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CHAPITRE [ : Introduction et contexte

I.1 Contexte et objectifs de la these

La modélisation couplée des écoulements en milieu poreux et de la géomécanique, plus
communément dénommeée poromécanique, se trouve au cceur de plusieurs problématiques im-
portantes chez IFP Energies nouvelles (IFPEn), & la fois en simulation de réservoir, du sto-
ckage géologique du CO3 et en modélisation de bassin. En simulation de réservoir, le couplage
mécanique-écoulement [72] joue un réle important pour I’étude des problémes de compaction et
subsidence induits par la mise en production de réservoirs peu consolidés, pour la stabilité des
puits, ou encore la fracturation hydraulique. La non prise en compte de ce couplage peut aussi
conduire & de mauvaises prédictions de la production. Ekofisk en Norvege ou Bachaquero au
Venezuela sont de bons exemples de gisements pour lesquels la prise en compte de ce couplage
est cruciale. Pour Ekofisk par exemple, ’extraction des hydrocarbures entraine une réduction
du volume poreux (I’eau injectée a tres forte pression en remplacement de ces derniers conduit
a une décomposition du squelette crayeux qui se recompose sous une forme plus compacte) qui
provoque un phénomeéne de subsidence qui a terme peut endommager les équipements de puits.
C’est pourquoi, apres avoir déja constaté une subsidence de 4m, les plateformes ont été re-
haussées en 1987 lors d’une opération de grande envergure. Le couplage mécanique-écoulement
est aussi crucial pour I’étude des risques liés a 'injection et au stockage du COsg, comme la
tenue mécanique de la couverture ou la réactivation mécanique des failles. En modélisation de
bassin, la modélisation couplée de 1’écoulement et de la compaction en grandes déformations
est actuellement simplifiée & ’aide de modeles 1D qui ne sont pas satisfaisants dans le cas de
tectoniques complexes. Des recherches sont en cours sur les lois de comportement a 1’échelle des
bassins qui doivent mener a terme a des modélisations 3D couplées.

En simulation de réservoir et du stockage du COs, le couplage est traité dans le milieu
industriel par un couplage externe de codes spécialisés et tres riches chacun dans leur domaine
propre : le code d’écoulement polyphasique compositionnel (incluant la thermique) en milieu
poreux (PumaFlow™ ou COORES™ chez IFPEn) et le code de mécanique (chez IFPEn il
s’agit du code open source Code_Aster ou du code commercial ABAQUS®).

Les codes de mécanique utilisent des méthodes de discrétisation de type éléments finis et
des maillages conformes sauf si le modele est lui-méme discontinu (contact par exemple). Les
codes d’écoulement en milieu poreux utilisent des méthodes de discrétisation volumes finis
(habituellement centrés) et le maillage standard est de type Corner Point Geometry (CPG) [69].
Bien que congus a partir d'une grille hexaédrique structurée, les maillages CPG ne sont pas
compatibles avec les codes éléments finis classiques pour plusieurs raisons :

e les mailles hexaédriques dégéneérent du fait des érosions (pinch out) en plusieurs types de
mailles non-standards, pouvant présenter des faces non-planes, ou pouvant étre définies
par moins de 8 sommets (7, 6 ou 5 par exemple) ;

e le raffinement local (LGR pour Local Grid Refinement), par exemple utilisé au voisinage
des puits, de régions d’intérét, ou lorsque des fronts se propagent, est habituellement
non-conforme ;

e les failles sont modélisées par des dédoublements de nceuds et glissements de noeuds le long
des directrices qui géneérent des non-conformités complexes (avec trous et recouvrements).

On donne Figure I.1 un exemple schématique 2D de maillage CPG. A noter qu’en 2D les
dégénérescences relatives aux érosions (ou aux failles) sont bien moins dramatiques qu’elles ne
peuvent I'étre en 3D.

Pour réaliser le couplage éléments finis-volumes finis, il faut donc remailler localement le
maillage CPG. C’est relativement aisé dans le cas des mailles hexaédriques dégénérées et du
raffinement local mais complexe a réaliser proprement dans le cas des failles. I faut ensuite
effectuer les calculs d’interpolation afférents entre maillages 3D. Enfin, le couplage externe
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_|_

FIGURE I.1 — Exemple schématique 2D de maillage CPG avec LGR (en rouge), érosions (violet)
et faille (bleu).

mécanique-écoulement est réalisé via une méthode séquentielle [52] :

e soit via une méthode itérative qui consiste (& chaque pas de temps) a résoudre a tour de
role I’écoulement et la mécanique en en fixant 'un des deux, ceci jusqu’a convergence vers
un point fixe (la convergence de certains de ces algorithmes vers la solution du probléeme
parfaitement couplé a été récemment prouvée par Mikeli¢ et Wheeler [59]) ;

e soit via une méthode explicite (et moins précise) qui consiste a ne faire qu'une seule
itération de la procédure précédente ;

e soit via une méthode de couplage approximatif (loosely coupling method en anglais) qui
consiste a ne résoudre la mécanique qu’apreés un certain nombre de résolutions de 1’écou-
lement (et donc de pas de temps), ce qui permet de diminuer le colit de résolution mais
ce qui nécessite des estimateurs fiables de quand mettre a jour la réponse mécanique.

Au final, la lourdeur des opérations géométriques et numériques nécessaires (remaillage local,
interpolation 3D, couplage externe séquentiel) est une des raisons pour lesquelles les couplages
mécanique-écoulement ne sont pas maitrisés industriellement actuellement chez IFPEn.

Cette these se propose donc d’étudier une alternative qui consiste a traiter la mécanique
a 'aide de méthodes de discrétisation non-conformes, pouvant donc étre utilisées sur le méme
maillage que 1’écoulement, typiquement de type CPG. Le raccordement aux épontes est aussi
facilité par l'utilisation de maillages non-conformes. Un autre avantage des méthodes non-
conformes est qu’elles prennent mieux en compte les discontinuités de propriétés qui sont im-
portantes dans le cas des réservoirs et des bassins. On s’intéresse par ailleurs a des méthodes de
discrétisation de plus bas ordre. Ce choix est justifié a la fois par 'incertitude inhérente aux don-
nées physiques que 1’on incorpore a notre modele, et a la fois par le besoin de maintenir les cotits
numériques a l'intérieur de bornes acceptables. Une fois donnée une discrétisation non-conforme
de la mécanique, alors cette derniére et I’écoulement peuvent étre traités dans un méme code, et
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les opérations de remaillage et d’interpolation ne sont plus nécessaires. La résolution du systeme
linéaire peut étre assurée de maniére parfaitement couplée (ce qui demande 'utilisation de sol-
veurs élaborés pour des systémes de grande taille), ou peut étre réalisée de maniére séquentielle
comme expliqué plus haut. Il est important de noter pour conclure que la discrétisation de la
mécanique et de I’écoulement sur une méme grille est tout a fait dans 'ordre des choses étant
donné que les hétérogénéités des parametres décrivant ces deux physiques coincident souvent
(puisque dépendant tous deux du type de roche considéré).

La famille la plus générale de méthodes non-conformes est celle des méthodes de Galer-
kin discontinu (dG). Elles ont déja été étudiées récemment pour la mécanique [77, 85] et pour
la poroélasticité avec succes [67]. En plus d’étre adaptées aux maillages généraux y compris
non-conformes, elles ont 'avantage de pouvoir monter en ordre tres facilement. Leur principal
inconvénient est le grand nombre de degrés de liberté qu’elles engendrent et donc le cott de
résolution des systemes. On se concentre ainsi sur I’étude de méthodes moins cofiteuses de type
volumes finis. Tres peu d’approches existent en volumes finis pour la mécanique. On peut ci-
ter [73] qui propose un schéma volumes finis centré a base d’interpolations par moindres carrés
qui ne respectent pas les discontinuités. On peut également citer le travail récent de Nordbot-
ten [64] sur 'adaptation des méthodes Volumes Finis Multi-Points (MPFA) au cas (vectoriel)
de la mécanique. Les méthodes centrées (ne faisant intervenir que des inconnues de mailles) sont
trés peu cotliteuses mais ont souvent 'inconvénient de ne pas étre inconditionnellement stables
(la plupart de ces méthodes ne sont pas symétriques) et de ne pas permettre de dériver facile-
ment des criteres de stabilité. Un deuxieme inconvénient est qu’elles ne disposent pas d’un cadre
théorique tres solide dans lequel les étudier, a la différence des éléments finis non-conformes par
exemple. On s’intéresse ainsi dans ce travail aux schémas Volumes Finis Hybrides (HFV) [40],
issus de travaux récents sur la discrétisation des problemes de diffusion sur maillages généraux.
Ces schémas font partie d’'une plus vaste famille qui est celle des méthodes Hybrides Mimétiques
Mixtes (HMM) [32], regroupant dans un cadre unifié les méthodes de Volumes Finis Hybrides,
de Différences Finies Mimétiques (MFD) [20, 18] et de Volumes Finis Mixtes (MFV) [31]. Les
Volumes Finis Hybrides ont I'avantage de pouvoir également s’interpréter comme des éléments
finis non-conformes. Cette idée est a la base du travail récent de Di Pietro [23] sur les méthodes
de Galerkin centrées aux mailles (ccG), qui mélangent des concepts hérités des éléments finis
et des volumes finis. Les méthodes ccG sont fondées sur la définition d’un espace polynomial
incomplet sur maillages généraux, dont la construction (héritée des méthodes MPFA) ne re-
pose que sur des inconnues de mailles, et possédant des propriétés d’approximation optimales.
L’espace en question est ensuite utilisé dans des formulations discrétes inspirées des méthodes
dG, ou la consistance, la symétrie et la coercivité sont pénalisées directement dans la forme
bilinéaire.

C’est cette vision un peu charniere, héritée d’une direction industrielle plusieurs fois chan-
geante (Roland Masson, puis Daniele A. Di Pietro, puis Léo Agélas) combinée a une direction
académique elle restée tres stable (Robert Eymard), que nous allons adopter dans ce manuscrit,
essayant de tirer profit des avantages de chacun de ces différents cadres.

1.2 Plan du manuscrit

Comme il convient de commencer quelque part, nous nous concentrons dans ce manuscrit
sur un modele de poroélasticité quasi-statique monophasique. Ainsi, nous considérons le cas de
milieux poreux linéaires (possiblement hétérogenes), saturés par un fluide visqueux faiblement
compressible, et pour lesquels les effets d’inertie sur la structure mécanique sont négligeables
(le domaine est notamment considéré comme étant fixe). Ce cas que nous qualifierons d’école
est bien entendu tres éloigné de la réalité, mais il est a la base d’une compréhension du modele
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et de ses difficultés ainsi que d’une complexification future de celui-ci. En effet, concernant
la mécanique par exemple, savoir traiter un modele élastique (que nous supposerons d’ailleurs
isotrope dans ce manuscrit) est a la base du traitement de physiques plus élaborées. Lorsque ’on
dispose d’un espace discret (ou d’une formulation discrete) pour lequel (laquelle) on sait prouver
une inégalité de Korn, on est assuré d’avoir une discrétisation coercive du modele. Passer du cas
isotrope au cas de lois de Hooke plus générales reposant sur des tenseurs (admissibles) de raideur
d’ordre 4 se fait ensuite sans difficulté. Les modeles d’élasticité non-linéaire ou d’élastoplasticité
sont également intimement liés a 1’élasticité linéaire.

Le mansucrit est organisé comme suit.

Dans le Chapitre II, on présente successivement les modeles d’élasticité linéaire et de po-
roélasticité considérés. Une fois ceux-ci introduits, on fait un inventaire des difficultés liées a
I'approximation numérique de chacun d’entre eux, avant de présenter un état de I’art documenté
nous permettant de définir les orientations des chapitres suivants.

Pour I'élasticité, on aborde le probléeme de coercivité inhérent a une approximation non-
conforme du modele, ainsi que le probléme de verrouillage numérique. Le verrouillage numé-
rique (ou locking) se produit lorsqu’une contrainte d’incompressibilité est imposée a 'espace
d’approximation. Si I’espace considéré n’est pas adapté a ’approximation des divergences (qui
représentent les variations de volume dans le milieu), alors les résultats numériques obtenus sont
de piétre qualité. C’est le cas par exemple des éléments finis de Lagrange de plus bas ordre. On
fait le lien entre la bonne approximation de l'opérateur divergence et la stabilité du couplage
dans 'approximation d’un probléme de point-selle tel qu’un probléme de Stokes. Il s’avére que
la robustesse vis-a-vis du locking passe par la vérification d’une condition de type inf-sup (ou
de maniéere équivalente 'existence d’un opérateur de Fortin) entre I’espace de discrétisation des
déplacements et I’espace discret (qui serait ’espace des pressions dans un probléeme de Stokes)
sur lequel projeter I'opérateur divergence. S’inspirant de cette constatation et de 1’état de I'art
en matiere d’approximation de modeles d’élasticité, nous décidons de baser notre discrétisation
sur 1’élément fini de Crouzeix—Raviart [22], qui est non-conforme et qui a la bonne propriété
de savoir approximer les divergences, puisque possédant ses degrés de liberté sur les faces de la
maille. ’adaptation de cet élément au cas de maillages généraux est réalisée au Chapitre 111
par le biais d’'une analogie avec les méthodes HF'V.

Pour la poroélasticité, on aborde le probleme du couplage mécanique-écoulement. Pour des
temps courts, le terme darcéen (cf. (II.18b)) lié & la pression de pore fournit une contribution
quasi-nulle au modele, ce qui signifie que la pression n’intervient que trés peu par l'intermé-
diaire de son gradient. Tout se passe (du moins lorsque ¢y = 0) comme dans un probléme de
Stokes, a la différence pres que des que ¢ > 0, on impose des conditions de bord. Le gradient
de pression ne commence a contribuer au modele que pour des temps plus avancés et pour peu
que la perméabilité du milieu ne soit pas trop faible. D’un point de vue numérique, ’approxi-
mation de ce genre de phénomene s’avere compliquée. En effet, 'existence du terme darcéen
suggere de considérer des pressions discretes qui soient au minimum affines par maille. Or, dans
les premiers pas de temps, on ne peut avoir de contréle sur la pression au mieux que via sa
reconstruction, ce qui s’avere insuffisant. Ce manque de controle sur le gradient de pression se
paie en termes d’oscillations spatiales parasites. On discute dans le Chapitre II des différentes
techniques existant pour controler ce phénomeéne oscillatoire (cf. également Chapitre V).

Dans le Chapitre III, on se concentre sur 'approximation du modele d’élasticité. On pré-
sente la construction d’un espace d’approximation sur maillages généraux, dont les propriétés
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ressemblent de trés preés a celles de 'espace de Crouzeix—Raviart classique : propriétés d’ap-
proximation optimales (dont 'existence d’un opérateur de Fortin permettant de préserver la
divergence par maille de la fonction interpolée) et de conformité faible (i.e. la continuité des
fonctions au barycentre des interfaces d'un sous-maillage). La construction de cet espace se base
sur le gradient Volumes Finis Hybrides et s’inspire de la philosophie des méthodes ccG.

On définit sur un sous-maillage pyramidal (que 'on prouve étre régulier au sens éléments
finis) fictif (dans le sens ot aucune information n’a besoin d’étre stockée a son sujet) du maillage
initial une reconstruction affine, partant pour chaque pyramide (associée a une face de la maille)
de I'inconnue de face en question, et se déplacant selon le gradient introduit dans les méthodes
HFV. On prouve que 'espace ainsi engendré, et s’apparentant a une généralisation de ’espace
de Crouzeix—Raviart, possede toutes les qualités nécessaires pour I’approximation non-conforme
du modele d’élasticité, dans le sens ou sa conformité faible et ses propriétés d’approximation
sur maillages généraux en font un espace d’approximation a part entiere, pour lequel 'existence
d’un opérateur de Fortin garantit le bon traitement des divergences. On investigue également
le cas d’'un maillage simplicial conforme, et on prouve notamment que l’espace de Crouzeix—
Raviart est inclus dans ’espace ainsi construit. De plus, I'espace ainsi construit ne differe de
Pespace (la notion d’espace est un peu galvaudée dans ce contexte) HFV que par le caracteére
affine de la reconstruction, le gradient étant identique.

C’est précisément l'introduction de cette reconstruction qui, d’une part permet d’analyser
cet espace sous le nouveau jour qu’est celui des éléments finis non-conformes, et d’autre part
permet d’envisager pour la discrétisation non-conforme de 1’élasticité un traitement du probleme
de coercivité par une stabilisation des sauts, technique inspirée des méthodes dG.

Dans le Chapitre IV, on utilise I’espace précédemment construit pour approximer un modele
d’élasticité linéaire. On propose une méthode primale (par opposition & mixte) d’approximation
du champ de déplacement qui est inconditionnellement stable sur maillages généraux et qui est
robuste au locking. Le traitement du probleme de coercivité est basé comme nous ’avons dit
sur une stabilisation des sauts héritée des méthodes dG. Cette pénalisation permet d’obtenir
une inégalité de Korn (faible) discrete qui garantit la stabilité.

Cette méthode nécessite de considérer un degré de liberté par composante du champ de
déplacement pour chaque face et chaque cellule du maillage. Ce n’est donc pas la méthode la
moins cotliteuse que ’on puisse imaginer mais le rapport entre son cofit et les propriétés qu’elle
assure reste trés bon en comparaison & un équivalent (en termes de propriétés) élément fini P4,
Il est & noter que dans certains cas il est possible d’éliminer localement les inconnues de maille,
réduisant ainsi la taille du systéme. On consideére également le cas d’un matériau hétérogene
pour lequel on propose une adaptation de la méthode initiale. On étudie par ailleurs le lien
entre la méthode proposée et les méthodes volumes finis et éléments finis classiques.

Finalement, on propose une série de tests numériques attestant du bon comportement du
schéma, dans le traitement de problémes hétérogenes, de locking, ou d’approximation sur des
grilles générales. Des comparaisons sont proposées avec une méthode élément fini P¢. Tous ces
tests sont réalisés en deux dimensions d’espace griace a une implémentation prototype C++ basée
sur le cadre abstrait introduit par Di Pietro, Gratien et Prud’homme [27].

Dans le Chapitre V, on étudie la convergence d’une famille de méthodes pour le probleme
de poroélasticité. Cette famille de méthodes, appelée schémas Euler-Gradient, repose sur une
discrétisation Euler implicite en temps et Gradient en espace. La discrétisation Gradient, in-
troduite par Eymard et al. [45, 41, 33], repose sur un cadre abstrait englobant une large classe
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de méthodes d’approximation pour des problemes elliptiques linéaires ou non-linéaires (voire
non-locaux). Une discrétisation Gradient est, dans sa version la plus simple, définie par la don-
née de trois éléments : un espace de degrés de liberté, un opérateur de reconstruction sur cet
espace (permettant de définir la reconstruction des fonctions approchées), et un opérateur gra-
dient (également défini & partir de l’espace de degrés de liberté). Ce formalisme, qui regroupe
notamment les éléments finis conformes, la plupart des éléments finis non-conformes, certaines
méthodes MPFA, le schéma VAG [42, 41], ainsi que les méthodes HMM, se base sur quatre
principales hypotheéses a vérifier par les schémas : une hypothese de coercivité qui s’exprime
comme une inégalité de Friedrichs ou de Poincaré uniforme, une hypothese d’approximation op-
timale (souvent dénommée, improprement au sens éléments finis, consistance), une hypotheése
de conformité limite qui signifie que les opérateurs gradient et de reconstruction vérifient a
la limite une formule de Green continue, ainsi qu'une hypothese de compacité (qui permet de
controler les translations en espace et qui ne sert que dans le cas non-linéaire).

Nous basant sur ce formalisme, nous définissons une discrétisation Gradient & la fois pour le
déplacement et la pression, pour lesquelles nous faisons I’hypothese supplémentaire de disposer
d’une condition inf-sup sur la reconstruction de pression. Dans notre cas, I’hypothése de com-
pacité n’est pas nécessaire car le probleme est linéaire. Nous démontrons I’existence et 1'unicité
de la solution du schéma Euler-Gradient ainsi établi, ainsi que sa convergence vers ['unique so-
lution de régularité minimale (& savoir L?(0, T} Hl(Q)d) pour le déplacement et L2(0,T; H'(Q))
pour la pression lorsque celle-ci n’intervient pas dans la dérivée en temps) du probléme continu.
Plus précisément, nous démontrons la convergence forte du gradient de déplacement ainsi que
de la reconstruction de pression (ce dernier résultat est basé sur la condition inf-sup), ainsi
que la convergence faible du gradient de pression et de la reconstruction de déplacement. Ce
résultat de convergence est valable pour toutes les valeurs (admissibles) pouvant étre prises
par les parametres physiques (on considére notamment le cas de matériaux potentiellement
quasi-incompressibles et de zones potentiellement peu perméables dans le milieu).

Ces résultats théoriques sont validés sur une série de cas-tests bi-dimensionnels, réalisés sur
la méme plateforme prototype que ceux du chapitre précédent, et comparés a une méthode
éléments finis P¢/P; connue pour ne pas vérifier d’inf-sup. On étudie une discrétisation Gra-
dient en espace particuliere, basée sur un traitement de 1’élasticité linéaire fondé sur l'espace
de Crouzeix—Raviart généralisé développé aux Chapitres III et IV, et sur un traitement de la
pression fondé sur une méthode HFV (disposant donc du méme type de gradient mais dont la
reconstruction est constante par maille, autorisant ainsi la vérification d’une condition inf-sup
telle que celle supposée dans les hypotheses). On teste d’abord le comportement du schéma dans
un cas homogene a perméabilité suffisamment grande, sur les temps courts. La reconstruction
de pression converge en espace mais présente des oscillations parasites assez prononcées. La vé-
rification d’une condition inf-sup ne suffit donc pas a les éliminer. Nous donnons une explication
du phénomene : la condition inf-sup vérifiée ici est tres différente de celles habituellement ren-
contrées dans le cadre éléments finis dans le sens ou la reconstruction de pression est constante
par maille au lieu d’étre affine. Le contrdle ne se fait donc que sur une projection de la pression
affine, ce qui est insuffisant pour réduire de maniere efficace les oscillations. Il semble en méme
temps délicat de vérifier une condition inf-sup au sens éléments finis quand les discrétisations
du déplacement et de la pression sont toutes deux affines. Nous exposons d’autres techniques
possibles pour pallier a ce probleme, voir également les perspectives Chapitre VI. Par ailleurs,
le schéma se comporte trés bien en temps long, la stabilisation de la pression dfie au terme
darcéen opere. On teste ensuite le comportement du schéma sur grilles générales et dans un
cas hétérogene (la perméabilité est constante par morceaux) avec une zone peu perméable.
Lorsque la perméabilité de cette zone est suffisamment grande, tout se passe comme dans le cas
(homogene) précédent. Par contre, lorsque la perméabilité est trop basse, les résultats se dé-
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gradent. La convergence de la reconstruction de pression est toujours assurée mais les résultats
se détériorent avec 'augmentation du temps de simulation. La stabilisation normalement diie
au terme darcéen n’opére pas. Ces problémes (rencontrés également avec une méthode P{/P)
semblent également provenir d’'un manque de stabilisation de la pression et indiquent ainsi que
la constante de stabilisation doit étre proportionnelle a I'inverse de la plus petite perméabilité.
Il semble que si la pression n’est pas stabilisée rapidement (par un terme de diffusion prenant
de l'importance dés les premiers pas de temps ou par d’autres techniques), alors on constate
une instabilité en temps long lorsque trop d’erreurs se sont ajoutées. Par ailleurs, la robustesse
de la méthode sur maillages généraux est validée.

Le Chapitre VI présente quelques conclusions et les perspectives immédiates ou a plus long
terme de ce travail. Notamment, il s’agira de se pencher plus avant sur des méthodes de sta-
bilisation efficaces de I'approximation de pression dans les premiers pas de temps ou dans des
zones peu perméables.

Les annexes, au nombre de trois, présentent des travaux réalisés en marge de la ligne direc-
trice de ce manuscrit.

On introduit en Annexe A une généralisation, inspirée du Chapitre III, de l'espace de
Raviart—Thomas de plus bas ordre au cas des maillages généraux. Les propriétés principales
de cet espace (conformité H (div; §2) et approximation des divergences) sont dupliquées et éten-
dues.

En Annexe B, on présente une discrétisation inf-sup stable du probléeme de Stokes quasi-
statique basée sur un couplage de 'espace de Crouzeix—Raviart généralisé introduit au Cha-
pitre III avec une discrétisation centrée de la pression. On s’intéresse tout particulierement au
cas du traitement numérique des larges forcages irrotationnels dans le cas ou une décomposition
de Helmholtz du second membre est connue au niveau continu. On montre qu'un traitement
adéquat du second membre permet de s’affranchir de 'influence de sa partie irrotationnelle sur
Papproximation de la vitesse (qui au niveau continu ne dépend pas de la partie irrotationnelle du
terme source). On illustre ce résultat sur un cas-test 2D en utilisant la discrétisation introduite
auparavant.

Enfin, en Annexe C, on présente un moyen d’obtenir une inégalité de Korn discréte et donc
la coercivité d’'une approximation Volumes Finis Hybrides de 1’élasticité linéaire. On se place
donc dans le cas ol la reconstruction considérée est constante par maille, et ot une stabilisation
par les sauts n’est pas envisageable. La stabilisation de la forme bilinéaire passe par la réduction
du nombre de degrés de liberté par interpolation de la (des) composante(s) tangentielle(s) du
déplacement aux faces du maillage. Cette interpolation permet d’ajouter la rigidité nécessaire
au systeme pour contréler les mouvements de corps rigide, tout en permettant de garantir la
robustesse au locking et la stabilité du couplage avec des pressions centrées griace au fait que
les inconnues normales aux faces sont préservées. Le comportement de la méthode est testé en
2D et en 3D (les tests 3D ont été réalisés par Roland Masson sur un prototype Fortran 3D)
sur différentes grilles, et les résultats sont tres encourageants. Le principal inconvénient de la
méthode réside dans le fait qu’il n’existe pas a ’heure d’aujourd’hui de preuve qu’une inégalité
de Korn est bien vérifiée sur ’espace associé. Son principal avantage réside dans le peu de degrés
de liberté qu’elle engendre (un degré de liberté par face du maillage apres interpolation de la
(des) composante(s) tangentielle(s) et élimination locale (qui fonctionne ici dans tous les cas)
des inconnues de maille).
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In this chapter we present the physical model that we consider as our poroelasticity ref-
erence problem, beginning with an introduction of the linear elasticity equations. We give an
overview, sometimes merely based on a heuristic approach, of the different problems related to
the numerical approximation of such models. Finally, we provide a state of the art in terms of
approximation, from which we take advantage to clearly define our approximation choices and

the orientation of the following chapters.

From now on, we denote by 2 a bounded connected open polygonal or polyhedral subset of
R, where d € {2,3} stands for the space dimension. Its boundary is denoted by I', with unit

outward normal n.
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II.1 The linear elasticity model

II.1.1 Continuous setting

We consider a linearly elastic, isotropic, and homogeneous medium occupying the domain
Q). The linear behavior of the material implies that we enter the framework of infinitesimal
strain theory, meaning in particular that the geometry and the constitutive properties of the
material at each point of space can be assumed to be unchanged by the deformation (2 is
in particular a fixed domain). We also neglect the inertia effects in the structure, this is the
so-called quasistatic assumption.

In these conditions, the linear elasticity problem consists in finding a vector-valued displace-
ment field u : Q — R? such that

~Vg(u)=f inQ,
u=0 on I'p, (I1.1)
aglun=0 on I'y,

where I'p and I'y are such that I'p has nonzero measure, I'p nI'y = @, and I'p uI'y =I'. The
sets I'p and I'y are respectively associated to Dirichlet and Neumann boundary conditions. We
assume, and this is the sense of the assumption on the measure of I'p, that the displacement
is always prescribed at least on one part of the boundary. Thus, we do not consider the pure
traction problem but we may treat the pure displacement one when I'p = I'. For the sake
of simplicity, we consider homogeneous boundary conditions. The nonhomogeneous case could
be handled similarly. The vector-valued field f : Q@ — R? is the body force per unit volume
(for example the gravity) and g(u) is the Cauchy stress tensor given by Hooke’s law of linear

elasticity, which reads for an isotropic material:

IS

(u) :=2ug(u) + AV uly, e(u) = %(Vu + Vaul),

where () is the infinitesimal strain tensor, and I, the identity tensor in R?. The constitutive

properties of the material are described by the two constants A and p (the fact that A and p
are constant with respect to the space variable and the deformation is a consequence of the
homogeneity and infinitesimal strain assumptions respectively), referred to as Lamé parameters
and homogeneous to a pressure. Another way to describe the material makes use of its Poisson’s
ratio v (dimensionless) and elastic modulus E (homogeneous to a pressure), which are related
to the Lamé parameters through

vE E

A= Qrv)l—20) "o+

(IL.2)

The second Lamé parameter p, also called shear modulus (and denoted G), is strictly positive
and assumed to be bounded away from zero and from infinitely large values. The first Lamé
parameter A\ (related to the shear modulus and to the bulk modulus K by A = K — %G in
3D and A = K — G in 2D) is also assumed to be strictly positive (physically it can possibly
be negative but it is positive for most materials) and bounded away from zero, but it may
take unboundedly large values. As it is associated in the model to V-u, which represents the
variations of volume in the medium, this parameter is associated to the compressibility of the
material. The case A = +0o (which corresponds to a Poisson’s ratio v = 0.5) occurs when an
incompressible material is considered. In that case, we have V-u = 0 (cf. [6] for an example
of approximation of such a problem). From a practical point of view, the medium is never
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completely incompressible but tends to be so. Hence we do not consider the case A = +o0 but
only the case A — 400, which describes a quasi-incompressible behavior. We will see in the
next section that this limit behavior leads to numerical difficulties in the approximation of the
model.

Coherently with the context, we indifferently denote by (-, -)o o the scalar products in L?(2),

LZ(Q)d, and Lz(Q)d’d, which are respectively defined by (w,v)o0 = {qwvdz in L*(Q), by
(w,v)0,0 := §ow-vde in LZ(Q)d, and by (w,v)o,0 = {wwde in LQ(Q)d’d. The corresponding

norms are as well indifferently denoted by | - [9,o. We will introduce more systematic notations
in Chapter III, Section III.1.3.
In order to write the weak formulation of problem (II.1), we introduce the space

Hp(Q) = {ve H'(Q) | v, =0},

which reduces to the classical H} () space when I'p = I'. Thanks to Friedrichs’ inequality, there
holds that |[Vv]oq is a norm on HJ (). Assuming that f € L2(Q)d, the weak formulation of
problem (II.1) reads: Find w € H]%)(Q)d such that

a(u,v) = (£,v)00  VYve HL(Q)", (IL3)
where a(w,v) = (¢(w),£(v))oa = 21(ew).£(v))og + A(V-w, V-v)ga. There holds as an
immediate consequence, using the fact that A is a strictly positive constant,

d
a(v,v) > 2ule)5o  Yve Hp(Q)"

Hence, since p is bounded away from zero, the well-posedness of the weak formulation (II.3) relies
on Korn’s inequality in H]%(Q)d (cf., e.g., [14, Remark 1.1], or [3, Theorems 5.3.2 and 5.3.4]).

Lemma II.1 (Korn’s inequality). There exists a constant Cq r,, whose dependencies are spec-
ified in subscript, such that

d
IVloge < Cory le(@)loe Vo e Hp(Q), (IT.4)

and Cor, = V2 in the case Tp =T.

This inequality is mandatory to prove the coercivity of the formulation, since it gives a control
of the full gradient by its symmetric part. It implies that no rigid body motion is applied to
the structure. A rigid body motion is a motion with vanishing elastic energy, i.e. of the form
v(x) = a+Bx, with a € R? and B an anti-symmetric tensor. We will see in the next section that,

from a discrete point of view, find a lowest-order nonconforming approximation space satisfying
that kind of inequality is not an easy task. Combining Korn’s inequality (II.4) and the fact that
IVv|pq is a norm on H]%,(Q)d completes the proof of well-posedness of problem (I1.3).

Remark II.1 (Pure displacement problem). In the case I'n = I', the weak formulation (I11.3)
can be rewritten into the equivalent form: Find w € H&(Q)d such that

alu,v) = (fv)on  Yoe HHQ), (IL5)

where a(w,v) 1= p(Vw, Vo)oq + (1 + A)(V-w, V-v)gq. This comes from the relation

V-(VeT) = V-(V-ily), (IL6)
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valid for any sufficiently regular function, and especially for ¢ € C'SO(Q)d, which enables to
state, using two integrations by parts and a density argument, that

u(Vw, Vol)oo = p(Vw, Volyoa = n(V-w, V-v)og, (IL.7)

for all w,v e H&(Q)d. The same argument is used to prove Korn’s inequality (I1.4) in H&(Q)d
and derive the multiplicative constant. The equivalence between the two formulations only holds
if (i) pure Dirichlet boundary conditions are considered (even monhomogeneous since the weak
formulation can still be written in H&(Q)d, the solution is then obtained up to the addition of
a lifting); (ii) the material is homogeneous (with constant Lamé parameters). The advantage
of such a formulation is its natural coercivity, which does not rely on Korn’s inequality (11.4).
From a discrete point of view, the treatment of the pure displacement problem is thus much
easter.

To conclude this introduction, we state a regularity result for problem (II.1) in dimension d =
2. A proof of that lemma (in the cases I'p = I" and I'y = I, and for nonhomogeneous boundary
conditions) can be found, e.g., in the classical work of Brenner and Sung [16, Lemmata 2.2 and
2.3].

Lemma II.2 (Regularity). Let d = 2 and assume that Q is convex. Then, problem (I1.1) has

a unique solution u € H]ID(Q)d N H2(Q)d. Moreover, there exists a real C,, > 0, only depending
on Q and p but not on A, such that, for \ large enough,

Na(u) = |ufz0 + AIV-ulio < Cullf

0,2 (IL.8)

The notations | - |10 and || - |2, respectively refer to the classical seminorm in H'(2) and norm
in HQ(Q)d (cf. again Section II1.1.3). This a priori estimate implies that if A — 400, the
divergence of the displacement field approaches zero, corresponding to a quasi-incompressible
behavior (the variations of volume in the medium tend to vanish). Note that an energy estimate
enables to show that A\?|V-ullg o is bounded independently of A. The restriction to d = 2 is a
priori purely theoretical and we can assume that the same result may hold in d = 3. This
regularity result is rather comforting from a physical point of view but, more practically and as
we will see in the following section, it gives a useful tool to derive discretization error estimates
that are robust with respect to the first Lamé parameter A. In the case of nonhomogeneous
boundary conditions, the right-hand side of this regularity estimate is modified accordingly to
take them into account, see, e.g., [16]. A generalization of this result to composite materials
with piecewise constant mechanical properties is proved in [29], see Remark IV.5.

I1.1.2 Numerical issues

Throughout this section, we give an overview, sometimes only based on heuristic arguments,
of the different problems related to the approximation of the linear elasticity problem (II.3).
The aim here is not to be completely rigorous, but to explain roughly what are the different
problems, in order to define in the next section, and in the light of what already exists in
the literature, the best answers to give to these issues in the following chapters. We recall,
see Chapter I, that owing to the applications we aim, we consider lowest-order approximation
methods, which must handle possibly fairly general meshes.

