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INTRODUCTION

Research context

The last decades have seen a tremendous growth in mobile computing and advanced wireless technologies and services. Mobile computing systems take advantage of rapidly evolving wireless technologies to provide end users with personalised and innovative services. Thanks to the portability and processing power of new mobile devices such as Smartphones and Tablets (e.g., iPhone, iPad, and Android-based devices), as well as their extended battery life, a wide range of regularly available and computationally intensive mobile services can be developed and offered to end users. The availability of mobile information systems is driven by the increasing demand of services that provide data access to users anytime and anywhere. For instance, a report recently published by the International Telecommunication Union (ITU) estimates that about 6 billion mobile phone subscriptions at the end of 2011, out of which 1.08 billion are Smartphones (Go-Gulf, 2012). By 2016, eMarketer expects that 2.1 billion active mobile users worldwide will be using Android/iOS applications alone.

A further step in this development has been foreseen by Marc Weiser in the early 1990s and was referred to as Ubiquitous Computing [START_REF] Weiser | Some computer science issues in ubiquitous computing[END_REF] (also called Pervasive Computing [START_REF] Satyanarayanan | Pervasive computing: Vision and challenges[END_REF]), in which interconnected smart devices are embedded unobtrusively in everyday environments, and are able to communicate and cooperate in order to offer personalised and adaptive services to human users. In his seminal work on the next generation of computing technologies for the 21st century, Marc Weiser stated that [START_REF] Weiser | The computer for the 21st century[END_REF]:

"The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it".

A more precise definition of Ubiquitous and Pervasive Computing can be derived from the Oxford Dictionary, where Ubiquitous is defined as: "Adjective: present, appearing, or found everywhere".

INTRODUCTION

And that of Pervasive: "Adjective: (especially of an unwelcome influence or physical effect) spreading widely throughout an area or a group of people".

Ubiquitous computing becomes a reality thanks to emerging seamless environments of computing, where smart artefacts and sensors, enabled by recent developments in sensor technologies, can collect huge amounts of data and interact among themselves to offer advanced and adapted services.

The miniaturization of smart devices helps users in their every-day life activities by providing them with computational abilities in a smart way, and with minimum user involvement.

Another key enabler of pervasive computing environments, apart from the networking infrastructure, relies in the successful integration of semantics and advanced reasoning techniques into mobile information systems. Those features have been recently characterized under the so-called Ambient Intelligence (AmI) technologies [Aarts and Wichert, 2009]. An ambient system is expected to be sensitive, responsive, adaptive, transparent, ubiquitous, and intelligent [START_REF] Cook | Ambient intelligence: Technologies, applications, and opportunities[END_REF].

Applications of ambient systems mainly include "smart spaces" such as smart cities, smart homes, and smart offices, which seek to seamlessly support people in their daily lives.

The range of applications in ambient information systems is progressively evolving from large outdoor environments (e.g., Smart Cities) to small scale indoor environments (Smart Homes, Smart Offices). Indoor spaces are closely related to ambient systems where sensors provide real-time data without direct human interaction. An indoor space can be informally defined as a built environment where people usually behave [Li, 2008] (e.g., buildings, commercial malls). Amongst many factors, recent developments of ubiquitous computing and indoor positioning techniques have largely favoured mobile application development to indoor spaces [START_REF] Kolodziej | Local positioning systems: LBS applications and services[END_REF]. Nowadays, techniques currently available for indoor positioning range from radio-based technologies (WLAN, RFID, Bluetooth) to non-radio technologies (Infrared and Ultrasound) and inertial navigation systems (INS) [START_REF] Kolodziej | Local positioning systems: LBS applications and services[END_REF]. Moreover, hybrid approaches appear as promising solutions providing reliable, continuous, and accurate location information [START_REF] Torres-Solis | A review of indoor localization technologies: towards navigational assistance for topographical disorientation, chapter Ambient Intelligence[END_REF].

Mobile location-aware services have attracted recent research attention as their development is expected to have significant impact for users in both indoor and outdoor environments [START_REF] Schiller | Location-Based Services[END_REF][START_REF] Yu | A knowledge infrastructure for intelligent query answering in location-based services[END_REF]. Location-aware services provide the user with the ability to interact with his/her physical surroundings in order to achieve some tasks. More generally, context-aware systems exploit contextual dimensions such as user-centred dimensions (e.g., user profile, user's physical/cognitive capabilities), environmental context (e.g., location), temporal context, and context of execution (e.g., network connectivity, nearby resources). This allows to anticipate user's needs and to customize his/her navigation experience [START_REF] Baldauf | A survey on context-aware systems[END_REF].

A successful integration of indoor knowledge representation (i.e., model of space, objects of interest, user profile and activities, etc.) and ambient systems still requires the development of appropriate spatial data structures and data management facilities. We believe that this is a mandatory development for the delivery of intelligent-based context-aware systems applied to indoor spaces. More specifically, the research presented in this thesis focuses on "context-aware indoor navigation systems" in the context of mobile location-aware services.

Motivation and research challenges

There is a growing need for applications that assist humans in their navigation-related activities in indoor spaces. Real-time, continuous, and reliable user guidance in a time-dependent manner is required not only in transit structures such as train stations or airports, but also in museums, hospitals, campuses, and buildings. Moreover, diverse kinds of services can be provided by enabling real-time integration of contextual dimensions into an underlying data model and an associated query processing engine. This includes not only everyday activities and tasks, but also emergency situations and evacuation processes where real-time and reliable responses are particularly crucial, as well as services that support collaborative tasks such as healthcare activities in a pervasive hospital environment [START_REF] Bardram | Activity-based computing: Support for mobility and collaboration in ubiquitous computing[END_REF][START_REF] Oliveira | A context-aware framework for health care governance decision-making systems: A model based on the brazilian digital tv[END_REF].

Despite the continuous development and improvements made in mobile computing and the variety of technologies that can be used to enable ambient intelligence environments, there are still many research challenges that need to be addressed [START_REF] Cook | Ambient intelligence: Technologies, applications, and opportunities[END_REF]. Amongst the many challenges facing the development of context-aware indoor navigation systems, knowledge representation and management issues in indoor mobile environments are studied in this thesis.

Many research questions on how to design a flexible, context-dependent, and efficient indoor data model that incorporates the dynamic properties of the environment still need to be addressed (Figure 1). Additional issues on the incorporation of context-awareness into the data model require further investigation. Notwithstanding their smaller size with respect to outdoor environments, effective modelling of indoor environments can be fairly complex. Thus, data models and methods for outdoor navigation cannot be directly applied. For instance, an indoor data model should take topological configurations into account (e.g., connectivity or adjacency relationships between rooms or floors in a building). In addition, location information, which is often defined with absolute coordinates in outdoor environments, is more likely to be described in relative terms for both physical and functional spaces in indoor environments (e.g., John's office) [START_REF] Walton | A qualitative bigraph model for indoor space[END_REF].

Moreover, interactions among humans and/or other objects in an indoor space are usually more INTRODUCTION frequent than in an outdoor one, which is usually beyond the range of humans' physical interactions. Furthermore, in contrast to car navigation, the main differences of human navigation relies in the degrees of freedom in movement, the velocity of movement, and the level of granularity. A knowledge-based representation of an indoor environment should take into account the hierarchical layout of the indoor space and: (i) all static/moving features that populate an indoor environment, where a feature can refer to either a person (i.e., a mobile user or any other social entity of interest 1 ) or an object/event of interest (e.g., sensors, exits, tables, continuous phenomena such as a fire, etc.); (ii) the spatial properties associated with those features (e.g., location and extent); and (iii) the behaviours that emerge from them (i.e., how these objects can interact and communicate within the environment).

Issues regarding data management and processing of location-dependent queries are also of particular interest in this context (Figure 2). Location-Dependent Queries (LDQs), also referred to as location-based queries [START_REF] Zhang | Location-based spatial queries[END_REF][START_REF] Mokbel | Scalable continuous query processing in location-aware database servers[END_REF], constitute a key building block in 1 Human beings that are located in the vicinity and are of interest to the query are referred to as social entities.

context-aware indoor navigation systems. A location-dependent query is a query whose answer depends on the locations of the objects of interest. From a query processing perspective, indoor environments have brought special features and constraints (e.g., multiple floors, stairs, lifts, access privileges, etc.) that should be considered when processing location-dependent queries. Moreover, taking advantage of contextual information favours more appropriate query answers and real-time adjustments according to user preferences and contextual constraints. Those specific properties and requirements for a knowledge-based representation of an indoor mobile environment raise different questions on (Figure 2 An appropriate management of static and dynamic data is a key issue for processing these queries, since the result of a query is only valid for a particular location of the query issuer and for certain locations of the objects of interest. As those queries are time-sensitive and locationdependent, they may be valid for only a given period of time (e.g., shops in a mall have certain opening hours and are not available outside that schedule), and within a given area. Therefore, those
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queries are expected to be processed as continuous queries [START_REF] Terry | Continuous queries over append-only databases[END_REF], which means that the system should continually keep the answers up-to-date over a certain period of time (usually, until the query is explicitly cancelled by the user). Dataflow processing applications often have a monitoring or filtering aspect in which queries are continuously active. Therefore, continuous location-dependent queries appear to have considerable impact for the development of different categories of location-based and context-aware services.

Location-dependent queries [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF][START_REF] Wang | Processing of continuous location-based range queries on moving objects in road networks[END_REF], and more generally context-dependent queries, represent typical examples of pull-based services (i.e., requests are triggered by the user), and which are needed in such context-aware systems, as well as a key building block to detect situations of interest for push-based services (i.e., services initiated by the service provider without having been requested by the user). The context-dependent character of these queries means that any change in the context (e.g., changes in the locations and/or profiles of the objects that are involved in the query) may significantly affect the answer. For example, if a user wants to find out his/her friends within a range of 100 meters while navigating a shopping centre, the answer depends on both the user's current position and the location of the nearby friends. This type of query is particularly challenging because, in most cases, the user and the entities relevant for the query (e.g., the friends of the user) are moving. Most work on location-dependent query processing has been developed for outdoor environments [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF]. For indoor spaces, approaches for query processing based on spatial networks instead of free Euclidean space are preferred and more realistic. However, existing approaches for network-based query processing usually assume an outdoor environment [START_REF] Deng | Instance optimal query processing in spatial networks[END_REF][START_REF] Lee | When location-based services meet databases[END_REF][START_REF] Papadias | Query processing in spatial network databases[END_REF], where for instance hierarchical networks do not naturally appear.

Query languages designed for location-dependent queries over moving objects are strongly related to the data model underneath, and on how moving object data is managed [Erwig and Schneider, 1999]. Therefore, additional challenges on how to express the semantics behind different kinds of location-dependent queries over indoor moving objects, and how to incorporate user preferences and other semantics into the query model are also of interest in this context (Figure 2). This requires the design of a query grammar that supports navigation-related queries, and which takes into consideration other properties such as the hierarchical layout of the indoor space for presentation of query results as well as for query processing purposes.

Research objectives

The research presented in this thesis studies location-and context-aware services and queries in indoor environments, with a special focus on navigation-related queries. A unique combination of challenges arises, as the proposal must be able to represent different kinds of location-dependent queries in a flexible manner, and to take into account additional contextual information, time-dependency, and the hierarchical layout of the indoor environment. Some of the challenges that are presented and addressed in this thesis are covered within different fields of research. The major research fields covered and/or related to this thesis are illustrated in Figure 3 The main objective of this work is to investigate:
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"A data and knowledge representation of indoor mobile environments incorporated with usercentred context-awareness, and to address data management issues in indoor context-aware navigation systems. The underlying principles that represent a context-aware indoor data model are introduced, as well as a query language and algorithms for the continuous locationdependent query processing in indoor environments."

To achieve these goals we propose the following approach:

1. To model and design a hierarchical and context-dependent indoor spatial and feature-based data model that can be viewed as a tree structure in which location information is represented at different levels of abstraction. This hierarchical design alleviates performance and scalability issues in location-dependent query processing. In addition, time-dependent functions that compute network distances and travel times are introduced. Furthermore, a classification of user profiles is presented in order to perform an offline filtering of the multi-level data model, thus reducing the amount of data that need to be processed in real-time.

2. To design a generic architecture used for the continuous processing of location-dependent queries in indoor environments. Navigation-related queries are processed in accordance with this architecture, and are continually executed while the request is not explicitly cancelled by the user. Moreover, a query grammar is also presented to express location-dependent queries. This grammar supports navigation queries and incorporates some other preferences and semantics in the query model. It also supports the hierarchical data model by using the concept of locations granules to represent different levels of abstraction.

3. To develop algorithms for the continuous processing of location-dependent queries. Particularly, algorithms for hierarchical path searches and range queries applied to both static and moving objects are introduced. Those algorithms take advantage of the hierarchical data model of the indoor environment, and apply an incremental approach in order to efficiently execute continuous location-dependent queries, thus avoiding solving each search problem independently from scratch. Clearly the scope of this thesis does not cover all issues and challenges that face the design and development of context-aware indoor navigation systems. Although many challenges regarding recent techniques for indoor positioning are of great interest for context-aware indoor navigation, and are strongly related to our research field, they are not further addressed in detail here. Indeed, the goal pursued in this work is to abstract our approach from specific positioning techniques as far as possible, while considering that a hierarchical data model can be suited to different kinds of positioning techniques (cf., Chapter 1 for more details).

Additional research fields that cover issues on database models and challenging problems in data structures, and indexing methods are discussed in Chapters 3 and 7, so that technical decisions are made for the prototype implementation, without being involved into those research challenges.

Thesis outline

This thesis is organized into three parts and seven chapters. The first part establishes a common ground for the development of a flexible and efficient context-aware indoor navigation system. The second part acts as a literature review of indoor spatial knowledge representations and locationdependent query processing techniques, respectively. The third part describes our methodology by presenting the main contributions in four different chapters. The structure of the thesis is organized as follows:

Chapter 1 presents the basic concepts of context-aware indoor navigation, and introduces preliminary recommendations for the development of indoor spatial data models from a context-aware systems perspective. Moreover, the role of contextual information is discussed, and how it can be incorporated into the data model. From a data management perspective, a set of requirements are also discussed with the aim of designing a real-time system for ambient intelligence environments.

Chapter 2 surveys indoor spatial data models developed for research fields ranging from mobile robot mapping to indoor location-based services (LBS), and most recently to context-aware navigation services applied to indoor environments. A taxonomy of models is presented and assessed with the aim of providing a flexible spatial data model for navigation purposes, and by taking into account the contextual dimensions.

Chapter 3 discusses related work on location-dependent query processing in both outdoor and indoor mobile environments. Different models and systems for handling moving objects in databases are reviewed. A special focus on the continuous processing of navigation-related queries, namely path, range, and nearest neighbour queries, is then made by considering the algorithmic aspects and INTRODUCTION the different query processing techniques. Moreover, languages for querying location-dependent and other contextual data are also presented.

Chapter 4 introduces a hierarchical and context-dependent data model that represents an indoor space at different levels of abstraction. Other components such as the feature component, which represents mobile persons and objects of interest, and the action component are also presented.

The management of user profiles and real-time events are further highlighted.

Chapter 5 first proposes a generic architecture for the continuous processing of locationdependent queries, and describes the main components considered in the architecture, and then discusses some data distribution issues. Secondly, the semantics of a continuous-based query language are introduced, which incorporates navigation-related queries along with some other preferences in the query model. Finally, some motivating sample queries are illustrated.

Chapter 6 presents several continuous processing algorithms for handling hierarchical path searches and range queries over mobile objects in indoor environments. The principles of an incremental and hierarchical-based approach are introduced for both kinds of queries. In addition, descriptions along with pseudocodes of the corresponding algorithms are provided.

Chapter 7 discusses the design and implementation of a database extension based on the open source DBMS PostgreSQL. This prototype handles continuous path searches and range queries on top of the hierarchical network-based data model of the indoor environment. The main parts of the prototype developed are presented. Results of the experiments, that have been conducted to investigate the scalability and performance with respect to the intrinsic properties of the proposed solutions, are also reported.

A summary of the contributions presented in this thesis is finally given, and some perspectives are drawn in order to extend the scope of the approach that has been developed by our research. The first part of this dissertation includes one chapter that lays the groundwork for the thesis by examining different aspects and key building blocks for developing a context-aware indoor navigation system. This chapter first discusses the role of context-awareness in mobile computing.

Recommendations for designing an efficient and flexible indoor spatial data model are then introduced, based on service-oriented and efficiency-related requirements. Furthermore, data management issues that face the design and development of context-aware indoor navigation systems are presented.

CHAPTER 1. REQUIREMENTS FOR CONTEXT-AWARE INDOOR NAVIGATION SYSTEMS

This chapter is organized as follows. Section 1.1 highlights the role of context-awareness in mobile information systems. Section 1.2 introduces a methodological framework for the design of an indoor spatial data model, while Section 1.3 presents challenges in data management from a query processing perspective. Finally, Sections 1.4 and 1.5 discuss general observations about current indoor navigation systems and draw some preliminary conclusions, respectively.

On the role of context in mobile computing

Indoor navigation services are set to become among the ubiquitous services that will make our living and working environments intelligent. Context-aware indoor navigation systems inherit characteristics and challenges of both mobile information systems, and location-based services. An additional component that is essential in such systems is the presence and the incorporation of context-awareness.

Mobile technologies have made research on the lifelog1 and user-centric contextual information feasible. Diverse kinds of services delivered to the users can be provided by enabling real-time integration of contextual dimensions. Indeed, various sensors in mobile devices collect information on our daily life. This has triggered in-depth investigation on the context-awareness research field [START_REF] Dey | Towards a better understanding of context and context-awareness[END_REF][START_REF] Dey | Understanding and using context[END_REF][START_REF] Filho | Modeling and measuring quality of context information in pervasive environments[END_REF]. The notion of context has been recognised as a key element in the development of mobile information systems [START_REF] Chen | A survey of context-aware mobile computing research[END_REF]. Context is literally described by the Oxford Dictionary as:

"The circumstances that form the setting for an event, statement, or idea, and in terms of which it can be fully understood".

In mobile computing, contextual information can be defined as: Any information that is gathered and can be used to enrich the knowledge about the user's state, his/her physical surroundings, and capabilities of his/her mobile device(s) [START_REF] Dey | Towards a better understanding of context and context-awareness[END_REF][START_REF] Schmidt | Advanced interaction in context[END_REF]. Context varies according to application constraints, and by taking into account the way users act in the environment, as well as the interfaces to interact with. Two generic concepts with three main categories have been introduced as super-classes that encapsulate contextual dimensions [START_REF] Satyanarayanan | Pervasive computing: Vision and challenges[END_REF][START_REF] Baldauf | A survey on context-aware systems[END_REF][START_REF] Petit | Approche spatiale pour la caractérisation du contexte d'exécution d'un système d'information ubiquitaire[END_REF] -Figure 1.1:

• The context of use includes two main categories:

(1) user-centred dimensions of context such as the user profile, his/her preferences as well as his/her physical/cognitive capability, and the user-system interactions (i.e., input data manipulation through the user interface and output communication operations).

(2) the environmental context which refers to the parameters that influence the user (e.g., location, time, temperature, light, etc.).

• The context of execution models the behaviour of an information system and encompasses: (i) the infrastructure dimension and the topological distribution of the system components and (ii)

the system dimension that evaluates resource utilization (e.g., memory, processor and network)

of the system components and capabilities of the user's mobile device(s).

This chapter first discusses service-oriented and efficiency-related requirements in order (1) to reconsider current indoor spatial data models from a context-aware systems perspective so that a reference data model can be proposed; (2) to take into consideration dynamic properties and activity-oriented interactions of moving objects with their physical surroundings, and (3) to examine the role played by smart devices and ubiquitous positioning sensors. Secondly, the need for an adaptive query processing paradigm as well as for new ways to express and evaluate continuous location-dependent queries in indoor environments is highlighted.

Challenges in context-dependent indoor data models

Whether location information should be handled as any other contextual information or managed differently is a key issue. A better understanding of location information and the relationships that might exist among spatial entities, either acting or located in the environment, should be taken into account. Therefore, the integration of an indoor spatial data model into a context-aware system is
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considered as a key building block for designing advanced navigation services.

This section presents a classification of the requirements needed to design a context-dependent spatial model into two categories [Afyouni et al., 2012]: service-oriented and efficiency-related requirements. The first group supports real-time and delayed services, and includes: (i) localisation, (ii) navigation, (iii) location-aware communication, (iv) activity-oriented interaction, and (v)

simulation and behavioural analyses. The second group examines efficiency issues and includes:

(i) modelling effort, (ii) flexibility, and (iii) performance and scalability. Those are generic and application-independent requirements for the development of a reference spatial data model, and are hereafter used to assess existing approaches.

Service-oriented requirements

A context-dependent spatial model is assumed to represent the locations of objects of interest appropriately, and with additional semantic descriptions so that advanced services can be provided. It also needs to support navigational services a user is likely to ask. Potential communication between located entities should also be supplied. Moreover, a user navigating an indoor space should be able to interact with his/her physical surroundings. Other deferred services can also be offered by the model thus enabling a better understanding of users' behaviours.

Localisation

Several studies have been performed in order to design and build positioning systems in GPSless indoor environments [START_REF] Kolodziej | Local positioning systems: LBS applications and services[END_REF]. Indeed, indoor spaces are constrained by the architectural components such as doors, floors, corridors, and walls. On the one hand, these constrained environments provide meaningful location information at the logical and topological levels, but on the other hand, the task of achieving accurate localisation is not always straightforward.

Spatial data representation

Two different representations of location information can be delivered according to either a geometric or a symbolic representation of space:

• Geometric information gives a quantitative representation of moving objects in the form of coordinates (e.g., Cartesian or latitude-longitude-altitude) that are delivered according to a given coordinate system. Whereas systems like Global Positioning System (GPS), used outdoors, provides geometric coordinates with respect to a global reference system, others such as the Active Bat system [START_REF] Ward | A new location technique for the active office[END_REF] and MIT Cricket [START_REF] Priyantha | The cricket location-support system[END_REF] use ultrasonic technology and provide three-dimensional positions with respect to local coordinate systems.

Those are developed based on a set of local landmarks (e.g., beacons) that are distributed in an indoor space. Topological relationships like "overlap", "inside", "intersect", and "disjoint" can be inferred, thus enabling an interpretation at a higher level of abstraction. As an example of overlapping relationships, floors can be shared between several wings within a building. In such a situation, floors overlap with wings, while a room may belong to a floor and a wing.

• Symbolic information provides qualitative human-readable descriptions about moving objects based on structural entities and/or points of interest (e.g., room or floor identifier, building name, etc.). For instance, the Active Badge system handles values that represent the symbolic identifiers of fixed IR sensors [START_REF] Want | The Active Badge location system[END_REF]. In contrast to geometric information, symbolic descriptions allow to explicitly model topological relations (e.g., spatial containment) between entities in the environment. This can be done by means of symbolic spatial models such as set-based or graph-based models (see Chapter 2). Symbolic descriptions enable spatial and semantic reasoning at an abstract level, thus favouring interaction between spatial entities and within space.

Sensor-based positioning Nowadays, the techniques currently available for indoor positioning range from radio-based technologies (WLAN, RFID, and Bluetooth) to non-radio technologies (Infrared and Ultrasound) to inertial navigation systems (INS) [START_REF] Kolodziej | Local positioning systems: LBS applications and services[END_REF]. One challenge for all these techniques is to achieve a precise positioning of a given mobile user, together with some context-aware data that integrate the location of predefined sensors, and more important, a sense of the environment in which users are acting. This leads us to not only locate the users in the environment, but also the sensors available, and the spatial structures underneath. As these systems should be real-time based, in order to take into account the fact that mobile users behave in the environment, there is a general agreement on the fact that there is so far no perfect technique which is capable of reaching the desired accuracy continuously.

Recent approaches have adopted a hybrid approach combining several positioning technologies.

For instance, [START_REF] Ray | Wireless and information technologies supporting intelligent location-based services[END_REF] proposed an infrastructure-less positioning system for both indoor and outdoor environments. This system combines GPS receivers with inertial sensors (MEMS) and an indoor map-matching algorithm. The interest of MEMS sensors is that they usually provide acceleration and angular velocity. The principle behind this approach is that user location data 20
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have to be provided by the sensors continuously. When GPS data are not available, this being the common case in indoor environments, inertial sensors give alternative location data. However, inertial sensors are error-prone that causes sharp performance degradation. This implies to integrate additional rectification processes.

Similar techniques have been introduced elsewhere still for the design of ubiquitous locationbased systems. In particular, when using WLAN or RFID positioning techniques, an integrated approach combines one (or both) of them with an inertial navigation system (INS) [START_REF] Evennou | Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning[END_REF][START_REF] Fu | Using RFID and INS for indoor positioning[END_REF]]. [START_REF] Retscher | Integration of RFID, GNSS and DR for ubiquitous positioning in pedestrian navigation[END_REF]. Therefore, appropriate multi-sensor data fusion techniques and map matching algorithms need to be used in the filtering process [START_REF] Ray | Wireless and information technologies supporting intelligent location-based services[END_REF].

Consequently, a spatial model should be capable of representing the coordinate system by which the location information is expressed and, when necessary, transforming that location information in order to get all sensor data in a common format.

Context-aware, adaptive navigation

Navigation in an environment can be defined as a scheduled and goal-oriented movement made by humans or robots [START_REF] Montello | Navigation. The Cambridge handbook of visuospatial thinking[END_REF]. While navigating, a user may be technically assisted by sensory devices embedded in the environment that provide relevant information to maintain orientation, and other suggestions to encourage him or her to interact within the environment.

As an extension of typical navigation tasks, contextual dimensions need to be integrated into querying tasks, thus offering opportunities to develop advanced services. A context-aware navigation task is carried out in two phases [START_REF] Champandard | AI game development: Synthetic creatures with learning and reactive behaviors[END_REF]: the static phase, which is generally known as "path planning", encompasses a multi-criteria path selection process that generates an unbroken path from the current location to the destination. This process is context-sensitive as it aggregates multiple criteria (e.g., user preferences and capabilities, distance, time, etc.) passed as function parameters to evaluate the cost value of each step and then to select the most appropriate path, that is, the optimal path that allows, for instance, to reach a destination while avoiding threats [START_REF] Disser | Multi-criteria shortest paths in timedependent train networks[END_REF]. The dynamic phase lies in a dynamic framework that implements event-triggered controllers needed to monitor the user's progression in order to avoid deviations from the planned
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path.

Although very few works have discussed the integration of such a dynamic framework, researchers agree on some general requirements [START_REF] Delling | Engineering route planning algorithms[END_REF]. First, this framework should comprise a next-step selection algorithm that keeps continuous track of the user's position and tries to recover from deviations by providing additional information. Secondly, the framework should adapt the predetermined path if it detects any significant event that may affect the user's movement. In such a situation, a path to the nearest emergency exit should, for instance, be recomputed. Recent studies have proposed algorithms for shortest and/or fastest path searches with improved tracking strategies [START_REF] Berger | Fully dynamic speed-up techniques for multi-criteria shortest path searches in time-dependent networks[END_REF][START_REF] Sun | Efficient incremental search for moving target search[END_REF][START_REF] Xu | Moving-target pursuit algorithm using improved tracking strategy[END_REF]. The main focus of these algorithms is to keep real-time tracking of moving objects. However, each of them deals with either time or distance constraints without incorporating other elements such as user preferences or events that may significantly influence the answer.

Location-aware communication

In contrast to internet telecommunications which enable communication between computing devices based on IP or MAC addresses, communication among objects in smart environments is often based on their location [START_REF] Beigl | A location model for communicating and processing of context[END_REF]. Location-aware communication models in distributed systems can be classified according to who initiates information exchange and how information is then forwarded to the specified receiver [START_REF] Lyardet | Context-aware indoor navigation[END_REF]. One can make a distinction between direct (i.e., point-to-point) and indirect communications [START_REF] Baldoni | Distributed event routing in publish/subscribe communication systems: A survey[END_REF]. As an example of indirect communication, a provider can disseminate information about events to invoke remote callback methods from potential subscribers. Similarly, a consumer can request information from a known (i.e., direct message exchange) or anonymous (i.e., indirect message exchange) provider.

Moreover, collaborative activities can take place between communicating objects working together to achieve some common goals.

Although spatial models do not affect users' physical abilities to communicate, the selection of a specific spatial model has a direct effect on the quality and format of data exchanged between users and other entities located in space. Moreover, the way a user perceives its ability to communicate with other entities may be significantly disturbed due to inadequate representation of space. For instance, a fined-grained model can represent a sensor range more accurately than a coarse representation of space. Thus, the user can be aware of the exact communication range for a given sensor.

A dynamic and symbolic location model that supports location-aware communication among rigid entities (i.e., sensors and users) in smart spaces has been suggested in [START_REF] Satoh | A location model for smart environments[END_REF], which gives
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an example of what can be achieved. Rigid entities and places are represented as components in a hierarchy of symbolic labels (i.e., user-room-floor-building hierarchy) based on the containment relationship. Each component in the hierarchy can act as a service provider, a service consumer or both. Different types of communication can then be established between these components depending on their location in the hierarchy. An example of the dynamicity of this model might be the case where users navigate between places (e.g., rooms). A component migration mechanism is then used to update the hierarchical structure of the components and thus keeps track of users' movements. Two types of communication are then established between these components depending on their location:

vertical communication that supports the publish/subscribe approach; this means that events are published by parent components to address their children. Child components that are interested in those events need to be subscribed so that they can receive runtime notifications. Horizontal communication encompasses communication between same-level components of the hierarchy (i.e., components that belong to the same parent in the hierarchy). As an example, interactions between a user and its computing devices (e.g., stationary computer) within a room can be represented, both considered as components that are contained in a parent component which is, in this case, the room.

Activity-oriented interactions

A context-dependent model should also support human activities with the aim at achieving some objectives. An activity can be defined as a collection of goal-oriented and context-dependent actions an entity can perform [START_REF] Kofod-Petersen | Using activity theory to model context awareness[END_REF][START_REF] Wu | Activity-based proactive data management in mobile environments[END_REF]. Actions comprise a sequence of location movements, interactions with other neighbouring entities and artefacts, and requests for some services in order to achieve a predefined goal. An activity can also be made of a set of primitive activities or be part of a larger collective activity [START_REF] Christensen | Supporting human activities exploring activity-centered computing[END_REF].

Activity theory has focused attention on the usefulness of spatial models in the design process to enrich consciousness and interaction within space [START_REF] Kaptelinin | Acting with technology: Activity theory and interaction design[END_REF][START_REF] Nardi | Context and consciousness: activity theory and human-computer interaction[END_REF].

The number of artefacts has increased and been distributed into ubiquitous environments.

Artefacts can be physical (e.g., chair, door, heating, etc.) or virtual (e.g., 2D/3D image of a physical artefact, digital user interface, recommendation/information, etc.) [START_REF] Pederson | Physical-virtual instead of physical or virtual-designing artefacts for future knowledge work environments[END_REF]. Physical artefacts can also be augmented with various kinds of sensors or tags (e.g., RFID) so that they can perceive the environment and provide additional information [START_REF] Rivera | Analyzing semantic locations cloaking techniques in a probabilistic grid-based map[END_REF]. Those are referred to as digital or sentient artefacts [START_REF] Beigl | A location model for communicating and processing of context[END_REF][START_REF] Kawsar | Experiences with building intelligent environment through sentient artefacts[END_REF]. Spatial representations serve as a mediator to relay relevant information to humans about artefacts in their surrounding. This allows users, who are engaged in a certain activity, for both collecting knowledge and understanding physical surroundings, and furthermore, for reconfiguring and manipulating physical/virtual artefacts to anticipate or produce changes in the environment. Consequently, embodied interaction defined by [START_REF] Dourish | Where the action is: The foundations of embodied interaction[END_REF] can take place by means of spatial reconfigurations that may influence the context by affecting existing activities and/or initiating new ones. A main challenge that designers face and should consider is to efficiently represent artefacts of interest located in the environment.

Unfortunately, most of existing indoor spatial models are not designed for that purpose and thus do not supply interaction with these artefacts and the tasks they might participate in.

Spatial & behavioural analyses

An essential issue in the development of analyses and simulations lies in identifying an appropriate spatial representation with respect to the phenomenon or behaviour being explored. Several typical scenarios for planning purposes are introduced in [START_REF] Li | A grid graph-based model for the analysis of 2D indoor spaces[END_REF]. These scenarios present applicationdependent constraints, so each of them needs an appropriate level of granularity. Some examples of spatial analyses and scenarios applied on a fine-grained spatial model are [START_REF] Li | A grid graph-based model for the analysis of 2D indoor spaces[END_REF]:

• Route analysis scenarios that aim at finding shortest paths between two given locations or all pairs shortest paths applied on a given floor architecture and with a given data structure [START_REF] Werner | Modelling navigational knowledge by route graphs[END_REF][START_REF] Zhang | An ontology-based context-aware approach for behaviour analysis, volume 4 of Atlantis Ambient and Pervasive Intelligence[END_REF].

• Diffusion analysis defined as a dynamic process where the spatio-temporal evolution and extent of a phenomenon within an indoor space are explored [START_REF] Batty | Modeling urban dynamics through GIS-based cellular automata[END_REF].

• Centrality measures that characterize the architectural design and the spatial distribution of objects of interest in a built environment [START_REF] Bonacich | Power and centrality: A family of measures[END_REF], and are largely applied by space syntax studies [START_REF] Jiang | A structural approach to the model generalization of an urban street network[END_REF][START_REF] Kim | Indoor spatial analysis using space syntax[END_REF][START_REF] Kostakos | Space Syntax and Pervasive Systems[END_REF].

The granularity parameter is an important aspect of these analyses that enables the exploration and understanding of spatial data. A fine granularity can certainly reflect the indoor space delicately, and is especially needed when simulating a physical process or when considering fine-grained tracking of human mobility to get accurate understanding of the environment. In contrast, topological analyses often require a coarser granularity to support adjacency and connectivity relations between spatial units (e.g., room), and thus deriving a more abstract view of the topology of a complex indoor space. In particular, topological analyses have been largely developed and applied by space syntax studies to evaluate human-environment interactions and to examine different spatial and structural configurations [START_REF] Jiang | Extending space syntax towards an alternative model of space within gis[END_REF][START_REF] Turner | Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment[END_REF].

Behavioural analyses are, on the other hand, of special interest in context-aware computing, and have been recently developed in numerous fields for activity-recognition purposes [Albinali, 2008].

CHAPTER 1. REQUIREMENTS FOR CONTEXT-AWARE INDOOR NAVIGATION SYSTEMS

Activity-recognition systems can support different application scenarios in many areas including safety control, medical healthcare, and other monitoring activities in virtual environments that aim at customizing the system to end-users' situation or context [START_REF] Bardram | Activity-based computing: Support for mobility and collaboration in ubiquitous computing[END_REF][START_REF] Christensen | Supporting human activities exploring activity-centered computing[END_REF]. This helps, for instance, to reduce occurrence of hazardous situations by monitoring and correcting human error during the execution of critical tasks (e.g., administering medication in healthcare, ensuring proper execution of tasks in safety applications) or to exploit user interactions with an application (e.g., mouse clicks) to infer his/her activities as suggested in [Albinali and Gniady, 2006]. Moreover, knowing the locations and preferences of the users in an indoor context-aware navigation system can lead to optimise the knowledge about the user's behaviour in the considered scenario (e.g., inferring the most bought products in a supermarket by the loyal users) [START_REF] Pérez | Context-aware routing system in an indoor scenario[END_REF]. Activity monitoring combined with the delivery of behaviour-related context-aware reminders for elderly persons have been also discussed in [START_REF] Zhang | An ontology-based context-aware approach for behaviour analysis, volume 4 of Atlantis Ambient and Pervasive Intelligence[END_REF].

Efficiency-related requirements

An offline requirement regarding the modelling effort needs to be considered in the evaluation process.

A spatial model should also be flexible as much as possible so that a wide range of applications can be applied. Efficiency is closely related to the performance and scalability of the system being developed. Those requirements are discussed in the following subsections.

Modelling effort

The modelling effort can be evaluated by the cost and complexity of the model design effort. Some modelling techniques are sophisticated and take considerable effort [START_REF] Thrun | Robotic mapping: A survey[END_REF]. Some others are closely dependent on objects within space and need to be periodically maintained or even to be rebuilt from scratch if these objects change their position or shape. Recently, some authors have discussed several methods for automated construction that minimize manual intervention by designers during the modelling phase [START_REF] Stoffel | Hierarchical graphs as organisational principle and spatial model applied to pedestrian indoor navigation[END_REF].

Flexibility

A flexible spatial model should support a large spectrum of applications that can be developed at different levels of abstraction, as well as different kinds of positioning sensors that might coexist to achieve better accuracy. This enables human reasoning about space, robot-based activities, and even sensor-based and object-oriented interactions within the environment. In brief, may a simple unmixed spatial model assist and deal with a very diverse intelligent navigation tasks efficiently? As will be shown later (cf. Section 2.3), it might be difficult to find a single solution that meets these seemingly contradictory requirements. Consequently, we propose to assess current models based on the range of queries and services that can be supported.

Performance and scalability

A context-aware indoor navigation system requires to efficiently execute users' queries such as shortest paths between two given locations, k -nearest neighbour objects or all accessible locations starting from their current position [START_REF] Lyardet | Context-aware indoor navigation[END_REF]. When considering contextual information, performance is no longer restricted to simply deriving position queries or distance functions, but some other functionalities are required, thus leading to a significant increase in workload. Furthermore, dynamic updates of the spatial data model stored on mobile devices should be periodically performed in order to maintain accuracy and quality of the stored data. For instance, one challenge facing spatial model designers is the cost of updating the location of every moving object continuously. Existing approaches try to overcome this problem by performing periodic, deferred (i.e., demand-based) or immediate (i.e., event-driven) update queries to keep an incremental view maintenance of the database [START_REF] Iwerks | Maintenance of spatial queries on continuously moving points[END_REF].

