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Avants-propos

Ce document, rédigé en anglais, constitue la syntheseedetravaux de recherches
effectués au sein du secteur Génie Civil et Environnerdent MT-Cachan durant les
trois années de mon doctorat — de octobre 2010 a octobi 201

RESUME : Le travail effectué tend a représenter le comportemeasi-fragile des
matériaux hétérogenes (matériaux a matrice cime)ta_e principe suivi s’'inscrit dans
le cadre des approches multi-échelles séquencées déstaiption des matériaux est
faite a une échelle fine (mésoscopique) et I'informatsnhtransférée a une échelle plus
grande (macroscopique). Les résultats montrent que & gm compte explicite des
hétérogénéités offre des perspectives intéregsatig-a-vis de I'identification, la compré-
hension ainsi que la modélisation des comportements mempiques. En pratique : a
partir d’'une description simple de chaque phase ainsi queodyortement des inter-
faces, un effet structurel est observé, menant a des avenpents macroscopiques com-
pliqués. Le travail est donc axé autour de deux probl&mes principales. D’un coté,
la représentation morphologique des hétérogémeséproduite en utilisant la théorie des
excursions de champs aléatoires corrélés, produissnintliusions de forme aléatoires
dont les caractéristiques geomeétriques et topologicqamt analytiguement controlées.
D’un autre coté, dans un cadre Elément Fini, un doublekisgsement cinématique per-
met de prendre en compte les hétérogéneéités ainsequeenomene de dégradation local
(microfissuration). En couplant ces deux aspects, le mésdele montre des réponses
macroscopiques émergentes possédant d’intéresgapf@ietés typiques des matériaux
a matrice cimentaires telles que : asymétrie de la rép@mstraction et en compres-
sion, profils de fissurations réalistes ou encore dépexdadun comportement vis-a-vis de
I'historique du chargement.

ABSTRACT: The present thesis is part of an approach that attemptptesent the
guasi-brittle behavior of heterogeneous materials sudeagntitious ones. The guide-
line followed fits in a sequenced multi-scale framework fdrietr descriptions of the
material are selected at a thin scale (mesoscopic or migpacand information is trans-
ferred to a larger scale (macroscopic). It shows how thei@kpépresentation of het-
erogeneities offers interesting prospects on identificatinderstanding and modeling of
macroscopic behaviors. In practice, from a simple desonptf each phases and inter-
faces behavior, a structural effect that leads to more cexnpiacroscopic behavior is
observed. This work is therefore focusing on two main axesth@ one hand, the mor-
phological representation of the heterogeneities is lgansihg the excursion sets theory.
Randomly shaped inclusions, which geometrical and topcébgharacteristics are an-
alytically controlled, are produced by applying a threshoh realizations of correlated
Random Fields. On the other hand, the FE implementation tf beterogeneity and
local degradation behavior (micro-cracking) are dealhviay a double kinematics en-
hancement (weak and strong discontinuity) using the Eméxk&thite Element Method.
Finally, combining both axes of the problematic, the resgltnodel is tested by model-
ing cementitious materials at the meso-scale under uniagdings mainly. It reveals an
emergent macroscopic response that exhibits severakrésasuch as asymmetry of the
tension-compression stress-strain relationship, crgaitterns or historical-dependency,
which are typical of concrete-like materials.
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Introduction

The homogeneity of a heterogeneous material is a concepatigteal nature that
cannot be isolated from the observation scale to which binsered. This logical state-
ment takes on a particular significance for understandidg@modeling concrete-like ma-
terials. The inherent stationary and ergddiature of material heterogeneities results in
large enough specimens — in regards to their heterogenegy s- that exhibit expected
values of a given property with a very low variability [Matioa, 1966]. Thus, statistical
Representative Volume Elements (RVE) are defined, in whigbroscopic characteristics
of the material can be considered [Hill, 1963]. It is as a ltesluthese statistical bases
that a multi-phase material is considered homogeneous.

Phenomenological — or macroscopic — models [Ollivier et2012] are built on this
principle, defining the material behavior upon homogenizedr effective — mechan-
ical properties. Considering degradation mechanismsa@ugen processes of concrete
or any cementitious material, their intricate nature le@dsacroscopic governing laws
increasingly more specific and difficult to identify. It iswwew of this growing complex-
ity that the question of observation scales becomes releamce it clearly appears that
most of these macroscopic behaviors (creep, shrinkagekiorg et take their origin
at smaller scales (mesoscopic, microscogig, accurate identification and modeling of
local degradation phenomena seem to be a key step of redearatds predictive and
robust representations of macroscopic behaviors onto RWvEhe one hand, from a the-
oretical point of view, that leads to micromechanics-basedels including anisotropic
damage and plasticity [Zhu et al., 2008]. On the other handherically speaking, those
issues can be addressed within a sequenced multi-scalevixain [Zaitsev, 1985], both
selecting local mechanisms and transferring informatiomfsmall to large scales.

The very essence of multi-scale strategy is to consider sascopic behavior mod-
eling as a non-linear complex adaptive system [Ahmed e2@05]. Somehow, “unpre-
dictable emergent” responses are produced by local baslaten rules depending on
each phase of the material. The definition of this local levebr scale — is therefore
made upon the explicit geometry of the material heterogeseiHenceforth, simulating
such systems exhibits the underlying structural effect tharphological modeling pro-
vides. Finally, by their physically meaningful aspectegé procedures can be seen as
virtual testing [Heimbs, 2009]. The structural random &spé¢ heterogeneity representa-
tion strongly links this virtual testing framework with MtaCarlo experiments [Caflisch,
1998].

Regarding concrete-like materials, the two local levelsally defined are the meso-
scale and the micro-scale, giving millimeter and micromsieed heterogeneity details,

1Convergence property of random functions granting nuliaklity over infinite volume.
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2 Introduction

respectively. Naturally, by going deeper into the scaleigren, the morphology of con-

cern changes. On the one hand, at the meso-scale, concrgtbenrapresented by a
two-phase material in which aggregates are included wahinarse mortar matrix. On

the other hand, at the micro-scale, the latter mortar reptasion is detailed by smaller
heterogeneities of different natures such as sand particléarge pores. Furthermore,
depending on the problematic of concern, it can becomeaetdao represent additional

phases. The geometrical and topological characteridt@sge from one scale to another,
together with the resulting structural effect, gaining gilogl meaning along with the scale
precision.

If the meso-scale is considered, this numerical strateggfésred to as meso-models
[Zaitsev and Wittmann, 1981]. They are built upon local hetws of the present phases
and an explicit representation of the meso-structure. rTgpeals are to compute the
macroscopic behavior of representative disordered miegotgres such as effective elas-
tic moduli and stress field distribution. This type of nurcaticalculation provides an
efficient alternative to homogenization theories whichmhatake into account volume
fractions without dealing with the exact phase arrangemémtaddition, several non-
linear features can be implemented at the meso-scale ggivepossibility of observing
the up-scaling process of local degradation to the globaaer. The strength of these
models is to be built on a physical structural effect. Themefthe degradation modeling
of the meso-scale can be kept simple and still produce compderoscopic mechanisms.
The predominant focus of this document is on this particatgrect and, even if cemen-
titious materials exhibit numerous phenomena at the mieror even nano- — scale,
attention is mainly drawn to the intermediate meso-scale.

In view of the significant impact of thin sc&léeterogeneities with regards with to
macroscopic response, a particular effort is dedicateddmphological representation.
Thus, the development of a model based on spatially coectl@ndom functions is pro-
posed inChapter 1. It is shown how the stationary ergodic property coupledhiwhe spa-
tial structure of correlated Random Fields can efficientgrass the problematic when
submitted to a threshold procégadier, 2008]. Recent results from this mathematical
field give accurate ways to analytically control the resigitmorphology, both geometri-
cally and topologically speaking. Solutions to adapt thigahframework to cementitious
material problematics are given, responding to severaihtomissues such as reaching
high fraction volumes, representing grain size distriimsi, modeling additional phases
and making them evolve over time. Finally, the fact that ®ffects are taken into the
model gives relevant information on finite size problems 8y, 1996]. This important

2The classical geographer definition of scales is based omatie of the distance on a map to the
corresponding distance on the ground. Hence, maps areddtamibed as large scale if they show small
areas with details. For example, a map of Marseille is of EEnatale than a map of ‘Les Goudes’, one of
its fisherman villages. However, the physicist communitiiries scale sizes in regards to the details they
can depict. Hence, thin scales refer to meso, micro or naalesand large scales to macro-scales.
3Excursion set theory.

Meso-scale FE and morphological modeling of heterogenecedia



Introduction 3

feature is used in the context of RVE determination for pkatoan and one-dimensional
size effect modeling, both being dealt with analytically.

The numerical implementation of the framework is preseméZhapter 2. Based on
the non-adapted mesh methods, it is shown how a kinematzseament — strain dis-
continuity — is an efficient solution to address the main éssof heterogeneous material
modeling and its integration within a Finite Element con{éxtiz et al., 1987, Sukumar
etal., 2001]. In addition, a second kinematics enhancemetlisplacement discontinuity
— models the local degradations by a meso-cracking repiasam [Simo et al., 1993].
The advantages of the latter method compared to the moreptomal approaches usu-
ally retained for macroscopic phenomenological modelgparsted out. Moreover, this
chapter is the opportunity to present how, by using Finientgnts with embedded dis-
continuities [Simo and Rifai, 1990], these two problemaian be integrated within a
unified framework in which the local aspect of meso-scaleabigh is strongly present.
The different choices that lead to the solution proposedvastly made accordingly to
a simple meso-scale modeling spirit. However, attentidogased on geometrical infor-
mation, such as crack orientation, in order to improve thecsiaral effect significance. Fi-
nally, details of several discretizations using trussesnés or volume meshes are given,
showing how the Finite Element kinematics impact on the wsmpic response.

Morphological modeling based on correlated Random FieldsFanite Element with
embedded discontinuities are implemented into a meso-hvduese performances are
shown inChapter 3 through several typical applications related to cemenigimateri-
als. First, specimens are loaded following uniaxial monma@nd cyclic paths in both
tension and compression. It is the opportunity to show taiieso-model exhibits sev-
eral common features of complex system highly represestati macroscopic failure
mechanisms. Among the most significant, the next three aréhwioticing:

Emergent phenomer{dlustration in HG. (1))
The resulting behavior is more complex than the simple longlementation and
features such as tension-compression asymmetrical respamn complex cracks’
patterns due to the structural effect can only be analyz#teanhacroscopic scale.

Cascading failures
A single local failure — micro-cracking — can lead to seveoasequences at the
macroscopic scale, representing the brittle nature okdratiation.

Memory
The structural effect leads to non-symmetrical failure hagtsm during loading-
unloading tests or non-proportional loading. This featuméurally represents the
cementitious material historically-dependent propen thus leads to mechanical
behaviors that are highly anisotropic.

Then, Monte Carlo experiments are made to define RVE forielastdulus as well as
non-linear features (strengths). Then, multi-physicsrgas related to concrete durabil-
ity are addressed revealing the impact of damaged statesitarial properties.

Meso-scale FE and morphological modeling of heterogenecedia



4 Introduction

Finally, concluding remarks and comments are made on thergefnamework. Per-
spectives are investigated in order to: on the one hand wegh® model and on the other
hand propose other applications corresponding to its peegnces.
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(a) Experimental (from [Torrenti, 1987]). (b) Meso-model.

Figure 1: lllustration of an emergent phenomena: macroscopic resgsoon cyclic com-
pression loading: stress versus axial, transversal ananadtic strain.
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Morphological modeling: a generalized
method based on excursion sets
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6 Morphological modeling

1 Introduction

At the macroscopic scale, probabilistic aspects of mdteeterogeneities are em-
bedded in choices and identifications of predictive modBkEsed on thiner observation
scales, multi-scale frameworks highlight the underlyiagability aspect of the random
aspect of heterogeneities. Henceforth, in addition to aeghanical model, a morpho-
logical one has to be developed to describe phase arrangemath regard to the obser-
vation scale.

In this chapter, a generalized framework for morphologroaldeling based on the
excursion set theory of correlated Random Fields is prapo3ée term “generalized”
has to be seen here as the ability of the model to represehtihvei same theoretical basis,
several kinds of morphologye(g. matrix-inclusion, porous mediafc) that may turn out
to be a handy tool when cementitious materials are consideredifferent observation
scales.

The most common representation of heterogeneities is pégiormed using objects
with simple geometrical definitions such as spheres [Bemrgh al., 2002] or ellipsoids
[Bezrukov and Stoyan, 2006]. For example, considering céitneus materials at the
meso-scale, they can be represented by a two-phase nrathission medium using non-
overlapping spheres [Torquato, 2002]. Introduced in @iat1960] and generalized for
a random distribution of independent sphere radii in [Stoglad Stoyan, 1994], the nu-
merical implementation of these models is based on a Gibivg pmocess. In a volume
V, the number of points follows a Poisson distribution of paegerAV/, in which \ is the
mean number of spheres per unit volume. Then, dependingeorathi (that can follow
a grain size distribution [Wriggers and Moftah, 2006]), leaphere is placed in order to
avoid overlapping. These methods, often referred to ae“taid-place methods”, can
be found in the literature with different optimization pesiures and geometrical shapes
[Wittmann et al., 1985, Bazant et al., 1990, Schlangen aand Mier, 1992, Wang et al.,
1999].

Although the formulation of these models is rather simpheirt numerical imple-
mentations raise several issues, especially considergiguolume fractions. Even if
experience has shown that for equal spheres a maximal vdiaoigons of64 % can
be obtained, reaching this value corresponds to unreakooaimputation time if no im-
provement is made on the basic algorithm. In [Stoyan, 20D&}rich Stoyan describes
methods to address these issues. Among them, for theiahatd physically meaningful
spirit, two algorithms based on simple Newtonian princGpdee worth noticing. These
principles arggravitationandrepulsion-force

Sedimentation
First, improvement — in terms of computation time — can beaot&d by perform-
ing a sedimentation algorithm [Jodrey and Tory, 1979]. Tdeaiof this method is
to drop each sphere one by one onto an initial layer of sphé&tash sphere falls
— following “gravitation” — until it reaches a pre-existirgphere and then rolls

Meso-scale FE and morphological modeling of heterogenecedia



Introduction 7

to a stable position (three contact points). According twy&h, this algorithm pro-
duces pakings a8 % volume fractions with identical spheres. Computation time
may be improved but, due to the lack of a densification prodbessdensity ob-
tained is lower than before. Furthermore, due to gravitaidorces a resulting
weak anisotropy in the vertical direction is observed. &ons of this algorithm
can be found in [Jodrey and Tory, 1985, Barker and Grimso89]L9

Collective rearrangement

Packings with higher volume fractions can be obtained ugiago called collective
rearrangement (or force biased or Stillinger’s) algorishiMoScinski et al., 1989,
Bargiet and Mo&cinski, 1991]. The principle is to startlwan initial configuration
of a fixed number of (possibly) overlapping spheres. Thetersections are dealt
with by moving them following a “repulsion-force” law andrafiking them. New
positions and sizes of the spheres are computed at eachfgtepadgorithm until
a complete non-overlapping configuration — which is the eoggnce criterion —
is found. In [Bargiet and Tory, 2001], it allows the authoosproduce more than
70 % volume fraction packings.

Improving both time computation and resulting volume fiaat the latter family of al-
gorithms has been retained in the ongoing Ph.D. thesis ofi®\Mallade. Following
[Bezrukov et al., 2002], implementation (without the skimg mechanism) adapted to
a distribution of radii has been made and results can be seErgi (1.1(a)) on a con-
verged configuration. For high volume fractions, it can adtiat no non-overlapping
configuration is found. A remarkable example of this non esged case is depicted in
FiG. (1.1(b)), in which the unique spheres tend to form an oalicrystalline pattern.
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(a) Converged configuration using a distri-  (b) Non converged crystalline-like config-
bution of radii. uration.

Figure 1.1: Sphere packing using the collective rearrangement algorit

Even though algorithms can help solve the intrinsic issuesathing high volume
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fractions of these methods, the amount of information reargsto describe these mor-
phologies can become important when a large number of ileeciass considered. Indeed,
it is linear to the numbelN of objects: 4NV for spheres andN for ellipsoids. Further-
more, the perfect aspect of simple objects such as sphetemdyy representative of
concrete aggregates. Integration of complex shapes iratteg frameworks is unknown
to the author but seems rather difficult to generalize. Fine¢presenting other kind of
morphologye.g.porous media, will require another set of methodologies.

These reasons led the author to turn to morphological mad#éisa more important
underlying random aspect such as excursion sets.

An excursion set is the thresholding process resultingfsetandom function defined
over a finite space. For examplegifx) : M C R®> — R is a realization of a random
function (see Ks. (1.2(a)), then for a given threshold (hereafter calle@lleset)x, the
excursion sef?, C R? (see k. (1.2(b))) can be defined by the part bf whereg is
greater tham:

Es={x e M]|g(x)>kK}.

A more general definition is given in this chapter.

(a) g(x) — Realization of a correlated (b) Es — Resulting excursion set for a
Random Field. given level set.

Figure 1.2: lllustration of the excursion set principle.

Excursion sets as depicted ind= (1.2) can have very different aspects depending
on the level set and the random function characteristicsiceferth, it seems relevant to
use them in the context of correlated Random Fields singeitiiensic spatial structure
— through covariance functions — leads to complex shapedlexithle structures that
can be statistically controlled both geometrically andolopgically speaking. Indeed, as
mentioned in [Serra, 1982] and [Roberts and Garboczi, 18%ementitious materials,
the strength of this theory is in its representation of motpgies by global descriptors
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(volume, number of componentsto) that are defined statistically and not for a given re-
alization. Furthermore they can possess the suitablestay, ergodic [Matheron, 1966]
and isotropic [Bazant et al., 1990] properties for matdreerogeneity modeling. In ad-
dition, the model presented here is based on a formula [ABG98] that links together
expectations of geometrical and topological charactesistf the excursion set and Ran-
dom Field characteristics, granting a powerful predicéigpect to the model.

This chapter attempts to present in detail this theory aleitly several adaptations
for cementitious materials. For that matter, the first sectiovers both theoretical and
numerical basis of correlated Random Fields. Then, mattieah#&ools to characterize
excursion sets along with the main results of [Adler, 20@88piesented. Based on rec-
ommendations made in the latter publication, an helpfutrsion of the basic result is
proposed through a rather general formula. In the next@ecseveral applications re-
lated cementitious materials observed at the meso- anditite-stale are proposed. It is
the occasion to show the generalized aspect of the modeplogsenting different kinds
of morphologies. Finally, the last two sections use the tlaat side effects are taken into
account in the expectation formulae in order to construatydical models for both size
effect and percolation in finite clusters.

2 Review on correlated Random Fields

The use of correlated Random Fields brings a major improménsemorphological
modeling. Indeed, in addition to the usual characteristicRandom Variables such as
mean or variance, theorrelatedaspect leads to a spatial structure for the fields, which
can statistically be controlled through the definition ob&ariance function. This section
briefly summarizes the different ingredients of these nratitecal tools.

2.1 Basic definitions

A Random Variable represents a phenomenon possessing aadigt@ble output.
However, withrepetition it can possess a regular nature. The theory of probabriigb
a mathematical framework to model those processes. It sdbas three mathematical
components that forms the so-callpbbability space The first one, noted?, is the
universe. It is a set of all the possible results of a giveidoam variable. A subset of the
universe is called aavent Basically, it can be defined as a property that can be called t
or false once the random experiment is made. The main iddafrteory, brought by
Kolmogorov, is to consider the set of all the eveits For stability reasons over logical
operations (not developed hetE)has a structure af-algebra of the universe. Now, let
w be a result of a random experiment. The strength of the pilityatheory lies on the
quantification ofw to be in an evenf’ € F without manipulatingo itself. In order to
do these quantifications, a probability functiéhis defined, measuring the chance for
an eventF' to occur. It can be seen as a measurerof The triplet(S2, F, P) defines
the probability space. Now, leX : Q@ — FE be a measurable function defined over the
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10 Morphological modeling

probability spac€(2, F, P) which takes its value in a measurable sp@ceA) (in which
A is ac-algebra ofF). As it is often the case, the resultwill be omitted in the notation.
Hence, ford € A, the eventX 1 (A) = {w € Q, X (w) € A} € F will be noted simply
{X € A}. In this framework, focus is made on the particular caAse= R. ThenX
is calledRandom Variabléhereafter RV) though still a function. A density probatyili
function fx : R — R, can be defined so that:

P{X € A} = / fx(x)de YA CR. (1.1)
A

This function defines thdistributionof a RV,i.e.the chance for this variable to get a given
value. The first two moments of a distribution are known asettpected valuE{ X } and
thevarianceV{ X}, that can be seen as the mean of a sample whose size growsity infi
and how far its values can be spread out from this mean, rexgplgc

Based on the definition of RV,Random Fieldhereafter RF) can be defined by adding
to this function a space parameterylis such a field then it can be defined over both the
probability space and an Euclidean spac¢es RY:

g: QxRY S5 R (1.2)

As a RV X (w) is notedX, a RFg(w, x) is notedg(x). For a givenz, a field can be
seen as a RV — defined by a given distribution calearginal distribution Herein it
is assumed that the marginal distribution is the same for @l M. Therefore, a global
distribution is used in order to statistically defines the RF

2.2 Gaussian and Gaussian related distribution

It has been seen that the statistical distribution of a RVA(RF) is made through its
density probability function. Because of its smooth préipst the most popular is the
normal distribution (also referred as the Gaussian digtiob). It is defined by the well
known bell shaped density probability function:

1 2 2
_ —(@=p)*/20% o e R 1.3
x e T € K, .
fX( ) 0_\/% ( )
in which the two parameters ando correspond to the mean and the standard deviation
of the distribution, respectively. IX follow this distribution (notedX ~ 4 (u,o?)),
then the variable simulates values®nand its first two moments afg{X} = p and
V{X} = o2

Considering the underlying properties of Gaussian lawes ptiesented framework is
based on those distributions (especially the centered, evieen;, = 0). However, the
theory still applies in a more general case, using a widegeani distributions known as
Gaussian relatedit is named after the fact that their underlying RVs autaoadly derive
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from Gaussian ones. In other words Xf follows a Gaussian related distribution, it can
be decomposed as follows:

X, QX3RS R (1.4)

in which X is a sizek vector of independent Gaussian RV afich given application.
For example, by taking = 1 andS = exp, thelog-normaldistribution can be retrieved
(commonly used in order to yield positive values). Anothegsiraple that shall be used
in the following is they? distribution oft degrees of freedom (noted). In this case a
random vector ok independent Gaussian RVs can be transformed @Y ) = || X |2,
giving the requisite Gaussian related RV. Herein, this@ple can be transposed to RFs
the same way since they are defined by a single marginalistrn. If g, is such a field,

it can therefore be defined by:

g QO xRY L RF SR (1.5)

inwhichg = {g¢;},i = [1..k] is a vector valued Gaussian RFe(all g; are independent).

2.3 Covariance functions
2.3.1 Generalities

As previously mentioned, a RF is defined over a parameterespac_ RY. The
covariance function brings to the fieldspatial structure It means that for any couple
(x,y) € M?, g(x) andg(y) arenot two independent variables. They are said to be
correlated The measure of this correlation is made through the caveeidunctionC
and can be defined for a zero mean distribution by:

Clx,y) = E{g(x)g(y)}. (1.6)

From this equation both limit cases (not or perfectly catedl) can be interpreted. On
one side, ley be a not correlated RF (corresponding to a white noise). #ma¢hay (x)
andg(y) are independent, leading @z, y) = E{g(x)}E{g(y)} = 0 (V& # y). Now,
on the opposite side, if is perfectly correlated, it has a constant field ovéri.e.itis a
random variable. Hence, still for a zero mean distributtbe,covariance function is also
constant and takes the value of the distribution’s variait¢e, y) = E{g*} = o> In
between these cases, the covariance function defines the wayructured, introducing
a spatial parameter (notéd) defining how much the field is correlated.

Simplification:Herein, onlystationaryandisotropiccovariance functions are consid-
ered. Those properties of invariance to translation and rigption allowC(x, y) to be
expressed in terms of a single variable= ||z — y||. Since the RF distributions are also
invariant to translation, the RF is said to beictly stationary In order to simplify the
notations, only strictly stationary RFs are now considetgdwever, it has to be kept in
mind that the framework can be extended.

The principle of mean square differentiability of correltRFs and its link with the
covariance function is now presented. It helps understgnstome spectral properties of
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12 Morphological modeling

the covariance function and their links with the RF smoo#isnéollowing [Adler, 1981,
Adler and Taylor, 2007], mean-squared (MS) derivative ofaaussian RF is defined in
thes™" direction (of unit vectoe;) by:

dg(xz) .. g(x+ire;) —g(x)

ox; - 62%0 ox ' (£.7)

If g is defined by its covariance functidhiz) then its derivativedg(x)/0x; are defined

by 92C(h)/0h?* (hereafter noted® (h)). This principle can be applied to a higher order
of derivatives. Thus, thé" derivative of a RF has a covariance function corresponding
to the 2k™ derivative ofC. If the latter exists and is finite in zero then th& derivative

of ¢ exists too and is said mean square differentiable. Existeocnot, of thesé!"
derivatives defines the RF regularity. Hence, the smoothoka RF is strongly linked
with the existence ofk™ derivatives of its underlying covariance function at zero.

2.3.2 Characteristic length-scale and Gaussian model of eariance functions

The Gaussian model (or squared exponential) is one of thecoosnonly used mod-
els for covariance function. Itis defined by only two paraengtone that characterizes the
distribution variancer? and another, calledorrelation lengthL., that assigns a certain
characteristic length-scale.. It is defined by:

C(h) = o’exp (—Z—Z) : (1.8)

Since for allk, C?%)(0) exists and is finite, this covariance function grants to aayssian
field infinite differentiability. This property leads to stigly smooth RFs. Notice that for
h #0, L. — 0 leads to a zero valued covariance function (correspondinigtorrelated
RFs) andL, — oo leads toC(h) = o2 (corresponding to constant RF of variancd.
In between these casesck (1.3) illustrates the role of the correlation length on fe
spatial structure, showing two realizations of the samg&iligion with both large and
small L.. About the size of the square and one-tenth of it, respdgtivecan already
be remarked that this length-scale parameter plays a keyreglarding morphological
modeling since it governs the morphology length-scale.inak = 0 shows that the
variance can be defined as the correlatiory(@f) with itself. It depicts the fact that a
Gaussian correlated RF of zero mean is completely definet$ lopvariance function.
Another way of understanding the role of the correlatiomténs through the number
of up-crossings of a level sé{ () for a one-dimensional RF. It can be found in [Adler
et al., 2010] that the expected number of up-crossik@s) of the level set< can be
determined for a stationary zero mean correlated GausdtanyRRlded over a segment
of sizea. Actually its value only depends on the underlying covaz@afunction and its
second derivative fok = 0. It is given by:

E{N(k)} = % _Cé?()(()gl)exp(—2;(o>). (1.9)
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(a) Large correlation length (the domain  (b) Small correlation length (one-tenth of
size). the domain size).

Figure 1.3: Impact of the correlation length on two Gaussian RF reabnat

Applied to the Gaussian covariance function, the expectddevof the number of up-
crossings can easily compute:

E{N(k)} = ﬂ‘;L exp (—%) , (1.10)

and it can be noted that it decreases hyperbolically as thelaton length increases,
illustrating the length-scale role df.. In addition to its depicting nature,& (1.9) is
actually a fundamental base of the excursion set theorgpted below.

It is worth noting that the full knowledge of the covariancadtion is not necessary
to predict characteristics such as the number of up-crgssifi level sets. In fact, it
is also the case for other characteristics such as the volthmesurface or the Euler
characteristic of complex morphologies in higher spaceedisions. It is the aim of the
next section to present an alternative way of defining camae function through its
spectral representation. It presents useful tools foraleving theory such as spectral
moments.

2.3.3 Spectral representation and Maérn class of covariance functions

A stationary Gaussian RF is still considered. The stateraEBochner’s theorem
defines a spectral representation of the covariance funasdhe RF is represented by a
Fourier transform of a positive finite measure. If the meadas a densitf(A) then f
is called thespectral densitgorresponding t@. If f exists, then the covariance function
and the spectral density are Fourier duals of each otheitfi€laa 2004]. The covariance
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function can therefore be expressed as follows:

C(h) = /R expiAR) F(A)dA. (1.11)

For simplification, only covariance functions with finiteriance are considered. Hence,
sinceC(0) = 0® = [ f(\)d), the spectrum is assumed to be integrable. As the prohabilit
function, the spectral moment can be represented by its msmEhey are callespectral
momentsand, provided they exist, they are given by:

Ao = / A F(N)A = (—1)FCD(0) = V {akg (@) } . (1.12)

Dk

Henceforth existence of spectral moments of a RF is dirdictked with its MS differen-
tiability. It can be seen that all spectral moments are ddffoethe Gaussian correlation
model. For that matter, this modeling of infinite smoothrezssbe considered unrealistic
and therefore not adapted to simulate physical problenes{St999].

Hence, a more general class of covariance functions cklkgérn classis now con-
sidered. It is called class since the introduction of a nevaip@terr > 0 provides an
additional flexibility to the covariance model, leading tBwith rather different proper-
ties. Especially regarding its differentiabilifye. its smoothness. It is defined by:

o2 Varh\' NG
o (B R () s

in which K, is the modified Bessel function of the second kind dngda positive pa-
rameter that still works as a length-scale. It appears tirf éitted by these covariance
functions isk-time MS differentiable if and only it > k. In these caseg; finite spec-
tral moments are defined. For multiplesiof, a rather simple expression 6f can be
yielded (more details can be found in [Rasmussen and Wilj&2006] for the general
formulae). In order to illustrate the point, attention issn tor = 1/2,3/2 and wherv
tend toward infinity. As a matter of fact the first and the la#tee the exponential and the
squared exponential function, respectively. Their amedyexpressions and the number
of finite moments defined are as follows:

Analytical expression of the function  Spectral moments

- v
Cy/p = 0 (1 + ﬁ%) exp(—ﬁ%) Aos Az
Coo = a%Xp(—Z—é) Mo, Mg, - ..

With EQ. (1.12) the number of spectral moments defined by these #xa®aples can be
checked. K. (1.4) represents them in terms/afNaturally, all the initial values are the
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first spectral moment, = o%. The key difference relies on their derivatives. The non-
definiteness of,, directly linked with the non smooth aspect of the covareafunction
in 0 for v = 1/2, can clearly be seen on the graph

= 39

Figure 1.4: Matérn class covariance functions for= 1/2,3/2, cc.

The reason why the Matérn class results in an importantorgment is that the addi-
tional parameter completely changes the spectral property of the RF. In dpposeven
if the y-exponential covariance function, defined®y= o?(—(h/L.)") for 0 < v < 2,
also has another parameter, the modification of spectrurm thduces is far less interest-
ing, bringing no real flexibility [Stein, 1999]. Indeed, #only wheny = 2 that the under-
lying RF is MS differentiable. F&. (1.5) shows three realizations of two-dimensional RFs
with Matérn class covariance functions. Those realizatioave been yielded using Mar-
tin Schlather RNDOMFIELDS package [Schlather, 2012] of the R environment [Team,
2012]. The impact of RF MS differentiability can be visualiz Indeed, its surface aspect
seems smoother as the number of the defined finite spectraéntenmcreases. Finally,
the Matérn class function brings two parameters. The taiom lengthL., that sets a
scale factor to the RF, and that sets a thiner geometrical property that can be ireezdr
as its roughness.

It can also be interpreted by the previous equation dealitigwp-crossings of a level
set. First, regarding & (1.9), notice that it can be expressed only in terms of the tw
spectral moments, and\;:

E{N (x)} = %\/i%exp (_;—Ao) , (1.15)

and since\, = o2 is assumed to be finite, attention is drawn)an Then, when applying
this equation to Matrérn class covariance function, tloe tisat forr = 1/2, the second

1Even though it has no physical meaning, covariance funstiwa symbolically drawn fok < 0 only
in order to represent their symmetrical aspect which lead®n differentiability ofC, /, in zero.
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(a) Realization withy — co. (b) Realization withy = 3/2. (c) Realization withv = 1/2.

Figure 1.5: Impact of spectrum on the RF shape using Matérn class @nagifunction.

spectral moment is not defined can be interpreted to an iafinimber of up-crossing
of level set. On the other hand, for= 3/2 andv — oo, )\, is 3¢%/L% and 202 /L2,
respectively. The higher value of the moment for the firsecapresents the logical
higher number of up-crossing level set due to the RF roughnes

2.4 Numerical implementation

As the whole framework lies on realizations of Gaussianatated RF, efforts have
to be made in their numerical implementation. Two methodsius order to generate
these fields are described here. The first one is known as tteif@n-loéve expansion
[Loeve, 1978] and the second as the turning band methocdhjdan, 1973].

2.4.1 Realizations of correlated Random Fields

Let g(x,w) be a Gaussian RF defined over a bounded region of a paramats sp
(M c RY) which takes value ifR. It is assumed thag has mean zero, varianeg, is
isotropic and stationary with a covariance functix, y) = C(||x — y||) equipped with
a correlation lengtfdi..

The orthogonal decomposition of Gaussian correlated Réryrs&ipulates that, i€
is smooth enoughy can be written:

9(@,w) = pu()éa(w), (1.16)

in which it clearly can be seen that the spatial variabhleand the stochastic ones are
separated in two functiong,, } is a set of functions defined ovéf. They carry spatial
and statistical information of the covariance function. é#as{¢,, } are zero mean, unit
variance GaussiamdependenRVs. They do not carry any specific information neither
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on the distribution probability (except the Gaussian agpsar on the correlation. Be-
cause they are independent, they are easy to compute and dosteanuch numerical
resources. A simple random number generator is neededomtysdrom this set of RVs
that one realization distinguishes itself from anothemplBrations on this decomposition
is given in APk B in which{¢p,, } is defined as a spatial base &f{d } a stochastic one.