I1.1.2.1 A certain lack of coercivity

As we explained in Section II.1.1, the coercivity of the weak formulation (II.3) relies on
Korn’s inequality (I.4) in H]ID(Q)d. From a discrete point of view, any conforming approximation
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II.1 The linear elasticity model

of the problem based on a finite element space U} < Hll)(Q)d is coercive, in the sense that a
discrete Korn’s inequality holds on U}, as a consequence of (I1.4). However, such approximations
have two main drawbacks:

(i) first, they are completely mesh-dependent since the dimension of the local polynomial
space is directly related to the shape of the element. Hence, considering fairly general
meshes may dramatically complicate the computation. In most of 3D industrial codes,
only tetrahedral or hexahedral elements are considered and nonmatching interfaces are
merely not handled;

(ii) secondly, the discretization obtained is not robust with respect to the first Lamé parameter
A, as we will detail in Section 11.1.2.2.

As a consequence, despite of their natural well-posedness, conforming finite elements are not
suited at all to our needs. Hence we have to consider nonconforming approximations, and thus
discrete spaces on which a discrete Korn’s inequality does not necessarily hold.

Let temporarily focus on the pure traction problem, i.e. I'y = I'. The pure displacement
problem has no interest in that context since it can be rewritten into a coercive form, see
Remark II.1. The pure traction problem is well-posed in the space

_ 0} ,

where V x is the classical rotation operator when d = 2, and curl operator when d = 3. The
well-posedness of this problem means that Korn’s inequality (I1.4) holds on U, see [14, Remark
1.1]. Let now see what happens on a nonconforming discrete level. If we restrict ourselves to
a matching simplicial mesh, it is well known, as it has been pointed out by Falk [46], that the
first order nonconforming space (spanned by piecewise affine functions that are continuous at
the midpoint of mesh interfaces) does not fulfill a discrete Korn’s inequality. To establish this
fact, we use a dimension-counting argument.

First, note that this space is the so-called lowest-order Crouzeix—Raviart space introduced
in [22]. Let 7, be a matching simplicial discretization of the domain 2 (h classically represents
the maximum diameter of the mesh elements) and let CR(7;) denote the Crouzeix—Raviart
space on 7. We introduce

_ 0} ,

where V, x is the broken rotation or curl operator (defined from the broken gradient operator
V1, that will be rigorously introduced in Section II1.1.3).

Let henceforth assume d = 2. Then, U}, has dimension 2 card(F7;, ) — 3, where F7; is the set
of edges of the mesh. Thus, the subspace of U}, with ¢j(vy,) = Q (where €, is the broken

U = {veHl(Q)d \f vdx =O,U Vxvdzx
Q Q

U, = {vh € (D[R('ﬁl)d | J vy dx = 0,
Q

J Vixv, da
Q

infinitesimal strain tensor) has dimension greater or equal to 2 card(Fr, ) — 3 card(7,) — 3, since
this relation brings at most 3card(7;) additional independent constraints (the infinitesimal
strain tensor is piecewise constant and symmetric). As a consequence, using Euler relations
(see, e.g., [35, Lemma 1.57]), this subspace has dimension greater or equal to card(]:%) -3,
where ]-'%L is the subset of boundary edges, which means that it has strictly positive dimension
as soon as 7Tp consists of more than one triangle. On the other hand, the dimension of the
subspace of U}, with Vv, = 0 is clearly zero. Hence, there must exist functions in U}, for

which Korn’s inequality (IL1.4) fails.
The conclusion is: in a lowest-order nonconforming space, there is no reason for a discrete
Korn’s inequality to hold. Even more, and this statement will make sense in the following,
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discrete spaces to which the Crouzeix—Raviart space belongs cannot fulfill a discrete Korn’s
inequality. In the state of the art, see Section I1.1.3, we will see that different remedies exist
to prove Korn’s inequality on nonconforming spaces (reduced integration techniques, jumps
penalization, order increasing, rigidity adding). We will discuss the advantages and drawbacks
of each of these techniques.

I1.1.2.2 Quasi-incompressible materials: the locking phenomenon

Assume I'p = T" and consider the linear elasticity problem (II.3). Given a conforming finite
element space Uj, < H&(Q)d, we search for uy, € U}, such that

a(up,vp) = (f,vp)o0 Yo, e Up, (I1.9)

where we recall a(w,v) := 2u(e(w),£(v))o, o+ A (V-w, V-v)o o. This problem is well-posed since
Korn’s inequality (I1.4) does hold on the conforming space Uj. We introduce the energy norm
|v]e := a(v,v)? on Hol(Q)d (the fact that |- [ is @ norm is a consequence of the symmetry of
the bilinear form a and of its coercivity expressed by Korn’s inequality). If u € H&(Q)d denotes
the unique solution to (I1.3), then Céa’s lemma gives the following estimate of the discretization
error:

o=l < inf Ju—vila, (IL.10)

The discretization error is bounded by the approximation error.

When A is very large, which corresponds to a quasi-incompressible material, results of poor
quality can be obtained when solving problem (I1.9). More specifically, it can be observed that
the material deforms as if it were much stiffer. In other words, it appears to lock, and hence the
name of numerical locking for describing this phenomenon. According to the estimate (I1.10),
there must be in that case a problem of approximation in the discrete space we consider.

Let first give a heuristic explanation to this phenomenon. To this end, let introduce the
notation U := H&(Q)d, the space

% = {wh (S Uh ‘ V-wh = O},

and the norm |v|yy := | Vvlo,o on U. Formally, one sees in (I1.9) that in the limit case A = +o0,
V.up, = 0 (take vj, = uy, divide the equation by A and let A goes to +00). Thus, the solution
uy, is constrained to lie in the limit in the space Uj. Therefore, instead of being controlled by

it
pinf u—vnlo,

the approximation properties of the space in the incompressible limit are actually given by

inf — )
w,lfeth | —wh|u

Whereas the approximation properties of U}, are usually well-known (standard finite element
space), the approximation properties of U}, are less clear and can be very poor. The extreme
case is when Uy, is reduced to {0}: the elastic solid is then completely stuck. This is the case,
for example, of the (conforming) [P(f finite element space on special matching simplicial meshes,
see, e.g., [15, Section 11.3]. This explains the locking problem. This phenomenon would not
occur in the presence of an inequality such that, there exists C' > 0 independent of h such that

inf |u—wylly <C inf |u—v4|u. (IL.11)
wheﬂ ’UhEUh
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Indeed, in such a case, the approximation properties of U} would be the same as those of Uy.
But inequality (II.11) is not true in general. All the difficulty lies in the approximation of
nontrivial (or nonconstant in the case of nonhomogeneous Dirichlet boundary conditions) fields
with zero-divergence (these fields are said to be solenoidal).

For further use, we first define

L2(9) i {ge L2() | L o(x) da — 0}, (I1.12)

and notice that V-Uj, < L3(f2) since U, = U. To avoid locking, as we will detail more precisely
in the state of the art, different approximation techniques, ranging from primal to mixed, have
been proposed in the literature. The solution of a mixed formulation of linear elasticity is
characterized as the saddle-point of a Lagrangian functional involving two or three discrete
unknowns (stress, displacement, pressure-like variables...). These methods may give a good
remedy to locking but are often computationally more expensive than primal ones where the
displacement is the sole unknown. For that reason, we focus on primal methods. To eliminate
locking, it has been proposed in the engineering literature to slightly modify the energy of the
problem, using a reduced integration technique on the divergence operator. We thus consider
the following modified energy

In(wn) = | [elon)Pde -+ 5 | (Mn(V-0)*de — (£, 0n)o,

where IIj, : L?(Q) — P, is the L%-orthogonal projector onto the broken polynomial space P,
(to be determined). We remind that, for p € L?(Q), II,(p) is characterized by I, (p) € P, and
(In(p),an)o0 = (P:an)oe  Van € Ph.

When restricting 1T, to L3(f2), then II;(p) € P, n LZ(Q2) owing to the mean conservation
property of the L?-orthogonal projector onto broken polynomial spaces. Minimizing .J;, over
U}, is equivalent to solving the modified problem

ap(un, vr) = (f,vn)o0 Yoy € Up, (I1.13)

where ap(w,v) 1= 2u(e(w),£(v))o,0 + AL (V-w), I1,(V-v)) o. Obviously, the modification of

the initial problem into (II.13) has to be paid in terms of a consistency error. As a consequence,
the discretization error is no longer given by (I1.10) but reads

. ap\uU, Vp) — , Uh Q2
[u—upla < Cp | inf |u—wvpla+ sup [n ) = (f,vn)o , (I1.14)
vpeUp v,eU\{0} |vnller

where [|v]e = ah('v,v)l/2 and Cp > 0 is a constant independent of h, A\, x, and w. Let now
see how the above modification of the initial problem changes the approximation properties of
the space involved in the incompressible limit case. To that extent, let rewrite the modified
problem (I1.13) into a mixed form. Introducing py, = —Al,(V-uy) € P, n LE(2) leads to

AL (Veug), Hp (V-vr))oo = —(on, I (V-vp))on = —(Pr, V-vn)oq.

Thus, solving the modified problem (II.13) is equivalent to searching for (up,pp) € Up x Py N
L3(9) such that, for all (vp, qn) € Uy, x Py, n LE(Q),

2p(e(un), g(vn))oq = (V-on,proga = (f,vn)oq, (I1.15)

(V-un, qn)oq + A (phy an)oa =0.
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Under this mixed form, the benefits of the reduced integration technique can now clearly be
seen. Indeed, let introduce the space

Ui}L = {wh € Uh ‘ Hh(V-wh) = 0}.

One sees that when A\ goes to infinity, the solution wu; to problem (II.15), and thus to the
modified problem (I1.13), is constrained to lie in Uy, (instead of U}, as for problem (I1.9)). The
trick is now clear. Whereas U), was a hidden and not very convenient space, the space U, is
actually linked to the choice of the space P,. To choose Pj, a compromise has to be found
between locking and accuracy. The heuristic is the following. On the one hand, a smaller P,
makes Uy, larger and thus an inequality like (IL.11) easier to obtain, which avoids locking but
enforces poorly the incompressibility constraint. On the other hand, a larger P, enforces better
the incompressibility constraint but leads to introduce locking since inequality (II.11) is harder
to achieve with a small Uj. The question is now: how to choose P, from a practical point of
view?

To answer that question, let first introduce the following result by Necas, which can be
found, e.g., in [63, 48].

Lemma II.3 (Surjectivity of the divergence operator). The divergence operator is surjective
from H} (Q)d to LE(Q). Thus, for all p e L3(9), there exists ux € H&(Q)d such that

Vaun =p and Jun|lo < Ox|plo.q,

where Cx > 0 only depends on ().

This result holds true for Lipschitz domains, which is the case of polygonal or polyhedral
domains. Let now define the notion of Fortin operator for our problem; see, e.g., [17].

Definition II.1 (Fortin operator). We call Fortin operator an interpolator Z;, : U — U}, such
that

(i) VoeU, MHp(V-Ih(v)) =1a(V-);
(ii) there exists Cs > 0, independent of h, such that

VveU, |Zy(v)|u <Cs|v|u.

The Fortin operator Zj is designed in order to satisfy optimal approximation properties (cf.
Lemma II1.5) under classical requirements on the mesh sequence (cf. Section I11.1). Note that
the regularity H* (Q)d is insufficient to define a Fortin operator using classical Lagrange interpo-
lation on conforming finite element spaces since pointwise evaluations of functions are needed.
In this case, a solution is to consider the Clément interpolator, cf. [35, Section 1.6.1]. The ex-
istence of a Fortin operator is instrumental in the proof of the following result, inspired of [17,
Proposition 2.5].

Lemma II.4 (Robustness with respect to locking). Assume that Py is chosen such that there

exists I, Fortin operator in the sense of Definition I.1. Let u € H} (Q)d such that, for all
qe L3(Q), (V-u,q)oqn = 0. Then, there exists C > 0, independent of h, such that

inf |u—wylly <C inf |u—wv|u.
wheUh vheUh
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Proof. Let vy, € Uy, and let consider p := I,(V-(u — vy)) € P, n L3(). According to
Lemma II.3, there exists uny € H&(Q)d such that V-ux = p, and ||lun|u < Cxlp
constant Cy > 0 independent of h. The existence of the Fortin operator Z; gives

lo.o for a

Iy (V-Zp(un)) = Ip(Veuy)  with  |Zh(un)|u < Cs un]u,
where Cg > 0 is independent of h. Owing to the fact that p € Py, II5(V-ux) = p and thus
(V- Iy (un)) = In(V-(u = vp)),

which means in particular that wy, := Zj,(ux) + v, € Uy, since II,(V-u) = 0 by assumption.
Then, we get

lu —wp|v < [u—wvillu + [Zn(ux) v < [u —vallu + CsCx|ploo-

Owing to the definition of the L?-orthogonal projector, we have

0,0 < |[V-(u—wvp)

Ip| 0,0 < Clu — vlu,

where Cg > 0 is a constant independent of A. The conclusion follows with C = 1+ CgCsCy. O

When A = +00, the solution u € H&(Q)d of problem (II.3) is constrained to lie in the space
d
{ve Hy()" | (V-v,9)o0 =0,V g€ L)}

This can be seen by rewriting (II.3) under an equivalent mixed form, just as we did for the
modified problem (I1.13), and by letting A go to infinity. Thus, up to a choice of P, such that
a Fortin operator exists, Lemma II.4 guarantees that the approximation (II.13) of the linear
elasticity problem will not lock in the quasi-incompressible limit. However, it still does not
really help choosing P,,. The following remark does, cf. [17, Proposition II.8].

Remark II.2 (Link with a discrete inf-sup condition). Let Py, be given. Let introduce the
bilinear form b(vp,qn) = —(V-vp,qn)oq on Uy x Py 0 LE(Q). The existence of a Fortin
operator is equivalent to the verification of the following discrete inf-sup condition:

b(vy,
Yan € Py 0 L3(9), Blanloo < sup Ma
oneU\(0} vnlu

where B > 0 is independent of h. Moreover, we have the relations 8 = (CsCx)™" and Cg = |b].

The conclusion follows: to guarantee the locking-free aspect of the discretization (II1.13), it is
sufficient to choose P}, such that a discrete inf-sup condition (with a constant independent of
h) holds on U}, x Py, n L3(9).

Remark I1.3 (Nonconforming approximation). Let Uy, & U be a nonconforming approxima-
tion space satisfying V,-Uj, < LE(Q), and let Py, be given. We consider the following problem:
Find uy, € Uy, such that

an(un,vn) = (f,vn)o  Vop € Uy, (11.16)
where ap(w, v) := 2u(gp(w), en(v))o,0+ AU (Vp-w), Hp(Vyv))o o +sn(w,v), using the broken
versions of the different differential operators (cf. Section III1.1.3). Introducing

[V := an (v, v)"?,
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the discretization error associated to (11.16) still can be written under the form (11.14), with the
slight difference that the second term in the right-hand side does not only take into account a
consistency error but also now a conformity one. The bilinear form sy is a consistent stabiliza-
tion term (jumps penalization) which aims to recover coercivity on a nonconforming level. We
will give more details in Chapter IV. With a slight modification of Definition I1.1 to take into
account the broken character of the divergence operator when applied to Uy, and of the norm
vl := | Viv|oq on U + Uy, it is a simple matter to show that Lemma II.4 and Remark I1.2
still hold when considering a monconforming approximation space. As a consequence, an injf-
sup stable pair (Uy, & U, Py, N L%(Q)) will give a locking-free primal approximation of linear
elasticity equations.

We now give some examples of locking-free conforming or nonconforming pairs (U}, Py,) (on
matching simplicial meshes) that can be encountered in the literature. Let 7, be a matching
simplicial discretization of €2, h representing the maximum diameter of the mesh elements, and
let PY (75) and Pl (75,) respectively denote the spaces of piecewise constant and piecewise affine
functions on 7} (cf. again Section II1.1.3).

(i) Let introduce the space
Uy, = {v), € CR(Tp)? | v (TF) = 0,YF € F },

where CR(73,) is the Crouzeix—Raviart space introduced in Section 11.1.2.1, and @ is the
barycenter of the boundary face F' € ]-"% . First note that V,-Uj, = L3(Q). We consider
the nonconforming approximation (I1.16) on Uy, and we choose IIj, as the L?-orthogonal
projector onto P, := PY (T}) (classically denoted I19). Note that, when applied to V-Up,
H% is actually the identity operator. Members of U}, are thus pointwise divergence-free. It
is a simple matter to prove that the resulting discretization is locking-free. As a matter of
fact, it is well-known that the pair (U, P, n L3(Q2)) satisfies an inf-sup condition. In other
words, there exists a Fortin operator which preserves the mean value of the divergence (and
actually of the whole gradient) inside each element. For more details in the case d = 2,
see, e.g., Brenner and Sung [16] (for the pure displacement problem under its naturally
coercive formulation, cf. Remark II.1), and Hansbo and Larson [50] (for a stabilized version,
obtained as a particular case of a discontinuous Galerkin method). Note that an equivalent
construction exists on quadrilaterals, this is the so-called Rannacher-Turek element [71].

(ii) Let d = 2 and let T}, 5 be the matching triangular submesh of 7}, obtained by connecting
the barycenters of edges in 7. Let define

U= fon € HY(Q)" | vn € P (Th) .

We consider the conforming approximation (II.13) on Uy, and we choose IIj, as the L>-
orthogonal projector onto P, := PY(73), i.e. I, = II). Note that V-U), < PY (7}L/2).
Members of Uy, are thus discretely divergence-free. The resulting discretization is locking-
free. The construction of the Fortin operator assuming a regularity H 2(Q)d is detailed
in [16] for the pure traction problem.

(iii) Let U}, be the (conforming) P4 finite element space with vanishing boundary conditions,
and let ITj, be the L2-orthogonal projector onto the (conforming) Py finite element space.
Note that V-U;, < PL(7,). Members of U}, are thus discretely divergence-free. The
conforming approximation (I1.13) on Uy, is locking-free. Indeed, denoting Py := Py, it is
well-known that the pair (Uj, P, n L3(£2)) (the so-called Taylor-Hood element) satisfies
an inf-sup condition.
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Let finally see, from a practical point of view, what are the different steps to derive locking-
free discretization error estimates for sufficiently regular solutions. Assume that the continuous
solution satisfies w e U n H 2(Q)d. Locking-free discretizations satisfy an estimate of the form

| — upfe < Chlflon; (IL.17)

where || - [l is the discrete energy norm, and C' > 0 is a constant, possibly depending on p
and on the mesh regularity parameters, but independent of h, A\, and u. The key point here is
that the multiplicative constant in the right-hand side of (II.17) does not blow up in the limit
A — +00, i.e. the method converges uniformly with respect to A. To obtain (II.17), we prove
(without any assumption on the dimension d) that there holds, with NV (u) defined by (IL.8),

lu — upfer < CeahNei(u),

where Cg > 0 has the same dependencies as C. Then, the conclusion follows from a regularity
result like the one stated in Lemma II1.2 in the case d = 2 and €2 convex. This result gives both
the regularity of the solution w and the uniform bound on Ng(u) with respect to A\. Then,
C = CoqCy. We assume that an equivalent result may hold true in d = 3. In Chapter IV, we
will study the convergence of our nonconforming method by following the above steps, starting
from an abstract error estimate of the form (II.14).

11.1.3 State of the art and approximation choices

In this section we analyze the existing literature regarding the approximation of the linear
elasticity equations. We particularly focus on the questions of coercivity and robustness with
respect to locking that we have tackled in the previous section. The aim is, under the light of
what already exists, to justify the choices and the orientations of the two following chapters.

As we already noticed in Section 11.1.2.1, even if conforming finite element approximations
of linear elasticity are naturally well-posed, they do not fit into our specifications. The first
reason is that they are not suited at all to general meshes. The second one is that they
lock in the quasi-incompressible limit. On matching triangular meshes, as pointed out by
Falk [46], continuous finite elements suffer a deterioration in the convergence rate as A — +o0
for piecewise polynomials of degree less or equal to 3. If we focus on the lowest-order space, we
have seen in example (ii) of Section II.1.2.2 that robustness can be achieved up to a reduced
integration of divergence terms. However, the price to pay is a remeshing of the primal mesh
which merely doubles the number of unknowns! Hence, conforming methods are definitely not
a good candidate for the discretization of linear elasticity.

Let thus focus on nonconforming methods. The coercivity issue of such approximations can
be fixed through various ways. As far as the lowest-order nonconfoming space (the Crouzeix—
Raviart space) is concerned, according to Falk [46], coercivity can be recovered by a reduced
integration of rotational terms. The price to pay is here again a remeshing of the primal mesh
wich doubles (after local elimination) the number of unknowns. Another way to reach coercivity
is to increase the order of approximation. Indeed, nonconforming piecewise quadratic and cubic
finite elements provide stable (and robust with respect to locking) discretizations, see again
Falk [46]. However, owing to the applications we aim, we only deal with lowest-order approx-
imations. Another technique to obtain coercivity is to add rigidity to the system by reducing
the number of degrees of freedom. We refer to Appendix C where we present a Hybrid Finite
Volume (HFV) method (on general 2D and 3D meshes) where the tangential component(s)
of the displacement on mesh faces is (are) interpolated by using normal unknowns belonging
to a stencil of neighboring faces. The linear interpolation is second order accurate in order
to preserve the order of approximation of the scheme. Note that cell unknowns can also be
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globally eliminated in that case since they only depend on a stencil of neighboring normal face
unknowns. The robustness with respect to locking is granted as soon as the same holds for the
HFV method without interpolation (which is the case, see Section II1.3.2 for the construction
of a Fortin operator on the corresponding space), since normal displacements on mesh faces
are kept as degrees of freedom. The numerical tests are convincing. However, this technique
presents two drawbacks. First, we did not manage to write a general proof attesting the un-
conditional stability of such a method. Secondly, even if the number of unknowns is reduced in
comparison with the same method without interpolation (the only unknowns left are the nor-
mal displacements on mesh faces), the computational costs can be prohibitive on fine meshes
because of the large stencil of neighboring faces that we have to consider for the interpolation.
This increases the calculation (owing to the resolution of local problems) and assembling times,
and deteriorates the matrix conditioning. The last technique to reach coercivity is inspired
from discontinuous Galerkin (dG) methods. This technique uses a (consistent) stabilization
of the bilinear form by least-square jumps penalization. Coercivity then results from the ap-
plication of a weak Korn’s inequality holding for piecewise H' vector fields, see Brenner [14].
In [49, 50], Hansbo and Larson design a lowest-order dG method on matching triangular meshes
for quasi-incompressible linear elasticity which does not lock. By restricting the dG method to
the Crouzeix—Raviart space, they derive a stabilized version of the lowest-order nonconforming
method. The coercivity of this stabilized (and locking-free) Crouzeix—Raviart approximation
is thus guaranteed by penalizing the jumps of discrete functions on mesh interfaces. Actually,
dG methods are not optimal at all to approximate quasi-incompressible linear elasticity, in the
sense that they imply a large number of degrees of freedom that are not necessary, since, at last,
the Fortin operator involved is the Crouzeix-Raviart one. Note that Di Pietro and Nicaise [29]
have proposed a locking-free dG method (on matching simplicial meshes) for linear elasticity
with piecewise constant mechanical properties. The stabilization by jumps penalization is a
good remedy but it has two drawbacks. The first one is that a notion of gradient-based affine
reconstruction must be defined to give a sense to the jumps. This notion does not necessarily
have sense for every nonconforming space, we think in particular to HF'V methods (see Eymard,
Gallouét and Herbin [39, 40]), but also to Mimetic Finite Difference (MFD) methods (see Brezzi,
Lipnikov et al. [20, 18, 19]), and to Mixed Finite Volume (MFV) ones (see Droniou and Ey-
mard [30]). These methods are closely related, as it has been investigated in [32], and have the
particularity of considering constant reconstructions, with gradient operator and reconstruction
only linked by a discrete Friedrichs’ inequality and a limit-conformity assumption. The second
drawback of the jumps penalization is that it enlarges the stencil as the jumps couple the un-
knowns between neighboring elements. The calculation (evaluations on quadrature nodes) and
assembling times are also increased. Nevertheless, jumps penalization remains, from our point
of view and after comparison, perhaps the best solution to ensure coercivity. Note that more
general Hooke’s laws, featuring fourth-order stiffness tensors satisfying certain symmetry and
positive-definiteness properties in order for the problem to be well-posed, can be considered.
Also in that case, jumps penalization guarantees the well-posedness on a discrete level.

As far as numerical locking is concerned, one classical way of circumventing the problem
is the use of a mixed formulation, where the solution is characterized as the saddle-point of a
Lagrangian functional involving two or three discrete unknowns (stress, displacement, pressure-
like variables. .. ). The resulting methods converge uniformly in A, but are often computationally
more expensive than primal methods where the displacement is the sole unknown. In this
context, we recall, e.g., the PEERS method of Arnold, Brezzi and Douglas [4], the mixed
method of Stenberg [75], and the mixed methods of Chavan, Lamichhane and Wohlmuth [21],
and Lamichhane and Stephan [57]. All these methods require matching tetrahedral (triangular)
or hexahedral (quadrilateral) meshes. General meshes matching regularity assumptions that are
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similar to the ones we will consider, cf. Section III.1, have been considered by Beirao da Veiga [7],
who introduces a mixed MFD method which does not lock in the quasi-incompressible limit.
The problem of locking has also been addressed without resorting to mixed formulations, and
several methods can be found in the literature. We can cite, e.g., the nonconforming methods
of Falk [46], and the p-version method of Vogelius [78]. In this work we take inspiration, in
particular, from the classical paper of Brenner and Sung [16], where the authors propose a
locking-free method on matching triangular meshes based on the Crouzeix—Raviart element, see
example (i) of Section I1.1.2.2. The coercivity issue is here circumvented by considering the pure
displacement problem and the naturally coercive form (II.5). Another source of inspiration is
the work of Hansbo and Larson [49, 50], that we already detailed above. All these works require
matching simplicial meshes.

Primal methods on general meshes have also been investigated. Beirdo da Veiga, Brezzi
and Marini [8] propose a virtual element (VE) discretization of linear elasticity which does
not lock in the quasi-incompressible limit. In the finite volume sphere, we can also cite the
work of Krell and coworkers on Discrete Duality Finite Volume (DDFV) schemes for the steady
Stokes problem with variable viscosity (which arises for non-Newtonian fluids), in two and
three space dimensions [55, 56]. DDFV schemes are staggered discretizations in the sense that
the different discrete unknowns are located on different nodes. When considering a variable
viscosity, one needs to derive a discrete Korn’s inequality to ensure the coercivity of the diffusion
operator. This is done in the work of Krell and coworkers by mimicking, on the discrete
level, the relation (II.6) and the integration by parts formula. However, the spaces used to
approximate the velocity and the pressure do not fulfill a discrete inf-sup condition on every
kind of meshes, as recently investigated in [13]. In the context of the Stokes problem, the
stability is recovered by penalizing the mass conservation equation, but in the context of quasi-
incompressible elasticity, even if they are coercive, DDFV methods cannot ensure the existence
of a Fortin operator on general meshes. Still in the finite volume framework, we can cite the
work of Beirdo da Veiga et al. on MFD methods on polyhedral meshes for the steady Stokes
problem with variable (and possibly fourth-order tensorial) viscosity, in two and three space
dimensions [9, 10]. For the velocity, nodal unknowns allow to recover a discrete Korn’s inequality,
while normal face unknowns enable to guarantee the existence of a Fortin operator. The coupled
discretization with piecewise constant pressures is thus inf-sup stable and coercive, with few
degrees of freedom involved. This method can be immediately extended to incompressible linear
elasticity under its mixed form, or to a coercive and locking-free primal method for (possibly
quasi-incompressible) elasticity by an element-wise condensation of pressure-like terms, that is
to say by introducing a projection on the divergence operator. Finally, we can cite the work
of Nordbotten [64], who proposes several vectorial Multi-Point Flux Approximation (MPFA)
methods for linear elasticity (with general Hooke’s laws), which only involve cell unknowns
for the components of the displacement. These methods apply to general meshes in two and
three space dimensions, are locally conservative, computationally cheap, and give good results
for heterogeneous media and challenging grids, but rather poor results for quasi-incompressible
materials. Other drawbacks are the rather complex local calculations needed in the construction
of the method, as well as the lack of theoretical framework to study such approximations, whose
stability properties are not shown. In addition, these methods are often nonsymmetric, which
implies the use of more complicate solvers like GMRES or BiCGStab, instead of a simpler
conjugate gradient method.

In this work, we aim to design a lowest-order, primal, symmetric (nonconforming) discretiza-
tion of linear elasticity on general meshes, which is unconditionally coercive and robust with
repect to locking. For that purpose, we take inspiration from the works of Brenner and Sung [16]
and Hansbo and Larson [50]. In Chapter III, we build a nonconforming lowest-order discrete
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space, which can be seen as an extension of the Crouzeix—Raviart space to general meshes, and
which has the desired properties

(i) of approximation and weak conformity (in this case, the continuity of mean values at
interfaces);

(ii) of existence of a Fortin operator.

These properties guarantee the robustness with repect to locking of any discretization of linear
elasticity based on that space. The construction of the space is inspired from HFV and cell-
centered Galerkin (ccG) methods, see Di Pietro [23] for the latter (ccG brings the useful notion
of gradient-based affine reconstruction for finite volume methods). In Chapter IV, we apply this
new space to the approximation of the elasticity equations, where we treat the coercivity issue
by jumps penalization. We also investigate the local conservativity properties of the method.

II.2 Biot’s consolidation model

11.2.1 Continuous setting

From now on, let € represent a linearly elastic porous medium saturated by a slightly
compressible and viscous fluid, in which inertia effects in the elastic structure are negligible.
This poroelasticity model is referred to as quasistatic and single-phase, in the sense that

e quasistatic: the acceleration term is neglected in the momentum balance as the inertia

effects in the elastic structure are negligible;

e single-phase: the medium is saturated by a (slightly compressible) fluid.

Given a simulation time 7' > 0, the poroelasticity problem, see the pioneering works of Biot [12]
and von Terzaghi [81], consists in finding a vector-valued displacement field u : Q x (0, 7] — R,
and a scalar-valued pore pressure p : Q2 x (0,7] — R, such that

—V.g(u)+aVp=f in Q x (0,71, (I1.18a)

o(aV-u +cop) — V- (kVp) =h in Q x (0,71, (I1.18b)

uw=0 on T x (0,77, (IL18c)

kVpn =0 onI'x (0,71, (I1.18d)

prg =0 in (0,77, (I1.18e)

(aV-u+cop)(-,0) = 5 in Q, (I1.18f)

where )

a(u) :=2pg(u) + AV-uly, e(u) = §(Vu + VauTl), (I1.19)

and where we have introduced the time-dependent notation (1), := ﬁ o ¥(z, -)da.
This saddle-point-type model is valid under the following assumptions:

(i) infinitesimal strain theory;
(ii) small variations of porosity;
(iii) small relative variations of the fluid density with respect to a uniform equilibrium value.

The mechanical behavior of the material is described through Hooke’s law (I1.19), valid for
isotropic linearly elastic materials, see Section I1.1.1. More general Hooke’s laws, involving
fourth-order stiffness tensors satisfying certain symmetry and positive-definiteness properties in
order for the problem to be well-posed, could be considered. Here, the material is also assumed
to be homogeneous, and hence the Lamé parameters are constant in the whole medium. The
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second Lamé parameter p remains bounded, whereas A may take unboundedly large values
in the case of a quasi-incompressible material (A — +0o0). In that model, g(u) is called the
effective stress tensor, while the total stress tensor is actually defined as g™ (
and is such that —V-gT(u) = f.

The mechanical equilibrium of the coupled solid-fluid system is described by Equation (I1.18a),
where f : Q x (0,7] — R? is the body force per unit volume (for example the gravity). The
coefficient @ > 0 (dimensionless) is the so-called Biot—Willis coefficient (sometimes denoted b,
see [36]), which symmetrically quantifies

e the variation of stress induced by an increment of fluid pressure for a constant pore volume
(aVp in (I1.18a));

e the amount of fluid that can be forced into the medium by a mechanical variation of pore
volume for a constant fluid pressure (aV-u in (I1.18b)).

This coefficient is usually close to unity and we will take it equal to one in the following. This
convention is adopted, e.g., in [82, 62, 74, 2].

The continuity Equation (I1.18b) is the mass balance of fluid. The volume of fluid both depends
on the pressure-dependent part cgp and on a part depending on the mechanical variations of
pore volume (for constant fluid pressure) aV-u. The coefficient ¢y > 0, which is homogeneous
to the inverse of a pressure, is the so-called constrained specific storage coefficient (linked to
Biot modulus M > 0 by ¢ := ﬁ) This coefficient is a measure of both

e the amount of fluid that can be forced into the medium by pressure increments if the fluid
is assumed to be incompressible (this measure is directly linked to the compressibility of
the structure);

e the amount of fluid that can be forced into the medium by pressure increments for a
constant pore volume (this last measure is directly linked to the compressibility of the
fluid, and vanishes for an incompressible fluid).

In some applications like consolidation processes (of clay for example), the fluid is considered to
be incompressible, and the elastic structure to have very low sensitiveness to pressure increments
for the range of pressures considered. Hence, the constrained specific storage coefficient is
assumed to be very small, and is merely neglected in this model. In that case, the volume of
fluid only depends on the mechanical variations of pore volume (for constant fluid pressure).
This model is referred to as Biot’s consolidation model. From a numerical point of view, and as
we will detail further, the correct approximation of Biot’s consolidation model is actually more
involved than the one of the poroelasticity problem, and the extension to this latter is in fact
straightforward as soon as Biot’s consolidation model is correctly treated. Hence, we will focus
in this work on the theoretical study of that special case.

The fluid flow in the porous medium follows Darcy’s law, with velocity given by

u) := g(u) — aply,

v=—kVp,

where we have neglected the gravity effects on the fluid. The scalar-valued field h : Qx(0,7] — R
is a source term, which satisfies (h), = 0 in (0,7], and which is often taken equal to zero in
consolidation models. The scalar-valued field & is the mobility of the fluid, i.e. the ratio between
the (scalar-valued) permeability of the medium and the constant dynamic viscosity of the fluid.
The mobility is homogeneous to the ratio of a velocity with a force per unit volume and satisfies

0<k<k(x)<E<+o0 for a.e. x € Q. (I1.20)

The mobility remains bounded away from infinitely large values but may take (strictly positive)
arbitrarily small values in poorly permeable regions (k — 07). Besides, we assume for theo-
retical needs (cf. Chapter V) that k € Wh®(Q2), and that the mobility satisfies: there exists
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Cmn > 1 such that
|57 lwroe o) < Cum 672, (IL.21)

which is equivalent to infer an upper bound on the permeability contrast and on the variation
scale of this latter.

To close the model, we prescribe boundary conditions on the displacement and pressure for
t > 0, as well as we enforce in (II.18f) an initial condition 5 : & — R such that (8), = 0 on the
quantity («V-u+cop). To model the incompressible response of the solid-fluid aggregate in the
beginning of the consolidation process, 5 is often taken equal to zero in consolidation models.
For the sake of simplicity, we prescribe a homogeneous Dirichlet boundary condition (II.18¢c) on
the displacement and a homogeneous Neumann boundary condition (I1.18d) on the pressure,
which models an impermeable boundary (v-n = 0). The condition of zero mean value (II.18e)
on the pressure ables to close the model. Other boundary conditions could be handled with
slight modifications.

From now on, we focus on Biot’s consolidation problem since we will study its numerical
approximation in Chapter V. Thus, we assume ¢y = 0 in (I1.18b) and (IL.18f). We also assume
that a = 1, and that, for obvious physical reasons, either A may take unboundedly large
values (quasi-incompressible behavior), either £ may tend to vanish (local quasi-impermeable
behavior). When dealing with quasi-incompressible behaviors (A — +0), we further assume
that the quantity \"2||3]o.q is bounded independently of .

