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Abstract

The range of applications in ambient information systems progressively evolves from large to small

scale environments. This is particularly the case for applications that assist humans in navigation-

related activities in indoor spaces (e.g., airports, museums, office buildings). The research presented

by this Ph.D. dissertation develops a data and knowledge representation of an indoor environment

that takes into account user-centred contextual dimensions and mobile data management issues. We

introduce a hierarchical, context-dependent, and feature-based indoor spatial data model. This model

takes into account additional contextual dimensions such as time, user profiles, and real-time events.

The model is based on a tree structure in which location information is represented at different levels

of abstraction. The hierarchical design favours performance and scalability of location-dependent

query processing. A query grammar is developed and implemented on top of that model. This query

language supports continuous location-dependent queries and takes into account user preferences

at execution time. The concept of location granules is introduced at the query execution and

presentation levels.

This modelling approach is complemented by the development of a generic architecture for

continuous query processing. Several algorithms for location-dependent query processing over indoor

moving objects have been designed and implemented. These algorithms include path searches

and range queries applied to both static and moving objects. They are based on an incremental

approach in order to execute continuous location-dependent queries. The operators and constraints

introduced in the query language and the algorithms for location-dependent query processing have

been implemented as a database extension of the open source DBMS PostgreSQL, and where

the hierarchical network-based indoor data model has been developed at the logical level. Several

experiments have been conducted to evaluate the scalability and performance of the whole framework.

Keywords

Indoor data models, context-aware systems, mobile data management, continuous location-dependent

queries, moving objects





INTRODUCTION

Research context

The last decades have seen a tremendous growth in mobile computing and advanced wireless

technologies and services. Mobile computing systems take advantage of rapidly evolving wireless

technologies to provide end users with personalised and innovative services. Thanks to the portability

and processing power of new mobile devices such as Smartphones and Tablets (e.g., iPhone, iPad, and

Android-based devices), as well as their extended battery life, a wide range of regularly available and

computationally intensive mobile services can be developed and offered to end users. The availability

of mobile information systems is driven by the increasing demand of services that provide data

access to users anytime and anywhere. For instance, a report recently published by the International

Telecommunication Union (ITU) estimates that about 6 billion mobile phone subscriptions at the

end of 2011, out of which 1.08 billion are Smartphones (Go-Gulf, 2012). By 2016, eMarketer expects

that 2.1 billion active mobile users worldwide will be using Android/iOS applications alone.

A further step in this development has been foreseen by Marc Weiser in the early 1990s

and was referred to as Ubiquitous Computing [Weiser, 1993] (also called Pervasive Computing

[Satyanarayanan, 2001]), in which interconnected smart devices are embedded unobtrusively in

everyday environments, and are able to communicate and cooperate in order to offer personalised

and adaptive services to human users. In his seminal work on the next generation of computing

technologies for the 21st century, Marc Weiser stated that [Weiser, 1991]:

“The most profound technologies are those that disappear. They weave themselves into the

fabric of everyday life until they are indistinguishable from it”.

A more precise definition of Ubiquitous and Pervasive Computing can be derived from the Oxford

Dictionary, where Ubiquitous is defined as:

“Adjective: present, appearing, or found everywhere” .
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And that of Pervasive:

“Adjective: (especially of an unwelcome influence or physical effect) spreading widely throughout

an area or a group of people”.

Ubiquitous computing becomes a reality thanks to emerging seamless environments of comput-

ing, where smart artefacts and sensors, enabled by recent developments in sensor technologies, can

collect huge amounts of data and interact among themselves to offer advanced and adapted services.

The miniaturization of smart devices helps users in their every-day life activities by providing them

with computational abilities in a smart way, and with minimum user involvement.

Another key enabler of pervasive computing environments, apart from the networking infras-

tructure, relies in the successful integration of semantics and advanced reasoning techniques into

mobile information systems. Those features have been recently characterized under the so-called

Ambient Intelligence (AmI) technologies [Aarts and Wichert, 2009]. An ambient system is expected

to be sensitive, responsive, adaptive, transparent, ubiquitous, and intelligent [Cook et al., 2009].

Applications of ambient systems mainly include “smart spaces” such as smart cities, smart homes,

and smart offices, which seek to seamlessly support people in their daily lives.

The range of applications in ambient information systems is progressively evolving from large

outdoor environments (e.g., Smart Cities) to small scale indoor environments (Smart Homes, Smart

Offices). Indoor spaces are closely related to ambient systems where sensors provide real-time data

without direct human interaction. An indoor space can be informally defined as a built environment

where people usually behave [Li, 2008] (e.g., buildings, commercial malls). Amongst many factors,

recent developments of ubiquitous computing and indoor positioning techniques have largely favoured

mobile application development to indoor spaces [Kolodziej and Hjelm, 2006]. Nowadays, techniques

currently available for indoor positioning range from radio-based technologies (WLAN, RFID,

Bluetooth) to non-radio technologies (Infrared and Ultrasound) and inertial navigation systems (INS)

[Kolodziej and Hjelm, 2006]. Moreover, hybrid approaches appear as promising solutions providing

reliable, continuous, and accurate location information [Torres-Solis et al., 2010].

Mobile location-aware services have attracted recent research attention as their development

is expected to have significant impact for users in both indoor and outdoor environments [Schiller

and Voisard, 2004; Yu and Spaccapietra, 2010]. Location-aware services provide the user with

the ability to interact with his/her physical surroundings in order to achieve some tasks. More

generally, context-aware systems exploit contextual dimensions such as user-centred dimensions (e.g.,

user profile, user’s physical/cognitive capabilities), environmental context (e.g., location), temporal

context, and context of execution (e.g., network connectivity, nearby resources). This allows to

anticipate user’s needs and to customize his/her navigation experience [Baldauf et al., 2007].
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A successful integration of indoor knowledge representation (i.e., model of space, objects

of interest, user profile and activities, etc.) and ambient systems still requires the development

of appropriate spatial data structures and data management facilities. We believe that this is a

mandatory development for the delivery of intelligent-based context-aware systems applied to indoor

spaces. More specifically, the research presented in this thesis focuses on “context-aware indoor

navigation systems” in the context of mobile location-aware services.

Motivation and research challenges

There is a growing need for applications that assist humans in their navigation-related activities

in indoor spaces. Real-time, continuous, and reliable user guidance in a time-dependent manner

is required not only in transit structures such as train stations or airports, but also in museums,

hospitals, campuses, and buildings. Moreover, diverse kinds of services can be provided by enabling

real-time integration of contextual dimensions into an underlying data model and an associated

query processing engine. This includes not only everyday activities and tasks, but also emergency

situations and evacuation processes where real-time and reliable responses are particularly crucial, as

well as services that support collaborative tasks such as healthcare activities in a pervasive hospital

environment [Bardram, 2005; Oliveira et al., 2010].

Despite the continuous development and improvements made in mobile computing and the

variety of technologies that can be used to enable ambient intelligence environments, there are still

many research challenges that need to be addressed [Cook et al., 2009]. Amongst the many challenges

facing the development of context-aware indoor navigation systems, knowledge representation and

management issues in indoor mobile environments are studied in this thesis.

Many research questions on how to design a flexible, context-dependent, and efficient indoor

data model that incorporates the dynamic properties of the environment still need to be addressed

(Figure 1). Additional issues on the incorporation of context-awareness into the data model require

further investigation. Notwithstanding their smaller size with respect to outdoor environments,

effective modelling of indoor environments can be fairly complex. Thus, data models and methods

for outdoor navigation cannot be directly applied. For instance, an indoor data model should take

topological configurations into account (e.g., connectivity or adjacency relationships between rooms

or floors in a building). In addition, location information, which is often defined with absolute

coordinates in outdoor environments, is more likely to be described in relative terms for both physical

and functional spaces in indoor environments (e.g., John’s office) [Walton and Worboys, 2012].

Moreover, interactions among humans and/or other objects in an indoor space are usually more
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frequent than in an outdoor one, which is usually beyond the range of humans’ physical interactions.

Furthermore, in contrast to car navigation, the main differences of human navigation relies in the

degrees of freedom in movement, the velocity of movement, and the level of granularity.

Data &

Knowledge

Representation

Indoor

Spatial

Data

Models

Context-

Awareness

How to design a flexible and

efficient data model?

What kinds of features are

supported? How to integrate

the dynamic properties of mov-

ing objects?

What are the requirements

for a context-dependent data

model? What kinds of queries

are supported?

Who is the user?

Where is he/she?

What resources are nearby?

What is his/her purpose?

Figure 1: Challenges in data & knowledge representation covered in the thesis

A knowledge-based representation of an indoor environment should take into account the

hierarchical layout of the indoor space and: (i) all static/moving features that populate an indoor

environment, where a feature can refer to either a person (i.e., a mobile user or any other social

entity of interest1) or an object/event of interest (e.g., sensors, exits, tables, continuous phenomena

such as a fire, etc.); (ii) the spatial properties associated with those features (e.g., location and

extent); and (iii) the behaviours that emerge from them (i.e., how these objects can interact and

communicate within the environment).

Issues regarding data management and processing of location-dependent queries are also of

particular interest in this context (Figure 2). Location-Dependent Queries (LDQs), also referred

to as location-based queries [Zhang et al., 2003; Mokbel, 2005], constitute a key building block in

1Human beings that are located in the vicinity and are of interest to the query are referred to as social entities.



. MOTIVATION AND RESEARCH CHALLENGES 7

context-aware indoor navigation systems. A location-dependent query is a query whose answer

depends on the locations of the objects of interest. From a query processing perspective, indoor

environments have brought special features and constraints (e.g., multiple floors, stairs, lifts, access

privileges, etc.) that should be considered when processing location-dependent queries. Moreover,

taking advantage of contextual information favours more appropriate query answers and real-time

adjustments according to user preferences and contextual constraints. Those specific properties and

requirements for a knowledge-based representation of an indoor mobile environment raise different

questions on (Figure 2): 1) how to represent and manage static/moving objects and other entities of

interest? 2) how those objects are taken into account during query processing? and 3) what kind of

processing architecture do location-dependent queries need?

Data

Management

Query

Processing

Query

Languages

How to process LDQs over

indoor moving objects?

What kind of processing archi-

tecture do LDQs need?

How frequently updated lo-

cations of moving objects are

handled in real-time?

How to express indoor

location-dependent queries?

How can the hierarchical lay-

out of the indoor environment

be reflected?

How to integrate user pref-

erences and semantics in the

query grammar?

Figure 2: Challenges in data management discussed in the thesis

An appropriate management of static and dynamic data is a key issue for processing these

queries, since the result of a query is only valid for a particular location of the query issuer and

for certain locations of the objects of interest. As those queries are time-sensitive and location-

dependent, they may be valid for only a given period of time (e.g., shops in a mall have certain

opening hours and are not available outside that schedule), and within a given area. Therefore, those
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queries are expected to be processed as continuous queries [Terry et al., 1992], which means that

the system should continually keep the answers up-to-date over a certain period of time (usually,

until the query is explicitly cancelled by the user). Dataflow processing applications often have

a monitoring or filtering aspect in which queries are continuously active. Therefore, continuous

location-dependent queries appear to have considerable impact for the development of different

categories of location-based and context-aware services.

Location-dependent queries [Ilarri et al., 2010; Wang and Zimmermann, 2011], and more

generally context-dependent queries, represent typical examples of pull-based services (i.e., requests

are triggered by the user), and which are needed in such context-aware systems, as well as a key

building block to detect situations of interest for push-based services (i.e., services initiated by the

service provider without having been requested by the user). The context-dependent character of

these queries means that any change in the context (e.g., changes in the locations and/or profiles of

the objects that are involved in the query) may significantly affect the answer. For example, if a user

wants to find out his/her friends within a range of 100 meters while navigating a shopping centre, the

answer depends on both the user’s current position and the location of the nearby friends. This type

of query is particularly challenging because, in most cases, the user and the entities relevant for the

query (e.g., the friends of the user) are moving. Most work on location-dependent query processing

has been developed for outdoor environments [Ilarri et al., 2010]. For indoor spaces, approaches

for query processing based on spatial networks instead of free Euclidean space are preferred and

more realistic. However, existing approaches for network-based query processing usually assume an

outdoor environment [Deng et al., 2009; Lee et al., 2005; Papadias et al., 2003], where for instance

hierarchical networks do not naturally appear.

Query languages designed for location-dependent queries over moving objects are strongly

related to the data model underneath, and on how moving object data is managed [Erwig and

Schneider, 1999]. Therefore, additional challenges on how to express the semantics behind different

kinds of location-dependent queries over indoor moving objects, and how to incorporate user

preferences and other semantics into the query model are also of interest in this context (Figure 2).

This requires the design of a query grammar that supports navigation-related queries, and which

takes into consideration other properties such as the hierarchical layout of the indoor space for

presentation of query results as well as for query processing purposes.
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Research objectives

The research presented in this thesis studies location- and context-aware services and queries in indoor

environments, with a special focus on navigation-related queries. A unique combination of challenges

arises, as the proposal must be able to represent different kinds of location-dependent queries in a

flexible manner, and to take into account additional contextual information, time-dependency, and

the hierarchical layout of the indoor environment. Some of the challenges that are presented and

addressed in this thesis are covered within different fields of research. The major research fields

covered and/or related to this thesis are illustrated in Figure 3. Research on context-aware navigation

in indoor mobile environments inherits challenges of both research fields: Mobile and ubiquitous

computing, and location-based services. Challenges in knowledge representation and management

are mainly addressed in this thesis. Particularly, indoor spatial data models, context-awareness,

query languages, and query processing parts are presented along the contributions of this thesis from

Chapter 4 to Chapter 7.

Research
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Data
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Database
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Query
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Data
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Computing

Location-

Based

Services

Figure 3: Major fields covered and/or related to this thesis

The main objective of this work is to investigate:
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“A data and knowledge representation of indoor mobile environments incorporated with user-

centred context-awareness, and to address data management issues in indoor context-aware

navigation systems. The underlying principles that represent a context-aware indoor data

model are introduced, as well as a query language and algorithms for the continuous location-

dependent query processing in indoor environments.”

To achieve these goals we propose the following approach:

1. To model and design a hierarchical and context-dependent indoor spatial and feature-based

data model that can be viewed as a tree structure in which location information is represented

at different levels of abstraction. This hierarchical design alleviates performance and scalability

issues in location-dependent query processing. In addition, time-dependent functions that

compute network distances and travel times are introduced. Furthermore, a classification of

user profiles is presented in order to perform an offline filtering of the multi-level data model,

thus reducing the amount of data that need to be processed in real-time.

2. To design a generic architecture used for the continuous processing of location-dependent queries

in indoor environments. Navigation-related queries are processed in accordance with this

architecture, and are continually executed while the request is not explicitly cancelled by the

user. Moreover, a query grammar is also presented to express location-dependent queries. This

grammar supports navigation queries and incorporates some other preferences and semantics in

the query model. It also supports the hierarchical data model by using the concept of locations

granules to represent different levels of abstraction.

3. To develop algorithms for the continuous processing of location-dependent queries. Particularly,

algorithms for hierarchical path searches and range queries applied to both static and moving

objects are introduced. Those algorithms take advantage of the hierarchical data model of

the indoor environment, and apply an incremental approach in order to efficiently execute

continuous location-dependent queries, thus avoiding solving each search problem independently

from scratch.

4. To design and implement a database extension based on the open source DBMS PostgreSQL. This

prototype handles continuous path searches and range queries on top of the hierarchical network-

based indoor data model. The main parts of the prototype developed are: (i) a hierarchical

network-based data model of indoor environments; (ii) operators and location-dependent

constraints introduced in the query grammar; and (iii) algorithms to process continuous location-

dependent queries over moving objects.
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Clearly the scope of this thesis does not cover all issues and challenges that face the design

and development of context-aware indoor navigation systems. Although many challenges regarding

recent techniques for indoor positioning are of great interest for context-aware indoor navigation,

and are strongly related to our research field, they are not further addressed in detail here. Indeed,

the goal pursued in this work is to abstract our approach from specific positioning techniques as

far as possible, while considering that a hierarchical data model can be suited to different kinds of

positioning techniques (cf., Chapter 1 for more details).

Additional research fields that cover issues on database models and challenging problems in

data structures, and indexing methods are discussed in Chapters 3 and 7, so that technical decisions

are made for the prototype implementation, without being involved into those research challenges.

Thesis outline

This thesis is organized into three parts and seven chapters. The first part establishes a common

ground for the development of a flexible and efficient context-aware indoor navigation system. The

second part acts as a literature review of indoor spatial knowledge representations and location-

dependent query processing techniques, respectively. The third part describes our methodology by

presenting the main contributions in four different chapters. The structure of the thesis is organized

as follows:

Chapter 1 presents the basic concepts of context-aware indoor navigation, and introduces

preliminary recommendations for the development of indoor spatial data models from a context-aware

systems perspective. Moreover, the role of contextual information is discussed, and how it can be

incorporated into the data model. From a data management perspective, a set of requirements are

also discussed with the aim of designing a real-time system for ambient intelligence environments.

Chapter 2 surveys indoor spatial data models developed for research fields ranging from

mobile robot mapping to indoor location-based services (LBS), and most recently to context-aware

navigation services applied to indoor environments. A taxonomy of models is presented and assessed

with the aim of providing a flexible spatial data model for navigation purposes, and by taking into

account the contextual dimensions.

Chapter 3 discusses related work on location-dependent query processing in both outdoor and

indoor mobile environments. Different models and systems for handling moving objects in databases

are reviewed. A special focus on the continuous processing of navigation-related queries, namely

path, range, and nearest neighbour queries, is then made by considering the algorithmic aspects and
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the different query processing techniques. Moreover, languages for querying location-dependent and

other contextual data are also presented.

Chapter 4 introduces a hierarchical and context-dependent data model that represents an

indoor space at different levels of abstraction. Other components such as the feature component,

which represents mobile persons and objects of interest, and the action component are also presented.

The management of user profiles and real-time events are further highlighted.

Chapter 5 first proposes a generic architecture for the continuous processing of location-

dependent queries, and describes the main components considered in the architecture, and then

discusses some data distribution issues. Secondly, the semantics of a continuous-based query language

are introduced, which incorporates navigation-related queries along with some other preferences in

the query model. Finally, some motivating sample queries are illustrated.

Chapter 6 presents several continuous processing algorithms for handling hierarchical path

searches and range queries over mobile objects in indoor environments. The principles of an

incremental and hierarchical-based approach are introduced for both kinds of queries. In addition,

descriptions along with pseudocodes of the corresponding algorithms are provided.

Chapter 7 discusses the design and implementation of a database extension based on the open

source DBMS PostgreSQL. This prototype handles continuous path searches and range queries on

top of the hierarchical network-based data model of the indoor environment. The main parts of

the prototype developed are presented. Results of the experiments, that have been conducted to

investigate the scalability and performance with respect to the intrinsic properties of the proposed

solutions, are also reported.

A summary of the contributions presented in this thesis is finally given, and some perspectives

are drawn in order to extend the scope of the approach that has been developed by our research.
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The first part of this dissertation includes one chapter that lays the groundwork for the

thesis by examining different aspects and key building blocks for developing a context-aware indoor

navigation system. This chapter first discusses the role of context-awareness in mobile computing.

Recommendations for designing an efficient and flexible indoor spatial data model are then introduced,

based on service-oriented and efficiency-related requirements. Furthermore, data management issues

that face the design and development of context-aware indoor navigation systems are presented.
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SYSTEMS

This chapter is organized as follows. Section 1.1 highlights the role of context-awareness in

mobile information systems. Section 1.2 introduces a methodological framework for the design of an

indoor spatial data model, while Section 1.3 presents challenges in data management from a query

processing perspective. Finally, Sections 1.4 and 1.5 discuss general observations about current

indoor navigation systems and draw some preliminary conclusions, respectively.

1.1 On the role of context in mobile computing

Indoor navigation services are set to become among the ubiquitous services that will make our

living and working environments intelligent. Context-aware indoor navigation systems inherit

characteristics and challenges of both mobile information systems, and location-based services. An

additional component that is essential in such systems is the presence and the incorporation of

context-awareness.

Mobile technologies have made research on the lifelog1 and user-centric contextual information

feasible. Diverse kinds of services delivered to the users can be provided by enabling real-time

integration of contextual dimensions. Indeed, various sensors in mobile devices collect information

on our daily life. This has triggered in-depth investigation on the context-awareness research field

[Dey and Abowd, 1999; Dey, 2001; Filho et al., 2010]. The notion of context has been recognised as

a key element in the development of mobile information systems [Chen and Kotz, 2000]. Context is

literally described by the Oxford Dictionary as:

“The circumstances that form the setting for an event, statement, or idea, and in terms of

which it can be fully understood”.

In mobile computing, contextual information can be defined as: Any information that is gathered

and can be used to enrich the knowledge about the user’s state, his/her physical surroundings, and

capabilities of his/her mobile device(s) [Dey and Abowd, 1999; Schmidt et al., 1999]. Context varies

according to application constraints, and by taking into account the way users act in the environment,

as well as the interfaces to interact with. Two generic concepts with three main categories have been

introduced as super-classes that encapsulate contextual dimensions [Satyanarayanan, 2001; Baldauf

et al., 2007; Petit, 2010] - Figure 1.1:

• The context of use includes two main categories:

(1) user-centred dimensions of context such as the user profile, his/her preferences as well

1Lifelogging services keep a complete record of users’ day-to-day activities (i.e., lifestream), thanks to small wearable

gadgets or computers that captures large chunks of the user’s daily life.
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Figure 1.1: Classification of contextual dimensions

as his/her physical/cognitive capability, and the user-system interactions (i.e., input data

manipulation through the user interface and output communication operations).

(2) the environmental context which refers to the parameters that influence the user (e.g.,

location, time, temperature, light, etc.).

• The context of execution models the behaviour of an information system and encompasses: (i)

the infrastructure dimension and the topological distribution of the system components and (ii)

the system dimension that evaluates resource utilization (e.g., memory, processor and network)

of the system components and capabilities of the user’s mobile device(s).

This chapter first discusses service-oriented and efficiency-related requirements in order (1)

to reconsider current indoor spatial data models from a context-aware systems perspective so that

a reference data model can be proposed; (2) to take into consideration dynamic properties and

activity-oriented interactions of moving objects with their physical surroundings, and (3) to examine

the role played by smart devices and ubiquitous positioning sensors. Secondly, the need for an

adaptive query processing paradigm as well as for new ways to express and evaluate continuous

location-dependent queries in indoor environments is highlighted.

1.2 Challenges in context-dependent indoor data models

Whether location information should be handled as any other contextual information or managed

differently is a key issue. A better understanding of location information and the relationships that

might exist among spatial entities, either acting or located in the environment, should be taken into

account. Therefore, the integration of an indoor spatial data model into a context-aware system is
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considered as a key building block for designing advanced navigation services.

This section presents a classification of the requirements needed to design a context-dependent

spatial model into two categories [Afyouni et al., 2012]: service-oriented and efficiency-related

requirements. The first group supports real-time and delayed services, and includes: (i) localisa-

tion, (ii) navigation, (iii) location-aware communication, (iv) activity-oriented interaction, and (v)

simulation and behavioural analyses. The second group examines efficiency issues and includes:

(i) modelling effort, (ii) flexibility, and (iii) performance and scalability. Those are generic and

application-independent requirements for the development of a reference spatial data model, and are

hereafter used to assess existing approaches.

1.2.1 Service-oriented requirements

A context-dependent spatial model is assumed to represent the locations of objects of interest

appropriately, and with additional semantic descriptions so that advanced services can be

provided. It also needs to support navigational services a user is likely to ask. Potential

communication between located entities should also be supplied. Moreover, a user navigating

an indoor space should be able to interact with his/her physical surroundings. Other deferred

services can also be offered by the model thus enabling a better understanding of users’

behaviours.

1.2.1.1 Localisation

Several studies have been performed in order to design and build positioning systems in GPS-

less indoor environments [Kolodziej and Hjelm, 2006]. Indeed, indoor spaces are constrained by

the architectural components such as doors, floors, corridors, and walls. On the one hand, these

constrained environments provide meaningful location information at the logical and topological

levels, but on the other hand, the task of achieving accurate localisation is not always straightforward.

Spatial data representation

Two different representations of location information can be delivered according to either a geometric

or a symbolic representation of space:

• Geometric information gives a quantitative representation of moving objects in the form of

coordinates (e.g., Cartesian or latitude-longitude-altitude) that are delivered according to a
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given coordinate system. Whereas systems like Global Positioning System (GPS), used outdoors,

provides geometric coordinates with respect to a global reference system, others such as the

Active Bat system [Ward et al., 1997] and MIT Cricket [Priyantha et al., 2000] use ultrasonic

technology and provide three-dimensional positions with respect to local coordinate systems.

Those are developed based on a set of local landmarks (e.g., beacons) that are distributed in an

indoor space. Topological relationships like “overlap”, “inside”, “intersect”, and “disjoint” can

be inferred, thus enabling an interpretation at a higher level of abstraction. As an example of

overlapping relationships, floors can be shared between several wings within a building. In such

a situation, floors overlap with wings, while a room may belong to a floor and a wing.

• Symbolic information provides qualitative human-readable descriptions about moving objects

based on structural entities and/or points of interest (e.g., room or floor identifier, building

name, etc.). For instance, the Active Badge system handles values that represent the symbolic

identifiers of fixed IR sensors [Want et al., 1992]. In contrast to geometric information, symbolic

descriptions allow to explicitly model topological relations (e.g., spatial containment) between

entities in the environment. This can be done by means of symbolic spatial models such as

set-based or graph-based models (see Chapter 2). Symbolic descriptions enable spatial and

semantic reasoning at an abstract level, thus favouring interaction between spatial entities and

within space.

Sensor-based positioning

Nowadays, the techniques currently available for indoor positioning range from radio-based

technologies (WLAN, RFID, and Bluetooth) to non-radio technologies (Infrared and Ultrasound) to

inertial navigation systems (INS) [Kolodziej and Hjelm, 2006]. One challenge for all these techniques

is to achieve a precise positioning of a given mobile user, together with some context-aware data

that integrate the location of predefined sensors, and more important, a sense of the environment

in which users are acting. This leads us to not only locate the users in the environment, but also

the sensors available, and the spatial structures underneath. As these systems should be real-time

based, in order to take into account the fact that mobile users behave in the environment, there is a

general agreement on the fact that there is so far no perfect technique which is capable of reaching

the desired accuracy continuously.

Recent approaches have adopted a hybrid approach combining several positioning technologies.

For instance, Ray et al. [2010] proposed an infrastructure-less positioning system for both indoor

and outdoor environments. This system combines GPS receivers with inertial sensors (MEMS) and

an indoor map-matching algorithm. The interest of MEMS sensors is that they usually provide

acceleration and angular velocity. The principle behind this approach is that user location data
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have to be provided by the sensors continuously. When GPS data are not available, this being

the common case in indoor environments, inertial sensors give alternative location data. However,

inertial sensors are error-prone that causes sharp performance degradation. This implies to integrate

additional rectification processes.

Similar techniques have been introduced elsewhere still for the design of ubiquitous location-

based systems. In particular, when using WLAN or RFID positioning techniques, an integrated

approach combines one (or both) of them with an inertial navigation system (INS) [Evennou and

Marx, 2006; Fu and Retscher, 2009]. On the one hand, INS helps to overcome the lack of coverage of

radio-frequency (RF) signals when an insufficient number of WLAN antennas or active RFID tags

are deployed in an indoor environment. On the other hand, when both technologies (INS/Wi-Fi

or INS/RFID) are available, a more precise position measurement can be produced by applying

an appropriate multi-sensor data fusion technique [Retscher and Fu, 2007]. Therefore, appropriate

multi-sensor data fusion techniques and map matching algorithms need to be used in the filtering

process [Ray et al., 2010].

Consequently, a spatial model should be capable of representing the coordinate system by which

the location information is expressed and, when necessary, transforming that location information in

order to get all sensor data in a common format.

1.2.1.2 Context-aware, adaptive navigation

Navigation in an environment can be defined as a scheduled and goal-oriented movement made by

humans or robots [Montello, 2005]. While navigating, a user may be technically assisted by sensory

devices embedded in the environment that provide relevant information to maintain orientation, and

other suggestions to encourage him or her to interact within the environment.

As an extension of typical navigation tasks, contextual dimensions need to be integrated into

querying tasks, thus offering opportunities to develop advanced services. A context-aware navigation

task is carried out in two phases [Champandard, 2003]: the static phase, which is generally known

as “path planning”, encompasses a multi-criteria path selection process that generates an unbroken

path from the current location to the destination. This process is context-sensitive as it aggregates

multiple criteria (e.g., user preferences and capabilities, distance, time, etc.) passed as function

parameters to evaluate the cost value of each step and then to select the most appropriate path, that

is, the optimal path that allows, for instance, to reach a destination while avoiding threats [Disser

et al., 2008]. The dynamic phase lies in a dynamic framework that implements event-triggered

controllers needed to monitor the user’s progression in order to avoid deviations from the planned
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path.

Although very few works have discussed the integration of such a dynamic framework, researchers

agree on some general requirements [Delling et al., 2009]. First, this framework should comprise a

next-step selection algorithm that keeps continuous track of the user’s position and tries to recover

from deviations by providing additional information. Secondly, the framework should adapt the

predetermined path if it detects any significant event that may affect the user’s movement. In

such a situation, a path to the nearest emergency exit should, for instance, be recomputed. Recent

studies have proposed algorithms for shortest and/or fastest path searches with improved tracking

strategies [Berger et al., 2010; Sun et al., 2009; Xu et al., 2010]. The main focus of these algorithms

is to keep real-time tracking of moving objects. However, each of them deals with either time or

distance constraints without incorporating other elements such as user preferences or events that

may significantly influence the answer.

1.2.1.3 Location-aware communication

In contrast to internet telecommunications which enable communication between computing devices

based on IP or MAC addresses, communication among objects in smart environments is often based

on their location [Beigl et al., 2002]. Location-aware communication models in distributed systems

can be classified according to who initiates information exchange and how information is then

forwarded to the specified receiver [Aitenbichler, 2008]. One can make a distinction between direct

(i.e., point-to-point) and indirect communications [Baldoni and Virgillito, 2005]. As an example

of indirect communication, a provider can disseminate information about events to invoke remote

callback methods from potential subscribers. Similarly, a consumer can request information from

a known (i.e., direct message exchange) or anonymous (i.e., indirect message exchange) provider.

Moreover, collaborative activities can take place between communicating objects working together

to achieve some common goals.

Although spatial models do not affect users’ physical abilities to communicate, the selection of

a specific spatial model has a direct effect on the quality and format of data exchanged between users

and other entities located in space. Moreover, the way a user perceives its ability to communicate with

other entities may be significantly disturbed due to inadequate representation of space. For instance,

a fined-grained model can represent a sensor range more accurately than a coarse representation of

space. Thus, the user can be aware of the exact communication range for a given sensor.

A dynamic and symbolic location model that supports location-aware communication among

rigid entities (i.e., sensors and users) in smart spaces has been suggested in Satoh [2007], which gives
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an example of what can be achieved. Rigid entities and places are represented as components in

a hierarchy of symbolic labels (i.e., user-room-floor-building hierarchy) based on the containment

relationship. Each component in the hierarchy can act as a service provider, a service consumer or

both. Different types of communication can then be established between these components depending

on their location in the hierarchy. An example of the dynamicity of this model might be the case

where users navigate between places (e.g., rooms). A component migration mechanism is then used to

update the hierarchical structure of the components and thus keeps track of users’ movements. Two

types of communication are then established between these components depending on their location:

vertical communication that supports the publish/subscribe approach; this means that events are

published by parent components to address their children. Child components that are interested

in those events need to be subscribed so that they can receive runtime notifications. Horizontal

communication encompasses communication between same-level components of the hierarchy (i.e.,

components that belong to the same parent in the hierarchy). As an example, interactions between

a user and its computing devices (e.g., stationary computer) within a room can be represented, both

considered as components that are contained in a parent component which is, in this case, the room.

1.2.1.4 Activity-oriented interactions

A context-dependent model should also support human activities with the aim at achieving some

objectives. An activity can be defined as a collection of goal-oriented and context-dependent actions

an entity can perform [Kofod-petersen and Cassens, 2006; Wu and Fan, 2009]. Actions comprise a

sequence of location movements, interactions with other neighbouring entities and artefacts, and

requests for some services in order to achieve a predefined goal. An activity can also be made of a

set of primitive activities or be part of a larger collective activity [Christensen and Bardram, 2002].

Activity theory has focused attention on the usefulness of spatial models in the design process to

enrich consciousness and interaction within space [Kaptelinin and Nardi, 2009; Nardi, 1996].

The number of artefacts has increased and been distributed into ubiquitous environments.

Artefacts can be physical (e.g., chair, door, heating, etc.) or virtual (e.g., 2D/3D image of a physical

artefact, digital user interface, recommendation/information, etc.) [Pederson, 1999]. Physical

artefacts can also be augmented with various kinds of sensors or tags (e.g., RFID) so that they can

perceive the environment and provide additional information [Rivera et al., 2011]. Those are referred

to as digital or sentient artefacts [Beigl et al., 2002; Kawsar et al., 2007]. Spatial representations serve

as a mediator to relay relevant information to humans about artefacts in their surrounding. This

allows users, who are engaged in a certain activity, for both collecting knowledge and understanding

physical surroundings, and furthermore, for reconfiguring and manipulating physical/virtual artefacts
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to anticipate or produce changes in the environment. Consequently, embodied interaction defined

by [Dourish, 2004] can take place by means of spatial reconfigurations that may influence the

context by affecting existing activities and/or initiating new ones. A main challenge that designers

face and should consider is to efficiently represent artefacts of interest located in the environment.

Unfortunately, most of existing indoor spatial models are not designed for that purpose and thus do

not supply interaction with these artefacts and the tasks they might participate in.

1.2.1.5 Spatial & behavioural analyses

An essential issue in the development of analyses and simulations lies in identifying an appropriate

spatial representation with respect to the phenomenon or behaviour being explored. Several typical

scenarios for planning purposes are introduced in [Li et al., 2010]. These scenarios present application-

dependent constraints, so each of them needs an appropriate level of granularity. Some examples of

spatial analyses and scenarios applied on a fine-grained spatial model are [Li et al., 2010]:

• Route analysis scenarios that aim at finding shortest paths between two given locations or

all pairs shortest paths applied on a given floor architecture and with a given data structure

[Werner et al., 2000; Zhang et al., 2011].

• Diffusion analysis defined as a dynamic process where the spatio-temporal evolution and extent

of a phenomenon within an indoor space are explored [Batty et al., 1999].

• Centrality measures that characterize the architectural design and the spatial distribution of

objects of interest in a built environment [Bonacich, 1987], and are largely applied by space

syntax studies [Jiang and Claramunt, 2004; Kim and Jun, 2008; Kostakos, 2009].

The granularity parameter is an important aspect of these analyses that enables the exploration

and understanding of spatial data. A fine granularity can certainly reflect the indoor space delicately,

and is especially needed when simulating a physical process or when considering fine-grained tracking

of human mobility to get accurate understanding of the environment. In contrast, topological

analyses often require a coarser granularity to support adjacency and connectivity relations between

spatial units (e.g., room), and thus deriving a more abstract view of the topology of a complex

indoor space. In particular, topological analyses have been largely developed and applied by space

syntax studies to evaluate human-environment interactions and to examine different spatial and

structural configurations [Jiang and Claramunt, 2000; Turner and Penn, 2002].

Behavioural analyses are, on the other hand, of special interest in context-aware computing,

and have been recently developed in numerous fields for activity-recognition purposes [Albinali, 2008].
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Activity-recognition systems can support different application scenarios in many areas including

safety control, medical healthcare, and other monitoring activities in virtual environments that

aim at customizing the system to end-users’ situation or context [Bardram, 2005; Christensen and

Bardram, 2002]. This helps, for instance, to reduce occurrence of hazardous situations by monitoring

and correcting human error during the execution of critical tasks (e.g., administering medication in

healthcare, ensuring proper execution of tasks in safety applications) or to exploit user interactions

with an application (e.g., mouse clicks) to infer his/her activities as suggested in [Albinali and Gniady,

2006]. Moreover, knowing the locations and preferences of the users in an indoor context-aware

navigation system can lead to optimise the knowledge about the user’s behaviour in the considered

scenario (e.g., inferring the most bought products in a supermarket by the loyal users) [Porros Pérez

et al., 2011]. Activity monitoring combined with the delivery of behaviour-related context-aware

reminders for elderly persons have been also discussed in [Zhang et al., 2011].

1.2.2 Efficiency-related requirements

An offline requirement regarding the modelling effort needs to be considered in the evaluation process.

A spatial model should also be flexible as much as possible so that a wide range of applications

can be applied. Efficiency is closely related to the performance and scalability of the system being

developed. Those requirements are discussed in the following subsections.

1.2.2.1 Modelling effort

The modelling effort can be evaluated by the cost and complexity of the model design effort. Some

modelling techniques are sophisticated and take considerable effort [Thrun, 2003]. Some others

are closely dependent on objects within space and need to be periodically maintained or even to

be rebuilt from scratch if these objects change their position or shape. Recently, some authors

have discussed several methods for automated construction that minimize manual intervention by

designers during the modelling phase [Stoffel, 2009].

1.2.2.2 Flexibility

A flexible spatial model should support a large spectrum of applications that can be developed at

different levels of abstraction, as well as different kinds of positioning sensors that might coexist

to achieve better accuracy. This enables human reasoning about space, robot-based activities, and

even sensor-based and object-oriented interactions within the environment. In brief, may a simple

unmixed spatial model assist and deal with a very diverse intelligent navigation tasks efficiently? As
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will be shown later (cf. Section 2.3), it might be difficult to find a single solution that meets these

seemingly contradictory requirements. Consequently, we propose to assess current models based on

the range of queries and services that can be supported.

1.2.2.3 Performance and scalability

A context-aware indoor navigation system requires to efficiently execute users’ queries such as

shortest paths between two given locations, k -nearest neighbour objects or all accessible locations

starting from their current position [Lyardet et al., 2008]. When considering contextual information,

performance is no longer restricted to simply deriving position queries or distance functions, but some

other functionalities are required, thus leading to a significant increase in workload. Furthermore,

dynamic updates of the spatial data model stored on mobile devices should be periodically performed

in order to maintain accuracy and quality of the stored data. For instance, one challenge facing spatial

model designers is the cost of updating the location of every moving object continuously. Existing

approaches try to overcome this problem by performing periodic, deferred (i.e., demand-based)

or immediate (i.e., event-driven) update queries to keep an incremental view maintenance of the

database [Iwerks, 2004].