The Karhunen-Loéve expansion proposes to construct #gasfunctions{y, } as
solutions of the Fredholm problengE(1.17), for simple compact RY. Let M be anN
cubeand’ : L*(M) — L*(M) an application defined bg’v)) (x) = [, C( (y)dy.
The Fredholm problem can then be written:

/C:c Y)U(y)dy = \p(x). (1.17)

The resolution of this problem gives a natural decompasitbC in terms of the re-
sulting eigenvalueg )\, } and their corresponding eigenvectdrs, }. It can be proved
that the Mercer theorem gives the following decompositidagnen, 1953, Riesz and
SzoOkefalvi-Nagy, 1955]:

Finally in [Adler and Taylor, 2007], the authors show that <« {\/\,%,} is a suitable
base for the orthogonal decomposition leading to the Kaghtlroéve expansion of a
correlated RF.

Karhunen-Loeve expansion of correlated RFs

= > VAnka ()i (), (1.19)

where)\,, (resp.i,,) are the eigenvalues (resp. eigenvectors) of the Fredhadbigm
EQ. (1.17) andt,, ~ .#(0,0?) are a set of independent RVs.

In terms of numerical implementationQE(1.21) is very useful. Indeed, for a given
RF, the spatial function$\/\,¥,(z)} have to be computed only once, by solving the
Fredholm problem. Then, in order to yield a realization a$ fireld, only a sequence of
independent RVs is to be computed. It enables the posgibilgenerating a huge amount
of realizations of the same field in a reasonable time.

Prior to that, a discretization of the continuum Fredholmlgbem is needed. Ar B
describes it within a Finite Element context, leading tofthlowing generalized eigen-
value problem:

MCMvy = XM, (1.20)

in which M is the Gramm matrixC the covariance matrix) the nodal values of the
eigenvectors and the eigenvalues (further details inPA B). The Gramm matrix is
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equivalent to a unit mass matrix, only containing inforraaton the mesh geometry,

whereas the covariance matrix contains the nodal valugseofdvariance function. For

Gaussian covariance, this matrix is theoretically fubhdeng to a huge demand in memory
resources.

As already mentioned, one of the great advantages of theukarLoeve decompo-
sition is that the eigvalue problem has to be solved only ane for a given correlated
RF, giving the spatial structure by the mean of spectfusn} and modeg«,,}. Once
stored, a realization is computed only by changing the ststah space basg,,} (not
time consuming since all the variables are independengofigitically, a Gaussian RF is
retrieved when the infinite sumd (1.21) is yieldedi(e. the whole spectrum is used). For
the numerical implementation, the most important modeyg (elgarding the spectrum)
are calculated. Hence a truncation is made, giving an appeion of the correlated RF:

g(@,w) & YV Abn(w)tn (@), (1.21)

in whichm is the number of modes that are kept. The importance of a nsoelgimated
through its eigenvalue (compared to the maximum one). Simeevhole spectrum can-
not be numerically evaluated, the greatest valueS\q} are calculated with an iterative
solver based on Lanczos algorithm [Cullum and Willoughidg2]. Handful implementa-
tion is made in th&ics function of MATLAB ™. The following graphs show the role of
the correlation length on the spectral content of corrdl&Es. Herein, two-dimensional
Gaussian fields of standard distributiort((0, 1)) are yielded over a unit square for three
different correlation lengthd;. = 1/100, 1/50 and1/20. FIG. (1.6(a)) represents it with
the eigenvalue of each mode anaF(1.6(b)) with spectraf(k). In order to compare
them on the same graph, they are normalizjégfdA = 1 and represented in terms of
normalized eigenvalues\,, / A\max} for each field.
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Figure 1.6: Spectral content of correlated RFs for three correlatiogties.

The spectrum can be interpreted as the amount of spatiamatton needed. It clearly
can be seen that a small number of modes is needed for a RF \dtgeacorrelation
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length. By comparison, a small one will entail more modeg tdwarespond to more
complicated spatial shapes (as it is representedan @.7)).

(a) mode 1 4. (b) mode 7 4)7. (c) mode 26 ).

Figure 1.7: Mode numbeii, 7 and26 for a two-dimensional RF.

Experience can help evaluate prior to calculations mainly taking into account the
correlation length. Hence, less correlated RF are more tiomsuming than strongly
correlated ones. A criterium (for examplg, = \nax/100) can be set, eliminating modes
from the sum B. (1.21), even after the spectrum computation.

Even though it has been seen that the number of modes neededaecaduced,
the eigenvalue problem still involves a full squared matihen dealing with multi-
dimensional RFs of large size, memory storage and calouléitne can quickly become
an issue. The turning band method [Matheron, 1973] coreldigihelps increasing the
RF size. The idea is to yield several one-dimensional cawedl RFs (bands). The di-
rection vectors — corresponding to each band — are unifochsiyibuted over the unit
sphere and the contribution of each field is added to thetireguhree-dimensional RF
(details are given AR B). In [Glimm and Sharp, 1991], a link is made between each
covariance functions (one and three-dimensional), giemmplete control of the spatial
correlation of the resulting field to be obtained. Improvaimsenade using this method
are summarizedAB. (1.1).

| Method | Discretization| CPU time |

Direct ~ 10° nodes | ~ one week|
Turning band| ~ 10° nodes | < one hour

Table 1.1: Rough estimation of Direct and Turning Band method perforces.

The numerical implementation of correlated Gaussian RFokas presented in this
section. As it has been seen above, in order to yield Gaussiated distributions, a
simple transformatioty is to be applied to the Gaussian field.
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3 Excursion set theory

3.1 General principle

An excursion set is defined as the resulting subset of coegkRF thresholding. This
operation transforms a continuous field to a binary one ticrg@andomly shaped mor-
phologies. Ifg : M c RY — Ris a RF defined over parameter spa¢gbounded region
of RY), a subset of its codomaiH, c R can be defined in order to set the thresholding
rules. Herein, excursion sets, notégd are defined as the set of points where the RF value
is in H,, hereafter calletitting set Thus yielding to:

E,2{xc M|g(x)c H}. (1.22)

The hitting set will often be taken as the open Bet= [x, oo[, x working as a level set
for the RF. Each point where the RF value is abewtefines the excursion. Contours of
the morphology9E, are the isovalues of g:

OE (k) 2 {x € M| g(x) =K}, (1.23)
and . (1.22) can simply be written:
E(k) 2 {x € M| g(x) > r}. (1.24)

This principle is depicted inlg. (1.8) in the one-dimensional case and examples of three-
dimensional excursions are given imck (1.9) for two different level sets. In the pre-

Figure 1.8: Excursion set of correlated RF in one-dimension.

sented framework, the RF is defined over a three-dimensspzale |/ C R?), creating
three-dimensional excursion sets. The two excursionsief @.9) are made from the
same realization of a RF with two different level sets. Lesel value has clearly an
important impact on the resulting morphology. For low valoé, a major part of the
field still hits H,, leading to high volume fraction excursion set mainly matieavities
and handles. This sponge-like topology&F (1.9(a))) can be a suitable representation
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(a) Porous media. (b) Matrix-inclusion media.

Figure 1.9: Two excursion sets of the same realization with differem¢lsets.

of porous media (see 4.2.1 in this chapter). By comparis@h talues ofx lead to
meatball-like topology (F. (1.9(b))) where just several connected components remain
These excursions, despite their very low volume fractiauld represent disconnected
media such as aggregates within a matrix. This last poisésaihe main issue of excur-
sion set modeling. In this chapter, solutions are proposextder to yield high volume
fraction morphologies with disconnected topologies.

As the level set value has an impact on the kind of morpholdggined, both prob-
ability distribution of the RF and its covariance functioavie a major influence as well.
Among them, the correlation length, fixing the length-scale of the excursion set, has a
key role. Playing with all these parameters gives a wild eaofymorphologies. But, in
order to manipulate these “objects”, tools that quantignthmathematically speaking are
needed.

In the next section functionals that measure both geona¢tiind topological quanti-
ties are defined. They provide global descriptors for exoursets, giving a mathematical
basis for the main results presented in this chapter.

3.2 Measures of excursion set
3.2.1 General aspect

In order to specify a morphology botieometricalandtopological properties have
to be considered. It has been proved that iN-@limensional spacey + 1 descriptors
are enough to fully describe it. A large family &inctionalsaims to quantify those
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properties, differentiating themselves by scale factAraong them, due to their intrinsic
properties, the.ipschitz-Killing curvaturegFederer, 1959], hereafter referred as LKCs,
are used here. Hence, a manifold is characterized with & £§&@s £;, j = [0..N] that
can be interpreted asj& measure of the subset. Herein, the three-dimensionaldaaaii
spaceR? being of concern, four LKCs are defined, measuring volunressa integral of
mean curvatures and Euler characteristics, respectively.

In order to help the understanding of each LKC, a quick owsnof measure charac-
terization inR? is proposed. A recall of the four symmetrical functions atthvariables
is first proposed %s. (1.25). It can be remarked already thaty ifs taken to be of unit
[u], thene; is homogeneous to {li These polynomial functions can be used in order to
properly define a measure.

eo(x) =1, (1.25a)
er(x) = 1 + 9 + w3, (1.25b)
eo(x) = w29 + 1123 + 223 AN (1.25c)
es(x) = rywazs. (1.25d)

Now, let;, be a measure d@&3. A unigue measure can be defined if it respects the four
following axioms. Attention has to be drawn to the last one.

Axiom 1: p(2) =0
Axiom 2: If AandB are two measurable sejs(AUB) = u(A)+u(B)—u(ANB)
Axiom 3: The measure afl is independent of its position

Axiom 4: Still an infinite number of measures can be deterchirkhis last axiom
selects one of them, using one of the functions definedvia. $1.25). Hence,
the referential measure of a parallelepigéd= Hle[o, a;] can be taken as one’s
choice:

po(P) = eo(ar, az,a3) =1
p1(P) = ei(ar,a2,a3) = a; + as + as
P) = 1.26
up) pa(P) = ez(ar, a, as) = aras + aas + azas ( )
pa(P) = ezar, az, a3) = arazaz

Each measure can here be interpreted by; Euler charaici€ist 0), average caliper
diameter ( = 1), half surface areaj(= 2) or volume § = 3).

Since the Euler characteristic brings an important aspethe¢ framework a brief
reminder of its properties is now proposed.
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3.2.2 Euler characteristic

Introduction to the Euler characteristic is often made viith so-calledPolyhedra
Formula Among its countless contributions, Euler found out thégralative the sum of
the number of verticed(), edges F) and faces k') of a convex polyhedra is constant, no
matter how it is constructed” — E + F = 2. Now, P polyhedra at least glued together
by one common face are considered. It occurs that, for a wifech of configurations,
V — E+ F — P = 1. This rather more general formula holds until the union di/po
hedra form a hole in the resulting structure, leadinfte- £ + F — P = 0. Two holes
inevitably lead to/ — F + F'— P = —1 no matter how many polyhedra are used and how
they are constructed. Each hole reduces the alternativdogumlt is from this consid-
eration that the topology field is born, creating a new desarifor a solid subdivided in
polyhedra, invariant under its geometrical propertiesnid after its instigator, the Euler
characteristig is defined for a solid subdivided into polyhedra as follows:

X=V-E+F-P (1.27)

The contribution of Carl Friedrich Gauss to (classicaljet#ntial geometry has led
to several useful conceptBigquisitiones generales circa superficies cyrt827), and
among them, the Gaussian curvature. At a point on a surfacanibe defined as the
product of the minimum and the maximum curvatufés= kninkmax. Things become
interesting when focus is made on global values (integraved the surface) of this cur-
vatures. Known as one of the most elegant theorems of diffi@tegeometry, th€&auss-
Bonnettheorem links this global geometrical value to tienus a topological invariant
(remains unchanged under homeomorphisms of the surfaca)cdmpact surface (that
closes on itself) ifk? is considered, its genuss the number of its holes. It turns out that
the integrated value of the Gaussian curvature followsitnele relationship

KdS = 2ny(OM), (1.28)

oM

in whichoM is the compact surface and= 2—2g. The beauty of this theorem is that the
local geometrical property such as Gauss curvature, whegrated over the surface be-
comes topological invariants. It appends thas none other that the Euler characteristic
of the surface. It is also a topological invariant. For exenfor a sphere of radius the
Gaussian curvature will be at each poairit2, leading to an Euler characteristic fFor
atorus, the genus is= 1, leading to a zero Euler characteristic. It means that tiséige
part of the Gaussian curvature and the negative one carebdizer out when integrated
over all the surface. Any of the two examples resultg inot depending on any radius,
showing the invariant aspect of topological propertiese Euler characteristic can now
be tackled from the manifold (and not his surface) point efwi“Holes” in the surface
are now seen as “handles” of the manifold. It turns out th@&hler characteristic can be
computed as an alternative sum of the numbej-dimensional topological features. In
three dimensions it gives:

X (M) = #{connected component- #{handle$ + #{holes. (1.29)
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An interesting example is ifi/ is a set of disconnected components with neither hole
nor handles, its Euler characteristic is the number of itamonents, making it a useful
particle counter. This property is used later.

The Euler characteristic has been introduced by the pohgfiedmula. It can charac-
terize a more complex body if subdivided into polyhedra dltegether ©. (1.27). Then
for a body of smooth surface it is presented by the mean o&searGGaussian curvatures
in R3 linking topological invariant to geometrical propertiesce considered in a global
fashion K. (1.28). Finally it can be seen as a countey-afimensional objects, counting
alternatively in positive and negativeQE (1.29). Actually the latter definition and the
polyhedra formula are closely linked together. Indeedait be proved that, if a set with
a smooth boundary is covered by a lattice fine enough, ther Eégacteristic of the set
(EQ. (1.29)) equals the Euler characteristic of the lattice.(EL.27)). This is a useful
property used in this study in order to validate the numénmplementation.

3.2.3 Lipschitz-Killing curvatures

The aim of the brief reminder on measure is to introduce thienof j"-dimensional
measure. As specified above, ¥, four LKCs are defined, noted;, ; = [0..3], each
one corresponding to a different measur@BT(1.2) summarizes all the measures and
each corresponding LKC. Their values for a cube of sizs well as their meaning are
also given.

| Measure| Corresponding LKC Value for a cubd Meaning |

140 Lo 1 Euler characteristic

151 Ly 3a Twice the caliper diameter
7P L, 3a? Half the surface area

u3 £3 a’ Volume

14 L; < i’ ) al j"M-measure

Table 1.2: Meaning of each four LKC for a cube iR3.

Another way of defining LKCs (proposed in [Adler, 2008]) tbhgh theSteiner’s for-
mulais now proposed. It also introduces useful notions for the section such asibes
A tubeK(A, p) is the volume enlargement of a convaxc RY of diameterp > 0. It can
be defined as follows:

KAp) = {o € B |min(le—yl) < o} (1.30)

Interest in Steiner's formula@& (1.31) resides in calculating the volunvg, of these
enlarged sets ii®" by adding contribution of eac + 1 LKCs of A. It can already be
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noticed that an exact result is retrieved with a sinfplge summation. The volume of a
unit ball in dimensiory is used and noted; (further details in Ar A).

N
Va(K(A, ) = 3wy 07 £5(4). (1.31)
j=0

The reader is invited to check, by the mean of usual calanatand by using & (1.31),
that this volume applied to a cubeltt of sizea (C' = []3[0, a]) is:

4
Vs (K (C,p)) = a® + 6a*p + 12ap* + gﬂ'p?’, (1.32)
and therefore, that each term can be identified, giving thening of j"" measure of each
LKCs. Notice that it exists as a formula for much more gense#sd (not necessary useful
in the presented framework), usually caltetbes formula¢Weyl, 1939].

LKCs and their physical meanings in the Euclidean sgatdave been presented.
Theye were quickly said to bmtrinsic, thus giving the property of invariance to the
computed volumes through the measure chosen in the Euclgjiee. Used as a measure
of the probability space, another setmain-intrinsicfunctionals referred to aginkowski
functionalsare now presented.

3.2.4 Gaussian Minkowski functionals

Minowski functionals are closely linked to LKCs and can béred as follows for a
subsetd c R¥:
MN,J'(A) = (N — j)!wN,j LJ(A) (133)

More popular than LKCs, Minkowski functionals are used imyéelds in order to char-
acterize morphologies. Especially in the astrophysicsroamty (see the pioneer work
of [Mecke et al., 1994] in whiclSteiner's formulas presented with these functionals)
leading to huge amount of literature on the topic [Mecke armdjiér, 1991, Winitzki and
Kosowsky, 1997, Kerscher et al., 2001].

In contrast to LKCs, the Minkowski functionals are not ingic. Therefore, they de-
pend on the used measure. This can be seen as a foretaste cdlbolating geometrical
properties of excursion sets is linked to the probabilita@aussian RV to be in the so-
called hitting set. Hence, the measure of a Gaussian disisibis of concern here. Let
v be such a measure in the Euclidean sgatelf X = {X;} is a standard Gaussian
vector of sizek in which X; ~ .#7(0,0?), i = [1..k] are independent and C R*:

1 2 2
— - - —[l|[*/20
(A) =P{X € A} (2] /Ae dx. (1.34)

Associated to this measure, the functionals are now c&8kmassian Minkowski function-
als (hereafter GMFs). In &-dimensional space, aldo+ 1 GMFs are defined, noted
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M;*, j = [0..N]. The main results of [Taylor, 2006] is to yield a Taylor expam of
tube probability content & (1.35) for small enough. It can be seen as an extension of
the Steiner-Weyls formula@& (1.31), in whichry, represents the volume in the sense of
Gaussian measure (Gaussian volume).

Taylor expansion of tube Gaussian volume

(KA ) = 30 LM (4), (1.39

By taking p = 0, it can be concluded that the first Gaussian Minkowski fuorl
is the Gaussian volume of itself, MJ*(A) = v,(A). Other GMFs can be identified in
specific cases. The content of the next section dealsAviilinere it is specified to fall in
the excursion set framework presented in the previousmsecti

3.2.5 Application to Gaussian distribution

Even though the presented formulae work for more genera&scaissuffices in our
case to také: = 1, corresponding to single value RF: R? — R. GMFs, by their non
intrinsic aspect, are Gaussian measures. In order to fieiexloursion set framework, it
is only natural to take interest in measuring the hitting det H, = [k, ool. It leads to
several simplifications. First, the Gaussian volume of tignly set is the complemen-
tary cumulative density function (or tail distribution,ted ¥) of the underlying standard
distribution:

7([k, o) = P{X >k} = ! /OO e~ de = W (k), (1.36)

oV 2T

furthermore, the tube dk, co| can easily be defined and its tail probability linked to the
tail distribution as follows:

K([r, 00[, p) = [k = p,00[ @and n([x — p, o0[) = U(x — p). (1.37)

Each GMFs of B. (1.35) can be identified by the unique standard Taylor esipanof
U(k — p) for smallp, leading to:

GMFs for Gaussian distribution

Forj =0, MJ'([k,o0[) = ¥(k), (1.38a)
;& U(k) _ e K /20
dx’ oi\2m

whereH;, j > 0 are thej" probabilist Hermite polynomials (seerR& A for details).

forj > 1, M} ([, 00]) = (~1) H;_(k/o), (1.38b)
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In this section, it has been seen how are computed the Gauldsiltowski function-
als for Gaussian distribution. The next section shows haantbe extended to Gaussian
related ones and how it can easily fall down to the latter wakth

3.2.6 Application to the Gaussian relatedy-square distribution

It has previously been stated@E(1.5)) that Gaussian related RFs can be defined by a
transformation (noted) of a Gaussian RF. It occurs that because these fields areagbro
of an underlying Gaussian distribution, the principle olGsian measurement stated just
above can be applied. In order to retrieve the previous ftatin, the transformatioy
can be taken into account for the hitting. Hence GMFs cahbsilsed even if they are
defined for a Gaussian measure.

This principle can be explained by the following statemehisst, letg, be a Gaussian
related RF defined by, a vector valued Gaussian RF of sizand.S, a transformation
from R* to R. The Gaussian related RF is then givengpy= S(g). Now, if H, is the
hitting set defined foy,., then attention has to be focused on the probability measure
to be in this hitting set. Starting from that point and usihg tiecomposition of Gaussian
related RF, the following equations can easily be yieldedli¢A 2008]:

P{greHs} = P{S(g) EHS}
= P{ge S (H,)} (1.39)
= W(STH(H,)).

It shows that the Gaussian related measure can fall dowretsitiple Gaussian measure
~v,. Hence, the Gaussian Minkowski functionals can be useddhesvay as shown
above, but on a modified hitting sét}(H,). However, since is defined oveiR*, the
development of B. (1.34) fork € N is needed. Application for the specific case\@f
case is now presented.

For ay? distribution, the functiort of a Gaussian related RF is the norm function:

k
S@)=lgl = g.=> ¢ (1.40)
=1

The first step is to construct the transformed hitting $et(H,) corresponding to the
Gaussian measure. H, = [k, oo[ is the hitting set considered for the Gaussian related
RF then:

SN (H,) = 5" ([K, 00]) = R*\Bgr (0, V) , (1.41)

with B the centered ball ifR* of radius./x. The next step is to yield the Gaussian vol-
ume of this hitting set with B. (1.34). Using spherical coordinates, thedimensional
integration falls down to one dimension (the developmentasle in AR A):

(ST ([K, 00]) = O,k(zw)k}QI‘(k/Q) /r\/E e (1.42)
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The resolution is now the same as for Gaussian RFs. A staf@dgtdr expansion of

Y (K(S7! ([r,0]), p)) is made and each Gaussian Minkowski functional is identified
with EQ. (1.35). In order to get back to the initial definition of thigting set H,, using

K, a variable substitution < r?/20? leads to the following definition of the Gaussian
Minkowski functionals applied to g2 distribution:

GMFs applied toy; distribution

Forj =0, MJ(S™ ([, 00]) = T(k/2,k/20?%). (1.43a)
Forj > 1, MJ*(S7" ([r, o0)) = (—1) %T(k/z K/20%), (1.43b)

where

e}

T(h, ) = /t £=le=tdt /T ()

=T

is the regularized upper incomplete gamma function.

It is worth understanding that those Minkowski functionaie still based on Gaussian
measure. In order to fit the? distribution, only the initial hitting set is modified by .

In this section, two classes of functionals that charaoteai morphology have been
presented. First, thepschitz-Killing curvaturesconsidering intrinsic properties (not de-
pendent on the measure used), are used in order to chazadtexiexcursion set morphol-
ogy. Furthermore, it has been seen thiatkowskiones can compute Gaussian volumes
(using Gaussian measung). Itis through those functionals that statistical infotioa of
the random distribution used is gathered. Analytical deéinihas been given for hitting
set[x, oo[C R for both Gaussian ang distribution.

The next section presents the main result of this chaptearraulae that links the
excursion set morphological characteristics (LKCs) tadistiaal information of the RF
and the hitting set used.

3.3 Expectation formula

The result presented in this section is of fundamental ingp@e in this chapter. It
is the basis of the work of [Taylor, 2001, Taylor and Adlerp20Taylor, 2006]. It links
the statistical information of the distribution used, thitiig set (via the GMFs) and the
spatial structure of the correlated RF (via its covariamcefion second spectral moment)
to the geometrical and topological characteristics of teiesion set (via LKCs). Since
excursion sets are the results of a level set of RBzations naturally, the LKCs has to
be seen in terms of expected values. Basically, this chdeferes the” function of the
following equation:

E{L;(E)} = F(H,,C,)S), (1.44)
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in which £; are thej™ Lipschitz-Killing curvaturesE,, the excursion set{,, the hitting
set,C the covariance function of the correlated RF (containirigrmation on the distri-
bution, 0% and the spatial structurg....) andsS the function defining Gaussian related
distributions.

3.3.1 Afirst taste of the formula

It has been seen that the first Gaussian Minkowski functsoaed measures of the
probabilistic space. Furthermore, the first functional b@sn identified as the Gaussian
measure itsel,, enabling the computations of Gaussian volumes. As retpltt above,
this measure only provides information on the distributioot on the spatial structure of
correlated RFs. Nonetheless, the computation of the expectof the last LKC of an
excursion set (volume) can be done while only knowing this.

If g is a stationary correlated Gaussian RF, at any poiat)M, it can be seen as a RV
with the same given marginal distribution. Hence, the pbdlig of this point to be part
of the excursion sei.e.thatg(x) € H,) is equal to the Gaussian measure of the hitting
set, thus yielding to:

Vo € M, P{g(z) € H,} = y(H,) = MJ(H,). (1.45)

The first GMF can be seen as a local descriptor of the excusabwolume. Notice that
it does not depend om, making it easier to integrate ovéf. This property can be used
in order to calculate the volume of the corresponding excarset. Since the marginal
distribution is constant oveY/ it can be yielded by simply multiplying the probability of
each point to be i/, by the volume ofM (L (M)). It leads, for the more general case
of Gaussian related RF, to:

E{Ln(Es(gr, M, Hy))} = Lx(M)MG (S (H)). (1.46)

This equation only applies in the case of volume computafdmstructural information
of the correlated RF (for example its correlation lengthjeégded sinc&{g(x) € H,}

Is constant overM/. Unfortunately, this simplistic vision cannot be extendednore
complex measures such as the other LKCs. The following@egtiesents the general
results of [Adler, 2008].

3.3.2 General formula

Let g, be a Gaussian related correlated RF defined asQn(EE5). Since Gaussian
RFs are Gaussian relatefl & id), the following result is rather general. L&t be the
second spectral moment of the underlying Gaussian RE&And R the hitting set. IfE,
is the resulting excursion set, expectation of the LKCs @odmputed as follows [Adler,
2008]:
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Expectation Formula

NG A\ 1
B (Bl M) = 3 (157 ) 22 (52) L 0r) M (57 (1)
= (1.47)

It can be sensed that this relationship between, on the ankhiting set and probabilist
characteristics of the correlated RF, and, on the other,ithedneasure of the resulting
excursion set, is strongly non linear. Hence, the end ofgbaion focuses on develop-
ing it in a special case and analyzing the curves. Verifioatiof this theory on actual
excursion sets are also presented and commented on.

Prior to that, it can be quickly checked that, in the one-disienal case presented
above, the Euler characteristic can be linked to the numbep-@rossing levels defined
EQ. (1.15):

E{Ly} = MJ* + E{N}. (1.48)

3.3.3 Physical interpretation

In this section, B. (1.47) is developed fog : ¢ € R?* — R a correlated Gaussian
RF of zero mean and? variance. Its covariance function is taken to be Gaussidm wi
correlation lengthl.., making the second spectral momeat= 20%/L2%. g is defined
over a three-dimensional culde of sizea x a x a. LKCs of this set are summarized
in TAB. (1.2) The hitting set is the open subset®f H, = [k, oo[ as above. Hence
Minkowski functionals can be yielded as iQE(1.38). LKCs of the resulting excursion
set in these conditions can now be explicitly developedgims ofx:

Expected LKCs for Gaussian distribution

[ 1 &® (kP 3 'k 3 al 2.0
B{L(E)} = | =T (; - 1) b ] )
(1.49a)
[ 3 K 2 2 2
E{L1(Ey(r))} = Wg—@%; %Z— e127" 1 30 (ko) (1.49b)
E{Ls(Es(k))} = g%ge_“2/202 + 3a*V (k/0) (1.49c)
E{L3(E,(k))} = a®¥ (k/0) (1.49d)

where V¥ is the complementary cumulative density function (taitrlsition) of a
Gaussian distribution.

FIG. (1.10) represents the volume and the Euler characteasggcursion sets of
for a large range of level sets.
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(a) Volume fraction. (b) Euler characteristic.

Figure 1.10: Two Gaussian excursion set LKCs.

It has been seen that the volume is proportional to the tablgdility of the underlying
RF. Its constant decreasing shape clearly reflects thedevelffect on the excursion and
its link with Gaussian measurg. In other words, the volume of the excursion is the
Gaussian volume. Hence it is rather intuitive that its vatuthe tail distribution. Even
if more peculiar, the Euler characteristic curve shape @#sily reflects the effect of the
level on excursion set topology. For valuesrofower than the lowest value af, the
Euler characteristic is that of the full culde (£, = 1). By increasing it, several holes
appear, counting in positive for the Euler characterisfi¢ & 1). Then, the expansion
of the holes starts to form handles which lead to a spongettikology £, < 0). By
increasings even more, handles disappear forming a meatball-like tmpyodf connected
componentsf, > 0). Finally, the Euler characteristic decreases o= 0 when no more
connected components remain.

The theoretical framework of correlated RF excursion satslieen presented in this
section. First, mathematical functionals known as ltigschitz-Killing curvatureghat
characterize the manifold have been defined. Then a forrhatdibks the probabilistic
properties of the underlying RF and the hitting set with thabaracteristics has been
given. It predicts and controls, statistically speakirftgg &xcursion set properties. In
three dimensions, four measures are defined. Herein, feausly made on the volume
and the Euler characteristic, giving both geometrical ablogical descriptors. The
next section aims to validate the numerical implementabypromparing experimental
measures of actual excursion set realizations and theakgtlues.

3.3.4 Validation of the numerical implementation

Excursion sets are represented by a discretized binarydiéided byl if in the excur-
sion and) if elsewhere. In order to validate the numerical implemgota morphological
characteristics of actual excursion sets are comparectodtical results.

Gaussian correlated RFs of zero means, standard deviatiers and Gaussian co-
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variance of correlation length. = 10 are yielded in a three-dimensional cube of size
a = 100. Attention is focused on the volume fractidfy = L3/a* and on the Euler
characteristicy = L. It is recalled that the latter is calculated with the polgtaefor-
mula EQ. (1.27). Results are plotted in&. (1.11) where mean values of both volume
fraction and Euler characteristic are represented in t@fiesvel set values from —25

to 25 (corresponding to the whole range of RF values). In ordeptiaie relevant statis-
tical information, calculations are made ouéf realizations. Analysis is made using the
mean square error far; andy over all level sets for each realization (results are given i
TAB. (1.3)).

Theoretical
09+ Experimental +
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Figure 1.11: Validation of the numerical implementation.

It is recalled that the theoretical equations only give infation regarding the first
statistical moment. From this point of view, validation bétnumerical implementation
can be done by a simple look at the curves. Indeed experitmaetn values fit quite
well with the theoretical curves. It is quantified by the meatue of the error function as
well.

| Characteristiq Meany, | Variances? | Coefficient of variationr /11 |

Error onV; 0.006 10-° 0.6
Error ony 3.3 0.5 0.2

Table 1.3: Statistical analysis of the error of excursion set charasttes.

The statistical analysis on several realizations alsoigesrather interesting informa-
tion on the second moment. Herein, the very low variance@éthor (and the coefficient
of variation) insures that the characteristics of the esioms are not too spread around
the expected values. In other words: it is insured that thephwogical characteristics
of onerealization will be close to these targeted. Hence, theaandspect that the ex-
cursion set brings to any morphological model is only abbatdpatial repartition of the
shapes, not about their characteristics, a key and neggssgerty.
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4  Application to cementitious materials at different scals

In the two previous sections a morphological model usingetated RF excursion
sets has been introduced emphasizing both theoretical@néncal aspects. Attention
is now drawn to applying it in order to model heterogeneitésoncrete-like material.
Two scales are considered leading to two different kinds ofphology, and so two dif-
ferent kinds of problematics. The section is organized #devis. The first part deals
with meso-scale representation that is of the order of tHenmeiter [m]. Hence, the
morphology of interest is made of aggregates melt within atananatrix. Topologi-
cally speaking, a set of disconnected components needsiombeled. Added to the non
uniform length characteristic of aggregates, this parnhig@portunity to raise two main
issues:reaching high volume fractions with a disconnected topglagd representing
a grain size distribution The second part presents two applications for which coacre
is looked at the (thiner) microscopic scale, which is lessitthe micrometer/fm]. At
this scale and for obvious numerical reasons, smaller vetuane considered and only a
cement paste without any aggregates may be representedeviEiow is now seen as a
heterogeneous porous media. The main change is that tmgepike topology grants
a better flexibility to the morphological model. In this paatfirst application on cement
paste will be an occasion to represent porous space withhiginyspecific surface. Then,
a second application which aims to model early age cemerte pgdration will explore
two other representative aspects of the excursion set hes&li a multiple — here three
— phases representation and an analytical procedure tererdlution through time of
those phases.

Notice that, with regard to those tangible applicationdy emorphological aspect is
of concern.

