on how restricted are the comparisons that we choose to allow. The comparisons will be
restricted to a few predicates, not allowing quantificationover data variables outside of these
predicates.

The predicateval(x) ≤ val(y) , ∃v.(val(x) ≤ v ∧ val(y) ≥ v) asserts that the value
stored at the locationx is smaller than the one stored aty. We call this predicatelong-distance
comparison. We moreover say that a long-distance comparison isguardedif it is val(w) ≤
val(y) or val(x) ≥ val(w) wherew is a program variable, hence a free variable.

We can now define the predicatesx ֒→≤ y , x ֒→ y ∧ val(x) ≤ val(y) andx ֒→≥ y
accordingly; we call these predicatesshort-distance comparisons.

1.3.4 Separation Logic on Simple Memory Shapes

Formulas of first-order separation logic with one selectorSL are defined by the grammar below:

f := ¬f | f ∧ f | ∃x.f | x ֒→ y | x = y | f ✱ f | f −✱ f

We write SL✱ [resp. SL−✱] to denote the restriction ofSL without the magic wand [resp.
without the separating conjunction].

1.4 Simple Predicates in Separation Logic

1.4.1 Allocated Memory Cells

Let us illustrate the expressive power on simple examples. The formula¬emp ✱¬emp means
that at least two memory cells are allocated. The formulax7→lx′, defined as¬(¬emp ✱¬emp)∧
x֒→lx′, is the local version ofx֒→lx′: (s, h) |=SL x7→lx′ iff Dom(h) = {s(x)} andh(s(x))(l) =

s(x′). The formula(x֒→lx) −✱ ⊥ is satisfied by(s0, h0) whenever there is no heaph1 with
h1⊥h0 such that the variablex is already allocated in the heaph0. We will call this formula
alloc(x). If the magic wand is not part of the considered logical language, thenalloc(x) can
be defined as∃y. x ֒→ y. Also, one can specify that the domain of the heap is restricted to the
value ofx and maps it to that ofy: x 7→ y , x ֒→ y∧¬∃y. (y , x∧alloc(y)). This last predicate
can also be defined asprecisely(x ֒→ y), whereprecisely(f) denotesf ∧ ¬(f ✱∃x, y.x ֒→ y).

1.4.2 Predecessors and Arithmetical Constraints

A predecessorof the locationi in the simple memory state(s, h) is a locationi′ such that
h(i′) = i. A predecessor of the variablex is a predecessor ofs(x). Given a memory state
(s, h) and a locationi we write~♯i to denote the cardinal of the set{i′ ∈ Loc : h(i′) = i}.
We call~♯i thenumber of predecessorsof the locationi in (s, h)).

There are formulas inSL✱, namely♯x ≥ n and♯x = n, such that♯x ≥ n [resp. ♯x = n]
holds true exactly in memory states such thatx has at leastn predecessors [resp. exactlyn

30

predecessors]. For instance,♯x ≥ n can be defined in the following ways:

n times
︷ ︸︸ ︷

(∃y. y ֒→ x) ✱ . . . ✱(∃y. y ֒→ x) ✱⊤ or ∃x1, . . . , xn.
∧

i,j

xi , xj ∧
n∧

i=1

xi ֒→ x

It is worth noting that the first formula has a unique additional variabley butn occurrences of✱
whereas the second formula has no separating connectives but n additional variables.

Observe thatSL does not contain explicitly arithmetical constraints as in[66, 75, 25]. How-
ever, in section 2.2 we show how to compare the number of predecessors of two distinct loca-
tions. Similar developments can be performed to compare thelengths of different lists but this
will come as a corollary of the equivalence betweenSL andSO.

1.4.3 Reachability and List Predicates

Reachability in a graph is a standard property that can be expressed in monadic second-order
logic. In separation logic, often a built-in predicate for lists is added, sometimes notedls(x, y).
Adapting some technique used in the spatial logic for graphs[42], we show below how this
very predicate can be expressed inSL✱ as well as the reachability predicatex ֒→∗ y.

Definitions

A locationi′ is adescendant[resp.strict descendant] of i if there isn ≥ 0 [resp.n > 0] such
thathn(i) = i′ (hn(i) is not always defined).

A cyclic list in a memory state(s, h) is a non-empty finite sequencek1, . . . , kn (n ≥ 1) of
locations such thath(kn) = k1 and for everyi ∈ {1, . . . , n − 1}, h(ki) = ki+1. A memory
state(s, h) is a list segmentbetweenx andy if there are locationsk1, . . . , kn (n ≥ 2) such that
s(x) = k1, s(y) = kn, k1 , kn, Dom(h) = {k1, . . . , kn−1}, and for everyi ∈ {1, . . . , n − 1},
h(ki) = ki+1.

Formulas

The semantics of the formula below is given in lemma 1.4.3.1,whose proof is given at the end
of this section.

x ֒→	+ y , ♯x = 0 ∧ alloc(x)
∧♯y = 1 ∧ ¬alloc(y)
∧∀z. z , y⇒ (♯z = 1⇒ alloc(z))
∧∀z. ♯z ≤ 1

Lemma 1.4.3.1.Let (s, h) be a simple memory shape.(s, h) |=SL x ֒→	+ y iff h is undefined
for s(y) and there are unique heapsh1, h2 such thath1 ✱ h2 = h, (s, h1) is a list segment
betweenx andy and(s, h2) can be decomposed uniquely as a (finite) collection of cycliclists.

Proof. We want to prove lemma 1.4.3.1. A locationi is sharedwhenever~♯i ≥ 2. A locationi
is initial [resp.final] wheneveri ∈ Dom(h) \ Im(h) [resp.i ∈ Im(h) \ Dom(h)]. It is easy to
show that(s, h) |=SL x ֒→	+ y if and only if

− s(x) is initial,

31

− s(y) is final,

− s(y) is the only final location,

− h has no shared location.

It is easy to check that ifh is of the formh1 ✱ h2 with the properties stated in lemma 1.4.3.1,
then it satisfies the formulax ֒→	+ y, which shows one implication. Let us prove the other
implication.

Assume(s, h) |=SL x ֒→	+ y. SinceDom(h) is finite, the set of descendants ofs(x) forms
either a cyclic list, or a lasso (a list segment followed by a cycle) or a list ended by a final
location. Since there are no shared locations, there is no lasso; and sinces(x) is initial, it does
not belong to a cyclic list. Sos(x) has a descendant that is final. It can only bes(y), soh
contains a list segment froms(x) to s(y). To end the proof, we must show that the rest of the
heap contains cyclic lists only. This is equivalent to say that no location different froms(x) is
initial. The proof is by contradiction. Suppose thati is an initial location distinct froms(x).
Then by the same reasoning as fors(x), we haves(y) is a descendant ofi, so two distinct
paths reachs(y), which contradicts the absence of shared locations. �

Now, thanks to this predicate, we can introduce additional formulas inSL✱ that are useful
in the sequel, whose semantics is provided in lemma 1.4.3.2.

ls(x, y) , x ֒→	+ y ∧ ¬(x ֒→	+ y ✱¬emp)
x ֒→+ y , (x = y ∧ x ֒→ y) ∨ (⊤ ✱ ls(x, y))
x ֒→∗ y , x = y ∨ x ֒→+ y

Lemma 1.4.3.2.Let (s, h) be a simple memory shape.

(I) (s, h) |=SL ls(x, y) iff (s, h) is a list segment betweenx andy.

(II) (s, h) |=SL x ֒→∗ y [resp.(s, h) |=SL x ֒→+ y] iff y is a descendant [resp. strict descendant]
of x.

Remarks

We could also define these formulas as follows::

x ֒→∗ y for x = y ∨
(

⊤ ✱((x ֒→ �) ∧ (� ֒→ y) ∧ ¬(� ֒→ x) ∧ ¬(y ֒→ �)

∧ ∀z.(x , z ∧ y , z)⇒ ((z ֒→ �)⇔ (� ֒→ z)))
)

x ֒→+ y for ∃z.x ֒→ z ∧ z ֒→∗ y

Additionally we can define the binary predicatedecls(x, y) that characterises a heap com-
posed of a single list segment with data sorted in the decreasing order.

decls(x, y) for (x = y ∧ emp) ∨ x 7→ y
∨ precisely(∃y′. x ֒→+ y′ ∧ y′ ֒→ y ∧ ∀z.(z ֒→+ y′)⇒ (z ֒→≥ �))

32

Chapter 2

On the Almighty Wand

Introduction

Contribution of this Chapter

In this chapter, we address simultaneously the decidability, complexity, expressive power, and
minimality of SL with and without magic wand.

We show thatSL is as expressive asSO. This is refined by showing thatSL without the sep-
arating conjunction is as expressive asSL, whence undecidable too. Our proof also shows that
the two formalisms have the same conciseness modulo logarithmic space translations. More-
over, we generalize these results to non-linear recursive data structures: we will definekSL, a
separation logic over heaps with exactlyk ≥ 1 record fields in each memory cell, and show it
equivalent tokSO, the second-order logic over these heaps.

As a by-product, we get thatSL is undecidable even if it has a unique selector, (solving an
open problem stated in the article of Galmiche and Méry [55] which adopts a proof-theoretic
perspective onSL), and thatSL is not a minimal logic as the magic wand can simulate the
separating conjunction (but it does not have the adjunct elimination).

We also establish thatSL without the magic wand is decidable, but with a non-elementary
complexity (this lower bound is obtained by reduction from satisfiability for the first-order
theory over finite words whose complexity is proved by Stockmeyer in [87], and holds already
with three variables). Decidability is shown by reduction to weak monadic second-order theory
of one unary total function that is shown decidable by Rabin in [82]. As a by-product, we
obtain that the entailment problem considered by Berdine, Calcagno and O’Hearn in [11] for a
fragment ofSL is decidable. We also establish that decidability can be obtained with a restricted
use of the magic wand containing its usage occurring in Hoare-like proof systems involving
separation logic.

Figures 2.2 and 2.1 contain together our decidability results concerning models with one
selector. Figure 2.2 is a sketch of the expressiveness results concerning undecidable logics –
each arrow represents a logarithmic space translation. Figure 2.1 is similar for decidable logics
– the solid arrow represents a logarithmic space translation and the dotted arrow is a polynomial
time translation.

33

MSO

SL without magic wand

SL whose magic wand is restricted

Figure 2.1: Translations proving decidability

SO

SL

SL without separating conjunction

Figure 2.2: Translations proving undecidability

Structure of the Chapter

In section 2.1.1, we show thatSL restricted to the separating conjunction (called hereinSL✱)
is decidable with non-elementary complexity. The complexity lower bound is obtained by
reduction from the first-order theory over finite words and the decidability is obtained by a
logarithmic space reduction into weak monadic second-order theory for one unary function. In
section 2.1.2, we extend this decidability result with a restricted use of the magic wand.

Section 2.2 contains many technical contributions about the expressive power ofSL, in
particular we show how to express advanced arithmetical constraints about the memory heap
in SL restricted to the magic wand (called hereinSL−✱). These results are essential to show in
section 2.3 thatDSO ⊑ SL−✱. We conclude from this result thatSL−✱, SL, DSO andSO have the
same expressive power (via logarithmic space translations). This implies undecidability of the
validity problem for any of these logics, by the undecidability of classical predicate logic with
one binary relation proved by Trakhtenbrot in [88]. Section2.4 extends these results tokSL.

This section presents results originally published in [27], and in [29].

34

2.1 A Decidable Fragment with a Restricted Wand

In this first section, we first show thatSL✱ satisfiability is decidable but with non-elementary re-
cursive complexity. Then we will study a restricted use of−✱ that will be shown to be decidable
through a translation toMSO.

2.1.1 A Complexity Result without Wand

We will here translateSL✱ to MSO, shown decidable below, before showing the complexity of
SL

✱ through a reduction from the first-order theory of finite words. Our result will be explained
in theorem 2.1.

In fact, as conjectured in [27], it has been later shown thatMSO is strictly more expressive
thanSL✱ by Antonopoulos and Dawar in [3]. They have provedSL✱ cannot specify that for
somen the a model has3n allocated cells with no predecessor. They then concluded that since
MSO can,MSO is strictly more expressive thanSL✱.

Additionally, as a corollary of our result, one can obtain analternative decidability proof
of the entailment problem for the fragment ofSL considered in [11], thesymbolic heaps frag-
ment. The symbolic heaps fragment isSL deprived of the¬ and∨ operators and of universal
quantification, but containing a list predicate. Its entailment problem was first shown to be in
co-np [11], and more recently in polynomial time in [38]. We have established decidability for
a fragment ofSL larger than the symbolic heaps fragment but of higher complexity.

Lemma 2.1.1.1.MSO satisfiability is decidable.

Proof. The weak monadic second-order theory of unary functions is the theory over structures
of the form(Domain, fct, =) whereDomain is a countable domain,fct is a unary function,
and= is equality, see [82]. This theory, which we will callMSOfct is decidable, see for in-
stance [16, Corollary 7.2.11]. Since in such a logical language it is possible to express that
Domain is infinite and to simulate thatfct is a partial function with finite domain (use a
monadic predicate symbol to be interpreted as the finite domain of fct), one can specify that
(Domain, fct, =) augmented with a first-order valuation is isomorphic to a heap. Based on
these elementary facts, we define a translationtrMSO→MSOfct(P, ·), computable in logarithmic
space, such that aMSO sentencef is satisfiable iff

infinity
︷ ︸︸ ︷

(¬∃P. ∀x. P(x))∧∃P. trMSO→MSOfct(P, f)

is satisfiable in the weak monadic second-order theory of oneunary function. The translation
trMSO→MSOfct(P, ·) is defined as follows:

trMSO→MSOfct(P, x ֒→ y) , P(x) ∧ fct(x) = y
trMSO→MSOfct(P, x = y) , x = y
trMSO→MSOfct(P,Q(x)) , Q(x)

trMSO→MSOfct(P, ·) is homomorphic for the boolean connectives and for quantifications. �

Using a technique similar to the proof of lemma 2.1.1.1, we now translateSL✱ into MSO,
which will entail decidability forSL✱.

35

Lemma 2.1.1.2.SL✱
⊑ MSO via a logarithmic space translation.

Proof. Any formulaf in SL✱ is satisfiable iff

∃P. (∀x. P(x)⇔ (∃y. x ֒→ y)) ∧ trSLsep→MSO(P, f)

is satisfiable wheretrSLsep→MSO(P, ·) is defined with the following clauses:

− trSLsep→MSO(P, x ֒→ y) , P(x) ∧ x ֒→ y,

− trSLsep→MSO(P, x = y) , x = y,

− trSLsep→MSO(P, f ✱ g) , ∃Q,Q′. P = Q⊎Q′∧trSLsep→MSO(Q, f)∧trSLsep→MSO(Q′, g) where
P = Q⊎Q′ is an abbreviation for∀x. (P(x)⇔ (Q(x) ∨Q′(x))) ∧¬(Q(x) ∧Q′(x)).

trSLsep→MSO(P, ·) is homomorphic for the boolean connectives and for first-order quantification.
�

As a corollary of the two previous lemmas,SL✱ satisfiability is decidable.
In order to show that satisfiability inSL✱ is not elementary recursive, we explain below how

to encode finite words as simple memory shapes. LetA = {a1, . . . , an} be a finite alphabet.
A finite word wd is usually represented as the first-order structure({1, . . . , | wd |}, <, (Pa)a∈A)
wherePa is the set of positions labelled by the lettera. Similarly, the wordwd can be repre-
sented as a simple memory shape(swd, hwd) in which

− xbeg ֒→
+ xend holds true and,xbeg andxend are distinguished variables marking respec-

tively, the beginning and the end of the encoding ofwd (they do not encode any of its
letters),

− the list segment induced from the satisfaction ofxbeg ֒→
+ xend has exactly| wd | +2 lo-

cations. Also, any location of positionj ∈ {2, . . . , | wd | +1} in the list segment (hence
excludingswd(xbeg) andswd(xend)) has exactlyk predecessors ifPak(j) holds; addi-
tionally we call this locationij − 1. Sinceswd(xbeg) andswd(xend) do not encode any
position inwd, there is no constraint on them.

In figure 2.3, we represent a simple memory shape encoding thefinite word a1a2a3a1.
Throughout the chapter, a simple memory shape(s, h) is encoded as a graph representing the
heap such that there is an edge fromi to i′ iff h(i) = i′. Locations are represented by letters
i (representing themselves), variablesx (representings(x)) or a joker location� (representing
an unspecified location different from all the other locations present in the graph). Although the
graph ofh is fully specified, we may omit irrelevant variables in the representation of(s, h).
In figure 2.3, note that each position of the word correspondsto a unique location in the simple
memory shape. For instance, the locationi4 has one predecessor encoding the fact that the
fourth letter in the word is precisely the first lettera1. The locationi3 has3 predecessors
encoding that fact that the third letter of the word is precisely the third letter isa3.

Similarly, any simple memory shape(s, h) containing a list segment betweenxbeg andxend

and such that any location on the list segment that is different froms(xbeg) ands(xend) has
at most|A| predecessors corresponds to a unique finite word with the above encoding. In this
direction, the simple memory shape may contain other dummy locations but they are irrelevant
for the representation of the finite word. Moreover, a simplememory shape can encode only
one word sincexbeg andxend are end-markers andxbeg can only have one successor.

36

i1

xbeg

i2 i3 i4

xend� � �

Figure 2.3: Memory state encoding the finite worda1a2a3a1

Theorem 2.1.SL✱ satisfiability is decidable and not elementary recursive. Its restriction with
five variables is also not elementary recursive.

Proof. Satisfiability of the first-order theory of finite words [87] is not elementary recursive
(this result holds already with three variables). Let us reduce this problem, that we will call
FOwords to satisfiability inSL✱. Let gword be the formula specifying a word model:

(xbeg ֒→
+ xend) ∧ (∀x. (xbeg ֒→

+ x) ∧ (x ֒→+ xend)⇒ ♯x ≤ |A|)

It is then easy to show that given a first-order formulaf over the signature(<, (Pa)a∈A), f is
satisfiable over finite words iff gword∧trFOwords→SLsep(f) is satisfiable inSL✱ wheretrFOwords→SLsep
is defined as follows:

trFOwords→SLsep(x < y) , (x ֒→+ y)
trFOwords→SLsep(∀x. g) , ∀x. (xbeg ֒→

+ x) ∧ (x ֒→+ xend)⇒ trFOwords→SLsep(g)
trFOwords→SLsep(Pai(x)) , ♯x = i.

Remember that♯x = i is a shortcut for a formula inSL✱ of size proportional toi (see sec-
tion 1.4.3). The translationtrFOwords→SLsep is homomorphic for boolean connectives. Similarly,
x ֒→+ y and♯x ≤ |A| belongs toSL✱ (see section 1.4.3). One can check that iff contains at most
three variables, thengword ∧ trFOwords→SLsep(f) contains at most five variables. �

It is probable that the number of variables can be reduced further while preserving non-
elementarity, for instance by identifying the limits of thewords by unique patterns instead of
distinguished variables – but it is not very essential at this point.

2.1.2 A Restricted Use of the Wand

We have as of now seen thatSL✱ satisfiability is decidable, whereas satisfiability for full SL will
be shown to be undecidable. However,SL✱ is certainly not the largest decidable fragment ofSL.
In the sequel of this section, we investigate another decidable extension ofSL✱ thanks to a re-
stricted use of the magic wand; quantification over disjointheaps is done only for heaps whose
domain has cardinality smaller than some fixedn (details will follow). Since the forthcoming
extension is closed under negation, this also corresponds to a restricted use of the operator−✱

¬.
Let us defineSL✱,−✱n as an extension ofSL✱ by adding the binary operators−✱n for every

n ∈ N. Unlike the plain operator−✱, a formula with outermost connective−✱n quantifies over

37

disjoint heaps for which the cardinality of the domain is bounded byn. The integern in the
connective−✱n is encoded in a unary system.

Definition 2.1.2.1.Let SL✱,−✱n be the logic defined by the grammar below and whose formulas
are interpreted over simple memory shapes:

f := ¬f | f ∧ f | ∃x.f | x ֒→ y | x = y | f ✱ f | f−✱nf

Additionally, (s, h) |=SL f1−✱nf2 iff for all h′ ⊥ h such that|Dom(h′)| ≤ n, if (s, h′) |=SL f1
then(s, h ✱ h′) |=SL f2.

SL
✱,−✱n allows to encode the restricted use of the magic wand in the Hoare-like proof sys-

tems as in the backward-reasoning form rule (MUBR) recalledbelow, see also [84]:

{(∃z. x 7→ z) ✱((x 7→ y) −✱ f)} [x] := y {f}

The precondition of this rule states with the subformula∃z. x 7→ z that the variablex is
allocated, and states thanks to the separating conjunctionthat(x 7→ y) −✱ f holds on the model
whose heap is modified so that the cell ofx is removed. The subformula(x 7→ y) −✱ f states
for this modified model that: if a new cell pointing toy is added underx with the magic wand,
thenf will hold. Removing the cell underx with ✱ so as to replace it with a new cell pointing to
y with −✱ is a trick to apply the instruction[x] := y to the model. Therefore, the precondition
checks that its model modified by[x] := y satisfiesf.

It is easy to show that(x 7→ y) −✱ f is equivalent to(x 7→ y)−✱1 f. Typically whenever the
left argument of a formula with outermost connective−✱ has only models of bounded size, this
trick can be applied again. Let us push a bit further this idea.

2.1.3 Preliminaries to the Translation

Bounding the Cardinal of Heap Domains

Definition 2.1.3.1. Let SL✱ m be the fragment ofSL defined by the grammar below and whose
formulas are also interpreted over simple memory shapes:

f ::=⊥| x 7→ y | emp | f ✱ f | f ∨ f | f ∧ f | ∃x.f

LetSL<n be the logic defined by the grammar below and whose formulas are also interpreted
over simple memory shapes:

g := ¬g | g ∧ g | ∃x.g | x ֒→ y | x = y | g ✱ g | g−✱kg | f −✱ g

wherek ∈ N, andf ∈ SL✱ m.

The satisfaction relation is defined as forSL with the help of definition 2.1.2.1.
Observe thatSL✱ m can express formulassize = k andsize ≤ k with semantics:(s, h) |=SL

size ≤ k iff |Dom(h)| ≤ k and(s, h) |=SL size = k iff |Dom(h)| = k. The formulasize = k with
k ≥ 1 is equivalent to the following formula:∃x1, . . . , xk.((∃y.x1 7→ y) ✱ . . . ✱(∃y.xk 7→ y)).
Also, the formulasize ≤ kwith k ≥ 1 is equivalent to the following formula:emp∨

∨

j≤k size =

k. Fork = 0, they are both equivalent toemp.

38

Lemma 2.1.3.2.For anyf ∈ SL✱ m, if (s, h) |=SL f then|Dom(h)| ≤| f |.

The proof is by a straightforward structural induction. Since computing| f | from f can be
done in polynomial time, we obtain the following reduction that becomes especially interesting
after showing decidability ofSL✱,−✱n.

Lemma 2.1.3.3.There is a polynomial time reduction from satisfiability forSL<n to satisfiabil-
ity for SL✱,−✱n .

In order to establish the above lemma, it is sufficient to observe thatf −✱ g is equivalent to
f−✱|f|g wheneverf ∈ SL✱ m andg ∈ SL.

Fictitious Heaps

In order to show decidability forSL✱,−✱n, we define a reduction intoSL✱. The translation is
based on a simple observation: since a formula with outermost connective−✱n requires the
disjoint heaps to have a domain size of at mostn, these new heaps can be encoded by a set
of pairs of variables of cardinalityn. Hence, a heap of size at mostn disjoint from (s, h)

can be represented symbolically, or fictitiously, by a setSh = {(y1, z1), . . . , (yn, zn)} such that
{s(y1), . . . , s(yn)} ∩ Dom(h) = ∅ ands(yi) = s(yj) impliess(zi) = s(zj), naturally encod-
ing the heaph(Sh) = {s(yi) 7→ s(zi) : s(yi) , s(y0), 1 ≤ i ≤ n}. We assume a variabley0
which is not allocated, and will be introduced as such at the beginning of the translation; this
can be seen as an equivalent of thenull constant. The setSh = {(y1, z1), . . . , (yn, zn)} will rep-
resent a heap with at mostn memory cells, even thoughSh contains exactlyn pairs. However,
whenevers(yi) = s(y0), the pair(yi, zi) does not encode any new memory cell. In terms of
formulas,(yi, zi) encodes a memory cell iff yi , y0 holds true. This shall be intensively used
in forthcoming formulas. Let us provide now the formal definitions.

Definition 2.1.3.4. A fictitious heapSh for the simple memory shape(s, h) is a finite set of
pairs of variables{(y1, z1), . . . , (yn, zn)} such that

− {s(y1), . . . , s(yn)} ∩ Dom(h) = ∅.

− For1 ≤ i, j ≤ n, s(yi) = s(yj) impliess(zi) = s(zj).

The heap represented bySh is h(Sh) , {s(yi) 7→ s(zi) : s(yi) , s(y0), 1 ≤ i ≤ n}.

Observe that|Dom(h(Sh))| ≤ n andh(Sh) ⊥ h. Sh is said to be oflengthn.

Lemma 2.1.3.5.Given a simple memory shape(s, h) andh′ such thath′ ⊥ h and|Dom(h′)| ≤
n, there existsSh a fictitious heap for(s′, h) of lengthn such thath′ = h(Sh), for somes′

which may differ froms at most for the variables occurring inSh.

The proof is by an easy verification by symbolically representing h′ with new variables.
The use of new variables makes it necessary to use a new stores′ for applying the definition of
h(Sh) which is dependent on the store. The stores′ may have to be different froms so as to
have enough variables whose value is different from that ofy0.

Below we introduce simple formulas useful to separate a fictitious heap or to extend a fic-
titious heap by another fictitious heap. Given the fictitiousheapsSh = {(y1, z1), . . . , (yn, zn)},
Sh1 = {(y1

1
, z1

1
), . . . , (y1n0 , z

1
n0
)} andSh2 = {(y2

1
, z2

1
), . . . , (y2n1 , z

2
n1
)}, we writeSh = Sh1 ✱ Sh2 to

denote the conjunction of the formulas below:

39

− h(Sh) is included inh(Sh1) ∪ h(Sh2):
∧

1≤i≤n

(
∨

1≤j≤n0

y1j = yi) ∨ (
∨

1≤j≤n1

y2j = yi)

− h(Sh1) ∪ h(Sh2) is included inh(Sh):

(
∧

1≤j≤n0

(y1j , y0)⇒ (
∨

1≤i≤n

yi = y1j)) ∧ (
∧

1≤j≤n1

(y2j , y0)⇒ (
∨

1≤i≤n

yi = y1j))

− h(Sh1) andh(Sh2) encode a function:
∧

1≤j,j′≤n0

(y1j = y1j′ ⇒ z1j = z1j′) ∧
∧

1≤j,j′≤n1

(y2j = y2j′ ⇒ z2j = z2j′)

− h(Sh1) andh(Sh2) are disjoint:
∧

1≤j≤n0

∧

1≤j′≤n1

((y1j , y0) ∨ (y2j′ , y0))⇒ (y1j , y2j′)

We provide a few lemmas whose easy proofs are omitted, exceptfor the last one. All the
proofs would be similar and similarly simple, the last one serves as an exemple. The lemmas,
will be helpful to prove correctness in section 2.1.4.

Lemma 2.1.3.6.Let Sh be a fictitious heap of lengthn for (s, h) and let the fictitious heaps
Sh1 = {(y1

1
, z1

1
), . . . , (y1n0 , z

1
n0
)} andSh2 = {(y2

1
, z2

1
), . . . , (y2n1 , z

2
n1
)} be such that their variables

do not occur inSh. Let s′ be a store that may differ froms at most for the variables occurring
in Sh1 andSh2. Assume moreover that(s′, h) |=SL Sh = Sh1 ✱ Sh2. Then,Sh1 andSh2 are
fictitious heaps for(s′, h), h(Sh1) ⊥ h(Sh2) andh(Sh1) ✱ h(Sh2) = h(Sh).

Again, the proof is by easy verification and we can also get a converse property.

Lemma 2.1.3.7.Let Sh be a fictitious heap of lengthn for (s, h). Let h1 ✱ h2 = h(Sh). There
exist fictitious heapsSh1 andSh2 for (s′, h) such that variables inSh, Sh1 andSh2 are mutually
disjoint,s′ may differ froms at most for the variables occurring inSh1 andSh2, h1 = h(Sh

1),
h2 = h(Sh

2) and(s′, h) |=SL Sh = Sh
1

✱ Sh2.

Let us now consider the corresponding lemmas to build disjoint heaps.

Lemma 2.1.3.8.LetSh1 be a fictitious heap for(s, h), Sh andSh2 be fictitious heaps for(s, h)
whose variables do not occur inSh1, and such that(s′, h) |=SL Sh = Sh1 ✱ Sh2, wheres′ may
differ froms at most for the variables occurring inSh andSh2. Then,Sh andSh2 are fictitious
heaps for(s′, h).

We can also get a converse property.

Lemma 2.1.3.9.Let Sh1 be a fictitious heap for(s, h) and,h′ be disjoint fromh ✱ h(Sh1) and
the cardinal of its domain is less thann. There exists a fictitious heapSh2 of lengthn for (s′, h)
such thath′ = h(Sh2), h′ ✱ h(Sh1) = h(Sh1 ∪ Sh2) and(s′, h) |=SL (Sh

1 ∪ Sh2) = Sh1 ✱ Sh2 (s′

may differ froms at most for the variables occurring inSh2).

40

Proof. Let Sh1 be a fictitious heap for(s, h) and h′ be disjoint fromh ✱ h(Sh1), so that
the cardinal of its domain is less thann. Let {i1, . . . , ik} = Dom(h′), hencek ≤ n. Let
{(y1

1
, z1

1
), . . .(y1n1 , z

1
n1
)} = Sh1.

Let Sh2 = {(y2
1
, z2

1
), . . .(y2n, z

2
n)}, with y2

1
, . . . , y2n, z

2
1
, . . . , z2n new variables. Lets′(ym) beim

if m ≤ k ands(y0) otherwise. Lets′(zm) beh′(im) if m ≤ k ands(y0) otherwise.
Then clearlyh′ = h(Sh2). Also:

h(Sh1 ∪ Sh2) = h({(y1
1
, z1

1
), . . .(y1n1 , z

1
n1
)} ∪ {(y2

1
, z2

1
), . . .(y2n, z

2
n)})

= {s′(y1
k
) 7→ s′(z1

k
) : s′(y1

k
) , s′(y0), 1 ≤ k ≤ n1}

∪{s′(y2
k
) 7→ s′(z2

k
) : s′(y2

k
) , s′(y0), 1 ≤ k ≤ n}

= {s′(y1
k
) 7→ s′(z1

k
) : s′(y1

k
) , s′(y0), 1 ≤ k ≤ n1}

✱{s′(y2
k
) 7→ s′(z2

k
) : s′(y2

k
) , s′(y0), 1 ≤ k ≤ n}

= h(Sh1) ✱ h(Sh2)

= h′ ✱ h(Sh1)

Finally,(Sh1∪Sh2) = Sh1 ✱ Sh2 is (Sh1∪Sh2) ⊆ (Sh1 ✱ Sh2)∧(Sh1 ✱ Sh2) ⊆ (Sh1∪Sh2).
By its definition,(Sh1 ✱ Sh2) ⊆ (Sh1 ∪ Sh2) is ∧y∈{y1

1
,...,y1n1 ,y

2
1
,...,y2n}(∨1≤j≤n1y

1

j
= y) ∨ (∨1≤j≤ny2j =

y). When y ∈ {y1
1
, . . . , y1n1 , y

2
1
, . . . , y2n}, then eithery ∈ {y1

1
, . . . , y1n1} and y1

j
= y is true in

s′ for somej, or y ∈ {y2
1
, . . . , y2n} and y2

j
= y is true ins′ for somej. As a consequence,

(s, h) |=SL (Sh
1

✱ Sh2) ⊆ (Sh1 ∪ Sh2). Similarly, one can show that(s, h) |=SL (Sh
1 ∪ Sh2) ⊆

(Sh1 ✱ Sh2). �

2.1.4 The Translation

The recursive translation function is of the formtrSLsep,mw−n→SLsep(g, Sh, m) whereg is a subfor-
mula to be translated,Sh has the format of some fictitious heap andm ∈ {0, 1} is a flag that
specifies whetherg is evaluated underh(Sh) (m = 0) or underh ✱ h(Sh) (m = 1).

Definition 2.1.4.1. A formula f is translated into∃y0.(trSLsep,mw−n→SLsep(f, ∅, 1) ∧ ¬alloc(y0)),
where the recursive maptrSLsep,mw−n→SLsep , is defined as follows:

− trSLsep,mw−n→SLsep(x = x′, Sh, m) , x = x′.

− trSLsep,mw−n→SLsep(x ֒→ x′, Sh, 1) , (x ֒→ x′) ∨ trSLsep,mw−n→SLsep(x ֒→ x′, Sh, 0).

− trSLsep,mw−n→SLsep(x ֒→ x′, Sh, 0) ,
∨

(y,z)∈Sh
y , y0 ∧ y = x ∧ z = x′.

− trSLsep,mw−n→SLsep is homomorphic for boolean connectives and first-order quantification.

− trSLsep,mw−n→SLsep(g−✱0g′, Sh, m) , trSLsep,mw−n→SLsep(g, ∅, 0) ∧ trSLsep,mw−n→SLsep(g′, Sh, m)

− trSLsep,mw−n→SLsep(g−✱ng′, Sh, m) for n ≥ 1 is defined as

∀y′
1
, . . . , y′n, z

′
1
, . . . , z′n.

(((Sh ∪ Sh′) = Sh ✱ Sh′ ∧
∧

(y,z)∈Sh′ ¬alloc(y))
⇒ (trSLsep,mw−n→SLsep(g, Sh′, 0) ∧ trSLsep,mw−n→SLsep(g′, Sh ∪ Sh′, m)))

wherey′
1
, . . . , y′n, z

′
1
, . . . , z′n is a sequence of2n pairs of fresh variables which defines the

fictitious heapSh′.

41

− trSLsep,mw−n→SLsep(g ✱ g′, Sh, m) with Sh of lengthn is defined as

∃y1
1
, . . . , y1n, y

2
1
, . . . , y2n, z

1
1
, . . . , z1n, z

2
1
, . . . , z2n.

(trSLsep,mw−n→SLsep(g, Sh1, m) ✱ trSLsep,mw−n→SLsep(g′, Sh2, m)) ∧ Sh = Sh1 ✱ Sh2

wherey1
1
, . . . , y1n, y

2
1
, . . . , y2n, z

1
1
, . . . , z1n, z

2
1
, . . . , z2n is a sequence of4n pairs of fresh vari-

ables which defines the fictitious heapsSh1 andSh2 of lengthn.

Even though in the worst-case there is an exponential numberof ways to divide a heap into
two disjoint heaps, our translation remains in polynomial time as the integern in the operator
−✱n is encoded in a unary system. The soundness of the translation is guaranteed by the lemma
below whose proof is by structural induction and uses the previous lemmas.

Lemma 2.1.4.2.Let Sh be a fictitious heap for(s, h). For all formulasg in SL✱,−✱n, we
have(s, h(Sh)) |=SL g iff (s, h) |=SL trSLsep,mw−n→SLsep(g, Sh, 0) and(s, h ✱ h(Sh)) |=SL g iff
(s, h) |=SL trSLsep,mw−n→SLsep(g, Sh, 1).

Proof. The proof is by structural induction ong. The base case for atomic formulas is by an
easy verification as well as the cases in the induction step for boolean connectives and first-
order quantification. We treat below the caseg = g1 ✱ g2, the caseg = g1−✱ng2 can be treated
analogously using lemmas 2.1.3.8 and 2.1.3.9. The induction hypothesis is of the following
form: for everyg′ whose size is strictly smaller than the size ofg, if Sh′ be a fictitious heap
for (s′′, h′′), then we have(s′′, h(Sh′)) |=SL g′ iff (s′′, h′′) |=SL trSLsep,mw−n→SLsep(g′, Sh′, 0) and
(s′′, h′′ ✱ h(Sh′)) |=SL g′ iff (s′′, h′′) |=SL trSLsep,mw−n→SLsep(g′, Sh′, 1).

Suppose(s, h(Sh)) |=SL g1 ✱ g2. There exist heapsh1 andh2 such thath1 ✱ h2 = h(Sh),
(s, h1) |=SL g1 and(s, h2) |=SL g2. By lemma 2.1.3.7, there exist fictitious heapsSh1 and
Sh2 (with fresh variables) for(s′, h) such thats′ may differ froms at most for the variables
occurring inSh1 ∪ Sh2, h1 = h(Sh1) andh2 = h(Sh2). Since eachShi is a fictitious heap for
(s′, hi), by the induction hypothesis,(s′, h) |=SL trSLsep,mw−n→SLsep(g1, Sh1, 0) and(s′, h) |=SL
trSLsep,mw−n→SLsep(g2, Sh2, 0). Moreover,(s′, h) |=SL Sh = Sh1 ✱ Sh2 (observe that satisfaction of
Sh = Sh1 ✱ Sh2 depends only on the store). Hence,

(s, h) |=SL ∃y1
1
, . . . , y1n, y

2
1
, . . . , y2n, z

1
1
, . . . , z1n, z

2
1
, . . . , z2n.

(trSLsep,mw−n→SLsep(g1, Sh1, 0) ✱ trSLsep,mw−n→SLsep(g2, Sh2, 0)) ∧ Sh = Sh1 ✱ Sh2

wherey1
1
, . . . , y1n, y

2
1
, . . . , y2n, z

1
1
, . . . , z1n, z

2
1
, . . . , z2n is the sequence of variables definingSh1 and

Sh2. As a consequence, we can state that(s, h) |=SL trSLsep,mw−n→SLsep(g1 ✱ g2, Sh, 0).
Similarly, suppose(s, h ✱ h(Sh)) |=SL g1 ✱ g2. There existh1, h2, h′1 and h′

2
such that

h1 ✱ h2 = h(Sh), h′
1

✱ h′
2
= h, (s, h′

1
✱ h1) |=SL g1 and(s, h′

2
✱ h2) |=SL g2. By lemma 2.1.3.7,

there exist fictitious heapsSh1 andSh2 (with fresh variables) for(s′, h) such thats′ may differ
from s at most for the variables occurring inSh1, Sh2, h1 = h(Sh1) andh2 = h(Sh2). Since
eachShi is a fictitious heap for(s′, hi), by the induction hypothesis,(s′, h′

1
✱ h(Sh1)) |=SL

trSLsep,mw−n→SLsep(g1, Sh1, 1) and(s′, h′
2

✱ h(Sh2)) |=SL trSLsep,mw−n→SLsep(g2, Sh2, 1). Addition-
ally, (s′, h) |=SL Sh = Sh1 ✱ Sh2. Hence,

(s, h) |=SL ∃y1
1
, . . . , y1n, y

2
1
, . . . , y2n, z

1
1
, . . . , z1n, z

2
1
, . . . , z2n.

(trSLsep,mw−n→SLsep(g1, Sh1, 1) ✱ trSLsep,mw−n→SLsep(g2, Sh2, 1)) ∧ Sh = Sh1 ✱ Sh2

So,(s, h) |=SL trSLsep,mw−n→SLsep(g1 ✱ g2, Sh, 1).

42

Now suppose(s, h) |=SL trSLsep,mw−n→SLsep(g1 ✱ g2, Sh, 0), that is

(s, h) |=SL ∃y1
1
, . . . , y1n, y

2
1
, . . . , y2n, z

1
1
, . . . , z1n, z

2
1
, . . . , z2n.

(trSLsep,mw−n→SLsep(g, Sh1, m) ✱ trSLsep,mw−n→SLsep(g′, Sh2, m)) ∧ Sh = Sh1 ✱ Sh2

wherey1
1
, . . . , y1n, y

2
1
, . . . , y2n, z

1
1
, . . . , z1n, z

2
1
, . . . , z2n corresponds to the sequence of fresh variables

from the fictitious heapsSh1 andSh2. Hence there exists a stores′ that may differ froms at
most for the variables occurring inSh1 andSh2 such that

(s′, h) |=SL (trSLsep,mw−n→SLsep(g1, Sh
1, 0) ✱ trSLsep,mw−n→SLsep(g2, Sh

2, 0)) ∧ Sh = Sh1 ✱ Sh2

From the induction hypothesis, we have(s′, h(Sh1)) |=SL g1 and(s′, h(Sh2)) |=SL g2. By
lemma 2.1.3.6,h(Sh1) ⊥ h(Sh2) and h(Sh1) ✱ h(Sh2) = h(Sh). As a consequence, we
have(s′, h(Sh)) |=SL g1 ✱ g2. Since variables inSh1 andSh2 do not occur ing1 ✱ g2, we get
(s, h(Sh)) |=SL g1 ✱ g2.

Similarly, from(s, h) |=SL trSLsep,mw−n→SLsep(g1 ✱ g2, Sh, 1), one can reach the conclusion that
(s, h ✱ h(Sh)) |=SL g1 ✱ g2 by using lemma 2.1.3.6. �

This leads to the main result of this section.

Lemma 2.1.4.3.There is a polynomial time reduction fromSL✱,−✱n satisfiability problem to
SL

✱ satisfiability problem.

Proof. By lemma 2.1.4.2, for every simple memory shape(s, h), we have(s, h ✱ h(∅)) |=SL g
iff (s, h) |=SL trSLsep,mw−n→SLsep(g, ∅, 1) wheretrSLsep,mw−n→SLsep(g, ∅, 1) is anSL✱ formula and∅
denotes the empty fictitious heap. Moreover, we have seen that trSLsep,mw−n→SLsep(g, ∅, 1) can
be built in polynomial time assuming that the natural numbers are represented with a unary
encoding ing. Sinceh ✱ h(∅) is equal toh, the formulasg andtrSLsep,mw−n→SLsep(g, ∅, 1) hold
true at the same states. �

The following theorem is a consequence of lemma 2.1.4.3 by using the decidability ofSL✱

satisfiability (see section 2.1.1).