A related approach focuses on real-time map updates on mobile devices by considering the use of a spatial model with different levels of detail [START_REF] Kang | A framework for dynamic updates of map data in mobile devices[END_REF]. Updates in this approach are handled at the basic level on the server side, and then an update propagation process through the other levels of the spatial model is continuously performed at the client side. This framework considers the use of a spatial model with different levels of detail. Hence, it first handles updates at the basic level on the server side, and then manages the update propagation process through the other description levels of the spatial model. Further, it transfers update messages that contain updated spatial objects to subscribed clients thus replacing original objects with matching identifiers.

The scalability requirement denotes the ability of a spatial model to scale up to a large indoor environment while keeping tolerable resource consumption, which mainly affects the memory storage capacity and the behaviour of processing workloads. In context-aware applications, heterogeneous mobile devices as well as a huge number of embedded sensors have to be handled in an efficient and scalable way. Therefore, there is a need to establish a mechanism that eliminates superfluous information to reduce processing and communication costs, so that the system can handle a higher number of real-time queries.
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Data management issues in location-aware services and queries

While representing location information is a key issue for building context-aware indoor navigation systems, other challenges regarding the management of location-dependent data and the continuous processing of navigation-related queries are also of key interest for designing an efficient and flexible enough indoor navigation system. This section covers major challenges in that area by first discussing location-based services and queries in an indoor context. Secondly, issues related to the modelling and querying of moving objects and to the continuous query processing paradigms are presented. Finally, different aspects of designing languages for querying location-dependent data with semantically enriched operators are also highlighted.

Location-based services and queries

A wide range of location-aware services can be applied to indoor environments. Examples of such services include continuous crowd monitoring within a given area, location-based alerts (e.g.,

continuously send E-coupons to all customers within 200 metres of my store), report any congestion in an emergency situation, and location-based friend finder (e.g., let me know if I am near to a restaurant while any of my friends are there). The main goal of these services is to provide the user with the ability to interact with his/her physical surroundings in order to achieve some objectives.

Location-aware, user-centred services can be distinguished according to two modes of data access:

pull mode and push mode [START_REF] Schiller | Location-Based Services[END_REF], which are defined as follows:

• Pull-based location-aware services comprise requests triggered by the user with the aim of pulling some location-dependent information from the service provider [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF][START_REF] Zhang | Location-based spatial queries[END_REF].

• Conversely, push-based services are initiated by the service provider without having been requested by the user. The service provider takes into account location information of subscribed users to trigger alerts or contextual advertising, and push them to the user's device [START_REF] Friedman | System, apparatus and method for location-based instant messaging[END_REF][START_REF] Navas | GeoCast -Geographic addressing and routing[END_REF].

Push-based services: Several push-based, real-time services that deliver valuable information and allow for communication have been reviewed in [START_REF] Kolodziej | Local positioning systems: LBS applications and services[END_REF][START_REF] Lee | When location-based services meet databases[END_REF][START_REF] Navas | GeoCast -Geographic addressing and routing[END_REF]. This includes, for instance, location-based instant messaging in which outgoing messages are not just stamped by the local time-zone of the sender but also by the sender's current location [START_REF] Burak | Usage patterns of friendzone: Mobile location-based community services[END_REF][START_REF] Friedman | System, apparatus and method for location-based instant messaging[END_REF]. Similarly, a user can instead manually
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specify a certain location specification so that other users whose specifications meet those given by the sender will receive the message [START_REF] Hakkila | Interaction in location-aware messaging in a city environment[END_REF]. Other kinds of push-based services implement the principles of geocast messaging in order to provide location-based advertisements and alerts [START_REF] Basagni | Geographic messaging in wireless ad hoc networks[END_REF][START_REF] Navas | GeoCast -Geographic addressing and routing[END_REF]. Geocast messaging can be described as a location-based multicast where messages are delivered to users located in a specific area instead of those subscribed to a given group.

In particular, location-based alerts are not necessarily time-related and are generally used in the case of an emergency to warn people to go around a dangerous zone. It might also be useful, for example, to remind a user navigating a shopping centre to buy some food or fruit stock when he or she is located next to a supermarket. Location-based advertisements (also called proximity-triggered advertisements) generally target nearby consumers to provide them with information about stores' offers, discount coupons, etc. [Aalto et al., 2004]. This kind of push-based services should provide users with a subscription-based mechanism that allows for relevant and non-intrusive advertising.

Pull-based services: Location-dependent queries are considered as typical examples of pull-based services, and are needed in any context-aware navigation system [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF][START_REF] Zhang | Location-based spatial queries[END_REF]. Queries are location-dependent, meaning that any change of the locations of objects that are involved in the query may significantly affect the answer. For example, if a user asks to find out his/her friends within a range of 100 meters while navigating a shopping centre, this answer will depend on the user's current position as well as on the location of the nearest friends. Some particularly relevant location-dependent queries in indoor contexts are briefly described as follows:

1. Position queries determine the locations of mobile and static objects, and are processed according to either a geometric or symbolic model of space. Location-dependent queries cannot be carried out without up-to-date information on the locations of objects of interest [START_REF] Becker | On location models for ubiquitous computing[END_REF]].

2.

Path queries encompass all the queries that directly help the users to find and reach points of interest, by providing them with navigational information while optimizing some criteria such as the traversed distance or the travel time. Examples of such queries are: (i) discovering optimal paths to a nearest point of interest (e.g., landmark, place), and (ii) planning a path to a destination.

3.

Range queries find and retrieve objects or places of interest within a user-specified range or area [START_REF] Wu | Incremental processing of continual range queries over moving objects[END_REF]. Those queries support navigation by continuously updating relevant details according to the users' movements. Ranges may be characterized by a circular or rectangular-shaped window in which objects of interest must be located.
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4. k Nearest Neighbour (kNN) queries search for the k closest qualifying objects to the moving user with respect to his/her current location [START_REF] Tao | Continuous nearest neighbor search[END_REF][START_REF] Zhang | Location-based spatial queries[END_REF]. As opposed to range queries, kNN queries are range-independent, except in the case of constrained nearest neighbour queries [START_REF] Ferhatosmanoglu | Constrained nearest neighbor queries[END_REF], where the search is constrained to a given region. The user initiates a request by specifying some characteristics about objects of interest, so that the k closest objects whose specifications meet these characteristics are retrieved (e.g., the closest available colour printer or the k nearest friends).

As those queries are time-sensitive and location-dependent, they may be valid only for a given period of time and within a given area (i.e., data returned are only spatio-temporally valid).

Therefore, they are expected to be processed as continuous queries [START_REF] Terry | Continuous queries over append-only databases[END_REF], which means that the system should continually keep the answers up-to-date over a certain period of time. The following section takes a closer look at the continuous query processing paradigm, and highlights different issues related to the management and execution of those queries.

Continuous and adaptive query processing paradigms

As mentioned in Section 1.2.1.2, a context-aware navigation task needs to establish a multi-criteria path selection process along with a continuous real-time mechanism that allows for route adaptation depending on the movement of the objects of interest. Similarly, both pull-based and push-based, real-time services require the continuous monitoring of moving objects so that adaptive answers to users' requests can be provided. Therefore, an adaptive query processing paradigm as well as new methods for the continuous processing of location-dependent queries over indoor moving objects are required to achieve those tasks. This paradigm should be generic enough to support different kinds of queries, but without loss of efficiency.

One important goal of this thesis is to process different kinds of location-dependent queries in a continuous manner, and to take into account additional contextual information, such as time-dependency and user profiles, and the hierarchical layout of the indoor environment.

Different criteria can be used in order to classify continuous location-dependent queries.

Particularly, query time and object mutability criteria are considered as follows:

• According to the query time: whether it refers to the past ("historical spatio-temporal queries"), present (called "instantaneous or now queries") or future states (referred to as "future or predictive queries") [START_REF] Mokbel | Scalable continuous query processing in location-aware database servers[END_REF]. An example of continuous historical query is: "Continuously
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extract the locations of a certain moving object in the last 20 minutes", and of a continuous now query: "What are the k nearest friends to my current location". A continuous predictive query may have a style similar to this example: "Alert me if a certain person is going to enter my current room in the next 5 minutes".

• According to the mutability of both the query point and the objects of interests: Continuous location-dependent queries may have a static or dynamic starting query point2 [START_REF] Gratsias | Towards a taxonomy of location based services[END_REF][START_REF] Vargas-Solar | Pervasive Computing and Communications Design and Deployment: Technologies, Trends, and Applications, chapter Querying issues in pervasive environments[END_REF]. Similarly, a continuous location-dependent query can be applied on static or dynamic data, depending on whether the objects that are the target of the query are moving or not; those are classified into three categories (Table 1.1): (1) Stationary queries over moving objects where the query point is stationary, while objects of interest are moving. For example, one could ask to "retrieve the identifiers of persons in a given room"; this implies monitoring the moving objects within a given "stationary" area. ( 2) Moving queries over stationary objects in which the query point is moving, while objects of interest are static.

An example of this category is the guide-me services, or one can ask to: "retrieve all the communicating entities (fixed sensors) accessible at a distance smaller than 100 meters of the user identified by userID".

(3) Moving queries over moving objects where both the query point and objects are moving. For example: "find the shortest route from person userID1 to person userID2". Efficient and appropriate management of static and dynamic data is a key issue for processing time-sensitive, location-dependent queries. Particularly, mobile environments have a significant impact on the system design, especially for modelling and querying moving objects. This design should allow to model the movements of entities and to ask queries about such movements. In some cases, only time-dependent locations need to be managed, leading to the moving point abstraction, while in other cases, a time-dependent shape or extent is also of interest which is referred to as a moving polygon. Conventional systems do not provide facilities for update operations in a mobile computing environment.

Two major trends can be identified for modelling and querying moving objects in databases, which have extended the classic database paradigm in order to achieve the so-called "mobile database"

technology: Moving Object Databases (MOD) [Wolfson et al., 1999b;[START_REF] Pelekis | Literature review of spatio-temporal database models[END_REF][START_REF] Güting | Moving objects databases[END_REF], and Data Stream Management Systems (DSMS) [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF][START_REF] Arasu | Stream: The stanford data stream management system[END_REF].

Moving Object Databases (MOD): Research on moving object databases has been classified by Güting into two main categories:

• The location management approach introduced by Wolfson and his colleagues in a series of papers [START_REF] Sistla | Modeling and querying moving objects[END_REF][START_REF] Wolfson | Moving objects databases: Issues and solutions[END_REF]Wolfson et al., , 1999a,b],b], in which the current and (near) future movement of entities are represented. They have designed an interesting data model called MOST in which dynamic attributes are introduced in order to represent the highly changing properties of the moving objects (i.e., locations) as motion vectors instead of moving points.

Furthermore, the Future Temporal Logic (FTL) query language has been proposed to help expressing continuous queries by specifying temporal relationships between objects that are of interest to the current queries.

• The second major approach in moving object databases was explored by Güting and his colleagues, and was referred to as the spatio-temporal database perspective [START_REF] Guting | A foundation for representing and querying moving objects[END_REF][START_REF] Güting | Moving objects databases[END_REF]Güting et al., 2005[START_REF] Güting | Modeling and querying moving objects in networks[END_REF]. This approach manages time-dependent geometries (i.e., continuously moving points, lines, and regions) in database in order to capture complete histories of movements of the entities of interest. An abstract data model that comprises spatio-temporal data types and a comprehensive set of operations, which forms an algebra representing moving objects, along with a related query and data manipulation language have been developed [START_REF] Güting | Modeling and querying moving objects in networks[END_REF]]. An Open Source and extensible database system [Güting et al., 2005].

Another important issue in mobile data management is to appropriately and efficiently index moving objects in databases. With the highly dynamic character of mobile location-aware environments, several attempts have been proposed with the aim of tuning traditional spatial indexing mechanisms, such as R-tree [START_REF] Guttman | R-trees: A dynamic index structure for spatial searching[END_REF], R+-tree [START_REF] Sellis | The R+-Tree: A dynamic index for multidimensional objects[END_REF], R*-tree [START_REF] Beckmann | The R*-tree: An efficient and robust access method for points and rectangles[END_REF],

and X-tree [START_REF] Berchtold | The X-tree: An index structure for highdimensional data[END_REF], in order to support frequent updates (e.g., LUR-tree [START_REF] Kwon | Indexing the current positions of moving objects using the lazy update r-tree[END_REF], FUR-tree [START_REF] Bibliography Xiong | R-trees with update memos[END_REF], and the CTR-tree [START_REF] Cheng | Change tolerant indexing for constantly evolving data[END_REF]).

The main idea behind the Lazy Update R-tree (LUR-tree) is to build a minimum bounding rectangle (MBR), based on the moving object's speed vector, within which no action is taken other than updating the location. Once the object moves out of the MBR, either the object is deleted and then reinserted or the MBR is extended in case the object is still not so far from the MBR. The

Frequently Updated R-tree (FUR-tree) extends the LUR-tree by performing enhanced bottom-up update methods to accommodate frequent updates of the moving objects. While both the LUR-tree and FUR-tree assume that moving objects are following known patterns, the Change-Tolerant R-tree (CTR-tree) does not put any restrictions on the object movement. Many other variants for spatio-temporal access methods have been reviewed in [START_REF] Mokbel | Spatio-temporal access methods[END_REF][START_REF] Chen | A benchmark for evaluating moving object indexes[END_REF][START_REF] Nguyen-Dinh | Spatio-temporal access methods: Part 2 (2003 -2010[END_REF].

Data Stream Management Systems (DSMS):

The data stream technology focuses on continuously changing data that arrive as streams in real-time and in large (or even unbounded) amounts.

For instance, GPS receivers and ambient sensors are continuously measuring specific parameters and characteristics of the environment; those have to be processed in real-time [START_REF] Babcock | Models and issues in data stream systems[END_REF][START_REF] Golab | Issues in data stream management[END_REF]. The management of data streams represents different challenges [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF]:

1. Impossibility of managing and storing the whole history of the data streams; this has led to use the concept of sliding windows to limit the search scope, and to support processing queries in real-time [START_REF] Ghanem | Incremental evaluation of sliding-window queries over data streams[END_REF][START_REF] Hammad | Scheduling for shared window joins over data streams[END_REF]].

2. Supporting continuous queries which are typical in data stream applications. Those are not supported by default in traditional stored data sets [START_REF] Arasu | Stream: The stanford data stream management system[END_REF]]. An adaptive approach for query execution that requires dynamic query plans is essential for good performance, and for the continuous monitoring of the incoming data streams.
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Several data stream management systems have been proposed to cope with these challenges and to address continuous queries, such as the STREAM prototype [START_REF] Arasu | Stream: The stanford data stream management system[END_REF] , Nile [START_REF] Hammad | Nile: A query processing engine for data streams[END_REF][START_REF] Mokbel | Continuous query processing of spatio-temporal data streams in place[END_REF], and TelegraphCQ [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF].

From a data stream management perspective, [START_REF] Mokbel | Scalable continuous query processing in location-aware database servers[END_REF] considers that these index structures are not well suited in highly dynamic environments, and their performance degrades dramatically for high update frequencies. Consequently, these authors have proposed a grid-based index structure for indexing both frequently updated moving objects and queries, along with an in-memory technique that limits the search scope to the object that are of interest to at least one active continuous query [START_REF] Mokbel | Continuous query processing of spatio-temporal data streams in place[END_REF].

1.3.2.

Continuous evaluation of location-dependent queries

Continuously updating queries implies a communication overhead and additional processing cost at the server side. Different approaches to process location-dependent queries in real-time mobile environments have been proposed [START_REF] Cai | Real-time processing of range-monitoring queries in heterogeneous mobile databases[END_REF][START_REF] Mouratidis | Continuous nearest neighbor monitoring in road networks[END_REF][START_REF] Yuan | Supporting continuous range queries in indoor space[END_REF]. These approaches depend not only on the way moving objects are managed, but also on the types of query considered, on how the environment where those objects evolve is represented, on the assumptions made on the movement and patterns of the moving objects, and also on the amount of cooperation required from the moving objects, among others. For instance, some works focus only on one type of query [START_REF] Yuan | Supporting continuous range queries in indoor space[END_REF]. Others deal only with stationary queries over moving objects [START_REF] Cai | Real-time processing of range-monitoring queries in heterogeneous mobile databases[END_REF][START_REF] Mouratidis | Continuous nearest neighbor monitoring in road networks[END_REF], or with moving objects following predictable trajectories [Wolfson et al., 1999a;[START_REF] Stojanovic | Continuous range monitoring of mobile objects in road networks[END_REF]. Many variants of these queries are summarized in [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF]. Mainly, three different approaches have been investigated in literature order to make repetitive evaluation of continuous queries more efficient:

1. Update policies: some works assume specific update policies that aim at abstracting any continuous query into a set of snapshot queries executed at different time instants. A concept of valid region or valid time period of the query result has been introduced to lessen this problem by determining a safe area or a time interval around the initial user position in which the result of the query is always valid [START_REF] Zhang | Location-based spatial queries[END_REF][START_REF] Hu | A generic framework for monitoring continuous spatial queries over moving objects[END_REF]. This can be computed by estimating the (maximum) velocity of the moving objects so that an extended range around them is built within which the result to the query is considered to be valid.

2.

Preprocessing: precomputing the (or part of the) result is another way to reduce communication overhead and the number of evaluations of a continuous query. For instance, location-dependent searches can be abstracted to different levels of detail, such that answers to
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specific queries are preprocessed at a higher level, and the resulting 'abstract' answers can be refined in real-time [START_REF] Botea | Near optimal hierarchical path-finding[END_REF].

3. Incremental processing: some techniques employ an incremental approach in order to efficiently process continuous location-dependent queries, thus avoiding solving each search problem independently from scratch. This implies caching the previous query results either at the client or at the server side. Upon triggering of the new evaluation of the current query, the cached results are used to prune the search in order to obtain the new updated result of the query [START_REF] Song | An incremental query algorithm for optimal path queries under traffic jams[END_REF][START_REF] Sun | Efficient incremental search for moving target search[END_REF].

Most work on location-dependent query processing has been developed for outdoor environments.

However, indoor environments bring some special features and constraints that should be considered during query processing (i.e., the constraints that emerge from the architectural layout of space).

Although many research studies have discussed location-dependent queries and location-based services, a few works have addressed the issue of incorporating contextual dimensions into query processing, particularly those related to user-centric and environmental contexts. [START_REF] Mokbel | Toward context and preference-aware location-based services[END_REF] has recently highlighted these issues and discussed some of the challenges to be considered in order to carry out context-aware queries and services. Some of these challenges include (i) designing a spatial and user-oriented model, (ii) supporting multi-objective and possibly contradictory queries, and (iii) analysing efficiency and scalability when dealing with context-aware continuous queries.

Query languages for location-dependent queries

Further discussions on location-dependent data management have brought other research challenges related to what kind of query language can be provided to answer location-dependent queries [START_REF] Sistla | Modeling and querying moving objects[END_REF][START_REF] Dunham | Location dependent data and its management in mobile databases[END_REF][START_REF] Ren | Using semantic caching to manage location dependent data in mobile computing[END_REF][START_REF] Güting | Moving objects databases[END_REF]. The query language is generally based on the concepts (i.e., represented as abstract data types) described in the database model, and allows asking requests in a straightforward manner and formulating predicates about those concepts. Several works related to moving object databases have presented query language extensions that support spatio-temporal data types and allows to formulate any kind of questions about such objects' movements, such as the FTL language [START_REF] Sistla | Modeling and querying moving objects[END_REF], and the approach developed by [START_REF] Güting | Modeling and querying moving objects in networks[END_REF].

Such a query language should also support user preferences (e.g., optimization criteria for path planning), and other application-related constraints. Some semantically enriched query languages for path planning in outdoor environments have been proposed in [START_REF] Booth | A data model for trip planning in multimodal transportation systems[END_REF]Mokhtari, CHAPTER 1. REQUIREMENTS FOR CONTEXT-AWARE INDOOR NAVIGATION SYSTEMS 2011]. A query model for multimodal transportation systems has been presented in [START_REF] Booth | A data model for trip planning in multimodal transportation systems[END_REF], which provides users with the ability to choose between different modes of transportation and applies spatio-temporal restrictions adapted to the user's preferences. Another approach based on fuzzy logic theory that helps identifying ambiguous and possibly contradictory preferences have been proposed in [START_REF] Mokhtari | Système personnalisé de planification d'itinéraire : Une approche basée sur la théorie des ensembles flous[END_REF]. However, the authors do not provide a mechanism for continuous location-dependent query processing.

A query language is closely related to the mobile environment in which objects evolve. This means that all concepts which represent the environment and/or related to the application should be integrated in the query grammar. Particularly, in the context of indoor navigation, a query language should improve the expressiveness of location-dependent queries by considering the hierarchical layout of the indoor environment. The approach presented in [START_REF] Ilarri | An approach to process continuous location-dependent queries on moving objects with support for location granules[END_REF] covers the use of location granules in outdoor environments from both a query processing as well as a result presentation points of view. Location granules formulate queries with a location resolution which is appropriate for the intended application.

Discussion

A general evaluation of mobile indoor navigation systems presented in [START_REF] Huang | A survey of mobile indoor navigation systems[END_REF],

shows that most of the existing systems do not support context-awareness. There are only a few works that integrate some contextual dimensions other than location, especially the semantics behind the user profiles, and provide context-dependent adaptation according to these dimensions [START_REF] Kritsotakis | Design and implementation of a semantics-based contextual navigation guide for indoor environments[END_REF][START_REF] Lyardet | Context-aware indoor navigation[END_REF][START_REF] Tsetsos | Semantically enriched navigation for indoor environments[END_REF]. C-NGINE [START_REF] Kritsotakis | Design and implementation of a semantics-based contextual navigation guide for indoor environments[END_REF] supports an ontology-based modelling approach along with a rule-based reasoning technique to develop a navigation system adapted to the user's needs and preferences. The major shortcoming of such a semantic approach is the lack of geometric details about objects of interest and places represented in space. On the other hand, OntoNav [START_REF] Tsetsos | Semantically enriched navigation for indoor environments[END_REF] is based on a hybrid data model, which combines an indoor navigation ontology with a geospatial model (i.e., GIS layers representing a building blueprints), and a user model that helps processing path queries adapted to the user context.

CoINS [START_REF] Lyardet | Context-aware indoor navigation[END_REF] is another indoor navigation system that supports navigation queries.

It integrates a hybrid (i.e., symbolic and geometric) spatial data model, as well as a user model with access permissions to enable adaptive pathfinding. Nevertheless, these three systems aim at providing a navigation service, and thus they do not support other location-dependent queries such as range and nearest neighbour queries. Moreover, none of these systems has proposed a generic paradigm for the continuous processing of location-dependent queries. 

Introduction

Indoor spatial models have been studied and developed in many areas, ranging from mobile robot mapping to Geographic Information Systems (GIS) and ubiquitous computing [Abowd and Mynatt, 2000;[START_REF] Thrun | Robotic mapping: A survey[END_REF][START_REF] Becker | On location models for ubiquitous computing[END_REF]. A successful integration of indoor spaces (e.g., houses, commercial malls, etc.) and context-aware systems still requires the development of dynamic and flexible spatial models that provide appropriate services to mobile users acting in the environment.

This chapter surveys indoor spatial models developed for research fields ranging from mobile robot mapping to indoor location-based services (LBS), and most recently to context-aware navigation services applied to indoor environments [START_REF] Thrun | Robotic mapping: A survey[END_REF][START_REF] Becker | On location models for ubiquitous computing[END_REF][START_REF] Nagel | Requirements and space-event modeling for indoor navigation[END_REF].

CHAPTER 2. SPATIAL MODELS FOR INDOOR CONTEXT-AWARE NAVIGATION SYSTEMS

Over the past few years, several studies have evaluated the potential of spatial models for robot navigation and ubiquitous computing. This chapter takes a slightly different perspective, considering not only the underlying properties of those data models, but also to which degree the notion of context can be taken into account when delivering services in indoor environments.

A 

A taxonomy of indoor spatial models

In order to deliver navigation-oriented context-aware services applied to indoor spaces, a navigation system requires an appropriate data model that is capable of representing the locations of objects either situated or actively acting within the environment. Modelling approaches are classified into two main classes: symbolic and geometric spatial models. Geometric-based approaches (otherwise referred to as metric or coordinate-based approaches) consider that locations are represented as points, lines, areas or volumes. In contrast, symbolic-based approaches provide qualitative human-readable descriptions about objects based on symbolic points of interest (e.g., room or floor identifier, building name, etc.). In this section, the strengths and weaknesses of both classes of models are assessed by describing and evaluating different spatial representations while having in mind the above-mentioned requirements, which are necessary for strengthening the spatial data structure and thus the entire context-aware system being developed.

Geometric-based approaches

Geometric spatial models (otherwise referred to as metric or coordinate-based approaches) consider space as continuous or discrete, and mainly comprise cell-based and boundary-based geometrical representations. Table 2.1 presents an assessment of geometric models according to the requirements previously defined.

Cell-based models

The cell-based approach decomposes the physical space into a finite number of non-overlapping areas, thus building a partition that covers the entire space. This approach provides an implicit modelling ability to capture adjacencies between neighbouring cells. Two main types of tessellations can be distinguished [START_REF] Ledoux | Modelling three-dimensional fields in geoscience with the Voronoi diagram and its dual[END_REF][START_REF] Mekni | Automated generation of geometrically-precise and semantically-informed virtual geographic environments populated with spatially-reasoning agents[END_REF][START_REF] Siegwart | Introduction to autonomous mobile robots[END_REF]: regular tessellations decompose space into cells that have the exact same shape and size (e.g., primarily, square-and hexagonal-shaped cells as illustrated in Figure 2.1). Irregular tessellations aim at providing an adaptive decomposition of space that is suitable to exactly represent the complexity of the environment being studied (e.g., to accurately represent obstacles). Cells forming the irregular partition of space can be with different shapes and sizes (i.e., arbitrary polygons in 2D or polyhedra in 3D). in space by associating different cell states. Particularly, the occupancy-grid approach provides a probabilistic-based regular tessellation representation, which was firstly introduced in [START_REF] Elfes | Using occupancy grids for mobile robot perception and navigation[END_REF]; [START_REF] Moravec | High Resolution Maps from Wide Angle Sonar[END_REF], to address mobile robot mapping issues. In an occupancy grid, a high
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probability value is assigned to cells within accessible space, while a low probability is assigned to cells occupied partially or completely by objects or obstacles.

Grid-based approaches provide spatial models with continuous geometric properties, thus favouring different kinds of geometric-based queries as well as cell-level interactions. The extent and the level of granularity are two mandatory parameters that have to be determined a priori for the derivation of the grid. The accuracy of the resulting grid depends on the cell resolution. Hence, a first trade-off arises between preserving high precision information retrieval and its impact on memory and time consumption, especially when dealing with large environments. A fine-grained grid provides accurate location data, but could introduce heavy processing workloads.

Dealing with a huge number of cells may exponentially increase query processing time (e.g., shortest path queries, real-time updates), thus leading to performance and scalability problems.

Moreover, regular tessellation techniques do not precisely represent objects with arbitrary shapes.

Hence, object boundaries are toothed, and it is possible for narrow pathways to be missed in the modelling process, especially in areas burdened by spatial objects.

The aforementioned inefficiency has motivated the development of hierarchically-organized grid-based structures known as quadtrees for two-dimensional spaces [START_REF] Samet | The quadtree and related hierarchical data structures[END_REF]. For instance, the region quadtree (also referred to as PR quadtree) structure is commonly used when less details are required for some paths of the represented space. This also allows to recover missed pathways by repeatedly creating smaller squares to capture more details when necessary. However, the key disadvantage of this approach lies in its lack of flexibility especially when dealing with a highly dynamic environment. Indeed, dynamic environments encompass moving users, sensors, and transient obstacles that can be moved or distributed diversely in space. This means that whenever the distribution of these objects changes, a significant update may affect the whole quadtree in real time. Moreover, a quadtree model delivers quadrant-based location data so that accuracy is closely related to the size of the quadrant being identified. Localisation in free areas, where the size of the quadrant can be excessively large, is therefore significantly disturbed and may not be sufficiently accurate for navigational purposes. A large quadrant representing a part of free space may also disturb the perception of communication ability of the user. A quadtree variant called skip quadtree is proposed in [START_REF] Eppstein | The skip quadtree: A simple dynamic data structure for multidimensional data[END_REF], which allows dynamic insertion and deletion of points, and search operations in logarithmic time.

Irregular tessellations Given a set of polygonal obstacles described as line segments, two main techniques have been proposed to irregularly tessellate a space:

• free-space tessellations that take into account obstacles and decompose free areas into convex
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43 polygonal cells (e.g., triangles, trapezoids) - [START_REF] Demyen | Efficient triangulation-based pathfinding[END_REF]; [START_REF] Mekni | Automated generation of geometrically-precise and semantically-informed virtual geographic environments populated with spatially-reasoning agents[END_REF].

• Voronoi tessellations subdivide space into a set of special cells called "Voronoi cells" [START_REF] Aurenhammer | Voronoi diagrams: A survey of a fundamental geometric data structure[END_REF][START_REF] Choset | Sensor-based exploration: The hierarchical generalized Voronoi graph[END_REF]. Free-space tessellations Two kinds of decomposition can be described in this category:

trapezoidal-and triangulation-based tessellations. Both spatial models are constructed based on the endpoints of the line segments that compose the boundaries of the obstacles. A trapezoidal decomposition is built by projecting a vertical line from each end-point through the free space until it hits another barrier, thus forming trapezoidal cells of different thicknesses (Fig. 2.2(b)). Although this decomposition provides a light model, resulting cells tend to be long and thick, which is not suitable for localization. In addition, navigation is performed by finding the intermediate cells to find the destination.

Triangulation-based tessellations can be generated by introducing edges between boundaries' endpoints without any edge crossings, until no more edges can be inserted [START_REF] Demyen | Efficient triangulation-based pathfinding[END_REF].

This technique supports path finding by hopping between triangles. Still, it may result in very thin triangles. Another technique known as Delaunay triangulation DT overcomes the shortcomings of the last mentioned approach. A DT of the set of endpoints is a set of triangles that decompose space such that no endpoint is inside the circumscribed circle of any triangle of the DT .

Free-space tessellation methods support object-oriented analysis and allows for object-oriented interactions within space. However, they suffer from multiple paths between a source and a destination inside the chosen channel (i.e., the set of qualifying polygons), because accurate location information [START_REF] Wallgrun | Autonomous construction of hierarchical Voronoi-based route graph representations[END_REF] within each polygon cell is unavailable. Moreover, dynamic insertion and deletion of objects is rather difficult.
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Voronoi tessellation

The Voronoi Diagram VD of a set of k points S is another approach that represents a built environment as a network of one-dimensional curves which concisely exhibit pathways across these points thus forming an irregular tessellation of space [START_REF] Aurenhammer | Voronoi diagrams: A survey of a fundamental geometric data structure[END_REF].

The VD can also be applied to convex objects such as line segments or obstacles rather than points. This extended approach, called the Generalised Voronoi Diagram (GVD), uses a function to measure the distance from a point in space to the closest point on the geometric object (Figure 2.3). Choset et al. [START_REF] Choset | Incremental construction of the Generalized Voronoi Diagram, the Generalized Voronoi Graph, and the Hierarchical Generalized Voronoi Graph[END_REF][START_REF] Choset | Sensor-based exploration: The hierarchical generalized Voronoi graph[END_REF] have formally discussed how to incrementally construct the GVD by operating with line-of-sight sensors so that they can derive a Generalised Voronoi Graph (GV G) used for motion planning as described in Section 2.2.2.

GVDs represent a fundamental data structure for spatial modelling and have been widely used in many research areas such as robotic motion planning, computational geometry, computer graphics, GIS, etc. With a restricted number of objects, Voronoi tessellation as other irregular tessellation approaches can be more compact than grid-based approaches. However, the construction and maintenance of GVDs is still not straightforward. Additionally, localisation is often mentioned as a real problem since Voronoi diagrams force mobile users' positions to be shifted along Voronoi edges which may yield to suboptimal trajectories. As a result, GVDs cannot directly fulfil our requirements with respect to context-aware navigational services, but lend themselves perfectly to extract the GVGs that, per se, can be used as operational route-based graphs suitable for many uses. Irregular tessellation techniques generally offer several advantages over regular techniques including smooth modelling of arbitrary objects, recognition of narrow valid paths, and the fact that it can be markedly compact in unburdened environments. However, most of these techniques do not support highly accurate localisation of mobile objects within the polygonal cells.

Boundary-based models

Boundary-based models represent the obstacles' boundaries of an indoor space with sequences of primitive geometries such as points, lines, curves, etc. In most cases, a boundary-based map is constructed by concatenating a set of lines segments either extracted from sensor data and representing obstacles as polygons [START_REF] Chatila | Position referencing and consistent world modeling for mobile robots[END_REF][START_REF] Crowley | World modeling and position estimation for a mobile robot using ultrasonic ranging[END_REF][START_REF] Thrun | To know or not to know: On the utility of models in mobile robotics[END_REF], or designed using a CAD system (Figure 2.4). In many robotic applications that assume no prior knowledge of the environment, sensor data are obtained and the resulting extracted objects are matched to a geometric map. However, model matching can be computationally expensive [START_REF] Thrun | To know or not to know: On the utility of models in mobile robotics[END_REF]. Indeed, the line extraction sensors need to be extremely accurate so that lines representing walls, for instance, can be properly positioned at the right location and the right angle on the map.

On the other hand, a geometric floor plan can be designed using a CAD system so that various spatial entities (e.g., doors, windows, rooms, etc.) are represented as sequences primitive geometries.

But Those approaches are mainly oriented towards architectural design.

In contrast to cell-based approaches, boundary-based geometric models form the most direct way to represent an indoor space and can be significantly compact. However, such an approach lacks the capability to incorporate additional object-based semantics so that a deeper knowledge of the represented spatial entities can be achieved. Moreover, boundary-based models are less suitable for navigational services, like path planning, or for communication because they do not lend themselves very well to applying standard techniques and algorithms for spatial search, finding most appropriate paths, and many other services.

Symbolic-based approaches

Symbolic approaches have frequently attempted to model indoor environments using topologicalbased structures [START_REF] Durr | On a location model for fine-grained geocast[END_REF][START_REF] Hu | Semantic location modeling for location navigation in mobile environment[END_REF], graphs by capturing the connectivity and reachability between spatial units [START_REF] Franz | Graph-based models of space in architecture and cognitive science: A comparative analysis[END_REF]Jensen et al., 2009a;[START_REF] Van Treeck | Analysis of building structure and topology based on graph theory[END_REF], and hierarchies [START_REF] Becker | Discussion of euclidean space and cellular space and proposal of an integrated indoor spatial data model[END_REF][START_REF] Choset | Sensor-based exploration: The hierarchical generalized Voronoi graph[END_REF][START_REF] Stoffel | Applying hierarchical graphs to pedestrian indoor navigation[END_REF].

The main advantage of these approaches is that object location is provided semantically by using human-readable descriptions (e.g., room identifier), and topological relationships are also represented.

Depending on their nature, symbolic location models can reveal containment, connectedness, closeness, and overlapping relationships [START_REF] Durr | On a location model for fine-grained geocast[END_REF][START_REF] Hu | Semantic location modeling for location navigation in mobile environment[END_REF]Jensen et al., 2009a].

Using the containment relationship, for instance, one can derive a hierarchical structure of the indoor space in order to take into account application constraints and properties. Accuracy of location information in symbolic space depends on the level of abstraction of the indoor data model. For instance, a place-based symbolic model can provide location information at the structural-entity level.

However, symbolic models are often unable to support a highly accurate indoor positioning system, and are less suitable for determining the Euclidean distances between spatial entities. Moreover, a symbolic model depends on the application domain and needs to be created and managed accordingly.

Hence, managing a very large number of location symbols requires an important modelling effort.

Symbolic models are classified into two categories: set-based models and graph-based models.

The set-based approach gathers object or place identifiers into sets and subsets; these are used to define spatial relations between elements of a set or, for instance, the intersection between two subsets, etc. [START_REF] Becker | On location models for ubiquitous computing[END_REF][START_REF] Bhatt | Spatio-terminological inference for the design of ambient environments[END_REF]. These sets can be further hierarchically organised to form a tree-or lattice-based structure [START_REF] Durr | On a location model for fine-grained geocast[END_REF][START_REF] Li | A topology-based semantic location model for indoor applications[END_REF][START_REF] Hu | Semantic location modeling for location navigation in mobile environment[END_REF]. Graph-based approaches represent a space as a topological graph where nodes symbolize predefined landmarks (e.g., place, gate, sensor range, object, etc.) extracted either manually or automatically from the environment, and edges stand for the connections that make it possible to move through these landmarks [START_REF] Choset | Sensor-based exploration: The hierarchical generalized Voronoi graph[END_REF][START_REF] Remolina | Formalizing regions in the spatial semantic hierarchy: An AH-graphs implementation[END_REF][START_REF] Remolina | Towards a general theory of topological maps[END_REF][START_REF] Werner | Modelling navigational knowledge by route graphs[END_REF]. These two categories will be discussed further as follows.