4.1 Meso-scale modeling of concrete

In this section, details on the morphological modeling afiaete-like material het-
erogeneities are given. A scale range has to be determiredén to define which kind
of geometrical information is needed to be representedeiHgefocus is placed on the
first scale below the macroscopic one referred as the mede-skhe length range taken
into consideration goes from above the millimeter to huddref millimeters. At this
scale, concrete-like material can be represented by twegsh@ach of them assumed to
be homogeneous): the aggregates and the mortar. Hencefecdppology is considered
in which disconnected inclusions are embedded within aanoniatrix. Several features
of these morphologies.g. high volume fractions or grain size repartition, have to be
tackled with attention, especially within the excursioh fsamework. Both aspects are
now treated.
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4.1.1 Reaching high volume fraction with disconnected todogy

In order to understand the problematic of this section, iecalled that several char-
acteristics have to be taken into account when a morphokggnsidered (actually four
in a three-dimensional space as seen above). Herein, onlptthem are assumed to
be relevant. The first characteristic is the volume fractioand the second is the Euler
characteristioe. While the first grants a geometrical measure, the lattesésias an in-
dicator of the topological rendering. The two others (on@ tavo-dimensional measures)
are let free. Due to the length range considered here, voftantons higher tha0%
are targeted. These values can easily be reached if no tppaloestrain is set. Actu-
ally, by choosing the right level set,GE (1.49d) shows that any fraction can be computed
from 0% to 100% (corresponding ta: — oo andx — —oc for a Gaussian distribution,
respectively Fc. (1.10(a))). It becomes more complicated whether a secestdain ap-
pears, in our case, the topology. As it has just been saidscinected morphology of
inclusions within a matrix is wanted. It naturally corregsgs to high values of the level
set and therefore to low volume fractions. By considerirggghysical meaning of Euler
characteristic (see@ (1.29)), this topology is quantified by positive valuesyodlue to
components and not to holes. Inak- (1.10(b)), it is located after the second zero, around
the second local maximum. It can be checked ia.K1.10(a)) that indeed, these level
sets lead to low volume fractions. The quantity of interesaken to be this second zero.
This point is discussed with more details in the last seatiothis chapter but for now, it
can be admitted that it corresponds to the percolation aéxcarsion set. In other words,
by taking x decreasingly from infinity, it is whery is first null that a path among the
excursion is made between two facessJf is this level set, it is assumed that all values
greater than it are acceptable for the modeling.

Before proceeding further, a handful length-scale ratijpdf an excursion set is de-
fined Q. (1.50) by the ratio between the correlation lengthand the domain size.

o= (1.50)

The graph in k6. (1.12) draws expected values pfin terms ofx for several ratiosy
(Euler characteristics are normaliz&@y } /max(E{x}) in order to represent them on the
same graph). As mentioned above, attention is focused,gncorresponding to; = 0
for x > 0. Notice that,+ decreases along with the ratiountil a certain value where it
is not defined anymore. An analysis of this feature is now psep.

First, notice can be made that the equation of the Euler ctarstic Q. (1.49a) is
made of order three polynomial wy L.(= 1/«) (with no constant term) multiplied by
an exponential to which the tail function is added. For venal o, only the first term
of the polynomial can be retained, thus leading to a very Eragpression of the Euler
characteristic B. (1.51). Actually, this equation was discovered by RobeleAin 1976
during his Ph.D. thesis. The other terms have been intrablogéhe late Keith J. Worsley
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Figure 1.12: Expected values of the Euler characteristics in terms @ lests for Gaus-
sian excursion sets of unit variance and several ratios

[Worsley, 1996] and may be seenlasundary correctionsr boundary effects

- 1 a3 /<02 7,{2/202
E{x} ~ o I (; - 1) e : (1.51)
Hence, a null value of the Euler characteristic necesskdgls tox,+ = o. The corre-
sponding volume fraction is theb = ¥(1) ~ 16%. This case gives an accurate result
for suitable topologies, although it is a lower bound. Thapgrin HG. (1.13) draws
the higher volume fraction®(xp+) (plain curve) in terms of the ratia. The horizontal
dashed line corresponds to the latter asymptotic valuanibe seen that by reducing the
cube size, this volume fraction increases until a limit awea ~ 0.3 depicted by the ver-
tical dashed line (for a unit correlation length, it corresgs to a cube of size ~ 3.4).
Beyond this value, the expected Euler characteristic isygwpositive (seelE. (1.12)
for « = 1/2). It can be understood by considering the other extreme éasevhich an
excursion set is considered in a very small cube. Simpliboatf EQ. (1.49a) tells that
the Euler characteristic equals the tail probability arehthalso equals the volume frac-
tion. It can be interpreted as follows:df > 1 then the RF tends to be constant in space.
Hence, an excursion is whether the cube itself or nothinga®actual realizationy(r)
would be a step function, getting froimto 0 discontinuously. It is the statistical expected
value aspect that grants the smooth shapB{of(x)}. Anyway, no further topological
information can be withdrawn from these cases.

Even if the volume fraction between the two extreme casassée be high enough
on the graph, experiences have shown that, consideringheetigtio thane ~ 0.15
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Figure 1.13: Higher volume fractions for disconnected topology.

leads to connected topologies even for level sets sligiglydr tharx,: . The side effects
are too strong in these length-scales and the statisticahimg of expected percolation
does not stand anymore. Discussion on that matter is madeeolagt section of this
chapter where these considerations leads to the deterammdia Representative Volume
Element for percolation. On the other hand, it is importanbé¢ able to represent vol-
ume fractions regardless any heterogeneity sizes. It ihtme reasons that the maximal
volume fraction is assumed to be the asymptotic value fonitefidomains. Hence, for
Gaussian distribution:

1 = 16%. (1.52)

In order to increase this value, a solution usirfgdistribution is now proposed.

First ay? distribution with one degree of freedorh & 1) is considered. If is a
Gaussian RF theg. = S(g) = ¢° follows they? distribution. As seen during the presen-
tation of excursion set theory, dealing with excursion sétSaussian related distribution
falls down to a simple hitting set transformatién'. Herein, if the hitting set of interest
is H, = [k oo for x2, it becomesS~!(H,) = |—occ — /K| U [{/k oo] in the Gaussian
point of view (notice that now: > 0 sinceg, takes its value iR, ). Basically, due to
the symmetrical aspect of Gaussian distributions, thersimo set volume has doubled.
This feature is represented with two-dimensional excasio HG. (1.14) where both
Gaussian and correspondigg excursion are represented.

It is then only natural to stipulate that the maximum volumaefion has doubled too
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Figure 1.14: Comparison between Gaussian arjcexcursion sets using the same under-
lying RF.

(it can easily be shown the same manner as for Gaussiarbdistn). Hence:
Xy = 32%. (1.53)

However, the behavior of excursion when- 0 has to be tackled with caution. A topo-
logical discontinuity occurs at zero, corresponding totthesition betweeis ~ (H,) =
R* andS~1(H,) = R. In the first case, two completely disconnected parts of xcere
sion can be identified; the one from the lower parSof (H,), | -co — /x| and the one
from the upper part,/x oo[. Those two phases are connected together only wherd,
leading to a jump from a very low value of the Euler charasteri(y < 0) to a unit value
(x = 1). Itis proved that a regular behavior is obtained by indreashe number of
degrees of freedonk (> 5), thus avoiding this discontinuity. Herein, it is not thencern
sincex is taken greater thas,+ (i.e. far from this discontinuity).

By analyzing the maximum volume fraction with several nursl degrees of free-
dom of they? distribution, it can be directly seen that the best case iresrfar k. = 1.
FIG. (1.15) shows for a very low length ratia (= 0.001): on the left, three curves rep-
resenting the Euler characteristic with= 1, 2 and5 and their respective,: and on the
right, the corresponding volume fractiof§r,+ ) for 1 < k& < 25, showing its decreas-
ing shape. For infinite number of degrees of freedom, it @éljutends to the Gaussian
limit of 16% (due to central limit theorem). Finally, g distribution is retained in or-
der to model a disconnected topology. The precaution comgig taking a level set
slightly higher thark: is taken in order to insure the desired topology. Deterngjraith
parameters of the morphological model can be decomposée iiollowing steps:

Step 1: Determination of the ratio/o
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Figure 1.15: Maximum volume fraction in thg; case for a ratiev = 0.001.

Thanks to the previous analysis, the maximum volume conipeifar a suitable
disconnected topology is known. For example let considargeted volume frac-
tion of 20%. As depicted in K. (1.16(a)), B. (1.49d) gives the value ef/o. If a
unit variance distribution is considered, thefy, is explicitly known. Notice that
this step is independent of any length scale.

Now, in order to move on topological considerations, a |brggtale has to be fixed. De-
pending on the problematic, @ (1.49a) can be used as described in step 2a or step 2b. It
is recalled that for these disconnected topologies, therElaracteristic represents the
number of components.

Step 2a: Determination of the correlation length
If no length-scale is imposed, a number of inclusions canabgeted. Since:
is determined during step 1, a simple inversion of. £1.49a) for a given size
leads to a value of... Note that choosing the volume fraction and the number of
components leads to a single component size.

Step 2b: Determination of the number of inclusions
If a length-scale is imposed by the problem; for exampleusicins of sizel in
a cube of sizel000, as shown in K. (1.16(b)), K. (1.49a) gives the expected
number of inclusiong ~ 44873.

Unfortunately, this theoretical case is hardly computaitee the ratiax = 0.001
implies a generation of heavily discretized correlated.Rfsvever, using the numerical
framework presented above yields three-dimensionalza&t#dins of200 x 200 x 200
points in a reasonable time (less than an hour). It can adyn@present a length ratio
of « = 0.01. Examples in a cube of size = 100 with L, = 1 and 10 are shown in
Fic. (1.17).
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Figure 1.16: Expected LKCs fory? excursion set of unit variance amd= 0.001. A
volume fraction oR0% is targeted giving a corresponding Euler characteristitiet3.

(@) a = 100 andL. = 10 (a = 0.1). (b) @ = 100andL, = 1 (o = 0.01).

Figure 1.17: Disconnected excursions wiff)% volume fraction using &? distribution
with two correlation lengths.

In this section it has been described how to double the maximalume fraction of
disconnected morphologies usingya distribution of one degree of freedom instead of
a Gaussian one. A criterion independent from the lengtb rathased on percolation of
the excursion is used. With a certain margin to insure a Isk@iteopology, it has been
seen tha0% of volume fraction can easily be modeled. The following setgives
directions on an additional method that combines severalrsion sets with different
correlation lengths in order to, on the one hand, still inseethe volume fraction and, on
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the other hand, represent a size distribution for hetereitjes.

4.1.2 Modeling of the grain size distribution

Up to this point, only one characteristic length was congddor excursion sets.
However, morphological modeling of aggregates has to beesepted by heterogeneities
that follow a given grain size distribution. Henceforthe tthallenge is to yield a single
excursion with different characteristic lengths and $tilbe able to control its geometri-
cal and topological properties. The idea is to consider afs&t independent excursions
{E*}, k = [1..K] with their own characteristics. Among them, the most impatthar-
acteristic is of course the correlation lendth And finally, the union of every excursions
defines a new excursion which possesses multiple chastatéengths. These excursions
are referred as:

K
E)=|JEL (1.54)
k=1
Along with several hypothesis, the principle of measurerobun of sets is used in order
to estimate the different LKCs of the resulting excursion.
To begin with, a simple two-dimensional example is congderLetE! et E? be
two excursions of respective LKCs and correlation lendts}, L and{£2}, L2 Itis
assumed that! > 2. FiG. (1.18(a)) represents the two excursions defined on the same

domain,E! being in light grey and2? in dark grey while Fc. (1.18(b)) represents the
union of bothj.e. EY.

D 'a D
JE O
& o e

(a) Two excursion sets. (b) Union of two excursion sets.

Figure 1.18: Illustration of the use of several excursions — two here.

In a more general case, attention is drawn to the calculati@ach LKCL,,, n =
[0..N] of EY ina N-dimensional space. Following the axiomatic that defingsaeasure,
it can be yielded by:

L,(EY) =L, (E}UE?) = L,(E}) + L,(E?) — L,(E} N E?). (1.55)
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Under hypothesis of sufficient ergodicity for the undertyiRFs and statistically repre-
sentative volumes (low length ratie for both excursions) the assumption that e
measure of the intersection is approximated by the actuakare of the lower correla-
tion length excursion pondered by the specific value of te L&C of the higher one
(the specific surface area in two dimensions or the fractaamae in three dimensions)
can be made. It leads to a completely predictable approiomaf each measure of the
union:

Lo(BY) = Lo(BLU E?) m Lo(BY) + Lo(E2) (1 - Ox(EL),  (1.56)

On(EL) = Ly(EY)/Ly(M) being the specific value.

Under the same assumptions, the generalization of thisipteito the union of more
than two excursions is rather straightforwardklfexcursions are considered with differ-
entsortedcorrelation lengthsi(! > --- > L* > ... > LK), using a recursion process on
EQ. (1.55), the LKCs can be computed:

K k—1
Lo(EY) ~ Lo(ED) + Y La(EY) (1 -U @N(Eg)> , (1.57)

k=2 =1

in which, thanks to the Poincaré formula and the approxwnanade in K. (1.56), the
union of ®;, can be computed as follows:

K K

UenEH =) ((-1)'@1 > Oy (BN Dy (E2) . .. @N(E;k)> . (1.58)
k=

k=1 1 1<41 <t <<, <K

Finally, since measures of each excursionisgtre predictable, expected values of the
LKCs, E{L;(E;)} can now be computed. It is recalled thap.K1.57) is an approxima-
tion. Hence, comparison with experimental results is reoemded. Three excursions
usingx? distribution and characteristic lengtlis = 10,5 and?2 are defined in a three-
dimensional cube of size = 100. Both Euler characteristi¢ = £, and volume frac-
tion ® = L3/a® of the resulting excursion are compared to the analyticat@pmation
EQ. (1.57). Results are drawn ind-. (1.19), notice that, even if not mandatory, for the
sake of handful representation, the excursion set is thatireg union of excursion sets
thresholded with the same level set.

It can be seen directly that the approximation for the voldraetion is rather good.
On the other hand, the theoretical Euler characteristidwsys overestimated for low
level sets. It can be explained by a too coarse discretizagigarding the sponge-like as-
pect of morphologies and by the discontinuous aspegt ecursion sets near(numer-
ically hard to catch). Anyway, regarding disconnected togg the maximum number
of particles is well estimated, as for the decreasing patth®fcurve. Another important
feature that unions enable is that the computable volunotidres are much higher than
while using a single excursion. Notice that on the preseai@mple that, for,:, the
volume fraction is around0%. As a precaution, the level set is taken so that> k¢,
leading to excursion sets @6% volume fraction and disconnected topology.
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Figure 1.19: Comparison between experimental and theoretical chaistote of excur-
sion sets union.

At this stage, it is wise to base any morphological modelsiggiunion of RF on the
volume fraction and consider the topological aspect moraragdicator than a reliable
value. Finally, higher values of the level set than thosemesied are recommended in
order to model disconnected topologies.

Now that the use of several lengths has been presented, ther wfatheir choice in
order to model realistic morphologies is of concern. Amamg multiple classifications
of grain size ranges,AB. (1.4) refers to that of [Wentworth, 1922]. The morphol@dic

| Name | Size range (diametdp) [unit] |
Boulder D > 256 [mm]
Cobble 64 < D < 256 [mm]
Very coarse grave| 32 < D < 64 [mm]
Coarse gravel 16 < D < 32 [mm]
Medium gravel 8< D <16 [mm]
Fine gravel 4<D<8 [mm]
Very fine gravel 2<D<4 [mm]
Very coarsesand| 1 < D < 2 [mm]
Coarse sand 0.b<D<1 [mm]
Medium sand 025 <D <0.5 [mm]
Fine sand 125 < D < 250 [xm]
Very fine sand 62.5 < D < 125 [em]
Silt 4 <D <625 [xm]
Clay D <4 [em]

Table 1.4: Simplified classification of granular materials followingy¢ntworth, 1922].

modeling of a set obnly one clasparticles can be made by using an excursion set with
a single correlation length chosen in the ran@g,in < L. < Dmax. FOr example, fine
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gravels can be modeled by takidg = 6 mm. It is assumed that, due to the random
aspect of the framework, a distribution of disconnectediglas which sizes are spread
around the correlation length produces an acceptableseptaion. It can be extended
to several classes using unions of excursion sets in which egcursions of the union
represents a single class. In order to follow a given distidim of sizes (granulometry),
the volume fraction of each excursion has to be determined.

In mathematical morphology, the field related to grain siggridbutions is also re-
ferred asgranulometry It has been introduced by Georges Matheron [Matheron, 1975
and defines the size distribution of a set of particles (oreggtes)- through a series of
sieving. Each sieve has a hole sizand can be represented by a mathematical operator
U, that returns the subset of all particles@ksmaller thars. This operator has the three
following properties:

Anti-extensivity
This first property depicts the fact that if a particle € G is largers then, it does
not pass through the sievie,. Hence, the result of a sieving is contained in the
original set of particles. It can be the set itself if all peles are smaller thas.
This property is written:
U, (G) CG. (1.59)

Increasingness
This second property reflects a regular aspect of the pHysieaning of sieving.
If a subsetH of set of particlegs is sieved by, then the result is a subset of the
sieving ofG. Thus leads to:

HCG= T,(H) CU,(G). (1.60)

Stability
Finally, this last axiom considers two sieves of sizeands,. Whatever the order,
a passing through both sieves is equivalent to a singlermma#siough the thiner. It
can be expressed by:

\1[81\1182 (G) = \1[82\1181 (G> = \I]min(sl,SZ)(G>' (161)

Notice that it can easily be generalized to more than twoesiev

The physical meaning of this mathematical tool reflects ikeesanalysis used to
measure grain size distributions of actual concrete-lilemals. If a measurg(G)
defines the mass @f then the cumulative distribution of particles can be repnésd by
the ratiou(V4(G))/u(G) in terms ofs. Under the hypothesis of identical density, it can
also be interpreted as a volume fraction.
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In order to fit in the numerically computable range, only nuedlj fine and very fine
gravels are considered here in a cube of size 100 mm for a total volume fraction of
® = 40%. Itis assumed that the granulometry gives the followingigal

For medium gravels: u(V(G)) = u(G).
For fine gravels: w(Ws(G)) = 0.75 u(G). (1.62)
For very fine gravels: u(¥4(G)) = 0.25 u(G).

For this granulometry, the parameters of each excursiocaetnow be set. Volume
fractions ared-23} = {0.25®,0.5®,0.25®}, respectively, and the correlation length is
taken to be the average of each class extrema diameterg gj\?lﬁ’?’} = {12,6,3}?,
respectively. With regards to the union set theory, voluraetions of each excrusion set
will have to be targetted higher than the wanted value. Imd¢hse, they are computed as
follows:

Dfager= ' = 0.25 (1.63a)
P2 0.5P
2 _ _
Praget = T 1 = 10250 (1.63b)
&3 P? _ 0.250 (1.630)

target — (1—®! — §2) (1 —-0.759)

Three realizations of this morphology can be seeni@ 1.20).

Figure 1.20: Three realizations of0% volume fraction excursion sets of correlation
lengths{12, 6, 3}.

In the second chapter of this thesis, a mechanical framewmikg the Finite Ele-
ment Method, explicitly takes into account those kinds ofphology. Due to the mesh
thickness that representation®inm particle implies, another morphology in which the
total volume fraction is lower30%) and the characteristic lengths are highiét®* =
{15,7,5} is used. Three realizations are shown iz H1.21).

2Lengths inmm.
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Figure 1.21: Three realizations 080% volume fraction excursion sets of correlation
lengths{15,7,5}.

4.2 Micro-scale modeling of cement paste

Up to this point it has been shown how excursion sets can liktaseodel aggregates
(inclusions) within a cement paste matrix, the latter beingsidered as homogeneous.
However, once seen at a much smaller scale than the micriossogle (fromnm to
um), its porous aspect has to be represented. The purposesheresihow that these
completely different morphologies (topologically speaki can also be modeled using
excursion sets. Two applications of this strategy are ptese Both are based on the
previously developed theory and are parts of two ongoin®Rhesis (Mahban Hosseini
and Mateusz Bogdan). Herein, only the morphological aspestnsidered.

4.2.1 Porous media

As stated before, the hitting set chosen to perform any RErsian has a major role
on the resulting morphology. Herein, attention is focusedh® sponge-like ones (see
FiG. (1.9(a))) that are adapted to model porous media such asntgraste. In order to
show this ability, a cement paste which has been investigateugh mercury intrusion
is chosen. The total porosity is ne&ir% and the total pore area is alm@stm?.¢~!. The
former is directly linked to the third Lipschitz-Killing euatureE{L;(E,(x))}/a® and
leads to define the corresponding threshold —0.51 for a centered and reduced Gaus-
sian field using equationd (1.49d). Moreover, assuming a density equal.fog.cm 3,
the latter leads to the definition &8f £,(E,(x))}/a® and, afterwards for determining the
underlying correlation length,. using equation B. (1.49c).

FIG. (1.22) shows a realization of an excursion set computeld thitse parameters.
The whole domain is a culié = 1 x 1 x 1 um?. For computational reasons the choice of
L. = 1072 um is retained. It leads to a high-pass filter with a cutoff pdze sorrespond-
ing to 20% HR. The total porous volume represented in the excursianfse (1.22)) is
thus6.10* mm?2.mm =3 which is60% of the total volume measured by mercury intrusion.

This morphological modeling strategy has many advantagésray lead to several
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Figure 1.22: Excursion set for modeling the porous space of a cement.paste

applications at the cement paste scale. Among them the Bte&is of Mahban Hosseini
focuses on the modeling of adsorption — desorption procésshws a key point for the
study of cementitious material durability.

4.2.2 A simple hydration model

In this section a simple hydration model for concrete-likatenial is presented. It has
to be seen more as an opportunity to present some additieaairés (or extensions) of
the excursion set morphological model than an actual attéongescribe the full com-
plexity of early age cement based material processes. Hawevorder to depict this
phenomenon, a physicavolutionof more than two phases to be considered. A simpli-
fied version of the Powers hydration model [Powers and Br@nohyl947] is chosen to
set up the evolution rules. It takes into account three ghasly: anhydrous cement, hy-
dration products and free water which initial state and @vohs are controlled in terms
of volume fractions (noted., ¢, and®,,, respectively) as definedvS. (1.64).

w/c
p= —w/c . (1.64a)
Oc = (1 —p)(1 — anya), (1.64Db)
P = 2.12(1 — p)ahyd and (1.64c)
Oy =1—D;— Dy, (1.64d)

in which p is the initial porosityw/c andp,,/p. are the ratio water/cement in mass and
in density, respectively anthyq (0 < anyg < 1) the hydration degree.

As afirst step, the modeling of three phases is considerdad.pfbblematic occurs to
be easily implementable in the presented framework and mmasvolve new principles,
hypothesis or equations. The basic idea is to introduce diti@aial level set. As one level
set defined a border between two phases, two can naturaltyedefo borders between
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three phases. Hence, three hitting sBts H2 and H? can characterize three phases
El E? and E32, respectively. Using the previous notations, it can betemitusingy?
distributions):

Hi={reM|0<z<r}=][0nr] (1.65a)
H:={zx e M|k <x<hr} =k ko (1.65b)
H?={x € M| Ky >z} =]k 00| (1.65c)

Depicted in FG. (1.23) in the one-dimensional case, this principle canggdied in the
same manner for any dimension.
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Figure 1.23: Three phase morphology using excursion set framework irdimension.

Herein, the three-dimensional space is considered. Thphotwgical aspect of each
phase implies to assign the right hitting set to the rightamak Since hydration products
are created around nearly disconnected anhydrous cenans giorming a frontier with
the free water, the hitting set repartition is set as notedan. (1.5). Remark: The
topological denomination given in this table has to be seemthree-dimensional space.
Due to the complexity of topological concepts, the meanirifaie denomination is not
necessary applicable to other dimensions (and especiatlyothe one-dimensional case
FIG. (1.23)). An example of this morphology is given in&. (1.24) where the three

| Phase | Hitting set| Topological denomination (in three dimensions)
Anhydrous cement ]ky oo[ | Disconnected components
Free water [0 k4| Connected media (sponge-like)
Hydration product| [k ks Border

Table 1.5: Repartition of hitting sets according to the phase topalogy

phases are represented (anhydrous cement in grey, hydpatiducts in brown and free
water in blue).

The second step is to make each phase evolve through “tifleiviag the chemical
model summarized by¥&. (1.64). From a physical point of view, evolution is conteal
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Figure 1.24: Example of a three-dimensional morphology with three pbase

by the hydration degreeyyq (not the time) and for a given value, the volume fraction of
each phase is defined byE(1.64b), (1.64c) and (1.64d). First, at the hydration bnse
(anyg = 0), only two phases are present, the water filling the voidsdgfanhydrous
cement grains®. = 1 — p, &, = 0 andd,, = p). Then, as the process progresses
(anya increases), volume fractions evolve and hydration pradaostreplace both water
and anhydrous cement. It tends tthaoreticaltwo phases endh,,y = 1) when all the
cement has reacte@{ = 0, ¢, = 2.12(1 — p) andd,, = 1 — ¥,). Depending on the
initial porosity (»p < 0.53), this stage can lead to a physical absurdity wibgiis greater
than100%. Those evolutions are drawn fpr= 0.61 in FIG. (1.25(a)).
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(b) Corresponding evolution of level sets.

Figure 1.25: Evolution of the volume fraction of each phase for 0.61.

The link between volume evolution and the excursion set éaark is directly made
by the mean of the level sets andx,. Indeed, equation®& (1.47) gives the knowledge
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of the volume fraction phase for a given hitting sey.a given level set. Furthermore,
always related to the underlying tail probability functjdhis equation can easily be in-
verted giving an expression of level sets in terms of voluddenceforth, an analytical
link is made between given volumes and level sets. In thelsimgse ofy? excursion
with one correlation length, the equation can be invertédng an explicit relationship
betweend,, andx; on the one hand, andl. and x, on the other hand (&. (1.66b)).
Finally, by injecting the Powers evolution rules'S (1.64) in it, k1 (anyg) andxa(nyq)
are directly known. Those relationships are drawnia.K1.25(b)).

Ky = 20" (erf (1 — <I>W(ozm,d)))2 and (1.66a)

Ko = 20" (erf " (Be(anya)))”. (1.66b)

The more realistic approach of union of excursion sets id userder to yield the ini-
tial state {nyq = 0) where the only constraint is a volume fraction of nearlycdisnected

componentd — p. The results of the presented method are shownadn @.26) for four
hydration degrees.

Figure 1.26: Evolution of morphologies through an hydration processhwityq =
0,0.1,0.2 and0.8.

On the one hand, a way of representing three-dimensiongbmtgies with three
phases has been presented. Notice that an additional nwhipliases4,5...) can
be implemented the same way. For each supplementary phaseldaional level set
is needed. However, this simple representation introdacesjor drawback regarding
morphological aspect of each phase. Using the presentdtbdabgy only produces a
disconnected topology (cement grains), a sponge-like an@uaater) and a frontier be-
tween them (hydration products). For example, if two phaspsesenting disconnected
components is considered, another approach implying nvane hitting sets repartition
(not developed here) is necessary.

On the other hand, a handful use of analytical results onaggdecharacteristics of
excursion sets (volumes) makes those phases evolve thtiooglfiollowing given rules.
Herein, it has been depicted using a simplified Powers hyafratodel.

This section has presented several applications of thergwouset theory for the
explicit modeling of concrete-like material heterogelasit Several features such as grain
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size repartition or evolution of geometrical characte&sshave been developed in order
to show the possibilities that the framework enables. Tlublpmatics related to the
two following sections are rather different. The same thgoal background is used to
propose original approaches to common issues relatedtttetzind quasi brittle failure
that aresize effecaindpercolation theory

5 Analytical model for size effect of brittle material

In this section another approach using expected valuescofgion set characteristics
is proposed. Up to this point, this mathematical tool hashesed in order to yield actual
morphologies and predict their geometrical and topoldgibaracteristics. The contin-
uum aspect of correlated RFs was concealed by the threshataiethod used (level set)
which led to discrete fields (excursion sets). Herein, RIfsctly represent a material
property (ultimate stress field) and the excursion set thisoused in order to catch sta-
tistical information on its extrema.

A theoretical method for size effect modeling of brittle éretgeneous materials is
proposed. In this field, the main result comes from the eddgliss of [Weibull, 1951]
based on the theory of the weakest link. The authors propasechalytical solution for
the global failure criterion, considering a discrete stuoe of independent brittle links
with a specific distribution probability of local failureitgrion. With no spatial corre-
lation between each link, this theory leads inevitably tgéascale size effect. The two
current theories of Zdenék P. Bazant and Alberto Carpintging to describe the size
effect for the missing scales, are the main results of thensxte literature existing on
this topic. The former tends, in many ways, to describe the sffect using both non-
local model and stochastic approach [Sab and Lalaai, 1@@3hore recently using the
so-called energetic-statistical size effect mixing sgtemedistribution theory in a fracture
process zone and Weibull's theory [BaZant, 2004]. Thetatonsiders material hetero-
geneities with a fractal model in order to represent sizeotdffor quasi-brittle materials
[Carpinteri et al., 2003]. On the other hand, numerical $ations have been made using
stochastic integrations and correlated RFs in order tordesmaterial properties [Colliat
et al., 2007]. These methods are quickly time consuming eedihderlying numerical
implementation brings an inevitable limitation regardihg observation scale.

The idea behind this method is to extend the Weibull theokgwer scales by adding
the spatial structure aforrelatedRFs. A continuum representation of the spatial vari-
ability through scales can theoretically be made by defiaimgtioa (as in K. (1.50))
between the spatial parameter of the correlated RF cowaiimction,. and the size
of its definition domaine.. As already stated just above, heterogeneities modelidg is
rectly made through a variation of material properties (aatby through definition of
different phases). The continuum aspect of correlated Rfestcally represents a local
ultimate failure stressy (x,w) on a structurel/. RFs are here used in a direct way, even
if the discrete aspect of excursion set and their expectéer Ebaracteristic are used in
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order to define the global failure stressof the structure. The whole framework has to
be seen on a purely theoretical and analytical point of viéantrary to stochastic inte-
gration methods, the knowledge of expected information Ba &/0ids generating actual
RF realizations. Hence, there is no scale limitation.

5.1 Correlation lengths as scale parameters

As it has been pointed out during this chapter, the coraid@ngthl,. can been seen
as a size parameter of a correlated RF. Herein, a constar 8L, is chosen, fixing the
average size of the heterogeneities considered. The diomeosthe domainV/ (where
the RF is defined) represents the size of the whole structiire.is the characteristic
length of M (for example: the length of a segment in the one-dimensispate, the
length of the side of a square in a two-dimensional spaceits. yalue determines the
observation scale. In order to let the heterogeneity sisperified, the ratioe = L./a is
taken into consideration. Nonethelegs still as to be seen as a constant aralvariable.
Realizations of RFs for different ratiesare shown in K. (1.27) on a two-dimensional
square.

Fora>1
The structure is very small compared to the heterogeneiy. sThe RF tends to
be a constant field and is equivalent to a single RV with noiapaformation. It
represents the material scale, the validity domain of conitm damage mechanics
(CDM) where the failure stress does not depend on the sizbeo$tructure (see
FIG. (1.27(a))).

Fora <1
The structure is very large compared to the heterogeneiéy Jihe RF tends to be
equivalent to a white noise (completely uncorrelated)dileg to a loss of spatial
structures. It represents the scale of big structures aé/éieull theory does, re-
trieving the linear fracture mechanic (LFM) domain of exser (see kK. (1.27(c))).

Fora=1
The RF represents the missing scale range where the contistatistical infor-
mation of correlated RFs for various can link together material and big struc-

ture scales. Hence, it can model size effect for civil engiimg structures (see
FIG. (1.27(b))).

5.2 One-dimensional case

In this study, a one-dimensional bar in tension is consilefée source of uncertainty
is modeled by a statistical representation of the localfaitriteriono, (z,w). Due to the
positiveness of stress fields in tension, tbg-normaldistribution is used. Since log-
normal distribution is Gaussian related, the results ofpifeious section are applicable
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@) a > 1. (©) a ~ 1. ©) a< L.

Figure 1.27: Realization of two-dimensional correlated RFs for varioustios.

by a simple transformation of the hitting set= exp. The spatial structure representation
is done by using correlated RF with Gaussian covariancetiimof correlation length
L.. The continuum domain represented is a one-dimensional/baf lengtha. For this
specific case, the global brittle failure of a b#ris assumed to occur when, at least, the
minimum value ofoy(x,w) is reached by the stress field.dlf(w) is this criterion, it can
be defined for a realizationby:
of(w;) = $1en]\fll (oy(z,w;)) . (1.67)

It occurs that this equation can directly be linked with thddf characteristig; of an
excursion sets. Let (o) = {r € M |0 < o,(z,w) < o } be an excursion set where
the constant stress state of the bar can been seen as a tevalitbethis definition, the
excursion set represents the part of the bar (subséf)ofvhere the stress is above the
local failure criterioroy (=, w). The global failure criterion of &. (1.67) can therefore be
seen in terms of excursion sef; being the stress state when, with increasing;(o)
changes from being a void subsetddf(y = 0) to a single connected componegt=£ 1).

A result of [Adler, 2008] on statistical thresholding tea®links the probability of
reaching these minima and the expected Euler characteaistollows:

P {Ilélj\fl (oy(z,w)) < a} ~E{x (Es(0))} “forlow o”. (1.68)

The major improvement thatd (1.68) provides is the knowledge of statistical informa-
tion ono¢(w), and with it, the need of Monte Carlo simulations with actiesllizations

i as suggested by (1.67). Then, the initial failure criterion of the struotucan be
reformulated in terms of probability. This leads to:

oi(q) = {a | P { inf (oy(z,w)) < cr} = q} : (1.69)

zeM

The expected value of the Euler characteristic being aicalj known, EQ. (1.68) and
EQ. (1.69) allow the ultimate stress criterion of the bar to balgtically determined, for
a given failure probability;.

In order to scan every observation scales possibig, (E.69) is solved for a large
scale rangd0~? < o < 103. SinceL. is fixed by the heterogeneity size, the different
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scales are therefore represented by defining a single w) (with the same covariance
function) for variousz as represented ini&. (1.28). The mean and the variance of the
log-normal correlated RF have physical meaning and can teerdmed depending on
the material characteristics. While the mean value,¢f, w) determines the value of the
structural failure stress of small scales 1), its variance indicates the decreasing rate
of the size effect for large scales K 1).