A related approach focuses on real-time map updates on mobile devices by considering the

use of a spatial model with different levels of detail [Kang et al., 2007]. Updates in this approach

are handled at the basic level on the server side, and then an update propagation process through

the other levels of the spatial model is continuously performed at the client side. This framework

considers the use of a spatial model with different levels of detail. Hence, it first handles updates at

the basic level on the server side, and then manages the update propagation process through the

other description levels of the spatial model. Further, it transfers update messages that contain

updated spatial objects to subscribed clients thus replacing original objects with matching identifiers.

The scalability requirement denotes the ability of a spatial model to scale up to a large indoor

environment while keeping tolerable resource consumption, which mainly affects the memory storage

capacity and the behaviour of processing workloads. In context-aware applications, heterogeneous

mobile devices as well as a huge number of embedded sensors have to be handled in an efficient

and scalable way. Therefore, there is a need to establish a mechanism that eliminates superfluous

information to reduce processing and communication costs, so that the system can handle a higher

number of real-time queries.
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1.3 Data management issues in location-aware services and queries

While representing location information is a key issue for building context-aware indoor navigation

systems, other challenges regarding the management of location-dependent data and the continuous

processing of navigation-related queries are also of key interest for designing an efficient and flexible

enough indoor navigation system. This section covers major challenges in that area by first discussing

location-based services and queries in an indoor context. Secondly, issues related to the modelling and

querying of moving objects and to the continuous query processing paradigms are presented. Finally,

different aspects of designing languages for querying location-dependent data with semantically

enriched operators are also highlighted.

1.3.1 Location-based services and queries

A wide range of location-aware services can be applied to indoor environments. Examples of

such services include continuous crowd monitoring within a given area, location-based alerts (e.g.,

continuously send E-coupons to all customers within 200 metres of my store), report any congestion

in an emergency situation, and location-based friend finder (e.g., let me know if I am near to a

restaurant while any of my friends are there). The main goal of these services is to provide the user

with the ability to interact with his/her physical surroundings in order to achieve some objectives.

Location-aware, user-centred services can be distinguished according to two modes of data access:

pull mode and push mode [Schiller and Voisard, 2004], which are defined as follows:

• Pull-based location-aware services comprise requests triggered by the user with the aim of

pulling some location-dependent information from the service provider [Ilarri et al., 2010; Zhang

et al., 2003].

• Conversely, push-based services are initiated by the service provider without having been

requested by the user. The service provider takes into account location information of subscribed

users to trigger alerts or contextual advertising, and push them to the user’s device [Friedman,

2004; Navas and Imielinski, 1997].

Push-based services: Several push-based, real-time services that deliver valuable information

and allow for communication have been reviewed in [Kolodziej and Hjelm, 2006; Lee et al., 2005;

Navas and Imielinski, 1997]. This includes, for instance, location-based instant messaging in which

outgoing messages are not just stamped by the local time-zone of the sender but also by the sender’s

current location [Burak and Sharon, 2004; Friedman, 2004]. Similarly, a user can instead manually
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specify a certain location specification so that other users whose specifications meet those given by

the sender will receive the message [Hakkila and Hexel, 2003]. Other kinds of push-based services

implement the principles of geocast messaging in order to provide location-based advertisements and

alerts [Basagni et al., 1999; Navas and Imielinski, 1997]. Geocast messaging can be described as a

location-based multicast where messages are delivered to users located in a specific area instead of

those subscribed to a given group.

In particular, location-based alerts are not necessarily time-related and are generally used in

the case of an emergency to warn people to go around a dangerous zone. It might also be useful, for

example, to remind a user navigating a shopping centre to buy some food or fruit stock when he or

she is located next to a supermarket. Location-based advertisements (also called proximity-triggered

advertisements) generally target nearby consumers to provide them with information about stores’

offers, discount coupons, etc. [Aalto et al., 2004]. This kind of push-based services should provide

users with a subscription-based mechanism that allows for relevant and non-intrusive advertising.

Pull-based services: Location-dependent queries are considered as typical examples of pull-based

services, and are needed in any context-aware navigation system [Ilarri et al., 2010; Zhang et al.,

2003]. Queries are location-dependent, meaning that any change of the locations of objects that

are involved in the query may significantly affect the answer. For example, if a user asks to find

out his/her friends within a range of 100 meters while navigating a shopping centre, this answer

will depend on the user’s current position as well as on the location of the nearest friends. Some

particularly relevant location-dependent queries in indoor contexts are briefly described as follows:

1. Position queries determine the locations of mobile and static objects, and are processed according

to either a geometric or symbolic model of space. Location-dependent queries cannot be carried

out without up-to-date information on the locations of objects of interest [Becker and Durr,

2005].

2. Path queries encompass all the queries that directly help the users to find and reach points

of interest, by providing them with navigational information while optimizing some criteria

such as the traversed distance or the travel time. Examples of such queries are: (i) discovering

optimal paths to a nearest point of interest (e.g., landmark, place), and (ii) planning a path to

a destination.

3. Range queries find and retrieve objects or places of interest within a user-specified range or

area [Wu et al., 2006]. Those queries support navigation by continuously updating relevant

details according to the users’ movements. Ranges may be characterized by a circular or

rectangular-shaped window in which objects of interest must be located.
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4. k Nearest Neighbour (kNN) queries search for the k closest qualifying objects to the moving

user with respect to his/her current location [Tao et al., 2002; Zhang et al., 2003]. As opposed

to range queries, kNN queries are range-independent, except in the case of constrained nearest

neighbour queries [Ferhatosmanoglu et al., 2001], where the search is constrained to a given

region. The user initiates a request by specifying some characteristics about objects of interest,

so that the k closest objects whose specifications meet these characteristics are retrieved (e.g.,

the closest available colour printer or the k nearest friends).

As those queries are time-sensitive and location-dependent, they may be valid only for a

given period of time and within a given area (i.e., data returned are only spatio-temporally valid).

Therefore, they are expected to be processed as continuous queries [Terry et al., 1992], which means

that the system should continually keep the answers up-to-date over a certain period of time. The

following section takes a closer look at the continuous query processing paradigm, and highlights

different issues related to the management and execution of those queries.

1.3.2 Continuous and adaptive query processing paradigms

As mentioned in Section 1.2.1.2, a context-aware navigation task needs to establish a multi-criteria

path selection process along with a continuous real-time mechanism that allows for route adaptation

depending on the movement of the objects of interest. Similarly, both pull-based and push-based,

real-time services require the continuous monitoring of moving objects so that adaptive answers to

users’ requests can be provided. Therefore, an adaptive query processing paradigm as well as new

methods for the continuous processing of location-dependent queries over indoor moving objects are

required to achieve those tasks. This paradigm should be generic enough to support different kinds

of queries, but without loss of efficiency.

One important goal of this thesis is to process different kinds of location-dependent queries in

a continuous manner, and to take into account additional contextual information, such as

time-dependency and user profiles, and the hierarchical layout of the indoor environment.

Different criteria can be used in order to classify continuous location-dependent queries.

Particularly, query time and object mutability criteria are considered as follows:

• According to the query time: whether it refers to the past (“historical spatio-temporal queries”),

present (called “instantaneous or now queries”) or future states (referred to as “future or

predictive queries”) [Mokbel, 2005]. An example of continuous historical query is: “Continuously
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extract the locations of a certain moving object in the last 20 minutes”, and of a continuous now

query: “What are the k nearest friends to my current location”. A continuous predictive query

may have a style similar to this example: “Alert me if a certain person is going to enter my

current room in the next 5 minutes”.

• According to the mutability of both the query point and the objects of interests: Continuous

location-dependent queries may have a static or dynamic starting query point2 [Gratsias et al.,

2005; Vargas-Solar et al., 2010]. Similarly, a continuous location-dependent query can be

applied on static or dynamic data, depending on whether the objects that are the target of the

query are moving or not; those are classified into three categories (Table 1.1): (1) Stationary

queries over moving objects where the query point is stationary, while objects of interest are

moving. For example, one could ask to “retrieve the identifiers of persons in a given room” ; this

implies monitoring the moving objects within a given “stationary” area. (2) Moving queries

over stationary objects in which the query point is moving, while objects of interest are static.

An example of this category is the guide-me services, or one can ask to: “retrieve all the

communicating entities (fixed sensors) accessible at a distance smaller than 100 meters of the

user identified by userID”. (3) Moving queries over moving objects where both the query point

and objects are moving. For example: “find the shortest route from person userID1 to person

userID2”.

Query point

Data object
Stationary Moving

Stationary N/A3

Category 1

(e.g., monitor persons

in a given room)

Moving

Category 2

(e.g., guide-me to a

destination)

Category 3

(e.g., get-together

services or track a

moving object)

Table 1.1: Taxonomy of continuous location-dependent queries

Different challenges regarding the management of moving objects and the continuous evaluation of

location-dependent queries are discussed in Sections 1.3.2.1 and Section 1.3.2.2.

2The query point, also referred to as the focal point in [Gedik and Liu, 2006] and the reference object in [Ilarri

et al., 2006a], is the point where a given location-dependent query starts (e.g., for a range query, this indicates the

centre of the range specified by the user).
3This classification of continuous queries is not applicable to stationary queries over stationary objects, as both the

query point and the target objects are static.
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1.3.2.1 Managing moving objects

Efficient and appropriate management of static and dynamic data is a key issue for processing

time-sensitive, location-dependent queries. Particularly, mobile environments have a significant

impact on the system design, especially for modelling and querying moving objects. This design

should allow to model the movements of entities and to ask queries about such movements. In some

cases, only time-dependent locations need to be managed, leading to the moving point abstraction,

while in other cases, a time-dependent shape or extent is also of interest which is referred to as a

moving polygon. Conventional systems do not provide facilities for update operations in a mobile

computing environment.

Two major trends can be identified for modelling and querying moving objects in databases,

which have extended the classic database paradigm in order to achieve the so-called “mobile database”

technology: Moving Object Databases (MOD) [Wolfson et al., 1999b; Pelekis et al., 2004; Güting

and Schneider, 2005], and Data Stream Management Systems (DSMS) [Chandrasekaran et al., 2003;

Arasu et al., 2004a].

Moving Object Databases (MOD): Research on moving object databases has been classified

by Güting into two main categories:

• The location management approach introduced by Wolfson and his colleagues in a series of

papers [Sistla et al., 1997; Wolfson et al., 1998, 1999a,b], in which the current and (near) future

movement of entities are represented. They have designed an interesting data model called

MOST in which dynamic attributes are introduced in order to represent the highly changing

properties of the moving objects (i.e., locations) as motion vectors instead of moving points.

Furthermore, the Future Temporal Logic (FTL) query language has been proposed to help

expressing continuous queries by specifying temporal relationships between objects that are of

interest to the current queries.

• The second major approach in moving object databases was explored by Güting and his

colleagues, and was referred to as the spatio-temporal database perspective [Guting et al., 2000;

Güting and Schneider, 2005; Güting et al., 2005, 2006]. This approach manages time-dependent

geometries (i.e., continuously moving points, lines, and regions) in database in order to capture

complete histories of movements of the entities of interest. An abstract data model that

comprises spatio-temporal data types and a comprehensive set of operations, which forms an

algebra representing moving objects, along with a related query and data manipulation language

have been developed [Güting et al., 2006]. An Open Source and extensible database system
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called SECONDO has been further implemented as a research prototype to study spatial and

moving objects databases, network models, fuzzy spatial data types, and other optimization

techniques [Güting et al., 2005].

Another important issue in mobile data management is to appropriately and efficiently index

moving objects in databases. With the highly dynamic character of mobile location-aware environ-

ments, several attempts have been proposed with the aim of tuning traditional spatial indexing

mechanisms, such as R-tree [Guttman, 1984], R+-tree [Sellis et al., 1987], R*-tree [Beckmann, 1990],

and X-tree [Berchtold et al., 1996], in order to support frequent updates (e.g., LUR-tree [Kwon et al.,

2002], FUR-tree [Xiong and Aref, 2006], and the CTR-tree [Cheng et al., 2005]).

The main idea behind the Lazy Update R-tree (LUR-tree) is to build a minimum bounding

rectangle (MBR), based on the moving object’s speed vector, within which no action is taken other

than updating the location. Once the object moves out of the MBR, either the object is deleted and

then reinserted or the MBR is extended in case the object is still not so far from the MBR. The

Frequently Updated R-tree (FUR-tree) extends the LUR-tree by performing enhanced bottom-up

update methods to accommodate frequent updates of the moving objects. While both the LUR-tree

and FUR-tree assume that moving objects are following known patterns, the Change-Tolerant

R-tree (CTR-tree) does not put any restrictions on the object movement. Many other variants

for spatio-temporal access methods have been reviewed in [Mokbel et al., 2003; Chen et al., 2008;

Nguyen-Dinh et al., 2010].

Data Stream Management Systems (DSMS): The data stream technology focuses on contin-

uously changing data that arrive as streams in real-time and in large (or even unbounded) amounts.

For instance, GPS receivers and ambient sensors are continuously measuring specific parameters and

characteristics of the environment; those have to be processed in real-time [Babcock et al., 2002;

Golab and Özsu, 2003]. The management of data streams represents different challenges [Ilarri et al.,

2010]:

1. Impossibility of managing and storing the whole history of the data streams; this has led to use

the concept of sliding windows to limit the search scope, and to support processing queries in

real-time [Ghanem et al., 2007; Hammad et al., 2003].

2. Supporting continuous queries which are typical in data stream applications. Those are not

supported by default in traditional stored data sets [Arasu et al., 2004a]. An adaptive approach

for query execution that requires dynamic query plans is essential for good performance, and

for the continuous monitoring of the incoming data streams.
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Several data stream management systems have been proposed to cope with these challenges

and to address continuous queries, such as the STREAM prototype [Arasu et al., 2004a] , Nile

[Hammad et al., 2004; Mokbel et al., 2005], and TelegraphCQ [Chandrasekaran et al., 2003].

From a data stream management perspective, [Mokbel, 2005] considers that these index

structures are not well suited in highly dynamic environments, and their performance degrades

dramatically for high update frequencies. Consequently, these authors have proposed a grid-based

index structure for indexing both frequently updated moving objects and queries, along with an

in-memory technique that limits the search scope to the object that are of interest to at least one

active continuous query [Mokbel et al., 2005].

1.3.2.2 Continuous evaluation of location-dependent queries

Continuously updating queries implies a communication overhead and additional processing cost

at the server side. Different approaches to process location-dependent queries in real-time mobile

environments have been proposed [Cai et al., 2006; Mouratidis et al., 2006; Yuan and Schneider,

2010]. These approaches depend not only on the way moving objects are managed, but also on the

types of query considered, on how the environment where those objects evolve is represented, on the

assumptions made on the movement and patterns of the moving objects, and also on the amount

of cooperation required from the moving objects, among others. For instance, some works focus

only on one type of query [Yuan and Schneider, 2010]. Others deal only with stationary queries

over moving objects [Cai et al., 2006; Mouratidis et al., 2006], or with moving objects following

predictable trajectories [Wolfson et al., 1999a; Stojanovic et al., 2008]. Many variants of these queries

are summarized in [Ilarri et al., 2010]. Mainly, three different approaches have been investigated in

literature order to make repetitive evaluation of continuous queries more efficient:

1. Update policies: some works assume specific update policies that aim at abstracting any

continuous query into a set of snapshot queries executed at different time instants. A concept of

valid region or valid time period of the query result has been introduced to lessen this problem

by determining a safe area or a time interval around the initial user position in which the result

of the query is always valid [Zhang et al., 2003; Hu et al., 2005]. This can be computed by

estimating the (maximum) velocity of the moving objects so that an extended range around

them is built within which the result to the query is considered to be valid.

2. Preprocessing: precomputing the (or part of the) result is another way to reduce com-

munication overhead and the number of evaluations of a continuous query. For instance,

location-dependent searches can be abstracted to different levels of detail, such that answers to
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specific queries are preprocessed at a higher level, and the resulting ‘abstract’ answers can be

refined in real-time [Botea et al., 2004].

3. Incremental processing: some techniques employ an incremental approach in order to

efficiently process continuous location-dependent queries, thus avoiding solving each search

problem independently from scratch. This implies caching the previous query results either at

the client or at the server side. Upon triggering of the new evaluation of the current query, the

cached results are used to prune the search in order to obtain the new updated result of the

query [Song et al., 2008; Sun et al., 2009].

Most work on location-dependent query processing has been developed for outdoor environments.

However, indoor environments bring some special features and constraints that should be considered

during query processing (i.e., the constraints that emerge from the architectural layout of space).

Although many research studies have discussed location-dependent queries and location-based

services, a few works have addressed the issue of incorporating contextual dimensions into query

processing, particularly those related to user-centric and environmental contexts. [Mokbel and

Levandoski, 2009] has recently highlighted these issues and discussed some of the challenges to

be considered in order to carry out context-aware queries and services. Some of these challenges

include (i) designing a spatial and user-oriented model, (ii) supporting multi-objective and possibly

contradictory queries, and (iii) analysing efficiency and scalability when dealing with context-aware

continuous queries.

1.3.3 Query languages for location-dependent queries

Further discussions on location-dependent data management have brought other research challenges

related to what kind of query language can be provided to answer location-dependent queries [Sistla

et al., 1997; Dunham and Kumar, 1998; Ren and Dunham, 2000; Güting and Schneider, 2005]. The

query language is generally based on the concepts (i.e., represented as abstract data types) described

in the database model, and allows asking requests in a straightforward manner and formulating

predicates about those concepts. Several works related to moving object databases have presented

query language extensions that support spatio-temporal data types and allows to formulate any kind

of questions about such objects’ movements, such as the FTL language [Sistla et al., 1997], and the

approach developed by [Güting et al., 2006].

Such a query language should also support user preferences (e.g., optimization criteria for path

planning), and other application-related constraints. Some semantically enriched query languages

for path planning in outdoor environments have been proposed in [Booth et al., 2009; Mokhtari,
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2011]. A query model for multimodal transportation systems has been presented in [Booth et al.,

2009], which provides users with the ability to choose between different modes of transportation

and applies spatio-temporal restrictions adapted to the user’s preferences. Another approach based

on fuzzy logic theory that helps identifying ambiguous and possibly contradictory preferences have

been proposed in [Mokhtari, 2011]. However, the authors do not provide a mechanism for continuous

location-dependent query processing.

A query language is closely related to the mobile environment in which objects evolve. This

means that all concepts which represent the environment and/or related to the application should be

integrated in the query grammar. Particularly, in the context of indoor navigation, a query language

should improve the expressiveness of location-dependent queries by considering the hierarchical layout

of the indoor environment. The approach presented in [Ilarri et al., 2011] covers the use of location

granules in outdoor environments from both a query processing as well as a result presentation

points of view. Location granules formulate queries with a location resolution which is appropriate

for the intended application.

1.4 Discussion

A general evaluation of mobile indoor navigation systems presented in [Huang and Gartner, 2010],

shows that most of the existing systems do not support context-awareness. There are only a few works

that integrate some contextual dimensions other than location, especially the semantics behind the

user profiles, and provide context-dependent adaptation according to these dimensions [Kritsotakis

et al., 2009; Lyardet et al., 2008; Tsetsos et al., 2006]. C-NGINE [Kritsotakis et al., 2009] supports

an ontology-based modelling approach along with a rule-based reasoning technique to develop a

navigation system adapted to the user’s needs and preferences. The major shortcoming of such a

semantic approach is the lack of geometric details about objects of interest and places represented in

space. On the other hand, OntoNav [Tsetsos et al., 2006] is based on a hybrid data model, which

combines an indoor navigation ontology with a geospatial model (i.e., GIS layers representing a

building blueprints), and a user model that helps processing path queries adapted to the user context.

CoINS [Lyardet et al., 2008] is another indoor navigation system that supports navigation queries.

It integrates a hybrid (i.e., symbolic and geometric) spatial data model, as well as a user model

with access permissions to enable adaptive pathfinding. Nevertheless, these three systems aim at

providing a navigation service, and thus they do not support other location-dependent queries such

as range and nearest neighbour queries. Moreover, none of these systems has proposed a generic

paradigm for the continuous processing of location-dependent queries.
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1.5 Summary

This chapter presented the main challenges for the design of context-aware indoor navigation systems,

and introduced recommendations for building an appropriate and sufficiently flexible data model of

the indoor environment. Service-oriented and efficiency-related requirements have been established

to achieve that purpose. Furthermore, mobile location-aware services and queries have been discussed

and classified based on different criteria. Challenges and issues on modelling, querying, and indexing

moving objects, continuous evaluation of location-dependent queries, and location-dependent query

language support have been introduced. Those challenges and recommendations are considered as

essential features that allow to asses indoor data models and continuous query processing techniques

as will be shown in Chapters 2 and 3, respectively.
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2.1 Introduction

Indoor spatial models have been studied and developed in many areas, ranging from mobile robot

mapping to Geographic Information Systems (GIS) and ubiquitous computing [Abowd and Mynatt,

2000; Thrun, 2003; Becker and Durr, 2005]. A successful integration of indoor spaces (e.g., houses,

commercial malls, etc.) and context-aware systems still requires the development of dynamic and

flexible spatial models that provide appropriate services to mobile users acting in the environment.

This chapter surveys indoor spatial models developed for research fields ranging from mobile

robot mapping to indoor location-based services (LBS), and most recently to context-aware navigation

services applied to indoor environments [Thrun, 2003; Becker and Durr, 2005; Nagel et al., 2010].
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Over the past few years, several studies have evaluated the potential of spatial models for robot

navigation and ubiquitous computing. This chapter takes a slightly different perspective, considering

not only the underlying properties of those data models, but also to which degree the notion of

context can be taken into account when delivering services in indoor environments.

A classification of service-oriented (i.e., localisation, navigation, location-aware communication,

activity-oriented interaction, and simulation and behavioural analyses) and efficiency-related (i.e.,

modelling effort, flexibility, performance, and scalability) requirements needed to design a context-

dependent indoor data model has been presented in Chapter 1. A taxonomy of models is presented

in Section 2.2 and assessed based those recommendations, with the aim of providing a flexible spatial

data model for navigation purposes, and by taking into account the contextual dimensions. Section

2.3 discusses trends in designing hybrid spatial data models that favour different kinds of applications

at different levels of abstraction.

2.2 A taxonomy of indoor spatial models

In order to deliver navigation-oriented context-aware services applied to indoor spaces, a navigation

system requires an appropriate data model that is capable of representing the locations of objects

either situated or actively acting within the environment. Modelling approaches are classified into

two main classes: symbolic and geometric spatial models. Geometric-based approaches (otherwise

referred to as metric or coordinate-based approaches) consider that locations are represented as points,

lines, areas or volumes. In contrast, symbolic-based approaches provide qualitative human-readable

descriptions about objects based on symbolic points of interest (e.g., room or floor identifier, building

name, etc.). In this section, the strengths and weaknesses of both classes of models are assessed by

describing and evaluating different spatial representations while having in mind the above-mentioned

requirements, which are necessary for strengthening the spatial data structure and thus the entire

context-aware system being developed.

2.2.1 Geometric-based approaches

Geometric spatial models (otherwise referred to as metric or coordinate-based approaches) consider

space as continuous or discrete, and mainly comprise cell-based and boundary-based geometrical

representations. Table 2.1 presents an assessment of geometric models according to the requirements

previously defined.
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2.2.1.1 Cell-based models

The cell-based approach decomposes the physical space into a finite number of non-overlapping areas,

thus building a partition that covers the entire space. This approach provides an implicit modelling

ability to capture adjacencies between neighbouring cells. Two main types of tessellations can be

distinguished [Ledoux, 2006; Mekni, 2010; Siegwart and Nourbakhsh, 2004]: regular tessellations

decompose space into cells that have the exact same shape and size (e.g., primarily, square- and

hexagonal-shaped cells as illustrated in Figure 2.1). Irregular tessellations aim at providing an

adaptive decomposition of space that is suitable to exactly represent the complexity of the environment

being studied (e.g., to accurately represent obstacles). Cells forming the irregular partition of space

can be with different shapes and sizes (i.e., arbitrary polygons in 2D or polyhedra in 3D).

(a) Square-shaped grid

(b) Hexagonal grid

Figure 2.1: Grid tessellation of a floor plan based on either (a) square or (b) hexagonal cells

Regular tessellations A well-known regular tessellation is the grid-based model. Indeed, grid-

based techniques are trivially implemented and can simply represent navigable and impassable regions

in space by associating different cell states. Particularly, the occupancy-grid approach provides a

probabilistic-based regular tessellation representation, which was firstly introduced in Elfes [1989];

Moravec and Elfes [1985], to address mobile robot mapping issues. In an occupancy grid, a high
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probability value is assigned to cells within accessible space, while a low probability is assigned to

cells occupied partially or completely by objects or obstacles.

Grid-based approaches provide spatial models with continuous geometric properties, thus

favouring different kinds of geometric-based queries as well as cell-level interactions. The extent and

the level of granularity are two mandatory parameters that have to be determined a priori for the

derivation of the grid. The accuracy of the resulting grid depends on the cell resolution. Hence,

a first trade-off arises between preserving high precision information retrieval and its impact on

memory and time consumption, especially when dealing with large environments. A fine-grained

grid provides accurate location data, but could introduce heavy processing workloads.

Dealing with a huge number of cells may exponentially increase query processing time (e.g.,

shortest path queries, real-time updates), thus leading to performance and scalability problems.

Moreover, regular tessellation techniques do not precisely represent objects with arbitrary shapes.

Hence, object boundaries are toothed, and it is possible for narrow pathways to be missed in the

modelling process, especially in areas burdened by spatial objects.

The aforementioned inefficiency has motivated the development of hierarchically-organized

grid-based structures known as quadtrees for two-dimensional spaces [Samet, 1984]. For instance,

the region quadtree (also referred to as PR quadtree) structure is commonly used when less details

are required for some paths of the represented space. This also allows to recover missed pathways

by repeatedly creating smaller squares to capture more details when necessary. However, the

key disadvantage of this approach lies in its lack of flexibility especially when dealing with a

highly dynamic environment. Indeed, dynamic environments encompass moving users, sensors, and

transient obstacles that can be moved or distributed diversely in space. This means that whenever

the distribution of these objects changes, a significant update may affect the whole quadtree in real

time. Moreover, a quadtree model delivers quadrant-based location data so that accuracy is closely

related to the size of the quadrant being identified. Localisation in free areas, where the size of the

quadrant can be excessively large, is therefore significantly disturbed and may not be sufficiently

accurate for navigational purposes. A large quadrant representing a part of free space may also

disturb the perception of communication ability of the user. A quadtree variant called skip quadtree

is proposed in Eppstein et al. [2005], which allows dynamic insertion and deletion of points, and

search operations in logarithmic time.

Irregular tessellations Given a set of polygonal obstacles described as line segments, two main

techniques have been proposed to irregularly tessellate a space:

• free-space tessellations that take into account obstacles and decompose free areas into convex
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polygonal cells (e.g., triangles, trapezoids) - Demyen and Buro [2006]; Mekni [2010].

• Voronoi tessellations subdivide space into a set of special cells called “Voronoi cells” [Auren-

hammer, 1991; Choset and Burdick, 2000].

(a) Triangulation tessellation (b) Trapezoidal-based tessellation

Figure 2.2: Examples of free-space tessellation techniques

Free-space tessellations Two kinds of decomposition can be described in this category:

trapezoidal- and triangulation-based tessellations. Both spatial models are constructed based on

the endpoints of the line segments that compose the boundaries of the obstacles. A trapezoidal

decomposition is built by projecting a vertical line from each end-point through the free space until

it hits another barrier, thus forming trapezoidal cells of different thicknesses (Fig. 2.2(b)). Although

this decomposition provides a light model, resulting cells tend to be long and thick, which is not

suitable for localization. In addition, navigation is performed by finding the intermediate cells to

find the destination.

Triangulation-based tessellations can be generated by introducing edges between boundaries’

endpoints without any edge crossings, until no more edges can be inserted [Demyen and Buro, 2006].

This technique supports path finding by hopping between triangles. Still, it may result in very thin

triangles. Another technique known as Delaunay triangulation DT overcomes the shortcomings of

the last mentioned approach. A DT of the set of endpoints is a set of triangles that decompose

space such that no endpoint is inside the circumscribed circle of any triangle of the DT .

Free-space tessellation methods support object-oriented analysis and allows for object-oriented

interactions within space. However, they suffer from multiple paths between a source and a destination

inside the chosen channel (i.e., the set of qualifying polygons), because accurate location information
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Figure 2.3: A generalised Voronoi diagram of an indoor space [Wallgrun, 2005]

within each polygon cell is unavailable. Moreover, dynamic insertion and deletion of objects is rather

difficult.

Voronoi tessellation The Voronoi Diagram VD of a set of k points S is another approach

that represents a built environment as a network of one-dimensional curves which concisely exhibit

pathways across these points thus forming an irregular tessellation of space [Aurenhammer, 1991].

The VD can also be applied to convex objects such as line segments or obstacles rather than points.

This extended approach, called the Generalised Voronoi Diagram (GVD), uses a function to measure

the distance from a point in space to the closest point on the geometric object (Figure 2.3). Choset et

al. [Choset, 1997; Choset and Burdick, 2000] have formally discussed how to incrementally construct

the GVD by operating with line-of-sight sensors so that they can derive a Generalised Voronoi Graph

(GV G) used for motion planning as described in Section 2.2.2.

GVDs represent a fundamental data structure for spatial modelling and have been widely

used in many research areas such as robotic motion planning, computational geometry, computer

graphics, GIS, etc. With a restricted number of objects, Voronoi tessellation as other irregular

tessellation approaches can be more compact than grid-based approaches. However, the construction

and maintenance of GVDs is still not straightforward. Additionally, localisation is often mentioned

as a real problem since Voronoi diagrams force mobile users’ positions to be shifted along Voronoi

edges which may yield to suboptimal trajectories. As a result, GVDs cannot directly fulfil our

requirements with respect to context-aware navigational services, but lend themselves perfectly to

extract the GVGs that, per se, can be used as operational route-based graphs suitable for many uses.
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Service-oriented requirements Efficiency-related requirements

Localisation Navigation
Location-aware

communication

Activity-

oriented

interaction

Spatial &

behavioural

analyses

Modelling effort
Performance &

scalability
Flexibility

Grid-based [Elfes,

1989; Moravec and

Elfes, 1985]

⊕ accurate location

data

⊕ suitable for

navigation

⊖ no symbolic

instructions

⊕ geometric-based

data exchange

⊕ high quality data

⊕ cell-level

interactions

⊖ no object-based

interactions

⊕ continuous

analysis

⊖ no

object-oriented

analysis

⊕ easy to design

and maintain

⊖ consumes high

memory and

processor time in

large spaces

⊕ good for

navigation queries

as geometric

information is

accurate

Quadtree [Samet,

1984]

⊕ quadrant-based

location data

⊖ constrained by

its structure and

the size of

quadrants

⊕ optimises

navigable space

⊖ no symbolic

instructions

⊕ geometric data

exchange

⊖ disturb the

perception of

communication

abilitya

⊕ quadrant-based

interactions

⊕ quadrant-based

analysis

⊖ no

object-oriented

analysis

⊕ medium effort to

build the tree

⊖ dynamic

insertion and

deletion of objects

is difficult

⊕ more compact

⊖ poor in highly

dynamic

environments

⊕ good for

navigation queries

⊖ not flexible in

dynamic

environments

a
p
p
ro

a
ch

e
s

Free-space

tessellation

[Demyen and Buro,

2006; Mekni, 2010]

⊕ location data

based on an

irregular

tessellation

⊖ not always

suitable for

localization

⊖ paths might be

not optimal

⊕ geometric data

exchange

⊖ disturb the

perception of

communication

ability

⊕ object-oriented

interactions

⊕ object-oriented

or empty space

related analysis

⊕ easy to tessellate

space

⊖ dynamic

insertion and

deletion of objects

is not

straightforward

⊕ efficient because

more compact

⊖ poor in highly

dynamic

environments

⊕ basic navigation

services

G
e
o
m

e
tr

ic

Generalised

Voronoi diagram

[Aurenhammer,

1991; Choset and

Burdick, 2000]

⊕ location data

based on an

irregular

tessellation

⊖ no accurate

location

information

⊖ paths might be

not optimal

⊕ geometric data

exchange

⊕ ability to

communicate about

objects

⊕ interactions with

objects within cells

⊕ analysis of

objects within

Voronoi cells

⊖ dynamic

insertion and

deletion of objects

is not

straightforward

⊕ efficient because

more compact

⊖ poor in highly

dynamic

environments

⊕ basic navigation

services

Boundary-based

[Chatila and

Laumond, 1985;

Crowley, 1989]

⊕ geometric

location data
⊖ very limited

⊕ geometric data

exchange

⊕ boundary-based

interactions
⊕ basic analysis

⊕ easy to design

and maintain a

CAD model

⊖ model matching

can be costly in

robotic applications

⊕ efficient with

basic operations

⊖ do not support

navigation services

Table 2.1: Assessment of geometric-based approaches

aA large quadrant may be partially covered by a sensor, but this covered zone can not be perceived by the user, thus weakening its ability to communicate
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Figure 2.4: Example of a floor plan designed using a CAD system

Irregular tessellation techniques generally offer several advantages over regular techniques

including smooth modelling of arbitrary objects, recognition of narrow valid paths, and the fact that

it can be markedly compact in unburdened environments. However, most of these techniques do not

support highly accurate localisation of mobile objects within the polygonal cells.

2.2.1.2 Boundary-based models

Boundary-based models represent the obstacles’ boundaries of an indoor space with sequences

of primitive geometries such as points, lines, curves, etc. In most cases, a boundary-based map

is constructed by concatenating a set of lines segments either extracted from sensor data and

representing obstacles as polygons [Chatila and Laumond, 1985; Crowley, 1989; Thrun, 1997], or

designed using a CAD system (Figure 2.4). In many robotic applications that assume no prior

knowledge of the environment, sensor data are obtained and the resulting extracted objects are

matched to a geometric map. However, model matching can be computationally expensive [Thrun,

1997]. Indeed, the line extraction sensors need to be extremely accurate so that lines representing

walls, for instance, can be properly positioned at the right location and the right angle on the map.

On the other hand, a geometric floor plan can be designed using a CAD system so that various

spatial entities (e.g., doors, windows, rooms, etc.) are represented as sequences primitive geometries.

But Those approaches are mainly oriented towards architectural design.

In contrast to cell-based approaches, boundary-based geometric models form the most direct

way to represent an indoor space and can be significantly compact. However, such an approach lacks

the capability to incorporate additional object-based semantics so that a deeper knowledge of the

represented spatial entities can be achieved. Moreover, boundary-based models are less suitable for

navigational services, like path planning, or for communication because they do not lend themselves

very well to applying standard techniques and algorithms for spatial search, finding most appropriate

paths, and many other services.
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2.2.2 Symbolic-based approaches

Symbolic approaches have frequently attempted to model indoor environments using topological-

based structures [Durr and Rothermel, 2003; Hu and Lee, 2004], graphs by capturing the connectivity

and reachability between spatial units [Franz et al., 2005; Jensen et al., 2009a; van Treeck and

Rank, 2004], and hierarchies [Becker et al., 2010; Choset and Burdick, 2000; Stoffel et al., 2008].

The main advantage of these approaches is that object location is provided semantically by using

human-readable descriptions (e.g., room identifier), and topological relationships are also represented.

Depending on their nature, symbolic location models can reveal containment, connectedness, closeness,

and overlapping relationships [Durr and Rothermel, 2003; Hu and Lee, 2004; Jensen et al., 2009a].

Using the containment relationship, for instance, one can derive a hierarchical structure of the indoor

space in order to take into account application constraints and properties. Accuracy of location

information in symbolic space depends on the level of abstraction of the indoor data model. For

instance, a place-based symbolic model can provide location information at the structural-entity level.

However, symbolic models are often unable to support a highly accurate indoor positioning system,

and are less suitable for determining the Euclidean distances between spatial entities. Moreover, a

symbolic model depends on the application domain and needs to be created and managed accordingly.

Hence, managing a very large number of location symbols requires an important modelling effort.

Symbolic models are classified into two categories: set-based models and graph-based models.

The set-based approach gathers object or place identifiers into sets and subsets; these are used to

define spatial relations between elements of a set or, for instance, the intersection between two subsets,

etc. [Becker and Durr, 2005; Bhatt et al., 2009]. These sets can be further hierarchically organised

to form a tree- or lattice-based structure [Durr and Rothermel, 2003; Li and Lee, 2008b; Hu and

Lee, 2004]. Graph-based approaches represent a space as a topological graph where nodes symbolize

predefined landmarks (e.g., place, gate, sensor range, object, etc.) extracted either manually or

automatically from the environment, and edges stand for the connections that make it possible to

move through these landmarks [Choset and Burdick, 2000; Remolina et al., 1999; Remolina and

Kuipers, 2004; Werner et al., 2000]. These two categories will be discussed further as follows.

2.2.2.1 Set-based symbolic models

Set-based models identify places or objects of interest within an indoor space, and then gather these

symbolic identifiers into sets. Two kinds of set-based models are distinguished: place-based and

object-oriented models. The former considers a set of place identifiers based on the architectural

properties of an indoor space [Becker and Durr, 2005; Li and Lee, 2008a], while the latter deals

with all entities that may contribute to build a smart environment [Bhatt et al., 2009]. Indeed, the
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major difference between these two approaches is the level of abstraction. Place-based models deal

with places and build its hierarchy based on the containment relationship. Whereas, object-oriented

models consider not only places, but all other objects of interest (e.g., walls, doors, sensors, etc.) in

order to build the hierarchy.

Place-based sets Current place-based approaches model an indoor space by creating sets and

subsets of place identifiers based on the architectural properties of space [Durr and Rothermel, 2003;

Kainz et al., 1993]. A typical example considers places of a building such that each floor is contained

within a building, and each room is contained within at most one floor. A superset is likely to be

defined as the set of floor numbers, and at a lower level, a subset related to each floor that aggregates

all room numbers has to be created. Such a model is hierarchically organised and can be viewed

as a tree structure in which location information is represented at different levels of abstraction.

Moreover, when considering places and their neighbours, one can reflect adjacency relations between

them as well as some qualitative notions of distance, i.e., one can infer that the distance between two

neighbouring rooms is smaller than the distance between two distant rooms [Becker and Durr, 2005].

Place-based sets models deliver room-level location data, and allow for place-based data

exchange as well as for interactions with places. However, the main shortcoming of those approaches

is their inability to model connectivity between places as, for instance, two neighbouring rooms may

or may not be interconnected. Also, it is often unable to determine quantitative distance efficiently.

Furthermore, such a tree-based structure is built with respect to the containment relationship, and

it does not allow for an element to inherit from multiple parents; this means that a place cannot be

contained within two overlapping subsets. This is the case where floors are shared between several

wings within a building. In such a situation, a room may belong to a floor and a wing at the same

time. This problem has been dealt with by using a lattice structure instead of a conventional tree

[Li and Lee, 2008a].