Theorem 2.2.SL✱,−✱n satisfiability is decidable.

We then obtain the following interesting corollary.

Theorem 2.3.Satisfiability forSL<n is decidable.

2.2 Advanced Arithmetical Constraints with the Wand

In this section, we show howSL−✱ can be used to express the following property (P-nb):

The number~♯x of locations that point to the locations(x) is at most the number
~♯y of locations that point tos(y) augmented by some constantm.

The reason for expressing this property will become clearerin section 2.3. We may however
try to provide a few motivations:

43

− since we want to express allSO properties, we may already train ourselves with express-
ing this particularSO property;

− most importantly, more than a pure exercise, this property plays a crucial role in the
encoding ofSO in SL;

The proof thatSL−✱ can express the above property (P-nb) is subject to technical compli-
cations, but its essence is not so intricate, and it is betterillustrated by encoding other kinds
of cardinality constraints. For this reason, we make a slight detour in our presentation by first
sketching the encoding of the following property (P-nb’):

The length of the list starting atx is equal to the length of the list starting aty.

The property (P-nb’) turns out to be a bit simpler to define than (P-nb), and it already
provides the key ingredients for expressing (P-nb). This property (P-nb’) will not be used
anywhere else and could have been skipped, but we believe it has a pedagogical value to show
how it can be expressed. We first sketch the encoding of (P-nb’) in section 2.2.1, and then move
in section 2.2.2 to the proof, with full details, of the encoding of (P-nb) inSL−✱.

2.2.1 Comparing Two List Lengths

Let us restrict our attention to simple memory shapes composed of two acyclic lists starting
at x andy respectively, with no other allocated cells, and with the additional constraint that
no location is reachable fromx andy simultaneously. We aim now at expressing the fact that
both lists have the same lengthn using the magic wand. To do so, we can say that there exist
n locationsi1, . . . , in that are not allocated and for which there is a one-one correspondence
between these locations and the ones of the list starting atx, and on the other hand there is
another one-one correspondence between these same locations and the ones of the list starting
aty. As illustrated by figure 2.4, the gain for considering non allocated cells is that the one-one
correspondence can be materialized by allocatingi1, . . . , in so that each of them points to the
cell it is in correspondence with. The trickiest point is then how to materialize the guess of the
locationsi1, . . . , in in such a way that it is possible to refer to them later withoutconfusing
them with the cells that were initially allocated. To do so, we may observe that in the original
heap, all locations have at most one predecessor. We can thusidentify some extra locations
i1, . . . , in if we impose them to admit exactly two predecessors.

As a reminder which applies to all the figures using the symbol� to indicate a location in
this section and in section 2.3, a� symbol represents a random location that is not represented
by any other� symbol, variable (likex in figure 2.4), or integer (likei1 in figure 2.4).

With these intuitions in mind, the property that the length of the list starting atx is equal to
the length of the list starting aty can be expressed by a formula of the form below:

f2 −✱((f1−✱g(x, y)) ∧ (f1−✱g(y, x)))

where:

− f2 expresses that all the locations have either0 or 2 predecessors,

− f1 expresses that all the locations have either0 or 1 predecessor,

44

i1 i2 i3 i4

x � � �

y � � �

� � � � � � � �

Figure 2.4: How to compare the length of two lists: situationg(x, y), with heap part satisfying
f2 in bold, and heap part satisfyingf1 in dotted line

− g(x, y) expresses the situation depicted in figure 2.4:

1. all the locations reachable fromx have exactly two immediate predecessors, except
x that has one predecessor only;

2. among the predecessors of the locations reachable fromx, the ones which are not
reachable fromx have exactly two immediate predecessors, and these two immedi-
ate predecessors do not have immediate predecessors;

3. all extra allocated locations are only the ones of the listy.

We claim that there exist such formulasf2, f1, andg(x, y) in SL, although we do not plan
to provide details herein. We shall do it for constraints about the numbers of predecessors.
Before doing so, let us first notice that it is not difficult to adapt this technique to express richer
constraints on the length of two lists, as for instance the property that one list is one cell longer
than another one, and thus using a reduction to counter machines similar with [25], this entails
the undecidability ofSL−✱. However, we were not able to encodeSO by using cardinality
constraints on list lengths, but rather on comparing the numbers of predecessors of different
locations.

Let us also remark that the above construction relies on the fact that in the considered
heaps, all the locations have at most one predecessor. In thegeneral case, it could be harder to
distinguish the locations that are initially allocated in the heaps, and the ones that correspond to
the guessed locationsi1, . . . , in. This last point justifies why the construction presented atthe
next section is a bit more technical. Actually, we shall relyon a reduction to heaps where all
the locations have at least three predecessors. However, the key ideas are essentially the same.

2.2.2 Comparing the Numbers of Predecessors

In this section, we show howSL−✱ can express properties of the form~♯x + m R ~♯y + m′ with
m, m′ ∈ N andR ∈ {=,≥,≤} where~♯x denotes the number of predecessors ofs(x) in a heap.
This is a key property in the forthcoming proof establishingthat weak second-order logic is
equivalent toSL−✱. Note that~♯x R m can be easily expressed inSL−✱, even without magic wand
(indeedm is a fixed value), as shown in section 1.4.2. By contrast, expressing a constraint

45

~♯x R ~♯y+m is natural in second-order logic, for instance by introducing an adequate finite binary
relation between the predecessors ofx and those ofy. We show below that this can be done
also inSL−✱ but requires much more work.

In a nutshell, expressing constraints of the form~♯x+m R~♯y+m′ will be done as follows. First,
thanks to boolean connectives it is sufficient to express properties of the form~♯x + m ≤ ~♯y + m′

with m, m′ ∈ N (strictly speaking, we can assume thatm × m′ = 0). Moreover,~♯x + m ≤ ~♯y + m′

is precisely equivalent to the fact that for alln ∈ N, ~♯y − m ≤ n implies~♯x − m′ ≤ n (indeed
i ≤ i′ iff for everyj ≥ 0, we havei′ ≤ j implies i ≤ j). Quantification over the set of
natural numbers will be simulated by a quantification over disjoint heaps in whichn is exactly
the cardinal of their domains. Such a quantification is performed thanks to the magic wand and
we require that disjoint heaps are segmented and current heap is flooded (to be defined below).

Definition 2.2.2.1.A simple memory shape(s, h) is segmentedwheneverDom(h)∩Im(h) = ∅

and no location has strictly more than one predecessor.
(s, h) is floodedwhen no location has one or two predecessors.

The stores is irrelevant for these concepts. As an example, the heaph2 in figure 2.6
restricted to cells labelled by2 is segmented. These conditions on heaps are needed in order to
guarantee that the heaps obtained from the original heap andthe disjoint heaps easily determine
which part of the heap has been added. A nice feature is that the fact of being flooded or
segmented can be naturally expressed inSL−✱ (see lemma 2.2.2.2 below). Finally, any heap
such that~♯x,~♯y ≥ 3 can be extended to a flooded heap without modifying the numbers of
predecessors forx andy, respectively. This explains why the term ‘flooded’ has beenchosen.
In the case~♯x ≤ 2 or ~♯y ≤ 2, we perform a simple case analysis and we obtain boolean
combinations of constraints of the form~♯x R m′′ or~♯y R m′′ (that can be easily handled, details
will follow).

Lemma 2.2.2.2.There are formulasflooded andseg in SL−✱ such that for every simple mem-
ory shape(s, h),

(I) (s, h) |=SL flooded iff (s, h) is flooded,

(II) (s, h) |=SL seg iff (s, h) is segmented.

Proof. It is easy to check that the formulas below do the job.

− flooded , ∀x. (♯x = 0 ∨ ♯x > 2).

− seg , ∀x, y. (x ֒→ y⇒ (♯y = 1 ∧ ¬(∃z. z ֒→ x ∨ y ֒→ z))).

Note that the formulas♯x = 0, ♯x > 2 and ♯y = 1 are indeed formulas without separating
connectives. �

Now, we present a few crucial definitions about specific patterns in simple memory shapes,
namely markers.

Definition 2.2.2.3.A [resp.strict] markerin the model(s, h) is a sequence of distinct locations
i, i0, . . . , in for somen ≥ 0 such that

− h(i0) = i [resp. andDom(h) = {i0, . . . , in}],

− for everyj ∈ {1, . . . , n}, h(ii) = i0 and~♯ij = 0,

46

�

�
�

�

i

�

� �

Figure 2.5: A simple memory shape with a2-marker and a3-marker

− ~♯i0 = n.

The marker is said to be ofdegreen with endpointi (n-marker).

Markers have simple structure with natural graphical representation. In figure 2.5, we
present a simple memory shapeh containing a2-marker and a3-marker, both having the same
endpointi. Note that there are disjoint heapsh1 andh2 such thath = h1 ✱ h2, h1 has a strict
2-marker andh2 has a strict3-marker.

Definition 2.2.2.4. A simple memory shape(s, h) is said to bek-markedwhenever there is
no location inDom(h) that does not belong to a marker of degreek. Moreover, it isstrictly
k-marked when no distinct markers share the same endpoint (noaliasing).

Markers are essential building blocks to express a constraint of the form~♯x − m ≤ n with
m, n ∈ N. Before presenting the formal treatment, let us explain theprinciple of the encoding.
Assume thath1 is a flooded heap (that is, no location has one or two predecessors), andh2 is a
segmented heap such that

1. h1 andh2 are disjoint,

2. |Dom(h2)| = n,

3. h1 ✱ h2 does not contain locations with two predecessors,

4. if a locationi has exactly one predecessori′ in h1 ✱ h2 theni′ has no predecessor andi
does not belong toDom(h1 ✱ h2).

Hence,h1 ✱ h2 is almost flooded since the only reason for not being flooded ispossibly to
contain isolated memory cells fromh2. Figure 2.6 presents two heapsh1 andh2 satisfying the
above conditions. Cells of the heaph2 are labelled by2. Note also thath1 ✱ h2 is not flooded
because of some isolated cells fromh2 such asi 7→ i′.

Obviously,h1 ✱ h2 does not contain any2-marker and in particular no predecessor of any
location is the endpoint of some2-marker.

Definition 2.2.2.5. A m-completionof h1 ✱ h2 consists in adding a disjoint heaph′ = h′
1

✱ h′
2

such that

1. h′
1

is 1-marked,

2. h′
2

is strictly2-marked and contains exactlym distinct2-markers.

47

�

�

�

i

�

�

�

i′

�

�

�

�

�

�

2

2

2

2

Figure 2.6:h1 andh2 satisfying the conditions 1.-4.

Consider the number of2-markers in the heaph1 ✱ h2 ✱ h′ resulting from such a completion.
First, observe that strictly more thanm 2-markers can be present since an isolated memory cell
from h2 and a1-marker fromh′

1
may produce a2-marker inh1 ✱ h2 ✱ h′ (see the locationsi1,

i2, i3 andi4 in figure 2.7). Second, observe that at least them 2-markers fromh′ are still in
h1 ✱ h2 ✱ h′, because the definition of✱ prevents a2-marker from combining with a1-marker to
form a3-marker. Observe also that the insertion of markers of degree strictly less than3 in the
almost flooded heap allows to safely identify them as markersin the new heap. Consequently,
there are at mostn + m predecessors ofs(x) in figure 2.7 that are endpoints of2-markers in
h1 ✱ h2 ✱ h′.

Definition 2.2.2.6.We say thath1 ✱ h2 ✱ h′ is x-completedwhenever all the predecessors ofs(x)
are endpoints of2-markers.

Figure 2.7 presents a2-completion ofh1 ✱ h2 (cells inh1 are those pointing tox and cells in
h2 are labelled by2 whereas the cells of the2-completion are represented by dotted arrows).
Moreover, the total resulting heap isx-completed: every predecessor ofx is an endpoint of
some2-marker.

It is easy to observe that~♯x − m ≤ n iff there is am-completionh′ of h1 ✱ h2 such that
h1 ✱ h2 ✱ h′ is x-completed (see the exact statement in lemma 2.2.2.9). Lemma 2.2.2.7 below
states that the heaps obtained by completion can be specifiedin SL−✱.

Lemma 2.2.2.7.There are formulascompleted(x) andcompletem (m ≥ 0) in SL−✱ such that
for every simple memory shape(s, h),

(III) (s, h) |=SL completed(x) iff all the predecessors ofs(x) are endpoints of2-markers,

(IV) (s, h) |=SL completem iff there areh1, h2 such thath = h1 ✱ h2, (s, h1) is 1-marked and
(s, h2) is strictly2-marked with exactlym distinct2-markers.

Proof. The formulas below do the job.

48

x

�

�

�

i1

�

�

�

�

�

�

�

�

�

i2

i3

i4

2

2

Figure 2.7: A2-completion that leads to ax-completed heap

(III) completed(x) is equal to:

∀y. y ֒→ x⇒ (∃z. z ֒→ y ∧ ♯z = 2 ∧ ∀z′. z′ ֒→ z⇒ ♯z′ = 0))

(IV) In order to definecompletem we perform a case analysis and introduce below a few for-
mulas. First,g0 , ⊤ and letgn be the formula below:

∃x1, . . . , xn, y1, . . . , yn.

(
∧

i,j

xi , xj) ∧ (
n∧

i=1

((yi ֒→ xi) ∧ ♯yi = 2 ∧ ∀z. z ֒→ yi ⇒ ♯z = 0))

gm ∧ ¬gm+1 states that the heap contains exactlym 2-markers with disjoint endpoints. Let
gcasesbe the formula below:

∀x. alloc(x)⇒ (g1

extr(x) ∨ g2

extr(x) ∨ g1

end(x) ∨ g2

end(x))

wheregiextr(x) [resp. giend(x)] states thath(s(x)) [resp. h(h(s(x)))] is the endpoint
of somei-marker. By way of example,g1

extr(x) is defined as follows:

♯x = 1 ∧ (∀y. (y ֒→ x)⇒ ♯y = 0) ∧ (∃y. x ֒→ y ∧ ¬∃z. y ֒→ z)

The formulacompletem is defined as the conjunctiongm ∧ ¬gm+1 ∧ gcases.

�

Note that the heap restricted to dashed edges in figure 2.7 satisfiescomplete2 – it is com-
posed of two2-markers and two1-markers.

Definition 2.2.2.8.Two heapsh1, h2 are said to becompletely disjointif (Dom(h1)∪Im(h1))∩
(Dom(h2)∪Im(h2)) = ∅. Moreover, a pair of heaps(h1, h2) is said to becompatiblewhenever

49

− (s, h1) is flooded,

− (s, h2) is segmented,

− h1 andh2 are completely disjoint.

Note thath1 andh2 from figure 2.6 are not compatible sinceIm(h1) ∩ Im(h2) , ∅.
Lemma 2.2.2.9 below presents the formal statement related to the intuitive explanations that

were already presented.

Lemma 2.2.2.9.Let s be a store and(h1, h2) be a compatible pair of heaps such thatx hasi
predecessors inh1 for somei ≥ 1. Then,(i) (s, h1 ✱ h2) |=SL completem −✱

¬ completed(x) iff
(ii) |Dom(h2)| ≥ (i − m).

Proof. Proof of (i)→ (ii).
Assume (i). Leth′

1
be an1-marked heap,h′

2
be a strict2-marked heap with exactlym 2-

markers, andh = h1 ✱ h2 ✱ h′
1

✱ h′
2

with (s, h) |=SL completed(x). Then, the set of endpoints
from 2-markers inh includesh−1

1
(s(x)) and its cardinalj satisfiesj ≥ i. Markers of degree

2 witnessing the satisfaction ofcompleted(x) do not come fromh1 sinceh1 is flooded. So,
either they come directly fromh′

2
or they are markers of degree1 which have been converted

into markers of degree2 thanks to isolated cells fromh2. Let k be the number of converted
markers, thenj ≤ k + m. Since none ofh1, h′2 contributes to the conversion of an1-marker, the
amount of converted markers is bounded by|Dom(h2)|, that is|Dom(h2)| ≥ k. Consequently,

i − m ≤ j − m ≤ k ≤ |Dom(h2)|.

Proof of (ii)→ (i).
Assume (ii). In the sequel, we shall introduce locations that are involved in2-markers; the
exponents below in the locations refer to the following intended positions in the schema for
2-markers (of course< and= could have been permuted):

<

ց
=

ւ
?

↓
>

By letting n0 = i − m, we have|Dom(h2)| ≥ n0. The set of locationsh−1
1
(s(x)) (set of

predecessors ofs(x) in h1) containsn0 + m elements that can be writteni>
1
, . . . , i>n0+m. Since

|Dom(h2)| = |Im(h2)|, there exist at leastn0 locationsi?
1
, . . . , i?n0 in Im(h2). Moreover, since

K = Dom(h1 ✱ h2) ∪ Im(h1 ✱ h2) is finite, there exist distinct locationsi=
1
, . . . , i=n0 that are not in

K. Let h′
1

be the heap disjoint from(h1 ✱ h2) with the memory cells below:

h′1 = {i=
1
7→ i?

1
, i?

1
7→ i>

1
, . . . , i=n0 7→ i

?

n0
, i?n0 7→ i

>

n0
}

Let h′
2

be a heap disjoint from(h1 ✱ h2 ✱ h′
1
) that containsm instances of2-markers, with end-

pointsi>n0+1, . . . , i
>

n0+m
respectively. It is easy to check that(s, h′

1
✱ h′

2
) |=SL completem and

(s, h1 ✱ h2 ✱ h′
1

✱ h′
2
) |=SL completed(x), which is sufficient to guarantee (i). �

Satisfying that for alln ∈ N, ~♯y − m ≤ n implies~♯x − m′ ≤ n suggests a simple contest
between two players: Spoiler aims at disproving that the constraint holds, and Duplicator tries
to prove it. The whole play of the contest is depicted on figure2.8. The steps of contest go as
follows:

50

x

�
�

� �

y

�
�

�

�
�

�

1

x

�
�

� �

y

�
�

�

�
�

�

2

�

�

�

��

x

�
�

� �

y

�
�

�

�
�

�

3

�

�

�

��

�

�

�

�

�

�

x

�
�

� �

y

�
�

�

�
�

�

4

�

�

�

��

�

�

�

�

�

�

� � �

x

�
�

� �

y

�
�

�

�
�

�

5

�

�

�

��

�

�

�

�

�

�

� � �

Figure 2.8: A contest won by Duplicator;n = 3, m = m′ = 0

51

1. We start with an initial heaph0 without any hypothesis; if~♯x ≤ 2 or~♯y ≤ 2, the contest is
over (these cases are handled elsewhere), otherwise the contest may start.

2. Spoiler reduces to the case of a flooded heaph1 (whole heap on the second frame of
figure 2.8) by adding cells (the five black arrows in the secondframe) in a controlled way
– this will be formalized later.

3. Spoiler picks a segmented heaph2 (the three black arrows in the third frame) such that
|Dom(h2)| equalsn and(h1, h2) is compatible.

4. Spoiler proves that~♯y − m ≤ n using the previous scenario (frame of the second line).

5. Then Duplicator plays and wins if it can prove~♯x − m′ ≤ n (note that Duplicator wins on
figure 2.8).

Figure 2.8 summarizes a contest with a successful outcome for Duplicator.
The above contest supposes that it is possible to characterize the heapsh1 ✱ h2 such that

(h1, h2) is compatible.
We now extend little the notion of a compatible pair of heaps to a single heap. Note that a

compatible heap according to the following definition is almost flooded.

Definition 2.2.2.10.A heaph is said to becompatiblewhenever there existh1 andh2 such that
h = h1 ✱ h2 and(h1, h2) is compatible.

Lemma 2.2.2.11.Let(s, h) be a simple memory shape. The heaph is compatible iff (s, h) |=SL
compatible with:

compatible , (∀x, y. (x ֒→ y ∧ ♯y = 1)⇒ (♯x = 0 ∧ ¬alloc(y))) ∧ (¬(∃x. ♯x = 2)).

The proof of lemma 2.2.2.11 is by an easy verification. It remains to define the formula
comtest(x, y, m, m′) that defines a contest and that is essential to establish lemma 2.2.2.12 be-
low.

flooded ∧ ((seg ∧ ♯x = 0 ∧ ♯y = 0) −✱ (compatible

⇒ ((completem −✱
¬ completed(y))⇒ (completem′ −✱

¬ completed(x))))).

Lemma 2.2.2.12.Form, m′ ≥ 0, there is a formulaf in SL−✱ of quadratic size inm + m′ such that
for every simple memory shape(s, h), we have(s, h) |=SL f iff ~♯x + m ≤ ~♯y + m′.

Proof. By packing the previous developments, we shall show that

(PROP) Whenh is flooded,(s, h) |=SL comtest(x, y, m, m′) iff ~♯x + m ≤ ~♯y + m′.

Even thoughh is not necessarily flooded, when~♯x ≥ 3 and~♯y ≥ 3 it can be safely extended
to a flooded heap without modifying the number of predecessors of x andy. When~♯x ≤ 2

or ~♯y ≤ 2 such an extension is not anymore possible. Nevertheless, bya simple case analysis,
~♯x+m ≤ ~♯y+m′ is equivalent to

∨

i≤2(♯x = i ∧♯y ≥ i+m−m′)∨
∨

i≤2(♯y = i ∧♯x ≤ i+m′−m),
which can be easily expressed inSL−✱. Let us considerf , fspecial ∨ fmain with fmain , (♯x =

0 ∧ ♯y = 0) −✱
¬ comtest(x, y, m, m′) and

fspecial ,

∨

i≤2

(♯x = i ∧ ♯y ≥ i + m − m′) ∨
∨

i≤2

(♯y = i ∧ ♯x ≤ i + m′ − m)

First, it is clear that~♯x + m ≤ ~♯y + m′ and (~♯x ≤ 2 or ~♯y ≤ 2) is equivalent to(s, h) |=SL fspecial.
Now, suppose that~♯x ≥ 3 and~♯y ≥ 3. Assuming that (PROP) holds, we have the following
equivalences:

52

(1) (s, h) |=SL (♯x = 0 ∧ ♯y = 0) −✱
¬ comtest(x, y, m, m′).

(2) There is a heaph′ ⊥ h such that(s, h′) |=SL (♯x = 0 ∧ ♯y = 0) and(s, h ✱ h′) |=SL
comtest(x, y, m, m′).

(3) There ish′ ⊥ h such that(s, h′) |=SL (♯x = 0 ∧ ♯y = 0) and(s, h ✱ h′) |=SL flooded and
~♯y + m′ ≥ ~♯x + m (in h ✱ h′) by (PROP).

(4) ~♯y + m′ ≥ ~♯x + m in h.

Observe that~♯x and~♯y in h are equal to their values inh ✱ h′ since(s, h′) |=SL (♯x = 0∧♯y = 0).
Moreover, (4) implies (3) since it is always possible to extend a simple memory shape into a
flooded one while preserving~♯x and~♯y (when~♯x ≥ 3 and~♯y ≥ 3).

It remains to show that (PROP) holds true. The statements below are equivalent (h is as-
sumed to be flooded):

1. (s, h) |=SL comtest(x, y, m, m′).

2. for every segmented disjoint heaphe such that(s, he) |=SL ♯x = ♯y = 0, if (s, h ✱ he) |=SL
completem −✱

¬ completed(y) and the heaph ✱ he is compatible, then(s, h ✱ he) |=SL
completem′ −✱

¬ completed(x).

3. for every segmented disjoint heaphe such that(s, he) |=SL ♯x = ♯y = 0, there exist
h′ ✱ he′ = h ✱ he such that(h′, he′) is compatible and the number of predecessors ofx
andy in h are equal to those ofx andy in h′, if |Dom(h′)| ≥ ~♯y−m, then|Dom(h′)| ≥ ~♯x−m′.

4. for everyn ≥ 0, we haven ≥ ~♯y − m in h impliesn ≥ ~♯x − m′ in h.

5. ~♯x + m ≤ ~♯y + m′.

Lemma 2.2.2.11 is used from (1) to (2). Lemma 2.2.2.9 is used for the equivalence between
(2) and (3). Moreover, one needs to observe thath is flooded,he is a disjoint segmented heap,
(s, he) |=SL ♯x = ♯y = 0 andh ✱ he is compatible iff there areh′ ✱ he′ = h ✱ he such that(h′, he′)
is compatible and the number of predecessors ofx andy in h are equal to those ofx andy in h′.
Equivalence between (3) and (4) is due to the fact that for every n ≥ 0 there is a heaphe such
that |Dom(he)| = n, (h, he) is compatible and(s, he) |=SL ♯x = ♯y = 0. �

In section 2.3, only constraints of the form~♯x + m ≤ ~♯y + m′ with m, m′ ≤ 3 are used. In par-
ticular, this means that for the forthcoming formulas usingadvanced arithmetical constraints,
m + m′ can be viewed as a constant.

2.3 Equivalence to Second-Order Logic

First, by combining lemma 2.3.1.2 and lemma 2.3.1.1, we recall thatDSO is at least as expressive
asSL and that there is a logarithmic-space translation fromSL into DSO (logarithmic space
reductions are closed under compositions). Then, we will show the converse.

2.3.1 Preliminaries

Separation Logic is Less Expressive than Second-Order Logic

Here, we recall standard translations. Before showing advanced results in the sequel of this
section, we show below thatSO can be encoded in its fragmentDSO by representing multiedges

53

by finite sets of edges (lemma 2.3.1.1), and then we explain how SL can be encoded intoSO by
simply internalizing the semantics (lemma 2.3.1.2).

Lemma 2.3.1.1.There is a logarithmic space translation fromSO to DSO (henceSO ⊑ DSO).

Proof. We use the standard graphical representation of a multigraph: a tuple(i1, . . . , in) is
represented byn edges(i1, i), . . . ,(in, i) for some locationi. To each variableP in Secvarn,
we associaten distinct variablesP1, . . . ,Pn in Secvar2. Let us define the maptrSO→DSO, ho-
momorphic for boolean connectives and first-order quantification, such thattrSO→DSO preserves
the semantics:

trSO→DSO(∃P. g) , ∃P1, . . . ,Pn. trSO→DSO(g)

trSO→DSO(P(x1, . . . , xn)) , ∃y.
n∧

i=1

Pi(xi, y).

Correctness of the translation is relating on simple properties on relations. Indeed, letR1, . . . , Rn
ben finite binary relations andR be a finiten-ary relation (overLoc). We say that(R1, . . . , Rn)
corresponds toR whenever for all(i1, . . . , in) ∈ Locn, (i1, . . . , in) ∈ R iff there isi ∈ Loc
such that for1 ≤ k ≤ n, (ik, i) ∈ Rk. We have the following properties:

1. For all finite binary relationsR1, . . . , Rn, there is a finiten-ary relationR such that the
n-uple(R1, . . . , Rn) corresponds toR.

2. Reciprocally, for every finiten-ary relationR, there aren finite binary relationsR1, . . . , Rn
such that(R1, . . . , Rn) corresponds toR.

�

Lemma 2.3.1.2.There is a logarithmic space translation fromSL to SO (henceSL ⊑ SO).

Proof. For all variablesP,Q,Q′ in Secvar2, let us define theSO formulas below with free
occurrences ofP,Q,Q′:

− init(P) , ∀x, y. xPy⇔ x ֒→ y,

− heap(P) , ∀x, y, z. xPy ∧ xPz⇒ y = z (functionality),

− P = Q ✱ Q′ , ∀x, y. (xPy⇔ (xQy ∨ xQ′y)) ∧ ¬(xQy ∧ xQ′y).

Let f be a formula inSL andP be a variable inSecvar2. One can show that for every sim-
ple memory shape(s, h), we have(s, h) |=SL f iff (s, h) |=SO ∃P. init(P) ∧ trSL→SO(P, f)
wheretrSL→SO is inductively defined as follows (trSL→SO(P, ·) is homomorphic for boolean
connectives and first-order quantification):

trSL→SO(P, x ֒→ y) , xPy
trSL→SO(P, g ✱ g′) , ∃Q,Q′. P = Q ✱ Q′ ∧ trSL→SO(Q, g) ∧ trSL→SO(Q′, g′)
trSL→SO(P, g −✱ g′) , ∀Q.((∃Q′. heap(Q′) ∧Q′ = Q ✱ P) ∧ heap(Q) ∧ trSL→SO(Q, g))

⇒ (∃Q′. heap(Q′) ∧ Q′ = Q ✱ P ∧ trSL→SO(Q′, g′))

In the above clauses, the second-order variablesQ andQ′ are fresh. �

54

A Syntactic Convention

In the sequel, without any loss of generality, we require that the sentences inDSO satisfy the
Barendregt convention as far as the second-order variablesare concerned.

Definition 2.3.1.3.A sentence that contains the second-order variablesP1, . . . ,Pn satisfies the
extended Barendregt convention, if for all j, any quantification overPj occurs within the scope
of each ofP1, . . . ,Pj−1.

Typically, we exclude sentences of the form∃P2. ∃P1. f. Observe that any sentence inDSO
can be transformed in logarithmic space into an equivalent sentence verifying this convention.
Thequantifier depthof the occurrence of a subformulag in f is therefore the maximali such
that this occurrence is in the scope of∃Pi; additionally by convention it is zero if it is not in
the scope of any quantification.

Encoding Environments as Specific Parts of the Simple MemoryShape

Before defining the translation of aDSO sentencef, let us explain how environments can be
encoded inSL. First, let us introduce some terminology.

Definition 2.3.1.4.We say that a locationi is anextremityin a given heap ifi has at least one
predecessor and no predecessor ofi has a predecessor.

The following formula states thats(x) is an extremity:

extr(x) , (¬∃y. (y ֒→ x ∧ ∃z.z ֒→ y)) ∧ (∃y. y ֒→ x)

In the particular case of a marker, an extremity is the location that points to the endpoint of
the marker.

Definition 2.3.1.5.An environment heapis a heap containing a finite set of markers.

Environment heaps will usually be writtenhe. Its markers are usually distinct from a heap
h to which we want to add them; thenh will be referred to as the original heap.

Environment heaps will be used to encode environments. The main idea is that a pair of
locations(i, i′) belongs to the interpretation of a dyadic second-order variable ifi andi′ are
the endpoints of two markers ofhe that have respectively degreesk andk + 1.

Let us illustrate this idea on a simple example. Assume we want to express inSL the pure
SO sentence “all finite orders have a minimal element”, stated by the formula∀P.fmin(P), with
fmin(P) ,





∀x, y.P(x, y)⇒ (P(x, x) ∧ P(y, y))
∧ ∀x, y.(P(x, y) ∧ P(y, x))⇒ x = y
∧ ∀x, y, z.(P(x, y) ∧ P(y, z))⇒ P(x, z)




⇒ ∃x.∀y.P(y, x) ⇒ x = y.

We could actually illustrate the idea with any otherSO sentence using oneSO variable only,
with this variable quantified in outermost position. LetP̂(x, y) be theSL formula

P̂(x, y) , ∃x′, y′.(x′֒→x ∧ y′֒→y ∧ ♯x′ + 1 = ♯y′).

55

This formula expresses thatx andy are the endpoints of two markers of consecutive degrees.
To any heaph, we can associate the binary relationP̂h composed of pairs of such locations.
Conversely, any finite binary relation on locations is realized by somêPh. As a consequence,
theSO formula∀P.fmin(P) is valid if and only if theSL formula emp ⇒ (⊤ −✱ fmin(P̂)) is
valid as well – note that it is also equivalent tofmin(P̂) being valid, but we want to underline
the idea that oneSO quantification can be encoded by one application of−✱.

The generalization of this encoding to arbitrary formulas raises several problems. The first
problem is to distinguish the environment heap from the original one. As a remark, in the
example above, this is solved by restricting ourselves to anoriginal empty heap, but this is
not possible in general. In the previous section, we solved this issue by first extending the
original heap to a flooded heap, and then by using markers of small degrees (one or two) that
were clearly distinct from the original heap. The same approach is not possible here, because
one may need arbitrarily large degrees. Transforming an original heap into a flooded one in
a controlled way is possible for counting the number of predecessors (see section 2.2), but it
might be much more difficult if the property of interest is not just a property on the number of
predecessors, but an arbitrary second-order property. Forall these reasons, we adopt a different
strategy, and we ensure that the degree of a marker inhe is strictly greater than the maximal
number of predecessors of any location from the original heap. Nonetheless, our investigation
on counting the number of predecessors is precious (see section 2.2), and will be used when
expressing that two endpointsi, i′ are consecutively marked.

The second problem is, given a pair(i, i′) of locations marked by markers of consecutive
degrees, to determine the second-order variablePj whose interpretation contains(i, i′). In the
example above, we only had one second-order variableP, but we may not reduce to the case
of a unique second-order variable in general). To do so, we impose some more structure onhe.
First, for any natural numbern, there is at most one extremity with degreen in he.

Definition 2.3.1.6.Thespectrumof he is the finite set of natural numbersn for which there is a
marker of degreen in he. A cleanspectrum is additionally a set of natural numbers of the form
{n | n0 ≤ n ≤ n1 andn . n0 + 1 (mod 3)} for somen0, n1 ∈ N.

Second, we require that the spectrum ofhe, depicted as a marking of the sequence of natu-
rals, has the following shape, which corresponds to the definition of a clean spectrum:

empty
︷ ︸︸ ︷

. . . ◦ ◦ ◦ ◦ • ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦ •

empty
︷ ︸︸ ︷

◦ ◦ ◦ ◦ . . .

A symbol ‘•’ on positionn indicates the presence of a marker of degreen, and ‘◦’ its absence.
This simple and regular structure makes the characterization of well-formed environment heaps
easier at every step of the translation (in particular, every time the environment is extended by a
new quantified second-order variable). In order to identifymarkers that are attached to a given
second-order variable,

1. we ensure that the markers of a given second-order variable follow each others in a given
interval,

2. these intervals do not overlap for two distinct second-order variables,

3. there is no unused space between these intervals.

56

This is achieved by introducing, for eachPj, two variablesz<
j

andz>
j

that are placed on the
upper and lower bound of the interval of the interpretation of Pj. For technical reasons mainly
related to bootstrapping, we shall also consider the two distinguished variablesz<

0
andz>

0
. So,

the spectrum ofhe can be graphically depicted as

. . . ◦ ◦ ◦ ◦
~♯z<

0

• ◦
~♯z>

0

•
︸ ︷︷ ︸

bootstrap

~♯z<
1

• ◦ • • · · · ◦
~♯z>

1

•
︸ ︷︷ ︸

code ofP1

~♯z<
2

• ◦ • · · · • ◦
~♯z>

2

•
︸ ︷︷ ︸

code ofP2

~♯z<
3

• · · · ◦ • • ◦
~♯z>n
• ◦ ◦ ◦ ◦ . . .

2.3.2 Encoding Environments

First, let us show how to express structural properties about the environment heap. Thanks to
lemma 2.2.2.12, advanced arithmetical constraints are expressed in the proof of lemma 2.3.2.1
below.

Lemma 2.3.2.1.There is a formulapsenvir(z, z′) in SL−✱ such that the conditions below hold
true iff (s, he) |=SL psenvir(z, z′):

− ~♯z < ~♯z′, ~♯z ≡ ~♯z′ + 2 mod 3 andz andz′ are extremities.

− for all i in [~♯z, . . . ,~♯z′],

∗ if i ≡ ~♯z + 1 (mod 3) then there is no extremityj in (s, he) such that~♯j = i,

∗ if i . ~♯z+1 (mod 3), then there is exactly one locationj such thatj is an extremity
and~♯j = i. This unique locationj belongs toDom(he).

Proof. The formulapsenvir(z, z′) is the conjunction of the formulas below expressing the
following properties:

1. ~♯z < ~♯z′ andz,z′ are extremities:♯z < ♯z′ ∧ extr(z) ∧ extr(z′).

2. There is no extremity whose number of predecessors is equal to either~♯z + 1 or~♯z′ − 1.

(¬∃x. extr(x) ∧ ♯z + 1 = ♯x) ∧ (¬∃x. extr(x) ∧ ♯z′ = 1 + ♯x)

3. There is an extremity whose number of predecessors is equal to ~♯z + 2 [resp.~♯z′ − 2].

∃x. extr(x) ∧ ♯z + 2 = ♯x ∧ ∃x. extr(x) ∧ ♯z′ = 2 + ♯x

4. For every extremityx whose number of predecessors is strictly between~♯z and~♯z′, there
is an extremity whose number of predecessors is equal to either~♯x + 1 or~♯x − 1.

∀x. [extr(x) ∧ ♯x > ♯z ∧ ♯x < ♯z′]⇒ (∃y. ♯y = 1 + ♯x ∨ ∃y. ♯y + 1 = ♯x)

5. Constraint on two extremities whose numbers of predecessors are consecutive:

∀x.∀y. [extr(x) ∧ extr(y) ∧ (♯x > ♯z) ∧ (♯x < ♯z′) ∧ (♯y > ♯z)∧

(♯y < ♯z′) ∧ (♯y + 1 = ♯x)]⇒

[(¬∃y′. ♯y′ = 1 + ♯x) ∧ (∃y′. ♯y′ = 2 + ♯x)∧

(¬∃y′. ♯y′ + 1 = ♯y) ∧ (∃y′.♯y′ + 2 = ♯y)]

57

z � � z′

�

�

� � �

i

� � � � � � � � � �

�

Figure 2.9: A simple environment encoding the pair(i, i)

6. There are no two distinct extremities with an equal numberof predecessors.

∀x[extr(x) ∧ ♯x ≥ ♯z ∧ ♯x ≤ ♯z′]⇒ ¬∃y. (extr(y) ∧ ♯x = ♯y ∧ x , y)

It is then easy to check that the above conjunction satisfies the statement.
By induction onk ranging from1 to (~♯z′−~♯z−2)/3, one can show that there is no extremity

i in (s, he) such that~♯i = ~♯z+3k−2, and there are extremitiesi andi′ such that~♯i = ~♯z+3k−1
and~♯i = ~♯z + 3k. This concludes the proof. �

Consequently, if(s, he) |=SL psenvir(z, z′), thenhe has a clean spectrum:

~♯z
• ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦

~♯z′

•

Definition 2.3.2.2.The simple memory shape(s, he) is called apseudo-environmentbetween
z andz′ if (s, he) |=SL psenvir(z, z′)

Definition 2.3.2.3. An environment betweenz andz′ is a simple memory shape(s, he) such
that

(P1) (s, he) |=SL psenvir(z, z′).

(P2) If i ∈ Dom(he), then eitheri or he(i) is an extremity inhe.

(P3) For every extremityi in he, i ∈ Dom(he) andhe(i) < Dom(he).

(P4) For every extremityi in he, ~♯z ≤ ~♯i ≤ ~♯z′.

Roughly speaking,(s, he) is a finite set of markers with the above-mentioned spectrum.
Figure 2.9 presents a simple environment with~♯z = 1 and~♯z′ = 6, which allows to encode a
single pair ((i, i) in the present figure). Note that in full generality, the number of pairs that
can be encoded by an environment betweenz andz′ is equal to(~♯z′ − ~♯z − 2)/3.

Lemma 2.3.2.4.There exists a formulaenv(z, z′) ∈ SL−✱ such that for every simple memory
shape(s, h), we have(s, h) |=SL env(z, z′) iff (s, h) is an environment betweenz andz′.

Proof. Let us consider the conjunctionenv(z, z′) of the formulas below.

58

(F1) psenvir(z, z′).

(F2) ∀x. (alloc(x)⇒ (extr(x) ∨ ∃y. x ֒→ y ∧ extr(y))).

(F3) ∀x. extr(x)⇒ (alloc(x) ∧ ∃y. x ֒→ y ∧ ¬alloc(y)).

(F4) ∀x. extr(x)⇒ (♯z ≤ ♯x ∧ ♯x ≤ ♯z′).

Each formula (Fi) captures the condition (Pi). �

Consequently, if(s, he) |=SL env(z, z′), thenhe is equal to a set of markers of the clean
spectrum

~♯z
• ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦

~♯z′

•

Definition 2.3.2.5.A j-marked environmentis a simple memory shape(s, h) such that

(PM0) (s, h) is an environment betweenz<
0

andz>
j
.

(PM1) For every variablex in {z<
1
, . . . , z<

j
} ∪ {z>

0
, . . . , z>

j−1
}, s(x) is an extremity in(s, h) and

~♯z<
0
< ~♯x < ~♯z>

j
.

(PM2) Forj ≥ i > 0, ~♯z>
i−1

+ 1 = ~♯z<
i
.

Consequently, when(s, h) is a j-marked environment, the spectrum ofhe contains the
following values:

~♯z<
0

• ◦ • • · · · ◦
~♯z>

0

•
~♯z<

1

• ◦ • • · · · ◦
~♯z>

1

•
~♯z<

2

• ◦ • · · · • ◦
~♯z>

2

•
~♯z<

3

• · · · ◦ • • ◦

~♯z>
j

•

Moreover, if(s, h′) is anotherj-marked environment with identical store, thenh andh′ have
the same spectrum.

Definition 2.3.2.6 below specifies how a heap can be divided into a base part and an envi-
ronment part with constraints on the values~♯z<

0
,~♯z>

0
, . . . ,~♯z<

j
,~♯z>
j
. These values are helpful to

determine the range of marker degrees that should be considered to encode the interpretation
of second-order variables.

Definition 2.3.2.6. A simple memory shape(s, h) is j-well-formedfor somej ≥ 0 iff there
are heapshb, he with h = hb ✱ he satisfying the properties below:

(WF1) (s, he) is aj-marked environment.