In order to write the weak formulation of Biot’s consolidation problem, let first introduce the
space HL(Q) := H'(Q) nL3(Q), where L2(Q2) has been defined in (I1.12). In the sequel, we focus
on solutions with low regularity, i.e. L?(0,T; H&(Q)d) for the displacement, and L2(0, T; H(Q2))
for the pressure. Note that in the case ¢y # 0, we would have considered pressures belonging
to H'(0,T;L3(Q)) n L?(0,T; H(S)). For a function v defined a.e. on the space-time cylinder
Q x (0,T], we consider 1 as a function of the time variable with values in a Hilbert space V'
spanned by functions of the space variable, in such a way that

Y (0,T] a2t — () =9y(-,t) eV, for a.e. t € (0,7].

Let U := H&(Q)d, P := HL(Q), and let denote by CZ((0,T)) the space of time bump func-
tions. We recall that, thanks to Friedrichs’ and Poincaré inequalities, | Vv o is a norm on
U, as well as |[Vq|oq is a norm on P. For an initial datum 8 € L3(Q), and source terms
fe HY0,T; L2(Q)d)7 h e L?(0,T; L3(9)), we consider the following weak formulation of prob-
lem (I1.18) with ¢ = 0 and o = 1: Find w € L?(0,7;U) and p € L?(0,T; P) such that

T T T
fo a(u(t), v) p(t) dt + fo b(w, p(t)) (1) dt = fo (F(t)woap)dt  YoeU, Ve CE((0,T)),
(I1.22a)

T T T
fo b(ult), ) (1) df + L e(p(t). q) o(t) dt = L (1), Do p(t)dt  Yge P¥ge C2((0,T),
(I1.22b)
((V-u)(0),9)0,0 = (8,900 Vge P, (11.22¢)

where a(w,v) := p(Vw, Vou)oo+ (p+A)(V-w, V-v)pq, b(v,q) := —(V-v,q)0.q, and ¢(r, q) :=
(kV71,Vq)o . Some remarks are in order. First of all, note the use of the naturally coercive

linear elasticity bilinear form a. The use of such a convenient alternative formulation is justified
by Remark II.1.
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Remark II.4 (Initial datum). Owing to the surjectivity of the divergence operator stated in
Lemma II.3, the L%(Q) initial datum on the divergence of the displacement can be expressed as

D eU such that 5 =Vul, wih|Vu?|oq <

(11.23)

where Cx > 0 is the constant (only depending on Q) introduced in Lemma II.3. Hence, we can
define an initial displacement field u® € U.

Remark IL.5 (Regularity). If (u,p) € L*(0,T;U) x L*(0,T; P) satisfies Equation (I1.22b),
then t — ((V-u)(t),q)on € HY((0,T)) for all g € P. Indeed, an integration by parts gives

—0; (b(ua Q)) + C(p7 Q) = (h7 q)O,Q Vge P, in D/((OvT))v

leadmg to the conclusion since, for all g € P, t — (h
L%((0,T)). As a consequence, t — ((V-u)(t),q)oq
sense to (11.22c¢).

( )7Q)0,Q € L2((0aT))7 and t — C(p(t>7q) €
e C%[0,T)) for all g € P, hence giving a

The existence and uniqueness of a minimal regularity solution to problem (I1.22) (with
homogeneous permeability) has been studied by Zenisek in [82]. This study handles the case of
piecewise C? boundaries but does not handle the one of poorly permeable media, nor the one
of quasi-incompressible materials. In this work, we prove the existence and uniqueness of the
weak solution to problem (I1.22) in the case of a polygonal or polyhedral domain, under the
regularity assumptions on the data previously introduced, and independently of the (admissible)
values that can possibly be taken by A or k. The existence is proved by constructing a sequence
of nonconforming approximations that converges to a solution of (II.22), see Chapter V. The
uniqueness is a consequence of the following lemma, inspired from [82].

Lemma IL.5 (A priori estimate). Let (u,p) € L?(0,T;U) x L?(0,T; P) be a solution to prob-
lem (I1.22). Then, it satisfies the following a priori estimate:

T 1 T T t
| aturu®)aes se:(0).21) = | (Fe.uOoades | (| b dspt)ondi (@, (Do
0 0 0

’ (11.24)
where z(t) 1= Sg p(s)ds, for allt e [0,T].
Proof. From Equation (I1.22a), there holds for a.e. t € (0,7"), and for all v € U,
a(u(t), v) + b(v,p(t)) = (F(t), v)o.0-
Let set v = u(t) € U, and integrate on (0,7):
T T T
| atw.u@de s | bwpm)d = [ FOunade s
0 0 0

Integrating by parts Equation (I1.22b), and owing to Remark I1.5, there holds for a.e. s € (0,7),
and for all ¢ € P,

— 0t (b(u(s),q)) + c(p(s), @) = (h(s), D)o,0- (I1.26)
For a given ¢ € [0, 7], let integrate the previous relation on (0, t):

t t

e(p(s).q)ds = f (h(s), a0 ds + (B, qJo.

0

“bu(t). ) + |

0
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where we have used Remark I1.5 and (I1.22¢). Let ¢ = p(¢) € P, in such a way that ¢ = d;2(t).
Then, there holds

—b(u(t),p(t)) + %@ (c(=2(t), 2(1))) = (J h(s)ds,p(t))o0 + (B,p(t))oq-

0

Integrating the last relation on (0,7") gives

T 1 T t
| (e 61 dt = Se((T).20) = (8 2@~ | (| b dspltoadt

0 0 0

which, combined to (I1.25), leads to the conclusion. O

Theorem II.1 (Uniqueness of the solution to (I1.22)). Independently of the (admissible) values
that can possibly be taken by A or k, whenever a solution to problem (11.22) exists, then it is
unique and we denote it (u,p) € L?(0,T;U) x L*(0,T; P).

Proof. Owing to the linearity of the problem, let assume f = 0, h = 0, and 5 = 0 in (11.22),
and let prove that (u,p) = (0,0). Owing to the positivity of the term c(z(T),z(T)), the
estimate (I1.24) combined with the fact that p is a strictly positive constant, directly yields
HuHLQ(O’T;Hé(Q)d) = 0. This result, combined with an integration on (0,7") of (11.26) where we
have set ¢ = p(s) € P, and with the positivity of x stated in (I1.20), yields HpHLQ(O’T;ﬁ(Q)) =0,
hence concluding the proof. O

I1.2.2 Numerical issues

Like we did in Section II.1.2 for the linear elasticity model, we roughly detail in this para-
graph the difficulties that may arise in the numerical approximation of a quasistatic single-phase
poroelasticity problem.

These issues have two origins: first, the discretization of the linear elasticity model (coerciv-
ity and numerical locking issues), and then, the (possibly saddle-point) coupling between the
flow and the mechanics (stability issues). We will not tackle again the coercivity and locking
issues, and we refer the reader to Section I1.1.2.

Concerning the time discretization, we will consider a first order implicit Euler method,
which is the simplest and most widely used method in the literature (sometimes under its
modified #-form). Thus, we will not go further into details.

As far as the stability of the saddle-point mechanics-flow coupling is concerned, it is actually
closely related to the elasticity locking phenomenon. For both of them, the difficulty lies in
the approximation of the divergence operator. According to Section 11.1.2.2, a locking-free
discretization of elasticity is obtained as soon as there exists a discrete (pressure) space which
satisfies an inf-sup condition when coupled with the displacement approximation space. In the
linear elasticity context, locking is handled by projecting the discrete divergence operator onto
that very space. In the context of a poroelastic displacement-pressure coupling, stability can
thus be obtained by considering discrete pressure reconstructions belonging to that space, which
is in fact equivalent to projecting the discrete divergence operator onto the pressure space in
the coupling term. From a mathematical point of view, the inf-sup condition yields an estimate
in the L*(0,T; L3(£2)) norm on the discrete pore pressure which is independent of £~

It is of some importance to note that inf-sup stability is not needed in a somehow compress-
ible poroelastic model (i.e. with ¢y > 0). As a matter of fact, in that case, the introduction of
the additional term & (co p) in the left-hand side of the fluid balance Equation (II.18b) directly
yields a discrete L™ (0, T} L%(Q)) estimate on the pore pressure which does not depend on x~!
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(nor on A), and which does not hinge on the existence of a Fortin operator. The strong conver-
gence of the approximate pressure reconstruction towards the continuous pressure can be proved
in the same way as the strong convergence of the approximate gradient of the displacement.

When considering Biot’s consolidation model (i.e. ¢y = 0), the only estimate that naturally
holds on the discrete pressure is a L2(0,T; HL(R)) one, which derives from the diffusion term
and which depends on £~'. Hence, in the presence of poorly permeable regions or in the
first time steps, the stability of the pressure approximation is not granted. This results in
spurious spatial oscillations of the pressure approximation, see, e.g., Phillips and Wheeler [6§],
or Berdal Haga, Osnes and Langtangen [11]. The only way to avoid this spurious phenomenon
is to introduce a stabilization on the pressure. This can be done either by stabilizing the flow
Equation (I1.22b), either by using approximation spaces for the displacement and pressure that
actually satisfy an inf-sup condition, see Section I1.2.3 for examples and discussion. A discrete
inf-sup condition ensures an additional estimate on the pressure in the L*(0,T; L3(Q2)) norm,
depending on A, but which does not depend on 7!, see Chapter V. This makes sense from
a physical point of view. Indeed, in a medium featuring very low permeability regions, an
incompressible fluid cannot flow unless the material be compressible. Thus, as we explained
in the previous section, when considering an incompressible fluid, the two limit cases k — 0T
and A — +00 cannot occur simultaneously. This means, from a discrete point of view, that a
L?(0,T; L3(£2)) estimate holds on the approximate pressure, independently of the (admissible)
values that can possibly be taken by A or k, as soon as a discrete inf-sup condition is fulfilled.
Indeed, when considering potentially poorly permeable regions, the material is assumed to be
compressible and the estimate deriving from the inf-sup condition (which only depends on the
bounded parameter \) ensures the stability of the pressure, while in the case of a potentially
quasi-incompressible material, the medium is assumed to be permeable and the stability of
the approximate pressure is granted by the estimate deriving from the diffusion term (which
only depends on the bounded parameter £~ '). Note finally that in Biot’s consolidation model,
the inf-sup condition seems mandatory to prove the strong convergence of the approximate
pressure reconstruction towards the continuous pressure in the L2(0,7; L3(£2)) norm. In a way,
the strong convergence of the pressure reconstruction cannot be guaranteed unless having an

estimate which does not depend on k1.

The problem of spurious spatial oscillations of the pore pressure is actually more involved
than a simple saddle-point coupling issue. The difficulty comes from the fact that, in very
early times (or when the permeability is low), the pressure is quasi-L3(f2) as the diffusion
term gives an almost vanishing contribution. However, as soon as ¢t > 0, boundary conditions
are imposed on the pore pressure hence giving necessarily to this latter a ﬁ(Q) dimension.
When ¢y = 0, if no discrete inf-sup condition holds, the only control of pressure is given by
the diffusion term, which is almost inexistant in early times. Spurious spatial oscillations then
arise. If an inf-sup condition holds, then it yields a control of the pressure reconstruction, hence
reducing the oscillations. Taking cg > 0 drives to the same stabilizing result. To approximate
the pore pressure, one has to consider (at least, since it belongs to ﬁ(Q)) a piecewise affine
representation. If we consider a piecewise affine discretization of the displacement components
(which is less costly than a quadratic one), then one has to derive an inf-sup condition for an
equal-order approximation pair, which seems difficult. Several tricks allow to circumvent this
problem. The first one is to consider a pair of spaces satisfying a (weaker) inf-sup condition
(which could not be termed like that in the finite element framework), that is to say giving an
estimate on a projection of the classical pressure reconstruction. We will consider that case in
Chapter V but we will see that the results are not fully satisfactory. The second remedy is to
add a stabilization term to the flow equation; this can be done in several ways, see Section V.4.2.
The third remedy is to treat the Darcean term using a mixed method, which enables to give to
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the pressure a L3(£2) dimension only (since the flux and the pressure are two different objects),
and to discretize it accordingly (piecewise constant for example) using a stable coupling method
with the flux. When coupled to a piecewise affine discretization of displacement, if this one is
discontinuous (as in dG methods), then the coupling is stable, see Wheeler et al. [67]. The only
problem of that method is that mixed methods often necessitate more unknowns than primal
ones.

11.2.3 State of the art and approximation choices

In this section, we give an overview of the existing literature regarding the approximation
of poroelasticity problems, and we use it to motivate our approximation choices.

There exists a wide range of poroelasticity models. They range from dynamic (with ac-
celeration terms in the momentum balance) to quasistatic, from multiphase compositional to
single-phase, they can model multiporosity and multipermeability systems, or secondary consoli-
dation processes (in that case a term of the form \*0,(V-u)l; with \* > 0 is added to the total

stress tensor ¢! (u)). We focus here on the quasistatic single-phase model (I1.18).

The mathematical issues of well-posedness of such a model have first been studied by Au-
riault and Sanchez—Palencia in [5]. In the later work of Showalter [74], an existence and
uniqueness theory for strong in time solutions is developed, for source data assumed to be
Holder continuous in time. This work also addresses the case of Neumann-Neumann boundary
regions, where the flux is prescribed both on the pressure through «kVp-n, and on the dis-
placement through g(u)n. Often this problem is circumvented by prescribing ¢¥ (u)n as the
displacement flux, the problem being that this flux is usually unknown in practical problems.
We can also cite the work of Ern and Meunier [36], who present an a priori analysis of the
continuous problem for strong in time solutions, assuming their existence for data satisfying
the assumptions introduced in Section II.2.1. Biot’s consolidation problem (i.e. (II.18) with
co = 0) has been tackled by Zenisek in [82]. The existence and uniqueness of a low regularity
solution (u,p) € L?(0,T; H&(Q)d) x L2(0,T; HL(Q)) (actually ZeniSek considers more general
boundary conditions) is proved under the assumptions on the data introduced in Section II.2.1.
Note however that this theory does not handle the cases of poorly permeable regions or quasi-
incompressible materials.

As far as the numerical approximation is concerned, the a priori analysis of Euler-Galerkin
approximations (i.e. implicit Euler in time, and continuous Galerkin in space) of Biot’s consol-
idation problem has first been carried out by Murad, Loula and coworkers [60, 61, 62]. This
analysis includes the semi-discrete and fully discrete cases, and the short- and long-time be-
haviors, for various stable and unstable combinations of the displacement and pore pressure
approximation spaces. In [62], the dependences of the spatial error bounds with respect to time
and to the meshsize are compared for combinations of finite elements ranging from unstable
(equal-order Lagrangian approximations) to stable (Taylor-Hood and mini elements). It ap-
pears that the lowest equal-order Lagrangian approximation presents more singular dependence
for small time than stable Taylor—-Hood or mini approximations. It also appears that the con-
solidation process causes a regularization of the exact solution and a stabilization of the pore
pressure approximation. Consequently, possible spurious spatial oscillations of the pressure field
close to the origin decay in time, especially for unstable methods. Hence, after a certain time,
both stable and unstable methods converge. In the work of Aguilar et al. [2], a stabilized finite
element scheme is proposed to handle the problem of numerical locking in poorly permeable
regions or/and in very short times. The method is based on the lowest equal-order Lagrangian
approximation, and relies on a perturbation of the flow equation, with a stabilization parameter
depending on the meshsize square. The resulting scheme is shown to be locking-free on numer-
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ical examples, with a better robustness than inf-sup stable combinations of spaces, due to the
ability of tuning the stabilization parameter according to the meshsize values. In that context,
we can also cite the work of Wan, Durlofsky, Hughes and Aziz [83] on stabilized finite element
methods. Another way to handle locking is to use a discontinuous Galerkin (dG) method. When
using lowest equal-order discontinuous spaces for the displacement and pressure, the robustness
with respect to locking can be obtained by penalizing the pressure jumps in the flow equation.
This method has been tested with success by Daniele A. Di Pietro but not published yet. We
can also cite the work of Phillips and Wheeler. In their first two papers [65, 66], they introduce a
mixed/continuous Galerkin approximation of the poroelasticity model, which relies on a mixed
discretization of the pressure and a continuous Galerkin discretization of the displacement. The
semi-discrete and fully discrete cases are studied, with a time discretization using an implicit
f-scheme. Optimal error estimates are derived under strong regularity assumptions on the data
and on the solutions. However, this scheme does not handle numerical locking in the sense that
no £~ -independent estimate holds on the discrete pressure when cg = 0. In [67, 68], the authors
introduce a mixed/dG method for the the same problem, which turns out to handle locking in
the limit ¢y = 0, at least for the lowest-order combination of the approximation spaces, as it
is shown numerically therein. However, the robustness with respect to locking is not proved
in [67], since the L?(0,T; L3(Q)) estimate on the pressure error that derive the authors comes
from the L?(0,T; HL(Q)) pressure error estimate, and thus depends on £~' (note that more
general boundary conditions are actually considered in [67]). But actually, when considering
the lowest-order combination of the approximation spaces, that is to say piecewise constant
pressures (which is possible with a mixed scheme), and piecewise (discontinuous) affine dis-
placements, the discrete stability is guaranteed since the two spaces satisfy an inf-sup condition
(the Fortin operator is the Crouzeix—Raviart interpolator on simplices). To ensure the robust-
ness of the coupling for any choices of the mixed/dG approximation spaces, one has to use a
least-square penalization of the pressure jumps in the flow equation as we already mentioned. In
the finite element sphere, we can cite as another contribution the work of Ern and Meunier [36],
which details, for an Euler-Galerkin approximation, and under strong regularity assumptions in
time and space on the solutions, the a priori and a posteriori analyses of problem (II.18). We
can finally cite the works of Korsawe, Starke et al. [53, 54] on least-squares mixed finite element
methods, and of Wheeler, Xue and Yotov [84] on the coupling of multi-point flux mixed finite
element methods (for flow) with continuous Galerkin methods (for mechanics). In this last pa-
per, the emphasis is put on the treatment of (possibly discontinuous) full tensor permeabilities,
and on the use of irregular and rough tetrahedral or hexahedral grids. Note however that the
grids must be matching owing to the conforming approximation of mechanics.

To the best of our knowledge, the existing literature on the approximation of the poroe-
lasticity problem on general meshes is very poor. The limiting factor is obviously the need
to design a (nonconforming) stable discretization of linear elasticity valid on general meshes
(i.e. with polyhedral cells and possibly nonmatching interfaces). In addition, this discretization
must be stable when coupled with cell-centered pressures. Owing to these difficulties, very few
coupled finite volume approaches have been studied for poroelasticity.

In the industrial world, and this is the case in IFP Energies nouvelles, mechanics-flow coupling
are usually ensured by an external coupling of specialized and very rich codes:

e a code treating multiphase compositional Darcy flows (PumaFlow™ or COORES™ in

IFP Energies nouvelles);

e a code treating mechanics (Code_ Aster or ABAQUS® in IFP Energies nouvelles).
Mechanics is treated with conforming finite elements on matching finite element-type meshes
(except if the model is itself discontinuous), whereas porous media flow codes use cell-centered
finite volume methods on CPG (Corner Point Geometry) meshes [69]. CPG meshes are widely
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used in reservoir simulation. They are based on a structured hexahedral grid, but are not
compatible with classical finite element codes for several reasons:

e hexahedral cells may degenerate into nonstandard polyhedral cells to model the erosion
of geological layers;

e vertices may be dedoubled and slide along the coordlines (i.e. straight lines orthogonal
to the geological layers) to model faults, generating possibly severe nonconformities (with
holes and overlapping);

e nonconforming local grid refinement (LGR) is used in near wellbore regions.

Hence, to realize the mechanics-flow coupling, one has to locally remesh (which can be intricate
in the presence of faults) the CPG grid before computing the interpolation operations between
3D meshes. Then, the external coupling is realized sequentially, using coupling algorithms.
There are three main types of sequential coupling methods:

e iteratively coupled: either the flow or the mechanics is solved first, then the other problem
is solved using the intermediate solution. This sequential procedure is iterated at each time
step until convergence within an acceptable tolerance. The converged solution is identical
to the one obtained using a fully coupled approach. Examples of such techniques are
drained and undrained splits (the mechanical problem is solved first), or fixed strain and
fixed stress splits (the flow problem is solved first);

e explicitly coupled: this method is also called the noniterative sequential method as only
one iteration is taken. This method is obviously less accurate. It can also be used as a
preconditioner for a fully coupled resolution;

e loosely coupled: the coupling is resolved only after a certain number of flow time steps.
This method can save computational cost but it is less accurate and requires reliable
estimates of when to update the mechanical response.

The stability, accuracy and efficiency of such sequential coupling methods have been studied in
detail by Kim, Tchelepi and Juanes [52] for poroelasticity and poroelastoplasticity with single-
phase flow. In [59], Mikeli¢ and Wheeler prove the convergence of the undrained split and fixed
stress split methods, by exhibiting the contraction mapping constant. This constant actually
tends to one as ¢y tends to zero, which means that this proof does not apply to Biot’s consol-
idation model. In that case, it has not been proved that iterative methods converge (we bet
that the proof of convergence must rely on an inf-sup condition).

Hence, industrial mechanics-flow coupling is not an easy task, since it involves local remesh-
ing, interpolations between 3D meshes, and external sequential coupling. That is a reason
why mechanics-flow couplings are not correctly handled yet in IFP Energies nouvelles. The
alternative solution is to develop a coupled finite volume approach, that is to say introduce a
discretization of mechanics directly applicable on CPG meshes. With such an approach, cou-
pling can be realized in a fully coupled way (flow and mechanics are solved simultaneously at
every time step). Note that it is also possible in that case to use a sequential coupling method,
the difference being now that neither interpolation nor external coupling are needed. The fully
coupled method necessitates the resolution of a larger system and the use of complex solvers,
but it avoids the (possibly) iterative procedure of sequential methods. The literature regarding
coupled finite volume approximations of the poroelasticity problem is rather poor. We can
cite the work of Shaw and Stone [73] who design a cell-centered finite volume method using
interpolations, but which does not honor discontinuities. We can also cite the ongoing work
of Jan Nordbotten, who designs computationally cheap cell-centered finite volume schemes for
poroelasticity, based on the multi-point approximations of linear elasticity introduced in [64], cf.
Section I1.1.3. The main problem regarding this kind of discretizations is their conditional sta-
bility and the lack of underlying theoretical framework.

Our aim in this work is to fill the gap, by designing an unconditionally stable (and symmetric)
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lowest-order discretization method for the quasistatic single-phase poroelasticity problem, which
applies on general meshes, and whose convergence can be proved under very low regularity
assumptions on the solutions and on the data. We will focus in Chapter V on the special case of
Biot’s consolidation problem (cy = 0), since once we have designed a robust numerical scheme
for this latter, it is an easy task to extend it to the general case. The regularity on the data and
on the solutions we consider is the one we introduced in Section I1.2.1. In particular, we consider
solutions (u,p) € L*(0,T; H&(Q)d) x L2(0,T; HL(2)), whose uniqueness for problem (I1.22) has
been proved in Theorem II.1. Their existence will be proved in a constructive way in Chapter V.
These approximation choices fit into the industrial constraints we have, especially concerning
the regularity of the solutions, which may be very low in practical problems. We recall that the
use of lowest-order methods is justified both by the inherent uncertainty associated to physical
data, and by the need to keep computational costs within affordable bounds.

To gain generality, we consider the generic framework of Gradient schemes, that has been
introduced by Eymard et al. in [45, 41, 33], and which is adapted to the discretization of
linear and nonlinear (possibly nonlocal) elliptic equations. This framework (coupled with a
time discretization) has been used with success to approximate parabolic models such as the
incompressible (immiscible) two-phase flow problem in heterogeneous porous media [44], or
the Stefan problem [37]. A Gradient discretization is the data of a set of degrees of freedom
and of a gradient and reconstruction operators. In order to prove the convergence of such
approximations, sequences of Gradient discretizations must satisfy the following assumptions:

e coercivity: expressed as a uniform (with respect to the mesh parameter) Friedrichs’ or

Poincaré inequality between the gradient operator and the reconstruction;

e optimal approximation properties (also called consistency);

e limit-conformity: an integration by parts formula holds in the limit (when the mesh

parameter tends to zero) between the gradient operator and the reconstruction;

e compactness: this property is only needed for nonlinear problems and ensures the control

of translations.

Gradient schemes encompass a large number of well-known methods, including Galerkin meth-
ods (and in particular conforming finite elements), the Crouzeix—Raviart method, some MPFA
and DDFV schemes, the HFV/MFD/MFV class of methods (cf. [32]), and the Vertex Approx-
imate Gradient (VAG) scheme introduced by Eymard, Guichard, Herbin and Masson [42, 41,
43, 44]. As we will detail in Chapter V, the generalized Crouzeix—Raviart space introduced
in Chapter III also enters the framework of Gradient discretizations, as it only differs from
HFV methods through the reconstruction considered (and obviously the subgrid stabilization
parameter).

In this work, we design an unconditionally stable family of Euler-Gradient approxima-
tions (i.e. implicit Euler in time and Gradient scheme in space) on possibly fairly general
meshes (depending on the method used) for the saddle-point model of Biot’s consolidation
(co = 0). We consider separate Gradient discretizations for displacement and pressure, whose
sequences are assumed to be coupled through a uniform (with respect to the mesh parameter)
inf-sup condition. This further assumption obviously reduces the field of admissible candidate
methods. For data satisfying the regularity introduced in Section I11.2.1, we prove the con-
vergence of this family of Kuler-Gradient approximations to the unique low regularity solution
(u,p) € L2(0,T;U) x L?(0,T; P) of problem (I1.22). More precisely, we prove the strong conver-
gence of the approximate displacement gradient and pore pressure, and the weak convergence of
the approximate displacement and mobility-weighted pressure gradient. This family of approx-
imations is also shown to be locking-free, in the sense that these convergence results are totally
independent from the (admissible) values that can possibly be taken by A or k. In Section V.4,
numerical experiments are led on general meshes, using a discretization of mechanics based on
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the generalized Crouzeix—Raviart space introduced in Chapter III, and a HFV discretization
(with subgrid stabilization parameter taken equal to d) of pressure.
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This chapter is inspired from the article [28], written with Daniele A. Di Pietro and accepted
for publication in Mathematics of Computation. The aim of this chapter is to introduce a new
discrete space, which can be considered as an extension of the Crouzeix—Raviart space to general
meshes. We first introduce our discrete setting, including notations, discrete analysis tools, and
the definition of an admissible mesh sequence. Then, we construct the space and study its
conformity and approximation properties, giving a sense to its designation. We also focus on
the case of a matching simplicial mesh, and finally introduce a discrete norm on that space.
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III.1 Discrete setting and admissible mesh sequences

Following [24, Chapter 1] and [23, Section 1], we introduce in this section the concept of
admissible mesh sequence of a bounded connected polygonal or polyhedral domain Q < R?
(with boundary I'), where d € {2, 3} stands for the space dimension. For the sake of brevity, we
only give the proofs of the new results, and refer to [24, 23] for further details.

II1.1.1 Shape- and contact-regularity

Let H < Ry denote a countable set having 0 as its unique accumulation point. We consider
mesh sequences Ky 1= (Kp,),cqy Where, for all h € H, KCj denotes a finite collection of nonempty
disjoint open polyhedra K;, = {K} such that Q = UKE]Ch K and h = maxgex, hi (hix denotes
here the diameter of the element K € Kp). We say that a hyperplanar closed connected subset
F of Q is a mesh face if it has positive (d—1)-dimensional measure and if either there exist
K, Ky € Ky, such that F < 0K n 0K2 (and F is called an interface) or there exists K € K,
such that F' < 0K nT' (and F is called a boundary face). Interfaces are collected in the set ]:’iCh’
boundary faces in F; }%h and we let Fi, := f,ich u]-",'%h. The diameter of a face F' € Fi, , is denoted
by hp. Moreover, we set, for all K € Ky, Fx := {F € Fx, | F' € 0K}. According to the context,
the notation |-| is used for the d- or the (d—1)-dimensional Lebesgue measure. In the rest of this
paragraph, we discuss some fairly general regularity conditions on the mesh sequence Ky that
allow to prove basic results such as trace and inverse inequalities and polynomial approximation
properties.

Definition ITI.1 (Shape- and contact-regularity). The mesh sequence Ky is shape- and contact-
regular if for all h € H, K}, admits a matching simplicial submesh 7}, such that

(i) Shape-regularity. There exists a real p; > 0 independent of h such that, for all h € H and
all simplex T € T}, of diameter hp and inradius rp, there holds po1hr < rp;

(ii) Contact-regularity. There exists a real g2 > 0 independent of h such that, for all h € H,
all K e Ky, and all T € T :={T €T}, | T < K}, there holds gohg < hp.

IT11.1.2 Admissible mesh sequences

The discrete space introduced in this work requires to identify a set of points which play a
pivotal role in the construction.

Definition III.2 (Cell centers). The mesh sequence Ky admits a set of cell centers if, for all
h € H and all K € K, there exists a point @i such that K is star-shaped with respect to &g
(the cell center) and, for all F' € Fg, there holds,

di,r = 03hk, (I11.1)
where di r denotes the orthogonal distance between xx and F' and g3 > 0 is independent of h.
Let Iy admit a set of cell centers. We define for all h € ‘H the pyramidal submesh
Prn = {Kr}KeK,, Fery

where, for all K € K, and all F € Fi, Kr denotes the open pyramid of apex i and base
F. An example of mesh K;, and associated pyramidal submesh P}, is provided in Figure III.1.
Each element of P is associated to a unique element K € Kj and a unique face F € Fk.
When this link is irrelevant, the generic element of Py, is noted P instead of K. The pyramids
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Figure III.1: Example of mesh K}, (solid lines) and pyramidal submesh P}, (dashed lines) in two
dimensions.

{KF}Kek,, reF), are nondegenerated owing to assumption (III.1). In the two-dimensional case,
Py, is matching and simplicial while, in higher dimension, it is in general not simplicial. Owing
to the planarity of faces, there holds for all K € K, and all F' € Fk,

|F'|d F

K:
|KF| p

(I11.2)
The set of faces of P}, (including the mesh faces in Fi, as well as the lateral faces of the
pyramids) is denoted by Fp, and we let ]-'%;h = th\F}%h and f%h = .F,kc’h. Additionally, for
all P € Py, we introduce the set Fp := {F € Fp, | F < 0P}.

Lemma ITI.1 (Shape- and contact-regularity of the pyramidal submesh). Let Ky admit a set
of cell centers. Then, if Ky is shape- and contact-reqular, the same holds for Py .

Proof. Let h € H. By assumption, K admits a matching simplicial submesh 7,. A matching
simplicial submesh % of the pyramidal submesh Pj can be constructed as follows: For all
K € Kj, and all F € Fk (i) a (d—1)-simplicial mesh & of F' is obtained taking the trace
of Tp on F; (ii) a d-simplicial mesh T, of the pyramid Kp is then obtained connecting the
(hyperplanar) elements in &p to the cell center. A matching simplicial submesh of P} is
obtained by setting
‘Ih = U ‘IKF‘
KeKy,, FeFk

(i) Shape-regularity. We prove that there exists a real ¢f > 0 independent of h such that
Oihr < rpfor all T € X3, Let Kp € P, and T € Tk, be given. Denoting by rr the inradius of
T, letting Ay := |0T| and o := 0T n F, there holds d|T'| = rp Ar = |o| dk,F, hence

lo|dr F
= . I11.3
rr A (IT1.3)

Since the (d—1)-dimensional measure of each face of T is bounded by h% ' and T has (d+1) faces,
there holds Ar < (d + 1)h%'. Let now S € T, be the unique simplex such that S N F = o
and S < K. Denoting by r, the inradius of o, and observing that r, > rg by a simple
argument based on the Pythagorean theorem, it is inferred |o| = [Bg_y1|rE! = By q|rd ! >
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1Ba_1] (0102)* 'h% ! owing to the shape- and contact-regularity of Kj, (B4_1 denotes here the
(d—1)-dimensional unit ball). Plugging these inequalities into (II1.3), it is inferred
d—1 d—1
S Ba-1] (0102) dicr > o3 B4-1] (0102) he,

d+1 d+1

and the conclusion follows with o) = 03 [Bgq_1| (0102)%'/(d + 1).

(ii) Contact-regularity. We prove that there exists a real ¢}, > 0 independent of h such that,
for all Kp € Py and all T € Tk, ohhi, < hy. To this end, we invoke (IIL.1) to infer, for all
Kp e Py and all T € Tk, hr = di,r = 03hix = 03hk,, where hi, denotes the diameter of
K. The conclusion follows with o), = 3. O

We close this section with the following definition.

Definition ITI.3 (Admissible mesh sequence). The mesh sequence Ky is admissible if it is
shape- and contact-regular and it admits a set of cell centers. For an admissible mesh sequence,
the reals 01, 02, and g3, are collectively referred to as mesh regqularity parameters.

This definition encompasses fairly general meshes, featuring (possibly nonconvex) polygonal or
polyhedral elements, and nonmatching interfaces.

111.1.3 Broken function spaces and polynomial approximation

For Sy, € {Kp, P} and an integer k > 0, we introduce the broken polynomial space
Pl (Sp) :={ve L*(Q) | VS € Sy, vis € P (S)},

where [P’fl denotes the space of polynomial functions of total degree at most k. Broken polynomial
spaces are a special instance of broken Sobolev spaces: for an integer [ > 1

H'(Sy) :={v e L*(Q) | VS € Sy, vjs € H'(S)}.

Let K € Ky, P € Py, and F € Fp,. For X € {Q, K, P}, we denote |- |; x and | - |; x the usual
seminorm and norm on H'(X). For Sy € {Kj,, Py}, we define

1/2 1/2
|lSh = <Z |- |lS> ) = <Z |- lS) )
SeSy, SeSp

respectively as the broken seminorm and norm on H!(S,). For X € {Q, K, P, F}, we denote
(,-)o,x and | - [lo,x (sometimes also denoted |- |p x) the usual scalar product and norm on
L?(X). The notations remain unchanged when considering vector- or tensor-valued elements.

For Sy, € {K},Pr}, we finally define the broken gradient operator, denoted by V; and acting
on functions v € H!(S},), such that (Vhv)jg := V(yjs) for all S € Sp. We also define the broken

divergence of a vector-valued field v € H! (Sh)d denoted by Vj-v, and the broken symmetric
gradient &j, (v), respectively as the trace and as the symmetric part of the broken tensor-gradient
Vv.

The shape- and contact-regularity of the mesh sequences Ky and Py are instrumental to
prove the following result, see [24, Lemmata 1.46 and 1.49].
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Lemma ITI.2 (Trace inequalities). Let Ky be an admissible mesh sequence, and denote by Py
the corresponding sequence of pyramidal submeshes. Then, there exist two reals Cyy and Ciy
independent of h such that, for all h € H with Sy, € {Kn, Pr},

VUh S [Pldf (Ph) R VP e Ph, VF € fp, H’Uh“(),F < Ctrh;vl/2“vh| 0,P (HI.4)
1
Vo e HY(Sy), VS € Sy, VF € Fs, [oo.r < Cure (b5 [0]2s + hslolg) . (IL5)

For every interface F' € ]-"ih, Sn € {Kn,Pr}, we introduce an arbitrary but fixed ordering
of the elements S and S> such that I < dS1 n 052 and let np := ng, r = —ng, r, where
ng, r, ¢ € {1,2}, denotes the unit normal to F' pointing out of S;. The orientation of the
normal remains coherent when F' € ]-",ich is regarded as an element of ]-";;h. For all S € &y, we
also introduce the symbol ng to denote the vector-valued field such that ng|p = NgF for all
F e Fs. On boundary faces F' € ]-}Eh, nyr denotes the unit normal pointing out of (2.