As defined in Kainz et al. [1993], a fine-element lattice is a partially ordered set in which every

subset can have a least upper bound and a greatest lower bound. These characteristics of lattices

are then applied on a set of places P along with the containment relationship ≤ (i.e., p1 ≤ p2 means

p2 spatially contains p1) in order to construct the model. This model overcomes the last mentioned

problem regarding overlapping subsets by allowing for multiple inheritance, and it is appropriate for

range queries as used in Durr and Rothermel [2003] to send geocast messages. However, this model

does not lend itself to other tasks like navigation, because it still does not represent connectedness

between places. Another lattice-based semantic model has been presented in Li and Lee [2008a],

that uses the exit-location concept. The exit-location approach models a given space with two types

of entities: a location described as a bounded geometric area bordered by one or more exits, and an
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(b) The corresponding lattice-based model

Figure 2.5: Example of a place-based set model

exit as a boundary gate that allows moving in or out of a location [Hu and Lee, 2004; Lee et al.,

2005]. The hierarchical structure of the lattice is mainly based on the containment relationship

between locations (Figure 2.5). This model is, for instance, applied to find optimal paths based on

nearest neighbour relations.

Object-oriented model An object-oriented model introduces an approach that annotates objects

of interest with semantic information according to the properties of the environment. Entities are thus

represented as objects, and are characterised by specific attributes and relations. For instance, the

Industry Foundation Classes (IFC) provide a specification of an object-oriented data model, which

serves as a data exchange format reflecting building information [Froese et al., 1999; Liebich et al.,

2006]. In contrast to geometric plans (e.g., 2D or 3D CAD drawings), IFC represent all entities of

space (e.g., walls, windows, etc.) as objects. IFC-based models are used in planning and management

processes to improve quality of data exchanged and to perform complex management-oriented

analysis (e.g., electronic checking, energy effort, etc.)

An object-oriented model based on the IFC specification has been proposed in Bhatt et al.

[2009]. The indoor space is then defined as the combination of three complementary layers:

• A conceptual layer models terminological and functional characteristics on the architectural

entities (e.g., sensor, sliding door, meeting room, computer science laboratory, etc.) regardless

of how and where they will be used.

• A quality module gives qualitative descriptions about spatial dependencies and relationships

with other entities. For instance, the authors use relations as provided by the spatial calculus

RCC [Grütter et al., 2008] (e.g., proper part of, partially overlaps, etc.)
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Figure 2.6: Example of an object-oriented model of an indoor space

• Finally, architectural entities are quantitatively described in the quantity module.

The advantage of this approach is that it qualifies the different roles played by the objects in the

environment, these roles being spatially qualified. A example of such a conceptual space is illustrated

in Figure 2.6. Such a conceptual space models all entities of interest along with quantitative and

qualitative properties attached to them, as well as spatial relationships and constraints between

represented entities.

Object-oriented data models provide symbolic location data at the object level, and allow for

semantically-enriched data exchange about objects of interest. Moreover, object-oriented spatial

and behavioural analyses can be performed. Nevertheless, object-oriented approaches are not

directly suitable for navigational tasks, since geometric details about represented objects as well as

connectivity and adjacency relationships are not directly supported.

2.2.2.2 Graph-based models

Graph-based approaches represent an indoor space as a graph where nodes model predefined

locations (e.g., place, gate, point of interest, etc.) extracted either manually or automatically from

the environment, and edges stand for the connections that make it possible to move through these

locations [Choset and Burdick, 2000; Remolina et al., 1999; Remolina and Kuipers, 2004; Werner

et al., 2000]. For instance, a topological graph that directly reflects the architecture of a floor plan

represents rooms as nodes and doorways as edges; this can simply express connectedness relationship

between the architectural entities [Franz et al., 2005]. In this category, two main modelling concepts
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Figure 2.7: An place graph representing structural entities of an indoor space

are discerned: layout-based and layout-independent models. The difference between these two

categories is shown as follows.

The layout-based representations rely on graphs where nodes are derived or extracted from the

structure of space. This can be exhibited by a basic graph model that can be referred to as a place

graph, as well as by visibility graphs. Voronoi-based graphs are also constructed by extracting meet

points and boundary points directly from space as described earlier. These points refer to the nodes

of the generalised Voronoi graph. Fine-grained graphs preserve indirectly structural properties of

the environment since nodes are evenly distributed over the entire space. In contrast, some other

approaches have adopted graph models that are layout-independent [Becker et al., 2009; Jensen

et al., 2009a]. Nodes are then not directly derived from the structure, but instead are extracted by

means of a sensor deployment strategy within space.

Place graphs In their simplest form, place graphs clearly materialize topological properties

of space. In this approach, nodes stand for places such as rooms and/or hallways, and doorways that

connect these places appear as edges (Figure 2.7). Besides the connectivity relationship artlessly

presented, other variants of topological relations between structural entities can be inferred such as

adjacency and containment properties by annotating nodes and edges and/or supporting a graph

with multiple levels of granularity. So far, this modelling concept has been widely used since it allows

to efficiently navigate between places, plan routes to destinations, and is well-suited for nearest

neighbour queries. In addition, it supports symbolic data exchange and interactions with places.

Nevertheless, this approach still does not consider interacting objects. It also has a less accurate

location information that does not meet specific application requirements. Geometric properties

of space disappear, and it is still difficult to model a semantic distance function which helps, for

instance, determining the shortest path. A semantic exit-location based model has been presented by

Hu and Lee [2004]. The aim of this modelling approach is not only to preserve the advantages of the

classic place graph model, but also to integrate geometric information such as a distance model to
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overcome some of the aforementioned problems. The exit-location approach models the space with

two types of entities: a location described as a bounded geometric area bordered by one or more

exits, and an exit as a boundary gate that allows moving in or out of a location. The authors have

introduced a series of algorithms for automatically constructing the location and exit hierarchies

to derive the symbolic location model. Moreover, this symbolic model is built on some geometric

information that maintains distance semantics to support services such as nearest neighbour search,

shortest path, and location-aware navigation. Although this approach has dealt with many critical

problems, other advanced contextual queries were still not addressed because the model cannot fully

support object movement and can provide only basic types of services.

Visibility graphs Based on a triangulation tessellation, one can derive a visibility graph that

materialises edges between mutually visible endpoints representing specific locations and obstacles,

and extracted from space [De Berg et al., 2008]. Visibility graphs are useful to predict some

behavioural and spatial analyses to favour spatial reasoning as suggested in space syntax [Turner,

2001; Franz et al., 2005]. However, the disadvantages of triangulation tessellations remain the same

as accuracy of location information, optimality of path queries, interaction, and flexibility are not

dealt with. Furthermore, dynamic insertion and deletion of objects may lead to changes in the graph

topology, i.e., the locations and number of nodes can change, and additional edges could be drawn.

Generalised Voronoi Graph (GVG) The GVD is an appealing approach that represents

a built environment as a network of curves which concisely exhibit pathways suitable for navigational

purposes. A route-based graph can be extracted from the GVD previously described. Such a route

graph is referred to as the Generalised Voronoi Graph (GVG), which directly reflects pathways

through obstacles [Choset and Burdick, 2000]. Voronoi-based approaches are suitable for navigation

services such as finding a collision-free path towards a destination. In addition, a GVG inherits

all advantages of graph-based representations so that it can, for instance, annotate its nodes by

additional information thus favouring location-aware communication and object-oriented interactions.

Specific techniques have been suggested to further prune and remove irrelevant nodes and edges

so that the whole graph can be more compact [Wallgrun, 2005, 2010]. However, an indoor space,

such as an office building, can be populated with a huge number of objects of interest, which may

significantly increase the number of nodes and edges that constitute the graph. Furthermore, the

location accuracy problem is raised in specific situations when moving in free-areas, which means

that the model does not lend itself to completely support ubiquitous positioning sensors.
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Figure 2.8: Example of a sensor-based graph

Fine-grained graphs Although previous approaches consider an indoor space at a more

abstract level and so have a more compact representation, they appear to be badly-suited to context-

aware navigation services since interactions at a fine level within space are increasingly needed. In a

companion paper [Li et al., 2010], the authors have presented a graph-based model at a fine level of

granularity that retains continuous and structural-based properties of space. Nodes in this model

represent cells within an occupancy grid, while connections between cells are materialized by edges

(Figure 4.3). Nodes and edges are labelled according to their belonging to a given spatial unit such

as a room or a connecting space. One advantage of this modelling approach is that it achieves a

maximum coverage of space so that accurate positioning sensors used for indoor navigation can be

supported. Indeed, the geometrical properties are implicitly represented by the continuous layout

of the graph and reflect indirectly the shapes of places being considered. This approach allows

for high quality data exchange, and for fine-grained and continuous analysis. However, a major

difficulty that still needs to be confronted regarding efficiency-related criteria and specially when

considering performance and scalability issues. A large indoor space could comprise thousands of

nodes and edges so that managing and executing real-time queries could be an excessive time- and

memory-consuming process.

Sensor-based graphs Many approaches have adopted a sensor-oriented point of view where

the objective is mostly oriented to the tracking and monitoring of mobile objects [Becker et al.,

2009; Jensen et al., 2009a]. For instance, the model presented in Becker et al. [2009] describes
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Figure 2.9: Example of a fine-grained graph of a floor plan

space as a set of layers, the topographic space and the sensor space, and establishes connections

between layers based on the sensor coverage. Deployment graphs have been proposed in Jensen

et al. [2009a] by using different types of positioning sensors in order to improve indoor tracking

accuracy (Figure 2.8). A classification of positioning sensors in indoor space into presence sensors

and partitioning sensors can be found in Jensen et al. [2010]. Navigation between cells representing

ranges of the deployed sensors is supported, which also allows for range-based analysis. However,

accuracy of location information in such techniques is relatively low since it depends on the sensor

range. Object-oriented interaction is also not supported since objects are not directly represented.

Furthermore, an optimised deployment strategy of the sensors is needed so that a more compact

and more efficient graph can be created. A more detail discussion on sensor-based graphs along with

a method for an optimised deployment of sensors can be found in Kang et al. [2010].

2.2.3 Discussion

The taxonomy presented in this section relies upon the model of location information being delivered.

Other classifications of indoor models have been proposed in Becker and Durr [2005]; Worboys [2011].
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Service-oriented requirements Efficiency-related requirements

Localisation Navigation
Location-aware

communication

Activity-oriented

interaction

Spatial &

behavioural

analyses

Modelling effort
Performance &

scalability
Flexibility

Place-based set

[Becker and Durr,

2005; Durr and

Rothermel, 2003; Li

and Lee, 2008a]

⊕ location data at

room & connection

level

⊖ no information

about connectivity

between places

⊖ not suitable for

metric functions

⊕ symbolic-based

data exchange

⊖ no geometric data

exchange

⊕ place-based

interactions

⊖ no object-oriented

interaction

⊕ room-level analysis
⊕ easy to design and

maintain

⊕ efficient and

scalable thanks to

the hierarchical

structure

⊕ suitable for range

queries

⊖ no support for

navigation services

Object-oriented

set [Bhatt et al.,

2009]

⊕ location data at

object level (e.g.,

sensor, ...)

⊖ needs information

about adjacency and

connectivity between

places

⊖ not directly

suitable for

navigational tasks

⊕ symbolic-based

data exchange

⊕ object-oriented

communication

⊖ no geometric data

exchange

⊕ object- and

place-based

interactions

⊕ semantic &

object-oriented

analysis

⊖ medium effort as

the number of

objects to manage is

high

⊕ scalable thanks to

the hierarchical

structure

⊕ semantic-based

applications

⊖ navigation services

are limited

a
p
p
ro

a
ch

e
s

Place-based graph

[Hu and Lee, 2004;

Li and Lee, 2008b]

⊕ graph-based, room

& connection level

⊕ suitable for

navigation as

connections between

places are

materialised

⊖ no support for

metric functions

⊕ symbolic data

exchange

⊖ no geometric data

exchange

⊕ place-based

interactions

⊖ no object-oriented

interaction

⊕ room-level analysis
⊕ easy to design and

maintain

⊕ efficient due to its

compactness
⊕ navigation services

S
y
m

b
o
li
c

sensor-based

graph [Becker et al.,

2009; Jensen et al.,

2009a]

⊕ graph-based

(accuracy depends on

sensor range)

⊕ range-based

navigation

⊕ symbolic &

range-based data

exchange

⊖ no object-oriented

interactions

⊕ range-based

analysis

⊕ medium effort to

design the graph

⊖ optimized

deployment strategy

of sensors is needed

⊕ efficient due to its

compactness
⊕ tracking services

Visibility graph

[De Berg et al., 2008]

⊕ graph-based

(accuracy depends on

the number and

location of nodes)

⊕ suitable but for

basic navigational

tasks

⊕ symbolic data

exchange

⊕ object-oriented

communication

⊕ object-based

interactions

⊕ visibility and

spatial analyses

⊕ easy to design

⊖ dynamic insertion

and deletion of

objects is not

straightforward

⊕ efficient because

more compact

⊖ poor in highly

dynamic

environments

⊕ applications for

spatial cognition and

human reasoning

Generalised

Voronoi graph

[Choset and Burdick,

2000; Wallgrun, 2005]

⊕ graph-based

(accuracy depends on

the number and

location of objects)

⊕ suitable but for

basic navigation

services

⊕ symbolic data

exchange

⊕ object-oriented

communication

⊕ object-based

interactions

⊕ navigation-based

analysis

⊖ sophisticated,

takes considerable

time

⊕ efficient because

more compact

⊖ poor in highly

dynamic

environments

⊕ navigation services

Fine-grained

graph [Li et al.,

2010]

⊕ graph-based

(accurate location

data)

⊕ suitable for

navigation

⊕ symbolic-based

data

⊕ high quality data

exchange

⊖ no object-oriented

interaction

⊕ fine-grained and

continuous analyses

⊕ easy to design and

maintain

⊖ consumes high

memory and

processor time

⊖ not scalable

⊕ navigation services

Table 2.2: Assessment of symbolic approaches
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The distinction between geometric and symbolic (also referred to as topological in Worboys [2011])

spatial models is similarly emphasized in both classifications as explained earlier in this section.

A distinction is also made between spatial and semantic models since the latter kind of models is

object-oriented and not necessarily spatially-dependent [Worboys, 2011]. However, neither of these

proposals has reviewed and assessed different modelling approaches from the particular perspective

of context-aware indoor navigation systems. A summary of different modelling approaches is given

below, along with a discussion of their use from an application perspective.

2.2.3.1 Geometric-based approaches

Grid-based models can efficiently integrate metric properties, thus allowing precise locations, direction

information, and distances (cf. Table 2.1). Quadtree is a hierarchically-organized grid-based structure

that allows for space optimization, but lacks flexibility in dynamic environments. Free-space

tessellation and Voronoi-based diagrams are less suitable for localisation, but they are more compact.

Boundary-based models are less suitable for navigational services but provide accurate location data.

In addition, geometric models require an integration of semantic annotations to achieve a higher

degree of location- and context-awareness.

2.2.3.2 Symbolic approaches

As shown in Table 2.2, symbolic models are generally less accurate but context-awareness is easier

to achieve as they favour human-recognizable descriptions. Thanks to their hierarchical structure,

set-based models achieve a good level of efficiency and flexibility, but lack of topological relationships

such as connectedness. Graph-based models are widely used in applications at a coarse-grained level

of abstraction thanks to their richness and variety. The major shortcoming of symbolic models is

the lack of geometric details on entities and places represented in space.

2.2.3.3 Application perspective

Symbolic-based approaches are often preferred, from an application perspective, over conventional

geometric-based approaches and have been recently used in many application scenarios [Becker and

Durr, 2005], because they can capture the semantics of entities and places represented in an indoor

space. In particular, graph-based and semantic models constitute the most common approaches

used, so far, in many application areas ranging from emergency management and safety control in

micro-scale environments [Kwan and Lee, 2005; Lee, 2007; Lee and Zlatanova, 2008; Park et al., 2009]

to indoor context-aware navigation services, and especially those adapted to users with special needs
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[Becker et al., 2009; Cagigas and Abascal, 2004; Dudas et al., 2009; Fernández-Madrigal et al., 2004;

Kritsotakis et al., 2009; Tsetsos et al., 2005]. Applications that aim at providing intelligent emergency

responses mainly employ simple place graphs, which capture topological relations between structural

entities, because they are more concerned with network-based models that allow to discover nearest

or optimal exits [Kwan and Lee, 2005; Lee, 2007]. In contrast, applications that support contextual

elements, such as user preferences and capabilities, tend to favour semantically-enriched data models

either by designing an ontology-based model, or by employing a hybrid model that combines a

graph-based with a semantic model of space as discussed in Section 2.3 [Cagigas and Abascal, 2004;

Dudas et al., 2009; Kritsotakis et al., 2009; Tsetsos et al., 2005].

2.3 Towards hybrid spatial models

Numerous spatial data models have been presented in different research fields (e.g., robotics, GIS,

ubiquitous computing) with the aim of combining advantages of geometric and symbolic approaches

[Buschka, 2005; Jiang and Steenkiste, 2002; Leonhardt, 1998; Thrun, 1998; Wallgrun, 2005]. Those

approaches have complementary strengths and weaknesses since they have different purposes.

Whereas geometric models can efficiently integrate metric properties to provide highly accurate

location and distance information that are necessary elements in most of context-aware applications,

symbolic models maintain a more abstract view of space by providing users with easily-recognizable

information and by materializing more complex relationships between entities. Neither approach is,

therefore, directly suitable for fulfilling all requirements of context-aware services. Clearly, integration

of geometrical and topological representations implies considering qualitative and quantitative points

of view, thus favouring a large spectrum of interacting representations and applications, as suggested

by the Spatial Semantic Hierarchy (SSH) introduced in Kuipers [2000]. This enables human reasoning

and human- or robot-centred activities, and even sensor-based interactions within the environment.

Accordingly, the idea of integrating different coexistent models of space appeared really as

a promising alternative. Hybrid spatial models can be produced in different manner by applying

various kinds of organization [Becker and Durr, 2005; Buschka, 2005; Wallgrun, 2005]: (1) parallel

models (also referred to as overlays) aim at using different spatial models (usually a combination

of geometric and symbolic models) that cover the entire space [Becker et al., 2009; Li et al., 2010;

Stirbu, 2009; Thrun, 1998; Wallgrun, 2005], (2) patchwork-based approaches represent a space with

several local, usually geometrical, models that are linked together to form a global, usually symbolic,

model of space [Kuipers, 2000], and (3) hierarchical models that embed different layers with different

levels of abstraction [Fernandez and Gonzalez, 1998, 2002; Jiang and Steenkiste, 2002].
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Recent studies on mobile robot navigation have focused on how to extract a topological graph

from a basic geometric map such as a grid-based map or a Voronoi diagram. The resulting graph

is then pruned by applying some algorithms that select the more relevant nodes, thus implicitly

providing a hierarchical representation as those encompass knowledge of the environment at different

levels of abstraction [Thrun, 1998; Wallgrun, 2005]. Earlier, the SSH model has been presented

[Kuipers and Byun, 1991; Kuipers, 2000], and further extended in Beeson et al. [2005]; Kuipers et al.

[2004]. The SSH consists of a hierarchy of representations that are inter-dependent. This hierarchy

is mainly made of local geometrical maps that correspond to the human or robot’s sensory horizon,

and are merged together based on topological relationships which, in turn, are derived thanks to

causal state-action-state schemas.

A relevant example of a hybrid spatial model designed to handle location-dependent queries is

presented in Jiang and Steenkiste [2002]. This model is a combination of a hierarchical, set-based

representation of space and a geometric representation of places, sensor ranges, and objects of

interest. These geometric annotations are attached to the corresponding elements in the symbolic set.

The model achieves a good trade-off between geometrical and symbolic approaches by combining

the benefits from both sides. Although this model handles some relevant location-dependent queries

such as “find the nearest object of interest”, it lacks a clear process description of how to acquire an

accurate location of the mobile user continuously. In addition, queries are handled based only on

the distance parameter while most of context-aware applications require integration of contextual

dimensions that aim to find the optimal solution not always the nearest one. In Stirbu [2009], the

author proposed to symbolize a physical space with a set of layers that correspond to different

location models designed to meet various activities performed by the users. At the basic layer,

the model embeds a quadtree by considering some points of interest. On top of this layer, various

topological models were added depending on users’ activities and formed a lattice model. The lattice

model has been used together with a simple graph model, extracted to materialize connections, to

perform relevant location-dependent queries such as position, range, and path queries.

The Annotated Hierarchical graph model (AH-graph), presented in Fernandez and Gonzalez

[1998, 2002], constitutes a comprehensive framework for efficient mobile navigation. The AH-graph

consists of multiple topological layers defined at different levels of abstraction and linked together

based on abstraction functions developed for nodes and arcs. An annotation function is also defined

at each level so that information can be attached to nodes and arcs. This allows performing basic

queries (e.g., path searching) hierarchically, thus achieving better performance. An extension of

the model was then presented by adding multiple hierarchies produced based on several scenarios

specified at the application level, thus favouring a large spectrum of applications and achieving a

high level of flexibility. The model has been further used in Remolina et al. [1999] to implement the
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SSH at topological level thanks to its efficiency and flexibility. In Galindo et al. [2005], the AH-graph

hierarchy was appended to a semantic hierarchy to further improve human-robot communication.

Generally, parallel models that combine, for instance, a graph-based model with a geometrical

model underneath, tend not to scale well to large environments since they could not get rid of

weaknesses of geometric models with respect to efficiency and scalability. Hierarchical models, in

contrast, scale very well to large environments since queries such as path search are performed

hierarchically by switching from finer to coarser levels and vice versa. In addition, a specific level

of granularity can be used in specific situations with respect to application constraints and users’

preferences. Approaches that integrate hierarchical organization require, however, to maintain

connections between levels and to integrate a fine-grained geometric model that guarantees accurate

localisation for specific navigational purposes.

Most of the principles presented in this chapter has inspired our work whose objective is to

develop a context-dependent multi-granular indoor data model whose objective is to provide a

flexible representation of an indoor space, and also will take into account the objects located and

acting in the environment. This modelling approach integrates different levels of granularity, that

is, a fine-grained layer at the first level and an exit hierarchy as well as a location hierarchy at the

second level of abstraction, and considers other contextual dimensions besides the location of the

involved entities, such as time and user profiles (see Chapter 4). The main advantage of the indoor

data model relies on its hierarchical and context-dependent design, which allows a large spectrum of

applications to be developed at different levels of abstraction, while alleviating performance and

scalability issues in location-dependent query processing. Moreover, this model supports different

categories of location-dependent queries, either in continuous or discrete modes, and two algorithms

for continuous processing of path and range queries on top of this modelling approach are proposed

in Chapter 6.
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3.1 Need for incremental and adaptive query processing

Many innovative mobile applications need to incorporate a mechanism for the continuous processing

of location-dependent queries over moving objects. Examples of such services include continuous

crowd monitoring within a given area, location-based alerts (e.g., continuously send E-coupons to
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all customers within 200 metres of my store), crowd notification in an emergency situation, and

location-based friend finder (e.g., 1- “let me know if I am near a restaurant while any of my friends

are there”; and 2- “if I continue moving towards this direction, which will be my closest restaurants

in the next 10 minutes?”).

A continuous query remains active over a period of time and has to be continuously evaluated

during that period as the objects of interest are moving. Efficient processing of such queries is

a complicated task in location-based services due to its expensive consumption of memory and

computational resources. A straightforward approach to deal with this kind of query would be

to periodically recompute the best answer from scratch for all queries upon arrival of every delay

update. However, such a naïve approach performs poorly in highly dynamic environments, where the

locations of both the query point and the target objects change over time. In addition, this approach

scales poorly when there are many concurrent users who are asking queries at the same time.

Consequently, there is a growing need for approaches that provide adaptive and incremental

query processing techniques to enhance efficiency of location-dependent queries over moving objects

[Hu et al., 2005; Mokbel et al., 2005]. On the one hand, adaptive query processing addresses the

problems of unpredictable costs and dynamic data by using runtime feedback in order to tune

query execution in a way that provides appropriate answers with better response time or memory

utilization [Deshpande et al., 2007]. On the other hand, an incremental execution paradigm deals

with continuous query processing by reusing information from previous searches to speed up current

searches. Therefore, new answers for series of similar search problems can be computed faster than by

reevaluating each query independently from scratch [Sun et al., 2009]. Both adaptive and incremental

execution paradigms are required in order to achieve sufficiently flexible and more efficient continuous

query processing.

This chapter surveys approaches for querying and managing moving objects in dynamic

environments. Both outdoor and indoor contexts are considered, since indoor-oriented strategies

are rarely discussed in the literature, and some outdoor strategies can be applied to indoor settings

with adjustments, when necessary. The remainder of this chapter is organized as follows. Section 3.2

presents strategies and architectures for location-dependent query processing, mainly, in moving

object databases, over spatio-temporal data streams, and in specific indoor settings. It then discusses

preference-aware query processing techniques and their applicability to continuous queries. Section

3.3 takes another perspective and discusses algorithmic issues with the aim of highlighting adaptive

and incremental approaches for the continuous processing of navigation-related queries in spatial

network databases. Languages for spatio-temporal queries and more specifically for preference-aware

location-dependent queries are discussed in Section 3.4.



3.2. ARCHITECTURES FOR LOCATION-DEPENDENT QUERY PROCESSING 63

3.2 Architectures for location-dependent query processing

Different architectures, indexing strategies, and update methods have been proposed to efficiently

deal with location-dependent queries over moving objects [Lam et al., 2001; Lazaridis et al., 2002;

Kalashnikov et al., 2002; Prabhakar et al., 2002; Cao et al., 2003; Gedik and Liu, 2004; Jensen et al.,

2004; Hu et al., 2005; Cai et al., 2006; Güting et al., 2006; Gedik and Liu, 2006; Ilarri et al., 2006a;

Zhao et al., 2010]. This section takes a closer look to those approaches and mainly classifies them

into three categories: (i) approaches for continuous query processing in moving object databases ;

(ii) approaches for continuous processing of spatio-temporal data streams ; and (iii) approaches that

incorporate user preferences and other contextual dimensions in query processing. It should be

noted that most of those strategies have been developed for outdoor environments. The only works

we are aware of regarding architectures for mobile data management in indoor environments are

presented in [Jensen et al., 2009b; Lu et al., 2012; Xie et al., 2013; Alamri et al., 2013]. Therefore,

this section describes the intrinsic properties of those approaches applied to both outdoor and indoor

environments, while highlighting their advantages and disadvantages with respect to our context.

3.2.1 Continuous query processing in moving object databases

Many features and criteria can be specified in order to classify and assess approaches for location-

dependent query processing over moving objects such as the incremental evaluation support, whether

static and/or moving queries are considered, the kinds of queries supported, whether a centralised

or a decentralised strategy is proposed, communication overhead, and update policy, among others

[Deshpande et al., 2007; Ilarri et al., 2010]. [Ilarri et al., 2010] have classified location-dependent

query processing approaches into three categories: (i) approaches that require cooperation from

moving objects; (ii) approaches that assume known objects’ trajectories; and (iii) generic query

processing approaches.

1. Cooperation from moving objects: In this category moving objects are considered as the

main processing units that can communicate location updates to a centralized server according to a

certain update policy. They also have to monitor the regions they may affect with respect to the

currently performed (i.e., outstanding) queries, and perform local query processing tasks. Examples

of such approaches are MQM (Monitoring Query Management) [Cai et al., 2004, 2006], MobiEyes

[Gedik and Liu, 2004, 2006], and the SRB (Safe-Region-Based) framework [Hu et al., 2005]. A

summary that shows advantages and disadvantages of these proposals is illustrated in Table 3.1.

(i) MQM focuses on continuous static range queries over moving objects and uses a partially

distributed strategy (i.e., with a mediator server) in which moving objects monitor and
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contribute to processing queries that are part of or overlap with their resident domains, that is,

a monitoring region assigned to each moving object depending on its location. MQM aims at

reducing the frequency of location updates reported to the central server, by communicating a

change of location only when it leaves its resident domain (i.e., similar to the concept of safe

region). For that purpose, a spatial index structure, referred to as BP tree (Binary Partitioning

tree) has been proposed for storing information about queries of interest for each portion of the

partitioned workspace. This approach assumes that moving objects’ devices have considerable

processing and communication capabilities, which is not available for all kinds of devices.

Moreover, only static query points are considered, thus moving range queries as well as other

kinds of navigation-related queries are not directly supported. Furthermore, the result to a

given query should be completely reevaluated on each update, and only the set of identifiers of

objects of interests are returned. Therefore, no information about the locations of those objects

or the paths towards them is provided.

(ii) MobiEyes deals with moving range queries over moving objects. A slightly different technique

than MQM has been proposed, which partitions the workspace into regular grid cells, and

assigns a set of cells, called monitoring region, to each moving query point. Each moving

object covered by one or more monitoring region of certain queries should then communicate its

current cell to the server in order to determine the identifiers of queries that might have been

affected. Similarly to MQM, MobiEyes does not consider an incremental evaluation mechanism

in query processing, but rather tries to reduce the cost of query reevaluation by minimizing the

number of updates. MobiEyes does not support different kinds of queries, and does not provide

information about the locations of the objects of interest but rather just their identifiers. An

optimization of this approach that aimed at providing the continuous evaluation support has

been presented in [Gedik and Liu, 2006]. The concept of motion-sensitive bounding boxes has

been introduced so that moving objects as well as moving query points are stored along with

boxes which are adapted to their motion (i.e., speed and direction) in order to reduce the cost

of query reevaluation.

(iii) The SRB (Safe-Region-Based) framework approach introduced the concept of active location

update that considers two types of updates [Hu et al., 2005]: source-initiated updates that occur

only if a moving object identifies itself within the range of one or more outstanding queries;

and server-initiated updates where the server explicitly asks an object for a location update

due to changes of other objects’ locations that might have affected that object’s safe region.

This approach was only applied to static range and kNN queries over moving objects.

2. Approaches with known objects’ trajectories: Those approaches mainly consider moving

objects that follow certain routes or trajectories. This allows to estimate or predict near-future
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Proposal Advantages Disadvantages

MQM

- Static range queries over

moving objects

- Resident domains

- BP tree

- Partially distributed

- Reduces location updates

- Considerable processing

at mobile devices

- No moving queries

- Reevaluation on update

MobiEyes

- Moving range queries

over moving objects

- Monitoring regions on

queries

- Motion-sensitive

bounding boxes

- Partially distributed

- Reduces location updates

- Considerable processing

at mobile devices

- Does not return objects’

locations

- Reevaluation on update

SRB

- Active location update

- Static range and NN

queries over moving

objects

- Safe region

- Saves location updates

- No moving queries

- No interest in locations

- Reevaluation on update

Table 3.1: Cooperation from moving objects [Adapted from [Ilarri et al., 2010]]

locations of objects, thus reducing the frequency of location updates to be communicated to the

server. However, this could present some limitations depending on the applications they are designed

for. For instance, although the movements of objects in indoor environments are constrained by the

structure of space (i.e., walls, stairs, etc.), objects are assumed to be moving freely in halls, rooms

or malls. Therefore, a prior knowledge of objects’ trajectories in such situations is not realistic.

Relevant works in this category are discussed as follows (cf., Table 3.2).

(i) The Domino project, presented in [Sistla et al., 1997; Wolfson et al., 1999a,b], has focused on

modelling and querying moving objects in databases. The concept of dynamic attribute has

been proposed, which implies representing and storing a moving object location as a motion

vector that depends on the speed of the object. A time-dependent function has been designed

to compute near-future positions following a trajectory on the road network. An update

policy, called “dead-reckoning policy”, that consists in triggering a location update request upon

reaching a certain accuracy threshold. Although Domino have provided relevant answers to

some crucial questions in modelling and querying moving objects, techniques for continuous

processing have not been discussed in detail.

(ii) A comprehensive data model, a query language, and an architecture for managing and

querying objects moving in road networks have been presented in [Güting et al., 2005, 2006].

This approach supports handling and querying historical spatio-temporal queries over moving

objects, thanks to an extensible framework called Secondo. Abstract data types, operators, and

algorithms have been introduced to enable more efficient network-based models, so that objects’

movements can be represented as trajectories. Based on this prototype, several proposals for
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efficient indexing and query processing have been presented [De Almeida and Güting, 2005,

2006; Güting et al., 2010]. As an example, the work presented in [Güting et al., 2010] addresses

the problem of finding the continuous k nearest neighbours to a query trajectory in a large set

of stored trajectories. In contrast, MON-Tree has been proposed in [De Almeida and Güting,

2005] as an index structure for moving objects on networks. The index structure is composed of

a 2D R-Tree for indexing polyline bounding boxes and a set of 2D R-Trees for indexing objects’

movements along the polylines. Despite the usefulness and extensibility of this framework, the

actual goal behind this design was always about querying histories of movements. There has

been no direct work on addressing continuous query processing applied to current movements.

Nevertheless, adjustments can still be made to adapt its behaviour to deal with such kinds of

queries.

(iii) Hermes,on the other hand, has been designed as a system extension that provides spatio-

temporal functionality to ORDBMS (beyond those spatial functionalities presented in Oracle

Spatial and PostGIS) [Pelekis et al., 2006, 2007, 2008, 2010]. Hermes provides data management

infrastructure for handling histories of movements with several types of queries in free Euclidean

space. Examples of queries are nearest neighbour searches on moving object trajectories and

trajectory similarities [Frentzos et al., 2007; Pelekis et al., 2007]. Similarly to Secondo, this

approach focuses only moving object trajectories and does not cover the area of continuous

processing of location-dependent queries in real-time systems.

Proposal Advantages Disadvantages

DOMINO
- MOST model

- Dynamic attribute

- Predictive queries

- Dynamic motion vectors

- Temporal properties

- Spatial networks

- No continuous

processing

SECONDO

- Historical spatio-

temporal queries

- Trajectories of

movements

- MON-tree

- Efficient processing of

historical queries

- Network-based model

- No continuous

processing of current

movements

HERMES
- Historical spatio-

temporal queries

- Trajectory similarity

- Adds spatio-temporal

functionality to ORDBMS

- No continuous

processing of current

movements

Table 3.2: Approaches that assume known objects’ trajectories

3. Generic query processing approaches: This category encompasses techniques that require

a minimum contribution from moving objects, and with few assumptions regarding, for instance, the

prior knowledge of objects’ trajectories or patterns. Some of those architectures are described as

follows (See Table 3.3 for a summary of these approaches).
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(i) The Monash University project considers, on the other hand, a distributed strategy to process

range queries over static objects [Jayaputera and Taniar, 2005a,b]. Amongst the limitations of

this approach is that it does not consider moving target objects, but only moving query points.

Moreover, query points can only detect objects that match the same horizontal or vertical

directions.

(ii) LOQOMOTION (LOcation-dependent Queries On Moving ObjecTs In mObile Networks) is an

agent-based platform that focuses on distributed processing of location-dependent queries over

moving objects [Ilarri et al., 2006a,b]. A generic architecture that could be applied to different

kinds of queries (mainly moving range queries have been tested), which consists in deploying a

hierarchy of agents with different roles in a completely distributed environment for monitoring

purposes. Those agents can move freely on a network of fixed computers in order to track the

locations of relevant moving objects, correlate partial results of local queries, and continuously

adapting the final answer and presenting it to the user. No assumption has been made about

storing and retrieving location data, and the current locations of the resulting objects may

be returned. However, LOQOMOTION assumes a free space and Euclidean distances are

applied for range queries, which could present an important limitation in road-network-based

applications or in indoor environments. Moreover, this generic architecture could result in a

less efficient query processing when compared to specialised approaches that focus on a specific

type of queries.

(iii) Finally, a general multi-threading based framework for continuous queries over moving objects

has been proposed in [Zhao et al., 2010]. This proposal adopts a multi-threading computing

paradigm and assumes that continuous queries are periodically reevaluated. Three types of

threads were used: (1) update threads in charge of periodically updating the locations of moving

objects and query points; (2) re-order threads in charge of resorting the grid indexes used for

both the objects and the queries, with the aim of optimizing the cache access; and (3) query

threads that contribute to the processing of a uniformly partitioned working set and to writing

query results. A kNN query algorithm with two variants: query index and object index has been

designed to validate this proposal. Nevertheless, there has been no incremental approach for

handling continuous queries, and only Euclidean distances were considered in query processing.

3.2.2 Approaches for location-dependent query processing over data streams

Another category of works proposes to handle continuous location-dependent queries based on Data

Stream Management Systems (DSMS) [Chandrasekaran et al., 2003; Mokbel et al., 2005; Nehme

and Rundensteiner, 2006; Chow et al., 2009]. In contrast to moving object databases, the locations
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Proposal Advantages Disadvantages

Monash University - Range queries

- Static objects
- Distributed architecture

- No moving target

objects

- No continuous queries

- Limitations on user’s

directions

LOQOMOTION

- Generic agent-based

architecture

- Mainly moving range

queries over moving

objects

- Hierarchy of agents for

monitoring

- Distributed architecture

- Continuous queries

- No assumptions on user’s

movements

- Free Euclidean space

- Difficult optimization for

special purposes

[Zhao et al., 2010]

- Multi-threading

framework

- Continuous queries over

moving objects

- Optimized cache acess

- Periodic reevaluation

- No incremental

processing

- Free Euclidean space

Table 3.3: Generic query processing architectures in moving object databases

of moving objects that are received in real-time can be considered as data streams, where new

tuples are continuously released and processed without necessarily being stored permanently in the

database. Several data stream management systems have been recently proposed and were used later

for location-dependent query processing over data streams, such as NiagaraCQ [Chen et al., 2000],

Telegraph/TelegraphCQ [Chandrasekaran et al., 2003], STREAM [Arasu et al., 2004a], and Nile

[Hammad et al., 2004]. Some of the approaches that use the concept of data streams for defining the

semantics of continuous queries in mobile environments are summarized in Table 3.4 and described

as follows.

1. The PLACE (Pervasive Location-Aware Computing Environments) project was developed on

top of a data stream management system called Nile [Hammad et al., 2004; Mokbel et al., 2005],

and provided functionalities for the processing of continuous spatio-temporal streams in highly

dynamic environments. PLACE is meant to be as generic as possible so that different category of

continuous queries can be supported. For instance, the SINA algorithm has been especially designed

for the continuous processing of moving range queries over moving objects [Mokbel et al., 2004],

in which grid indexes have been used for storing both the query points and the moving objects.

This algorithm continuously applies an in-memory hash-based join technique between query points

and objects as location updates arrive. An approach for continuous kNN queries on road networks

has been also presented in [Xiong et al., 2005]. An incremental memory-based evaluation paradigm

has been further introduced, which focuses on only computing and reporting changes to the last

evaluated answer. This is mainly achieved through the concept of negative/positive updates that
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tell whether an object should be removed/added from/to the answer. Moreover, the concept of

predicate-based sliding windows has been introduced, which allows objects that satisfy a certain

query predicate in real-time to be part of the current window.

