
HAL Id: tel-00957653
https://theses.hal.science/tel-00957653v1
Submitted on 10 Mar 2014 (v1), last revised 9 Nov 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear Logic and Sub-polynomial Classes of Complexity
Clément Aubert

To cite this version:
Clément Aubert. Linear Logic and Sub-polynomial Classes of Complexity. Computational Complexity
[cs.CC]. Université Paris-Nord - Paris XIII, 2013. English. �NNT : �. �tel-00957653v1�

https://theses.hal.science/tel-00957653v1
https://hal.archives-ouvertes.fr


Université Paris :3
Sorbonne Paris Cité

Laboratoire d’Informatique de Paris Nord

Logique linéaire et classes de complexité

sous-polynomiales

k

Linear Logic and Sub-polynomial Classes of

Complexity

Thèse pour l’obtention du diplôme de
Docteur de l’Université de Paris :3,

Sorbonne Paris-Cité,
en informatique

présentée par Clément Aubert

<aubert@lipn.fr>

F = f

Mémoire soutenu le mardi 26 novembre 20:3, devant la commission d’examen composée de :

M. Patrick Baillot C.N.R.S., E.N.S. Lyon Rapporteur
M. Arnaud Durand Université Denis Diderot - Paris 7 Président
M. Ugo Dal Lago I.N.R.I.A., Università degli Studi di Bologna Rapporteur
Mme. Claudia Faggian C.N.R.S., Université Paris Diderot - Paris 7
M. Stefano Guerrini Institut Galilée - Université Paris :3 Directeur
M. Jean-Yves Marion Lo.R.I.A., Université de Lorraine
M. Paul-André Melliès C.N.R.S., Université Paris Diderot - Paris 7
M. Virgile Mogbil Institut Galilée - Université Paris :3 Co-encadrant

F=f

1 Marseille, le 9 mars 20:4 1

mailto:aubert@lipn.fr




c This thesis is dedicated to the free sharing of knowledge.
Cette thèse est dédiée au libre partage des savoirs. b



iv

Disclaimer: It is not possible for me to write these acknowledgements in a language other than French.

Remerciements. Il est d’usage de commencer par remercier son directeur de thèse, et je me plie à cet
usage avec une certaine émotion : Stephano Guerrini m’a accordé une grande confiance en acceptant
de m’encadrer dans cette thèse en Informatique alors que mon cursus ne me pré-disposait pas tellement
à cette aventure. Par ses conseils, ses intuitions et nos discussions, il a su m’ouvrir des pistes, en fermer
d’autres, conseiller et pointer de fructueuses lectures.

Virgile Mogbil a co-encadré cette thèse avec une attention et un soin qui m’ont touchés. Il a su
m’accompagner dans tous les aspects de celles-ci, m’initier à la beauté de la recherche sans me cacher ses
défauts, me guider dans le parcours académique et universitaire bien au-delà de ma thèse. Il su faire tout
cela dans des conditions délicates, ce qui rend son dévouement encore plus précieux.

Patrick Baillot fût le rapporteur de cette thèse et comme son troisième directeur : il a su durant
ces trois années me conseiller, me questionner, chercher à comprendre ce que je ne comprenais pas
moi-même. C’est un honneur pour moi qu’il ait accepté de rapporter ce travail avant autant de justesse
et de clairvoyance.

Je suis également ravi qu’Ugo Dal Lago ait accepté de rapporter ce travail, et m’excuse pour
l’avalanche de coquilles qui ont dû lui abîmer l’œil. Sa place centrale dans notre communauté donne
une saveur toute particulière à ses remarques, conseils et critiques.

Je suis honoré qu’Arnaud Durand — qui fût mon enseignant lorsque je me suis reconverti aux
Mathématiques — ait accepté d’être le président de ce jury. La présence de Claudia Faggian, Jean-Yves
Marion et Paul-AndréMelliès place cette thèse à l’interscetion de communautés auxquelles je suis ravi
d’appartenir. Je les remercie chaleureusement pour leur présence, leurs conseils, leurs encouragements.

Une large partie de ce travail n’aurait pas pu voir le jour sans la patience et la générosité de Thomas
Seiller, avec qui j’ai toujours eu plaisir à rechercher un accès dans la compréhension des travaux de
Jean-Yves Girard.