We next introduce jump and average trace operators that are widely used in the context of
nonconforming finite element methods. For a face F € ‘7:71% with F' < 0Py n 0P, and a scalar-
valued function v admitting a possibly two-valued trace on F we set,

1
[vlF == vip, —vp,, {v}r = B (vip, +vppy) -

If Fe ]-"%h with F' = 0P n T, we conventionally set [v]r = {v}F := vjp. When applied to
vector-valued functions, both the jump and average operators act component-wise. Whenever
no confusion can arise, we omit the subscript F' and simply write [v], {v}.

We close this section by considering polynomial approximation on admissible mesh se-
quences. It has been proved in [24, Lemma 1.40] that, for a shape- and contact-regular mesh
sequence, the number of simplices from the submesh 7} contained in each element K € K is
bounded uniformly in h. This, together with the results of Dupont and Scott [34], yields the
following.

Lemma IIL.3 (Optimal polynomial approximation). Let Ky denote a shape- and contact-
reqular mesh sequence. Then, for all h € H, all K € K}, all polynomial degree k = 0, all
s€{0,...,k+1} and all v e H*(K), there holds with 11} denoting the L*-orthogonal projector
onto Pk (KCy),

v — T} (V)i < Capphic ™|vlse ¥Yme{0,...,s}, (IT1.6)

where Capp 15 independent of both K and h.

We also note the following result, which is an immediate consequence of the trace inequal-
ity (IIL5) with S, = K and of the approximation properties of the L2-orthogonal projector.

Proposition ITI.1 (Approximation on mesh faces). For an admissible mesh sequence K3 there
holds for all h € H, all K € K}, all F € Fi, all polynomial degree k > 0, all s € {0,...,k+ 1},
and all ve H3(K),

—1
lo =T () o.r < Chig |o]s

where C' = Ciy «Cypp with Cyy ¢ defined as in (111.5) and Cypp as in (IIL6).

I1I.2 Construction of the space

The construction of our extended Crouzeix—Raviart space borrows ideas from both the cell-
centered Galerkin (ccG) [23] and the Hybrid Finite Volume (HFV) [40] frameworks. Let K,
denote an (admissible) general polygonal or polyhedral mesh, matching the regularity require-
ments discussed in Section III.1. In the spirit of ccG methods, the discrete space is constructed
in three steps:
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CHAPITRE III : A generalized Crouzeix—Raviart space

(i) we fix the vector space Vj, of face- and cell-centered degrees of freedom (DOFs) on KCp;

(ii) we define a discrete gradient reconstruction operator &, acting on V. The reconstructed
gradient is piecewise constant on the (fictitious) pyramidal submesh P}, whose construc-
tion has been detailed in Section III.1, and it results from the sum of two terms: a
consistent part depending on face unknowns only plus a subgrid correction involving both
face and cell unknowns. We will see in the next section that the weak conformity of the
space (here the continuity of mean values at interfaces) is ensured by finely tuning the
latter contribution;

(iii) we define an affine reconstruction operator Ry acting on Vj; which maps every vector of
DOFs onto a broken affine function on Pp. This function is obtained by perturbing the
(unique) face unknown associated to each pyramid with a linear correction based on the
discrete gradient &j,. The discrete space is then defined as

CR(Kp) := Rn(Va) < Py (Pr) .

The pyramidal submesh can be considered as fictitious in our construction in the sense that all
the relevant geometric information can be computed on the primal mesh, which is therefore the
only one that needs to be described and manipulated by the end-user. Note that similar ideas
are used in Appendix A to construct a H (div; Q)-conforming discrete space on general meshes
which can be viewed as an extension of the standard lowest-order Raviart—Thomas space.

Let now enter into the details of the construction. As for HFV methods, the vector space
of DOFs contains cell and face unknowns and is defined by

V1= {Vh = ((UK € R)kex,» (vr € [R)Fef;ch> e R x RF’%} : (IIL7)

The gradient operator generalizes the one of [40], and is composed of a consistent contribution
piecewise constant on the primal mesh I, plus a subgrid correction piecewise constant on the
pyramidal submesh P,,. More precisely, &), : V;, — P9 (Ph)d realizes the mapping vj, — & (vy)
with

@h(vh)u(F = Gk, (vy) :i= Gk (vi) + Rk, (vh), VK € Ky, F € Fk, (I11.8)

where, letting Tr := () (for a function ¢ integrable on F, we define {p) := {, ¢/|F|),

1
Gk(vp) = — Z |Flvenk,r, Rip(va) = 7 (vP—vk—G K (V) (TF — TK)) Nk, F,
|K’ FeFg dK’F

(I11.9)
and 1 > 1is a user-dependent parameter. With a slight abuse in notation, the symbols G, (vp,),
G (vy), and Ry, (vp) will also be used to denote the corresponding constant fields on Kp, K,
and K, respectively. The reconstruction operator Ry : V, — [Pcll (Pp,) realizes the mapping
Vp > %h(vh) with

%h(vh)lKF(ac) =vp + QSh(vh)‘KF-(m — EF), VKFr € Ph, Vx € Kp. (HI.lO)

By construction, there holds VMR, = &). We emphasize that, in view of Lemma I11.4 below,
the affine reconstruction in Kp is obtained by perturbing the face unknown vpg, unlike [23],
where the cell unknown vy is used instead. We are now ready to introduce the discrete space

(’ZSR(ICh) = fﬁh (Vh).

The space €R(K},) shares the same gradient operator (except concerning the value of the sta-
bilization parameter 7, see Remark III.1) as HFV methods. However, the main difference lies
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in the fact that €R(/;,) introduces the notion of gradient-based piecewise affine reconstruction,
while in the HF'V spirit the reconstruction is piecewise constant and is just related to the gradi-
ent operator through a discrete Friedrichs’ inequality and a limit-conformity assumption. Thus,
the space CSR(ICh)d is much more adapted to the discretization of linear elasticity equations
when one wants to recover coercivity by jumps penalization, since a notion of gradient-based
piecewise affine reconstruction is needed. As we already mentioned in Section II1.1.3, we have
studied another technique to obtain a discrete Korn’s inequality for HFV-based approximations,
see Appendix C.

I1I.3 Conformity and approximation properties

We investigate in this section how the space €R(K},) extends the weak conformity (the
continuity of mean values at mesh interfaces) and approximation (including the existence of a
Fortin operator) properties of the classical Crouzeix—Raviart space.

I11.3.1 Weak conformity

When approximating a variational problem, one has to choose a discrete approximation space
in which to search the solution. Conformity measures the difference between this approximation
space and the continuous one in which the variational problem is posed. When the discrete space
belongs to the continuous one (like in continuous finite elements), the approximation is said to
be conforming. Otherwise, the approximation is said to be nonconforming and conformity has
to be ensured by other means. One solution is to impose some weak continuity constraints
(pointwise for example) between elements, this is the case of nonconforming finite elements for
example. This strategy gives a first order conformity error, meaning that the error decreases
as h. This property is called weak conformity. In the finite volume sphere, the emphasis is
put on the construction of methods that converge on general meshes. Thus, the proofs of
convergence often rely on compactness arguments and usually do not pay too much importance
to the study of the convergence rate. Hence, the useful conformity notion is the one of limit-
conformity (see Chapter V), meaning that the conformity error tends to vanish as h tends to
zero, but without any convergence rate indication. Another way to ensure conformity is to
add consistency terms to the discrete bilinear form, as it is the case in dG methods. These
terms make the discrete bilinear form consistent, and thus the conformity error vanish, just
like in conforming approximations. Note that the term consistency error is more appropriate in
this case, since the approximation space is all the same nonconforming. However, the price to
pay is the addition of two other (consistent) terms in the discrete bilinear form, one to recover
symmetry, and another to recover coercivity.

In this paragraph we study the weak conformity properties of €R(Kj). We prove that the
choice n = d in (I11.9) yields the continuity of the mean values (or, equivalently, the barycentric
values) of discrete functions across all the interfaces in F}Jh (including lateral pyramidal faces).

Lemma III.4 (Continuity of mean values at interfaces). Let Kj belong to an admissible mesh
sequence and assume n = d in (IIL.9). Then, there holds for all v, € CR(K},),

vFeFp,  ulr=0

Proof. Let F € ]-'};h, vy € Vp, and set vy, 1= Ry (vy) € ER(K)). We distinguish two cases. (i) If
Fe ]-"}Ch is a face of the primal mesh Ky, the fact that (Jvs]) = 0 is an immediate consequence
of choosing vr as a starting point in (II1.10). (ii) If F € f;;h\f,ich is a lateral pyramidal face,
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CHAPITRE III : A generalized Crouzeix—Raviart space

(a) Element K (solid line), elementary pyrami- (b) Zoom on the pyramid K,
dal submesh (dashed line), and lateral pyrami-

dal face F' shared by the pyramids Kr, and Kp,

(thick dashed line)

Figure II1.2: Notation in two dimensions for the proof of Lemma II1.4.

there exist a unique element K € K, and two faces F}, F» € Fi such that ' < 0Kp, n 0Kp,
(cf. Figure III.2a). There holds for i € {1,2} (cf. Figure II1.2b),

d—1 dx,F,
(fp —fFi)'nK,Fi = (EF - mK)'nK,Fi + (wK —fFi)'nK,Fi = ( d - 1> deFi - ZFl’

where we have used the fact that Ty is the barycenter of the (d—1)-simplex F to treat the term
(Tr—x i) Nk F,. Using the above result together with (IIL1.9) it is inferred for i € {1, 2},

o; = Rgp (vu)(Tr —TF,) = —g (vr, — vk — Gr(va) (TR, — xK)) -

Using the definition of the jump operator and substituting the expression (II1.10) for the
barycentric values vy k. (Tr), i € {1,2}, we obtain

(wnlDp = vhikp, (BF) = VK, (BF) = V5 —vF, — GE(V0)(TFH — TRy) + 01 — 02

= (1 - g) (vr, —vm, — Gr(va) (Th — TR,)) -
The assumption n = d finally yields ([v;])r = 0, thereby concluding the proof. O

Remark IIL.1 (On the choice of n). The choice of n modifies the position of the continuity
point along the lateral faces of the pyramids. Indeed, denoting x; some interior point of the
(d—2)-face of the (d—1)-simplex F' which is shared by F\ and Fy (cf. Figure III.2a), let consider
the point xp = pxx + (1—p)x;, for a real 5 € (0,1). Hence, xp can be any interior point of F.
Then, remarking that (xp—Zp,) = f(xxk —TF,)+(1—B)(x1—TF,), and that (x1—ZF,) Nk F =0
forie {1,2}, it is a simple matter to show, following the steps of the proof of Lemma I11./, that

[va]p(zr) = (1 =0B) (vr, —vm, — Gk (va) (Tr, — Br,)) - (IIL.11)
Hence, a choice n = 37! ensures the continuity of functions at the interior point xp of lateral

pyramidal faces. Note that when d = 3, the continuity is actually ensured on a segment of
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II1.3 Conformity and approximation properties

the pyramidal face which is parallel to the 1-face to which the point x; belongs. Note also that
the continuity of functions at the barycenter of primal faces is unaffected by this modification
of m, since it is a consequence of the starting point choice. Thus, any > 1 ensures weak
conformity properties to the space CR(Ky). In [40] for example, the choice n = d'? is advocated
to recover the two-point finite volume scheme on superadmissible meshes. However, the choice
n = d, which leads to continuity at face barycenter, that is to say at the precise point where the
quadrature is exact for affine functions, is (after practical comparison) the best choice in terms
of discretization error.

I11.3.2 Approximation

In this section we introduce a suitable interpolator on €R(K},) and study its approximation
properties. Let Z¥™ : H1(Q) — €R(K},) be such that, for all v e H(Q), ZF7(v) := Ry, (v) with

Vj 5 v, = ((H}l(v)(wK))KeKh, (<U>F)F€FK’L) , (II1.12)

where H}L denotes the L2-orthogonal projector onto [P(li (Kr). When applied to vector-valued
fields, Igm acts component-wise.

Lemma IIL.5 (Approximation in €R(K})). For allnp > 1 and all ve HY(Q), there holds with
vy =I5 (v) € ER(Kn),
(Vo) = TI(Vo), (I11.13)

where 119 denotes the L?-orthogonal projector onto P (Kn)*. Moreover, there exists a real C > 0
independent of the meshsize such that, for all h € H, all K € Ky, all ve HY(Q) n H*Y(K,,),
1 € {0,1}, there holds with vy, := I (v),

H’U - UhHO,K + hKHVU - thh“(),K < Chl[ér1|’u|l+17[(. (111.14)

Proof. To avoid naming generic constants, we use the notation a < b for the inequality a < Cb
with C' > 0 independent of the meshsize.

(i) Equality (I11.13). For a given v € H'(2), let v}, be defined as in (II1.12). We start by noting
the following orthogonality relation (cf. [40, eq. (27)]) valid for all wj, € Vj, and all K € Kp:

> K| Ry (wr) = 0. (I11.15)
FeFg

As a consequence, for all K € K, there holds,

1 1
) (Vaon) e = Gr(vi) = 7= Y, [P0 pmir = f vng =11, (Vo) .,
K| &5 K| Jox

where we have used the planarity of faces and Green’s formula. Relation (III.13) follows.

(ii) Inequality (I111.14). Let v e H' () n H*1(K;,) and define vy, as in (I11.12). We first estimate
Vv — Vyuplok, K € Kp. Using (II1.8), the previous point, and the triangular inequality we
infer

HVU - VhUh

2
0,K < HVU —H%(VU)H()J( + ( Z ‘KF’ ’RKF(Vh)P) = fl +T2.
FeFgi
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CHAPITRE III : A generalized Crouzeix—Raviart space

Using the approximation properties of the L?-orthogonal projector it is readily inferred T < th [V)141 K-
To estimate the second term, we preliminarily observe that there holds for all F' € Fx with

) 1
wy, = 11 (v),

Ry (va) = dL (v)p —wn(Tx) — Gr (Vo) (TF — xK)) NKF = dL (ak,F + B, F) MK F,
K,F K,F
(II1.16)
where ag p = (V)p — <wh|K>F, Br.F = (th‘K — GK(\yh)) (Tr — TK), and, since wy|x is

affine in K, wp(xx) = (wpjx)p — Vwp g (Tr — k). There follows from equation (II1.16)

Kp Kp
B ), ‘dz’|OéK,F|2+ >, lelﬁK,FF = Ta1 + Tap.
FeFk K.F FeFg K,F

Using (I11.2), the Cauchy—Schwarz inequality, the mesh regularity assumption (II1.1), the fact
that card(Fg) is bounded uniformly in h (cf. [24, Lemma 1.41]), and Proposition IIL.1 it is
inferred,

1 1 2 1
To1 =+ 7 <J v —wh) < - — v _whH(Q)F < h%\vﬁ 1,K-
d F;FK deF |F| F ng F;/—-K hK ) +1,

On the other hand, since [Zr — zx| < hx and both Vwy i and Gk (vy) are constant on K,
there holds
h;, 1
T2 < Y, K5l dziK’VQUMK — Gr(W)* < 5| Vwpe — (V) ¢ < Rl ks
FeFx K,F %

where we have used the mesh regularity assumption (III.1) together with (I11.13), and concluded
using the approximation properties of the L?-orthogonal projector. Gathering up the bounds
on 1 and T, it is inferred

HVU — thh‘ 0,K < th’U’lJrLK. (IH.17)

To complete the proof of inequality (III.14) it only remains to estimate [[v — v|lo, k. To this
end, letting again wy, := I} (v), we apply the triangular inequality to infer

v —wvnlo,x < [lv—whnlox + |wn — valo,x = F1 + Fo.

The approximation properties of the L?-orthogonal projector readily yield T; < hlgl\v\lﬂ, K-
For the second term, we notice that for all F' € Fx and all x € Kp, the linearity of both wy, i
and vy, yields
Wy g (®) = (Whik)p + Vup g (T —TF),  Ohr, () = Wr + Vo (2 — TF).
As a consequence,
D)
wn = ol 5 [ e =0+ | (Vo = Vo, @~ @) 1= Taa + Tao
KF KF
Using (II1.2), the Cauchy—Schwarz inequality, and Proposition III.1 it is inferred
Fld
To1 = Fldrr ‘dK’F
Since | — Tp| < hg for all € Kp and both Vuwy g and Vuy g, are constant on K, the
estimate (I11.17) yields

dx,F 2(1+1
(Cwnjie = 0))? < L e = ol 7 < b ol 1

2(14+1
Ta2 < || Vwpx — Vourplt e < h;é i )’U|12+1,K‘

o8



III.4 The matching simplicial case

Summing over F' € F, using the bounds for Ty ; and Ty 9 together with the fact that card(Fg)
is bounded uniformly in h, it is inferred Ty < AL |v|ip1 Kk, thereby yielding v —vp]ox <
hlgl]vhﬂj K, and therefore concluding the proof. O

Let now introduce H (div;Pp) = {v € L2(Q)d | VP € Py, V-(vjp) € L*(P)}, and let
Dy, : H(div; Pp) — PY(K4) such that, for all v € H(div; Py),

Dy (v) :=T(V},-v), (I11.18)

where II9 denotes the L%-orthogonal projector onto PY (Kz). An immediate consequence of the
first point in Lemma III.5 is that the discrete vector space @R(Kh)d possesses the following
approximation property.

Corollary III.1 (Divergence approximation). Let v € Hl(Q)d and vy, := TR (v) € CR(K,)%.
There holds

Dh('vh) = Dh('v).

Moreover, there exists a real C' > 0 independent of the meshsize such that, for allh e H, all K €
Kn, and all v e HY(Q)" n H'(div; Kp,) with H'(div; Kp,) 1= {v € H(div; Q) | Vv € H(Kp)}
and vy, 1= I (v),

HV-’U — Dh(Uh)HO,K + hK|V-1J — Dh(vh)|17K < ChK’V-’U|17K.

According to Definition II.1, Corollary III.1 and Lemma II1.5 (which gives the H '-stability prop-
erty for [ = 0) prove that I%m can play the role of a Fortin operator when considering a projector
II; := H%. This means that a primal discretization of linear elasticity equations relying on the
under-integrated discrete divergence operator Dy, will lead to a locking-free approximation, cf.
Chapters IV and V. This also means that a coupling with pressure reconstructions belonging to
PY (Kn) n LE(Q) will give an inf-sup stable method, cf. Chapter V for the poroelasticity problem,
and Appendix B for the Stokes equations.

III.4 The matching simplicial case

In this section, we consider an (admissible) matching simplicial mesh, that we denote Tj.
We recall the notation CR(7) for the classical Crouzeix-Raviart space on 7. We have seen
in the previous section that the space €R(Kj) has equivalent conformity and approximation
properties on general meshes than the classical Crouzeix—Raviart space. The following result
establishes a link between the two spaces in the matching simplicial case.

Proposition II1.2 (Link between the two spaces). For all n > 1 in (II1.9), there holds
CR(Tn) < €R(Tp).

Proof. Let vy, € CR(Tp) and set vy, := ((vn(27))7eT; (vh(ip))FefTh). By definition there holds
(cf. (II1.9)) G7(vh) = (Vior)r for all T € Tp,. Using the linearity of vy, inside each element it is

inferred Rty (vy) = 0, hence Gy, (vi) = G7(vh) = (Viop)p for all F'e Fr. As a consequence,
we conclude that v, = Ry (vp) € CR(T). a

In the matching simplicial case, the conformity properties of €R(7},) are much more stronger
than the ones stated in Lemma III.4.
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Lemma II1.6 (Conformity properties, simplicial case). For alln > 1 in (I11.9), there holds for
all vy, € €R(Th),

VEeFr, {uwhp=0, VYFeFp\Fr. [ulr(®)=0 vazeF

Proof. The proof of this result relies on the fact that, when considering a matching simplicial
mesh, Gr(vp) coincides by definition with the standard Crouzeix—Raviart gradient on any
T € Tp, hence the second factor in (III.11) vanishes independently of  or . Hence, following
the steps of the proof of Lemma III.4, the first point remains a consequence of the starting
point choice, while the second is a consequence of the previous remark, using (II1.11) stated in
Remark III.1 (the result remains valid for & belonging to the boundary of F). O

It is interesting to figure out that this conformity result states the continuity of functions
belonging to €MR(T;) on each T' € Ty, but does not guarantee the global linearity on 7. This is
a consequence of the introduction of the degree of freedom vp. If the functions of €R(T},) were
in addition linear on each T € Ty, then we would have equality between €9R(7;,) and CR(7y).
But this is not the case in general: to be convinced, consider a simplex T" with identical face
unknowns (vp = v for all F' € Fr) and a different cell unknown (vp # v). Then, the classical
Crouzeix—Raviart reconstruction on 7" is a constant function of value v, while the reconstruction
in €R(Ty) is necessarily a strictly piecewise affine (continuous) function since vy # v. We will
see through Chapter IV and Appendix B, that the classical Crouzeix—Raviart solution and the
one obtained using €NR(T;) as a discretization space, are identical for any linear variational
problem as soon as the treatment of the right-hand side does not depend on cell unknowns.
In other words, on simplicial meshes, the linear system forces the subgrid correction to vanish
when the right-hand side does not see the cell unknowns. The conformity result of Lemma III.6
is also interesting for elasticity problems since it indicates that a discrete Korn’s inequality can
be obtained on (’:Dﬁ(ﬁ)d by penalizing the jumps of functions on primal faces only.

Note finally that, as far as approximation is concerned, the proof of Lemma III.5 can be
simplified exploiting the result of Proposition III.2 to infer for v € H'(2) and for all T € Ty,

inf  |v—vpir <  inf  uv—uwy

1,T
v ECR(T) vp€CR(Tr) L7

and conclude using the approximation properties of the standard Crouzeix—Raviart space.

I11.5 Discrete Hj\-norm

We recall the following notation Hjy(Q) := {v € H'(Q) | vjr, = 0}, where I'p is a subset of
I" with nonzero measure accounting for Dirichlet boundary conditions in variational problems.
When I'p = T, then H}(Q) reduces to Hg (). For problems naturally set in HJ (), boundary
conditions can be accounted for in a strong manner by introducing the following subspace of
CR(Kp):

CRp(Kn) == R(Vip), Vo = {vi € Vi |vp =0, VF e F2P}, (111.19)

where ]-",2’}? ={Fe¢€ ]-",k%h | F' < I'p} is a nonempty set by assumption. We also introduce the

set f,}é’i\l = f,}%h\f,]éi), which denotes the set of Neumann-type boundary faces. When I'p =T,
we prefer the following notation:

CRo(Kn) := Ru(Vao),  Vao={vneVp|vp=0,VFeF }. (I11.20)
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In the following proposition, we show that the L?-norm of the broken gradient is a norm on
CRp(Kr) (and thus on €Ry(Ky)) by proving uniform discrete equivalence with the usual dG
norm, cf. [24, Section 5.1]:

1

o mBpi= Y il
b,N F
Fefph\}—}c’h

lonldc = IVavnlg o + lvn 2 (II1.21)

Proposition II1.3 (Discrete norm). For all n > 1 in (I11.9), there exists a real C > 0 inde-
pendent of the meshsize such that, for all vy, € €Rp(Ky),

IVronloo < |vnlac < C[Vivn]on.

Proof. The notation a < b stands for ¢ < Cb with C > 0 independent of the meshsize. Clearly,
IVivslo < |lvplag for all vy, € €ERp(Ky). To prove that |vylac < [Vavn|on for all vy, €
CRp(Kh), it suffices to show that |vp|;p < [[Viavn|on. Let n > 1, and let F € fp\f}éi\l where
P € Pp,. Owing to Remark III.1, there exists at least one interior point p € F' (which may
depend on n) such that [up]r(xr) = 0. Owing now to the linearity of vy, inside P there holds
for all € P, vy p(x) = vy p(zr) + V(vpp)(x — zp). These two remarks together with the
discrete trace inequality (III1.4) yield

[Tonl|

0,7 = [[vn] = [vnl(xp)o,r < hr|[Vhva] lo,P, (I11.22)

1
o < hit D1 IV (wnp)
PePr

where we have set Pp := {P € Pj, | F < dP}. Using (II1.21) together with (I11.22) it is inferred

onlip = ), ,%H[[vh]] —lr)liirs D>, D IV@wp)lsr S IVaunlias
FeFp, \Fg F FeFp, \Fg, PEPr
(IT1.23)
where the last bound is a consequence of the fact that the maximum number of faces of a
pyramid is bounded uniformly in A since Py is shape- and contact-regular, cf. Lemma III.1
and [24, Lemma 1.41]. O

We have now all the necessary tools to study the approximation of variational problems in
CR(Kp).
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A primal, coercive, and locking-free
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This chapter is inspired from the article [28], written with Daniele A. Di Pietro and ac-
cepted for publication in Mathematics of Computation. We present a primal discretization on
general meshes of the linear elasticity equations (II.1) (stemming from the model introduced in
Section II.1.1), hinging on the generalized Crouzeix—Raviart space introduced in Chapter III.
Coercivity is ensured through a least-square penalization of the jumps and we prove robustness
with respect to the first Lamé parameter. We investigate the links of the proposed approxima-
tion with finite volume and (classical) finite element methods, and prove that all depends on
the approximation of the right-hand side. Finally, we present relevant numerical examples in
two space dimensions to assess the behavior of such a discretization.
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CHAPITRE IV : A primal, coercive, and locking-free discretization of linear elasticity equations

IV.1 Discretization

d

We consider the weak formulation (IL.3) of linear elasticity equations on U := H} ()%, and

we further introduce the space U, := U N H 2(Q)d. Let Ky, be a general polygonal or polyhedral
mesh, belonging to an admissible mesh sequence in the sense of Definition I11.3. We consider a
primal approximation (i.e. an approximation of the displacement field only) of the problem in

the space
Uy, := CRp(Kn)?,

with €Rp (k) defined in (II1.19). Henceforth we assume the choice n = d in (II1.9), so that
the continuity of mean (or, equivalently, barycentric) values stated in Lemma III.4 holds.

We recall that the well-posedness of the continuous weak formulation (II.3) relies on Korn’s
inequality (I.4). Here, owing to the nonconformity of the space we consider, Korn’s inequality
only holds in the following weak sense (cf. [14, eq. (1.19)]).

Lemma IV.1 (Weak Korn’s inequality). There exists a constant Cx > 0, independent of

the meshsize but possibly depending on the mesh reqularity parameters, such that, for all v =

d
(Vi)1<icd € H(Pp)",

2
20 rvr%p) , (Iv.1)

where |v|3p = Z‘Ll vil3 p with |vi]3 p defined in (IT1.21).

IVavlon < Ci (n;@(v)

To design the discrete bilinear form for our problem, we take inspiration from [50] and
consider a coercivity treatment under the form of a (consistent) least-square penalization of
function jumps. More specifically, the discrete problem reads: Find up € U}, such that

ap(up,vp) = (F,vn)oe Vo, € Uy, (IV.2)

with symmetric discrete bilinear form ay, such that

an(w, ) := 2p(ep(w), en(v)o + A(Dp(w), Du(w))oo + 2ux Y, hp'([wl, [hor, (IV.3)
FeFp, \F2

where 0 < y < 1 is a user-dependent parameter. As we already explained, it is worth observing
that, while the idea of penalizing jumps to recover coercivity appears natural in the present
approach, this is not the case in other related frameworks for which the notion of affine recon-
struction does not necessarily make sense. Note also the treatment of the divergence operator,
using the discrete divergence Dy defined in Corollary III.1. The approximation properties of
Dy, turn out to be instrumental to ensure that A only appears in terms of the form A|V-ul|; o
(where u is the unique solution to (II.3)) in the right-hand side of the error estimate (cf., in
particular, the bound for the conformity and consistency terms in the proof of Theorem IV.1).
The energy norm associated to the bilinear form ay, is

[0l = an(v,v) = 2ulen () 0 + MDw(v)5 0 + 2uxv]3 p. (IV.4)

Using weak Korn’s inequality (IV.1) of Lemma IV.1, and the fact that p is a strictly positive
constant, we can state the following coercivity result.

Lemma IV.2 (Coercivity). There holds for all vy, € Uy,

an(vp, vp) = [vn)d = 2uxCi 3| Vivnf o-
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IV.2 Error estimate

Owing to Proposition II1.3 and to Lax—Milgram Lemma, the well-posedness of problem (IV.2)
is now straightforward. However, a few remarks are in order.

Remark IV.1 (Pure displacement problem). In the case I'p = I', one may use the results of
Remark I1.1 and better consider the following discretization of problem (I1.1), based on (11.5):
Find wj, € €Ro(Kp)? (¢f. (IIL.20)) such that

an(un,vn) = (f,vn)oe  You € €R(Kn)?, (IV.5)
with symmetric discrete bilinear form ay such that
ap(w,v) = w(Vyw, Vpv)oo + 1(Vyw, Vi-v)o o + A(Dp(w), Dp(v))o.0- (IV.6)

In (IV.5), cell-centered unknowns for a given element K € K}, are only linked with the face
unknowns located on the boundary of K. As a result, they can be locally eliminated by taking
the Schur complement of the corresponding block in the local matrix. This requires, in general,
to inverse a d x d matriz. However, this cost can be further reduced by replacing in (IV.6) the
term pu(Vi-up, Vi-vp)oa by w(Dy(up), Dy(vy))oq. This choice avoids, without jeopardizing
the approzimation, the interaction of the cell unknowns for the different components of the
displacement, hence the corresponding block of the local matriz is diagonal and trivial to invert.

Remark IV.2 (Implementation). We stress that in the case of problem (IV.2) it is not possible
to integrate the penalty term in (IV.3) using the face barycenter as a quadrature point, since
with a choice n = d this would yield a vanishing contribution. A quadrature rule exact for
polynomials of degree at least 2 must be used instead. Also, the penalty term establishes a link
between the cell unknowns of neighboring elements. As a result, the stencil is no more compact
and it is no longer possible to formulate the method in terms of face unknowns only as for
the pure displacement problem; cf. Remark IV.1. Note finally that in the matching simplicial
case, it is sufficient to penalize the function jumps on the faces of the primal mesh only, cf.
Lemma I11.6.

We mention at this point the recent work of Vohralik and Wohlmuth [79, 80] which proposes
efficient implementation strategies for classical nonconforming and mixed finite element approx-
imations of diffusive problems, and addresses general meshes with a different approach.

IV.2 Error estimate

Let Uy, := Uy + Uy, and extend the bilinear form ay to U, x Uy, which consequently
extends the norm | - ¢ to Uyp.

Lemma IV.3 (Conformity and consistency errors). Let u € U denote the solution to (11.3)
and further assume that w € U,. Then, there holds for all v, € Uy,

an(u,vp) = (f,vn)oa + En(vn),

where

En(vn) = ), (a(wng, [va])or + A(Dr(uw) — V-u), Vi-vp)o0. (IV.7)
FE.F'ph\]:}éfj
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CHAPITRE IV : A primal, coercive, and locking-free discretization of linear elasticity equations

Proof. Observing that A(Dp(w), Dy (vp))o.0 = AM(Dp(uw), Vi-v1)0.0, and summing and subtract-
ing A(V-u, Vj-vp)0.0 from the right-hand side of (IV.3) with (w,v) = (u,v}) yields

ap(u,vp) = (a(u), Vrvp)oa + A(Dy(u) — V-u), Vi-vp)o.0,

where we have used the fact that the penalization term is consistent. Integrating by parts the
first term element-wise, rearranging the boundary contributions, and using [g(u)]rpnp = 0

and {g(u)}pnp = g(u)np for all F' € ]-"};h (since u € Uy), as well as {g(u)}rnp = 0 for all
Fe .7-“}%’:1, it is inferred

(a(w), Vivp)oo = —(V-z(u),vp)on + ), (a(w)np,vyp)oaer

PePy,
= (f,ionon+ Y, (e@lne {vrb)or+ . ({e(w)ing, [val)o,
FeFL P FeFp,
= (f,onoo+ Y, (z(wnp, o],
FeFp, \Fg

where we have used —V-g(u) = f a.e. in Q in the second line (equivalence between (II.3)
and (II.1)). This concludes the proof. O

The first term in (IV.7) represents the conformity error while the second one is the consistency
error.

We can now derive an error estimate for solutions matching the regularity w € U,. This
additional regularity is verified, e.g., under the assumptions of Lemma II.8. In the following
theorem, the weak conformity of the space (i.e. the continuity of mean values at interfaces for a
choice n = d) plays an important role in estimating the boundary contribution in the conformity
error.

Theorem IV.1 (Error estimate for (IV.2)). Let w € U denote the solution to (I1.3) and
additionally assume that uw € U,. Then, there exists Co > 0 independent of the meshsize, of A,
and of w such that, denoting by uy € U}, the unique solution to (IV.2), there holds

|u — upfa < CahNe(u), (IV.8)
where Ng(u) is defined in Lemma II.2.

Proof. We note a < b the inequality a < Cb where C > 0 has the same dependence as
the constant Cg in (IV.8). The Cauchy-Schwarz inequality yields boundedness in the form
ap(w,v) < ||we|v]e for all (w,v) € Uyp x Uyp. This, together with Lemmata IV.2 and 1V.3
and the second Strang Lemma [76] (cf. also [35, Lemma 2.25]), yields:

&
HU - uh”el s inf H’u, — Uh“el + sup M
UhEUh

=T+ Ty, (IV.9)
oneUn\{o} |1Vnel

The first term in the right-hand side depends on the approximation properties of the discrete
space, while the second is linked to the conformity and consistency errors. Let wy, 1= I,fm(u) €
U},. Using Lemma II1.5, Corollary II1.1, and the trace inequality (II.5) with Sj, = P}, combined
with Lemma II1.5, respectively to treat the three terms in the right-hand side of (IV.4) with
v = u — wy, we infer

T < |u—whlla S b|ufoo + A Vul; o (IV.10)
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IV.2 Error estimate

To treat the conformity and consistency errors, denote by %51 and %92 the two terms in the
right-hand side of (IV.7). Let

ou = 2u(g(u) —Mh(e(w), Y= AV-u—1I(V-u)).

Using the continuity of mean values at interfaces (since n = d) together with the fact that both
{2p119 (g(w)) }F and {AI9(V-u)}p are constant on every F € Fp,, it is inferred

Ta= (e -1 (c()inr, [va] = {(val)p)or

FeFp, \Fg,
= ) (edne o —=quibrlor+ D, {alne, [vn] — (oaldp)or.
FeFp, \F, FeFp, \F¢,

The Cauchy—Schwarz inequality followed by the trace inequality (IIL.5) with Sp = Py, the fact
that the maximum number of faces of a pyramid is bounded uniformly in h (cf. Lemma III.1),
the approximation properties of the L2-orthogonal projection, and (I11.23) with xr = Zp yield

PePy,

1 1

3 3

T s{ 3 h(|@|p||aap+wp%ﬁp)} { S g lenl — Qonls 8,F}
Fe]-'ph\]-'}é’;j

< hNa(u) v e,

(IV.11)
where the bound |Vjvsllo.0 < |vnle is a consequence of Lemma IV.2. Finally, using the
Cauchy-Schwarz inequality together with the approximation properties of the L?-orthogonal
projection and Lemma IV.2, it is inferred

T2 < A (V-u) — Vel

|07Q < h)\|Vu

0,2|Vrvp Lalvn]e- (IV.12)

Using inequalities (IV.10), (IV.11), and (IV.12) to bound the right-hand side of (IV.9) the
conclusion follows. O

We are now able to state the main result of this section.