(WF2) There is no locationi such that~♯i in (s, hb) is strictly greater than~♯z<
0
− 2 in (s, h).

(WF3) Dom(he) ∩ Im(hb) = ∅.

(s, hb) is called thebase partand(s, he) theenvironment part.

Condition (WF3) guarantees that when(s, h) is j-well-formed, for every extremityi in he,
~♯i in he is equal to~♯i in h. Consequently, any extremity inh with more than~♯z<

0
predecessors

has all predecessors inDom(he). Moreover,(s, h) |=SL psenvir(z<
0
, z>
j
), that is(s, h) is a

pseudo-environment betweenz<
0

andz>
j
.

We establish below a few lemmas that are helpful in the sequel.

Lemma 2.3.2.7.Let he be the environment part of somej-well-formed simple memory shape.
For every locationi ∈ Im(he), eitheri is an extremity inhe or there isi′ such thathe(i′) = i

andi′ is an extremity.

59

Note that the above property holds true for any environment but we shall use it forj-well-
formed simple memory shapes only.

Proof. If i ∈ Im(he), then there is a locationi′ such thathe(i′) = i. By (P2) on(s, he),
eitherhe(i′) is an extremity ori′ is an extremity. �

Lemma 2.3.2.8 below states unicity of decomposition when a simple memory shape isj-
well-formed.

Lemma 2.3.2.8(Unicity). Whenever(s, h) is j-well-formed with base parthb and environ-
ment parthe, there is no(h′

b
, h′e) , (hb, he) such that(s, h) is j-well-formed with base part

h′
b

and environment parth′e.

Proof. Let k0 = (~♯z>
j
− ~♯z<

0
− 2)/3 andK = {k : k . 1 (mod 3) and0 ≤ k ≤ 3 × k0 + 2} be the

spectrum ofhe andh′e. Indeed,(s, he) and(s, h′e) are bothj-marked environments and there
are precisely|K| extremitiesi in (s, h) such that~♯z<

0
≤ ~♯i ≤ ~♯z>

j
. For eachk ∈ K, we write

ik to denote the unique extremity such that~♯ik = ~♯z<
0
+ k. Notice that each locationik has no

predecessor inhb by definition 2.3.2.6(WF3),i0 = s(z<
0
) andi3k0+2 = s(z>

j
).

The setDom(he) contains at least the following locations: for everyk ∈ K, the locationik
and the~♯z<

0
+ k predecessors ofik in h. Let I1 be the set of the above locations. Assume there

is somei ∈ (Dom(he) \ I1). By (P2), eitheri or he(i) is an extremity inhe (let us call iti′).
Since each predecessor of some location inI1 is also inI1 andi < I1, i is not a predecessor
of an element inI1. Consequently,i′ is an extremity that does not belong to{ik : k ∈ K} (let
us call this setI2). Since~♯z<

0
≤ ~♯i′ ≤ ~♯z>

j
, eitheri′ has as many predecessors as an element in

I2 or ~♯i′ ≡ ~♯z<
0
+ 1 (mod 3). This entails that(s, he) does not satisfypsenvir(z<

0
, z>
j
) which

leads to a contradiction. Consequently,Dom(he) = I1, he = h|I1 (restriction ofh to I1) and
hb = h|(Dom(h)\I1). �

In the sequel, when(s, h) is j-well-formed, by defaulthe denotes the environment part and
hb the base part.

We state below a crucial result, basically stating that adding an environment heap to aj-
well-formed simple memory shape leads to a(j + 1)-well-formed simple memory shape. This
is central to interpret a new second-order variable (extending the environment part) and this can
be performed thanks to−✱ (details will follow).

Lemma 2.3.2.9(Composition). Let (s, h) be a j-well-formed simple memory shape and
(s′, h′e) be a simple memory shape such that

1. h′e is disjoint fromh ands′ differs froms at most for the variablesz<
j+1

andz>
j+1

.

2. s′(z<
j+1

) ands′(z>
j+1

) do not belong toDom(h) ∪ Im(h).

3. (s′, h′e) is an environment betweenz<
j+1

andz>
j+1

.

4. (s′, h ✱ h′e) |=SL ♯z
>
j
+ 1 = ♯z<

j+1
.

5. Dom(h′e) ∩ Im(h) = ∅.

Then,(s′, h ✱ h′e) is (j+1)-well-formed with the base parthb and the environment parthe ✱ h′e.

The proof of lemma 2.3.2.9 is tedious and requires some care.We provide the details below.

60

Proof. We will refer to an item of the lemma by the wordhypothesis. For instance, hypothesis
(5) is: Dom(h′e) ∩ Im(h) = ∅.

The proof mainly rests on establishing the property below.

(PROP1) Any extremity inhe or in h′e is an extremity inh ✱ h′e with exactly the same number
of predecessors.

Consequently, this implies that in the simple memory shape(s′, h ✱ h′e) we have the following
relationships:

(PROP2) ~♯z<
0
< ~♯z>

j
= ~♯z<

j+1
− 1 < ~♯z>

j+1
− 1,~♯z<

0
+ 2 ≡ ~♯z>

j+1
(mod 3) and~♯z<

j+1
≡ ~♯z<

0
(mod 3).

Assuming (PROP1) and (PROP2), let us check the conditions from definition 2.3.2.6 for
ensuring that(s′, h ✱ h′e) is (j + 1)-well-formed with base parthb. After doing that, we shall
establish that (PROP1) holds true.

First, we show that(s′, he ✱ h′e) is a(j + 1)-marked environment.

(P1) Let us prove that(s′, he ✱ h′e) |=SL psenvir(z<
0
, z>
j+1

). Below, the numbers of predecessors

are relative to(s′, he ✱ h′e). Let i ∈ {~♯z<
0
, . . . ,~♯z>

j+1
}.

∗ Assumei ≡ ~♯z<
0
+ 1 (mod 3). By contradiction, suppose that there is a locationi′

such thati′ is an extremity and~♯i′ = i. Theni′ is an extremity withi predecessors
either inhe or in h′e, which leads to a contradiction since(s′, h′e) is an environment
betweenz<

j+1
andz>

j+1
and(s, he) is an environment betweenz<

0
andz>

j
.

∗ Assumei . ~♯z<
0
+ 1 (mod 3). If i ∈ {~♯z<

0
, . . . ,~♯z>

j
}, then by (PROP1) there is

a unique extremityik such that~♯ik = i. Otherwise (i ∈ {~♯z<
j+1
, . . . ,~♯z>

j+1
}), by

(PROP1), there is a unique extremityinew
k

such that~♯inew
k

= i.

(P2) Suppose thati ∈ Dom(he ✱ h′e). Two cases are distinguished below.

∗ i ∈ Dom(he).
We distinguish again two subcases sinceh is j-well-formed.

· In the casei is an extremity inhe, the locationi is an extremity inh ✱ h′e by
(PROP1). Consequently,i is an extremity inhe ✱ h′.
· In the caseh(i) is an extremity inhe, the proof is analogous.

∗ i ∈ Dom(h′e).
The proof is analogous.

(P3) Leti be an extremity inhe. Let us show thath(i) < Dom(he ✱ h′e). Since(s, h) is j-
well-formed,h(i) < Dom(he). By contradiction, suppose thath(i) ∈ Dom(h′e). Then,
eitherh(i) is an extremity inh′e or h(i) is a predecessor of an extremityi′ in h′e. In
the first case, it leads to a contradiction since the extremities ofh′e are not inIm(he), by
hypothesis (5). In the second case,i′ is not an extremity inh ✱ h′e which is in contradiction
with (PROP1). Consequently,h(i) < Dom(he ✱ h′e).

Let i be an extremity inh′e. Since(s′, h′e) is an environment betweenz<
j+1

andz>
j+1

,
we know thath′e(i) < Dom(h

′
e). It remains to check thath′e(i) < Dom(he). By con-

tradiction, suppose thath′e(i) ∈ Dom(he). Then there isi′ ∈ {h′e(i), h(h
′
e(i))} such

thati′ is an extremity inhe. By (PROP1),i′ is an extremity inhe ✱ h′e. This leads to a
contradiction sincei has predecessors inhe ✱ h′e.

61

(P4) Leti be an extremity inhe. We have~♯z<
0
≤ ~♯i ≤ ~♯z>

j
< ~♯z>

j+1
since(s, h) is j-well-

formed and (PROP1). Leti be an extremity inh′e. The values~♯i, ~♯z<
j+1

and~♯z>
j+1

do
not change fromh′e to h ✱ h′e. Since(s′, h′e) is an environment betweenz<

j+1
andz>

j+1
,

~♯z<
j+1
≤ ~♯i ≤ ~♯z>

j+1
. So in(s′, h ✱ h′e), we have~♯z<

0
< ~♯z<

j+1
≤ ~♯i ≤ ~♯z>

j+1
.

(PM1) By (PROP1), for each variablex in {z<
0
, . . . , z<

j+1
} ∪ {z>

0
, . . . , z>

j+1
}, the value~♯x remains

unchanged fromh or h′e to h ✱ h′e. Considering thath is j-well-formed,h′e is an environ-
ment betweenz<

j+1
andz>

j+1
and(s′, h ✱ h′e) |=SL ♯z

>
j
+ 1 = ♯z<

j+1
, we conclude that for

everyx ∈ {z<
1
, . . . , z<

j+1
} ∪ {z>

0
, . . . , z>

j
}, s(x) is an extremity and~♯z<

0
< ~♯x < ~♯z>

j+1
.

(PM2) Let0 < i ≤ j+1. If i ≤ j, then since(s, h) is j-well-formed we obtain(s, h) |=SL ~♯z>i +
1 = ~♯z<

i+1
. By (PROP1),(s′, h ✱ h′e) |=SL

~♯z>
i
+1 = ~♯z<

i+1
(s′ ands agree for these variables).

If i = j + 1, then hypothesis (4) precisely states that(s′, h ✱ h′e) |=SL ♯z
>
j
+ 1 = ♯z<

j+1
.

It remains to verify the conditions (WF2) and (WF3).

(WF2) Sinceh andh ✱ h′e have the same base part and(s, h) is j-well-formed, we get that there
is no locationi such that~♯i in (s, hb) is strictly greater than~♯z<

0
− 2 in (s, h ✱ he) (equal

to~♯z<
0
− 2 in (s, h) by (PROP1)).

(WF3) Since(s, h) is j-well-formed, we haveDom(he) ∩ Im(hb) = ∅. By hypothesis (5),
Dom(h′e) ∩ Im(h) = ∅. Consequently,Dom(he ✱ h′e) ∩ Im(hb) = ∅.

Now, let us prove that (PROP1) holds true. First, we prove thecase when an extremity is a
location of the forms′(z⋄

k
) with k ∈ {0, . . . , j + 1} and⋄ ∈ {<, >}. By hypothesis (2),s′(z<

j+1
)

ands′(z>
j+1

) do not belong toIm(h). So the values~♯z<
j+1

and~♯z>
j+1

remain unchanged from

(s′, h′e) to (s′, h ✱ h′e). Now let k ∈ {0, . . . , j} and⋄ ∈ {<, >}. Assume that~♯z⋄
k

has changed
from (s′, h) to (s′, h ✱ h′e). Consequently,s′(z⋄

k
) ∈ Im(h′e). By lemma 2.3.2.7, there are two

possibilities.

1. s′(z⋄
k
) is an extremity in(s′, h′e).

As(s′, h′e) is an environment betweenz<
j+1

andz>
j+1

, every extremity belongs toDom(h′e),
whences′(z⋄

k
) ∈ Dom(h′e). This leads to a contradiction sinceh andh′e are disjoint:

s′(z⋄
k
) ∈ Dom(he) since(s, h) is j-well-formed.

2. There is a locationi such thath′e(i) = s′(z⋄
k
) (also equal tos(z⋄

k
)) andi is an extremity.

Sos′(z⋄
k
) is not an extremity inh ✱ h′e, which also leads to a contradiction.

Consequently, for allk ∈ {0, . . . , j} and⋄ ∈ {<, >},~♯z⋄
k

is unchanged fromh to h ✱ h′e. Based
on these preservations and since(s′, h′e) is an environment betweenz<

j+1
andz>

j+1
, (s′, h) is

j-well-formed and(s′, h ✱ h′e) |=SL ♯z
>
j
+ 1 = ♯z<

j+1
, we can conclude (PROP2).

Before treating the proof for other types of extremities, let us provide a few basic definitions
and facts. We define the natural numbersm1, m2 andm3 as follows:

3m1 = (~♯z>j+1 −
~♯z<0) − 2 3m2 = (~♯z>j −

~♯z<0) − 2 3m3 = (~♯z>j+1 −
~♯z<j+1) − 2

Notice thatm3 = m1 − m2 − 1. These values are simply related to the spectrum below wherethe
first value is~♯z<

0
and the last one is~♯z>

j+1
.

62

m2 pairs inhe
︷ ︸︸ ︷
• ◦ • • ◦ • • · · · ◦ • • ◦•

m3 pairs inh′e
︷ ︸︸ ︷
• ◦ • • ◦ • • · · · ◦ • • ◦•

︸ ︷︷ ︸

m1=m2+m3+1 pairs inhe ✱ h′e

For n ≥ 1, let Kn , {k : k . 2 (mod 3) and0 ≤ k ≤ 3n + 2} and we poseJm1 , Km1 ,
Jm2 , Km2 andJm3 , {n + (3m2 + 3) : n ∈ Km3}. Since(s, he) is an environment betweenz<

0

andz>
j

(remember(s, h) is j-well-formed) and(s′, h′e) is an environment betweenz<
j+1

and
z>
j+1

, we get that(s′, h ✱ h′e) |=SL psenvir(z<
0
, z>
j+1

). So, for everyk ∈ Jm1 , there is a locationi✱

k

verifying the properties below in(s′, h ✱ h′e):

− ~♯i✱

k
= ~♯z<

0
+ k,

− i
✱

k
is an extremity,

− there is no locationi such that~♯i = ~♯i✱

k
, i , i✱

k
andi is an extremity.

Notice that~♯i✱

3×m1
= ~♯z>

j+1
− 2 in (s′, h ✱ h′e), i✱

3×m2+2
= s′(z>

j
) andi✱

3×m2+3
= s′(z<

j+1
).

Similarly, as(s′, h) |=SL psenvir(z<
0
, z>
j
), for everyk ∈ Jm2 , there is a locationik verifying

the properties below in(s′, h):

− ~♯ik = ~♯z<0 + k,

− ik is an extremity,

− there is no locationi such that~♯i = ~♯ik, i , ik andi is an extremity.

Observe that all the extremities inhe are either of the formik, or s′(z<
0
) or s′(z>

j
). More-

over,~♯i3m2 =
~♯z>
j
− 2 in (s′, h).

Finally, as(s′, h′e) |=SL psenvir(z<
j+1
, z>
j+1

), for everyk ∈ Jm3 , there is a locationinew
k

verifying the properties below in(s′, h′e):

− ~♯inew
k

= (~♯z<
j+1
− (3m2 + 3)) + k,

− inew
k

is an extremity,

− there is no locationi such that~♯i = ~♯inew
k

, i , inew
k

andi is an extremity.

Observe that all the extremities ofh′e are either of the forminew
k

, or s′(z<
j+1

) or s′(z>
j+1

).

We can establish additional arithmetical properties:~♯inew
3m3

= ~♯z>
j+1
− 2 in (s′, h′e) and~♯inew

k
in

(s′, h′e) is equal to~♯z<
0
+ k in (s′, h ✱ h′e).

We are going to prove that for allk ∈ Jm2 , ik = i✱

k
, and for allk ∈ Jm3 , i

new
k

= i✱

k
.

This will terminate the proof of (PROP1) since the only extremities in he are {ik : k ∈

Jm2}∪{s
′(z<

0
), s′(z>

j
)} and the only extremities inh′e are{inew

k
: k ∈ Jm3}∪{s

′(z<
j+1

), s′(z>
j+1

)}.
The proof is by contradiction and we distinguish two cases (each of them will lead to a contra-
diction):

(case one) There isk ∈ Jm2 such thatik , i
✱

k
.

(case two) There isk ∈ Jm3 such thatinew
k
, i

✱

k
.

63

(case one) Let us first establish thati✱

k
∈ Im(h′e) (proof by contradiction). Suppose thati✱

k
<

Im(h′e). So,~♯i✱

k
remains unchanged from(s′, h) to (s′, h ✱ h′e). As in (s′, h ✱ h′e), we have

~♯z<
0
< ~♯i✱

k
< ~♯z>

j
, andz<

0
andz>

j
remain unchanged from(s′, h) to (s′, h ✱ h′e), we can infer that

~♯z<
0
< ~♯i✱

k
< ~♯z>

j
in (s′, h). Additionally, as in(s′, h ✱ h′e), we have~♯i✱

k
= ~♯z<

0
+ k, this is also

true in(s′, h). Finally, asi✱

k
is an extremity in(s′, h ✱ h′e), it is also an extremity in(s′, h).

Consequently,i✱

k
= ik, which leads to a contradiction. We have established thati

✱

k
∈ Im(h′e).

By lemma 2.3.2.7, there are two possibilities:

− i
✱

k
is an extremity inh′e.

Consequently, inh′e, we have~♯i✱

k
> ~♯z<

j+1
. As~♯z<

j+1
remains unchanged from(s′, h′e) to

(s′, h ✱ h′e), in h ✱ h′e we obtain~♯i✱

k
> ~♯z<

j+1
= ~♯z>

j
+ 1, which leads to a contradiction.

− There is a locationi0 such thati0 is an extremity inh′e andh′e(i0) = i✱

k
. So i✱

k
is

not an extremity inh′e, and it cannot either be an extremity inh ✱ h′e, which leads to a
contradiction.

(case two) Letk be the smallest element ofJm3 such thatinew
k
, i

✱

k
. In (s′, h ✱ h′e), we know

that~♯i✱

k
> ~♯z<

j+1
> ~♯z>

j
. Moreover, asi✱

k
is an extremity in(s′, h ✱ h′e), eitheri✱

k
is an extremity

in (s′, h) too ori✱

k
has no predecessor in(s′, h). Since no extremity of(s′, h) has more than

~♯z>
j

predecessors (in bothh andh ✱ h′e), the locationi✱

k
cannot have all of its predecessors in

Dom(h). Let i0 be one of the predecessors ofi✱

k
that belongs toDom(h′e), that ish′e(i0) = i✱

k
.

Let us recall that(s′, h′e) is an environment betweenz<
j+1

andz>
j+1

. Sincei0 ∈ Dom(h′e),
there isi ∈ {i0, h′e(i0)} such that inh′e:

(a) i is an extremity,

(b) i ∈ Dom(h′e),

(c) ~♯z<
j+1
≤ ~♯i ≤ ~♯z>

j+1
,

(d) no other extremity has exactly~♯i predecessors.

Indeed, the condition (a) comes from (P2), the conditions (b) and (d) both come from the
(s′, h′e) |=SL psenvir(z<

j+1
, z>
j+1

), and (c) from satisfaction of (P4).

In the casei = i0, i
✱

k
is not an extremity inh′e and hencei✱

k
is not an extremity inh ✱ h′e.

This leads to a contradiction. Consequently, we havei = h′e(i0) = i✱

k
. Let us conclude the

proof.
In h′e, the locationi✱

k
is an extremity. As(s′, h′e) is an environment betweenz<

j+1
and

z>
j+1

, we havei✱

k
∈ Dom(h′e) and~♯z<

j+1
≤ ~♯i✱

k
≤ ~♯z>

j+1
in (s′, h′e). Sinces(z<

j+1
) , i✱

k
and

s(z>
j+1

) , i✱

k
, we obtain~♯z<

j+1
< ~♯i✱

k
< ~♯z>

j+1
in h′.

So there isk0 ∈ Jm3 such thati✱

k
= inew

k0
. We have that the value~♯inew

k0
changes fromh′e

to h ✱ h′e, and thereforeinew
k0
, i

✱

k0
. Since~♯inew

k0
can only increase fromh′e to h ✱ h′e, we can

conclude that~♯inew
k0

in (s′, h′e) is strictly smaller than~♯inew
k0

= ~♯i✱

k
in (s′, h ✱ h′e). By definition

of the locationsi✱

k
andinew

k0
, we obtaink0 < k, which leads to a contradiction by minimality of

k. �

64

2.3.3 The Translation

In this section, we provide the translation fromDSO into SL−✱. First, we introduce additional
formulas that will be useful in the translation process. It is worth observing that in order
to translate first-order quantification, we should guarantee that first-order variablesx are not
interpreted as locations from the domain of the environmentpart. Typically, the number of
predecessors ofs(x) and h(s(x)) (if it exists) should be less than~♯z>

0
and none of these

locations is an extremity. The formulanotonmark(·) is introduced for this purpose:

notonmark(x) , ¬(∃y. (y = x ∨ x ֒→ y) ∧ (♯y ≥ ♯z<0) ∧ extr(y)).

Lemma 2.3.3.1.Assume(s, h) is a j-well-formed simple memory shape. Then(s, h) |=SL
notonmark(x) iff s(x) < Dom(he).

Proof. As (s, h) is j-well-formed, by definition 2.3.2.6, for any locationi, we havei ∈
Dom(he) iff there is a locationi′ ∈ {i, h(i)} such that in the heaphe, we have~♯i′ ≥ ~♯z<

0

andi′ is an extremity. Moreover, by definition 2.3.2.6, we get in the heaph that~♯i′ ≥ ~♯z<
0

and
i′ is an extremity. Assume thats(x) ∈ Dom(he), then thanks to the explanations just above,
(s, h) 6|=SL notonmark(x).
Now, by contradiction, suppose thats(x) < Dom(he) and(s, h) 6|=SL notonmark(x). Then
there isi ∈ {s(x), h(s(x))} such that~♯i ≥ ~♯z<

0
and i is an extremity, by definition of

notonmark. Furthermore, by definition 2.3.2.6(WF3), the locationi is not an extremity in
he, all of its predecessors are inhb. Then by definition 2.3.2.6,~♯i ≥ ~♯z<

0
− 2, which leads to a

contradiction. �

The formularelationj,X defined below is helpful to build environments.

Lemma 2.3.3.2.Let j ≥ 0 andX be a finite set of variables disjoint from{z<
0
, z>

0
, . . . , z<

j
, z>
j
}.

Then, there is a formularelationj,X such that for every simple memory shape(s, h), we have
(s, h) |=SL relationj,X iff (s, h) is an environment betweenz<

j
and z>

j
and for everyx ∈ X,

s(x) < Dom(h).

The formularelationj,X is simply

relationj,X , env(z<j , z
>
j) ∧

∧

y∈X

¬alloc(y).

We will additionally need the formulaisol(x), which means thats(x) < Dom(h) ∪ Im(h).
It is defined as:

isol(x) , ¬∃y. (x ֒→ y) ∨ (y ֒→ x)

The translation of the formulaf, writtentranslationDSO→SLmw(f), is defined with the help
of the translationtrDSO→SLmw(j, ·) wherej records the quantifier depth. The translation is de-
fined so that(s(x), s(y)) belongs to the interpretation ofPi whens(x) ands(y) are end-
points of markers with consecutive degrees between~♯z<

i
and~♯z>

i
.

translationDSO→SLmw(f) , ∃z<0 z>0 . isol(z>0) ∧ isol(z<0)∧

[((∀x. alloc(x)⇒ (x ֒→ z>
0
∨ x ֒→ z<

0
∨ x = z>

0
∨ x = z<

0
)) ∧ alloc(z>

0
) ∧ alloc(z<

0
)) −✱

¬

(∀x.x , z>
0
∧ x , z<

0
⇒ (♯z<

0
> 2 + ♯x)) ∧ (♯z>

0
= 2 + ♯z<

0
) ∧ extr(z<

0
) ∧ extr(z>

0
)∧

trDSO→SLmw(0, f))]

65

In order to define recursively the maptrDSO→SLmw , note that iftrDSO→SLmw(j,Pi(x, y)) occurs
theni ≥ j, and that by the extended Barendregt convention iftrDSO→SLmw(j,∃Pi.g) occurs then
i = j + 1. Also,trDSO→SLmw(j, ·) is homomorphic for boolean connectives.

trDSO→SLmw(j, x = y) , x = y
trDSO→SLmw(j, x ֒→ y) , x ֒→ y
trDSO→SLmw(j,Pi(x, y)) , ∃z, z′. (z ֒→ x) ∧ (z′ ֒→ y) ∧ (♯z > ♯z<

i
) ∧ (♯z′ < ♯z>

i
)∧

(♯z′ = 1 + ♯z) ∧ extr(z) ∧ extr(z′)
trDSO→SLmw(j,∃x. g) , ∃x. notonmark(x) ∧ trDSO→SLmw(j, g)
trDSO→SLmw(j,∃Pj+1.g) , ∃z<

j+1
, z>
j+1
. isol(z<

j+1
) ∧ isol(z>

j+1
)∧

(relationj+1,Freevar(g) −✱
¬ (psenvir(z<

0
, z>
j+1

) ∧ ♯z>
j
+ 1 = ♯z<

j+1

∧trDSO→SLmw(j + 1, g)))

In order to translate∃Pj+1. g, we introduced two locations whose numbers of predecessors
determine the bounds for the degrees for any marker used to encode a pair for the interpretation
of Pi. There is a way to add markers (expressed thanks to the connective −✱

¬) that guarantees
that the new part of the heap encodes the interpretation of the variablePj+1 by using the above
formularelationj+1,X.

Observe thattranslationDSO→SLmw(f) andf have the same first-order free variables.

2.3.4 Correctness

Before stating the correctness of the translationtranslationDSO→SLmw(·), we need to formally
define how to extract an environment from aj-well-formed simple memory shape (but now,
that is easy).

Definition 2.3.4.1. Let (s, h) be aj-well-formed simple memory shape, and lethe be the
associated environment heap. The environmentE extracted fromh is

E(Pi) , {(he(i), he(i
′)) : ~♯z<i <

~♯i, ~♯i + 1 = ~♯i′, ~♯i′ < ~♯z>i in he}

for all i ∈ {1, . . . , j}.

Correctness oftranslationDSO→SLmw(·) is based on lemma 2.3.4.2 below. The proof shall
use several results established earlier.

Lemma 2.3.4.2.Let f be aDSO formula using the extended Barendregt convention andg be a
subformula off at quantifier depthj. Let(s, h) be aj-well-formed simple memory shape, with
base part(s, hb) and environment part(s, he), such that for eachx ∈ Freevar(g), s(x) <
Dom(he). Let Ej be the environment extracted fromhe. Then,(s, h) |=SL trDSO→SLmw(j, g) iff
(s, hb), Ej |=SO g.

Proof. Let us start by a preliminary definition. We say that a location i occursin a binary
relationR when there is a locationi′ such that(i, i′) ∈ R or (i′, i) ∈ R. Let f be aDSO
sentence satisfying the extended Barendregt convention. We want to show by induction ong
that given:

− g is a subformula off of quantifier depthj,

66

− (s, h) is j-well-formed with base parthb and environment parthe such that for every
variablex ∈ Freevar(g), we haves(x) < Dom(he),

− Ej is the environment{P1 7→ R1, . . . ,Pj 7→ Rj} extracted fromhe,

− no location occurring inR1 ∪ . . . ∪ Rj belongs toDom(he),

we have:(s, h) |=SL trDSO→SLmw(j, g) iff (s, hb), Ej |=SO g.

Base cases.
The base casesx = y andx ֒→ y are by an easy verification sincetrDSO→SLmw(j, ·) restricted
to them is the identity map. Let us consider the more interesting base case, that is wheng =

Pk(x, y) with k ≤ j.
(→) Suppose that(s, h) |=SL trDSO→SLmw(j,Pk(x, y)). Then, in the heaph, the locations

s(x) ands(y) have predecessors inh that are also extremities, let us call them respectivelyix

andiy. In the heaph, we have~♯z<
k
< ~♯ix = ~♯iy − 1 < ~♯z>

k
− 1. By definition 2.3.2.6, bothix

andiy have predecessors inDom(he) and all of their predecessors are also inDom(he). Since
z<
k

andz>
k

have also all of their predecessors inDom(he), we have~♯z<
k
< ~♯ix, ~♯ix + 1 = ~♯iy and

~♯iy < ~♯z>k in he. By definition 2.3.4.1, we get(h(ix), h(iy)) ∈ Rk, that is(s(x), s(y)) ∈ Rk.
Consequently,(s, hb), Ej |=SO Pk(x, y).

(←) Suppose that(s, hb), Ej |=SO Pk(x, y). By the definitions of|=SO and Ej, we have
(s(x), s(y)) ∈ Rk. Sos(x) ands(y) have respectively predecessorsix andiy in Dom(he). In
the heaphe, ix andiy are extremities and~♯z<

k
< ~♯ix =

~♯iy − 1 <
~♯z>
k
− 1. By definition 2.3.2.6,

the predecessors of any location amongs(z<
k
), ix, iy ands(z>

k
) belong toDom(he). So the

above inequalities and equality are also true inh. By definition 2.3.2.6, the locationss(z<
k
), ix,

iy ands(z>
k
) are extremities inh. So(s, h) |=SL trDSO→SLmw(j,Pk(x, y)).

Induction step.
Our induction hypothesis is the following: for every subformula g′ of size strictly less than
the size ofg, for j ∈ {0, . . . , n} (n is the quantifier depth off) and for anyj-well-formed
simple memory shape(s, h) such that for every variablex ∈ Freevar(g), we have(s, h) |=SL
trDSO→SLmw(j, g′) iff (s, hb), Ej |=SO g′.

Case 1: g = ∃x. g′.
The statements below are equivalent:

(0) (s, h) |=SL trDSO→SLmw(j,∃x. g′),

(1) there isi ∈ Loc such that(s′, h) |=SL trDSO→SLmw(j, g′) and(s′, h) |=SL notonmark(x)
with s′ = s[x 7→ i] (by definition oftrDSO→SLmw),

(2) there isi ∈ Loc such that(s′, h) |=SL trDSO→SLmw(j, g′) andi < Dom(he) with s′ =
s[x 7→ i] (by lemma 2.3.3.1),

(3) there isi ∈ Loc such that(s′, hb), Ej |=SO g′ andi < Dom(he) with s′ = s[x 7→ i] (by
induction hypothesis sinceFreevar(g′) ⊆ Freevar(∃x. g′) ∪ {x}),

(4) there isi ∈ Loc such that(s′, hb), Ej |=SO g′ with s′ = s[x 7→ i],

(5) (s, hb), Ej |=SO g (by definition of|=SO).

67

Let us justify below why (4) implies (3). Suppose (4) andi ∈ Dom(he). Since(s, h) is
j-well-formed, i < (Dom(hb) ∪ Im(hb)). SinceLoc is an infinite set, there is a location
i′ ∈ (Loc \ (Dom(hb)∪ Im(hb)∪ Dom(he)) such thati′ does not occur in(R1 ∪ . . .∪ Rj). By
lemma 1.2.3.2,(s[x 7→ i′], hb), Ej[i ← i′] |=SO g′. Suppose by contradiction thati occurs
in Rk for some1 ≤ k ≤ j. So,i has a predecessor that is an extremity inDom(he) and by (P3),
i < Dom(he), which leads to a contradiction. Hence,Ej[i ← i′] = Ej. We have established
that(s[x 7→ i′], h1), Ej |=SO g′ andi′ < Dom(he).

Case 2: g = ∃Pj+1. g′.
(←)

− (Introduction)Suppose that(s, hb), Ej |=SO ∃Pj+1. g′. By definition of the satisfaction
relation |=SO, there isR ∈ Powfin(Loc2) such that(s, hb), Ej[Pj+1 7→ R] |=SO g′. Since
we aim at having locations inhe that do not interfere with the store, we need to be more
restrictive aboutR.

− (ReplacingR by someR′) We build below a finite binary relationR′ fromR such that no lo-
cation inDom(he) occurs inR′ and(s, hb), Ej[Pj+1 7→ R′] |=SO g′. More precisely,R′ will
be obtained fromR by replacing its image under a permutation of the set of locations that
leaves the locations ins andhb fixed. The relationR′ is constructed by successively re-
placing the locations inDom(he) that occur also inR. Suppose that for somei ∈ Dom(he),
i occurs also inR. By the induction hypothesis, for every variablex ∈ Freevar(g′),
i , s(x). By definition 2.3.2.6 on(s, h), we havei < (Dom(hb) ∪ Im(hb)). So
i < (Dom(hb) ∪ Im(hb) ∪ {s(x) : x ∈ Freevar(g′)}). As i ∈ Dom(he) andEj is
extracted fromhe, i does not occur in(R1 ∪ . . . ∪ Rj). Moreover, for every locationi′

that does not occur inR1 ∪ . . . ∪ Rj, we haveEj[i← i′] = Ej.

Since{s(x) : x ∈ Freevar(g′)}), Dom(h), Im(h) andR1, . . . , Rj are finite sets, there is
i′ ∈ Loc such that:

∗ i′ < (Dom(hb) ∪ Im(hb) ∪ {s(x) : x ∈ Freevar(g′)}) andi′ < Dom(he),

∗ i′ does not occur inR1 ∪ . . . ∪ Rj.

By lemma 1.2.3.2, there isi′ < Dom(he) such that(s[i← i′], hb), Ej[Pj+1 7→ R][i←
i′] |=SO g′. As i < {s(x) : x ∈ Freevar(g)}, we also haves[i ← i′] = s. Let R′′ be
R[i← i′]. SinceEj[i← i′] = Ej, we obtain(s, hb), Ej[Pj+1 7→ R′′] |=SO g′.

If k0 ≥ 1 locations inDom(he) occur inR, thenk0 − 1 locations inDom(he) occur inR′′.
By applying the above transformationk0 times we can build a relationR′ such that no
location inDom(he) occurs inR′ and(s, hb), Ej[Pj+1 7→ R′] |=SO g′.

Hence,(s, hb), Ej |=SO ∃Pj+1. g′ iff there is a finite binary relationR ∈ Powfin(Loc2)
such that(s, hb), Ej[Pj+1 7→ R] |=SO g′ and no location inDom(he) occurs inR.

− (Defining(s′, h′e)) Let us builds′ andh′e such that

(A) (s′, h′e) is an environment betweenz<
j+1

andz>
j+1

.

(B) (s′, h ✱ h′e) is (j + 1)-well-formed with the environment parthe ✱ h′e.

68

Suppose thatR containsm1 ≥ 0 pairs, sayR = {(i′
1
, i′′

1
), . . . , (i′m1 , i

′′
m1
)}. Let us build an

environment(s′, h′e) whose spectrum, form2 = ~♯z>j + 1, can depicted as

m2
• ◦

m1 times the pattern‘••◦′
︷ ︸︸ ︷

(• • ◦ . . . • • ◦)
m2+3m1+2
•

Its set of natural numbersJ is equal to{m2, m2 + 3m1 + 2} ∪ {m2 + 3k + 2, m2 + 3k + 3 : 0 ≤

k ≤ m1 − 1}.

A locationi is said to befreshif i < ({i′
k
, i′′
k
: 1 ≤ k ≤ m1}∪Dom(h)∪Im(h)∪{s(x) :

x ∈ Freevar(g′)}). By finiteness of the involved objects, letK be the following set of
fresh locations (there is no need to provide here precise values):{im3 : m3 ∈ J} ∪ {i

m′
3

m3
:

m3 ∈ J, 1 ≤ m
′
3
≤ m3} ∪ {i

′′
0
, i′m1+1} The stores′ is defined froms by only imposing

thats′(z<
j+1

) = i′′
0

ands′(z>
j+1

) = i′m1+1. The heaph′e has domainK and it is defined as
follows:

∗ h′e(i
m′
3

m3
) = im3 for m3 ∈ J and1 ≤ m′

3
≤ m3,

∗ h′e(im2+3k+2) = i′
k

andh′e(im2+3k+3) = i′′
k

for 0 ≤ k ≤ m1 − 1,

∗ h′e(im2) = i′′
0

andh′e(im2+3m1+2) = i′m1+1.

By an easy (and long) verification, one can check that (A) and (B) hold true. Moreover,
the relations extracted fromhe ✱ h′e (see the definition 2.3.4.1) are preciselyR1, . . . , Rj, R
and for everyx ∈ Freevar(g′), s′(x) < Dom(he ✱ h′e). By the induction hypothe-
sis,(s′, hb), Ej[Pj+1 7→ R] |=SO g′ iff (s′, h ✱ h′e) |=SL trDSO→SLmw(j + 1, g′). Thanks to
lemma 1.2.3.1,(s′, h ✱ h′e) |=SL trDSO→SLmw(j + 1, g

′).

By (A), (s′, h′e) |=SL relationj+1,Freevar(g′). Additionally, by definition ofi′′
0

andi′m1+1,
we have(s′, h) |=SL isol(z<

j+1
) and (s′, h) |=SL isol(z>

j+1
). Finally, since(s, h ✱ h′e)

is (j + 1)-well-formed, we have(s, h ✱ h′e) |=SL psenvir(z<
0
, z>
j+1

) (lemma 2.3.2.1) and

(s, h ✱ h′e) |=SL
~♯z>
j
+ 1 = ~♯z<

j+1
. As a conclusion,(s, h) |=SL trDSO→SLmw(j,∃Pj+1. g′).

(→)

Suppose that(s, h) |=SL trDSO→SLmw(j,∃Pj+1. g′). In other words, there are locationsi, i′ <
(Im(h) ∪ Dom(h)), and a disjoint heaph′e⊥h such that the claims below are true

1. h′e is disjoint fromh ands′ differs froms at most for the variablesz<
j+1

andz>
j+1

.

2. s′(z<
j+1

) = i ands′(z>
j+1

) = i′ do not belong toDom(h).

3. (s′, h′e) is an environment betweenz<
j+1

andz>
j+1

.

4. (s′, h ✱ h′e) |=SL ♯z
>
j
+ 1 = ♯z<

j+1
.

5. Dom(h′e) ∩ Im(h) = ∅.

These claims essentially follow from the definition of formula trDSO→SLmw(j,∃Pj+1. g′), the
only difficult part being claim 5. Let us detail this last point: while mergingh andhe, no new
marker can be created so any marker inh ✱ he is a marker either fromhe or from h, with the
same degree. Moreover,h ✱ he satisfiespsenvir(z<

0
, z>
j+1

), so the spectrum ofhe is included in

69

the one ofh ✱ he. Combining these two facts, it follows that all markers ofhe are still markers
of the same degree inh ✱ he, and in particular claim 5 holds.

Now, claims 1-5 are precisely the assumptions from lemma 2.3.2.9 and as a consequence
(s′, h ✱ h′e) is(j+1)-well-formed. Observe that (5) is consequence of (3). Since(s′, h ✱ h′e) |=SL
trDSO→SLmw(j, g′) and for everyx ∈ Freevar(g′) s(x) < Dom(he ✱ h′e), we can then apply the
induction hypothesis and obtain(s, hb), Ej+1 |=SO g′, that is(s, hb), Ej |=SO ∃Pj+1. g′ whereEj+1
is extracted fromhe ✱ h′e. �

Here is our main result about the expressive power ofSL.

Theorem 2.4.SL−✱
≡ SL ≡ SO ≡ DSO.

Proof. The proof follows from the following properties:

− SL−
✱
⊑ SL andDSO ⊑ SO by simply considering syntactic fragments.

− SL ⊑ DSO andSO ⊑ DSO by lemma 2.3.1.1 and lemma 2.3.1.2.

− DSO ⊑ SL−
✱.

It remains to show thatDSO ⊑ SL−✱ by using lemma 2.3.4.2. Letf be aDSO sentence. Without
any loss of generality, we can assume thatf has no free occurrence of first-order variables of the
form z⋄n (otherwise, other auxiliary variables are used) andf satisfies the extended Barendregt
convention since everyDSO sentence can be reduced to an equivalent one in logarithmic space.
Let (s, h) be a simple memory shape. The statements below are equivalent

− (s, h) |=SL translationDSO→SLmw(f),

− There areh′e ⊥ h, i, i
′ ands′ = s[z<

0
7→ i, z>

0
7→ i′] such that

∗ i andi′ < Dom(h) ∪ Im(h),

∗ i, i′ ∈ Dom(h′) and for every locationi′′ ∈ Dom(h′e) \ {i, i
′}, we haveh′e(i

′′) ∈

{i, i′}.

∗ In (s′, h ✱ h′e), ~♯z>
0
= 2 + ~♯z<

0
and for everyi′′ ∈ Dom(h), we have~♯z<

0
≥ 3 + ~♯i′′.

∗ i andi′ are extremities in(s′, h ✱ h′e).

∗ (s′, h ✱ h′e) |=SL trDSO→SLmw(0, f).

(by definition oftranslationDSO→SLmw(·) and|=SL)

− There areh′ ⊥ h, i andi′ such that

∗ (s′, h ✱ h′e) is an environment with~♯z>
0
= 2 + ~♯z<

0
.

∗ (s′, h ✱ h′) |=SL trDSO→SLmw(0, f).

(by definition 2.3.2.6 and lemma 2.3.2.8)

− There areh′ ⊥ h, i andi′ such that

∗ (s′, h ✱ h′e) is an environment with~♯z>
0
= 2 + ~♯z<

0
.

∗ (s′, h), E0 |=SO f for any environmentE0 extracted fromh′e.

(by lemma 2.3.4.2)

70

− (s, h) |=SO f since

∗ the variablesz<
0

andz>
0

do not occur inf andf is a sentence.

∗ h′e can always be built sinceh is essentially a finite structure.

�

Observe that all the equivalences are obtained with logarithmic space translations. Conse-
quently,

Theorem 2.5.SL−✱ satisfiability problem is undecidable.