§

Mon cursus m’a permis de rencontrer de nombreux enseignants qui ont tous, d’une façon ou d’une
autre, rendu ce cheminement possible. J’ai une pensée particulière pour Louis Allix, qui m’a fait
découvrir la logique et pour Jean-Baptiste Joinet, qui a accompagné, encouragé et rendu possible ce
cursus. De nombreux autres enseignants, tous niveaux et matières confondus, m’ont fait aimer le savoir,
la réflexion et le métier d’enseignant, qu’ils m’excusent de ne pouvoir tous les nommer ici, ils n’en
restent pas moins présents dans mon esprit.

§

J’ai été accueilli au Laboratoire d’Informatique de Paris Nord par Paulin Jacobé de Naurois (qui
encadrait mon stage), Pierre Boudes et Damiano Mazza (qui ont partagé leur bureau avec moi), et
je ne pouvais rêver de meilleur accueil. L’équipe Logique, Calcul et Raisonnement offre un cadre de
travail amical et chaleureux dans lequel je me suis senti accompagné, écouté et bienvenu.

Devenir enseignant dans une matière que je connaissais mal (pour ne pas dire pas) aurait été une
tâche insurmontable pour moi si elle n’avait eu lieu à l’IUT de Villetaneuse, où j’ai trouvé une équipe dy-
namique et respectueuse de mes capacités. Laure Petrucci, Camille Coti, Jean-Michel Barrachina,
Fayssal Benkhaldoun et Emmanuel Viennet m’ont tous énormément appris dans leur accompagne-
ment patient et attentif.



v

Ce fût toujours un plaisir que de discuter avec mes collègues du L.I.P.N., ainsi qu’avec le personnel
administratif de Paris :3. Brigitte Guéveneux, tout particulièrement, sait marquer de par sa bonne
humeur et son accueil chaleureux tout personne qui pénètre dans ces locaux, qu’elle en soit remerciée.

§

La science ne vit qu’incarnée, et je remercie Claude Holl d’avoir tout au long des formations
ALICE — aux intervenants exceptionnels — su placer la recherche et ses acteurs en perspective. Mes
perspectives à moi ont souvent été questionnées, critiquées, par la presse libre (C.Q.F.D., Article XI,
Fakir, La décroissance, Le Tigre, et bien d’autres), qui a su faire de moi un meilleur individu.

Mon engagement associatif s’est construit à côté, et parfois à contre-courant, de cette thèse, mais
je sais aujourd’hui qu’il a été grandi par ce travail, qui a également profité de ces échanges. J’ai bien
évidemment une pensée toute particulière pour micr0lab, mais je n’oublie par La Goutte d’ordinateur,
l’écluse, et tous les acteurs rémois et parisiens de la scène d.i.y.

Le lien entre toutes ses dimensions a trouvé un écho dans les discussions avec les doctorants, tous
domaines confondus, que j’ai eu la chance de croiser. Je tiens notamment à remercier et à saluer(:) Aloïs
Brunel, Sylvain Cabanacq, Andrei Dorman, Antoine Madet, Alberto Naibo, Mattia Petrolo,
Marco Solieri, mais n’oublie aucun de ceux avec qui j’ai eu la chance de dialoguer.

Ma famille est passé par toutes sortes d’épreuves durant cette thèse, mais a toujours su m’écouter,
me comprendre, m’encourager : me faire confiance et me soutenir.

Enfin, merci à Laura, pour notre amour.
Et merci à Olivier, pour — entre mille autres choses — ses sourires.

r

Et un merci spécial à l’équipe L.D.P. de l’Institut de Mathématiques de Luminy qui a su m’offrir un cadre
serein où finaliser agréablement ce travail. . .

(:)Dans le « désordre alphabétique », comme l’écrivait Jean-Baptise Joinet.



vi

Tools. This thesis was typeset in the URW Garamond No.8 fonts(2), with the distribution TeX Live
20:2, using pdfTEX and the class Memoir.

The source code was created and edited with various free softwares, among which Git who trustfully
backuped and synced and Texmaker.

I am greatly in debt to the TeX - LaTeX Stack Exchange community, and grateful to Siarhei Khire-

vich’s “Tips on Writing a Thesis in LATEX”, that surely made me lose some time by pushing me forward
on the rigorous typesetting.

The bibliography could not have been without DBLP and the drawings owe a lot to some of the
examples gathered at TEXample.net.

This work is under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 or later licence: you are free to copy, distribute, share
and transform this work; as long as you mention that this is the work of
Clément Aubert, you do not use this work for commercial use, you let
any modification of this work be under the same or similar licence.