Corollary I'V.1 (Uniform convergence with respect to \). Under the assumptions of Lemma I1.2,
the locking-free error estimate (I1.17) holds true.

Some remarks are in order.

Remark IV.3 (Use of Lemma I1.2). In the proof of Theorem IV.1, the a priori bound on
)\|V-’U,|17Q is only required to bound To. For T, the weaker reqularity estimate )\1/2\V-u|179 <
| flo.q is sufficient.

Remark IV.4 (L?-error estimate). Optimal error estimates for the L?-error on the displace-
ment can be derived using the Aubin—Nitsche trick based on the symmetry of the method.

Remark IV.5 (Heterogeneous medium). We consider a material with piecewise constant (scalar-
valued) mechanical properties, that is to say A, pu € [Pg (Kr). The discretization Ky, of the domain
is here assumed to match the heterogeneities of the Lamé parameters. We further assume that

0<p<uplx)<nm, 0<A<Ax)<A  forae xel,
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CHAPITRE IV : A primal, coercive, and locking-free discretization of linear elasticity equations

where A < +00 may tend to infinity in the eventuality of a quasi-incompressible region in the
material. According to the work of Di Pietro and Nicaise [29], the regularity result of Lemma I1.2
can be extended to the heterogeneous case. Under appropriate assumptions on the dimension
(d = 2), on the second Lamé parameter u, and on the geometry (2 convex), then problem (I1.1)
has a unique solution w e U H? (lCh)d, and there exists a positive constant C,, », only depending
on Q, p, and X (but not on \) such that, for \ large enough (which is equivalent to assuming
an upper bound on the compressibility contrast),

Na(u) = [ulzx, + AV-ulix, < CualFlog. (1.13)

It is possible to design a locking-free method for linear elasticity equations also in the heteroge-
neous case. Let consider problem (IV.2), with a slightly different bilinear form:

an(w,v) = (2uzy(w), ex(v))oa + (ADy(w), Du(v)og +2ux >, hp'([w], [o])or, (IV.14)
FeFp, \Fg

where 0 < x < 1 is a user-dependent parameter. Remark that (IV.14) reduces to (IV.3) in
the homogeneous case. The coercivity of this formulation is expressed as in Lemma IV.2 using
> 0. An error estimate of the form (IV.8) can easily be derived by remarking that M) (V) =
9 (AV u).

Remark IV.6 (Heterogeneous medium, pure displacement problem). When considering a pure
displacement problem in a heterogeneous medium, the formulation (IL.5) is no longer equivalent
to problem (11.1). Thus, the bilinear form (IV.6) is not appropriate to discretize the prob-
lem. Taking inspiration from Remark II.1, we consider discretization (IV.5) with the following
symmetric bilinear form:

an(w,v) := (2uep(w), en(v))o,o+(ADp(w), Di(v))oa+i ((Vh-w, Viv)oa — (Viyw, Vh’UT)QQ) ,

(IV.15)
where the stabilization is inspired from (11.7). This stabilization introduces a consistency error
which tends to zero as h under the reqularity uw € U n H2(1Ch)d, meaning that the convergence
result (IV.8) is unaffected (with an update of the energy norm according to an and of Ne(u)
according to (IV.13)). Remark that (IV.15) reduces to (IV.6) in the homogeneous case. The
coercivity of the discretization is ensured with multiplicative constant > 0. The advantage of
such a stabilization in comparison with a jumps penalization is that it does not enlarge the stencil
since it is volumetric. Hence, cell unknowns can be eliminated, cf. Remark IV.1. Actually,
this stabilization does not even involve the cell unknowns since the subgrid correction of the
gradient operator has a vanishing contribution in the stabilization (remark that (a®b):(b®c¢) =
tr(a ® b)tr(c ® b) ). Note however that the interaction between cell unknowns for the different
components of the displacement cannot be avoided in that case owing to the first term of the
bilinear form.

IV.3 Links with finite volume and finite element methods
In this section we investigate the links between our method and classical finite volume or

finite element methods. We show (for the pure displacement problem) that the treatment of
the right-hand side determines the framework to which the method belongs.
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1V.3 Links with finite volume and finite element methods

IV.3.1 Flux formulation and local conservation, the finite volume side

Let consider the pure displacement problem and its approximation (IV.5). Here, we do
not make any assumption on the value of the stabilization parameter n > 1. Following [40,
Section 2.4], it is possible to reformulate the discrete bilinear form (IV.6) in terms of numerical
fluxes. More specifically, introducing Uy, := V;io where Vj, ¢ is defined by (II1.20), let wy, vy, €
U}, be two discrete functions and denote by wy, = (Wh:i)lgigd € Uy, and vy, = (Vhﬂ')lsisd e Uy
the corresponding vectors of DOFs, where, for all i € {1,...,d}, wp; and vj; are the vectors of
DOFs associated to the i-th components of wy, and vy, respectively. We show that there exists a
family of numerical fluxes (®x,r(Wh)) gexc, per, With @x.p(wh) = (Px Fi(Wh))1<i<a such that

wh,'vh Z Z q)KF Wh ’UF—’UK) (IV.16)
KeKy FeFk

with a, defined by (IV.6).

Proposition IV.1 (Flux formulation). For all wy,v, € Uy, the flux formulation (IV.16) is
obtained by setting for all K € Ky, F € Fi, and i € {1,...,d},

d
P pi(wp)i= Z | K | [MGKF, (Whi) Y@ gt <Z Gk, (Wh,j)+/\GK(Wh,j)> e (y?,p-ei)] ,

F/G]:K j:1

where wp, v, € Uy, are the vectors of DOFs associated to wy, and vy, respectively, (€;)1<i<d
denotes the canonical basis of R?, and
F _ .
||K||nKF + dKF (1 - %nKF(wF — wK)) ngr if F=F,

K .
YrF = |F|

- ) (IV.17)
[RIME,F — m |Flng r(Tp — Tr)Ni otherwise.

Proof. For all v, € Vp,, all K € K, and all F' € F, there holds with G, (v4) defined by (ITL.8)
(cf. [40, eq. (26) et seq.]),
G, (vh) = Z (vF — Vi) Y1 p- (IV.18)
FE]:K

Using (II1.8) and (III.10), and observing that A(Dy(wp), Dy(vh))oo = A Dr(wn), Vi-vp)oo
owing to (II1.18) together with the properties of the L2-orthogonal projector, it is inferred

ap(wp,vy) =

d d
Z Z Z |KF/| [MGKF, (thi) + (Z ,uGKF, (Wh,j)'ej + )\GK(Wh,j)'ej> 61] -GKF, (Vh,z‘).

i=1 Keky, F'eFx j=1

The conclusion follows using the expression (IV.18) for Gk, (vh,) and exchanging the sums of
indices F' and F". O

The main interest of this alternative formulation is that it allows to prove a local conservation
property similar to those encountered in standard finite volume methods. Recalling the expres-
sion (IV.16) for the bilinear form aj; and using the cell unknown to approximate the right-hand
side in each element, the discrete problem (IV.5) in algebraic form reads: Find uj € Uy such
that for all v;, € Uy, there holds,

Z 2 @ r(up) (Ve — V) = Z K| f vk, (IV.19)

KGK}L FeFk KG’Ch
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CHAPITRE IV : A primal, coercive, and locking-free discretization of linear elasticity equations

where fr = ﬁSK fdx for all K € Kj. Consider now an interface F' € ]:,ich such that
F c 0K1n0Ky, andlet fori e {1,...,d} vj; besuch that vp; = 1, vpr; = O forall ' € Fi, \{F'},
and vg; = 0 for all K € K}, with the other components of v, that are zero. There follows
from (IV.16),

Pk, pi(un) = =Pk, mi(un), (IV.20)
i.e., the method is locally conservative. An important remark is that the loading term does
not appear in (IV.20) since its approximation in (IV.19) only involves cell DOFs. The method
written under the form (IV.19) is the exact application of HFV to the pure displacement problem
of elasticity (with the restriction that we made here no assumption on 7 > 1) with reduced
integration of the divergence operator. The treatment (IV.19) of the right-hand side can be
proved to introduce a consistency error which converges to zero as h, which means that it does
not modify the error estimate (IV.8).

IV.3.2 Link with the Crouzeix—Raviart solution, the finite element side

Let consider again the pure displacement problem and its approximation (IV.5), and let
n > 1. We consider a matching simplicial mesh that we denote 7, and we let

CRo(Tn) := {vn € CR(Ty) | va(TF) = 0, VF € FR, }, (IV.21)

and U}, := CRy (7}L)d. We show in this section that a suitable treatment of the right-hand side
allows to recover the Crouzeix—Raviart solution @y, € U}y, such that (cf. [16]),

dh(,&hv vh) = (f,’vh)oﬂ Vvh € 0h~ (IV.QQ)

Let W(Py) := {v e HY(Py) | {[v])p = Oforall F € ]:71%}’ and denote by Zt® : W(P,) —
CR(7y) the interpolator that maps a function v € W (P,) on the function vy, := ZER(v) € CR(T)
such that v, (Tp) = (v)p for all F € F7,. We consider the following variation of (IV.5): Find
wp, € €Ro(Tx)? such that

an(un,vp) = (£, T5(wn))oo  Vou € €R(Th)?, (IV.23)
where the sole difference with respect to (IV.5) lies in the treatment of the right-hand side.
Lemma IV.4 (Relation between (IV.22) and (IV.23)). There holds up, = y,.

Proof. Let Uy, 3 Gy, = (Op,;) be such that, for i e {1,...,d},

1<i<d
Uni = (Ui (TK)) gerc, (ﬁh,i(fF))Feth) € Vp 0.

Clearly, for all K € Ky, all F'e€ Fg, and all i € {1,...,d}, Rk, (0s,;) = 0, hence Gk, (Up;) =
G (Up,) = (Vhﬂh,i)|K~ As a consequence, @, = Ry (Up). Accounting for this fact, there holds

for all vy, € Q%O(E)d such that vy = Ry, (vy) with vy € Uy,

d
an(tn,vn) =Y Y, > |Kr| {MGK(Gh,i)'GKF(Vh,i) + uGr (On,i) € Drcp (Vi)
i=1 KeKy FeFk

+ )\GK(@h,i)'eiDK(Vh)}

d
> IK| {MGK(ﬂh,i)'GK(Vh,i) +(p+ )\)GK(@h,i)'eiDK(Vh)}
i=1 Keky,

= anp(tn, IR (vn)) = (£, Z5% (vn))o.0,
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where the first passage is a consequence of (III.15) and where we have let, for the sake of
conciseness, Dk (vp,) := Z?:l Gk (vh,j)-e; and Dg, (vy) = Z;l:l Gk, (vh,;)-€;. Owing to the
coercivity of aj, problem (IV.23) admits a unique solution and we therefore conclude that
'&h = Up. ]

Morally, as soon as the right-hand side does not see the cell unknowns, the system forces the
subgrid corrections to vanish, and the two solutions coincide. When considering the more
general approximation (IV.2), it is a simple matter to prove that the solution on a matching
simplicial mesh coincides with the solution of the stabilized Crouzeix—Raviart method developed
by Hansbo and Larson [50]. This is a consequence of Lemma III.6 and of the fact that the subgrid
corrections vanish on primal faces.

IV.4 Numerical examples

In this section we provide a selection of two-dimensional numerical examples that illustrate
the different results of this chapter, namely the ability of our method to treat heterogeneous
media, its robustness with respect to numerical locking, and its adaptivity to fairly general
meshes. When it is relevant, we propose a comparison with a conforming P¢ finite element
method (on a matching simplicial mesh sequence). The implementation has been realized as a
2D C++ prototype based on recent open source libraries, and relies on the general framework
recently introduced in [26, 27], to which we refer for futher details.

IV.4.1 Mesh families and error measure

We consider several two-dimensional mesh families, that are mainly inspired from the
FVCAS5 benchmark:

a) a matching triangular mesh sequence, which will be useful for comparison wi e con-
tching tri [ h hich will b ful f i ith th
forming [Pil finite element method; cf. Figure IV.1a;

(b) a Cartesian mesh sequence, which is the most widely used grid type in reservoir simulation
as it forms the basis of CPG (Corner Point Geometry) meshes [69]; cf. Figure IV.1b;

(c) a locally refined Cartesian mesh sequence, which gives an example of nonconforming h-
refinement as it can be encountered in the context of LGR (Local Grid Refinement) in
specific locations (like in near wellbore regions) where the resolution needs to be increased,
or when moving fronts are present; besides, it is a good benchmark to assess the correct
treatment of nonmatching interfaces; cf. Figure IV.1c;

(d) a Kershaw-type mesh sequence, which is of great practical interest since it may represent a
geological porous medium that has historically undergone non-smooth deformations toward
a highly skewed state; cf. Figure IV.1d;

(e) a trapezoidal mesh sequence, which illustrates the case when the refined grid elements do
not converge to parallelograms, meaning that the shape factor of the grids does not improve
with grid refinement; cf. Figure IV.1e;

(f) a hexagonal-dominant mesh sequence, which is an example of challenging tilted grid featur-
ing different polygonal elements; cf. Figure IV.1f.

The mesh families are such that their meshsize is approximately divided by two between two

successive members. We test the different discretizations of the linear elasticity equations we

have introduced:

(i) for (possibly) mixed-type (Dirichlet-Neumann) boundary conditions, we use discretiza-
tion (IV.2), that will be denoted CRg-JS (for Jumps Stabilization), with bilinear form
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(a) Matching triangular (b) Cartesian
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(e) Trapezoidal (f) Hexagonal-dominant

Figure IV.1: Members of the 2D mesh families for the numerical tests of Section IV .4.
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1V.4 Numerical examples

e (IV.3) in the homogeneous case;
e (IV.14) in the heterogeneous case;

(ii) for pure Dirichlet boundary conditions (pure displacement problem), we use discretiza-
tion (IV.5), that will be denoted CRg-VS (for Volumetric Stabilization), with bilinear
form
e (IV.6) in the homogeneous case;

e (IV.15) in the heterogeneous case.

Note that for both methods, the test-cases presented below have been computed considering
pure Dirichlet boundary conditions. However, experiments have been realized for the CRg-JS
method and confirm that this latter enables to treat correctly mixed-type boundary conditions.
We make the choice n = d in (II1.9) for the subgrid stabilization parameter. The right-hand
side of (IV.2) and (IV.5) is approximated in a finite volume way using the cell unknown as a
quadrature point, cf. (IV.19) and Section IV.3.1. The H' and L? relative errors are measured
as

<ZKEICh Zlgi,j<d K| ((Vu)ij(mK) — GK,j(EUh,Z‘)>2> 12
(S, K190 w))
[ — wnlos R (ZKGIC;, | K| |u(xx) — ’LLK|2>1/2

u - Y2
Ilo.0 (Sere, 1K1 o))

HVU — thh\
[Vuloo

0,Q _

. (IV.24a)

(IV.24D)

For the sake of simplicity, these relative errors are referred to as [Vu — Vyup/o o and |u — up o0
in the plots axes.
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(a) Heterogeneous test-case of Section IV.4.2 (b) Closed cavity test-case of Section IV.4.3.2

Figure IV.2: Configuration for the test-cases of Section 1V .4.
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CHAPITRE IV : A primal, coercive, and locking-free discretization of linear elasticity equations

IV.4.2 Heterogeneous medium

We investigate the robustness of the discretizations (IV.2)-(IV.14) and (IV.5)-(IV.15) with
respect to the heterogeneity ratio of the medium. For that purpose, let consider the following
manufactured solution inspired by the one proposed in [64] by Nordbotten. Let © := (0, 1)2

such that Q := Q; U Q9, where Q := (%, %)2 and Q9 = Q\STl We consider a material with

piecewise constant Lamé parameters such that
A=pu=k 1in Qy, A=pu=1 1in Qy,

where x € {1075,1,10%} enables to vary the heterogeneity ratio, the case x = 1 corresponding
to the homogeneous case where (IV.14) reduces to (IV.3) and (IV.15) to (IV.6). An illustration
of the geometry is provided in Figure IV.2a.

For this material, we consider the following solution, which honors a homogeneous Dirichlet
boundary condition:

1
Us = sin(4rz) sin(4my), Uy = Ug. (IV.25)

This solution is continuous on €, with continuous (independent of k) stress. However, note
that this solution does not exhibit the regularity required by Theorem IV.1. The body force is
obtained by taking the divergence of the stress tensor:

fo = 647° sin(4nx) sin(4my) — 3272 cos(4mx) cos(4y), fy = fa

We consider the Cartesian mesh sequence to which belongs the member of Figure IV.1b. This
mesh sequence matches the heterogeneities in the mechanical properties of the material. For
k€ {1075,1,10°}, we plot on Figure IV.3 the H! and L? relative errors (computed as in (IV.24a)
and (IV.24b)) for both discretizations CRg-JS (IV.2)—(IV.14) and CRg-VS (IV.5)—(IV.15). For
the discretization CRg-JS, we take a stabilization parameter y = 1 in (IV.14). We also provide
a comparison with the conforming P{ finite element method on the matching triangular mesh
sequence of Figure IV.1a.

The results show that both discretizations CRg-JS and CRg-VS are insensitive to the het-
erogeneity contrast, and exhibit a second order convergence rate in the L? norm. In the H'
seminorm, both discretizations exhibit a supra-convergent behavior with a second order con-
vergence rate, which is due to the Cartesian type of the grid sequence. First order is obtained
on the matching triangular mesh sequence of Figure IV.1a (not ploted here).

IV.4.3 Quasi-incompressible materials

We now investigate the robustness of the discretizations CRg-JS and CRg-VS with respect
to the first Lamé parameter A. Designing a relevant test-case to assess the robustness with
respect to locking is not an easy task as it must satisfy several features:

e the displacement field w must be such that |V-u| — 0 as A — 400 and u does not tend

to a constant field;

e the body force f must be such that | f[o o tends to a bounded constant as A — +00.
This corresponds to practically relevant cases, where for the same body force applied to mate-
rials with different compressibility, the approximation of the displacement field by usual finite
element methods deteriorates as the compressibility of the material decreases. This is the sign
of numerical locking, and of the fact that an estimate of the form (II.17) does not hold for such
methods, since they are not able to approximate nonconstant divergence-free fields.

We study two different relevant test-cases for which we provide a comparison of the results
with conforming finite elements.
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Figure IV.3: Effect of the heterogeneity ratio x on the discretizations CRg-JS and CRg-VS
(solid lines) vs. P¢ (dashed lines).
IV.4.3.1 A manufactured solution

Let Q := (0, 1)2 and let consider a homogeneous material with (constant) Lamé parameters
such that p = 1 and X € {1,10%,10%}. According to the relation

A
2N+ )’
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CHAPITRE IV : A primal, coercive, and locking-free discretization of linear elasticity equations

consequence of (I1.2), we consider materials with Poisson’s ratio v € {0.25,0.4995, 0.4999995}, i.e.
v — 0.5. We consider the following manufactured solution:

2 2
Uy = cos(i:c) sin(27y), uy = sin(27x) cos(%y).

A
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Figure IV.4: Effect of the first Lamé parameter A on the discretizations CRg-JS and CRg-VS
(solid lines) vs. P¢ (dashed lines).

Note that this solution exhibits the regularity required by Theorem IV.1. This solution
satisfies u — (sin(27y),sin(27x)) as A — +0, and |V-u| — 0. The body force is obtained by
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taking the divergence of the stress tensor:

1 2 2 . 27
fo =47 (p + T /\7/;) COS(T.%) sin(27y) + 472(1 + %) cos(2mx) sm(Ty),
1 2u, . 27 Wy . 2w
— 42 il -C 2 L -
fy =4m"(p+ DY ) sin(27x) cos( 3 y) +4r (1 + /\) sin( 3 x) cos(2my).

In the limit A — +o0, f — 472u (sin(27y), sin(27z)), and || f||o.o remains bounded.

We consider the matching triangular mesh sequence of Figure IV.1a. For \ € {1,103, 10},
we plot on Figure IV.4 the H' and L? relative errors (computed as in (IV.24a) and (IV.24b)) for
both discretizations CRg-JS (IV.2)—(IV.3) and CRg-VS (IV.5)—(IV.6), and we compare it with
the conforming P{ finite element method. For the discretization CRg-JS, we take a stabilization
parameter y = 0.2 in (IV.3).

As far as the reference [Pil method is concerned, the results go worse as A grows. For A = 109,
clear signs of numerical locking are observed, with a genuinely pronounced loss of convergence
in the L? norm. The convergence rate is only recovered for very refined grids. For small A,
the P¢ method outperforms both discretizations in the H! seminorm (but not in the L? norm).
In low compressibility regimes, both discretizations show robustness with respect to numerical
locking. As expected, the errors scale with the L? norm of the body force, which decreases in
that case as A grows. We remark that the precision of the CRg-VS method is better than the
one of the CRg-JS method, but optimal convergence rates are reached for both methods in the
L? norm and H' seminorm.

IV.4.3.2 The closed cavity problem

We consider the closed cavity problem of Hansbo and Larson [50]. Although this problem
does not exhibit the regularity required by Theorem IV.1, it is included as it is one of the
simplest benchmarks for numerical locking.

Let Q := (0, 1)2, f = 0, and prescribe a horizontal displacement u = (1,0) on the upper
side of €2, and u = 0 on the remaining three. An illustration of the problem is provided in
Figure IV.2b. We consider a homogeneous material with elastic modulus and Poisson’s ratio
such that £ = 1000 and v € {0.25,0.4999} respectively. The Lamé parameters are derived from
the relations (II.2), which give p € {400,333} and X € {400, 1666 444}.

For v € {0.25,0.4999}, the discrete problem is solved on the trapezoidal mesh sequence
of Figure IV.1le for the CRg-VS (IV.5)—(IV.6) method, and on the matching triangular mesh
sequence of Figure IV.1a for the CRg-VS and P{ methods, the P¢ method being taken as a
reference. From each of the two mesh families, a coarse and a fine meshes are selected featuring
roughly the same number of elements. For both values of v, Figure IV.5 depicts the values of the
horizontal approximate displacement wuy, , along the vertical centerline x = 1/2 (solid lines), as
well as the values of the vertical approximate displacement uj, , along the horizontal centerline
y = /2 (dashed lines), cf. again Figure IV.2b.

For large values of the Poisson’s ratio, the P¢ method shows clear signs of numerical locking.
For coarse meshes, the approximation is totally irrelevant. It begins to be better as the grid
is refined, but still remains rather imprecise for fine grids. As v tends to 0.5 the errors keep
increasing. At the opposite, the CRg-VS method shows very good robustness with repect to
locking, on both kinds of meshes.

IV.4.4 Robustness on challenging grids

We here assess the robustness of the discretizations CRg-JS (IV.2)—(IV.14) and CRg-VS (IV.5)—
(IV.15) with respect to challenging grid sequences. We consider the heterogeneous test-case of

77



Uh,y

Uh,y

CHAPITRE IV : A primal, coercive, and locking-free discretization of linear elasticity equations

P¢ —— CRg-VS Triangular CRg-VS Trapezoidal
Up,
0 0.5 1
0.1 — \ 1
10.8
10.6
2
) < )
S /
/0.4
-7 0.2
0.1 | | | | 0 0.1 | | | | 0
0O 02 04 06 08 1 0O 02 04 06 08 1
T T
(a) Coarse meshes (b) Fine meshes
Up,
0 0.5 1
0.2 0.2 \ \ 1
0.1 10.8
10.6
0 = >
/0.4
0.1
0 i 0.2
—0.2 \ \ \ 0 —0.2 \ \ \ r’ 0
0O 02 04 06 08 1 0O 02 04 06 08 1
T T
(c) Coarse meshes (d) Fine meshes

Figure IV.5: Results for the closed cavity problem on a coarse and a fine mesh extracted from
the mesh families of Figure IV.1le and IV.1la. Top: v = 0.25. Bottom: v = 0.4999. Solid lines:
horizontal displacement uj, , along the vertical centerline. Dashed lines: vertical displacement
up,y along the horizontal centerline.

Section IV.4.2 for a heterogeneity contrast x = 10°. The solution is given in (IV.25). We solve
the discrete problem on the Cartesian, locally refined Cartesian, Kershaw-type, and hexagonal-
dominant mesh sequences of Figures IV.1b, IV.1c, IV.1d, and IV.1f, for both discretizations
CRg-JS and CRg-VS, and we give a comparison with the P¢ finite element method on the
matching triangular mesh sequence of Figure IV.1la. For the Cartesian mesh sequence, only the
results for the CRg-JS method are reminded since this case can be found on Figure IV.3. For
the discretization CRg-JS, we take a stabilization parameter x = 1 in (IV.14). Note that the
heterogeneity ratio x is such that the solution (IV.25) is nonzero in the domain Qg (cf. Fig-
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Figure IV.6: Robustness of the discretizations CRg-JS and CRg-VS on challenging grids vs. P{.

ure IV.2a), to which belong most of the refined regions of the locally refined meshes. This
test-case is close (on a smaller scale) from the kind of cases that can be encountered in practical
reservoir simulation: a heterogeneous problem, that does not match the regularity assumptions
of Theorem IV.1, to be solved on a potentially highly skewed locally refined Cartesian grid.

The results of Figure IV.6 exhibit the good behavior of both methods on challenging grids.
The P¢ benchmark exhibits a first order slope in the H' seminorm and a second order slope in
the L? norm. On the Cartesian and locally refined Cartesian mesh sequences, both methods
exhibit a supra-convergent behavior in the H! seminorm and a second order convergence in
the L? norm. For Kershaw-type meshes, the convergence rate is worse than one in the H'
seminorm, whereas order one is obtained in the L? norm. For hexagonal-dominant meshes,
first order convergence is obtained in the H' seminorm and L? norm, with a slight loss of
convergence in the H' seminorm for fine meshes. Note that for that kind of meshes, where the
number of faces per element (and thus the number of lateral pyramidal faces) explodes, the
calculation and assembling times for the CRg-JS method are a bit prohibitive for fine meshes.
In addition, the conditioning of the matrix deteriorates with the explosion of its stencil, as the
jumps penalization couples more and more unknowns.
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This chapter will form the body of the article [1] (still in preparation). We here tackle
the numerical approximation of Biot’s consolidation model, which is a particular limit case
(co = 0) of the poroelasticity problem (II.18) introduced in Section II.2. We design a family
of Euler-Gradient discretizations, i.e. implicit Euler in time and Gradient scheme in space, of
the weak formulation (I1.22). As explained in Section I1.2.3, Gradient schemes are a generic
framework for the discretization of linear and nonlinear elliptic equations [45, 41, 33]. We
consider separate Gradient discretizations for both displacement and pressure, that we introduce
in Section V.1. Up to specific assumptions on both sequences (namely coercivity, optimal
approximation, limit-conformity and inf-sup stability), we prove in Section V.2 the convergence
of this Euler-Gradient family of approximations under minimal regularity assumptions on the
solutions and on the data, cf. Section I11.2.1. An important feature is that the convergence result
is totally independent from the (admissible) values that can possibly be taken by A or k. Then,
in Section V.3, we give some examples of discretizations falling in this framework, and focus
more particularly on a discretization of mechanics based on the generalized Crouzeix—Raviart
space introduced in Chapter III, coupled to a Hybrid Finite Volume treatment of pressure.
Finally, we provide in Section V.4 some numerical examples in two space dimensions and on
general meshes based on the above choice.
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CHAPITRE V : Convergence of Euler-Gradient approximations of Biot’s consolidation problem

Note that the notations used in this chapter voluntarily differ as they enter a more general
framework from the ones used in Chapters III and IV.

V.1 Euler-Gradient discretization

We first introduce in this section the sufficient conditions on the Gradient (space) dis-
cretizations of pore pressure and displacement to obtain a converging approximation for prob-
lem (I1.22). Then, we explicit the time-space setting before introducing the discrete problem.

V.1.1 Space discretization

It is of some importance noticing, before going further, that we do not need for the moment
to define a notion of (admissible) mesh sequence.

V.1.1.1 Pore pressure

Let us begin by giving the definition of a pressure Gradient discretization for problem (I1.22).

Definition V.1 (Pressure Gradient discretization). A pressure Gradient discretization DP is
defined by DP := (X} ,, I}, V), where

(i) the zero-mean set of discrete unknowns X3, , is a finite dimensional vector space on R;

(ii) the linear mapping IT} : X%’O — Ppy, where Ppg := Pp n L(Q) with Pp finite dimen-
sional subspace of L%(Q), is the reconstruction of the approximate function;

(iii) the linear mapping V¥, : X2, — L2(Q)d is the discrete gradient operator. It is chosen
such that [V, - [lo.0 is a norm on X7 .

We recall that the space LZ((2) is defined in (I1.12). The term zero-mean and the zero subscript
in X%,o emphasize the fact that the spatial zero-mean condition on the pore pressure (cf.
model (I1.18)) is strongly enforced through adequate constraints in the set of unknowns.

We now present three sufficient assumptions on sequences of pressure Gradient discretiza-
tions, that are typical of the Gradient schemes framework, in order to prove the convergence of
our approximation of problem (II.22). Note that when considering nonlinear elliptic problems,
a fourth assumption of compactness is often needed. Let first introduce the space

H(div; Q) := {v e H(div; Q) | yn(v) = 0},

where v, (v) € H_%(I‘) is the normal trace v-np.

Let (DP,),,cn be a sequence of pressure Gradient discretizations in the sense of Definition V.1.

Assumption V.1 (Pressure coercivity). For a given DP, let define the norm of the linear
mapping H% as

TS ap

CP - |0’Q V.1
P gpext oy [Vihap V1)

0,Q

Then, there exists Cp > 0 such that Cp, < Cp for all m € N. The sequence (DY,),.c\ is said
to be coercive.

Remark V.1 (Discrete Poincaré inequality). One can derive from Equation (V.1) |[IIhgp[oa <
CplVpap

|0,Q-

The coercivity of the pressure discretization is thus expressed as a uniform Poincaré inequality.
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V.1 FEuler-Gradient discretization

Assumption V.2 (Pressure approximation). For a given DP, let S}, : HY(Q) - Rt defined by

0.0+ |[Vhap — Vo

Voe H(Q), Sp(p):= min (|hep - 09) - (V.2)

qpE€ D,0

Then, for all p € HL(Q), Sp, (¢) = 0 as m — +o0. The sequence (D},),,cy s said to enjoy
optimal approximation properties.

This property is usually termed as consistency in the Gradient schemes literature, cf. [33].

Assumption V.3 (Pressure limit-conformity). For a given DP, let W5 : Ho(div; Q) — R
defined by
B S v ) 12
qDEI)I(lg)O(\{O} H’€1/2V%Q'D”0,Q (K VDQ’D)LP)O,Q + (H'DQ'D, v (K 90))0,9 .
(V.3)
Then, for all ¢ € Ho(div;Q), W5 (¢) — 0 as m — +00. The sequence (DY), s said to be
limit-conforming.

Vo € Ho(div;Q), Wi(e) =

The limit-conformity property establishes a link between the gradient and the reconstruction
operators (in addition of the one established by the discrete Poincaré inequality). It guaran-
tees that the two operators fulfill a continuous Green’s formula in the limit. In the case of
a conforming finite element approximation, then Wh(¢) = 0 for all ¢ € Hy(div;2). Here,
the limit-conformity assumption concerns the operator that we do consider in our model, that
is £2VE. We remind the reader that & is assumed to be such that x € WH®(Q), which
gives a sense to V-(k"2¢p) in LZ(Q). The additional assumption (IL.21) is needed as we will
detail in Section V.3 to prove that the HFV [40] method applied to pressure discretization is
limit-conforming in the sense of the above definition.

V.1.1.2 Displacement

Let now turn to the definition of a displacement Gradient discretization for problem (II.22).

Definition V.2 (Displacement Gradient discretization). A displacement Gradient discretiza-
tion DY is defined by DI := (Xdpjo, g, V%), where

(i) the homogeneous set of discrete unknowns X %70 is a finite dimensional vector space on R?;
(ii) the linear mapping 1%, : X %70 — L2 (Q)d is the reconstruction of the approximate function;

(iii) the linear mapping V$ : X %70 — LQ(Q)d’d is the discrete gradient operator. It is chosen
such that |V - [lo.q is a norm on XdD70.

The term homogeneous and the zero subscript in X %70 emphasize the fact that the homoge-
neous Dirichlet boundary condition on the displacement is strongly enforced through adequate
constraints in the set of unknowns.

Taking inspiration from the previous paragraph, we introduce three equivalent sufficient
assumptions on sequences of displacement Gradient discretizations in order to prove the con-
vergence of our approximation of problem (I1.22). We here add another assumption, which is
not classical in the Gradient schemes literature as saddle-point problems have not yet been stud-
ied in that framework, which concerns the displacement-pressure coupling. For that purpose,
let us define the discrete divergence operator V- : X %70 — L%(Q) such that, for all vp € X %70,

VYvp = tr(Vhup).
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CHAPITRE V : Convergence of Euler-Gradient approximations of Biot’s consolidation problem

For a given pressure Gradient discretization DP, we also define h : L?*(2) — Pp as the

L?-orthogonal projector onto Pp. Usually, Pp is a broken polynomial space on a spatial dis-
cretization (mesh) of the domain. Hence, under classical requirements on the mesh sequence
like the ones exposed in Section III.1, we can assume that the L2-orthogonal projector has op-
timal approximation properties, in the sense that, for (DP,), .\, sequence of pressure Gradient
discretizations, and for o € L2(12),

|75, (9) = ¢loa =0 as m — +o. (V.4)

When restricting 75 to L3(Q), then 75 (¢) € Ppo owing to the mean conservation property of
the L2-orthogonal projector onto broken polynomial spaces. Finally, we denote by

H(div; Q) = {g e 2™ | Ve LQ(Q)d} . (V.5)

Let (D?n)mEIN be a sequence of displacement Gradient discretizations in the sense of Defini-

tion V.2.

Assumption V.4 (Displacement coercivity). For a given DY, let define the norm of the linear
mapping H% as

Hd
C%:=  max Hgvipo,g' (V.6)
vpeX$ ,\{0} [Vpop|oe
Then, there exists C3 > 0 such that C%m < C9 for all m € N. The sequence (Dg)meN is said
to be coercive.

Remark V.2 (Discrete Friedrichs’ inequality). Equation (V.6) directly yields |IISvplon <
CpVvp|on.

The coercivity of the discretization is hence defined as a uniform Friedrichs’ inequality. Note
that we do not assume that a discrete Korn’s inequality holds since we consider in (I1.22) the
pure displacement problem and the naturally coercive bilinear form a.

Assumption V.5 (Displacement approximation). For a given DY, let S$ : H} (Q)d — R*
defined by
00)-

Then, for all p € H} (Q)d, S% (p) — 0 as m — +o0. The sequence (D), is said to enjoy
optimal approximation properties.

d .
Ve e Hi(Q), Shle) = min (IMvp -

’U'DEXD 0

0.0 + [VHvp — Vo

Assumption V.6 (Displacement limit-conformity). For a given DY, let W : H(div; Q) — R*
defined by
1

max di
vpeX$ o \(0} [Vpoplon

(VHop, p)oa + (Tpvp, V-p)oal -

(V.7)
Then, for all v € H(div;Q), ng (¢) = 0 as m — +00. The sequence (DL, 35 said to be

Vo € H(div; ), W(

S

limit-conforming.