Proof. We have seen that for every sentence such thatf in DSO, there is an effective way to
computef′ in SL−✱ such thatf andf′ hold on exactly the same simple memory shapes. In order
to show undecidability ofSL−✱, it is sufficient to provide a reduction from finitary satisfiability
for classical predicate logic restricted to a single binarypredicate symbol (see [88]) toDSO. Let
f be a first-order formula built over the binary predicate symbol Q. One can easily show thatf
is satisfiable iff

∃P. ∃Q. (∀x y. Q(x, y)⇒ P(x, x) ∧ P(y, y)) ∧ trFOfin−pred→DSO(f)

is satisfiable. The maptrFOfin−pred→DSO is the identity map for atomic formulas, homomorphic
for boolean connectives, and performs a relativization forfirst-order quantification as follows:
trFOfin−pred→DSO(∀x. g) , ∀x. P(x, x) ⇒ trFOfin−pred→DSO(g). The intention is obviously that
P(x, x) holds true wheneverx belongs to the finite model. �

Undecidability ofSL−✱ can be obtained much more easily by encoding the halting problem
for Minsky machines by using the fact that♯x = ♯y and♯x = ♯y + 1 can be expressed inSL−✱

(section 2.2). Indeed, computations of lengthn can be encoded as lists of length3n; three
successive locations encode a configuration of the machine and for two of those locations,
counter values are encoded by the numbers of predecessors. Theorem 2.5 is obtained with the
stronger resultSL−✱

≡ DSO sinceDSO is undecidable.

2.4 Extensions with More Than one Selector

In order to express advanced arithmetical constraints (seesection 2.2) or to encode finite sets
of pairs of locations (see section 2.3), we have introduced additional parts in the heaps via
markers. In order to distinguish these auxiliary markers from the original heap, we have decided
to use markers of small degree (as in section 2.2) or markers of large degree (as in section 2.3).
However, in the presence of memory cells with strictly more than one selector it is even easier
to identify these auxiliary markers; for example, the memory cellsi 7→ i′ introduced in a heap
to check arithmetical constraints or to encode environments can be replaced by memory cells
of the form

i 7→ i′,

(k−1) times
︷ ︸︸ ︷

k0, . . . , k0

wherek0 is a location that is not present in the original heap (that isnot inIm(h)∪Dom(h)). We
writekSL [resp.kSO] to denote the variant ofSL [resp.SO] with k selectors. In that case, a heap
h is defined as a partial functionh : Loc ⇀ Lock with finite domain. The atomic formulas

71

of the form x ֒→ y from SL are replaced byx ֒→ y1, . . . , yk. Obviously1SL [resp. 1SO]
corresponds toSL [resp. SO]. We writekSOk

′

to denote the restriction ofkSO to second-order
variables inSecvark′ . So1SO2 = DSO.

In the rest of this section, we assume thatk > 1. We dedicate the rest of this section to
show theorem 2.6 below can be proved by adapting what we did for a unique selector. We
may overload symbols but no confusion should occur. The casek = 1 requires special care but
a simpler direct proof is possible fork , 1. Indeed, fork = 1 the identification of auxiliary
memory cells is performed thanks to structural properties whereas fork > 1, this could be done
by simply checking the presence of distinguished values.

Theorem 2.6.For everyk > 1, kSL ≡ kSL−✱
≡ kSO.

We establish theorem 2.6 by adapting the proof fork = 1. However, a simpler proof for
k > 1 is possible but it would require a different approach. First, an obvious adaptation of the
proof of lemmas 2.3.1.2 and 2.3.1.1 allows us to show the statement below.

Lemma 2.4.0.3.kSL ⊑ kSOk+1 andkSOk+1 ⊑ kSO2.

It remains to show thatkSO2 ⊑ kSL−✱. The basic observation is that all the auxiliary
memory cellsi 7→ i′ introduced in a heap to check arithmetical constraints or toencode
environments are replaced by memory cells of the form

i 7→ i′,

(k−1) times
︷ ︸︸ ︷

k0, . . . , k0

wherek0 is a location that is not present in the original heap. Observe that it is easy to check
that a memory cell is auxiliary by simply inspecting the presence ofk0. We shall also enforce
that in a new memory cell,i′ is different fromk0 and the(k − 1) remaining locations are each
k0.

Before explaining the adaptation, we introduce alternative definitions:

Definition 2.4.0.4. − Given(s, h) and a locationi, we write~♯i to denote the cardinal of
{i′ ∈ Loc : h(i′) = (i, . . .)} (number of1-predecessorsof the locationi in (s, h)).

− We writex ֒→ y as a shortcut for∃y2, . . . , yk. x ֒→ y, y2, . . . , yk.

− A [resp.strict] markerin (s, h) is a sequence of distinct locationsi, i0, . . . , in for some
n ≥ 0 (all distinct fromk0) such that

∗ h(i0) = (i,

k−1 times
︷ ︸︸ ︷

k0, . . . , k0) [resp. andDom(h) = {i0, . . . , in}],

∗ for everyi ∈ {1, . . . , n}, h(ii) = (i0,

k−1 times
︷ ︸︸ ︷

k0, . . . , k0) and~♯ii = 0,
∗ ~♯i0 = n.

− We define anextremityas a locationi in a heap such thati has at least one1-predecessor
and no1-predecessori′ of i appears in some tuple fromIm(h).

− Let fk0 be the formula specifying that auxiliary memory cells are ofthe above shape:

fk0 , ∀x, x1, . . . , xk. x ֒→ x1, . . . , xk ⇒ (x , xk0 ∧ x1 , xk0 ∧
k∧

i=2

xi = xk0)

72

Following the developments from section 2.2, we can show thefollowing lemma.

Lemma 2.4.0.5.Form, m′ ≥ 0, there is a formulaf in kSL−✱ of quadratic size inm + m′ such that
for every memory shape(s, h), we have(s, h) |=SL f iff ~♯x + m ≤ ~♯y + m′.

We consider the formula from section 2.2 in which we add to theleft argument of any
subformula with outermost connective either−✱

¬ or −✱ the conjunctfk0 . The concerned formulas
are those which introduce markers in the heap. Moreover, in some cases, formulas of the form
x ֒→ y for the one selector case from section 2.2 are replaced byx ֒→ y, xk0 , . . . , xk0 when
markers are involved.

Let us consider the reduction fromkSO2 into kSL. Given a sentence inkSO2 satisfy-
ing the extended Barendregt convention and withn second-order variables, its translation
translation′

kSO2→kSLmw
(f) is defined below wheretranslation′′

kSO2→kSLmw
(f) is a variant of

the maptranslationDSO→SLmw(f) for the one selector case and where the definition of the in-
ductive auxiliary translationtrkSO2→kSLmw(j, g) is modified as follows.

Note thatnotonmark(x) is defined bynotonmark(x) , ¬(∃y. x ֒→ y, xk0 , . . . , xk0 ∨ y ֒→
x, xk0 , . . . , xk0) ∧ x , xk0 . Also, the formulaisol(x) is now an abbreviation forisol(x) ,
∀ y, y1, . . . , yk. (y ֒→ y1, . . . , yk)⇒ ((y , x) ∧

∧i=k
i=1(yi , x)).

translation′
kSO2→kSLmw

(f) , ∃xk0 .
¬(∃x, x1, . . . , xk.
(x ֒→ x1, . . . , xk) ∧ (x = xk0 ∨

∨k
i=1 xi = xk0))

∧translation′′
kSO2→kSLmw

(f)
translation′′

kSO2→kSLmw
(f) , ∃z<

0
z>
0
. isol(z>

0
) ∧ isol(z<

0
)∧

[((∀x. alloc(x)⇒ (x ֒→ z>
0
∨ x ֒→ z<

0
∨ x = z>

0
∨ x = z<

0
))

∧alloc(z>
0
) ∧ alloc(z<

0
))

∧fk0 −✱
¬

((∀x.x , z>
0
∧ x , z<

0
⇒ (♯z<

0
> 2 + ♯x)) ∧ (♯z>

0
= 2 + ♯z<

0
)

∧extr(z<
0
) ∧ extr(z>

0
) ∧ trkSO2→kSLmw(0, f))]

trkSO2→kSLmw(j, x = y) , x = y
trkSO2→kSLmw(j, x ֒→ y) , x ֒→ y
trkSO2→kSLmw(j,Pj(x, y)) , ∃z, z′. (z ֒→ x) ∧ (z′ ֒→ y) ∧ (♯z > ♯z<

j
) ∧ (♯z′ < ♯z>

j
)∧

(♯z′ = 1 + ♯z) ∧ extr(z) ∧ extr(z′)
trkSO2→kSLmw(j,∃x. g) , ∃x. notonmark(x) ∧ trkSO2→kSLmw(j, g)
trkSO2→kSLmw(j,∃Pj+1.g) , ∃ziz

j+1
, z>
j+1
. isol(z<

j+1
) ∧ isol(z>

j+1
)∧

((relationj+1,Freevar(g) ∧ fk0) −✱
¬

(psenvir(z<
0
, z>
j+1

) ∧ ♯z>
j
+ 1 = ♯z<

j+1

∧trkSO2→kSLmw(j + 1, g)))

Additionally, relationj+1,Freevar(g) andpsenvir(z<
0
, z>
j+1

) are slightly updated in order to take
into account that the markers are made of memory cells of the formi 7→ i′, k0, . . . , k0.

By adapting definition 2.3.4.1 with1-predecessors, we can then state a lemma similar to
lemma 2.3.4.2 leading to theorem 2.6.

73

Conclusion

Summary of this Chapter

We have mainly studied first-order separation logic with oneselectorSL for which we have
shown the following results:

1. SL✱ is decidable with non-elementary complexity.
2. SL✱,−✱n andSL<n, extendingSL✱ with bounded magic wand are also decidable.
3. SL is as expressive as weak second-order logicSO.
4. SL−✱ is as expressive asSL as a by-product of our proof technique.
5. SL satisfiability is undecidable.

This solves two central open problems: the decidability status ofSL and the characterization of
its expressive power. Moreover, the above results about expressive power extend naturally to the
case withk selectors, for somek ≥ 1: kSL ≡ kSL−✱

≡ kSO. Figure 2.10 contains, summarized,
our decidability results concerning models with one selector. Figure 2.11 is an updated sketch
of the expressiveness results – solid arrows represent a logarithmic space translation and dotted
arrows are polynomial time translations.

Related Work

The closest work to ours is certainly the work of Antonopoulos and Dawar [3] on the compar-
ison of the expressive power of monadic second-order logic and the spatial logic for graphs:
they showed that the graph logic, and as a consequenceSL

✱, is strictly less expressive thanMSO.
Although the questions solved in this work do not overlap theresults presented herein, it adopts
a point of view quite similar to the one we presented and givesa more complete picture of the
topic.

The magic wand is rarely considered by the literature onSL, which our result may explain
from the complexity point of view. The magic wand is however often behind the scene in
recent developments ofSL. For instance, the bi-abduction problem presented by Gorogiannis,
Kanovich and O’Hearn in [56] can be seen as a specialized version of the satisfiability problem
for SL with magic wand. As a parallel to this work, results stating either the absence of adjunct
elimination or the undecidability of satisfiability for logics including a form of magic wand
have been independently established for the boolean logic of bunched implications by Larchey-
Wendling and Galmiche in [68], propositionalSL by Brotherston and Kanovich in [30], or
context logic by Calcagno, Gardner and Zarfaty in [34]. The main difference with our work
is that the models of these logics include formal propositional variables that can be used to
axiomatize the models in any desired way, whereas we are sticking to the heap model.

Even without the magic wand, the decidability we obtained for SL✱ is with non-elementary
complexity. The infeasible complexity of separation logic, even propositional as shown by
Lozes in [73] explains why, in practice, tools work with symbolic heaps, which have been
proved tractable by Cook et al. in [38].

Heap properties are formalized in various logical languages [63, 69, 84, 24, 92] and sepa-
ration logic is just one prominent example of these logics. However, we focus on expressive
power and decidability issues rather than on formal verification. Verification methods and log-
ics for verifying programs with singly-linked lists can be found for instance in [11, 22, 83].

74

Decidable SL
✱ – theorem 2.1

SL
✱,−✱n – theorem 2.2

SL<n – theorem 2.3
Undecidable SL, SL−✱ – theorem 2.5

Figure 2.10: Decidability results

SO

SLSL−
✱

DSO

⊑ (lemma 2.3.1.2)

⊂

⊑ (lemma 2.3.4.2)

⊑ (lemma 2.3.1.1)

⊂

MSOSL
✱

SL
✱,−✱nSL<n

⊂

(lemma 2.1.3.3)

⊂

(lemma 2.1.4.3)

. (by [3])

⊑ (lemma 2.1.1.2)

Figure 2.11: Translations

The relationships between logics on graphs with separatingfeatures and second-order logic
are presented by Dawar, Gardner and Ghelli in [42]. Also, a relationship between separation
logic and hyperedge-replacement grammars on a class of hypergraphs representing memory
shapes is established by [48].

Perspectives

Note that we used the loose version of points-to and as far as we can judge, our results involv-
ing SL without separating conjunction are dependent on using the loose points-to. It is easy
to obtain tight points-to from loose points-to and loose points-to from tight points-to when the
separating conjunction belongs to the studied logical fragment, hence any result about a frag-
ment containing the separating conjunction can probably beadapted. But, when the separating
conjunction is not present and the points-to predicate is tight, we conjecture that obtaining
loose points-to is impossible, as well as expressing that anaddress has a predecessor in a heap
which has strictly more than one allocated address. If theseproperties are actually impossible
to express, it is then difficult to express interesting properties about heaps which contain strictly
more than one allocated address. As a consequence, we conjecture that separation logic without
separating conjunction and with tight points-to is not as expressive asSL−✱.

Finally, we conjecture thatSL with only two variables can encodeSO.

75

76

Chapter 3

Beyond Shapes: Lists with Ordered Data

Introduction

Contribution of this Chapter

We are now going to study a separation logic on simple memory states, that are models which
additionally to their single location selector contain a data field in each cell. Adding data to
the model, we hope to extend our decidability results of previous chapter to models which
correspond to the memory states of programs manipulating ordered lists. Separation logic
was introduced for the verification of programs, and programs generally handle more than a
memory shape as they are likely to additionally handle data,for instance in an ordered list.
Taking our inspiration from this fact, the decidability results of this chapter will make the
results of previous chapter able to deal with such a structure.

In this chapter, we are going to use predicates for comparison of data stored in the model; a
reminder of these predicates is available in figure 3.1 for reference.

As we have just shown in the previous chapter that the magic wand−✱ brings undecidability,
the languageSLv we study does not contain the magic wand. On the other hand, wehave shown
the fragment without−✱ is decidable, as well as the fragment with restricted wand−✱n. Here,
we will prove that on models with data, a fragment without anywand is decidable too, but the
fragment with restricted wand is not. Additionally, the comparison of data has to be restricted
to short distance and guarded long distance so as to maintaindecidability when the wand is
dropped. The results are summarized in figure 3.2.

The decidability result comes from a reduction to monadic second-order logic over func-
tional graphs. The translation is strongly inspired by the one for separation logic over lists
without data of chapter 2, but involves some non-trivial complications for ensuring the consis-
tency of data abstraction. The undecidability results are obtained by reduction from first-order
logic over finite data words, which was proved undecidable byBojańsczyk et al. in [15], and
was further studied with an approach of temporal logics in the work of Demri, Lazíc and Nowak
in [46].

Structure of the Chapter

In section 3.1, we establish the decidability of the short distance comparison. Section 3.2
deals with the case of guarded and non-guarded long-distance comparison. Finally, section 3.3

77

Short distance comparison x ֒→≤ y andx ֒→≥ y
Long distance comparison val(x) ≤ val(y)

Guarded long distance comparison val(x) ≤ val(w)

Figure 3.1: Comparison predicates

Undecidable SLv with long distance comparison
SLv with short distance comparison and the restricted wand

Decidable SLv with short distance comparison
SLv with short distance comparison and guarded long distance comparison

Figure 3.2: Decidability and undecidability results

explains the undecidability of the logic in the presence of the restricted magic wand.
This chapter presents results originally published in [6].

3.1 Decidability of Short-Distance Comparisons

In this section, we establish the decidability of a fragmentof SLv with short-distance compari-
son.

Definition 3.1.0.6.The fragmentSLshortv is defined by the following grammar:

f ::= ¬f | f ∧ f | ∃x.f | x ֒→ y | x ֒→≤ y | x ֒→≥ y | x = y | f ✱ f

The semantics of the operators and atomic formulas of this fragment is defined in sec-
tion 1.3. Note that the operator−✱ does not belong to this grammar.

3.1.1 Method

The decidability of satisfiability forSLshortv is obtained by reduction to the satisfiability ofMSO
over simple memory shapes.

Colored Shapes

We have to abstract the values taking care of their local comparisons. To do so, we use a colored
shape, with three colors on the edges: ‘<’, ‘ >’, and ‘=’. Formally, the colors are on vertices,
but each edge can be non-ambiguously identified to its sourcevertex in our model. In logical
terms, these colors will be defined by two second-order variables, notedP andQ, and we will
observe the color ‘=’ if both P andQ hold for the source location of the edge, ‘<’ if P holds but
not Q, and ‘>’ if Q holds but notP. The case where neitherP nor Q holds is irrelevant since
we assumed a total order on data values, so we should constrain the possible choices forP and
Q to avoid this situation. Moreover, some extra constraints will be involved by the necessity to

78

(1)

5

3

4

5 5 2 2

(2)

i1

i2

i3

i4 i5 i6 i7

>

<

= >

=

=

(3)

Figure 3.3: A concrete heap (1), its colored abstraction (2), and the associated graph of con-
straints (3); hereRP = {i3, i4, i6, i7} andRQ = {i1, i4, i5, i6, i7}

manipulate only colored shapes for which it is possible to assign data respecting the colors (for
instance, a cycle of ‘<’ cannot be assigned data).

The Graph of Constraints

Given a shape(s, h), and the interpretationsRP, RQ ⊆ Dom(h) of the second-order variables
mentioned before, we define the associated graph of constraintsG = (I, J) where:

− The set of verticesI is the quotient ofDom(h) by the equivalencei ∼ i′ relating locations
connected by a non oriented, ‘=’-labeled path in the colored shape. Note that each∼-
equivalence class contains at most one locationk whose image underh lies outside the
equivalence class ofk. In such a situation,[k] denotes this equivalence class.

− The set of edgesJ is the set of pairs of equivalence classes([k], [k′]) such that

∗ eitherh(k) = k′ and the color onk is ‘>’

∗ or h(k′) = k and the color onk′ is ‘<’

Figure 3.3 gives an example of a colored shape and its associated graph of constraints. Note
that an edge towards a dangling pointer cannot be colored, and this is in fact the unique situation
in which one allows¬P ∧ ¬Q. The graph of constraints helps us to decide whether or not it
is possible to assign values to a colored shape: indeed, thisproblem is equivalent to defining
a topological order on the graph of constraints, which is known to be equivalent to this graph
being acyclic. What remains to be explained now is:

− how to define the graph of constraints inMSO,

− how to express acyclicity,

− how to treat separating conjunction.

The Reduction

The reduction fromSLshortv to MSO is defined by the functiontranslationSLshortv →MSO(f) ,
∃P.∃Q.∃Q0.cons(P,Q,Q0) ∧ trSLshortv →MSO(f,P,Q,Q0) where:

79

− Q0 is an extra second-order variable that is needed to define thecurrent focus, that is the
sub-heap of the original heap on which the (sub)formula is currently evaluated.

− trSLshortv →MSO is an auxiliary reduction that works assuming thatP,Q andQ0 have been
correctly guessed, updating these parameters appropriately when✱ is translated.

− cons are constraints imposed onP, Q andQ0 to guarantee that the first guess is a valid
one: RQ0

is the domain of the heap, andRP andRQ define a colored shape to which one
may assign values.

3.1.2 Constraints

We impose three constraints, included in three formulas:cons(P,Q,Q0) , cons1(P,Q,Q0)∧

cons2(P,Q,Q0) ∧ cons3(P,Q,Q0)

1. the only admitted color on a monochromatic cycle is ‘=’ (this is indeed equivalent to the
acyclicity condition on the graph of constraints):

cons1(P,Q,Q0) , ∀Q1 ⊆ Q0. loop(Q1) ⇒ (Q1 ⊆ P⇔ Q1 ⊆ Q)

where loop(Q1) is defined assetofloops(Q1) ∧ ∀Q2 (Q1.¬setofloops(Q2), where
setofloops(Q1) is ∀x.Q1(x)⇒ ∃y.Q1(y) ∧ y ֒→ x

2. every edge that should be colored is colored with ‘<’, ‘ >’ or ‘ =’

cons2(P,Q,Q0) , ∀x. (Q0(x) ∧ (∃y.Q0(y) ∧ x ֒→ y)) ⇔ (P(x) ∨Q(x))

3. RQ0
is the domain of the heap:

cons3(P,Q,Q0) , ∀x.(x ֒→ �) ⇔ Q0(x).

Definition 3.1.2.1. We say that a locationi is an increasing (resp. decreasing)node if there
arei′, i′′ ∈ Loc ando1, o2 ∈ Dat such thath′(i) = (i′, o1), h′(i′) = (i′′, o2), ando1 ≤ o2
(resp. o1 ≥ o2). We writeDom+(h′) (resp. Dom−(h′)) to denote the set of increasing (resp.
decreasing) nodes ofh′, andEh′ denotes the environment[P 7→ Dom+(h′), Q 7→ Dom−(h′),
Q0 7→ Dom(h

′)].

Definition 3.1.2.2. Given a model(s, h) and a environmentE, we define theedge labelled
graphG = (I, J, L) obtained from(s, h) andE as below. LetRP beE(P), RQ beE(Q) andRQ0

beE(Q0).

− Vertices :I = Dom(h)

− Edges:J = {(i, i′) | i, i′ ∈ I andh(i) = i′}. Note that each vertex has at most one
outgoing edge.

− Labels:L((i, i′)) ,

∗ ‘<’ if i ∈ RP andi < RQ

∗ ‘=’ if i ∈ RP andi ∈ RQ

80

∗ ‘>’ if i < RP andi ∈ RQ

∗ ‘#’ if i < RP andi < RQ

We define the equivalence relation∼ on the vertices ofG as follows: i ∼ i′ if there are
i0, i1, . . . , in with i = i0 andin = i′ such that(ii−1, ii) ∈ J andL((ii−1, ii)) is ‘=’ for
i ∈ {1, . . . , n}.

We defineG′ = (I′, J′) fromG as follows:

− I′ = I/ ∼. Let the equivalence class ofi be denoted by[i].

− ([i], [i′]) ∈ J′ if and only if (i, i′) ∈ J with L((i, i′)) =‘<’ or (i′, i) ∈ J with
L((i′, i)) =‘>’.

Definition 3.1.2.3. A graphG is said to have acycle if there exist a sequence of vertices
j1, j2, . . .jn such that each of(j1, j2), (j2, j3), . . .(jn−1, jn), (jn, j1) is an edge. In an edge
labelled graph a cycle is said to beincreasing(decreasing) if each edge in the cycle is labelled
‘<’ or ‘ =’ (‘ >’ or ‘ =’). It is said to be astrictly increasing(strictly decreasing) if in addition
there is at least one edge which is marked ‘<’ (‘ >’). A graph is said to beacyclic if there is no
cycle in the graph.

A graphG = (I, J) is said to have atopological orderif there exists a mapord : I→ Dat
such that if(k, j) is an edge thenord(k) < ord(j). An edge labelled graphG = (I, J, L)

can beassigned values respecting edge labelsif there is a mapord : I→ Dat such that:

− if L((i, i′)) =‘<’ thenord(i) < ord(i′),

− if L((i, i′)) =‘>’ thenord(i) > ord(i′),

− if L((i, i′)) =‘=’ thenord(i) = ord(i′),

− if L((i, i′)) =‘#’ thenord(i) andord(i′) are incomparable.

Let us now state here the following well-known property of topological orders, see for
instance [39].

Lemma 3.1.2.4.A directed graph is acyclic if and only if it has a topologicalorder.

We can now state lemmas which will lead us to prove the soundness and completeness of
the three constraints.

Lemma 3.1.2.5.

(a) (s, h), E |=SO cons1(P,Q,Q0) if and only if G has no strictly increasing or strictly de-
creasing cycle (strictly monotonic).

(b) (s, h), E |=SO cons2(P,Q,Q0), if and only if RP ∪ RQ = {i ∈ RQ0
|∃i′ ∈ RQ0

, h(i) = i′}.

(c) (s, h), E |=SO cons3(P,Q,Q0) if and only if RQ0
= Dom(h).

Proof.

81

(a) (Forward direction) Consider a directed graph where each vertex has at most outdegree
one. In addition let each vertex have indegree at least one. As the sum of indegrees must
be equal to sum of outdegrees, each vertex must have indegreeand outdegree exactly
equal to one. It is easy to see that such a graph is made of disjoint directed cycles.

ConsiderRQ1
⊆ RQ0

. If (s, h), [Q1 7→ RQ1
] |=SO loop(Q1) then RQ1

represents the
vertices of a cycle inG assetofloops(Q1) states that each vertex has indegree at least
one. We have already noted thatG has outdegree at most one. HenceRQ1

must represent
a set of disjoint cycles. Since no subset ofRQ1

satisfies this property,RQ1
is a single cycle.

Hence we have proved the forward direction of the lemma.

The formulacons1(P,Q,Q0) says that: if all the edges of a cycle ofG are labelled by
‘<’ or ‘ =’ – in other words a cycle is an increasing cycle, then the edges are all labelled
by ‘=’ – in other words it is not a strictly increasing cycle. Hence, there are no strictly
increasing cycles. Similarly, we can prove there are no strictly decreasing cycles.

(Other direction) LetG have no strictly monotonic cycle. LetRQ1
⊆ RQ0

represent vertices
of a cycle inG. RQ1

⊆ RP means that each edge is labelled with ‘<’ or ‘ =’: the cycle is in-
creasing. Since it can not be strictly increasing, all the edges are labelled with ‘=’. Hence
RQ1
⊆ RQ. This shows that(s, h), E[Q1 7→ RQ1

] |=SO loop(Q1) ⇒ ((∀x.Q1(x) ⇒
P(x))⇒ (∀x.Q1(x)⇒ Q(x))). Doing similarly for strictly decreasing cycles, we ob-
tain an equivalence. Hence, ifG has no cycle then(s, h), E |=SO ∀Q1 ⊆ Q0. loop(Q1)⇒

((∀x.Q1(x)⇒ P(x))⇔ (∀x.Q1(x)⇒ Q(x))).

(b) (Forward direction) From the given condition we know that a locationi is in RP or RQ if
and only ifi is in RQ0

and there is another locationi′ in RQ0
such thath(i) = i′, which

is the same as sayingRP ∪ RQ is equal to{i ∈ RQ0
|∃i′ ∈ RQ0

, h(i) = i′}.

(Other direction) LetRP ∪ RQ = {i ∈ RQ0
|∃i′ ∈ RQ0

, h(i) = i′}. Then (s[x 7→
i], h), E |=SO Q0(x) ∧ (∃y.Q0(y) ∧ x ֒→ y) if and only if i ∈ RQ0

and there is
i′ ∈ RQ0

such thath(i) = i′, which happens if and only ifi ∈ RP ∪ RQ. Equivalently,
(s[x 7→ i], h), E |=SO P(x)∨Q(x). Hence,(s, h), E |=SO ∀x.(Q0(x)∧(∃y.Q0(y)∧x ֒→
y))⇔ P(x) ∨ Q(x).

(c) (Forward direction) From the given condition we know that for any locationi, (s[x 7→
i], h), E |=SO x ֒→ � ⇔ Q0(x). Hence,i ∈ RQ0

if and only if there isi′ such that
h(i) = i′. In other words,i ∈ RQ0

if and only if i ∈ Dom(h).

(Other direction) LetRQ0
= Dom(h). Then(s[x 7→ i], h), [Q0 7→ RQ0] |=SO Q0(x)

if and only if i ∈ RQ0
, which holds if and only ifi ∈ Dom(h), which is equivalent to

(s[x 7→ i], h) |=SO x ֒→ �. Hence, ifE(Q0) = Dom(h) then(s[x 7→ i], h), E |=SO
∀x.Q0(x)⇔ x ֒→ �.

�

Lemma 3.1.2.6.If (s, h), E |=SO cons(P,Q,Q0) thenG has no edges labelled ‘#’ andG′ is
acyclic.

Proof. Let (i, i′) be an edge inG. As (s, h), E |=SO cons(P,Q,Q0) and hence(s, h), E |=SO
cons2(P,Q,Q0), from lemma 3.1.2.5 (b) we know thati in RP∪RQ. Hence the possibility that
(i, i′) is labelled ‘#’ is ruled out.

82

As (s, h), E |=SO cons(P,Q,Q0) and hence(s, h), E |=SO cons1(P,Q,Q0), we know
from lemma 3.1.2.5 (a) thatG has no strictly monotonic cycle. By contradiction, assume that
[i1], [i2], . . . , [in] is a cycle inG′. Hence there are locationsi′

0
, i1, i

′
1
, i2, i

′
2
, . . . , in, i

′
n = i

′
0

such thatij ∼ i′j, (i
′
j−1
, ij) is labelled ‘<’ in J or (ij, i′j−1) is labelled ‘>’ in J for j in

{1, 2 . . .n}. Hence, there is an undirected cycle inG: a path fromi1 to i′
1

and(i′
1
, i2), fol-

lowed by a path fromi2 to i′
2

and(i′
2
, i3), . . ., followed by a path fromin to i′n and(i′n, i1).

Since all vertices inG have outdegree at most one, we are going to show that this undirected
cycle is actually a cycle inG itself. Letj0, j1, . . . , jn = j0 be such an undirected cycle. Without
any loss of generality assume(j1, j0) is a directed edge.

Let k be the smallest index such that(jk+1, jk) is not an edge but(jk, jk−1) is. Then both
(jk, jk+1) and(jk, jk−1) are edges which leads to a contradiction. Such ak exists as otherwise
each of(jk, jk−1) would be an edge, which defines a directed cycle. This shows that each of
the (i′

k−1
, ik) is an edge or each of the(ik, i′k−1) is an edge. In either case, it is a strictly

monotonic cycle inG, which is a contradiction. As a consequence, the assumptionthat there is
a cycle inG′ was wrong. �

Lemma 3.1.2.7.LetG have no edges labelled with a ‘#’. G′ has a topological order if and only
if G can be assigned values respecting edge labels.

Proof. Let G′ = (I′, J′) have a topological order. Hence, there exists a functionord′ : I′ →
Dat such that if([i], [i′]) ∈ J′ thenord′([i]) < ord′([i′]). We define the mapord :

I → Dat by i 7→ ord′([i]). We now showord assigns values respecting edge labels for
G = (I, J, L). Let j = (i, i′) ∈ J.

− If L(j) =‘=’ then i ∼ i′. Hence[i] = [i′], which meansord(i) = ord′([i]) =

ord′([i′]) = ord(i′).

− If L(j) =‘<’ then ord′([i]) < ord′([i′]). As ord(i) = ord′([i]) andord(i′) =

ord′([i′]) we obtainord(i) < ord(i′).

− If L(j) =‘>’ then ord′([i′]) < ord′([i]). As ord(i) = ord′([i]) andord(i′) =

ord′([i′]) we obtainord(i) > ord(i′).

Let G = (I, J, L) be a graph which can be assigned values respecting edge labels using
ord : I → Dat. Considerord′ : I′ → Dat which maps[i] to ord(i). First we need
to check that this map is well defined. Leti ∼ i′, then there arei0, i1, . . . , in with i = i0
andin = i′ such that(ik−1, ik) ∈ J andL((ik−1, ik)) is ‘=’, or ord(ik−1) = ord(ik), for
k ∈ {1, . . . , n}. Henceord(i0) = ord(i1) = . . . = ord(in). As expected, we showed if
i ∼ i′ thenord(i) = ord(i′). Finally, we need to check thatord is a topological order. If
([i], [i′]) ∈ J′, then(i, i′) ∈ J is labelled ‘<’ or (i′, i) ∈ J is labelled ‘>’. In both cases,
ord(i) < ord(i′). �

Lemma 3.1.2.8.AssumeRQ0
= Dom(h), andRP ∪ RQ = {i ∈ RQ0

| ∃i′ ∈ RQ0
, h(i) = i′}.

G = (I, J, L) can be assigned values respecting edge labels if and only if there ish′ satisfying
Shape(h′) = h, RP = Dom+(h′), RQ = Dom−(h′) andRQ0

= Dom(h′).

Proof.

83

(Forward direction) GivenG = (I, J, L) that can be assigned values respecting edge labels
using the mapord : I → Dat, we define a heap of simple memory stateh′ whose domain is
the setI as follows:

h : Loc ⇀ Loc × Dat

i 7→ (h(i), ord(i))

It is well defined asI = Dom(h) = Dom(h′). By definitionShape(h′) = h. Also,RQ0
= Dom(h),

henceRQ0
= Dom(h′).

− If i ∈ Dom+(h′), then there arei′, i′′ ∈ Loc andm′, m′′ ∈ Dat such thath′(i) = (i′, m′),
h′(i′) = (i′′, m′′) andm′ ≤ m′′. As m′ = ord(i), m′′ = ord(i′) andh(i) = i′, it is clear
thatord(i) ≤ ord(i′). Hence, by the definition ofG, i ∈ RP.

− Let i ∈ RP. Let i′ be such thath(i) = i′. As RP ⊆ RQ0
= Dom(h), actuallyi′ ∈ Dom(h).

As i ∈ RP, the edge(i, i′) ∈ J is labelled by ‘<’ or ‘ =’. Henceord(i) ≤ ord(i′).
Hence,i ∈ Dom+(h′).

This provesRP = Dom+(h′). The proof forRQ = Dom−(h) is identical.
(Other direction) Givenh′, let us defineord as follows:

ord : I → Dat

i 7→ snd(h(i))

If (i, i′) ∈ J is labelled ‘=’, theni ∈ RP andi ∈ RQ. Hence,i ∈ Dom+(h′) andi ∈ Dom−(h′).
As Shape(h′) = h, we can state thath′(i) = (i′, ord(i)) andh′(i′) = (i′′, ord(i′)) for
somei′′ in Loc. From the definitions ofDom+ andDom− we know thatord(i) ≤ ord(i′)
andord(i) ≥ (i′). Henceord(i) = ord(i′) as desired. The cases when the label is ‘<’ or
‘>’ are very similar and omitted. The case of label being ‘#’ cannot happen asDat has a total
order. �

Lemma 3.1.2.9(Constraints soundness). If (s, h), E |=SO cons(P,Q,Q0) then there is a heap
h′ : Loc ⇀ Loc × Dat such thatShape(h′) = h, E(Q0) = Dom(h′), E(P) = Dom+(h′) and
E(Q) = Dom−(h′).

Proof. Let (s, h), E |=SO cons(P,Q,Q0). By lemma 3.1.2.6,G has no edges labelled ‘#’ and
G′ is acyclic. By lemma 3.1.2.4,G′ has a topological ordering. By lemma 3.1.2.7,G can be
assigned values respecting edge labels. From lemma 3.1.2.5(b) and lemma 3.1.2.5 (c) we can
satisfy the hypothesis of lemma 3.1.2.8. Then, by applying lemma 3.1.2.8, there ish′ such that
Shape(h′) = h, E(P) = Dom+(h′), E(Q) = Dom−(h′) andE(Q0) = Dom(h′). �

We can now state that our encoding of the shape in the constraints is complete, in other
words that any model with data can be encoded in a model without data and an environment
satisfying our requirements.

Lemma 3.1.2.10(Constraints completeness). For all simple memory states with data(s, h′):

(s, Shape(h′)), Eh′ |=SO cons(P,Q,Q0).

84

Proof. Let G be the edge labelled graph obtained from(s, Shape(h′), Eh′). Let us show that
G has no strictly increasing or decreasing cycle. By contradiction, leti0, i1, . . .in with in = i0
be a strictly increasing or a strictly decreasing cycle. Without loss of generality, we can assume
that it is a strictly increasing cycle, that is: for allj ∈ {1, . . .n}, Shape(h′)(ij−1) = ij and
for all ij ∈ Eh′(P), and at least one location is not inEh′(Q). In other words, for allj,
ij ∈ Dom

+(h′) and there isk such thatjk−1 < Dom−(h′). Let m1, . . . , mn be the constants
such thath′(ij−1) = (ij, mj). Then, for allj, mj−1 ≤ mj, in other wordsmn ≤ m1 ≤ m2 ≤
. . . ≤ mn. Hence all themj must be equal. This is a contradiction withmk−1 < mk. Hence,G
has no strictly increasing or decreasing cycle. By lemma 3.1.2.5 (a),(s, Shape(h′)), Eh′ |=SO
cons1(P,Q,Q0).

Also,Eh′(P)∪Eh′(Q) = Dom+(h′)∪Dom−(h′) = {i | there arei′, i′′ ∈ Loc ando, o′ ∈ Dat
such thath′(i) = (i′, o), h′(i′) = (i′′, o′) ando ≤ o′} ∪ {i | there arei′, i′′ ∈ Loc and
o, o′ ∈ Dat such thath′(i) = (i′, o), h′(i′) = (i′′, o′) ando ≥ o′} = {i | there arei′ ∈ Loc
ando ∈ Dat such thath′(i) = (i′, o)} = {i | there isi′ ∈ Loc such thatShape(h′)(i) = i′}.
By lemma 3.1.2.5 (b),(s, Shape(h′)), Eh |=SO cons2(P,Q,Q0).
Dom(Shape(h′)) = Dom(h′) = Eh′(Q0). By lemma 3.1.2.5 (c),(s, Shape(h′)), Eh′ |=SO

cons3(P,Q,Q0).
As a consequence of the simultaneous satisfaction ofcons1(P,Q,Q0), cons2(P,Q,Q0)

andcons3(P,Q,Q0) we can conclude that(s, Shape(h′)), Eh′ |=SO cons(P,Q,Q0). �

3.1.3 Recursive Translation

The auxiliary recursive translationtrSLshortv →MSO is defined as follows: (1) it is homomorphic on
the cases off ∧ g, ¬f, ∃x.f, andx = y, and (2) for other connectives, parametersP,Q,Q0 come
into play:

trSLshortv →MSO(f ∧ g,P,Q,Q0) , trSLshortv →MSO(f,P,Q,Q0)

∧ trSLshortv →MSO(g,P,Q,Q0)

trSLshortv →MSO(¬f,P,Q,Q0) , ¬trSLshortv →MSO(f,P,Q,Q0)

trSLshortv →MSO(∃x.f,P,Q,Q0) , ∃x.trSLshortv →MSO(f,P,Q,Q0)

trSLshortv →MSO(x = y,P,Q,Q0) , x = y
trSLshortv →MSO(x ֒→ y,P,Q,Q0) , Q0(x) ∧ x ֒→ y
trSLshortv →MSO(x ֒→≤ y,P,Q,Q0) , Q0(x) ∧Q0(y) ∧ P(x) ∧ x ֒→ y
trSLshortv →MSO(x ֒→≥ y,P,Q,Q0) , Q0(x) ∧Q0(y) ∧ Q(x) ∧ x ֒→ y
trSLshortv →MSO(f1 ✱ f2,P,Q,Q0) , ∃Q01,Q02.

trSLshortv →MSO(f1,P,Q,Q01)

∧ trSLshortv →MSO(f2,P,Q,Q02)

∧ Q0 = Q01 ∪Q02 ∧ Q01 ∩ Q02 = ∅

Lemma 3.1.3.1(Reduction Lemma). For alls, h′, for all RQ0
⊆ Dom(h′),

(s, Shape(h′)), Eh′[Q0 7→ RQ0
] |=SO trSLshortv →MSO(f,P,Q,Q0) if and only if (s, h′|RQ0

) |=SL f.

Proof. In order to prove the lemma by induction, let us prove it for a formulaf, assuming that it
holds for all subformulas off. LetRQ0

⊆ Dom(h′) and let(s, h′) be a simple memory state. We
will show that the lemma holds also forf. Hence, by structural induction we will have proved
the claim forf.

85

(Case whenf is f1 ∧ f2.)

(s, h), E |=SO trSLshortv →MSO(f1 ∧ f2,P,Q,Q0)

iff (s, h), E |=SO trSLshortv →MSO(f1,P,Q,Q0) ∧ trSLshortv →MSO(f2,P,Q,Q0)

iff (s, h), E |=SO trSLshortv →MSO(f1,P,Q,Q0) and(s, h), E |=SO trSLshortv →MSO(f2,P,Q,Q0)

iff (s, h′
|RQ0

) |=SL f1 and(s, h′
|RQ0

) |=SL f2 (using the induction hypothesis)

iff (s, h′
|RQ0

) |=SL f1 ∧ f2

(Case whenf is¬g or ∃x.g.) The proof is very similar and omitted.
(Case whenf is x ֒→ y.)

(s, h), E |=SO trSLshortv →MSO(x ֒→ y,P,Q,Q0)

iff (s, h), E |=SO Q0(x) ∧ x ֒→ y
iff (s, h), E |=SO Q0(x) and(s, h), E |=SO x ֒→ y
iff s(x) ∈ RQ0

andh(s(x)) = s(y)
iff h|RQ0

(s(x)) = s(y)
iff Shape(h′

|RQ0

)(s(x)) = s(y)

iff (s, h′
|RQ0

) |=SL x ֒→ y

(Case whenf is x ֒→≤ y.)

(s, h), E |=SO trSLshortv →MSO(x ֒→ y,P,Q,Q0)

iff (s, h), E |=SO Q0(x) ∧Q0(y) ∧ P(x) ∧ x ֒→ y
iff s(x) ∈ E(P) ∩ RQ0

, s(y) ∈ RQ0
, andh(s(x)) = s(y)

iff s(x) ∈ E(P), s(y) ∈ RQ0
, andh|RQ0

(s(x)) = s(y)
iff s(x) ∈ Dom+(h′

|RQ0

) andShape(h′
|RQ0

)(s(x)) = s(y)

iff there areo, o′ ∈ Dat andi′′ ∈ Loc such thath′
|RQ0

(s(x)) = (s(y), o),

h′
|RQ0

(s(y)) = (i′′, o′) ando ≤ o′

iff (s, h′
|RQ0

) |=SL x ֒→≤ y

(Case whenf is x ֒→≥ y.) The proof is identical and omitted.
(Case whenf is x = y.) As the heap is not involved, the lemma holds obviously.
(Case whenf is f1 ✱ f2.)