2. A Scalable Cluster Based Algorithm (SCUBA) has been proposed in [Nehme and Rundensteiner,

2006], with the aim of processing a large set of continuous queries over spatio- temporal data streams.

SCUBA processes concurrent moving range queries by grouping moving objects and query points into

moving clusters based on common spatio-temporal properties. An incremental clustering mechanism

is performed mainly by maintaining two spatio-temporal thresholds: the distance speed thresholds.

This optimizes query execution at run-time, and thus favours scalability. SCUBA is implemented

within the stream processing system CAPE [Rundensteiner et al., 2005]. This approach is well

suited for scenarios where groups of objects are moving together, such as groups in tourism trips,

traffic jams, and animal and birds migrations, etc. However, in other scenarios where moving objects

do not present similar spatio-temporal patterns, this technique is not suitable.

3. Other research studies have focused on managing trajectories of moving objects and on real-

time monitoring over streaming traffic data by building techniques upon the TelegraphCQ DSMS

[Patroumpas and Sellis, 2004, 2012]. The Open-Source TelegraphCQ stream engine has been built

on top of PostgreSQL RDBMS [Chandrasekaran et al., 2003]. Hence, it comes readily equipped

with built-in spatial operators, functions and data types, offering a great benefit for expressing

continuous queries over geospatial streams. [Patroumpas and Sellis, 2004] proposed to represent the

continuous location data flow of moving objects as trajectory streams evolving in space and time.

Whereas in [Patroumpas and Sellis, 2012], an abstract model for representing traffic data streams

in congested road networks was presented. Applications of these geostreaming techniques include

online monitoring of location-aware vehicles.

The aforementioned works developed on top of data stream management systems suggest that

such a data stream paradigm can be powerful enough to manage data about moving objects. This

trend needs further investigation regarding the appropriate continuous window operators to be used

(e.g., time-based, tuple-count, and predicate-based sliding windows), the indexing schemes, and the

types of queries that can be supported. [Mokbel and Aref, 2008] have presented the scalable on-line

execution (SOLE) algorithm for continuous evaluation of concurrent spatio-temporal queries over

data streams. This approach claims to be bridging the areas of moving object databases and data

stream management systems. SOLE favours in-memory processing of concurrent continuous queries

and uses an incremental evaluation paradigm, a shared grid structure as a basis for shared execution,

and a hash table to index moving objects. SOLE is also assumed to be able to deal with range

queries as well as kNN queries. However, SOLE only returns the set of qualifying objects without
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Proposal Advantages Disadvantages

PLACE

- Continuous queries over

data streams

- SINA & SEA-CNN

- Grid index

- Predicate windows

- Incremental evaluation

- Moving range and NN

queries

- No assumptions on user’s

movements

- No interest in locations

- No support for path

queries

SCUBA

- Concurrent moving

range queries

- Spatio-temporal clusters

- Data streams

- Scalable and optimized

query execution

- Incremental evaluation

- Not suitable for generic

purposes

[Patroumpas and Sellis,

2004]

- Managing traectories of

moving objects

- TelegraphCQ

- Geostreaming

- Real-time monitoring of

traffic data

- Network-based model

- No continuous

processing of current

movements

SOLE

- Concurrent queries over

data streams

- In-memory processing

- Shared execution

- Incremental evaluation

- Bridging links between

MOD and DSMS

- Range & kNN queries

- No interest in locations

- No support for path

queries

Table 3.4: Approaches for query processing over spatio-temporal data streams

being concerned about the exact locations or paths towards those objects.

3.2.3 Approaches for managing and querying indoor moving objects

Few research studies have addressed the specific requirements to manage and query indoor moving

objects [Jensen et al., 2010]. Two main approaches have been recently proposed in this context

[Jensen et al., 2009b; Lu et al., 2012; Xie et al., 2013], and are described as follows:

1. An infrastructure for the continuous range monitoring of indoor moving objects has been

introduced in [Yang et al., 2009]. This proposal is developed on top of a graph data model, and

deploys a set of sensors to continuously monitor the users’ movements, thus maintaining the query

result up-to-date. Indoor moving objects are classified either within active or inactive subspace

depending on the coverage of sensor devices. Several hashing-based indexing schemes have been

designed, which mainly map positioning devices to the set of active objects that are currently

located within their respective ranges, and for maintaining objects’ current states. An incremental

maintenance of range queries is proposed which aims at determining only new observations detected

by sensor devices in order to maintain the query result. Whenever an object enters or leaves the

range of a given critical sensor (i.e., the one from which a new observation can potentially change

the query result), a query update is performed. Experimental results show that the underlying data
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model is flexible, since it allows for different kinds of queries to be performed, and the solutions are

efficient and scalable. However, the aim of this approach was to monitor indoor moving objects, so

it only processes static range queries over moving targets, without taking into account moving query

points. In addition, the model underneath relies on sensor-range-based positioning techniques, which

is not perfectly suitable for navigation queries that may require fine-grained location information.

Moreover, no information about the optimal path to the starting query point is obtained.

2. A framework for managing and querying indoor moving objects has been recently proposed

in [Lu et al., 2012; Xie et al., 2013]. This approach proposes to manage indoor geometries (i.e.,

spatial entities), indoor topologies (i.e., relationships among spatial entities and between space and

moving objects), as well as indoor moving objects (modelled with uncertainty regions around), with

a composite index scheme in order to support efficient distance-aware queries. Geometries that

represent indoor partitions are indexed by an R*-tree structure. The leaf nodes of that structure are

associated with the set of moving objects currently located within the corresponding partitions. A

topological layer that consists of a door-to-door-based graph is also used to compute paths towards

moving objects. Upper and lower bounds for indoor distances are established, where the lower

bounds represent the Euclidean distance that prunes away disqualified objects, whereas the upper

bounds are determined based on topological constraints. This framework has been applied to indoor

range and kNN query processing. Query evaluation is performed in four phases: 1) A filtering phase

that locates the source spatial partition containing the initial query point, and retrieves candidate

objects; 2) A subgraph phase that builds the doors graph in order to compute shortest paths towards

the candidate objects; 3) A pruning phase that applies the upper/lower bounds on indoor distances

to prune away disqualified objects; and finally 4) A refinement phase that computes the actual

indoor distances towards the last candidates to return the qualifying objects. A similar but adapted

process is applied to process kNN queries. However, only static query points were considered, and

this approach did not discuss how to incrementally reevaluate those queries.

3.2.4 Towards context and preference-aware location-dependent queries

Over the past few years, several research studies have discussed the integration of some contextual

dimensions in query processing [Trajcevski et al., 2004a; van Bunningen et al., 2006; Mokbel and

Levandoski, 2009; Levandoski et al., 2010b; Bosc et al., 2009; Yu and Spaccapietra, 2010; Wenzel

et al., 2011]. Users’ preferences have traditionally been exploited in query personalization to better

anticipate their needs and customize their experience. In order to deliver personalized query answering

in mobile environments, context- and preference-aware query processing techniques are increasingly

required. A designed query processing strategy should provide sufficient flexibility and adaptiveness
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to location-based services. However, there is still a lack of approaches addressing context-awareness

in continuous location-dependent query processing. Some the relevant works that might inspire

further research in this area are described as follows (cf., Table 3.5).

1. CAT (Correct Answers of continuous queries using Triggers) is a framework that deals with

continuous queries in moving object databases with a known trajectory model and taking into

account certain real-time spatio-temporal events [Trajcevski et al., 2004a]. The CAT project relies

on the use of triggers in databases in order to detect the relevant changes such as real-time traffic

conditions. In such cases, the server requests for location updates in order to keep the data structures

and the answer to active queries up-to-date. Some relevant contextual changes can be taken into

account either at the server side by detecting events such as traffic jams, accidents, etc., or by

the moving objects based on changes in their plans [Trajcevski et al., 2005a, 2006]. An extended

version called CAT++ has been proposed based on a new paradigm for expressing reactive behaviour

in moving object databases, and referred to as Evolving Context-Aware Event-Condition-Action

(ECA)2 [Trajcevski et al., 2005b]. This approach allows for reevaluating queries when changes occur

to the database, and for the processing of dynamic topological predicates such as moving along and

moving towards, which is believed to be of interest for applications such as emergency response,

digital battlefield, and for event notification systems.

2. An ontology-based preference-aware model for database querying in an ambient intelligent

environment has been proposed in [van Bunningen et al., 2006]. The context model is based on

a variant of Description Logics (DL) for knowledge representation. This model claims to support

pull and push-based queries. The model has been implanted on top of a DBMS as an OWL-based

knowledge base for reasoning. However, this approach is not directly applied to the continuous

processing of location-dependent queries and for handling moving objects. [Yu and Spaccapietra,

2010] presented another ontology-based and application-independent knowledge framework for

location-based services querying. This knowledge is dynamically maintained and used to reformulate

user’s queries via personalized and contextualized rewriting. The architecture is made of ontology

modules that manage user profiles, preferences, and service accessibility; and a mechanism for

information profiling and semantics matching. Nevertheless, real-time event management have not

been directly addressed, and the architecture was not applied to location-dependent queries over

moving objects.

3. Mokbel and his colleagues recently proposed two prototypes called FlexPref and CareDB with

the aim of incorporating context-awareness in DBMS to provide adaptive answers to spatio-temporal

queries [Mokbel and Levandoski, 2009; Levandoski et al., 2010a,b]. FlexPref was first presented as a

framework implemented in PostgreSQL for preference evaluation in database systems. The framework
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allows new preference-based methods to be plugged into it. Once integrated, the preference method

lives at the core of the database, enabling the execution of preference queries involving common

database operations. CareDB has further extended FlexPref by integrating a taxonomy of preference

types and contextual data (e.g., user profile, traffic conditions, weather) in query processing, and by

handling data uncertainty [Levandoski et al., 2010b]. Although this approach appears to be very

promising, it has not yet been applied to continuous location-dependent queries.

4. Within the context of fuzzy queries that deal with “soft” criteria or constraints trying to fulfil

them as closely as possible, several research studies has been conducted such as PreferenceSQL

[Kießling and Köstler, 2002; Kießling et al., 2011], and the approach developed in [Bosc et al., 2009;

Mokhtari, 2011]. PreferenceSQL extends standard SQL with a preference model, whose keywords

and operators are discussed in Section 3.4, as well as an optimizer in charge of translating preference

queries into standard queries. [Bosc et al., 2009] have considered the interpretation and processing

of fuzzy queries by incorporating contextual predicates on attributes such as low, medium, and high.

However, those approaches were not tested in location-dependent query processing. [Mokhtari, 2011]

has recently proposed an approach based on fuzzy logic theory for expressing and processing route

planning queries in roads networks. This approach identifies ambiguous and possibly contradictory

preferences and to provide a selection mechanism that retrieves the tuples which satisfy as closely

as possible those fuzzy constraints. This proposal does not provide an mechanism for continuous

processing of location-dependent queries.

Consequently, there is a promising trend to discuss and deal with preferences and other

contextual data beyond space and time. Approaches that address this issue are still not completely

applied to highly dynamic environments, and to process continuous location-dependent queries. Real-

time event management still appears to be an important challenge to cope with in such environments,

since an entire dedicated sensor-based infrastructure is required to communicate changes in real-time,

and to perform adaptation to query answers accordingly.

3.3 Continuous processing of navigation-related queries

While Section 3.2 focuses on architectures that deal with location-dependent query processing

over moving objects, this section takes a different perspective to discuss the incremental execution

paradigm at the algorithmic level to process location-dependent queries. The incremental execution

paradigm implies reusing information from previous searches in order to obtain the current result

adaptively without having to reevaluate everything from scratch.

As suggested in Chapter 2, graph-based data models are well suited to compute an optimal and



74 CHAPTER 3. CONTINUOUS LOCATION-DEPENDENT QUERY PROCESSING

Proposal Advantages Disadvantages

CAT

- Continuous queries using

triggers

- Active rules

- (ECA)2

- Periodic reevaluation

- Detection of real-time

events

- Predctive queries

- No incremental

evaluation

- No moving queries

[van Bunningen et al.,

2006]
- Ontology-based model

- Preference-aware queries
- Contextualized queries

- Not applied to

continuous LDQs

FlexPref & CareDB

- Preference evaluation in

DBMS (FlexRef)

- Contextual data

(CareDB)

- Data uncertainty

- Context-awareness in

DMBMS

- Not applied to

continuous LDQs

PreferenceSQL - Fuzzy queries

- Preference-aware queries

- Fuzzy preferences in

DBMS

- Not applied to

location-dependent

queries

[Bosc et al., 2009;

Hadjali et al., 2012]

- Fuzzy queries

- Preference-aware queries

- Route planning ([Hadjali

et al., 2012])

- Fuzzy preferences

- Preference-aware route

planning

- No support for

continuous LDQs

Table 3.5: Context- and preference-aware query processing approaches

realistic route to a destination by taking into consideration architectural constraints and dynamic

changes in the environment. Particularly, the Euclidean distance is meaningless to compute routes in

road networks or in indoor spaces, due to path constraints. Therefore, approaches for query processing

based on the network distance are preferred and more realistic. However, existing approaches for

network-based query processing usually assume an outdoor environment (e.g., [Deng et al., 2009; Lee

et al., 2005; Papadias et al., 2003]), where for example hierarchical networks do not naturally appear

and there are no accessibility rules based on user profiles. Nevertheless, recent works have studied

location-dependent queries in indoor environments [Yang et al., 2009, 2010; Yuan and Schneider,

2010].

Navigation-related queries, and more specifically, queries for computing optimal paths between

static and/or moving objects are very relevant for routing services (e.g., “guide-me”, “get-together”,

“find-me”). Range queries can also be used in many indoor location-based services for monitoring

purposes (e.g., “what-is-around” services, crowd monitoring within a given area, location-based alerts,

etc.). Other location-dependent queries such as k nearest neighbour and reachability queries are also

considered (e.g., find the nearest OOI). This section first discusses foundations of query processing

in spatial network databases (cf., Section 3.3.1). Related work on continuous path and range queries

over moving objects is presented in detail in Sections 3.3.2 and 3.3.3, as algorithms to address those

queries in indoor mobile environments are introduced in Chapter 6. Section 3.3.4 presents works on
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processing kNN and reachability queries.

3.3.1 Query processing in spatial network databases

Due to the importance of spatial networks in real-life applications, intensified efforts have been made

in the last decade to bring up new foundations for query processing in spatial databases [Papadias

et al., 2003; Deng et al., 2009]. These approaches have mainly focused on efficient query processing

in spatial networks, but only with static query points and/or over static data. Related work on

static query processing in spatial networks is discussed hereafter.

1. [Papadias et al., 2003] have emphasized the importance of using spatial networks instead of

Euclidean spaces for location-based query processing. They have introduced the Incremental

Euclidean Restriction (IER) and the Incremental as well as Range Network Expansion (INE and

RNE, respectively) mechanisms for the processing of different kinds of queries such as nearest

neighbour, range, and closest pair queries on road networks. IER performs pre-processing

in Euclidean space first in order to retrieve valid candidates. IER works with restrictions

on data points rather than nodes of the network. These candidate objects are then subject

to network distance computation to decide whether they are of interest or not. In INE, a

wavefront is gradually expanded in networks from the initial query point such that the data

points closer to the query point are visited earlier than the others. These foundations have been

afterwards adopted in many research studies on spatial network databases [Mouratidis et al.,

2006; Demiryurek et al., 2009; Xuan et al., 2010, 2011]. However, these techniques were not

applied to the processing of such queries over moving objects, since only static query and data

points were considered. The incremental approach was used to apply a multi-step methodology

that gradually responds to a given query, but without discussing a continuous reevaluation

strategy to deal with moving objects.

2. Performance optimization of query processing in spatial networks has been the focus of the work

presented in [Deng et al., 2009]. A framework that extends IER and INE techniques has been

proposed. INE computes the shortest network path from each candidate (i.e., target object)

to the query point which is very costly. An incremental lower bound constraint technique has

been introduced which extends INE by restricting network expansion to only the paths towards

candidate target objects. Those candidates are in turn determined by performing a prior step of

incremental Euclidean restriction on data points. Approximate static RER and RNE solutions

have been presented in [AL-Khalidi et al., 2013], which tried to reduce the number of false hits,

and the number of network distance computations of the corresponding techniques.
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Although these mechanisms only assume static query points and applied only to static data,

they constitute a key building block in other research studies that focus on the continuous processing

of location dependent queries.

3.3.2 Path queries

Shortest path algorithms have been the subject of extensive research for many years resulting in a

large number of algorithms for various scenarios and in different environments [Orda and Rom, 1990;

Sommer, 2010; Wu et al., 2012]. Most of these algorithms deal with fixed graphs (i.e., fixed topology

and fixed link weights). Path queries imply finding an optimal route to a specified place or an object

of interest. Both static and/or moving target objects can be considered in this kind of query. This

section first presents approaches for multi-criteria and hierarchical path search considering static

objects. Techniques for continuous processing of path queries over moving objects are then discussed

while taking into account different types of environment (i.e., Euclidean spaces with obstacles as

well as spatial networks).

3.3.2.1 Multi-criteria & hierarchical path searches

As discussed in Chapter 1 (cf., Section 1.2), A path search needs to aggregate multiple criteria (e.g.,

user preferences and capabilities, distance, time, etc.) passed as function parameters to evaluate

the cost value of each step and then to select the most appropriate path, that is, the optimal path

that allows, for instance, to reach a destination while avoiding threats [Disser et al., 2008; Delling

et al., 2009]. On the other hand, hierarchical routing algorithms became important tools in querying

databases for the shortest paths in time-critical applications like Intelligent Transportation Systems

(ITS), due to the growing size of their spatial networks [Shekhar et al., 1997].

Existing approaches on multi-criteria and multi-modal path searches consider dynamic envi-

ronments in which edge weights can change dynamically according to time (e.g., opening hours),

real-time events (e.g., traffic conditions) or to the different kinds of transportation modes available

for a given path search [Peytchev and Claramunt, 2001; Bielli et al., 2006; Ding et al., 2008; Berger

et al., 2010; Sommer, 2010]. Particularly, time-dependent shortest paths in dynamic networks have

been proposed in [Ding et al., 2008; Berger et al., 2010]. [Ding et al., 2008] designed an edge-delayed

function, associated with each edge and stored in database, which computes the best travel time

from a source to a destination by taking into account the departure time. This favours queries

such as the minimum-travel-time path, with the best departure time to be selected from a time

interval. [Berger et al., 2010] introduced a technique for time-dependent shortest paths, which allows
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to handle dynamic changes. A dynamic timetable that stores departure and arrival events (i.e.,

mainly departure and arrival times in train networks) is maintained. Edges can be delayed or even

become temporarily unavailable to reflect events derived from real-time traffic data.

Hierarchical path search approaches have also been explored in many research studies [Shekhar

et al., 1997; Jung and Pramanik, 2002; Botea et al., 2004; Cagigas and Abascal, 2004; Cagigas, 2005;

Guerra-Filho and Samet, 2006; Geisberger et al., 2008; Rice and Tsotras, 2010; Seder et al., 2011].

They are mainly applied to two-dimensional occupancy grid maps representing the environment.

Specific so-called bridge nodes (i.e., nodes that connect submaps to a parent map) are then determined

to create the hierarchy. The key issue lies in choosing the optimal placement of such bridge nodes.

For instance, the HiTi graph model provides a mechanism for structuring a topographical road

map in a hierarchical fashion, to efficiently compute the optimal minimum cost path [Jung and

Pramanik, 2002]. On the other side, a hierarchical but static variant of A*, referred to as Hierarchical

Path-finding A* (HPA*), has been proposed in [Botea et al., 2004], which decomposes a grid map

into linked clusters and pre-computes optimal distances for crossing clusters at an abstract level. A

bottom-up approach applied on a two-level hierarchy has been proposed. The technique has been

used for path planning computations applied to static data only, and not to moving objects. An

off-line hierarchical path planner module of a smart wheelchair-aided navigation system has been

described in [Cagigas and Abascal, 2004]. This approach uses hierarchies of abstraction and was

applied for indoor navigation of a wheelchair user between floors of a building. However, on-line

path planning and obstacle avoidance are not described in this proposal.

The Hierarchical D* (HD*) [Cagigas, 2005] and the Focused Hierarchical D* (FHD*) [Seder

et al., 2011] both deal with hierarchical path searches in dynamic indoor environments. These

techniques are based on the D* (Dynamic A*) [Stentz, 1994] and the Focused D* [Stentz, 1995],

which assume dynamically changing environments (e.g., transient obstacles) and partially unknown

environments to be explored by robots. The HD* algorithm precomputes the set of paths between

bridge nodes based on A*. HD* tries to to find the best path between the submaps where the

start and goal nodes are located. FHD* ensures optimality of te global path by identifying the

optimal placement of the bridge nodes, and decreases computational complexity of path replanning

in real-time by reducing the search scope to the area around the optimal path.

An iterative (non-recursive) algorithm to create a hierarchy of networks, and to find a shortest

path through all levels of the hierarchy has also been proposed by [Guerra-Filho and Samet, 2006].

An approach for indexing road networks to enable efficient path query processing has been presented

in [Rice and Tsotras, 2010]. This approach uses a bidirectional Dijkstra algorithm and extends the

hierarchical graph indexing approach known as Contraction Hierarchies [Geisberger et al., 2008].

The idea behind is to identify a limited set of possible constraints and changes that might affect the
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shortest path search on road networks, and then to incorporate those constraints directly into the

graph index construction in order to avoid the overhead of reconstructing the index for each possible

constraint scenario at query time.

It should be emphasized that the above described approaches work only on static objects (i.e.,

nodes of the graph), and some have discussed path planning in dynamic environments meaning

that multiple criteria could be mixed together in order to compute a cost function that delivers

more appropriate paths. Nevertheless, a few research studies have lately been presented for the

processing of path queries over moving objects. These techniques are highlighted in the following

section, especially those that employ an incremental and continuous query processing approach.

3.3.2.2 Continuous path search algorithms

Efforts have been recently made to deal with the challenge of continuously processing path queries

over moving objects located on a spatial network [Chon et al., 2003; Lee et al., 2007; Yin et al., 2008;

Song et al., 2008; Sun et al., 2009, 2010a,b; Malviya et al., 2011]. Some of them considered moving

objects that are following known paths such as vehicles, and designed a distributed architecture to

maintain a global view of the resulting route for a given query, so that any dynamic change reported

from local views can be returned to the user [Chon et al., 2003]. This approach maintains two

queues for continuous monitoring of updates (e.g., routes congestion) that can affect the path for

each moving object until that object reaches its destination. However, this approach does not handle

moving targets and the continuous monitoring was performed by a set of periodical snapshots of the

system.

The approach presented by [Lee et al., 2007] employs a mechanism to monitor the specified

area for the continuous evaluation of fastest path queries. This mechanism eliminates unnecessary

reevaluations of fastest path queries, and reduces the search space for finding the fastest path. In

addition, a grid-based index has been proposed to increase the efficiency of multiple query processing.

This technique handles changes in location of the query point, but was only applied to static

destination. Similarly, the problem of building a traffic aware dynamic route planning service was

considered in [Malviya et al., 2011]. The authors have introduced the k candidate paths technique

which maintains the set of pre-designated or preprocessed routes between a given source and target,

and updates those routes as traffic delays on road segments change while trying to avoid complete

reevaluation of the query.

Sun et al. have proposed a series of A*-based algorithms referred to as Fringe-retrieving A*

-FRA*- [Sun et al., 2009], Generalized FRA* [Sun et al., 2010a], and Moving target D* lite [Sun
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et al., 2010b], that aim at providing an efficient incremental approach for moving target path search

in dynamic environments. In particular, FRA* is an incremental version of A* that is applied on

moving targets in grid maps, and aims at repeatedly finding the shortest path without having to

process each search iteration independently from scratch. This algorithm regularly transforms the

previous search tree to an updated tree based on the new locations of the objects of interest. The

current search tree is always rooted at the current location of the query point. Each cell within the

search tree maintains a pointer to its parent cell, so that a shortest path to the root can be directly

obtained by traversing the tree in reverse following the ancestor nodes. Although this algorithm

performs well on moving objects, its scalability to a large environment (i.e., a large campus with

multi-storey buildings) is still an issue to address, since fine-grained grids have been adopted, which

have not be proven to be scalable to large spaces. Moreover, FRA* does not take into account the

hierarchical structure of an indoor environment, and thus cannot handle continuous path searches in

multi-storey buildings. GFRA* is a generalized approach that further solves moving target search

problems on arbitrary graphs, including the state lattices used for robotics applications [Sun et al.,

2010a].

Both the incremental processing provided in FRA* and the hierarchical approach of HPA* have

inspired our work on the continuous processing of hierarchical path searches over moving objects

described in Chapter 6. Our approach transforms an initial search tree to an updated tree depending

on the movements of the objects and the changes in the environment.

3.3.3 Range queries

Range queries are used to retrieve information about objects or places within a specified range or

area[Zhang et al., 2003]. Some range queries have a static query point and others have a moving

query point. Similarly, the target objects of the queries can be static or moving. While approaches

on static range query processing in spatial network databases have been discussed in Section 3.3.1,

this section presents techniques for an efficient evaluation of continuous range queries on moving

objects. It should be also emphasized that, in contrast to Section 3.2 that describes architectures

and strategies, this part deals with algorithmic challenges and related work regarding the continuous

processing of such queries.

A technique presented in [Lazaridis et al., 2002] as an attempt to process non-predictive dynamic

queries, mainly covers moving range queries, as well as predictive dynamic queries by employing

a motion indexing technique for storing moving objects. A multi-dimensional R-tree-based data

structure has been further used to index the bounding boxes representing objects’ motion. This

implies saving disk access since motion segments that do not intersect with the query are not updated
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even though their bounding boxes do. However, this work proposes a periodic reevaluation of

continuous queries from scratch.

Query Indexing [Prabhakar et al., 2002; Kalashnikov et al., 2004] is a technique for the

continuous processing of multiple static range queries over moving objects. The objective was to

overcome disadvantages of traditional indexing techniques by mainly indexing static query points

instead of objects, since they have an update frequency that is much lower than moving objects. An

incremental evaluation mechanism that consisted of determining, for each change of object’s location,

the set of queries in the index that might be affected. This is implemented by adopting a similar

concept of safe region in which an object does not need to update its location. Another variant

of this approach called Velocity Constrained Indexing (VCI) was introduced, which consists of an

R-tree index that stores the minimum bounding boxes of each moving object taking into account

the maximum speed of that object. Although Q-index appears to have outperformed traditional

indexing schemes, it suffers from expensive operations upon the arrival of new queries and it is only

applied to static query points.

Related work on continuous processing of range queries in spatial network databases can be

found in [Stojanovic et al., 2008; Xuan et al., 2010; Cheema et al., 2011; Wang and Zimmermann,

2011; Xuan et al., 2011]. The ARGONAUT prototype is an approach built based on a known

trajectory model [Stojanovic et al., 2008]. This project has been developed on top of a model for

representing and querying moving objects called mSTOMM (Spatio-Temporal Object Modeling and

Management), and provides data management and query processing facilities, especially to perform

continuous moving range queries in road networks. An in-memory indexing scheme based on R*-tree

for storing segments of the spatial network has been further developed. Moreover, an incremental

evaluation paradigm is proposed for continuous range monitoring, which include a filter step that

results in a set of candidate moving objects by pruning objects whose minimum bounding rectangle

(MBR) of the current segment overlaps with the query range, but their actual network distance is

greater than the query range. A refinement step is then periodically performed for the continuous

query reevaluation. This approach is not applied to other kinds of queries, and does not return the

locations of resulting objects, neither the paths towards them.

A time constrained continuous range search algorithm applied to moving objects has been

proposed in [Xuan et al., 2010, 2011], which aims at retrieving all objects of interest within the

specified range and in a given time quantum. Their approach is based on double weighted Network

Voronoi Diagram representing time and distance, and built around the query point and by taking

into account the data points in neighbouring components. It makes use of the Voronoi-based Range

Search (VRS) on top of the road network to reduce the expansion area and further enhance efficiency.

The continuous range search proposed in this approach considers a moving query point, while data
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points (i.e., target objects) are static. No incremental approach has been discussed, but rather a

policy to decrease the frequency of updating.

[Cheema et al., 2011] have studied the continuous monitoring of moving range queries over

static data objects applied to Euclidean spaces as well as to road networks. This approach employs

the concept of a safe zone which guarantees that the results of the query do not change as long

as the query remains within that zone. [Wang and Zimmermann, 2011] have designed a specific

structure called Shortest-Distance-based tree (SD-tree) hat preserves the network connectivity and

distance information in continuous query processing, thus speeding-up the network expansion process.

This approach considers moving query points on moving target objects. An algorithm has been

proposed that can rotate, truncate, and extend the edges of the SD-tree with regard to the query

point movements. It uses periodic sampling on moving object positions, so that a number of object

updates are received and stored during each cycle. This technique does not require prior knowledge

of the query point’s destination during query processing. Although this technique appears to be

very close to our proposal described in Chapter 6, it does not consider dynamic networks and does

not return the locations of resulting objects, neither the paths towards them.

A recent work has studied continuous range queries in indoor environments [Yuan and Schneider,

2010]. A specific graph data model that represents an indoor space has been designed, thus allowing

the processing of specific kinds of queries on top of the generated spatial network. In [Yuan and

Schneider, 2010], the authors have introduced an approach to support range queries based on a

virtual cell-based network generated for each query. Besides, an extension of this method has been

proposed in the same paper to continuously process range queries whenever the query point moves.

However, this approach deals only with range queries, and is only applied to static data (i.e., static

points of interest). Moreover, for each query, a new virtual network that connects the query point to

predetermined points of interest is required, and additional computations are also needed to update

the network each time the query point leaves its safe area. Furthermore, qualifying data points that

are within the specified range are returned, without information about optimal paths towards those

points.

3.3.4 Other kinds of location-dependent queries

This section briefly surveys the state-of-art of other kinds of location-dependent query processing over

moving objects, such as the well known k Nearest Neighbour queries and other navigation-related

queries. Although kNN query processing is as much important as the previously described queries

(i.e., path and range queries), this thesis does not cover the continuous query processing of such

queries due to lack of space and time. Nevertheless, those queries are represented and taken into
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account in the whole system and the query language described later in Chapter 5. Moreover, the

indoor data model introduced in Chapter 4 is sufficiently flexible to support the continuous processing

of those queries as will be shown later. Therefore, this section covers the most relevant research

studies in this area, and highlights the pros and cons of currently available solutions for further

development.

3.3.4.1 Nearest neighbour queries

The basic concept behind k Nearest Neighbour (kNN) queries is to search for the k closest qualifying

objects to a given query point in space [Roussopoulos et al., 1995]. Although nearest neighbour

queries have been analysed extensively, the implications of properties and constraints in highly

dynamic environments still require more investigation. Particularly, continuous nearest neighbour

searches over moving objects have increasingly attracted the interest of researchers in the field [Tao

et al., 2002; Cao et al., 2003; Mouratidis et al., 2006; Demiryurek et al., 2009; Güting et al., 2009;

Demiryurek et al., 2010; Gao et al., 2011; Sistla et al., 2011; Elmongui et al., 2013].

[Tao et al., 2002] addressed continuous moving nearest neighbour queries on static data, where

a moving query point follows a known segment in an Euclidean space. This approach tries to avoid

false misses and the high processing cost, and uses R-tree for continuous query processing. Several

heuristic methods are also used to avoid accessing nodes, if they cannot contain qualifying data. [Cao

et al., 2003] have proposed a solution for kNN query processing with an approach to index static

target objects within a reachability graph for supporting attainability (i.e., real driving distance in

road networks). The reachability graph index is built based on actual driving distance from a moving

vehicle to nearby static objects. Graph exploration techniques are used to retrieve nearest target

objects from the index. An architecture for location-dependent query processing has been proposed

whose main components aim at managing the mobile client’s current location and predicting its

future position during query execution. Again, this approach only handles static target objects and

for only one type of queries.

The continuous monitoring of moving nearest neighbour queries applied to moving objects in

dynamic road networks has been discussed in [Mouratidis et al., 2006]. An in-memory monitoring

algorithm based on the previously described incremental network expansion (INE) mechanism is

proposed. This algorithm computes the shortest paths from the source towards nodes of the expanded

network to form an expansion tree, which is used to effectively determine the relevant updates that

might affect the answer. A shared execution paradigm is also applied to reduce processing time.

it groups together the queries that fall in the path between two consecutive intersections in the

network, and produces their results by monitoring the NN sets of these intersections.
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According to [Demiryurek et al., 2009], the approach presented in [Mouratidis et al., 2006] fails

to scale in real-world scenarios where the spatial network is large and the data objects moving on

the network are numerous. Consequently, a hierarchical approach for network expansion might be

of great interest to efficiently process continuous queries. In order to increase the efficiency of the

algorithms described in [Mouratidis et al., 2006], two techniques referred to as guided search, that

makes use of the Euclidean restriction mechanism (described in Section 3.3.1), and localized mapping,

that only maps a location update to the network if it is relevant to the result of the query, have

been proposed in [Demiryurek et al., 2009]. Time-dependent edge weights in road networks were

further considered in [Demiryurek et al., 2010], but on static kNN queries. Other solutions have

addressed continuous k nearest neighbour query processing on moving object trajectories [Güting

et al., 2009]. The impact of obstacles on visibility between objects for continuous nearest neighbour

search but in Euclidean space has been further considered in [Gao et al., 2011].

The only work we are aware of in the context of indoor environments for supporting k nearest

neighbour search has been provided in [Yang et al., 2010]. This approach is developed on top of a

door-to-door graph data model. This technique deploys a set of sensors to continuously monitor

users’ movements, thus maintaining the query result up-to-date. It also uses a probability estimation

mechanism to prune unqualified candidates from the candidate set, so that the most probable k

nearest neighbours are retrieved. The results show that the underlying data model is flexible, since

it allows for different kinds of queries to be performed, and the solutions on top of these foundations

are efficient and scalable. However, this approach only considers static query points, and the model

underneath depends on sensor-range-based positioning techniques, which are not perfectly suitable

for navigation queries that may require fine-grained location information. Moreover, other contextual

dimensions such as time and user profiles are not considered in query processing. Furthermore, in

the case of large indoor spaces, a generic architecture that allows distributing and managing data

over several pieces of a database would still be required.

3.3.4.2 Reachability Queries and Reverse Range and kNN Queries

Other kinds of location-dependent and navigation-related queries have been recently studied [Bao

et al., 2010; Shang et al., 2011; Shirani-Mehr et al., 2012]. Finding the most accessible locations given

a trajectory dataset in road networks has been explored by [Shang et al., 2011] and was referred to as

Reverse Path Nearest Neighbor (R-PNN). Similarly, [Shirani-Mehr et al., 2012] studied Reachability

queries in spatio-temporal databases, which evaluate whether two objects are reachable through an

evolving network of contacts among trajectories of moving objects. Constrained nearest neighbour

queries were also proposed by [Ferhatosmanoglu et al., 2001], which refer to nearest neighbour queries
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that are constrained to a specified region. On the other hand, a k-Range Nearest Neighbour query in

road networks finds the k nearest neighbours of every point on the road segments within a given

query region based on the network distance [Bao et al., 2010]. The goal of these approaches is not

to deal with the continuous processing of those queries, but rather to provide new efficient solutions

to different kinds of queries required in different scenarios.

Continuous Reverse k Nearest Neighbour queries (RkNN) in both Euclidean space and spatial

networks were the focus of the work presented in [Cheema et al., 2012]. A reverse k nearest neighbour

(RkNN) query retrieves all the data points that have the initial query point as one of their k nearest

neighbours. Continuous aggregate nearest neighbour queries for moving objects in road networks

were discussed in [Elmongui et al., 2013], in which the set of k moving objects that have the smallest

aggregate distance function (e.g., max, sum or min) are retrieved.

3.4 Languages for location-dependent queries

A strongly related field of interest when considering location-dependent query processing is the

representation of the semantics behind those queries [Sistla et al., 1997]. Most of the query languages

designed for representing location-based queries in moving object databases or those that are

compliant with the spatio-temporal data stream paradigm are strongly related to the data model

underneath, and on how moving object data is managed [Erwig and Schneider, 1999]. Some data

models define a flexible collection of type constructors and operations, that are used to create and

access the underlying data structures, and to express all queries using a few manipulation primitives

[Güting, 1994]. This section highlights previous work on query languages for location-dependent

queries, and focuses on the characteristics of the corresponding grammars with respect to the

semantics reflected, and the preferences and constraints that might be specified by the user or

inferred from his/her request and/or from his/her current context. Query languages in moving

object databases are first discussed in this section, and then a brief survey on languages for handling

spatio-temporal data streams is presented. The section ends by discussing approaches for querying

preference-aware and contextual data.

3.4.1 Query languages in moving object databases

Future Temporal Logic (FTL) is the query language associated with the MOST model introduced by

[Sistla et al., 1997] and described in Section 3.2.1. Specific temporal operators (such as until, nexttime,

eventually, sometimes, within, and always) were introduced in order to handle time sensitive data,

and to enable present and future queries over moving objects. Additional spatial operators such
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as inside and dist have been also proposed. Instantaneous queries (i.e., predicates on the current

database state) and continuous queries are considered. An answer to a continuous query is provided

by using a time interval begin to end, and both immediate and delayed strategies for transmitting

the result to the user are employed. [Vazirgiannis and Wolfson, 2001] further defined other modifiers

such as ALONG EXISTING PATH and ALONG SHORTEST PATH, and the operands DISTANCE

and TRAVELTIME for handling network-based distances and travel times. Finally, [Trajcevski

et al., 2004b] were concerned with managing uncertainty in moving object databases, and proposed

two related operators called possibly and definitely to determine the object may possibly satisfy a

given condition or it should definitely do so.

A query language for handling time-dependent geometries such as moving point and moving

region has been introduced in [Erwig et al., 1999; Guting et al., 2000]. A large number of auxiliary

spatio-temporal data types and operations for handling and querying moving object trajectories

(e.g., deftime, rangevalues, locations, trajectory, traversed), and for representing spatial relationships

between geometries (e.g., intersects, touches, attached, overlaps, etc.) have been presented. Aggregate

functions (min, max, avg) have also been applied to moving object data types. An extension to this

approach which aimed at representing those moving objects in spatial networks has been proposed

in [Güting et al., 2006]. Static and/or moving objects are represented on top of a network model

for supporting the description and querying of complete histories of movement. Two data types

gpoint and gline are defined, which represent a position in a given network and a region within that

network, respectively. moving(gpoint) and moving(gline) represent the corresponding time-dependent

geometries. The basic concept of route (corresponding to roads or highways and to paths over a

graph) and some special operations for networks are also presented such as shortest_path and trip.