Oy /Av\ &»
a1 a2
Oy 4&
as

Figure 1.28: lllustration of the local failure stress repartition onustiures of various
sizes.

5.3 Validation, results and comments

In order to validate the theoretical framework, resultshed same problem solved
using a Monte-Carlo stochastic integration method are gileen. On the one hand, the
stochastic integration provides a full empirical disttiba of ot (w) (defined by ©. (1.67))
for several ratiosr. On the other hand, the analytical resultsrgf;) depends directly on
the probability parametey that, by definition of the ultimate stressQE(1.69), is di-
rectly linked with quantiles of the previous empirical dilstition. For exampleg = 1/2
corresponds to the-quantile,i.e. the median.

FiG. (1.29(a)) shows the resulting global failure stresse®r ratio 3 = a~! from
1073 to 10? with the Monte-Carlo method (in order to show results in ttesttommonly
used manner, scales are represented by the inversesratio~! = a/L.). The inspec-
tion of larger scales is rapidly limited by the inconveniezgource consuming aspect of
stochastic integrations. On the strength of its analytieae, the excursion set theory
every scale can be inspected, here fovarying from 103 to 10°. The Monte-Carlo
integration results of global the failure stress distrnibiis given for the2, 10, and100-
quantile, corresponding tp = 1/2, 1/10, and1/100, respectively. In both method, the
mean and the variance of theg-normaldistribution are both taken to b&). The RaN-
DOMFIELDS package [Schlather, 2012] of the R environment [Team, 20&&peen used
in order to do the stochastic integration, usiid)00 integration points for each length.

As expected, no size effect is observed at the small sgate]10~2. Forq = 1/2, the
value of the failure stress corresponds tolhgenormaldistribution median (that is, due
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Figure 1.29: Representation of the size effect through a failure stras=rion estimated
for various scales.

to the skewness of the distribution, a little less than thampeAs grows, the decrease

of o representing the size effect can be seen. As for the impagt r@sults show the
good behavior. Indeed, for a safety probability96fs (meaning a failure probability of

g = 0.1), the failure stress is higher than for a safetp@f; (¢ = 0.01). The three curves
drawn in RG. (1.29(b)) represent the impact of the variance on sizecefte a failure
probabilityg = 1/2. While L. is the parameter of the correlated RF that represents the
geometry of the heterogeneities, the variance can be seedexription of the mechan-
ical property discrepancy. Results show the natural guledihat higher variations are,
lower the values and larger the dropmgfare.

6 Continuous percolation on finite size domains

Percolation theory deals with connectivity issues on ramdtochastic patterns. First
expressed by [Broadbent and Hammersley, 1957] as a statiggometry model, perco-
lation was used to study a fluid flow through a rock where it véasiened to be a network
of channels randomly open or close. These problems are w&ated with lattice dis-
cretization of the space. Arbitrary rules (often referredband or site percolation) can
be set in order to define clusters (open path) on those Iattisecordingly, elements of
the lattice have two statesipenor close For example, théond percolationn two-
dimensional spaces models a path between two vertices byreo@k distribution of
parametep. Hence, each edge is independent and has a probagbildybe open and
1 —pto be close. The quantity of interest in order to define whedHhattice is percolated
or not is defined by a critical probabilify. which has the two followings properties:

If p < pe

There is a probability one chance that all clusters are fifiitee lattice is not per-
colated.
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If p > p.
There is a positive probability that a given point of theiGats in an infinite cluster.
The lattice is percolated.

This first approach carries a lot of issues. First, most ofliteeature considers infinite
size problems (which is mathematically correct, but is @myapproximation of what hap-
pens in real cases). Second, the definition of a percolalimter (a subset of connected
bonds) is also made on infinite size problems. It is usualfindd by the presence of an
unbounded cluster, or by a continuous path from the origantanfinitely distant point.
Again, in finite size problems, these definitions have to mesesl. Furthermore, these
problems are subjected to lattice dependency. Howevetattez problem can be dealt
with by defining volumes around edges (or vertices) in ordeptiase out the discrete
aspect of lattices. It is the first step into the continuunctpkation field where instead of
looking at the critical probability.., a critical volume fractionp. (which has the same
properties) is considered. First expressed in [Scher alldr{d 970] it is admitted that
in a three-dimensional space:
o, ~ 16%. (1.70)

Most of the time, no analytical solution is known to solveségroblems leading to an
expensive need of numerical resources.

Given that it has been established that the topologicatimé&dion carried by the Euler
characteristic is intrinsically linked with percolatioa link can be made with excursion
sets using the theoretical framework of Robert Adler. Inehdy nineties, it has been
highlighted by [Tomita and Murakami, 1994] and [Okun, 199@jere a critical vol-
ume fraction is deduced for infinite size problems analjliicd his section proposes the
same approach but with the bound corrections introduceaydley, 1996], aptly rep-
resenting finite size domains. A side effect can then be obdagiving the possibility of
defining a statistical Representative Volume Element (R@Epercolation.

6.1 Accounting for side effects

Herein, excursion sets are defined by Gaussian correlated&fa three-dimensional
cubeM of finite sizea. Among the four LKCs that characterize the excursion mokpho
ogy, only the Euler characteristic= £, and the volume fractio® = £3/a*® are consid-
ered. Expected values of these measures are gigeiflE49). As for the previous cases,
the domain size has to be compared to the excursion set aiorelengthZ.. Hence,
analysis is still made in terms of the ratio= L./a.

The link between percolation and the Euler characterisstated to be when the latter
switch signs. Most of the time it occurs two times and repmesevo different percolation
states as depicted ind. (1.30). The two underlying level sets are notgd andx,- and
correspond to the followings situations:

Percolation of the excursion set gfx,+) = 0
By considering a high level set value, the correspondingiestan set is made of
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small disconnected components. As the level set value @eesethose components
grow and others appear making the Euler characteristieaser up to a certain
maximum point. It corresponds to the coalescence of theglsiggpmponents. The
critical point of interesk,+ is for a level set value just below the latter states, where
they is null. It is stated that at this stage, the excursion se¢isglated.

Percolation of the voids af(xp-) = 0
The same reasoning can be made in order to define the otherlgiec point.
This time, increasing level sets starting at a very low vdlae to be considered.
The percolation poink,- is also for the first null value of the Euler characteristic
and corresponds to the percolation of the voids.

Normalized Euler characteristic

_1.5 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4

Level sets<

Figure 1.30: Expected values of the Euler characteristics in terms @ lests for Gaus-
sian excursion sets of unit variance and different ratios

As already remarked iniB. (1.12), for several values of, percolation cannot be defined
(v = 1/2 for example). Since the Euler characteristic is alwaystpp@sithe volumes con-
sidered are too small to bring any relevant statisticalrmfation in terms of percolation
states. However, in the other cases (for smalleattention is drawn to the correspond-
ing critical volume fractionsP(rxp+) and ®(k,-). As FG. (1.13) shows the first only,
FIG. (1.31) shows both in terms of. A frontier is created between two states, one with
positive values of (outside) and the another with negative values (insideg faht that
the two curves go away from their asymptotic valuesg 1) and finally meet is a direct
representation of side effects. Itis analytically takeo eccount by the bound corrections
[Worsley, 1996]. As the topology of an excursion can be aeteed whether itis inside or
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outside, this graph can be seen ghase diagramUnfortunately, the Euler characteristic
does not give information whether positive values are duetes in the excursion or to
components (seed (1.29)). For example, an additional topological meashia¢ ¢counts
the number of disconnected components of the excursiordatefine a third frontier,
giving three topological states: disconnected excursatrasd percolated voidg (> 0
due to components), both voids and excursion percolated (f) or percolated excursion
set and disconnected voidg ¢ 0 due to voids).

100
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Figure 1.31: Critical volume fractions with side effects for percolatiof both excursion
set and voids.

It can be seen that the asymptotic values that correspomdinité domains are con-
sistent with values from the literature obtained first by pomer simulations [Skal et al.,
1973] or by speculation on lattice problems [Zallen, 19748] avith the basic underlying
symmetrical assumption:

lim ®(rpe) = @, ~ 16% and lim ®(kp-) = 1 — P,. (1.71)
a—0 a—0

Then, asy grows, the critical volume fraction of the excursion setr@ases. This rather
unintuitive feature can be interpreted by the fact that, finge size domain, there are
less possible paths to link two distant points than in an itefione. Hence, a higher
volume fraction is needed. Furthermore, these stages te#ltbtloose of the relation
P (kp+) + P(kp-) = 1, meaning that the symmetry hypothesis that exists on iefsie
problems does not apply anymore.

In regards to these results, morphological RVE for pergmbas now defined.
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6.2 Representative Volume Element for percolation

Traditional approaches to define a RVE are based upon arcemanber of realiza-
tions of a random media and the average properties measureddh realization. The-
oretically, if the domainV/ is a RVE for a given property, the discrepancy of the results
must vanish to zero. However, these RVE are usually too large handled numerically.
Smaller realizations are thus made and from average valgesththe realizations, lower
and upper bounds can be defined [Huet, 1990, Hazanov and 19%2t]. Herein, this sta-
tistical approach is embedded in the theoretical frameviloak gives the excursion set
expectectharacteristics. Hence, no actual realization is computed

Due to its monotonic shape, the RVE is defined in regards tatitieal volumes
of excursion set percolatiof?(xp+) (and not the one corresponding to the voids), the
reference value being.. The relative error between both@dE(1.72)) gives the RVE
precision. Its evolution through scales is plotted i H1.32).

P(rp+) — P,

= — 1.72
== L.72)

10

1% RVE

Relative error o]
a
X

5% RVE

0.01 0.1 1
Ratioa = L./a [-]

0.0001 0.001

Figure 1.32: Relative error between critical percolated volumes of diibd infinite size
domains.

Hence, a value ofi can be determined for a given error. Results aBT(1.6) show

that, for a given heterogeneity sizg, a domaine size of more th&f timesL. is needed
for a5% RVE and400 times for1%.
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| e ] 0% | 1% | 5% |
D(kp+) | 15.87 | 16.03 | 16.67
a 0 [0.0025 | 0.012

Table 1.6: Size () and corresponding volume fractio@) of 1% and5% error RVE.

Since, as far as the authors can tell, no RVE for percolateonbe found in the lit-
erature. However, it can be compared to classical mechamaohlems linked with per-
colation issues such as diffusivity phenomena or permeaticcement paste material.
On these matters, results are rather consistent and terefit® RVE corresponding to
a scale ratio ofx = 1/100. Among the vast literature on that subject, in [Zhang et al.,
2011] the authors define a cement paste RVE for water diffysdf 100 um? with het-
erogeneities represented by a polydisperse sphereslfromto 50 um. The RVE is then
smaller than what the theory predicts. Several consideraian explain this difference.
First, the property of interest differs. When the latter Rigbased on mechanical prop-
erty (diffusivity), the theory only takes into considematithe topological aspect of the
morphology. Secondly, a size distribution of spheres isgan®d to an excursion set with
one characteristic lengths.

7 Concluding remarks

In this chapter, a morphological model based on excursibofsmrrelated RFs that
produces complex randomly shaped morphologies has besarpeel. Original formu-
lae [Adler, 2008] that statistically control the geomedtiand topological characteristics
of these excursion sets — volume, surface area, Euler deaisic — in terms of the
RF parameters — correlation length, variance — has beentedlap order to model
cementitious material heterogeneities at different olzgem scales. It has led to sev-
eral problematics such as describing matrix-inclusiomtogy or porous media, reaching
high fraction volumes, representing grain size distritmusior adding several phases to the
modeling. Finally, advantages of these analytical forradulas been highlighted by pre-
senting two models for finite-size problems. First, to repre the size effect and second,
to determine a RVE for percolation.

As it has been pointed out, the main issue with this methapols to reach high
volume fractions while keeping a disconnected topologyert the use of another dis-
tribution — 2 rather than Gaussian — helped double it, the maximal cortypaltained
with a single characteristic length in a representativena is abous0 %. However, it is
shown that by only considering a certain part of a grain siggitdution (mainly gravels)
and using union of excursion sets, relevant modeling canbt&ireed. Nonetheless, as
presented during the introduction of this chapter, this&as lower than what an efficient
paking sphere algorithm can produce. On that matter, adutiork on hitting sets can
be done. An idea is to extend the principle\df distribution to higher order, yielding
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vectors valued RF. Thus, hitting sets could be based on isghéarmonics functions.
Hence, as transforming the one-dimensional open hittingksec| into the complemen-
tary ball of the same dimension doubled the volume fractimrking with hitting sets in
higher dimensions should increase it as well.

An improvement of the method can also be made by considellitfyeaexcursion set
characteristics. In this chapter, attention has mainlydaseised on the volume fraction
and the Euler characteristic, which seem the more relevaracteristics to control first.
In order to model the hetergoneneities more accuratly, recalled that in the three-
dimensional space, information on two and one-dimensioredsures such as surface
area and calliper diameter, respectively, are also avail@m analysis of the link between
the latter and the correlation length could be an intergstisearch area.

Finally, even though it as just been theoretically presnites recalled that the use of
other covariance function classes, such as the Matérs,das be used to control a thiner
detail of the resulting geometry, namely the surface aspatapting expectation formu-
lae to these classes only require a change of the secondadpaeoment which can easily
be calculated. Even though not presented here applicaticihe two-dimension space
has been made in order to analyse fracture surfaces of nspearmens. An identifica-
tion of their correlation length and the Matérn parameten these surfaces characterized
their tortuosity and their roughness, respectively.
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1 Introduction

The objective is to develop a numerical model for quasieritnaterials at a scale
where heterogeneities play a significant role. For condietematerial this scale is re-
ferred to as the meso-scale where aggregates inclusiorsrdredded within a cement-
paste matrix. Therefore, the framework main features areeiplicit representation of
heterogeneities within a FE context and modeling of theifaimechanism at the meso-
scale. Both are made possible through kinematical enhagmsnof the finite element
interpolation basis. Firstly, thanks to the non-adaptediimg strategy implemented
through aweakkinematic enhancement. Secondly, according to the chdictrong
enhancement in the model that addresses a major challeagelynthe cracking repre-
sentation phenomenon. This chapter presents a uniform emelrgl numerical method
called the Embedded Finite Element Method (E-FEM) handlege problematics.

At the so-called meso-scale, numerical methods based pabialkmeshes are quickly
confronted to the fundamental problematic of its constamctegarding heterogeneities.
The standard methodology to address this issue— knowd@stedmeshing — consists
of three steps. First, the interfaces between the heteettggshare considered, corre-
sponding to a surface meshing for a three-dimensional enebFor that matter, several
technics have been developed whether the morphology istk(G#&D) or not (Marching
cube [Lorensen and Cline, 1987]). Second, the rest of domaionsidered, correspond-
ing to a volume meshing of several homogeneous phases. dhus;phase morphology
leads to two kinds of elements, each having their nodes im@lesiphase, leading to
a simple FE implementation. Despite the number of studighiefmethod, their time
consuming aspect makes them rather irrelevant regardiggdmetrical variability. In
addition treating interface debonding problems involves introduction of zero thick-
ness elements — aohesive zone- [Barenblatt, 1962]. Herein, the choice is made to
turn to another method.

The method referred asn-adaptedconsists in a unique “homogeneous” mesh with
nodes placed independently from the morphology and thums free interfaces — here-
after referred as theriginal mesh(see FG. (2.1(a)). Hence, for a given geometry, a set of
elements are split into two parts by a physical interfaceeserelements are decomposed
into two subdomains that inherit of each material phasegnas. In order to introduce
this contrast of property in the classical linear elemeamisnhancement of the kinematics
is performed by means of a jump within the strain field — thisgé&nown as aveak dis-
continuity The pioneer work on that matter goes back to the end of tre[80tiz et al.,
1987] for the modeling of localization bands. The applicatof weak discontinuities in
the context of material heterogeneities modeling has beteaduced later in [Sukumar
et al., 2001].

In the case of a two-phase material (matrix-inclusion fa@tance), the non-adapted
meshing method leads to two types of elements: the elemeaitate completely within
the matrix or within the inclusions, and the elements witlag j the matrix and another
in an inclusion. Only the latter type of element is enhancgdhle weak discontinuity.
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Hence, the meshing process, referred to as morphologicgdqtion, consists in assign-
ing their type to the original elements of the meash,defining the distribution of element
types. It occurs that this light implementation is lineatBpendent on the number of ele-
ments of the original mesh. In addition, with the one-timkiare meshing of the original
mesh, this methodology ensures a swift and efficient prose#isuited for morphologi-
cal probabilistic studies based on Monte-Carlo proced(ses Chapter 3 on RVE deter-
mination). The work presented here is a development, fradmearetical point of view, of
Damijan Markovi¢ Ph.D. thesis where two-dimensional GansStrain Triangles were
considered [Markovic et al., 2005] and from a numerical pofrview, of Nathan Benke-
moun Ph.D. thesis where a three-dimensional discretizafia heterogeneous media was
done by means of a spatial lattice model [Benkemoun, 201tk@&waoun et al., 2010].

(a) Original mesh. (b) Example of a projected mor{c) Example of another pro-
phology. jected morphology.

Figure 2.1: Projection of two-phase morphologies on a mesh.

Furthermore, this methodology can be applied to three-dsio@al random shapes
(not analytically defined), allowing the morphological nebdased on excursion set (Chap-
ter 1) to fit this context as depicted ind= (2.1(b)) and (2.1(c)) (where matrix, inclusion
and interface elements are represented in light, mediundaridgrey, respectively).

Finally, this distribution of element types brings a vergfud additional tool concern-
ing interface modeling. Indeed, for a mechanical problémanumerical implementation
within a FEM context of rigid parts in order to repres@etrfect interfaceas clearly not
a trivial task [Zienkiewicz and Taylor, 2001]. On the comytahe non-adapted method-
ology has all the necessary ingredients to achieve thisvilmhalndeed, the meshing
procedure, through the morphology projection, plays tHe o surface locator while
weak discontinuities provide a perfect interface behavior

Crack representation is one of the crucial issue for brdtlguasi-brittle heteroge-
neous material. Physically speaking, a crack is a discoatis hypersurface (dimension
n— 1) within a continuum domain of dimensien herein, a surface in a three-dimensional
body. Its growing (or opening) leads to a progressive deddlgeotraction vector intro-
duced within a FE context by softening laws. The loss of uarggss of the solution is then
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inherent of this softening effect. From this two-dimensibiocalization of the strain in a
band of three-dimensional elements arises the classichlgmatic of dissipated energy
depending on the mesh size. Among the large amount of FE@aduthat can be found
in the literature, often referred &scalization limiteror regularization the most popular
are: the smeared crack models [Hillerborg, 1991], the gradapproaches [Mindlin and
Eshel, 1968], the non-local models [Pijaudier-Cabot anthiBg 1987] and more recently
the kinematics enhancements — weak-strong discontinuitgpproaches [Ortiz et al.,
1987,Simo et al., 1993]. The key point of localization lieng of the latter kind is that the
energy is dissipated onto the two-dimensional surface timigugh a specifikinematical
enhancementf the Finite Elements, eventually leading to a total diagp energy inde-
pendent from the mesh size. Henceforth, these approactezsaafoverall solution for
the two main problems raised by FE cracking modeling namatyerical localization
and physical representation (opening and orientationmglgexplaining the increasing
interest in strong discontinuities over the last decades.

The use of kinematics enhancements within a FE context isllakmaewn problem
initially introduced in order to address the crack modelaogcern. The natural evo-
lution of this field leads to a broader range of applicatisws;h as material property
contrast (heterogeneity) representation for instanceirfimplementation can be classi-
fied into two main categories known gkbal (nodal) andocal (element) enhancement
approaches. The Extended Finite Elements (X-FEM) [Mo&d.£1999] and Embedded
Finite Elements (E-FEM) [Ortiz et al., 1987] are among thamltest-known techniques.
Studies between these two families of methods have not heesubject of a great deal
of researches. However, Oliver [Oliver et al., 2006] relyeanlightened the community
with an exhaustive review on specific test cases. Conclagibthis study reveal that the
two methods produce very similar results, giving a slighteadage to E-FEM regard-
ing computation time. This phenomenon is explained by therent local aspect of the
latter approach which can be summarized by two key featligdd: local equation solv-
ing (often behavior laws) within each element for fixed glalbg&knowns (displacements)
and condensation of the latter information in order to penfthe global resolution. On
the contrary, by adding global unknowns, X-FEM violates ltheal-global duality. This
deviation from the original FEM spirit leads to adverse efffesuch as: increase of the
global system size and both conditioning — crack represientand structural equilib-
rium equations of different nature — and structural — spgrst degradation of the stiff-
ness matrix properties. However, for a small number of ecbdelements, these negative
effects can be considered to be negligible but otherwisg,lrage severe consequences.

Due to the complex shape pattern, implying a large numbenlodeced elements, in-
herent of cement based cracking process and notwiths@titknwidespread popularity
of X-FEM, the several advantages of the E-FEM approachestandsimple implemen-
tation within a FEM context bring the authors to the choictheflatter method to perform
this study.

Historically speaking, embedded discontinuities haveificantly evolved. As de-
picted in HG. (2.2) on triangle elements, weak and strong discontiesidire used in or-
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der to represent the kinematics of crack and material ptppentrast (heterogeneities).
On the one hand, regarding the former problematic, the fitetrgot to model a crack
by aband localizationvas made by Michael Ortiz through a single weak discontynuit
within several neighbor elements [Ortiz et al., 1987]. $lgafter, in order to represent
this band, Ted Belytschko embedded two weak discontirsuitighin a single element
[Belytschko et al., 1988] (seel®. (2.2(b))). Finally,localization lineswere introduced
by Eduardo N. Dvorkin in [Dvorkin et al., 1990], giving a fisblution intrinsically insen-
sitive to mesh size (sea®. (2.2(c))). On the other hand, in [Hautefeuille et al., 2009
the authors show that a single weak discontinuity gives tssipility for an enhanced
element to represent a material heterogeneity.

Following [Benkemoun et al., 2010], the general spirit & piesent strategy is to cou-
ple both crack and material heterogeneity representabi@ndoherent framework using
embedded elements with strong and weak discontinuitiesHise (2.2(d))).

(@) (b) (© (d)

Figure 2.2: From [Jirasek, 2000], element with embedded disconynue) one weak
discontinuity, (b) two weak discontinuities, (c) one sgatiscontinuity and (d) both weak
and strong discontinuity.

In order to present the theoretical basis and the numenisplementation of the
present model, this chapter is organized as follows. Thetfrs parts give details on
the mathematical representation of the two discontinidigd their integrations in a spe-
cial variational formulation based on three independelddieThen the local governing
law modeling the crack opening is presented. Finally, ts®ltgion methodology and
some explicit applications of the theoretical framewor& shown: several FE kinemat-
ics developed in this study and their performances aretifited through representative
tension-compression test results.

2 Kinematics of strain and displacement discontinuity

The key point related to the framework presented here is &b dih two kinds of
discontinuities: one in the strain field (weak discontiglitepresenting material hetero-
geneity, and one in the displacement field (strong discaitsi)) representing a crack —
with its orientation and opening — and hence, modeling thgratation mechanism. If
the domairt represents the whole body considered for the problem, hstloatinuities
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can be set up anywhere §hand, of course, at several places. Naturally, the weak disco
tinuity is defined by the heterogeneities positions and ebap and so their geometry is
a pure geometrical issue linked to Chapter 1 — whereas tbagttiscontinuity is not
known prior to any calculation and is triggered followingogalization criterion. As the
whole framework lies into a FE discretization, an interpiolamesh paving is consid-
ered and referred to &%. Finally, in order to use light notations, a single elemeithim
the mesh is notef?, (instead of2").

If the failure mechanism is triggered within an elementdlag to a crack opening,
Q. is split in two parts by a discontinuity surfagg,,. In this case, a strong discontinu-
ous kinematics has to be defined. Moreover, because a npteddaeshing method is
used here, another case has to be considered in which therglestaken “near” a ma-
terial heterogeneity (interface element): the elemenilisplit in two by a discontinuity
surfacel’y. but defined this time by the phase morphology. This leads teakvdis-
continuous kinematics modeling. Whatever the type of ditooity considered (weak,
strong or both) in an element, it is assumed that it followshgle discontinuity surface
Iy = T4y = [ye dividing Q. into two sub-domain€©® andQ® (with Q. = Q® U 0°).
These points are summarized inGE (2.3) in two dimensions, whera represents the
direction vector of the interface. Starting from this vectm orthonormal basig:, m, t)
attached to the surface (often referred to as the local ozaisbe built.

Figure 2.3: Body split by several discontinuity interfaces.

Kinematics relationships that describe both discontiesitre based on generalized
functions such as Heaviside or Dirac-delta. These matheahdbols link discontinu-
ous and continuous analysis. Hence, the dorfican be considered with a traditional
variational principal. Both kinematics are handled byistenhancement and each con-
tribution, supposed independent, is simply added to thedsta strain field taken as the
symmetric gradient of the displacement field:

e=NVu+ € + € . (2.1)
regular  weak  strong
Thereafter, notatiom (resp.e) refers to weak (resp. strong) discontinuity. Moreo@uef9

(resp.(e)®) meang(e)(x), x € QP (reps.0°).
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Additionally to the inner difference between the two enlamnents, it is important
for the physical understanding of the framework to note, timathe case of material het-
erogeneities presence, the interface is defined by pureimgeical characteristics. It is
assumed that, if cracking takes place near those zoneg, apaning follows the inter-
face. Considering an homogeneous part of the materiak oréntation is defined along
a particular localization criterion (built mainly upones$is considerations).

Since it is assumed that enhanced contributions to thendfiedd are independent,
each kinematics can be treated separately. The next twiosggdive details on strain and
displacement discontinuity kinematics.

2.1 Jump in the strain field

In this section focus is made on the strain field enhancenmentder to represent
strain discontinuity. This idea can be found in the literatin the pioneer work of [Ortiz
et al., 1987] (used to model band localization), in [Sukuetal., 2001] with the X-FEM
method or in [Markovic et al., 2005] with the E-FEM method. drder to represent the
kinematics of these problems, the shape of the enhancedfpidue strain field labelled
asé¢ is determined with physical considerations#@jthe corresponding displacement of
€ and its derivatives at the discontinuity interface. Natyrdefinition of w depends on
the considered sub-domain. Hence béfh anda® have to be taken into account. At
this stage, physical consideration of continuity of thispdlacement enhancement at the
interface vector has to be respected. This yields to:

®=a° vael, (2.2)

A second less trivial consideration is taken on the smoathé this displacement
field. Physically, a discontinuity of the displacement datives has to be taken into ac-
count only when crossing the interface, following its direc vectorn. In opposition, no
discontinuity is present along,. This leads to the next three conditions at the interface:

V(a®) -n # V(@®) n
V(a®) m = V(@®) -m Vzxel, (2.3)
Va®) -t = v@®) -t

Considerations are now taken on the enhanced displaceretth€ fand especially its
jump &2 — &°. The latter can be calculated by taking the symmetricaligracf the
corresponding displacemeiat In the local base, it is written:

al,n %(al,m + 2’12,71) %(al,t + 213,71)
E=V:a)= | sym T 5 (o + Us ) . (2.4)
sym sym Us ¢

(n,m,t)

Following conditions B. (2.3), it can be seen that only derivatives of the first congod
of the displacementz ,) of £® differs from that ofé®. Hence, the strain jump shape
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(and especially the number of independent scalar parasne¢eded to represent it) can
be determined by taking the difference between both fieldnddforth, the strain jump
can be expressed:

=, 0 0o |. (2.5)
[5],5 0 0

These discontinuities can therefore be represented byohcelly three parameteii|] =
{[e] [e]m [€]:}". Using this set of parameters and respecting &.2), the enhanced part
of the displacement field can be yielded. The choice is madethé¢aken as a first order
displacement field [Markovic et al., 2005], hence:

0% veen®

e° Vaxc® (2.6)

u=0n-(x—E&) (e, n+[enm+ [ t) with @:{

where& represents the position ©f; and© is a still undefined function of2.. Hence,
different forms ofa whether it is evaluated i@(eB or Q? can be represented. Finally, by
taking the symmetrical gradient ofE (2.6), the shape of the tensdran be obtained:

E=V’(u)=06 <[5]nn ®n+ %(n ®@m)’ + %(n ® t)s> : (2.7)

The form of the weak part of & (2.1) is now known, howeve® still has to be
exactly defined according to additional statical consitiena. It can already noticed that
the enhancement brings three parameters — stored in thalled-wveak discontinuities
vector||e|] — that are future unknowns of the mechanical problem.

2.2 Jump in the displacement field

As for the weak discontinuity kinematics, the strong digoauity can be constructed
separately. Hence, in this section, only a jump in the d@pizent field is considered.
Kinematics of these jumps has been introduced in [Simo et1803] within a FEM
framework and further developments can be found in [Simo @hder, 1994, Oliver,
1996a, Wells and Sluys, 2001] where numerical implemeoriatare made in two and
three-dimensional spaces.

An elements), is still considered to be split by a discontinuity surfdcg repre-
senting this time a jump in the displacement field. As for treakvdiscontinuity, strain
enhancement comes from considerations on the displacdimlent!f  is taken to be a
smooth function ovef). representing the regular part of the displacement field[arjd
a piece-wise constant function representing the displaogjump, this discontinuity can
be modeled by decomposing a theoretical displacementdiéhdo a regular and an en-
hanced part such as follows:

u=1u+ Hr, [|ul], (2.8)
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whereHr, is the Heaviside function centered bp (unit valued inQ® and null inQ®).

In a finite element context, interpolation function of thihancement inevitably leads to
ill formulation regarding displacement boundary condiio Following [Oliver, 1996b]
the introduction of an arbitrary continuous functigp of unit value at each node m?
and null at each node i1° can be introduced to overcome this difficulty. By establighi
an arbitrary displacement functianas

U =1a+ ¢ [|lul], (2.9)
the theoretical displacement fielQE(2.8) can be re-written:
u=1u+ (Hr, — ¢.)[|ul]]. (2.10)

EQ. (2.8) and K. (2.10) are strictly equivalent. Nevertheless, using éteet eventually
leads to an interpolation of{r, — ¢.), which can be done with functions of zero nodal
values. Furthermore, the displacement unknowngiamose nodal values carry the dis-
placement jump information (through.). An example in one dimension with, taken
as a linear function is depicted on the following graphs wheéc. (2.4(a)) shows the
construction of enhanced part interpolation function angl £2.4(b)) shows the decom-
position of the discontinuous displacement

Remarks on strain enhancementt should be retained that, in this framework,
is purely theoretical and simply helps the determinatioerianced strain shapes. In a
first place, the actual displacement field has been nafdmlit since strong discontinuity
enhancement has implied the introduction of a modified fisidgiy., it is now referred
to as for the rest of the dissertation.

The corresponding strain field can be obtained by taking ynensetric gradient of
EQ. (2.10). Non trivial development is made in [Simo and OljvE994] showing that
the resulting enhanced strain field can be decomposed intuaded parg, and an
unbounded oné,,, using the Dirac-delta distributiancentered at the interface:

Viu=e=V"a+ (Hr, — ) V([ul]) = ([Jull © Vo) + or, ([ul] @ n)” .

regular

TV TV
bounded enhancement unbounded enhancement

(2.11)
Finally, [|u|] is taken to be a constant function. Under this consideratioan therefore
be seen as a vector containing the displacement discatytcnmponentsi(e. the crack).
Moreover, it leads to a simplified version of the previousamn, K. (2.12), giving
the explicit kinematics form of the enhanced strain fieldrdadter, this enhancement is
referred to a¥Kinematically Enhanced StraifiKES).

Kinematically Enhanced Strain (KES)

=& +& = —([[ull ® Vo) +or, ([lu]] @n)". (2.12)
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Hr, : 1 Au

T
[* ]

T
[E ¥

Hr, = ¥e ~—__ | (Hr, — @e) [|u]]
< : 11 1] [|u]
0® I, ° 0® Iy 0°

(a) Decomposition of the enhancemenib) Decomposition of the discontinuous displacement
function

Figure 2.4: From [Oliver, 1996b]: one dimensional representation etdntinuous dis-
placement decomposition.

The bounded part of the strain has been explicitly defineagusie arbitrary function
v.. However the variational formulation hypothesis based atatical point of view
(see next section) leads to another shape referredEolaanced Assumed StrdlBAS).
Hence, whether considerations are made on a statical amkities point of view, strong
discontinuity strain enhancement differs. In order to amny mix-up, it is already stated
that: in the variational formulatiorgctual strain field is enhanced using KES in order to
represent meaningful kinematics whereas that ofvirteal is enhanced using the EAS
method. Discussions on that point and impact on modelingeatees (robustness, mesh
dependencyetc) are made later. Anyway, the kinematics representatiatispiacement
discontinuity leads to another set of unknowns stored invéwtor[|u|] representing the
crack opening. Due to its physical meaning, this vector isaanncomponent of the
failure mechanism. It is presented below how it models al lbatile behavior through a
so-calledraction-separation law

A first remark can be made regarding ti@oundedart of the strong enhancement.
In these cases, properties such as continuity of the tragéotor at the interface seem im-
possible to fulfill. Nevertheless, several possibilities their numerical implementation
within a FE context are available. The next section briefliislthese solutions.
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2.3 Strong discontinuity analysis

The termstrong discontinuity analysiseems to appear for the first time in [Simo
et al., 1993] and then in [Armero and Garikipati, 1996]. Tloaaept of this analysis is
to ensure that the constitutive models used arecikistenbnce strong discontinuities
are enabled. Several requirements can be imposed on tee &ld. Among them:

(1) the stress field has to be bounded dver
(2) continuity of the traction vector has to be respectedhersurfacd’,
In view of these statements, two main solutions can be fonrllé literature:

Continuum Strong Discontinuity Approach (CSDA)
The main idea of this class of solutions is to keep using oomitin constitutive
laws (plasticity, damagetc) over(2.. Inspired by thaliscontinuous Galerkifi-
nite Element Methods, the Dirac-delta distributiokisegularized in order to keep
interpolation functions smooth enough. In [Simo et al.,3]9Quthors also change
the mathematical basis of the softening law, making thetiplasftening modulus a
distribution itself. They show that whén— 0 (computer limit), the finite element
approximation has the same structure as in a standard @Gepgdcedure but with
modified shape functions. Full development can be found livé® 1996b, Oliver
et al., 2002].