(s, h), E |=SO trSLshortv →MSO(f1 ✱ f2,P,Q,Q0)

iff there areRQ01
, RQ02

⊆ Loc such thatRQ0
= RQ01

∪ RQ02
, RQ01

∩ RQ02
= ∅,

(s, h), E |=SO trSLshortv →MSO(f1,P,Q,Q01) and(s, h), E |=SO trSLshortv →MSO(f1,P,Q,Q01)

iff there areRQ01
, RQ02

⊆ Loc such thatRQ0
= RQ01

∪ RQ02
, RQ01

∩ RQ02
= ∅,

(s, h′
|RQ01

), |=SL f1 and(s, h′
|RQ02

), |=SL f2
iff there areh1, h2, such thath|RQ0

= h1 ✱ h2, and settingRQ0i
= Dom(hi) :

(s, h′
|RQ01

), |=SL f1 and(s, h′
|RQ02

), |=SL f2
iff (s, h′

|RQ0

), |=SL f1 ✱ f2

�

Lemma 3.1.3.2.For all formulasf of SLshortv , there is(s, h′) such that(s, h′) |=SL f if and only
if there is(s, h) such that(s, h) |=SO translationSLshortv →MSO(f).

86

Proof. We are going to prove the two directions of the if and only if condition. Let f be a
formula ofSLshortv

(Forward direction.) Assume there is(s, h′) such that(s, h′) |=SL f. Using lemma 3.1.2.10 we
obtain:

(s, Shape(h′)), [P 7→ Dom+(h′),Q 7→ Dom−(h′),Q0 7→ Dom(h
′)] |=SO cons(P,Q,Q0)

Using lemma 3.1.3.1 we know that:

(s, Shape(h′)), [P 7→ Dom+(h′),Q 7→ Dom−(h′),Q0 7→ Dom(h
′)]

|=SO trSLshortv →MSO(f,P,Q,Q0)

Combining above two statements we can state:

(s, Shape(h′)) |=SO ∃P.∃Q.∃Q0.cons(P,Q,Q0) ∧ trSLshortv →MSO(f,P,Q,Q0)

In other words,s itself andh = Shape(h′) are such that(s, h) |=SO translationSLshortv →MSO(f).
(Other direction.) Assume there is(s, h) such that(s, h) |=SO translationSLshortv →MSO(f).
Hence there are setsRP, RQ andRQ0

such that

(s, h), [P 7→ RP,Q 7→ RQ,Q0 7→ RQ0
] |=SO cons(P,Q,Q0) (3.1)

(s, h), [P 7→ RP,Q 7→ RQ,Q0 7→ RQ0
] |=SO trSLshortv →MSO(f,P,Q,Q0) (3.2)

Using equation 3.1 and lemma 3.1.2.9 we can state that there is h′ : Loc ⇀ Loc × Dat
with Shape(h′) = h, RQ0

= Dom(h′), RP = Dom+(h′) andRQ = Dom−(h′). Note thath|RQ0
is h as

Dom(h′) = Dom(h).
Knowing equation 3.2, we can use lemma 3.1.3.1 withh′, s, h andE = [P 7→ RP,Q 7→

RQ,Q0 7→ RQ0
], which allows us to conclude that(s, h′) |=SL f. �

Thanks to lemma 3.1.3.2 and lemma 2.1.1.1, we have established the announced result:

Theorem 3.1.The satisfiability problem forSLshortv is decidable.

3.2 Long-Distance Comparisons

3.2.1 An Undecidability Result

We consider now a fragment ofSLv with long-distance comparison.

Definition 3.2.1.1. We callSLlongv the long-distance fragment ofSLv defined by the following
grammar:

f ::= ¬f | f ∧ f | ∃x.f | ∃v.f | x ֒→ y | val(x) ≤ v | val(x) ≥ v | x = y | f ✱ f.

We are going to show that, without any further restriction, long-distance comparisons yield
undecidability, even for a simpler fragment defined below.

Definition 3.2.1.2. We callSLlongeqv the equality long-distance fragment ofSLlongv defined by
the following grammar:

f ::= ¬f | f ∧ f | ∃x.f | x ֒→ y | val(x) = val(y) | x = y | f ✱ f.

87

The proof of the undecidability ofSLlongeqv goes by reduction to the satisfiability problem of
first-order formulas over data words. Before giving the intuition of the reduction, we first recall
this logic. Note that, so far, we assumed a total order onDat, but this aspect is not essential for
this reduction as equality only is considered, and one may think here ofDat as any arbitrary
infinite set.

Definition 3.2.1.3.We assume a finite setA. A finite data wordis a sequencewd = wd1 . . .wdn,
wherewdi = (ai, oi) ∈ A × Dat; we write | wd | to denote the lengthn ∈ N of wd.

First-order logic over data wordsis defined by:

f ::= ¬f | f ∧ f | ∃x.f | a(x) | x = y + 1 | x ∼data y

wherea ∈ A. Variables are interpreted as positions in the word througha valuationva : Var→
{1, . . . , | wd |}, +1 is the successor function overN, and∼data relates positions holding the same
datum. More formally:

wd, va |=FO ∃x.f if there isn ∈ {1, . . . , | wd |} such thatwd, va[x 7→ n] |=FO f
wd, va |=FO a(x) if ava(x) = a

wd, va |=FO x = y + 1 if va(x) = va(y) + 1
wd, va |=FO x ∼data y if ova(x) = ova(y)

Lemma 3.2.1.4(see [15], Prop. 27). The satisfiability problem for a closed sentence of first-
order logic over data words is undecidable.

In order to prove the undecidability ofSLlongeqv with the help of lemma 3.2.1.4, we are going
to define a translation from First-order logic over data words toSLlongeqv such that a formulaf
admits a data word model if and only if its translation admitsa simple memory state model. A
data word of lengthn is encoded as a list segment of length2n, placing the sequence of letters
of A in the even positions, and the data sequence in odd positions. Thenx = y+1 can be encoded
by y ֒→2 x, andx ∼data y can be encoded byval(x) = val(y).

Theorem 3.2.The satisfiability problem forSLlongeqv is undecidable.

Proof. Without any loss of generality, we assumeA = {1, . . . , n}. Let wd = (wd(i), oi)i=1,...,m ∈

(A × Dat)∗ be a data word over(A, Dat). We are going to use the following distinct variables:
x1, . . . , xn, z3, z4, y1, . . . , y2|wd|.

We define the set of its heap representation as the setHe(wd) of models(s, h) such that
Dom(h) = s({x1, . . . , xn, z3, z4, y1, . . . , y2|wd|}) and:

− (s, h) |=SL val(y1) = val(xwd(1)) ∧ . . . ∧ val(y2|wd|−1) = val(xwd(|wd|)) ∧
∧

i,k val(xi) ,
val(xk)

− fst(h(s(x1))) = s(x2), . . . , fst(h(s(xn−1))) = s(xn)

− fst(h(s(xn))) = s(z3)

− fst(h(s(z3))) = s(y1)

− Odd positions ofy�: fst(h(s(y1))) = s(y2), . . . , fst(h(s(y2|wd|−1)))) = s(y2|wd|)

− Even positions ofy�: h(s(y2)) = (s(y3), o1), . . . , h(s(y2|wd|)) = (s(z4), o|wd|)

88

Now we define a formulawms that recognizes exactly the memory states that encode the
(A, Dat) words. If we abbreviatesingles , ∀z, z′.z ֒→ z′ => ¬z′ ֒→ �. andeven(x) ,
(singles ∧ x ֒→ �) ✱(singles ∧ x ֒→ z4):

wms , ((ls(z3, z4) ∧ ((singles ∧ z3 ֒→ �) ✱(singles ∧ � ֒→ z4)))
✱(ls(x1, z3) ∧

∧

i,k val(xi) , val(xk) ∧
∧

i<n xi ֒→ xi+1 ∧ xn ֒→ z3))
∧ (∀x.even(x)⇒

∨

i val(x) = val(xi))

The proof is organized as the successive proof of three propositions leading to the end of
the proof.

(Proposition 1)(s, h) |=SL wms if and only if (s, h) ∈ He(wd) for some data wordwd.

Assume(s, h) |=SL wms. Then(s, h) is a list segment fromx1 to z3 made of two parts:

∗ A list segment fromx1 to z3, of lengthn, with, if we call z3 xn+1, for all i ≤ n:
h(s(xi)) = (s(xi+1), oi), for someoi. The valuesoi are all distinct.

∗ A list segment fromz3 to z4 such that:

· There is in this list segment a2-partition of the allocated locations such that:
two consecutive locations do not belong to the same part, andz3 and the pre-
decessor ofz4 do not belong to the same partition.
· In the even positions, any datum belongs to the set{o1, . . . , on}.

Then the length of the list segmentls(z3, z4) is even, and one can read on it a(A, Dat)
wordwd, for which(s, h) ∈ He(wd) trivially holds. The converse implication is proved
with the same arguments. This ends the proof of (Proposition1)

We now associate to every formulaf of first-order logic over data words a formula of
SL
longeq
v that we calltr

FOdata−wd→SL
longeq
v

(f) as follows:

tr
FOdata−wd→SL

longeq
v

(¬f) , ¬tr
FOdata−wd→SL

longeq
v

(f)
tr
FOdata−wd→SL

longeq
v

(f1 ∧ f2) , tr
FOdata−wd→SL

longeq
v

(f1) ∧ trFOdata−wd→SLlongeqv
(f2)

tr
FOdata−wd→SL

longeq
v

(∃x.f) , ∃x.odd(x) ∧ tr
FOdata−wd→SL

longeq
v

(f)
tr
FOdata−wd→SL

longeq
v

(a(x)) , val(x) = val(xa)
tr
FOdata−wd→SL

longeq
v

(x = y + 1) , ∃z.y ֒→ z ∧ z ֒→ x
tr
FOdata−wd→SL

longeq
v

(x ∼data y) , ∃x′, y′.x ֒→ x′ ∧ y ֒→ y′ ∧ val(x′) = val(y′)

whereodd(x) is (singles ∧ x ֒→ �) ✱(singles ∧ z3 ֒→ �).
Let sva denote the valuation that mapsx to the(2 × va(x) − 1)-th successor ofz3.

(Proposition 2)For all data wordswd and valuations for first-order logic over data wordsva, for
all (s, h) such that(s, h) ∈ He(wd) ands = sva: (s, h) |=SL trFOdata−wd→SLlongeqv

(f) is equivalent
to wd, va |=FO f.

The proof of (Proposition 2) is by straightforward induction.

(Proposition 3)A formula f is satisfiable in first-order logic over data words if and onlyif
ls(z3, z4) ∧ wms ∧ tr

FOdata−wd→SL
longeq
v

(f) admits a heap model in separation logic.

(Proposition 3) is a consequence of (Proposition 1) and (Proposition 2).

Let us finally stress that the formula in (Proposition 3) belongs toSLlongeqv . This proves that
the reduction is correct and ends the proof. �

89

3.2.2 Decidability of Guarded Long-Distance Comparisons

We now consider the fragment of formulas where each quantification over values is restricted
to values stored in a finite set of cells. We have chosen these cells to be those pointed by the
program variables.

Definition 3.2.2.1.We callSLguardedv the guarded long-distance fragment ofSLv defined by the
following grammar:

f ::= ¬f | f ∧ f | ∃x.f | ∃v.val(w) = v ∧ f
| x ֒→≤ y | x ֒→≥ y | x ֒→ y | val(x) ≤ v | val(x) ≥ v | x = y | f ✱ f.

Note that guarded long-distance comparisons are quite weak: they just store the value of
a program variable before the use of✱. Hence we need to add short-distance comparisons as
basic predicates if we still want to use them.

Theorem 3.3.The satisfiability problem forSLguardedv is decidable.

Let us first sketch the proof. We adapt the proof of theorem 3.1.3.2 by extending the notions
of colored shapes and graphs of constraints. Every formula to be translated will have all its free
variables in a finite subsetW = {w1, . . . ,wn} of Progvar. To every variablew ∈ W, we associate
two second-order variablePw,Qw. A colored shape will contain the same sets extended from the
short-distance comparisons with setsRP

w, R
Q
w which contain the allocated locations containing a

datum respectively higher and lower than the one stored inw. A colored shape is then a tuple:

Cs = ((s, h) , RP, RQ, RP
w1
, RQ

w1
, . . . , RP

wn , R
Q
wn)

whereRP
w, R

Q
w are finite sets of locations; it iswell definedif RP ∪ RQ = Dom(h) ∩ h−1(Dom(h))

andRP
w ∪ R

Q
w = Dom(h) for every program variablew such thats(w) ∈ Dom(h). Let (s, h) be a

fixed shape. We define the relation∼ onDom(h) as the smallest equivalence relation such that:

− if k ∈ RP
w ∩ R

Q
w ands(w) ∈ Dom(h), thens(w) ∼ k;

− if h(k) = k′, andk ∈ RP ∩ RQ, thenk ∼ k′.

The graph of constraints associated toCs is the pair(J, K) where the vertex setJ is the quotient
of Dom(h) by ∼, and there is an edge from the equivalence class[k1] to [k2] if at least one of
the following conditions holds:

− either there iss(w) ∈ [k1] andk ∈ [k2] such thatk ∈ RQ
w − R

P
w;

− or there iss(w) ∈ [k2] andk ∈ [k1] such thatk ∈ RP
w − R

Q
w;

− or there isk ∈ [k1], k′ ∈ [k2] such thath(k) = k′ andk ∈ RQ − RP;

− or there isk ∈ [k1], k′ ∈ [k2] such thath(k′) = k andk′ ∈ RP − RQ.

It is possible to check that the graph of constraints and the acyclicity condition on it areMSO
definable. We will then adapt the reduction of section 3.1: weguess theRP

ws andRQ
ws at start

and check we made a valid guess, and we extend the recursive translationtrSLshortv →MSO(f) to a
new recursive translationtr

SL
guarded
v →MSO

(f) with the following updates:

tr
SL
guarded
v →MSO

(∃v.val(w) = v ∧ f) , tr
SL
guarded
v →MSO

(f[v← val(w)])
tr
SL
guarded
v →MSO

(val(x) ≤ val(w)) , Q0(x) ∧Q0(w) ∧ Qw(x) ∧ ¬Pw(x)
tr
SL
guarded
v →MSO

(val(x) ≥ val(w)) , Q0(x) ∧Q0(w) ∧ Pw(x) ∧ ¬Qw(x)

90

Proof of the Theorem

To prove theorem 3.3, we will associate, to every formulaf of the guarded long-distance frag-
ment, a formulatranslation

SL
guarded
v →MSO

(f), with:

translation
SL
guarded
v →MSO

(f) ,
∃P,Q,Pw1

,Qw1
, . . . ,Pwn ,Qwn.∃Q0.cons(P,Q,P′,Q′,Q0) ∧ trSLguardedv →MSO

(f,Q0)

wherecons(P,Q,P′,Q′,Q0) ensures that we guessed a coloring that defines a colored shape
for which it is possible to assign values, andtr

SL
guarded
v →MSO

(f,Q0) is the translation of the for-
mula on memory states to the colored shape.

(Constraints)Let us first introduce some abbreviations we will use in the sequel. If R1 a unary
predicate andR2 is a binary relation, we abbreviateMona1(R2, R1) andMona2(R1, R2) for the
predicates defined by a kind of composition:

− givenR2 binary andR1 unary,Mona1(R2, R1)(x) holds if and only if∃y.xR2y ∧ R1(y),

− similarly, givenR1 unary andR2 binary,Mona2(R1, R2)(x) holds if and only if∃y.yR2x∧
R1(y).

We define the formula

x tbc y , Q0(x) ∧Q0(y)∧
(∨

w∈Progvar(x = w ∧ Pw(y) ∧Qw(y))

∨ (x ֒→ y ∧ P(x) ∧Q(x))
)

that defines the binary relation whose reflexive, symmetric,transitive closure is the equivalence
∼ we defined in section 3.2. We then define the formula:

x ∼ y , ∀P0.(P0(x) ∧Mona2(P0, tbc) ⊆ P0 ∧Mona1(tbc,P0) ⊆ P0) => P0(y)

which characterizes∼. Indeed, letR be a relation over integers andj be an integer. Assume that
for somek ∈ Nwe have that for allI ⊆ N, if Mona1(R, I) ⊆ I andI ⊆ Mona2(I, R) andj ∈ I,
thenk ∈ I. Thenk belongs to the intersection of all the setsI such thatMona1(R, I) ⊆ I,
I ⊆ Mona2(I, R) andj ∈ I. Any of these sets contains the equivalence class ofj for the
reflexive, symmetric and transitive closure ofR. Also the equivalence class ofj itself is such
a set. So the intersection of all these sets is the equivalence class ofj. Sok belongs to the
equivalence class ofj for the reflexive, symmetric and transitive closure ofR.

Then we define the edge relation on the graph of constraints:

x edge y , ∃x′, y′.x ∼ x′ ∧ y ∼ y′ ∧
(

(x′ ֒→ y′ ∧ P(x′) ∧ ¬Q(x′))
∨ (y′ ֒→ x′ ∧ Q(y′) ∧ ¬P(y′))
∨
∨

w∈Progvar(x′ = w ∧ Pw(y′) ∧ ¬Qw(y′))
∨
∨

w∈Progvar(y′ = w ∧Qw(x′) ∧ ¬Pw(x′))
)

and its transitive closurex edge+ y , ∃z. x edge z ∧ ∀P0.(P0(z)∧Mona2(P0, edge) ⊆
P0) => P0(y).

We finally define thecons(P,Q,P′,Q′,Q0) formula as a conjunction :

cons1(P,Q,P′,Q′,Q0) ∧ cons2(P,Q,P′,Q′,Q0) ∧ cons3(Q0)

91

− the graph of constraints is acycliccons1(P,Q,P′,Q′,Q0) , ¬∃x.x edge+ x.

− each edge that should be colored is colored with ‘<’, ‘ >’ or ‘ =’:

cons2(P,Q,Q0,P′,Q′) ,
∀x.((Q0(x)⇔ (P(x) ∨Q(x)) ⊕ (∃y.x ֒→ y ∧ ¬Q0(y)))

∧(Q0(x)⇔ (Pw1
(x) ∨ Qw1

(x)) ⊕ (¬Q0(w1) ∧ Pw1
= Qw1

= ∅))

∧ . . .

∧(Q0(x)⇔ (Pwn(x) ∨Qwn(x)) ⊕ (¬Q0(wn) ∧ Pwn = Qwn = ∅)))

(where⊕ denotes the exclusive or).

− RQ0
is the domain of the heap:cons3(P,Q,Q0) , ∀x.(x ֒→ �)⇔ Q0(x).

With these definitions, we know by construction that(s, h), E |=SO cons(P,Q,Q0,P′,Q′)
if and only if the colored shapeCs(s, h, E) , (s, h, E(P), E(Q), E(Pw1

), . . . , E(Qwn)) is
well defined and its associated graph of constraints is acyclic.

(Soundness and completeness)For a given memory state(s, h), and a given program variable
w, we define

P(s,h)
w =

{

i ∈ Dom(h) : snd(h(l)) ≥ snd(h(s(w)))} if s(w) ∈ Dom(h)
∅ otherwise

Moreover, we defineP(s,h) = Dom+(h), andQ(s,h)
w , Q(s,h) correspondingly. This allows to

define the colored shape associated to a memory states, h :

Cs(s, h) , (s, Shape(h),P(s,h),Q(s,h),P(s,h)
w1
, . . . ,Q(s,h)

wn).

Finally, to a memory state(s, h), we associate the environment

E(s,h) , [P 7→ Dom+(h),Q 7→ Dom−(h),Pw1
7→ P(s,h)

w1
, . . . ,Qwn 7→ Q(s,h)

wn ,Q0 7→ Dom(h)].

Let us prove two propositions that ensure soundness and completeness ofcons.

− (Constraints soundness) If(s, h), E |=SO cons(P,Q,P′,Q′,Q0) then there is ah′ :

Loc ⇀ Loc × Dat such thatCs(s, h, E) = Cs(s, h′) andE = E(s,h
′) on relevant vari-

ables.

Assume(s, h), E |=SO cons(P,Q,P′,Q′,Q0). Then the graph of constraints associated
is acyclic. Thus it admits a topological orderingord : (Dom(h)/ ∼) 7→ Dat. It can
be lifted to ^ord : Dom(h) 7→ Dat, and one definesh(i) = (h(i), ^ord(i)). It is then
straightforward to check thatCs(s, h, E) = Cs(s, h).

− (Constraints completeness) For all simple memory state(s, h), its shape and its environ-
ment satisfycons, that is(s, Shape(h)), E(s,h) |=SO cons(P,Q,P′,Q′,Q0).

If i ∼ i′ in the graph of constraintsCs(s, Shape(h), E), then there is a path fromi
to i′ labeled with ‘=’, hencesnd(h(i)) = snd(h(i′)). This allows to defineord :

(Dom(h)/ ∼) 7→ Dat, [i] 7→ snd(h(i)). This obviously defines a topological order,
thusCs(s, Shape(h), E) is acyclic. Other conditions are obviously satisfied.

92

ReductionLet us now state the full translationtr
SL
guarded
v →MSO

(f,Q0) of a formulaf of sepa-
ration logic to a formula ofMSO. The invariant we achieve through this translation is :

Invariant: For alls, h, for all RQ0
⊆ Dom(h),

(s, Shape(h), Es,h′[Q0 7→ RQ0
] |=SO trSLguardedv →MSO

(f,Q0) iff (s, h|RQ0
) |=SL f.

tr
SL
guarded
v →MSO

(f ∧ g,Q0) , tr
SL
guarded
v →MSO

(f,Q0) ∧ trSLguardedv →MSO
(g,Q0)

tr
SL
guarded
v →MSO

(¬f,Q0) , ¬tr
SL
guarded
v →MSO

(f,Q0)

tr
SL
guarded
v →MSO

(∃x.f,Q0) , ∃x.tr
SL
guarded
v →MSO

(f,Q0)

tr
SL
guarded
v →MSO

(x ֒→ y,Q0) , Q0(x) ∧ x ֒→ y
tr
SL
guarded
v →MSO

(x ֒→≤ y,Q0) , Q0(x) ∧ Q0(y) ∧ P(x) ∧ x ֒→ y
tr
SL
guarded
v →MSO

(x ֒→≥ y,Q0) , Q0(x) ∧ Q0(y) ∧Q(x) ∧ x ֒→ y
tr
SL
guarded
v →MSO

(x = y,Q0) , x = y
tr
SL
guarded
v →MSO

(∃v.val(w) = v ∧ f,Q0) , tr
SL
guarded
v →MSO

(f[v← val(w)],Q0)

tr
SL
guarded
v →MSO

(val(x) ≤ val(w),Q0) , Q0(x) ∧ Q0(w) ∧Qw(x) ∧ ¬Pw(x)
tr
SL
guarded
v →MSO

(val(x) ≥ val(w),Q0) , Q0(x) ∧ Q0(w) ∧ Pw(x) ∧ ¬Qw(x)
tr
SL
guarded
v →MSO

(f1 ✱ f2,Q0) , ∃Q01.∃Q02. Q0 = Q01 ∪Q02 ∧ Q01 ∩ Q02 = ∅

∧ tr
SL
guarded
v →MSO

(f1,P,Q,P′,Q′,Q01)

∧ tr
SL
guarded
v →MSO

(f2,P,Q,P′,Q′,Q02)

3.3 Magic Wand and Restricted Magic Wand

Even without data, the logic with the operator−✱ was proved to be undecidable in the previous
chapter. A decidable separation logic with a restricted magic wand was presented. Let us write
again the definition of this binary operator,−✱n (for n an integer). Unlike the plain operator−✱,
the quantification on disjoint heaps of−✱n considers only heaps for which the cardinality of the
domain is bounded byn. More formally, we define that(s, h) |=SL f1−✱nf2 if and only if for all
h′ such thath′ ⊥ h and| Dom(h′) |≤ n, if (s, h′) |=SL f1 then(s, h ✱ h′) |=SL f2. It can be seen as
an abbreviation of(f1 ∧ ¬∃x1, . . . , xn+1.

∧

i,j xi , xj ∧
∧

i ∃y.xi ֒→ y) −✱ f2. In the sequel, we
will prove that, in the context of heaps with data,−✱1 is sufficient to obtain undecidability.

Let R denote an arbitrary binary relation onDat. For a given valueo1, we write{o, o RR o1}
to denote the set of valueso ∈ Dat such that: there iso2 such that botho R o2 ando2 R o1.
Let us call∼R the equivalence relation defined aso1 ∼R o′1 iff {o, o RR o1} = {o, o RR o′1}.
We consider the atomic formulaval(x) R val(y) stating that values stored inx andy compare
throughR. Formally,(s, h) |=SL val(x) R val(y) iff there areo1, o2 ∈ Dat andi, i′ ∈ Loc
such thath(s(x)) = (i, o1), h(s(y)) = (i′, o2), ando1 R o2. We now introduce the relation
x ֒→R y for x ֒→R y , x ֒→ y ∧ val(x) R val(y)

Definition 3.3.0.2.The logicSLR,−✱1

v is defined by the grammar:

f ::= ¬f | f ∧ f | ∃x.f | x ֒→ y | x ֒→R y | x = y | f ✱ f | f−✱1f.

We are going to prove that satisfiability and validity problems are undecidable forSLR,−✱1

v ,
for anyR ∈ {≤,≥, =, <, >} - recall that in this chapter the studied orders are in any case total

93

orders. We will rely on the previous section, especially theorem 3.2, by simulating a long-
distance equality. We first need the following fact:

Lemma 3.3.0.3.Let R ∈ {≤,≥, =, <, >}. Then∼R has an infinite number of equivalence classes.

Proof. If R ∈ {<, >}. Let us first notice thatDat is infinite. Let(oi)i∈N be an infinite sequence
such thatoiRoi+1 for all i or such thatoi+1Roi for all i. If (oi)i∈N is such thatoiRoi+1 for
all i, then for alli ∈ N and for allj > 0, oi ∈ {o′, o′RRoi+2×j}, but oi < {o′, o′RRoi}. So
{{o′, o′RRoi}, i ∈ N} is an infinite set of distinct classes. Similarly, if(oi)i∈N is such that
oi+1Roi for all i then{{o′, oiRRo′}, i ∈ N} is an infinite set of distinct classes.

If R ∈ {≤,≥, =}. Theno = o′ implies clearly{o1, o1RRo} = {o1, o1RRo′}. Let us prove
the other implication. Assume{o1, o1RRo} = {o1, o1RRo′}. We know thatRR is reflexive. So
o ∈ {o1, o1RRo}, and since{o1, o1RRo} ⊆ {o1, o1RRo′} we haveoRRo′. SinceR is transitive
oRRo′ is true iff oRo′. Similarly o′Ro. Soo = o′. Hence∼R is equality, and has infinitely many
equivalence classes sinceDat is infinite. �

Let ∼ be an equivalence relation onDat with infinitely many equivalence classes.

Definition 3.3.0.4.Let us define theequivalence long-distance fragmentby the grammar:

f ::= ¬f | f ∧ f | ∃x.f | x ֒→ y | val(x) ∼ val(y) | x = y | f ✱ f | f−✱1f.

Next lemma, a slight variation of theorem 3.2, also holds in this generalised framework:

Lemma 3.3.0.5.The satisfiability problem for the equivalence long-distance fragment is unde-
cidable.

Proof. By the same encoding as the one of theorem 3.2, one may reduce asatisfiability problem
of a first-order sentence over data words, where data is takenfrom the infinite quotient set
Dat/ ∼R, to the satisfiability problem for the equivalence long-distance fragment. �

Lemma 3.3.0.6.There is a formulafR(x, x′) ∈ SLR,−✱1

v such that for all simple memory states
(s, h) with {s(x), s(x′)} ⊆ Dom(h):

(s, h) |=SL fR(x, x′) iff (s, h) |=SL val(x) ∼R val(x′)

Let us first sketch the proof.f−✱
¬
1g will abbreviate¬(f−✱1¬g). Then(s, h) |=SL f−✱

¬
1g iff

there ish′ such that(s, h′) |=SL f, (s, h ✱ h′) |=SL g and | Dom(h′) |≤ 1. The operators−✱1

and−✱
¬
1 will be used to simulate restricted quantifications overDat, respectively universal and

existential. Consider the formulaf′R:

∃x1.∃x2.(¬∃x3.x1 ֒→ x3 ∨ x2 ֒→ x3)
∧(x1 ֒→ x2) −✱1 ((val(x1) RR val(x)) ⇔ (val(x1) RR val(x′)))

whereval(x1) RR val(x) abbreviates(x2 ֒→ x)−✱
¬
1[x1 ֒→R x2 ∧ x2 ֒→R x]. The formulaf′R

expresses that for allo1, there iso2 such thato1 R o2 R snd(h(s(x))) if and only if there iso2
such thato1 R o2 R snd(h(s(x′))), that isval(x) ∼R val(x′). By lemma 3.3.0.3, proving that
the semantics of the formulaf′R is actually the same as that ofval(x) ∼R val(x′) implies that the
satisfiability problem ofSLR,−✱1

v is an instance of the satisfiability problem of the equivalence
long distance fragment. By lemma 3.3.0.5, the satisfiability problem ofSLR,−✱1

v is undecidable.
We now begin the full proof of lemma 3.3.0.6, where the actualfR is a little different fromf′R.

94

Proof.
(Preliminary definitions)We assume{s(x), s(x′)} ⊆ Dom(h); let o = snd(h(s(x))) and
o′ = snd(h(s(x′))).

We are going to first define a formulaf0(x, x′) which expresses thatval(x)_Rval(x′), where
o_Ro′ iff {o1, o1RRo} ⊆ {o1, o1RRo′}. Assume we have such a formula, then it is be easy to obtain
f(x, x′) , f0(x, x′) ∧ f0(x′, x), meaning{o1, o1RRo} = {o1, o1RRo′}. Let us define this formula:

f0(x, x′) , ∃x1.∃x2.[¬∃x3.x1 ֒→ x3 ∨ x2 ֒→ x3] ∧ [(x1 ֒→ x2)−✱
¬
1

(((x2 ֒→ x)−✱
¬
1(x1 ֒→R x2 ∧ x2 ֒→R x))⇒ ((x2 ֒→ x′)−✱

¬
1(x1 ֒→R x2 ∧ x2 ֒→R x′)))]

We define alsof1 = ((x2 ֒→ x)−✱
¬
1(x1 ֒→R x2 ∧ x2 ֒→R x)) andf2 = ((x2 ֒→ x′)−✱

¬
1(x1 ֒→R

x2 ∧ x2 ֒→R x′)).
The formulaf0(x, x′) is satisfied by(s, h) iff there arei1 andi2 not belonging toDom(h)

such that, withs′ = s[x1 7→ i1; x2 7→ i2], for all h′ with domain size at most1 such that
(s′, h′) |=SL x1 ֒→ x2: (s′, h′ ✱ h) |=SL f1 ⇒ f2.

The formulaf0(x, x′) is satisfied by(s, h) iff there arei1 andi2 not belonging toDom(h)
such that, withs′ = s[x1 7→ i1; x2 7→ i2], for all h′ with domain size at most1 such that
h′(s′(x1)) = (s′(x2), o1) for someo1: (s′, h′ ✱ h) |=SL f1 ⇒ f2.

The formulaf0(x, x′) is satisfied by(s, h) iff there arei1 andi2 not belonging toDom(h)
such that, for allo1 ∈ Dat, if s′ = s[x1 7→ i1; x2 7→ i2] andh′ = [i1 7→ (i1, o1)] then:
(s′, h′ ✱ h) |=SL f1 ⇒ f2.

(Semantics off1 and f2) Assume(s′, h′) |=SL x1 ֒→ x2 andh′ is a good candidate for−✱1, that
is h′(s′(x1)) = (s′(x2), o1) for someo1, andDom(h′) = {s(x1)}. Let us studyf1, and prove
that(s′, h′ ✱ h) |=SL f1 iff there iso2 such thato1Ro2 ando2Ro.

Assume(s′, h′ ✱ h) satisfiesf1. Then there ish′′
1

with domain size at most1 such that
(s′, h′′

1
) |=SL x2 ֒→ x and (s′, h ✱ h′ ✱ h′′

1
) |=SL x1 ֒→R x2 ∧ x2 ֒→R x. Since the domain

size ofh′′
1

is at most1 and(s′, h′′
1
) |=SL x2 ֒→ x, we know thatDom(h′′

1
) = {s′(x2)} and

fst(h′′
1
(s′(x2))) = s′(x). So, since(s′, h ✱ h′ ✱ h′′

1
) |=SL x1 ֒→R x2 ∧ x2 ֒→R x, if we call

o2 = snd(h(i2)), we obtaino1Ro2 ando2Ro. As a consequence, there iso2 such thato1Ro2
ando2Ro.

Assume there iso2 such thato1Ro2 ando2Ro. Sincei2 is unallocated inh, it is possible to
findh′′

1
such thatDom(h′′

1
) = {s′(x2)} andh′′

1
⊥h. Then leth′′

1
be such a heap, withh′′

1
(s′(x2)) =

(s′(x), o2). Henceh′′
1

has domain size1, and is a good candidate for the extension of the heap
in a formula with outermost operator−✱

¬
1. It actually satisfies the left-hand side of the operator:

(s′, h′′
1
) |=SL x2 ֒→ x. Also, sincex is allocated inh with snd(h(s′(x))) = o ando2Ro:

(s′, h ✱ h′ ✱ h′′
1
) |=SL x2 ֒→R x. Finally, sincex2 is allocated inh′′

1
, with snd(h′′

1
(s′(x2))) = o2

ando1Ro2: (s′, h ✱ h′ ✱ h′′
1
) |=SL x1 ֒→R x2. So(s′, h ✱ h′ ✱ h′′

1
) satisfiesf1.

By the same reasoning, one can prove that(s′, h′ ✱ h) satisfiesf2 iff there iso2 such that
o1Ro2 ando2Ro′. As a consequence,(s′, h′ ✱ h) satisfiesf1 ⇒ f2 iff: if o1RRo theno1RRo′.

(Conclusion)We have shown in (Preliminary definitions) that the formulaf0(x, x′) is satisfied
by (s, h) iff there arei1 andi2 not belonging toDom(h) such that, for allo1 ∈ Dat, if s′ =
s[x1 7→ i1; x2 7→ i2] andh′ = [i1 7→ (i1, o1)] then:(s′, h′ ✱ h) |=SL f1 ⇒ f2.

So,(s, h) |=SL f0(x, x′) iff there arei1 andi2 not belonging toDom(h) such that, for all
o1 ∈ Dat, if s′ = s[x1 7→ i1; x2 7→ i2] andh′ = [i1 7→ (i1, o1)] then: ifo1RRo theno1RRo′.

95

In other words,(s, h) |=SL f0(x, x′) iff there arei1 < Dom(h) andi2 < Dom(h) such that
for all o1, if o1RRo theno1RRo′.

Since it is always possible to find unallocatedi1 andi2 asLoc is infinite andDom(h) is
finite, and sincei1 andi2 are not used in “for allo1, if o1RRo theno1RRo′”, we can forget about
them.(s, h) |=SL f0(x, x′) iff for all o1, if o1RRo theno1RRo′.

That is to say,(s, h) |=SL f0(x, x′) iff {o1, o1RRo} ⊆ {o1, o1RRo′}. This is exactly:(s, h) |=SL
f0(x, x′) iff val(x) _R val(x)′. ThenfR , f0(x, x′)∧ f0(x′, x) has the semantics we expected.�

The following theorem is a direct consequence of lemma 3.3.0.6.

Theorem 3.4.For anyR ∈ {≤,≥, <, >, =}, the validity and satisfiability problems forSLR,−✱1

v are
undecidable.

Conclusion

Summary of this Chapter

We have given a wide picture of the decidability status of thesatisfiability problem for separa-
tion logic dealing with data.

With the ability to describe lists and quantify over locations, allowing long-distance com-
parisons brings undecidability, and so does allowing the operator−✱, even strongly restricted.
Yet, there is a positive result: dropping these two featuresmakes the satisfiability problem
decidable, still being able to specify local reasoning and express properties about ordered re-
cursive structures. The decidability also holds when a finite set of references can be compared
to all the rest of the memory. The results are summarized in figure 3.4.

Related Work

First-order separation logic over heap models with at leasttwo selectors is known to be unde-
cidable even with no separating connectives, from the result of Calcagno, Yang and O’Hearn
in [36] by containment of finite satisfiability for classicalpredicate logic with one binary re-
lation – see Trakhtenbrot [88]. On the other hand we have proved first-order separation logic
over heaps with one selector to be decidable when the magic wand is dropped in the previous
chapter. We have studied in this chapter separation logic onmodels more complicated than one
selector but simpler than two or more selectors, that are models with one selector plus data.
To our knowledge, nothing was known about first-order separation logic with data before the
initial publication of these results, during the research that led to this thesis.

Soon after was published the logic Strand by Madhusudan, Parlato and Qiu [74], which is
dealing with a very similar model toSLv; it describes recursive structures labelled with data
thanks to monadic second-order variables representing labels plus one second-order variable
representing the memory shape by edges. On top of this model of the memory, Strand allows
monadic second-order quantification. Its satisfiability isdecidable when provided with a class
of models, for instance the class of the models representingone tree. The composite structures
logic of Bouajjani et al. [18] is also related, as it deals with composite data structures, with
easily computable postconditions and decidable satisfiability for a fragment; it is a more general
framework as it can handle data structures with several selectors. The Celia tool of Bouajjani et

96

Undecidable SL
long
v andSLlongeqv – theorem 3.2

SLR,−
✱1

v for anyR ∈ {≤,≥, <, >, =} – theorem 3.4
Decidable SLshortv – theorem 3.1

SL
guarded
v – theorem 3.3

Figure 3.4: Decidability and undecidability results

al. [19, 20] deals more precisely with lists with data, and obtains decidability through abstract
domains.

Our fragmentSLguardedv is actually able to store the data in locations pointed by program
variables so as to compare them with other data after a separation makes them unavailable.
Hence, one can relate this work to other logics handling data, especially logics which can store
an element from the data values so as to be able to compare it toothers later – this feature
can be called thefreeze quantifier. As examples of such logics, one should mentionLTL with
freeze, studied by Demri and Lazić in [45]. About logics dealing with data, this work also
relates with logics on data words, as we used the results of the work of Bojánczyk, Muscholl,
Schwentick, Segoufin and David in [15] so as to prove theorem 3.3. These logics give clear
boundaries on the expressiveness of logics containing lists and data if their creator wants them
to remain decidable.

Perspectives

Some ways to restrict the full language are still unexplored, for instance bounding the amount
of quantified variables. With the same hope to obtain decidability for satisfiability problems,
one may look at extensions of our decidable fragment.

In particular, we expect our decidability results to extendto more complex data structures
that would have a decidableMSO theory (trees, doubly-linked lists, lists of lists, and more gen-
erally tree-width bounded structures), and to more complexshort-distance comparisons (such
asn-th successor or brothers). The restrictions we set may for instance be sufficient to handle
search-trees. About more complex data structures, the proof should be very similar, as long as a
graph of constraints similar to the one we defined can also be encoded in sets. These sets would
again be the value ofMSO variables. About more complex short-distance comparisons, more
categories of addresses would have to be defined and encoded in sets. Instead of only catego-
rizing compared to the immediate successor with{<, >, =} thanks to two sets as we described,
we could categorize compared to the successor and its successor with{<, >, =}×{<, >, =} thanks
to four sets, or even further with more sets.

We did not explore this possibility. If these ideas actuallyprovide the expected results, it
would show that a graph of constraints is a good general concept for logics dealing with sorted
data structures.

Finally, our results are general for any totally ordered infinite set, and questions remain
open about partially ordered sets.

97

98

Chapter 4

Reasoning about Sequences of Heaps

Introduction

Contribution of this Chapter

Our aim is to combine the features of temporal logics with theconciseness of separation logic
for describing the behavior of programs manipulating pointers. We introduce a linear-time tem-
poral logic to specify sequences of memory shapes with underlying assertion language based
on the quantifier free separation logicSLs inspired from the definition of Reynolds in [84]. Its
models, sequences of memory shapes, can be seen as an abstraction of the evolution of the
memory of a program during its execution. It is a many-dimensional logic, as it has a spatial
dimension to describe memory shapes as well as a temporal dimension.

The formal definition of our logic is in figure 4.1. The explanation of this definition will be
given in section 4.1. We call the obtained formalism, with both separation and temporal aspects,
LTLmem. Our logic addresses a very general notion of models, including the aspects of pointer
arithmetic and recursive structures with records. We distinguish the satisfiability problems
from the model-checking problems, as well as distinct subclasses of interesting programs, as
for instance the programs without destructive update.

The most surprising result is thepspace-completeness of the satisfiability problems where
the heap can vary in time, and we either drop the pointer arithmetic or the separation connec-
tives. This result is especially tight, as both propositional LTL and static separation logic are
alreadypspace-complete, as proved by Sistla and Clarke in [86] for propositional LTL and by
Calcagno, Yang and O’Hearn in [36] for static separation logic. These results are obtained by
reduction to the non-emptiness problem for Büchi automata on an alphabet made of symbolic
memory shapes obtained by an abstraction that we show sound and complete, with a similar
technique to that of Lozes in [71], used also by Calcagno, Gardner and Hague in [33].