Set-based symbolic models

Set-based models identify places or objects of interest within an indoor space, and then gather these symbolic identifiers into sets. Two kinds of set-based models are distinguished: place-based and object-oriented models. The former considers a set of place identifiers based on the architectural properties of an indoor space [START_REF] Becker | On location models for ubiquitous computing[END_REF]Li and Lee, 2008a], while the latter deals with all entities that may contribute to build a smart environment [START_REF] Bhatt | Spatio-terminological inference for the design of ambient environments[END_REF]. Indeed, the
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major difference between these two approaches is the level of abstraction. Place-based models deal with places and build its hierarchy based on the containment relationship. Whereas, object-oriented models consider not only places, but all other objects of interest (e.g., walls, doors, sensors, etc.) in order to build the hierarchy.

Place-based sets Current place-based approaches model an indoor space by creating sets and subsets of place identifiers based on the architectural properties of space [START_REF] Durr | On a location model for fine-grained geocast[END_REF][START_REF] Kainz | Modelling spatial relations and operations with partially ordered sets[END_REF]. A typical example considers places of a building such that each floor is contained within a building, and each room is contained within at most one floor. A superset is likely to be defined as the set of floor numbers, and at a lower level, a subset related to each floor that aggregates all room numbers has to be created. Such a model is hierarchically organised and can be viewed as a tree structure in which location information is represented at different levels of abstraction.

Moreover, when considering places and their neighbours, one can reflect adjacency relations between them as well as some qualitative notions of distance, i.e., one can infer that the distance between two neighbouring rooms is smaller than the distance between two distant rooms [START_REF] Becker | On location models for ubiquitous computing[END_REF].

Place-based sets models deliver room-level location data, and allow for place-based data exchange as well as for interactions with places. However, the main shortcoming of those approaches is their inability to model connectivity between places as, for instance, two neighbouring rooms may or may not be interconnected. Also, it is often unable to determine quantitative distance efficiently.

Furthermore, such a tree-based structure is built with respect to the containment relationship, and it does not allow for an element to inherit from multiple parents; this means that a place cannot be contained within two overlapping subsets. This is the case where floors are shared between several wings within a building. In such a situation, a room may belong to a floor and a wing at the same time. This problem has been dealt with by using a lattice structure instead of a conventional tree [Li and Lee, 2008a].

As defined in [START_REF] Kainz | Modelling spatial relations and operations with partially ordered sets[END_REF], a fine-element lattice is a partially ordered set in which every subset can have a least upper bound and a greatest lower bound. These characteristics of lattices are then applied on a set of places P along with the containment relationship ≤ (i.e., p 1 ≤ p 2 means p 2 spatially contains p 1 ) in order to construct the model. This model overcomes the last mentioned problem regarding overlapping subsets by allowing for multiple inheritance, and it is appropriate for range queries as used in [START_REF] Durr | On a location model for fine-grained geocast[END_REF] to send geocast messages. However, this model does not lend itself to other tasks like navigation, because it still does not represent connectedness between places. Another lattice-based semantic model has been presented in Li and Lee [2008a],

that uses the exit-location concept. The exit-location approach models a given space with two types of entities: a location described as a bounded geometric area bordered by one or more exits, and an exit as a boundary gate that allows moving in or out of a location [START_REF] Hu | Semantic location modeling for location navigation in mobile environment[END_REF][START_REF] Lee | When location-based services meet databases[END_REF]. The hierarchical structure of the lattice is mainly based on the containment relationship between locations (Figure 2.5). This model is, for instance, applied to find optimal paths based on nearest neighbour relations.

Object-oriented model An object-oriented model introduces an approach that annotates objects of interest with semantic information according to the properties of the environment. Entities are thus represented as objects, and are characterised by specific attributes and relations. For instance, the Industry Foundation Classes (IFC) provide a specification of an object-oriented data model, which serves as a data exchange format reflecting building information [START_REF] Froese | Industry foundation classes for project management -A trial implementation[END_REF][START_REF] Liebich | Industry Foundation Classes: IFC2x Edition 3 TC1, technical corrigendum 1[END_REF]. In contrast to geometric plans (e.g., 2D or 3D CAD drawings), IFC represent all entities of space (e.g., walls, windows, etc.) as objects. IFC-based models are used in planning and management processes to improve quality of data exchanged and to perform complex management-oriented analysis (e.g., electronic checking, energy effort, etc.)

An object-oriented model based on the IFC specification has been proposed in [START_REF] Bhatt | Spatio-terminological inference for the design of ambient environments[END_REF]. The indoor space is then defined as the combination of three complementary layers:

• A conceptual layer models terminological and functional characteristics on the architectural entities (e.g., sensor, sliding door, meeting room, computer science laboratory, etc.) regardless of how and where they will be used.

• A quality module gives qualitative descriptions about spatial dependencies and relationships with other entities. For instance, the authors use relations as provided by the spatial calculus RCC [START_REF] Grütter | Improving an RCC-derived geospatial approximation by OWL axioms[END_REF]] (e.g., proper part of, partially overlaps, etc.) • Finally, architectural entities are quantitatively described in the quantity module.

CHAPTER 2. SPATIAL MODELS FOR INDOOR CONTEXT-AWARE NAVIGATION SYSTEMS

The advantage of this approach is that it qualifies the different roles played by the objects in the environment, these roles being spatially qualified. A example of such a conceptual space is illustrated in Figure 2.6. Such a conceptual space models all entities of interest along with quantitative and qualitative properties attached to them, as well as spatial relationships and constraints between represented entities.

Object-oriented data models provide symbolic location data at the object level, and allow for semantically-enriched data exchange about objects of interest. Moreover, object-oriented spatial and behavioural analyses can be performed. Nevertheless, object-oriented approaches are not directly suitable for navigational tasks, since geometric details about represented objects as well as connectivity and adjacency relationships are not directly supported.

Graph-based models

Graph-based approaches represent an indoor space as a graph where nodes model predefined locations (e.g., place, gate, point of interest, etc.) extracted either manually or automatically from the environment, and edges stand for the connections that make it possible to move through these locations [START_REF] Choset | Sensor-based exploration: The hierarchical generalized Voronoi graph[END_REF][START_REF] Remolina | Formalizing regions in the spatial semantic hierarchy: An AH-graphs implementation[END_REF][START_REF] Remolina | Towards a general theory of topological maps[END_REF][START_REF] Werner | Modelling navigational knowledge by route graphs[END_REF]. For instance, a topological graph that directly reflects the architecture of a floor plan represents rooms as nodes and doorways as edges; this can simply express connectedness relationship between the architectural entities [START_REF] Franz | Graph-based models of space in architecture and cognitive science: A comparative analysis[END_REF]. In this category, two main modelling concepts The layout-based representations rely on graphs where nodes are derived or extracted from the structure of space. This can be exhibited by a basic graph model that can be referred to as a place graph, as well as by visibility graphs. Voronoi-based graphs are also constructed by extracting meet points and boundary points directly from space as described earlier. These points refer to the nodes of the generalised Voronoi graph. Fine-grained graphs preserve indirectly structural properties of the environment since nodes are evenly distributed over the entire space. In contrast, some other approaches have adopted graph models that are layout-independent [START_REF] Becker | Supporting contexts for indoor navigation using a multilayered space model[END_REF]Jensen et al., 2009a]. Nodes are then not directly derived from the structure, but instead are extracted by means of a sensor deployment strategy within space.

Place graphs In their simplest form, place graphs clearly materialize topological properties of space. In this approach, nodes stand for places such as rooms and/or hallways, and doorways that connect these places appear as edges (Figure 2.7). Besides the connectivity relationship artlessly presented, other variants of topological relations between structural entities can be inferred such as adjacency and containment properties by annotating nodes and edges and/or supporting a graph with multiple levels of granularity. So far, this modelling concept has been widely used since it allows to efficiently navigate between places, plan routes to destinations, and is well-suited for nearest neighbour queries. In addition, it supports symbolic data exchange and interactions with places.

Nevertheless, this approach still does not consider interacting objects. It also has a less accurate location information that does not meet specific application requirements. Geometric properties of space disappear, and it is still difficult to model a semantic distance function which helps, for instance, determining the shortest path. A semantic exit-location based model has been presented by [START_REF] Hu | Semantic location modeling for location navigation in mobile environment[END_REF]. The aim of this modelling approach is not only to preserve the advantages of the classic place graph model, but also to integrate geometric information such as a distance model to
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overcome some of the aforementioned problems. The exit-location approach models the space with two types of entities: a location described as a bounded geometric area bordered by one or more exits, and an exit as a boundary gate that allows moving in or out of a location. The authors have introduced a series of algorithms for automatically constructing the location and exit hierarchies to derive the symbolic location model. Moreover, this symbolic model is built on some geometric information that maintains distance semantics to support services such as nearest neighbour search, shortest path, and location-aware navigation. Although this approach has dealt with many critical problems, other advanced contextual queries were still not addressed because the model cannot fully support object movement and can provide only basic types of services.

Visibility graphs Based on a triangulation tessellation, one can derive a visibility graph that materialises edges between mutually visible endpoints representing specific locations and obstacles, and extracted from space [START_REF] De Berg | Computational geometry: Algorithms and applications[END_REF]. Visibility graphs are useful to predict some behavioural and spatial analyses to favour spatial reasoning as suggested in space syntax [START_REF] Turner | Depthmap: A program to perform visibility graph analysis[END_REF][START_REF] Franz | Graph-based models of space in architecture and cognitive science: A comparative analysis[END_REF]. However, the disadvantages of triangulation tessellations remain the same as accuracy of location information, optimality of path queries, interaction, and flexibility are not dealt with. Furthermore, dynamic insertion and deletion of objects may lead to changes in the graph topology, i.e., the locations and number of nodes can change, and additional edges could be drawn.

Generalised Voronoi Graph (GVG)

The GVD is an appealing approach that represents a built environment as a network of curves which concisely exhibit pathways suitable for navigational purposes. A route-based graph can be extracted from the GVD previously described. Such a route graph is referred to as the Generalised Voronoi Graph (GVG), which directly reflects pathways through obstacles [START_REF] Choset | Sensor-based exploration: The hierarchical generalized Voronoi graph[END_REF]. Voronoi-based approaches are suitable for navigation services such as finding a collision-free path towards a destination. In addition, a GVG inherits all advantages of graph-based representations so that it can, for instance, annotate its nodes by additional information thus favouring location-aware communication and object-oriented interactions.

Specific techniques have been suggested to further prune and remove irrelevant nodes and edges so that the whole graph can be more compact [START_REF] Wallgrun | Autonomous construction of hierarchical Voronoi-based route graph representations[END_REF][START_REF] Wallgrun | Hierarchical Voronoi graphs: Spatial representation and reasoning for mobile robots[END_REF]. However, an indoor space, such as an office building, can be populated with a huge number of objects of interest, which may significantly increase the number of nodes and edges that constitute the graph. Furthermore, the location accuracy problem is raised in specific situations when moving in free-areas, which means that the model does not lend itself to completely support ubiquitous positioning sensors. Fine-grained graphs Although previous approaches consider an indoor space at a more abstract level and so have a more compact representation, they appear to be badly-suited to contextaware navigation services since interactions at a fine level within space are increasingly needed. In a companion paper [START_REF] Li | A grid graph-based model for the analysis of 2D indoor spaces[END_REF], the authors have presented a graph-based model at a fine level of granularity that retains continuous and structural-based properties of space. Nodes in this model represent cells within an occupancy grid, while connections between cells are materialized by edges (Figure 4.3). Nodes and edges are labelled according to their belonging to a given spatial unit such as a room or a connecting space. One advantage of this modelling approach is that it achieves a maximum coverage of space so that accurate positioning sensors used for indoor navigation can be supported. Indeed, the geometrical properties are implicitly represented by the continuous layout of the graph and reflect indirectly the shapes of places being considered. This approach allows for high quality data exchange, and for fine-grained and continuous analysis. However, a major difficulty that still needs to be confronted regarding efficiency-related criteria and specially when considering performance and scalability issues. A large indoor space could comprise thousands of nodes and edges so that managing and executing real-time queries could be an excessive time-and memory-consuming process.

A TAXONOMY OF INDOOR SPATIAL MODELS

Sensor-based graphs Many approaches have adopted a sensor-oriented point of view where the objective is mostly oriented to the tracking and monitoring of mobile objects [START_REF] Becker | Supporting contexts for indoor navigation using a multilayered space model[END_REF]Jensen et al., 2009a]. For instance, the model presented in [START_REF] Becker | Supporting contexts for indoor navigation using a multilayered space model[END_REF] describes and partitioning sensors can be found in [START_REF] Jensen | Indoor -A new data management frontier[END_REF]. Navigation between cells representing ranges of the deployed sensors is supported, which also allows for range-based analysis. However, accuracy of location information in such techniques is relatively low since it depends on the sensor range. Object-oriented interaction is also not supported since objects are not directly represented.
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Furthermore, an optimised deployment strategy of the sensors is needed so that a more compact and more efficient graph can be created. A more detail discussion on sensor-based graphs along with a method for an optimised deployment of sensors can be found in [START_REF] Kang | strack: Tracking in indoor symbolic space with rfid sensors[END_REF].

Discussion

The taxonomy presented in this section relies upon the model of location information being delivered.

Other classifications of indoor models have been proposed in [START_REF] Becker | On location models for ubiquitous computing[END_REF]; [START_REF] Worboys | Modeling indoor space[END_REF]. 
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The distinction between geometric and symbolic (also referred to as topological in [START_REF] Worboys | Modeling indoor space[END_REF]) spatial models is similarly emphasized in both classifications as explained earlier in this section.

A distinction is also made between spatial and semantic models since the latter kind of models is object-oriented and not necessarily spatially-dependent [START_REF] Worboys | Modeling indoor space[END_REF]. However, neither of these proposals has reviewed and assessed different modelling approaches from the particular perspective of context-aware indoor navigation systems. A summary of different modelling approaches is given below, along with a discussion of their use from an application perspective.

Geometric-based approaches

Grid-based models can efficiently integrate metric properties, thus allowing precise locations, direction information, and distances (cf. Table 2.1). Quadtree is a hierarchically-organized grid-based structure that allows for space optimization, but lacks flexibility in dynamic environments. Free-space tessellation and Voronoi-based diagrams are less suitable for localisation, but they are more compact.

Boundary-based models are less suitable for navigational services but provide accurate location data.

In addition, geometric models require an integration of semantic annotations to achieve a higher degree of location-and context-awareness.

Symbolic approaches

As shown in Table 2.2, symbolic models are generally less accurate but context-awareness is easier to achieve as they favour human-recognizable descriptions. Thanks to their hierarchical structure, set-based models achieve a good level of efficiency and flexibility, but lack of topological relationships such as connectedness. Graph-based models are widely used in applications at a coarse-grained level of abstraction thanks to their richness and variety. The major shortcoming of symbolic models is the lack of geometric details on entities and places represented in space.

Application perspective

Symbolic-based approaches are often preferred, from an application perspective, over conventional geometric-based approaches and have been recently used in many application scenarios [START_REF] Becker | On location models for ubiquitous computing[END_REF], because they can capture the semantics of entities and places represented in an indoor space. In particular, graph-based and semantic models constitute the most common approaches used, so far, in many application areas ranging from emergency management and safety control in micro-scale environments [START_REF] Kwan | Emergency response after 9/11: The potential of real-time 3d gis for quick emergency response in micro-spatial environments[END_REF][START_REF] Lee | A three-dimensional navigable data model to support emergency response in microspatial built-environments[END_REF][START_REF] Lee | A 3D data model and topological analyses for emergency response in urban areas, volume 6, chapter Geospatial Information Technology for Emergency Response[END_REF][START_REF] Park | Time-dependent optimal routing in microscale emergency situation[END_REF] to indoor context-aware navigation services, and especially those adapted to users with special needs
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57 [START_REF] Becker | Supporting contexts for indoor navigation using a multilayered space model[END_REF][START_REF] Cagigas | Hierarchical path search with partial materialization of costs for a smart wheelchair[END_REF][START_REF] Dudas | ONALIN: Ontology and algorithm for indoor routing[END_REF][START_REF] Fernández-Madrigal | Assistive navigation of a robotic wheelchair using a multihierarchical model of the environment[END_REF][START_REF] Kritsotakis | Design and implementation of a semantics-based contextual navigation guide for indoor environments[END_REF][START_REF] Tsetsos | OntoNav: A Semantic Indoor Navigation System[END_REF]. Applications that aim at providing intelligent emergency responses mainly employ simple place graphs, which capture topological relations between structural entities, because they are more concerned with network-based models that allow to discover nearest or optimal exits [START_REF] Kwan | Emergency response after 9/11: The potential of real-time 3d gis for quick emergency response in micro-spatial environments[END_REF][START_REF] Lee | A three-dimensional navigable data model to support emergency response in microspatial built-environments[END_REF]. In contrast, applications that support contextual elements, such as user preferences and capabilities, tend to favour semantically-enriched data models either by designing an ontology-based model, or by employing a hybrid model that combines a graph-based with a semantic model of space as discussed in Section 2.3 [START_REF] Cagigas | Hierarchical path search with partial materialization of costs for a smart wheelchair[END_REF][START_REF] Dudas | ONALIN: Ontology and algorithm for indoor routing[END_REF][START_REF] Kritsotakis | Design and implementation of a semantics-based contextual navigation guide for indoor environments[END_REF][START_REF] Tsetsos | OntoNav: A Semantic Indoor Navigation System[END_REF].

Towards hybrid spatial models

Numerous spatial data models have been presented in different research fields (e.g., robotics, GIS, ubiquitous computing) with the aim of combining advantages of geometric and symbolic approaches [START_REF] Buschka | An investigation of hybrid maps for mobile robots[END_REF][START_REF] Jiang | A hybrid location model with a computable location identifier for ubiquitous computing[END_REF][START_REF] Leonhardt | Supporting location-awareness in open distributed systems[END_REF][START_REF] Thrun | Learning metric-topological maps for indoor mobile robot navigation[END_REF][START_REF] Wallgrun | Autonomous construction of hierarchical Voronoi-based route graph representations[END_REF]. Those approaches have complementary strengths and weaknesses since they have different purposes.

Whereas geometric models can efficiently integrate metric properties to provide highly accurate location and distance information that are necessary elements in most of context-aware applications, symbolic models maintain a more abstract view of space by providing users with easily-recognizable information and by materializing more complex relationships between entities. Neither approach is, therefore, directly suitable for fulfilling all requirements of context-aware services. Clearly, integration of geometrical and topological representations implies considering qualitative and quantitative points of view, thus favouring a large spectrum of interacting representations and applications, as suggested by the Spatial Semantic Hierarchy (SSH) introduced in [START_REF] Kuipers | The Spatial Semantic Hierarchy[END_REF]. This enables human reasoning and human-or robot-centred activities, and even sensor-based interactions within the environment.

Accordingly, the idea of integrating different coexistent models of space appeared really as a promising alternative. Hybrid spatial models can be produced in different manner by applying various kinds of organization [START_REF] Becker | On location models for ubiquitous computing[END_REF][START_REF] Buschka | An investigation of hybrid maps for mobile robots[END_REF][START_REF] Wallgrun | Autonomous construction of hierarchical Voronoi-based route graph representations[END_REF]: (1) parallel models (also referred to as overlays) aim at using different spatial models (usually a combination of geometric and symbolic models) that cover the entire space [START_REF] Becker | Supporting contexts for indoor navigation using a multilayered space model[END_REF][START_REF] Li | A grid graph-based model for the analysis of 2D indoor spaces[END_REF][START_REF] Stirbu | NavTag: An inter-working framework based on tags for symbolic location coordinates for smart spaces[END_REF][START_REF] Thrun | Learning metric-topological maps for indoor mobile robot navigation[END_REF][START_REF] Wallgrun | Autonomous construction of hierarchical Voronoi-based route graph representations[END_REF], (2) patchwork-based approaches represent a space with several local, usually geometrical, models that are linked together to form a global, usually symbolic, model of space [START_REF] Kuipers | The Spatial Semantic Hierarchy[END_REF], and (3) hierarchical models that embed different layers with different levels of abstraction [Fernandez andGonzalez, 1998, 2002;[START_REF] Jiang | A hybrid location model with a computable location identifier for ubiquitous computing[END_REF].
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Recent studies on mobile robot navigation have focused on how to extract a topological graph from a basic geometric map such as a grid-based map or a Voronoi diagram. The resulting graph is then pruned by applying some algorithms that select the more relevant nodes, thus implicitly providing a hierarchical representation as those encompass knowledge of the environment at different levels of abstraction [START_REF] Thrun | Learning metric-topological maps for indoor mobile robot navigation[END_REF][START_REF] Wallgrun | Autonomous construction of hierarchical Voronoi-based route graph representations[END_REF]. Earlier, the SSH model has been presented [START_REF] Kuipers | A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations[END_REF][START_REF] Kuipers | The Spatial Semantic Hierarchy[END_REF], and further extended in [START_REF] Beeson | Towards autonomous topological place detection using the extended voronoi graph[END_REF]; Kuipers et al.

[ 2004]. The SSH consists of a hierarchy of representations that are inter-dependent. This hierarchy is mainly made of local geometrical maps that correspond to the human or robot's sensory horizon, and are merged together based on topological relationships which, in turn, are derived thanks to causal state-action-state schemas.

A relevant example of a hybrid spatial model designed to handle location-dependent queries is presented in [START_REF] Jiang | A hybrid location model with a computable location identifier for ubiquitous computing[END_REF]. This model is a combination of a hierarchical, set-based representation of space and a geometric representation of places, sensor ranges, and objects of interest. These geometric annotations are attached to the corresponding elements in the symbolic set.

The model achieves a good trade-off between geometrical and symbolic approaches by combining the benefits from both sides. Although this model handles some relevant location-dependent queries such as "find the nearest object of interest", it lacks a clear process description of how to acquire an accurate location of the mobile user continuously. In addition, queries are handled based only on the distance parameter while most of context-aware applications require integration of contextual dimensions that aim to find the optimal solution not always the nearest one. In [START_REF] Stirbu | NavTag: An inter-working framework based on tags for symbolic location coordinates for smart spaces[END_REF], the author proposed to symbolize a physical space with a set of layers that correspond to different location models designed to meet various activities performed by the users. At the basic layer, the model embeds a quadtree by considering some points of interest. On top of this layer, various topological models were added depending on users' activities and formed a lattice model. The lattice model has been used together with a simple graph model, extracted to materialize connections, to perform relevant location-dependent queries such as position, range, and path queries.

The Annotated Hierarchical graph model (AH-graph), presented in Fernandez andGonzalez [1998, 2002], constitutes a comprehensive framework for efficient mobile navigation. The AH-graph consists of multiple topological layers defined at different levels of abstraction and linked together based on abstraction functions developed for nodes and arcs. An annotation function is also defined at each level so that information can be attached to nodes and arcs. This allows performing basic queries (e.g., path searching) hierarchically, thus achieving better performance. An extension of the model was then presented by adding multiple hierarchies produced based on several scenarios specified at the application level, thus favouring a large spectrum of applications and achieving a high level of flexibility. The model has been further used in [START_REF] Remolina | Formalizing regions in the spatial semantic hierarchy: An AH-graphs implementation[END_REF] to implement the
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SSH at topological level thanks to its efficiency and flexibility. In [START_REF] Galindo | Multi-hierarchical semantic maps for mobile robotics[END_REF], the AH-graph hierarchy was appended to a semantic hierarchy to further improve human-robot communication.

Generally, parallel models that combine, for instance, a graph-based model with a geometrical model underneath, tend not to scale well to large environments since they could not get rid of weaknesses of geometric models with respect to efficiency and scalability. Hierarchical models, in contrast, scale very well to large environments since queries such as path search are performed hierarchically by switching from finer to coarser levels and vice versa. In addition, a specific level of granularity can be used in specific situations with respect to application constraints and users' preferences. Approaches that integrate hierarchical organization require, however, to maintain connections between levels and to integrate a fine-grained geometric model that guarantees accurate localisation for specific navigational purposes.

Most of the principles presented in this chapter has inspired our work whose objective is to develop a context-dependent multi-granular indoor data model whose objective is to provide a flexible representation of an indoor space, and also will take into account the objects located and acting in the environment. This modelling approach integrates different levels of granularity, that is, a fine-grained layer at the first level and an exit hierarchy as well as a location hierarchy at the second level of abstraction, and considers other contextual dimensions besides the location of the involved entities, such as time and user profiles (see Chapter 4). A continuous query remains active over a period of time and has to be continuously evaluated during that period as the objects of interest are moving. Efficient processing of such queries is a complicated task in location-based services due to its expensive consumption of memory and computational resources. A straightforward approach to deal with this kind of query would be to periodically recompute the best answer from scratch for all queries upon arrival of every delay update. However, such a naïve approach performs poorly in highly dynamic environments, where the locations of both the query point and the target objects change over time. In addition, this approach scales poorly when there are many concurrent users who are asking queries at the same time.

Consequently, there is a growing need for approaches that provide adaptive and incremental query processing techniques to enhance efficiency of location-dependent queries over moving objects [START_REF] Hu | A generic framework for monitoring continuous spatial queries over moving objects[END_REF][START_REF] Mokbel | Continuous query processing of spatio-temporal data streams in place[END_REF]]. On the one hand, adaptive query processing addresses the problems of unpredictable costs and dynamic data by using runtime feedback in order to tune query execution in a way that provides appropriate answers with better response time or memory utilization [START_REF] Deshpande | Adaptive query processing[END_REF]. On the other hand, an incremental execution paradigm deals with continuous query processing by reusing information from previous searches to speed up current searches. Therefore, new answers for series of similar search problems can be computed faster than by reevaluating each query independently from scratch [START_REF] Sun | Efficient incremental search for moving target search[END_REF]. Both adaptive and incremental execution paradigms are required in order to achieve sufficiently flexible and more efficient continuous query processing.

This chapter surveys approaches for querying and managing moving objects in dynamic environments. Both outdoor and indoor contexts are considered, since indoor-oriented strategies are rarely discussed in the literature, and some outdoor strategies can be applied to indoor settings with adjustments, when necessary. The remainder of this chapter is organized as follows. Section 3.2 presents strategies and architectures for location-dependent query processing, mainly, in moving object databases, over spatio-temporal data streams, and in specific indoor settings. It then discusses preference-aware query processing techniques and their applicability to continuous queries. Section 3.3 takes another perspective and discusses algorithmic issues with the aim of highlighting adaptive and incremental approaches for the continuous processing of navigation-related queries in spatial network databases. Languages for spatio-temporal queries and more specifically for preference-aware location-dependent queries are discussed in Section 3.4.
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Architectures for location-dependent query processing

Different architectures, indexing strategies, and update methods have been proposed to efficiently deal with location-dependent queries over moving objects [START_REF] Lam | An efficient method for generating location updates for processing of location-dependent continuous queries[END_REF][START_REF] Lazaridis | Dynamic queries over mobile objects[END_REF][START_REF] Kalashnikov | Efficient evaluation of continuous range queries on moving objects[END_REF][START_REF] Prabhakar | Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects[END_REF][START_REF] Cao | Location dependent query in a mobile environment[END_REF][START_REF] Gedik | Mobieyes: Distributed processing of continuously moving queries on moving objects in a mobile system[END_REF][START_REF] Jensen | Query and update efficient B+-tree based indexing of moving objects[END_REF][START_REF] Hu | A generic framework for monitoring continuous spatial queries over moving objects[END_REF][START_REF] Cai | Real-time processing of range-monitoring queries in heterogeneous mobile databases[END_REF][START_REF] Güting | Modeling and querying moving objects in networks[END_REF][START_REF] Gedik | MobiEyes: A distributed location monitoring service using moving location queries[END_REF]Ilarri et al., 2006a;[START_REF] Zhao | A novel framework for processing continuous queries on moving objects[END_REF]. This section takes a closer look to those approaches and mainly classifies them into three categories: (i) approaches for continuous query processing in moving object databases;

(ii) approaches for continuous processing of spatio-temporal data streams; and (iii) approaches that incorporate user preferences and other contextual dimensions in query processing. It should be noted that most of those strategies have been developed for outdoor environments. The only works we are aware of regarding architectures for mobile data management in indoor environments are presented in [START_REF] Jensen | Indexing the trajectories of moving objects in symbolic indoor space[END_REF]Lu et al., 2012;[START_REF] Xie | Efficient distance-aware query evaluation on indoor moving objects[END_REF]Alamri et al., 2013]. Therefore, this section describes the intrinsic properties of those approaches applied to both outdoor and indoor environments, while highlighting their advantages and disadvantages with respect to our context.

Continuous query processing in moving object databases

Many features and criteria can be specified in order to classify and assess approaches for locationdependent query processing over moving objects such as the incremental evaluation support, whether static and/or moving queries are considered, the kinds of queries supported, whether a centralised or a decentralised strategy is proposed, communication overhead, and update policy, among others [START_REF] Deshpande | Adaptive query processing[END_REF][START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF]. [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF] have classified location-dependent query processing approaches into three categories: (i) approaches that require cooperation from moving objects; (ii) approaches that assume known objects' trajectories; and (iii) generic query processing approaches.

1. Cooperation from moving objects: In this category moving objects are considered as the main processing units that can communicate location updates to a centralized server according to a certain update policy. They also have to monitor the regions they may affect with respect to the currently performed (i.e., outstanding) queries, and perform local query processing tasks. Examples of such approaches are MQM (Monitoring Query Management) [START_REF] Cai | Processing range-monitoring queries on heterogeneous mobile objects[END_REF][START_REF] Cai | Real-time processing of range-monitoring queries in heterogeneous mobile databases[END_REF], MobiEyes [Gedik andLiu, 2004, 2006], and the SRB (Safe-Region-Based) framework [START_REF] Hu | A generic framework for monitoring continuous spatial queries over moving objects[END_REF]. A summary that shows advantages and disadvantages of these proposals is illustrated in Table 3.1.

(i) MQM focuses on continuous static range queries over moving objects and uses a partially distributed strategy (i.e., with a mediator server) in which moving objects monitor and contribute to processing queries that are part of or overlap with their resident domains, that is, a monitoring region assigned to each moving object depending on its location. MQM aims at reducing the frequency of location updates reported to the central server, by communicating a change of location only when it leaves its resident domain (i.e., similar to the concept of safe region). For that purpose, a spatial index structure, referred to as BP tree (Binary Partitioning tree) has been proposed for storing information about queries of interest for each portion of the partitioned workspace. This approach assumes that moving objects' devices have considerable processing and communication capabilities, which is not available for all kinds of devices.

Moreover, only static query points are considered, thus moving range queries as well as other kinds of navigation-related queries are not directly supported. Furthermore, the result to a given query should be completely reevaluated on each update, and only the set of identifiers of objects of interests are returned. Therefore, no information about the locations of those objects or the paths towards them is provided.

(ii) MobiEyes deals with moving range queries over moving objects. A slightly different technique than MQM has been proposed, which partitions the workspace into regular grid cells, and assigns a set of cells, called monitoring region, to each moving query point. Each moving object covered by one or more monitoring region of certain queries should then communicate its current cell to the server in order to determine the identifiers of queries that might have been affected. Similarly to MQM, MobiEyes does not consider an incremental evaluation mechanism in query processing, but rather tries to reduce the cost of query reevaluation by minimizing the number of updates. MobiEyes does not support different kinds of queries, and does not provide information about the locations of the objects of interest but rather just their identifiers. An optimization of this approach that aimed at providing the continuous evaluation support has been presented in [START_REF] Gedik | MobiEyes: A distributed location monitoring service using moving location queries[END_REF]. The concept of motion-sensitive bounding boxes has been introduced so that moving objects as well as moving query points are stored along with boxes which are adapted to their motion (i.e., speed and direction) in order to reduce the cost of query reevaluation.

(iii) The SRB (Safe-Region-Based) framework approach introduced the concept of active location update that considers two types of updates [START_REF] Hu | A generic framework for monitoring continuous spatial queries over moving objects[END_REF]: source-initiated updates that occur only if a moving object identifies itself within the range of one or more outstanding queries;

and server-initiated updates where the server explicitly asks an object for a location update due to changes of other objects' locations that might have affected that object's safe region.

This approach was only applied to static range and k NN queries over moving objects.

2. Approaches with known objects' trajectories: Those approaches mainly consider moving objects that follow certain routes or trajectories. This allows to estimate or predict near-future [START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF]] locations of objects, thus reducing the frequency of location updates to be communicated to the server. However, this could present some limitations depending on the applications they are designed for. For instance, although the movements of objects in indoor environments are constrained by the structure of space (i.e., walls, stairs, etc.), objects are assumed to be moving freely in halls, rooms or malls. Therefore, a prior knowledge of objects' trajectories in such situations is not realistic.

Relevant works in this category are discussed as follows (cf., Table 3.2).

(i) The Domino project, presented in [START_REF] Sistla | Modeling and querying moving objects[END_REF]Wolfson et al., 1999a,b], has focused on modelling and querying moving objects in databases. The concept of dynamic attribute has been proposed, which implies representing and storing a moving object location as a motion vector that depends on the speed of the object. A time-dependent function has been designed

to compute near-future positions following a trajectory on the road network. An update policy, called "dead-reckoning policy", that consists in triggering a location update request upon reaching a certain accuracy threshold. Although Domino have provided relevant answers to some crucial questions in modelling and querying moving objects, techniques for continuous processing have not been discussed in detail.

(ii) A comprehensive data model, a query language, and an architecture for managing and querying objects moving in road networks have been presented in [Güting et al., 2005[START_REF] Güting | Modeling and querying moving objects in networks[END_REF].

This approach supports handling and querying historical spatio-temporal queries over moving objects, thanks to an extensible framework called Secondo. Abstract data types, operators, and algorithms have been introduced to enable more efficient network-based models, so that objects' movements can be represented as trajectories. Based on this prototype, several proposals for efficient indexing and query processing have been presented [De Almeida andGüting, 2005, 2006;[START_REF] Güting | Efficient k-nearest neighbor search on moving object trajectories[END_REF]. As an example, the work presented in [START_REF] Güting | Efficient k-nearest neighbor search on moving object trajectories[END_REF] addresses the problem of finding the continuous k nearest neighbours to a query trajectory in a large set of stored trajectories. In contrast, MON-Tree has been proposed in [START_REF] De Almeida | Indexing the trajectories of moving objects in networks[END_REF] as an index structure for moving objects on networks. The index structure is composed of a 2D R-Tree for indexing polyline bounding boxes and a set of 2D R-Trees for indexing objects' movements along the polylines. Despite the usefulness and extensibility of this framework, the actual goal behind this design was always about querying histories of movements. There has been no direct work on addressing continuous query processing applied to current movements.

Nevertheless, adjustments can still be made to adapt its behaviour to deal with such kinds of queries.

(iii) Hermes,on the other hand, has been designed as a system extension that provides spatiotemporal functionality to ORDBMS (beyond those spatial functionalities presented in Oracle Spatial and PostGIS) [START_REF] Pelekis | Hermes-a framework for location-based data management[END_REF][START_REF] Pelekis | Similarity search in trajectory databases[END_REF][START_REF] Pelekis | HERMES: Aggregative LBS via a trajectory DB engine[END_REF][START_REF] Pelekis | Supporting movement in ORDBMS[END_REF]. Hermes provides data management infrastructure for handling histories of movements with several types of queries in free Euclidean space. Examples of queries are nearest neighbour searches on moving object trajectories and trajectory similarities [START_REF] Frentzos | Algorithms for nearest neighbor search on moving object trajectories[END_REF][START_REF] Pelekis | Similarity search in trajectory databases[END_REF]. Similarly to Secondo, this approach focuses only moving object trajectories and does not cover the area of continuous processing of location-dependent queries in real-time systems. 3. Generic query processing approaches: This category encompasses techniques that require a minimum contribution from moving objects, and with few assumptions regarding, for instance, the prior knowledge of objects' trajectories or patterns. Some of those architectures are described as follows (See Table 3.3 for a summary of these approaches).

(i) The Monash University project considers, on the other hand, a distributed strategy to process range queries over static objects [Jayaputera and Taniar, 2005a,b]. Amongst the limitations of this approach is that it does not consider moving target objects, but only moving query points.

Moreover, query points can only detect objects that match the same horizontal or vertical directions.

(ii) LOQOMOTION (LOcation-dependent Queries On Moving ObjecTs In mObile Networks) is an agent-based platform that focuses on distributed processing of location-dependent queries over moving objects [Ilarri et al., 2006a,b]. A generic architecture that could be applied to different kinds of queries (mainly moving range queries have been tested), which consists in deploying a hierarchy of agents with different roles in a completely distributed environment for monitoring purposes. Those agents can move freely on a network of fixed computers in order to track the locations of relevant moving objects, correlate partial results of local queries, and continuously

adapting the final answer and presenting it to the user. No assumption has been made about storing and retrieving location data, and the current locations of the resulting objects may be returned. However, LOQOMOTION assumes a free space and Euclidean distances are applied for range queries, which could present an important limitation in road-network-based applications or in indoor environments. Moreover, this generic architecture could result in a less efficient query processing when compared to specialised approaches that focus on a specific type of queries.

(iii) Finally, a general multi-threading based framework for continuous queries over moving objects has been proposed in [START_REF] Zhao | A novel framework for processing continuous queries on moving objects[END_REF]. This proposal adopts a multi-threading computing paradigm and assumes that continuous queries are periodically reevaluated. Three types of threads were used: (1) update threads in charge of periodically updating the locations of moving objects and query points; (2) re-order threads in charge of resorting the grid indexes used for both the objects and the queries, with the aim of optimizing the cache access; and (3) query threads that contribute to the processing of a uniformly partitioned working set and to writing query results. A k NN query algorithm with two variants: query index and object index has been designed to validate this proposal. Nevertheless, there has been no incremental approach for handling continuous queries, and only Euclidean distances were considered in query processing.