A generic data model for representing the complete movement of a moving object (i.e., indoor and

outdoor movements), where the roads, streets and rooms are considered as constituting entities,

has been further described in [Xu and Güting, 2011]. Additional data types have been provided

such as mpptn, for representing moving points in public transportation network (i.e., buses, trains

and underground trains), and groom, that describes a room by a 2D area plus a value denoting the

height above some ground level of the building. An indoor graph has been designed based on groom

and door data types to support indoor trip planning at the room level. Doors in this graph represent

nodes and edges correspond to rooms. Searches for optimal routes is made available through this

model, and based on a preprocessing step that computes paths between all pairs of doors. However,

this model does not represent objects’ movements at a fine-grained level. In addition, this approach

does not deal with the continuous processing of current movements but rather with histories of

movements.

Moving GeoPQL is a visual query language in spatio-temporal databases described in [D’Ulizia
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et al., 2012]. A temporal layer is added on top of the Geographical Pictorial Query language

(GeoPQL) [Ferri and Rafanelli, 2005], thus allowing to specify and visualize the spatial configuration

of moving objects in a given time interval. GeoPQL algebra basically consists of topological, logical,

and metric operators, but does not handle temporal and spatio-temporal queries. This set has

therefore been enlarged in Moving GeoPQL by adding specific temporal (T-before, T-meets, T-

overlap, T- starts, T-during, T-finishes and T-equals) and spatio-temporal operators (Geo-growing,

Geo-shrinking, Geo-merging, Geo-splitting, Geo-appearing and Geo-disappearing). However, this

algebra is also designed for expressing queries on histories of movements and does not consider

continuous present queries.

3.4.2 Data types and operations for spatio-temporal data streams

The other category of query languages deals with data streams to represent abstract continuous

semantics with specific data types and operators. As previously mentioned, time-based as well

as tuple-based execution models are considered in classical data stream management systems, so

that the associated continuous sliding-window semantics should be reflected by the corresponding

query language [Jain et al., 2008]. For instance, the TelegraphCQ system [Chandrasekaran et al.,

2003] proposes a declarative language for continuous queries with a particular focus on expressive

windowing constructs. Several types of queries are supported such as snapshot, landmark, and sliding

queries, which correspond to the type of window used in expressing the query. A snapshot query

executes exactly once over one window, whereas a landmark query has a fixed beginning point in

the timeline, and a forward moving endpoint. Finally, a sliding query is carried based on forward

moving beginning and end points.

The Continuous Query Language (CQL) is another SQL-based declarative language for repre-

senting continuous queries over data streams [Arasu et al., 2004b, 2006]. Abstract semantics are

defined based on two data types stream (i.e., a multiset of timestamped elements) and relation (i.e.,

an unordered set of tuples at any time instant within a given interval), and three classes of operators:

stream-to-relation, relation-to-relation, and relation-to-stream. Stream-to-relation operators in CQL

are based on the concept of a sliding window over a stream. Three relation-to-stream operators are

also defined: Istream (input stream), Dstream (delete stream), and Rstream (relation stream) with

time-based sliding windows. The whole approach has been illustrated with a road traffic management

application, which simulates real-time computation of vehicle tolls based on traffic conditions.
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3.4.3 Languages for querying preference-aware and context data

While Section 3.2.4 presented trends towards context-aware processing of location-dependent queries,

this section focuses on query languages for expressing and representing contextual data in such

location-dependent queries. One of the main considerations in representing context is to select

and apply an appropriate and expressive query language for defining user’s preferences and needs

[Haghighi et al., 2006]. Relevant works in the area are discussed as follows.

1. A preference model for database querying that delivers personalized answers in ambient intelligent

environments has been proposed in [van Bunningen et al., 2006]. An ontology-based language

has been developed as a variant of Description Logics (DL) to represent the user’s context.

However, this approach does not represent location-dependent queries and does not apply to

moving objects. Similarly, [Reichle et al., 2008; Benyelloul et al., 2010] have proposed to query

contextual data by representing different static/dynamic contextual elements, but also without

being concerned about querying location-dependent data.

2. Preference SQL extends SQL by a preference model to deal with fuzzy predicates based on a soft

selection constraints mechanism [Kießling and Köstler, 2002; Kießling et al., 2011]. Preferences

are expressed inside an SQL query with the PREFERRING keyword. Other operators such

as AROUND, BETWEEN, LOWEST, HIGHEST, POS, NEG are defined to enable expressing

wishes in a declarative manner. A location-based preference constructor for querying such

spatial databases in outdoor environments has been developed as an extension of Preference

SQL [Wenzel et al., 2011]. The NEARBY spatial operator has been added to retrieve objects in

an approximate range. This approach has not been applied to moving objects.

3. Another fuzzy model for representing contextual preferences has been presented in [Bosc et al.,

2009; Hadjali et al., 2010]. Fuzzy predicates on attributes such as low, medium, and high have

been first defined in [Bosc et al., 2009], and are evaluated within a context clause that results in

a given constraint with a certain degree of satisfaction. Contextual preferences were further

considered in [Hadjali et al., 2010], where the goal was to infer a set of relevant preferences

and their semantics regarding the user context from a fuzzy rule base modelled as a set of

contextual preferences. This approach has been applied to route planning queries on road

networks while taking into account a set of user-defined preferences [Mokhtari, 2011; Hadjali

et al., 2012]. A distinction between constraints and wishes, which are not compulsory, is made.

A typology of users preferences is also proposed, where spatial, global, and spatio-temporal

preferences are distinguished. Routes and Segments are defined as two relations to describe

the paths and elementary segments in a road network, respectively. A series of keywords (e.g.,
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FIND k ROUTES FROM ... TO ..., PREFERRING) and modifiers (e.g., all, most, such that,

passes [near|inside|outside]) are also defined to express those route planning queries. Despite

the relevance of this approach in representing user preferences based on fuzzy predicates, it

does not consider real-time location-dependent queries over moving objects.

4. The TRANsportation QUerY Language (TRANQUYL), presented in [Booth et al., 2009; Booth,

2011], encompasses a set of relations and operators on top of a graph-based relational model

for supporting multimodal transportation systems. Relations such as road_edge, freeway_edge,

bike_edge, sidewalk_edge, and train_edge, along with other vertex relations are defined, thus

allowing an intuitive expression of advanced trip planning queries in spatial networks (via leg,

transfer, and trip high level relations). The language extends the SQL structure with new

clauses (e.g., WITH MODES [null|bus|train|pedestrian|etc.], WITH CERTAINTY, WITH STOP

VERTICES, and MINIMIZE|MAXIMIZE clauses), operators (e.g., All-Trips), and specific spatio-

temporal certainty, and facility conditions in the WHERE clause to support user preferences.

Although temporal operators such as starts, ends, arrival, and departure are defined to support

dynamic planning queries, this rich query language assumes static origins and destinations

in the All-Trips operator, and cannot be directly applied to location-dependent queries over

moving objects.

5. The query grammar presented in [Ilarri et al., 2011] enhances the expressiveness of location-

dependent queries by considering the granularity of moving objects’ locations. A location

granule is a data type defined as a set of elementary locations in a given reference system

(e.g., GPS locations). For instance, a granule could represent a city, a region or a country, and

used to express locations at different levels of abstraction. This approach covers the use of

location granules based on the user preferences from both a query processing as well as a result

presentation points of view. Several operations are then presented to handle those granules such

as inGranule, contains, getGranules, getNearestGranule, getGranulesObject, etc. The results

shown from using the location granules in query processing are considered very satisfactory.

Granule-based query constraints such as inside constraint is added to express range queries over

moving objects. Indeed, the experiments show that the advantages of location granules do not

come at the expense of performance. However, this approach considers moving objects only in

Euclidean space, and does not handle other navigation-related queries such as path queries.

The last two approaches have inspired our work presented in Chapter 5, which introduces a

query language that favours continuous location-dependent queries in indoor mobile environments.

Several types of queries are supported such as range, nearest neighbour, and path queries. User
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preferences, optimization criteria, and management of location granules in indoor environments are

incorporated into this query grammar.

3.5 Conclusions

This chapter covered related work on location-dependent query processing in both outdoor and

indoor environments. Indoor-specific techniques have been rarely addressed, but some outdoor

architectures and strategies might be applied to indoor configurations with adjustments, when

necessary. Architectures for continuous processing of location-dependent queries were first studied

from different perspectives (i.e., moving object databases and data stream management systems),

and in indoor and outdoor settings. Trends for integrating user preferences and other contextual

data were then presented. Secondly, a focus was put on adaptive and incremental paradigms for

processing navigation-related queries especially in spatial networks. Algorithms for path and range

query processing were discussed, as hierarchical and incremental execution paradigms for both type

of query are introduced in Chapter 6. Finally, languages that introduce data types and operations

for querying moving objects were highlighted, along with a discussion on expressing preference-

and context-aware queries. Related work in this chapter supports our contributions presented in

Chapters 5, 6, and 7, where an architecture for continuous location-dependent query processing, a

query language, algorithms for continuous path and range searches, and a prototype encapsulating

all these elements are introduced.





Part III

DATA MODEL, QUERY LANGUAGE,

ALGORITHMS, AND SYSTEM

DESIGN





CHAPTER

4 A Hierarchical and

Context-Dependent Indoor

Data Model

Contents

4.1 Need for a hierarchical and context-dependent data model . . . . . . . 93

4.2 Modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Spatial component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1.1 Core spatial layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1.2 Coarser spatial layers . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.2 Feature component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.2.2 User profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.2.3 Real-time event management . . . . . . . . . . . . . . . . . . . . . 109

4.2.3 Action component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1 Need for a hierarchical and context-dependent data model

The modelling approach described in this chapter has been introduced in [Afyouni et al., 2013], and

represents a hierarchical graph representation of an indoor system that can be integrated into a

context-aware system architecture. The preliminary requirements for the development of indoor

spatial models have been surveyed in Chapter 1 from a context-aware system perspective. An indoor

data model should meet service-oriented (i.e., localisation, navigation, location-aware communication,

activity-oriented interaction, and simulation and behavioural analyses) and efficiency-related (i.e.,

modelling effort, flexibility, performance, and scalability) requirements. Satisfying those requirements

creates the conditions for representing context-awareness in indoor mobile environments.

Hybrid spatial models (i.e., with both geometric and symbolic representations) provide a good

trade-off to efficiently integrate metric properties, while maintaining a more abstract view of space
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with easily-recognizable information about relationships between entities [Afyouni et al., 2012]. A

hierarchical data model embodies knowledge of the environment at different levels of abstraction. A

hierarchical design can support a large spectrum of applications, and offers a solution to alleviate

performance and scalability issues in location-dependent query processing. Hierarchical models

usually scale very well to large environments since queries such as path searches can be performed

hierarchically by switching from finer to coarser levels and vice versa.

This chapter presents a hierarchical and context-dependent indoor data model that tries to

bridge the gap between supporting context-awareness and alleviating performance and scalability

issues required for location-dependent query processing. This data model is hierarchically organised

and can be viewed as a tree structure in which location information is represented at different levels

of abstraction. The remainder of this chapter is organized as follows. Section 4.2 introduces our

approach for representing indoor environments as well as the features located and/or acting in

those environments. Particularly, indoor moving objects are represented, and the methodology for

managing user profiles and real-time event management is also presented. Finally, a discussion on

the data model is provided in Section 4.3.

4.2 Modelling approach

This section presents a modelling approach of an indoor-oriented system that takes into account

the spatial component representing the environment, as well as other components for handling

static/moving objects and the actions that emerge from them. The integration of an indoor spatial

data model into a context-aware system lies in considering a dynamic environment that should

represent (Figure 4.1):

1. All the features that populate an indoor environment, where a feature can refer to either a

person (i.e., a mobile user or any other social entity of interest1) or an object/event of interest

(e.g., sensors, exits, tables, continuous phenomena such as a fire, etc.).

2. Their spatial properties (e.g., location and extent), as well as other static (e.g., for users: profile,

interest, etc.) and dynamic (e.g., status) properties.

3. The behaviours that emerge from them (i.e., how these objects can interact and communicate

within the environment). It should be noted that an object of interest (OOI) may or may not

have communication capabilities, be mobile or static, physical or virtual, and attractive or

1Human beings that are located in the vicinity and are of interest to the query are referred to as social entities.
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repellent (i.e., depending on whether the user may want to reach it or to avoid it, respectively)2.

Computational 

environment  

Computational 

environment 

!"#$$%&'()*+),&-$#.,&

Figure 4.1: Indoor spatial model as a core component of a context-aware indoor system

As shown in Figure 4.1, many components that contribute to the design of a context-aware

system should be reflected by the spatial data model underneath. We assume that a user navigating

an indoor space should be able to communicate with other nearby social entities as well as with

sensors deployed in the environment. Moreover, an indoor navigation system should be aware of the

situation and the context of the user, and have to be adaptive and to provide answers in an efficient

and appropriate way. Furthermore, specific properties such as the granularity of the spatial data

model retained for the representation of an indoor space might affect the manipulation, visualization,

and computational capabilities of the system. Those characteristics will serve as a basis for the

development of our study.

Let us formally present the main concepts of the indoor data model. This context-dependent

data model represents an indoor environment with three complementary components 〈S,F ,A〉,
where:

2The distinction between attractive and repellent events is similar to the one suggested in [Delot et al., 2011]

regarding attraction and repulsion events.
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• The spatial component S =
⋃

i=1...|S| Si is made of a set of layers (Si) hierarchically organised

and representing the indoor space, and thus defining the multi-granular spatial structure of the

model.

• The feature component F =
⋃

(P,OOI) encompasses the features (i.e., persons (P) and objects

of interest (OOI)) located in the environment.

• The action component A =
⋃

(FA,SA) represents actions that are either predefined and

triggered automatically by the system in form of informative, context-aware messages (SA), or

generated by a given feature acting in the environment (FA).

These three components are hereafter discussed in more detail.

4.2.1 Spatial component

The spatial component of an indoor-based system takes into account different levels of spatial

granularity, and this regarding not only the way sensors are deployed in the environment, but

also considering the fact that different models (i.e., geometric and symbolic representations) of

space may coexist. The approach developed is a hierarchical spatial representation of an indoor

environment that can be integrated into a context-aware system architecture. The spatial data

model is hierarchically organised and can be viewed as a tree structure in which location information

is represented at different levels of abstraction. This hierarchical design can support a large spectrum

of applications that can be developed at different levels of abstraction, and allows to alleviate

performance and scalability issues in location-dependent query processing [Afyouni et al., 2013].

The approach also takes into account the large range and trends of positioning techniques to offer a

context-dependent spatial model that supports different applications.

This conceptual approach is embodied in a hierarchical model that implicitly embeds different

levels from micro to macro, from continuous to discrete structures of space. One assumption of this

model is that a coarse-grained model can be derived from a finer grained representation depending on

the application and context-aware constraints and capabilities. The approach assumes that a given

user acting in an indoor space can be continuously located in real-time, using for instance a MEMS

sensor, thus providing a fine-grained representation for this user. In contrast, and when WLAN or

RFID positioning systems are deployed in the environment, a coarser level of granularity might be

provided to locate users in the environment. Similarly, the spatial representation to consider in order

to relate mobile users to the environment are chosen appropriately by taking into account some

application constraints and properties. For instance, if one asks to know how many users are located

in a given room, it may be inappropriate to display the precise locations of those users and their
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trajectories. In such a case, a representation at the room level is likely to be sufficient. Alternatively,

a finer level of granularity might be appropriate when one is interested by the relative location of

some users in a given room, and also with respect to the location of some sensors in that room.

A spatial component contains a set of spatial layers hierarchically organized. Figure 4.2

describes a part of a scenario (i.e., first and second floor are illustrated) where a user navigates

inside a three-story laboratory building. The ground floor of the building comprises two teaching

labs and some administrative staff offices. Offices of the Linguistics Department are located on the

first floor. Specifically, Figure 4.3 illustrates the second floor of the building where the Computer

Science Department is located. The core layer is firstly presented. Then, other coarser layers that

can be incorporated into the hierarchical data model are discussed.

4.2.1.1 Core spatial layer

The core layer S1 (referred to as Smicro) of the indoor data model is made of a fine-grained graph

Gmicro = (Vmicro, Emicro, Wlength,Wtime) embedded within a spatial grid with a regular cell size, and

which covers the indoor space (Figure 4.3). The extent and the level of granularity are two mandatory

parameters that have to be determined a priori for the derivation of the grid. The accuracy of the

resulting grid depends on the cell resolution. A fine-grained grid supports accurate location data,

but could introduce heavy processing workloads (details on the cell-based approach are provided

in Chapter 2, Section 2.2). For example, the spatial resolution selected in the scenario illustrated

in Figures 4.3 and 4.4 is 50 cm, which roughly corresponds to the human spatial extent [Raubal,

2001]. This means that a 50 cm distance is set between horizontal and vertical neighbour nodes,

while 1/
√
2 cm is set for diagonal distances. This fine spatial resolution assumes highly accurate

location data, but other coarser resolutions can be used depending on the application constraints. A

coarser resolution results in a less accurate representation of space as well as a distorted perception

of the objects’ movements. The resulting grid graph encompasses vertices (i.e., nodes) that represent

cells within the grid, and connections between cells are explicitly materialized by edges. Each node

is located in the centre of a cell, and is connected to its eight neighbours (not only the four ones

located in the boundary) with horizontal, vertical, and diagonal edges.

This modelling approach achieves a maximum coverage of the indoor space. An indoor

environment is represented as a continuous space that supports continuous positioning techniques

used in indoor navigation. Besides, the cell- and graph-based representation supports the modelling

of structural properties (i.e., connections and relationships between nodes) at different levels of

granularity, while keeping geometrical properties. Nodes of the grid graph are labelled according

to their membership to a given spatial unit such as a room or a connecting space (i.e., a hallway).
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Figure 4.2: A fine-grained network of a two-storey building: first level of the hierarchical spatial data model

Therefore, each node has one and only one membership value since it belongs to one and only one

spatial unit, whereas an edge might have multiple membership values when it intersects several

spatial units. Nodes and edges can be labelled with impedances defined at the application level (i.e.,

node’s and edge’s accessibilities). Figure 4.4 illustrates a closer view of the fine-grained network,

and shows that a room at the abstract level may contain multiple nodes of the fine-grained graph

(green points represent nodes, and links between them depict edges). The set of exits (i.e., brown

polygons) illustrated in Figures 4.3 and 4.4 are considered afterwards (Section 4.2.1.2) in order to

constitute an abstract layer as a part of the hierarchical data model.

In the definition of Smicro, Vmicro = {vi} is the set of vertices and Emicro ⊆ Vmicro ×Vmicro is

the set of edges. For each edge e = (vi, vj) ∈ Emicro, there exist two time-dependent cost functions

ωl i,j(t) ∈ Wlength and ωt i,j(t) ∈ Wtime that compute the length and travel-time from vi to vj ,

respectively, if traversal is started at instant t . Besides time, this model also takes into account other

contextual dimensions such as user profiles and real-time events, to further associate impedances

with edge weights. User profiles are handled by considering adapted graphs that are derived from the

base graph Gmicro and which correspond to predefined categories of users (Section 4.2.2.2). Effects

of real-time events on edge weights will be discussed later in Section 4.2.2.3.

Each node v ∈ Vmicro has a set of attributes that describe its physical location or state (i.e.,

whether it is accessible or not). A node v is formally defined by the tuple 〈vid, xv, yv, sv, Lv, Av〉.
vid is the node identifier, (xv, yv) denotes the geometric location of v according to a reference

system, and sv ∈ {free, occupied} determines whether or not the node v is physically occupied by an
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Figure 4.3: A fine-grained network of a two-storey building: first level of the hierarchical spatial data model

Figure 4.4: A closer view of the fine-grained graph (Vmicro, Emicro) at Room 113 (R113) of the first floor

object at that moment. Nodes that are occupied by static objects (or affected by real-time events

that indicate that the node is inaccessible) are assumed to be unusable for path planning3. Let

Σlabel = {Σfine−grained∪Σroom∪Σfloor ∪Σbuilding} be a set of labels or symbolic values that consists

of all the identifiers of the topological hierarchy (i.e., local identifiers of nodes at the fine-grained

level, as well as room, floor, and building identifiers) for a given space. Hence, Lv ⊂ Σlabel = {local-id,

room-id, floor-id, building-id} is a set of labels assigned to v , where local-id denotes its local identifier

3Moving objects are usually not considered as obstacles, and even if they are obstructing the path (e.g., a cleaning

machine blocking a pathway) they are expected to move in a short time. Nevertheless, there is no problem to model

this kind of situations in our modelling approach, as a closed pathway can be considered as a real-time event that

temporarily prevents passing by.
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at the fine-grained level, and the others are associated according to their belonging to the topological

hierarchy. We assume at this level that v belongs to one and only one room, and one building. In

contrast, floor-id is a subset of the set of floor identifiers since, for instance, a node located on a

staircase may belong to several floors. Finally, Av ⊂ A is the set of triggered actions, i.e., contextual

messages or notifications that are predefined and can be executed according to some contextual

constraints (e.g., to remind a user navigating a shopping centre to buy some food or fruit stock when

he/she is located next to a supermarket). Implementation issues and integration of those actions in

query processing are discussed in Section 4.2.3.

An edge e ∈ Emicro is defined by a tuple 〈(vi, vj), Le,ωl i,j(t),ωt i,j(t)〉, where vi,vj ∈Vmicro,

vi -= vj , and Le ⊂ Σlabel is a subset of the set of labels (e might have multiple labels when it intersects

several spatial units -e.g., rooms-). Besides, ωl i,j(t) and ωt i,j(t) are time-dependent functions

associated with the traversal of e. The traversal of some edges may be constrained by a temporal

interval defined at the application level, and within which the traversal is possible; otherwise the

corresponding edge cannot be traversed. These functions are defined as follows:

ωl i,j(t) =















Ed(vi, vj) if t ∈ [tstart, tend]

∞ otherwise

where Ed(vi, vj) is the Euclidean distance between vi and vj , and tstart and tend are defined at the

application level (for example, [08 : 00, 17 : 00] could be specified for an office building).

ωt i,j(t) =















f (ωl i,j(t)) if t ∈ [tstart, tend]

∞ otherwise

where f (ωl i,j(t)) is a length-dependent time function that further associates impedances to compute

the travel time between vi and vj .

Temporal intervals can be partitioned into different subintervals to satisfy other application-dependent

constraints. The network distance and the travel time from vs to vd are computed as indicated in

Definitions 1 and 2, respectively. These functions take the Euclidean distance derived from the

fine-grained network in order to compute the optimal navigational network-based path, depending

on either the distance and/or time criteria, as well as other semantic constraints.

Definition 1 Fine-grained and time-dependent network distance: Let p = 〈vstart=v1 →
v2 → . . . → vk=vgoal〉 be a path that contains a sequence of nodes vi ∈ Vmicro, i=1, . . . , k. The

time-dependent network distance of p is given by lengthstart,goal(tstart) =
∑k−1

i=1 ωl i,i+1(ti), where

ti = ti−1+ωt i−1,i(ti−1) represents the estimated time instant at node vi, ∀ i=2, . . . , k, and t1 = tstart.
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Definition 2 Fine-grained and time-dependent travel time: Let p = 〈vstart=v1 → v2 →
. . . → vk=vgoal〉 be a path that contains a sequence of nodes vi ∈ Vmicro, i=1, . . . , k. The time-

dependent travel time of p is given by timestart,goal(tstart) =
∑k−1

i=1 ωt i,i+1(ti), where ti = ti−1 +

ωt i−1,i(ti−1) represents the estimated time instant at node vi, ∀ i=2, . . . , k, and t1 = tstart.

This core spatial layer is built in an offline phase and a subsequent online phase is in charge of

updating potential changes and time-dependent data. For instance, in the offline phase, nodes that

are covered by static objects (e.g., a wall, a table, etc.) are marked as occupied whereas the rest are

considered initially free. Furthermore, the state of a node depends also on the user profile, since

different kinds of users may have a completely different set of accessible nodes (e.g., a certain node

may be apparently free but correspond to a room that can only be entered with a key card). This

can also be statically managed with the use of a user access model, as discussed in Section 4.2.2.2.

4.2.1.2 Coarser spatial layers

Thanks to the flexibility of the spatial data structure, a coarse-grained representation can be derived

by aggregating nodes and edges according to some membership value, whereas edges will be derived

accordingly. This favours data manipulation at a coarser level of granularity. For instance, topological

queries can then be applied to find out emerging spatial and temporal properties and mobility

behaviours at the level of the rooms and connections of an indoor space (e.g., objects located and

passing through a given room for a period of time). Moreover, relationships between the sensors

located in the environment and the resulting graph can also be derived as suggested in [Becker et al.,

2009] to achieve inter-layer interaction.

A node v at a coarser layer Si ∈ {S2, . . . ,S|S|} is defined as an aggregation of a subgraph of

the finer graph, and is denoted by 〈Lv, Av〉, where Lv ⊂ Σlabel is the set of labels assigned to v , which

is adapted accordingly to fit the corresponding level of abstraction, and Av ⊂ A comprises the set

of triggered actions that are predefined at the corresponding node. Cost functions are derived and

processed based on the edge weights of the fine-grained level. Formal definitions of the relevant

layers considered in the data model are described hereafter, along with an explanation of how these

layers can be derived.

Exit hierarchy. Exits represent connections between rooms at the abstract level. An exit is an

important element of the data model used for query processing, through which a user can leave or
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enter a place (e.g., doorways or staircases). An exit is represented as an abstract node that belongs

to two different spatial units, and is derived by aggregating boundary nodes of both units whose

adjacent node lists contain at least one neighbour that belongs to the other spatial unit (Figure 4.5).

Accordingly, an exit can contain multiple nodes and edges at the fine-grained level (see Figure 4.3

and 4.4). Based on these exits, a coarser network (at a higher level of abstraction) can be designed,

in which nodes depict those exits and links represents optimal navigational paths between directly

reachable exits. Optimal network distances and travel times between relevant pairs of exits are

pre-processed and cached in order to reduce on-the-fly computation of hierarchical path searches.

An exit ex′ is relevant for a given exit ex if and only if ex′ is directly reachable from ex (i.e., there

is an accessible passageway for pedestrians from ex to ex′ which does not involve any other exit).

An exit hierarchy is constructed at a higher level of abstraction, which allows computing optimal

distances between locations to be used later for processing diverse kinds of queries.

FloorExit12

FloorExit02 ex122 ex123

ex111 ex130 ex129 ex125 ex126 ex127 ex128

ex121 ex120 ex119

ex113

ex101 ex102 ex103 ex108

ex118 ex117 ex109 ex107 ex112

ex104 ex105 ex106 ex111

ex110

ex115 ex114

FloorExit11

FloorExit01

hierarchical link (parent-child)
horizontal link (directly accessible)

Figure 4.5: Part of the exit hierarchy derived from the fine-grained graph (Floor-01, Building-1)

A link between two directly reachable exits is represented by a path (i.e., a sequence of nodes

and edges in (Vmicro, Emicro)) at the fine-grained layer. More formally, let r, r′ ∈ Σlabel be the

labels of two connected rooms, the exit representing the doorway between r and r′ is given by:

ex r,r′ = {vi, vj ∈ Vmicro | ∃ex ∈ Emicro, ex = (vi, vj) ∧ r ∈ ex .Lex ∧ r′ ∈ ex .Lex}. Regarding its

belonging to the topological hierarchy, an exit is also characterised by: Lexr,r′
={local-id, {r, r′},

floor-id, building-id}. FloorExit11 is an example of an exit depicted in Figure 4.5, which belongs to

two structural units: Stair01 and HW12. Therefore, LF loorExit11 = {FloorExit-11, {Stair01, HW12},

Floor-1, Building-1}. Similarly, one can derive the abstract nodes of the second layer representing all

exits on a given floor. An abstract edge (ex r,r′ , ex r′,r′′) in the exit hierarchy is a path made of a

sequence of nodes and edges of the fine-grained level that compose the optimal network distance

from a node vstart ∈ er,r′ to a node vgoal ∈ ex r′,r′′ . An edge of the exit hierarchy is referred to as

exit-path and is denoted by 〈source_exit_id, target_exit_id, length, time〉. The optimal network

distance and travel time are computed by applying lengthstart,goal(tstart) and timestart,goal(tstart),

and the resulting values are associated with each edge of the exit hierarchy, thus forming the second
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layer of the data model4.

Moreover, exits are organised in a hierarchical manner since a flat graph does not reflect

their significance from a semantic navigation point of view [Hu and Lee, 2004]. As illustrated in

Figure 4.5, this hierarchical structure allows to distinguish between a room exit and a floor exit,

which is represented at a higher level of abstraction due to its importance, so that a direct path

from a current position to the nearest floor/building exit can be easily determined. Other edges

between exits of the same level are also materialized according to their connectivity (horizontal

links illustrated as dashed lines in Figure 4.5)5. Consequently, the final representation of this layer

preserves the connectivity between directly accessible exits while emphasizing their importance for

navigation purposes. A generalisation of this hierarchy that covers a multi-storey building is used

for path planning. Consequently, an exit of a ground floor has a building exit as a parent node, and

a first-floor exit as a child node since both are parts of a staircase.

It should be emphasized that exit-paths in this hierarchy are assumed to be undirected. However,

this model can be adapted for specific scenarios where a one-way access to several areas is required.

This can be done by either replicating edges in the opposite direction or associating a property to

each edge that adds impedances to the path weight depending on the travel direction. Adjustments

of the query processing algorithms are needed accordingly.

Location hierarchy. Incorporating information about exits into the topological hierarchy enables

the modelling of optimal paths at an abstract layer. Those are used to facilitate hierarchical path

searches and to alleviate performance issues raised while traversing the fine-grained graph. Although

connectivity relationships between those elementary structural units can be computed from the exit

hierarchy, an adjacency relationship needs to be associated to each unit in a separate abstraction

layer. A room consists of a set of nodes at the fine-grained layer as illustrated in Figure 4.4. An

abstract view of an indoor space considers rooms as abstract nodes and connections between rooms

as links. Such topological properties are not explicitly materialised in the exit hierarchy, even

though information representing their belonging to the topological hierarchy has been incorporated.

Consequently, a location hierarchy that is based on a connectivity graph, which represents rooms

as nodes and doorways as edges, can be automatically derived from the fine-grained graph as an

additional layer in order to preserve topological relationships (Figure 4.6).

A room in the location hierarchy is characterized by 〈room_id, room_type,Adj_room_list, Lr, Ar〉,
where room_type describes whether this unit is a room, a meeting room, a hallway, etc.,

4The hierarchy is not fully illustrated in Figure 4.5, since the right part rooted at FloorExit02 is developed

similarly.
5For clarity’s sake, not all the edges that depict connectivity between exits are shown in Figure 4.5.
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Lift0−1

HW03 HW13

HW14

R116 R115 R114 BR13 R113 R112

MR13 R111 HW12

MR12

R101 R102 BR11

R110 R109 R108 MR11

HW11 BR12 R103 R104 R105 R106

Stair0−1

HW02

Figure 4.6: Part of the location hierarchy derived from the fine-grained graph (Floor-01, Building-1); “HW ”

stands for Hallway, “MR” for Meeting Room, “R” for Room, and “BT ” for Bathroom

Adj_room_list denotes the list of identifiers of the adjacent units, and Lr, Ar are introduced

in a similar way as in the fine-grained level. Such a location hierarchy can be directly derived from

the fine-grained layer, but can also be generated from the exit hierarchy since information about the

belonging of exits to their respective structural units is stored. A staircase that connects a given

floor to another is represented as a room that belongs to the two corresponding floors, and which

is bounded by two floor exits. An elevator is represented in a similar way to stairs. A multi-floor

elevator consists of several stages that correspond to the number of floors of the building. Each stage

of the elevator is modelled as a room that belongs to the two corresponding floors and bounded by

exits/entrances to/from the corresponding floors.

From the fine-grained graph, a typical clustering process results in an abstract layer as illustrated

in Figure 4.6. Graph partitioning is thus carried out based on the set of room labels associated to

the nodes of the base graph. Consequently, this process consists of: (1) extracting and aggregating

nodes whose room labels are identical to form the new abstract nodes of the location hierarchy;

and (2) creating abstract edges between connected structural units, thus favouring topology-based

queries. These steps are as follows:

• Step 1. Based on the set of room labels, the fine-grained graph is partitioned into subgraphs.

Let ϕ =
⋃

i=1...|Σroom| ϕℓi
be the set of subgraphs of Smicro such that ℓi ∈ Σroom, and where

∀i ∈ {1, . . . , |Σroom|}, ϕℓi
= (Vℓi , Eℓi) ⊂ Smicro is a subgraph extracted from the fine-grained

graph according to node and edge labels, and where
⋂

ℓi∈Σroom
Vℓi = ∅. An abstract node that

represents each subgraph is then created, having ℓi as its local-id.

• Step 2. The set of outgoing edges between connected subgraphs is defined by: Eℓi,ℓj = (ϕℓi
,ϕℓj

)

∀i, j ∈ {1, . . . , |Σroom|}, i -= j. It is worth noting that, for geometric-based queries (e.g.,

navigation, range, and nearest neighbour queries), the exit hierarchy is more likely considered,

as it lends itself to more accurate and more realistic pre-processing techniques. In contrast, the
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location hierarchy is more suitable for topology-based queries (e.g., connectivity, adjacency, etc.)

or when one looks for the optimal path that contains the smaller number of rooms. Therefore,

there is no need to associate precomputed network distances to edges of the location hierarchy.

Fine-grained layer

Exit hierarchyLocation hierarchy

deriveaggregate

derive

Figure 4.7: Links between neighbouring layers of the hierarchical data model

Similarly, there exists a relationship between exit and location hierarchies since exits belong to

structural units. For instance, by retrieving the list of room labels associated to all exits, one can

derive connected rooms and rebuild the corresponding location hierarchy. Accordingly, switching

between a location hierarchy and an exit hierarchy is always possible, thus covering a larger range of

queries (Figure 4.7). Three spatial layers at two levels of abstraction (i.e., the fine-grained layer at

the first level, and the exit and location hierarchies at the second level) are employed and used in

this work. However, the data model can be generalized to introduce higher levels of abstraction in

order to cover a wider range of applications, and with more flexibility.

4.2.2 Feature component

The feature layer models different types of objects located or evolving in an indoor space, which

present an interest from an application point of view. These features are either attached to the

infrastructure (i.e., static objects like tables, doors, walls, fixed sensors, . . . ) or evolving in the

environment (i.e., moving objects, continuous phenomena). This section first presents the feature

component principles, and secondly highlights the management of user profiles and real-time events.

4.2.2.1 Principles

A feature component F models persons and objects of interest in an indoor space. We make a

difference between features that represent a rigid entity (e.g., spatial objects, sensors, and moving

users) and features that model a continuous phenomenon (e.g., gas leak or noise diffusion). A feature

may be discrete or continuous. By continuous feature we mean any kind of phenomenon that is

likely to continuously spread over space. An entity may be static or dynamic and is modelled as

an object. An object is identified and characterized by its static properties (i.e., attributes) and

potentially other dynamic properties such as the interaction spaces attached to it [Bhatt et al., 2009].
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In addition, an object can perform a selected list of actions that can be triggered according to some

contextual constraints which are application-dependent.

Formally, a feature f ∈ F =
⋃

(P,OOI) is defined by a tuple 〈Id, Ct, S, FD, A, IS〉, where: Id is

the feature identifier, Ct denotes the feature class type, S is the set of states a feature can hold, FD

is the set of values that describe f (i.e., typically, a set of string values describing static properties

of the feature, such as profile properties for a given user), A ⊂ A is the list of context-dependent

actions associated with f, and IS is the list of interaction spaces associated with the feature [Bhatt

et al., 2009]. The sets of states and actions available for a given feature are specified depending on

the feature class type. A feature class type Ct is associated with a pair 〈S, A〉 where S =
⋃

i=1...|S| si

and A denote the set of states and actions, respectively. As an example, a user u ∈ P may have some

static descriptions about his/her profile and some predefined preferences. Besides, u can execute

an action a ∈ Au at an instant t when, for instance, he/she is in state s ∈ S and located on a node

v . In contrast, an object of interest can be characterized by some qualitative and quantitative

descriptions (e.g., its spatial extent), and Boolean parameters that determine whether the object is

able to communicate or not, whether it is mobile or static, physical or virtual, and attractive or

repellent.

Moreover, each feature is associated with specific dynamic properties, referred to as interaction

spaces, that cover some semantic information used for interaction purposes. The notion of interaction

spaces, first introduced in [Bhatt et al., 2009], is generalized and applied to dynamic and continuous

features as illustrated in Figure 4.8. The component IS is a quadruple 〈ps, os, fs, rs〉 that refers

to the physical, operational, functional, and range space. At the fine-grained level, the interaction

spaces are formally defined as sets of nodes dynamically updated in real-time (see Figure 4.8):

• The physical space is represented by the set of nodes covered by the feature at a given time

instant. For a moving object, the physical space corresponds to the node where the user is

currently located.

• The functional space denotes the nodes on which another feature can physically interact with the

considered feature. For instance, the functional space of a moving user refers to the interaction

field around his/her physical space; it is defined according to some specific user properties. In

the example shown in Figure 4.8, a user is localised on a given node, so its functional space will

comprise the subset of the eight neighbour nodes at a given instant.

• The range space is a specific parameter only assigned to sensor objects and designates the set of

nodes covered by the sensor (i.e., detectable nodes). The range space of a moving user is indeed

the region covered by the sensor that is either integrated in the mobile device or attached to

that user.
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Figure 4.8: Interaction spaces of features evolving or located in space

The notion of operational space has been introduced to cover all features of the space (static

and/or moving objects). However, the definition of the operational space varies significantly

depending on whether this feature is a (pseudo)-static6 or a moving object. The difference between

the two definitions is emphasized as follows:

• The operational space of a (pseudo-)static object can be represented by the union of all the

potential nodes and edges an object may cover when it performs an action in the environment.

For example, the operational space of a door comprises all the potential nodes this window may

cover when opening and closing.

• The operational space of a moving user denotes the set of nodes accessible to the user at a

given time instant. The operational space of a mobile user strongly depends on the contextual

information gathered. For example, the user profile directly influences the operational space

according to whether the user is a security guard, a firefighter, a user with special needs or a

user with restricted privileges, etc. Time is another important dimension that might have an

impact when visiting a shopping centre or entering a laboratory building (i.e., if the current

time is in the morning, at night, during the weekend, etc.). Continuous phenomena such as a

gas leak or a fire that breaks out inside a building may also have a significant impact on the

operational space of the user. While the fire is spreading progressively within space, a subset of

nodes that are covered by the fire are removed from the operational space. Instead, additional

subsets which correspond to emergency exit routes will build up the new operational space.