Surprisingly, this abstraction method does not scale to thewhole logic, due to a subtle
interplay between separation connectives and pointer arithmetic. Moreover, we will show un-
decidability results for several problems, for instance satisfiability problems when the heap
cannot vary. A summary of the numerous results can be found inthe conclusion, and the path
we will follow to prove half of the results is presented in figure 4.7.

99

Expressions expr ::= x | © expr

Atomic formulas atom ::= expr = expr′ | expr + i֒→lexpr′

State formulas f ::= atom | emp | f ✱ g | f −✱ g | f ∧ g | ¬f

Temporal formulas t ::= f | ©t | t until u | t ∧ u | ¬t

Semantics
mod, n |=LTLmem ©t iff mod, n + 1 |=LTLmem t.
mod, n |=LTLmem t until u iff there isn1 ≥ n

s.t.mod, n1 |=LTLmem u andmod, n′ |=LTLmem t for all n′ ∈ [n, n1[.

mod, n |=LTLmem t ∧ u iff mod, n |=LTLmem t andmod, n |=LTLmem u.

mod, n |=LTLmem ¬t iff notmod, n |=LTLmem t.

mod, n |=LTLmem f iff s′n, hn |=SL f[©kx← 〈x, k〉] wheremod = (sn, hn)n≥0 and

s′n is defined bys′n(〈x, k〉) = sn+k(x).

Figure 4.1: The syntax and semantics ofLTLmem

Structure of the Chapter

We define our logicLTLmem and several of its fragments as well as decision problems in sec-
tion 4.1. Section 4.2 introduces the symbolic memory shapes(useful in section 4.3) and
presents thepspace-completeness of the satisfiability and model-checking problems forSLs
with pointer arithmetic. Section 4.3 is dedicated to the decidability proof of satisfiability for
various fragments and its consequences for other problems.In section 4.4, we mention several
seemingly optimal undecidability results by encoding computations of Minsky machines.

This chapter presents results originally published in [26], and in [28].

4.1 Preliminaries

4.1.1 Temporal Models and Programs

Temporal Models

Temporal models are infinite sequences of memory shapes, which means they are elements
in (Stores × Heapss)

N and they are understood as infinite computations of programswith
pointer variables. We range overmod for a given model, and itsith statemod(i) will be noted
(si, hi). In order to analyze computations from programs without destructive update, we shall
also consider models with constant heap, that is elements inStoresN × Heapss.

100

~ w := w′ � (s, h) ∋ (s[w 7→ s(w′)], h).
~ w := w′ → l � (s, h ✱{i 7→ {l 7→ j, . . .}}) ∋ (s[w 7→ j], h ✱{i 7→ {l 7→ j, . . .}})

with s(w′) = i

~ w→ l := w′ � (s, h ✱{i 7→ {l 7→ j, . . .}}) ∋ (s, h ✱{i 7→ {l 7→ s(w′), . . .}})
with s(w) = i

~ w := cons(l1 : w1, . . . , lk : wk) � (s, h) ∋
(s[w 7→ i], h ✱{i 7→ {l1 7→ s(w1),

. . . , lk 7→ s(wk)}})
with i < Dom(h)

~ free w � (s, h ✱{i 7→ �}) ∋ (s, h)

with s(w) = i

~ skip � (s, h) ∋ (s, h)

~ w := w′[i] � (s, h ✱{i + i′ 7→ {next 7→ j}}) ∋
(s[w 7→ j],
h ✱{i + i′ 7→ {next 7→ j}}))

with s(w′) = i′

~ w[i] := w′ � (s, h ✱{i′ + i 7→ {next 7→ j}}) ∋ (s, h ✱{i′ + i 7→ {next 7→ s(w′)}})
with s(w) = i′

~ w := malloc(i) �(s, h) ∋

(s[w 7→ i′],
h ✱{i′ 7→ {next 7→ i′′

1
}, . . . ,

i′ + (i − 1) 7→ {next 7→ i′′
i−1
}})

with i′, . . . , i′ + (i − 1) < Dom(h)
andi′′

1
, . . . , i′′

i−1
< Dom(h)

~ free w, i � (s, h ✱{i′ + i 7→ �}) ∋ (s, h)

with s(w) = i′

Figure 4.2: Semantics for instructions

Instructions

The setIns of instructionsused in the programs is defined by the grammar below:

instr ::= x := y | skip
| x := y→ l | x→ l := y | x := cons(l1 : x1, . . . , lk : xk) | free x
| x := y[i] | x[i] := y | x := malloc(i) | free x, i

The denotational semantics~ instr � of an instructioninstr is defined as a binary re-
lation ~ instr � ⊆ (Stores × Heapss) × (Stores × Heapss) in order to deal with the
non-deterministic allocation of new memory cells. It can also be seen as a function from
(Stores × Heapss) to Pow(Stores × Heapss), and we write~ instr �(s, h) to denote the
image of(s, h) through this function. We list in figure 4.2 the formal denotational semantics
of our instruction set.

Observe that the instructionsx := y[i], x := malloc(i) andx[i] := y deal with the
specific labelnext. Boolean combinations of equalities between variables arecalled guards
and their set is denoted byGuards.

101

Programs

A programP is defined as a triple(B, d, bI) such thatB is a finite set of control states,bI is the
initial state andd is the transition relation, a subset ofB×Guards×Ins×B. We useb −−−−−→g,instr

b′

to denote a transition. We say that a program iswithout destructive updateif transitions are
labeled only with instructions of the formx := y, x := y→ l, andx := y[i]. We writeProg to
denote the set of programs andProgct to denote the set of programs without destructive update.

A program is a finite object whose interpretation can be viewed as an infinite-state system.
More precisely, given a programP = (B, d, bI), the transition systemSP = (Config,→) is
defined as follows:Config = B×(Stores×Heapss) (set of configurations) and(b, (s, h))→
(b′, (s′, h′)) iff there is a transitionb −−−−−→g,instr

b′ ∈ d such that(s, h) |= g and(s′, h′) ∈
~ instr �(s, h). Note thatSP is not necessarily deterministic. A computation (or execution)
of P is defined as an infinite path inSP starting with control statebI.

4.1.2 Temporal Extension: our Logic

Our logic is a combination ofLTL andSLs, a quantifier free fragment ofSL. These logics are
combined so that the propositional variables ofLTL are replaced by the formulas ofSLs, which
allow to describe the heap. While the operators ofLTL allow to navigate in time, the separation
logic formulas describe the present configuration of the heap only – with a limited ability to
relate consecutive models. As the separation operators canonly be under the scope of temporal
operators, it is impossible to extend the compositionalityprinciple of separation logic toLTLmem.

Formulas ofLTLmem are defined in figure 4.1 under the nametemporal formulas. Their
semantics is defined in the same figure; the satisfaction relation is mod, n |=LTLmem t, wheremod
is a temporal model,n ∈ N andt is a formula. One can note that we use the notation© for the
predicate callednext, which is one of the notations found in the literature aboutLTL along with
the capital letter X. We prefer this choice so as to avoid the use of single capital letters which
describe sets in this thesis. Similarly, we useuntil rather than the capital letter U, and later
we will usesometimes rather than the capital letter F andalways rather than the capital letter
G. Finally, one can note that we clearly distinguish state formulas from temporal formulas by
usingf andg for state formulas, as for separation logic formulas in the rest of the document,
but t andu for temporal formulas.

The temporal operators are the standard next-time operator© and until operatoruntil present
in LTL, see for instance [53, 86]. The formula©t means thatt holds in the next time state.
The formulat until u means that eitheru holds ort holds and will continue holding untilu
holds at some moment in the future, and there exists be a moment in the future such thatu
holds. We use standard abbreviations such assometimes(t) for (⊤ until t) or always(t) for
¬sometimes(¬t).

State formulas ofLTLmem are formulas from the quantifier free separation logicSLs, except
that variables can be prefixed by the symbol ‘©’ – see below for further explanation about this
feature.

Contrarily to the two previous chapters, the atomic formulas allow pointer arithmetic, and
an unbounded amount of fields through the labels. We allow to reach the pointer which is
locatedi cells further than a variable, but we do not allow to check that a variable is locatedi
cells further than another variable, as would a formulax + i = y which is not in our grammar.

102

It is important to notice that cells can be seen as having several selectors through this pointer
arithmetic, but this is not related to the multiple selectors that may be available through labels.

The expression©x is interpreted by the value ofx at the next memory state. While keeping
in mind that encoding©ix requires memory space proportional toi, we use the notation

©ix ,

i times
︷ ︸︸ ︷

© . . .© x

One should note that the symbol ‘©’ is used in two different ways. When it is a temporal
operator, it allows to state properties about next time state, forgetting about the present one.
But when it is used in a state formula to prefix a variable, it isa way to compare the future value
of a variable with the present memory state. As an example,(si, hi)i∈N, n |=LTLmem ©(x ֒→ y)
holds whenhn+1(next)(sn+1(x)) = sn+1(y), but(si, hi)i∈N, n |=LTLmem ©x ֒→ ©y holds when
hn(next)(sn+1(x)) = sn+1(y). In the formula©(x ֒→ y) the symbol ‘©’ is a temporal
operator. An example of formula using a temporal operator and the second use of ‘©’ can
bealways(x = ©x), which means that the value of the variablex will never change. Indeed,
(si, hi)i∈N, 0 |=LTLmem always(x = ©x) iff for all n, we havesn(x) = sn+1(y).

Given an atomic formulaf, we write f[©kx ← 〈x, k〉] to denote theSLs formula in which
every occurrence of a term of the form©kx is replaced by the variable〈x, k〉. Similarly, given
a formulaf, we writef[x ← 〈x, 0〉] to denote the state formula in which every occurrence of a
variablex is replaced by〈x, 0〉.

We can freely use propositional variables, having in mind that a propositional variable
should be understood as an ordinary variable, for instancex ∈ Var, whose equality tests with a
fixed special variablex⊤ ∈ Specialvar encode the boolean value.

4.1.3 Satisfiability and Model-Checking

The fragments of the quantifier free separation logicSLs we are going to mention are defined in
section 1.3, Given a fragmentFrag of SLs, such asSLRFs orSLLFs , LTLmem(Frag) is the restriction
of LTLmem to formulas in which occur only state formulas built overFrag with extended vari-
ables©kx. We writeSat(Frag) to denote the satisfiability problem forLTLmem(Frag): given a
temporal formulat in LTLmem(Frag), is there a modelmod such thatmod, 0 |=LTLmem t? The variant
problem in which we require that the model has a constant heapis denoted bySatcons(Frag).
The variant problem in which we require that the initial memory state is chosen beforehand as
an input of the problem is denoted bySatinit(Frag). The problemSatcons

init
(Frag) is defined

analogously.
The computations of a program can be viewed asLTLmem models, using propositional vari-

ables to encode the extra information about the control states. As said above, so as to encode
propositional variables, we use the special variablex⊤. For each control stateb we choose one
corresponding variablexb, so that the propositional variable is true iff x⊤ = xb. Then one and
only one of these propositional variables is true at a given moment, the one corresponding to
the state in which the program is.

Model-checking aims at checking properties expressible inLTLmem along computations of
programs. To a logical fragment (SLs, SLCLs , SLRFs , or SLLFs), we associate a set of programs :

− for SLs andSLCLs , all programs;

103

− for SLRFs , as this logic cannot handle pointer arithmetic, programs with instructions having
the offseti = 0;

− for SLLFs , as this logic can neither handle pointer arithmetic nor multiple labels in a cell,
programs with instructions having the offseti = 0 and only the labelnext.

Given one of these fragmentsFrag of SLs, we writeMc(Frag) to denote the model-checking
problem forLTLmem(Frag): given a temporal formulat in LTLmem with state formulas built over
Frag and a programP of the associated set of programs, is there an infinite computationmod
of P such thatmod, 0 |=LTLmem t (which we writeP |=LTLmem t)? This is the existential variant of
the problem. The variant problem in which we require that theprogram is without destructive
update is denoted byMccons(Frag). The variant problem in which we require that the initial
memory state is chosen beforehand as an input of the problem is denoted byMc

init
(Frag). The

problemMccons
init

(Frag) is defined analogously. We may writeP, (s, h) |=LTLmem t to emphasize
what is the initial memory state.

Our notationsMc(Frag) andSat(Frag) for the problems aboutLTLmem(Frag) should not
be mistaken with the notationsMcheck(Frag) andSatis(Frag) for the problems aboutFrag
itself, which will be defined in section 4.2.2.

4.1.4 Basic Results

Using extended variables©x, we may express some programs as formulas. This actually holds
only for programs without destructive update, that is for the semantics with constant heap.
Intuitively, we express the control of the program with propositional variables, and define a
formula that encodes the transitions. As a consequence, thefollowing result can be derived.

Lemma 4.1.4.1.Let Frag be a fragment amongSLs, SLCLs , SLRFs , or SLLFs . There is a loga-
rithmic space reduction fromMccons(Frag) to Satcons(Frag) (resp. fromMccons

init
(Frag) to

Satcons
init

(Frag)).

Proof. We adapt the proof in [86] for reducingLTL model-checking toLTL satisfiability. To a
programP = (B, d, bI), we associate the formulatP below built over the propositional variables
in B:

tP , bI ∧ always
∧

b∈B

(b⇒ (
∧

b′∈B\{b}

¬b′ ∧
∨

transit∈d+
b

ttransit))

wherettransit expresses that transitiontransit is fired between the current state and the next
state and,d+

b
is the set of transitions starting at the stateb. In order to definettransit, we need

to translate instructions and guards into the logic (remember that there are limitations on the
instructions). We translate instructions of the form

− x := y into©x = y,

− x := y→ l into y֒→l © x,

− x := y[i] into y + i֒→next © x.

Guards are translated accordingly. It is then standard to show thatP |=LTLmem t iff t ∧ tP is
satisfiable. Indeed, it is sufficient to prove that for all modelsmod, we havemod |=LTLmem tP iff
mod is a computation ofP. It is obvious that computations ofP satisfytP. Additionally, by a
simple induction on time, one can easily show thatmod |=LTLmem tP is a computation ofP. �

104

We now describe the reasons for which all the problems we havedefined arepspace-hard and
contained inΣ1

1
. In the analytical hierarchy, a problem (or equivalently a set of integers) is inΣ1

1

if it is definable by a formula of second-order arithmetic with only existential set quantifiers in a
prenex normal form. More information on this topic can be found in [78], for instance. All the
model-checking and satisfiability problems defined in this chapter belong toΣ1

1
in the analytical

hierarchy. Indeed, the models and computations of programscan be viewed as functionsN →
N: by encoding memory states and configurations by natural numbers, our infinite sequences
of memory states can be encoded in sequences of integers. These mathematical objects are
countable, and finding an actual injection from the set of memory states toN is not a challenge,
although details would be tedious. Then, the satisfaction relation between models andLTLmem

formulas and the transition relations obtained from programs can be encoded by a first-order
formula. This guarantees that these problems are inΣ1

1
. Additionally, all the problems can easily

be shownpspace-hard since they all generalizeLTL satisfiability and model-checking [86].

4.2 Separation Logic: Complexity and Abstraction

After defining an abstraction for the fragmentSLRFs of SLs, which will be proved sound, we will
be able to decide the complexity of model-checking and satisfiability problems forSLs.

The main approach to get decision procedures to verify infinite-state systems consists of
introducing a symbolic representation for infinite sets of configurations. The symbolic repre-
sentation defined below is motivated by a similar goal. Givena formulat of LTLmem, we are
going to define its measuremest, understood as pieces of information about the syntactic re-
sources involved int. Indeed, forthcoming symbolic states are finite objects parametrized by
such syntactic measures.

4.2.1 Syntactic Measures

Definitions of measures and related concepts

The method described below, using test formulas (see after the definition of measures), is in-
spired by [71].

We introduce a series of syntactic limitations ofLTLmem formulas.

− For a state formulaf of LTLmem, the size of memory potentially examined byf, writ-
ten maxsizef, is inductively defined as follows:maxsizef is 2 for atomic formulas,
maxsizef1 for ¬f1, andmaxsizef1 + maxsizef2 for f1 ✱ f2, f1 ∧ f2 or f1 −✱ f2. Observe
thatmaxsizef ≤| f |, and thatmaxsizef is actually twice the amount of atomic formulas
contained byf.

− Labf ∈ Powfin(Lab) is the set of labels fromLab occurring inf.

− Varf ∈ Powfin(Var) is the set of variables fromVar occurring inf.

− Offsetsf (∈ Powfin(N)) is the set of natural numbersi such that©kx + i֒→lx′ occurs in
f, wherePowfin(I) denotes the set of finite subsets of some setI.

105

A measuremes can now be defined as a tuple(Offsetsmes, maxsizemes, Labmes, Varmes) ∈
Powfin(N)×N × Powfin(Lab)× Powfin(Var). If |Varmes| ≤ maxsizemes then we say thatmes
is agood measure.

The set of measures has a natural lattice structure for the pointwise order, which we write
mes 6 mes′. More precisely, this can be written(Offsetsmes, maxsizemes, Labmes, Varmes) 6
(Offsetsmes′ , maxsizemes′ , Labmes′ , Varmes′) iff Offsetsmes ⊆ Offsetsmes′, maxsizemes ≤
maxsizemes′, Labmes ⊆ Labmes andVarmes ⊆ Varmes. We also writemes[maxsize ← 0] to
denote the measuremes except that the second componentmaxsize is 0. We writesize(mes)
to denote the size of the measuremes in some reasonable succinct encoding.

The measure of a state formulaf, is the tuplemesf , (Offsetsf, maxsizef, Labf, Varf).
Note that for any formulaf, we have|Varmesf | ≤ maxsizemesf, so for any formulamesf is a
good measure. Themeasure of a temporal formulat of LTLmem, written mest, is the tuple
(Offsetst, maxsizet, Labt, Vart) where:

− Offsetst ,
⋃

f occurs int Offsetst,

− maxsizet ,
∑

f occurs int maxsizet,

− Labt ,
⋃

f occurs int Labt,

− Vart ,
⋃

f occurs int Vart,

Note that the measuremest of a temporal formulat is always a good measure. This notion will
represent the syntactic resources used by a formula accurately enough for our purposes.

We now introduce the set oftest formulas: each of them contains a piece of information about
the model, and a set of these formulas will be used to abstracta heap. They areSLs formulas
of the forms below:

− alloc(x + i) , (x + i7→nextx) −✱ ⊥ (x + i is allocated).

− size ≥ k , ¬emp ✱ . . . ✱¬emp with k times¬emp (at leastk indexes are allocated).

− x + i֒→lx′, x = x′ (see figure 1.4 for notations).

Given a measuremes = (Offsets, maxsize, Labmes, Varmes), we writeFmes to denote the
finite set of test formulasu defined as follows:

u ::= x + i֒→lx′ | alloc(x) | x = x′ | size ≥ k

with i ∈ Offsets, l ∈ Labmes, k ∈ [0, maxsize[andx, x′ ∈ Varmes.
Given a measuremes = (Offsets, maxsize, Labmes, Varmes) and a memory shape(s, h),

we writeAbsmes(s, h) = {f ∈ Fmes : (s, h) |=SL f} to denote the abstraction of(s, h) with respect
to mes. Given a measuremes and two memory shapes(s, h) and(s′, h′), we write(s, h) ≃mes
(s′, h′) iff Absmes(s, h) = Absmes(s

′, h′), that is, formulas inFmes cannot distinguish the two
memory shapes. We will later show that a formulaf such thatmesf ≤ mes can not distinguish
(s, h) and(s′, h′) if (s, h) ≃mes (s′, h′).

106

Soundness of the Abstraction

Observe that the cardinal ofFmest is polynomial in | t |. The variable〈x, k〉 will be used in
subsequent developments to deal with the interpretation ofthe term©kx in the formulas of the
temporal logic.

The proof of lemma 4.2.1.4 below is based on three technical lemmas. Before stating them
and proving them, in lemmas 4.2.1.1-4.2.1.3, we assume thatthe measure hasOffsets = {0}

since these lemmas will be used for dealing withSLRFs . Moreover, we introduce the following
definition:

(Offsets, maxsize1, Lab0, Var1) + (Offsets, maxsize2, Lab0, Var2) =

(Offsets, maxsize1 + maxsize2, Lab0, Var1 ∪ Var2)

Lemma 4.2.1.1(Distributivity). Let mes be a measure andmes1 andmes2 be good measures,
with mes = mes1 + mes2 and all sets of offsets equal to{0}. Let (s, h) and(s′, h′) be memory
shapes such that(s, h) ≃mes (s′, h′) and,h1, h2 be heaps such thath = h1 ✱ h2. Then, there
exist heapsh′

1
andh′

2
with h′ = h′

1
✱ h′

2
, (s, h1) ≃mes1 (s

′, h′
1
) and(s, h2) ≃mes2 (s

′, h′
2
).

Proof. Let (s, h), (s′, h′), h1, h2 and the measuresmes = (Offsets, maxsize, Lab0, Var0),
mes1 = (Offsets, maxsize1, Lab0, Var1) andmes2 = (Offsets, maxsize2, Lab0, Var2) sat-
isfy the hypotheses of the lemma.

We shall define the disjoint heapsh′
1

and h′
2

by distinguishing the four disjoint sets of
locationsK1, K2, I1 andI2 corresponding to the following sets:

− K1 = Dom(h
′
1
) ∩ Im(s′), K2 = Dom(h′2) ∩ Im(s

′),

− I1 = Dom(h
′
1
) \ Im(s′), I2 = Dom(h′2) \ Im(s

′).

Let us first separateDom(h′) ∩ Im(s′) into two partsK1 andK2. Fori ∈ {1, 2}, we define
Ki , s

′(s−1(Dom(hi)∩ Var0), and we need to show thatK1 andK2 are disjoint. Let us assume
by contradiction that they are not, thus there are some variablesx, y ∈ Var0 such thats′(x) =

s′(y) ∈ K1 ∩ K2, ands(x) ∈ Dom(h1) whereass(y) ∈ Dom(h2). Sinceh1⊥h2, s(x) , s(y),
sos, h 6|=SL x = y, but we already know thats′, h′ |=SL x = y, hence the contradiction.

Now, we shall separate the setDom(h′) \Im(s′) into two partsI1 andI2. LetJ = Dom(h) \
Im(s), J1 = Dom(h1) \ Im(s) andJ2 = Dom(h2) \ Im(s). We have|J1| + |K1| = |Dom(h1)|
and|J2| + |K2| = |Dom(h2)|. The setsI1 andI2 shall contain respectively|I1| and|I2| random
elements ofDom(h′)\Im(s′) so that|Ii| = |Dom(hi)| − |Ki | if |Dom(h)| < maxsize; otherwise
|Ii| = min(maxsizei, |Dom(hi)|) − |Ki|. In order to select the elements ofI1 andI2, we
distinguish different cases depending on|Dom(h1)| and|Dom(h2)|.

Case 1:|Dom(h)| < maxsize.
Since(s, h) ≃mes (s′, h′), we have|Dom(h′)| = |Dom(h)|. Hence,Dom(h′) \Im(s′) can
be divided into two partsI1, I2 such thatI1⊎I2 = Dom(h′) \Im(s′), |I1| = |Dom(h1)| −
|K1| and|I2| = |Dom(h2)| − |K2|.

Case 2:|Dom(h)| ≥ maxsize.
Consequently|Dom(h′)| ≥ maxsize.

Case 2.1:|Dom(h1)| ≥ maxsize1 and|Dom(h2)| ≥ maxsize2.
There existI1, I2 such thatI1 ⊎ I2 = Dom(h′) \ Im(s′), |I1| = |Dom(h1)| − |K1| ≥
maxsize1 − |K1| and|I2| = |Dom(h2)| − |K2| ≥ maxsize2 − |K2|.

107

Case 2.2: For somei ∈ {1, 2}, |Dom(hi)| < maxsizei and|Dom(h3−i)| ≥ maxsize3−i.
There existI1, I2 such thatI1 ⊎ I2 = Dom(h′) \ Im(s′), |Ii| = |Dom(hi)| − |Ki|.
Then|I3−i| = |Dom(h3−i)| − |K3−i| ≥ maxsize3−i − |K3−i|.

The heaph′
1

is defined ash′
|I1∪K1

and the heaph′
2

is defined ash′
|I2∪K2

. SinceI1, I2, K1 and
K2 are disjoint sets, we have thatI1 ∪ K1 andI2 ∪ K2 are disjoint. Moreover,I1 ∪ I2 ∪ K1 ∪ K2 =
Dom(h′). So h′ = h′

1
✱ h′

2
. Observe that fori ∈ {1, 2}, we have|Dom(hi)| ≥ maxsizei iff

|Dom(h′
i
)| ≥ maxsizei; also|Dom(hi)| < maxsizei implies |Dom(hi)| = |Dom(h′i)|.

It remains to show that(s, h1) ≃mes1 (s′, h′
1
) and (s, h2) ≃mes2 (s′, h′

2
). The above

considerations about cardinality entail that for alli ∈ {1, 2} and k < maxsizei, we have
size ≥ k ∈ Absmesi(s, hi) iff size ≥ k ∈ Absmesi(s

′, h′
i
). It is also easy to check that for all

x = x′ ∈ Fmesi , x = x′ ∈ Absmesi(s, hi) iff x = x′ ∈ Absmesi(s
′, h′
i
).

As Ki = s′(s−1(Dom(hi)) ∩ (Var0), if s(x) ∈ Dom(hi) thens′(x) ∈ Dom(h′
i
). Con-

versely, assumes′(x) ∈ Dom(h′
i
). Thens′(x) ∈ Dom(h′). As the measuremes is a good

measure, for any variabley ∈ Var0, we haves(y) ∈ Dom(h) iff s′(y) ∈ Dom(h′), so
s(x) ∈ Dom(h). As h = h1 ✱ h2, there isj such thats(x) ∈ Dom(hj), which impliesx ∈
s−1(Dom(hj)∩ Var0). By the definition ofKj we haves′(x) ∈ Kj, and sinces′(x) ∈ Dom(h′

i
)

we haves′(x) ∈ Kj. So asK1∩K2 = ∅, we havej = i ands(x) ∈ Dom(hi). Sos(x) ∈ Dom(hi)
iff s′(x) ∈ Dom(h′

i
). Soalloc(x) ∈ Absmesi(s, hi) iff alloc(x) ∈ Absmesi(s

′, h′
i
).

The proof for test formulas of the formx֒→lx′ is very similar. �

In the proof of lemma 4.2.1.4, we need lemma 4.2.1.2 below, which is indeed an instance
of lemma 4.2.2.2.

Lemma 4.2.1.2.Let mes be a measure such thatOffsetsmes = {0}. If (s, h) ≃mes (s′, h′),
then for allh0⊥h, there ish′

0
⊥h′ such that(s, h0) ≃mes (s′, h′0).

Lemma 4.2.1.3(Congruence). Let (s, h0), (s′, h′
0
), (s, h1), (s′, h′

1
) be memory shapes such

that h0⊥h1, h′0⊥h
′
1
. Let mes be a measure such thatOffsetsmes = {0}, and assume that

(s, h0) ≃mes (s
′, h′

0
) and(s, h1) ≃mes (s′, h′1). Then,(s, h0 ✱ h1) ≃mes (s

′, h′
0

✱ h′
1
).

Proof. Let mes be the measure(Offsets, maxsize, Labmes, Varmes). We shall show that
(s, h0 ✱ h1) ≃mes (s′, h′

0
✱ h′

1
). By symmetry of≃mes, it is sufficient to prove one inclusion,

we will prove thatAbsmes(s, h0 ✱ h1) ⊆ Absmes(s
′, h′

0
✱ h′

1
). Let f ∈ Absmes(s, h0 ✱ h1). We

make a case analysis according tof.

− If f = size ≥ k for somek < maxsize, thenk ≤ |Dom(h0 ✱ h1)|. We want to show that
k ≤ |Dom(h′

0
✱ h′

1
)| which implies thatf ∈ Absmes(s, h′0 ✱ h′

1
).

∗ If |Dom(h1)| ≥ maxsize or |Dom(h0)| ≥ maxsize, then|Dom(h′
1
)| ≥ maxsize or

|Dom(h′
0
)| ≥ maxsize, respectively. So we have|Dom(h′

0
✱ h′

1
)| ≥ maxsize and

|Dom(h′
0

✱ h′
1
)| ≥ k ask < maxsize.

∗ If |Dom(h1)| < maxsize and|Dom(h0)| < maxsize, then we have|Dom(h0 ✱ h1)| =

|Dom(h1)| + |Dom(h0)| = |Dom(h′
1
)| + |Dom(h′

0
)| = |Dom(h′

0
✱ h′

1
)|. So k ≤

|Dom(h′
0

✱ h′
1
)|.

− If f is x = x′, thens(x) = s(x′). Moreover,f ∈ Absmes(s, h1) iff f ∈ Absmes(s′, h′1).
Therefores′(x) = s′(x′) andf ∈ Absmes(s′, h′0 ✱ h′

1
).

108

− If f = x֒→lx′ then(h0 ✱ h1)(s(x))(l) = s(x′). Hence, there isi ∈ {0, 1} such that
hi(s(x))(l) = s(x′). Since(s, hi) ≃mes (s′, h′

i
), we can state thath′

i
(s′(x))(l) =

s′(x′) and(h′
0

✱ h′
1
)(s′(x))(l) = s′(x′). Sof ∈ Absmes(s, h′1 ✱ h′

0
).

− If f = alloc(x) thens(x) ∈ Dom(h0 ✱ h1). Hence, there isi ∈ {0, 1} such thats(x) ∈
Dom(hi). Since(s, hi) ≃mes (s′, h′

i
), s′(x) ∈ Dom(h′

i
) ands′(x) ∈ Dom(h′

0
✱ h′

1
),

which entailsf ∈ Absmes(s, h′0 ✱ h′
1
).

�

Lemma 4.2.1.4 below states that our abstraction is correct for the fragmentsSLCLs andSLRFs .

Lemma 4.2.1.4(Soundness of the abstraction). Let mes be a good measure,(s, h) and(s′, h′)
be two memory shapes such that(s, h) ≃mes (s

′, h′) [resp.(s, h) ≃mes[maxsize←0] (s
′, h′)]. For

anySLs formulaf such thatmesf 6 mes andf belongs toSLRFs [resp.SLCLs], we have(s, h) |=SL f
iff (s′, h′) |=SL f.

Proof. The proof of lemma 4.2.1.4 for the classical fragment is rather straightforward. Indeed,
anySLCLs formula is a boolean combination of test formulas. In order to deal with the record
fragment, more efforts are needed. First note that ifmesf 6 mes then(s, h) ≃mes (s′, h′)

implies(s, h) ≃mesf (s
′, h′).

By structural induction onf, we show that if(s, h) ≃mesf (s′, h′), then(s, h) |=SL f iff
(s′, h′) |=SL f. The base case whenf has one of the formsx = x′, x + i֒→lx′ andemp is by an
easy verification. Similarly, in the induction step, the cases when the outermost connective is
boolean are straightforward.

− Assume that(s, h) |=SL f with f = g1 ✱ g2. There are heapsh1 andh2 such thath =

h1 ✱ h2, (s, h1) |=SL g1 and(s, h2) |=SL g2. As mesf > mesg1 + mesg2 and asmesg1 and
mesg2 are good measures since they are measures of a state formula,by application of
lemma 4.2.1.1, there are heapsh′

1
andh′

2
verifying h′ = h′

1
✱ h′

2
, (s, h1) ≃mesg1

(s′, h′
1
)

and(s, h2) ≃mesg2
(s′, h′

2
). By the induction hypothesis, we get(s′, h′

1
) |=SL g1 and

(s′, h′
2
) |=SL g2. Consequently,(s′, h′) |=SL f sinceh′ = h′

1
✱ h′

2
andf = g1 ✱ g2.

− Finally, assume thatf = g1 −✱ g2. Let h′
1
⊥h′ be such that(s′, h′

1
) |=SL g1. Then by

lemma 4.2.1.2, there is a heaph1 such that(s, h1) ≃mesf (s′, h′
1
) and h1⊥h, and so

(s, h1) |=SL g1 by the induction hypothesis. Then we have(s, h ✱ h1) |=SL g2, and by
lemma 4.2.1.3,(s′, h′ ✱ h′

1
) |=SL g2. Hence(s′, h′) |=SL g1 −✱ g2.

�

4.2.2 Complexity of Quantifier-Free Separation Logic

In this section, we show that model-checking, satisfiability, and validity, forSLs, arepspace-
complete. We use the abbreviationsMcheck(SLs), Satis(SLs) andValid(SLs) for the re-
spective problems. These abbreviations are extended to anyfragment of separation logic, for
instanceSatis(SLRFs) denotes the satisfiability problem for the record fragment.
pspace-hardness ofMcheck(SLLFs) andSatis(SLLFs) is a consequence of [36, Sect. 5.2]. As

SLs strictly containsSLLFs , this entails thepspace-hardness ofMcheck(SLs) andSatis(SLs).
SinceSLs is closed under negation,pspace-completeness ofValid(SLs) will follow from
pspace-completeness ofSatis(SLs).

109

In order to show thatMcheck(SLs) andSatis(SLs) are inpspace, we establish the lem-
mas below. Lemma 4.2.2.1 establishes a reduction fromMcheck(SLs) to Mcheck(SLRFs), so
that we only need to considerSLRFs in order to find the complexity of model-checking. Then,
in lemma 4.2.2.2, we will provide a small model property forSLRFs , leading to thepspace-
easiness ofMcheck(SLRFs) (see lemma 4.2.2.3). Finally, we characterize the computational
complexity of the satisfiability problem thanks to lemma 4.2.2.6, which entails a reduction
from Satis(SLs) to Mcheck(SLs).

Lemma 4.2.2.1.There is a logarithmic space reduction fromMcheck(SLs) to Mcheck(SLRFs).

Proof. Let trSLs→SLRFs (f) be the formula obtained fromf in SLs by replacing each occurrence of
x + i֒→lx′ by 〈x, i〉֒→lx′. The formulatrSLs→SLRFs (f) belong toSLRFs . Given a stores, we write
trSLs→SLRFs (s) to denote the store such thattrSLs→SLRFs (s)(〈x, i〉) = s(x) + i. One can show
that for every heaph, we have(s, h) |=SL f iff (trSLs→SLRFs (s), h) |=SL trSLs→SLRFs (f). The proof
is by structural induction onf. �

We need to establish a quite technical lemma. Given a heaph, let Im2(h) be the set of
natural numbersi such that there arei′ andl for whichh(i′)(l) = i.

Lemma 4.2.2.2.Let mes = ({0}, maxsize, Labmes, Varmes) be a measure, andl0 be a label that
does not belong to the finite set of labelsLabmes. If (s, h) ≃mes (s′, h′) andh0⊥h is a heap,
then there is a heaph′

0
such that:

− h′
0
⊥ h′,

− (s, h0) ≃mes (s
′, h′

0
),

− |Dom(h′
0
)| ≤ max(maxsize, |Varmes|),

− max(Dom(h′
0
) ∪ Im2(h′

0
)) ≤ max(s′(Varmes) ∪ Dom(h

′)) + maxsize + 1,

− for all n ∈ Dom(h′
0
), {l : h′

0
(n)(l) is defined} ⊆ Labmes ⊎ {l0}.

The heaph′
0

is said to be a small disjoint heap with respect tomes and(s′, h′) and it can be
represented in polynomial space insize(mes) + sizeVarmes(h0) + sizeVarmes,Labmes((s

′, h′)).

Proof. Assume that(s, h) ≃mes (s′, h′) andh0⊥h. We introduce two disjoint heapsh01 and
h02 such thatDom(h01) = Dom(h0) ∩ Im(s), Dom(h02) = Dom(h0) \ Im(s) andh0 = h01 ✱ h02.
We define the heaph′

0
as the disjoint unionh′

01
✱ h′

02
whereh′

01
andh′

02
are defined so as to

satisfyDom(h′
01
) = Dom(h′

0
) ∩ Im(s′) andDom(h′

02
) = Dom(h′

0
) \ Im(s′).

In the sequel,n0 = max(s′(Varmes) ∪ Dom(h′)) + maxsize + 1 is a location which can be
seen as an equivalent of the valuenil of thenull constant – chosen large enough so as not to
be mistaken with any other location by test formulas ofFmes.

− In order to defineh′
01

, let Y1, . . . , Yk0 be the equivalence classes over the setVarmes for
the relation∼s defined byx ∼s y if s(x) = s(y). Since(s, h) ≃mes (s′, h′), the relation
∼s′ defines the same set of equivalence classes. For each classYk, let ik be the image
of the variables ofYk throughs, andi′

k
throughs′. Then, for eachk ∈ [1, k0] and

l ∈ Dom(h01(ik)), the heaph′
01

is defined as follows:

∗ if l < Labmes, thenh′
01
(i′
k
)(l0) = n0 andh′

01
(i′
k
)(l) is undefined,

∗ if l ∈ Labmes andh01(ik)(l) = in for somen, thenh′
01
(i′
k
)(l) = i′n,

110

∗ if l ∈ Labmes andh01(ik)(l) , in for all n, thenh′
01
(i′
k
)(l) = n0.

The domain ofh′
01

is included inIm(s′), sinceIm(s′
|Varmes

) = {i′
1
, . . . , i′a}.

− In order to defineh′
02

, let k1 = max(0, min(|Dom(h02)|, maxsize − |Dom(h01)|)) and
j′
1
, . . . , j′

k1
be thek1 smallest natural numbers disjoint from{i′

1
, . . . , i′a} ∪ Dom(h

′).
Hence, when|Dom(h01)| ≥ maxsize, we havek1 = 0 and therefore there are no such
natural numbers. Otherwise,Dom(h′

02
) = {j′

1
, . . . , j′

k1
} and for eachk ∈ [1, k1], we

defineh′
02
(j′
k
)(l0) = n0.

As announced, we defineh′
0

as the heaph′
01

✱ h′
02

. Let us show that the heaph′
0

has all the
desired properties.

− Let us check thath′⊥h′
0
. First,h′⊥h′

01
sinceh⊥h01. Second,h′⊥h′

02
by construction.

− Let us check that(s, h0) ≃mes (s′, h′0). We proceed by a case analysis on the form of the
test formulas.

(x = x′) Since(s, h) ≃mes (s′, h′), s(x) = s(x′) iff s′(x) = s′(x′).

(alloc(x)) We have equivalences between the propositions below:

∗ alloc(x) ∈ Absmes(s, h0),
∗ s(x) ∈ Dom(h0),
∗ there isk such thatx ∈ Yk andik ∈ Dom(h0),
∗ there isk such thatx ∈ Yk andi′

k
∈ Dom(h′

01
),

∗ alloc(x) ∈ Absmes(s′, h′0).

(size ≥ k) First, observe that|Dom(h01)| = |Dom(h′01)|. Moreover, by construction, if
|Dom(h0)| < maxsize, then|Dom(h0)| = |Dom(h′0)|. When|Dom(h0)| ≥ maxsize,
the construction ofh′

0
guarantees that|Dom(h′

0
)| ≥ maxsize. So, for all formulas

size ≥ k with k < maxsize, size ≥ k ∈ Absmes(s, h0) iff size ≥ k ∈

Absmes(s
′, h′

0
).

(x֒→lx′) We have the following implications:

∗ x֒→lx′ ∈ Absmes(s, h0),
∗ there isk such thatx ∈ Yk andh0(ik)(l) = s(x′),
∗ there arek, k′ such thath0(ik)(l) = ik′ ,
∗ there arek, k′ such thatx ∈ Yk andh′

01
(i′
k
)(l) = i′

k′
,

∗ x֒→lx′ ∈ Absmes(s′, h′0).

Now suppose thatx֒→lx′ < Absmes(s, h0). We distinguish three cases.

1. s(x) < Dom(h0).
From the above case withalloc(x), s′(x) < Dom(h′

0
) and thereforex֒→lx′ <

Absmes(s
′, h′

0
).

2. s(x) ∈ Dom(h0) (with ik = s(x)), l ∈ Dom(h0(ik)) andh0(ik)(l) , s(x′).
If h0(ik)(l) = ik′ for somek′ ∈ [1, k0], thens′(x′) , i′

k′
. If for all k′ ∈

[1, k0], ik′ , h0(ik)(l) (in particularh0(ik)(l) cannot be equal ton0, cho-
sen large enough for this purpose), then by construction, and ash′

01
(i′
k
)(l) <

{i′
1
, . . . , i′

k0
}. In both cases,x֒→lx′ < Absmes(s′, h′0).

3. s(x) ∈ Dom(h0) (with ik = s(x)) and l < Dom(h0(ik)). Consequently,l <
Dom(h′

0
(i′
k
)) and thereforex֒→lx′ < Absmes(s′, h′0).

111

functionMcheck((s, h), f, mes)

(base-cases) Iff is atomic, then return(s, h) |=SL f;

(boolean-cases) Iff is a conjunctionf1 ∧ f2, then return (Mcheck((s, h), f1, mes) and
Mcheck((s, h), f2, mes));

Other boolean operators are treated analogously.

(✱ case) If f = f1 ✱ f2, then return⊥ if there are noh1, h2 such thath = h1 ✱ h2 and
Mcheck((s, h1), f1, mes) andMcheck((s, h2), f2, mes));

(−✱ case) Iff = f1 −✱ f2, then return⊥ if for some small disjoint heaph′ with respect tomes and
(s, h) verifying Mcheck((s, h′), f1, mes), we have notMcheck((s, h ✱ h′), f2, mes);

Return⊤;

Figure 4.3: Model-checking algorithm

Therefore(s, h0) and(s′, h′
0
) have the same abstraction.