Approaches for location-dependent query processing over data streams

Another category of works proposes to handle continuous location-dependent queries based on Data Stream Management Systems (DSMS) [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF][START_REF] Mokbel | Continuous query processing of spatio-temporal data streams in place[END_REF][START_REF] Nehme | SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects[END_REF][START_REF] Chow | Casper*: Query processing for location services without compromising privacy[END_REF]. In contrast to moving object databases, the locations of moving objects that are received in real-time can be considered as data streams, where new tuples are continuously released and processed without necessarily being stored permanently in the database. Several data stream management systems have been recently proposed and were used later for location-dependent query processing over data streams, such as NiagaraCQ [Chen et al., 2000],

Telegraph/TelegraphCQ [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF], STREAM [START_REF] Arasu | Stream: The stanford data stream management system[END_REF], and Nile [START_REF] Hammad | Nile: A query processing engine for data streams[END_REF]. Some of the approaches that use the concept of data streams for defining the semantics of continuous queries in mobile environments are summarized in Table 3.4 and described as follows.

1. The PLACE (Pervasive Location-Aware Computing Environments) project was developed on top of a data stream management system called Nile [START_REF] Hammad | Nile: A query processing engine for data streams[END_REF][START_REF] Mokbel | Continuous query processing of spatio-temporal data streams in place[END_REF],

and provided functionalities for the processing of continuous spatio-temporal streams in highly dynamic environments. PLACE is meant to be as generic as possible so that different category of continuous queries can be supported. For instance, the SINA algorithm has been especially designed for the continuous processing of moving range queries over moving objects [START_REF] Mokbel | SINA: Scalable incremental processing of continuous queries in spatio-temporal databases[END_REF],

in which grid indexes have been used for storing both the query points and the moving objects.

This algorithm continuously applies an in-memory hash-based join technique between query points and objects as location updates arrive. An approach for continuous k NN queries on road networks has been also presented in [START_REF] Xiong | SEA-CNN: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases[END_REF]]. An incremental memory-based evaluation paradigm has been further introduced, which focuses on only computing and reporting changes to the last evaluated answer. This is mainly achieved through the concept of negative/positive updates that
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tell whether an object should be removed/added from/to the answer. Moreover, the concept of predicate-based sliding windows has been introduced, which allows objects that satisfy a certain query predicate in real-time to be part of the current window.

2. A Scalable Cluster Based Algorithm (SCUBA) has been proposed in [START_REF] Nehme | SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects[END_REF], with the aim of processing a large set of continuous queries over spatio-temporal data streams.

SCUBA processes concurrent moving range queries by grouping moving objects and query points into moving clusters based on common spatio-temporal properties. An incremental clustering mechanism is performed mainly by maintaining two spatio-temporal thresholds: the distance speed thresholds.

This optimizes query execution at run-time, and thus favours scalability. SCUBA is implemented within the stream processing system CAPE [START_REF] Rundensteiner | Cape: A constraintaware adaptive stream processing engine[END_REF]. This approach is well suited for scenarios where groups of objects are moving together, such as groups in tourism trips, traffic jams, and animal and birds migrations, etc. However, in other scenarios where moving objects do not present similar spatio-temporal patterns, this technique is not suitable.

3. Other research studies have focused on managing trajectories of moving objects and on realtime monitoring over streaming traffic data by building techniques upon the TelegraphCQ DSMS [Patroumpas andSellis, 2004, 2012]. The Open-Source TelegraphCQ stream engine has been built on top of PostgreSQL RDBMS [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF]]. Hence, it comes readily equipped with built-in spatial operators, functions and data types, offering a great benefit for expressing continuous queries over geospatial streams. [START_REF] Patroumpas | Managing trajectories of moving objects as data streams[END_REF] proposed to represent the continuous location data flow of moving objects as trajectory streams evolving in space and time.

Whereas in [START_REF] Patroumpas | Event processing and real-time monitoring over streaming traffic data[END_REF], an abstract model for representing traffic data streams in congested road networks was presented. Applications of these geostreaming techniques include online monitoring of location-aware vehicles.

The aforementioned works developed on top of data stream management systems suggest that such a data stream paradigm can be powerful enough to manage data about moving objects. This trend needs further investigation regarding the appropriate continuous window operators to be used (e.g., time-based, tuple-count, and predicate-based sliding windows), the indexing schemes, and the types of queries that can be supported. [START_REF] Mokbel | Sole: Scalable on-line execution of continuous queries on spatio-temporal data streams[END_REF] have presented the scalable on-line execution (SOLE) algorithm for continuous evaluation of concurrent spatio-temporal queries over data streams. This approach claims to be bridging the areas of moving object databases and data stream management systems. SOLE favours in-memory processing of concurrent continuous queries and uses an incremental evaluation paradigm, a shared grid structure as a basis for shared execution, and a hash table to index moving objects. SOLE is also assumed to be able to deal with range queries as well as k NN queries. However, SOLE only returns the set of qualifying objects without being concerned about the exact locations or paths towards those objects.

Approaches for managing and querying indoor moving objects

Few research studies have addressed the specific requirements to manage and query indoor moving objects [START_REF] Jensen | Indoor -A new data management frontier[END_REF]. Two main approaches have been recently proposed in this context [START_REF] Jensen | Indexing the trajectories of moving objects in symbolic indoor space[END_REF]Lu et al., 2012;[START_REF] Xie | Efficient distance-aware query evaluation on indoor moving objects[END_REF], and are described as follows:

1. An infrastructure for the continuous range monitoring of indoor moving objects has been introduced in [START_REF] Yang | Scalable continuous range monitoring of moving objects in symbolic indoor space[END_REF]. This proposal is developed on top of a graph data model, and deploys a set of sensors to continuously monitor the users' movements, thus maintaining the query result up-to-date. Indoor moving objects are classified either within active or inactive subspace depending on the coverage of sensor devices. Several hashing-based indexing schemes have been designed, which mainly map positioning devices to the set of active objects that are currently located within their respective ranges, and for maintaining objects' current states. An incremental maintenance of range queries is proposed which aims at determining only new observations detected by sensor devices in order to maintain the query result. Whenever an object enters or leaves the range of a given critical sensor (i.e., the one from which a new observation can potentially change the query result), a query update is performed. Experimental results show that the underlying data
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71 model is flexible, since it allows for different kinds of queries to be performed, and the solutions are efficient and scalable. However, the aim of this approach was to monitor indoor moving objects, so it only processes static range queries over moving targets, without taking into account moving query points. In addition, the model underneath relies on sensor-range-based positioning techniques, which is not perfectly suitable for navigation queries that may require fine-grained location information.

Moreover, no information about the optimal path to the starting query point is obtained.

2. A framework for managing and querying indoor moving objects has been recently proposed in [Lu et al., 2012;[START_REF] Xie | Efficient distance-aware query evaluation on indoor moving objects[END_REF]. This approach proposes to manage indoor geometries (i.e., spatial entities), indoor topologies (i.e., relationships among spatial entities and between space and moving objects), as well as indoor moving objects (modelled with uncertainty regions around), with a composite index scheme in order to support efficient distance-aware queries. Geometries that represent indoor partitions are indexed by an R*-tree structure. The leaf nodes of that structure are associated with the set of moving objects currently located within the corresponding partitions. A topological layer that consists of a door-to-door-based graph is also used to compute paths towards moving objects. Upper and lower bounds for indoor distances are established, where the lower bounds represent the Euclidean distance that prunes away disqualified objects, whereas the upper bounds are determined based on topological constraints. This framework has been applied to indoor range and k NN query processing. Query evaluation is performed in four phases: 1) A filtering phase that locates the source spatial partition containing the initial query point, and retrieves candidate objects; 2) A subgraph phase that builds the doors graph in order to compute shortest paths towards the candidate objects; 3) A pruning phase that applies the upper/lower bounds on indoor distances to prune away disqualified objects; and finally 4) A refinement phase that computes the actual indoor distances towards the last candidates to return the qualifying objects. A similar but adapted process is applied to process k NN queries. However, only static query points were considered, and this approach did not discuss how to incrementally reevaluate those queries.

Towards context and preference-aware location-dependent queries

Over the past few years, several research studies have discussed the integration of some contextual dimensions in query processing [Trajcevski et al., 2004a;[START_REF] Van Bunningen | A context-aware preference model for database querying in an ambient intelligent environment[END_REF][START_REF] Mokbel | Toward context and preference-aware location-based services[END_REF][START_REF] Levandoski | Caredb: A context and preferenceaware location-based database system[END_REF][START_REF] Bosc | On fuzzy queries with contextual predicates[END_REF][START_REF] Yu | A knowledge infrastructure for intelligent query answering in location-based services[END_REF][START_REF] Wenzel | A preference sql approach to improve contextadaptive location-based services for outdoor activities[END_REF]. Users' preferences have traditionally been exploited in query personalization to better anticipate their needs and customize their experience. In order to deliver personalized query answering in mobile environments, context-and preference-aware query processing techniques are increasingly required. A designed query processing strategy should provide sufficient flexibility and adaptiveness to location-based services. However, there is still a lack of approaches addressing context-awareness in continuous location-dependent query processing. Some the relevant works that might inspire further research in this area are described as follows (cf., Table 3.5).

1. CAT (Correct Answers of continuous queries using Triggers) is a framework that deals with continuous queries in moving object databases with a known trajectory model and taking into account certain real-time spatio-temporal events [Trajcevski et al., 2004a]. The CAT project relies on the use of triggers in databases in order to detect the relevant changes such as real-time traffic conditions. In such cases, the server requests for location updates in order to keep the data structures and the answer to active queries up-to-date. Some relevant contextual changes can be taken into account either at the server side by detecting events such as traffic jams, accidents, etc., or by the moving objects based on changes in their plans [Trajcevski et al., 2005a[START_REF] Trajcevski | Evolving triggers for dynamic environments[END_REF]]. An extended version called CAT++ has been proposed based on a new paradigm for expressing reactive behaviour in moving object databases, and referred to as Evolving Context-Aware Event-Condition-Action (ECA) 2 [START_REF] Trajcevski | Dynamic topological predicates and notifications in moving objects databases[END_REF]. This approach allows for reevaluating queries when changes occur to the database, and for the processing of dynamic topological predicates such as moving along and moving towards, which is believed to be of interest for applications such as emergency response, digital battlefield, and for event notification systems.

2. An ontology-based preference-aware model for database querying in an ambient intelligent environment has been proposed in [START_REF] Van Bunningen | A context-aware preference model for database querying in an ambient intelligent environment[END_REF]. The context model is based on a variant of Description Logics (DL) for knowledge representation. This model claims to support pull and push-based queries. The model has been implanted on top of a DBMS as an OWL-based knowledge base for reasoning. However, this approach is not directly applied to the continuous processing of location-dependent queries and for handling moving objects. [START_REF] Yu | A knowledge infrastructure for intelligent query answering in location-based services[END_REF] presented another ontology-based and application-independent knowledge framework for location-based services querying. This knowledge is dynamically maintained and used to reformulate user's queries via personalized and contextualized rewriting. The architecture is made of ontology modules that manage user profiles, preferences, and service accessibility; and a mechanism for information profiling and semantics matching. Nevertheless, real-time event management have not been directly addressed, and the architecture was not applied to location-dependent queries over moving objects.

3. Mokbel and his colleagues recently proposed two prototypes called FlexPref and CareDB with the aim of incorporating context-awareness in DBMS to provide adaptive answers to spatio-temporal queries [START_REF] Mokbel | Toward context and preference-aware location-based services[END_REF]Levandoski et al., 2010a,b]. FlexPref was first presented as a framework implemented in PostgreSQL for preference evaluation in database systems. The framework
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73 allows new preference-based methods to be plugged into it. Once integrated, the preference method lives at the core of the database, enabling the execution of preference queries involving common database operations. CareDB has further extended FlexPref by integrating a taxonomy of preference types and contextual data (e.g., user profile, traffic conditions, weather) in query processing, and by handling data uncertainty [START_REF] Levandoski | Caredb: A context and preferenceaware location-based database system[END_REF]. Although this approach appears to be very promising, it has not yet been applied to continuous location-dependent queries.

4. Within the context of fuzzy queries that deal with "soft" criteria or constraints trying to fulfil them as closely as possible, several research studies has been conducted such as PreferenceSQL [START_REF] Kießling | Preference SQL: Design, implementation, experiences[END_REF][START_REF] Kießling | The preference sql system-an overview[END_REF], and the approach developed in [START_REF] Bosc | On fuzzy queries with contextual predicates[END_REF][START_REF] Mokhtari | Système personnalisé de planification d'itinéraire : Une approche basée sur la théorie des ensembles flous[END_REF]. PreferenceSQL extends standard SQL with a preference model, whose keywords and operators are discussed in Section 3.4, as well as an optimizer in charge of translating preference queries into standard queries. [START_REF] Bosc | On fuzzy queries with contextual predicates[END_REF] have considered the interpretation and processing of fuzzy queries by incorporating contextual predicates on attributes such as low, medium, and high.

However, those approaches were not tested in location-dependent query processing. [START_REF] Mokhtari | Système personnalisé de planification d'itinéraire : Une approche basée sur la théorie des ensembles flous[END_REF] has recently proposed an approach based on fuzzy logic theory for expressing and processing route planning queries in roads networks. This approach identifies ambiguous and possibly contradictory preferences and to provide a selection mechanism that retrieves the tuples which satisfy as closely as possible those fuzzy constraints. This proposal does not provide an mechanism for continuous processing of location-dependent queries.

Consequently, there is a promising trend to discuss and deal with preferences and other contextual data beyond space and time. Approaches that address this issue are still not completely applied to highly dynamic environments, and to process continuous location-dependent queries. Realtime event management still appears to be an important challenge to cope with in such environments, since an entire dedicated sensor-based infrastructure is required to communicate changes in real-time, and to perform adaptation to query answers accordingly.

Continuous processing of navigation-related queries

While Section 3.2 focuses on architectures that deal with location-dependent query processing over moving objects, this section takes a different perspective to discuss the incremental execution paradigm at the algorithmic level to process location-dependent queries. The incremental execution paradigm implies reusing information from previous searches in order to obtain the current result adaptively without having to reevaluate everything from scratch.

As suggested in Chapter 2, graph-based data models are well suited to compute an optimal and Table 3.5: Context-and preference-aware query processing approaches realistic route to a destination by taking into consideration architectural constraints and dynamic changes in the environment. Particularly, the Euclidean distance is meaningless to compute routes in road networks or in indoor spaces, due to path constraints. Therefore, approaches for query processing based on the network distance are preferred and more realistic. However, existing approaches for network-based query processing usually assume an outdoor environment (e.g., [START_REF] Deng | Instance optimal query processing in spatial networks[END_REF][START_REF] Lee | When location-based services meet databases[END_REF][START_REF] Papadias | Query processing in spatial network databases[END_REF], where for example hierarchical networks do not naturally appear and there are no accessibility rules based on user profiles. Nevertheless, recent works have studied location-dependent queries in indoor environments [START_REF] Yang | Scalable continuous range monitoring of moving objects in symbolic indoor space[END_REF][START_REF] Yang | Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space[END_REF][START_REF] Yuan | Supporting continuous range queries in indoor space[END_REF].

Navigation-related queries, and more specifically, queries for computing optimal paths between static and/or moving objects are very relevant for routing services (e.g., "guide-me", "get-together", "find-me"). Range queries can also be used in many indoor location-based services for monitoring purposes (e.g., "what-is-around" services, crowd monitoring within a given area, location-based alerts, etc.). Other location-dependent queries such as k nearest neighbour and reachability queries are also considered (e.g., find the nearest OOI). This section first discusses foundations of query processing in spatial network databases (cf., Section 3.3.1). Related work on continuous path and range queries over moving objects is presented in detail in Sections 3.3.2 and 3.3.3, as algorithms to address those queries in indoor mobile environments are introduced in Chapter 6. Section 3.3.4 presents works on
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processing k NN and reachability queries.

Query processing in spatial network databases

Due to the importance of spatial networks in real-life applications, intensified efforts have been made

in the last decade to bring up new foundations for query processing in spatial databases [START_REF] Papadias | Query processing in spatial network databases[END_REF][START_REF] Deng | Instance optimal query processing in spatial networks[END_REF]. These approaches have mainly focused on efficient query processing in spatial networks, but only with static query points and/or over static data. Related work on static query processing in spatial networks is discussed hereafter.

1. [START_REF] Papadias | Query processing in spatial network databases[END_REF] wavefront is gradually expanded in networks from the initial query point such that the data points closer to the query point are visited earlier than the others. These foundations have been afterwards adopted in many research studies on spatial network databases [START_REF] Mouratidis | Continuous nearest neighbor monitoring in road networks[END_REF][START_REF] Demiryurek | Efficient continuous nearest neighbor query in spatial networks using Euclidean restriction[END_REF][START_REF] Xuan | Time constrained range search queries over moving objects in road networks[END_REF][START_REF] Xuan | Voronoi-based range and continuous range query processing in mobile databases[END_REF]. However, these techniques were not applied to the processing of such queries over moving objects, since only static query and data points were considered. The incremental approach was used to apply a multi-step methodology that gradually responds to a given query, but without discussing a continuous reevaluation strategy to deal with moving objects.

2. Performance optimization of query processing in spatial networks has been the focus of the work presented in [START_REF] Deng | Instance optimal query processing in spatial networks[END_REF] Although these mechanisms only assume static query points and applied only to static data, they constitute a key building block in other research studies that focus on the continuous processing of location dependent queries.

Path queries

Shortest path algorithms have been the subject of extensive research for many years resulting in a large number of algorithms for various scenarios and in different environments [START_REF] Orda | Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length[END_REF][START_REF] Sommer | Approximate shortest path and distance queries in networks[END_REF][START_REF] Wu | Shortest path and distance queries on road networks: an experimental evaluation[END_REF]. Most of these algorithms deal with fixed graphs (i.e., fixed topology and fixed link weights). Path queries imply finding an optimal route to a specified place or an object of interest. Both static and/or moving target objects can be considered in this kind of query. This section first presents approaches for multi-criteria and hierarchical path search considering static objects. Techniques for continuous processing of path queries over moving objects are then discussed while taking into account different types of environment (i.e., Euclidean spaces with obstacles as well as spatial networks).

Multi-criteria & hierarchical path searches

As discussed in Chapter 1 (cf., Section 1.2), A path search needs to aggregate multiple criteria (e.g., user preferences and capabilities, distance, time, etc.) passed as function parameters to evaluate the cost value of each step and then to select the most appropriate path, that is, the optimal path that allows, for instance, to reach a destination while avoiding threats [START_REF] Disser | Multi-criteria shortest paths in timedependent train networks[END_REF][START_REF] Delling | Engineering route planning algorithms[END_REF]. On the other hand, hierarchical routing algorithms became important tools in querying databases for the shortest paths in time-critical applications like Intelligent Transportation Systems (ITS), due to the growing size of their spatial networks [START_REF] Shekhar | Materialization trade-offs in hierarchical shortest path algorithms[END_REF].

Existing approaches on multi-criteria and multi-modal path searches consider dynamic environments in which edge weights can change dynamically according to time (e.g., opening hours), real-time events (e.g., traffic conditions) or to the different kinds of transportation modes available for a given path search [START_REF] Peytchev | Experiences in building decision support systems for traffic and transportation gis[END_REF][START_REF] Bielli | Object modeling and path computation for multimodal travel systems[END_REF][START_REF] Ding | Finding time-dependent shortest paths over large graphs[END_REF][START_REF] Berger | Fully dynamic speed-up techniques for multi-criteria shortest path searches in time-dependent networks[END_REF][START_REF] Sommer | Approximate shortest path and distance queries in networks[END_REF]. Particularly, time-dependent shortest paths in dynamic networks have been proposed in [START_REF] Ding | Finding time-dependent shortest paths over large graphs[END_REF][START_REF] Berger | Fully dynamic speed-up techniques for multi-criteria shortest path searches in time-dependent networks[END_REF]. [START_REF] Ding | Finding time-dependent shortest paths over large graphs[END_REF] designed an edge-delayed function, associated with each edge and stored in database, which computes the best travel time from a source to a destination by taking into account the departure time. This favours queries such as the minimum-travel-time path, with the best departure time to be selected from a time interval. [START_REF] Berger | Fully dynamic speed-up techniques for multi-criteria shortest path searches in time-dependent networks[END_REF] introduced a technique for time-dependent shortest paths, which allows to handle dynamic changes. A dynamic timetable that stores departure and arrival events (i.e., mainly departure and arrival times in train networks) is maintained. Edges can be delayed or even become temporarily unavailable to reflect events derived from real-time traffic data.

Hierarchical path search approaches have also been explored in many research studies [START_REF] Shekhar | Materialization trade-offs in hierarchical shortest path algorithms[END_REF][START_REF] Jung | An efficient path computation model for hierarchically structured topographical road maps[END_REF][START_REF] Botea | Near optimal hierarchical path-finding[END_REF][START_REF] Cagigas | Hierarchical path search with partial materialization of costs for a smart wheelchair[END_REF][START_REF] Cagigas | Hierarchical D* algorithm with materialization of costs for robot path planning[END_REF] Guerra- [START_REF] Guerra-Filho | An optimal iterative algorithm for shortest path query[END_REF][START_REF] Geisberger | Contraction hierarchies: Faster and simpler hierarchical routing in road networks[END_REF][START_REF] Rice | Graph indexing of road networks for shortest path queries with label restrictions[END_REF][START_REF] Seder | Hierarchical path planning of mobile robots in complex indoor environments[END_REF].

They are mainly applied to two-dimensional occupancy grid maps representing the environment.

Specific so-called bridge nodes (i.e., nodes that connect submaps to a parent map) are then determined to create the hierarchy. The key issue lies in choosing the optimal placement of such bridge nodes.

For instance, the HiTi graph model provides a mechanism for structuring a topographical road map in a hierarchical fashion, to efficiently compute the optimal minimum cost path [START_REF] Jung | An efficient path computation model for hierarchically structured topographical road maps[END_REF]. On the other side, a hierarchical but static variant of A*, referred to as Hierarchical Path-finding A* (HPA*), has been proposed in [START_REF] Botea | Near optimal hierarchical path-finding[END_REF], which decomposes a grid map into linked clusters and pre-computes optimal distances for crossing clusters at an abstract level. A bottom-up approach applied on a two-level hierarchy has been proposed. The technique has been used for path planning computations applied to static data only, and not to moving objects. An off-line hierarchical path planner module of a smart wheelchair-aided navigation system has been described in [START_REF] Cagigas | Hierarchical path search with partial materialization of costs for a smart wheelchair[END_REF]. This approach uses hierarchies of abstraction and was applied for indoor navigation of a wheelchair user between floors of a building. However, on-line path planning and obstacle avoidance are not described in this proposal.

The Hierarchical D* (HD*) [START_REF] Cagigas | Hierarchical D* algorithm with materialization of costs for robot path planning[END_REF] and the Focused Hierarchical D* (FHD*) [START_REF] Seder | Hierarchical path planning of mobile robots in complex indoor environments[END_REF] both deal with hierarchical path searches in dynamic indoor environments. These techniques are based on the D* (Dynamic A*) [START_REF] Stentz | Optimal and efficient path planning for partially-known environments[END_REF] and the Focused D* [START_REF] Stentz | The focussed D* algorithm for real-time replanning[END_REF],

which assume dynamically changing environments (e.g., transient obstacles) and partially unknown environments to be explored by robots. The HD* algorithm precomputes the set of paths between bridge nodes based on A*. HD* tries to to find the best path between the submaps where the start and goal nodes are located. FHD* ensures optimality of te global path by identifying the optimal placement of the bridge nodes, and decreases computational complexity of path replanning in real-time by reducing the search scope to the area around the optimal path.

An iterative (non-recursive) algorithm to create a hierarchy of networks, and to find a shortest path through all levels of the hierarchy has also been proposed by [START_REF] Guerra-Filho | An optimal iterative algorithm for shortest path query[END_REF]].

An approach for indexing road networks to enable efficient path query processing has been presented

in [START_REF] Rice | Graph indexing of road networks for shortest path queries with label restrictions[END_REF]. This approach uses a bidirectional Dijkstra algorithm and extends the hierarchical graph indexing approach known as Contraction Hierarchies [START_REF] Geisberger | Contraction hierarchies: Faster and simpler hierarchical routing in road networks[END_REF].

The idea behind is to identify a limited set of possible constraints and changes that might affect the CHAPTER 3. CONTINUOUS LOCATION-DEPENDENT QUERY PROCESSING shortest path search on road networks, and then to incorporate those constraints directly into the graph index construction in order to avoid the overhead of reconstructing the index for each possible constraint scenario at query time.

It should be emphasized that the above described approaches work only on static objects (i.e., nodes of the graph), and some have discussed path planning in dynamic environments meaning that multiple criteria could be mixed together in order to compute a cost function that delivers more appropriate paths. Nevertheless, a few research studies have lately been presented for the processing of path queries over moving objects. These techniques are highlighted in the following section, especially those that employ an incremental and continuous query processing approach.

Continuous path search algorithms

Efforts have been recently made to deal with the challenge of continuously processing path queries over moving objects located on a spatial network [START_REF] Chon | Fates: Finding a time dependent shortest path[END_REF][START_REF] Lee | Continuous evaluation of fastest path queries on road networks[END_REF][START_REF] Yin | A shortest path algorithm for moving objects in spatial network databases[END_REF][START_REF] Song | An incremental query algorithm for optimal path queries under traffic jams[END_REF][START_REF] Sun | Efficient incremental search for moving target search[END_REF]Sun et al., , 2010a,b;,b;[START_REF] Malviya | A continuous query system for dynamic route planning[END_REF]. Some of them considered moving objects that are following known paths such as vehicles, and designed a distributed architecture to maintain a global view of the resulting route for a given query, so that any dynamic change reported from local views can be returned to the user [START_REF] Chon | Fates: Finding a time dependent shortest path[END_REF]. This approach maintains two queues for continuous monitoring of updates (e.g., routes congestion) that can affect the path for each moving object until that object reaches its destination. However, this approach does not handle moving targets and the continuous monitoring was performed by a set of periodical snapshots of the system.

The approach presented by [START_REF] Lee | Continuous evaluation of fastest path queries on road networks[END_REF] employs a mechanism to monitor the specified area for the continuous evaluation of fastest path queries. This mechanism eliminates unnecessary reevaluations of fastest path queries, and reduces the search space for finding the fastest path. In addition, a grid-based index has been proposed to increase the efficiency of multiple query processing.

This technique handles changes in location of the query point, but was only applied to static destination. Similarly, the problem of building a traffic aware dynamic route planning service was considered in [START_REF] Malviya | A continuous query system for dynamic route planning[END_REF]. The authors have introduced the k candidate paths technique which maintains the set of pre-designated or preprocessed routes between a given source and target, and updates those routes as traffic delays on road segments change while trying to avoid complete reevaluation of the query. , 2010b], that aim at providing an efficient incremental approach for moving target path search in dynamic environments. In particular, FRA* is an incremental version of A* that is applied on moving targets in grid maps, and aims at repeatedly finding the shortest path without having to process each search iteration independently from scratch. This algorithm regularly transforms the previous search tree to an updated tree based on the new locations of the objects of interest. The current search tree is always rooted at the current location of the query point. Each cell within the search tree maintains a pointer to its parent cell, so that a shortest path to the root can be directly obtained by traversing the tree in reverse following the ancestor nodes. Although this algorithm performs well on moving objects, its scalability to a large environment (i.e., a large campus with multi-storey buildings) is still an issue to address, since fine-grained grids have been adopted, which

have not be proven to be scalable to large spaces. Moreover, FRA* does not take into account the hierarchical structure of an indoor environment, and thus cannot handle continuous path searches in multi-storey buildings. GFRA* is a generalized approach that further solves moving target search problems on arbitrary graphs, including the state lattices used for robotics applications [Sun et al., 2010a].

Both the incremental processing provided in FRA* and the hierarchical approach of HPA* have inspired our work on the continuous processing of hierarchical path searches over moving objects described in Chapter 6. Our approach transforms an initial search tree to an updated tree depending on the movements of the objects and the changes in the environment.

Range queries

Range queries are used to retrieve information about objects or places within a specified range or area [START_REF] Zhang | Location-based spatial queries[END_REF]. Some range queries have a static query point and others have a moving query point. Similarly, the target objects of the queries can be static or moving. While approaches on static range query processing in spatial network databases have been discussed in Section 3.3.1, this section presents techniques for an efficient evaluation of continuous range queries on moving objects. It should be also emphasized that, in contrast to Section 3.2 that describes architectures and strategies, this part deals with algorithmic challenges and related work regarding the continuous processing of such queries.

A technique presented in [START_REF] Lazaridis | Dynamic queries over mobile objects[END_REF] as an attempt to process non-predictive dynamic queries, mainly covers moving range queries, as well as predictive dynamic queries by employing a motion indexing technique for storing moving objects. A multi-dimensional R-tree-based data structure has been further used to index the bounding boxes representing objects' motion. This implies saving disk access since motion segments that do not intersect with the query are not updated even though their bounding boxes do. However, this work proposes a periodic reevaluation of continuous queries from scratch.

Query Indexing [START_REF] Prabhakar | Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects[END_REF][START_REF] Kalashnikov | Main memory evaluation of monitoring queries over moving objects[END_REF]] is a technique for the continuous processing of multiple static range queries over moving objects. The objective was to overcome disadvantages of traditional indexing techniques by mainly indexing static query points instead of objects, since they have an update frequency that is much lower than moving objects. An incremental evaluation mechanism that consisted of determining, for each change of object's location, the set of queries in the index that might be affected. This is implemented by adopting a similar concept of safe region in which an object does not need to update its location. Another variant of this approach called Velocity Constrained Indexing (VCI) was introduced, which consists of an R-tree index that stores the minimum bounding boxes of each moving object taking into account the maximum speed of that object. Although Q-index appears to have outperformed traditional indexing schemes, it suffers from expensive operations upon the arrival of new queries and it is only applied to static query points.

Related work on continuous processing of range queries in spatial network databases can be found in [START_REF] Stojanovic | Continuous range monitoring of mobile objects in road networks[END_REF][START_REF] Xuan | Time constrained range search queries over moving objects in road networks[END_REF][START_REF] Cheema | Continuous monitoring of distance-based range queries[END_REF][START_REF] Wang | Processing of continuous location-based range queries on moving objects in road networks[END_REF][START_REF] Xuan | Voronoi-based range and continuous range query processing in mobile databases[END_REF]. The ARGONAUT prototype is an approach built based on a known trajectory model [START_REF] Stojanovic | Continuous range monitoring of mobile objects in road networks[END_REF]. This project has been developed on top of a model for representing and querying moving objects called mSTOMM (Spatio-Temporal Object Modeling and Management), and provides data management and query processing facilities, especially to perform continuous moving range queries in road networks. An in-memory indexing scheme based on R*-tree for storing segments of the spatial network has been further developed. Moreover, an incremental evaluation paradigm is proposed for continuous range monitoring, which include a filter step that results in a set of candidate moving objects by pruning objects whose minimum bounding rectangle (MBR) of the current segment overlaps with the query range, but their actual network distance is greater than the query range. A refinement step is then periodically performed for the continuous query reevaluation. This approach is not applied to other kinds of queries, and does not return the locations of resulting objects, neither the paths towards them.

A time constrained continuous range search algorithm applied to moving objects has been proposed in [START_REF] Xuan | Time constrained range search queries over moving objects in road networks[END_REF][START_REF] Xuan | Voronoi-based range and continuous range query processing in mobile databases[END_REF], which aims at retrieving all objects of interest within the The continuous range search proposed in this approach considers a moving query point, while data
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[ [START_REF] Cheema | Continuous monitoring of distance-based range queries[END_REF] have studied the continuous monitoring of moving range queries over static data objects applied to Euclidean spaces as well as to road networks. This approach employs the concept of a safe zone which guarantees that the results of the query do not change as long as the query remains within that zone. [START_REF] Wang | Processing of continuous location-based range queries on moving objects in road networks[END_REF] have designed a specific structure called Shortest-Distance-based tree (SD-tree) hat preserves the network connectivity and distance information in continuous query processing, thus speeding-up the network expansion process.

This approach considers moving query points on moving target objects. An algorithm has been proposed that can rotate, truncate, and extend the edges of the SD-tree with regard to the query point movements. It uses periodic sampling on moving object positions, so that a number of object updates are received and stored during each cycle. This technique does not require prior knowledge of the query point's destination during query processing. Although this technique appears to be very close to our proposal described in Chapter 6, it does not consider dynamic networks and does not return the locations of resulting objects, neither the paths towards them.

A recent work has studied continuous range queries in indoor environments [START_REF] Yuan | Supporting continuous range queries in indoor space[END_REF]. A specific graph data model that represents an indoor space has been designed, thus allowing the processing of specific kinds of queries on top of the generated spatial network. In [START_REF] Yuan | Supporting continuous range queries in indoor space[END_REF], the authors have introduced an approach to support range queries based on a virtual cell-based network generated for each query. Besides, an extension of this method has been proposed in the same paper to continuously process range queries whenever the query point moves.

However, this approach deals only with range queries, and is only applied to static data (i.e., static points of interest). Moreover, for each query, a new virtual network that connects the query point to predetermined points of interest is required, and additional computations are also needed to update the network each time the query point leaves its safe area. Furthermore, qualifying data points that are within the specified range are returned, without information about optimal paths towards those points.

Other kinds of location-dependent queries

This section briefly surveys the state-of-art of other kinds of location-dependent query processing over moving objects, such as the well known k Nearest Neighbour queries and other navigation-related queries. Although k NN query processing is as much important as the previously described queries (i.e., path and range queries), this thesis does not cover the continuous query processing of such queries due to lack of space and time. Nevertheless, those queries are represented and taken into account in the whole system and the query language described later in Chapter 5. Moreover, the indoor data model introduced in Chapter 4 is sufficiently flexible to support the continuous processing of those queries as will be shown later. Therefore, this section covers the most relevant research studies in this area, and highlights the pros and cons of currently available solutions for further development.

Nearest neighbour queries

The basic concept behind k Nearest Neighbour (k NN) queries is to search for the k closest qualifying objects to a given query point in space [START_REF] Roussopoulos | Nearest neighbor queries[END_REF]. Although nearest neighbour queries have been analysed extensively, the implications of properties and constraints in highly dynamic environments still require more investigation. Particularly, continuous nearest neighbour searches over moving objects have increasingly attracted the interest of researchers in the field [START_REF] Tao | Continuous nearest neighbor search[END_REF][START_REF] Cao | Location dependent query in a mobile environment[END_REF][START_REF] Mouratidis | Continuous nearest neighbor monitoring in road networks[END_REF][START_REF] Demiryurek | Efficient continuous nearest neighbor query in spatial networks using Euclidean restriction[END_REF][START_REF] Güting | Nearest neighbor search on moving object trajectories in Secondo[END_REF][START_REF] Demiryurek | Efficient k-nearest neighbor search in time-dependent spatial networks[END_REF][START_REF] Gao | Continuous visible nearest neighbor query processing in spatial databases[END_REF][START_REF] Sistla | Answer-pairs and processing of continuous nearest-neighbor queries[END_REF][START_REF] Elmongui | Continuous aggregate nearest neighbor queries[END_REF].

[ [START_REF] Tao | Continuous nearest neighbor search[END_REF] addressed continuous moving nearest neighbour queries on static data, where a moving query point follows a known segment in an Euclidean space. This approach tries to avoid false misses and the high processing cost, and uses R-tree for continuous query processing. Several heuristic methods are also used to avoid accessing nodes, if they cannot contain qualifying data. [START_REF] Cao | Location dependent query in a mobile environment[END_REF] have proposed a solution for k NN query processing with an approach to index static target objects within a reachability graph for supporting attainability (i.e., real driving distance in road networks). The reachability graph index is built based on actual driving distance from a moving vehicle to nearby static objects. Graph exploration techniques are used to retrieve nearest target objects from the index. An architecture for location-dependent query processing has been proposed

whose main components aim at managing the mobile client's current location and predicting its future position during query execution. Again, this approach only handles static target objects and for only one type of queries.

The continuous monitoring of moving nearest neighbour queries applied to moving objects in dynamic road networks has been discussed in [START_REF] Mouratidis | Continuous nearest neighbor monitoring in road networks[END_REF]]. An in-memory monitoring algorithm based on the previously described incremental network expansion (INE) mechanism is proposed. This algorithm computes the shortest paths from the source towards nodes of the expanded network to form an expansion tree, which is used to effectively determine the relevant updates that might affect the answer. A shared execution paradigm is also applied to reduce processing time.

it groups together the queries that fall in the path between two consecutive intersections in the network, and produces their results by monitoring the NN sets of these intersections.
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According to [START_REF] Demiryurek | Efficient continuous nearest neighbor query in spatial networks using Euclidean restriction[END_REF], the approach presented in [START_REF] Mouratidis | Continuous nearest neighbor monitoring in road networks[END_REF] fails to scale in real-world scenarios where the spatial network is large and the data objects moving on the network are numerous. Consequently, a hierarchical approach for network expansion might be of great interest to efficiently process continuous queries. In order to increase the efficiency of the algorithms described in [START_REF] Mouratidis | Continuous nearest neighbor monitoring in road networks[END_REF], two techniques referred to as guided search, that makes use of the Euclidean restriction mechanism (described in Section 3.3.1), and localized mapping, that only maps a location update to the network if it is relevant to the result of the query, have been proposed in [START_REF] Demiryurek | Efficient continuous nearest neighbor query in spatial networks using Euclidean restriction[END_REF]. Time-dependent edge weights in road networks were further considered in [START_REF] Demiryurek | Efficient k-nearest neighbor search in time-dependent spatial networks[END_REF], but on static k NN queries. Other solutions have addressed continuous k nearest neighbour query processing on moving object trajectories [START_REF] Güting | Nearest neighbor search on moving object trajectories in Secondo[END_REF]. The impact of obstacles on visibility between objects for continuous nearest neighbour search but in Euclidean space has been further considered in [START_REF] Gao | Continuous visible nearest neighbor query processing in spatial databases[END_REF].