In order to ensure a stable coupling, we consider the following additional assumption on
sequences of displacement/pressure Gradient discretizations. Let (Dy,), o = (D3, DE),
be a sequence of displacement /pressure Gradient discretizations in the sense of Definitions V.2
and V.1.
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V.1 FEuler-Gradient discretization

Assumption V.7 (Displacement-pressure coupling). For all'm € N, there exists an interpolator
I$ : Hj (Q)d — Xdpmo such that
d
Ve Hy(Q) . p, (VD Tp, (#) =7p (V-9), (V.8)

and there exists Cs > 0, independent of m, such that, for all m € N,

d
Ve e HYQ)', [V T (#)

0,0 < Cs|Ve

0,0- (V.9)

The sequence (D), e S said to possess a sequence of Fortin operators in the sense of Defini-
tion II.1.

This assumption is also adapted to the discretization of the (possibly) quasi-incompressible
linear elasticity model, see Remark V.4. We make the classical further assumption that the
sequence of Fortin operators enjoys optimal approximation properties, in the sense that

d
vpe HY(Q), (1M, 75, () — elon + 195, T, (¢) = Veloo) >0 as m— +o0.
(V.10)
This (stronger) assumption (V.10) replaces Assumption V.5.

Remark V.3 (Discrete inf-sup condition). For a given D := (DY DP), let introduce the
displacement-pressure coupling bilinear form on X %70 X X%,o given by

bp(vp, qp) = —(7H(VHvp), Ihap)o 0.

Then, Assumption V.7 is equivalent to assuming that a discrete inf-sup condition holds for the

sequence of coupling bilinear forms (bp,,),en: With a multiplicative constant independent of m.

This property would ensure in the context of a Stokes problem for example that the dis-
cretization is inf-sup stable. In the context of Biot’s consolidation problem, as we already
explained in Section II.2.2, this property may actually be insufficient to properly speak about
inf-sup stability in the finite element sense. All depends on whether the reconstruction is
gradient-based (like in finite element methods) or not (for example piecewise constant, like in
most finite volume methods). To clarify the idea, let consider for the pressure discretization a
HFV method, that is to say a piecewise constant reconstruction based on cell unknowns, and
a gradient which is given by (II1.8)—(II1.9) and which depends on both face and cell unknowns
(the subgrid correction establishes the link between cell and face unknowns). We assume that
the components of the discrete displacement belong to the generalized Crouzeix—Raviart space
introduced in Chapter III. Then, Lemma III.5 and Corollary III.1 ensure that an inf-sup con-
dition holds for this pair of displacement/pressure spaces (since the pressure reconstruction is
piecewise constant). This inf-sup condition gives a stability estimate on the approximate re-
constructed pressure. This estimate turns out to give a real control on pressure in the context
of a Stokes problem since the pressure only lives in L3(2) and is fully discretized using cell
unknowns. However, in the context of Biot’s consolidation model, we see that this estimate
only gives control on pressure cell unknowns, without any direct information on face unknowns.
From a continuous point of view, in small times or in poorly permeable regions, the pore pres-
sure is quasi-L3(2) since the diffusion term has an almost vanishing contribution, but boundary
conditions are applied to the pressure as soon as t > 0, hence giving to this quasi-L3(Q2) object
a H(Q) dimension (dimension that is fully acquired as time goes on since the Darcean diffusion
term takes more and more importance). From a discrete point of view, this results in spurious
spatial oscillations of the pore pressure approximation in early times or in poorly permeable
regions, due to a lack of control on the pressure gradient of this (forced to be) HL() object.
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A possible remedy is to add artificial diffusion as proposed by Aguilar et al. [2] (they
add a discrete stabilization term in the flow equation whose continuous equivalent would be
0t(BAp), with 5 > 0 a user-dependent parameter depending on the meshsize). This gives a
L*(0,T; HY(2)) control of the pressure that is independent from x~!, but this method has
the drawback of denaturing the physical model. Another remedy hinges on the verification
of an inf-sup condition. This gives a L*(0,T; L3(£2)) control on the pressure which does not
depend on k~!. This method has been shown to be efficient in the finite element context, see
Murad et al. [62]. A L®(0,T; L3(9)) estimate on the reconstructed pressure, when this latter
is gradient-based as in finite element methods, actually enables to have a kind of control on the
gradient and thus reduces spurious oscillations in early times or in poorly permeable regions.
If we apply it to our generalized Crouzeix—Raviart/HFV discretization, the inf-sup condition
gives an estimate on the pressure reconstruction, which only concerns cell unknowns. This
estimate obviously has an impact on the control of face unknowns since these latter are linked
to cell unknowns through the subgrid correction of the gradient operator but this impact is (af-
ter numerical assessment) less important than for inf-sup stable pairs of finite elements where
the pressure reconstruction is gradient-based. We obtain a method which is more stable than
for an unstable pair of finite elements, but less stable than for a stable one. We then cannot
really speak in that case of inf-sup stability in the finite element sense but practically this still
contributes to reduce spurious oscillations of the pressure approximation. Whatever it be, from
a theoretical point of view, this stability property allows to prove the strong convergence in
L?(0,T; L3(52)) of the approximate pressure reconstruction independently of the (admissible)
values of k, wich seems difficult without.

V.1.2 Time-space discretization

As we study an elliptic-parabolic model, we must introduce a time discretization for prob-
lem (II1.22). We consider a first order implicit (also known as backward) Euler discretization in
time. We could as well consider a #-scheme (which reduces to the implicit scheme for § = 1) as
in [33].

Definition V.3 (Time discretization). A time discretization of the interval (0, 7] is defined by
N eN* and ¢ := (t("))ne[[O7N]] such that
() 40 = 0 <40 <M _ T
(ii) for n e [0, N — 1], we set ot(*+"2) ;= ¢(n+1) _ () and §tM .= MaX,ec[o,N—1] 5t +1/2),
Let now introduce a sufficient assumption on sequences of time discretizations in order to

prove the convergence of our approximation of problem (I1.22). For that purpose, let (d,,)
be a sequence of time discretizations in the sense of Definition V.3.

meN

Assumption V.8 (Time consistency). The following three conditions are fulfilled:
(i) 5t — 0 as m — +oo (which implies Ny, — +0);
(ii) 6tM < 1 for all m e N;

(iii) there exists Cy > 0, independent of m, such that for all m € N,

51 _ o)

Vne[l, Ny, — 1], <Gy

PTSE
The sequence (0p,),,c 15 said to be consistent.
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The third assumption (iii) quantifies the relative variations of time step and is only needed for
a theoretical purpose, see (iv) in the proof of Theorem V.1. In the following, for sequences
of time discretizations, the dependence of N,, on m will be understood without denoting it in
subscript (then N, will always be denoted N).

We can now introduce the time-space setting.

Definition V.4 (Euler-Gradient (time-space) discretization). An Euler-Gradient (time-space)
discretization is given by the couple (d, D), where

(i) ¢ is a time discretization in the sense of Definition V.3;

(i) D := (D, DP) is a displacement/pressure Gradient discretization in the sense of Defini-
tions V.2 and V.1.

In the following, we will consider sequences (0, D), With Dy, := (D3, DE,) of Euler-
Gradient (time-space) discretizations.

V.1.3 Discrete problem

We consider an Euler-Gradient approximation of problem (I11.22).

For that purpose, let (6,D) with D := (DY, DP) denote an Euler-Gradient (time-space)
discretization in the sense of Definition V.4. Let choose u%)) e X dD,o satisfying (V.11c). The
discrete problem reads:

Find (u(g) € Xdpyo,pg) € X%,o) such that, for all n € [0, N — 1],

nef1,N]
&D(u%l“),vp) + bp(vp,p%+l)) = (f") I3 vp)og Yup € X9,
(V.11a)
—bp(uly T —ul gp) + 6t ep (0BT gp) = 5tV (WD Tgp)oa  Vap € XDo;
(V.11b)
(Vdp'ug),ﬂ%qp)o,sz = (8,Ihqp)o.0 Vap € X3,
(V.11c)
where Gp (wp, vp) := p(Vhwp, Viup)o.o+(pu+) (7h(VHwp), mh(VH-vp))oq, bo(vp, ¢p) :=
— (73 (VHvp), I gp)o.0 = —(VHvp, Ihgp)o.a, and cp(rp, gp) == (kVhrp, Vi )oo.
The discrete source terms are defined as LQ(Q)d 5 £ = £tD), and L2(Q) 3 D =

$(n+1)

Sy Sy B(E)dt.

Remark V.4 (Quasi-incompressible materials). In order to deal with quasi-incompressible ma-
terials, i.e. A — 400, we perform static condensation on the divergence operator in ap, see
Section I11.1.2.2. It here consists in projecting the divergence operator onto the discrete (pres-
sure) space Pp, which satisfies under Assumption V.7 a (uniform) inf-sup condition when
combined with the displacement approximation space, cf. Remark V.3. Hence, deal with a se-
quence of displacement/pressure Gradient discretizations that possesses a sequence of Fortin
operators ensures the robustness of the quasi-incompressible elasticity approximation with re-
spect to numerical locking.

V.2 Convergence to minimal regularity solutions

We now study the convergence of the approximation scheme (V.11), under the sufficient
spatial discretization assumptions exposed in Section V.1.1 and time discretization condition of
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CHAPITRE V : Convergence of Euler-Gradient approximations of Biot’s consolidation problem

Assumption V.8, and under minimal regularity assumptions on the continuous solution and on
the data.

We begin by giving some a priori estimates on the discrete solutions, before establishing, in
a second time, the convergence result.

V.2.1 A priori estimates

Let (6, D) with D := (D4, DP) be a given Euler-Gradient (time-space) discretization. We de-
note by (u%,p%) € [Pg (5; ano) X [Pg (5; X%,o) the piecewise constant in time solutions of (V.11),

with values in X%,o and X}, , respectively, such that, for n € [0, N — 1],

b g ntD) d b . pntl) p
UD| (¢(n) g(n+1)] *= Up  ~ € XD0 Pp|m gnin] = Pp € Xpg.

Assumption V.9 (Choice of ug)). The initial discrete displacement u(DO) satisfies: there exists

Ct > 0, independent of D, such that
ap(uly) uly)) < Cra(®, u),

where u®) e H&(Q)d is defined in Remark I1.4.

This assumption will be verified later. In order to derive the a priori estimates, we first recall
the following version of Gronwall’s inequality, cf. Quarteroni and Valli [70, p. 14] or Heywood
and Rannacher [51, p. 369].

Lemma V.1 (Discrete Gronwall’s inequality). Let N € N*. Let k and B denote two positive
real numbers, and let (an),~,, (bn),>1, and (0n),=, denote three sequences of nonnegative real
numbers such that

N N
an +k Y by <k Y. dpan + B

n=1 n=1

Then, if kb, < 1 for all n € [1, N, there holds

N N 5
aN+kan<BeXp<k21 7;{:5)
n=1 n=1~_ "'n

In order to treat the cases of low permeability regions and quasi-incompressible materials, we
pay attention, in the a priori estimates we derive, to their dependencies with respect to £ and
A. We recall that, for obvious physical reasons, either £ may tend to zero (presence of poorly
permeable regions), either A may tend to infinity (quasi-incompressible material).

Lemma V.2 (Discrete L*(0, T} H&(Q)d) displacement estimate, L2(0, T; H1(Q)), L*(0,T; L3())
pressure estimates). Let (§, D) with D := (D9, DP) be an Euler-Gradient (time-space) discretiza-
tion in the sense of Definition V.4. We assume that § is consistent in the sense that it sat-
isfies (ii) in Assumption V.8, and we assume that D admits a Fortin operator in the sense of
Assumption V.7. Let (u%,p%) be a solution of (V.11). Under the regularity assumptions on
the data assumed in Section I1.2.1, there holds

b IU’HV'dD’u‘é'DHioo((LT;LQ(Q)d,d) < maXtE(O,T] dD(U%(t), ’u’éD(t)) < 0(0%7 C%)i
. ||“1/2V%p%H2L2(0,T;L2(Q)d) - S(? en(pp (1), pp(1)) dt < C(Ch, Cp),
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V.2 Convergence to minimal regularity solutions

b ”H pDHLoc OTLQ(Q)) C(CD7)‘)’

where C(-,...) denotes a generic constant, depending on the data, whose dependencies with
repect to possibly unbounded quantities are all precised in argument.

Proof. (i) Let n € [1, N]. Accounting for the fact that 17 p(D) € Ppo = L3(Q), and owing to
the surjectivity of the divergence operator from H; (Q) to L3(12), cf. Lemma I1.3, there exists
(n) e H} (Q)d such that

mps) = Vold,  with [Vol” o0 < OIS 0.0, (V.12)

where Cy > 0 is defined in Lemma II.3 and does not depend on D nor n. The existence of a

Fortin operator Z$ (cf. Assumption V.7) allows us to infer that, letting X<, 02 vl(\? %) = T8 (vy ) ),

(n)

Yap € XB,,  bo(vl’,ap) = bo(v{'p, ap), )

CSHV”N lo@, (V.13)

where Cs > 0 is defined in (V.9) and does not depend on D nor n. Taking ¢p = p(g ) and

using (V.13), (V.12), and (V.11a), we get

125120 = —bp(00p, py)) = dp(ul, v{p) — (fF, v )o.0- (V.14)

To estimate the first term of the right-hand side, we successively use Cauchy-Schwarz inequality
(ap is a symmetric positive definite bilinear form), the boundedness of ap, (V.13), and (V.12),
to infer

an(ul), v{) < Cp(u"2, \)CsCx ap(ul), ul) " Tp)

(V.15)

where CB(,ul/ 2 \Y 2) is the boundedness constant only depending on p and A. Then, using succes-
sively the Cauchy-Schwarz inequality, the discrete Friedrichs’ inequality of Remark V.2, (V.13),
and (V.12), we infer

(£, v ploa < CHCSO| b o (V.16)

Finally, gathering up (V.14), (V.15), and (V.16), we obtain
2., C<On | O (12 )\/2 (n) , (m)y"/2 cd | £ V.17
[ DPD lo,0 < CsCn | Cr(1 Jap(up’,up’)  +Cplf ™o |- (V.17)

(ii) Testing (V.11a) with vp = ugL T u(Dn ) and summing between 0 and N — 1 yields

N— N-1
N 1 0 n 1) n n 1 (n n+1 n
2 ap(up up )~ 24 p(ul), uf))+ Z " < Y (I ul Y — wlf))oo,
n=0 n=0
(V.18)
where we have used the fact that
QdD(u(gH),ugLH)—ugL)) = dp(ugﬂ)—u(pn),u(gﬂ) u(g))—l—ap(u(pnﬂ),u(gﬂ))—dp(u(p"),ug)),

to infer
&D(u(nﬂ) u(n+1) o u(n)) > g

n 1 n
(m+1) G ( G, ul )~ Lap ) )

plup 7 up p(Up’, Up

DN |
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Letting now gp = ngH) in (V.11b), and summing between 0 and N — 1 leads

N-1
_Z bp (n+1) UD ,p"”) 2 St +Y2) o (n+1) gm)) _ Z st(n+Y2) (h(”“),Hprg”l))og

Q-

n=0
(V.19)
Summing (V.18) and (V.19) yields
1 N—
San(u) ul) Z 51 ep(p Y D) < m), (v.20)
where
1 0\ | 1 & 1
RmV) . 2@ uD 7U(D) 2 n+1 Hd (Dn-i- )—U%)))O,Sﬁ‘ Z st +1/2) (h("+1) H%p(pn‘|r ))0@_
n=0 n=0
(V.21)
Let denote respectively by ‘ZgN), ‘IgN), and ‘ZgN) the three terms in R, By discrete integration
(V) :
by parts, €5 ’ can be rewritten
N N 0 &
T = (P, mhul Moo - (£ Mul oo — Y, (FOUH = £ mhu )oe.  (V.22)
n=0

Here again, we denote by ‘Ig{\lf), Tg{g), and ‘Ig{g) the three terms in ‘IéN). Let estimate these
different terms. According to Assumption V.9,

‘ﬁN><%caauwhuwn. (V.23)

Using Cauchy-Schwarz inequality, Remark V.2, the fact that uHVdepHgﬂ < ap(vp,vp) for all
vpe X %70, Assumption V.9, and Young’s inequality, we infer

(N) 1 Lo~ 0, ()
‘ZQ,Z = 2 (CD) HfHLoo OTLQ(Q) ) + QCI CL(U U ) (V24)
Using the same first three arguments, and Young’s inequality with € > 0, we get
Ny _ €. N 1
T < San(upup”) + o n 7 (OB IF12 o ooy (V.25)

As far as ‘3( ) is concerned, two applications of Cauchy-Schwarz inequality and some algebraic
mampulatlons first give

1/2 1/2

N

T < 1F 1 2oyt (LIS B 0) 41820 7201 (2 St 11 “09) :
n=0

Finally, the same arguments as for the proof of (V.24), and Young’s inequality with x > 0, yield
(V) _ XN sy (k1) () X T (0)4,(0)
n+1/2) ~ n+ n+ ~ 0 0
T3 ggzét ap(up  , up )+W (e ) H-fHLQOTL2(Q))+§CIa(u ,ut’).
(V.26)
)

To estimate T3 7, two applications of Cauchy-Schwarz inequality first give

1/2
2> |

N n n+1
S( HhHL2(0,T;L2 (Z ot +1/2)HHDJUD+ )
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V.2 Convergence to minimal regularity solutions

We establish two different estimates for ‘Z;(,,N), depending on whether A may take unboundedly

large values (quasi-incompressible material) or £ may tend to zero (presence of poorly permeable
regions). We recall that both cases cannot occur simultaneously.

(a) k& is bounded away from zero: Using the discrete Poincaré inequality of Remark V.1, the fact
that KHVquDHO q < cplgp, gp) for all gp € XD o, and Young’s inequality with o > 0, we infer

N—
g (n n 1 n+1 1 _
< 5 Z +1/2) +1) p(D+ )) + 25 1(C%)QH}LH%Q(O’T;L%(Q)). (V.27)

(b) X is bounded away from infinity: Using (V.17) established in (i) under the assumption that
D admits a Fortin operator, and Young’s inequality with ¢ > 0, we infer

o N1
N n ~ n n - 2
Q( ) < 5 Z st +1/2)ap(u(p+1),u§7+1)) + C3C% (U 'CB (1, \) + (CD) ) HhH%ﬂ(O,T;L%(Q))
n=0

where Cg(u, \) := CE(u'?, \V?).

In both cases, we now derive the a priori estimate we look for.
(a) & is bounded away from zero: Using (V.20), (V.21), (V.22), (V.25), (V.27), (V.26), (V.24),
and (V.23) with choices of €, x, 0 such that 0 <e < 1,0 <0 < 2, and x = min(1 —¢,2—0) > 0,
we invoke Lemma V.1 with & = 1, a, = ap(u%),ugb)), b, = 6t(”_1/2)cD(p(g),p(g)), and

8n := 6t for n € [1, N, to infer

o) oy (p 1) ot &oan)
a/ (U'D ,UD 2 6t (n+ /2 ’pD ) < B(a) exXp Z W s (V29)
01—

n=

where

T+2 e+1 _
B(a) = Cr a(u(0)7u(0)) + H 1( ) H-fHLoo 0,T;L2( Q) )
X+ 1 L 207112
+ X2 ( ) Hf HL2 (0,T;L2(Q ) ) + X7ﬁ (C%) Hh”LQ(O,T;Lg(Q))'

Note that the use of Lemma V.1 with £ = 1 is licit since the time discretization ¢ is con-
sistent by assumption. Equation (V.29) provides a discrete L*(0, T} H&(Q)d) estimate on the
displacement and L?(0,T; H'(R)) estimate on the pressure, with a multiplicative constant only
depending on the coercivity constants C%, C%, and on bounded quantities (including £~1).
The fact that a(u(®, u(®) is bounded comes from (I1.23) and from the fact that \V?|3]o.q is
bounded independently of A by assumption.

(b) A is bounded away from infinity: Using now (V.20), (V.21), (V.22), (V.25), (V.28), (V.26), (V.24),
and (V.23) with choices of ¢,y,0 such that 0 <e < 1,0 <o <1—¢,0<x <1—¢, and

X + 0 =1—¢, we invoke Lemma V.1 with the same arguments as in (iia) to infer

() Vo) o (p ) plD) G s

n=0
where
T +2 T e+1
_ = (2(0) 1, (0) .
By = S 20w )+ (L i ) U
ttr ot OO I By * oy (071CB(1 ) + (OB)) Ihlao rizzien
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Note again that the use of Lemma V.1 with k = 1 is licit since § is consistent by assumption.
Here, Equation (V.30) provides a discrete L*(0, T H&(Q)d) estimate on the displacement and
a L?(0,T; LQ(Q)d) estimate on the product k”*-pressure gradient, with a multiplicative con-

stant only depending on the coercivity constant C%, and on bounded quantities (including \).
(iii) Combining (V.17) with n = N and (V.30), we finally get

N-T o gylntya)
N) ot
HHp'Dp'(D HO Q= 2CSCNCB(/“L7 )\)B(b) eXp ( 2 1— 6t(n+1/2)> + 208201%(017) ”fHLoc 0,T;L2 Q) )

n=0
(V.31)
Equation (V.31) provides a discrete L?(0,T; L3(f2)) estimate on the pressure whose multiplica-
tive constant only depends on the coercivity constant C$, on A, and on bounded quantities.
This concludes the proof. ]

The a priori estimates of Lemma V.2 combined with the fact that the matrix of the (linear)
discrete problem is square, guarantee the following result.

Lemma V.3 (Existence and uniqueness of the solution to (V.11)). Let (3, D) with D :=
(Dd, DP) be an Euler-Gradient (time-space) discretization in the sense of Definition V.4. Then,
independently of the (admissible) values that can possibly be taken by A\ or k, problem (V.11)
admits a unique solution.

V.2.2 Convergence result

We can now state the main result of this chapter.

Theorem V.1 (Convergence of the scheme). Let (0, D), cpy With Dy := (DL, DP) be a
sequence of Euler-Gradient (time-space) discretizations in the sense of Definition V.4 such that

(a) the associated sequence of time discretizations (6m),,en 5 consistent in the sense of As-
sumption V.8;

(b) the associated sequence of displacement/pressure Gradient discretizations (Dpm),,cn POS-
sesses a sequence of Fortin operators enjoying optimal approximation properties in the
sense of Assumption V.7 and (V.10);

(¢) the associated sequences of displacement (DS,), ., and pressure (D), . Gradient dis-
cretizations are coercive (Assumptions V.4, V.1), enjoy optimal approximation properties
((V.10), Assumption V.2), and are limit-conforming (Assumptions V.6, V.3).

For any m € N, let (uD ,pD ) € [PO (5m,XD 0) X [P?l <5m;X1p)m70> be the solution to the

scheme (V.11), with ug)) chosen such that u(o) = I%m (u(©). Then, independently of the
values that can possibly be taken by A or k (wzth the condition that both limit cases cannot occur
simultaneously),

° VD u‘sD — Vu in L*(0,T; L2(Q)d7d);

as m — 400,

Ve (U, ulf,) - XV in (0,5 L3(@)

o 1'[D u%” — w in L?(0,T; LQ(Q)d) asm — +00,
o WVP m — k"2Vp in L*(0,T; L2(Q) ) asm — 400,

o I, PD — pin L*(0,T; L3(Q)) as m — +oo,
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V.2 Convergence to minimal regularity solutions

where (u,p) € L*(0,T; H(%(Q)d) x L2(0,T; HY(Q)) is the unique solution to (I1.22) (cf. Theo-
rem I1.1).

Proof. The proof splits into five different parts.

(i) Choice of the initial discrete displacement: Let m € N. Owing to (V.8) and (I1.23), u%?n
satisfies (V.11c). In addition, owing to (V.9), and to (V.8) combined with the fact that
Hw%m(V-u(O))HQQ < | V-u®|gq, Assumption V.9 is satisfied with C; = max(C2,1).

(ii) A priori estimates on the sequences of solutions: Let m € N. We here denote by C' a generic
constant, independent of m and only depending on bounded quantities. From the first point
in Lemma V.2, and owing to the coercivity assumptions on the sequences of displacement and
pressure Gradient discretizations, we infer

d Om 1 d Om
HV mquHLQ(U,T;LZ(Q)d»‘i) < O? H>‘ /QW%m(V m‘u’Dm)HLQ(O,T;L(Q)(Q)) <C. (V32)
From the second point in Lemma V.2, and owing again to the coercivity assumptions, we get
1 Om
16725, 0B 2 0 a2y < C- (V.33)

Finally, using the third point in Lemma V.2 when A is bounded away from infinity, or the second
one combined with the discrete Poincaré inequality of Remark V.1 otherwise (in that case & is
bounded away from zero by assumption), and owing again to the coercivity assumptions, we
infer

Om
HHp mpoHLQ(U,T;LS(Q)) < C. (V.34)
(iii) Weak convergence: From (V.32), and the discrete Friedrichs’ inequality of Remark V.2

combined with the coercivity assumptions, we infer the existence of @ € L%(0, T} LQ(Q)d), Ge

L?(0,T; LQ(Q)d’d), and D € L?(0,T;L3(f)) such that, up to subsequences and without any
change in notations,

g, uly —u in L2(0,T; L2(Q)%) as m — +00, (V.35a)
V%mu%”; -G in L?(0,T; LQ(Q)d’d) as m — +00, (V.35b)
APl (VS ul ) —~D in L2(0,T; L3(Q)) as m — 4. (V.35¢)

Let € C2(0,T; CZ(Q)"%), hence for all t € (0,71, p(t) € CX(Q)™ < H(div;Q) (cf. (V.5)).
According to (V.7) (cf. Assumption V.6), and to (V.32), there holds

T
[ (7,085,000 + (T, 0,V 0o ) at < OT e W, (o(0)

Going up to the limit m — +o0, owing to the limit-conformity assumption on the sequence
of displacement Gradient discretizations, and to the weak convergences (V.35a) and (V.35b),

we infer that @ e L?(0, T} H&(Q)d) and that G = Va. From this last result and (V.35b), it is
straightforward that

Ve, ul — Ve in L?(0,T; LE(Q)) as m — +o0. (V.36)

Besides, owing to (V.36) and to the strong approximation properties of the LZ-orthogonal
projector (V.4), it is also straightforward that

m (Vh, ug ) — Va in L*(0,T;L3(Q)) as m — +o. (V.37)
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It is now a simple matter, by letting A2 act on the test function while passing to the limit, to
prove that D = \7>V-@ in (V.35c). It is worth observing that this argument is licit for any
(possibly large) value of A.

From (V.34) and (V.33), we infer the existence of p e L?(0,T; L%(Q2)) and G € L?(0,T; L2(Q)d)
such that, up to subsequences and without any change in notations,

11y, p5, =P in L*(0,T; L3(92)) as m — +oo, (V.38a)
KPVE pl G in L2(0,T; L2(Q)%) as m — +00. (V.38b)

Let ¢ € C2(0,T;C*(Q)%), hence for all ¢ € (0,T], ¢(t) € CP(Q)* c Hy(div;Q). According
to (V.3) (cf. Assumption V.3), and to (V.33), there holds

T
fo (549,28, (). 0o + (T, b, (1), V(" 0(1))na) dt < CT" max W, (1))

Passing to the limit m — +o00, owing to the limit-conformity assumption on the sequence of
pressure Gradient discretizations, and to the weak convergences (V.38a) and (V.38b), we infer
that p e L2(0,T; H1(Q)) and that G = x"*Vp.

(iv) Identification of the limit (w,p): Let ¢ € C*([0,T]) satisfying ¢(7) = 0. For any time
discretization & of the sequence (d,,), -, let denote for n € [0, N — 1] 1) 1= o(¢t(+1)) in

(n+1)
such a way that @) = 0, and ™D = m I(n;r o(t)dt. We introduce the piecewise

constant functions ¢° € P9 (4), 1% € PY(9), and ¢ € PY(§) such that, for n e [0, N — 1],

5 (n+1) 5 (n+1) s (2 — p(nt)
P () pnt1)] - = P ) ¥ | (¢ t(n+D)] *= (G ) P () pn4D)] - = Stn+12) )
with the natural definition p(M+1) := 0. Using Taylor’s theorem and point (iii) of the time

consistency Assumption V.8, one can prove that

10° = @llz2(o.ry) < C1otM, 19 = @l p2(0.r)) < Ca6t™, 10" = ¢ | L2 (0,1y) < C3t™,
(V.39)
where C1,Cs,C3 > 0 are three constants independent of §, depending on 7', and on the first
derivative of ¢ for C1,C5, on C; and on the first and second derivatives of ¢ for C5. For

convenience, we also introduce the piecewise constant in time functions f° e PY (5;L2(Q)d>
and h® € P (6; L3(2)) such that, for n € [0, N — 1],

£ o gmny o= FOD € L9, 1|y ey = WY € L3(Q),

where we make use of the definitions of f (+1) and A+ introduced in Section V.1.3.
Let v € H&(Q)d and ¢ € H'(Q). For any displacement/pressure Gradient discretization D :=
(D4, DP) of the sequence (D,,) let denote vp := I (v) € ano and

meN»

0,0+ HV%TD — Vg

Xp o 2 gp := argmin ([IT5rp — ¢
T’DEX%’O

0,Q) -

Let m € N. Letting vp,, € X%m,o as a test function in (V.11a), multiplying by 5t%+1/2)¢§,?+1),

and summing between 0 and N — 1, then taking ¢p,, € le?m,O as a test function in (V.11b),

multiplying by gp,(ff +1), and summing between 0 and N — 1, finally letting ¢p,, € X%m o as a test
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function in (V.11c), yields

T T

0 0
T T

f bp,, (g (t), 4p,,) ¢ (1) dt + f cp,, (PR (1), ap,,) "™ () dt = R, (V.40b)
0 0

(VDm'u(DT)nan%mQDm)O,Q = (8,11}, qp, )oo, (V.40c)
where we set
R 1= LT (o (8), 115, vp,, oo ¥ (t) dt,
and

T
RE) = j (B (1), 118, gp,)o.0 "™ (t) dt — bp,, (usy) ap,.) p(8t4?),
0

and where we have used the following discrete integration by parts formula (accounting for the
(N+1) .
fact that ¢, 7 =0):

N—-1 N—
~ M by, (u ) —ul) gp,,) oY Z WS gp ) (0D — )
n=0 n=0

Let now go up to the limit m — +00. Let begin by rewriting the left-hand sides of (V.40a)
and (V.40b), that we respectively denote sﬁi) and 27(7]3). First,

T T
o = fo 1 (VS uls (1), V5, o, o ot >dt+f0 p(mh (VS uls (1), V-v)oq olt) dt
T T
+ f (Al/Qw%m<V%m-u%";<t>>,Al/Qv-mo,mo(t)dt+j (VoI5 pl (1))oqe(t) dt,
0 0

where we have used the definition of 1%, (V.8) and the fact that vp,, is the Fortin interpolate
of v, and the properties of the L?-orthogonal projector. Then,

T
) — —L (V. ul (t),q)o,0 ¢ (t) dt — UO (VS ug (), gp,, —q))oq @ (t)dt

T T
+ | (95, 0.1, ap.000 <go'5m<t>—so'<t>>dt}+ | 0295, 185, (0.9 pl0)
0 0

+fT( e 3 Yoy S (4) —
D (), 52V ap, o (0 (8) — o(t)) dt ¢ .
0

As m — +00, owing to the weak convergence results (V.35b), (V.37), (V.35¢), (V.38a), and to

the strong convergence (V.10) of (V%mvpm)mEIN in LQ(Q)d’d, we infer

T
*f o(t) di + f b(w, 5(1)) (1) dt. (V.41)

0

95



CHAPITRE V : Convergence of Euler-Gradient approximations of Biot’s consolidation problem

Concerning ng), owing to the boundedness of the weakly converging sequences (Vd u%’;)meN

and (k2V% p%':n) o (due to (V.36), (V.38b)), and of the strongly converging ones (l'[ppmqpm)mEIN
and (k"72VP D D), oy (V-2), combined with the strong convergence of the same last sequences

and of (¢°n), ., and (¢m) . (V.39), the terms into brackets vanish as m — +o0. Finally,
the weak convergences (V.36) and (V.38b) enable to infer

T
— J "(t) dt + j c(p(t), q) o(t) dt. (V.42)

0

Concerning the right-hand side, using the definition of 2%, and combining the expression of
R with (V.40c) yields

T
Ry = f (h(), 1, 4D, )o.0 "™ (1) dt + (8,11 ¢p,,)o.0 #(5t5/?).
0

Owing to the strong convergence of the sequences (ITp _¢p,,) _ (V.2) and (o), o (V.39),
and to the continuity of ¢ and point (i) of the time consistency Assumption V.8, we infer in
the limit m — +o0 that

RE) j Do 9(t) dt + (B, g)o.0 £(0). (V.43)

Then, using the dominated convergence theorem on vector-valued Sobolev spaces, we show that
in the limit m — 400,

R f v)o0 (t) dt. (V.44)
Following ZeniSek [82, p. 205], one can prove, using (V.42) and (V.43), that
(V-@)(0),q)o,0 = (B,2)0,0- (V.45)

Finally, restricting our study to ¢ € C((0,7)) (then ¢(0) = 0), owing to (V.40), (V.41), (V.42),
(V.44), (V.43), and (V.45), (w,p) € L*(0,T; H&(Q)d) x L2(0,T; HL(Q)) turns out to be a solution
to problem (II.22). This proves in a constructive way the existence of solutions to (II.22). Owing
to the uniqueness of such solutions, cf. Theorem II.1, (w,p) = (u,p), where (u,p) denotes the
unique solution to problem (I1.22), and the whole sequences converge.