− Let us check that|Dom(h′
0
)| ≤ max(maxsize, |Varmes|). We already know thatk0 ≤

|Varmes|. If |Dom(h′
01
)| ≥ maxsize, thenh′

02
is the empty heap and therefore|Dom(h′

0
)| ≤

k0. Otherwise, by construction|Dom(h′
01
)| + |Dom(h′

02
)| ≤ maxsize. Consequently,

|Dom(h′
0
)| ≤ max(maxsize, |Varmes|).

− Let us check thatmax(Dom(h′
0
) ∪ Im2(h′

0
)) ≤ max({s′(x) : x ∈ Varmes, s′(x) ∈ N} ∪

Dom(h′)) + maxsize. We have chosen the domain and image ofh′
01

to be included
in the image ofs′ plus n0, and thereforeDom(h′

01
) satisfies the above condition. The

image ofh′
02

is {n0}. The domain ofh′
02

is composed of the smallest natural numbers
which neither belong tos′(Varmes), nor toDom(h′). AsDom(h′

02
) has less thanmaxsize

elements, it is bounded by themaxsizeth such natural number, which is bounded by
maxsize + max(s′(Varmes) ∪ Dom(h

′)).

− Let us check that for everyn ∈ Dom(h′
0
), {l : h′

0
(n)(l) is defined} ⊆ Labmes ⊎ {l0}. This

condition is satisfied by construction ofh′
01

andh′
02

.

�

Lemma 4.2.2.3.Mcheck(SLRFs) is in pspace.

Proof. The algorithm is described in figure 4.3. First of all, the algorithm can be imple-
mented in polynomial space since the quantifications are over sets of exponential size in|
f | +sizeVarmes,Labmes((s, h)) wheremesf = (. . . , Labmes, Varmes), and the recursion depth is
linear in | f |. Hence, all the heaps considered in the algorithm are of polynomial size in
| f | +sizeVarmes,Labmes((s, h)). It remains to be shown that the algorithm is correct: givenmes
a good measure andf with mesf 6 mes, then(s, h) |=SL f iff Mcheck((s, h), f, mes) returns
⊤. The only point to check in the proof by structural inductionis the case when the outermost
connective is the operator−✱. Whenever(s, h) 6|=SL f1 −✱ f2, there is a heaph0 ⊥ h such that
(s, h0) |=SL f1 and(s, h ✱ h0) 6|=SL f2. By lemma 4.2.2.2 with(s′, h′) = (s, h), there is a small
disjoint heaph′

0
with respect tomes and(s, h) such that(s, h′

0
) ≃mes (s, h0). Since the mea-

sure off1 is less thanmes, lemma 4.2.1.4 entails(s, h′
0
) |=SL f1. Moreover, by lemma 4.2.1.3,

112

(s, h ✱ h′
0
) 6|=SL f2. Consequently,(s, h) 6|=SL f1 −✱ f2 iff there is a small heaph′

0
such that

(s, h′
0
) |=SL f1 and(s, h ✱ h′

0
) 6|=SL f2. �

The rest of the section is dedicated to the characterizationof the complexity of decision
problems forSLs. To do so, we need another technical lemma.

Definition 4.2.2.4. Given a permutationpmt : Loc → Loc and a heaph, we writepmt · h to
denote the partial function which mapsi to the partial functionpmt ◦ (h(i)). When viewing
heaps as finite subsets ofN× Lab× Loc, pmt · h is equal to{(i, l, pmt(j)) : (i, l, j) ∈ h}. We
writepmt ·◦ h to denote the heappmt·(h◦pmt−1), which corresponds to{(pmt(i), l, pmt(j)) :

(i, l, j) ∈ h}.

For instance, given a labell and an addressi, (pmt ·◦ h)(i)(l) = pmt(h(pmt−1(i))(l)).
The operation·◦ allows us to rename all the addresses according to the permutation: the memory
graph keeps the same shape, but vertices are placed on different addresses. We shall use the
properties below that can be easily checked:

− For all permutationspmt and disjoint heapsh1 andh2,

pmt ·◦(h1 ✱ h2) = (pmt ·◦ h1) ✱(pmt ·◦ h2).

− For all permutationspmt and heapsh,

pmt−1 ·◦(pmt ·◦ h) = h.

Lemma 4.2.2.5.Let mes = (Offsets, maxsize, Labmes, Varmes) be a measure,f be a state
formula with measuremes and(s, h) be a memory shape. For all permutationspmt : Loc →
Loc such that for allx ∈ Varmes andi ∈ Offsets, pmt(s(x) + i) = pmt(s(x)) + i, we have
(s, h) |=SL f iff (pmt ◦ s, pmt ·◦ h) |=SL f.

Proof. Let f be anSLs formula,mes be a measure greater thanmesf, s be a store andh be a heap.
It is sufficient to show one direction of the equivalence since the other direction is obtained by
application of the first one with the storepmt ◦ s and the well-defined inverse bijectionpmt−1.
Indeed, for allx ∈ Varmes, pmt−1((pmt ◦ s)(x) + i) = pmt−1((pmt ◦ s)(x)) + i. Assume that
(s, h) |=SL f. We show that(pmt ◦ s, pmt ·◦ h) |=SL f. We are going to prove this by induction on
f. The cases with boolean operators are trivial and are omitted. If f is an atomic formula, then
we proceed by a case analysis.

f is x = x′: s(x) = s(x′) iff pmt(s(x)) = pmt(s(x′)) sincepmt is a bijection onLoc.

f is x + i֒→lx′: then h(s(x) + i)(l) = s(x′), and we havepmt ·◦ h(pmt ◦ s(x) + i)(l) =

pmt · h(pmt−1(pmt(s(x)) + i))(l) = pmt · h(pmt−1(pmt(s(x) + i)))(l) = pmt ·

h(s(x) + i)(l) = pmt(h(s(x) + i)(l)) = pmt(s(y)) = pmt ◦ s(x′),

f is emp: Dom(pmt ·◦ h) is empty iff Dom(h) is empty.

If f = f1 ✱ f2, then there areh1 andh2 such thath = h1 ✱ h2 and(s, h1) |=SL f1 and(s, h2) |=SL
f2. For each measuremesfi, we havemesfi 6 mesf 6 mes. Then, by induction,(pmt ◦
s, pmt ·◦ hi) |=SL fi. Sincepmt ·◦ h = pmt ·◦(h1 ✱ h2) = (pmt ·◦ h1) ✱(pmt ·◦ h2), we can con-
clude that(pmt ◦ s, pmt ·◦ h) |=SL f.

If f = f1 −✱ f2, then leth0 be a heap which is orthogonal topmt ·◦ h. Assume that(pmt ◦
s, h0) |=SL f1. By induction,(pmt−1◦(pmt◦s), pmt−1 ·◦ h0) |=SL f1, that is(s, pmt−1 ·◦ h0) |=SL f1.

113

So(s, h ✱(pmt−1 ·◦ h0)) |=SL f2, and by induction(pmt◦s, pmt ·◦(h ✱(pmt−1 ·◦ h0))) |=SL f2, that
is(pmt◦s, (pmt ·◦ h) ✱(pmt ·◦(pmt−1 ·◦ h0))) |=SL f2, and finally(pmt◦s, (pmt ·◦ h) ✱ h0) |=SL f2.
So,(pmt ◦ s, pmt ·◦ h) |=SL f. �

We state below a small memory shape property that happens to be central to establish the
results about the forthcomingpspace upper bounds.

Lemma 4.2.2.6(Small memory shape property). A state formulaf in SLs is satisfiable iff there
is a stores such that(s, ∅) |=SL ¬(f −✱⊥) and for each variablex ∈ Varf, s(x) ≤ (|Varf| +

1) × (1 + max(Offsetsf)), where∅ stands for the heap with empty domain,Varf is the set of
variables occuring inf, andOffsetsf is the set of indexesi such thatx + i occurs inf for some
variablex. If Offsetsf is empty, we can replacemax(Offsetsf) by 0.

Proof. First, it is straightforward to show thatf in SLs is satisfiable iff there is a stores such
that (s, ∅) |=SL ¬(f −✱⊥), where∅ is the heap with empty domain. So, we only have to
prove that given anSLs state formulaf and a stores such that(s, ∅) |=SL f, there is a stores′

such that(s′, ∅) |=SL f and for eachx ∈ Varf, s′(x) ≤ (|Varf| + 1) × (1 + max(Offsetsf))

(the interpretation of other variables is irrelevant). In order to obtain this small store, we are
going to decrease the value of the variables in several steps. Each step consists of applying a
permutation to the memory graph.

Assume that(s, ∅) |=SL f and letmaxoffset = 1 + max(Offsetsf). Let x0 be a dummy
variable such thats(x0) = 0, andx1, . . . , xn be an ordering of the variables occurring inf
such that forj ∈ [0, n − 1], s(xj) ≤ s(xj+1). If there is nok such thats(xk+1) ≥ s(xk) +

maxoffset, then for allx ∈ Varf, s(x) ≤ (n + 1) × (1 + maxoffset).
Otherwise, letk be the smallest index such thats(xk+1) ≥ s(xk) + maxoffset. Let m =

s(xk+1) − (s(xk) + maxoffset). Let us define the permutationpmt based onm:

− If j ≤ s(xk) + maxoffset thenpmt(j) = j;

− If s(xk+1) ≤ j ≤ s(xn) + maxoffset, thenpmt(j) = j − m;

− If j ≥ s(xn) + maxoffset thenpmt(j) = j;

− If s(xk) + maxoffset < j < s(xk+1) then we have to complete this function so as to
obtain a bijection,pmt(j) = j − (s(xk) + maxoffset) + (s(xn) + maxoffset − m).

Observe that for allx ∈ Varf andi ∈ Offsetsf, pmt(s(x) + i) = pmt(s(x)) + i. This
permutation satisfies the hypotheses of lemma 4.2.2.5, and thus may be applied to(s, ∅), which
then still satisfiesf. We apply this type of permutation until there is nok such thats(xk+1) ≥
s(xk)+maxoffset. So, by simple multiplication, for allx ∈ Varf, s(x) ≤ (n+1)×maxoffset.

�

Lemma 4.2.2.7.The model-checking, satisfiability, and validity problemsfor SLs arepspace-
complete.

Proof. pspace-hardness results are consequences of [36, Sect. 5.2]. Thepspace upper bound
for Mcheck(SLs) is a consequence of lemmas 4.2.2.1 and 4.2.2.3. Thepspace upper bound for
Satis(SLs) is obtained by enumerating the small memory shapes of¬(f −✱⊥) with empty
heap (see lemma 4.2.2.6) and then using lemma 4.2.2.3. �

114

4.3 Decidable Problems by Abstracting Computations

In this section, we establish thepspace-completeness ofSat(SLCLs) andSat(SLRFs). To do
so, we abstract memory shapes whose size is a priori unbounded by symbolic memory shapes
whose size is bounded. As usual with linear temporal logic, temporal infinity in models is
handled by Büchi automata recognizing infinite sequences, the method is describe in [89]. We
propose below an abstraction that is correct forSLCLs (allowing pointer arithmetic) and forSLRFs
(allowing all operators from separation logic) taken separately but that is not exact for the full
languageSLs.

4.3.1 Symbolic Models

We define below symbolic models, which are abstractions of models fromLTLmem, and a sym-
bolic satisfiability relation.

Definitions

Given a measuremes, we writeAmes to denote the power set ofFmes; Ames is thought of as an
alphabet, and elementsa ∈ Ames are calledletters. A symbolic model with respect tomes is
defined as an infinite sequenceSymbmod ∈ ANmes.

Given a modelmod : N→ Stores × Heapss and a measuremes, we writeAbsmes(mod) :

N → Ames to denote the symbolic model with respect tomes such that for everyn ∈ N,
Absmes(mod)(n) , {f ∈ Fmes : mod, n |=LTLmem f[〈x, k〉 ← ©kx]}.

To a lettera, we associate the formulaconj(a) =
∧

f∈a f ∧
∧

f∈(Fmes\a) ¬f. For all sym-
bolic modelsSymbmod and formulast such thatmest 6 mes, we inductively define the sym-
bolic satisfaction relationSymbmod, n |=mes t the same way as the satisfaction relation for
temporal models except for the clause about state subformulas (see a few sentences further).
For instanceSymbmod, n |=LTLmem t ∧ u iff Symbmod, n |=LTLmem t and Symbmod, n |=LTLmem u;
also Symbmod, n |=LTLmem t until u iff there isn1 ≥ n such thatSymbmod, n1 |=LTLmem u and
Symbmod, n′ |=LTLmem t for all n′ ∈ [n, n1[. The clause about state subformulas is updated as fol-
lows: Symbmod, n |=mes f iff |=SL conj(Symbmod(n))⇒ f[©kx← 〈x, k〉]. We writeLangmes(t)
to denote the set of symbolic modelsSymbmod with respect tomes such thatSymbmod, 0 |=mes t.

Soundness

As a corollary of lemma 4.2.1.4, we get a soundness result forour abstraction:

Lemma 4.3.1.1.Let t be a formula ofLTLmem(SLRFs) [resp. ofLTLmem(SLCLs)] andmes a good
measure such thatmest 6 mes. For any modelmod, we havemod |=LTLmem t if and only if
Absmes(mod) |=mes t [resp.Absmes[maxsize←0](mod) |=mes t].

Proof. We treat the caset ∈ LTLmem(SLRFs) (for the caset ∈ LTLmem(SLCLs), replace below
mes by mes[maxsize ← 0]). The induction step for the cases with boolean and temporal
operators is by an easy verification. Let us check the base case, for a state formula. Suppose
that mod, n |=LTLmem g for an atomic formulag of LTLmem. By definition,Absmes(mod)(n) ,
{f ∈ Fmes : mod, n |=LTLmem f[〈x, k〉 ← ©kx]}. Let us show that|=SL conj(Absmes(mod)(n)) ⇒
g[©kx ← 〈x, k〉]. If for some memory shape(s, h) |=SL conj(Absmes(mod)(n)), then by he
lemma 4.2.1.4,(s, h) |=SL g[©kx← 〈x, k〉].

115

Suppose now thatAbsmes(mod), n |=mes g. Then,|=SL conj(Absmes(mod)(n)) ⇒ g[©kx ←
〈x, k〉]. Sincemod, n |=SL conj(Absmes(mod)(n))[〈x, k〉 ← ©kx], we havemod, n |=LTLmem
(g[©kx← 〈x, k〉])[〈x, k〉 ← ©kx]. This means thatmod, n |=LTLmem g. �

Note thatAbsmes is not surjective; we noteLangmessat the set of symbolic models with respect
to mes that are abstractions of some model forLTLmem. Consequently,t in LTLmem(SLRFs) is
satisfiable iff Langmest(t) ∩ Langmest

sat is nonempty.

4.3.2 Omega-Regularity and Polynomial Space Upper Bound

In order to show thatSat(SLRFs) andSat(SLCLs) are in pspace we shall explain why testing
the non-emptiness ofLangmest(t) ∩ Langmest

sat can be done inpspace. Below we always treat the
case forSLRFs . For SLCLs , replace every occurrence ofmest by mest[maxsize ← 0] and every
occurrence ofmes by mes[maxsize ← 0].

We are going to show that each of the languagesLangmest(t) andLangmest
sat can be recognized

by a Büchi automaton with exponential size. This Büchi automaton will additionally satisfy
the right properties to establish thepspace upper bound. IfA is a Büchi automaton, we note
Lang(A) the language recognized byA. Following [89, 43], letA be the generalized Büchi
automaton defined by the structure(A, B, d, BI, BF) such that (mes ≥ mest):

− the set of statesB is the set of so-called atoms oft, that are sets of temporal formulas
included in the so-called closure setcl(t) (see [89]). Let us briefly recall that the closure
setcl(t) is the smallest set containingt, closed under subformulas, negations (double
negations are eliminated) and such that: if(u until u′) ∈ cl(t), then©(u until u′) ∈
cl(t). A setT ⊆ cl(t) is an atom if

∗ for u ∧ u′ ∈ cl(t), we haveu ∈ T andu′ ∈ T iff u ∧ u′ ∈ T;

∗ for u ∈ cl(t), we haveu ∈ T iff ¬u < T;

∗ we have(u until u′) ∈ T iff (u′ ∈ T or (u,©(u until u′) ∈ T)) whenever(u until u′) ∈
cl(t).

− the set of initial statesBI is {T ∈ B : t ∈ T}.

− the alphabetA is Ames.

− the transition relation is defined byT′ ∈ d(T, a) iff

1. for every atomic formulaf of T, |=SL conj(a)⇒ f[©nx← 〈x, n〉].

2. for every©t′ ∈ cl(t),©t′ ∈ T iff t′ ∈ T′.

− The generalized acceptance condition, that is a set of sets of states such that a run
is accepted iff for any set of states in the generalized acceptance condition there is a
state in this set such that this state is visited infinitely often, is defined as follows. Let
{(t1 until t′

1
), . . . , (tn until t′n)} be the set of until formulas incl(t). Let BF be equal to

{B1F, . . . , B
n
F} whereBjF = {T ∈ B : (tj until t′

j
) < T or t′

j
∈ T} for j ∈ {1, . . . , n}. If the

formula does not contain anyuntil operator, then the set is empty, and any run in the
automaton is accepting, hence any word for which there is a run is accepted.

116

Let Amest be the Büchi automaton equivalent to the generalized Büchi automatonA. This
automaton can be obtained by working with|BF| copies of the generalized automaton. The set
of states ofAmest is B × [0, |BF| − 1]. The initial states areBI × {0}. The final states areB1F × {0}.
There is a transitions((b, j), a, (b′, j′)) in Amest iff there is a transition(b, a, b′) in A and:

− if b ∈ Bj
F

thenj′ is j + 1 modulo|BF|,

− otherwisej′ is j.

It is easy to observe thatAmest is equivalent toA. It is also easy to observe thatAmest
t has

an exponential amount of states in the size oft and its transition relation can be checked in
polynomial space in the size oft. Moreover:

Lemma 4.3.2.1.Let t be a formula inLTLmem(SLRFs) [resp.LTLmem(SLCLs)] and letmes be a good
measure such thatmes ≥ mest [resp. mes[maxsize ← 0] ≥ mest[maxsize ← 0]]. Then,
Lang(Amest) = Langmes(t) [resp.Lang(Ames[maxsize←0]

t) = Langmes[maxsize←0](t)].

We can also build a Büchi automatonAmessat such thatLang(Amessat) = Langmessat. A
mes
sat is defined

as(A, B′, d′, B′I, B
′
F), whereA = Ames, B′ = Ames, B′F = B

′
I = B

′ anda→a
′

a′′ iff:

1. conj(a), conj(a′′) are satisfiable, anda = a′,

2. for every formula〈x, n〉 = 〈x′, n′〉 ∈ Fmes with n, n′ ≥ 1, 〈x, n〉 = 〈x′, n′〉 ∈ a iff 〈x, n− 1〉 =
〈x′, n′ − 1〉 ∈ a′′,

If mes = mest, thenAmessat is of exponential size in the size oft and the transition relation can
be checked in polynomial space in the size oft. More importantly, this automaton recognizes
satisfiable symbolic models.

Lemma 4.3.2.2.Let t in LTLmem(SLRFs) [resp. LTLmem(SLCLs)] and mes = mest [resp. mes =

mest[maxsize ← 0]]. Then,Lang(Amessat) = Langmessat.

Proof. It is immediate that the abstraction with respect tomes of any model necessarily belongs
to Lang(Amessat). Therefore, the setLangmessat of abstractions of models with respect tomes is
included inLang(Amessat).

The other inclusion is shown by induction. Letmes = (Offsets, maxsize, Lab0, Var0)

be the measuremest, n0 bemax({n : there isx ∈ Var such that©n x occurs int}) andmaxi
be max(Offsets) + 1. Let (ai)i∈N be an infinite sequence of symbolic memory shapes in
Lang(Amessat). We shall build a sequence(si, hi)i∈N such thatAbsmes((si, hi)i∈N) = (ai)i∈N.
So, for i ∈ N, ai = {f ∈ Fmes : mod, i |=LTLmem f[〈x, n〉 ← ©nx]}. The construction is by
induction on the positioni ∈ N.

Let us study the base case of the induction that will provide avalue fors0, . . . , sn0 , h0. Since
(ai)i∈N ∈ Lang(A

mes
sat), conj(a0) is satisfiable. There ares′

0
andh′

0
satisfying(s′

0
, h′

0
) |=SL

conj(a0). When dealing with the record fragment (Offsets = {0}), the objects are appropriate
for the initialization:h0 = h′

0
and forn ∈ [0, n0] andx ∈ Var0, we setsn(x) = s′

0
(〈x, n〉).

WhenOffsets , {0} (maxsize = 0 and we are dealing with the fragmentSLCLs), there is no
constraint on the size of the heap. We apply a permutationpmt which maps all the images
of variables to multiples ofmaxi. For n ∈ [0, n0], we consider the storesn such that for
x ∈ Var0, sn(x) = pmt(s′

0
(〈x, n〉)). The heaph0 is defined by enumerating the test formulas

〈x, n〉 + j֒→l〈x′, n′〉 andalloc(〈x, n〉 + j) of a0, and by defining the heap accordingly. When

117

〈x, n〉 + j֒→l〈x′, n′〉 ∈ a0, we defineh0(sn(x) + j)(l) = sn′(x′); whenalloc(〈x, n〉 + j) ∈ a0,
we defineh0(sn(x) + j)(l0) = sn(x) + j, for somel0 < Lab0. Thanks to the distancemaxi
imposed between the values of variables, and asl0 < Lab0, test formulas about the heap which
are not ina0 are not satisfied. Equalitiesx = x′ are preserved since the store has only been
modified by a permutation.

For the inductive step, suppose that we have already defined the storess0, . . . , sk+n0 and
heapsh0, . . . , hk for some positionk ≥ 0 satisfying the conditions below: for everyi ≤ k,

− for all f ∈ Fmes, (s+i, hi) |=SL f iff f ∈ ai, wheres+
i
: 〈x, n〉 7→ si+n(x);

− Im(s+
i
) ⊆ maxiN, wherekN for k ∈ N is {k × i, i ∈ N}.

Let us build the storesk+n0+1 and the heaphk+1. Since(ai)i∈N ∈ Lang(Amessat), conj(ak+1)
is satisfiable. There exists a memory shape(s′, h′) satisfying(s′, h′) |=SL conj(ak+1) and
for all x ∈ Var andn ∈ [0, n0 − 1], s′(〈x, n〉) = sk+1+n(x). By definition ofAmessat, for all
n, n′ ∈ [0, n0 − 1] we have〈x, n + 1〉 = 〈x′, n′ + 1〉 ∈ ak iff 〈x, n〉 = 〈x′, n′〉 ∈ ak+1. Consequently,
for all n, n′ ∈ [0, n0 − 1], sk+1+n(x) = sk+1+n′(x′) iff s′(〈x, n〉) = s′(〈x′, n′〉). So, there is a
permutationpmt identical for the variables〈x, n〉 with n ∈ [0, n0 −1] such thatIm(pmt ◦s′) ⊆
maxiN. By construction, for〈x, n〉 ∈ Varmes, pmt(s′(〈x, n〉)) ∈ maxiN. Forx ∈ Var0, we set
sk+1+n0(x) = pmt(s′(〈x, n0〉)).

If we considerSLRFs , this permutation satisfies the prerequisites of lemma 4.2.2.5, since
Offsets = {0}. We can definehk+1 = pmt ·◦ h′. Thanks to lemma 4.2.2.5, we know that both of
these memory shapes satisfy the same test formulas, which are exactly those inak+1.

If we are dealing withSLCLs , then the definition ofsk+n0+1 ensures that the equalities satisfied
are exactly those ofak+1. This time the prerequisites of lemma 4.2.2.5 are not satisfied unless
Offsets = {0}. We know thatmaxsize = 0, which means that the only test formula about size
in ak+1 is size ≥ 0; therefore there is no constraint on the size of the heap. Theheap is defined
by enumerating the test formulas of the form〈x, n〉 + j֒→l〈x′, n′〉 of ak+1, and defining for each
of themhk+1(sk+1+n(x)+j)(l) = sk+1+n′(x′); and then for each of the test formulas of the form
alloc(〈x, n〉+j) of ak+1, we definehk+1(sk+1+n(x)+j)(l0) = sk+1+n(x)+j, for somel0 < Lab0.
Thanks to the distancemaxi between variables, the test formulas about the heap which are not
in ak+1 are not satisfied. Equalitiesx = x′ are preserved since the store has only been modified
by a permutation. �

Note that we can extend lemma 4.2.1.4 toSLs by considering test formulas of the form
x+i = x′ +i′. Sadly, the lemma above is essential and it is not possible toextend it to the whole
logic LTLmem, even by allowing test formulas of the formx + i = x′ + i′, as the resulting sets
of formulas cannot be handled by Büchi automata. Indeed, we conjecture that automata with
counters could handle these sets of formulas, but even this result would not be helpful to reach
a decidable procedure, as their non-emptiness is undecidable.

Now, we can state our main complexity result.

Theorem 4.1.Sat(SLRFs) andSat(SLCLs) arepspace-complete.

As a consequence, sinceLTLmem(SLLFs) is a syntactic fragment ofLTLmem(SLRFs), the problem
Sat(SLLFs) is in pspace, and hence ispspace-complete.

Proof. The lower bound is fromLTL [86]. Let t be an instance formula ofSat(SLRFs) (for
Sat(SLCLs) replace belowmest by mest[maxsize ← 0]). As seen earlier,t is satisfiable iff
Langmest(t) ∩ Langmest

sat is nonempty. Hence,t is satisfiable iff Lang(Amest
t)∩ Lang(A

mest
sat) , ∅.

118

The intersection automaton is of exponential size in the size of t and can be checked
nonempty by a non-deterministic on-the-fly algorithm. Thisalgorithm, for the non-emptiness
problem of Büchi automata, is innlogspace, see [89]. The transition relation in the intersec-
tion automaton can be checked in polynomial space in the sizeof t. As a consequence, we
obtain a non-deterministic polynomial space algorithm fortesting satisfiability oft. As a non-
deterministic polynomial space algorithm can be turned into a polynomial space algorithm, see
for instance [4], we get thepspace upper bound. �

4.3.3 Other Decidable Problems

Let Frag be either the classical fragment or the record fragment. Lemma 4.1.4.1 provides a
reduction fromMccons

init
(Frag) to Satconsinit(Frag) based on a program-as-formula encoding. As

we will see now, we may also reduceSatcons
init

(Frag) to Sat(Frag) internalizing an approx-
imation of the initial memory shape which the logical language cannot distinguish from the
initial memory shape. As a consequence, thepspace upper bound forSat(Frag) will entail the
pspace upper bound for bothSatcons

init
(Frag) andMccons

init
(Frag).

Theorem 4.2.The problemsSatcons
init

(SLRFs) andMccons
init

(SLRFs) arepspace-complete. The prob-
lemsSatcons

init
(SLCLs) andMccons

init
(SLCLs) are alsopspace-complete.

As a consequence, sinceLTLmem(SLLFs) is a syntactic fragment ofLTLmem(SLRFs), the prob-
lemsSatcons

init
(SLLFs) andMccons

init
(SLLFs) are inpspace, and hence arepspace-complete.

Proof. We begin with the fragmentSLRFs . By lemma 4.1.4.1 and sinceSatcons
init

(SLRFs) is known
to bepspace-hard, it remains to establish thepspace upper bound forSatcons

init
(SLRFs).

Given a formulat and an initial memory shape(s, h), we shall build in polynomial time
an instance ofSat(SLRFs), that is a formulatct

s,h
∈ SLRFs such thatt is satisfiable in a model with

initial memory shape(s, h) and constant heap iff tct
s,h

is satisfiable by a general model. Since
we have shown thatSat(SLRFs) is in pspace, this guarantees thatSatcons

init
(SLRFs) is in pspace. The

idea of the proof is to internalize the initial memory shape and the fact that the heap is constant
in the logicSat(SLRFs). Actually, we will not exactly express that the heap is constant but the
approximation we use will be sufficient for our purpose.

Apart from the variables oft, the formulatct
s,h

is built over additional variables inX = {xi :
i ∈ Dom(h) ∪ Im(s)} ∪ {xi,l : i ∈ Dom(h), l ∈ Dom(h(i))} from Specialvar. The formula
tct
s,h

is of the formalways(u1∧u2∧u3)∧us∧u′, where the subformulas are defined as follows.

− u1 states that the heap is almost equal toh since we cannot forbid additional labels in the
logical language. IfDom(h) = {i1, . . . , ik} we define:

u1 , (
∧

l∈Dom(h(i1))

xi1 7→
lxi1,l) ✱ . . . ✱(

∧

l∈Dom(h(ik))

xik 7→
lxik,l)

− u2 states which variables are equal and which ones are not, depending on the initial
memory shape. It is a conjunction of simple formulas. As an example, fori , j ∈
Dom(h), a simple formula ofu2 is xi , xj. Similarly, if h(i)(l) = j andj ∈ Dom(h),
thenxi,l = xj is a simple formula ofu2. Details are omitted.

119

− u3 states that the variables ofX remain constant:
∧

x∈X

x = ©x

− The formulau′ is obtained fromt by replacing each occurrence ofx֒→lx′ by

x֒→lx′ ∧
∧

i∈Dom(h),l<Dom(h(i))

x , xi.

The additional conjunction is useful because our logical language cannot state that a label
is not in the domain of some allocated address.

− us states constraints about the initial stores: us ,
∧

x∈t x = xs(x).

It is then easy to check thatt is satisfiable by a model with initial memory shape(s, h) and
constant heap iff tct

s,h
is satisfiable by a general model.

As far as the results for the classical fragment are concerned, by lemma 4.1.4.1, there is
a logarithmic space reduction fromMccons

init
(SLCLs) to Satcons

init
(SLCLs). Also, as done above, one

can reduceSatcons
init

(SLCLs) to Sat(SLCLs), with the additional concern of the arithmetic links
between allocated locations, which is easy to handle. Firstwe must add more variables, the
variablesxi−j for i ∈ Dom(h) and©nx + i֒→lx′ occurring int for somen and somel. It is
then sufficient to add a formulau4 in the scope of thealways operator intct

s,h. This formula will
describe all the pointers accessible with the syntactic resources oft, with the additional ability
of using pointer arithmetic. We do not need to be concerned with the equalities among these
new variables as the syntax ofLTLmem does not allow us to check equality between, say,x and
y + i.

u4 ,

∧

i∈Dom(h)

∧

l∈Dom(h(i))

∧

{j,©kz+j֒→ly occurs int for somey, z, l andk}

xi−j + j֒→
lxi

�

Theorem 4.3.Mccons
init

(SLs) is pspace-complete.

As a consequence, sinceLTLmem(SLLFs) is a syntactic fragment ofLTLmem(SLRFs), the problem
Mccons
init

(SL
✱

s) is in pspace, and hence ispspace-complete.

Proof. SinceMccons
init

(SLRFs) is a subproblem ofMccons
init

(SLs), theorem 4.2 entails thepspace-
hardness. It remains to prove thepspace upper bound. The proof goes by designing a polynomial
space reduction to the model-checking problem for propositional LTL. Let (P, s0, h0, t) be
an instance ofMccons

init
(SLRFs), whereP = (B, d, bI) is a program without destructive updates,

(s0, h0) is an initial memory shape, andt is a temporal formula inLTLmem(SLs). Let S be the
finite set of stores{s : Im(s) ⊆ Im(s0) ∪ Im(h0)} restricted to variables occurring inP andt.
Its cardinality is bounded by(|Im(s0)∪ Im(h0)|)|t|+|P|. All the memory shapes in the transition
systemSP restricted to the configurations reachable from the initialmemory shape(s0, h0) are
in S × {h0}, sinceP is without destructive updates.

Let wdw be one plus the maximal natural numberj such that©jx appears int (size of
the window made of consecutive states that need to be considered simultaneously). We de-
fine the transition graphG = (BG,→, BI) such that:BG = B × Swdw, BI is the set of tuples

120

(bI, s1, s2, . . . , swdw) such that(s1, h0), . . . , (swdw, h0) is a prefix of a run ofP with initial
memory shape(s0, h0), and the transition relation→ is defined as follows:

(b, s1, . . . , swdw) → (b′, s′
1
, . . . , s′

wdw
)

iff:

{

sk+1 = s
′
k
, k = 1, . . . , wdw − 1, and∃b −−−−−→g,instr

b′ ∈ d

such that(s1, h0) |= g and(s2, h0) ∈ ~ instr �(s1, h0).

We now define the propositionalLTLmodel by associating to each vertex of the transition graph
a set of propositional variables that are true. We defineProp to be the set of atomic formulas
occurring int, so thatt can be seen as a propositionalLTL formula overProp. Then theLTL
model is the vertex-labeled transition graphG′ = (G, L), with

L : BG → Pow(Prop), (b, s1, . . . , swdw) 7→ {f ∈ Prop : s1, . . . , swdw, h0 |=SL f}.

By construction,G′, (bI, s1, s2, . . . , swdw) |=LTLmem t in LTL for some(bI, s1, s2, . . . , swdw) ∈ BI
(existential version) if and only ifP, (s0, h0) |=LTLmem t. The modelG′ can be computed in poly-
nomial space in the size of(P, s0, h0, t) in the sense that the (non-deterministic) transition func-
tion and the labelling function are computable in polynomial space.G′ has an exponential size
in the size of(P, s0, h0, t), but let us explain now why the existence of(bI, s1, s2, . . . , swdw) ∈

BI such thatG′, (bI, s1, s2, . . . , swdw) |=LTLmem t can be checked in polynomial space. LetAt be
the automaton recognizing the models oft over the setProp of propositions: it has an expo-
nential size in the size of(P, s0, h0, t), and so is the product withG′. Now the existence of
(bI, s1, s2, . . . , swdw) ∈ BI such thatG′, (bI, s1, s2, . . . , swdw) |=LTLmem t reduces to check the non-
emptiness ofAt ∩ G

′, which is decidable in space proportional tolog(| At |) + log(| G
′ |) by

a non-deterministic on-the-fly algorithm. The problem can therefore be solved in polynomial
space in the size of(P, s0, h0, t) by a non-deterministic algorithm, and by Savitch’s theorem
this can be turned into a deterministic polynomial space algorithm. �

Theorem 4.4.Satcons
init

(SL
✱

s) is pspace-complete.

Proof. pspace-hardness is a consequence of thepspace-hardness ofSatcons
init

(SLCLs) sinceSLCLs is
a fragment ofSL✱

s. In order to get thepspace upper bound, we are going to reduce the problem
Satcons

init
(SL

✱

s) to Satcons
init

(SLRFs). Let (s0, h), t be an instance ofSatcons
init

(SL
✱

s). We shall build
an instance(s′

0
, h), t′ of Satcons

init
(SLRFs).

Let I = Dom(h)∪ {k−i ∈ N : k ∈ Dom(h) and©n x+i occurs int}. We use the injections
〈k〉 for eachk ∈ I, and〈x, i〉 for all x andi occuring int in an expression of the form©nx + i
(possiblyn or i is equal to zero). These extra variables defined in section 1.2.1 do not occur in
t.

The initial stores′
0

is the extension ofs0 which maps〈k〉 to k, and〈x, i〉 to s0(x) + i.
Finally:

t′ = t[©nx + i←©n 〈x, i〉]

∧always
∧

k∈I

(〈k〉 = © 〈k〉)

∧always
∧

x+i∈t

∧

(k+i)∈Dom(h)

(x = 〈k〉 ⇔ 〈x, i〉 = 〈k + i〉)

s′
0

andt′ have a polynomial size in the size of the instance(s0, h), t.
Assume that(s0, h), t is accepted by the problemSatcons

init
(SL

✱

s). Then there is(si)i∈N such
that(si, h)i∈N |=LTLmem t. Let s′

i
besi extended so as to map〈k〉 to k and〈x, j〉 to si(x) + j.

121

Clearly(s′
i
, h)i∈N |=LTLmem t[©nx + i ← ©n〈x, i〉]. Our definition of eachs′

i
also ensures that

(s′
i
, h)i∈N |=LTLmem always

∧

k∈I(〈k〉 = © 〈k〉) since the value of a variable〈k〉 is constantly
equal tok, and that(s′

i
, h)i∈N |=LTLmem always

∧

x+i∈t
∧

(k+i)∈Dom(h)(x = 〈k〉 ⇔ 〈x, i〉 = 〈k + i〉)
since for all positions, the value of〈k + i〉 is that of〈k〉 plusi and the value of〈x, i〉 is that of
x plusi. So(s′

i
, h)i∈N |=LTLmem t′, and therefore(s′

0
, h), t′ is accepted bySatcons

init
(SLRFs).

Now, assume that(s′
0
, h), t′ is accepted bySatconsinit(SL

RF
s). Then there is a sequence(s′

i
)i∈N

such that(s′
i
, h)i∈N |=LTLmem t′. Then (s′

i
, h)i∈N |=LTLmem always

∧

k∈I(〈k〉 = © 〈k〉), and
so, at each time statei0, we haves′

i0
(〈k〉) = s′

0
(〈k〉) = k. Moreover,(s′

i
, h)i∈N |=LTLmem

always
∧

x+i∈t
∧

(k+i)∈Dom(h)(x = 〈k〉 ⇔ 〈x, i〉 = 〈k + i〉, and so, ifk ∈ Dom(h) and©nx + i

occurs int, we haves′
i0+n

(x) = k − i iff s′
i0+n

(〈x, i〉) = k (Property I).
We write h′ ≤ h when there is another heaph′′ for which h = h′ ✱ h′′. Let us prove by

induction on subformulast0 of t that for alli0 ∈ N andh′ ≤ h, we have(s′
i
, h′)i∈N, i0 |=LTLmem t0

iff (s′
i
, h′)i∈N, i0 |=LTLmem t0[©nx + i ← ©n〈x, i〉]. This will ensure that(s′

i
, h)i∈N, 0 |=LTLmem t,

so that(s′
0
, h), t is accepted bySatconsinit(SL

✱

s), from which we will conclude that(s0, h), t is
also accepted; indeed ifY0 is the set of variables occurring int the restrictions′

0|Y0
is equal to

s0 |Y0 . Here is the proof by induction:

− If t0 is©nx + i֒→l ©n
′

y, let k = s′
i0+n

(〈x, i〉).

∗ Suppose thatk < Dom(h). We are going to prove that neither(s′
i
, h′)i∈N, i0 |=LTLmem

t0[©nx + i ← ©n 〈x, i〉], nor (s′
i
, h′)i∈N, i0 |=LTLmem t0. First, it is clear that

(s′
i
, h′)i∈N, i0 6|=LTLmem t0[©nx + i ← ©n 〈x, i〉]. Second, assume there isk′ ∈

Dom(h) such thatk′ = s′
i0+n

(x) + i. Thanks to (Property I), froms′
i0+n

(x) = k′ − i,
we gets′

i0+n
(〈x, i〉) = k′, and sok = k′ ∈ Dom(h), which leads to a contradiction.

So there is no suchk′, and not(s′
i
, h′)i∈N, i0 |=LTLmem t0.

∗ Now suppose thatk ∈ Dom(h). We haves′
i0+n

(x) = k = s′
i0+n

(〈x, i〉) − i thanks
to (Property I). Then,h′(s′

i0+n
(x) + i)(l) = s′

i0+n
′(y) iff h′(s′

i0+n
(〈x, i〉))(l) =

s′
i0+n

(〈y, 0〉). And,(s′
i
, h′)i∈N, i0 |=LTLmem t0 iff (s′

i
, h′)i∈N, i0 |=LTLmem t0[©nx + i←

©n〈x, i〉].

− If t0 = f1 ✱ f2, then there are two heapsh′
1

andh′
2

such that(s′
i
, h′

1
)i∈N, i0 |=LTLmem f1 and

(s′
i
, h′

2
)i∈N, i0 |=LTLmem f2. By the induction hypothesis, and sinceh = (h′

1
✱ h′

2
) ✱ h′′ =

h′
1

✱(h′
2

✱ h′′), we can state that:(s′
i
, h′

1
)i∈N, i0 |=LTLmem f1[©nx + i ← ©n 〈x, i〉] iff

(s′
i
, h′

1
)i∈N, i0 |=LTLmem f1; and the same equivalence is true forh′

2
. From the two equiva-

lences forh′
1

andh′
2
, we can conclude the same equivalence forh′ = h′

1
✱ h′

2
.

Other cases of the induction are straightforward. �

If we allow the operator−✱ in the above theorem 4.4, the proof may not be adapted, since
we would have to deal with heaps which are not sub-heaps ofh in the induction step.

4.4 Undecidability Results

As a preliminary remark, we will use the standard abbreviation Σ0
1

for the set of recursively
enumerable sets. A formal definition and more information about this topic can be found
in [78].

In this section, we show several undecidability results by using reduction from problems
for Minsky machines. So, we first give the definition of a Minsky machine.

122

Definition 4.4.0.1. A Minsky machineM consists of two countersc1 andc2, and a sequence
of n ≥ 1 instructions of one of the forms below. The instructions canbe seen as control states,
we call themb, b′ or b′′ below.

b: ci := ci + 1 ; gotob′

b: if ci = 0 then gotob′ elseci := ci − 1; gotob′′.

In a non-deterministic machine, after an increment or a decrement, a non-deterministic choice
of the form “gotob′ or gotob′′” is performed. The configurations ofM are triples(b, m1, m2),
whereb ∈ {b1, . . . , bn} andm1, m2 ≥ 0 are the current values of the control state and the two
countersc1 andc2, respectively. The consecution relation on configurationsis defined in the
obvious way. A computation ofM is a sequence of related configurations, starting with the
initial configuration(1, 0, 0).

We will reduce the halting problem and the recurring problemfor Minsky machines. The
halting problem consists of determining whether the machine can reach a configuration with
control statebn. The recurring problem consists in determining whether themachine has a
computation with the control statebn repeated infinitely often.