The only work we are aware of in the context of indoor environments for supporting k nearest neighbour search has been provided in [START_REF] Yang | Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space[END_REF]. This approach is developed on top of a door-to-door graph data model. This technique deploys a set of sensors to continuously monitor users' movements, thus maintaining the query result up-to-date. It also uses a probability estimation mechanism to prune unqualified candidates from the candidate set, so that the most probable k nearest neighbours are retrieved. The results show that the underlying data model is flexible, since it allows for different kinds of queries to be performed, and the solutions on top of these foundations are efficient and scalable. However, this approach only considers static query points, and the model underneath depends on sensor-range-based positioning techniques, which are not perfectly suitable for navigation queries that may require fine-grained location information. Moreover, other contextual dimensions such as time and user profiles are not considered in query processing. Furthermore, in the case of large indoor spaces, a generic architecture that allows distributing and managing data over several pieces of a database would still be required.

Reachability Queries and Reverse Range and k NN Queries

Other kinds of location-dependent and navigation-related queries have been recently studied [START_REF] Bao | Efficient evaluation of k-range nearest neighbor queries in road networks[END_REF][START_REF] Shang | Finding the most accessible locationsreverse path nearest neighbor query in road networks[END_REF][START_REF] Shirani-Mehr | Efficient reachability query evaluation in large spatiotemporal contact datasets[END_REF]. Finding the most accessible locations given a trajectory dataset in road networks has been explored by [START_REF] Shang | Finding the most accessible locationsreverse path nearest neighbor query in road networks[END_REF] and was referred to as

Reverse Path Nearest Neighbor (R-PNN). Similarly, [START_REF] Shirani-Mehr | Efficient reachability query evaluation in large spatiotemporal contact datasets[END_REF] studied Reachability queries in spatio-temporal databases, which evaluate whether two objects are reachable through an evolving network of contacts among trajectories of moving objects. Constrained nearest neighbour queries were also proposed by [START_REF] Ferhatosmanoglu | Constrained nearest neighbor queries[END_REF], which refer to nearest neighbour queries that are constrained to a specified region. On the other hand, a k-Range Nearest Neighbour query in road networks finds the k nearest neighbours of every point on the road segments within a given query region based on the network distance [START_REF] Bao | Efficient evaluation of k-range nearest neighbor queries in road networks[END_REF]. The goal of these approaches is not to deal with the continuous processing of those queries, but rather to provide new efficient solutions to different kinds of queries required in different scenarios.

Continuous Reverse k Nearest Neighbour queries (Rk NN) in both Euclidean space and spatial networks were the focus of the work presented in [START_REF] Cheema | Continuous reverse k nearest neighbors queries in euclidean space and in spatial networks[END_REF]. A reverse k nearest neighbour (Rk NN) query retrieves all the data points that have the initial query point as one of their k nearest neighbours. Continuous aggregate nearest neighbour queries for moving objects in road networks were discussed in [START_REF] Elmongui | Continuous aggregate nearest neighbor queries[END_REF], in which the set of k moving objects that have the smallest aggregate distance function (e.g., max, sum or min) are retrieved.

Languages for location-dependent queries

A strongly related field of interest when considering location-dependent query processing is the representation of the semantics behind those queries [START_REF] Sistla | Modeling and querying moving objects[END_REF]. Most of the query languages designed for representing location-based queries in moving object databases or those that are compliant with the spatio-temporal data stream paradigm are strongly related to the data model underneath, and on how moving object data is managed [Erwig and Schneider, 1999]. Some data models define a flexible collection of type constructors and operations, that are used to create and access the underlying data structures, and to express all queries using a few manipulation primitives [START_REF] Güting | Graphdb: Modeling and querying graphs in databases[END_REF]. This section highlights previous work on query languages for location-dependent queries, and focuses on the characteristics of the corresponding grammars with respect to the semantics reflected, and the preferences and constraints that might be specified by the user or inferred from his/her request and/or from his/her current context. Query languages in moving object databases are first discussed in this section, and then a brief survey on languages for handling spatio-temporal data streams is presented. The section ends by discussing approaches for querying preference-aware and contextual data.

Query languages in moving object databases

Future Temporal Logic (FTL) is the query language associated with the MOST model introduced by [START_REF] Sistla | Modeling and querying moving objects[END_REF]] and described in Section 3.2.1. Specific temporal operators (such as until, nexttime, eventually, sometimes, within, and always) were introduced in order to handle time sensitive data, and to enable present and future queries over moving objects. Additional spatial operators such
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as inside and dist have been also proposed. Instantaneous queries (i.e., predicates on the current database state) and continuous queries are considered. An answer to a continuous query is provided by using a time interval begin to end, and both immediate and delayed strategies for transmitting the result to the user are employed. [START_REF] Vazirgiannis | A spatiotemporal model and language for moving objects on road networks[END_REF] further defined other modifiers such as ALONG EXISTING PATH and ALONG SHORTEST PATH, and the operands DISTANCE and TRAVELTIME for handling network-based distances and travel times. Finally, [START_REF] Trajcevski | Managing uncertainty in moving objects databases[END_REF] were concerned with managing uncertainty in moving object databases, and proposed two related operators called possibly and definitely to determine the object may possibly satisfy a given condition or it should definitely do so.

A query language for handling time-dependent geometries such as moving point and moving region has been introduced in [Erwig et al., 1999;[START_REF] Guting | A foundation for representing and querying moving objects[END_REF]. A large number of auxiliary spatio-temporal data types and operations for handling and querying moving object trajectories (e.g., deftime, rangevalues, locations, trajectory, traversed ), and for representing spatial relationships between geometries (e.g., intersects, touches, attached, overlaps, etc.) have been presented. Aggregate functions (min, max, avg) have also been applied to moving object data types. An extension to this approach which aimed at representing those moving objects in spatial networks has been proposed

in [START_REF] Güting | Modeling and querying moving objects in networks[END_REF]. Static and/or moving objects are represented on top of a network model for supporting the description and querying of complete histories of movement. Two data types gpoint and gline are defined, which represent a position in a given network and a region within that network, respectively. moving(gpoint) and moving(gline) represent the corresponding time-dependent geometries. The basic concept of route (corresponding to roads or highways and to paths over a graph) and some special operations for networks are also presented such as shortest_path and trip.

A generic data model for representing the complete movement of a moving object (i.e., indoor and outdoor movements), where the roads, streets and rooms are considered as constituting entities, has been further described in [START_REF] Xu | A generic data model for moving objects[END_REF]. Additional data types have been provided such as mpptn, for representing moving points in public transportation network (i.e., buses, trains and underground trains), and groom, that describes a room by a 2D area plus a value denoting the height above some ground level of the building. An indoor graph has been designed based on groom and door data types to support indoor trip planning at the room level. Doors in this graph represent nodes and edges correspond to rooms. Searches for optimal routes is made available through this model, and based on a preprocessing step that computes paths between all pairs of doors. However, this model does not represent objects' movements at a fine-grained level. In addition, this approach does not deal with the continuous processing of current movements but rather with histories of movements.

Moving GeoPQL is a visual query language in spatio-temporal databases described in [START_REF] D'ulizia | Moving GeoPQL: A pictorial language towards spatio-temporal queries[END_REF]. A temporal layer is added on top of the Geographical Pictorial Query language (GeoPQL) [START_REF] Ferri | Geopql: A geographical pictorial query language that resolves ambiguities in query interpretation[END_REF], thus allowing to specify and visualize the spatial configuration of moving objects in a given time interval. GeoPQL algebra basically consists of topological, logical, and metric operators, but does not handle temporal and spatio-temporal queries. This set has Geo-shrinking, Geo-merging, Geo-splitting, Geo-appearing and Geo-disappearing). However, this algebra is also designed for expressing queries on histories of movements and does not consider continuous present queries.

Data types and operations for spatio-temporal data streams

The other category of query languages deals with data streams to represent abstract continuous semantics with specific data types and operators. As previously mentioned, time-based as well as tuple-based execution models are considered in classical data stream management systems, so that the associated continuous sliding-window semantics should be reflected by the corresponding query language [START_REF] Jain | Towards a streaming sql standard[END_REF]. For instance, the TelegraphCQ system [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF] proposes a declarative language for continuous queries with a particular focus on expressive windowing constructs. Several types of queries are supported such as snapshot, landmark, and sliding queries, which correspond to the type of window used in expressing the query. A snapshot query executes exactly once over one window, whereas a landmark query has a fixed beginning point in the timeline, and a forward moving endpoint. Finally, a sliding query is carried based on forward moving beginning and end points.

The Continuous Query Language (CQL) is another SQL-based declarative language for representing continuous queries over data streams [START_REF] Arasu | CQL: A language for continuous queries over streams and relations[END_REF][START_REF] Arasu | The CQL continuous query language: Semantic foundations and query execution[END_REF]. Abstract semantics are defined based on two data types stream (i.e., a multiset of timestamped elements) and relation (i.e., an unordered set of tuples at any time instant within a given interval), and three classes of operators: 

Languages for querying preference-aware and context data

While Section 3.2.4 presented trends towards context-aware processing of location-dependent queries, this section focuses on query languages for expressing and representing contextual data in such location-dependent queries. One of the main considerations in representing context is to select and apply an appropriate and expressive query language for defining user's preferences and needs [START_REF] Haghighi | An evaluation of query languages for context-aware computing[END_REF]. Relevant works in the area are discussed as follows.

1. A preference model for database querying that delivers personalized answers in ambient intelligent environments has been proposed in [START_REF] Van Bunningen | A context-aware preference model for database querying in an ambient intelligent environment[END_REF]]. An ontology-based language has been developed as a variant of Description Logics (DL) to represent the user's context.

However, this approach does not represent location-dependent queries and does not apply to moving objects. Similarly, [START_REF] Reichle | A context query language for pervasive computing environments[END_REF][START_REF] Benyelloul | Conquer: An rdfs-based model for context querying. 6èmes Journées Ateliers UbiMob[END_REF] have proposed to query contextual data by representing different static/dynamic contextual elements, but also without being concerned about querying location-dependent data.

2. Preference SQL extends SQL by a preference model to deal with fuzzy predicates based on a soft selection constraints mechanism [START_REF] Kießling | Preference SQL: Design, implementation, experiences[END_REF][START_REF] Kießling | The preference sql system-an overview[END_REF]. Preferences are expressed inside an SQL query with the PREFERRING keyword. Other operators such as AROUND, BETWEEN, LOWEST, HIGHEST, POS, NEG are defined to enable expressing wishes in a declarative manner. A location-based preference constructor for querying such spatial databases in outdoor environments has been developed as an extension of Preference SQL [START_REF] Wenzel | A preference sql approach to improve contextadaptive location-based services for outdoor activities[END_REF]. The NEARBY spatial operator has been added to retrieve objects in an approximate range. This approach has not been applied to moving objects.

3. Another fuzzy model for representing contextual preferences has been presented in [START_REF] Bosc | On fuzzy queries with contextual predicates[END_REF][START_REF] Hadjali | A fuzzy-rule-based approach to contextual preference queries[END_REF]. Fuzzy predicates on attributes such as low, medium, and high have been first defined in [START_REF] Bosc | On fuzzy queries with contextual predicates[END_REF], and are evaluated within a context clause that results in a given constraint with a certain degree of satisfaction. Contextual preferences were further considered in [START_REF] Hadjali | A fuzzy-rule-based approach to contextual preference queries[END_REF], where the goal was to infer a set of relevant preferences and their semantics regarding the user context from a fuzzy rule base modelled as a set of contextual preferences. This approach has been applied to route planning queries on road networks while taking into account a set of user-defined preferences [START_REF] Mokhtari | Système personnalisé de planification d'itinéraire : Une approche basée sur la théorie des ensembles flous[END_REF][START_REF] Hadjali | Expressing and processing complex preferences in route planning queries: Towards a fuzzy-set-based approach[END_REF]. A distinction between constraints and wishes, which are not compulsory, is made.

A typology of users preferences is also proposed, where spatial, global, and spatio-temporal preferences are distinguished. Routes and Segments are defined as two relations to describe the paths and elementary segments in a road network, respectively. A series of keywords (e.g., FIND k ROUTES FROM ... TO ..., PREFERRING) and modifiers (e.g., all, most, such that, passes [near|inside|outside] ) are also defined to express those route planning queries. Despite the relevance of this approach in representing user preferences based on fuzzy predicates, it does not consider real-time location-dependent queries over moving objects.

4. The TRANsportation QUerY Language (TRANQUYL), presented in [START_REF] Booth | A data model for trip planning in multimodal transportation systems[END_REF][START_REF] Booth | Modeling and Querying Multimodal Urban Transportation Networks[END_REF] Although temporal operators such as starts, ends, arrival, and departure are defined to support dynamic planning queries, this rich query language assumes static origins and destinations in the All-Trips operator, and cannot be directly applied to location-dependent queries over moving objects.

5. The query grammar presented in [START_REF] Ilarri | An approach to process continuous location-dependent queries on moving objects with support for location granules[END_REF] enhances the expressiveness of locationdependent queries by considering the granularity of moving objects' locations. A location granule is a data type defined as a set of elementary locations in a given reference system (e.g., GPS locations). For instance, a granule could represent a city, a region or a country, and used to express locations at different levels of abstraction. This approach covers the use of location granules based on the user preferences from both a query processing as well as a result presentation points of view. Several operations are then presented to handle those granules such as inGranule, contains, getGranules, getNearestGranule, getGranulesObject, etc. The results

shown from using the location granules in query processing are considered very satisfactory.

Granule-based query constraints such as inside constraint is added to express range queries over moving objects. Indeed, the experiments show that the advantages of location granules do not come at the expense of performance. However, this approach considers moving objects only in Euclidean space, and does not handle other navigation-related queries such as path queries.

The last two approaches have inspired our work presented in Chapter 5, which introduces a query language that favours continuous location-dependent queries in indoor mobile environments.

Several types of queries are supported such as range, nearest neighbour, and path queries. User
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Conclusions

This chapter covered related work on location-dependent query processing in both outdoor and indoor environments. Indoor-specific techniques have been rarely addressed, but some outdoor architectures and strategies might be applied to indoor configurations with adjustments, when necessary. Architectures for continuous processing of location-dependent queries were first studied from different perspectives (i.e., moving object databases and data stream management systems),

and in indoor and outdoor settings. Trends for integrating user preferences and other contextual data were then presented. Secondly, a focus was put on adaptive and incremental paradigms for processing navigation-related queries especially in spatial networks. Algorithms for path and range query processing were discussed, as hierarchical and incremental execution paradigms for both type of query are introduced in Chapter 6. Finally, languages that introduce data types and operations for querying moving objects were highlighted, along with a discussion on expressing preferenceand context-aware queries. Related work in this chapter supports our contributions presented in Chapters 5, 6, and 7, where an architecture for continuous location-dependent query processing, a query language, algorithms for continuous path and range searches, and a prototype encapsulating all these elements are introduced. This chapter presents a hierarchical and context-dependent indoor data model that tries to bridge the gap between supporting context-awareness and alleviating performance and scalability issues required for location-dependent query processing. This data model is hierarchically organised and can be viewed as a tree structure in which location information is represented at different levels of abstraction. The remainder of this chapter is organized as follows. Section 4.2 introduces our approach for representing indoor environments as well as the features located and/or acting in those environments. Particularly, indoor moving objects are represented, and the methodology for managing user profiles and real-time event management is also presented. Finally, a discussion on the data model is provided in Section 4.3.

Part

Modelling approach

This section presents a modelling approach of an indoor-oriented system that takes into account the spatial component representing the environment, as well as other components for handling static/moving objects and the actions that emerge from them. The integration of an indoor spatial data model into a context-aware system lies in considering a dynamic environment that should represent (Figure 4.1):

1. All the features that populate an indoor environment, where a feature can refer to either a person (i.e., a mobile user or any other social entity of interest 1 ) or an object/event of interest (e.g., sensors, exits, tables, continuous phenomena such as a fire, etc.).

2. Their spatial properties (e.g., location and extent), as well as other static (e.g., for users: profile, interest, etc.) and dynamic (e.g., status) properties.

3. The behaviours that emerge from them (i.e., how these objects can interact and communicate within the environment). It should be noted that an object of interest (OOI) may or may not have communication capabilities, be mobile or static, physical or virtual, and attractive or 1 Human beings that are located in the vicinity and are of interest to the query are referred to as social entities.
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Computational environment

Computational environment As shown in Figure 4.1, many components that contribute to the design of a context-aware system should be reflected by the spatial data model underneath. We assume that a user navigating an indoor space should be able to communicate with other nearby social entities as well as with sensors deployed in the environment. Moreover, an indoor navigation system should be aware of the situation and the context of the user, and have to be adaptive and to provide answers in an efficient and appropriate way. Furthermore, specific properties such as the granularity of the spatial data model retained for the representation of an indoor space might affect the manipulation, visualization, and computational capabilities of the system. Those characteristics will serve as a basis for the development of our study.
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Let us formally present the main concepts of the indoor data model. This context-dependent data model represents an indoor environment with three complementary components S, F, A , where:

• The spatial component S = i=1...|S| S i is made of a set of layers (S i ) hierarchically organised and representing the indoor space, and thus defining the multi-granular spatial structure of the model.

• The feature component F = (P, OOI) encompasses the features (i.e., persons (P) and objects of interest (OOI)) located in the environment.

• The action component A = (FA, SA) represents actions that are either predefined and triggered automatically by the system in form of informative, context-aware messages (SA), or generated by a given feature acting in the environment (FA).

These three components are hereafter discussed in more detail.

Spatial component

The spatial component of an indoor-based system takes into account different levels of spatial granularity, and this regarding not only the way sensors are deployed in the environment, but also considering the fact that different models (i.e., geometric and symbolic representations) of space may coexist. The approach developed is a hierarchical spatial representation of an indoor environment that can be integrated into a context-aware system architecture. The spatial data model is hierarchically organised and can be viewed as a tree structure in which location information is represented at different levels of abstraction. This hierarchical design can support a large spectrum of applications that can be developed at different levels of abstraction, and allows to alleviate performance and scalability issues in location-dependent query processing [Afyouni et al., 2013].

The approach also takes into account the large range and trends of positioning techniques to offer a context-dependent spatial model that supports different applications.

This conceptual approach is embodied in a hierarchical model that implicitly embeds different levels from micro to macro, from continuous to discrete structures of space. One assumption of this model is that a coarse-grained model can be derived from a finer grained representation depending on the application and context-aware constraints and capabilities. The approach assumes that a given user acting in an indoor space can be continuously located in real-time, using for instance a MEMS sensor, thus providing a fine-grained representation for this user. In contrast, and when WLAN or RFID positioning systems are deployed in the environment, a coarser level of granularity might be provided to locate users in the environment. Similarly, the spatial representation to consider in order to relate mobile users to the environment are chosen appropriately by taking into account some application constraints and properties. For instance, if one asks to know how many users are located in a given room, it may be inappropriate to display the precise locations of those users and their
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trajectories. In such a case, a representation at the room level is likely to be sufficient. Alternatively, a finer level of granularity might be appropriate when one is interested by the relative location of some users in a given room, and also with respect to the location of some sensors in that room.

A spatial component contains a set of spatial layers hierarchically organized. 

Core spatial layer

The core layer S 1 (referred to as S micro ) of the indoor data model is made of a fine-grained graph

G micro = (V micro , E micro , W length ,W time )
embedded within a spatial grid with a regular cell size, and which covers the indoor space (Figure 4.3). The extent and the level of granularity are two mandatory parameters that have to be determined a priori for the derivation of the grid. The accuracy of the resulting grid depends on the cell resolution. A fine-grained grid supports accurate location data, but could introduce heavy processing workloads (details on the cell-based approach are provided in Chapter 2, Section 2.2). For example, the spatial resolution selected in the scenario illustrated in Figures 4.3 and 4.4 is 50 cm, which roughly corresponds to the human spatial extent [START_REF] Raubal | Human wayfinding in unfamiliar buildings: A simulation with a cognizing agent[END_REF]. This means that a 50 cm distance is set between horizontal and vertical neighbour nodes, while 1/ √ 2 cm is set for diagonal distances. This fine spatial resolution assumes highly accurate location data, but other coarser resolutions can be used depending on the application constraints. A coarser resolution results in a less accurate representation of space as well as a distorted perception of the objects' movements. The resulting grid graph encompasses vertices (i.e., nodes) that represent cells within the grid, and connections between cells are explicitly materialized by edges. Each node is located in the centre of a cell, and is connected to its eight neighbours (not only the four ones located in the boundary) with horizontal, vertical, and diagonal edges. This modelling approach achieves a maximum coverage of the indoor space. An indoor environment is represented as a continuous space that supports continuous positioning techniques used in indoor navigation. Besides, the cell-and graph-based representation supports the modelling of structural properties (i.e., connections and relationships between nodes) at different levels of granularity, while keeping geometrical properties. Nodes of the grid graph are labelled according to their membership to a given spatial unit such as a room or a connecting space (i.e., a hallway). In the definition of S micro , V micro = {v i } is the set of vertices and E micro ⊆ V micro × V micro is the set of edges. For each edge e = (v i , v j ) ∈ E micro , there exist two time-dependent cost functions ωl i,j (t) ∈ W length and ωt i,j (t) ∈ W time that compute the length and travel-time from v i to v j , respectively, if traversal is started at instant t. Besides time, this model also takes into account other contextual dimensions such as user profiles and real-time events, to further associate impedances with edge weights. User profiles are handled by considering adapted graphs that are derived from the base graph G micro and which correspond to predefined categories of users (Section 4.2.2.2). Effects of real-time events on edge weights will be discussed later in Section 4.2.2.3.

Each node v ∈ V micro has a set of attributes that describe its physical location or state (i.e., whether it is accessible or not). A node v is formally defined by the tuple

v id , x v , y v , s v , L v , A v .
v id is the node identifier, (x v , y v ) denotes the geometric location of v according to a reference system, and s v ∈ {free, occupied} determines whether or not the node v is physically occupied by an that indicate that the node is inaccessible) are assumed to be unusable for path planning 3 . Let Σ label = {Σ f ine-grained ∪ Σ room ∪ Σ f loor ∪ Σ building } be a set of labels or symbolic values that consists of all the identifiers of the topological hierarchy (i.e., local identifiers of nodes at the fine-grained level, as well as room, floor, and building identifiers) for a given space. Hence, L v ⊂ Σ label = {local-id, room-id, floor-id, building-id} is a set of labels assigned to v , where local-id denotes its local identifier at the fine-grained level, and the others are associated according to their belonging to the topological hierarchy. We assume at this level that v belongs to one and only one room, and one building. In contrast, floor-id is a subset of the set of floor identifiers since, for instance, a node located on a staircase may belong to several floors. Finally, A v ⊂ A is the set of triggered actions, i.e., contextual messages or notifications that are predefined and can be executed according to some contextual constraints (e.g., to remind a user navigating a shopping centre to buy some food or fruit stock when he/she is located next to a supermarket). Implementation issues and integration of those actions in query processing are discussed in Section 4.2.3.

An edge e ∈ E micro is defined by a tuple (v i , v j ), L e , ωl i,j (t), ωt i,j (t) , where v i ,v j ∈V micro , v i = v j , and L e ⊂ Σ label is a subset of the set of labels (e might have multiple labels when it intersects several spatial units -e.g., rooms-). Besides, ωl i,j (t) and ωt i,j (t) are time-dependent functions associated with the traversal of e. The traversal of some edges may be constrained by a temporal interval defined at the application level, and within which the traversal is possible; otherwise the corresponding edge cannot be traversed. These functions are defined as follows:

ωl i,j (t) =        Ed (v i , v j ) if t ∈ [t start , t end ] ∞ otherwise
where Ed (v i , v j ) is the Euclidean distance between v i and v j , and t start and t end are defined at the application level (for example, [08 : 00, 17 : 00] could be specified for an office building).

ωt i,j (t) =        f (ωl i,j (t)) if t ∈ [t start , t end ] ∞ otherwise
where f (ωl i,j (t)) is a length-dependent time function that further associates impedances to compute the travel time between v i and v j .

Temporal intervals can be partitioned into different subintervals to satisfy other application-dependent constraints. The network distance and the travel time from v s to v d are computed as indicated in Definitions 1 and 2, respectively. These functions take the Euclidean distance derived from the fine-grained network in order to compute the optimal navigational network-based path, depending on either the distance and/or time criteria, as well as other semantic constraints.

Definition 1 Fine-grained and time-dependent network distance: Let p = v start =v 1 → v 2 → . . . → v k =v goal be a path that contains a sequence of nodes v i ∈ V micro , i=1, . . . , k. The time-dependent network distance of p is given by length start,goal (t start ) = k-1 i=1 ωl i,i+1 (t i ), where t i = t i-1 + ωt i-1,i (t i-1 ) represents the estimated time instant at node v i , ∀ i=2, . . . , k, and t 1 = t start .

Definition 2 Fine-grained and time-dependent travel time:

Let p = v start =v 1 → v 2 →
. . . → v k =v goal be a path that contains a sequence of nodes v i ∈ V micro , i=1, . . . , k. The timedependent travel time of p is given by time start,goal (t start ) = k-1 i=1 ωt i,i+1 (t i ), where t i = t i-1 + ωt i-1,i (t i-1 ) represents the estimated time instant at node v i , ∀ i=2, . . . , k, and

t 1 = t start .
This core spatial layer is built in an offline phase and a subsequent online phase is in charge of updating potential changes and time-dependent data. For instance, in the offline phase, nodes that are covered by static objects (e.g., a wall, a table, etc.) are marked as occupied whereas the rest are considered initially free. Furthermore, the state of a node depends also on the user profile, since different kinds of users may have a completely different set of accessible nodes (e.g., a certain node may be apparently free but correspond to a room that can only be entered with a key card). This can also be statically managed with the use of a user access model, as discussed in Section 4.2.2.2.

Coarser spatial layers

Thanks to the flexibility of the spatial data structure, a coarse-grained representation can be derived by aggregating nodes and edges according to some membership value, whereas edges will be derived accordingly. This favours data manipulation at a coarser level of granularity. For instance, topological queries can then be applied to find out emerging spatial and temporal properties and mobility behaviours at the level of the rooms and connections of an indoor space (e.g., objects located and passing through a given room for a period of time). Moreover, relationships between the sensors located in the environment and the resulting graph can also be derived as suggested in [START_REF] Becker | Supporting contexts for indoor navigation using a multilayered space model[END_REF] to achieve inter-layer interaction.

A node v at a coarser layer S i ∈ {S 2 , . . . , S |S| } is defined as an aggregation of a subgraph of the finer graph, and is denoted by L v , A v , where L v ⊂ Σ label is the set of labels assigned to v , which is adapted accordingly to fit the corresponding level of abstraction, and A v ⊂ A comprises the set of triggered actions that are predefined at the corresponding node. Cost functions are derived and processed based on the edge weights of the fine-grained level. Formal definitions of the relevant layers considered in the data model are described hereafter, along with an explanation of how these layers can be derived.

Exit hierarchy. Exits represent connections between rooms at the abstract level. An exit is an important element of the data model used for query processing, through which a user can leave or MODEL enter a place (e.g., doorways or staircases). An exit is represented as an abstract node that belongs to two different spatial units, and is derived by aggregating boundary nodes of both units whose adjacent node lists contain at least one neighbour that belongs to the other spatial unit (Figure 4.5).

Accordingly, an exit can contain multiple nodes and edges at the fine-grained level (see Figure 4.3 and 4.4). Based on these exits, a coarser network (at a higher level of abstraction) can be designed, in which nodes depict those exits and links represents optimal navigational paths between directly reachable exits. Optimal network distances and travel times between relevant pairs of exits are pre-processed and cached in order to reduce on-the-fly computation of hierarchical path searches.

An exit ex ′ is relevant for a given exit ex if and only if ex ′ is directly reachable from ex (i.e., there is an accessible passageway for pedestrians from ex to ex ′ which does not involve any other exit).

An exit hierarchy is constructed at a higher level of abstraction, which allows computing optimal distances between locations to be used later for processing diverse kinds of queries. A link between two directly reachable exits is represented by a path (i.e., a sequence of nodes and edges in (V micro , E micro )) at the fine-grained layer. More formally, let r, r ′ ∈ Σ label be the labels of two connected rooms, the exit representing the doorway between r and r ′ is given by:

ex r,r ′ = {v i , v j ∈ V micro | ∃ex ∈ E micro , ex = (v i , v j ) ∧ r ∈ ex .L ex ∧ r ′ ∈ ex .L ex }.
Regarding its belonging to the topological hierarchy, an exit is also characterised by: L ex r,r ′ ={local-id, {r, r ′ }, floor-id, building-id}. F loorExit 11 is an example of an exit depicted in Figure 4.5, which belongs to two structural units: Stair 01 and HW 12 . Therefore, L F loorExit 11 = {FloorExit-11, {Stair 01 , HW 12 },

Floor-1, Building-1}. Similarly, one can derive the abstract nodes of the second layer representing all exits on a given floor. An abstract edge (ex r,r ′ , ex r ′ ,r ′′ ) in the exit hierarchy is a path made of a sequence of nodes and edges of the fine-grained level that compose the optimal network distance from a node v start ∈ e r,r ′ to a node v goal ∈ ex r ′ ,r ′′ . An edge of the exit hierarchy is referred to as exit-path and is denoted by source_exit_id, target_exit_id, length, time . The optimal network distance and travel time are computed by applying length start,goal (t start ) and time start,goal (t start ),

and the resulting values are associated with each edge of the exit hierarchy, thus forming the second layer of the data model4 .

Moreover, exits are organised in a hierarchical manner since a flat graph does not reflect their significance from a semantic navigation point of view [START_REF] Hu | Semantic location modeling for location navigation in mobile environment[END_REF]. As illustrated in Figure 4.5, this hierarchical structure allows to distinguish between a room exit and a floor exit, which is represented at a higher level of abstraction due to its importance, so that a direct path from a current position to the nearest floor/building exit can be easily determined. Other edges between exits of the same level are also materialized according to their connectivity (horizontal links illustrated as dashed lines in Figure 4.5)5 . Consequently, the final representation of this layer preserves the connectivity between directly accessible exits while emphasizing their importance for navigation purposes. A generalisation of this hierarchy that covers a multi-storey building is used for path planning. Consequently, an exit of a ground floor has a building exit as a parent node, and a first-floor exit as a child node since both are parts of a staircase.

It should be emphasized that exit-paths in this hierarchy are assumed to be undirected. However, this model can be adapted for specific scenarios where a one-way access to several areas is required.

This can be done by either replicating edges in the opposite direction or associating a property to each edge that adds impedances to the path weight depending on the travel direction. Adjustments of the query processing algorithms are needed accordingly.

Location hierarchy. Incorporating information about exits into the topological hierarchy enables the modelling of optimal paths at an abstract layer. Those are used to facilitate hierarchical path searches and to alleviate performance issues raised while traversing the fine-grained graph. Although connectivity relationships between those elementary structural units can be computed from the exit hierarchy, an adjacency relationship needs to be associated to each unit in a separate abstraction layer. A room consists of a set of nodes at the fine-grained layer as illustrated in Figure 4.4. An abstract view of an indoor space considers rooms as abstract nodes and connections between rooms as links. Such topological properties are not explicitly materialised in the exit hierarchy, even though information representing their belonging to the topological hierarchy has been incorporated.

Consequently, a location hierarchy that is based on a connectivity graph, which represents rooms as nodes and doorways as edges, can be automatically derived from the fine-grained graph as an additional layer in order to preserve topological relationships (Figure 4.6).

A room in the location hierarchy is characterized by room_id, room_type, Adj_room_list, L r , A r , where room_type describes whether this unit is a room, a meeting room, a hallway, etc.,
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.6: Part of the location hierarchy derived from the fine-grained graph (Floor-01, Building-1); "HW " stands for Hallway, "M R" for Meeting Room, "R" for Room, and "BT " for Bathroom

Adj_room_list denotes the list of identifiers of the adjacent units, and L r , A r are introduced in a similar way as in the fine-grained level. Such a location hierarchy can be directly derived from the fine-grained layer, but can also be generated from the exit hierarchy since information about the belonging of exits to their respective structural units is stored. A staircase that connects a given floor to another is represented as a room that belongs to the two corresponding floors, and which is bounded by two floor exits. An elevator is represented in a similar way to stairs. A multi-floor elevator consists of several stages that correspond to the number of floors of the building. Each stage of the elevator is modelled as a room that belongs to the two corresponding floors and bounded by exits/entrances to/from the corresponding floors.

From the fine-grained graph, a typical clustering process results in an abstract layer as illustrated in Figure 4.6. Graph partitioning is thus carried out based on the set of room labels associated to the nodes of the base graph. Consequently, this process consists of: (1) extracting and aggregating nodes whose room labels are identical to form the new abstract nodes of the location hierarchy; and (2) creating abstract edges between connected structural units, thus favouring topology-based queries. These steps are as follows:

• Step 1. Based on the set of room labels, the fine-grained graph is partitioned into subgraphs. Let ϕ = i=1...|Σroom| ϕ ℓ i be the set of subgraphs of S micro such that ℓ i ∈ Σ room , and where ∀i ∈ {1, . . . , |Σ room |}, ϕ ℓ i = (V ℓ i , E ℓ i ) ⊂ S micro is a subgraph extracted from the fine-grained graph according to node and edge labels, and where ℓ i ∈Σroom V ℓ i = ∅. An abstract node that represents each subgraph is then created, having ℓ i as its local-id.

• Step 2. The set of outgoing edges between connected subgraphs is defined by: E ℓ i ,ℓ j = (ϕ ℓ i , ϕ ℓ j ) ∀i, j ∈ {1, . . . , |Σ room |}, i = j. It is worth noting that, for geometric-based queries (e.g., navigation, range, and nearest neighbour queries), the exit hierarchy is more likely considered, as it lends itself to more accurate and more realistic pre-processing techniques. In contrast, the
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or when one looks for the optimal path that contains the smaller number of rooms. Therefore, there is no need to associate precomputed network distances to edges of the location hierarchy. Similarly, there exists a relationship between exit and location hierarchies since exits belong to structural units. For instance, by retrieving the list of room labels associated to all exits, one can derive connected rooms and rebuild the corresponding location hierarchy. Accordingly, switching between a location hierarchy and an exit hierarchy is always possible, thus covering a larger range of queries (Figure 4.7). Three spatial layers at two levels of abstraction (i.e., the fine-grained layer at the first level, and the exit and location hierarchies at the second level) are employed and used in this work. However, the data model can be generalized to introduce higher levels of abstraction in order to cover a wider range of applications, and with more flexibility.

Feature component

The feature layer models different types of objects located or evolving in an indoor space, which present an interest from an application point of view. These features are either attached to the infrastructure (i.e., static objects like tables, doors, walls, fixed sensors, . . . ) or evolving in the environment (i.e., moving objects, continuous phenomena). This section first presents the feature component principles, and secondly highlights the management of user profiles and real-time events.

Principles

A feature component F models persons and objects of interest in an indoor space. We make a difference between features that represent a rigid entity (e.g., spatial objects, sensors, and moving users) and features that model a continuous phenomenon (e.g., gas leak or noise diffusion). A feature may be discrete or continuous. By continuous feature we mean any kind of phenomenon that is likely to continuously spread over space. An entity may be static or dynamic and is modelled as an object. An object is identified and characterized by its static properties (i.e., attributes) and potentially other dynamic properties such as the interaction spaces attached to it [START_REF] Bhatt | Spatio-terminological inference for the design of ambient environments[END_REF].
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In addition, an object can perform a selected list of actions that can be triggered according to some contextual constraints which are application-dependent.

Formally, a feature f ∈ F = (P, OOI) is defined by a tuple Id, Ct, S, FD, A, IS , where: Id is the feature identifier, Ct denotes the feature class type, S is the set of states a feature can hold, FD is the set of values that describe f (i.e., typically, a set of string values describing static properties of the feature, such as profile properties for a given user), A ⊂ A is the list of context-dependent actions associated with f, and IS is the list of interaction spaces associated with the feature [START_REF] Bhatt | Spatio-terminological inference for the design of ambient environments[END_REF]. The sets of states and actions available for a given feature are specified depending on the feature class type. A feature class type Ct is associated with a pair S, A where S = i=1...|S| s i and A denote the set of states and actions, respectively. As an example, a user u ∈ P may have some static descriptions about his/her profile and some predefined preferences. Besides, u can execute an action a ∈ A u at an instant t when, for instance, he/she is in state s ∈ S and located on a node v . In contrast, an object of interest can be characterized by some qualitative and quantitative descriptions (e.g., its spatial extent), and Boolean parameters that determine whether the object is able to communicate or not, whether it is mobile or static, physical or virtual, and attractive or repellent.

Moreover, each feature is associated with specific dynamic properties, referred to as interaction spaces, that cover some semantic information used for interaction purposes. The notion of interaction spaces, first introduced in [START_REF] Bhatt | Spatio-terminological inference for the design of ambient environments[END_REF], is generalized and applied to dynamic and continuous features as illustrated in Figure 4.8. The component IS is a quadruple ps, os, fs, rs that refers to the physical, operational, functional, and range space. At the fine-grained level, the interaction spaces are formally defined as sets of nodes dynamically updated in real-time (see Figure 4.8):

• The physical space is represented by the set of nodes covered by the feature at a given time instant. For a moving object, the physical space corresponds to the node where the user is currently located.