Due to the complexity of modelling and implementing such a process, tracking of fire diffusion

6A door or a window is an example of a pseudo-static object, since it can either open or close (as illustrated in

Figure 4.10), but it cannot move elsewhere.
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is more likely to be abstracted to higher levels (i.e., room or even floor level). This results in

temporary unavailable rooms or floors for user navigation.

It is worth noting that functional, range, and operational spaces are computed based on a user

request, and are considered as specific continuous location-dependent queries. In particular, the

range space of a given mobile sensor is considered as a typical range query, by taking into account

the sensor range as the maximum threshold needed by the query. Moreover, a continuous evaluation

of the operational space for a given user requires to retrieve all the spatial units accessible to this

user at a given instant; this is typically done in the case of reachability queries.

4.2.2.2 User profiles

One assumption of this approach is that the user model, which encapsulates knowledge about the

users’ personal data and preferences, classifies users into groups according to their privileges to

access restricted areas. The aim of this classification is to derive an adaptive representation of

space based on access control information associated with the user. This filtering process allows to

derive adaptive graphs from the generic base graph by eliminating the set of nodes that are actually

inaccessible for a specific type of user, thus reducing the amount of data that need to be processed

in real-time for each query and supporting the retrieval of more accurate answers based on user

profiles. A similar process takes place to update the time-dependent accessibility of some nodes, for

instance, abstract nodes corresponding to rooms that are closed at specific times.

UserAccessModel

SpecialNeedsUser

Confrest

n
Confrest

1

RestrictedUser

Confrest

n
Confrest

1

UnrestrictedUser

Figure 4.9: Classification of user profiles based on access control information

Users are therefore classified into three main categories: (i) unrestricted user, (ii) restricted

user, and (iii) user with special needs (Figure 4.9). Additional types could be obtained by referring

to these basic categories and incorporating further restrictions, thus yielding different configurations.

An unrestricted user has full access privileges and so he/she can navigate through all areas of the

building, that is, the generic graph representing all the floors of the building. A example of an

unrestricted user is a firefighter or a security guard, who should have a complete knowledge of all the

emergency exits in a building. A restricted user category includes staff members, guests, and visitors.
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Usually, staff users have premium member privileges, but with some restricted areas, and can also

have different configurations, whereas visitors have access to all the public places in a building. Users

with special needs follow the same rules as restricted users except that additional penalties might be

added to edge weights so that the most appropriate routes can be selected (e.g., using the elevator

instead of the stairs for wheelchair users). Access control information is subject to very few changes

over time, and thus it can be processed statically.

When there are no clearly defined privileges for certain areas inferred from a given user model,

which may be due to unavailable information or lack of attention when deploying a context-aware

system, the closest upper-level category of user profiles (from the ones discussed above) is considered.

This upper-level category is less restrictive. Therefore, there might be some inaccessible areas whose

corresponding data could be considered for query processing. Consequently, the system may generate

some answers which are not well adapted to a specific user, such as a route that passes through a

restricted area.

4.2.2.3 Real-time event management

The occurrence of real-time events may have a significant impact on the nodes accessibility. For

example, when considering a fire that is spreading in the Computer Science Department, fire alarms

are expected to detect this event and communicate it to the system. With periodical updates

performed automatically, the system is capable of representing the growing spatial extent of the

fire, thus marking nodes of that physical space as inaccessible to users. This subset of nodes will

be temporarily blocked when computing the operational space of the users. Instead, other subsets

of nodes which correspond to emergency exit routes will be favoured to build the new operational

space.

The distinction between attractive and repellent events is embodied by associating negative

or positive impedance values to edge weights, respectively. Therefore, unscheduled or unexpected

events are characterized by a triple: event 〈info_source, event_ps, ±value〉7. Common sources

of information about events (info_source) include the system supervisor (if any), users and the

social entities situated in the environment, and the communicating sensors. Their main task is to

gather information about changes in the environment and to communicate that information to the

system. The physical space of the event (event_ps) should also be determined in real-time in order

to change edge weights as well node states accordingly. Finally, depending on the nature of each

event, a positive or negative value (±value) is assigned to edge weights, so that adapted paths

7Temporal events are, on the other hand, regularly evaluated by means of the time-dependent functions previously

described, and so they do not belong to this category of evens.
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can be recomputed. Therefore, algorithms for handling continuous location-dependent queries are

adapted in order to deal with these dynamic factors and with the information uncertainty.

4.2.3 Action component

The action component A =
⋃

(FA,SA) models the set of actions that are either triggered auto-

matically by the system (SA) or performed by a given feature acting in the environment (FA).

System actions (SA) denote context-aware notifications that are mainly triggered based on users’

locations and implement a publish/subscribe approach; this means that events are published by

service providers to address their subscribers. This also includes geocast messaging [Basagni et al.,

1999; Navas and Imielinski, 1997], which can be described as a location-based multicast where

messages are delivered to users located in a specific area instead of those subscribed to a given group.

Figure 4.10: Actions performed by different types of features

Feature actions (FA) encompass static and moving object actions, as well as continuous

phenomenon actions (see Figure 4.10). When considering objects, actions specify whether and how

objects of a given type change their states in order to behave in a certain way. For instance, objects

can adapt their behaviour and properties according to some contextual changes in the environment.

This model implicitly builds semantic and topological relations among the features situated in space,

by establishing relations between interaction spaces of different features.

Actions are context-dependent; this means that, at a given time instant and for a certain
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feature, only a specific list of possible actions is valid, which can then be performed according to some

execution constraints. For a mobile user, actions comprise a sequence of movements, interactions

with other neighbouring entities and artefacts, and requests for some services in order to achieve

a predefined goal (Figure 4.10). This approach allows to represent artefacts of interest located in

the environment, so that users who are engaged in a certain activity can gather knowledge and

understand their physical surroundings, as well as reconfigure and manipulate physical artefacts

(e.g., a chair, a door, a heating, etc.) or virtual artefacts (e.g., a 2D/3D image of a physical artefact,

a digital user interface, some recommendation/information, etc.) in order to produce changes in

the environment. Moreover, a user can communicate with any fixed or mobile sensor located in the

range space of a (mobile) sensor integrated in his/her device or attached to him/her (e.g., a MEMS

sensor, an RFID tag, etc.). When considering continuous phenomena, their actions can materialize

the way a given phenomenon diffuses in space.

It is worth noting that the set of actions presented in Figure 4.10 is not exhaustive and could

be extended depending the application requirements. One can, for example, add the set of basic

activities performed by a given user, such as running, walking, going upstairs, going downstairs,

sitting, standing, and which can be detected by the sensors embedded in his/her mobile phone (e.g.,

acceleration sensors) [Yan et al., 2012]. This further favours incorporating the user activity as an

important contextual dimension. However, this dimension is, for the moment, not completely taken

into account in the model and in the query processing engine.

4.3 Conclusions

A modelling approach for representing an indoor mobile environment was introduced in this chapter.

Spatial, Feature, and Action components were discussed which take static and dynamic aspects of

this environment and the features located or moving within it. The spatial component considers a

hierarchical data model that encompasses different contextual dimensions and is sufficiently flexible

for supporting a large range of services and queries at different levels of abstraction. Indoor static

and moving objects are represented with different properties associated to them depending on their

type. Actions that might emerge from those objects are classified, so that they can be further used

in query processing. The following chapters will more closely consider typical user requests and

services by integrating this modelling approach in a general system architecture for continuous query

processing. It should be emphasized this approach is generic and rich enough to support other kinds

of services and queries than those discussed afterwards.
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The aim of this chapter is to provide an indoor-based system that favours navigation of users in

such environments based on the hierarchical and context-dependent data model presented in Chapter

4. A continuous query processing architecture and query semantics to represent location-dependent

queries in indoor environments are introduced in this chapter. The architecture is meant to be as

generic as possible, thus allowing different kinds of queries to be performed and others to be further

added. The key role of this architecture is to maintain candidate objects or paths to target objects

up-to-date. Moreover, a query grammar is presented which introduces different semantics to support

location-dependent queries and the hierarchical layout of the environment.

The remainder of this chapter is organized as follows. Section 5.1 describes the principles of

the architecture and discusses the continuous execution flow of a given navigation-related query. A

detailed description of the route manager and query execution engine components is provided, along

with a discussion on distribution management issues. The principles of a query grammar for expressing

location-dependent queries in indoor environments are presented in Section 5.2. Supported database
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operations and additional clauses for enriching query semantics and user preferences are introduced.

A specific operator for representing and managing location granules is provided, which reflects the

hierarchical structure of the environment. Moreover, motivating examples of location-dependent

queries are illustrated to show the potential behind those query semantics.

5.1 Continuous query processing architecture

This section presents the general architecture proposed for the continuous processing of several types

of location-dependent queries in indoor environments. First, the main principles and assumptions on

how moving objects are handled and to what extent they are expected to cooperate. The principal

components considered in the architecture are then introduced, with especial focus on route and

distribution management issues.

5.1.1 Principles

Our approach assumes that moving objects cooperate with a given system by providing up-to-date

location data when needed. Thus, a minimum intervention of a user device is required for query

processing by communicating the location of the user to the system according to a certain location

update policy [Wolfson et al., 1999a]. The mobile devices of the users are therefore not overloaded

with additional query processing tasks. As soon as a location update is received from a moving

object involved in a given query, the server starts the reevaluation process by considering the impact

of such updates on the active queries. Accurate location data are assumed to be received in real-time

from an indoor positioning system, based on recent technologies such as MEMS sensors, Wireless

fingerprinting, and magnetic fields [Liu et al., 2007; Gu et al., 2009; Ray et al., 2010; IndoorAtlas,

2012].

For each location-dependent query, the following terms are used (as suggested in [Ilarri et al.,

2006a]). A reference object denotes an object that represents the reference for a given location-

dependent query (e.g., for a range query, the object that indicates the centre of the range). A

target object represents an object of interest to a given outstanding query, and which belongs to

a specific target class. It is worth noting that no constraints are imposed on the movements and

directions of the reference and target objects. Accordingly, a reference object is assumed to be

either in a static location or moving freely in a spatial network with dynamically changing edge

weights. Similarly, a location-dependent query can request information about static or dynamic data,

depending on whether the target objects are moving or not. For instance, a reference/target object

could be a person or a point of interest -POI- (e.g., a room). Therefore, a unique combination of
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challenges arises, as the proposed architecture must be able to continuously process different kinds

of location-dependent queries, and to take into account additional contextual information, such as

the time-dependency and the user profiles (e.g., some areas may be restricted to specific kinds of

users, such as the security personnel), as well as the hierarchical layout of the indoor environment.

The general query processing flow is illustrated in Figure 5.1. Navigation-related queries

are processed in accordance with this flow, and are executed continuously while the request is not

explicitly cancelled by the user. Unlike many query processing approaches that focus on specific types

of queries and on specific scenarios, this architecture has the advantage of supporting many different

types of queries without making any restrictive assumption. The features that are managed in the

environment are: (i) mobile persons, each of them carries a mobile device that allows computing

his/her current location and communicating it with other entities, and (ii) objects of interest, which

contribute to enrich the context of the query and are used by the user to provide his/her preferences

and constraints (e.g., by using a digital user interface). These features are managed by a set of fixed

servers, each of them in charge of: (1) maintaining a part of the hierarchical spatial graph that

represents the environment (i.e., a part of the graph covering a certain spatial area); (2) managing

data and communicating with objects located within its area; and (3) executing queries or parts of

queries whose data are locally available.
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Figure 5.1: Execution of location-dependent queries in indoor environments
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5.1.2 Architecture overview

The main phases of the query processing architecture are illustrated in Figure 5.1 and can be

described as follows:

Phase 1 and 2. A user interacts with the system interface to issue a query. The system transforms

the query expressed in a natural or high-level language into an SQL-like format, as proposed in

[Ilarri et al., 2006a]. We assume that an expert user can also directly issue an SQL-like query based

on the syntax described in Section 5.2.

Phase 3. Parsing a query implies lexical, syntactic, and semantic analysis of the query expressed in

an SQL-like format in order to derive a valid internal representation (e.g., a query graph [Kossmann,

2000]).

Phase 4. A query plan is prepared that is composed of all the operations that are required to

appropriately answer the user request. This not only includes typical relational operations (e.g.,

selection, projection, join, etc.), but also external calls to specific functions that implement new query

operators that are defined and discussed in the next section. For optimization purposes, some typical

transformations can take place, such as the removal of redundant predicates, the simplification of

complex expressions, etc. In addition, for each constraint in the query, the reference object and its

target classes are obtained. Furthermore, information regarding the location granules (discussed in

the next section) of the reference and target objects is retrieved, if the use of location granules is

specified in the query.

Phase 5. All navigation-related queries that need to expand routes either towards a specified

target object (e.g., an optimal path search towards a destination) or in all directions with a maximum

threshold (in the case of range queries), are directed to the route manager in charge of determining

the candidate routes based on user-defined preferences and contextual data (e.g., information about

user profiles and descriptions of objects of interest). The main tasks performed by the route manager

are explained in Section 5.1.2.1.

Phase 6. Obtaining standard SQL queries from an SQL-like query is required, since data elements

are assumed to be stored in relational databases, which only accept standard SQL. A location-

dependent query is broken up into standard queries and operations that are organised in an execution

plan to optimise system resources. Not all the operators are necessarily translated to equivalent
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standard queries; for instance, operators related to route computation are directly handled at the

algorithmic level. The candidate routes obtained by applying such operators could, however, be used

as the input data to complete the construction of some standard queries.

Phase 7. In this phase, candidate routes along with an execution plan including standard queries

and operations arrive at the query execution engine. Timestamped data about locations of relevant

objects as well as other contextual data are associated with operations, so that the query engine can

execute these queries appropriately. The continuous processing of a query means that the execution

of simple queries and operations is kept alive until receiving an explicit request from the user to

cancel that query. Therefore, the engine must repeatedly perform the following tasks: (1) update

simple queries with the locations of relevant objects and with the new set of relevant routes, if

needed; (2) execute standard queries; (3) correlate the results of the different subqueries; and finally

(4) present the answer to the user.

5.1.2.1 Route management

Two main tasks are performed by the route manager in order to execute navigation-related queries:

Task 1: Obtaining an initial answer. Depending on whether a target object is specified or

not, different strategies are applied. A specified target implies expanding a directed tree routed at

the node where the reference object is located, and oriented towards the target object. For a static

shortest path problem, this can typically be solved using Dijkstra’s or A*’s algorithm [Dijkstra,

1959; Hart et al., 1968]. A more complex and challenging scenario for estimating the route cost

and computing the optimal path arises when considering parameters such as dynamic edge weights,

a hierarchical graph structure and, most importantly, the need for an incremental approach for

continuous path search with moving reference and target objects.

In a range query, a maximum threshold or a radius is specified instead of a target object.

Therefore, all the qualifying objects located within this radius are retrieved. A slightly different

strategy consists of expanding all the routes whose network distance from the source node is less

than or equal to the specified radius. Once again, this typical problem becomes significantly more

complex when incorporating the aforementioned elements. New path and range search algorithms

that can appropriately deal with all these challenges are introduced in Chapter 6.

Task 2: Maintaining the answer up-to-date. Incremental search algorithms are required in

order to execute continuous location-dependent queries, without having to solve each search problem

independently from scratch [Sun et al., 2009; Yuan and Schneider, 2010]. Incremental search implies
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reusing information from previous searches in order to obtain the current result adaptively. In

the case of navigation and range queries, a route planner needs to maintain the set of relevant

routes up-to-date, especially when dealing with moving objects. For a navigation query, this means

transforming the search tree to an updated tree depending on the movements of objects and other

changes in the environment. In a range query, this implies either expanding new sub-trees from

boundary nodes (i.e., leaves) or eliminating some of them if the new network distance exceeds the

specified threshold.

5.1.2.2 Distribution management

Another component that contributes to the process of refining candidate routes and to the execution

of queries is the distribution manager. The architecture for processing continuous location-dependent

queries over a large space should consider scalability and performance requirements. When considering

a large indoor space, a decentralised approach should therefore be proposed to alleviate performance

problems when answering continuous queries and managing the corresponding data about moving

objects [Gedik and Liu, 2006; Ilarri et al., 2006a]. This approach makes no assumptions about either

the number (one or many) of computers deployed in the environment or the spatial zone that should

be managed by each computer. Therefore, decisions about data distribution management can be

taken at the application level.

Let us consider the sample scenario described in Chapter 4. A three-storey building could

be managed by deploying three servers, one for each floor, so that a hierarchical graph is created

to represent each floor and stored in the corresponding server1. Consequently, (sub)queries and

operations whose data are locally available are computed independently and results are communicated

to other servers, if needed, or to the user if no other dependencies exist. Therefore, two challenging

tasks must be performed by the distribution manager in order to support a distributed query

processing:

1. Keeping track of the relevant servers required to execute a given continuous query. One can

observe that the set of relevant servers changes depending on the locations of the reference and

target objects. In the scenario mentioned above, a user from the Linguistics Department located

on the first floor may want to reach his/her colleague currently located on the second floor. This

scenario needs the first and second servers to be involved in the path planning query. If the target

colleague moves down to the ground floor, the distribution manager must detect that the target

leaves the area that is currently being watched and then, based on the new location of the target,

1Nodes corresponding to a staircase between two floors could be assigned to the server of either of such floors.
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the third server should be added to the set of relevant servers.

Therefore, each server is considered to be in charge of keeping (and providing) information about

moving objects located within a fragment of the hierarchical data model. Then, for a given query

in an indoor environment, a path or a set of paths, that can change dynamically along time, is

computed. In this particular scenario, a path between the reference object (i.e., the query issuer in

this example) and the target colleague is computed. On the contrary, in the case of a range query

(which requests the objects that satisfy the specified constraints and are located within a certain

radius from the reference object), the set of all the potential paths within the radius specified is

computed. From this set of paths, the set of relevant servers for the query is derived. Therefore,

queries that refer to a specific spatial area only require the service of a small subset of servers.

This optimisation phase has more important effects in large spaces (e.g., a campus with several

buildings or in scenarios with a high number of moving objects), where using only the relevant servers

can significantly reduce the query processing overhead. It should be noted that the information

about the hierarchical graph itself is also distributed2. In that case, some nodes in the subgraph

stored in a server actually represent entry nodes in another subgraph cached in a different server.

Such nodes store the information needed to contact the other server.

2. Computing the answer in a distributed environment. Once the relevant servers have been identified,

each server is queried in parallel to retrieve the objects located within the relevant fragments of

the graph. This query has to be executed as a continuous query, as the relevant objects may move

continuously. Moreover, objects’ movements and changes in the environment can lead to changes in

the set of relevant paths, which may in turn modify the set of relevant servers. Therefore, the query

processing is assumed to be executed according to a certain refreshment period (as in other works,

such as [Ilarri et al., 2006a]), since the answer can change continuously.

Thanks to the distribution management, this architecture is generic and can be easily adapted

to meet the requirements of a specific scenario. It works in small scenarios where a single server is

enough as well as in scenarios that require a higher number of servers.

5.2 A language for continuous location-dependent queries

Several types of queries, such as navigation, range, and nearest neighbour queries, are of interest in

an indoor environment. In order to improve query expressiveness, a query grammar is introduced to

2Nevertheless, it could also be stored in a centralised manner, as the proposal is general enough to support any

scheme.
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represent those queries. The detailed syntax of the types of queries considered in this grammar is

illustrated in Figure 5.2. This grammar supports navigation queries (of key importance in context-

aware indoor navigation systems), and incorporates some other preferences and semantics in the

query model. For example, this grammar includes operators (e.g., All-routes) and constraints (e.g.,

Stop-vertices) used for navigation queries and inspired by [Booth et al., 2009], which define spatio-

temporal restrictions and preferences on the resulting path. In the grammar presented in Figure 5.2,

non-terminals start in upper-case and literals are in italics (reserved words) or in lower-case. The

following description of the query language highlights the main elements involved in the definition of

the queries.

5.2.1 Principles

The query semantics defined in this grammar provide the user with the ability of expressing

navigation-related queries in a straightforward manner. Moreover, user preferences are supported

at different levels. For instance, a user can specify the optimization criterion (i.e., length or time)

on which query computation will be based. Moreover, intermediate stops can be incorporated into

query processing which represent some points of interest to the user. Furthermore, users can specify

the class of objects that have certain properties or people that share a common interest with them

(e.g., friends). Furthermore, queries can take place at different levels of granularities according to

user’s preferences. A main concern of this approach is to be able to appropriately represent location

information at different levels of abstraction, thus supporting the hierarchical indoor data previously

described.

On the modelling side, the concept of location granule, first introduced in [Ilarri et al., 2011],

represents a location at a given level of granularity (i.e., a node at the base level of the hierarchical

data model, a room, a floor or a building) . The idea is that it should be possible to express the queries

and retrieve the results according to a given location granularity specified by the user. Location

granules have an impact on: 1) the presentation of results; 2) the semantics of the queries; and 3) the

performance of the query processing (see Section 5.2.3). Additional parameters are implicitly taken

into account with the aim of providing more appropriate results depending on the user’s context.

Indeed, all path computations (i.e., network length and travel time) are time-dependent. In addition,

the answer to a given query depends on the user profile as described in Chapter 4. Even though

those parameters are not explicitly represented at the query level, the result to a given query will

always depend on them.
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General query structure

Query → (Standard-query | Navigation-query)

Standard-query → select (Attr-Projections | ‘*’) from Class-names

(where Conds)?

Navigation-query → select (Attr-Projections | ‘*’) from All-routes-

expression (‘,’ Class-names)* (with Stop-vertices)?

(where Conds)? (optimization-criteria)?

Attr-Projections → Attr-Loc-Select (‘,’ Attr-Loc-Select)*

Attr-Loc-Select → attribute | Loc-Select

attribute → Qualified-attr | Unqualified-attr

Qualified-attr → Class-name ‘.’ Unqualified-attr

Loc-Select → Object-id ‘.’ ‘loc’ | gr ‘(’Map-id ‘,’ Class-name ‘)’

| gr ‘(’Map-id ‘,’ Route-id ‘)’

Class-names → Class-name (‘,’ Class-name)*

All-routes-expression → All-routes ‘(’ Loc-Ref ‘,’ Loc-Target ‘)’

Loc-Ref → Object-id (‘.’ ‘coord’)? | gr ‘(’Map-id ‘,’ Object-id ‘)’

| gr-map ‘(’Map-id ’,’ Gr-id ‘)’ | Vertex-id

Loc-Target → Class-name | Object-id | Vertex-id ‘.’ ‘coord’ | gr

‘(’ Map-id ‘,’ Class-name ‘)’

Stop-vertices → Stop-vertex (‘,’ Stop-vertex)*

Stop-vertex → Vertex-id

optimization-criteria → (minimize | maximize) Measure

Measure → time | distance

Conditions can be standard conditions on attributes or location-dependent conditions

Conds → Cond ((and | or) Cond)*

Cond → (Bool-Cond | LDQ-Cond)

Bool-Cond → attribute Comp Value |

intersect ‘(’ Vertex-set ‘,’ Vertex-set ‘)’ |

Value IN Vertex-id ‘.’ POI

Location-dependent conditions

LDQ-Cond → inside ‘(’ Args-Inside ‘)’ | nearest ‘(’ Args-Nearest

‘)’ | ...

Args-Inside → Radius ‘,’ Loc-Ref ‘,’ Loc-Target

Args-Nearest → K ‘,’ Loc-Ref ‘,’ Loc-Target

Radius → Real Units

Basic grammar productions

String → ([a-z] | [A-Z] | [0-9])+

Real → ([0-9]+) (‘.’ [0-9]+)?

K → [1-9] [0-9]*

Class-name → “ String ” /* Name of a class of objects */

Unqualified-attr → “ String ” /* Name of a class attribute */

Object-id → “ String ” /* Identifier of an object */

Map-id → “ String ” /* Identifier of a granule map */

Gr-id → “ String ” /* Identifier of a granule */

Vertex-id → “ String ” /* Identifier of a vertex */

coord → ‘(’ Real ‘,’ Real ‘)’ /* Two dimensions are assumed */

Units → meters | kilometres | ...

Comp → ‘=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘<>’

Value → ([0-9]+) | “ String "

POI → “ String " /* A point of interest */

Figure 5.2: Query grammar for location-dependent queries in an indoor environment
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5.2.2 Query semantics

In the general structure of the query language, two kinds of queries are identified: the former

typically represents an SQL standard structure (Standard-query) along with specific kinds of location-

dependent constraints, which are mainly used to express range and nearest neighbour queries. The

latter (Navigation-query) represents navigation queries that incorporate route computation into the

query processing while optimising distance/time criteria.

For a navigation query, the 〈 FROM clause 〉 contains an external call to the All-routes operator,

which has a general syntax as follows: All-routes(Loc-Ref, Loc-Target). This operator returns a

non-materialised set of tuples representing valid routes between the current locations of the reference

and target objects. A route is a sequence of nodes and edges that can belong to different levels of

granularity, which is determined by taking into account the context-dependent data integrated into

the hierarchical data model. As a non-materialised table, the set of tuples (routes) obtained as a

result of this operator are generated at runtime, and used only to execute the corresponding query.

Each generated route is defined as: route (route-id, source-vertex-id, target-vertex-id, 〈v1-id, e1-id,

v2-id, e2-id, ..., vk-id〉, length, time), where route-id is a route identifier automatically assigned by

the system when the route is computed. The Loc-Ref and Loc-Target arguments may correspond to

either a “Vertex-id” or to the locations of the reference and target objects, respectively, but they

can also be interpreted as the location granules that contain the corresponding objects, as discussed

below. Moreover, Loc-Target can refer to the class name of objects of interest (target objects); this

is used, for instance, in an inside constraint to retrieve all the objects of a given type.

The 〈 WITH Stop-vertices 〉 clause is an optional statement that expresses a user preference

implying that the route must go through some place(s) that is(are) of interest to the user. Several

Stop-vertices can be specified within a single query, and it is assumed that vertices are processed in

the order they appear in the query. Furthermore, two different optimisation criteria are applied: time

and distance, which can be considered based on the time-dependent functions defined in Chapter 4.

In addition to classical predicates presented in the standard structure of the query, two kinds of

location-dependent conditions can be expressed in the 〈 WHERE clause 〉: inside(Radius, Loc-Ref,

Loc-Target) and nearest(K, Loc-Ref, Loc-Target).

A constraint inside is applied when performing a continuous range query processing, which

takes into account the radius as a maximum threshold to consider, and is used to build the set of

routes around the reference object, whose network distances are less than or equal to the radius.

The nearest constraint is expressed to process continuous k nearest neighbour queries, by specifying

the class name of objects of interest in Loc-Target, so that the k objects of interest that are the

closest to the current location of the reference object are retrieved.
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5.2.3 Managing and representing location granules

The concept of location granule, first introduced in [Ilarri et al., 2011], is used and adapted to the

context of indoor environments. A location granule identifies a set of fine-grained locations (i.e.,

geometric coordinates of vertices in the base graph) under a common name. This is completely

consistent with the hierarchical spatial graph proposed in Chapter 4. The use of location granules

allows to formulate queries with a location resolution which is appropriate for the intended application.

With them, it is possible to formulate queries using the location terminology required by the user

(e.g., vertices at the fine-grained level, rooms, floors, and buildings). For example, a user may be

interested in persons that are near the room where another (moving) object is currently located

(see Example 1 in Section 5.2.4). In such a case, the location granule is set to the room level. The

operator gr is a shorthand for granule and returns the location granule associated with a certain

object according to a specified granule map (i.e., a named set of granules). The use of location

granules can have an impact on:

• The presentation of results. The user may want, for example, to retrieve the precise location of

the objects in the answer to a given range query. Alternatively, he/she may prefer a different

location granularity (e.g., the rooms that contain the objects) as it is more appropriate for

his/her context. The answer can be presented using different mechanisms (e.g., different types

of graphical, sound-based, or textual representations), which are independent of the required

location granularity.

• The semantics of the queries. It is possible to define the queries using a specific location granule.

In this case, the answer to the query depends on the interpretation of the location granules.

For example, the user may be interested in a specific class of objects within a certain threshold

that are near the room where another object is currently located. In this example, the user

does not need to know the exact locations of these objects. Therefore, the management of

the granules must be implicitly performed, and the search should be based on expanding the

location hierarchy (i.e., at the room level) instead of the fine-grained graph.

• The performance of query processing. Some tasks in the continuous query processing demand

less resources when coarse location granules are considered. Thus, the objects would move less

frequently between granules, and keeping track of their current locations is easier than if precise

locations should be considered.

As depicted in Figure 5.2, the location granule operator can be referenced in the SELECT

clause, the FROM clause and/or the WHERE clause of a query, depending on whether the granules

are used for the presentation of the results and/or for the processing of constraints or routes. For
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visualisation purpose, a location granule operator can be used in a Loc-Select projection in the

SELECT clause, according to the request submitted by the user, to show the result at the desired

level of granularity; for example, SELECT gr(‘room-level’, Person) can be used to project the rooms

where the persons retrieved by the query are located. In addition, the gr operator can be applied on

a route, which is the result of a navigation query, to show the sequence of nodes and edges obtained

in the route at a chosen abstraction level. For instance, SELECT gr(‘room-level’, Routes.id) could

be used to illustrate the sequence of rooms of the valid route, which is made of nodes and edges

of different levels (e.g., fine-grained and exit hierarchy levels). In this case, nodes and edges of the

resulting route are abstracted to the room level, and the corresponding nodes of this chosen level are

shown.

On the other hand, the same gr operator can be specified for processing-oriented uses as a

Loc-Ref and/or Loc-Target argument within the FROM clause (i.e., in an All-routes-expression),

and/or within the location-dependent query constraints (i.e., inside and nearest constraints), in

reference to the locations of the reference and target objects, so that they can be interpreted as

granules according to a given granule map (i.e., a given level of granularity). For instance, inside(100

meters, gr(‘room-level’, ‘o1’), Person) is a constraint satisfied by the persons within 100 meters

around the room where object o1 is located (Example 1 in Section 5.2.4); similarly, inside(100

meters, gr(‘room-level’, ‘room12’), Person) is satisfied by the persons within 100 meters around

room 12 (note that, in contrast to the previous example, the reference object here is not moving). On

the contrary, inside(100 meters, ‘o1’, Person) would be used when the desired range is determined

around object o1 itself; it should be clarified that gr(‘micro-level’, ‘o1’) is equivalent to o1, that is, a

fine-grained granule corresponding to the current fine-grained location of the object is considered

by default when the gr operator is not explicitly expressed. Consequently, gr(Map-id, Object-id)

indicates that the location of the object named Object-id must be interpreted as a granule in the

location granule map identified by Map-id. A location granule map is a set of granules at a given

level of abstraction (e.g., room or floor level). Similarly, gr(Map-id, Class-name) generalizes this

concept to all the objects of a given class.

Different operations are defined based on location granules and are used for location-dependent

query processing. For instance, contains(Granule-id, Object-id) returns whether a given object is

currently located within a specified granule. getGranules(Map-id, Class-name) returns all those

granules that contain objects of interest of a given class name. getDirectGranule(Map-id, Object-id)

returns the direct granule (at the upper level of granularity) that contains the current location of

that object.
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5.2.4 Motivating examples of location-dependent queries

This section presents typical examples of location-dependent queries. These examples follow the

scenario introduced in Chapter 4. In particular, we consider navigation queries, range queries, nearest

neighbour queries, and also other specific types of queries.

Navigation queries

The continuous processing of navigation queries is based on a hierarchical path search that relies

on a bottom-up technique with different levels of abstraction (i.e., fine-grained, room, floor, and

building). The hierarchical path search starts from a user-specified level of granularity, depending

on the location granule specified in the request and which contains the initial query point. Below

are some typical examples of navigation queries:

1. A user identified by ‘userID’ wants to find the fastest path from his/her current location to

the meeting room ‘MR01’ of the Computer Science Department3 that goes through a break-room,

showing the result at the room level:

SELECT gr(‘room -level’, RO)

FROM Room AS R, Person AS P,

All -routes(gr(‘micro -level ’,P.id),R) AS RO

WITH Stop -vertices v1

WHERE R.id = ‘MR01’ AND P.id =‘userID ’

AND ‘break -room’ IN v1.POI

MINIMIZE time(RO)

where time(RO) = timestart→goal(tstart) is the estimated time to traverse the path RO from ‘userID’

located at vstart to ‘MR01’. As previously mentioned, the gr operator used in the SELECT statement

returns an ordered set of nodes of the optimal route at the room level.

2. Find the shortest route from person ‘userID1’ to person ‘userID2’, showing the results at the

room level:

SELECT gr(‘room -level’, RO)

FROM Person AS P1, Person AS P2

All -routes(gr(‘micro -level ’, P1.id),

gr(‘micro -level’, P2.id)) AS RO

WHERE P1.id = ‘userID1 ’

3MR01 is a unique identifier of the structural unit specified by the user and which belongs to the Computer Science

Department.
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AND P2.id = ‘userID2 ’

MINIMIZE length(RO)

where length(RO) = lengthstart→goal(tstart) is the time-dependent network distance from ‘p1’ located

at vstart to ‘p2’ located at vgoal.

3. Retrieve the time needed by all my colleagues of the Computer Science Department to reach the

room where I am located:

SELECT MAX(t)

FROM Person As P,

(SELECT RO.time

FROM All -routes(gr(‘micro -level ’,P.id)

, gr(‘room -level’, ‘myID’)) AS RO

MINIMIZE time(RO)) AS t

WHERE ‘C.S. Department member ’ IN P.FD

A similar query could be “Retrieve the time needed to evacuate the building”, which could be

computed as the estimated time needed for the evacuation of the slowest person in the building.

Range queries

Range queries are used to retrieve information about objects or places within a specified range or

area. Some range queries have a static reference object and others have a moving reference object.

Similarly, the target objects of the queries can be static or moving. The continuous processing of

range queries consists in hierarchically expanding all routes whose network distance from the source

node is less than or equal to the specified radius. Examples of such queries are:

1. Retrieve the identifiers of persons accessible at a network distance smaller 100 meters of the room

where object o1 is located:

SELECT Person.id

FROM Person

WHERE inside (100 meters ,

gr(‘room -level’, ‘o1’), Person)

2. Retrieve all the communicating entities accessible at a network distance smaller than 100 meters

of the user identified by ‘userID’ and with a communication range of at least 200 meters:

SELECT CO.id

FROM Object AS CO
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WHERE inside (100 meters ,

gr(‘micro -level’,‘userID ’), CO)

AND CO.communicate = true

AND CO.commRange >= 200

3. Retrieve all the persons who belong to the Computer Science Department and that are accessible

at a network distance smaller than 100 meters of the user identified by ‘userID’:

SELECT P.id

FROM Person AS P

WHERE inside (100 meters ,

gr(‘micro -level’,‘userID ’), P)

AND ‘C.S. Department member ’ IN P.FD

In the previous query examples, the query issuer does not play the role of the reference object of

the query, which shows the generality of the types of queries supported. On the other hand, the

reference object can certainly be the query issuer himself/herself.

k Nearest Neighbour queries

A (K) nearest neighbour query retrieves the (K) objects that meet certain specifications and which

are the closest to a certain object or location. As in the case of other location-dependent queries,

this kind of queries can also be issued by either a static or a dynamic reference object, and applied

to either static or dynamic data. Let us show some examples:

1. Find the nearest available bathroom to the user identified by ‘userID’:

SELECT BR.id

FROM Bathroom AS BR

WHERE nearest(1, gr(‘micro -level ’, ‘userID ’), BR)

AND BR.state = ‘free’

2. Find the two nearest colour printers to each member of the C.S. department:

SELECT Pr.id , P.id

FROM Printer AS Pr, Person AS P

WHERE nearest(2, gr(‘micro -level ’,P.id), Pr)

AND ‘C.S. Department member ’ IN P.FD

AND Pr.type = ‘ColourPrinter ’

3. Retrieve the nearest extinguisher to each person located in buildings where a fire alarm is beeping:
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SELECT P.id , Ex.id

FROM Sensor AS Ex,

(SELECT Person.id

FROM Person , Sensor AS FS

WHERE inside(0,gr(‘building -level ’,FS.id),P)

AND FS.state = ‘active ’

AND FS.type = ‘Fire -Sensor ’ ) AS P

WHERE nearest(1,gr(‘micro -level’,EX.id),P)

AND Ex.type = ‘Extinguisher ’

Reachability queries and reverse range queries

Finally, examples that show the relevance of the proposed query language and implicitly embed

interaction spaces associated with each object are hereafter illustrated. Reachability queries check

for places and/or objects that are reachable from the current position of the reference object. Indeed,

those queries are implicitly processed as range queries by assigning a default threshold value θ to the

inside constraint, which is large enough to determine whether the target object/place is reachable or

not.

1. Reachability queries:

•Is the room where the object ‘objID’ is currently located accessible to the user identified by

‘userID’? This request should check whether the room that contains ‘objID’ is within the range

of ‘userID’ having a maximum threshold value set to θ:

SELECT Room.id

FROM Room

WHERE inside(θ meters ,

gr(‘micro -level’,‘userID ’),

gr(‘room -level’, Room))

AND inside (0 meters ,Room.id,‘ObjID’)

•Retrieve all the rooms that are accessible to the user ‘userID’:

SELECT Room.id

FROM Room

WHERE inside(θ meters ,

gr(‘micro -level’, ‘userID ’),

gr(‘room -level’, Room))

•Retrieve all the floors of the building that have at least one room accessible to the user ‘userID’:
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SELECT DISTINCT gr(‘floor -level’, Room)

FROM Room

WHERE inside(θ meters ,

gr(‘micro -level’, ‘userID ’),

gr(‘room -level’, Room))

2. Continuous reverse range queries. Retrieve all the entities of type ‘Sensor’ that are covering the

user ‘userID’ can be considered as an example of a continuous reverse range query, according to

the definition provided in [Xu and Jacobsen, 2007], since it continuously checks whether a moving

object is inside the range of some sensor:

SELECT S.id

FROM Sensor AS S, Person AS P

WHERE inside(S.radius , S.id , P)

AND P.id = ‘userID ’

The different examples shown in this section which correspond to several kinds of queries emphasize

the potential behind this query grammar in supporting location-dependent queries. This list of

examples is definitely not exhaustive since many other scenarios can be imagined, and the language

is sufficiently flexible to express other queries in other contexts.

5.3 Discussion

The architecture presented in this chapter provides a continuous query processing approach that can

be applied on both static and moving objects, and proposes a generic execution flow for different

kinds of location-dependent queries in indoor environments. The query language grammar supports

navigation-related queries and incorporates other preferences and semantics into the query model.

This language handles the granularity of moving objects’ locations, thus favouring the hierarchical

indoor data model previously presented.