Different encodings of counters are used here. For instance, oneis inspired from [7]: a
counterc with valuen is represented by a list of lengthn pointed to by a variablexc dedicated
to the counterc. The same idea is used in the proof of theorem 4.5 below. Alternatively, in
order to show undecidability ofSat(SLs), we encode counters by relying on pointer arithmetic
and properties of heaps. In the case of a problem that involves an existential quantification on
the initial heap, the maximal value of the counters can be guessed, as illustrated in the proof
of the theorem below. Finally, the programs without destructive updates can simulate finite
computations of Minsky machines on counters bounded by the size of some parts of the heap
(the length of a list).

Theorem 4.5. For any fragmentFrag ∈ {SLLFs , SL
✱

s, SL
CL
s , SL

RF
s }, the problemsSatcons(Frag)

andMccons(Frag) areΣ0
1
-complete. The problemMccons(SLs) is alsoΣ0

1
-complete.

Proof. First, let us prove that these problems are inΣ0
1
. By theorem 4.2,Satcons

init
(SLLFs) is decid-

able in polynomial space using a finite abstraction argument. Hence,Satcons(SLLFs) is in Σ0
1

by
adding an existential quantification over the initial memory shape. Similarly, by theorem 4.2,
Mccons
init

(SLLFs) is decidable in polynomial space. Hence,Mccons(SLLFs) is also inΣ0
1
. It is possible

to reason in the exact same way forSatcons(Frag) andMccons(Frag) with Frag ∈ {SLCLs , SL
RF
s }

from the decidability results of theorem 4.2, forMccons(SL✱

s) andMccons(SLs) from the decid-
ability results of theorem 4.3, and forSatcons(SL✱

s) from the decidability results of theorem 4.4.
Now, let us prove that the problems areΣ0

1
-hard. AsSatcons(SLLFs) is a subproblem of

all the studiedSatcons problems, proving theΣ0
1
-hardness ofSatcons(SLLFs) will entail theΣ0

1
-

hardness of all the others. Similarly, asMccons(SLLFs) is a subproblem of all the studiedMccons

problems, proving theΣ0
1
-hardness ofMccons(SLLFs) will entail theΣ0

1
-hardness of all the others.

As a consequence, we only need to prove thatSatcons(SLLFs) andMccons(SLLFs) areΣ0
1
-hard.

Additionally, by lemma 4.1.4.1, we only need to show thatMccons(SLLFs) is Σ0
1
-hard.

We reduce theΣ0
1
-complete halting problem for Minsky machines toMccons(SLLFs). The

halting problem consists of determining whetherM can reach a configuration with control state
bn.

123

b1
(⊤, y := z)

(y , z0, y := y→ next)

(y == z0, skip)

Figure 4.4: Checking thatz points to a list

b

b′

b′′

(xi , z0, xi := xi → next)

(xi == z0, skip)

Figure 4.5: Simulating a decrement

Let us build a formulat and a programP in Progct such that the existence of some memory
shape(s0, h0) for whichP, (s0, h0) |=LTLmem t is equivalent to the fact that the machineM reaches
a configuration with control statebn. In order to encode the values of counters, we consider a
variablez pointing to a list ending onx0 (as shown below) in the initial memory shape(s0, h0):

z֒→next�֒→next . . .�֒→next�֒→nextz0

The variablesz andz0 remain constant along any execution ofP and the length of the list is
greater than the maximal value of the counters in some finite computation (hopefully ending at
the instruction corresponding to control statebn). We consider also the variablesx1 andx2 and
along any execution ofP, each variablexi points to a cell of the above sequence: the length of
the list starting atxi encodes the value of the counterci. Hence, inP, eachxi is initialized as
equal toz0.

The programP is structured by the following stages:

1. Check thatz points to a list;

2. Initialize the variables;

3. SimulateM.

Figure 4.4 shows how to perform stage 1 with a simple loop, which can be seen as a while
loop. Observe that checking whether a counter is equal to zero corresponds inP to an equality
test withz0. In order to simulateM, its structure can be embedded in the control graph ofP.
For instance, a decrement instruction is encoded inP by the transitions shown in figure 4.5. An
increment instruction requires a bit more care and its encoding in P is presented in figure 4.6.
Indeed, the auxiliary variablesy andy′ initialized toz visit the list until meetingxi.

In the above encoding, every instructionb inM corresponds to a control state ofP. Hence,
the formulat is simplysometimes(bn): as stated earlier, we may encode propositional variable
bn by additional variables dedicated only for this purpose.

It is then easy to show that there is an initial memory shape(s0, h0) such thatP reaches
the controlbn starting with(s0, h0) iff the machineM reaches the control statebn. For this
purpose, observe that bothP andM are deterministic. �

124

b b′
(⊤, y := z) (⊤, y′ := z)

(y′ , xi, y := y′) (⊤, y′ := y→ next)

(y′ == xi, xi := y)

Figure 4.6: Simulating an increment

By contrast, programs with destructive update can work withunbounded heaps, and by
using the representation of counters as above, they can faithfully simulate a Minsky machine,
even if the initial heap is an empty heap, without any bound onthe counters. Then, asLTL can
express repeated accessibility,Σ1

1
-hardness can be obtained.

Theorem 4.6.The problemsMc(SLLFs) andMc
init

(SLLFs) areΣ1
1
-complete.

As a consequence for more expressive logics, the problemsMc(Frag) andMc
init

(Frag)

for Frag ∈ {SLCLs , SL
RF
s , SL

✱

s, SLs} areΣ1
1
-hard, and henceΣ1

1
-complete.

Proof. It is possible to reduce the recurring problem for non-deterministic Minsky machines
to Mc(SLLFs) and toMc

init
(SLLFs). This problem isΣ1

1
-hard [2]. The question is whether the

machine has a computation with the control statebn repeated infinitely often; and this can be
expressed byalways(sometimes(bn)) in LTLmem.

The proof is quite similar to the proof of theorem 4.5 except that there is no maximal
value of the counters, the initial heap is empty (which can beexpressed inLTLmem), and the
behavior of counters is encoded by updating the memory shape. For instance, incrementingci
amounts to executexi := cons(next : xi) (the length of the list pointed byxi is incremented),
decrementingci amounts to executexi := xi → next. Zero tests are encoded by equality tests
with z0 and the initial values of the variables is equal toz0. Details are omitted since there are
no technical difficulties. �

Now, let us explain how to encode increment and decrement with separating connectives
and pointer arithmetic. Observe that expressions of the form x = y + 1 are not allowed in
LTLmem. We circumvent this obstacle in two different ways: using non-aliasing expressed by
the separating conjunction, and using the precise pointingassertionx7→nexty stating that the
heap contains only one cell, in conjunction with the−✱ operator. We assume a variablez0,
with constant value (always(©z0 = z0)), which can be considered as a substitute for thenull
constant.

t✱

x++ = (©x֒→nextz0 ∧ x + 1֒→nextz0) ∧ ¬(©x֒→nextz0 ✱ x + 1֒→nextz0)
t✱

x−− = (©x + 1֒→nextz0 ∧ x֒→nextz0) ∧ ¬(©x + 1֒→nextz0 ✱ x֒→nextz0)
t−✱

x++ = (©x7→nextz0) −✱ x + 17→nextz0
t−✱

x−− = (x7→nextz0) −✱ ©x + 17→nextz0

The formulas based on the separating conjunction correctlyexpress increment and decrement
when the cells at indexesx+1 and©x are allocated, whereas formulas based on the operator−✱

work when the heap is empty.

Theorem 4.7.The problemsSat(SLs), Satcons
init

(SLs), Satcons(SLs) andSatcons
init

(SLs) are all
Σ1
1
-complete.

125

Proof. Let Sat······(SLs) be any satisfiability problem among the four studied variants. As an-
nounced, we are going to reduce the recurrence problem for non-deterministic Minsky ma-
chines toSat······(SLs). In this proof, any model will be writtenmod = (sn, hn)n≥0.

Let t0 be the formulaalways(emp∧ (©z0 = z0)), which ensures that the heap will always
be empty – the part aboutz0 being constant is unnecessary but makes the idea ofz representing
null more consistent. Increment and decrement are performed thanks to the formulast−✱

x++ and
t−✱

x−−, respectively. For any modelmod such thatmod, 0 |=LTLmem t0, and for anyi0, we have
mod, i0 |=LTLmem t−✱

xi++ iff si0(xi) + 1 = si0+1(xi). Indeed, the formulat−✱

xi++ is satisfied by the
model iff the pointer existing in the right member of the formula is satisfied by the current model
extended by any heap satisfying the right member. Since the model has an empty heap byt0,
this happens if and only if the pointer has been added by the wand, which means if and only if
it also satisfies the left member of the wand. By the definitionof the semantics ofLTLmem, both
sides of the wand are satisfied by the same heap if and only if the same memory cell is located
both at the image of〈x, 1〉 through the stores′

i0
and at one plus the image ofx through the

storesi0 , wheres′
i0
(〈x, 1〉) = si0+1(x). In other words, if and only ifsi0(xi) + 1 = si0+1(xi).

Hence, we have a means to encode increment.
Very similarly,mod, i0 |=LTLmem t−✱

xi−− andsi0(xi) > 0 iff si0(xi) − 1 = si0+1(xi). The fact
that a counter does not change is encoded byxi = ©xi. Given thatt1 = always(xzero = ©xzero)

holds, zero tests are encoded byxi = xzero.
Given a non-deterministic Minsky machineM, we writeub to denote the formula encoding

instructionb. For instance for the instruction “b: if c1 = 0 then gotob′ elsec1 := c1 − 1; goto
b′′ or gotob′′′;” the formulaub is equal to the formula below:

always((b ∧ x1 , xzero)⇒ (x2 = ©x2 ∧ (©b
′′ ∨©b′′′) ∧ t−✱

x1−−))∧

always((b ∧ x1 = xzero)⇒ (x1 = ©x1 ∧ x2 = ©x2 ∧©b
′)).

Finally, let t2 be a formula stating that each position corresponds to a unique configuration
and the first instruction isb1: t2 = always(

∧

b(
∧

b′,b(b→ ¬b
′))) ∧ b1.

Hence,(x1 = x2 = xzero) ∧ t0 ∧ t1 ∧
∧

b ub ∧ always(sometimes(bn)) is satisfiable iff M
has a computation with instructionbn repeated infinitely often. �

Theorem 4.8.The problemSat(SL✱

s) is Σ1
1
-complete.

The proof of theorem 4.8 is similar to the proof of theorem 4.7except that increment and
decrement are performed with the formulast✱

x++ andt✱

x−− respectively, and the heap is not always
empty: at each increment or decrement, it has size precisely1.

Conclusion

Summary of this Chapter

We have introduced a temporal logicLTLmem whose assertion language is a quantifier free sep-
aration logic, for which we have introduced five fragments and seven decision problems for
each fragment. We have categorized all of these problems in terms of complexity. Figure 4.8
contains a summary of the results. All problems are categorized as complete in their class.

126

In a nutshell, we have shown that our model-checking problems, which encode a halting
problem thanks tountil, are undecidable when the program has access to a memory heapof
unbounded size (Mc, Mccons andMc

init
), and decidable otherwise (Mccons

init
).

Concerning our satisfiability problems, a special care mustbe granted to a subtle interplay
between the temporal features, the separation connectivesand the pointer arithmetic we use.
When this interaction is possible, it leads to undecidability (Sat(SL✱

s) andSat······(SLs)). When
this interaction is not possible, the problems are decidable if and only if the control on the heap
is effective on a bounded amount of locations. This amount of locations can be bounded for
two reasons. It is clearly bounded when the initial memory heap is part of the problem and
constant (Satcons

init
). It can also be bounded because the memory cells which are not the image

of a variable of the studied formula through the store can change uncontrollably between two
consecutive memory states: in this last case we have been able to abstract the heap with a
set of formulas describing a heap bounded by the syntactic resources of the studied formula
(Sat(SLLFs), Sat(SLCLs) andSat(SLRFs)).

We obtained all these results from few direct proofs and manysubsequent reductions be-
tween decision problems. Figure 4.7 shows the reductions between problems leading to half
of the results. Curved lines represent reductions for proving hardness in a class. Straight lines
represent reductions for showing that a problem belongs to its class.

Related Work

The interest of the model-checking of programs with heap updates stems from early works on
automata-based verification. Decision procedures are obtained at the cost of limitations: to
restrict the programming language, see for instance Bardinet al. in [7], or to define approxi-
mations as done in [90, 47]. Previous temporal logics designed for pointer verification include
in particular: the evolution temporal logic of Yahav et al. [90], based on the three-valued logic
abstraction method that made the success of the three-valued logic assertion engine presented
by Lev-Ami and Sagiv in [69]; and the navigation temporal logic of Distefano, Katoen and
Rensink [47], based on a tableau method quite similar to our automata-based reduction. In
these works, the assertion language for states is quite rich, as it includes, for instance, a list
predicate, the quantification over addresses, and a freshness predicate. Because of this high
expressive power, only incomplete abstractions are proposed, whereas we stick to exact meth-
ods. Similarly, we should also mention the work of Katoen, Noll and Rieger [65], published
in the same year as the work presented in this chapter, which presents sound heuristics for the
problem that we callMc

init
(SLLFs). As an additional difference with these works, our work

addresses models with constant heaps and pointer arithmetic, which has not been done so far
and leads to a different perspective.

The abstractions we made of memory states are similar to resource graphs of Galmiche and
Méry from [54, 55]. We have chosen to use them following the work of Lozes [73]. The use
we make of them is a variant of the automata-based approach introduced by Vardi and Wolper
in [89] for plain LTL and further developed with concrete domains of interpretation by Demri
and D’Souza in [43]. From a logical perspective, the logicLTLmem can be seen as a many-
dimensional logic as for instance Gabbay et al. in [52] sinceLTLmem contains a temporal dimen-
sion and the spatial dimension for memory shapes. Interesting examples of many-dimensional
logics can be found in [9, 5, 52, 43].

127

Sat(SLLFs) Satcons
init

(SLLFs)

Mccons
init

(SLLFs)

Satcons(SLLFs)

Satcons
init

(SLCLs)

Mccons
init

(SLCLs)

Satcons
init

(SLRFs)

Mccons
init

(SLRFs)

Satcons(SLCLs)

Satcons(SLRFs)

Mccons(SLLFs)

Mccons(SLCLs)

Mccons(SLRFs)

Sat(SLCLs)

Sat(SLRFs)

Mccons
init

(SLs) Sat
cons
init

(SL
✱

s)

Theo. 4.5

Theo. 4.1

pspace-complete problems Σ0
1
-complete problems

Straight lines prove a problem belongs to a class, curved lines prove hardness

Figure 4.7: Reductions

Mc Mccons Mccons
init

Mc
init

Sat Satcons Satcons
init

SLLFs Σ1
1
-c. Σ0

1
-c. pspace-c. Σ1

1
-c. pspace-c. Σ0

1
-c. pspace-c.

th. 4.6 th. 4.5 th. 4.2 th. 4.6 th. 4.1 th. 4.5 th. 4.2
SLRFs Σ1

1
-c. Σ0

1
-c. pspace-c. Σ1

1
-c. pspace-c. Σ0

1
-c. pspace-c.

th. 4.6 th. 4.5 th. 4.2 th. 4.6 th. 4.1 th. 4.5 th. 4.2
SLCLs Σ1

1
-c. Σ0

1
-c. pspace-c. Σ1

1
-c. pspace-c. Σ0

1
-c. pspace-c.

th. 4.6 th. 4.5 th. 4.2 th. 4.6 th. 4.1 th. 4.5 th. 4.2
SL

✱

s Σ1
1
-c. Σ0

1
-c. pspace-c. Σ1

1
-c. Σ1

1
-c. Σ0

1
-c. pspace-c.

th. 4.6 th. 4.5 th. 4.3 th. 4.6 th. 4.8 th. 4.5 th. 4.4
SLs Σ1

1
-c. Σ0

1
-c. pspace-c. Σ1

1
-c. Σ1

1
-c. Σ1

1
-c. Σ1

1
-c.

th. 4.6 th. 4.5 th. 4.3 th. 4.6 th. 4.7 th. 4.7 th. 4.7

Figure 4.8: Complexity of reasoning about programs with pointer variables

Perspectives

Assuming that the heap is constant is subject to promising developments. Indeed, it is then
possible to define spatial operators at the same syntactic level as temporal operators, and write
formulas as for instance(x1 = x ∧ ((x ֒→ ©x) until (x ֒→ x0))) ✱ (y 7→ x0). Observe
that this formula does not belong toLTLmem. This might be a way to specify the modularity
of programs without destructive updates, but there are other points of interest we will try to
advocate now.

Recursion with Local Parameters

The constant heap semantics provides an original viewpointfor recursion with local parameters
and local quantification. The design of decision proceduresin the presence of general recursive
predicates was introduced by Berdine et al. in [10], as well as incomplete methods of inference

128

even though they are apparently good in practice. Complete methods have been proposed for
some standard recursive structures such as trees, lists, ordoubly-linked lists as by Berdine,
Calcagno and O’Hearn in [12]. But we are not aware of completemethods for a general form
of recursive data structures defined on top of separation logic, and we believed that a logic close
to ours could give an alternative way of specifying recursion, although we did not manage to
characterize an interesting decidable fragment.

In order to be a bit more precise, let us consider the fragmentof recursive separation logic
where all recursive formulas are of the form:

µP(x1, . . . , xk). t(x1, . . . , xk) ∨ ∃x′1, . . . , x
′
k. u(x1, . . . , xk, x

′
1, . . . , x

′
k) ∧ P(x′1, . . . , x

′
k). (4.1)

This fragment is rich enough to express singly-linked lists, cyclic lists, and doubly-linked lists.
However, we conjecture that it is not expressive enough for trees and directed acyclic graphs.
We conjecture that deciding satisfiability in the fragment of recursive separation logic men-
tioned above reduces toSatcons(SLs), and the model-checking problem reduces toSatcons

init
,

considering that (4.1) can be rewritten as:

(t(x1, . . . , xk,©x1, . . . ,©xk)) until (u(x1, . . . , xk)).

In this perspective, from our results could arise interesting decidability results for the model-
checking problem of some of the recursive separation logic with local quantifiers. For satisfia-
bility, we expect to define decidable fragments forSatcons(SLs), for instance considering the
techniques for proving decidability of checking temporal properties of so-called flat programs
without destructive updates introduced by Finkel, Lozes and Sangnier in [51]. Another inter-
esting fragment of recursive separation logic is probably the one where recursion is guarded
by the separation operator✱, but we do not currently see how to treat it in the temporal logic
perspective.

Programs as formulas

Let us speculate a bit more. We may take advantage of expressing programs as formulas in
order to reduce model-checking problems to satisfiability problems, a known approach since the
work of Sistla and Clarke in [86]. For programs without destructive update, we take advantage
of lemma 4.1.4.1. Moreover, we believe we can extend this result to programs with updates,
but with a slightly different perspective. The constant heap semantics can be helpful to define
the input-output relation of programs, even with destructive updates, provided some conditions
on the way the program read and write over the memory are satisfied. To do so, we could
study the extension ofLTLmem in which two predicates֒→0 and ֒→1 are used instead of the
single֒→, and for which the models are couples of state sequences withconstant heap, that is
tuples((si)i≥0, h0, h1). Let us define the input-output relationRIO

P
of a programP as : for all

(s0, h0), (s1, h1), (s0, h0)RIOP (s1, h1) if there is a run ofP that starts with(s0, h0) and ends
with (s1, h1). Then we conjecture that for an interesting class of programs, this relation is
definable inLTLmem extended with֒→0 and֒→1. Basically, the encoding of the control of the
program will be the same as for programs without destructiveupdates, but the encoding of the
instructions will be different. For instance,x → l := y implies(©x)֒→l

1
y whereasx := y → l

impliesy֒→l
0
© x. A precise encoding remains to be found.

129

130

Conclusion

In chapter 2, we have shown that first-order separation logicwith one selectorSL is unde-
cidable. Also,SL without wand is decidable with non-elementary complexity,as well as its
extension with a restricted magic wand sufficiently interesting to replace all the occurrences
of the ordinary magic wand in the usual Hoare-style rules that use it. Finally, we have char-
acterized the expressive power of first-order separation logic over models with any number of
selectors.

In chapter 3, we have given a wide picture of the decidabilitystatus of the satisfiability prob-
lem for separation logic dealing with data. An interesting result arose: dropping the restricted
operator−✱n and restricting data comparisons to local comparisons makes the satisfiability prob-
lem decidable, still being able to specify local reasoning and express properties about ordered
recursive structures.

In chapter 4, we have introduced a temporal logicLTLmem for which assertion language is
quantifier free separation logic, and provided a complete characterization of the complexity of
35 satisfiability and model-checking problems we have defined. This draws clear borders not
to be crossed if one wants to adapt separation logic to temporal reasoning while defining a
decidable logic.

We have ideas about how to extend each of the chapters presented. First, we conjecture
thatSL with only two variables can encodeSO. Then, we expect our decidability results for
SL
guarded
v to extend to more complex data structures that would have a decidableMSO theory

(trees, doubly-linked lists, lists of lists, and more generally tree-width bounded structures), and
to more complex short-distance comparisons (such asn-th successor or brothers). Finally, we
expect our decidability result forSat(SLRFs) to extend to branching time, and we think that
there is a way to extendLTLmem so as to express properties in a way more related to a Hoare
logic with preconditions and postconditions.

131

132

Tables of Notations

Unless otherwise indicated below, the capital of a letter denotes a set whose elements are de-
noted by the lower case of the same letter– for instancea is a letter andA is an alphabet. An
exception to this rule are the capital letters of the fontA, B, etc. Similarly, the first letter a
notation made of multiple letters is a capital letter iff they denote a set. When a mathematical
object is denoted by a single letter, figure A allows in any case to know which type of object is
denoted.

The notations are divided in four figures. Figure A summarizes the notations for a certain
type of mathematical object, such as integers or letters. Figure B summarizes general notations
for a single item or mathematical tool, uniquely defined. Figure C summarizes the names for
logical formalisms. Figure D summarizes the notations for the main logical operators.

133

a A letter
A An automaton
atom An atomic formula
b A state
c A counter
d A transition function
e A data environment
E A second-order environment
expr An expression
f A formula describing a memory state
Frag A fragment of a logic
g A formula describing a memory state
G A graph
h A heap
i An integer
instr An instruction
j An integer
k An integer
l A label
Lang A language
m An integer
M A Minsky machine
mes A measure
mod A temporal model
n An integer
o A data value
P A second-order variable
P A program
Q A second-order variable
R A relation
s A store
S A transition system
t A temporal formula
tr A translation between logics
u A temporal formula
v A data variable
w A program variable
wd A word
x A first-order variable
y A first-order variable
z A first-order variable

Figure A: Notations for a type of object

134

Dat The set of all data values (see section 1.1.1)
datum The specific label for data
Datvar The set of all data variables (see section 1.2.1)
Dom(·) The domain of a function
Freevar(·) The free variables of a formula (see section 1.2.3)
fst(·) The first element of a pair
Heapssv The set of all heaps (see section 1.1.1)
Heapss The set of all shape heaps (see section 1.1.2)
Heapsv The set of all simple heaps (see section 1.1.3)
Heaps The set of all simple shape heaps (see section 1.1.4)
Ins The set of all program instructions (see section 4.1.1)
Im(·) The image of a function
Lab The set of all labels (see section 1.1.1)
Loc The set of all locations (see section 1.1.1)
max(·) The maximum of a set
min(·) The minimum of a set
N The set of all integers
next The specific label for the successor
Pow(·) The powerset of a set
Powfin(·) The finite powerset of a set
Prog The set of all programs (see section 4.1.1)
Progct The set of all programs without destructive update (see section 4.1.1)
Progvar The set of all program variables (see section 1.2.1)
Secvar The set of all second-order variables (see section 1.2.1)
Shape(·) The shape of a heap (see section 1.1.4)
snd(·) The second element of a pair
Specialvar The set of all special variables (see section 1.2.1)
Stores The set of all stores (see section 1.1.1)
sup(·) The supremum of a set
Var The set of all first-order variables (see section 1.1.1)
| · | The cardinal of a set or the length of a word
〈·, ·〉 and〈·〉 The functions providing fresh variables (see section 1.2.1)
[·, ·] The interval between two integers
·⇀ · The set of partial functions from one set to another
·⇀fin · The set of partial functions with finite domain
·⇀fin+ · The set of partial functions with nonempty finite domain
✱ The disjoint union of heaps (see section 1.1.1) and a logicaloperator
� The wildcard symbol (see section 1.3.1)

Figure B: Names and notations of mathematical objects

135

DSO The dyadic second-order logic on simple memory shapes 1.2
LTL The linear-time temporal logic
LTLmem The temporal logic for sequences on memory shapes we introduce 4.1
MSO The monadic second-order logic on simple memory shapes 1.2
SL The separation logic on simple memory shapes 1.3
SL

✱
SL without wand 1.3

SL−
✱

SL without the separating conjunction 1.3
SL

✱,−✱n SL with restricted wand 2.1
SL<n SL with restricted use of the wand 2.1
SLv The separation logic on simple memory states 1.3
SLshortv SLv with short-distance comparisons 3.1
SLR,−

✱1

v SLv with restricted wand 3.3
SL
guarded
v SLv with guarded long-distance comparisons 3.2

SL
long
v SLv with long-distance comparisons 3.2

SL
longeq
v SLv with equality long-distance comparisons 3.2

SLs The separation logic on memory shapes 1.3
SL

✱

s SLs without wand 1.3
SLCLs The classical fragment ofSLs 1.3
SLRFs The record fragment ofSLs 1.3
SLLFs The list fragment ofSLs 1.3
SLsv The separation logic on memory states 1.3
SO The second-order logic on simple memory shapes 1.2

Figure C: Names of logical formalisms – the last column is thesection containing the definition

always The always operator
emp The empty constant
sometimes The sometimes operator
until The until operator
val(·) The value stored in a variable
© The next operator and the next symbol in expressions
−✱ The magic wand operator
−✱
¬ The existential magic wand operator
−✱n The restricted wand operator
−✱
¬
n The existential restricted wand operator

✱ The separating conjunction operator and the disjoint unionof heaps
⊤ The true constant
֒→ The points-to predicate
7→ The precise points-to predicate

Figure D: Main notations for logical operators

136

Bibliography

[1] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel, and
P. H. Schmitt. Verification of object-oriented software: the Key approach. Springer,
2000.

[2] R. Alur and Th. Henzinger. A really temporal logic.Journal of the Association for
Computing Machinery, 41(1):181–204, 1994.

[3] T. Antonopoulos and A. Dawar. Separating graph logic from MSO. In FOSSACS’09,
volume 5504 ofLNCS, pages 63–77. Springer, 2009.

[4] S. Arora and B. Barak.Computational complexity – a modern approach. Cambridge
University Press, 2009.

[5] P. Balbiani and J. F. Condotta. Computational complexity of propositional linear temporal
logics based on qualitative spatial or temporal reasoning.In FROCOS’02, volume 2309
of LNAI, pages 162–173. Springer, 2002.

[6] K. Bansal, R. Brochenin, and E. Lozes. Beyond shapes: lists with ordered data. In
FOSSACS’09, volume 5504 ofLNCS, pages 425–439. Springer, 2009.

[7] S. Bardin, A. Finkel, E. Lozes, and A. Sangnier. From pointer systems to counter systems
using shape analysis. Presented atAVIS’06, 2006.

[8] S. Bardin, A. Finkel, and D. Nowak. Toward symbolic verification of programs handling
pointers. Presented atAVIS’04, 2004.

[9] B. Bennett, F. Wolter, and M. Zakharyaschev. Multi-dimensional modal logic as a frame-
work for spatio-temporal reasoning.Applied Intelligence, 17(3):239–251, 2002.

[10] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and H. Yang.
Shape analysis for composite data structures. InCAV’07, volume 4590 ofLNCS, pages
178–192. Springer, 2007.

[11] J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic. In
FST&TCS’04, volume 3328 ofLNCS, pages 97–109. Springer, 2004.

[12] J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: modular automatic assertion check-
ing with separation logic. InFMCO’05, volume 4111 ofLNCS, pages 115–137. Springer,
2005.

137

[13] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation logic.
In APLAS’05, volume 3780 ofLNCS, pages 52–68. Springer, 2005.

[14] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Design and implementation of a special-purpose static program analyzer for
safety-critical real-time embedded software. InThe essence of computation: complexity,
analysis, transformation., volume 2566 ofLNCS, pages 85–108. Springer, 2002.

[15] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David.Two-variable
logic on words with data. InLICS’06, pages 7–16. IEEE, 2006.

[16] E. Börger, E. Grädel, and Y. Gurevich.The classical decision problem. Perspectives in
Mathematical Logic. Springer, 1997.

[17] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro,and T. Vojnar. Programs with
lists are counter automata. InCAV’06, volume 4144 ofLNCS, pages 517–531. Springer,
2006.

[18] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A logic-based framework for
reasoning about composite data structures. InCONCUR’09, volume 5710 ofLNCS, pages
178–195. Springer, 2009.

[19] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-procedural analysis of
programs with lists and data. InPLDI’11, pages 578–589. ACM, 2011.

[20] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate invariant checking for
programs manipulating lists and arrays with infinite data. In ATVA’12, volume 7561 of
LNCS, pages 167–182. Springer, 2012.

[21] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonregular
properties for nonregular processes. InLICS’95, pages 123–133. IEEE, 1995.

[22] A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with dynamic
1-selector-linked structured in regular model-checking.In TACAS’05, volume 3440 of
LNCS, pages 13–29. Springer, 2005.

[23] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular (tree) model
checking. International Journal on Software Tools for Technology Transfer, 14(2):167–
191, 2012.

[24] M. Bozga, R. Iosif, and Y. Lakhnech. On logics of aliasing. In SAS’04, volume 3148 of
LNCS, pages 344–360. Springer, 2004.

[25] M. Bozga, R. Iosif, and S. Perarnau. Quantitative separation logic and programs with
lists. In IJCAR’08, volume 5195 ofLNCS, pages 34–49. Springer, 2008.

[26] R. Brochenin, S. Demri, and E. Lozes. Reasoning about sequences of memory states. In
LFCS’07, volume 4514 ofLNCS, pages 100–114. Springer, 2007.

[27] R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. In CSL’08, volume 5213
of LNCS, pages 322–337. Springer, 2008.

138

[28] R. Brochenin, S. Demri, and E. Lozes. Reasoning about sequences of memory states.
Annals of Pure and Applied Logic, 161(3):305–323, 2009.

[29] R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. Information& Computa-
tion, 211:106–137, 2012.

[30] J. Brotherston and M. I. Kanovich. Undecidability of propositional separation logic and
its neighbours. InLICS’10, pages 130–139. IEEE, 2010.

[31] J. R. Büchi. On a decision method in restricted second-order arithmetic. InLogic, Method-
ology, and Philosophy of Science, pages 1–11. Stanford, 1960.

[32] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite structures. In
Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[33] C. Calcagno, P. Gardner, and M. Hague. From separation logic to first-order logic. In
FOSSACS’05, volume 3441 ofLNCS, pages 395–409. Springer, 2005.

[34] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal logic: completeness and
parametric inexpressivity. InPOPL’07, pages 123–134. ACM, 2007.

[35] C. Calcagno, H. Yang, and P. O’Hearn. Computability andcomplexity results for a spatial
assertion language. InAPLAS’01, volume 3302 ofLNCS, pages 289–300. Springer, 2001.

[36] C. Calcagno, H. Yang, and P. O’Hearn. Computability andcomplexity results for a spatial
assertion language for data structures. InFST&TCS’01, volume 2245 ofLNCS, pages
108–119. Springer, 2001.

[37] H. Comon and V. Cortier. Flatness is not a weakness. InCSL’00, volume 1862 ofLNCS,
pages 262–276. Springer, 2000.

[38] B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. InCONCUR’11, volume 6901 ofLNCS, pages 235–249.
Springer, 2011.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to algorithms.
MIT Press, 2009.

[40] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL’77, pages 238–252.
ACM, 1977.

[41] A. Dawar, P. Gardner, and G. Ghelli. Adjunct elimination through games in static ambient
logic. In FST&TCS’04, volume 3328 ofLNCS, pages 211–223. Springer, 2004.

[42] A. Dawar, P. Gardner, and G. Ghelli. Expressiveness andcomplexity of graph logic.
Information& Computation, 205(3):263–310, 2007.

[43] S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL.Information
& Computation, 205(3):380–415, 2007.

139

[44] S. Demri and R. Gascon. The effects of bounding syntactic resources on Presburger LTL.
Journal of Logic and Computation, 19(6):1541–1575, 2009.

[45] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata.ACM
Transactions on Computational Logic, 10(3):16:1–16:30, 2009.

[46] S. Demri, R. Lazíc, and D. Nowak. On the freeze quantifier in constraint LTL: decidability
and complexity. InTIME’05, pages 113–121. IEEE, 2005.

[47] D. Distefano, J. P. Katoen, and A. Rensink. Who is pointing when to whom? on the
automated verification of linked list structures. InFST&TCS’04, volume 3328 ofLNCS,
pages 250–262. Springer, 2004.

[48] M. Dodds and D. Plump. From separation logic to hyperedge replacement and back. In
ICGT’08, volume 5214 ofLNCS, pages 484–486. Springer, 2008.

[49] K. Etessami, M. Vardi, and T. Wilke. First-order logic with two variables and unary
temporal logic.Information& Computation, 179(2):279–295, 2002.

[50] J. C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive pro-
gram verification. InCAV’07, volume 4590 ofLNCS, pages 173–177. Springer, 2007.

[51] A. Finkel, E. Lozes, and A. Sangnier. Towards model-checking programs with lists. In
ILC’07, volume 5489 ofLNCS, pages 56–86. Springer, 2009.

[52] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev.Many-dimensional modal log-
ics: theory and applications. CUP, 2003.

[53] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In
POPL’80, pages 163–173. ACM, 1980.

[54] D. Galmiche and D. Méry. Characterizing provability inBI’s pointer logic through re-
source graphs. InLPAR’05, volume 3835 ofLNCS, pages 459–473. Springer, 2005.

[55] D. Galmiche and D. Méry. Tableaux and resource graphs for separation logic.Journal of
Logic and Computation, 20(1):189–231, 2010.

[56] N. Gorogiannis, M. I. Kanovich, and P. W. O’Hearn. The complexity of abduction for
separated heap abstractions. InSAS’11, volume 6887 ofLNCS, pages 25–42. Springer,
2011.

[57] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains.ACM SIGPLAN Notices, 43(1):235–246, 2008.

[58] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

[59] C. A. R. Hoare, A. Hussain, B. Möller, P. W. O’Hearn, R. L.Petersen, and G. Struth. On
locality and the exchange law for concurrent processes. InCONCUR’11, volume 6901 of
LNCS, pages 250–264. Springer, 2011.

140

[60] G. J. Holzmann.Design and validation of computer protocols. Prentice-Hall, 1991.

[61] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In
POPL’01, pages 14–26. ACM, 2001.

[62] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. InCONCUR’96, volume 1119 of
LNCS, pages 263–277. Springer, 1996.

[63] J. Jensen, M. Jorgensen, N. Klarlund, and M. Schwartzbach. Automatic verification of
pointer programs using monadic second-order logic. InPLDI’97, pages 226–236. ACM,
1997.

[64] J. Kamp.Tense logic and the theory of linear order. PhD thesis, UCLA, USA, 1968.

[65] J. P. Katoen, T. Noll, and S. Rieger. Verifying concurrent list-manipulating programs by
LTL model-checking. Technical report, RWTH Aachen University, Germany, 2007.

[66] F. Klaedtke and H. Rueb. Monadic second-order logics with cardinalities. InICALP’03,
volume 2719 ofLNCS, pages 681–696. Springer, 2003.

[67] V. Kuncak and M. Rinard. On spatial conjunction as second-order logic. Technical report,
MIT CSAIL, USA, 2004.

[68] D. Larchey-Wendling and D. Galmiche. The undecidability of boolean BI through phase
semantics. InLICS’10, pages 140–149. IEEE, 2010.

[69] T. Lev-Ami and M. Sagiv. TVLA: A system for implementingstatic analyses. InSAS’00,
volume 1824 ofLNCS, pages 280–301. Springer, 2000.

[70] A. Loginov, T. Reps, and M. Sagiv. Refinement-based verification for possibly-cyclic
lists. InProgram analysis and compilation, theory and practice. Springer, 2007.

[71] E. Lozes.Expressivité des logiques spatiales. PhD thesis, Laboratoire de l’Informatique
du Parallélisme, ENS Lyon, France, 2004.

[72] E. Lozes. Separation logic preserves the expressive power of classical logic. Presented at
SPACE’04, 2004.

[73] E. Lozes. Elimination of spatial connectives in staticspatial logics.Theoretical Computer
Science, 330(3):475–499, 2005.

[74] P. Madhusudan, G. Parlato, and X. Qiu. Decidable logicscombining heap structures and
data. InPOPL’11, pages 611–622. ACM, 2011.

[75] S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmetic strengthening for shape analysis.
In SAS’07, volume 4634 ofLNCS, pages 419–436. Springer, 2007.

[76] S. McPeak and G. C. Necula. Data structure specifications via local equality axioms. In
CAV’05, pages 476–490. Springer, 2005.

141

[77] H. H. Nguyen, C. David, S. Qin, and W. N. Chin. Automated verification of shape and
size properties via separation logic. InVMCAI’07, volume 4349 ofLNCS, pages 251–266.
Springer, 2007.

[78] P. Odifreddi.Classical recursion theory. Studies in Logic. Elsevier, 1989.

[79] P.W. O’Hearn and D. Pym. The logic of bunched implications.Bulletin of Symbolic Logic,
5(2):215–244, 1999.

[80] A. Pnueli. The temporal logic of programs. InFOCS’77, pages 46–57. IEEE, 1977.

[81] D. Pym. The semantics and proof theory of the logic of bunched implications. Applied
Logic Series. Kluwer academic publishers, 2002.

[82] M. Rabin. Decidability of second-order theories and automata on infinite trees.Transac-
tions of the American Mathematical Society, 41:1–35, 1969.

[83] S. Ranise and C. Zarba. A theory of singly-linked lists and its extensible decision proce-
dure. InSEFM’06, pages 206–215. IEEE, 2006.

[84] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. InLICS’02,
pages 55–74. IEEE, 2002.

[85] X. Rival and B. Y. E. Chang. Calling context abstractionwith shapes. InPOPL’11, pages
173–186. ACM, 2011.

[86] A. Sistla and E. Clarke. The complexity of propositional linear temporal logic.Journal
of the Association for Computing Machinery, 32(3):733–749, 1985.

[87] L. Stockmeyer.The complexity of decision problems in automata theory and logic. PhD
thesis, Department of Electrical Engineering, MIT, USA, 1974.

[88] B. A. Trakhtenbrot. The impossibility of an algorithm for the decision problem for finite
models.Doklady Akademii Nauk SSSR, 70:596–572, 1950. English translation in: AMS
Transl. Ser. 2, vol.23 (1063), 1–6.

[89] M. Vardi and P. Wolper. Reasoning about infinite computations. Information& Compu-
tation, 115:1–37, 1994.

[90] E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties specified
via evolution logic. InESOP’03, volume 2618 ofLNCS, pages 204–22. Springer, 2003.

[91] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W. O’Hearn.
Scalable shape analysis for systems code. InCAV’08, volume 5123 ofLNCS, pages 385–
398. Springer, 2008.

[92] G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable
patterns in linked data structures. InFOSSACS’05, volume 3441 ofLNCS, pages 94–110.
Springer, 2005.

142

	Introduction
	Context
	Verification
	Verification of Programs with Pointers
	Separation Logic

	Questions Addressed in this Thesis
	Complexity of Separation Logic
	Expressiveness of Separation Logic
	Data
	Towards a Temporal Separation Logic

	Contributions of this Thesis
	Magic Wand and Separation Logic
	Ordered Data and Separation Logic
	Temporal Separation Logic

	Preliminaries
	Memory Model
	Memory States
	Memory Shapes
	Simple Memory States
	Simple Memory Shapes

	First and Second-Order logic on Simple Memory Shapes
	Conventions on Variables
	Second-Order Logic
	Conventions on Formulas and Languages

	Separation Logic
	Definition
	Fragments of Separation Logic on Memory Shapes
	A Separation Logic for Simple Memory States
	Separation Logic on Simple Memory Shapes

	Simple Predicates in Separation Logic
	Allocated Memory Cells
	Predecessors and Arithmetical Constraints
	Reachability and List Predicates

	On the Almighty Wand
	A Decidable Fragment with a Restricted Wand
	A Complexity Result without Wand
	A Restricted Use of the Wand
	Preliminaries to the Translation
	The Translation

	Advanced Arithmetical Constraints with the Wand
	Comparing Two List Lengths
	Comparing the Numbers of Predecessors

	Equivalence to Second-Order Logic
	Preliminaries
	Encoding Environments
	The Translation
	Correctness

	Extensions with More Than one Selector

	Beyond Shapes: Lists with Ordered Data
	Decidability of Short-Distance Comparisons
	Method
	Constraints
	Recursive Translation

	Long-Distance Comparisons
	An Undecidability Result
	Decidability of Guarded Long-Distance Comparisons

	Magic Wand and Restricted Magic Wand

	Reasoning about Sequences of Heaps
	Preliminaries
	Temporal Models and Programs
	Temporal Extension: our Logic
	Satisfiability and Model-Checking
	Basic Results

	Separation Logic: Complexity and Abstraction
	Syntactic Measures
	Complexity of Quantifier-Free Separation Logic

	Decidable Problems by Abstracting Computations
	Symbolic Models
	Omega-Regularity and Polynomial Space Upper Bound
	Other Decidable Problems

	Undecidability Results

	Conclusion
	Table of Notations
	Bibliography