Discrete Strong Discontinuity Approach (DSDA)
It has been shown in [Oliver, 2000] and [Brancherie, 2008t thcontinuum model
equipped with strong discontinuity induces an underlyiagplete discrete model
at the discontinuity. A so-callelaction-separatiortaw, linking the traction vector
to the crack-opening can be definedlonwhereas a standard continuum relation-
ship between strain and stress fields runs the behavitx \ir,. Introduced by
[Armero and Garikipati, 1996] this method has spread ar@amttican also be seen
in [Wells and Sluys, 2001, Dias-da Costa et al., 2009a, B&a€osta et al., 2009b].
It is in this specific framework that the presented studydsan

Both weak and strong discontinuity kinematics have beeatéckin this section lead-
ing to a global shape of the strain enhancement @.1). However several components
of this representation still remain to be determined. Thenfof © and4, (which is the
bounded part of theirtual strain field strong enhancement) are determined so that it re
spects some assumptions made through the variational fatioru of the next section.
Additional unknowns provided by this modelings|] and[|u|], are additional unknowns
of the mechanical problem. Therefore, compared to stanfdandulations, additional
equations are needed. The unified three-field variationiatipte [Washizu, 1982] is
used in this framework and applied to this specific enhanoémehe following section.
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3 Variational formulation

Since it has been seen many times in the literature, it is thieca choice to keep the
writing as light and simple as possible, emphasizing ondydveral strong assumptions
made and their consequences, for the sake of the reading.

3.1 Three-field variational formulation

In contrast to standard displacement formulations, whasesjuilibrium equation is
expressed in its weak form, the Hu-Washizu [Washizu, 198@e-field variational for-
mulation provides a suitable unified mathematical statéfioerenhanced FE kinematics.
The main idea is to consider displacement, stress and $ie&dn— noted, o ande,
respectively — as independent. Hence, each fundamentatiegs of the mechanical
problem are formulated in their weak form, using three @pomnding virtual fields —
notedn, = and~y, respectively. The variational statement of #gpilibrium equation
of the stress field, thkinematics relationshipetween the strain and displacement field
andconstitutive model EQ. (2.13a), B. (2.13b) and B. (2.13c), respectively — are
expressed as follows:

Three-field variational formulation
Find (a,e,0) € (¥,6,7)sothaty (4,v.7) € (4.6, 7):

HWﬁ('&,e,a;ﬁ):/VSﬁ:adQ—/ﬁ-pbdQ—/ H-tdo =0, (2.13a)
Q I

0

HW, (a,e,0;7) = / T:(Va—e) dQ =0, (2.13b)
Q

HW, (4, e,0;v) = / vy:(6(e) —0o) d2 =0, (2.13c)
Q

with
v ={a|ae H(Q), a=wuonl,},¥% ={a|ac H(Q), a=00nT,}
E={elec ) V}and7 = {o | o € L*()},

wheret is the traction vector imposed on the Neumann surfa¢ebd the internal force
and¢g a stress field that respects the constitutive lav2oMotice that in usual displace-
ment formulations both kinematics relationship and coumstie model are supposed to
be verified in a strong sensee. ¢ = &(¢) ande = V*a, making K. (2.13b) and
EQ. (2.13c) irrelevant.

On the one hand, additional unknowns have been brought niatics enhance-
ments and on the other hand, the presented formulationgadditional equations to the
system. However, it remains many ways to solve it. Sincedlitee is well documented
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on the matter, the different possibilities are simply enated, focusing only on the criti-
cal points. Full description of the methods can be foundinag&k, 2000] and in the other
citations that follow.

Two major solutions of enhancement (based on the one hanstatoal considera-
tions and on the other hand, on kinematics consideratiass$tan the resolution of the
Hu-Washizu formulation system. Notice that at this stagdisaretization is necessary
and equations have to be considered within a finite elemerexb

Statically Optimal Symmetric Formulation (SOS)
First SOS formulation can be found in [Belytschko et al., 898hen, this work
has been enhanced by a great deal of contributions over #teleeades. Among
them: [Larsson et al., 1996,Armero and Garikipati, 1998ySknd Berends, 1998].
The main idea of this method is to consider that the intetpoieof the displace-
ment field isnotenhanced. Basically, it results in a compatibility coraditbetween
the stress interpolation matrix and the enhanced straininfortant assumption
of L,-orthogonality is made between the virtual strain field amel actual stress
field. Under this assumption, the latter vanishes from theigation, eventually
leading to a so-called zero mean condition onto the enhguextaf the strain field
J,€dQ = 0and [, € dQ = 0. Hence, the still unknown shape of the enhanced
part can be determined. Based on purely statical considesafpatch test), a con-
struction of the interpolation matrix of strain enhancetwespecting the zero mean
condition brings continuity to the stress field. Furtherenand due to the fact that
strain fields and their variations are interpolated the same the resulting matrix
of the system is proved to be symmetrical. The major drawledc¢kis enhance-
ment construction is the lack of kinematical meaning. Inje® discontinuities
(weak nor strong) are kinematically represented.

Kinematically Optimal Symmetric Formulation (KOS)
The lack of kinematical representation can be dealt with bdifiying the enhanced
interpolation process. Although for SOS it directly desyeom the three-field for-
mulation, KOS proposes to construct it regarding only a nmedal description
of discontinuity kinematics [Lotfi and Shing, 1995]. Hendsplacement field is
enhanced by a suitable interpolation matrix. The corredpmnstrain is therefore
deduced, applying the symmetrical kinematics operatort occurs that the result-
ing system is strictly identical to the one obtained by u$QSS formulation (stress
field deleted from the equations and symmetric matrix systefhe only differ-
ences reside in the construction of the enhanced strairingarpolation. Herein,
the zero mean condition ot respected but kinematics of discontinuities are well
represented.

Statically and Kinematically Optimal Nonsymmetric Foratidn (SKON)
First brought out in [Dvorkin et al., 1990], followed by Sinmo[Simo and Oliver,
1994] and fully developed by Oliver in [Oliver, 1996a] (bubtrcalled so at the
time), the SKON formulation takes the advantages of bothhods. Actual and
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virtual strain fields are not interpolated the same way. Wihenlatter respects
the zero mean condition of SOS formulation, the suitableasgntation of dis-
continuity kinematics is chosen for standard enhancethdiedd (KOS). Leading

inevitably to a non symmetrical system.

In the next section, the three-field formulation system scdbed using th&nhanced
Assumed Strain methatdkeveloped in [Simo and Rifai, 1990] and adapted here to the
double enhancement framework.

3.2 Assumed strain and double enhancement

Following the spirit of mixed formulations, the presenteanfiework is build using
the Enhanced Assumed Stramethod (EAS). In [Wilson and lbrahimbegovi¢, 1990],
the displacement field is enhanced, eliminating the corbi&firestriction. It was one
of the pioneer work using the relaxed restriction of the paéest [Irons and Razzaque,
1972, Strang and Fix, 1973] over displacement compaigbilihe authors added then a
correction matrix to the resulting enhanced strain in otdgrass the zero mean condi-
tion. Herein, following [Ibrahimbegovit and Wilson, 19%nd SOS/KOS formulation,
enhancement is made directly into the strain field. It is sihéwat, by making the en-
hancement part orthogonal to virtual stress field, SKON fdation can be retrieved.
This section describes the method with both weak and strsogtinuities recently in-
troduced by [Benkemoun et al., 2010].

The formulation derives from the three-field formulationtai-Washizu §s. (2.13).
As in SOS formulation only strain fields are enhanced. Thedssumption is that both
actual and variational fields are enhanced the same way,digagtb standard kinematics
operator an enhanced part for each discontinugy @.14). As fairly reminded in [Simo
and Rifai, 1990]jn a finite element context, the enhanced parea$ not subject to any
inter element continuity requirementdence, strain fields can be yielded as follows:

e =V’u € € and~ = V?7 Y v 2.14

Via+ € + € g n+ 3 +. 7 (2.14)
standard weak strong standard weak strong
S—— ——

enhancement enhancement

where(a, €, €) (resp. (1,7,%)) are taken to be independent variables. Note thatjthe
follows the global shape of defined K. (2.12). Then, by substitutingd (2.14) into
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Sys. (2.13) the system of equations' $ (2.15) can easily be casted:

/VSﬁ:adQ—/ﬁ-pbdQ—/ﬁ-;daQ:o, (2.15a)

Q Q I

/ T:€dQ =0, (2.15b)
Q

/ T:€dQ =0, (2.15¢)
Q

/ Vi (6 (Voi+ 6+ &) — o) d =0, (2.15d)
0

/a; (6 (Va+E+é) o) dQ =0, (2.15€)
Q

/"y:(é’(VS’ELJréJré)—U) dQ = 0. (2.15f)
0

EQ. (2.15b) and (2.15c) show the need of enhancement parts torsructedl,-
orthogonally to the virtual stress, as mentioned previpusis recalled that assumption
is made that virtual enhancement is constructed the samesvilye actual one. There-
fore4 and# are takenl,-orthogonal tar leading to a simplification of &. (2.15e) and
EQ. (2.15f) making the stress vanishes from the whole systdras& considerations lead
to the following modified three-field variational formulati:

/Vsﬁzé(VSﬁJréJré) dQ—/ﬁ-pbdQ—/ A-td0Q =0,  (2.16a)
Q Q Tt

/ 5.6 (Via+E+e) dy=0, (2.16b)
/ﬁ:&(vsa+é+é) 9 = 0. (2.16C)

Since no inter element continuity is required, feorthogonal conditions are applied on
each elements independently. Hence, the last two equatrersvaluated ofe. for each
element = [1..nq|. To keep the notation as light as possible, the geometricglgsties
of each element is noted without thisubscript. For examplé] refers to the volume of
Q. and notV, as it should be.

The third idea of EAS is to insure that an enhanced elemdigatisfies the patch test
(ensuring convergence of the method) after imposing theogdnal condition. Hence,
the stress field must at least include piece-wise constanotifin [Simo and Rifai, 1990].
Mathematically speaking, it implies the following zero meanditions onto the virtual
strain enhancement:

4 dQ) =0 and 4 dQ) = 0. (2.17)

Even though kinematics of jumps into strain and displacedifrelds have been defined
in the previous section, several parameters remained wikesoch as the shape 6for

Meso-scale FE and morphological modeling of heterogenecedia



76 Numerical implementation

4. They can now be defined regarding the zero mean conditioBg®f(2.17). Starting
with the weak enhancement, the condition is written:

~@ ~©
ds2 dQ2 = 0. 2.18
/Q o v + /Q o v (2.18)
Further development can be done by considering the kines@gifinition made &. (2.7).
Assumption is made that the interfalcgis flat — meaning that is constant — ovef?,
and thaty® (resp.3°) is constant by part ove® (resp.Q9). Integration can therefore
easily be done, giving condition d#x.

e®1v® 4+ 6%V° 0. (2.19)
The choice made here is to take
Ve Ve
e®—-"_ ande®=_-_. 2.20
\% 1% ( )

Integration of the zero mean condition applied tQ.K2.12) gives the shape of the
bounded part of the strong enhancement. Also, it is recéliatfor a smooth enough
functiong: [, or¢ dQ = [ ¢ dI'. Hence, the condition ofy can be written:

/% 40 +/ (IInll @ n)* 42 = 0. (2.21)
Q T,

The same assumption of constant valueas also made, giving the possibility of inte-
gration. It finally gives the bounded part of EAS:

3=~ (] @)’ (222)

The complete shape of the strong discontinuity can now bengby adding tay, the
unbounded part defineddE (2.12). This leads to:

Enhanced Assumed Strain (EAS)

3= (00, -3 ) (e n) 2.23)

In this section, a modified three-field formulation has bektaimed (§s. (2.16)) in
a double strain enhancement context following the EAS ntkethidis leads to a form of
both weak and strong enhancement strain defining expligitlyrough© EQ. (2.19) and
4 through its bounded paf, EQ. (2.23). Notice that these results come from zero mean
conditions on virtual fields. It is assumed that the weak aned part of actual field
Is constructed in the same way whereas that of the strongheaheent is constructed
using KES K. (2.12). Hence, the method fits in the SKON framework. At gost it is
not necessary to push further & (2.16). Specific developments with discretized fields
are now made in the Embedded Finite Element context.
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3.3 Finite Element interpolation

The presented approach is based on DSDA (prese/2&). Hence, the actual dis-
cretized strain fielce (now in Voigt notation) is defined by only keeping the bounded
part of the enhancement. On the contrary, due to its differ@e in the formulation,
the virtual field is kept fully enhanced (and therefore unimbed). It is recalled that no
k-regularization is made but since the unbounded part doesivalve strains-stress re-
lationshipé(e) the system can be solved due to integral properties of thacRielta
distribution. It occurs that enhancing both actual anduairstrain fields this way gives
useful information on the traction vector at the discontinsurface.

The enhanced strain fields are discretized as follows:

—_ T —_
€ ={eu Eyy €2z 264y 26y, 26,.} = éj + GW~[|€|] + GSAHUH’ (2.24a)
1> €p
¥ = {Vaz Yoy Yoz 2Vay 2Vys 2%62}T =B 5, + Gw [|7]] + Gy [[n]]. (2.24b)

—— ——
v 7 7

S

where several interpolation matrices introduced corredpo: B (= dIN) the standard
strain interpolation matrix(,, the actual and virtual field corresponding to the weak
discontinuity,Gs the actual field corresponding to the strong discontindibufided) and
G the virtual field corresponding to the strong discontingigyt (unbounded). The star
notation ) refers to EAS where no up-script refers to KES. The vedt@ontains the
nodal displacements afi@|] (resp.[|u|]) corresponds to the additional unknowns brought
by the kinematics enhancement of weak (resp. strong) diseotes.

Regarding B&. (2.7),G\, can be decomposed intband a constant pa#i,, that only
carry information on the interface vectar

®_ @ _ VO NG
GW:{GW—@ H,=Y2H, in ¢ 2.25)

GS = 6°H, = -Y2H, in 0°

The KES interpolation matritzs can be constructed by explicitly defining the arbi-
trary functionp, of EQ. (2.12). The idea is to construct a function that links theptiice-
ment at the discontinuity only to one side in order to “seferaodes inQ(;9 from nodes
in Q?. It can be seen as a rigid body motion (within an element) aftadomain along
the direction of the crack opening. The functipp can be defined with unit values at
each nodes af®, and zero at the others. Hence, it can be constructed witdatd first
order interpolation shape functions:

Ten ) 1 if node numbera € Q°®
e = Na a Wlth a = 1 ¢ ’
e(®) =D Nap p { 0 if node numbera € O°

a=1

(2.26)

whereng, is the number of nodes in the element gndthe nodal values op.. G
is therefore the equivalent symmetric operater® V(y.))® in the Voigt notation of
EQ. (2.24a).
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Finally, from the definition of EAS B. (2.23),G% can be decomposed in a bounded
G;,and an unbounded?  part. Thus leads to:

A
G5 = Gyt Gy = (47 40, ) HE, (2.27)

whereH is the equivalent symmetric operater® n)® in the Voigt notation of ©. (2.24b).

The behavior imM2.\I'; (within a finite element) remains elastic and since material
properties can differ whether evaluatedifi or O°, the behavior law is written:

C®® =C® (Bd+ Gy [le]] + Gslul]) in 92,
a(d, [lel], [[ul]) =

(2.28)
C®e® = C° (Bd+ G2 |le]] + Gs|[|u]]) in 0F.

By injecting Q. (2.24b) and B. (2.28) in &s. (2.16) SKON formulation is re-
trieved. After a little work on B. (2.16c¢),

/Q G2 & (d. [le]]. [[ul]) 9
- [ G olelul aa+ | 6T oa ] ful)
Qe\rd

e

=/ Gy o(d JIE\LHUH)dQJr/ H{" o(d, [e]], [[ul]) do9,
Q\T'y

Ly

= | il ot Ll Jul) o+ [ T, el) ful) don
Q\T'y

where
T= ¢g-n = H7Ts, (2.29)
S~~~ ~——

matrix notation \oigt notation

is the traction vector, and by considering the variatioryastem of the discretized FE
framework applied ta elements, the systemyS. (2.30) can be obtained.

Discretized system

?iil {fie— fot =0 with fr = [ B o(d,[le]], [Jul]) 42, (2.30a)

Qe

hie = /GT el [ul]) d2 =0 Ve € [1..ng), (2.30b)

Rjju) = /Q . G a(d, [lel],[|ul]) d2+ [ T doQ=0 Ve [1..ng]. (2.30c)

Ty
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The EAS method presented above leads to a Dirac-deltaldisom within the en-
hanced virtual strain fieldy and imposing the zero mean condition grants, in a weak
sense, to the traction vector continuity conditio.E2.30c). Virtual strain field has
therefore been formulated frostatical considerations. It is well known that, FE cal-
culation involving strain softening are sensitive to megneent. However, as it is
discussed in [Jirasek, 2000] the kinematical based emmaet (KES) overcomes this
problem. Herein, a relative displacement between nod€®iand° is taken into ac-
count by interpolating the actual fiekwith .. The counterpart of this consideration is
that zero mean condition usually fails in these cases. Comdpadvantages of both EAS
and KES is the spirit of the SKON formulation presented iis 8gction.

At the moment, the development o¥ S (2.30) is stopped. Linearization, resolution
method and applications to specific FE kinematics are cosagfrthe last section of this
chapter. In the next section, attention is placed on theelisenodel used at the interface.

4 Discrete model at the discontinuity

The mechanical description of meso-scale relies on theghenological law gov-
erning the failure mechanism. In this framework, a contmuaodel that represents lo-
calization zone of high strain by introducing a discontiyis used. As presented above,
this discontinuity leads to an element split into two sub dom (2. = Q(f U Q?) sep-
arated by an interfacg;. This separation is described by a discontinuity withindise
placement field (mathematically speaking: an Heavisidendd, it naturally represents
material degradation through a crack opening mechanisnthéwhole framework fits in
the Discrete Strong Discontinuity Approach, two behavitage to be considered. First
regarding continuum partsﬁzga and Q(j are considered elastic which is a rather strong
assumption justified by the general spirit of simple mesadesenodeling. Even if not
done here, more complex behaviors such as plasticity or garoan be implemented
(see [Oliver, 1996a] for details). The second part of the efiod is located at the discon-
tinuity surface. A governing law that links the traction t@cI’ = o|r, - n defined on the
surface with the crack openirfgu|] performs the non linear failure mechanism. These
laws are often referred to &sction-separatiodaws.

In order to fit the general spirit fimplemeso-scale modeling, a very basic single
tensile criterion and brittle softening is used here. Thigtion describe its main charac-
teristics.

4.1 Localization

As in many failure models, the inelastic behavior occurerdtte stress field reaches
a certain amount. This limit value is here referred tgiatd stresgnotedoy). It has to be
seen has a material characteristic of the meso-scale. Wi multi-scale framework,
this local characteristic must not be confused with the macroscefbectivestrength of
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a homogenized material. Only full calculation until gloff@lure can provide these up-
scaled values. & (2.31) defines #calization criterionnoted®,. A negative value of

the criterion means an elastic behavior while a positivedea localization and trigger
the crack opening.

O = geq — 0y. (2.31)

From the latter equation, it can seen that the stress stagpissented by a scalar
referred to as thequivalent stress,q. In order to catch a meaningful representation, its
definition has to be tackled with careful attention. Two sas&ve to be considered. First,
if the localization occurs “far” from an heterogeneity matrix element— no geometrical
information are given on the crack orientation. The chogkcmade here to use the major
principal stress as the equivalent stresg; = o,. This principal component is simply
the first eigenvalue of the stress tensor. Furthermore, dhegponding eigenvectar,
represents its direction. The physical meaning of eigemvploblems naturally leads to
the choice of this vector in order to represent the crackntai@onn < njocaization |t jg
assumed that, in contrast to rotating crack problems, tiemtation is determined at the
localization and does not change. A choice justified by thesual vision of macroscopic
crack as a coalescence of cracked element (a notion dedalo@hapter 3). Secondly, if
localization occurs “near” a material discontinuity, ieissumed that the crack follows the
interface, thus corresponding to debonding. Then, the aifiarence is that is defined
by geometrical characteristics and is therefore indeparfdan any stress state. Traction
vector is defined prior localization and therefore used endfiterion. Herein, its projec-
tion on the interface direction is usegy, = n - T'. Note that, in the simplified kinematics
of degenerated Timoshenko beams developed in the nexirgegbe approximation that
n follows the beam direction is also made. Further detailsgiven in the corresponding
section. Nevertheless, the global spirit described absvled same.

The choices made here reflect, in a physical way, the terissed localization crite-
rion at meso-scale, keeping it as simple as possible. Halefiged the so-called local-
ization step, the traction-separation law governing thenopg after localization is now
introduced.

4.2 Traction-separation law

Traction-separation laws the governing equation that links crack opening to the
stress at the discontinuity. Integration of this law witthie E-FEM context comes from
[Oliver, 2000] and can also be seen in [Wells and Sluys, 2Bfdncherie, 2003, Benke-
moun et al., 2010,Benkemoun, 2010]. It has been shown thatain the discontinuity
can be yielded using the same thermodynamical way as camiranes — free energy,
internal variables, evolution laws, load/unloading fumes, etc It is not the will of the
author to develop this part since no major improvement isanesie and full explanations
can easily be found in the literature. However the princgbedracteristics are developed.

Still for sake of simplicity, a single opening criteridr, is considered in order to gov-
ern the traction separation law, linking an equivalentsstog, to the opening magnitude
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of the cracku| through a hardening functian
Oy = 0eq— (0y — q). (2.32)

For quasi-brittle materials like concrete, it has been shthat the hardening function
should follow a simple decreasing exponential with resp@the magnitude crack (see
EQ. (2.33)). A second material parameghris the fracture energy. It governs the amount
of energy necessary to create a fully opened crack — zero itoggnof traction vector
and very large distance between the two remaining solidparper meter square. Mak-
ing it tending toward) (resp.oco) leads to more fragile (resp. ductile) behavior. As for the
yield stressry, the fracture energy introduced here has to been seen aalpfyameter

of the material.
q =0y <1 — exp (—&[u])) . (2.33)
Gr

Positive values of the opening criterion indicates a needhi® crack to go further in
the opening process in order to get a plastically admissiiéss stated{, = 0), whereas
negative values mean elastic load or unloading. As theiltat&dn and the crack opening
mechanism are uncorrelated, the equivalent stress dobaveto be necessary the same,
nevertheless it involves necessary the traction vectonefat the interfac@ (details
are given later). Because botlando.q are depending ofu| a non linear way B. (2.32)
has to be differentiated in order to solve the problem. It acern that have to kept
in mind while choosingreq. Finally, the global behavior if2. can be summarized as in
FIG. (2.5). An elastic relationship links strain and stressiieh Q% andQ® where, after
localization, the two parts of the split body are linked tibge by the interface through a
relationship between crack opening magnitude and trageetor that models the degra-
dation process.

o] Teq
Oy

el [u]
(a) behavior outside the discontinuity interface (b) behavior at the discontinuity interface

Figure 2.5: Continuum/discrete constitutive model.

As the criterion is single valued (one scalar equation)ginethe traction separation
law can only determine the crack magnitydé Hence, it has to be projected onto the
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three-dimensional space following a given vector (notgll This leads to the following
definition of the crack vectdful]:

[lul] = [u] ny. (2.34)

Depending on the element kinematics, several choices appged fom,, based on
displacement or stress considerations.

This section has been the occasion to describe the non loedevior used in this
work. Keeping in mind the spirit ddfimplemodeling, a single tensile criterion with quasi-
brittle phenomenological behavior linking stress statéhatdiscontinuity to the crack
opening is chosen. Several aspects such as the equivakss ahd the crack projection
will be specified in due time.

5 Resolution methodology

In this section, attention is drawn to the resolution 8S(2.30) where B. (2.30a)
is the global equilibrium and & (2.30b) and (2.30c) are the two local equations corre-
sponding respectively to the weak and the strong enhandeifieslatter ensure continu-
ity of the traction vector at the discontinuity interfaces #een above, it is first activated
according to a stress criterion, then a quasi-brittle beemawintroduced linking the crack
opening magnitude to the traction vector. Hence, a noniisgstem has to be solved.
First, linearization of the equations is presented, theh lmzal and global levels of reso-
lution are discussed. Finally, application of the theaadtframework is made using two
different FE. One with a simple kinematics using degendrdienoshenko beams and
another using 4-node tetrahedra.

5.1 Integration and linearization with constant strain elements

Application is made here with constant strain elements. ddemtegration ovef),
can be performed easily. Because weak discontinuity canrdsept, those integrations
have to be decomposed @? and Q?. Equations will be developed by explicitly sep-
arating each variables: on the one hand the displacendeaisl on the other hand the
internal variables corresponding to weak and strong dtsmoities respectively|e|] and
[lul]. Itis recalled that, giving the statemen®E(2.34), the latter vector valued variable
may simply be expressed as a scalar varigile

The notations used for the linearization are as followsYlée an equation depending
on ny, Variables{ X;}, at each time step (subscript) it is necessary to iterate a certain
number of time k) (superscript) using a standard Newton procedure. It ischote

(k) + TNwvar 6Y
n+1 i1 6XZ

(k)

n+1

(k+1)
= 0. (2.35)

n+1

Lin(Y) =Y

i
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5.1.1 Linearization of the equilibrium equation

Integration offy, gives:

o= /BT el [lul) d2 = BT (vOC® + vOc®) B
Koo
VeVe e e
+-——B (C —C )H\,i[|s|]
Kpw

+ BT (v®c® n v@c@> Gn, |ul,

J/

-~

Kips

therefore, linearization of global equilibriumgE (2.30a) can be written as:
(k+1) na f e |
n+1 - =1 fint n+1 -

Notice that, the same equation can be applied for matrix eterfno weak disconti-
nuity) sinceKpy = 0 if C® = C©, leading to standard E-FEM formulation with only
strong discontinuities. The same remark can be made forekigeguations.

Ne| (k+1)
A {KbbAd‘ + KouA[lel] |+ KusAlu

e=1

r)

(2.36)

5.1.2 Linearization of weak discontinuity equation

Integration of K. (2.30b) gives:

VeVe L e o
hiey = | Gl (@ llel) [jul)) 2 = ——H, (c®-c®)Bd
Kb
V@v@
——Hy, (VOC® + vOC®) Hy [l
P ’
V@v@
+——H, (c;*@ - c@) Gan, [,
which can be linearized as follows:
(k+1) (k+1) (k+1) (k)
KwAd|  + KwAlel]] + KWSA[U]‘ = —hy (2.37)
n+1 n+1 n+1 n+1
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5.1.3 Linearization of strong discontinuity equation

Strong discontinuity is handled with equatio@E(2.30c), only giving an explicit
value of the traction vector. Hence, the traction-sepamndaw Q. (2.32) is incorporated
within the system [Ibrahimbegovic et al., 1998].

The integration of the traction vector over the discontiysurface leads to a factor
A. SinceGy, is also proportional to this area surface, it is only nattinak it does not

appear in the end. Actually, the traction vector appearetarbaverage value &f® and
&° weighted by volumes. Indeed:

hay = [ G old.lel ful)ao+ [ Taw-0 (239
Qe Iy
leads to:
1
T = VH;*’T(V@&@ +Vv®s9). (2.39)

It can be verified that if no weak discontinuity is presentia €lement, usual value of the
traction vector is retrievedl’ = H:'"&. From the last two equations, the traction vector
can be written in terms afd, [||] , [u]):

T = %H;“T <v®c® + v@c@> Bd
K:’*b
V@v@
——H" (C®—C®) Hyle|
K,
1
- HT (v®c@ n v@C@> G, |u).
- y

s*s

Now, focus is placed on the opening criterion equatian £.32) that linksT" to [u].
In order to stay in a rather general framework, it is assurhatld.q = f(7") and 88";“
is known but not explicitly defined®, can be decomposed into two partgy(7') and

q([u]). Hence, an increment df, can be written:

Deang 4 9 A,

b, =
Ao or Olu]
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giving, as a function of increment af, [|e|] and]u]:

0

ADy = 8"1‘? CHT (v®c® + V@C@) BAd
Doeq VOVO
S HIT (C° - C°) HyA e

-~

Ky,

g T (V@C® V@C@) Gsn, Alu]

J

00¢eq 1
oT vV

v~

K.

s*s

0_2
" g_ve—oy[ul/gf Alu],

f
—_——
Kq

which finally leads to the following linearization @f, = 0:

(k+1)

n+1

(k)
+ Ks*w
n+1

(k+1)

n+1

(k) (k+1)
+ (Ks*s + Kq) T =

(k)
Ks*b

n+1

Ad

Allel]

Alu]

n+1

5.2 Solving the system

Finally the system B. (2.36), ). (2.37) and . (2.40) can be cast in the following
matrix format:

Linearized system

n (k)

k k el

Koy, Ko Khs “ Ad ey _eA {flnt fext}

KWb KWW KWS A HEH = _hHEH

Ks*b KS*W KS*S + Kq nt1 A[U] n+1 _(DO )
n+
(2.41)

The resolution procedure ofyS. (2.41) is performed at two levels. A global one
corresponding to &. (2.36) and a local one corresponding tQ.K2.37) and ©. (2.40).
Following the spirit of theoperator splitmethod, internal variabld$|] and[u] are com-
puted for a fixed value ofl. It can be seen aslacal resolution within each FE. And
because, = 0 is a non linear equation, a standard Newton procedure isimghted in
the element routine, in order to solve the local system:

h’HEH =0, (2.42&)
Do = 0. (2.42b)
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(k+1)
Once the 8s. (2.42) is solved for each element, appropriate value$=Qf and
k

n+1

(k+1) _ _ (k) (k) _ )
[u] are known, leading to null residudg.;| and®,| . Then, following [Wil-

n+1 n+1 n+1
son, 1974], atatic condensatiors made on the local variables, leading to a global system
written with a modified stiffness matriks.. The basic idea is to write the internal vari-
ables in terms of displacements. SincesS(2.42) is supposed to be solved, from the two
last equations of %s. (2.41), it is assumed that:

KWW KWS (k) A [|€|] (k+1) _ wa (k) Ad (k+1)
Ksw Kes+ Kq A[u] Ky ntl

n+1 n+1 n+1

giving a direct expression of internal variables in termaadal displacements:

1
{ Allel] }““*” - [ K  Kus y’“) [ Kub }(’“’ Ad}(’””, 2.43)
A[U] Ky Kes+ Kq Ky n+1

n+1 n+1 n+1

Then, the first equation can be extracted fromsS(2.41) and written in terms of all the
variables:

(k+1) A (k+1) nel (k)
KpAd + [ Ky, Kbs] { A[Hj]u } = _eél {fine — foxd i1’

n+1

n+1

Finally, by injecting . (2.43) in the latter equation, the global equilibrium can b
written just in terms of displacement unknowns:

Discretized using a static condensation

(k) (k+1) el o |®
K. Ad = = ‘@ {fint - fext} ) (2.44)
n+1 n+1 e=1 n+1
where
—1
(k) K K (k) K. 1®
K. — K- | K K ww ws whb )
o oo~ | Kow Kos | ([ Kew Kes+ Kq LH Key |,

Even though the stiffness matrix has been changed due tonkithes enhancement,
its size is unchanged. Hence, no matter how many heterdgenare represented or
how many elements have starting to fail, the global size effoblem is preserved. In
terms of numerical resources, the memory needed only demanitie mesh size (number
of nodes). Naturally, local Newton algorithms slow down tiiebal calculation as the
number of strong discontinuity activated increases. Byagishe static condensation, a
standard FE problem is retrieved, where incrementd bhve to be found in order to
respect the global equilibrium equatio@K?2.44).
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The most common method used to solve those problems in casmndinearity are
the so-calledNewtonmethods. However, it requires full calculation of full ftéss ma-
trix at each iteration, and since morphological modelingurees rather fine meshes, a
quasi-Newtoralgorithm coupled with an iterative solver is used here. Amthe huge
diversity of those algorithms, tH8FGS(Broyden-Fletcher-Goldfarb-Shanno) algorithm
is retained. It makes the number of arithmetical operattorfall down fromO(n?) to
O(n?). The price to pay is that quasi-linear convergence is obthfimstead of quadratic).
Full details are given in the original papers: [Broyden, A9;Broyden, 1970a, Fletcher,
1970, Goldfarb, 1970, Shanno, 1970]. Moreover numericalementation details are in
[Matthies and Strang, 1979]. Added to the quasi-Newton BFGiBe-searchmethod is
also used, modulating the incremental displacement norradoh iterations by a factor
s:

d(kJrl) — d(k) + S(kJrl)Ad(kJrl).

See [Dahlquist, 2003] for details on the computations ofit is recalled that powerful
algorithm adapted to the E-FEM such as [Oliver et al., 200&] mot implemented here
can significantly increase the computation performance.