(v) Strong convergence: For any time-space discretization (J,D) of the sequence (8m, Dm),ens
let denote for k € [0, N — 1] zp (k1) Z o 0t +12) (HH), and let introduce zp € XBO such
that

T
X%O 3zp = Z(DN) = J p%(t) dt.
0

Let m € N, and k € [0, N — 1]. Summing (V.11b) on n between 0 and k, and using (V.11c),
yields, for all ¢p,, € Xl%m,m

f0+D)
k+1 k+1
b, (up " ap,) + b, (zp, Vap,) = (| h(s)ds T, ap,)oa + (8,115, ap,)og.
0
Letting now gp,, = 5t(k+1/2)pg€7:1), and summing on k£ between 0 and N — 1, we infer

N—-1
> StE ) (<bp, (w5t + ep, (05T =

N— (k+1)
Z +1/2f h(s) ds, 18 p% )00 + (.11 2p, Yoo, (V.46)
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(k+1/2), (k+1)

Letting vp,, = 0tm  "“up ’ in (V.11a), and summing on k between 0 and N — 1, we get
N—
2 ot (ap, () wl ) + oo, (Y p5)) =
) N—

Z k+1/2 k+1),H% 'U'(DkJrl))OQ- (V47)

Introducing the two sequences (a)ep ny: and (br)gepo,ny With bo := 0, such that for all
ke[o,N —1],

— 6t( +1/2) 1/2Vp (k+1) by = /i1/2Vp (k+1)

ag41 - Dy ? Z’Dm )

noting that Zk 01 5t(k+1/2) ep,, ( gjl), Dk;l ) = Zk 0 Yo brr1-ary1, and that agi1 = byy1 — by
for all k € [0, N — 1], finally recalling the following inequality

1 1
b1 (bpr1 — by) = §\bk+1|2 - §|bk|2,

yields
N= 1
Z t e Zgi: Dm%ij ) > 5D (D5 2D, ). (V.48)
From (V.46), (V.47), and (V.48), there holds
r 5 5 1
| o, (g, (), uf, ()t + Gen, (om0 2m,) <
0
T N—-1 (k+l)
L (P (1), TS, ulse (oo de+ Y 61+ fo h(s)ds, T, p% )0+ (8,118, 2, Joo.
k=0

(V.49)

m

From (V.38a), (V.38b), and from the identification of the limit (iv), we infer that " *V, 2D

K>V 2(T) in LQ(Q)d, and that 1T}, zp, — 2(T) in L3(9), as m — +o0, where we have used
the notation of Lemma II.5. Then, owing to (V.35a), (V.38a), and (V.49), there holds

T 1 T
lim supj ap,, (u%’:ﬂ (t), u%”:n (t))dt < —§C(Z(T)7 2(T)) + J (F(t),u(t))ondt

m—+0 Jo 0

T t
" f <f h(s)ds, p(t))o dt + (B, (T))o,

0 0

where the terms containing f and h have been treated using the dominated convergence theorem
on vector-valued Sobolev spaces. Using the weak convergence results (V.35b) and (V.35¢), and
the estimate (II1.24) of Lemma II.5, we infer

T T
lim | ap, (ul (£),uly (£)dt = f a(u(t), u(t)) dt. (V.50)

m——+00 0 0

This last result (V.50) shows the strong convergence of (V4 mu%’;ﬂ)men\l and (Al/Qw%m (V4 . .u%"; ), en
It now remains to prove the strong convergence of (H%mpép”:n)mew Let m € N. Following

point (i) of the proof of Lemma V.2, let take n € [1, N]. There exists vl(\?zn € H&(Q)d such that
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CHAPITRE V : Convergence of Euler-Gradient approximations of Biot’s consolidation problem

Hpopgl \ & "’1(\1 va and HVvaHOQ CNHHpop(D) with Cx > 0 defined in Lemma I1.3

and independent of m, and n. Let X% Dm0 2 ”1(\1,)17,” = I%m( 1(\1) ). Then, owing to Remark V.2
combined with the coercivity assumption, and to (V.9), there holds

—1
(€I, v&, loe < IV, o8, log < CsONIIE, P oq. (V.51)

For any time-space discretization (4, D), let introduce the piecewise constant in time function
"’16\1,2) e PY (s; X%,O) such that, for n € [0, N — 1],

5 e (nt1)
'UN,D‘ (t(n)7t('n+1)] T UNyD .

Owing to the estimates (V.34) and (V.51), valid for any admissible values of k and A, we infer
the existence of wy € L?(0, T H&(Q)d) such that, as m — 400,

g vdy, —on in L2(0,T; L*(Q)"), (V.52a)
vV, vl — Vn in L2(0,T; L(Q)™"), (V.52b)

where we have used the limit-conformity Assumption V.6.

Taking ¢ € C2(0, T; C(Q)NL3(€2)), and studying the limit of §] (V' -v¥'y, (), 75 (2(t)))oq dt,
we infer, using (V.8), the weak convergence of (H%mp%”;)men\l (V.38a), and of (V%m‘véNTDm)meN
(as a direct consequence of (V.52b)), along with the strong approximation properties of the
L2-orthogonal projector (V.4), that

Vaon=p in L*(0,T;L3(Q)). (V.53)

Then, owing to (V.14),

T
: S - Sm S
lrlnriiuog Iy, pye H%Q(O’T;Lz( q)) = limsup (J ap,, (ug: (t), v\, (t))dt

m——+00 0
T

T T
—fo (ff*m(t»Hdmvliﬂzpma))o,ndt)= f a(u(t), oy (1)) di — j (F(£),Bx(t))o dt,

0 0

where we have used the strong convergence of (Vdmu%”

D en and (NP, (V5 ugg,
d Om d Om 5

and the fact that (Vp, vyp, ) (A7 m0,,(VD,, v\'p,. ), and (HdDmvN7Dm)m€N’

converge as a consequence of (V.52b) and (V.52a). The term containing f is here again

handled using the dominated convergence theorem on vector-valued Sobolev spaces. Finally,

from (I1.22a) and (V.53), and from the weak convergence of (IIf, demD ),ep We infer

))meh\l’
weakly

||PHL2 0.T:L2(Q) S hm mf |17 mPDm HL2(0 T;L2(Q) S 1;“1}1“05 117 mpo HL2 0,T;L2())

T
< | b 0002t = bl a0 (V59

Equation (V.54) shows the strong convergence of the approximate pressure reconstruction, hence
concluding the proof. O
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V.3 Some examples of Gradient discretizations

A large number of well-known methods can be proved to fall in the framework of Gra-
dient schemes. Among them, we can cite the Galerkin methods (and in particular conform-
ing finite elements), the Crouzeix—Raviart method and most of nonconforming finite element
methods, some MPFA and DDFV schemes, the HFV/MFD/MFV class of methods, and the
Vertex Approximate Gradient (VAG) scheme introduced by Eymard, Guichard, Herbin and
Masson [42, 41, 43, 44]. By falling in the framework, we mean that all these discretization
methods can be described, when applied to the approximation of a linear (or nonlinear with an
additional compactness assumption) elliptic problem, through a definition like Definition V.2,
and can be proved to satisfy the assumptions of coercivity (cf. Definition V.4 for example),
optimal approximation or consistency (cf. Definition V.5 for example), and limit-conformity
(cf., e.g., Definition V.6). For all the above cited methods, the classical proofs of these results
can be found in the Gradient scheme literature, we can cite in particular [45, 41, 33]. The last
reference contains in Section 5.3 a detailed study on the HFV/MFD/MFV (referred to as HMM
for Hybrid Mimetic Mixed) class of methods.

In our case, since we study a saddle-point problem, we add another assumption to charac-
terize the admissible pairs of displacement/pressure Gradient discretizations, which is the one
of satisfying an inf-sup condition when coupled, cf. Assumption V.7 and Remark V.3. This ob-
viously reduces the field of admissible methods (for which applies in particular the convergence
Theorem V.1). We can cite as candidates:

e inf-sup stable pairs of conforming finite elements, for example the [Pg/ P1 method, or the
mini lP‘li — bubble/P; element; this eliminates equal-order Lagrangian approximations like
the (unstable) P{/P; method;

e the HFV/HFV method (which gives a coercive formulation of linear elasticity for the pure
displacement problem);

e the HFV-I (for Interpolation)/HFV method (see Appendix C and Remark C.3) which
gives a coercive formulation of linear elasticity even for mixed-type boundary conditions
without the need to introduce jumps.

Note that a method using the Crouzeix—Raviart space for both the displacement and pres-
sure discretization cannot satisfy the inf-sup assumption since the Crouzeix—Raviart pressure
reconstruction is piecewise affine.

In the applications of Section V.4, we consider a generalized Crouzeix—Raviart discretization
(see Chapter IV) of the displacement coupled to a HFV discretization of pressure. The first
enables to take advantage of the introduction of a piecewise affine reconstruction to obtain a
coercive formulation for linear elasticity in the case of mixed-type mechanical boundary condi-
tions (thanks to jumps penalization), while the second enables (thanks to its piecewise constant
reconstruction) to guarantee that an inf-sup condition holds when coupled to displacement (cf.
Lemma III.5 and Corollary II1.1). For both methods, we need to define a notion of admissible
mesh sequence. The one of Definition II1.3 is well-adapted, and for both, since the discretization
is not staggered.

It is completely straightforward in the light of Chapter III to prove that the generalized
Crouzeix-Raviart method (at least for n = d) defines a Gradient discretization (satisfying the
assumptions of coercivity, optimal approximation, limit-conformity and existence of a Fortin
operator) for the pure displacement problem (for mixed-type boundary conditions, a discrete
Korn’s inequality assumption would be needed to complete the framework). As far as the HFV
method (which is also a Gradient discretization as we already said) is concerned, the main
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CHAPITRE V : Convergence of Euler-Gradient approximations of Biot’s consolidation problem

features of the method (which is actually closely related to the generalized Crouzeix—Raviart
method as they only differ from the kind of reconstruction considered and the stabilization
parameter of the gradient) are recalled in Appendix C.

Something that has to be noted in the case of Biot’s consolidation problem is that the
classical assumption of limit-conformity is a bit modified for pressure since we consider as a
gradient operator the product of the mobility square root with the pressure gradient. Then, the
proof of limit-conformity for HF'V discretizations has to be adapted as well. Following the steps
of the proof of [33, Lemma 5.9], and denoting hp the meshsize, we get for the HFV method

““1/290”14/1,@(9)'1 HV%QD
K2V gD

|O,Q H/ﬁl1/2H L,o0(Q)
< o " Iwhe )
CQhD” Hﬂzl,oc([Rd)‘i ﬁ1/2 )

Wp(p) < Cirhp

|O,Q

where ¢ € CSO([Rd)d and C1,Cy > 0 are independent of hp. The result of Assumption V.3 can
then only be obtained (using the above inequality and [33, Lemma 2.9]) if (I1.21) is fulfilled,
hence justifying this latter assumption.

V.4 Numerical applications

We provide in this section some carefully chosen two-dimensional numerical examples in
order to assess the performance of a particular Euler-Gradient approximation scheme for prob-
lem (I1.22), where the displacement /pressure space discretization is handled using the general-
ized Crouzeix-Raviart/HFV method.

We test the behavior of the numerical scheme (on general meshes) with respect to some
relevant parameters of the poroelasticity model, i.e. the constrained specific storage coefficient
¢o (we tackle in particular the limit case ¢y = 0 corresponding to Biot’s consolidation model),
the mobility x (we focus in particular on the case of a heterogeneous field with locally small
permeability £ — 0%), and the time T' (we particularly tackle the case of early and long times).

The focus here is neither on the influence of Lamé parameters on the approximation of
mechanics (as it has already been fully assessed in Section IV.4), nor on the influence of the Biot—
Willis coefficient o on the approximation of the poroelasticity problem, since from a physical
point of view this parameter is often close to unity. We will take it equal to one in the whole
section.

When it is relevant, we propose a comparison of the results with a conforming (unstable)
finite element pair P{/P;. The implementation has been realized in the same 2D C++ prototype
as the one used for the numerical examples of Section IV.4. We recall that the implementation
of this prototype relies on the general framework introduced in [26, 27].

V.4.1 Mesh families, time discretization and error measure

As far as the spatial discretization is concerned, we consider some of the two-dimensional
mesh families of Section V.4:

(a) a matching triangular mesh sequence, which will be useful for comparison with the con-
forming P¢/P; finite element method; cf. Figure IV.1a;

(b) a Cartesian mesh sequence, as it is the most widely used grid type in reservoir simulation
and as it forms the basis of CPG meshes; cf. Figure IV.1b;

(c) a Kershaw-type mesh sequence, which is of great practical interest as it may represent a
geological porous medium that has historically undergone non-smooth deformations toward
a highly skewed state; cf. Figure IV.1d.
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Note that, even if it is not included in that section, the convergence of the method has also been
assessed on a locally refined Cartesian mesh sequence (cf. Figure IV.1c) to test the treatment of
nonmatching interfaces, on a trapezoidal mesh sequence (cf. Figure IV.1e) to test the behavior on
grids whose elements do not converge to parallelograms, and on the hexagonal-dominant mesh
sequence of Figure IV.1f to test the behavior on grids featuring different polygonal elements.

The linear elasticity model is discretized using the CRg-VS bilinear form (IV.6) (in its ho-
mogeneous version since we consider constant Lamé parameters), which necessitates to consider
pure Dirichlet mechanical boundary conditions. The results presented in the next paragraphs
have thus been computed considering pure Dirichlet boundary conditions, for both mechanics
and flow. Experiments have been realized using the CRg-JS bilinear form (IV.3) to discretize
linear elasticity and confirm that the CRg-JS/HFV method correctly handles the case of mixed-
type (for mechanics or/and flow) boundary conditions. For both the generalized Crouzeix—
Raviart and the HFV method, we make the choice n = d in (II1.9) for the subgrid stabilization
parameter of their common (in the expression) gradient.

As far as the time discretization is concerned (cf. Definition V.3), we consider sequences
(0m) e Such that, for any member m € N of a sequence, the time step 6t,, is uniform and such
that dt,, = T'/Np,. A time discretization sequence is related to its associated mesh sequence in
the following way: between two successive members, when the meshsize halves, the (uniform)
time step is divided by four. This enables to obtain optimal errors in the L?(Q2)-norm as they
depend on the meshsize square.

As far as the approximation of the right-hand sides of (V.11a) and (V.11b) is concerned, we
treat it in a finite volume way by using the cell unknown (available for both discretizations) as
a quadrature point, cf. (IV.19) for an example.

Finally, for a given time-space discretization (8, D) with D := (DY, DP) (hp denotes the
meshsize), the relative errors are measured at the final time 7" such that t&) = T. For the
displacement, it is computed in the following way

1/2
N 2
|Vu(T) — VdDU(DN)HOQ (ZKeICh K| ’(VU)(fBK,T) - V‘}(u% )‘ >

, (V.55a)

V(T "
[Vu(D)lon (S, 111 (V). T)P?)
)2\
) g (Swee Kl e ) - ) (V.55b)
QL 5
T n
[u(Dlos (S, 1K fulere, 7))

where the notations are all introduced in Definition C.1 of Appendix C. This measure of the error
is the same (at time 7T') as the one introduced in (IV.24a)-(IV.24b) but in another framework
and using different notations. For the pore pressure, the errors are computed as

2\ /2
(Sicer, 151 (Ve 7) — Ty

[Vp(T) = V5p oo _ (V.56a)
VoDloe SV ‘
(Ser, [KI(Vo) @k T)F)
)2\ "
1) _ (S e T) =357 Vs
Hp<T) 1/2 ? ( . )

o.0 (Skere, 1K Ip(erc. 7))

where the notations are the same as for the displacement but in the scalar case.
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For the sake of simplicity, the H' relative errors (V.55a) and (V.56a) are referred to as
|Vu — Vuplloqn and [Vp — VEpplogo in the plots axes, and the L? relative errors (V.55b)
and (V.56b) as |u — O$uploq and |p — TRppllo.q-

Note that when computing the L? error (at final time) for the Py pore pressure approxima-
tion, we use a quadrature formula which is exact for polynomials of degree 2.

We consider in the test-cases below examples where the constrained specific storage coef-
ficient ¢y does not vanish. Hence, we need to discretize the term 0;(cop) in (II.18b). This
term adds a contribution in the weak formulation (II.22) in the left-hand side of the flow equa-
tion (I1.22b) which takes the form — S(? co (p(t), @)o ¢'(t) dt. From a discrete point of view, to
take into account this contribution in (V.11), we add a term of the form

<o (H%@%LH) —p(pn))aﬂ%qp)m
in the left-hand side of the flow equation (V.11b). As we explained in Section I1.2.2, this
additional term increases the stability of the model as it gives a L®(0,T; L3(2)) control on the
approximate pressure reconstruction that does not depend on £~' and which does not hinge on
an inf-sup condition. When considering a P{/P; approximation of the poroelasticity model, we
integrate this additional term with a quadrature rule exact for polynomials of degree 2.

V.4.2 Stabilization of the pore pressure approximation

We here investigate the influence of the constrained specific storage coefficient c¢g and of
time on the quality of the pore pressure approximation given by the CRg-VS/HFV method.
For that purpose, let Q := (0, 1)2, let T' > 0 classicaly denote the simulation time, and let
consider a homogeneous porous medium with (constant) Lamé parameters such that A = p =1
and (constant) sufficiently large permeability such that the mobility satisfies k = 1. We recall
that o = 1. We consider the following manufactured solution:

u, = e '2ty,  uy=—e'zy’,  p=e sin(z/V2)sin(y/V2).

The volumetric body force f and the source term h are obtained by plugging the above solution
into (II.18a) and (II.18b) respectively:

o= 5 e cos(r/VR) sin(y/v2) ~ ey,
fy = % e~ tsin(x/v2) cos(y/V?2) + 2pex,

h = (k — co)p.

We consider the matching triangular mesh sequence of Figure IV.1a. For ¢y € {0, 1}, we plot on
Figures V.1 and V.2 respectively, the H! and L? relative errors for displacement (computed as
in (V.55)) and pressure (computed as in (V.56))

(i) at T = 10~% using one time step;

(ii) at T = 1072 using a time discretization sequence with time steps such that §ty = 1072
(hp, ~ 1072) and 6t,, = Oto/4™;

(iii) at T = 1 using a time discretization sequence with time steps such that dty = 1072 and
Ot = dto/4™.
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Figure V.1: Time effect on the stabilization of the pore pressure approximation for ¢y = 0,
CRg-VS/HFV (solid lines) vs. P¢/P; (dashed lines).

We compare the results with the conforming P{/P; finite element method.

Concerning the displacement approximation, the results are insensitive to the value of ¢g
(which is not surprising) and quasi-insensitive to time. The errors in the L? norm and H*
seminorm are globally better for the CRg-VS/HFV method than for the P{/P; method.

Concerning the pore pressure approximation, some comments are in order. First note that
the artefact observed between the first and the second member of the mesh sequence for both
methods at 7" = 102 only indicates that the first time step is not optimal.

For ¢y = 0, the approximate pressure gradient does not converge for both methods in the
early time 7" = 1076, In the L? norm, the approximate pressure converges with order one for
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Figure V.2: Time effect on the stabilization of the pore pressure approximation for ¢y = 1,
CRg-VS/HFV (solid lines) vs. P¢/P; (dashed lines).

both methods. Hence, all happens just like if the pressure belonged to L?(Q2). As the grid is
refined, the approximate pressure gradient begins to converge and the L? relative error tends to
converge with order more than one. At T'= 1072 or T' = 1, we observe the stabilization effect
of the Darcean diffusion term on the pressure approximation. For both methods, the pressure
gradient now converges at order one, and the reconstruction at order two. We note that the
stabilization effect is stronger on the CRg-VS/HFV method since the results in the L? norm
keep improving between T = 1072 and 7' = 1. For long times, the pressure reconstruction
obtained with the CRg-VS/HFV method is more precise than the one obtained with the [Pcll/ P4
method.
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V.4 Numerical applications

For ¢y = 1, we observe the stabilization effect of that parameter. For early times, the
approximate pressure gradient still does not converge for both methods but the error is less
important than for cg = 0. The pressure reconstruction converges with order one and the errors
are also less important. We can notice that the stabilization effect of ¢ is stronger for the P¢/P;
method, which is not surprising since the reconstruction of this latter is gradient-based. We
see for early times that the pressure gradient has a less convergent behavior than for the case
¢o = 0. This is due to the fact that, here, the term depending on ¢y has much more weight than
the Darcean term, which means that all happens just like if the pressure exclusively belonged
to L?(2). For longer times, the stabilizing effect of ¢y is exceeded by the one of the Darcean
term and results are almost similar to those obtained with c¢g = 0.

It is important noticing that, globally, the CRg-VS/HFV method is not really more stable
in early times than the P¢/P; method, based on an unstable finite element pair. The inf-sup
condition fulfilled by the CRg-VS/HFV pair is not sufficient, as we began to explain in Sec-
tions 11.2.3 and V.1.1.2, to ensure the absence of spurious spatial oscillations on the pressure
approximation. Nevertheless, it has a theoretical interest since it allows to prove the strong con-
vergence of the pressure approximation (independently of ). Without searching for a piecewise
quadratic displacement field (which is very costly), it seems difficult to design an inf-sup stable
(in the finite element sense) method for Biot’s consolidation problem as the pressure must be
at least piecewise affine. Stabilization techniques (which do not rely on an inf-sup condition)
could be considered to treat the early times spurious oscillations issue. In the context of the
CRg-VS/HFV method, a stabilization inspired from Aguilar et al. [2] could be considered as
it only involves the pressure gradient. Note that this kind of stabilization is very strong since
it directly applies on the pressure gradient, and not on the reconstruction as inf-sup stabiliza-
tions do. To consider dG-like stabilizations, meaning stabilizations of the pressure jumps, a
notion of affine reconstruction would have to be defined for the pressure approximation space,
meaning that the pressure would have to belong to the generalized Crouzeix—Raviart space too.
This stabilization technique has been tested with success but not published yet by Daniele A.
Di Pietro for dG methods. A perspective could be to try adapt it in our case.
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Figure V.3: Configuration of the heterogeneous test-case of Section V.4.3.
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Figure V.4: Robustness of the discretization CRg-VS/HFV on challenging grids at 7' = 1076
for e = 1071 vs. P¢/P;.

V.4.3 Heterogeneous porous medium, low permeability and challenging grids

We investigate in this section the effect of poorly permeable regions in the porous medium on
the approximation of the pore pressure by the CRg-VS/HFV method on potentially challenging
grids. For that purpose, let consider the following manufactured solution. Let 2 := (0, 1)2 such
that Q := Q; U Q9, where Q; := (O, %) x (0,1) and Qg := (%, 1) x (0,1). We recall that o = 1
and that T > 0 denotes the simulation time, and we here assume ¢y = 0. We consider a porous
medium with constant Lamé parameters A = p = 1 and piecewise constant permeability such
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Figure V.5: Robustness of the discretization CRg-VS/HFV on challenging grids at T = 102

for e = 107! vs. P¢/Py.

that the mobility field satisfies

K =&

where € > 0 allows to vary the permeability contrast, the case €

in Ql,

k=1

in Qg,

1 corresponding to a

homogeneous medium. An illustration of the geometry is provided in Figure V.3.

For this medium, we consider the following solution:

e~
—t..2 —t,. 2
Uy = e 'xy, Uy = —e xy”°, p—{
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Figure V.6: Robustness of the discretization CRg-VS/HFV on challenging grids at 7' = 1076
for e = 1072 vs. P¢/Py.

This solution is continuous on €2, with continuous pressure gradient and pressure flux. The
volumetric body force f and the source term h are obtained by plugging the solution into (II.18a)
and (I1.18b) respectively:

I, = —ae 'sin(z — §) —2uely if v > 1,
' _% e tsin((z — 1)/v/€) —2pe'y otherwise,
fy = 2/'L e_tx7

h = (1-co)p.

We consider the matching triangular (cf. Figure IV.1a), the Cartesian (cf. Figure IV.1b) and
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Figure V.7: Robustness of the discretization CRg-VS/HFV on challenging grids at T = 102

for e = 1073 vs. P¢/P;.

the Kershaw-type (cf. Figure IV.1d) mesh families. Note that the Cartesian and matching
triangular mesh sequences match the heterogeneities of the medium, which is not the case of
the Kershaw-type sequence. For a permeability contrast such that ¢ € {1071, 1073}, and a
final time 7" € {107%,1072} (using one time step for the first, a time discretization sequence
with uniform time steps such that §tq = 1072 and dt,, = 6to/4™ for the second), we plot on
Figures V.4, V.5, and V.6, V.7 respectively, the H' and L? relative errors for displacement
(computed as in (V.55)) and pressure (computed as in (V.56))

(i) for the CRg-VS/HFV method on the matching triangular sequence;

(i) for the P¢/P; method on the matching triangular sequence;
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(iii) for the CRg-VS/HFV method on the Cartesian sequence;
(iv) for the CRg-VS/HFV method on the Kershaw-type sequence.

For ¢ = 107!, the results are pretty similar to those obtained for the homogeneous test-case
of Section V.4.2. Concerning the displacement approximation, the results are quasi-insensitive
to time. We here notice that the errors exactly compare for both the CRg-VS/HFV and the
P¢/P; methods on the matching triangular mesh sequence. On Cartesian and Kershaw-type
grids, we observe a supra-convergent behavior in the H' seminorm. Concerning the pressure
approximation, we here again observe the stabilizing effect of the Darcean term for sufficiently
large times. In early times, the pressure gradient poorly converges, with order less than one but
with some improvement as the grid refines, and the reconstruction with order approximately
one, also tending to more as the grid refines. For sufficiently large times, the optimal orders of
convergence are reached in the L? norm and H! seminorm. Supra-convergence is observed on
Cartesian and Kershaw-type grids for the CRg-VS/HFV method.

In the case € = 1073, the results degenerate. First of all, we notice a clear deterioration of
the displacement approximation for the CRg-VS/HFV method. Concerning the pressure ap-
proximation, even in early times, both the pressure gradient and its reconstruction surprisingly
converge with optimal order (a supra-convergent behavior is even observed for the Cartesian
and Kershaw-type grids). These results are insensitive to time and no real difference can be
noticed comparing times 7' = 107% and T = 1072. Hence, the diffusion term does not have
any stabilizing effect as time goes on. Even worse, the relative errors deteriorate (first for the
pressure, then impacting on displacement) for both methods for large times (not plotted here).
Note however that, in accordance with the convergence result of Theorem V.1, for a given T,
the pressure reconstruction converges as the mesh and the time step refine. The same experi-
ment led with an inverse mobility contrast (i.e. ¢ = 103) gives satisfactory results. The problem
thus comes from the presence of a poorly permeable region, and here again relies on a lack of
stabilization of pressure, which drives in that case to a divergent behavior for long times as the
errors sum. It suggests that an efficient stabilization of the pressure approximation must be
proportional to the inverse of the smaller permeability (see perspectives in Chapter VI).
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Le bilan des développements de ce manuscrit étant présenté en introduction Section 1.2,
nous faisons en guise de conclusion un état des lieux des perspectives futures envisageables a ce
travail, en dissociant les aspects de recherche sur les schémas, de complexification des modeéles,
et de validation industrielle.
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CHAPITRE VI : Perspectives futures

VI.1 Recherche sur les schémas

Comme nous 'avons vu au Chapitre VI, une approximation du probléme de poroélasticité
basée sur des espaces de déplacement et de pression discrets tous deux affines par morceaux ne
permet pas, sans stabilisation adéquate, d’assurer une approximation de la pression satisfaisante
et sans oscillations parasites pour les temps courts ou dans les zones tres peu perméables. Vérifier
une condition inf-sup au sens volumes finis (c’est a dire avoir une estimation sur une projection
de la pression affine) ne suffit pas a stabiliser le modele. Les différentes pistes envisagées et pas
encore testées sont les suivantes :

e monter en ordre sur ’espace de discrétisation du déplacement afin de vérifier une condition
inf-sup au sens éléments finis avec 'approximation affine de la pression. Cette méthode
est exclue d’office car trop coliteuse;

e ajouter un terme de stabilisation de pression inspiré de Aguilar et al. [2] qui fait intervenir
la dérivée en temps du Laplacien de pression et qui assure donc un controle de son gra-
dient pour tous temps, avec une constante de proportionnalité dépendant du parametre
de maillage; cette méthode semble donner de tres bons résultats mais a I'inconvénient
de dénaturer le modele physique. Dans notre cas, elle aurait ’avantage de ne pas néces-
siter l'introduction d’une reconstruction affine pour la pression et d’étre tres simple a
implémenter ;

e ajouter un terme de stabilisation par les sauts comme ’a testé Daniele A. Di Pietro (non
publié) dans le cadre dG; ce terme que l'on prend inversement proportionnel & la plus
petite perméabilité du milieu permet de stabiliser les zones peu perméables et les premiers
pas de temps ; dans notre cas, I’application de cette méthode nécessite I'introduction d’une
reconstruction affine pour la pression, ce qui peut se faire sans peine griace a ’espace
introduit au Chapitre IIT;

e traiter ’écoulement griace a une méthode mixte comme le proposent Phillips et Whee-
ler [67]. Cette méthode a la particularité de permettre une discrétisation constante par
morceaux de la pression (puisque le flux est discrétisé séparément) qui est inf-sup stable
au sens élements finis lorsqu’elle est couplée & une discrétisation affine discontinue du
déplacement (dG par exemple ou dans notre cas appartenant a I’espace Crouzeix—Raviart
généralisé). Le principal inconvénient de cette méthode est qu’elle nécessite 'ajout d'un
autre probleme mixte en plus du probleme de point-selle déja considéré, ce qui ajoute des
inconnues au systeéme et complexifie encore sa résolution.

VI.2 Complexification des modéeles

Un autre angle d’amélioration et de poursuite future concerne la complexification des mo-
deles physiques. Cette complexification peut étre liée a la mécanique ou a ’écoulement darcéen.

Concernant la mécanique, le premier pas serait de considérer des lois de Hooke plus générales
pour Délasticité, avec tenseur de raideur (admissible) d’ordre 4. L’adaptation des méthodes
proposées dans ce manuscrit a ce cas est immédiate. Un deuxiéme pas serait sans doute de
considérer des modeles d’élasticité non-linéaire, puis d’introduire des lois de comportement plus
compliquées, comme des modeles d’élastoplasticité avec écrouissage ou de viscoélastoplasticité.
Un modele d’élastoplasticité a commencé a étre étudié durant cette thése mais les résultats
n’ont pas été concrétisés dans le temps imparti. Un dernier pas serait stirement de considérer
des modeles de fractures, avant d’avoir une représentation mécanique adaptée a la modélisation
géologique.
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V1.3 Validation industrielle

Concernant 1’écoulement, le premier pas serait de considérer un modele diphasique immis-
cible car la convergence de ce dernier (non couplé & un modele mécanique) a été récemment
étudiée dans le cadre des schémas Gradient par Eymard et al. [44]. Ensuite, I"étape d’apres
serait de considérer des écoulements polyphasiques compositionnels, dont 'approximation par
le schéma Vertex Approximate Gradient (VAG) a été étudiée dans [42, 43]. Le schéma VAG fait
partie des schémas Gradient.

Il reste donc beaucoup de travail a faire avant de pouvoir traiter un modele réaliste de
poromécanique.

V1.3 Validation industrielle

D’un point de vue industriel, les perspectives futures sont claires et consistent a passer en
trois dimensions d’espace. Les méthodes numériques présentées dans ce manuscrit sont congues
pour fonctionner en 2D et 3D mais n’ont été pour la plupart (excepté en Annexe C) testées
qu’en 2D. Il convient donc de réaliser sur des cas réalistes 3D simplifiés une validation des
méthodes, et une comparaison avec des éléments finis (avec remaillage local le cas échéant)
pour la mécanique. Les comparaisons doivent prendre en compte le nombre d’inconnues, le
conditionnement et le remplissage des matrices, ainsi que le type et la complexité des solveurs
utilisés.
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Annexe A
A generalized Raviart—Thomas space

Sommaire
A1l Construction . ... .. ... i e e e e 124
A.2 Conformity and approximation properties . ... ... ........ 124

This appendix is inspired from the article [28], written with Daniele A. Di Pietro and
accepted for publication in Mathematics of Computation. In the spirit of Chapter III, we design
a discrete space which can be seen as an extension to general polygonal or polyhedral meshes
of the classical lowest-order Raviart—Thomas space. More precisely, this new space extends
two classical properties of this latter, namely (i) the (full) continuity of normal components of
discrete functions at interfaces (H (div; §2)-conformity), and (ii) the existence of an interpolator
which preserves the mean value of the divergence inside each element. Since the construction
as well as the proofs are very similar to the ones presented in Chapter I1I, only the main points
are detailed.
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ANNEXE A : A generalized Raviart—Thomas space

A.1 Construction

For a general mesh K, belonging to an admissible mesh sequence in the sense of Defini-
tion II1.3, we first introduce the broken polynomial space

RTY (Ky) := PY (Kp)? + xPY (Kp) .

For a matching simplicial mesh 7, the standard lowest-order Raviart—Thomas space is the
subspace of H (div;Q) of functions belonging to RTY (7). To perform a similar construction
on general polygonal or polyhedral meshes, we consider the following space of DOFs, composed
of vector cell unknowns and scalar face unknowns associated to the normal component of the
discrete vector field:

Vp = {Vh = ((UK € RY) gex,» (V5 € R)Fe}kh)} :

As it is the case for the extension of the Crouzeix—Raviart space discussed in Chapter III,
cell unknowns are used to define a piecewise constant subgrid correction of the gradient on
the (fictitious) pyramidal submesh. The main difference with respect to the construction of
Section III.2 is that we now define an isotropic instead of a full gradient operator. More
specifically, we introduce the operator & : V; — IP?l (Pp) which realizes the mapping v, —
& (vy) with
6h(vh)\KF = GK(Vh) + RKF(Vh), VK e /Ch, VE € .7'—[(,
where
1

GK(Vh) = = 2 ‘F’v%’np-n[gp, RKF(Wh) = 7(U%TLF—UK—GK(Vh)(fp—wK))'an,
d|K| dr,F
FeFk ’

(A.1)
and 7 > 0 is a user-dependent parameter.
We can now introduce the reconstruction operator Ry, : V, — IRTTg (Pp,) which realizes the
mapping v, — Ry (vy,) with

R (V)i (®) = Vi + Gh(Vh) g, (® — TK), VKp e Py, Ve Kp. (A.2)
Unlike (II1.10), there holds for all K € Kj, vk = Rp(vy)(xK), i-e., the cell unknown can now
be interpreted as the value of the reconstruction at the cell center. This is a consequence of

selecting the cell center as a starting point in (A.2). Thus, we consider the discrete space

%T(Ich) = ?Rh(\/h).

A.2 Conformity and approximation properties

In the spirit of Section II1.3, we investigate the properties of the discrete space we have just
introduced.

Lemma A.1 (H(div; Q)-conformity). Assumen =1 in (A.1). Then, for all v, € RT(K},) and
all F € ]-"%;h, there holds for all x € F,

[vi]F(x) np = 0.
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A.2 Conformity and approximation properties

Proof. Let vy, € RT(Ky) with vy, = Ry (vy), F e F})h, and x € F. We distinguish two cases.
(i) F e f,ich is an interface of the primal mesh K, such that F' < dK; n dK5. For i € {1,2}, let
for the sake of brevity G; := Gk, (vs), Ri := Rk, . (vn), di := dk, r(nKk, rmr), and

a; = Ri(x —zk,)nr = Rid; =n (vVpnr — vk, — Gi(Tr — zk,)) nF,

where we have used the fact that @ € F to infer (x — xzk,) nr = d;, and the fact that np =
ng, r = —Ng, r to infer (ng, p-np)ng, r = np. Algebraic manipulations yield

a1 — Qg = —7 [(UK1 — ’UKQ)'nF + Gidy — szg] .
Using the previous relation in the definition of the jump at « € F' it is inferred

[or]p(x)mp = vk, (®) P — Vi, () TP
= ('UK1 — vK2)~nF + G1di1 — Gady + a1 — an
= (1 — 77) [('UKl — vK2)~nF + Gidy — ngg] .

As a consequence, the jump vanishes provided n = 1.

(ii) F e ]:7i9h\]:,ich is a lateral pyramidal face such that there exist a unique element K € K and
two faces F1, Fy € Fi such that F' c 0Kp, n 0Kp, (cf. Figure II1.2a). There holds, letting for
the sake of brevity R; := R, (va), i € {1,2},

[vrlr(z)nr = vp K, () 0F — Op gy, (€) nF = (Bl — R2)(z — k) np =0,
since (x — xx) and np are orthogonal by definition. This concludes the proof. O

We remark that choosing vi as a starting point for the reconstruction enables to prove the
continuity of the normal component on lateral pyramidal faces. Besides, unlike Lemma II1.4, the
parameter 7 is here used to enforce the continuity of the normal component across the interfaces
of the primal mesh rather than across lateral pyramidal faces. For the sake of completeness, we
give the expression of the isotropic gradient operator in the case n = 1: for all v;, € Vp,

th(vh)lKF = (U?:’I’I,F—UK)"I’LK,F, VKE’Ch, VFE]:K.