• The functional space denotes the nodes on which another feature can physically interact with the considered feature. For instance, the functional space of a moving user refers to the interaction field around his/her physical space; it is defined according to some specific user properties. In the example shown in Figure 4.8, a user is localised on a given node, so its functional space will comprise the subset of the eight neighbour nodes at a given instant.

• The range space is a specific parameter only assigned to sensor objects and designates the set of nodes covered by the sensor (i.e., detectable nodes). The range space of a moving user is indeed the region covered by the sensor that is either integrated in the mobile device or attached to that user. The notion of operational space has been introduced to cover all features of the space (static and/or moving objects). However, the definition of the operational space varies significantly depending on whether this feature is a (pseudo)-static 6 or a moving object. The difference between the two definitions is emphasized as follows:

• The operational space of a (pseudo-)static object can be represented by the union of all the potential nodes and edges an object may cover when it performs an action in the environment.

For example, the operational space of a door comprises all the potential nodes this window may cover when opening and closing.

• The operational space of a moving user denotes the set of nodes accessible to the user at a given time instant. The operational space of a mobile user strongly depends on the contextual information gathered. For example, the user profile directly influences the operational space according to whether the user is a security guard, a firefighter, a user with special needs or a user with restricted privileges, etc. Time is another important dimension that might have an impact when visiting a shopping centre or entering a laboratory building (i.e., if the current time is in the morning, at night, during the weekend, etc.). Continuous phenomena such as a gas leak or a fire that breaks out inside a building may also have a significant impact on the operational space of the user. While the fire is spreading progressively within space, a subset of nodes that are covered by the fire are removed from the operational space. Instead, additional subsets which correspond to emergency exit routes will build up the new operational space.

Due to the complexity of modelling and implementing such a process, tracking of fire diffusion 6 A door or a window is an example of a pseudo-static object, since it can either open or close (as illustrated in Figure 4.10), but it cannot move elsewhere. MODEL is more likely to be abstracted to higher levels (i.e., room or even floor level). This results in temporary unavailable rooms or floors for user navigation.

It is worth noting that functional, range, and operational spaces are computed based on a user request, and are considered as specific continuous location-dependent queries. In particular, the range space of a given mobile sensor is considered as a typical range query, by taking into account the sensor range as the maximum threshold needed by the query. Moreover, a continuous evaluation of the operational space for a given user requires to retrieve all the spatial units accessible to this user at a given instant; this is typically done in the case of reachability queries.

User profiles

One assumption of this approach is that the user model, which encapsulates knowledge about the users' personal data and preferences, classifies users into groups according to their privileges to access restricted areas. The aim of this classification is to derive an adaptive representation of space based on access control information associated with the user. This filtering process allows to derive adaptive graphs from the generic base graph by eliminating the set of nodes that are actually inaccessible for a specific type of user, thus reducing the amount of data that need to be processed in real-time for each query and supporting the retrieval of more accurate answers based on user profiles. A similar process takes place to update the time-dependent accessibility of some nodes, for instance, abstract nodes corresponding to rooms that are closed at specific times. An unrestricted user has full access privileges and so he/she can navigate through all areas of the building, that is, the generic graph representing all the floors of the building. A example of an unrestricted user is a firefighter or a security guard, who should have a complete knowledge of all the emergency exits in a building. A restricted user category includes staff members, guests, and visitors.
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Usually, staff users have premium member privileges, but with some restricted areas, and can also have different configurations, whereas visitors have access to all the public places in a building. Users with special needs follow the same rules as restricted users except that additional penalties might be added to edge weights so that the most appropriate routes can be selected (e.g., using the elevator instead of the stairs for wheelchair users). Access control information is subject to very few changes over time, and thus it can be processed statically.

When there are no clearly defined privileges for certain areas inferred from a given user model, which may be due to unavailable information or lack of attention when deploying a context-aware system, the closest upper-level category of user profiles (from the ones discussed above) is considered.

This upper-level category is less restrictive. Therefore, there might be some inaccessible areas whose corresponding data could be considered for query processing. Consequently, the system may generate some answers which are not well adapted to a specific user, such as a route that passes through a restricted area.

Real-time event management

The occurrence of real-time events may have a significant impact on the nodes accessibility. For example, when considering a fire that is spreading in the Computer Science Department, fire alarms are expected to detect this event and communicate it to the system. With periodical updates performed automatically, the system is capable of representing the growing spatial extent of the fire, thus marking nodes of that physical space as inaccessible to users. This subset of nodes will be temporarily blocked when computing the operational space of the users. Instead, other subsets of nodes which correspond to emergency exit routes will be favoured to build the new operational space.

The distinction between attractive and repellent events is embodied by associating negative or positive impedance values to edge weights, respectively. Therefore, unscheduled or unexpected events are characterized by a triple: event info_source, event_ps, ±value 7 . Common sources of information about events (info_source) include the system supervisor (if any), users and the social entities situated in the environment, and the communicating sensors. Their main task is to gather information about changes in the environment and to communicate that information to the system. The physical space of the event (event_ps) should also be determined in real-time in order to change edge weights as well node states accordingly. Finally, depending on the nature of each event, a positive or negative value (±value) is assigned to edge weights, so that adapted paths MODEL can be recomputed. Therefore, algorithms for handling continuous location-dependent queries are adapted in order to deal with these dynamic factors and with the information uncertainty.

Action component

The action component A = (FA, SA) models the set of actions that are either triggered automatically by the system (SA) or performed by a given feature acting in the environment (FA).

System actions (SA) denote context-aware notifications that are mainly triggered based on users' locations and implement a publish/subscribe approach; this means that events are published by service providers to address their subscribers. This also includes geocast messaging [START_REF] Basagni | Geographic messaging in wireless ad hoc networks[END_REF][START_REF] Navas | GeoCast -Geographic addressing and routing[END_REF]], which can be described as a location-based multicast where messages are delivered to users located in a specific area instead of those subscribed to a given group. This model implicitly builds semantic and topological relations among the features situated in space, by establishing relations between interaction spaces of different features.

Actions are context-dependent; this means that, at a given time instant and for a certain feature, only a specific list of possible actions is valid, which can then be performed according to some execution constraints. For a mobile user, actions comprise a sequence of movements, interactions with other neighbouring entities and artefacts, and requests for some services in order to achieve a predefined goal (Figure 4.10). This approach allows to represent artefacts of interest located in the environment, so that users who are engaged in a certain activity can gather knowledge and understand their physical surroundings, as well as reconfigure and manipulate physical artefacts (e.g., a chair, a door, a heating, etc.) or virtual artefacts (e.g., a 2D/3D image of a physical artefact, a digital user interface, some recommendation/information, etc.) in order to produce changes in the environment. Moreover, a user can communicate with any fixed or mobile sensor located in the range space of a (mobile) sensor integrated in his/her device or attached to him/her (e.g., a MEMS sensor, an RFID tag, etc.). When considering continuous phenomena, their actions can materialize the way a given phenomenon diffuses in space.

It is worth noting that the set of actions presented in Figure 4.10 is not exhaustive and could be extended depending the application requirements. One can, for example, add the set of basic activities performed by a given user, such as running, walking, going upstairs, going downstairs, sitting, standing, and which can be detected by the sensors embedded in his/her mobile phone (e.g., acceleration sensors) [START_REF] Yan | SAMMPLE: detecting semantic indoor activities in practical settings using locomotive signatures[END_REF]. This further favours incorporating the user activity as an important contextual dimension. However, this dimension is, for the moment, not completely taken into account in the model and in the query processing engine.

Conclusions

A modelling approach for representing an indoor mobile environment was introduced in this chapter.

Spatial, Feature, and Action components were discussed which take static and dynamic aspects of this environment and the features located or moving within it. The spatial component considers a hierarchical data model that encompasses different contextual dimensions and is sufficiently flexible for supporting a large range of services and queries at different levels of abstraction. Indoor static and moving objects are represented with different properties associated to them depending on their type. Actions that might emerge from those objects are classified, so that they can be further used in query processing. The following chapters will more closely consider typical user requests and services by integrating this modelling approach in a general system architecture for continuous query processing. It should be emphasized this approach is generic and rich enough to support other kinds of services and queries than those discussed afterwards. The aim of this chapter is to provide an indoor-based system that favours navigation of users in such environments based on the hierarchical and context-dependent data model presented in Chapter 4. A continuous query processing architecture and query semantics to represent location-dependent queries in indoor environments are introduced in this chapter. The architecture is meant to be as generic as possible, thus allowing different kinds of queries to be performed and others to be further added. The key role of this architecture is to maintain candidate objects or paths to target objects up-to-date. Moreover, a query grammar is presented which introduces different semantics to support location-dependent queries and the hierarchical layout of the environment.

The remainder of this chapter is organized as follows. Section 5.1 describes the principles of the architecture and discusses the continuous execution flow of a given navigation-related query. A detailed description of the route manager and query execution engine components is provided, along with a discussion on distribution management issues. The principles of a query grammar for expressing location-dependent queries in indoor environments are presented in Section 5.
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operations and additional clauses for enriching query semantics and user preferences are introduced.

A specific operator for representing and managing location granules is provided, which reflects the hierarchical structure of the environment. Moreover, motivating examples of location-dependent queries are illustrated to show the potential behind those query semantics.

Continuous query processing architecture

This section presents the general architecture proposed for the continuous processing of several types of location-dependent queries in indoor environments. First, the main principles and assumptions on how moving objects are handled and to what extent they are expected to cooperate. The principal components considered in the architecture are then introduced, with especial focus on route and distribution management issues.

Principles

Our approach assumes that moving objects cooperate with a given system by providing up-to-date location data when needed. Thus, a minimum intervention of a user device is required for query processing by communicating the location of the user to the system according to a certain location update policy [Wolfson et al., 1999a]. The mobile devices of the users are therefore not overloaded with additional query processing tasks. As soon as a location update is received from a moving object involved in a given query, the server starts the reevaluation process by considering the impact of such updates on the active queries. Accurate location data are assumed to be received in real-time from an indoor positioning system, based on recent technologies such as MEMS sensors, Wireless fingerprinting, and magnetic fields [START_REF] Liu | Survey of wireless indoor positioning techniques and systems[END_REF][START_REF] Gu | A survey of indoor positioning systems for wireless personal networks[END_REF][START_REF] Ray | Wireless and information technologies supporting intelligent location-based services[END_REF][START_REF] Indooratlas | Ambient magnetic field-based indoor location technology: Bringing the compass to the next level[END_REF].

For each location-dependent query, the following terms are used (as suggested in [Ilarri et al., 2006a]). A reference object denotes an object that represents the reference for a given locationdependent query (e.g., for a range query, the object that indicates the centre of the range). A target object represents an object of interest to a given outstanding query, and which belongs to a specific target class. It is worth noting that no constraints are imposed on the movements and directions of the reference and target objects. Accordingly, a reference object is assumed to be either in a static location or moving freely in a spatial network with dynamically changing edge weights. Similarly, a location-dependent query can request information about static or dynamic data, depending on whether the target objects are moving or not. For instance, a reference/target object could be a person or a point of interest -POI-(e.g., a room). Therefore, a unique combination of challenges arises, as the proposed architecture must be able to continuously process different kinds of location-dependent queries, and to take into account additional contextual information, such as the time-dependency and the user profiles (e.g., some areas may be restricted to specific kinds of users, such as the security personnel), as well as the hierarchical layout of the indoor environment.

The general query processing flow is illustrated in Figure 5.1. Navigation-related queries are processed in accordance with this flow, and are executed continuously while the request is not explicitly cancelled by the user. Unlike many query processing approaches that focus on specific types of queries and on specific scenarios, this architecture has the advantage of supporting many different types of queries without making any restrictive assumption. The features that are managed in the environment are: (i) mobile persons, each of them carries a mobile device that allows computing his/her current location and communicating it with other entities, and (ii) objects of interest, which contribute to enrich the context of the query and are used by the user to provide his/her preferences and constraints (e.g., by using a digital user interface). These features are managed by a set of fixed servers, each of them in charge of: ( 1) maintaining a part of the hierarchical spatial graph that represents the environment (i.e., a part of the graph covering a certain spatial area); ( 2) managing data and communicating with objects located within its area; and (3) executing queries or parts of queries whose data are locally available. 

Architecture overview

The main phases of the query processing architecture are illustrated in Figure 5.1 and can be described as follows:

Phase 1 and 2. A user interacts with the system interface to issue a query. The system transforms the query expressed in a natural or high-level language into an SQL-like format, as proposed in [Ilarri et al., 2006a]. We assume that an expert user can also directly issue an SQL-like query based on the syntax described in Section 5.2.

Phase 3. Parsing a query implies lexical, syntactic, and semantic analysis of the query expressed in an SQL-like format in order to derive a valid internal representation (e.g., a query graph [START_REF] Kossmann | The state of the art in distributed query processing[END_REF]).

Phase 4. A query plan is prepared that is composed of all the operations that are required to appropriately answer the user request. This not only includes typical relational operations (e.g., selection, projection, join, etc.), but also external calls to specific functions that implement new query operators that are defined and discussed in the next section. For optimization purposes, some typical transformations can take place, such as the removal of redundant predicates, the simplification of complex expressions, etc. In addition, for each constraint in the query, the reference object and its target classes are obtained. Furthermore, information regarding the location granules (discussed in the next section) of the reference and target objects is retrieved, if the use of location granules is specified in the query.

Phase 5. All navigation-related queries that need to expand routes either towards a specified target object (e.g., an optimal path search towards a destination) or in all directions with a maximum threshold (in the case of range queries), are directed to the route manager in charge of determining the candidate routes based on user-defined preferences and contextual data (e.g., information about user profiles and descriptions of objects of interest). The main tasks performed by the route manager are explained in Section 5.1.2.1.

Phase 6. Obtaining standard SQL queries from an SQL-like query is required, since data elements are assumed to be stored in relational databases, which only accept standard SQL. A locationdependent query is broken up into standard queries and operations that are organised in an execution plan to optimise system resources. Not all the operators are necessarily translated to equivalent standard queries; for instance, operators related to route computation are directly handled at the algorithmic level. The candidate routes obtained by applying such operators could, however, be used as the input data to complete the construction of some standard queries.

Phase 7. In this phase, candidate routes along with an execution plan including standard queries and operations arrive at the query execution engine. Timestamped data about locations of relevant objects as well as other contextual data are associated with operations, so that the query engine can execute these queries appropriately. The continuous processing of a query means that the execution of simple queries and operations is kept alive until receiving an explicit request from the user to cancel that query. Therefore, the engine must repeatedly perform the following tasks: (1) update simple queries with the locations of relevant objects and with the new set of relevant routes, if needed; (2) execute standard queries; (3) correlate the results of the different subqueries; and finally ( 4) present the answer to the user.

Route management

Two main tasks are performed by the route manager in order to execute navigation-related queries:

Task 1: Obtaining an initial answer. Depending on whether a target object is specified or not, different strategies are applied. A specified target implies expanding a directed tree routed at the node where the reference object is located, and oriented towards the target object. For a static shortest path problem, this can typically be solved using Dijkstra's or A*'s algorithm [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF][START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF]. A more complex and challenging scenario for estimating the route cost and computing the optimal path arises when considering parameters such as dynamic edge weights, a hierarchical graph structure and, most importantly, the need for an incremental approach for continuous path search with moving reference and target objects.

In a range query, a maximum threshold or a radius is specified instead of a target object.

Therefore, all the qualifying objects located within this radius are retrieved. A slightly different strategy consists of expanding all the routes whose network distance from the source node is less than or equal to the specified radius. Once again, this typical problem becomes significantly more complex when incorporating the aforementioned elements. New path and range search algorithms that can appropriately deal with all these challenges are introduced in Chapter 6.

Task 2: Maintaining the answer up-to-date. Incremental search algorithms are required in order to execute continuous location-dependent queries, without having to solve each search problem independently from scratch [START_REF] Sun | Efficient incremental search for moving target search[END_REF][START_REF] Yuan | Supporting continuous range queries in indoor space[END_REF]. Incremental search implies IN INDOOR ENVIRONMENTS reusing information from previous searches in order to obtain the current result adaptively. In the case of navigation and range queries, a route planner needs to maintain the set of relevant routes up-to-date, especially when dealing with moving objects. For a navigation query, this means transforming the search tree to an updated tree depending on the movements of objects and other changes in the environment. In a range query, this implies either expanding new sub-trees from boundary nodes (i.e., leaves) or eliminating some of them if the new network distance exceeds the specified threshold.

Distribution management

Another component that contributes to the process of refining candidate routes and to the execution of queries is the distribution manager. The architecture for processing continuous location-dependent queries over a large space should consider scalability and performance requirements. When considering a large indoor space, a decentralised approach should therefore be proposed to alleviate performance problems when answering continuous queries and managing the corresponding data about moving objects [START_REF] Gedik | MobiEyes: A distributed location monitoring service using moving location queries[END_REF]Ilarri et al., 2006a]. This approach makes no assumptions about either the number (one or many) of computers deployed in the environment or the spatial zone that should be managed by each computer. Therefore, decisions about data distribution management can be taken at the application level.

Let us consider the sample scenario described in Chapter 4. A three-storey building could be managed by deploying three servers, one for each floor, so that a hierarchical graph is created to represent each floor and stored in the corresponding server 1 . Consequently, (sub)queries and operations whose data are locally available are computed independently and results are communicated to other servers, if needed, or to the user if no other dependencies exist. Therefore, two challenging tasks must be performed by the distribution manager in order to support a distributed query processing:

1. Keeping track of the relevant servers required to execute a given continuous query. One can observe that the set of relevant servers changes depending on the locations of the reference and target objects. In the scenario mentioned above, a user from the Linguistics Department located on the first floor may want to reach his/her colleague currently located on the second floor. This scenario needs the first and second servers to be involved in the path planning query. If the target colleague moves down to the ground floor, the distribution manager must detect that the target leaves the area that is currently being watched and then, based on the new location of the target, 1 Nodes corresponding to a staircase between two floors could be assigned to the server of either of such floors.
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Therefore, each server is considered to be in charge of keeping (and providing) information about moving objects located within a fragment of the hierarchical data model. Then, for a given query in an indoor environment, a path or a set of paths, that can change dynamically along time, is computed. In this particular scenario, a path between the reference object (i.e., the query issuer in this example) and the target colleague is computed. On the contrary, in the case of a range query (which requests the objects that satisfy the specified constraints and are located within a certain radius from the reference object), the set of all the potential paths within the radius specified is computed. From this set of paths, the set of relevant servers for the query is derived. Therefore, queries that refer to a specific spatial area only require the service of a small subset of servers.

This optimisation phase has more important effects in large spaces (e.g., a campus with several buildings or in scenarios with a high number of moving objects), where using only the relevant servers can significantly reduce the query processing overhead. It should be noted that the information about the hierarchical graph itself is also distributed2 . In that case, some nodes in the subgraph stored in a server actually represent entry nodes in another subgraph cached in a different server.

Such nodes store the information needed to contact the other server.

2.

Computing the answer in a distributed environment. Once the relevant servers have been identified, each server is queried in parallel to retrieve the objects located within the relevant fragments of the graph. This query has to be executed as a continuous query, as the relevant objects may move continuously. Moreover, objects' movements and changes in the environment can lead to changes in the set of relevant paths, which may in turn modify the set of relevant servers. Therefore, the query processing is assumed to be executed according to a certain refreshment period (as in other works, such as [Ilarri et al., 2006a]), since the answer can change continuously.

Thanks to the distribution management, this architecture is generic and can be easily adapted to meet the requirements of a specific scenario. It works in small scenarios where a single server is enough as well as in scenarios that require a higher number of servers.

A language for continuous location-dependent queries

Several types of queries, such as navigation, range, and nearest neighbour queries, are of interest in an indoor environment. In order to improve query expressiveness, a query grammar is introduced to

Query semantics

In the general structure of the query language, two kinds of queries are identified: the former typically represents an SQL standard structure (Standard-query) along with specific kinds of locationdependent constraints, which are mainly used to express range and nearest neighbour queries. The latter (Navigation-query) represents navigation queries that incorporate route computation into the query processing while optimising distance/time criteria.

For a navigation query, the FROM clause contains an external call to the All-routes operator, which has a general syntax as follows: All-routes (Loc-Ref, Loc-Target). This operator returns a non-materialised set of tuples representing valid routes between the current locations of the reference and target objects. A route is a sequence of nodes and edges that can belong to different levels of granularity, which is determined by taking into account the context-dependent data integrated into the hierarchical data model. As a non-materialised table, the set of tuples (routes) obtained as a result of this operator are generated at runtime, and used only to execute the corresponding query.

Each generated route is defined as: route (route-id, source-vertex-id, target-vertex-id, v1-id, e1-id, v2-id, e2-id, ..., vk-id , length, time), where route-id is a route identifier automatically assigned by the system when the route is computed. The Loc-Ref and Loc-Target arguments may correspond to either a "Vertex-id" or to the locations of the reference and target objects, respectively, but they can also be interpreted as the location granules that contain the corresponding objects, as discussed below. Moreover, Loc-Target can refer to the class name of objects of interest (target objects); this is used, for instance, in an inside constraint to retrieve all the objects of a given type.

The WITH Stop-vertices clause is an optional statement that expresses a user preference implying that the route must go through some place(s) that is(are) of interest to the user. Several Stop-vertices can be specified within a single query, and it is assumed that vertices are processed in the order they appear in the query. Furthermore, two different optimisation criteria are applied: time and distance, which can be considered based on the time-dependent functions defined in Chapter 4.

In addition to classical predicates presented in the standard structure of the query, two kinds of location-dependent conditions can be expressed in the WHERE clause : inside(Radius, Loc-Ref, Loc-Target) and nearest(K, Loc-Ref, Loc-Target).

A constraint inside is applied when performing a continuous range query processing, which takes into account the radius as a maximum threshold to consider, and is used to build the set of routes around the reference object, whose network distances are less than or equal to the radius.

The nearest constraint is expressed to process continuous k nearest neighbour queries, by specifying the class name of objects of interest in Loc-Target, so that the k objects of interest that are the closest to the current location of the reference object are retrieved.

A LANGUAGE FOR CONTINUOUS LOCATION-DEPENDENT QUERIES 123

Managing and representing location granules

The concept of location granule, first introduced in [START_REF] Ilarri | An approach to process continuous location-dependent queries on moving objects with support for location granules[END_REF], is used and adapted to the context of indoor environments. A location granule identifies a set of fine-grained locations (i.e., geometric coordinates of vertices in the base graph) under a common name. This is completely consistent with the hierarchical spatial graph proposed in Chapter 4. The use of location granules allows to formulate queries with a location resolution which is appropriate for the intended application.

With them, it is possible to formulate queries using the location terminology required by the user (e.g., vertices at the fine-grained level, rooms, floors, and buildings). For example, a user may be interested in persons that are near the room where another (moving) object is currently located (see Example 1 in Section 5.2.4). In such a case, the location granule is set to the room level. The operator gr is a shorthand for granule and returns the location granule associated with a certain object according to a specified granule map (i.e., a named set of granules). The use of location granules can have an impact on:

• The presentation of results. The user may want, for example, to retrieve the precise location of the objects in the answer to a given range query. Alternatively, he/she may prefer a different location granularity (e.g., the rooms that contain the objects) as it is more appropriate for his/her context. The answer can be presented using different mechanisms (e.g., different types of graphical, sound-based, or textual representations), which are independent of the required location granularity.

• The semantics of the queries. It is possible to define the queries using a specific location granule. In this case, the answer to the query depends on the interpretation of the location granules.

For example, the user may be interested in a specific class of objects within a certain threshold that are near the room where another object is currently located. In this example, the user does not need to know the exact locations of these objects. Therefore, the management of the granules must be implicitly performed, and the search should be based on expanding the location hierarchy (i.e., at the room level) instead of the fine-grained graph.

• The performance of query processing. Some tasks in the continuous query processing demand less resources when coarse location granules are considered. Thus, the objects would move less frequently between granules, and keeping track of their current locations is easier than if precise locations should be considered.

As depicted in Figure 5.2, the location granule operator can be referenced in the SELECT clause, the FROM clause and/or the WHERE clause of a query, depending on whether the granules are used for the presentation of the results and/or for the processing of constraints or routes. For IN INDOOR ENVIRONMENTS visualisation purpose, a location granule operator can be used in a Loc-Select projection in the SELECT clause, according to the request submitted by the user, to show the result at the desired level of granularity; for example, SELECT gr('room-level', Person) can be used to project the rooms where the persons retrieved by the query are located. In addition, the gr operator can be applied on a route, which is the result of a navigation query, to show the sequence of nodes and edges obtained in the route at a chosen abstraction level. For instance, SELECT gr('room-level', Routes.id) could be used to illustrate the sequence of rooms of the valid route, which is made of nodes and edges of different levels (e.g., fine-grained and exit hierarchy levels). In this case, nodes and edges of the resulting route are abstracted to the room level, and the corresponding nodes of this chosen level are shown.

On the other hand, the same gr operator can be specified for processing-oriented uses as a

Loc-Ref and/or Loc-Target argument within the FROM clause (i.e., in an All-routes-expression),

and/or within the location-dependent query constraints (i.e., inside and nearest constraints), in reference to the locations of the reference and target objects, so that they can be interpreted as granules according to a given granule map (i.e., a given level of granularity). For instance, inside(100 meters, gr('room-level', 'o1'), Person) is a constraint satisfied by the persons within 100 meters around the room where object o1 is located (Example 1 in Section 5.2.4); similarly, inside(100 meters, gr('room-level', 'room12'), Person) is satisfied by the persons within 100 meters around room 12 (note that, in contrast to the previous example, the reference object here is not moving). On the contrary, inside(100 meters, 'o1', Person) would be used when the desired range is determined around object o1 itself; it should be clarified that gr('micro-level', 'o1') is equivalent to o1, that is, a fine-grained granule corresponding to the current fine-grained location of the object is considered by default when the gr operator is not explicitly expressed. Consequently, gr(Map-id, Object-id)

indicates that the location of the object named Object-id must be interpreted as a granule in the location granule map identified by Map-id. A location granule map is a set of granules at a given level of abstraction (e.g., room or floor level). Similarly, gr(Map-id, Class-name) generalizes this concept to all the objects of a given class.

Different operations are defined based on location granules and are used for location-dependent query processing. For instance, contains(Granule-id, Object-id) returns whether a given object is currently located within a specified granule. getGranules(Map-id, Class-name) returns all those granules that contain objects of interest of a given class name. getDirectGranule(Map-id, Object-id)

returns the direct granule (at the upper level of granularity) that contains the current location of that object.
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Motivating examples of location-dependent queries

This section presents typical examples of location-dependent queries. These examples follow the scenario introduced in Chapter 4. In particular, we consider navigation queries, range queries, nearest neighbour queries, and also other specific types of queries.

Navigation queries

The continuous processing of navigation queries is based on a hierarchical path search that relies on a bottom-up technique with different levels of abstraction (i.e., fine-grained, room, floor, and building). The hierarchical path search starts from a user-specified level of granularity, depending on the location granule specified in the request and which contains the initial query point. Below are some typical examples of navigation queries:

1. A user identified by 'userID' wants to find the fastest path from his/her current location to the meeting room 'MR01' of the Computer Science Department 3 that goes through a break-room,

showing the result at the room level: where time(RO) = time start→goal (t start ) is the estimated time to traverse the path RO from 'userID' located at v start to 'MR01'. As previously mentioned, the gr operator used in the SELECT statement returns an ordered set of nodes of the optimal route at the room level. where length(RO) = length start→goal (t start ) is the time-dependent network distance from 'p1' located at v start to 'p2' located at v goal .

3. Retrieve the time needed by all my colleagues of the Computer Science Department to reach the room where I am located: A similar query could be "Retrieve the time needed to evacuate the building", which could be computed as the estimated time needed for the evacuation of the slowest person in the building.

Range queries

Range queries are used to retrieve information about objects or places within a specified range or area. Some range queries have a static reference object and others have a moving reference object.

Similarly, the target objects of the queries can be static or moving. The continuous processing of range queries consists in hierarchically expanding all routes whose network distance from the source node is less than or equal to the specified radius. Examples of such queries are:

1. Retrieve the identifiers of persons accessible at a network distance smaller 100 meters of the room where object o1 is located:

SELECT Person . id FROM Person
WHERE inside (100 meters , gr ( ' room -level ' , ' o1 ') , Person )

2. Retrieve all the communicating entities accessible at a network distance smaller than 100 meters of the user identified by 'userID' and with a communication range of at least 200 meters:

SELECT CO . id FROM Object AS CO In the previous query examples, the query issuer does not play the role of the reference object of the query, which shows the generality of the types of queries supported. On the other hand, the reference object can certainly be the query issuer himself/herself.
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k Nearest Neighbour queries A (K) nearest neighbour query retrieves the (K) objects that meet certain specifications and which are the closest to a certain object or location. As in the case of other location-dependent queries, this kind of queries can also be issued by either a static or a dynamic reference object, and applied to either static or dynamic data. Let us show some examples:

1. Find the nearest available bathroom to the user identified by 'userID': 

Reachability queries and reverse range queries

Finally, examples that show the relevance of the proposed query language and implicitly embed interaction spaces associated with each object are hereafter illustrated. Reachability queries check for places and/or objects that are reachable from the current position of the reference object. Indeed, those queries are implicitly processed as range queries by assigning a default threshold value θ to the inside constraint, which is large enough to determine whether the target object/place is reachable or not.

1. Reachability queries:

•Is the room where the object 'objID' is currently located accessible to the user identified by 'userID' ? This request should check whether the room that contains 'objID' is within the range of 'userID' having a maximum threshold value set to θ: •Retrieve all the floors of the building that have at least one room accessible to the user 'userID': 2. Continuous reverse range queries. Retrieve all the entities of type 'Sensor' that are covering the user 'userID' can be considered as an example of a continuous reverse range query, according to the definition provided in [START_REF] Xu | Adaptive location constraint processing[END_REF], since it continuously checks whether a moving object is inside the range of some sensor: The different examples shown in this section which correspond to several kinds of queries emphasize the potential behind this query grammar in supporting location-dependent queries. This list of examples is definitely not exhaustive since many other scenarios can be imagined, and the language is sufficiently flexible to express other queries in other contexts.

Discussion

The architecture presented in this chapter provides a continuous query processing approach that can be applied on both static and moving objects, and proposes a generic execution flow for different kinds of location-dependent queries in indoor environments. The query language grammar supports navigation-related queries and incorporates other preferences and semantics into the query model.

This language handles the granularity of moving objects' locations, thus favouring the hierarchical indoor data model previously presented.

Although the management of location granules during query processing introduces a certain overhead due to some extra computations, this cost is limited and affordable. Indeed, the use of location granules together with incremental processing help reducing the communication overhead.

Moreover, dealing with coarse location granules reduces the number of location updates that must be communicated to the mobile device. Similarly, efforts needed to keep track of the current positions of the reference and target objects are also smaller when coarse location granules are specified in the query constraints. Query processing issues behind the operators developed in this chapter are This chapter presents several solutions to address the algorithmic issues behind processing continuous location-dependent queries. The algorithms introduced in this chapter constitute the core functions behind the operators and constraints defined in the query grammar introduced in Chapter 5. Algorithms for continuous path and range searches are developed on top of the hierarchical data model described in Chapter 4. These algorithms take advantage of the different levels of abstraction of the data model, and develop an incremental processing paradigm in order to provide an efficient and scalable solution for indoor navigation systems.

This chapter contains the following sections: Section 6.1 highlights the need for an incremental processing paradigm as well as for a hierarchical organization of the underlying data model, in order to improve continuous query processing performance. Section 6.2 presents two complementary algorithms to process indoor path queries, by first introducing the hierarchical path search and then by discussing the incremental processing of those queries in cases where both the reference and target objects are freely moving in space. Section 6.3 introduces several algorithms for continuous processing of indoor range queries. It first presents a mechanism for Hierarchical Range Network Expansion INDOOR MOBILE ENVIRONMENTS (HRNE) that extends the RNE approach discussed in Chapter 3. The incremental algorithm for continuous range search is then described. Finally, Section 6.4 emphasizes several points on query processing.

Hierarchical and incremental processing of continuous LDQs

In contrast to conventional location-dependent queries that consider static reference and/or target objects, the algorithms presented in this chapter seek maximum generality by assuming that target objects can be either in a static location or moving freely in space. Therefore, continuous reevaluation of the query is required while keeping track of the relevant information of objects involved in the processing. An incremental processing paradigm is used for continuously reevaluating such queries, so that previous searches help finding the new answer without recomputing everything from scratch.

This requires to build a specific search tree adapted to each kind of queries addressed in this chapter.

This search tree is created and dynamically maintained for each query, so that elements are added and/or removed according to a certain policy.

On the other hand, hierarchical search algorithms became important tools for computing shortest paths and other services in time-critical applications like Intelligent Transportation Systems (ITS), due to the growing size of spatial networks [START_REF] Shekhar | Materialization trade-offs in hierarchical shortest path algorithms[END_REF]. The algorithms introduced in this chapter rely on the hierarchical data model described in Chapter 4. Particularly, path planning and network expansion are performed hierarchically by using the different hierarchies of the model, thus decreasing computational complexity and favouring a promising solution to alleviate performance and scalability issues in location-dependent query processing. The following sections provide more details on how both the hierarchical and incremental aspects are incorporated in query processing.

Continuous processing of indoor path queries

For a matter of simplicity, the query processing approach assumes that the reference object will follow its optimal path towards the target. Therefore, incremental search algorithms are required in order to efficiently execute continuous location-dependent queries, thus avoiding solving each search problem independently from scratch [START_REF] Sun | Efficient incremental search for moving target search[END_REF]. Incremental search implies reusing information from previous searches for each query to obtain the current result without having to recompute everything each time. This section first presents an overview on the approach for the continuous processing of path queries is given. Secondly, a detailed description of the hierarchical search and the continuous
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133 processing of indoor path queries is provided, along with pseudocodes of the corresponding algorithms.

Algorithm principles

Path queries encompass all the queries that directly help the users to find and reach points/objects of interest, by providing them with navigational information while optimizing some criteria such as the traversed distance or travel time. Let us introduce an approach for the continuous processing of path queries that relies on a bottom-up technique, and which uses two levels of abstraction, that is, a fine-grained layer at the first level and the exit hierarchy at the second level of abstraction1 . The search starts from a user-defined level of granularity (depending on the location granule specified in the request and which contains the initial query point) to the highest level of abstraction to find the optimal route at an abstract level. Refinement processes are executed, when needed, to find the exact location of the target object. The main steps of the process can be summarized as follows:

• Step 1: Find the optimal path within the initial granule until reaching the optimal exit.

• Step 2: Search at the abstract level (exit hierarchy) for the optimal path from the exit of the initial granule to the granule containing the target object.

• Step 3: Find the optimal path within the last granule to the target object, starting from the corresponding entrance of the granule.

• Step 4: Start a continuous path search by taking into account updated locations of both the reference and the target objects (considering the general case of moving targets). This implies transforming an initial search tree rooted at the previous location of the reference object to an updated tree rooted at its current location. The process continues by either expanding new subtrees from the leaves towards the target and/or by removing subtrees that are no longer needed.

The approach retained for processing continuous path queries is refined by two complementary algorithms. Steps 1 to 3 represent the first iteration, which performs the hierarchical path search algorithm, presented in detail in Algorithm 1.

Step 4 addresses the continuous processing of the query, which is presented in detail in Algorithm 2. Those are generic steps that may or may not be completely executed depending on whether the reference and the target objects are moving or not, INDOOR MOBILE ENVIRONMENTS and on the location granule specified in the query. Two algorithms are described in the following section, which represent the implementation behind the All-routes operator defined in Chapter 5.

Hierarchical and incremental path search algorithm

Algorithms 1 and 2 introduced in this section perform continuous path queries in two phases by taking advantage of the previously mentioned techniques. This approach is considered as a hierarchical and incremental version of A* applied to indoor moving objects. It is based on the hierarchical data model previously described in Chapter 4. Without loss of generality, a complex path query that requires performing all the steps described at the beginning of Section 6.2.1 is considered, which in the example given implies finding an optimal route from person p 1 to person p 2 , assuming that p 2 is moving freely in space. Other cases, for instance where the target object is in a static location, can be easily tackled by performing a first iteration of the whole process and then skipping other unnecessary processing tasks (i.e., only Algorithm 1 would be executed). For the sake of clarity, handling granules is also not detailed in the pseudocodes. Scenarios where, for instance, granules at the room level are considered for the reference and/or the target objects, are easier to process and can be directly derived from this general scenario since no fine-grained network search is required.

As a variant of A*, our approach keeps two main data structures: 1) the CLOSED list contains exactly all the nodes that have been expanded (i.e., generated and added to the search tree); and 2)

the OPEN list comprises all the nodes of the outer perimeter of the CLOSED list (i.e., outgoing neighbours of the leaves in the CLOSED list) that are not yet expanded. For each node v in the CLOSED list, the following properties are associated:

• The network distance from v to current location of the reference object v start is computed, and referred to as the g-value g(v); it holds that: g(v) = g(parent(v)) + length parent(v),v , and

g(v start ) = 0.
• An estimated heuristic value to the target node v goal is applied, and referred to as the hvalue, h(v), which helps propagating a "wavefront" expansion towards the target node. h(v)

is computed as follows:

h(v) = Ed(v start , v midway1 ) + pathLength EXs,Exg + Ed(v midway2,v goal ),
where Ed(v, v ′ ) is the Euclidean distance between two nodes at the fine-grained level, v midway1 and v midway2 represent two midway nodes that belong to the reference and the target exits, respectively, and pathLength EXs,Exg is the precomputed optimal network distance between the optimal exit at the start granule and the corresponding target exit. All-pairs optimal network paths between exits are precomputed and stored by using the pathLength() function.

pathLength() is equal to zero if the reference room is equal to the target room or if the dimension of the optimal exit path is equal to one.