Although the management of location granules during query processing introduces a certain

overhead due to some extra computations, this cost is limited and affordable. Indeed, the use of

location granules together with incremental processing help reducing the communication overhead.

Moreover, dealing with coarse location granules reduces the number of location updates that must be

communicated to the mobile device. Similarly, efforts needed to keep track of the current positions

of the reference and target objects are also smaller when coarse location granules are specified in

the query constraints. Query processing issues behind the operators developed in this chapter are



130
CHAPTER 5. A LANGUAGE FOR CONTINUOUS LOCATION-DEPENDENT QUERIES

IN INDOOR ENVIRONMENTS

presented in detail in Chapter 6. Particularly, the All-routes operator and the inside constraint

are executed by applying incremental and hierarchical approaches to design path and range search

algorithms, respectively.
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This chapter presents several solutions to address the algorithmic issues behind processing

continuous location-dependent queries. The algorithms introduced in this chapter constitute the core

functions behind the operators and constraints defined in the query grammar introduced in Chapter

5. Algorithms for continuous path and range searches are developed on top of the hierarchical data

model described in Chapter 4. These algorithms take advantage of the different levels of abstraction

of the data model, and develop an incremental processing paradigm in order to provide an efficient

and scalable solution for indoor navigation systems.

This chapter contains the following sections: Section 6.1 highlights the need for an incremental

processing paradigm as well as for a hierarchical organization of the underlying data model, in

order to improve continuous query processing performance. Section 6.2 presents two complementary

algorithms to process indoor path queries, by first introducing the hierarchical path search and then

by discussing the incremental processing of those queries in cases where both the reference and target

objects are freely moving in space. Section 6.3 introduces several algorithms for continuous processing

of indoor range queries. It first presents a mechanism for Hierarchical Range Network Expansion
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(HRNE) that extends the RNE approach discussed in Chapter 3. The incremental algorithm for

continuous range search is then described. Finally, Section 6.4 emphasizes several points on query

processing.

6.1 Hierarchical and incremental processing of continuous LDQs

In contrast to conventional location-dependent queries that consider static reference and/or target

objects, the algorithms presented in this chapter seek maximum generality by assuming that target

objects can be either in a static location or moving freely in space. Therefore, continuous reevaluation

of the query is required while keeping track of the relevant information of objects involved in the

processing. An incremental processing paradigm is used for continuously reevaluating such queries,

so that previous searches help finding the new answer without recomputing everything from scratch.

This requires to build a specific search tree adapted to each kind of queries addressed in this chapter.

This search tree is created and dynamically maintained for each query, so that elements are added

and/or removed according to a certain policy.

On the other hand, hierarchical search algorithms became important tools for computing

shortest paths and other services in time-critical applications like Intelligent Transportation Systems

(ITS), due to the growing size of spatial networks [Shekhar et al., 1997]. The algorithms introduced

in this chapter rely on the hierarchical data model described in Chapter 4. Particularly, path

planning and network expansion are performed hierarchically by using the different hierarchies of

the model, thus decreasing computational complexity and favouring a promising solution to alleviate

performance and scalability issues in location-dependent query processing. The following sections

provide more details on how both the hierarchical and incremental aspects are incorporated in query

processing.

6.2 Continuous processing of indoor path queries

For a matter of simplicity, the query processing approach assumes that the reference object will follow

its optimal path towards the target. Therefore, incremental search algorithms are required in order to

efficiently execute continuous location-dependent queries, thus avoiding solving each search problem

independently from scratch [Sun et al., 2009]. Incremental search implies reusing information from

previous searches for each query to obtain the current result without having to recompute everything

each time. This section first presents an overview on the approach for the continuous processing of

path queries is given. Secondly, a detailed description of the hierarchical search and the continuous
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processing of indoor path queries is provided, along with pseudocodes of the corresponding algorithms.

6.2.1 Algorithm principles

Path queries encompass all the queries that directly help the users to find and reach points/objects

of interest, by providing them with navigational information while optimizing some criteria such as

the traversed distance or travel time. Let us introduce an approach for the continuous processing of

path queries that relies on a bottom-up technique, and which uses two levels of abstraction, that is,

a fine-grained layer at the first level and the exit hierarchy at the second level of abstraction1. The

search starts from a user-defined level of granularity (depending on the location granule specified in

the request and which contains the initial query point) to the highest level of abstraction to find the

optimal route at an abstract level. Refinement processes are executed, when needed, to find the

exact location of the target object. The main steps of the process can be summarized as follows:

• Step 1: Find the optimal path within the initial granule until reaching the optimal exit.

• Step 2: Search at the abstract level (exit hierarchy) for the optimal path from the exit of the

initial granule to the granule containing the target object.

• Step 3: Find the optimal path within the last granule to the target object, starting from the

corresponding entrance of the granule.

• Step 4: Start a continuous path search by taking into account updated locations of both the

reference and the target objects (considering the general case of moving targets). This implies

transforming an initial search tree rooted at the previous location of the reference object to an

updated tree rooted at its current location. The process continues by either expanding new

subtrees from the leaves towards the target and/or by removing subtrees that are no longer

needed.

The approach retained for processing continuous path queries is refined by two complementary

algorithms. Steps 1 to 3 represent the first iteration, which performs the hierarchical path search

algorithm, presented in detail in Algorithm 1. Step 4 addresses the continuous processing of the

query, which is presented in detail in Algorithm 2. Those are generic steps that may or may not be

completely executed depending on whether the reference and the target objects are moving or not,

1The location hierarchy presented in Chapter 4 could also be used if exact positions of objects of interest and

accurate distances are not critically important for the user.
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and on the location granule specified in the query. Two algorithms are described in the following

section, which represent the implementation behind the All-routes operator defined in Chapter 5.

6.2.2 Hierarchical and incremental path search algorithm

Algorithms 1 and 2 introduced in this section perform continuous path queries in two phases by taking

advantage of the previously mentioned techniques. This approach is considered as a hierarchical and

incremental version of A* applied to indoor moving objects. It is based on the hierarchical data

model previously described in Chapter 4. Without loss of generality, a complex path query that

requires performing all the steps described at the beginning of Section 6.2.1 is considered, which in

the example given implies finding an optimal route from person p1 to person p2, assuming that p2

is moving freely in space. Other cases, for instance where the target object is in a static location,

can be easily tackled by performing a first iteration of the whole process and then skipping other

unnecessary processing tasks (i.e., only Algorithm 1 would be executed). For the sake of clarity,

handling granules is also not detailed in the pseudocodes. Scenarios where, for instance, granules at

the room level are considered for the reference and/or the target objects, are easier to process and

can be directly derived from this general scenario since no fine-grained network search is required.

As a variant of A*, our approach keeps two main data structures: 1) the CLOSED list contains

exactly all the nodes that have been expanded (i.e., generated and added to the search tree); and 2)

the OPEN list comprises all the nodes of the outer perimeter of the CLOSED list (i.e., outgoing

neighbours of the leaves in the CLOSED list) that are not yet expanded. For each node v in the

CLOSED list, the following properties are associated:

• The network distance from v to current location of the reference object vstart is computed,

and referred to as the g-value g(v); it holds that: g(v) = g(parent(v)) + lengthparent(v),v, and

g(vstart) = 0.

• An estimated heuristic value to the target node vgoal is applied, and referred to as the h-

value, h(v), which helps propagating a “wavefront” expansion towards the target node. h(v)

is computed as follows: h(v) = Ed(vstart, vmidway1) + pathLengthEXs,Exg + Ed(vmidway2,vgoal),

where Ed(v, v′) is the Euclidean distance between two nodes at the fine-grained level, vmidway1

and vmidway2 represent two midway nodes that belong to the reference and the target exits,

respectively, and pathLengthEXs,Exg is the precomputed optimal network distance between

the optimal exit at the start granule and the corresponding target exit. All-pairs optimal

network paths between exits are precomputed and stored by using the pathLength() function.

pathLength() is equal to zero if the reference room is equal to the target room or if the dimension
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of the optimal exit path is equal to one.

• In addition, each generated node is stored along with its path to the start node, a pointer to

the predecessor node, the f(v) = g(v) + h(v) value, and whether it has been expanded or not.

Notice that g(v) and h(v) are also time-dependent functions since they are computed by invoking

the other time-dependent methods previously defined. The pointer to the parent node, parent(v),

is assigned in order to identify a reverse optimal path from the current node to the start node by

following v’s ancestors. The algorithm expands the node v with the smallest f(v) = g(v) + h(v)

from the OPEN list, and terminates when the OPEN list is empty or when the target node has been

expanded.

Two main methods are frequently invoked during the execution of Algorithms 1 and 2. They

are explained as follows:

• The adaptedAstar(source, target, inPath, out outPath, out outLength) method is used by

the hierarchical path search for computing the fine-grained paths at the reference and the target

granules. This method can also manage the different layers of the hierarchical data model. It

can perform searches either on the fine level separately or on the exit hierarchy to find optimal

exit paths. The main feature of this method is that it uses a priority-queue-like data structure

which is indexed based on the value of f(v) and represents the CLOSED list. A node with

the minimum f(v) is indexed on the top of the queue and thus retrieved first. Different values

are dynamically inserted in the priority queue and used afterwards for continuous processing.

The inPath parameter of the adaptedAstar(...) method is used by the hierarchical path search

to concatenate searches at different layers. Otherwise, inPath is considered to be NULL. An

expansion procedure expand(v) is performed throughout this method, and consists of checking

for each neighbour v′ of v whether it belongs or not to the OPEN list. If v′ /∈ OPEN, the method

generates v′ by setting g(v′) to g(v)+lengthv,v′(t), setting its parent to v, and inserting it into the

OPEN list. If v′ is already in the OPEN list, then it checks whether g(v′) > g(v) + lengthv,v′(t);

if so, then the algorithm sets g(v′) to g(v) + lengthv,v′(t), and parent(v′) to v. The way the

heuristic function is computed and other optimizations developed to improve the performance

of the adaptedAstar(...) method are presented in Chapter 7.

• The computeRefTarExits(vstart, vgoal) method is used for computing the optimal exit path

that minimizes the path between the current locations of the reference and target objects. The

result contains an optimal path at the exit hierarchy starting from the granule containing the

reference object and ending with the corresponding entrance at the target granule. Notice that

an optimal exit to a given object’s location should not be necessarily the nearest one in term of
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Algorithm 1: HierarchicalPathSearch(locRef, locTarg, out outPath, out outLength)
Data: S :

⋃

i=1,2 Si : Gi = (Vi, Ei) : hierarchical graph data; q: path query.

Result: A sequence of nodes of the optimal path outPath = {vstart, v2, . . . , vgoal} to the target object where

vi ∈ S1 ∪ S2, and the resulting network distance outLength

// locRef/locTarg: Reference/target object location; g(v) = lengthvstart,v
(t), h(v), parent(v): a

predecessor is associated with each node and for each query; CLOSED: set of expanded

nodes; OPEN: set of boundary nodes;

1 begin

2 CLOSED ←− ∅

3 vstart = getNode(locRef); SGranuleId = getDirectGranule(vstart);

4 OPEN = {vstart}; // A new position implies a new root of the tree

5 vgoal = getNode(LocTarg); TGranuleId = getDirectGranule(vgoal);

6 if SGranuleId = TGranuleId then

7 outRecord = adaptedAstar(vstart, vgoal);

8 outPath = outRecord.outPath;

9 outLength = outRecord.outLength;

10 else

// Retrieve the best pair of exits of the source and target granules, and the

corresponding optimal path

11 optimalExitPath = computeRefTarExits(vstart, vgoal);

12 sourceExit = optimalExitPath[1];

// Step 1: Directed A* in Gmicro from vstart to the source exit

13 select a node vmidway1 such that {vmidway1 ∈ sourceExit.nodeListIds and

vmidway1 ∈ SGranuleId};

14 outPath = adaptedAstar(vstart, vmidway1);

// adaptedAstar implies removing v with f(v) = g(v) + h(v) = min
v′∈neighbours(v)

f(v′) from

OPEN

// And then inserting v into CLOSED

// Step 2: Insert all exits of optimalExitPath into OPEN

15 generate(sourceExit); insert(sourceExit) into OPEN ; parent(sourceExit) = vmidway1;

16 foreach exit e ∈ optimalExitPath do

// All-pairs optimal network paths between exits are already precomputed

17 generate(e); insert(e) into OPEN ; parent(e) = e′; // e′ is the predecessor of e

18 end

// Step 3: Directed A* in Gmicro until reaching vgoal

19 targetExit = optimalExitPath[length(optimalExitPath)];

20 select a node where {vmidway2 ∈ targetExit.nodeListIds And vmidway2 ∈ TGranuleId};

21 currentPath = append(outPath, optimalExitPath);

// The final outPath is obtained by applying a reversePath procedure from vgoal to vstart

following vgoal’s ancestors

22 outRecord = adaptedAstar(vmidway2, vgoal, currentPath);

23 outPath = reversePath(vgoal, vstart);

24 outLength = outRecord.outLength;

25 end

26 end
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distance, but rather the one that optimizes the whole network distance between the reference

and the target objects. This function is invoked when applying the continuous processing of

hierarchical path and range searches.

6.2.2.1 Hierarchical path search

The pseudocode of the hierarchical path search is illustrated in Algorithm 1. Figure 6.1(a) shows an

example of a hierarchical path returned as a first path result between two moving objects. The main

steps performed in this algorithm are explained as follows:

(a) Hierarchical path search (b) 1st scenario: target object is moving

(c) 2nd scenario: target object is changing its current

granule

(d) 2nd scenario: adapting the pair of exits

Figure 6.1: Hierarchical and incremental path search algorithm

• The first part (lines 2 → 4) depicts the initialization of variables by involving the

queryLocation() and getNode() methods, which return the current location of the object

and the corresponding node in Gmicro, respectively. getDirectGranule(v) returns the identifier

of the granule containing v. The getNode method computes the nearest node to the current

location of the moving object.
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• The lines 5 → 8 check whether the current granules of the reference and target objects match. In

that case, no hierarchical search is needed, but instead an invocation the adaptedAstar method

is performed, and a first result is returned. Otherwise, the computeRefTarExits(vstart, vgoal)

method is invoked to retrieve the best pair of exit/entrance that correspond to the source and

target granules, along with the corresponding optimal exit path (lines 10 → 11).

• Step 1: Once the optimal exit path is computed, the algorithm starts the hierarchical path

search by firstly performing a fine-grained search at the reference granule until reaching a

midway node that belongs to the source exit previously identified (lines 12 → 13).

• Step 2: Upon identifying and reaching the first exit of the computed optimal exit path, the

algorithm moves up to the upper level at the exit hierarchy, and inserts all exits of the optimal

exit path into the priority queue (i.e., CLOSED list), so that concatenated paths of two levels of

granularity will be associated to each of those generated exits (lines 14 → 17). The generate(e)

methods sets g(e) to g(v) + lengthv,e(t), and parent(e) to v. This step continues until reaching

the optimal entrance at the target granule.

• Step 3: The hierarchical path search algorithm ends by performing a fine-grained search

starting from an identified midway node at the target granule towards the exact location of the

target, and then by identifying a shortest path in reverse by following vgoal’s ancestors until

reaching the source node (lines 18 → 23).

6.2.2.2 Continuous query processing

A continuous processing of path queries starts at this phase by taking into account the updated

locations of the reference and the target objects. A pseudocode of this algorithm is illustrated in

Algorithm 2. A description of this algorithm is given as follows:

• A fundamental step consists of invoking the hierarchical path search method previously described

in order to build for the first time the search tree, which will be stored in the priority queue

structure (lines 2 → 4). After this step, a first path result is returned to the user, and all

generated nodes in the search tree rooted at vstart are associated with the above mentioned

properties.

• A continuous path search starts with the aim of keeping the initial tree up-to-date. At each

iteration, the algorithm looks for up-to-date locations of the reference and target objects, and

then matches those locations to nodes at the fine-grained network (lines 6 → 8). As long as the

search tree is rooted at the same vstart (i.e., the reference object is not moving) and the target
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Algorithm 2: ContinuousHPath(refObjId, tarObjId)
Data: S :

⋃

i=1,2 Si : Gi = (Vi, Ei) : hierarchical graph data; q: path query; up-to-date location data of

ref/target objects.

Result: A continuous set of optimal paths outPath, and the resulting network distance outLength

// refObjId/tarObjId: Reference/target object identifier; CLOSED: set of expanded nodes;

OPEN: set of boundary nodes.

1 begin

2 locRef = q.queryLocation(refObjId); vstart = getNode(locRef);

3 locTarg = q.queryLocation(tarObjId);

4 [outPath, outLength] = hierarchicalPathSearch(locRef, locTarg);

// At this stage, a complete search tree has been built and stored

// Continuous path search (keeping the initial answer up-to-date)

5 while vstart (= vgoal do

6 previous-vstart = vstart;

7 vstart = getNode(q.queryLocation(refObjId));

8 vgoal = getNode(q.queryLocation(tarObjId));

9 if previous-vstart == vstart and vgoal ∈ CLOSED then

// The answer is returned without extra computation

10 [outPath, outLength] = {reversePath(vgoal, vstart), g(vgoal)};

11 else

12 if previous-vstart (= vstart then

// An updated search tree is being created with a new root vstart

13 updateTreeRootedAt(vstart); // g-values are not affected

14 deleteUnnecessaryNodes(); // Unnecessary nodes from previous CLOSED are deleted

15 completeOPEN(); // Nodes of the outer perimeter are added

16 end

17 if vgoal /∈ CLOSED then

// Tracking of vgoal; check the new optimal pair <exit/entrance>

18 newOptimalExitPath = computeRefTarExits(vstart, vgoal);

19 if (newOptimalExitPath == optimalExitPath) then

20 continue A* in Gmicro with the same OPEN and CLOSED lists until reaching vgoal;

21 else

// vgoal is either nearer to another exit within the same granule or has left

the last granule

22 delete subtree rooted at LastExit from CLOSED;

23 insert not generated exits from newOptimalExitPath into OPEN ;

24 repeat Step 3 of Algorithm 1 starting from parent(newOptimalExitPath[n]) until

reaching vgoal;

25 end

26 end

27 [outPath, outLength] = {reversePath(vgoal, vstart), g(vgoal)};

28 end

29 sleepUntilNextPositionUpdate(minWaitingT ime); // The thread remains asleep while no

location update is performed or the minimum waiting time between iterations (if

specified) has not been consumed

30 end

31 end
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object is located on a node in the CLOSED list, a shortest path can be easily determined in

reverse from vgoal towards vstart (lines 9 → 10).

• When the reference object moves (lines 12 → 15), additional steps to transform an initial search

tree rooted at the previous vstart to an updated tree rooted at the current vstart are needed. Three

main functions are invoked to perform this transformation: 1) The updateTreeRootedAt method

firstly updates pointers to parent nodes at the reference granule so that nodes of the reference

granule are rooted at the new vstart; 2) secondly, the deleteUnnecessaryNodes() method

removes unnecessary nodes from the previous CLOSED list; and finally 3) completeOPEN is

called to add nodes of the outer perimeter of the new CLOSED list to the new OPEN list.

• In case vgoal is not located in the CLOSED list, a new invocation to the computeRefTarExits()

method is performed to determine the new optimal exit path towards the target (lines 17 → 21).

If the new optimal exit path matches the previous one (i.e., this means that the same target

exit is still the nearest one), the algorithm performs a directed search in Gmicro with the same

OPEN and CLOSED list until reaching vgoal (Figure 6.1(b)).

• Otherwise, the target is either nearer to another exit within the same granule or has left the

last granule (lines 22 → 25). In that case, additional checks are performed to detect the last

common exit between the new and previous exit paths. Once determined, the subtree rooted at

that Last exit is no longer needed and will be removed from the CLOSED list, along with the

nodes at the fine-grained level. Instead, a new subtree is created starting from the Last exit

and by inserting exits of the new optimal exit paths, if any, until reaching the new optimal

target exit. Finally, a similar search similar to the one performed in step 3 of Algorithm 1 is

afterwards completed to reach the target (see Figures 6.1(c) and 6.1(d)).

• An optimal path is returned for each iteration from the current location of the reference

object towards the current location of the target object. The sleepUntilNextPositionUpdate()

method is then invoked so that the thread remains asleep until the reference and/or target

objects update their locations. Additionally, to keep the query processing overhead low in

the presence of high location update rates, we may require a minimum time interval between

iterations, by passing an optional argument minWaitingT ime.

Notice that we are refreshing the answer periodically, as advocated in other works such as

[Ilarri et al., 2006a]. This is necessary because the answer will change all the time (even if slightly)

due to the movements of the reference object and the target objects.



6.3. CONTINUOUS PROCESSING OF INDOOR RANGE QUERIES 141

6.3 Continuous processing of indoor range queries

Range queries find and retrieve objects or places of interest within a user-specified range or area.

Those queries support navigation by continuously updating relevant details according to the users’

movements. In our scenarios, ranges are characterized by a circular in which objects of interest

must be located. This section introduces an approach for the continuous processing of range

queries which considers the mobility of both the reference and the target objects. This approach is

based on a hierarchical range network expansion mechanism. The principle behind that approach

is to continuously update the set of visited nodes that compose the range around the reference

object. Furthermore, an indexed data structure referred to as range queue is built as a result of

the hierarchical network expansion. Similarly to the priority queue structure described in Section

6.2.1, this structure maintains several properties associated to the generated nodes, such as the

optimal path from the current node towards the source node. This particular property offers a

significant advantage since it allows the system to provide not only information about whether an

object is inside a specified range, but also to return a complete optimal path to that target object.

Consequently, the result of a continuous range query includes the set of qualifying object identifiers,

their optimal path towards the reference object, and the corresponding network distance. A detailed

description along with pseudocodes for the corresponding algorithms are hereafter provided.

6.3.1 Hierarchical range network expansion

A hierarchical range network expansion (HRNE) is first computed starting from the location of the

reference object in a similar way to the Dijkstra algorithm with multiple destinations and the Range

Network Expansion algorithm [Papadias et al., 2003], see Figure 6.2(a). It consists of a “wavefront”

expansion of the hierarchical network starting from the initial query point in all directions to find all

nodes whose network distances to the source are less than the maximum specified threshold (i.e., the

radius of the range query). The original idea here is that the valid routes are expanded hierarchically

(cf. Figure 6.2(b)). The hierarchical network expansion mechanism is introduced in Algorithm 3

and takes into account the bottom-up approach explained in Section 6.2 to efficiently expand the

valid routes within the specified radius (and considering network-based distances, not Euclidean

distances). The main steps of the hierarchicalNetworkExpansion(refObjId, radius, objectIds[])

algorithm are described as follows:

• Step 1: Gradually expand the valid routes in all directions within the initial granule of the

reference object vstart, located at LocRef , while lengthv,v′(tv) < radius (lines 3 → 4). Nodes

that are temporarily inaccessible or occupied by physical objects are automatically ignored.
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Algorithm 3: HierarchicalNetworkExpansion(refObjId, radius, objectIds[])
Data: S :

⋃

i=1,2 Gi = (Vi, Ei) : hierarchical graph data; q: range query; up-to-date location data.

Result: ResultSet: Returns a SETOF [targObjID, outPath, outLength] for the qualifying target objects

// C ⊆ objectIds[]: candidate set; LocRef; g(v); parent(v); RANGE: set of nodes around the

reference object; coveredRooms: set of totally/partially covered rooms.

1 begin

2 C ←− ∅; coveredRooms ←− ∅;

// Step 1: At this stage, only nodes of the reference object’s granule are expanded

3 vstart = getNode(q.queryLocation(refObjId)); SGranuleId = getDirectGranule(vstart);

4 RANGE = networkExpansion(vstart, radius);// Network expansion only at the reference granule

// A new search tree RANGE is built after Step 1 and stored in the range queue

// Step 2: Network expansion at the Exit Hierarchy

5 foreach accessible exit e ∈Exits of the reference granule do

6 select an expanded node vmidway1 in e;

7 RANGE = append(RANGE, networkExpansion(e, radius - g(vmidway1), vmidway1.path));

8 end

// Step 3: Search for the qualifying objects

9 foreach potentialQualifyingObject ∈ objectIds do

10 vgoal = getNode(q.queryLocation(objectIds[i])); TGranuleId = getDirectGranule(vgoal);

// Totally/partially covered rooms have at least one accessible exit

11 if objectIds[i] ∈ coveredRooms then

// Apply Euclidean restriction at the target granule

12 retrieve exit e ∈ TGranuleId that minimizes g(e) + Ed(e, vgoal);

13 if g(e) + Ed(e, vgoal) > radius− g(e) then

14 display objectIds[i] is out of range;

15 else

// A fine-grained search at the target granule is required

16 select an expanded node vmidway2 in e;

17 RANGE = append(RANGE, networkExpansion(vmidway2, radius− g(e), e.path));

18 if vgoal is expanded then

19 [targObjID, outPath, outLength] =

{objectIds[i], reversePath(vgoal, vstart), g(vgoal)};

20 else

21 display objectIds[i] is finally out of range;

22 end

23 end

24 else

25 display objectIds[i] is out of covered rooms;

26 end

27 end

28 end
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(a) Fine-grained search at the reference granule (b) Network expansion at the exit hierarchy

(c) Totally/partially covered rooms are retrieved (d) Objects outside covered rooms are directly eliminated

(e) First object in range is returned (f) Second object is eliminated by Euclidean restriction

Figure 6.2: Incremental algorithm for continuous range search: A range of 50 meters is applied in this example

An internal invocation to the networkExpansion(vstart, radius, inPath[]) method is performed

to execute this step. The range queue data structure is created for storing nodes accessible

within the specified range. The networkExpansion(...) method also handles expansion at

different layers of granularity depending on the input values. When the network is expanded at

the fine-grained level, only nodes that belong to the same granule as the reference object are

expanded. Moreover, an inPath parameter is also used to smoothly generate routes that are

concatenated to previously expanded paths from earlier range searches (inPath takes NULL as

a default value). In a similar way to Algorithm 1, an expanded node is stored along with its

path to the reference object, a pointer to the predecessor node, and its g value.
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• Step 2: On the exit hierarchy, start an expansion in all directions from the detected exits of the

initial granule by taking into account the set of precomputed network distances (exitPaths)

between directly reachable exits (lines 5 → 8). The expansion stops when no more exits can

be added (i.e., when g(e) ≥ radius). The resulting search tree includes all valid routes that

consists of sets of vertices at two different levels of granularity. The rooms that are reachable

from at least one entrance are considered as covered rooms (Figure 6.2(c)). Those covered

rooms are determined to limit the search scope, so that target objects located outside this area

are directly discarded.

• Step3: Search for the qualifying target objects by taking into account their up-to-date locations

(lines 10 → 11). Different filtering processes are applied in order to avoid extra-computations

resulting from searches at the fine-grained level (lines 11 → 15). The algorithm first discards

an object if its current location is out the covered rooms (Figure 6.2(d)). For an object located

within the covered rooms, it is checked whether the Euclidean distance between the optimal

exit of the target granule and its current location is greater than the radius. If the check is

successful, the object will also be discarded for that iteration (Figure 6.2(f)). Otherwise, the

algorithm proceeds by performing a network range expansion at the fine-grained level within the

target granule until reaching all valid nodes that satisfy the specified threshold (lines 16 → 22).

if vgoal has been discovered, a composite result that consists of a triple 〈targObjID, outPath,

outLength〉 is returned (Figure 6.2(e)).

At the end of this process, all the generated nodes that constitute the valid routes within the

radius are stored, along with their associated properties. The leaves, also referred to as boundary

nodes, resulting from the range search are also returned. Such a hierarchical expansion provides a

light way of exploring the network around the reference object and is performed just for the first

time. It should be clarified that only exits and the paths between those exits are examined, but

knowledge of nodes of the corresponding granules, which are not necessarily reachable with the same

specified threshold, is not available. Therefore, all the corresponding granules of the valid exits are

assumed to be accessible, but extra computations are required to determine, for each candidate

object located at one of those nodes, whether that object really satisfies the distance constraint

(i.e., to avoid false positives). This is done by computing the optimal path at the fine-grained level

starting from the entrance of the target granule until reaching the target object.

6.3.2 Incremental algorithm for continuous range search

The algorithm introduced for the continuous processing of range queries in indoor environments

applies an Euclidean restriction mechanism to retrieve candidate target objects that might be relevant
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to the final answer, as well as the hierarchical network expansion mechanism previously described.

The continuous processing of range queries consists of:

1. Hierarchically expanding all the routes whose network distance from the source node is less than

or equal to the specified radius. A hierarchical network expansion is performed once for the first

iteration so that all the visited nodes within the range around the reference object are stored.

2. Continuously maintaining the set of parent nodes up-to-date when changing the root of the

search tree (i.e., when the reference object moves). Boundary nodes are checked to decide, for each

of them, whether to further expand that node or to perform a reverse search towards the source in

order to remove nodes that are not relevant any more.

Algorithm 4 illustrates the implementation of the inside constraint used in this kind of query. The

algorithm is described as follows:

• Two functions are first invoked in lines 3 → 5. The first one applies the Euclidean restriction

principle to retrieve candidate target objects, and the second one performs the hierarchical

network expansion mechanism previously described in Algorithm 3.

• The first round of the algorithm returns a set of triples for the qualifying target objects. For

the continuous processing, the main point is to update the set of parent nodes when changing

the root of the search tree (i.e., when the reference object moves). There is no need to update

all the distances to the new root. Instead, only distances and the parent pointers of nodes that

belong to the granule of the reference object need to be rechecked, so that the tree rooted at the

new position of the reference object is rebuilt (lines 10 → 12). This update operation performs

checks and modifies properties associated to the leaves as explained in the next step.

• Only boundary nodes (i.e., leaves) of the RANGE list are checked to decide, for each of them,

whether to further expand that node or to perform a reverse search towards the ancestors to

remove nodes that are not relevant any more (i.e., the network distance to the new source is

greater than the radius). For each boundary node, the algorithm first updates the network

distance to the new source node, and checks whether that new distance is still less than the

specified threshold (lines 13 → 17). If the check is successful, it completes the RANGE list by

starting a new network expansion, and adds the valid nodes to the RANGE list. Otherwise

(lines 18 → 25), it starts searches in the reverse direction from each boundary node, and

removes nodes that are no longer needed from the RANGE list. This reverse search continues

while the network distance from the current node towards the source node is exceeding the
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Algorithm 4: ContinuousRangeSearch(refObjId, radius, objectIds[])
Data: S :

⋃

i=1,2 Gi = (Vi, Ei) : hierarchical graph data; q: range query; r: network distance; up-to-date

location data; NetDistanceSet.

Result: ResultSet: Returns a SETOF [targObjID, outPath, outLength] for the qualifying target objects

// C ⊆ objectIds: candidate set; locRef; g(v); parent(v); RANGE: set of accessible nodes

around the reference object; N ⊆ RANGE: set of boundary nodes, tempSet: temporary set

of nodes.

1 begin

2 C ←− ∅;

3 locRef = q.getRefObj.queryLocation(refObjId);

4 C = getObjectsInEuclideanRange(locRef, objectIds, radius);

5 RANGE = hierarchicalNetworkExpansion(refObjId, radius, C);

6 while NotCancel do

7 if locRef != q.getRefObj.queryLocation(refObjId) then

// A new position implies a new root of the tree

8 locRef = q.getRefObj.queryLocation(refObjId);

9 C = getObjectsInEuclideanRange(locRef, objectIds, radius);

10 foreach v ∈ RANGE and v ∈ getDirectGranule(getNode(locRef)) do

11 UpdateParent(v);

// After this step, all the nodes in RANGE are rooted at the new locRef

12 end

13 foreach v ∈ N do

14 lengthlocRef,v(tv) = updateLength(v); // reverse path search to locRef

15 if lengthlocRef,v(tv) ≤ radius then

16 tempSet = networkExpansion (v, radius− lengthv,locRef (tv), v.path);

17 append(RANGE, tempSet);

18 else

19 vcurrent = parent(v);

20 delete(RANGE, v);

21 lengthLocRef,vcurrent
(tvcurrent

) = updateLength(vcurrent);

22 while lengthLocRef,vcurrent
(tvcurrent

) > radius do

23 vcurrent = parent(vcurrent);

24 delete(RANGE, vcurrent);

25 end

26 end

27 end

28 end

29 foreach o ∈ C do

// computePartOfPath will repeat steps similar to Step 3 in Algorithm 3

30 vgoal = getNode(q.queryLocation(o));

31 if intersect(RANGE, getNode(o.LocTarg)) and

computePartOfPath(e.path, getNode(o.LocTarg)) < radius then

32 [targObjID, outPath, outLength] = {o, reversePath(vgoal, vstart), g(vgoal)}; // e is the

optimal target exit to o

33 else

34 display objectIds[i] is finally out of range;

35 end

36 end

37 end

38 end
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specified threshold. After this step, a new set of valid routes around the current position of the

reference object is rebuilt.

• Lines 29 → 35 determine whether the target object is located on a node of the RANGE list. If

so, the algorithm completes the partial path computation, as explained in Step 3 of Algorithm 3,

starting from the optimal entrance of the target granule, and then checks whether that distance

satisfies the specified threshold (i.e., computePartOfPath(e.path, getNode(o.LocTarg)) <

radius). Target objects whose network distances to their current positions satisfy the maximum

distance constraint are returned in the result.

6.4 Discussion

Algorithms for continuous path and range searches over indoor moving objects were proposed in

this chapter. Two complementary algorithms (Algorithms 1 and 2) represent a hierarchical and

incremental path search mechanism, which can be executed at different levels of granularity, and

applied on static and/or mobile data. Algorithms 3, and 4 perform continuous range searches by

applying a hierarchical network expansion mechanism and an incremental Euclidean restriction

approach.

The algorithms take advantage of the underlying hierarchical data model to provide more

scalable and more efficient solutions to address these kinds of queries. It should be emphasized that

the underlying properties defined in the data model (e.g., time-dependent functions, user profiles,

and event management) remain valid, and are implicitly taken into account in query processing.

Management of location granules can be easily applied to those algorithms, and can be considered as

safe areas around reference and/or target objects when a coarser granule is specified. The solutions

proposed are promising in terms of scalability and performance as will be shown in Chapter 7.
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This chapter presents the design and implementation of a database extension based on the

open source DBMS PostgreSQL. The prototype developed handles continuous path searches and

range queries on top of the hierarchical network-based data model of an indoor environment. The

main parts of the prototype developed include: (i) a hierarchical network-based data model of

indoor environments (cf., Chapter 4); (ii) operators and location-dependent constraints introduced

in the query grammar (cf., Chapter 5); and (iii) algorithms to process continuous location-dependent

queries over moving objects (cf., Chapter 6). Results of the experiments that have been conducted

to investigate the scalability and performance of the whole approach are also reported.

The remainder of this chapter is organised as follows. A technical assessment of existing

prototypes and systems that support location-dependent queries is provided in Section 7.1, along

with some implementation requirements. Section 7.2 presents the system architecture and summarizes

the main parts of the developed prototype. Algorithmic optimizations are introduced in Section
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7.2.2 in order to improve the efficiency of the proposed solutions. An experimental evaluation of the

proposed solutions is provided in Section 7.3. Finally, Section 7.4 draws some conclusions

7.1 Comparative study of existing platforms for handling LDQs

This technical summary first describes some implementation requirements and then briefly presents

a comparative study of existing platforms for handling location-dependent queries or that can serve

as a basis to support such kinds of query processing. The goal of this study is to assess existing

systems with respect to certain implementation requirements that are established in order to design

a prototype which encompasses the different contributions described earlier.

The implementation requirements to design a prototype for handling continuous location-

dependent queries in indoor environments are as follows:

1. An extensible DBMS that supports developing network-based data models to represent the

hierarchical indoor data model described in Chapter 4. One can think of designing the spatial

network either in relational or in graph-oriented database management systems [Angles and

Gutierrez, 2008]. Although graph databases are well suited for designing such network models,

other issues regarding the query language support and continuous query processing are still not

completely addressed and might be more difficult to implement.

2. The ability to develop a new algebra (i.e., specific data types and spatio-temporal operators)

that represents the different queries handled in this context. This supports the implementation

of the clauses and operators defined in Chapter 5.

3. Implementation of several algorithms for location-dependent query processing over moving

objects. Particularly, the algorithms presented in Chapter 6 on top of the hierarchical data

model should be implemented with an incremental processing paradigm.

Existing platforms that can handle location-dependent queries are briefly presented in this section.

The goal is to derive the best suited system that supports the previously mentioned requirements. It

can then be decided whether one of these platforms can lend itself to support further developments

and to be extended by other functionalities, such as the solutions introduced in previous chapters. It

should also be emphasized that this comparison is provided from a system design and performance

points of view. The methodologies behind some of these systems have been discussed in Chapter

3. The criteria selected to evaluate those systems depend mainly on whether they support spatio-

temporal databases as well as network-based data models, and whether they are extensible or not.
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In addition, efficient management of moving objects is an essential requirement, by either supporting

moving object database concepts or incorporating a data stream management technique. Such

a system should also provide an ease of learning and acceptable programming time, so that new

features can be integrated. Open source platforms and those that have a large community support

are thus preferred. Furthermore, whether a decentralised or centralised approach is supported is also

of interest to certain kinds of applications. Table 7.1 summarizes different properties of the relevant

systems and platforms. The systems considered in this evaluation are DOMINO, LOQOMOTION,

PLACE, SECONDO, and PostgreSQL.

• The DOMINO prototype handles current and future movements with the notion of dynamic

attributes [Wolfson et al., 1999b]. It is built on top of spatio-temporal databases and has

been implemented on top of a network-based data model, thus favouring MOD applications in

road networks. The Future Temporal Logic language supports spatial and temporal operators,

and handles uncertainty issues derived from moving object data. However, this prototype has

not been maintained and no functionality has been provided to support continuous location-

dependent queries.

• LOQOMOTION is a platform that supports distributed processing of continuous location-

dependent queries in mobile environments using mobile agents [Ilarri et al., 2006a]. The platform

uses MySQL for data storage and simulates moving objects in a free Euclidean space (geometric

coordinates). It also handles locations at different levels of granularity, and location-dependent

constraints. This platform could be adapted to support network-based models but substantial

adaptations should be made regarding the underlying query processing algorithms, as well as

on the movements of simulated objects.

• PLACE presents an approach that is based on spatio-temporal databases and data stream

management systems to handle continuous queries [Mokbel et al., 2005]. This platform integrates

and handles real-time data streams for continuous processing of location-dependent queries.

It proposes a progressive evaluation paradigm with a predicate-based expiration approach to

handle data streams. However, there is no support for a query language associated to this

system. In addition, this platform has not been maintained and the source code is not available

for further developments.