In the last two sections, the resolution methodology has Ipeesented in a general
framework, the only strong specification being the use oktamt strain FE. In the next
two sections those equations are applied to three difféErnypes: first to a spatial truss
with one-dimensionabar elementghen to a spatial frame with one-dimensiobalam
elementsand finally to standard mesh with volume FE, namélyode tetrahedra

5.3 Application to spatial truss and spatial frame

One of the choice made for the numerical modeling is the usetbfee-dimensional
spatial truss (resp. frame) made of one-dimensional baps (beams). Since the pioneer
work of [Hrennikoff, 1941], the so-calledamework methotias been developed in many
fields in two and three dimensions. Its inner discrete chiarestic makes it a handy tool
for crack modeling [Jirasek and Bazant, 1995, Man and vasT,N008]. Herein, it is the
FE discretization that is based on these frames. Howevsasito be constructed with at-
tention, especially regarding the area assigned to eaoteeale Indeed, it has been shown
in the literature that a constant section fails to repres@iform strain under uniform
loading [Jirasek and Bazant, 1995, Bolander and Sait®8,¥p et al., 2005]. Following
Bolander recommendations, an irregular frame is congidugpon the Delaunay trian-
gulation (which is dual to the Voronoi paving of the domailm).concrete terms, the two
vertices of an element are defined by the centers of two neigfidyonoi polyhedra while
its area is the one of those polyhedra common face.

The numerical implementation of the frame constructiontieen a part of the Ph.D.
thesis of Nathan Benkemoubetails on the algorithm can be found (in French) in [Benke-
moun, 2010]. In a FE context, the latter work shows that fraugiee relevant results in
homogeneous elasticity. Indeed, convergence of globakhctexistics are shown with
regards to the vertex density.
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Using this frame construction as a FE discretization bdsie, kinds of element’s
kinematics are presented within the double enhancemekglmmd. The first one (not
developed), referred to dmr elemeninvolves a very simple kinematics only in the ele-
ment principal direction (one dimension). In this case,dl@nment assembly is referred
to as truss (not frame). The second one, involveam elementith a more complex
kinematics that ables to represent local shearing.

5.3.1 Remind of previous results concerning uniaxial comgssion and tension test
on spatial truss

This subsection presents the main results of Nathan BenkeRlo.D. thesis: [Benke-
moun et al., 2010] and [Benkemoun, 2010] (in French). Sinc@nailar model is de-
veloped afterwards and in order to minimize repetitionseayvsuccinct presentation is
made here, emphasizing only advantages and drawbacks ofétied. It can be seen as
motivations for the further development made.

As it was the pioneer work of the presented meso-model, tba whs to begin by
using the most simple local kinematics. Only strain andsstie the principal direc-
tion of the bar are taken into account. Hence, both fields @asfunctions over each
elements, linked together by the Young modulus. The failieehanism presented previ-
ously can be applied in this context with no other choice tlaking the equivalent stress
as the scalar stress itself. Henceforth, only mode | operamngoe represented. However,
this simple local representation leads to much more congitEbal results at the macro-
scale. Meaningful results on an uniaxial tension and ualaampression are now briefly
presented. Macroscopic responses of both solicitatiamprsented on the same graph
FIG. (2.6) where macroscopic axial stress (response) is plotii respect to the macro-
scopic axial strain (solicitation). Furthermore, craciatterns are shown ini&. (2.7).

Regarding the tension test, it can be observed that a sirggeascopic crack perpen-
dicular to the solicitation occurs, leading to the specirfalure. Even though it is not
represented by the local failure model, a lost of stiffnexfeie failure can be seen. It can
be explained by the development of several micro-cracksaspall over the specimen.
It is the coalescence of these broken elements (or activitatiforms the macroscopic
crack. This first observation shows how a structural effeduced by explicit material
heterogeneity modeling brings several complex featurel as: loss of stiffness, global
failure, complex macro-cracks’ patteretc Failure mechanisms that occur during the
compression test are even more interesting. Indeed, ircésis, the global failure is not
in mode |. Displacement incompatibilities due to the hegereities added to the under-
lying truss Poisson effect lead to a local mode | failure niaddes to represent much
more complex global mechanisms. Eventually, both testdoearompared revealing an
asymmetric response reflected in several ways: regardegttbngth, the ductility and
the cracks’ patterns.
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Macroscopic stress [MPa]
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Macroscopic straini[0—?]

Figure 2.6: Stress-strain response for uniaxial compression andaengith bar ele-
ments.

(a) Compression test (b) Tension test
10~4 Crack openingram] 0.6 104 Crack openingum] 0.04

Figure 2.7: Cracks’ pattern in uniaxial compression and tension withdb@ments.

Several major drawbacks can be reported. First, the ratiwds® compressive and
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tensile strength is rather low. Experiences have shownttimareases as the volume frac-
tion of aggregates increases. However, it has not beenipp@s$sireach more than a ratio
of 4. Furthermore, the compression cracks’ pattern is rathdraodl does not represent
well the reality. The conclusion is that the local model is ®dimple. By representing
displacements in the other directions, shear could be tatemccount at the meso-scale
and therefore mode Il failure too. It is in this spirit thagéeerated Timoshenko beams
are used in the same context.

5.3.2 Degenerated Timoshenko beam element

A beam of lengtH projected onto a three-dimensional space is consideredirtc-
tion is is notedn andm, t are defined so thdin, m, t) is an orthonormal basis @&>.
(z,y, z) represents the coordinates in each direction, respegtiVee displacement field
is decomposed in the basis into three componentsw. 6, andé,, are rotations around
axism andt, respectively. Timoshenko kinematics implies the follogs relationships
between displacements, rotations and strain field:

~ Ou(x) ~ Ovu(x) ~ Ow(x)
€= 8x s Yo = 6![' - Hv(x)a TYw = 6![' - Hw(x)a
_ 00,(x) _ 00,(x)
Ry = W, and Ry = or y

wheree represents the axial strain, and~,, sliding andx, andx,, curving. The sim-
plified kinematics calledlegenerateds based on the assumption that all rotations are
blocked ¢, = 0 andf,, = 0). This choice is made here in order to exclude any additional
parameter that would need to be identified, namely: the seowment of area. It leads
to a strain field that can be put in the following matrix format

€ T Yw
e=1|v% 0 0 [. (2.45)
Yo 0 0

If K andG are the bulk and the shear moduli, respectively, the strelssi$ defined by:

On Tm Tt (K +4G/3)e 2Gry, 2G,
o= |7, 0 0= 2G, 0 0 |, (2.46)
o0 0 2G 0 0

assuming that,,, oq3, 033 are equal to zero. Since only three components remain in
order to define both strain and stress fields, a special vactation is used &. (2.47).

Let Keq = K + 4G/3 andGeq = 2G be equivalent moduli and’ the Hooke operator.
The elastic behavior relationship writtén= C'e means in this context:

on Keg 0 0 e
T 0 0 Geq Yw
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The FE interpolation is made followingd (2.24a). Each components are now speci-
fied for the Timoshenko beam. Standard order one shape dmscti (=), N, (z) are used
for 2-node elements. Respecting kinematics relationsg@pabove, the interpolation ma-
trix of the strain fieldB and the displacement nodal values veeidead to a regular part
of the strain of the form:

u Uo — Uy
Bd = Td with ug =< wv—v; o. (2.48)
Wo — W1

In case of discontinuity, the beam is split if®® andQ® of sizel® and/®. Itis re-
called that each element beam has a sectieonstant ovet giving an easy computation
of the volumes:

V=Al, V®=A® and v® = A°. (2.49)

As depicted in KG. (2.8), it is assumed that the discontinuity interfacedion is always

Figure 2.8: Beam element.

the one of the beamm. This rather strong assumption leads to a predictive cateont,
depending only on the truss geometry and not, for exampesttiess state as it usually is.
However, it leads to several major simplifications such askimg on the local basisn =
{100}". Regarding the weak discontinuitg, becomes a simple scalar function abd
can be expressed in terms of length ratio rather than volurfilee same simplification
can be made for the strong discontinuity. It implies thattthe scalar functiong=¢ and
G respectively corresponding to EAS and KES enhancementlargical:

o [I° o —I°

H,=1, G, = T and G, = - (2.50a)
H;=1 and Gs = G} = —%. (2.50b)

Then from . (2.47), the stress field can now be explicitly defined a®¥od:
5® = c® (ud + Olel] - np[u]> /1, (2.51a)

5 =C® (ud —®lef] - np[u]> /1. (2.51b)
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It is interesting for the rest of the reasoning to expregs by taking into account the
new features presented for this special case and sohing= 0. It leads to an explicit
value of{|¢|] as a function of the displacementg and the crack magnitude]:

Il = — (19€° + 1°c®) " (C® — C®) (g —myfu]). (2.52)

It can be pointed out that if no material discontinuity isg@et within the elemen® =
C® and naturally]|s|] = 0. Furthermore, becaug® is diagonal, by injecting B. (2.52)
in the previous systemyS. (2.51), it can be shown that both stress fields are identical

-1
& =6%=¢5°=c%° (z@C® + l®C@> (g — m,[u]). (2.53)

Actually, this conclusion is completely natural and coudd@been brought up sooner.
Indeed, the fact that the stress field is defined by only thameponents and since the
discontinuity interface is oriented in the local ba@is m, t), the vectos is nothing else
than the traction vectdr itself. Notice that this results can be retrieved from tlaetion
vector definition . (2.39). Thus leading to:

T=6=¢6%

= °. (2.54)

Projection of the crack has still to be determined. Choiceasle here to consider itin
terms of displacements. As it is not constant over the betsndjfference between each
nodal values is taken into accoung. u,. The projection is made following the same
direction but with unit norm. It physically reflects how theack will open, letting mode
[, mode Il or both possible:

Uq
[u|] = [u] : (2.55)
[|wal
The traction vector can now be written:
-1
T = Cc®C® (lec® + l®C@) gy (1 - ﬂ) , (2.56)
| wall

leading to the interesting feature being that, the chosejegtion brings all components
of the traction vector to zero at a total failure state. Whérreaches the magnitude of
the imposed displacement, the elastic part of the straid Gahcels exactly the strong
discontinuity enhancement part. Furthermorehjf; = 0 is respected, it can easily be
seen thaj/¢|] = 0, leading to a null stress field within the whole beam.

It has been noticed that in this case, the stress field is éq@ andQ®. Hence, it
is relevant to consider the stress tensan order to define the equivalent stregg. For
both localization and opening criterion, the first eigeneal, of o is chosen. A common
choice for quasi-brittle material since, among other cttaréstics, shear is taken into
account during the failure mechanism. Hence, criteriorgaren by:

Q) =0y — 0oy and &, = 0y — (0y — q). (2.57)
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Due to the choice of the interface vector as the principadion of the element and the
kinematics approximation of degenerated Timoshenko bgdragprincipal stress can by
analytically expressed as follows:

1
0 =5 (O'n + \/U% +4(72 + TtB)) ) (2.58)

In order to make this criterion fitting into the general framoek presented above, deriva-
tives of o, by all components of the traction vector have to be calcdlatiecan also be

analytically expressed:
00¢q _ { 0oy 0oy Ooy } | (2.59)

oT do,, OTm 8—7}
with

Joy 1 + On

Oon 2 \/2(02+4(7% +77))
doy 2T

O /2(02 +A(r2 +77))
doy 27

o \J2(02 + 42 + 7))

and

For some particular cases, an analytical solutiok@fy = 0 is presented. Herein,
0eq IS NoOt a linear combination of the stress components, heeceatives ofoeq by the
traction vector depend am components. An iterative Newton resolution is needed in the
element procedure.

Remark: During numerical implementation, the author nedi¢hat the choice of the
opening projectiorn,, had a major impact on the criterion shage([«]). Among all the
possibilities ¢, = n, n, = n;, n, = uy/||uq|, etc.), it appeared that only the latter
grants a solution fob, = 0 for any solicitations. It is the author interpretation thihis
feature comes from the suitable physical modeling of crg&nong that projection onto
the displacement brings. Added to the fact that this ch@ads to a total failure state, it
is strongly advised to use this criterion.

It has been seen in this section tliabeing diagonal leads to practical simplifications.
It is the consequence of the simple relationship betweensand stress components,
each one being respectively independent. Both failureraoih and crack projection rep-
resent mode | and mode Il failure mechanisms and take intoustdension and shear
stresses. Furthermore, displacement considerationbéacrack projection on this par-
ticular simple kinematics lead to a total failure state vehai the stress components tend
to zero. At this stage, the system's (2.41) is completely defined. Presentation of some
features of this model are now illustrated through numéegamples.
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5.3.3 Up-scaling relationship in homogeneous linear eldsity

A first step considering frames discretization is to vakdd@hematic approximations
at meso-scale. The aim of this section is to show: firstly, tte presented discretization
converges towards theoretical elastic properties as #megmode density increases and
secondly the relationship linking meso-scale and macatestaterial characteristic.

In this section, homogeneous and linear elastic materiebisidered. Several do-
mains are considered with different node densities (hexeafentified by their number
of degrees of freedom (dof)). A first result is that, conditiga given solicitation, macro-
scopic results converge with the total number of dof, vairdpthe frame convergence.

The elastic material properties are described through sliednd the shear moduli.
They have to be considered at the meso-scale (FE parametera) the macro-scale (up-
scaled values). They are noted™, G™) and (K™, GM), respectively. In this context,
the Kinematics Uniform Boundary Conditions (KUBC, [Hill9&7]) are imposed. Hence,
Dirichlet conditions depend on the positi@ras follows:

’U/\ru = EKUBC * &, (2-60)

whereegygc IS the mean macroscopic strain tensor. Under the assumgiticotropic
effective response, two specific solicitations are considte

(2.61)

O = O
O = O

1
0
0

o O O

1 0 1
EKUBC = €K = 3 0 0 | andekupc =€¢ = 3
0 1

By considering macroscopic fields as mean values of mesms@sults over the cube,
the following relationships between the elastic charasties can be retrieved:

1 4
KM = gKm + §Gm, (2.62a)
GM = 0.18K™ 4 0.89G™. (2.62b)

If the assumption of homogeneous repartition of beams t&iims over space is made,
EQ. (2.62a) can be found analytically. Unfortunately, sintioias are needed in order
to cast ). (2.62b). This system can easily be inverted leading to temedge of
mesoscopic characteristics in terms of those of the mamates

In order to illustrate both frame convergence and up-sgakhationship accuracy, an
elastic homogeneous material is considered with given @saopic characteristics. The
equivalent mesoscopic moduli are yielded by invertirvg.S2.62). All these parameters
are given RB. (2.1). Notice that it corresponds to a macroscopic Younguhgs of10
GPa and a Poisson ratio @R.

In FIG. (2.9), it can be observed: on the left, both bulk and sheatuinoalculated for
several dof (dashed curves) compared to the theoretiaadsand on the right, the error
between them. Those simulations validate both the framestgance and the up-scaling
relationship Ss. (2.62) consistency.
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| Macroscopic properties [MP4] | Mesoscopic properties [MPa]
Bulk modulus | K™ = 5555 | <— | Bulk modulus | K™ = 14137
Shear modulus G™ = 4167 Shear modulus G™ = 1789

Table 2.1: Macroscopic and equivalent mesoscopic elastic moduli.
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Figure 2.9: Global convergence of elastic characteristic using frarseretization.

In order to conclude this first introduction on frame validat it is recalled that, in
this context, two meso-scale elastic parameters grant @otari the usual two macro-
scale material properties. Furthermore, a relationshiydsen them has been determined
leading to a predictable up-scaled behavior. Hence, ndifation is necessary which
is an improvement compared to the truss model. The nontliratures of the model are
now presented and compared to the truss discretization.

5.3.4 Uniaxial compression and tension tests on spatial fnae

Degenerated Timoshenko beams are now tested for the sas@alinbmpression and
tension tests that have been performed on the spatial tithes macroscopic responses
for both tests are plotted ini&. (2.10).

The same features as above can be observed. However sonosé@mgants are worth
noticing:

e The behavior in tension is more brittle along with, in congsien, a larger loss of
rigidity region. These two opposite effects show that thengjes in the behavior are
induced by the new kinematics and not the material paraséi@cture energy).
Thus, results are more consistent with experimental obsens.

e The strength ratio is higher, reaching almési. An expected behavior of the
model since, with a local mode Il failure and a criterion dissed on the principal
stress, more energy can be dissipated. In contrast to tiokstrpattern results,
the macroscopic response shows that the tensile strengtedeminantly affected
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Figure 2.10: Stress-strain response for uniaxial compression andaengih beam ele-
ments.

by the new kinematics, making the specimen fail sooner wihiée compressive
strength is approximately the saméierein, mesoscopic material properties have
been set in order to reach the same tensile strength.

Those differences are highlighted ind= (2.11) where results of both truss and frame
discretization are plotted. Notice that the macroscopairst have been rescaled in order
to simplify the comparison.

From the cracks’ pattern shown ind= (2.12), it can be noted that the tension fail-
ure mode is sensitively the same as above. Indeed a singlkzied macroscopic crack
perpendicular to the solicitation direction splits the gpeen in two. A diffuse micro-
cracking is present in the rest of the material. However tihragression test exhibits a
significant difference. Indeed, where the truss model predan odd cracks’ pattern with
one principal macroscopic crack oriented in a diagonalktiwa, herein, the pattern is a
complex network of plans parallel to the solicitation diren. These more realistic ge-
ometrical representations of the failure behavior explaebetter macroscopic response
of the specimen observed ind= (2.10).

5.3.5 Comments on the spatial truss and frame discretizatio

The performances of the FE implementation of the meso-nym@sknted in this sec-
tion using aframework discretizatiorfwith bar and beam elements) have been briefly
presented. Uniaxial compression and tension tests rel/saleral generic features of
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Figure 2.11: Comparison between bar and beam elements on uniaxial cesipneand
tension.

(a) Compression test (b) Tension test
10~4 Crack openingram] 0.5 5106 Crack openingum] 0.02

Figure 2.12: Cracks’ pattern in uniaxial compression and tension witmbelements.

this two-scale model where heterogeneities of concretbeatrteso-scale are geomet-
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rically represented and the two resulting phases (aggregatd mortar matrix) follow
simple mechanical behaviors. Indeed, it leads to a stralcgédfiect which induces a com-
plex global behavior in terms of both macroscopic respomsecaacks’ pattern. It has
also been remarked how a more accurate element kinematiasess the performances
comparing to a realistic modeling.

However, several major drawbacks can be noticed. On a puargherical point of
view, in addition to frame convergence problematic, the dingension aspect of the FE
discretization prevents the model from producing a voluioeg¢presentation of the stress
field. Henceforth, local analysis are often impossible tmpate. In addition, even though
significant improvements are made using degenerated Ten&shbeams, several char-
acteristics of the macroscopic response — such as the #ireajp — remain rather
unrealistic compared to experimental observations.

It is for these reasons that an implementation based upameFE with full kine-
matics representation is made after.

5.4 Application to volume Finite Elements

Another choice of interpolation, using 4-node tetrahedri@ments, is now presented.
Compared to frame, this volume discretization brings sshamtvantages. First, an exact
representation is made regarding the volume tessellatihre anesh, leading to exact rep-
resentation of constant stress problems. Therefore, tit#gmatic of mesh convergence
presented in the previous section is irrelevant in this emntFurthermore, a complete
kinematics can now be represented. Hence, both geometdnatruction and mechan-
ical behavior are more accurately depicted. Unfortunatblg more complex modeling
leads to several major drawbacks inherent to the enhanddayeiit.

5.4.1 Interpolation matrices

Exact implementation of the classic kinematics relatigmsian be represented with
4-node tetrahedron FE (considering small deformatioreg]ifeg to full strain and stress
matrices of six components. As displacement interpolat@ape functions are linear, the
stress yielded is constant over the whole element. Hencemplies with the necessary
integration conditions of systemyS. (2.30). For sake of convenience, fields are repre-
sented in their Voigt notation. Hence, each enhancemeniaestare developed in this
format. Now, attention is focused on making explicit thessnnues.

The standard part of the deformation strain is computed fiteerdisplacement field
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using the differential operatdr®. Conventions of Voigt notation are as follows:

= o 00
Eyy 0 dy 0 u
€2 0 0 £
= o o z (% (263)
284y o o U
Y &z w
2ey. 0 & &
¢ o) N By
\ Tz ) i & 0 % ]
Hence, the interpolation matrix of nodeshape function derivatives is:
- o, -
o 00
0 o 0
0 0 2k
Ba = AN, 8N, aoz , a4 = [14] (264)
TN, on,
ON, o 8%
| 0
Then strain field is written using the following shorthandaimn:
4
V(@) = Bd « V°(@) =) Bd,, (2.65)

a=1

whered,, is the nodal displacement vector at nede

In case of discontinuity within an element, the tetrahedsosplit into two sub vol-
umesN® and° delimited by the interfac&; of direction vectomn (see FG. (2.13)).
It is recalled that this surface is assumed to be ftaiq constant ovef2). Numerical
implementation of this geometrical construction is noti#ii and several cases have to
be taken into account depending on the surface orientatiwteed,2® andQ° can be
polyhedra of respectivel§y and4, 5 and5 or 4 and6 nodes. And since the formulation
involves only the volume$® and V® (not the interface area), it has to be considered
with utmost attention. When dealing with interface elersgmtith weak discontinuity),
the discontinuity surface is constructed regarding geaoadiproperties of the excursion.
It leads to a predictive computation of volumés® and V°) and interface orientation
n independent to the stress state. It is recalled that thepiggion matrixG,, can be
decomposed int®, a piece-wise function that depends on the sub domairFapd ma-
trix that contains interface orientation information (d&@. (2.25)). In order to respect
orthogonal condition between stress and enhanced strédntfe choice of® shape is
still:

v (2.66)
0° =2 in®

@_{ 0®=v2 jn®
Vv
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Figure 2.13: 4-node tetrahedron element.

Following the same Voigt conventio#,, can be constructed so that the vector format
strain enhancement matches its tensor definitiQn(2.7). The interface orientation vec-
tor is written in the global coordinate system= {n, n, nZ}T, leading to the following
interpolation matrix format:

2
n, Ny My Nty
2
ng Ny 1My nyt,
n n,m n,t
H, = Z T zrE . (2.67)

2NNy MMy + Ny Nty + nyt,
2nyn, nym, +n;my, nyt.+n.t,
| 2nan. nemy +name ngt, + gty

This time, regarding strong discontinuities, EAS and KE#eha be considered sep-
arately. Itis recalled that the EAS enhancement is basedetenhsor operatdge @ n)*
that equivalence in Voigt notation is notddl;. Still respecting conventionsde (2.63),
EAS enhancement interpolation matrix of the bounded pavtitsen:

ny, 0 0
0 n, O
b= _VHS with H? = ny ne 0| (2.68)
0 n., ny
n, 0 n,

Even though EAS interpolation matr&y , includes the interface area, its computation is

unnecessary. Indeed, sin€&;, appears only in the strong discontinuity equattgp,;,
the area can be simplified along with that of the interfacegrdtion of the Dirac-delta
function. Hence it does not appear in the system anymoretheireason why the general
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system has been standardized in termBlgfand notGy . Itis important to be aware that
this property comes directly from the choice of EAS enharaamof the virtual strain.

Since it comes from the same operator, the KES is quite ginsildostituting geomet-
rical information A, V' andn by the displacement considerations within EQ. (2.26).
Actually kinematics carries geometrical information tacg ¢, is constructed consider-
ing which nodes are i®. G is written:

Jpe
o 80 0
0 %
Y
0 0 Z%-
Gs - — 8905 % % (269)
oy ox
dpe  Ope
0
Oz Jy
acpe 0 8906
L 0z or A

Remark:Even if not explicitly revealed, the kinematics formulatiis related to a length
factor through derivation of shape functions. While EASegia simple one-dimensional
measure through the ratid/V’, KES gives a more sophisticated length-scale strongly
depending on the interface orientation. It can easily bevshthat if the interface is
parallel to one face of the tetrahedron, both enhancemenpraportional:Gs « G¢,
(see [Wells, 2001)).

All components of the enhanced strain field are now expjic#fined. The stress
field outside the discontinuity is given using the standdadtec Hooke operatof:

( 0o B 11_—2VV 11€2V > 0 0 0 1 ( e )
Tyy P A 000 Eyy
o % Ty i 0 00 €
T = C — zz —= 1-2v 1—2v 1—2v zZz 270
T=CE= Y o (Tire | 00 0T 0 L0 0| ) 2 (B0
Oyz 0 0 0 0 % 0 253/2
\ Taz ) L 0 0 0 0 0 % 1 2e,, )

In case of material discontinuities, two elastic tensoesfinedC® andC® respectively
defined by Young modulus and Poisson rati8, »® and E°, 1°. In contrast to beam
element presented above, the stress fiel@3and® can be different. Only projections
onn are equals. Hence, the traction vector has to be defined a3.i(RE39).

5.4.2 Localization and opening criterion

Since the discontinuity surface orientation is constrdietéh geometrical properties
for interface elements and with stress consideration wiiser the two cases have to be
treated separately.

It is recalled that in the first case both strain and displaa@rdiscontinuity have the
same physical interface. Being defined by the heterogeseits orientatiom is known
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prior to any mechanical calculation. Hence, the tractioctameis computable and has a
physical meaning before localization. It can therefore &eduin the criterion. In order
to represent the interface orientation as the weakesttairedhe equivalent stress for
localization is defined as the projection of the tractiontgeon it:

with .

T = SH; ' (V96® +V95°), (2.72)
On the contrary, if no material discontinuity can define aeriface, strong discontinuity
appears with stress state consideration. It can be notedhttias case, a constant stress
tensor is given for the whole element since it is free of makeliscontinuity. Its orien-
tation is defined by the principal direction of the stressten If o, is its first (larger)
eigenvalue then:

When localization occurs.e. &, > 0, the corresponding eigenvectay is recorded and
set as the interface orientatiom < n'°cdizaton |t js assumed that its value remains
constant over the whole calculation. Afterwards, the toactector is defined by:

T=H"s, (2.74)

which follows its previous definition witd® = 6° = &.
In both cases, after localization the discontinuity sugfand its orientatiom are

defined. In order to model the same failure mechanism whethénterface element is

considered or not, the opening criteridg is assumed to be identical. The equivalent

stress is taken as the projection of the traction vectaron
Qo=n-T —(oy—q) =1, — (oy — q). (2.75)

Notice that a much more complex criterion is used for beammetgs. This difference is
justified by the fact that shear cannot be taken into accoynising the latter criterion
with the simple kinematics representation of beams, whitnm@des are independent.
Herein, due to the full stress and strain tensors repres@mtd,, has the necessary shear
components for the present problematic.

Furthermore, it leads to a very simple written expressionhef equivalent stress

derivatives:
Ooeq

57 =" (2.76)

It occurs that in this special case, an analytical solutixiste in order to solve the
local system 8s. (2.42). Following the notations of the previous secttgpg) is written

Kupd + K [e]] + Kuslu] = 0, (2.77)
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andhyj,
o
Kond + Koy [[¢]] + Kses[u] — oyexp (—g—;[u]) =0. (2.78)

From the linear equationd (2.77),[|¢|] can be expressed in termsdfand[u] and by
injecting it in EQ. (2.78). Thus yields:

O,
(Ks*b - KS*WKv;v\l/KWb) (%+ (Ks*s - Ks*wKV;v\l,Kws)J[u] — oyexp <_g_;[u]) = 0.

Te M

(2.79)
Becauser is constant andeq depends off" in a linear way K-, and Ks-s do not depend
on [u]. The solution to the equation

T, + M[u] = oyexp <—%[u]) (2.80)
is represented iniE. (2.14).

g:f Ty ge% S—
oy,

q';}

\,\ﬂ Y
n - Ty
\
[u]sol N [u]

Figure 2.14: Graphical representation of the strong discontinuity équna

With M < 0, the equivalent stress decreases as the crack grows. Hemoe], rep-
resents the equivalent stress for = 0, a solution always exists if, > o,. Fortunately,
this condition is always fulfilled since this equation hash®solved after localization
(®, > 0). The solution for this equation is given through the maial teranch of the
Lamber W functionV, by:

aQexp<"yTe> T
[U]sol = % Wo ’ o - Oy e
Oy ng ng

(2.81)

Then, oncdulso is determinedh . can directly be solved, giving the value [of], -

HgHsoI - _Kv;v\l/ (wad + Kws[u]sol) (2.82)

This leads to a really simple and light local framework wheceNewton algorithm is
necessary in order to find proper internal variable valuasrttatch the opening criterion.
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The framework using 4-node tetrahedron is now completelyed. Concluding re-
marks are now proposed prior to move on to the next chapterenhanerical examples
of this implementation are given.

6 Concluding remarks

In this second chapter, the E-FEM has been presented in thext@f the modeling
of quasi-brittle materials. First kinematics of weak anwisg discontinuities have been
detailed. Then the mathematical framework based upon e-fielel variational formula-
tion have been explained and the author has shown how weastiamd) kinematics are
introduced into this formulation leading to the problem ®dwlved. After that several
FE discretization with different types of finite elementard Timoshenko beams and 4-
node tetrahedra) have been introduced. Some comparisomsdrebars and Timoshenko
beams results have been performed justifying the intefdbiecstep beyond in the local
kinematics made by the author. Nevertheless no resultrdpaith 4-node tetrahedra has
been shown. This is the concern of the next chapter of thi& wowhich focus is made
only on computational results with 4-node tetrahedra.tBosne mechanical results are
presented in the context of uniaxial and cyclic tension amdmression tests. Then the au-
thor turns to RVE determination in the context of linear and-finear properties. Finally
a multi-physics problem is treated modeling the delayedrigjite Formation (DEF).

Prior to any numerical results (chapter 3), several comsarg made on the latter
volume element implementation.

On a purely geometrical point of view, using tetrahedragadtone-dimensional ele-
ments increases the mesh node density needed in order tatstguepresent a morphol-
ogy. Basically, it is due to the fact that one tetrahedron &lenof six one-dimensional
bars. This principle is depicted (in two dimensions) i H2.15) where the same simple
morphology (in grey) is projected on a frame and a mesh baségeosame geometry.

(a) Frame (b) Mesh

Figure 2.15: Two-dimensional illustration of morphological projeationto frames and
meshes.
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In this example, where the same number of nodes is used, ibeaeen that the
matrix is represented by elements in the case of bar elements and loy the case of
tetrahedra (in blue). Hence frame discretization has tvppkumentary elements which
can behave “independently”. Considering the interfacer€ih), the difference is less
important but still falls from5 to 4 elements, respectively. However, since no failure
mechanism occurs in the aggregates, although the phasecoansely discretized, a full
kinematics can still be considered as an advantage for meskretization. Eventually,
there is an inherent trade-off between geometrical andkatieal representations. Notice
that the gap between these two methods increases in thedimeasional context.

On a numerical point of view, some difficulties embedded inithe volumetric ele-
ment design are worth noticing. It has been shown that tlansénhancement is based
on kinematics (KES B. (2.12)) and statical (EAS & (2.23)) considerations for the ac-
tual and virtual field, respectively, leading to an non syrtrioal formulation (SKON). It
can be proved that if the discontinuity surface is perparidido one face of the tetrahe-
dron, both KES and EAS are identical [Jirasek, 2012]. Infthene context, due to the
one-dimensional aspect of elements, this condition is ydwalfilled leading to a more
simple general formulation. Furthermore, the unstableetspf the kinematics function
v, leads to several numerical concerns. However, solutiomdedound in the literature
that leads to more complex but robust implementation. Betaliscussion on that mat-
ter is made in [Wells, 2001]. Finally, due to its full kinentat representation, the local
failure implemented in volume elements only affects oné¢ phthe stress tensor. In con-
trast to bar or beam element, it prevents the model from sepiteng a local ruined state.
However, multi-criteria failure [Simo and Hughes, 2008]mroduction of a damage be-
havior (usually done in this context [Oliver, 1996a]) carob&elp on that matter. Herein,
following [Wells and Sluys, 2001], a discrete damage-typsda model is performed on
the traction vector in order to drive a shear degradatiocoutin the crack opening.
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1 Introduction

In this last chapter, the meso-model — based on the morpivalagpresentation and
the Embedded Finite Element Method presented in Chapted R arespectively — is
subjected to several tests in the context of cementitiousmass behavior. This will be
an opportunity to show and comment on the different advastad the methods. These
tests can be broadly classified into three categories, wianktitute this chapter outline.

In section 2, attention is focused on the capability of theleido represent the main
features of cementitious materials by means of mecharoealihg only. First uniaxial
tension and compression loading are performed, the aingbemthe one hand, to show
the emergence of the typical asymmetry of the respectiveasaapic responses and on
the other hand, to make a complete review of the cracks’ pettd he observations high-
light the close relationship between these two phenomenaddition, non proportional
loadings are performed in order to analyze any anisotragh@bior that could be induced
by the failure process. This study is carried out on the prevuniaxial tension and com-
pression tests by means of a damage indicator — linear padgysas on Young modulus
degradation — as well as residual strength — non linear poalysis on tensile strength
degradation. Finally, by submitting the model to cyclic gession loading, information
such as the shared responsibility of reversible damageraakisible plasticity in the
failure process, can be revealed. Consistency of the meskelmesults are compared to
the extent possible with experimental results on both nsaapic responses (seesk (1))
and geometrical cracks’ pattern aspects.

Then, a statistical study is conducted in the section 3, bgmaef Representative
Volume Element (RVE) determination, illustrating the ceipaof the model to be used
as a homogenization tool. Carried out within a Monte-Carticpdure the study provides
RVE for linear and non linear properties. First, RVE of linpaoperties — Young modu-
lus — are computed. Then, innovative results on RVE of noadr properties — tensile
strength — are evaluated. These results are discussedaihits of the computations
are explained along with interesting perspectives.