• In addition, each generated node is stored along with its path to the start node, a pointer to the predecessor node, the f (v) = g(v) + h(v) value, and whether it has been expanded or not.

Notice that g(v) and h(v) are also time-dependent functions since they are computed by invoking the other time-dependent methods previously defined. The pointer to the parent node, parent(v), is assigned in order to identify a reverse optimal path from the current node to the start node by following v's ancestors. The algorithm expands the node v with the smallest

f (v) = g(v) + h(v)
from the OPEN list, and terminates when the OPEN list is empty or when the target node has been expanded.

Two main methods are frequently invoked during the execution of Algorithms 1 and 2. They are explained as follows:

• The adaptedAstar(source, target, inP ath, out outP ath, out outLength) method is used by the hierarchical path search for computing the fine-grained paths at the reference and the target granules. This method can also manage the different layers of the hierarchical data model. It can perform searches either on the fine level separately or on the exit hierarchy to find optimal exit paths. The main feature of this method is that it uses a priority-queue-like data structure which is indexed based on the value of f (v) and represents the CLOSED list. A node with the minimum f (v) is indexed on the top of the queue and thus retrieved first. Different values are dynamically inserted in the priority queue and used afterwards for continuous processing.

The inP ath parameter of the adaptedAstar(...) method is used by the hierarchical path search to concatenate searches at different layers. Otherwise, inP ath is considered to be NULL. An expansion procedure expand(v) is performed throughout this method, and consists of checking for each neighbour v ′ of v whether it belongs or not to the OPEN list. If v ′ / ∈ OPEN, the method generates v ′ by setting g(v ′ ) to g(v)+length v,v ′ (t), setting its parent to v, and inserting it into the OPEN list. If v ′ is already in the OPEN list, then it checks whether g(v

′ ) > g(v) + length v,v ′ (t);
if so, then the algorithm sets g(v ′ ) to g(v) + length v,v ′ (t), and parent(v ′ ) to v. The way the heuristic function is computed and other optimizations developed to improve the performance of the adaptedAstar(...) method are presented in Chapter 7.

• The computeRef T arExits(vstart, vgoal) method is used for computing the optimal exit path that minimizes the path between the current locations of the reference and target objects. The result contains an optimal path at the exit hierarchy starting from the granule containing the reference object and ending with the corresponding entrance at the target granule. Notice that an optimal exit to a given object's location should not be necessarily the nearest one in term of distance, but rather the one that optimizes the whole network distance between the reference and the target objects. This function is invoked when applying the continuous processing of hierarchical path and range searches.

Hierarchical path search

The pseudocode of the hierarchical path search is illustrated in Algorithm 1. • The lines 5 → 8 check whether the current granules of the reference and target objects match. In that case, no hierarchical search is needed, but instead an invocation the adaptedAstar method is performed, and a first result is returned. Otherwise, the computeRef T arExits (vstart, vgoal) method is invoked to retrieve the best pair of exit/entrance that correspond to the source and target granules, along with the corresponding optimal exit path (lines 10 → 11).

•

Step 1: Once the optimal exit path is computed, the algorithm starts the hierarchical path search by firstly performing a fine-grained search at the reference granule until reaching a midway node that belongs to the source exit previously identified (lines 12 → 13).

• Step 2: Upon identifying and reaching the first exit of the computed optimal exit path, the algorithm moves up to the upper level at the exit hierarchy, and inserts all exits of the optimal exit path into the priority queue (i.e., CLOSED list), so that concatenated paths of two levels of granularity will be associated to each of those generated exits (lines 14 → 17). The generate(e) methods sets g(e) to g(v) + length v,e (t), and parent(e) to v. This step continues until reaching the optimal entrance at the target granule.

•

Step 3: The hierarchical path search algorithm ends by performing a fine-grained search starting from an identified midway node at the target granule towards the exact location of the target, and then by identifying a shortest path in reverse by following v goal 's ancestors until reaching the source node (lines 18 → 23).

Continuous query processing

A continuous processing of path queries starts at this phase by taking into account the updated locations of the reference and the target objects. A pseudocode of this algorithm is illustrated in Algorithm 2. A description of this algorithm is given as follows:

• A fundamental step consists of invoking the hierarchical path search method previously described in order to build for the first time the search tree, which will be stored in the priority queue structure (lines 2 → 4). After this step, a first path result is returned to the user, and all generated nodes in the search tree rooted at v start are associated with the above mentioned properties.

• A continuous path search starts with the aim of keeping the initial tree up-to-date. At each iteration, the algorithm looks for up-to-date locations of the reference and target objects, and then matches those locations to nodes at the fine-grained network (lines 6 → 8). As long as the search tree is rooted at the same v start (i.e., the reference object is not moving) and the target INDOOR MOBILE ENVIRONMENTS object is located on a node in the CLOSED list, a shortest path can be easily determined in reverse from v goal towards v start (lines 9 → 10).

• When the reference object moves (lines 12 → 15), additional steps to transform an initial search tree rooted at the previous v start to an updated tree rooted at the current v start are needed. Three main functions are invoked to perform this transformation: 1) The updateT reeRootedAt method firstly updates pointers to parent nodes at the reference granule so that nodes of the reference granule are rooted at the new v start ; 2) secondly, the deleteU nnecessaryN odes() method removes unnecessary nodes from the previous CLOSED list; and finally 3) completeOP EN is called to add nodes of the outer perimeter of the new CLOSED list to the new OPEN list.

• In case v goal is not located in the CLOSED list, a new invocation to the computeRef T arExits() method is performed to determine the new optimal exit path towards the target (lines 17 → 21).

If the new optimal exit path matches the previous one (i.e., this means that the same target exit is still the nearest one), the algorithm performs a directed search in G micro with the same OPEN and CLOSED list until reaching v goal (Figure 6.1(b)).

• Otherwise, the target is either nearer to another exit within the same granule or has left the last granule (lines 22 → 25). In that case, additional checks are performed to detect the last common exit between the new and previous exit paths. Once determined, the subtree rooted at that Last exit is no longer needed and will be removed from the CLOSED list, along with the nodes at the fine-grained level. Instead, a new subtree is created starting from the Last exit and by inserting exits of the new optimal exit paths, if any, until reaching the new optimal target exit. Finally, a similar search similar to the one performed in step 3 of Algorithm 1 is afterwards completed to reach the target (see Figures 6.1(c) and 6.1(d)).

• An optimal path is returned for each iteration from the current location of the reference object towards the current location of the target object. The sleepU ntilN extP ositionU pdate() method is then invoked so that the thread remains asleep until the reference and/or target objects update their locations. Additionally, to keep the query processing overhead low in the presence of high location update rates, we may require a minimum time interval between iterations, by passing an optional argument minW aitingT ime.

Notice that we are refreshing the answer periodically, as advocated in other works such as [Ilarri et al., 2006a]. This is necessary because the answer will change all the time (even if slightly) due to the movements of the reference object and the target objects.

Continuous processing of indoor range queries

Range queries find and retrieve objects or places of interest within a user-specified range or area.

Those queries support navigation by continuously updating relevant details according to the users' movements. In our scenarios, ranges are characterized by a circular in which objects of interest must be located. This section introduces an approach for the continuous processing of range queries which considers the mobility of both the reference and the target objects. This approach is based on a hierarchical range network expansion mechanism. The principle behind that approach is to continuously update the set of visited nodes that compose the range around the reference object. Furthermore, an indexed data structure referred to as range queue is built as a result of the hierarchical network expansion. Similarly to the priority queue structure described in Section 6.2.1, this structure maintains several properties associated to the generated nodes, such as the optimal path from the current node towards the source node. This particular property offers a significant advantage since it allows the system to provide not only information about whether an object is inside a specified range, but also to return a complete optimal path to that target object.

Consequently, the result of a continuous range query includes the set of qualifying object identifiers, their optimal path towards the reference object, and the corresponding network distance. A detailed description along with pseudocodes for the corresponding algorithms are hereafter provided.

Hierarchical range network expansion

A hierarchical range network expansion (HRNE) is first computed starting from the location of the reference object in a similar way to the Dijkstra algorithm with multiple destinations and the Range Network Expansion algorithm [START_REF] Papadias | Query processing in spatial network databases[END_REF], see Figure 6.2(a). It consists of a "wavefront" expansion of the hierarchical network starting from the initial query point in all directions to find all nodes whose network distances to the source are less than the maximum specified threshold (i.e., the radius of the range query). The original idea here is that the valid routes are expanded hierarchically (cf. algorithm are described as follows:

• the fine-grained level, only nodes that belong to the same granule as the reference object are expanded. Moreover, an inP ath parameter is also used to smoothly generate routes that are concatenated to previously expanded paths from earlier range searches (inP ath takes NULL as a default value). In a similar way to Algorithm 1, an expanded node is stored along with its path to the reference object, a pointer to the predecessor node, and its g value. INDOOR MOBILE ENVIRONMENTS

• Step 2: On the exit hierarchy, start an expansion in all directions from the detected exits of the initial granule by taking into account the set of precomputed network distances (exitP aths)

between directly reachable exits (lines 5 → 8). The expansion stops when no more exits can be added (i.e., when g(e) ≥ radius). The resulting search tree includes all valid routes that consists of sets of vertices at two different levels of granularity. The rooms that are reachable from at least one entrance are considered as covered rooms (Figure 6.2(c)). Those covered rooms are determined to limit the search scope, so that target objects located outside this area are directly discarded.

• Step3: Search for the qualifying target objects by taking into account their up-to-date locations (lines 10 → 11). Different filtering processes are applied in order to avoid extra-computations resulting from searches at the fine-grained level (lines 11 → 15). The algorithm first discards an object if its current location is out the covered rooms (Figure 6.2(d)). For an object located within the covered rooms, it is checked whether the Euclidean distance between the optimal exit of the target granule and its current location is greater than the radius. If the check is successful, the object will also be discarded for that iteration (Figure 6.2(f)). Otherwise, the algorithm proceeds by performing a network range expansion at the fine-grained level within the target granule until reaching all valid nodes that satisfy the specified threshold (lines 16 → 22).

if v goal has been discovered, a composite result that consists of a triple targObjID, outP ath, outLength is returned (Figure 6.2(e)).

At the end of this process, all the generated nodes that constitute the valid routes within the radius are stored, along with their associated properties. The leaves, also referred to as boundary nodes, resulting from the range search are also returned. Such a hierarchical expansion provides a light way of exploring the network around the reference object and is performed just for the first time. It should be clarified that only exits and the paths between those exits are examined, but knowledge of nodes of the corresponding granules, which are not necessarily reachable with the same specified threshold, is not available. Therefore, all the corresponding granules of the valid exits are assumed to be accessible, but extra computations are required to determine, for each candidate object located at one of those nodes, whether that object really satisfies the distance constraint (i.e., to avoid false positives). This is done by computing the optimal path at the fine-grained level starting from the entrance of the target granule until reaching the target object.

Incremental algorithm for continuous range search

The algorithm introduced for the continuous processing of range queries in indoor environments applies an Euclidean restriction mechanism to retrieve candidate target objects that might be relevant

to the final answer, as well as the hierarchical network expansion mechanism previously described.

The continuous processing of range queries consists of:

1. Hierarchically expanding all the routes whose network distance from the source node is less than or equal to the specified radius. A hierarchical network expansion is performed once for the first iteration so that all the visited nodes within the range around the reference object are stored.

2. Continuously maintaining the set of parent nodes up-to-date when changing the root of the search tree (i.e., when the reference object moves). Boundary nodes are checked to decide, for each of them, whether to further expand that node or to perform a reverse search towards the source in order to remove nodes that are not relevant any more.

Algorithm 4 illustrates the implementation of the inside constraint used in this kind of query. The algorithm is described as follows:

• Two functions are first invoked in lines 3 → 5. The first one applies the Euclidean restriction principle to retrieve candidate target objects, and the second one performs the hierarchical network expansion mechanism previously described in Algorithm 3.

• The first round of the algorithm returns a set of triples for the qualifying target objects. For the continuous processing, the main point is to update the set of parent nodes when changing the root of the search tree (i.e., when the reference object moves). There is no need to update all the distances to the new root. Instead, only distances and the parent pointers of nodes that belong to the granule of the reference object need to be rechecked, so that the tree rooted at the new position of the reference object is rebuilt (lines 10 → 12). This update operation performs checks and modifies properties associated to the leaves as explained in the next step. • Lines 29 → 35 determine whether the target object is located on a node of the RANGE list. If so, the algorithm completes the partial path computation, as explained in Step 3 of Algorithm 3, starting from the optimal entrance of the target granule, and then checks whether that distance satisfies the specified threshold (i.e., computeP artOf P ath(e.path, getN ode(o.LocT arg)) < radius). Target objects whose network distances to their current positions satisfy the maximum distance constraint are returned in the result.

Discussion

Algorithms for continuous path and range searches over indoor moving objects were proposed in this chapter. Two complementary algorithms (Algorithms 1 and 2) represent a hierarchical and incremental path search mechanism, which can be executed at different levels of granularity, and applied on static and/or mobile data. Algorithms 3, and 4 perform continuous range searches by applying a hierarchical network expansion mechanism and an incremental Euclidean restriction approach.

The algorithms take advantage of the underlying hierarchical data model to provide more scalable and more efficient solutions to address these kinds of queries. It should be emphasized that the underlying properties defined in the data model (e.g., time-dependent functions, user profiles, and event management) remain valid, and are implicitly taken into account in query processing.

Management of location granules can be easily applied to those algorithms, and can be considered as safe areas around reference and/or target objects when a coarser granule is specified. The solutions proposed are promising in terms of scalability and performance as will be shown in Chapter 7.

CHAPTER 7 This technical summary first describes some implementation requirements and then briefly presents a comparative study of existing platforms for handling location-dependent queries or that can serve as a basis to support such kinds of query processing. The goal of this study is to assess existing systems with respect to certain implementation requirements that are established in order to design a prototype which encompasses the different contributions described earlier.

The implementation requirements to design a prototype for handling continuous locationdependent queries in indoor environments are as follows:

1. An extensible DBMS that supports developing network-based data models to represent the hierarchical indoor data model described in Chapter 4. One can think of designing the spatial network either in relational or in graph-oriented database management systems [START_REF] Angles | Survey of graph database models[END_REF]. Although graph databases are well suited for designing such network models, other issues regarding the query language support and continuous query processing are still not completely addressed and might be more difficult to implement.

2. The ability to develop a new algebra (i.e., specific data types and spatio-temporal operators) that represents the different queries handled in this context. This supports the implementation of the clauses and operators defined in Chapter 5.

3. Implementation of several algorithms for location-dependent query processing over moving objects. Particularly, the algorithms presented in Chapter 6 on top of the hierarchical data model should be implemented with an incremental processing paradigm.

Existing platforms that can handle location-dependent queries are briefly presented in this section.

The goal is to derive the best suited system that supports the previously mentioned requirements. It can then be decided whether one of these platforms can lend itself to support further developments and to be extended by other functionalities, such as the solutions introduced in previous chapters. It should also be emphasized that this comparison is provided from a system design and performance points of view. The methodologies behind some of these systems have been discussed in Chapter 3. The criteria selected to evaluate those systems depend mainly on whether they support spatiotemporal databases as well as network-based data models, and whether they are extensible or not.
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In addition, efficient management of moving objects is an essential requirement, by either supporting moving object database concepts or incorporating a data stream management technique. Such a system should also provide an ease of learning and acceptable programming time, so that new features can be integrated. Open source platforms and those that have a large community support are thus preferred. Furthermore, whether a decentralised or centralised approach is supported is also of interest to certain kinds of applications. • The DOMINO prototype handles current and future movements with the notion of dynamic attributes [Wolfson et al., 1999b]. It is built on top of spatio-temporal databases and has been implemented on top of a network-based data model, thus favouring MOD applications in road networks. The Future Temporal Logic language supports spatial and temporal operators, and handles uncertainty issues derived from moving object data. However, this prototype has not been maintained and no functionality has been provided to support continuous locationdependent queries.

• LOQOMOTION is a platform that supports distributed processing of continuous locationdependent queries in mobile environments using mobile agents [Ilarri et al., 2006a]. The platform uses MySQL for data storage and simulates moving objects in a free Euclidean space (geometric coordinates). It also handles locations at different levels of granularity, and location-dependent constraints. This platform could be adapted to support network-based models but substantial adaptations should be made regarding the underlying query processing algorithms, as well as on the movements of simulated objects.

• PLACE presents an approach that is based on spatio-temporal databases and data stream management systems to handle continuous queries [START_REF] Mokbel | Continuous query processing of spatio-temporal data streams in place[END_REF]. This platform integrates and handles real-time data streams for continuous processing of location-dependent queries.

It proposes a progressive evaluation paradigm with a predicate-based expiration approach to handle data streams. However, there is no support for a query language associated to this system. In addition, this platform has not been maintained and the source code is not available for further developments.

• SECONDO is an Open Source and extensible database system that uses the Berkeley DB for data storage. [START_REF] Dean | MapReduce: Simplified data processing on large clusters[END_REF] for parallel and distributed processing with a set of SECONDO databases, providing almost all existing SECONDO data types and operators [START_REF] Lu | Parallel Secondo: Boosting database engines with Hadoop[END_REF]. Therefore, parallel queries are also supported and can be executed on a cluster of computers. Although SECONDO provides a comprehensive set of features with an efficient query processing paradigm, the development and technical adaptations required in this system are not straightforward, especially, given that there is no large community support behind.

• PostgreSQL1 (with different extensions: PostGIS [START_REF] Obe | PostGIS in Action[END_REF], pgRouting2 , TelegraphCQ [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF], and Hermes [START_REF] Pelekis | Hermes-a framework for location-based data management[END_REF]) is an Open Source Object- On the one hand, Secondo is an Open Source platform that appears to be sufficiently powerful and extensible, and can be adapted to integrate our proposed solutions. However, there is still no direct way to process current movements, even though adjustments are believed to be possible in order to achieve that purpose. Moreover, the development and adaptations required in this system are not straightforward, especially, given that there is no large community support behind.

On the other hand, PostgreSQL is supported by a large community of developers and is highly extensible. Network-based models are represented in PostgreSQL with a relational schema. Even though PostgreSQL performance appears to be less efficient than Secondo, it presents several relevant characteristics and advantages. Consequently, it has been selected for the development of our solutions as will be shown in the following sections.

System implementation

This section underlines the implementation experience by describing the PostgreSQL system architecture as well as several optimizations performed at the algorithmic level. 3. The algorithms to process continuous location-dependent queries over moving objects (cf.

Overview

Sections 6.2 and 6.3). The following sections discuss in more detail the technical optimizations and the performance evaluation of these solutions.

The main advantage behind this prototype implementation as a core database solution is that user-defined PL/pgSQL functions are used afterwards with native SQL statements to write locationdependent queries. However, the major problem encountered in implementing those functions was the lack of data structures naturally supported in the database system. This required the use of temporary tables in the implementation of the priority and range queues. For system evaluation, synthetic moving object datasets have been generated by using the Brinkhoff's network-based generator of moving objects [START_REF] Brinkhoff | A framework for generating network-based moving objects[END_REF], and then adapted to fit our needs.

Optimization

A series of optimization techniques have been employed to improve the efficiency of the proposed solutions. Those are explained with respect to their use in the path and range query processing as follows:

• A specific heuristic function has been developed and applied overall to the continuous path query processing, which tries to optimize the network distance based on the hierarchical data model previously described. As mentioned earlier, a heuristic value is computed as follows:

h(v) = Ed(v start , v midway1 )+pathLength EXs,Exg (t)+Ed(v midway2,v goal )
. This heuristic function has been specifically designed to fit the hierarchical structure of the indoor environment.

Consequently, a best estimation of the network distance towards the destination is taken into account during the expansion process, so that the node that minimizes the gval + f val value is expanded first. The hierarchical-based heuristic function is used in the adaptedAstar(...) method for directed path search, and in the computeRef T arExits(...) method for computing the optimal exit path.

• An indexed priority-queue-like data structure for implementing the CLOSED list. A priority queue is characterized by a tuple vertexID, gval, f val, path, predecessor, expanded , where LOCATION-DEPENDENT QUERY PROCESSING vertexID depicts the node identifier, gval represents the network distance, f val = gval + hval is an indexed parameter that is used as the priority measure to allow optimal network expansion, predecessor contains the parent node, and the expanded field depicts whether the node has been expanded or not. On the other hand, the range queue is indexed based on the gval, since no heuristic function is used in the network expansion mechanism. Those two data structures constitute the foundations on which the continuous processing for both algorithms is performed.

• Directional bounding boxes that help propagating a "wavefront" path search either towards the optimal exit or the target (cf. Figures 6.1 • The computeRef T arExits(...) method computes, for path searches, the best pair of exit/entrance when the reference and/or the target objects move. For example, in Figure 4.3 let us consider M R12 and HW 14 as a reference room (i.e., a room where the reference object is located) with five exits and a target room (i.e., a room where a target object is located) with seven exits, respectively. Next, a basic approach is to check all combinations of pairs of exits to determine the best pair. To optimize this process, an additional filtering process is developed in order to prune exits that do not have direct links to the target room and where no other open paths through them are available.

• For the continuous processing of range queries, two filtering techniques are employed, thus reducing the number of fine-grained network expansions at the target granules. First, totally/partially covered rooms are determined to limit the search scope, so that objects out of that search scope are directly discarded. Secondly, an Euclidean restriction at the target granule is applied to detect candidate objects that are far enough away from the reference object.

Experimental evaluation

To the best of the authors' knowledge, no other work in the field of location-dependent query processing deals with hierarchical and continuous path searches and/or range queries on both moving reference and target objects in indoor environments. As mentioned in Chapter 3 (Sections 3.3.2 and 3.3.3), other approaches do not consider a multi-storey network, and in the case of range queries,
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157 either the reference or the target objects are assumed as static. Therefore, experimental results to evaluate the intrinsic properties of the proposed solutions are presented in this section, since it is not possible to experimentally compare our approach with other proposals. In particular, a specific comparison between hierarchical and non-hierarchical processing approach is shown throughout these experiments. This criterion shows to what extent the continuous processing of a query is affected with respect to the mean execution time (in milliseconds), as well as the total number of expanded nodes in the search tree. The mean execution time shows the average CPU time of a continuous query answer for each location update. In contrast, the criterion about the total number of nodes shows the usefulness of the incremental processing approach by giving an indication of the global size of the search tree for a complete query evaluation.

In order to test the non-hierarchical configuration of both algorithms, two main methods have been developed. The nonHierarchicalCP S(ref ObjId, tarObjId) method uses the adaptedAstar function to build a complete search tree at the fine-grained level, instead of making use of the hierarchical path search described in Chapter 6. This nonHierarchicalCP S method performs techniques for the continuous path search similar to those applied in Algorithm 6.1, in order to update the search tree. For the continuous range search, the nonHierarchicalCRS method uses a nonHierarchicalN E method for the network expansion at the fine-grained level. The performance of these methods is evaluated in the following sections with respect to the solutions proposed in Chapter 6 (Sections 6.2 and 6.3).

Experimental settings

Two different system architectures can be applied for query processing. The former considers a server-based query processing architecture (either centralised or decentralised as discussed in [Afyouni et al., 2013]), where moving objects cooperate with the system by providing up-to-date location data (and possibly other information) when needed. Thus, a minimum intervention of a user device is required for query processing by communicating the location of the user to the system according to a certain location update policy [Wolfson et al., 1999a;[START_REF] Ilarri | Location-dependent query processing: Where we are and where we are heading[END_REF]. The latter applies a client-based mobile architecture in which query processing is fully performed at the mobile device and locations of objects of interest are retrieved from the server. The first scenario implies more communication overhead, while the second scenario requires mobile devices with advanced processing capabilities. The first approach is adopted in our experimental settings, but nothing prevents testing those algorithms on a client-based mobile architecture. In the following section, scalability as well as performance testing are evaluated. LOCATION-DEPENDENT QUERY PROCESSING

Experiments have been carried out on a MacBook Pro machine with a 2.3 GHz Intel Core i7 CPU and 4GB of RAM DDR3, and which runs Mac OS X 10.8.3. All tests were run 10 times in a completely independent way, and we verified that the individual results were consistent. The fine-grained two-storey network used for prototype evaluation consists of 4146 nodes and 13963 edges (see Figure 4.2 in Chapter 4,Section 4.2.1.1). The scenario considered for the performance evaluation retains a fine resolution of the fine-grained network by using a 50 cm distance between horizontal and vertical neighbour nodes. A coarser resolution would provide better performance results, but with less accurate representation of space and objects movements. Thus, the size of the network as well as the experimental results heavily depends on this parameter.

Due to the lack of real indoor moving object data, a synthetic dataset of around 1000 moving objects have been generated to evaluate how the prototype would behave in realistic scenarios. We use the Brinkhoff's network-based generator [START_REF] Brinkhoff | A framework for generating network-based moving objects[END_REF], which is suitable for all kinds of spatial networks. It is a generic framework that can be adapted to specific scenarios. Indeed, the original purpose of this generator was to deal with moving objects on road networks. Hence, this generator does not directly deal with 3D network models, as the third dimension is not taken into account. Consequently, moving object data have been generated for each floor separately. The fine-grained graph of our model has then been integrated within the generator and some parameters have been tuned to generate indoor moving objects with realistic movements. Moreover, a-posteriori adaptations to the data set have been performed in order to take the multi-storey settings into account, and to transform the location data to the relative coordinate system considered in our scenario.

In particular, we adapted some trajectories to simulate moving objects that move from one floor to another. Two additional methods have also been developed: (i) the inverseT ransf ormation() function computes an inverse transformation to obtain coordinates in our referential system; and

(ii) the computeN earestN ode(xCoordinate, yCoordinate) determines the nearest node to a given moving object position.

The generator takes two input files (i.e., .node and .edge network data files) which correspond to the nodes and edges of the fine-grained network of the spatial data model. Different configurations have been adopted to define the mobility patterns of the generated moving objects. The duration of the evaluation period was set to 1000 timestamps. The waiting period between two successive timestamps was set to 1 second. The entire evaluation period is estimated to be around 15 minutes.

Every moving object reports its motion parameters (i.e., location update, current speed) with a probability of 80% for each timestamp within the evaluation period. Objects move on the network at different speeds, with a maximum speed limit equals to 4 km/h. We choose some objects randomly and consider them as reference and target objects for both path and range queries.

Experimental results

The following experiments first evaluate the continuous path search while varying the distance parameter between the reference and target objects. Secondly, a performance evaluation of the continuous range query processing is performed with respect to the number of objects and the radius parameters.

Continuous path searches: The first set of experiments shows how the continuous path search can be affected by applying a hierarchical or non-hierarchical-based query processing. The estimated distance between the reference and target objects is varied to demonstrate its impact with respect to both the average CPU time and the number of nodes expanded (see Figures 7.1 for both hierarchical and non-hierarchical configurations. The results show that the hierarchical approach keeps constant time responses when the distance between the reference and the target object increases. On the contrary, a non-hierarchical configuration appears to grow with the distance between the reference object and the target objects. This is due to the fact that the hierarchical method processes fine-grained searches only at the reference and target granules, and thus whatever the distance between the two moving objects the time processing remains constant. We also performed several tests with other distance values (not shown for the sake of clarity) and observed a similar behaviour. On the other hand, a relatively large distance between the two moving objects implies exploring a big part of the fine-grained network until reaching the target. This is clearly reported in Figure 7. 1(b). As illustrated, a path search between two moving objects whose distance LOCATION-DEPENDENT QUERY PROCESSING is between 100 and 200 meters, requires expanding around 200 nodes when applying the hierarchical approach, and around 2400 nodes with a non-hierarchical configuration. This demonstrates that the hierarchical and incremental path search algorithm is scalable to large indoor spaces (e.g., several multi-storey buildings in a campus) with constant time responses.

Continuous range queries: Regarding the continuous range query algorithm, some parameters such as the range and the number of moving objects can be varied. This aims to show the scalability The hierarchical network mechanism takes advantage of the exit hierarchy to explore the search scope without having to expand all the nodes in range at the fine-grained level. This means that this mechanism is dependent on the number and the locations of the target objects in the search scope. Wherever a candidate object requires a fine-grained search, the algorithm will explore the granule containing that object to decide whether it is is really within the range. Other granules in the search scope are not going to be expanded while no candidate objects enter those granules.

On the other hand, a non-hierarchical network expansion is completely dependent on the search space. It expands all nodes within the range without taking into account the number and locations of the candidate objects. Notice that for the hierarchical approach a constant time is obtained after reaching a certain radius. This means that once the corresponding granules have been explored no extra-computation is required. Moreover, the evaluation of both configurations shows gains with respect to the number of nodes expanded during the whole process. Again, the total number of expanded nodes reaches a maximum for the hierarchical approach once the corresponding granules have been explored. On the contrary, the non-hierarchical approach reaches the maximum number of nodes of the network being considered in those experiments (i.e., it explores all the network).

The next set of experiments presents the performance evaluation and scalability of the two configurations with respect to the number of moving objects (see Figures 7.3(a) and 7.3(b)). In these experiments the radius parameter is set to 50 meters, while the number of moving objects varies between 1 and 1000. The results show significant improvement when applying the hierarchical processing, and an acceptable execution time even with 1000 moving objects. We should remind that this query returns, on each timestamp and for each moving object in range, the optimal path to the reference object. Consistently with the first result, Figure 7.3(b) shows that, whatever the number of moving objects specified by the user, the non-hierarchical configuration explores all the nodes within the specified radius. On the contrary, even with 1000 moving objects, the hierarchical approach is able to answer the query with a much smaller number of expanded nodes. 

System Scalability

PostgreSQL supports full parallelism at the client-side, so that applications can open multiple database connections and manage them asynchronously, or via threads. Multi-thread Java programs with a connection pooling mechanism have been developed in order to simulate a multi-user environment, and to show the effect of concurrent continuous queries on the performance of the system (in this scenario, a single multi-core PostgreSQL server). We investigate the average response time of a continuous query per user. The response time considered in these tests is the average time interval between issuing a continuous query and getting the response from the system at a given timestamp when the search is successfully completed. The number of threads varies from 1 to 200 in LOCATION-DEPENDENT QUERY PROCESSING the first set of experiments that consider concurrent path queries, and from 1 to 50 for concurrent range queries.

Figure 7.4 illustrates the average response time for a continuous path query at a given timestamp for a given user. The number of concurrent users querying the system in real-time varies from 1 to 200. Simulation results suggest that, with 30 to 50 concurrent accesses, the average response time varies between 1 and 1.5 seconds. Even with 100 to 200 concurrent users, the time for a query answer remains acceptable, and the number of concurrent queries has a linear impact on the performance (it should be noted that the X-axis in the figure is not linear). 

Summary of the experiments

According to the above experimental results, the execution of the algorithm developed for continuous path search appears as satisfactory regarding execution time and scales well with the number of expanded nodes. It has been shown to be scalable enough to large indoor spaces thanks to the hierarchical-based query processing. Moreover, the continuous range query processing approach provides satisfactory scalability with respect to the radius parameter, and acceptable performance in processing range queries when the number of moving objects increases. Regarding the experimental results for the continuous range search, all moving objects involved are assumed to be of interest to the corresponding query. Indeed, only objects of a certain type (the ones involved in the query) have a direct impact on the performance of the query processing, so this generates a worst-case situation. A pre-filtering of objects based on static properties (e.g., people in my friend list) has a similar effect, as this reduces the number of objects to consider as a potential candidate (i.e., moving objects not in the friend list are immediately discarded). Consequently, and for example, the largest mean execution times shown in Figure 7.5(b), when applied to a friend-finder application, would imply a range of 50 meters and 60 persons in the list of friends that should be at the same time in the same indoor environment. Nevertheless, the total number of moving objects, independently of their type, has also a slight impact on the performance of the server due to the need to manage their location updates.

Furthermore, the whole system has been tested for scalability with respect to the number of concurrent continuous queries. A multi-user environment has been simulated in order to show the effect of concurrent continuous queries on the performance of the system. The system shows satisfactory scalability for path queries with up to 200 concurrent users, and acceptable response times for range queries with up to 50 concurrent users. Consequently, a general analysis and assessment of the algorithms suggest that our approach can be used for real-time services. Moreover, in some scenarios where the number of concurrent users becomes high, the performance can be increased by adopting the distributed data management approach described in Chapter 5. LOCATION-DEPENDENT QUERY PROCESSING

Conclusions

This chapter introduces a database extension that has been fully implemented on top of the open source DBMS PostgreSQL for handling continuous path searches and range queries has been implemented on top of the hierarchical network-based indoor data model. This system architecture has been developed, and optimizations that improve query processing performance have been discussed. Experiments that investigate the scalability and performance with respect to the intrinsic properties of the proposed solutions have been presented. Results show that our proposal achieves a satisfactory performance, and it is efficient enough to be used in a real scenario. Experimental results show a mean execution time of around 0.2 second for continuous path searches, even in cases where the distance is quite large for an indoor scenario, and reasonable response times for continuous range searches. Furthermore, the whole system was tested for scalability with respect to the number of concurrent users issuing a continuous query. The results show that the system is fairly scalable and adapted to a multi-user environment.

A technical observation can be highlighted regarding the implementation on top of PostgreSQL.

In PostgreSQL, internal functions can be thoroughly written in PL/pgSQL or dynamically linked to functions in C libraries and which use the Server Programming Interface (SPI) provided by PostgreSQL to access data. Internal PL/pgSQL functions are well suited for running code that consists of sets of inter-referenced database queries. However, some of the core algorithmic functions can be exported and written as C/SPI procedures, because these procedures are able to access things deeply internal to the database engine inaccessible by any other means, so that they can perform faster. Therefore, by exporting the basic A* star and network expansion modules, the performance of the continuous path and range searches increases.

an offline filtering of the hierarchical data model, thus reducing the amount of data that needs to be processed in real-time.

The semantics of a query grammar tied to the indoor data model has also been developed (Chapter 5). This grammar supports location-dependent queries. It represents navigation queries and incorporates user preferences and semantics in the query model (e.g., gr operator, MINIMIZE and Stop-Vertices keywords). It also supports the hierarchical data model thanks to the concept of location granules that integrate different levels of abstraction. Location granules favour the specification of queries using the location terminology preferred by the user (e.g., nodes at the fine-grained level, rooms, floors, buildings, etc.).

Several algorithms and a generic architecture for the continuous processing of location-dependent queries have been designed and implemented (Chapter 6). Navigation-related queries can be processed according to this architecture, and query results are continually kept up-to-date over a certain period of time. Two algorithms for hierarchical path searches and range queries applied to both static and moving objects have been developed. The former represents an incremental and hierarchical path search that can be executed at different levels of granularity, and applied on static and/or mobile data. The latter performs continuous range searches by applying a hierarchical network expansion mechanism and an incremental Euclidean restriction approach. Those algorithms take advantage of the hierarchical data model of the indoor environment, and employ an incremental approach in order to efficiently execute continuous location-dependent queries, thus avoiding the reevaluation of each search problem independently from scratch.

The whole approach has been implemented as a database solution based on the PostgreSQL DBMS (Chapter 7). The main parts of the prototype developed are: (i) a hierarchical network-based data model of an indoor environment; (ii) operators and location-dependent constraints introduced in the query grammar; and (iii) algorithms to process continuous location-dependent queries over moving objects. Several experimental validations have been conducted to investigate scalability and performance with respect to the intrinsic properties of the proposed solutions. Results show that our proposal achieves satisfactory performance, and it is sufficiently efficient to be used in a real-time scenario.

Research perspectives

This dissertation raises a number of research challenges related to context-aware and continuous query processing, as well as to semantic location-based services. This section gives an overview of meaningful directions for future research. It outlines three categories of perspectives: conceptual, technical, as well as application perspectives. On the one hand, conceptual perspectives discuss the concept of an extended context model, and present several open challenges for context-aware queries related to navigation services. The concept of semantically annotating users' trajectories is also presented. On the other hand, technical perspectives include optimization at the algorithmic and system levels so that a more efficient and extended system can be designed. In addition, implementation issues such as a close integration of the solutions developed in this dissertation with an indoor localization technique, a graphical user interface, and other extensions are discussed.

Finally, application perspectives that discuss the future of indoor-based systems from academic and industrial points of view are highlighted.

Conceptual perspectives

Different extensions to the modelling approach can be explored in order to enrich the context dimension of the data model. For instance, a better integration of context-awareness in query processing as well as the development of other kinds of navigation-related services are still directions to investigate. These issues are discussed as follows.

Extended context model: The indoor data model introduced in Chapter 4 represents several contextual dimensions such as spatio-temporal information, user profiles, and real-time event management. The data model developed still requires the integration of an extended context model in order to incorporate users' activities as well as content generated by other social entities when executing location-dependent queries. Such contextual dimensions can be gathered via different ways: using physical as well as virtual sensors. Physical sensors embedded in mobile devices provide diverse kinds of raw data, and other virtual sensors (agenda, profile, social network activity, etc.) can also help the system to track the user context. A filtering step should be performed in order to only keep relevant data for analysis and real-time processing. Such a model classifies contextual dimensions as follows.

• Spatio-temporal information includes the location and time dimensions as represented in the indoor spatial data model previously developed. Besides, a user trajectory might also be of interest to enrich the user context. Based on such spatio-temporal patterns, such a system can infer some user interests and provide him/her with relevant recommendations. Moreover, the user orientation can be associated to the user device, and is represented by either a quantitative value (128°to the north) or using a qualitative representation [START_REF] Patroumpas | Monitoring orientation of moving objects around focal points[END_REF].