• SECONDO is an Open Source and extensible database system that uses the Berkeley DB for

data storage. It is written in C++. It is designed to support MOD concepts and spatio-temporal

queries over objects’ trajectories. This systems does not have a fixed data model but rather

allows one to implement DBMS data models as a set of algebra modules; each providing specific

data types and operators. For instance, algebras to represent standard data types, spatial data
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Spatio-

temporal

DB

Network-

based

Modelling

Support

Decentralized

Architecture

Extensible

Query

Language

Moving

Object

Stream

Management

Ease of

Learning

Programming

Time

Estimation

Community

Support

Is Open

Source

PLACE [Mokbel

et al., 2005]
⊕ yes ⊖ no ⊖ no

⊖ no language

support
⊕ yes ⊖ no support

⊖ cannot be

estimated
⊖ very limited ⊖ no

DOMINO

[Wolfson et al.,

1999b]

⊕ yes ⊕ yes ⊖ no ⊕ yes ⊖ no ⊖ no support
⊖ cannot be

estimated
⊖ very limited ⊖ no

LOQOMOTION

[Ilarri et al.,

2006a]

⊕ yes ⊖ no ⊕ yes ⊕ yes ⊖ no
⊖ cannot be

estimated

⊖ cannot be

estimated
⊖ limited ⊖ no

SECONDO

[De Almeida

et al., 2006]

⊕ yes ⊕ yes
⊕ yes (Parallel

Secondo)
⊕ yes

⊕ could accept

streams from an

external

application

⊖ difficult ⊖ could be long ⊖ limited ⊕ yes

PostgreSQL (+

extensions)

⊕ yes (PostGIS,

pgRouting &

Hermes [Pelekis

et al., 2006]

extensions)

⊖ graphs are

represented as

tables

⊕ yes ⊕ yes

⊕ can be

supported

(TelegraphCQ

extension [Chan-

drasekaran et al.,

2003])

⊕ medium ⊕ reasonable ⊕ very large ⊕ yes

Table 7.1: Comparative study of existing systems for handling location dependent queries
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types, relations, B-tree indexes, R-tree indexes, and network-based data types are supported.

Some work on indoor data types is also under development. So far, SECONDO handles only

histories of moving objects, but it may be extended to fit further needs. One challenge is the

design of a hierarchical data model on top of the proposed network algebra. Parallel SECONDO

is a new extension that combines the MapReduce paradigm [Dean and Ghemawat, 2008] for

parallel and distributed processing with a set of SECONDO databases, providing almost all

existing SECONDO data types and operators [Lu and Guting, 2012]. Therefore, parallel queries

are also supported and can be executed on a cluster of computers. Although SECONDO provides

a comprehensive set of features with an efficient query processing paradigm, the development

and technical adaptations required in this system are not straightforward, especially, given that

there is no large community support behind.

• PostgreSQL1 (with different extensions: PostGIS [Obe and Hsu, 2011], pgRouting2, TelegraphCQ

[Chandrasekaran et al., 2003], and Hermes [Pelekis et al., 2006]) is an Open Source Object-

Relational Database System (ORDBMS). It is a multi-user, multi-threaded database management

system that runs on multiple OS platforms. PostgreSQL is developed by the PostgreSQL Global

Development Group. This DBMS system supports the design of relational data models, new

data types, functions, operators, triggers, etc. Some indexing methods are also provided as

built-in features such as B-Tree indexes, R-Tree indexes, and GiST indexes used to speed up

searching in large data sets. PostGIS and pgRouting could be used to add spatial properties

and navigation functions based on geometric data types and operators. pgRouting extends

PostGIS to further support routing algorithms (shortest paths, etc.) on spatial networks.

Several procedural languages are supported by PostgreSQL, such as PL/pgSQL, in order to

develop functions and algorithms directly as stored procedures within the server. A similar

problem to the one presented in SECONDO is the lack of a built-in functionality that provides

us with a continuous processing engine. Nevertheless, there exists a PostgreSQL extension

called TelegraphCQ that manages data streams such as location data of moving objects. A

potential use of this extension can be expected for expressing continuous queries over spatial

streams. The Hermes extension has also been developed on top of PostgreSQL to further

provide additional spatio-temporal operators for querying objects’ trajectories. Examples of

such queries are nearest neighbour trajectories and trajectory similarities.

Concluding remarks: Several system and implementation requirements are defined in this

section in order to evaluate existing systems for handling location-dependent queries. The assessment

shows that PLACE and DOMINO have not been maintained, so they cannot be considered for

1http://www.postgresql.org/
2http://pgrouting.org/
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further development. LOQOMOTION can be extended but requires substantial adaptations at the

algorithmic level, as well as on the movements of simulated objects. Consequently, two systems

are considered suitable for the development required in our context: Secondo and PostgreSQL.

On the one hand, Secondo is an Open Source platform that appears to be sufficiently powerful

and extensible, and can be adapted to integrate our proposed solutions. However, there is still

no direct way to process current movements, even though adjustments are believed to be possible

in order to achieve that purpose. Moreover, the development and adaptations required in this

system are not straightforward, especially, given that there is no large community support behind.

On the other hand, PostgreSQL is supported by a large community of developers and is highly

extensible. Network-based models are represented in PostgreSQL with a relational schema. Even

though PostgreSQL performance appears to be less efficient than Secondo, it presents several relevant

characteristics and advantages. Consequently, it has been selected for the development of our

solutions as will be shown in the following sections.

7.2 System implementation

This section underlines the implementation experience by describing the PostgreSQL system archi-

tecture as well as several optimizations performed at the algorithmic level.

7.2.1 Overview

A database extension based on the open source DBMS PostgreSQL [Matthew and Stones, 2005] for

handling continuous path searches and range queries has been implemented on top of a hierarchical

network-based indoor data model. Several procedural languages are supported in PostgreSQL

for developing functions and algorithms at the server side, so that the connection overhead and

interprocess communication can be avoided. As a result, queries that are written as internal functions

have the same access privileges and speed as native database functions and statements. The main

parts of the prototype developed are:

1. The hierarchical network-based data model of an indoor environment. Automatic methods

to build the multi-storey fine-grained network and the time-dependent functions described in

Chapter 4 have been developed. Methods to derive the exit and location hierarchies are also

included.

2. The operators and location-dependent constraints introduced in Chapter 5. Those are im-

plemented in the backend executor (i.e., query processor) of the PostgreSQL as PL/pgSQL



7.2. SYSTEM IMPLEMENTATION 155

functions applied on user-defined types. For instance, the gr operator for managing location

granules in indoor environments, the All-routes(Loc-Ref, Loc-Target) operator for representing

continuous path queries, and the inside(Radius, Loc-Ref, Loc-Target) constraint for computing

continuous range queries were developed. Other operators, data types, and keywords were also

incorporated in the system design.

3. The algorithms to process continuous location-dependent queries over moving objects (cf.

Sections 6.2 and 6.3). The following sections discuss in more detail the technical optimizations

and the performance evaluation of these solutions.

The main advantage behind this prototype implementation as a core database solution is that

user-defined PL/pgSQL functions are used afterwards with native SQL statements to write location-

dependent queries. However, the major problem encountered in implementing those functions was

the lack of data structures naturally supported in the database system. This required the use of

temporary tables in the implementation of the priority and range queues. For system evaluation,

synthetic moving object datasets have been generated by using the Brinkhoff’s network-based

generator of moving objects [Brinkhoff, 2002], and then adapted to fit our needs.

7.2.2 Optimization

A series of optimization techniques have been employed to improve the efficiency of the proposed

solutions. Those are explained with respect to their use in the path and range query processing as

follows:

• A specific heuristic function has been developed and applied overall to the continuous path

query processing, which tries to optimize the network distance based on the hierarchical data

model previously described. As mentioned earlier, a heuristic value is computed as follows:

h(v) = Ed(vstart, vmidway1)+pathLengthEXs,Exg(t)+Ed(vmidway2,vgoal). This heuristic function

has been specifically designed to fit the hierarchical structure of the indoor environment.

Consequently, a best estimation of the network distance towards the destination is taken into

account during the expansion process, so that the node that minimizes the gval + fval value

is expanded first. The hierarchical-based heuristic function is used in the adaptedAstar(...)

method for directed path search, and in the computeRefTarExits(...) method for computing

the optimal exit path.

• An indexed priority-queue-like data structure for implementing the CLOSED list. A priority

queue is characterized by a tuple 〈vertexID, gval, fval, path, predecessor, expanded〉, where
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vertexID depicts the node identifier, gval represents the network distance, fval = gval + hval

is an indexed parameter that is used as the priority measure to allow optimal network expansion,

predecessor contains the parent node, and the expanded field depicts whether the node has

been expanded or not. On the other hand, the range queue is indexed based on the gval, since

no heuristic function is used in the network expansion mechanism. Those two data structures

constitute the foundations on which the continuous processing for both algorithms is performed.

• Directional bounding boxes that help propagating a “wavefront” path search either towards

the optimal exit or the target (cf. Figures 6.1(a) and 6.1(b)). Directional bounding boxes are

considered as an important optimization of the adaptedAstar(...) method. Those directional

boxes limit the search for the neighbour nodes to those that are in the route direction towards

the next goal. As a result, only five neighbours are generated and stored in the priority queue

each time, instead of eight (the maximum number of neighbours). This reduces the execution

time by 40%. A directional box is either oriented towards the next nearest exit or towards the

target node if the reference and target objects are in the same room.

• The computeRefTarExits(...) method computes, for path searches, the best pair of exit/en-

trance when the reference and/or the target objects move. For example, in Figure 4.3 let us

consider MR12 and HW14 as a reference room (i.e., a room where the reference object is

located) with five exits and a target room (i.e., a room where a target object is located) with

seven exits, respectively. Next, a basic approach is to check all combinations of pairs of exits to

determine the best pair. To optimize this process, an additional filtering process is developed in

order to prune exits that do not have direct links to the target room and where no other open

paths through them are available.

• For the continuous processing of range queries, two filtering techniques are employed, thus

reducing the number of fine-grained network expansions at the target granules. First, totally/-

partially covered rooms are determined to limit the search scope, so that objects out of that

search scope are directly discarded. Secondly, an Euclidean restriction at the target granule is

applied to detect candidate objects that are far enough away from the reference object.

7.3 Experimental evaluation

To the best of the authors’ knowledge, no other work in the field of location-dependent query

processing deals with hierarchical and continuous path searches and/or range queries on both moving

reference and target objects in indoor environments. As mentioned in Chapter 3 (Sections 3.3.2 and

3.3.3), other approaches do not consider a multi-storey network, and in the case of range queries,
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either the reference or the target objects are assumed as static. Therefore, experimental results to

evaluate the intrinsic properties of the proposed solutions are presented in this section, since it is

not possible to experimentally compare our approach with other proposals. In particular, a specific

comparison between hierarchical and non-hierarchical processing approach is shown throughout these

experiments. This criterion shows to what extent the continuous processing of a query is affected

with respect to the mean execution time (in milliseconds), as well as the total number of expanded

nodes in the search tree. The mean execution time shows the average CPU time of a continuous

query answer for each location update. In contrast, the criterion about the total number of nodes

shows the usefulness of the incremental processing approach by giving an indication of the global

size of the search tree for a complete query evaluation.

In order to test the non-hierarchical configuration of both algorithms, two main methods have

been developed. The nonHierarchicalCPS(refObjId, tarObjId) method uses the adaptedAstar

function to build a complete search tree at the fine-grained level, instead of making use of the

hierarchical path search described in Chapter 6. This nonHierarchicalCPS method performs

techniques for the continuous path search similar to those applied in Algorithm 6.1, in order to

update the search tree. For the continuous range search, the nonHierarchicalCRS method uses a

nonHierarchicalNE method for the network expansion at the fine-grained level. The performance

of these methods is evaluated in the following sections with respect to the solutions proposed in

Chapter 6 (Sections 6.2 and 6.3).

7.3.1 Experimental settings

Two different system architectures can be applied for query processing. The former considers

a server-based query processing architecture (either centralised or decentralised as discussed in

[Afyouni et al., 2013]), where moving objects cooperate with the system by providing up-to-date

location data (and possibly other information) when needed. Thus, a minimum intervention of a

user device is required for query processing by communicating the location of the user to the system

according to a certain location update policy [Wolfson et al., 1999a; Ilarri et al., 2010]. The latter

applies a client-based mobile architecture in which query processing is fully performed at the mobile

device and locations of objects of interest are retrieved from the server. The first scenario implies

more communication overhead, while the second scenario requires mobile devices with advanced

processing capabilities. The first approach is adopted in our experimental settings, but nothing

prevents testing those algorithms on a client-based mobile architecture. In the following section,

scalability as well as performance testing are evaluated.
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Experiments have been carried out on a MacBook Pro machine with a 2.3 GHz Intel Core

i7 CPU and 4GB of RAM DDR3, and which runs Mac OS X 10.8.3. All tests were run 10 times

in a completely independent way, and we verified that the individual results were consistent. The

fine-grained two-storey network used for prototype evaluation consists of 4146 nodes and 13963

edges (see Figure 4.2 in Chapter 4, Section 4.2.1.1). The scenario considered for the performance

evaluation retains a fine resolution of the fine-grained network by using a 50 cm distance between

horizontal and vertical neighbour nodes. A coarser resolution would provide better performance

results, but with less accurate representation of space and objects movements. Thus, the size of the

network as well as the experimental results heavily depends on this parameter.

Due to the lack of real indoor moving object data, a synthetic dataset of around 1000 moving

objects have been generated to evaluate how the prototype would behave in realistic scenarios. We

use the Brinkhoff’s network-based generator [Brinkhoff, 2002], which is suitable for all kinds of

spatial networks. It is a generic framework that can be adapted to specific scenarios. Indeed, the

original purpose of this generator was to deal with moving objects on road networks. Hence, this

generator does not directly deal with 3D network models, as the third dimension is not taken into

account. Consequently, moving object data have been generated for each floor separately. The

fine-grained graph of our model has then been integrated within the generator and some parameters

have been tuned to generate indoor moving objects with realistic movements. Moreover, a-posteriori

adaptations to the data set have been performed in order to take the multi-storey settings into account,

and to transform the location data to the relative coordinate system considered in our scenario.

In particular, we adapted some trajectories to simulate moving objects that move from one floor

to another. Two additional methods have also been developed: (i) the inverseTransformation()

function computes an inverse transformation to obtain coordinates in our referential system; and

(ii) the computeNearestNode(xCoordinate, yCoordinate) determines the nearest node to a given

moving object position.

The generator takes two input files (i.e., .node and .edge network data files) which correspond

to the nodes and edges of the fine-grained network of the spatial data model. Different configurations

have been adopted to define the mobility patterns of the generated moving objects. The duration

of the evaluation period was set to 1000 timestamps. The waiting period between two successive

timestamps was set to 1 second. The entire evaluation period is estimated to be around 15 minutes.

Every moving object reports its motion parameters (i.e., location update, current speed) with a

probability of 80% for each timestamp within the evaluation period. Objects move on the network at

different speeds, with a maximum speed limit equals to 4 km/h. We choose some objects randomly

and consider them as reference and target objects for both path and range queries.
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7.3.2 Experimental results

The following experiments first evaluate the continuous path search while varying the distance

parameter between the reference and target objects. Secondly, a performance evaluation of the

continuous range query processing is performed with respect to the number of objects and the radius

parameters.

Continuous path searches: The first set of experiments shows how the continuous path search

can be affected by applying a hierarchical or non-hierarchical-based query processing. The estimated

distance between the reference and target objects is varied to demonstrate its impact with respect

to both the average CPU time and the number of nodes expanded (see Figures 7.1(a) and 7.1(b),

respectively).
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Figure 7.1: Varying the distance parameter: Hierarchical vs. non-Hierarchical Continuous Path Search

Figure 7.1(a) illustrates the mean execution time of a continuous path search with a distance

range that varies from 10 to 200 meters. The same continuous processing techniques were applied

for both hierarchical and non-hierarchical configurations. The results show that the hierarchical

approach keeps constant time responses when the distance between the reference and the target

object increases. On the contrary, a non-hierarchical configuration appears to grow with the distance

between the reference object and the target objects. This is due to the fact that the hierarchical

method processes fine-grained searches only at the reference and target granules, and thus whatever

the distance between the two moving objects the time processing remains constant. We also

performed several tests with other distance values (not shown for the sake of clarity) and observed a

similar behaviour. On the other hand, a relatively large distance between the two moving objects

implies exploring a big part of the fine-grained network until reaching the target. This is clearly

reported in Figure 7.1(b). As illustrated, a path search between two moving objects whose distance
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is between 100 and 200 meters, requires expanding around 200 nodes when applying the hierarchical

approach, and around 2400 nodes with a non-hierarchical configuration. This demonstrates that the

hierarchical and incremental path search algorithm is scalable to large indoor spaces (e.g., several

multi-storey buildings in a campus) with constant time responses.

Continuous range queries: Regarding the continuous range query algorithm, some parameters

such as the range and the number of moving objects can be varied. This aims to show the scalability

of the system and the algorithm behaviour over time. A performance comparison between two

different scenarios based on either a hierarchical or a non-hierarchical network expansion mechanism

is also considered. The next set of experiments studies the impact of varying the radius of a range

query while setting the number of moving objects to 50 (see Figures 7.2(a) and 7.2(b)).
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Figure 7.2: Varying the radius: Hierarchical vs. non-Hierarchical Continuous Range Search

The hierarchical network mechanism takes advantage of the exit hierarchy to explore the search

scope without having to expand all the nodes in range at the fine-grained level. This means that

this mechanism is dependent on the number and the locations of the target objects in the search

scope. Wherever a candidate object requires a fine-grained search, the algorithm will explore the

granule containing that object to decide whether it is is really within the range. Other granules

in the search scope are not going to be expanded while no candidate objects enter those granules.

On the other hand, a non-hierarchical network expansion is completely dependent on the search

space. It expands all nodes within the range without taking into account the number and locations

of the candidate objects. Notice that for the hierarchical approach a constant time is obtained after

reaching a certain radius. This means that once the corresponding granules have been explored no

extra-computation is required. Moreover, the evaluation of both configurations shows gains with

respect to the number of nodes expanded during the whole process. Again, the total number of

expanded nodes reaches a maximum for the hierarchical approach once the corresponding granules
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have been explored. On the contrary, the non-hierarchical approach reaches the maximum number

of nodes of the network being considered in those experiments (i.e., it explores all the network).

The next set of experiments presents the performance evaluation and scalability of the two

configurations with respect to the number of moving objects (see Figures 7.3(a) and 7.3(b)). In

these experiments the radius parameter is set to 50 meters, while the number of moving objects

varies between 1 and 1000. The results show significant improvement when applying the hierarchical

processing, and an acceptable execution time even with 1000 moving objects. We should remind

that this query returns, on each timestamp and for each moving object in range, the optimal path

to the reference object. Consistently with the first result, Figure 7.3(b) shows that, whatever the

number of moving objects specified by the user, the non-hierarchical configuration explores all the

nodes within the specified radius. On the contrary, even with 1000 moving objects, the hierarchical

approach is able to answer the query with a much smaller number of expanded nodes.
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Figure 7.3: Varying the number of moving objects: Hierarchical vs. non-Hierarchical Continuous Range

Search

7.3.3 System Scalability

PostgreSQL supports full parallelism at the client-side, so that applications can open multiple

database connections and manage them asynchronously, or via threads. Multi-thread Java programs

with a connection pooling mechanism have been developed in order to simulate a multi-user

environment, and to show the effect of concurrent continuous queries on the performance of the

system (in this scenario, a single multi-core PostgreSQL server). We investigate the average response

time of a continuous query per user. The response time considered in these tests is the average time

interval between issuing a continuous query and getting the response from the system at a given

timestamp when the search is successfully completed. The number of threads varies from 1 to 200 in
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the first set of experiments that consider concurrent path queries, and from 1 to 50 for concurrent

range queries.

Figure 7.4 illustrates the average response time for a continuous path query at a given timestamp

for a given user. The number of concurrent users querying the system in real-time varies from 1 to

200. Simulation results suggest that, with 30 to 50 concurrent accesses, the average response time

varies between 1 and 1.5 seconds. Even with 100 to 200 concurrent users, the time for a query answer

remains acceptable, and the number of concurrent queries has a linear impact on the performance

(it should be noted that the X-axis in the figure is not linear).
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Figure 7.4: Varying the number of concurrent access: Hierarchical Continuous Path Search
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Figure 7.5: Varying the number of concurrent access: Hierarchical Continuous Range Search

The results of the experiments that consider concurrent range queries are illustrated in Figures

7.5(a) and 7.5(b). As may be expected, a range query results in heavy processing costs, which

have been noted by previous tests (Figures 7.3(a) and 7.3(b)). Therefore, the simulation shows a

reduced number of concurrent accesses that varies from 1 to 50. Two types of experiments have

been performed. On the one hand, Figure 7.5(a) illustrates the average response time while varying

the number of concurrent users, and with two different thresholds: 30 and 50 meters. Simulation
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results show a good performance of the average query answer with up to 30 concurrent users, and

an acceptable time response with up to 50 users. On the other hand, Figure 7.5(b) shows the

performance evaluation of a concurrent range query with different numbers of moving objects: 20,

40 and 60. The system shows a good scalability with up to 50 concurrent users when the number

of objects specified is low. With a bigger number of moving objects, the system can report good

response times with up to 30 users.

7.3.4 Summary of the experiments

According to the above experimental results, the execution of the algorithm developed for continuous

path search appears as satisfactory regarding execution time and scales well with the number of

expanded nodes. It has been shown to be scalable enough to large indoor spaces thanks to the

hierarchical-based query processing. Moreover, the continuous range query processing approach

provides satisfactory scalability with respect to the radius parameter, and acceptable performance in

processing range queries when the number of moving objects increases. Regarding the experimental

results for the continuous range search, all moving objects involved are assumed to be of interest

to the corresponding query. Indeed, only objects of a certain type (the ones involved in the query)

have a direct impact on the performance of the query processing, so this generates a worst-case

situation. A pre-filtering of objects based on static properties (e.g., people in my friend list) has a

similar effect, as this reduces the number of objects to consider as a potential candidate (i.e., moving

objects not in the friend list are immediately discarded). Consequently, and for example, the largest

mean execution times shown in Figure 7.5(b), when applied to a friend-finder application, would

imply a range of 50 meters and 60 persons in the list of friends that should be at the same time in

the same indoor environment. Nevertheless, the total number of moving objects, independently of

their type, has also a slight impact on the performance of the server due to the need to manage

their location updates.

Furthermore, the whole system has been tested for scalability with respect to the number

of concurrent continuous queries. A multi-user environment has been simulated in order to show

the effect of concurrent continuous queries on the performance of the system. The system shows

satisfactory scalability for path queries with up to 200 concurrent users, and acceptable response

times for range queries with up to 50 concurrent users. Consequently, a general analysis and

assessment of the algorithms suggest that our approach can be used for real-time services. Moreover,

in some scenarios where the number of concurrent users becomes high, the performance can be

increased by adopting the distributed data management approach described in Chapter 5.
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CHAPTER 7. A POSTGRESQL EXTENSION FOR CONTINUOUS

LOCATION-DEPENDENT QUERY PROCESSING

7.4 Conclusions

This chapter introduces a database extension that has been fully implemented on top of the open

source DBMS PostgreSQL for handling continuous path searches and range queries has been

implemented on top of the hierarchical network-based indoor data model. This system architecture

has been developed, and optimizations that improve query processing performance have been

discussed. Experiments that investigate the scalability and performance with respect to the intrinsic

properties of the proposed solutions have been presented. Results show that our proposal achieves

a satisfactory performance, and it is efficient enough to be used in a real scenario. Experimental

results show a mean execution time of around 0.2 second for continuous path searches, even in cases

where the distance is quite large for an indoor scenario, and reasonable response times for continuous

range searches. Furthermore, the whole system was tested for scalability with respect to the number

of concurrent users issuing a continuous query. The results show that the system is fairly scalable

and adapted to a multi-user environment.

A technical observation can be highlighted regarding the implementation on top of PostgreSQL.

In PostgreSQL, internal functions can be thoroughly written in PL/pgSQL or dynamically linked

to functions in C libraries and which use the Server Programming Interface (SPI) provided by

PostgreSQL to access data. Internal PL/pgSQL functions are well suited for running code that

consists of sets of inter-referenced database queries. However, some of the core algorithmic functions

can be exported and written as C/SPI procedures, because these procedures are able to access things

deeply internal to the database engine inaccessible by any other means, so that they can perform

faster. Therefore, by exporting the basic A* star and network expansion modules, the performance

of the continuous path and range searches increases.



CONCLUSIONS AND

FUTURE WORK

A successful integration of indoor knowledge representation and mobile information systems requires

several developments at the conceptual and design levels. At the conceptual level, our study shows

the interest and advantage of a hierarchical spatial data model to represent an indoor environment.

This model should support continuous processing of location-dependent queries applied to moving

objects acting in indoor spaces. This is exactly the scope of the approach that has been developed by

this research, and which can be considered at the intersection of Mobile and ubiquitous computing and

location-based services. The research developed provides an approach for knowledge representation

and management in indoor mobile environments. The design of a platform for context-aware indoor

navigation that encompasses an indoor data model and a query language. Several algorithms for

continuous location-dependent query processing have been developed and implemented. This chapter

first presents a summary of the contributions, and then discusses some of the perspectives opened

by this work, as well as possible directions to explore.

Summary of the contributions

The integration of an indoor spatial data model into a context-aware system is considered as a key

building block for designing advanced navigation services. Our study shows that a hierarchically

organized context-dependent indoor data model can support a wide range of location-based services.

An indoor data model has been introduced that can be viewed as a tree structure in which location

information is represented at different levels of abstraction (Chapter 4): (1) a fine-grained graph

embedded within an occupancy grid; (2) an exit hierarchy; and (3) a location hierarchy. Such a

model represents: (i) static/moving features of interest, (ii) their spatial properties, and (iii) the

behaviours or actions that emerge from them. The hierarchical design provides better performance

and scalability when processing location-dependent queries. Time-dependent functions that compute

navigational path distances and travel times are introduced. A classification of user profiles supports



166 CONCLUSIONS AND FUTURE WORK

an offline filtering of the hierarchical data model, thus reducing the amount of data that needs to be

processed in real-time.

The semantics of a query grammar tied to the indoor data model has also been developed

(Chapter 5). This grammar supports location-dependent queries. It represents navigation queries

and incorporates user preferences and semantics in the query model (e.g., gr operator, MINIMIZE

and Stop-Vertices keywords). It also supports the hierarchical data model thanks to the concept

of location granules that integrate different levels of abstraction. Location granules favour the

specification of queries using the location terminology preferred by the user (e.g., nodes at the

fine-grained level, rooms, floors, buildings, etc.).

Several algorithms and a generic architecture for the continuous processing of location-dependent

queries have been designed and implemented (Chapter 6). Navigation-related queries can be processed

according to this architecture, and query results are continually kept up-to-date over a certain period

of time. Two algorithms for hierarchical path searches and range queries applied to both static and

moving objects have been developed. The former represents an incremental and hierarchical path

search that can be executed at different levels of granularity, and applied on static and/or mobile

data. The latter performs continuous range searches by applying a hierarchical network expansion

mechanism and an incremental Euclidean restriction approach. Those algorithms take advantage

of the hierarchical data model of the indoor environment, and employ an incremental approach in

order to efficiently execute continuous location-dependent queries, thus avoiding the reevaluation of

each search problem independently from scratch.

The whole approach has been implemented as a database solution based on the PostgreSQL

DBMS (Chapter 7). The main parts of the prototype developed are: (i) a hierarchical network-based

data model of an indoor environment; (ii) operators and location-dependent constraints introduced

in the query grammar; and (iii) algorithms to process continuous location-dependent queries over

moving objects. Several experimental validations have been conducted to investigate scalability and

performance with respect to the intrinsic properties of the proposed solutions. Results show that our

proposal achieves satisfactory performance, and it is sufficiently efficient to be used in a real-time

scenario.

Research perspectives

This dissertation raises a number of research challenges related to context-aware and continuous

query processing, as well as to semantic location-based services. This section gives an overview of

meaningful directions for future research. It outlines three categories of perspectives: conceptual,
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technical, as well as application perspectives. On the one hand, conceptual perspectives discuss

the concept of an extended context model, and present several open challenges for context-aware

queries related to navigation services. The concept of semantically annotating users’ trajectories is

also presented. On the other hand, technical perspectives include optimization at the algorithmic

and system levels so that a more efficient and extended system can be designed. In addition,

implementation issues such as a close integration of the solutions developed in this dissertation

with an indoor localization technique, a graphical user interface, and other extensions are discussed.

Finally, application perspectives that discuss the future of indoor-based systems from academic and

industrial points of view are highlighted.

Conceptual perspectives

Different extensions to the modelling approach can be explored in order to enrich the context

dimension of the data model. For instance, a better integration of context-awareness in query

processing as well as the development of other kinds of navigation-related services are still directions

to investigate. These issues are discussed as follows.

Extended context model: The indoor data model introduced in Chapter 4 represents several

contextual dimensions such as spatio-temporal information, user profiles, and real-time event

management. The data model developed still requires the integration of an extended context model

in order to incorporate users’ activities as well as content generated by other social entities when

executing location-dependent queries. Such contextual dimensions can be gathered via different

ways: using physical as well as virtual sensors. Physical sensors embedded in mobile devices provide

diverse kinds of raw data, and other virtual sensors (agenda, profile, social network activity, etc.)

can also help the system to track the user context. A filtering step should be performed in order to

only keep relevant data for analysis and real-time processing. Such a model classifies contextual

dimensions as follows.

• Spatio-temporal information includes the location and time dimensions as represented in the

indoor spatial data model previously developed. Besides, a user trajectory might also be of

interest to enrich the user context. Based on such spatio-temporal patterns, such a system can

infer some user interests and provide him/her with relevant recommendations. Moreover, the

user orientation can be associated to the user device, and is represented by either a quantitative

value (128° to the north) or using a qualitative representation [Patroumpas and Sellis, 2009].

The orientation parameter can be used along with other sensor data in order to detect some

basic user activities as shown afterwards.
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• The user activity is an important context dimension that depicts the activity performed by

the user when navigating in an indoor space. By focusing on such activities, the system will

gain a better understanding of the context, thus providing a step forward to develop truly

ambient intelligent systems. For instance, a mechanism for user activity recognition based on

accelerometer data can be used for that purpose [Yan et al., 2012]. Such a system can identify

different activities such as running, walking, going upstairs, going downstairs, sitting, standing,

in an elevator, etc., and consider them while reevaluating the answer to a given query.

• The user profile dimension includes gender, age, a set of interests, physical capabilities, access

privileges, and status. The user profile contains static (gender, age, profession) as well as

dynamic properties (physical capabilities, access privileges, status: busy, available, etc.). An

overview of the sensors embedded in mobile phones and their potential uses as a computing

platform to acquire those parameters is reviewed in [Lane et al., 2010]. Those properties are

very important for providing personalized answers to a given user’s request. Dynamic properties

can be extended to incorporate information shared by the corresponding user to the system,

which in turn can broadcast it to other users when necessary. This concept of user-generated

content might be of interest to recommender systems that can relay useful information to users

based on shared interests.

• An effective model of collaborative usage can also be useful. A collaborative usage model

classifies users into groups or communities, within which they share a common characteristic or

interest. A user can belong to a community either explicitly by a subscription-based mechanism

or implicitly if he/she has a common characteristic or property [Ben Nejma et al., 2013]. On the

one hand, subscription-based communities encompass users that share a given interest or involved

in a similar practice (i.e., group of people working together and constantly conducting solutions

in a given shared field). On the other hand, implicitly generated communities depend either on

the current location of users or on their trajectories (i.e., if they have similar spatio-temporal

patterns). They might also depend on their behaviours in a similar context. This collaborative

usage model derives similar behaviours and interests, so that the system can act proactively by

notifying users of certain events or adapting certain query answers. Push-based services can

thereafter be designed based on such communities.

Based on data gathered from fixed and/or mobile sensors and on user-generated content (i.e.,

information shared by users to the system or within communities to notify certain events), the

system should be able to manage events in real-time and filter relevant ones for corresponding users.

Real-time event management means that people who share a common interest or common context

should be notified by such events. Depending on the relevance of such events, the system might either

let the user decide whether to integrate this event into his/her relevant queries, or simply ignore it.
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Some types of events should be directly handled by the system itself (in case of emergency or other

important events). These contextual dimensions represent the user-centric context, and should be

taken into account by the system in real-time in order to completely incorporate context-awareness

in intelligent navigation services.

Context-aware Query Processing: This dissertation introduced a continuous query processing

framework that takes several contextual dimensions into account. An extension of our proposal

should be designed to support the extended context model previously described. Such a system

should deal with a highly dynamic environment in which objects are moving continuously and their

context is dynamically changing. One important direction to consider in future work is the complete

integration of the context model into the query processing engine. This implies the development of a

“cost model for evaluating context-aware queries” that provides not only a quantitative value as a

result of a cost function, but also a semantic indicator that evaluates the quality, usefulness, and

uncertainty of query results. The main challenge in developing cost models is to take into account

the different parameters of the context while associating different quantitative scores and semantic

indications to each parameter according to the corresponding user. This means that, for instance, a

user with special needs has different constraints with different impedances than a user with complete

physical capabilities. Taking all these factors when designing a cost-model for context-aware queries

is challenging. The main goal is to provide a context-aware query processor that avoids modifying

the database engine with the addition of each new context parameter. Instead, an extensible query

engine that is general enough to support any kind of context should be designed.

Regarding the representation of context-aware queries, this dissertation introduced several

spatio-temporal operators that can be combined with conventional query operators in order to

execute standard as well as navigation-related queries in a straightforward manner. To fully integrate

the proposed context model, additional “preference- and context-aware query operators” are still

to be developed in order to take into account explicit preferences and other users’ constraints and

wishes. This helps to compute cost functions for the continuous processing of location-dependent

queries.

Semantic annotation of heterogeneous trajectories: As another possible direction to further

research, semantic location-based services based on users’ trajectories might be of interest to pave

the way for the development and usage of advanced intelligent services [Yan et al., 2011b,a]. Not

only current movements will be taken into account, but also the trajectories of the corresponding

users within a given period of time can be stored and annotated by semantic information, so that

different kinds of services may be provided. Objects of interest, which can be classified as repellent,
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attractive or neutral, as well as events should be considered. Users are given the opportunity to

annotate points of interest (POI) with several meanings to describe those landmarks [Mata et al.,

2011]. The system can then classify those POIs as either attractive, repellent or neutral to other

users depending on their context. Relevant users might share a common interest or be following a

similar pattern (e.g., shops recommendations, etc.). Therefore, semantic annotations of positions,

trajectories, and typical movement patterns of moving objects open new research directions and

allow for additional user-oriented services.

Technical perspectives

From a technical point of view, there are a number of possibilities for extending the overall system

and enhancing its individual components. This section first discusses optimization of different

components, and then presents the main directions and ideas about potential extensions.

Continuous query optimization: The algorithms developed minimize the CPU cost at the

central processing server by introducing an incremental approach for continuous query processing.

Other techniques can reduce the communication overhead caused by frequent location updates.

Those assume that objects have some computational capabilities and knowledge of the queries so

that they can perform location updates only when they influence some query results. A valuable

direction for future work is to combine these approaches with ours and to design a comprehensive

system that minimizes both CPU and communication costs. This implies to introduce a policy

based on lazy updates to reduce extra computations. A more general approach should be designed,

such that only relevant users (i.e., those involved in active queries) update their locations, and only

queries that might be affected by those updates are reevaluated.

Another important goal is to investigate further component integration such as supporting a

Data Stream Management System (DSMS) for the processing of continuous queries over spatial

data streams. Continuous queries are naturally processed over streams of data as they arrive in

real-time. So far, our algorithms do not handle data streams from an external system, but we

simulate this scenario by creating a named pipe and a program that writes the stream elements as a

single line into that pipe. Coupling our solutions developed in PostgreSQL with the TelegraphCQ

extension [Chandrasekaran et al., 2003] would provide a more consistent system for continuous query

processing over moving objects.

Other extensions: The prototype provided in this work focusses on back-end development (i.e.,

at the server side) of the proposed solutions. However, a mobile real-time information system
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requires cooperation of different components at the client side, and other extensions such as an

indoor positioning system that provides moving object data.

Client-side personalisation of mobile context-aware services has important benefits when

building professional and user-oriented systems. Consequently, different client-side extensions are

expected to be integrated in such mobile applications. Particularly, a high-level query interface

is expected to embed a voice recognition system that allows verbal requests and a graphical user

interface with predefined operators. The system transforms the query expressed in a natural or

high-level language into an SQL-like format, as proposed in [Ilarri et al., 2006a]. Moreover, a user

modelling framework that can support client-side personalisation on different mobile platforms

should be designed. This implies taking into account the different preferences and constraints (e.g.,

physical capabilities) of the mobile user.

Our prototype should also be coupled with an indoor localization technique, such as the one

developed in [Ray et al., 2010], so that an evaluation over real moving object data can be performed.

In addition, An automatic generation of the fine-grained graph of the indoor data model should

be introduced, along with a map-matching mechanism adapted to the corresponding localization

technique should be developed.

Application perspectives

The modelling approach developed in this research is sufficiently flexible to support the development

of different levels of data manipulation and interactions. This approach can be applied for the

monitoring of different types of built environments (e.g., airports, museums) and ships in terrestrial

and maritime contexts, respectively. For instance, an indoor navigation system is currently being

developed at the French Naval Academy Research Institute for the real-time monitoring of moving

objects within ships. Additional properties to the indoor data model might be considered in such

applications in order to take into account the movement of ships as well as an approximation of

seafloor slope at each location within a ship. Regarding the design of the hierarchical graph-based

data model, impedances on edges at the fine-grained graph should be added by considering the slope

value at this location and other parameters such as the current speed and direction of the ship. Such

adaptations on the data model provide more realistic navigation services (e.g., get-together services

or prepare the crew and passengers for an evacuation process) and adapted query answers.

Application perspectives are very large, from the development of interactive systems for built

environments, to additional professional- and user-oriented services. The numerous application types

range from mobile location-aware services to context-aware recommender systems. New classes of
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applications, which can take advantage of both low-level sensor data and high-level events, context,

and activities inferred from mobile phone sensor data, are being explored not only in academic and

industrial research laboratories, but also within large corporations such as Google and Apple as well

as start-up companies.

Not only are the application perspectives promising, but also in terms of business as the range

of possibilities will surely open many opportunities. In a recent report published by ABI Research3

on “Indoor Location Smartphone Applications”, it has been noted that the indoor location market will

break 1 Billion application downloads by 2016. It has been also emphasized that the future adoption

of a variety of indoor location technologies will be considered across a range of different application

categories, such as retail, navigation, environmental monitoring, location-aware social networking,

health and well being, personal tracking, while also enhancing services such as advertising, ambient

intelligence, augmented reality, and local search.

3http://www.abiresearch.com
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