In section 4, a multi-physic example related to concretabliity is addressed. In ad-
dition to the major industrial challenge associated wissthproblematics, it can be seen
as an opportunity to depict an underlying significant adageatof meso-models, namely
an accurate knowledge of physically meaningful mesoscmazmation. Herein, this
information is the crack opening. Schematically speakingsoscopic results.€. crack
opening values) from a first damaging physical process fnechanical, chemical, ther-
mal, et are the starting point of secondary calculations desidgaatketermine macro-
scopic (homogenized) material properties. These degrpagzkrties can also be based
on different physical principlese(g. mechanic, diffusion, transfeetd. An example of
chemo-mechanical coupling in the case of Delayed Ettengdrmation (DEF) is illus-
trated through the corresponding effect on mechanicalgstigs such as Young modulus
and strengths.

Each numerical example given in this chapter is made on adggreousl 00 x
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100 x 100 mm? cubical specimen where two phases are modeled using thehologp
ical framework presented in Chapter 1. Based on unions afrein sets, this method
explicitly represents aggregates of different sizes rdeltghin a matrix that is, roughly
speaking a mortar. The latter are modeled with three avedegeeters ofl5,7 and
5mm representing respectiveBb, 50 and 25 % of the total30 % volume fraction (see
FiG. (1.21)). Following thenon-adaptedmesh spirit, once projected onto the FE dis-
cretized space, this morphology is represented by two kiiddements: those which
are completely included within the matrix or an aggregatéthose close to an interface
that are split by a weak discontinuity. In order to catch tkergetrical information of
the smallest heterogeneities, the mesh used to computelkneihg examples has about
550 10% nodes. k. (3.1) shows a projection of a morphology onto the mesh irctvhi
only interface and aggregates elements are represenigttiahd dark grey, respectively.
Finally, in order to be consistent in the several calcutatjdhe material properties of each
phase of the meso-scale materials gives 1(3.1) are kept identical for the first two sec-
tions. Unless otherwise indicated, it is recalled that, atoal implementation is made
with 4-node tetrahedron Finite Element. Thus the numeresllts of this chapter reflect
the interest of going further into the complexity of the FlBdinatics regarding the bar or
Timoshenko beams presented in the previous chapter.

Figure 3.1: Projection of the meso-scale morphology onto a FE mesh.

| Phase | E[GPa] v[-] oy[MPa] G;[Jm 7|
Aggregates 100 0.2 - -
Mortar 20 0.2 9 0.1

Table 3.1: Meso-scale material characteristic of each phase.

Finally, the numerical implementation has been made \iotilg a component-oriented
programming spirit, withttOFEAP [Kassiotis and Hautefeuille, 2008], a module of the FE
code FEAP [Taylor, 2003], assigned to treat mechanical, thermal drgcal problems,
using CTL as the middleware [Niekamp, 1995]. A choice basadhe one hand, on the
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suitable architecture of AP in regards to the non-intrusive implementation that E-FEM
requires, and on the other hand, the practical aspect th@aoent-oriented program-
ming of COFEAP in regards to coupled problems. Details on the differeneetspof this
specific numerical strategy can be found in [Colliat, 2010].

2 One-dimensional macroscopic loading paths

As a first illustration of the mechanical model’s basic feas the numerical appli-
cation presented in this section deals with simple one-dgiemal macroscopic loading
paths (simple tension and compression). Computationseafermed undedisplacement
controlaccording to the first spatial axi&¢direction). The four faces in the perpendicu-
lar direction are stress free. Hereafter, a value corredipgrio theX -direction is referred
to asaxial whereas those of theansversabre assumed to be an average value according
to theY andZ-direction.

Material characteristics are set at the meso-scale, threrefach phase possesses spe-
cific data. It is recalled that the model contains two elaatid two failure parameters
respectively being, the Young moduléis the Poisson ratio, the yield stress, and the
fracture energy;. The attributed values are summarized &BT (3.1).

It is worth noting that:

e Aggregates are assumed to remain elastic and so no crackmtiayei at those
points.

e Enhanced elements do not require any specific charactsrigtthe elastic regime.
Indeed, as presented in the previous chapter, they modeffecpaterface with
infinite rigidity. This point is a major advantage of the EMEnethod compared to
other strategies such as the introduction of cohesive ziia¢sequire some values
for the normal and tangential rigidities.

2.1 Analysis of the asymmetric macroscopic response for tciion
and compression loading paths

Two independentests — tension and compression — are performed on the specim
(see KG. (3.1)). HG. (3.2) shows the macroscopic axial stress obtained for testis
along the macroscopic axial strain. Clearly, both loadiathp are leading to a macro-
scopic softening behavior, which can be interpreted as tworascopic failures. This
point is a major result, already obtained by [Benkemoun .e28l10] dealing with truss
elements. Indeed, the use of a single failure criterion atayszale, which is triggered
in tension, shows the emergence of a complex behavior atoss@ale due to the high
number of elements and to the morphology of the heterogesaeitet, FG. (3.2) also
shows that the two macroscopic responses are much moreediffidnan in [Benkemoun
etal., 2010].
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Dealing with both cases, a common pattern can still be ifledtilt is made of three
parts: first, an elastic regime — no cracking — is observeghfiloe stress free poidt up
to a yielding pointA. It is followed by a loss of rigidity (more noticeable in coregsion)
up to the critical failure pealB. Then a softening behavior is represented corresponding
to the progressive ruin of the specimen‘at Those steps are now referred a8:4] the
elastic region, fAB] the diffuse cracking regioni3 the localization andBC] the post-
localization. Even though they are present in both tesest tharacteristic values differ
notably from tension to compression. An analysis of the tebdviors is now proposed
first from a quantitative point of view based on upscaledesiknd then from a qualitative
point of view based on the cracks’ pattern.
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Figure 3.2: Macroscopic response for tension and compression tests.

2.1.1 Upscaled material properties

After FE calculation, macroscopic characteristics can é&emined from those re-
sults. It is recalled that, due to the sequential multi-sdeamework, those quantities
shall be based on a set of independent realizations of thephulmgy and thus on a set of
FE computations. This point is investigated in section af thapter, in which effective
macroscopic properties according to a simple Monte-Canogss are computed.

Here, attention is focused on a single realization only.egstigation on the macro-
scopic values are made for: the macroscopic Young modtffyshe macroscopic tensile
and compressive strength$', the macroscopic failure strain$' and finally, the total
dissipated energ¥P, the latter being calculated by integration of the macrpacaxial

Meso-scale FE and morphological modeling of heterogenecedia



112 Applications

force over the axial displacement. The different upscaledacteristics are summarized
in TAB. (3.2) (comments on the Poisson rati are given in the next section along with
other transversal behavioral quantities).

| Loading path| EM [GPa] v [] o}"[MPa] ¢M'[] DP[J] |
Compressionl  37.8 0.202 34.4 1.081073 50
Tension 37.8 0.202 4.4 1.21074 0.5

Table 3.2: Macroscopic upscaled material properties for both tenar@hcompression.

As expected the initial elastic behavior is strictly symnieetMoreover, the model pro-
vides a value of the macroscopic Young modufitsthat fits inside the Hashin-Shtrikman
range [Hashin and Shtrikman, 1963]. Even though it is quifecdlt to observe the end
of the purely elastic region on the curves, it can safely lseimed that, for compression,
the transition with the non linear behavior occurs for a momgortant macroscopic stress
than for tension. This non-symmetrical elastic domain &s filst feature that emerges
from the multi-scale framework. Clearly it is mainly due teetstructural effect brought
by the heterogeneous character of the mesoscale. From ambkanlogical modeling
point of view, this feature would require the introductidn(for example) two yield sur-
faces, one for tension and another one for compressiontdtaled that herein, only one
mesoscopic yield stress is used. Actually, this comment can be made (but will not be)
for all the other features presented below.

Regarding the energ®® needed to reach the specimen ruin, it can be noted that both
are greater than the mesoscopic fracture enérgyin J.m ?) assigned to the mortar
(corresponding values @" in tension and compression & and5 000 .J.m 2, respec-
tively). Furthermore, the fact that this energy is signifitagreater in compression high-
light the more brittle behavior of concrete-like materialeen solicited in tension. It
is naturally linked with the asymmetric strength values #melr corresponding failure
strains which ratios of compression to tension are resgaygti.8 and9.

2.1.2 Cracks’ pattern analysis

The additional analysis now proposed is based on the craeki€rns. It directly ben-
efits from the multi-scale framework, giving a quantitativik between the meso-scale
failure process and the macroscopic material behavioante seen as an illustration and
explanation of the macroscopic asymmetries describedpeste. From a practical point
of view, the local spirit of the numerical implementatiosing the E-FEM as presented in
the previous chapter, provides the knowledge of the craekiog of each element (tetra-
hedron). Since, no non-local governing laws are implentergach FE is “independent”
and can potentially represent a micro-crack. Hencefontbyder to visualize the cracks’
pattern, focus is placed on the only representation ofttetteon with a non-null crack
opening value. Hereafter, those elements are referradtamted elements

FiIG. (3.3) shows those activated elements at the differenestafithe macroscopic
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tension test, and the color scale representing the crackimgpen mm. First, after the
elastic region K. (3.3(a)), it can seen that barely opened micro cracks attesed all
over the cube. It corresponds tal#fuse cracks’ pattermesponsible for the loss of rigid-
ity. Then, by increasing the imposed macroscopic displarenthe localization occurs
FIG. (3.3(b)). It still corresponds to a diffuse cracks’ pattesith more activated elements
but with a zone where micro cracks are more dense and stasatese. It is the ignition
of a macroscopic crackhat eventually leads to a softening behavior. During th&t{po
localization FG. (3.3(c)), the macro crack has completely percolated tjinahe cube
splitting it apart. It roughly forms a plan perpendicularti@ axial direction, crinkling
around the aggregates. However, it can be noted that reggitoe diffuse cracks’ pat-
tern, hardly anything has changed. The conclusion can henditzat the energy is only
dissipated at the macro crack and that the rest of the domanainly unloading. Finally
a last remark can be made on the non symmetrical aspect ofablest pattern.

(a) Diffuse cracking. (b) Localization. (c) Post-localization.
B B
10-° Crack openingium] 0.02

Figure 3.3: Cracks’ pattern evolution for a tension test.

This pattern can also be seen on the displacement field asntdhe three states are
shown in RG. (3.4) in which the axial macroscopic displacement is repnéed inmm.
It can be seen that the diffuse cracking does not appeandlisti However, the localiza-
tion and the failure can clearly be detected depicting tserdie aspect of macroscopic
cracking.

On the other hand, it can be seen iIGF(3.5), in which the same steps as above are
shown, that the compression cracks’ pattern is ratherrdiffe At the beginning, a dif-
fuse cracking also occurs. However, it rapidly differs fréme tension test since small
micro cracks coalesce between the aggregates, formingas@aths with no privileged
direction FG. (3.5(a)). It leads to a more important loss of rigidity wetble on the
macroscopic response curvesk(3.2). At the localization point, every crack is connected
forming a macroscopic crack network which goes around tigesgtes all over the spec-
imen. Finally during the post-localization, this networogs and nearly all the elements
within the mortar are activated. Depending on their crac&napg, those elements are
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(a) Diffuse cracking. (b) Localization. (c) Post-localization.
I ——
0.0 Axial displacementijum] 0.02

Figure 3.4: Axial displacement field during a tension test.

roughly forming a skeleton made of several planes paralldié¢ axial macroscopic dis-
placement. The main differences between tension and casiprecracks’ pattern are
that: first, before the localization, the latter does notvslany specific propagation di-
rection. And secondly, it eventually leads to a failure s more homogeneous and
uniformly distributed all over the specimen. It can be pethbut that in this case, the
term “localization” is not necessary suitable since crgmiagpagation does not occur in
a specific place. Nevertheless, this term is still used asddae seen as a stage when
enough localizations occurs to cause a macroscopic sofiémterpreted as the specimen
failure).

N

(a) Diffuse cracking. (b) Localization. (c) Post-localization.
B Ly
106 Crack openingifm] 0.3

Figure 3.5: Cracks’ pattern evolution for a compression test.

The features presented just above can also be depictedjthtioa displacement field
contours. Herein, focus is placed on the displacement aay direction. Prior to the
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localization step, due to the “homogeneous” repartitioaratks, the non linear behavior

is hardly noticeable on the displacement fields hence, inbabeen represented. How-
ever it is shown (with different scale ranges) after the liaeéion in FG. (3.7) where,
from left to right, the pictures represent the axial displaentX, and the two transversal
displacement¥” andZ. A discontinuous zone can be observed on the axial field. How-
ever, this time, it does not draw a frontier as clear as fotéhnsion test. Indeed, several
borders following the axial direction can be seen. It showsbding effect due to a mode

Il opening of some macroscopic the cracks. Besides, thehzstion of the network of
those perpendicular cracks is improved when looking attlodtansversal displacements
where two and three planes perpendicular to the solicitaizm be detected.

—0.1 AX|aI dlsplacementrizm] 0.001 0.0 Transversal dlsplacementYn[m] 0.02 0.0 T Tans TransversaldlsplacementZz[n] 0.02

Figure 3.6: Displacement fields during a compression test at the |caidia.

—0.35 AX|aI dlsplacementﬁLm] 0.035—0.035 Transversal dlsplacement Yofn] 0.3 —0.085 Transversald|sp|acementﬁL[n] 0.35

Figure 3.7: Decomposition of the displacement field after localizatronompression.

2.1.3 Crack coalescence versus path continuity

The question of the geometrical representation of a maspescrack using a local
method such as the Embedded Finite Element is not trivial. ekample, in the two-
dimensional case, using constant triangular elementgstbdeen shown (see [Jirasek,

Meso-scale FE and morphological modeling of heterogenecedia



116 Applications

2012] for details) that the best way to produce a suitablekctajectory and avoid nu-
merical issues such as locking is to combine two methodst &inon local formulation
of the smeared crack approach, giving crack orientatiomalmelement. Then a tracking
algorithm enforcing the crack path continuity between eslement.

The major drawback of this implementation is that ibeal nature of the E-FEM (di-
rectly inherited from the FEM itself) is lost. Indeed, in attwh to non local damage, path
continuity enforcement implies, for an element, a cracktposthat depends on those of
its neighbors. Furthermore, since the displacement o¥atetil elements is intrinsically
discontinuous, there is no theoretical reason to enfortie gantinuity. Moreover, in the
three-dimensional case, continuity of flat plane (crackj)fisn impossible.

Herein, the E-FEM implementation has to be placed withimtldti-scale context. In
this case, a single fractured element is not considered tegresentative of any specific
macroscopic feature. However, it is when a large numberasélactivated elements are
merging that it may be considered that they model a contismeacroscopic crack. Itis
for those reasons that no specific efforts has been takea et continuity enforcement.

FiG. (3.8) shows, for the same morphology, both compressionersion cracks’ pat-
terns after localization with the the aggregates. Thoseiggs depict the consequences
of the multi-scale framework presented in this work. Theiatimodeling of the material
heterogeneities and the completely local behavior of etaent confer anatural au-
tonomyto the model. It leads to complex cracks’ patterns that firir tvay around the
aggregates.

(a) Compression test. (b) Tension test.
10-6 Crack opening7[r‘zm] 03 107° Crack openingr[r‘nn] 0.02

Figure 3.8: lllustration of the macroscopic crack path around the aggjess.

Features like multi-cracking or branching which usuallgiuee a complex local nu-
merical implementation (within an element), are hereinttediat the meso-scale. How-
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ever, as shown inig. (3.9) (which is a zoom of 6. (3.8(b))) due to the morphological
modeling, it can be retrieved at the macro-scale. This pcshows a crack that splits in
two branches; a main branch (on the top) with larger openathges and a second branch
that eventually vanishes. Generally, these branchingedoom an aggregates blocking
the way of the crack propagation direction.

Figure 3.9: Natural branching behavior of the macroscopic crack patbrad the aggre-
gates.

2.1.4 Consistency of the cracks’ pattern in compression

A qualitative comparison between experimental and nurakriesults is now pro-
posed for the uniaxial compression test. Prior to that,@tsimportant to mention some
basic experimental issues regarding this test such asittierrfit. Often the mechani-
cal characteristic of the compression testing machinerpating the specimen are very
different than that of the latter. Hence, the resultingtioics induce a transversal de-
formation restrain of the specimen. Not only does it leadartmverestimation of the
specimen strength [Schickert, 1973] but it also signifiyacihanges the cracks’ pattern.
Indeed, the uniaxial compression characteristic patteadarof plans parallel to the so-
licitation (columns) changes in a pyramidal structure ifat@ntion is taken. Since from
a numerical point of view, the boundary conditions are “pet'f (meaning that no fric-
tion is modeled), it is important to compare those resulth whose of an experimental
set up that tends to minimize this detrimental effect. Initoldl, the specimen geometry
imposes a unit slenderness ratio, preventing the compatisbe made with normalized
cylindrical 16 cm x 32 em specimen where the monitored area is far from the boundaries

For that matter, the comparison is made with experimensalltg of [Torrenti, 1987]
(on cubical specimen afo0 mm length) where the loading is applied by means of steel
branches, reducing significantly the maximum induced sbieass prior to the specimen
failure [van Mier, 1984]. These results are sketched (fratua ruined specimens) in
FiG. (3.10) (a) and (c) in three and two dimensions (face), retspdy. They are com-
pared to (b) and (d) and (e) where the last two are two-dino@asslices of the specimen
cut in two perpendicular plans parallel to the solicitattrection. The numerical results
are a representation of the micro-cracks (activated eleshearhere the lowest opening
values have been faded in order to reveal the network moaglyle
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(a) 3D view (experimental).

(c) 2D slice (experimental). (d) 2D slice on Y axis.

T T R IH“

107 Crack openingjum] 0.5

Figure 3.10: Comparison between numerical and experimental crack&npen uniaxial
compression (from [Torrenti, 1987]).

The three-dimensional views shows that the column shapeek aretwork is well
represented as for its crack-branching node densitythe number of crack. The two-
dimensional slices show the complex trajectories, notssardy going through the spec-
imen from top to bottom.

Itis clear that compared to current crack analysis, thisgamson seems rather coarse.

However, numerically speaking, meso-models still straggth crack representation, es-
pecially in compression. It occurs that herein, resultslakimteresting features that show
the model crack representation consistency. Thus it plgrfisstifies the implementation
choices, namely the strong local aspect of embedded discitigs.
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In addition, in view of these encouraging results, manyedéht perspectives can be
considered. For example in [Nemati et al., 1998], the austhoaike a statistical analysis
of the crack network of damaged mortar specimens (micresceder uniaxial com-
pression using scanning electron microscopy (SEM) (see®.11(a))). Geometrical in-
formation such as crack orientation distribution, branghnode topology could be com-
pared to results of the numerical model applied to micrdespsorphologies. Another
analysis on crack growing made through X-ray microtomolgygjhandis et al., 2003]
where scans were made at different increments could also @exesting comparison
process easily adaptable to the numerical framework.

08 um i i RN 0

(a) From [Nemati et al., 1998]: Cracks’ pattern @) From [Landis et al., 2003]: Cracks’ pattern of
mortar under uniaxial compression using SEM. mortar under uniaxial compression after localiza-
tion using X-ray microtomography.

Figure 3.11: Perspective of cracks’ pattern modeling at thiner scaler@ascale).

In this section, a initial analysis of the macroscopic res@ohas been made. It re-
vealed the emergence, at macro-scale, of some complexibelizat was not included
in the meso-scale model. It mainly deals with the asymméieicavior in tension and
compression (macroscopic strengths and dissipated enehggh is a major feature of
concrete-like materials. Then an enlightened analysisi®fctacks’ pattern gave an il-
lustration of the mesoscopic mechanisms responsible éomigcroscopic behavior. This
gualitative description showed complex cracks paths witéresting topological proper-
ties (diffuse cracking, coalescence, multi cracking, bhamg). These initial results are a
persuasive illustration of the important role of morphatad modeling and more gener-
ally, of multi-scale frameworks.

A more advanced analysis based on transversal informatioow proposed.
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2.2 Transversal strain

Now attention is focused on the macroscopic transversahstrlt is recalled that the
axial directionX corresponds to the imposed displacement direction andveasal val-
ues are defined as the average of those aloagd”. The results presented here are still
based on the same one-dimensional macroscopic testofieemnpression) mentioned
above.

The macroscopic Poisson ratio can be determined usingahsversal strains by:

L (3.1)

Herein, thiselasticproperty is extended to the diffuse cracking region in otddiustrate
the mechanism that leads to the specimen loss of rigiditye-Fse. (3.12) where it is
plotted in terms of axial strain for both tension and compi@s tests. First, the elastic
phase shows that the macroscopic Poisson ratio is of the eeaee as for the meso-
scale:r™ = 0.202 in both cases. Afterwards those values are diverging.,Firs¢nsion,
the ignition of diffuse cracking cause local strain releasd thus make the macroscopic
strain decrease along with the Poisson ratio. On the cogniracompression, this local
strain release causes a heightening of the transversalamisai leading to a significant
increase of the Poisson ratio.

0.3
0.28 + N
0.26 |
0.24 |
0.22 + .
0.2 — [ =
0.18 + \
0.16
0.14 +

Poisson ratio [-]

Tension
0.12 Compression------
0.1 . Mesoslcop|c---l ........ |

-1.2 -1 -08 -06 -04 -02 0 0.2
Macroscopic axial strainlp 3]

Figure 3.12: Poisson ratio for tension and compression tests vs. axahst

Since the meaning of the Poisson ratio is highly contestatitestrongly non-linear
failure behavior, the post-localization analysis is onséd on transversal strains. For
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that matter, K. (3.13) and K. (3.14) show the macroscopic response up to the speci-
men ruin in terms of the axial strair}! (solid curve) and of the transversal directigh
(dashed curve). Regarding the tension test, during thepezst phase the transversal
strain decreases and tends to vanish (see 8.13)). It represents the unloading that
occurs in the specimen - at a macroscopic scale - after the onack localization. In
contrast, during a compression test, the transversahstiliincreases after the peak (see
FIG. (3.14)). As already mentioned, for this loading path, thecks’ pattern is more

a network of several macroscopic cracks than a single load#bn zone. The dilatancy

observed here is the direct result of thifusecracking process. Besides, it is the same
mechanisms that explained the Poisson ratio increase.

4.5

4 L

n 0
o W Ul
T T T

1.5 i

1t 5

Macroscopic axial stress [MPa]
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051 !‘ Axial
; Transversal------

0.15 0.2 0.25
Macroscopic axial strainlp—3]

0 1 1 1
-0.025 0 0.05 0.1

Figure 3.13: Macroscopic response for tension in terms of axial and wenssl strain.

The dilatancy of the specimen can also be computed by considering theafdbe
macroscopic strain tensor. Thus, the relative variatidgh@folume, drawn in 6. (3.15),

IS:
AV M M M
0= 7 :gax_'_gtry _'_gtrz

(3.2)
Notice that the same dilatancy rate magnitude is observadnsion and in compres-
sion regarding the elastic region: a result in conformitytvthe identical Poisson ratio
value. Naturally a tension test produces a volumetric esjoan(@® > 0) while com-
pression produces a contraction € 0). However, the cracking process increases the
dilatation rate for both tests. Hence, when in tension tbpesis increased, in compres-
sion, the contraction tendency is slowed down. The locadinas characterized by: in
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Figure 3.14: Macroscopic response for compression in terms of axial eantsversal
strain.

tension a sudden rate increase and in compression a dijatainama. Afterwards, the
dilatancy shows an interesting feature in compressionedddthe tendency is reversed
in the post-localization region. Eventually, the positikensversal strains reach the axial
strain magnitude leading to a specimen volume equal to tiggnat valueV;, (6 = 0).

This characteristic is reached fdf, ~ —1.51073. More important loading even leads to
a positive relative variation of the volume.

These observations of volumetric variations are rathesistent with experimental
results. In [Torrenti, 1987] the interpretation is madd thracompression, the contraction
corresponds to a predominant elastic effect where thewallp expansion reveals an im-

portant cracking stage. However, experiences revealetlienedric strain which switches
sign prior to the localization (seg- in FIG. (1)).

2.3 Dissipated energy

As an integration of the reaction over the displacement{a emergy can be calcu-
lated from the macroscopic response shown ii@.K3.2) for each step. Furthermore,
considering a fictitious elastic unloading until zero loaddl, a distinction can be made
between the elastic and the dissipated part. Thus it giveslditional mean to quantify
the failure mechanism and compare tension and compresslaviors. The three ener-

gies — elastic, dissipated and total — are plottedi@.K3.16) as a function of the axial
imposed displacement for both loadings.

Meso-scale FE and morphological modeling of heterogenecedia



One-dimensional macroscopic loading paths 123

1 .
Tension ——
0.8] "o Compression------
0.6
L o04f
fa \'\‘
5 02}
IS \
T 0 .
D ‘\\ //,//
'O . 2 - \'\ /./’/
0.4}
_0.6 1 1 1 1
-2.5 -2 -1.5 -1 -0.5 00.25
Macroscopic axial strainlp—3]
Figure 3.15: Dilatancy for tension and compression.
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Figure 3.16: Energies calculated for each step of the loading.

These curves gives a clear representation of the elastidi@sgpated mechanisms
that occurs during the loadings, which are typical of a softg behavior. It can be ob-
served that at the beginning, nearly all the energy is elastd then, at the localization,
the energy dissipated increases significantly. The mot#debfailure in tension than in
compression can be seen and the fall of the elastic energynéaidy zero value repre-
sents well the relaxation phenomena and the fact that akktieegy is dissipated in the
macroscopic cracks.
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2.4 Induced anisotropy

After having shown the macroscopic response of the modahipls radial macro-
scopic loading paths, focus is now placed on non proporticesses. Here, our objective
is to show the emergence, at macro-scale, of some featuadsd ¢o any anisotropic be-
haviors. This anisotropy shall be related to the non propaatity of the loading path.
Hence, it is referred to aaduced anisotropy

Considering a tension or a compression test with monotoaiinhg, the failure mech-
anism that leads to the specimen ruin induces a strong ampsodf cracks’ pattern. On
the basis of this simple observation, an analysis of the osaopic material properties
— e.g Young modulus, tensile strength, etc. — for each stepeprevious monotonic
loading tests (in both tension and compression) is now EepoHereafter, the two first
parts of the macroscopic loading path (tension or compoagsire referred agrincipal
calculations. In order to yield residual material propestiadditional calculations, that are
inherited from the principal, are performed. They are mei@assecondarycalculations.
Basically, the inheritance from principal to secondaryguakdtion is made through the non
linear featureg, e.the set of meso-scale cracks with their orientations andiogevalues.

2.4.1 Anisotropic induced damage

Here the residual property of concern is the Young modulnsrdler to display the
anisotropy, it is independently calculated for each diceck, Y andZ. Hence, for each
step of the principal calculation, three secondary oneparformed in the three direc-
tions. It gives three macroscopic Young moduli: an a¥¥ value and two transversal
onesEt"r/'y andEt"r"Z. The results are displayed by defining “damage” varialdlgsty, and
dy,, respectively. They are built to compare the upscaled unesioung moduli to those
corresponding to the initial state™ (which are the same for all direction):

EM—EM EM_EM EM_EM
Tax’ dtry -ty and dtrz = Tﬁz (33)

dax = EM

Theoretically, in the elastic region of the principal tebtyse variables are null and then,
tend to increase along with the specimen failure state.ddohiat this unusual approach is
clearly opposed to standard damage mechanic where thdatadowf a damage variable
d gives an effective Young modulug& = (1 — d)E. Herein, the Young moduli upscaled
valuesEM and EM yield the damage variablels, andd;, (EQ. (3.3)).

The results in tension are given ind= (3.17) where the two damage variables are
plotted in terms of the macroscopic axial strain of the pgatcalculation. It can be
observed that the axial damagsg is growing much faster than that of the transvetal
Moreover, the former reaches a valuexof).85 which corresponds to a highly damaged
state when the latter hardly reaches5. Hence, the elastic property is far more spoiled
in the axial direction. This result reflects the characterisorphology of the cracks’
pattern, splitting the specimen in two by a plan perpendictd the axial axis. As the
macroscopic crack grows, the “link” between each part okipecimen becomes weaker,
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leading to a decrease of the upscaled Young modulus in ttestcbn. On the contrary,
there remain several non broken paths on the transversatidins that gives the specimen
a higher rigidity.

1
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0 0.25

Macroscopic straini)—?]

Figure 3.17: Evolution of axial and transversal damage variables fonaita test.

Regarding the compression testGF(3.18) shows the opposite effect. Indeed, here
the transversal damage is more important than the axial éneay be explained by
cracks’ patterns that form planes parallel to the axialdio® and leading to a higher loss
of rigidity in the transversal directions. Furthermores thore diffuse aspect of the crack
repartition makes the difference between axial and trasaydamage less important.

Finally, for both tension and compression cases, it can tegibat the two transversal
damages are of the same order of magnitude, representinggpsdbehavior in these two
directions. Somehow, it could be said that the macroscdpstie behavior is shifting
from an isotropic case to a transverse isotropic one. Moneamnical investigations for the
second step of those non proportional loading paths mayrdete the complete elasticity
tensor for this case.

2.4.2 Induced anisotropy for tensile strengths

Still dealing with both tension and compression tests,ra@seis taken now in the
residual tensile strengtbf the specimen for each direction. As the previous section-c
puted an elastic property, herein, non-linear calculateme performed at each step of the
principal test in order to yield these failure propertiebeTesults are plotted in terms of
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Figure 3.18: Axial and transversal damage variables evolutions for apression test.

residual strengthslefined by the ratio between actual tensile strengihsf;, and fi,
and the initial state on¢ (which is the same for each direction):

_ fax _ ftry o ftj

Tax = 7, Ttry f and T’trZ == f

Theoretically, these residual values are unit valued iretastic domain and null whether
the specimen is ruined. Their evolution through tensionamdpression failure are drawn
as a function of the principal calculation axial strairgF(3.19) and k. (3.20), respec-
tively.

The results show approximatively the same behavior as toogbe elastic moduli.
Regarding the tension failure, a more important decreagbeofensile strength is ob-
served in the axial direction than along the transversaictions. The ratios are also the
same order of magnitude. Indeed, when the specimerdasi % of its strength in the
former direction, it only losts 20 % in the last two. Regarding the compression test,
the specimen seems to follow a rather isotropic behavioveNeless, the transversal
residual strengths are a little smaller. Notice that ateHasure states, the specimen lost
~ 90 % of its tensile strength.

(3.4)

2.5 Uniaxial cyclic compression loading

It is widely admitted that the behavior of concrete is higigpendent upon its load-
ing history. Modeling this behavior under cyclic compresdoading is a complex matter
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Figure 3.19: Residual tensile strength evolution during failure predegension.
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Figure 3.20: Residual tensile strength evolution during failure predescompression.

due to the highly non linear strain-stress relationship taedmultiple effects that must
be taken into account. Nonetheless, a great number of s{udien phenomenological
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models [Ollivier et al., 2012] to empirical formulae [BahndaHsu, 1998], have shown
consistent results. However, it inevitably leads to a higimher of parameters not neces-
sary easily measurable. Herein, the performances of the-meslel are now tested with
this kind of loading. Furthermore, itis an occasion to régeseral details of the different
mechanisms that take place during the specimen failure -ex@@ample, the emergence of
macroscopic plasticity and damage — which are concealedeogrevious simple mono-
tonic tests. Henceforth, the model is now submitted to a moraplex test following a
uniaxial cyclic compression loadingath.

The same cubic specimen as above of $iXemm x 100 mm x 100 mm is tested in
compression with a series of loading/unloading cycles. Gdwendary conditions are the
same: the upper and lower faces are controlled by a negaipesed axial displacement
(Dirichlet) and the others are left free of any stress (Neum)asimulating a simple com-
pression test. The loading paths, drawn ig H3.21), consists of four cycles of maximal
displacement-0.06, —0.12, —0.18 and—0.24 mm. The unloading paths correspond to a
displacement of-0.024, —0.036, —0.084 and—0.12 mm, respectively, leading to a rather
important stress release.
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Figure 3.21: Loading path: axial displacement for each calculation tsteps.

The macroscopic response along axial, transversal andnaiic strain is drawn in
FIG. (3.22) (with inverted axis). Among the four cycles, onle tlast three are visible
since the former is performed in the linear region. The saatufes as for the monotonic
loading are naturally observed, among them being the acirdreat the beginning and the
eventual expansion of the specimen in the post-localimatgion (positive volumetric
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strain). On these points, the model remains pretty comgistéh experimental results
(see KG. (1(a)) for example). Though it can be pointed out that thieale®r is more
brittle and a rather small amount of energy is dissipatethduhe unloading/reloading
phases (more visible on the transversal curve).
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Figure 3.22: Macroscopic response under loading/unloading cyclesrmdeof axial,
transversal and volumetric strain.

The unloading trajectory of the macroscopic response givpsgntitative description
of the different mechanisms that take place during the spatifailure. For that matter
the macroscopic response versus macroscopic axial s¢rpiotted in FG. (3.23) along
with the unloading stress-strain path (assumed linea@s@&previous (linear) paths give
the part of macroscopic plastic or damage effects in thariprocess. Their slope and
the strains for near-zero stress level (intersection vaghelbscissa axis) correspond to the
damaged Young moduluél!\’I and the residual plastic deformatiefy respectively, for
i = [0..3]. Considering two extreme cases: on the one hand, if nomasiityds due only to
plastic mechanisms (irreversible dissipated energibs)yhloading path should have the
same slope as that of the elastic loading. On the other hlamaklinearity is due only to
reversible crack opening, unloading should lead, follapnandamaged path to the initial
zero-zero strain-stress point (perfect crack closure).