The orientation parameter can be used along with other sensor data in order to detect some basic user activities as shown afterwards.

• The user activity is an important context dimension that depicts the activity performed by the user when navigating in an indoor space. By focusing on such activities, the system will gain a better understanding of the context, thus providing a step forward to develop truly ambient intelligent systems. For instance, a mechanism for user activity recognition based on accelerometer data can be used for that purpose [START_REF] Yan | SAMMPLE: detecting semantic indoor activities in practical settings using locomotive signatures[END_REF]]. Such a system can identify different activities such as running, walking, going upstairs, going downstairs, sitting, standing, in an elevator, etc., and consider them while reevaluating the answer to a given query.

• The user profile dimension includes gender, age, a set of interests, physical capabilities, access privileges, and status. The user profile contains static (gender, age, profession) as well as dynamic properties (physical capabilities, access privileges, status: busy, available, etc.). An overview of the sensors embedded in mobile phones and their potential uses as a computing platform to acquire those parameters is reviewed in [START_REF] Lane | A survey of mobile phone sensing[END_REF]. Those properties are very important for providing personalized answers to a given user's request. Dynamic properties can be extended to incorporate information shared by the corresponding user to the system, which in turn can broadcast it to other users when necessary. This concept of user-generated content might be of interest to recommender systems that can relay useful information to users based on shared interests.

• An effective model of collaborative usage can also be useful. A collaborative usage model classifies users into groups or communities, within which they share a common characteristic or interest. A user can belong to a community either explicitly by a subscription-based mechanism or implicitly if he/she has a common characteristic or property [START_REF] Ben Nejma | TALDEA: Un outil d'aide à la création de communautés spontanées avec géolocalisation[END_REF]. On the one hand, subscription-based communities encompass users that share a given interest or involved in a similar practice (i.e., group of people working together and constantly conducting solutions in a given shared field). On the other hand, implicitly generated communities depend either on the current location of users or on their trajectories (i.e., if they have similar spatio-temporal patterns). They might also depend on their behaviours in a similar context. This collaborative usage model derives similar behaviours and interests, so that the system can act proactively by notifying users of certain events or adapting certain query answers. Push-based services can thereafter be designed based on such communities.

Based on data gathered from fixed and/or mobile sensors and on user-generated content (i.e., information shared by users to the system or within communities to notify certain events), the system should be able to manage events in real-time and filter relevant ones for corresponding users.

Real-time event management means that people who share a common interest or common context should be notified by such events. Depending on the relevance of such events, the system might either let the user decide whether to integrate this event into his/her relevant queries, or simply ignore it.

attractive or neutral, as well as events should be considered. Users are given the opportunity to annotate points of interest (POI) with several meanings to describe those landmarks [START_REF] Mata | An experimental virtual museum based on augmented reality and navigation[END_REF]. The system can then classify those POIs as either attractive, repellent or neutral to other users depending on their context. Relevant users might share a common interest or be following a similar pattern (e.g., shops recommendations, etc.). Therefore, semantic annotations of positions, trajectories, and typical movement patterns of moving objects open new research directions and allow for additional user-oriented services.

Technical perspectives

From a technical point of view, there are a number of possibilities for extending the overall system and enhancing its individual components. This section first discusses optimization of different components, and then presents the main directions and ideas about potential extensions.

Continuous query optimization:

The algorithms developed minimize the CPU cost at the central processing server by introducing an incremental approach for continuous query processing.

Other techniques can reduce the communication overhead caused by frequent location updates.

Those assume that objects have some computational capabilities and knowledge of the queries so that they can perform location updates only when they influence some query results. A valuable direction for future work is to combine these approaches with ours and to design a comprehensive system that minimizes both CPU and communication costs. This implies to introduce a policy based on lazy updates to reduce extra computations. A more general approach should be designed, such that only relevant users (i.e., those involved in active queries) update their locations, and only queries that might be affected by those updates are reevaluated.

Another important goal is to investigate further component integration such as supporting a Data Stream Management System (DSMS) for the processing of continuous queries over spatial data streams. Continuous queries are naturally processed over streams of data as they arrive in real-time. So far, our algorithms do not handle data streams from an external system, but we simulate this scenario by creating a named pipe and a program that writes the stream elements as a single line into that pipe. Coupling our solutions developed in PostgreSQL with the TelegraphCQ extension [START_REF] Chandrasekaran | TelegraphCQ: Continuous dataflow processing[END_REF] would provide a more consistent system for continuous query processing over moving objects.

Other extensions: The prototype provided in this work focusses on back-end development (i.e., at the server side) of the proposed solutions. However, a mobile real-time information system requires cooperation of different components at the client side, and other extensions such as an indoor positioning system that provides moving object data.

Client-side personalisation of mobile context-aware services has important benefits when building professional and user-oriented systems. Consequently, different client-side extensions are expected to be integrated in such mobile applications. Particularly, a high-level query interface is expected to embed a voice recognition system that allows verbal requests and a graphical user interface with predefined operators. The system transforms the query expressed in a natural or high-level language into an SQL-like format, as proposed in [Ilarri et al., 2006a]. Moreover, a user modelling framework that can support client-side personalisation on different mobile platforms should be designed. This implies taking into account the different preferences and constraints (e.g., physical capabilities) of the mobile user.

Our prototype should also be coupled with an indoor localization technique, such as the one developed in [START_REF] Ray | Wireless and information technologies supporting intelligent location-based services[END_REF], so that an evaluation over real moving object data can be performed.

In addition, An automatic generation of the fine-grained graph of the indoor data model should be introduced, along with a map-matching mechanism adapted to the corresponding localization technique should be developed.

Application perspectives

The modelling approach developed in this research is sufficiently flexible to support the development of different levels of data manipulation and interactions. This approach can be applied for the monitoring of different types of built environments (e.g., airports, museums) and ships in terrestrial and maritime contexts, respectively. For instance, an indoor navigation system is currently being developed at the French Naval Academy Research Institute for the real-time monitoring of moving objects within ships. Additional properties to the indoor data model might be considered in such applications in order to take into account the movement of ships as well as an approximation of seafloor slope at each location within a ship. Regarding the design of the hierarchical graph-based data model, impedances on edges at the fine-grained graph should be added by considering the slope value at this location and other parameters such as the current speed and direction of the ship. Such adaptations on the data model provide more realistic navigation services (e.g., get-together services or prepare the crew and passengers for an evacuation process) and adapted query answers.

Application perspectives are very large, from the development of interactive systems for built environments, to additional professional-and user-oriented services. The numerous application types range from mobile location-aware services to context-aware recommender systems. New classes of
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 51 Figure 5.1: Execution of location-dependent queries in indoor environments

  SELECT gr ( ' room -level ' , RO ) FROM Room AS R , Person AS P , All -routes ( gr ( ' micro -level ' ,P . id ) ,R ) AS RO WITH Stop -vertices v1 WHERE R . id = ' MR01 ' AND P . id = ' userID ' AND ' break -room ' IN v1 . POI MINIMIZE time ( RO )

2 .

 2 Find the shortest route from person 'userID1' to person 'userID2', showing the results at the room level: SELECT gr ( ' room -level ' , RO ) FROM Person AS P1 , Person AS P2 All -routes ( gr ( ' micro -level ' , P1 . id ) , gr ( ' micro -level ' , P2 . id ) ) AS RO WHERE P1 . id = ' userID1 ' 3 MR01 is a unique identifier of the structural unit specified by the user and which belongs to the Computer Science Department. 126 CHAPTER 5. A LANGUAGE FOR CONTINUOUS LOCATION-DEPENDENT QUERIES IN INDOOR ENVIRONMENTS AND P2 . id = ' userID2 ' MINIMIZE length ( RO )

  all the persons who belong to the Computer Science Department and that are accessible at a network distance smaller than 100 meters of the user identified by 'userID': SELECT P . id FROM Person AS P WHERE inside (100 meters , gr ( ' micro -level ' ,' userID ') , P ) AND 'C . S . Department member ' IN P . FD

  SELECT S . id FROM Sensor AS S , Person AS P WHERE inside ( S . radius , S . id , P ) AND P . id = ' userID '

  Figure 6.1(a) shows an example of a hierarchical path returned as a first path result between two moving objects. The main steps performed in this algorithm are explained as follows: (a) Hierarchical path search (b) 1st scenario: target object is moving (c) 2nd scenario: target object is changing its current granule (d) 2nd scenario: adapting the pair of exits
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 61 Figure 6.1: Hierarchical and incremental path search algorithm

  Figure 6.2(b)). The hierarchical network expansion mechanism is introduced in Algorithm 3 and takes into account the bottom-up approach explained in Section 6.2 to efficiently expand the valid routes within the specified radius (and considering network-based distances, not Euclidean distances). The main steps of the hierarchicalN etworkExpansion(ref ObjId, radius, objectIds[])

  Figure 6.2: Incremental algorithm for continuous range search: A range of 50 meters is applied in this example
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 2 database extension based on the open source DBMS PostgreSQL[START_REF] Matthew | Beginning databases with postgreSQL: From novice to professional[END_REF] for handling continuous path searches and range queries has been implemented on top of a hierarchical network-based indoor data model. Several procedural languages are supported in PostgreSQL for developing functions and algorithms at the server side, so that the connection overhead and interprocess communication can be avoided. As a result, queries that are written as internal functions have the same access privileges and speed as native database functions and statements. The main parts of the prototype developed are: 1. The hierarchical network-based data model of an indoor environment. Automatic methods to build the multi-storey fine-grained network and the time-dependent functions described in Chapter 4 have been developed. Methods to derive the exit and location hierarchies are also included. The operators and location-dependent constraints introduced in Chapter 5. Those are implemented in the backend executor (i.e., query processor) of the PostgreSQL as PL/pgSQL 7.2. SYSTEM IMPLEMENTATION 155 functions applied on user-defined types. For instance, the gr operator for managing location granules in indoor environments, the All-routes(Loc-Ref, Loc-Target) operator for representing continuous path queries, and the inside(Radius, Loc-Ref, Loc-Target) constraint for computing continuous range queries were developed. Other operators, data types, and keywords were also incorporated in the system design.

  (a) and 6.1(b)). Directional bounding boxes are considered as an important optimization of the adaptedAstar(...) method. Those directional boxes limit the search for the neighbour nodes to those that are in the route direction towards the next goal. As a result, only five neighbours are generated and stored in the priority queue each time, instead of eight (the maximum number of neighbours). This reduces the execution time by 40%. A directional box is either oriented towards the next nearest exit or towards the target node if the reference and target objects are in the same room.

  (a) and 7.1(b), respectively).
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 71 Figure 7.1: Varying the distance parameter: Hierarchical vs. non-Hierarchical Continuous Path Search
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 7 Figure 7.1(a) illustrates the mean execution time of a continuous path search with a distance range that varies from 10 to 200 meters. The same continuous processing techniques were applied

  of the system and the algorithm behaviour over time. A performance comparison between two different scenarios based on either a hierarchical or a non-hierarchical network expansion mechanism is also considered. The next set of experiments studies the impact of varying the radius of a range query while setting the number of moving objects to 50 (see Figures 7.2(a) and 7.2(b)).
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 72 Figure 7.2: Varying the radius: Hierarchical vs. non-Hierarchical Continuous Range Search
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 7 Figure 7.3: Varying the number of moving objects: Hierarchical vs. non-Hierarchical Continuous Range Search
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 7475 Figure 7.4: Varying the number of concurrent access: Hierarchical Continuous Path Search

  On the one hand, INS helps to overcome the lack of coverage of radio-frequency (RF) signals when an insufficient number of WLAN antennas or active RFID tags

are deployed in an indoor environment. On the other hand, when both technologies (INS/Wi-Fi or INS/RFID) are available, a more precise position measurement can be produced by applying an appropriate multi-sensor data fusion technique

Table 1 .

 1 1: Taxonomy of continuous location-dependent queries

	Different challenges regarding the management of moving objects and the continuous evaluation of
	location-dependent queries are discussed in Sections 1.3.2.1 and Section 1.3.2.2.

  A large quadrant may be partially covered by a sensor, but this covered zone can not be perceived by the user, thus weakening its ability to communicate

				Service-oriented requirements			Efficiency-related requirements	
			Localisation	Navigation	Location-aware communication	Activity-oriented interaction	Spatial & behavioural analyses	Modelling effort	Performance & scalability	Flexibility
		Grid-based [Elfes, 1989; Moravec and Elfes, 1985]	⊕ accurate location data	⊕ suitable for navigation ⊖ no symbolic instructions	⊕ geometric-based data exchange ⊕ high quality data	⊕ cell-level interactions ⊖ no object-based interactions	⊕ continuous analysis ⊖ no object-oriented analysis	⊕ easy to design and maintain	⊖ consumes high memory and processor time in large spaces	⊕ good for navigation queries as geometric information is accurate
		Quadtree [Samet, 1984]	⊕ quadrant-based location data ⊖ constrained by its structure and the size of quadrants	⊕ optimises navigable space ⊖ no symbolic instructions	⊕ geometric data exchange ⊖ disturb the perception of communication ability a	⊕ quadrant-based interactions	⊕ quadrant-based analysis ⊖ no object-oriented analysis	⊕ medium effort to build the tree ⊖ dynamic insertion and deletion of objects is difficult	⊕ more compact ⊖ poor in highly dynamic environments	⊕ good for navigation queries ⊖ not flexible in dynamic environments
	approaches	Free-space tessellation [Demyen and Buro, 2006; Mekni, 2010]	⊕ location data based on an irregular tessellation ⊖ not always suitable for localization	⊖ paths might be not optimal	⊕ geometric data exchange ⊖ disturb the perception of ability communication	⊕ object-oriented interactions	⊕ object-oriented or empty space related analysis	straightforward is not ⊕ easy to tessellate space ⊖ dynamic insertion and deletion of objects	environments ⊕ efficient because more compact ⊖ poor in highly dynamic	⊕ basic navigation services
	Geometric	Generalised Voronoi diagram [Aurenhammer, 1991; Choset and Burdick, 2000]	⊕ location data based on an irregular tessellation location ⊖ no accurate	⊖ paths might be not optimal	objects ⊕ geometric data exchange ⊕ ability to communicate about	⊕ interactions with objects within cells	⊕ analysis of objects within Voronoi cells	straightforward ⊖ dynamic insertion and deletion of objects is not	environments ⊕ efficient because more compact ⊖ poor in highly dynamic	⊕ basic navigation services
			information							
		Boundary-based						⊕ easy to design and maintain a		
		[Chatila and Laumond, 1985; Crowley, 1989]	⊕ geometric location data	⊖ very limited	⊕ geometric data exchange	⊕ boundary-based interactions	⊕ basic analysis	CAD model can be costly in ⊖ model matching	⊕ efficient with basic operations	⊖ do not support navigation services
								robotic applications		
				Table 2.1: Assessment of geometric-based approaches			
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2: Assessment of symbolic approaches

Table 3 .

 3 

1: Cooperation from moving objects [Adapted from
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2: Approaches that assume known objects' trajectories
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.3: Generic query processing architectures in moving object databases

Table 3 .

 3 

4: Approaches for query processing over spatio-temporal data streams

  . A framework that extends IER and INE techniques has been proposed. INE computes the shortest network path from each candidate (i.e., target object) to the query point which is very costly. An incremental lower bound constraint technique has been introduced which extends INE by restricting network expansion to only the paths towards candidate target objects. Those candidates are in turn determined by performing a prior step of

incremental Euclidean restriction on data points. Approximate static RER and RNE solutions have been presented in

[AL-Khalidi et al., 2013]

, which tried to reduce the number of false hits, and the number of network distance computations of the corresponding techniques.

  , encompasses a set of relations and operators on top of a graph-based relational model for supporting multimodal transportation systems. Relations such as road_edge, freeway_edge, bike_edge, sidewalk_edge, and train_edge, along with other vertex relations are defined, thus allowing an intuitive expression of advanced trip planning queries in spatial networks (via leg,

transfer, and trip high level relations). The language extends the SQL structure with new clauses (e.g., WITH MODES [null|bus|train|pedestrian|etc.], WITH CERTAINTY, WITH STOP VERTICES, and MINIMIZE|MAXIMIZE clauses), operators (e.g., All-Trips), and specific spatiotemporal certainty, and facility conditions in the WHERE clause to support user preferences.

  111 ex 130 ex 129 ex 125 ex 126 ex 127 ex 128 101 ex 102 ex 103 ex 108 ex 118 ex 117 ex 109 ex 107 ex 112 ex 104 ex 105 ex 106 ex 111

			F loorExit 12			F loorExit 11
	F loorExit 02	ex 122	ex 123	ex 121	ex 120	ex 119	F loorExit 01
				ex 113			ex 115 ex 114
		hierarchical link (parent-child) horizontal link (directly accessible)			ex 110

ex ex

  Hierarchical and incremental processing of continuous LDQs . . . . . . 132 6.2 Continuous processing of indoor path queries . . . . . . . . . . . . . . . 132 6.2.1 Algorithm principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2.2 Hierarchical and incremental path search algorithm . . . . . . . . . . . . . . 134 6.2.2.1 Hierarchical path search . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2.2.2 Continuous query processing . . . . . . . . . . . . . . . . . . . . . 138 6.3 Continuous processing of indoor range queries . . . . . . . . . . . . . . . 141 6.3.1 Hierarchical range network expansion . . . . . . . . . . . . . . . . . . . . . 141 6.3.2 Incremental algorithm for continuous range search . . . . . . . . . . . . . . 144 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

	CHAPTER 5. A LANGUAGE FOR CONTINUOUS LOCATION-DEPENDENT QUERIES
	130	IN INDOOR ENVIRONMENTS
	presented in detail in Chapter 6. Particularly, the All-routes operator and the inside constraint are executed by applying incremental and hierarchical approaches to design path and range search algorithms, respectively. CHAPTER 6 Algorithms for Continuous Path and Range Queries in
		Indoor Mobile Environments
	Contents	
	6.1	

  INDOOR MOBILE ENVIRONMENTSAlgorithm 1: HierarchicalPathSearch(locRef, locTarg, out outPath, out outLength) Data: S : i=1,2 S i : G i = (V i , E i ) : hierarchical graph data; q: path query. Result: A sequence of nodes of the optimal path outPath = {vstart, v 2 , . . . , v goal } to the target object wherev i ∈ S 1 ∪ S 2 ,and the resulting network distance outLength // locRef /locT arg: Reference/target object location; g(v) = length v start ,v (t), h(v), parent(v): a predecessor is associated with each node and for each query; CLOSED: set of expanded nodes; OP EN : set of boundary nodes; The final outP ath is obtained by applying a reverseP ath procedure from v goal to vstart following v goal 's ancestors

	1 begin	
	2	CLOSED ←-∅	
	3	vstart = getN ode(locRef ); SGranuleId = getDirectGranule(vstart);
	4	OP EN = {vstart};	// A new position implies a new root of the tree
	5	v goal = getN ode(LocT arg); T GranuleId = getDirectGranule(v goal );
	6	if SGranuleId = T GranuleId then
	7	outRecord = adaptedAstar(vstart, v goal );
	8	outP ath = outRecord.outP ath;	
	9	outLength = outRecord.outLength;
	10	else	
		// Retrieve the best pair of exits of the source and target granules, and the
		corresponding optimal path	
	11	optimalExitP ath = computeRef T arExits(vstart, vgoal);
	12	sourceExit = optimalExitP ath[1];
		// Step 1: Directed A* in G micro from vstart to the source exit
	13	select a node v midway1 such that {v midway1 ∈ sourceExit.nodeListIds and
		v midway1 ∈ SGranuleId};	
	14	outP ath = adaptedAstar(vstart, v midway1 );
		// adaptedAstar implies removing v with f (v) = g(v) + h(v) =	min v ′ ∈neighbours(v)	f (v ′ ) from
		OP EN	
		// And then inserting v into CLOSED
		// Step 2: Insert all exits of optimalExitP ath into OP EN
	15	generate(sourceExit); insert(sourceExit) into OP EN ; parent(sourceExit) = v midway1 ;
	16	foreach exit e ∈ optimalExitP ath do
		// All-pairs optimal network paths between exits are already precomputed
	17	generate(e); insert(e) into OP EN ; parent(e) = e ′ ;	// e ′ is the predecessor of e
	18	end	
		// Step 3: Directed A* in G micro until reaching v goal
	19	targetExit = optimalExitP ath[length(optimalExitP ath)];
	20	select a node where {v midway2 ∈ targetExit.nodeListIds And v midway2 ∈ T GranuleId};
	21	currentP ath = append(outP ath, optimalExitP ath);
	// 22 outRecord = adaptedAstar(v midway2 , v goal , currentP ath);
	23	outP ath = reverseP ath(v goal , vstart);
	24	outLength = outRecord.outLength;

25

end

  Step 1: Gradually expand the valid routes in all directions within the initial granule of the reference object v start , located at LocRef , while length v,v ′ (t v ) < radius (lines 3 → 4). Nodes that are temporarily inaccessible or occupied by physical objects are automatically ignored. INDOOR MOBILE ENVIRONMENTSData: S : i=1,2 G i = (V i , E i ) :hierarchical graph data; q: range query; up-to-date location data. Result: ResultSet: Returns a SETOF [targObjID, outPath, outLength] for the qualifying target objects // C ⊆ objectIds[]: candidate set; LocRef ; g(v); parent(v); RAN GE: set of nodes around the reference object; coveredRooms: set of totally/partially covered rooms. Network expansion only at the reference granule // A new search tree RAN GE is built after Step 1 and stored in the range queue // Step 2: Network expansion at the Exit Hierarchy foreach accessible exit e ∈Exits of the reference granule do select an expanded node v midway1 in e; RAN GE = append(RAN GE, networkExpansion(e, radiusg(v midway1 ), v midway1 .path));

	Algorithm 3: HierarchicalNetworkExpansion(refObjId, radius, objectIds[])
	begin
	C ←-∅; coveredRooms ←-∅;
	// Step 1: At this stage, only nodes of the reference object's granule are expanded
	vstart = getN ode(q.queryLocation(ref ObjId)); SGranuleId = getDirectGranule(vstart);
	RAN GE = networkExpansion(vstart, radius);// end
	// Step 3: Search for the qualifying objects
	foreach potentialQualif yingObject ∈ objectIds do
	v goal = getN ode(q.queryLocation(objectIds[i])); T GranuleId = getDirectGranule(v goal );
	// Totally/partially covered rooms have at least one accessible exit
	if objectIds[i] ∈ coveredRooms then
	// Apply Euclidean restriction at the target granule
	retrieve exit e ∈ T GranuleId that minimizes g(e) + Ed(e, v goal );
	if g(e) + Ed(e, v goal ) > radius -g(e) then
	display objectIds[i] is out of range;
	else
	// A fine-grained search at the target granule is required
	select an expanded node v midway2 in e;
	RAN GE = append(RAN GE, networkExpansion(v midway2 , radius -g(e), e.path));
	if v goal is expanded then
	[targObjID, outP ath, outLength] =
	{objectIds[i], reverseP ath(v goal , vstart), g(v goal )};
	else
	display objectIds[i] is finally out of range;

•

  Only boundary nodes (i.e., leaves) of the RANGE list are checked to decide, for each of them, whether to further expand that node or to perform a reverse search towards the ancestors to remove nodes that are not relevant any more (i.e., the network distance to the new source is greater than the radius). For each boundary node, the algorithm first updates the network distance to the new source node, and checks whether that new distance is still less than the specified threshold (lines 13 → 17). If the check is successful, it completes the RANGE list by starting a new network expansion, and adds the valid nodes to the RANGE list. Otherwise Data: S : i=1,2 G i = (V i , E i ) : hierarchical graph data; q: range query; r: network distance; up-to-date location data; N etDistanceSet. Result: ResultSet: Returns a SETOF[targObjID, outPath, outLength] for the qualifying target objects // C ⊆ objectIds: candidate set; locRef ; g(v); parent(v); RAN GE: set of accessible nodes around the reference object; N ⊆ RAN GE: set of boundary nodes, tempSet: temporary set of nodes.

	specified threshold. After this step, a new set of valid routes around the current position of the
	Algorithm 4: ContinuousRangeSearch(refObjId, radius, objectIds[]) reference object is rebuilt.
	begin
	C ←-∅;
	locRef = q.getRef Obj.queryLocation(ref ObjId);
	C = getObjectsInEuclideanRange(locRef, objectIds, radius);
	RAN GE = hierarchicalN etworkExpansion(ref ObjId, radius, C);
	vcurrent = parent(vcurrent);
	delete(RAN GE, vcurrent);
	end
	end
	end
	end
	foreach o ∈ C do
	// computeP artOf P ath will repeat steps similar to Step 3 in Algorithm 3
	v goal = getN ode(q.queryLocation(o));
	if intersect(RAN GE, getN ode(o.LocT arg)) and
	computeP artOf P ath(e.path, getN ode(o.LocT arg)) < radius then
	[targObjID, outP ath, outLength] = {o, reverseP ath(v goal , vstart), g(v goal )}; // e is the
	optimal target exit to o
	else
	display objectIds[i] is finally out of range;
	end
	end
	end
	end

(lines 18 → 25), it starts searches in the reverse direction from each boundary node, and removes nodes that are no longer needed from the RANGE list. This reverse search continues while the network distance from the current node towards the source node is exceeding the INDOOR MOBILE ENVIRONMENTS while N otCancel do if locRef != q.getRef Obj.queryLocation(ref ObjId) then // A new position implies a new root of the tree locRef = q.getRef Obj.queryLocation(ref ObjId); C = getObjectsInEuclideanRange(locRef, objectIds, radius); foreach v ∈ RAN GE and v ∈ getDirectGranule(getN ode(locRef )) do U pdateP arent(v); // After this step, all the nodes in RAN GE are rooted at the new locRef end foreach v ∈ N do length locRef,v (tv) = updateLength(v); // reverse path search to locRef if length locRef,v (tv) ≤ radius then tempSet = networkExpansion (v, radiuslength v,locRef (tv), v.path); append(RAN GE, tempSet); else vcurrent = parent(v); delete(RAN GE, v); length LocRef,v current (tv current ) = updateLength(vcurrent); while length LocRef,v current (tv current ) > radius do

  This chapter presents the design and implementation of a database extension based on the open source DBMS PostgreSQL. The prototype developed handles continuous path searches and range queries on top of the hierarchical network-based data model of an indoor environment. The

	CHAPTER 7. A POSTGRESQL EXTENSION FOR CONTINUOUS
	LOCATION-DEPENDENT QUERY PROCESSING
	7.2.2 in order to improve the efficiency of the proposed solutions. An experimental evaluation of the
	proposed solutions is provided in Section 7.3. Finally, Section 7.4 draws some conclusions
	A PostgreSQL Extension for
	Continuous 7.1 Comparative study of existing platforms for handling LDQs
	Location-Dependent Query
	Processing
	Contents
	main parts of the prototype developed include: (i) a hierarchical network-based data model of
	indoor environments (cf., Chapter 4); (ii) operators and location-dependent constraints introduced
	in the query grammar (cf., Chapter 5); and (iii) algorithms to process continuous location-dependent
	queries over moving objects (cf., Chapter 6). Results of the experiments that have been conducted
	to investigate the scalability and performance of the whole approach are also reported.
	The remainder of this chapter is organised as follows. A technical assessment of existing
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prototypes and systems that support location-dependent queries is provided in Section 7.1, along with some implementation requirements. Section 7.2 presents the system architecture and summarizes the main parts of the developed prototype. Algorithmic optimizations are introduced in Section

  Table 7.1 summarizes different properties of the relevant systems and platforms. The systems considered in this evaluation are DOMINO, LOQOMOTION, PLACE, SECONDO, and PostgreSQL.

Table 7 .

 7 It is written in C++. It is designed to support MOD concepts and spatio-temporal 1: Comparative study of existing systems for handling location dependent queries types, relations, B-tree indexes, R-tree indexes, and network-based data types are supported. Some work on indoor data types is also under development. So far, SECONDO handles only histories of moving objects, but it may be extended to fit further needs. One challenge is the design of a hierarchical data model on top of the proposed network algebra. Parallel SECONDO is a new extension that combines the MapReduce paradigm
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queries over objects' trajectories. This systems does not have a fixed data model but rather allows one to implement DBMS data models as a set of algebra modules; each providing specific data types and operators. For instance, algebras to represent standard data types, spatial data

  TelegraphCQ that manages data streams such as location data of moving objects. A potential use of this extension can be expected for expressing continuous queries over spatial streams. The Hermes extension has also been developed on top of PostgreSQL to further provide additional spatio-temporal operators for querying objects' trajectories. Examples of such queries are nearest neighbour trajectories and trajectory similarities.
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	further development. LOQOMOTION can be extended but requires substantial adaptations at the
	algorithmic level, as well as on the movements of simulated objects. Consequently, two systems
	are considered suitable for the development required in our context: Secondo and PostgreSQL.
		Concluding remarks: Several system and implementation requirements are defined in this
		section in order to evaluate existing systems for handling location-dependent queries. The assessment
		shows that PLACE and DOMINO have not been maintained, so they cannot be considered for

Relational Database System (ORDBMS). It is a multi-user, multi-threaded database management system that runs on multiple OS platforms. PostgreSQL is developed by the PostgreSQL Global Development Group. This DBMS system supports the design of relational data models, new data types, functions, operators, triggers, etc. Some indexing methods are also provided as built-in features such as B-Tree indexes, R-Tree indexes, and GiST indexes used to speed up searching in large data sets. PostGIS and pgRouting could be used to add spatial properties and navigation functions based on geometric data types and operators. pgRouting extends PostGIS to further support routing algorithms (shortest paths, etc.) on spatial networks.

Several procedural languages are supported by PostgreSQL, such as PL/pgSQL, in order to develop functions and algorithms directly as stored procedures within the server. A similar problem to the one presented in SECONDO is the lack of a built-in functionality that provides us with a continuous processing engine. Nevertheless, there exists a PostgreSQL extension called

Lifelogging services keep a complete record of users' day-to-day activities (i.e., lifestream), thanks to small wearable gadgets or computers that captures large chunks of the user's daily life.

The query point, also referred to as the focal point in[START_REF] Gedik | MobiEyes: A distributed location monitoring service using moving location queries[END_REF]] and the reference object in[Ilarri et al., 2006a], is the point where a given location-dependent query starts (e.g., for a range query, this indicates the centre of the range specified by the user).

This classification of continuous queries is not applicable to stationary queries over stationary objects, as both the query point and the target objects are static.

The distinction between attractive and repellent events is similar to the one suggested in[START_REF] Delot | Event sharing in vehicular networks using geographic vectors and maps[END_REF] regarding attraction and repulsion events.

Moving objects are usually not considered as obstacles, and even if they are obstructing the path (e.g., a cleaning machine blocking a pathway) they are expected to move in a short time. Nevertheless, there is no problem to model this kind of situations in our modelling approach, as a closed pathway can be considered as a real-time event that temporarily prevents passing by.

The hierarchy is not fully illustrated in Figure4.5, since the right part rooted at F loorExit02 is developed similarly.

For clarity's sake, not all the edges that depict connectivity between exits are shown in Figure4.5.

Temporal events are, on the other hand, regularly evaluated by means of the time-dependent functions previously described, and so they do not belong to this category of evens.

Nevertheless, it could also be stored in a centralised manner, as the proposal is general enough to support any scheme.

The location hierarchy presented in Chapter 4 could also be used if exact positions of objects of interest and accurate distances are not critically important for the user.

http://www.postgresql.org/

http://pgrouting.org/
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represent those queries. The detailed syntax of the types of queries considered in this grammar is illustrated in Figure 5.2. This grammar supports navigation queries (of key importance in contextaware indoor navigation systems), and incorporates some other preferences and semantics in the query model. For example, this grammar includes operators (e.g., All-routes) and constraints (e.g.,

Stop-vertices) used for navigation queries and inspired by [START_REF] Booth | A data model for trip planning in multimodal transportation systems[END_REF], which define spatiotemporal restrictions and preferences on the resulting path. In the grammar presented in Figure 5.2, non-terminals start in upper-case and literals are in italics (reserved words) or in lower-case. The following description of the query language highlights the main elements involved in the definition of the queries.

Principles

The query semantics defined in this grammar provide the user with the ability of expressing navigation-related queries in a straightforward manner. Moreover, user preferences are supported at different levels. For instance, a user can specify the optimization criterion (i.e., length or time)

on which query computation will be based. Moreover, intermediate stops can be incorporated into query processing which represent some points of interest to the user. Furthermore, users can specify the class of objects that have certain properties or people that share a common interest with them (e.g., friends). Furthermore, queries can take place at different levels of granularities according to user's preferences. A main concern of this approach is to be able to appropriately represent location information at different levels of abstraction, thus supporting the hierarchical indoor data previously described.

On the modelling side, the concept of location granule, first introduced in [START_REF] Ilarri | An approach to process continuous location-dependent queries on moving objects with support for location granules[END_REF],

represents a location at a given level of granularity (i.e., a node at the base level of the hierarchical data model, a room, a floor or a building) . The idea is that it should be possible to express the queries and retrieve the results according to a given location granularity specified by the user. Location granules have an impact on: 1) the presentation of results; 2) the semantics of the queries; and 3) the performance of the query processing (see Section 5.2.3). Additional parameters are implicitly taken into account with the aim of providing more appropriate results depending on the user's context.

Indeed, all path computations (i.e., network length and travel time) are time-dependent. In addition, the answer to a given query depends on the user profile as described in Chapter 4. Even though those parameters are not explicitly represented at the query level, the result to a given query will always depend on them. This model should support continuous processing of location-dependent queries applied to moving objects acting in indoor spaces. This is exactly the scope of the approach that has been developed by this research, and which can be considered at the intersection of Mobile and ubiquitous computing and location-based services. The research developed provides an approach for knowledge representation and management in indoor mobile environments. The design of a platform for context-aware indoor navigation that encompasses an indoor data model and a query language. Several algorithms for continuous location-dependent query processing have been developed and implemented. This chapter first presents a summary of the contributions, and then discusses some of the perspectives opened by this work, as well as possible directions to explore.

A LANGUAGE FOR CONTINUOUS LOCATION-DEPENDENT QUERIES

Summary of the contributions

The integration of an indoor spatial data model into a context-aware system is considered as a key building block for designing advanced navigation services. Our study shows that a hierarchically organized context-dependent indoor data model can support a wide range of location-based services.

An indoor data model has been introduced that can be viewed as a tree structure in which location information is represented at different levels of abstraction (Chapter 4): (1) a fine-grained graph embedded within an occupancy grid; (2) an exit hierarchy; and (3) a location hierarchy. Such a model represents: (i) static/moving features of interest, (ii) their spatial properties, and (iii) the behaviours or actions that emerge from them. The hierarchical design provides better performance and scalability when processing location-dependent queries. Time-dependent functions that compute navigational path distances and travel times are introduced. A classification of user profiles supports Some types of events should be directly handled by the system itself (in case of emergency or other important events). These contextual dimensions represent the user-centric context, and should be taken into account by the system in real-time in order to completely incorporate context-awareness in intelligent navigation services.

Context-aware Query Processing: This dissertation introduced a continuous query processing framework that takes several contextual dimensions into account. An extension of our proposal should be designed to support the extended context model previously described. Such a system should deal with a highly dynamic environment in which objects are moving continuously and their context is dynamically changing. One important direction to consider in future work is the complete integration of the context model into the query processing engine. This implies the development of a "cost model for evaluating context-aware queries" that provides not only a quantitative value as a result of a cost function, but also a semantic indicator that evaluates the quality, usefulness, and uncertainty of query results. The main challenge in developing cost models is to take into account the different parameters of the context while associating different quantitative scores and semantic indications to each parameter according to the corresponding user. This means that, for instance, a user with special needs has different constraints with different impedances than a user with complete physical capabilities. Taking all these factors when designing a cost-model for context-aware queries is challenging. The main goal is to provide a context-aware query processor that avoids modifying the database engine with the addition of each new context parameter. Instead, an extensible query engine that is general enough to support any kind of context should be designed.

Regarding the representation of context-aware queries, this dissertation introduced several spatio-temporal operators that can be combined with conventional query operators in order to execute standard as well as navigation-related queries in a straightforward manner. To fully integrate the proposed context model, additional "preference-and context-aware query operators" are still to be developed in order to take into account explicit preferences and other users' constraints and wishes. This helps to compute cost functions for the continuous processing of location-dependent queries.

Semantic annotation of heterogeneous trajectories: As another possible direction to further research, semantic location-based services based on users' trajectories might be of interest to pave the way for the development and usage of advanced intelligent services [Yan et al., 2011b,a]. Not only current movements will be taken into account, but also the trajectories of the corresponding users within a given period of time can be stored and annotated by semantic information, so that different kinds of services may be provided. Objects of interest, which can be classified as repellent,

CONCLUSIONS AND FUTURE WORK

applications, which can take advantage of both low-level sensor data and high-level events, context, and activities inferred from mobile phone sensor data, are being explored not only in academic and industrial research laboratories, but also within large corporations such as Google and Apple as well as start-up companies.

Not only are the application perspectives promising, but also in terms of business as the range of possibilities will surely open many opportunities. In a recent report published by ABI Research 3

on "Indoor Location Smartphone Applications", it has been noted that the indoor location market will break 1 Billion application downloads by 2016. It has been also emphasized that the future adoption of a variety of indoor location technologies will be considered across a range of different application categories, such as retail, navigation, environmental monitoring, location-aware social networking, health and well being, personal tracking, while also enhancing services such as advertising, ambient intelligence, augmented reality, and local search.
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