1
di F

)

Let now introduce the interpolator Z2°~ : H'* (Q)d — RT(K},) such that, for all v € Hl(Q)d,
I}?{‘I(’U) = %h(vh) with

Vi av, = ((Hilz(v)(wK»KelCh? <<'U>F'nF)FeJ-"Kh)'

The following result summarizes the most relevant approximation properties of I,"?T. The proof
is omitted as it closely resembles that of Lemma II1.5 or Corollary III.1.

Lemma A.2 (Approximation in T (K)). For allm > 0 in (A1) and all v € HI(Q)d, there
holds with vy, 1= I¥* (v) € RET(Kp),

Dp(vn) = Di(v),

where the operator Dy, is defined in (II1.18). Moreover, there exists a real C > 0 independent

of the meshsize such that, for all h € H, all K € Ky, and all v € HI(Q)d N H(div; ) (see
Corollary III.1) with vy, := I¥* (v), there holds

lv —vplo,x + |V-v — Dp(vi)|o,x < Chi (|15 + [V-v|1,K).
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ANNEXE A : A generalized Raviart—Thomas space

Remark A.1 (The matching simplicial case). When considering a matching simplicial mesh Tp,
in the spirit of Proposition I11.2, we can prove that the lowest-order Raviart—Thomas space is a
subspace of RE(Ty). This can then be accounted for in the proof of Lemma A.2 as it is detailed
in Section I11.4. We emphasize that the assumption n = 1 in Lemma A.1 remains mandatory
also in that case for the continuity of normal values at interfaces. This is a consequence of
choosing the cell unknown as a starting point in the reconstruction.
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Annexe B

On the steady Stokes problem

Sommaire
B.1 Discretization . . . . . . . . . . . e e e e e e e e e e e e e e 130
B.2 Links with finite volume and finite element methods . . .. ... .. 131
B.2.1 Flux formulation and local conservation . . . . ... ... ........ 131
B.2.2 Link with the Crouzeix—Raviart solution . . . . . . . .. ... ... ... 131
B.3 Large irrotational forcing terms . . . . . ... ... ... ... 00 132
B.3.1 Position of the problem . . . . . ... ... .. ... ... .. 132
B.3.2 Application . . . . ... 133

This appendix is inspired from the article [28], written with Daniele A. Di Pietro and
accepted for publication in Mathematics of Computation. We briefly discuss an inf-sup stable
method for the steady Stokes problem on general polygonal or polyhedral meshes, with velocity
components in €R(K},) (see Chapter III) and piecewise constant pressures. Since the proofs are
very classical we only sketch them. We also investigate as we did in Section IV.3 the links of
the proposed method with classical finite volume or finite element methods. Finally, we tackle
the problem of large irrotational forcing terms and pinpoint a general strategy for their discrete
treatment that we apply to the proposed method.

We consider an incompressible and viscous Newtonian fluid of constant unit dynamic viscos-
ity, whose motion is governed by the steady Stokes equations. The problem consists in finding
a vector-valued velocity field u : Q — R?, and a scalar-valued pressure p : Q — R, such that

—ANu+Vp=f in €,
Vau=0 in €,
=0 on 0€), (B.1)

u =
1
& Lp@) de = 0,

where f : Q — R represents the body force per unit volume acting on the fluid. For the sake
of simplicity we focus on homogeneous Dirichlet boundary conditions.

129



ANNEXE B : On the steady Stokes problem

B.1 Discretization

Let U := H&(Q)d, and P := L3(Q), where L3(2) has been introduced in (II.12). For
fe Lz(Q)d, the weak formulation of problem (B.1) reads: Find (u,p) € U x P such that

a(u,’v) + b(’l),p) = (f7 v)O,Q Vv e Ua

B.2
b(u,q) =0 Yq € P, (B.2)

where a(w,v) := (Vw, Vv)gq, and b(v, q) := —(V-v,¢)oq. To approximate (B.2), let K}, be
a general polygonal or polyhedral mesh, belonging to an admissible mesh sequence in the sense
of Definition II1.3, and define the following discrete spaces:

Uj o= CRo(Kn)%, P =P (Ks) n L3(Q),

where €y (K}p) is defined in (II1.20). We equip Uj with the norm |V,v|pq, see Proposi-
tion IIL.3, and P, with the norm |g[o . We assume in the following n = d in (II1.9), so that
the continuity of mean (or, equivalently, barycentric) values stated in Lemma II1.4 holds, and
consider the following discrete problem: Find (up,pp) € Up x Pp such that

an(up, vp) + bp(vn,pr) = (f,vn)oe VYon € Up,

(B.3)
by(up, qn) =0 Vqp € Py,

where ap(w,v) 1= (Vjw, Vpv)oq, and by (v, q) := —(Dp(v),q)o,q, where Dy, is the operator
defined in (IT1.18). For all (vp,qn) € Uj x Py, there holds by, (vp, qn) = —(Vivh, qn)o0-

The link between locking-free approximations of quasi-incompressible linear elasticity and
inf-sup stable approximations of the Stokes problem is well-known; cf., e.g., the discussion
in [17, Section IV.3]. With regards to what we proved in Chapter IV on the locking-free aspect
of a €R(K}p)-based discretization of linear elasticity equations, it is not a surprise to have the
following property.

Lemma B.1 (inf-sup stability for by,). There exists § > 0, independent of the meshsize, such
that, for all g, € Py,

b
/BHQhHO,Q < sup M
vpeUR\{0} th'vh| 0,0

Proof. This result is a consequence of (i) the fact that the interpolator Zf™ (cf. Section I11.3.2)
can play the role of a Fortin operator when coupled with piecewise constant pressures (see
Corollary II1.1, and Lemma IIL5 for the H!-stability property), (ii) and Remark II.2. O

From a more general point of view, for inf-sup stable approximations of the Stokes problem
with discontinuous pressures, one can obtain a locking-free primal method for elasticity by
performing static condensation of pressures, that is equivalent to introducing a projection on
the divergence operator (this strategy can e.g. be pursued for the method of [9, 10]).

The well-posedness of the discrete problem (B.3) follows from Lemma B.1 together with the
coercivity of aj (an immediate consequence of Proposition II1.3). Using classical arguments,
one can prove the convergence of the method (B.3), as well as an optimal error estimate. This
estimate will be invoked in the discussion of Section B.3. As in Theorem IV.1, the continuity
of mean values at interfaces (as a consequence of n = d) is used to bound the conformity
error. Note that the use of the under-integrated divergence operator Dy, in by, also introduces a
consistency error. Optimal error estimates for the L2-error on the velocity can also be derived
using the Aubin—Nitsche trick.
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B.2 Links with finite volume and finite element methods

Theorem B.1 (Error estimate for (B.3)). Assume that uw e U n HQ(Q)d and pe P n HY(Q),
where (u,p) denotes the unique solution to the weak formulation (B.2). Then, there holds with
C > 0 independent of the meshsize, of w, and of p,

”V’LL — Ch/\/'sto(u p)

where (up, pp) € Uy, x Py, denotes the unique solution to (B.3), and Ngo(u,p) := |ul2.0+|p|1,0-

B.2 Links with finite volume and finite element methods

As we did in Section IV.3, we investigate the links of our method with other related frame-
works, depending on the treatment of the right-hand side.

B.2.1 Flux formulation and local conservation

Let consider the approximation (B.3) of the Stokes problem. We do not make any assumption
on the value of n > 1. Let (wp, 1), (vn, qn) € Up x Py, be two discrete functions, and denote by
(WhyTh),s (Va,ap) € Uy x Pp, the corresponding vectors of DOFs, where we have set Uy, := V;io
(cf. (IT11.20)) and P, := {qj € R** | Ykek, [K|ax = 0}. Then, proceeding as in Section IV.3.1,
one can show that for the two families of fluxes (® i p(wh, r'h)) Kek,, FeFrx With @i p(wp,rp) =
(Pr.Fi(WhyTh)) <icqr and (¢F(Wh))F€J’zch such that (the expression for the vectors yﬁf,jF is
provided in (IV.17), cf. Proposition IV.1)

Pk Fi(WhyTh) 1= 2 \Kpi| (Gip, (Whyi) — 7€) Yo gy ¢r(wh) == |Flwpnp,
F’E]'—K
there holds,

an(wh,vn) + bu(vn,mh) = D, Y. @k p(wh,rh)(vE — vK),
KeKy FeFk

—bp(whyqn) = Y. dr(wr)onlr,
FeFk,

(B.4)

where ay, and by, are defined as in Section B.1 and, with a slight abuse in notation, we have set

for all F'e Fx,, [an]r := [an] -

Here again, the main interest of this formulation is that it allows to prove a local conservation
property similar to those encountered in standard finite volume methods. Proceeding as in
Section IV.3.1, and approximating the right-hand side in (B.3) as > g, K| fx vk where we

define fp := = & K| §;c fdx, one can prove thanks to (B.4) that for every interface F' € ]:,IC such
that F' c 0K n 0K», there holds

@, r(un, pPn) = —Pr,,F(Un, Pr),

where (up,pp) € Up x Pp are such that uy, := Ry (up) and pyx 1= px for all K € K, with
(up,pn) € Up, x Pp, unique solution to (B.3). Moreover, the mass flux ¢p(uy) is single-valued,
and therefore conservative.

B.2.2 Link with the Crouzeix—Raviart solution

Let again consider the discretization (B.3) of the Stokes problem, let 7 > 1, and let consider
a matching simplicial mesh that we denote 7. The classical Crouzeix—Raviart/PY (75) method
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consists in finding (@, pp) € Uy x Py, with U}, := CRo(T5)? (cf. (IV.21)) such that

ap(p,vp) + bp(vy, Pr) = (f,vn)o0 Yoy, € Uy,

. (B.5)
by (tn, qn) =0 Yqp, € P,.

Proceeding as in Section IV.3.2, one can easily show that the solution to (B.5) can be recovered
replacing the right-hand side of (B.3) by (f,Z-®(v5))o.o. In other words, the system forces the
subgrid corrections to vanish as soon as the right-hand side does not see the cell unknowns.

B.3 Large irrotational forcing terms

B.3.1 Position of the problem

We discuss here a general modification, applicable to any suitable discretization of the Stokes
equations, that allows a proper discrete treatment of large irrotational forcing terms, and we
apply it to the method (B.3). This modification necessitates the knowledge of a Helmholtz
decomposition of the volumetric body force. It has to be noted that such a decomposition is
not always easy to obtain, and that often in applications it is merely unknown.

We assume that the following Helmholtz decomposition of the volumetric body force in (B.1)
is available:

=¥ -V, (B.6)

where W € H(div;Q) := {v € H(div;Q) | yn(v) = 0} (yn(v) € H_%(F) is the normal trace
v-nr) is a solenoidal vector field such that V-® = 0, and ¢ € H*(€2) 0 L§(9) is a scalar potential
(Ve is called the irrotational part of the force). The weak formulation of problem (B.1) with
right-hand side given by (B.6) reads: Find (u,p) € U x P such that

a(u,v) + b(v,p) = l(v) Vv eU,

B.7
b(u,q) =0 Vg e P, (B1)

with bilinear forms a and b defined as in Section B.1 and I(v) := (¥, v)g0 — b(v, ). Denoting
by (uw,pw) the solution to (B.7) with ¢ = 0 (no irrotational part), there holds

U = uy, p=pw— . (B.8)

As pointed out in [47], mimicking or approaching property (B.8) at the discrete level is a key
ingredient to obtain an accurate approximation of the velocity field for large values of |¢|; o. As
a matter of fact, yet stable mixed finite element methods usually do not give satisfactory results
since spurious oscillations appear on the velocity field as |p|1,o grows. This phenomenon can
be partially handled by considering either pointwise divergence-free (by opposition to discretely
divergence-free) approximations, either by using grad-div stabilizations. In the case when the
Helmholtz decomposition is available, we propose to handle that problem by an appropriate
treatment of the right-hand side. We hence consider the following approximation to (B.7):
Find (up, pn) € Up, x Pp, such that

an(wn, vp) + bp(vn, pr) = ln(vy) Yo, € Uy,

(B.9
by (un,qn) =0 Van € Py, )

with bilinear forms aj, and by, defined as in Section B.1 and I,(vy) := (¥, vp)o.0— bn(vs, 119 (),
where II) classically denotes the L2-orthogonal projector onto P9 (Kp,). Note that for ¢ € L3(€2),
19(p) € LE(2). The sole difference with respect to (B.3) lies in the treatment of the source
term, which is designed so that the following property holds true.
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Proposition B.1 (Discrete counterpart of property (B.8)). Denote by (ww n,pw,n) the solution
to problem (B.9) with ¢ = 0. There holds

Up = U p, ph = pwn — 1) ().

The following result now shows that the velocity approximation is unaffected by the irrotational
part of the source term.

Theorem B.2 (Error estimate for (B.9)). Assume u e U n HQ(Q)d and pe P HY (). Then,
there holds with real numbers Cy > 0 and Co > 0 independent of the meshsize, of w, and of p,
but depending on the mesh regularity parameters and on §2,

IVu — Viup|oo < CrhNso(uw, pw), Ip — prloo < Coh (Nato(uw, pw) + |¢]1,0),
where Ngo(+, ) is defined in Theorem B.1.

Proof. Using Theorem B.1 for the solution to problem (B.9) with ¢ = 0, we infer

[Vuw — Viuw plloo + [pe — e roo < ChNso(uw, pw),

where C' > 0 has the same dependencies as C1 and Cy. The estimate for [Vu — Vjuploq is
an immediate consequence of (B.8) and Proposition B.1. To estimate |p — pp[oq, we invoke
again (B.8) and Proposition B.1 to infer [p — pplloa < lpe —pwrloq + ¢ — O9(¢)]|o.q, and
conclude using the above estimate for ||[py — pw o0 and the approximation properties of the
L?-orthogonal projector. O

B.3.2 Application

To check the theoretical results, we consider a 2D numerical example based on the following
manufactured solution on the unit square domain €2 := (0, 1)2:

up = —*(yeos(y) +sin(y)),  w, = ysin(y),  pw = 2exp(x)sin(y) — Cpy.

with Cpg such that pg has zero-mean on €. The right-hand side is such that ¥ = 0, and
the potential is chosen such that ¢ = —ysin(27z)sin(27y), where x is a positive parameter
that allows to adjust its intensity. Note that this solution satisfies the regularity assumptions
of Theorem B.2. In Figure B.2, we compare the numerical results obtained with the modified
right-hand side (B.9) to those obtained with a standard treatment (B.3) for the matching
triangular and hexagonal-dominant mesh families depicted in Figure B.1. The results confirm
that a standard treatment of the right-hand side does not yield satisfactory results (the error
on the velocity increases with x), whereas the treatment proposed in this section under the
assumption that a Helmholtz decomposition of the source term is available yields the robustness
of the velocity approximation with respect to the potential intensity. Note that in practical
implementations, one can solve the problem with ¢ = 0 and then post-process the pressure
approximation according to Proposition B.1.
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(a) Matching triangular (b) Hexagonal-dominant

Figure B.1: Members of the 2D mesh families for the numerical test of Section B.3.2.
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Figure B.2: Effect of the treatment of the right-hand side (B.9) (Modified, solid lines) vs. (B.3)
(Standard, dashed lines) when large irrotational volumetric forces are present.
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This appendix takes inspiration from the work [25], realized in collaboration with Daniele A.
Di Pietro, Robert Eymard and Roland Masson, and presented to the Sixth International Sym-
posium on Finite Volumes for Complex Applications (FVCAG) held in Prague in June 2011. We
introduce a Hybrid Finite Volume discretization (cf. [40]) of the linear elasticity model with non-
homogeneous (possibly mixed-type) boundary conditions (C.1). The coercivity issue is treated
by adding rigidity to the system. More precisely, we interpolate the tangential component(s) of
the displacement on mesh faces by using normal unknowns belonging to a stencil of neighboring
faces. The method is proved to converge in two and three space dimensions on a benchmark
test-case. However, up to now, no theoretical result confirming these practical observations is
available.

Under the very same assumptions as in Section II.1.1, we consider the following linear
elasticity problem in a homogeneous medium Q < R¢, d € {2,3}, with boundary T' such that
I' =Tp uT'y (I'p has nonzero measure and I'p N I'y = &) and unit outward normal n: Find a
vector-valued displacement field w : Q — R? such that

U = up on I'p, (C.1)

glum=g on I'y,

where f : Q — R? denotes the vector-valued body force per unit volume, and where the only
difference with respect to system (IL.1) lies in the introduction of the nonhomogeneous boundary
terms up : I'p — R% and g:I'y — R,
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ANNEXE C : A coercive finite volume discretization of linear elasticity equations

C.1 The Hybrid Finite Volume setting

We here adopt the notation introduced in Chapter V since the Hybrid Finite Volume (HFV)
discretization enters the framework of Gradient discretizations, cf. [33, Section 5.3] for the proofs.
We briefly recall in that section the main features of the HFV setting.

Let D be a (vector-valued) Hybrid Finite Volume discretization of the displacement field for
problem (C.1). Following [33], let denote M the associated mesh, the subscript D being ignored
for the sake of simplicity. Thus, M is a finite family of nonempty open (disjoint) polygonal
or polyhedral control volumes K, such that Q = | J. mK. The meshsize hp is defined as
hp = maxgem hix where hy denotes the diameter of K, and is such that hp,, — 0 as m — 4+
for any sequence (D,),,cy Of displacement Hybrid Finite Volume discretizations. The set of
faces of the mesh is denoted by £ (the subscript D is here again ignored) and splits into boundary
faces £ and inner interfaces €. Among boundary faces, we denote by &% # @ and EF*
the subsets of boundary faces respectively satisfying Dirichlet and Neumann conditions, which
are such that EF N EF® = @ and £ = EF* U EF. The generic element of € is denoted o
and its barycenter Z,. The set of faces of each cell K € M is denoted £k, and we assume that
every K € M admits a cell center denoted xx, cf. Definition III.2. Finally, dk , stands for the
orthogonal distance between x i and the face o, and the open pyramid of apex xx and base
o € Ex is denoted K, in such a way that K = UgegKE' The pyramidal submesh of M thus
engendered is denoted P, which is not a standard notation.

Taking into account these notations, the discrete setting is the one introduced in Sec-
tions III.1.1 and III.1.2. The notion of admissible mesh sequence is in particular given by
Definition II1.3. Before going further, we introduce the following set of discrete unknowns

Xp = {UD = ((UK € RY) gepss (vo € Rd)aeg)}’ (C.2)
which is an equivalent of (II1.7) for vector-valued elements.

Definition C.1 (Displacement Hybrid Finite Volume discretization). The Hybrid Finite Vol-
ume discretization of the displacement is defined by D := (Xpp,Ilp, Vp,Tp), where

(i) the set of discrete unknowns X p p is defined as
Xpp:={vpe Xp|v, =0, Voe &Y}, (C.3)

where Xp is given by (C.2), and (C.3) is an equivalent of (III.19) for vector-valued ele-
ments;

(i) the reconstruction of the approximate function Ilp : Xp p — P9 (M)% is given by

V’UDEXDD, VKEM, HD'UD|K = VK,

(iii) the discrete gradient operator Vp : Xpp — P9 (P)*? is defined as
Yop € XD,D, VKeM, Voelg, VDUD|KU = VK(,UD = Vgvp + RKUUD,

where, for n > 1 user-dependent parameter,

Vkvp = Z lo|ve ®NEKo, Ry, vp = dL (Vo—VK—V VD (s — TK)) ONK 5,

el Ko

1
K|
(C.4)

and furthermore | Vpvpl|oq is a norm on Xp p;
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iv) the reconstruction of the approximate trace Tp : Xpp — P9 (£ d is given b
PP , d \eN g Y

V’UD € XD,Da Vo € 5§Xt, TD'UD\U = V;.

The choice of n > 1 has already been discussed in Remark III.1. In the numerical experiments
of Section C.4, we will consider 7 = d"/2, which is more in the finite volume spirit as it allows to
recover the two-point finite volume scheme on superadmissible meshes, cf. [40]. It also differs
from the numerical experiments of Chapters IV and V, where the value = d (which is optimal
in the finite element sense) was adopted. Note that in the classical definition of the HFV
method, meaning the one of [40], the parameter 1 has not been thought to be tuned and is
merely taken equal to d"2.

We see from Definition C.1 that the only difference between the Hybrid Finite Volume
discretization and the generalized Crouzeix—Raviart space introduced in Chapter III is the def-
inition of the reconstruction mappings (for the approximate function and trace). Here, the
reconstructed approximate function is not gradient-based, but only linked to the gradient oper-
ator through a discrete Friedrichs’ inequality and a limit-conformity property, see Chapter V.

As it enters the framework of Gradient discretizations, note that any sequence of displace-
ment Hybrid Finite Volume discretizations is coercive, enjoys optimal approximation properties
(termed as consistency in [33]), is limit-conforming, and in addition admits a sequence of Fortin
operators (this is a consequence of Lemma II1.5, Corollary III.1, and of the fact that a HFV
discretization and its related generalized Crouzeix—Raviart space share the same gradient oper-
ator).

Remark C.1 (Norm on Xpp). In Section II1.5, we prove that the L?-norm of the gradient
operator defines a norm on €Rp (k) for all n > 1 by showing its equivalence with the usual
dG norm on piecewise polynomial spaces. Here, to establish the same result with a piecewise
constant reconstruction mapping, we use the equivalence of the L?-norm of the gradient operator
stated in [40, Lemma 4.1] (in the scalar-valued case) with the following discrete Hp-norm on
Xpp (which is a seminorm on Xp)

o
|vp|‘2,(D = Z Z | vy — vi|?.
KeM oefx dK,q

For further use, we introduce the following reduced set of discrete unknowns

Xp = {UD = ((UK € [Rd)Ke./\/b (UU € [Rd)aeé‘]c)"t? (DZ € R)aegintugﬁf‘t)} )

and the projection operator PBp : Xp — Xp which maps any vp € Xp onto

Po(vD) = ((Vk) kert: Wo)oeeggrs (VoMo egmoege )

where n, is a unit vector normal to ¢ which orientation is fixed, cf. Section III.1.3. We also
define Xpp as Xpp = Pp(Xpp). We endow Xpp with the following norm (which is a
seminorm on Xp):

v = inf . C.5
R R (©:5)

C.2 Interpolation of the displacement tangential component(s)
on faces

The main novelty of the discretization proposed in the next section lies in the definition of
a linear interpolation operator Jp : Xp — Xp. This linear interpolation operator is designed
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to be second order accurate in order to preserve the order of approximation of the scheme. It is
also exact for normal unknowns in the sense that Pp(Ip(vp)) = vp for all bp € Xp. Finally, it
is local in the sense that it computes the displacement field v, at a given face o € £ U EF® in
terms of a given number of normal components v,-n, taken in a stencil S, < £ of neighboring
faces o’ of o (imposing that o € S,). An example of construction of such an interpolator is given
below. Another example can be found in [58] in the context of large-eddy simulation (LES).

Given a face o € £ U £, for each component i € [1,d] of the displacement field v,, we
look for a linear interpolation of the form

d
vh(x) = Y adw; + B
j=1

In order to determine the d(d + 1) coefficients (a?)l je[Ld] (Bé)ieﬂl, 4] @s linear combinations of
normal components v, 1., o’ € S,, we hence look for a set S, of d(d + 1) neighboring faces o’
of the face o (imposing that o € S, ) such that the system of equations U, (Z,/) Ny = VoM is

nonsingular. The set S, is built using the following greedy algorithm:
1. initialization: for a given number [ > d(d + 1), we select the [ closest neighboring faces
of the face o which are sorted from the closest to the furthest using the distance between

their barycenter and &,: 09 = 0,01,...,01-1. Weset S5 = {o} and ¢ =1, k = 0;
2. while g <d(d+1)and k <[ —1:
(a) k—k+1;

(b) if the equation Uy (Zy, ) Mo, = Vg, N0, is linearly independent from the set of equa-
tions Uy (Tyr ) Myr = VMg for all o’ € S,y then Sy «— Sy U {0} g < ¢+ 1;

3. if ¢ < d(d + 1), the algorithm is rerun with a larger value for .
Note that imposing o € S, guarantees as required the property Pp(Ip(vp)) = vp for all
vp € Xp. At the end of the process, the tangential component(s) of the displacement on a face
o€ &Mty £ is (are) obtained as U, (T, )., where (tf,)ie[[Ld_l]] defines an orthonormal basis
of the face o.

The use of the interpolation operator will bring two improvements to the discretization:
first a reduction of the number of unknowns and secondly a stabilization of the discretization
(rigidity adding).

C.3 Discrete variational formulation

Recalling the notation H}D () :={ve H(Q) | v, = 0}, we first write the weak formulation

d d

of the continuous problem (C.1). We assume that f € LQ(Q)d, up € H2 (I'p) ,and g € H? (I'n) -
The weak problem reads: Find u e H 1(Q)d such that u = up on I'p and such that

d
a(ua ’U) = (faU)O,Q + (g7U)O,FN Vv e Hll)(Q) ) (C6)
where a(w,v) = 2u(g(w),g(v))oo + A(V-w, V-v)sq. The weak formulation (C.6) could be

d
exclusively written in H B(Q)d thanks to the introduction of a lifting operator for up € H 2 (Tp) .

We introduce the following discrete operators Vp- : Xpp — PY(P), ep: Xpp — PY (P)d’d

and op : Xpp — [Pg (P)d’d such that, for all vp € Xpp,

1
ep(vp) = §(VD’UD + VD'UDT), op(vp) = 2;&5:2‘(17@) + AVp-uply,

Vpop = tI‘(VD’UD),
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where we make use of the Definition C.1 of the gradient operator.
Then, the discrete variational formulation reads: Find up € Xp such that u, = uf) for all
o € EF and such that

ap(up,vp) = (f,p o TIp(vp))o,0 + (9,1p © Ip(vD))o,ry Vop € Xpp, (C.7)

where ap(t0p,vp) := (gp © Ip(top),ep © Ip(vp))o,0, and where uf, := §_up/|o] is an average

value.

It is important to keep in mind that, as numerical experiments tend to confirm, searching
for a discrete solution in Xp using the bilinear form ap without interpolation leads to an
unstable scheme with vanishing eigenvalues on triangular or tetrahedral meshes, especially for
mixed-type boundary conditions. As we will observe in the next section, the introduction of
the interpolation operator seems to provide a stabilization of the discrete formulation. In a
way, adding rigidity to the system makes more likely the fact that a discrete Korn’s inequality
may hold on Xpp. Note however that, up to now, no theoretical justification is available.
This stabilization technique is an alternative to a least-square penalization of discrete functions
jumps as presented in Chapter IV. This alternative does not require to define a gradient-based
piecewise affine reconstruction and allows to remain in the finite volume spirit.

As far as computational costs are concerned, the interpolation of the tangential component(s)
of the displacement on mesh faces leads to a drastic reduction of the number of unknowns. Note
also that cell unknowns (ux )y can be easily eliminated without any fill in since their are
only related in each cell to the face unknowns of the cell. This further reduces the number
of degrees of freedom to the faces normal component of the displacement only. However, a
substantial drawback linked to this technique is the important stencil of neighboring faces that
is needed for the construction. This increases the calculation (owing to the resolution of local
problems) and assembling times, and deteriorates the matrix conditioning.

Remark C.2 (Quasi-incompressible materials). When considering a quasi-incompressible ma-
terial (AN — 4+0), the discrete bilinear form of problem (C.7) can be modified, using the notation
introduced in Definition C.1, as

ap(top, vp) := 2u(ep o Ip(Wwp),ep © Ip(vp))oa + A Z |K|V k-Ip(vp)Vk-Ip(bp),
KeM
which enables to take advantage of the existence of a Fortin operator, thus guaranteeing the
locking-free aspect of the discretization. To define the Fortin operator, for v € Hl(Q)d, we first
introduce vp € Xp such that

sose (), ([).)

Then, the Fortin operator is given by Xp 3 vp = Pp(vp). The cell-wise conservation property
of divergence for the above interpolator can be proved as in Lemma II1.5 and Corollary III.1,
accounting for the fact that normal face unknowns are preserved by the projection operator Pp
and the interpolation operator Jp. As far as the H'-stability property of the Fortin operator
is concerned, we both use the fact that |oply, < |vp|x, according to (C.5), and the fact
that lvp|x, < Cs|Vvloq with Cs > 0 independent of D, which is a consequence of [38,
(3.38)], (I111.1) and Lemma III.1.

Remark C.3 (Coupling with piecewise constant pressures). Let define the following bilinear
form on Xpp x Pp, where Pp := P%(M):

bp(op, gp) = — Z 9K 2 o] 05 (1o o)
KeM e \Eet
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This bilinear form may appear in poroelastic mechanics-flow couplings when considering mized-
type mechanical boundary conditions (then the use of Xpp enables to stabilize the linear elas-
ticity model without penalizing jumps). Owing to the existence of a Fortin operator on Xpp, cf.
Remark C.2, this bilinear form satisfies a (uniform) inf-sup condition.

C.4 Numerical experiments

Let © := (0, 1)d. The convergence of the scheme (C.7) is assessed in two and three space
dimensions for an exact solution such that, for i € {1,...,d},

w; = ecos(Z?zl ozijxj)’

where o is a d x d tensor to be precised. The medium is homogeneous with (constant) Lamé

parameters such that A = p = 1. The right-hand side f is obtained as the divergence of
the stress tensor and Dirichlet boundary conditions are imposed on the whole boundary. The
stabilization parameter is chosen in a finite volume spirit such that n = d”? in (C.4), and the
H' and L? relative errors on the displacement are computed as

1/2
[Vu -~ Vpuplog  (Zkex, K (Vo) (@x) - Viup|’)
Vu - 12
[Vlos (S, 1K1V ) )

1/2
lu — Tpup|oq <ZKEICh | K [u(zx) — UK\Q)

u ~ 1/2
I#lo.0 (Skere, 1K1 [u)?)

9

where up = Ip(up) with up € Xp solution to (C.7). For the sake of simplicity, these relative
errors are referred to as [Vu — Vpup|on and |u — IIpuploq in the plots axes. The imple-
mentation for the two-dimensional case is based on the same C++ prototype as in Sections IV.4
and V.4, while the results in 3D have been obtained using a Fortran prototype developed by
Roland Masson.

C.4.1 A two-dimensional test-case

()

We consider the matching triangular (cf. Figure IV.1a), Cartesian (cf. Figure IV.1b), locally
refined Cartesian (cf. Figure IV.1c), and Kershaw-type (cf. Figure IV.1d) mesh sequences of the
FVCA5 benchmark. We solve problem (C.7) and plot on Figure C.1 the H' and L? relative
errors for the different mesh sequences. The method is referred to as HFV-I (for Interpolation).
For comparison, we include the results for the CRg-VS method (IV.5)—(IV.6) (with n = d) and
for the HFV method without interpolation (referred to as HFV) on the matching triangular
mesh sequence.

We first observe that the HFV method (without interpolation) does not converge on trian-
gular mesh sequences, even for pure Dirichlet boundary conditions. This result is not surprising
in the light of Section II.1.2.1 and Proposition III.2. Note that the HFV method (without
interpolation) practically converges on Cartesian mesh sequences. The method HFV-I (with
interpolation) defines a convergent scheme for any mesh sequence tested here. The expected

Let set
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Figure C.1: Convergence results for the HFV-I method on the two-dimensional test-case of
Section C.4.1.
convergence orders (one in the H' seminorm and two in the L? norm) are obtained for all kinds
of sequences with a supra-convergent behavior on Cartesian meshes. In addition, the errors
compare to those obtained with the CRg-VS method on triangular meshes.
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Figure C.2: Convergence results for the HFV-I method on the three-dimensional test-case of

Section C.4.2.
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C.4.2 A three-dimensional test-case

Let set
1 1 1
a=|2 1 -1
-1 1 2

Let consider the Cartesian (mesh family A), randomly distorted (mesh family AA), and match-
ing tetrahedral (mesh family B) mesh sequences from the FVCA6 3D benchmark (cf. the link
to get some illustrations). The randomly distorted sequence has the particularity to possess
nonplanar faces. We solve problem (C.7) and plot on Figure C.2 the H' and L? relative errors
for the different mesh sequences.

The results of Figure C.2 exhibit a first order convergence in the H' seminorm and second
order convergence in the L? norm for the HFV-I method on the three different mesh sequences.
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Résumé. Cette these s’intéresse a la conception de méthodes de discrétisation non-conforme
pour un modele de poromécanique. Le but de ce travail est de simplifier les couplages liant
la géomécanique d’un milieu poreux a 1’écoulement polyphasique compositionnel ayant cours
en son sein tels qu’ils sont réalisés actuellement dans l’industrie pétroliere, en discrétisant sur
un méme maillage, typiquement non-conforme car a I'image de la lithologie, la mécanique et
I’écoulement. La nouveauté consiste donc a traiter la mécanique par une méthode d’approxi-
mation non-conforme sur maillages généraux. Dans cette thése, nous nous concentrons sur un
modele d’élasticité linéaire. Les difficultés inhérentes & son approximation non-conforme sont
son manque de coercivité (se traduisant par la nécessité de satisfaire une inégalité de Korn
sur un espace discret discontinu), ainsi que le phénomene de verrouillage numérique lorsque
le matériau tend a devenir incompressible. Dans une premiere partie, nous construisons un
espace d’approximation sur maillages généraux, s’apparentant a une extension de ’espace de
Crouzeix—Raviart. Nous explicitons ses propriétés d’approximation et de conformité, et mon-
trons que ce dernier est adapté & une discrétisation primale coercive et robuste au locking du
modele d’élasticité sur maillages généraux. La méthode proposée est moins coliteuse que son
équivalent éléments finis (en termes de propriétés) P4. Nous nous intéressons dans une deuxiéme
partie a I'approximation non-conforme d’un modele couplé de poroélasticité. Nous étudions la
convergence d’une famille de schémas numériques dont la discrétisation en espace utilise le for-
malisme des schémas Gradient, auquel appartient la méthode développée pour la mécanique.
Nous prouvons la convergence de telles approximations vers la solution de régularité minimale
du probleme continu, indépendamment des parametres physiques du systeme.

Mots-clés : poroélasticité, méthodes non-conformes, maillages généraux, volumes finis, ver-
rouillage numérique, problémes de point-selle

Abstract. This manuscript focuses on the conception of nonconforming discretization methods
for a poromechanical model. The aim of this work is to ease the coupling between the geome-
chanics and the multiphase compositional Darcy flow in porous media by discretizing mechanics
and flow on the same mesh, typically nonconforming as it represents the lithology. Hence, the
novelty hinges on a nonconforming treatment of mechanics on general meshes. In this work, we
focus on a linear elasticity model. The nonconforming approximation of such a model is not
straightforward owing to its lack of coercivity (meaning that a discrete Korn’s inequality must
hold on a discontinuous discrete space) and to the numerical locking phenomenon occurring as
the material becomes incompressible. In a first part, we design an approximation space on ge-
neral meshes, which can be viewed as an extension of the so-called Crouzeix—Raviart space. We
study its approximation and conformity properties, and prove that this latter is well-adapted
to the design of a primal, coercive, and locking-free discretization of the elasticity model on
general meshes. The proposed method is less costly than its finite element equivalent (in terms
of properties) P4. In a second part, we tackle the nonconforming approximation of a coupled
poroelasticity model. We study the convergence of a family of numerical schemes whose space
discretization relies on the Gradient schemes framework, to which belongs the method developed
for mechanics. We prove the convergence of such approximations toward the minimal regularity
solution of the continuous problem, and independently of the choice of physical parameters.

Keywords: poroelasticity, nonconforming methods, general meshes, finite volumes, numerical
locking, saddle-point problems

Laboratoire d’accueil : UMR 8050 LAMA Université Paris-Est Marne-la-Vallée
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