Of course, it is worth recalling that the numerical framekvdoes not take into ac-
count for any damage at the meso-scale. Only a softeningvlmeha modeled through
the so-called traction-separation law. However, data astf or damage phenomenon
that occur at thenacroscopic scalésee RB. (3.3)) shows that both play their part in the
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Figure 3.23: Illustration of the plasticity and damage repatrtition digrihe cyclic loading.

modeled failure mechanism. An interpretation of this upséature is that the resulting
incompatible displacement of morphological modeling iceliasymmetrical local defor-
mations during loading. Henceforth, with regards to itsropg, the crack closure is not
necessarily symmetrical during unloading, representimgtarically dependent behavior.

As for the induced anisotropy analysis and in order to giytite damage, equivalent
variablesd; are defined with upscaled Young moduli:

EY — By

di = )
E

(3.5)

with i = [0..3] and whereE}! = EV is the initial Young modulus of the non-damaged
specimen.

Notice that the first visible cycle is made just after macogsc localization. At this
stage, it can be observed that the specimen lost almostfitdfinitial stiffnessd; = 0.4
by a crack opening process almost reversiblesfneg 0.017 10-3. The plastic effects ap-
pear to be gaining importance along with the specimen degjeat) = 0.128 10~3. And
eventually, the failure irreversibility stops increaseighe last cycle while the specimen
stiffness continues to decrease up to a nearly completethadad statéd; = 0.8.

The nearly non existent plastic effect in the early stagethefspecimen degrada-
tion are rather odd compared to experimental observatsees . (1(a))). Among the
several reasons that can explain this results, the fachthactual plasticity is modeled
within the meso-scale behavior is one of the most importhrtteed irreversible effects
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Cycle | Young modulus Damage Plastic deformation
i EM[GPa]  di[] er [1077]
0 38 0 0
1 23 0.4 0.017
2 11 0.7 0.128
3 7 0.8 0.135

Table 3.3: Proportion of plasticity and damage at each cycles.

are here only induced by morphological displacement inctibpities, leading to crack

opening even during the unloading paths. In addition, whlgacycles prior to localiza-

tion, not done in this study, could reveal an interestind pathe behavior. Finally, the
quantitative results @B. (3.3)) have to be considered with caution since unloadatgp

are not necessary linear and only actual strain values nearoastress level could give
accurate information on the residual plastic part — hardiyputable within a numerical
displacement control context.

3 Representative Volume Element for elastic and failure
properties

In order to predict statistically relevant effective prapes of heterogeneous media,
the determination of a Representative Volume Element (R€E crucial matter. As
shown in [Kanit et al., 2003], a RVE depends on four main fesgu amaterial prop-
erty Z, a precisione, a contrastc between each phase and tmember of realizations
computed:. The last two are closely related. Indeed, to be statigyicalevant,n must
increase along with. Since herein, the contrast — based on the Young moduluscbf ea
phase — is rather smatl= 100 000/20 000 = 5 and the calculations are time consum-
ing, the choice is made to consider the smallest number dzagians so that it can be
statistically considered as “infinitef,e. n = 100. With this number of realizations, it
can be assumed that the material prope#tiés follow a normal distribution. Hence the
confidence interval &5 % is

1.960, - 1960,

1 =\|\z7-"=2.7
95 % \/ﬁ ) + \/ﬁ )

whereo ; is the standard deviation arifithe mean of the propert§. From this interval,
the sample theory gives a relative error of the mean value aéfined by:

(3.6)

1.960,
€ = — .
Z\/n
This unit-less error is usually used in order to set the greni Notice that it is propor-
tional, for a givem, to the coefficient of variation. Naturally, along with theam and the

(3.7)
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standard deviation, this error depends on the specimemetonsidered. Henceforth, a
RVE is defined for a given absolute errorHerein, attention is drawn to a RVE a4,
defined by the unique volume:

VEEY = {V | e(V) =0.01}. (3.8)

Finally, only the mechanical propertiesof concern remain to be determined.

3.1 Experimental protocol

Itis recalled that a set df00 realizations is produced in order to preform the statistica
study. Hence, the same number of morphologies have to beegielnd projected onto
FE meshes of different volumes. The specimen volume rangsdered goes fromy’ =
103 mm3 to 106 mm?3, corresponding to a cube size range that goes from10 mm to
100 mm. The morphology characteristics are the same as alBi/4: volume fraction
of disconnected random shaped aggregates, whose chataciengths are distributed
arounds, 7 and15 mm, are included within a mortar matrix.

Both tension and compression tests are performed up to theoftthe specimen
(the same conditions as above are applied). In additionddréilung modulugelastic
property), full non-linear calculations enable the stat#s study of failure properties such
astensileor compressive strengthin FIG. (3.24), the envelope (area between minimal
and maximal value) of thé00 macroscopic responses of both tension and compression
are plotted for two specimens of sizé and 100 mm, respectively. A initial qualitative
analysis can be made in view of these curves. Firstly, it @oliserved that, for a smaller
volume, the behavior seems to be less predictable than faatat a larger one. Indeed
the macroscopic responses are more spread around the meani.eathe variance of
the response is higher. A logical result that also standshielastic region. However,
this behavior appears to be more pronounced in compresSemandly, the compressive
behavior shows a size effect, making the large specimenavéhaén the other. This is an
integral feature of meso-models that shows the strengtheaf tinderlying spirit.

The statistical analysis is preformed through the erronéefiR. (3.7) which is made
a function of specimen volumaés. It occurs that the discrete results obtained are well
fitted by a decreasing exponential of the specimen one-difoealsizeq = V'/3:

£(V) = alexp(— (V/a2)1/3) ¥ s, (3.9)

wherea; andas can be seen as initial and offset errors, respectively,nds a vol-
ume which characterizes the error decreasing rate. Thehighs, the slower the error
decrease.

Then, after an identification of the fitting parameteysit is possible to compute the
RVE volume for a given property following& (3.8), which gives:

3
VREY — 0, I <1 il ) . (3.10)
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Figure 3.24: Envelope ofl 00 macroscopic responses in tension and compression for two
specimen volumes.

A quantitative analysis of Young moduli, tensile and conspiee strengths is now
proposed leading to the definition of as many RVEs.

3.2 Young moduli analysis

In this section, the mechanical property studied is the Yomodulusin simple ten-
sion As an elastic characteristic, the results are the samegiaie and in compression.
Hence, no distinction has been made. It is simply calculbsetthe ratio between macro-
scopic axial stress and axial strain at the first step of thaulzion. At this stage of the
calculation, the specimen is still free of any microscopac&s. In FG. (3.25), the Young
moduli over specimens of volumié = 1000, 8000, 27000, 64 000, 216 000, 343 000,
512000, 729 000 and1 000 000 mm? are plotted along with the confidence intervaly,
defined . (3.6). The equivalent volume of the larger aggregatessis iepresented.

Notice the smallest specimen seems to give an odd valueiasuiladly below the oth-
ers. It can be explained by the fact that this volume is, it fmaller than the volume of
the larger aggregate. This value should be ignored as arglepscaled Young modulus.
However, it can be remarked that the confidence intervallieasame order of magnitude
than for larger volumes. Beyond a volumesgf00 mm?, the Young modulus converges
rapidly to a value just below0 000 MPa while the size of the confidence interval mono-
tonically decreases. Quantitative results of this deereas drawn in K. (3.26) through
the relative error definedd (3.7) (represented i).
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Figure 3.25: Young modulus for several volumes with a confidence intes¥/ab %.
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Figure 3.26: Relative error of Young modulus for several volumes.

Results on the identification of¢E (3.9) and corresponding RVE value definegl. [£3.10)
are given (along with those of the next section) BT (3.4). Herein, considering the
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Young modulus and an error of%, the RVE is

VREY ~ 158 000 mm?, (3.11)

Young

which corresponds to a cube size= 54 mm.

3.3 Tensile and compressive strength

In this section, the tensile and compressive strength ofpleeimen are considered.
The same procedure as for the Young modulus is applied. Hawavfull calculation
up to failure is performed in tension and in compression &wherealization in order to
measure the two macroscopic strengths. Their mean valuksanfidence interval at
95 % are plotted in Fc. (3.27) and K. (3.28), respectively, for specimens of volumes
V' = 1000, 64 000, 216 000 and1 000 000 mm?. They both approximately show the same
behavior. Indeed, a global decrease of the strength can se\au, representingsaze
effect Due to this typical feature of heterogenous quasi-brnittéerials, the strengths do
not seem to converge to an asymptotic value, which makesar ahfflerence to the latter
result on elastic properties.
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Figure 3.27: Tensile strength for several volumes with a confidence vatef 95 %.
The two last figures show the logical decrease of the confelenterval [y54,. It is
guantified by the error in & (3.7) whose fitting function parameters are summarized in

TAB. (3.4). Along with the calculation results, this functiandrawn in FG. (3.29) for
both tensile and compressive strengths.
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Figure 3.29: Relative error of both tensile and compressive strengtdoeral volumes.

These curves depict several interesting features. Fitsymore important error of
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small volume compressive strength 60 000 mm?) shows that a statistically non repre-
sentative morphology leads to a more unpredictable fabeteavior in compression than
in tension. It can be explained by the cracks’ pattern amalysde in the previous sec-
tion. Indeed, in compression, a complex network of seveeanoscopic cracks is formed
around the aggregates where in tension just one is creatpdmaicularly to the solici-
tation. It can be easily imagined how, for small volumes,ftrst pattern can hardly be
obtained. Hence, it can be assumed that in compressionitheefenechanism is more
closely related to the morphology then in tension. This higpsis is supported by the
results which show that, for the smallest volufrie= 1000 mm?, a factor2 on the error
is observed. However, since the compressive strength alsemate is higher than that
of the tensile strength, this difference is rapidly reduasdhe volumes increase. It is
guantified by the fitting parametes which is more than two times higher in tension than
in compression (seeAB. (3.4). In order to explain this difference, a new principte
ferred to asracks’ pattern stabilizatiors introduced. This characterization of the failure
mechanism aims to qualify the geometrical difference betwaeresulting cracks’ pattern
and that observed on representative volumes. Herein,ssisme that a single perpendic-
ular macroscopic crack and a network of parallel plans greesentative of tension and
compression tests, respectively. Hence, they can be edféoras stabilized cracks’ pat-
terns. Naturally, this denomination is to be seen only imteof volume variations. The
difference between the two decreasing rates of the errobeaxplain by this stabiliza-
tion process. An initial error (fo¥’ = 1000 mm?) higher in compression than in tension
represents a more unusual failure mechanism in compresonn tension. Hence, in
the former case, the stabilization of the cracks’ patterthasnorphology becomes rep-
resentative is more important. Finally both errors seent®twerge to an identical value
below thel % error.

Just as the Young modulus RVE has been calculated,(&8) applied to this case
gives the two following RVE for tensile and compressive sy (f+ and fc):

VREY ~ 115000 and V= ~ 135000 mm?, (3.12)

which correspond to cube sizeswof: 49 and51 mm, respectively. Compressive strength
RVE is just a bit larger than that of the tensile strength sTthiference in the geometrical
complexity of the cracks’ pattern can be explained in theesamanner as above.

Material propertyZ | VEEY [mm®] oy [%] a2 [mm®]  as [%]
Young modulus 158 000 11.5 5470 0.48
Tensile strength 115000 5.4 8350 0.51
Compressive strength 135000 15.1 3370 0.50

Table 3.4: VER size and coefficients of the fitting functiofa(V") for the elastic and
failure material properties.
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3.4 Comments

When elastic and failure material characteristics are @eth the statistical analysis
made here reveals some unexpected features. Firstly,rgediror functions considered
(Young modulus, tensile and compressive strengths) haveame order of magnitude.
Actually, the former fits between the last two for small voksr 10 000 mm?). Sec-
ondly, the decreasing ratg is also within the same range, which eventually produces a
RVE at1 % of an elastic property larger than that of failure proper{grengths).

It was the author’s expectation that non-linear propesigsh as material strengths
would be more spread around the mean value than the eladticluso An interpretation
of this result is that the failure mechanisms that take ptee are initiated by highly
localized phenomenon induced by the morphology leadingriallsRVE. Furthermore,
the low error value of tensile strength can be seen as a sgremetrical stability of this
mode | failure mechanism — with a single macroscopic cracklmoat not influenced
by the morphological distribution. Beyond a certain volyitiee same reasoning can be
made for compression. Indeed, this study shows that eveirimore sensitive to small
volumes, the compression cracks’ pattern — network of perplans — is eventually
quite stable.

However, this study has to be seen as beeing at its early. s&igee, as far as the
author can tell, no RVE on failure characteristics such smngth can be found in the
literature, the aim here is to determine a trend and provioasss for a future study. On
that matter, the several weak points that undermine thdtsemtcuracy and that must be
treated are listed just below. Basically, they are relatethé fact that the necessity of
failure calculation is time consuming.

1) Full failure calculations have to be made for the same rermabvolumes as for the
elastic modulus. Herein, the fitting function of three pag#ens is based on four
points. Henceforth, the value of one mean strength higtilyences the RVE size.

2) The Monte Carlo integration methods are known to be slowdiaverge {/n).
Herein, the numben of realizations seems too small even for the elastic modu-
lus.

3) Finally, an investigation of larger scale and differerdrphologies could provide
more information on the asymptotic aspect of the three éarmstions and the size
effect observed on the strengths.

4 Application to the Delayed Ettringite Formation

Delayed Ettringite Formation (DEF) is a harmful phenometypical of concrete-like
material. The underlying cement paste expansion affeettotig term behavior of mas-
sive large civil engineering structures such as power platams or bridges. Ettringite is
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the principal phase of hydration products. Its formatioeaty ages along with its role in
the resulting concrete behavior is well known [Moore andldgy970]. However, under
certain conditions, its formation occurs after after thasslical stabilization of the hydra-
tion process. Two main conditions can be retrained: coaaabject to high temperatures
[Divet and Randriambololona, 1998] or humidity [CollepartP97]. Hence, in view of
the important economic impact of DEF (monitoring, repajrietc), the modeling of this
behavior and its impact on material characteristics is @ggissue.

It is admitted that most parts of the degradation take thegiroat the meso-scale
where local stress concentrations due to heterogeneiiggg§cement incompatibilities)
leads to a diffuse micro cracks’ pattern. Hence, on the gtheof its explicit morpholog-
ical modeling, the presented meso-model seems well swtatiit problematic, improv-
ing the capability of more usual homogeneous based repgeggeTs (phenomenological
models).

4.1 Numerical simulation

The DEF process can be represented by a progressive expéfeytor et al., 2001]
of the cement matrix. Furthermore, observations revealtarbgeneous repartition of
the ettringite precipitation. In this context, since théatent phases of the matrix are
not represented, a simplified expansion is modeled dyoamogeneous strain solicitation
within the matrix Finite Elements.

Following the tests developed by Pavoine [Pavoine et ad6a(Pavoine et al., 2006b],
simulations are performed a0 mm x 220 mm concrete cores cylinders. Aggregates
are represented by non-intersecting polydisperse sphéradii varying uniformly from
2 to 20 mm randomly placed over the specimen, as representedsin(B.30(a)).

Prior to an analysis of the impact of DEF on Young moduli, adatlon of the expan-
sion modeling through volumetric variation of the specingemade.

4.2 Homogeneous mortar expansion

It is assumed that DEF is accurately represented by an hamogs matrix expan-
sion of 1 %. The impact of this local (mortar) deformation is now analyat the macro-
scopic level (concrete). Numerically speaking, the lagbgyansion is calculated in order
to be consistent with experimental measure. Hence, it isnasd that the longitudinal
expansion calculated with radial displacement extraatenh fthree axial segments (see
FIG. (3.30(b))) is representative of the total volumetric géidn. In AG. (3.31), this con-
crete expansion is drawn as a function of the mortar defooméstrain solicitation) from
0 to 1%. Two calculations are performed, the first where all phaseskstic and the
second where the mortar can fail, generating micro-crackénlogical linear behavior is
observed in the first case. Since the aggregate volume isagdrieen the macroscopic
expansion rate is less thdan Actually, this rate approximately corresponds to the mor-
tar volume fraction which is almo$t %. Now, considering the second case, two linear
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Figure 3.30: 110 mm x 220 mm cylinder specimen.
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Figure 3.31: Concrete expansion as a function of mortar expansion.

regimes can be identified. The first corresponds to low $ations — less thaf.13 % —
where the induced stress concentrations are smaller teamadhtar strength. Hence, the
behavior is identical to the elastic case. However, for niogortant solicitations, crack-
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ing occurs, leading to a more important macroscopic expartBan previously observed.
Eventually, it nearly reaches the mortar expansidf,

Figure 3.32: Cracks’ pattern at the final% mortar expansion.

The numerical responses are rather consistent with expatahobservations for sev-
eral reasons. Firstly: with regard to the cracks’ patteepresented iniE. (3.32)), initi-
ation of the process takes place at the interfaces, thersmaice of meso-cracks spreads
to the mortar matrix. Secondly, the larger crack openiigum is near to those measured
100 — 300 um. These results enhance the position and the role of the seedestrategy
as a consistent modeling asset.

4.3 Residual Young modulus

Now that the DEF modeling has been presented, its impact erdéigradation of
material property is considered. Numerically speaking,ftilure state of the specimen
at each step of the DEF simulation can be stored through #ek @pening. Hence,
it is simple to perform as many parallel calculations in ortte determine a material
property (as for the induced anisotropy presented abovedeir, focus is placed on the
residual tangent Young modulae$ the specimen. Displacements are imposed on both
upper and lower faces and the lateral surface is left stress $imulating a pure tension
test. The upscale value of this residual Young modulus ise@stained with the resulting
macroscopic response.

In FIG. (3.33), the results are plotted in terms of relative Yournmdalus (ratio be-
tween residual and initial modulus) along with the conc(etacroscopic) expansion for
each numerical step of the DEF simulation. A natural monictdacreasing shape of the
relative ratio can be observed eventually leading to a I6$# & of the initial stiffness
for a concrete expansion of almdsto.

A this stage, since experimental results are usually baselywamic measure (ultra-
sonic) Young modulus, the comparison is rather difficult.wdaer, in can be remarked
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Figure 3.33: Evolution of the macroscopic Young modulus along with ceterexpan-
sion.

that the global shape depicted incE- (3.33) along with the final value are pretty con-
sistent. Indeed, it is experimentally shown after a deangagart, the dynamic Young
modulus of the specimen falls 50 % of its original value.

This numerical analysis of DEF based on meso-scale is a pamaore general study
of this degradation process. The latter has been condugtéd. Al Shamaa during
his Ph.D. thesis [Al Shamaa, 2012]. More specifically, salverperiments have been
conducted, varying the granulometry of the concrete. Aroarggnumerical study of this
influence is a major perspective of meso-scale models prextéere.

5 Concluding remarks

In this last chapter, performances of the meso-model haee peesented. First, at-
tention has been drawn to macroscopic responses undernalr@adings (especially in
tension and compression). It revealed that the structdiettenduced by the explicit
material heterogeneity representation leads to relexanptex asymmetric macroscopic
behavior both in terms of stress-strain relationships aadks’ patterns. Then, a statisti-
cal analysis has been performed in order to define RVE forldstie modulus, the tensile
and the compressive strengths. Finally, coupled modelinigeoDelayed Ettringite For-
mation has been presented, showing the impact degradatetodnortar expansion on
the Young modulus.
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The examples selected in this chapter have been choseneforé¢presentative as-
pects. However, the diversity of this meso-model — and ofovesdels in general —
is far broader. Herein, computation has been performed amgéesset of morphological
parameters (except for the DEF application). Even thoughrtipact of different geo-
metrical characteristics (fraction volume, aggregate,gtt) has been “observed” during
the numerical implementation of the framework, no actualysis has been made and it
was the author’s choice not to draw premature conclusionsieider, due to the model’s
capacity to represent the structural effect, it seems aeketo enhance the application
spectrum by performing such an analysis. A good startingtpmuld be an analysis of
the tensile and compressive strengths according to aggregas. Experimental results
show a significant drop of the former (in compression) as tigregate size increases
[Szczesniak et al., 2013].

Regarding the cracks’ pattern analysis, a good perspestiviéd be to compare our
results with statistical studies which have been perfororedpecimens at different load-
ing states [Nemati et al., 1998]. This would give a quantitatharacterisation of cracks
in terms of orientation, number of intersections, branghiopology and surface area. A
comparison on the same basis could be performed on numezgidts by developing a
post-treatment procedure taking into account both geacaétind topological informa-
tion of cracks’ patterns. In addition, a brittle behavioulmbbe implemented within the
aggregates in order to depict their tendency to fail as theanstrength increase.

Another perspective could be to consider cementitious maddeat thiner scales. A
good starting point could be to perform non-linear analysisa mortar paste (micro-
scale). Smaller aggregates, additional phases (poregjitiagent topologies could lead
to interesting analysis. However, taking into account ¢hlkesterogeneity sizes at the
macroscopic scale requires major improvement of the résalmethodology, using par-
allel computation [Hautefeuille et al., 2009].

Finally, it is worth pointing out that the methodology debed in DEF modeling can
be extended to other coupling problems such as the effectywrigdshrinkage incom-
patibilities between aggregates and mortar [Lagier eR@ll1] or permeability problems
[Jourdain et al., 2011]. This is a major feature of the strdisgontinuity methodology.
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Conclusions and perspectives

The work presented in this document is part of an approadhattempts to repre-
sent the quasi-brittle behavior of heterogeneous masesiath as cementitious ones. The
guideline followed fits into a sequenced multi-scale frarmwior which descriptions of
the material are selected at a thin scale (mesoscopic opsaigpic) and information is
transferred to a larger scale (macroscopic). It is shown thevexplicit representation of
heterogeneities offers interesting prospects of ideatifin, understanding and modeling
of macroscopic behaviors. In practice, from a simple dpesion of each phase and in-
terface behavior, a structural effect that leads to moreptexnrmacroscopic behavior is
observed.

The work is therefore focusing on two main problematics: lendne hand, the mor-
phological representation of the heterogeneities, antd@nther hand, the FE implemen-
tation of both heterogeneity and local behaviors.

It is shown how the spatial structure of correlated RandoetdFintrinsically rep-
resents the morphological variability of material hetenogities and thus is a relevant
asset to address the former problematic. In addition toigie implementation that this
methodology grants, its generalized aspect leads to trelplity of representing differ-
ent kinds of morphologies. Thus cementitious material eambdeled at the meso-scale
(matrix-inclusion) or the micro-scale (porous media).dfy) since thresholding process
of these fields produces random shaped morphologies — éxnsests — whose geome-
try and topology can be statistically controlled, this miquessesses a suitable predictive
aspect (statistically speaking).

The numerical implementation of the meso-scale behavimsgd on the introduction
of kinematics enhancements of two kinds within the FE cdnt&ke first, referred to as
weak, leads to a non-adapted mesh strategy. Morphologigsajected onto an unstruc-
tured mesh being created regardless of any physical surfdee second, referred to as
strong, models discontinuities in the displacement fieat gre viewed as micro-cracks.
Their openings are directly linked with local fracture egeand tensile strength leading
to a model with only two meaningful non-linear parametersie§e two enhancements
provide the model with a significant capacity to representfdilure mechanisms in a
continuum region (mortar matrix) as well as on its interacéurthermore, the E-FEM
integrates both within a single unified variational statetne

Finally, coupling both parts of the problematic, the moded been tested by modeling
cementitious materials at the meso-scale mainly undexiaipadings. It revealed an
emergent macroscopic response that exhibits severakrésasuch as asymmetry of the
tension-compression stress-strain relationship, crgekterns or historical-dependency
which are typical of concrete-like materials. However,esal weak points are worth
noticing regarding the macroscopic response such as ar flathegatio compressive to
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tension strength or a too brittle behavior in compression tathis point, the author did
not manage to produce more realistic results while keepiegpeesentative local config-
uration. It is recalled that the latter is only based on ptglstonsiderations. Henceforth,
improving the framework automatically leads to more inttlegnalysis than parameters
identification.

On the one hand, the mechanical behavior modeled at the stasé®-could be en-
hanced. Adding plasticity or damage outside strong discoities could provide a better
macroscopic behavior. Implementation of this type of mmadghre common and known
to produce efficient results within a phenomenological erit

On the other hand, keeping the same governing laws, theqshgthe modeling can
be considered more accurately. It is well known that theyesgke phase of cementitious
materials has a major impact on its resulting charactesist large number of phenom-
ena occur during this stage.g.drying shrinkage, leading to a complex damaged state not
represented in this study. In addition, a more accurateesgmtation of the material het-
erogeneities could also improve the results. This cornedpto an investigation in thiner
scales and a representation of more phases. Many ingredigctt as pores, sand or water
could increase the significance of the macroscopic resgort$awever, it would neces-
sitate adding a nested aspected to this complex systeraférang information from the
micro to the meso and then to the macro-scale.

Considering this latter point of view, the author considbet the future development
of this model lies in retaining the spirit of thEhysical significance of thin scales
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Appendix A

Gaussian Minkowski Functionals

1 Volume of the unit ball

A closed ball is defined in the Euclidean sp&®, for N > 0 andk > 0:

N
BY = {(:El,xg,...,xn) RV laillk < 1} (A.1)
i=1

For examplef3; is a disk of radiud andB? a square of size.

For the specific cask = 2, which is of interest here, the volume of the unit ball of

dimensionN > N is:

aN/2

“NTTA 1 N)2) (A2)
The values of the first four volumes are:
wo =1 (A.3a)
wp = 2 (A.3b)
Wo =T (A.3c)
w3y =47/3 (A.3d)

2 Probabilist Hermite polynomials

Hermite polynomials are a sequence of orthogonal polynism&everal manners of
“scaling” them can be used. The so called Probabilist Herpalynomials are defined as
follows:

2 dn 2
Hn(a:):(—l)”exﬂ@e /2 (A.4)
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The order of thex" is n. The first four polynomials are:

Hy(z) = (A.5a)
Hi(x) ==z (A.5b)
Hy(z) =2* — 1 (A.5¢)
Hs(z) = 2° — 3 (A.5d)

3 Gaussian volumes of spherical set iR

The aim of this appendix is to compute the Gaussian measwihis specific hitting
set:

H, = RF\Bg (0, &). (A.6)
Itis defined by €. (1.34), leading to:
~ 1 2 2
- - — e[| /20
’Wc(Hs) 0_]9(27_(_)]9/2 /I;Is € dx (A7)
The spherical coordinates in dimensioare as defined below.
(=l = 7
x1 = rcos(f)
xe = rsin(fy) cos(fy)
xe = rsin(fy)sin(fy) cos(fs)
Tp—1 = rsin(fy)sin(bs) - - -sin(Og_2) cos(fx_1)
| @x = rsin(6y)sin(fy) - - - sin(fy—2) sin(0g-1)

An volume element being:

8l’i
deta r.0)

= rF 7 sinf72(0,) sin®3(0y) - - - sin(Op_y)drdby - - - dfy_,

the Gaussian volume can be computed, usingo; } ):

T\ 1 ~ k—1_—7r2/202
Ve(Hs) = W/?:E re dx

T 2 2
X / sink*2(91)d91 / sinki?’(@g)d@g s / d@k,l
0 0 0

J

dv =

drd01 cee d@k_l

v~

27k/2 /T (k/2) (k—1-dimensional volume of unit sphere

_ 1 > k—1 —7“2/202
= GRok/2-1D(k/2) / noe dr

=k
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In order to simplify the previous equation, one can make tiewing variable substitu-
tion:

t=1%/202 = r=2tc
dt = rdr/o® — dr = \/1/2todt

leading to :
~ 1 & o
H,) = o) te ™t ——dt
W) = TG | e VF 7 T
And finally, after obvious simplifications:
- 1 o0 = _
%(Hs)zr(km/ / 2 et = T(k/2, &% /207) (A.11)
r=k2/202

The exact same reasoning can be made for other similarghgéin Solution are given
in the followings formulae:

(k/2,%*/20%) (A.12a)
(k/2,&*/20?) (A.12b)
(k/2,k7/20%) + T(k/2,k3/20%) (A.12c)

1/20%) =T

—7(k/2, R (k/2,73/20°)
(A.12d)

(B (0, 7))

i (RM\Bger (0, 7))

Vi (Br (0, 1) U (R*\Bgr (0, 2))))
(R (B (0, 1) U (R*\Bgr (0, 72)))))

7
r

I
= QI
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Appendix B

Correlated Random Fields

1 Orthogonal decomposition of correlated random fields

The aim of this appendix is to present the “big picture” ofretated random field
orthogonal decomposition. Full development and proof efttleorem can be found in
[Adler and Taylor, 2007]. A brief description of the ingredis that leads to the decom-
position are described, hopefully helping understand thnen-Loeve decomposition.

The theory is valid for a large range of space but, for sinigli@ bounded region
M of the Euclidean spade” is considered here. Theproducing kernel Hilbert space
RKHS of a correlated Gaussian random field of covariancetiom€ is define K. (B.4).

It is a set of functions which share the same regularit¢@s y) for a givenz (or y).
First one can define:

S = {u:M»—)R:u(.) :ZaiC(wi,.),ai eRx; € M,n> 1} (B.1)
i=1

From(C properties (like its positive definiteness), one can defiedallowing inner prod-
uct:

< U,V >g= Z Z&ibjC(.’Bi, yj) (BZ)

i=1 j=1

that possess the following reproducing kernel property:
<u,C(x,.) >y= u(x) (B.3)

This inner product can naturally define a norm of the spécéul|y = /< u,u >4.
HenceS can be completed, creating the RKH&C) as follows:

H(C) = {u M= R:u() = iaiC(:ci, ),a; ER x; € M} (B.4)
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H(C) is a separable space sinfeC H(C) is a dense and countable space. This result
comes from the separability dff and the continuity of. The idea now is to find a base
to this space that will be the decomposition base. One neddfioe, first a linear span
of the random variableg(x), H = Vect{g(x,xz € M)} and then, a linear application
O : S — H sothat:

O(u) =6 <Z a,C(z;, )) £ Zaig(mi)' (B.5)

Knowing that each linear combination of Gaussian randonakées is a Gaussian random
variable, one can clearly see thatu) is Gaussian and keeps its norm. Furthermore,
H(C) is separable, leading to a possibility to extend itdhyThe complementary ofl is
then constructed with the remaining Gaussian limits. Thisresion is an isomorphism
and makeH separable too. By takingy,} an orhtonormal base off (C), and¢,, =
O(¢n), {&.} is a base of{ and:

g(@) = & <g®@), & >n= > &E{g(®)¢.} (B.6)

where¢,, ~ 4(0,0%) and therefordf{¢;¢;} = d,;. Since® is an isometry (equivalence
of the inner product), using& (B.3), one can conclude that:

E{g(z)&n; =< Clz,.), ¢, >n= () (B.7)

EQ. (B.6) and K. (B.7) gives directly the wanted decomposition:

g(x) = Z‘Pn(w)fn (B.8)

2 Finite Element discretization of the Fredholm problem

The continuum Fredholm problem is written:

Afmwwwwzww> (B.9)

Its week formulation can be written:
Vw(.) € H' (M), find (A, (.)) so that:

[ w@) [ cwyiwayiz= [ v (8.10)
M M M
If M is a cube discretized in a regular mesh witlx n x n nodes, one can define:

17[;0, = [1/11 e wn?’]T
Wwe = [wy ... wys]? (B.11)
NG = N0 N
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leading to the following finite element discretization:

w(.) = NT()w,
() N*(.)%q (B.12)
C(,*) = NT()Cu N(x)

Which leads to:

wIN(x) [ NT(x)Cop N(y)N'(y) odydx = | wl N(x)A\NT(x)padz
M M M
:s;u{/ NNwaCab/ NNTdyz/;a:;u{A/ N NTdz +p,
M M M
M

= MCMp =AM 815

3 The turning band method

Let g be an isotropic, stationary, zero mean correlated randdohdigfine over)M,
a bounded region dR?® andC;3(z,y) = C3(||xz — y||) be its covariance function. Let
{2}, i = [1..Z] be Z unidimensional random fields defined oveéisegments (band$)
which direction vectors; are uniformly distributed over the unit sphere. The covaréa
function is assumed to be the same for each random fjedahd is called’;. The three
dimensional random field is constructed at each point as\tBeage value of each;
evaluated at the corresponding projection point:

3\

Z
Z z-n,) (B.14)

In order to yield a three dimensional random field with a gieemariance function
Cs, a link can be made with the unidimensional cdhe

Cs(x,y) = Cs([lz-yl)
= E{g(®)g(y)}

Z

ZZZ’Z (x-n;)zi(y-n;)}

=1 j=1

- %Z : 1E{2i(w'nz’)zj(y'nj)}

N

:E{

NIH

N
N

=1
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Sincez; areZ independentandom fieldsEz;z; = 0V ¢ # j. Therefore:

Collle =yl = 5 3" Blai(z - noay - no)

Following the law of large number, if it is assumed that> oo:

Cilllz — yl) = E{C: (= — ) -n)}
- f C((@ — ) - m) f(m)dn

nit sphere
wheren represents the random unit vector uniformly distributedrdte unit sphere. It
is recalled that its distribution function j§n) = - in the three dimensional case. Using
spherical coordinates leads to a simplification of the dqoat(x — y) - n = rcos ¢,
dn = sin ¢d¢df. Following [Glimm and Sharp, 1991] leads to(ik— r cos ¢:

1 T
Cs(r) = ;/0 Ci(¢)d¢ (B.18)
leading to the inverse equation:
Ci(r) = d—i(rcg(r)) (B.19)

If one is interested in yielding a random field with Gaussiamaciance then the fol-
lowing unidimensional covariance function should be used:

2 2 2 2 2 2
Cs(r) =o% /e = Ci(r)=0" (1 - LTQ ) e /e (B.20)

[
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bounded region M

/

Figure B.1: Representation of the turning band method in two dimensions
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