(2)Whose glyphs are digital renderings of fonts actually designed by Claude Garamont in the mid sixteenth century!

http://www.ctan.org/tex-archive/fonts/garamondx
http://www.gnu.org/licenses/licenses.html
http://git-scm.com/
www.xm1math.net/texmaker/index.html
http://tex.stackexchange.com/
http://www.khirevich.com/latex/
http://www.khirevich.com/latex/
http://www.informatik.uni-trier.de/~ley/db/
http://www.texample.net
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Contents

Page

Notations xi

Preface xvii

Introduction :

: Historical and Technical Preliminaries 3

:.: Computational Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

:.2 Linear Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :2

:.3 Previous Gateways between Linear Logic and Complexity . . . . . . . . . . . . . . . . . . . . :7

2 Proof circuits 2:

2.: Basic Definitions: Boolean Circuits and MLLu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Boolean Proof Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Correspondence With Boolean Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:

2.4 Correspondence With Alternating Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Computing in the Hyperfinite Factor 57

3.: Complexity and Geometry of Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 First Taste: Tallies as Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Binary Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 How to Compute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Nilpotency Can Be Decided With Logarithmic Space . . . . . . . . . . . . . . . . . . . . . . . 83

4 Nuances in Pointers Machineries 93

4.: A First Round of Pointers Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Finite Automata and L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Non-Deterministic Pointer Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :06
4.4 Simulation of Pointer Machines by Operator Algebra . . . . . . . . . . . . . . . . . . . . . . . ::0

Conclusion and Perspectives :22

A Operator Algebras Preliminaries :25

A.: Towards von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :26
A.2 Some Elements on von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :33

vii



viii Contents

B An Alternate Proof of co-NL⊆NPM :4:

B.: Solving a co-NL-Complete Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :4:

B.2 Pointer-Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :43

Index :49

Bibliography :5:



List of Tables and Figures

Page

Chapter :

:.: The computation graph of an ATM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

:.2 The rules of MELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :4

Chapter 2

2.: The components of a proof net: ax.-link, ⊗n -link and `
n -link . . . . . . . . . . . . . . . . . . . . 25

2.2 Unfolding a MLLu proof net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Cut-elimination in parallel: t -, a- and m-reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 An obstacle to cut-elimination in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Adding or removing a crossing: how negation works . . . . . . . . . . . . . . . . . . . . . . . . . . 3:

2.6 The conditional, the core of the computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:

2.7 Branching variables on a Boolean proof net and evaluating it . . . . . . . . . . . . . . . . . . . . . 32

2.8 Pieces of Proof Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 The improvement of “built-in” composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.:0 Contractibility rules: relabelling and contracting a pseudo net . . . . . . . . . . . . . . . . . . . . 38

2.:: Composing two proof circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:

2.:2 The simulation of a Boolean proof net by a Boolean circuit . . . . . . . . . . . . . . . . . . . . . . 44

2.:3 The access to the input in an input normal form ATM . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.:4 The translation from Alternating Turing Machines to proof circuits . . . . . . . . . . . . . . . . 48

2.:5 How a value is guessed by an Alternating Turing Machine . . . . . . . . . . . . . . . . . . . . . . 50

2.:6 A shorthand for the “guess and check” routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.:7 A function to compute the value carried by an edge . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 3

3.: The derivation of a unary integer, without contraction rule. . . . . . . . . . . . . . . . . . . . . . 62

3.2 Unaries as proof net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Unaries as proof net, with contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Binary integers as derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 The binary sequence ⋆001011⋆ as a proof net and as a circular string . . . . . . . . . . . . . . . . 7:

3.6 Some explanations about the matricial representation of a binary word . . . . . . . . . . . . . . 73

3.7 Representation of the main morphisms defined in the proof of Lemma 3.5.: . . . . . . . . . . . 86

3.8 A representation of the computation of an operator . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



x List of Tables and Figures

Chapter 4

4.: How a KUM sorts integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 How to simulate Turing Machines with Finite Automata . . . . . . . . . . . . . . . . . . . . . . . :05
4.3 The operators encoding the forward and backward move instructions . . . . . . . . . . . . . . . ::5

4.4 The operators encoding rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ::7

Appendix A

A.: Dependency of the algebraic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :27

Appendix B

B.: The transition relation that decides STConnComp . . . . . . . . . . . . . . . . . . . . . . . . . . . :43



Notations

The entries are divided between Complexity, Logic and Mathematics. Although some symbols are used
in different ways, the context should always makes clear which denotation we have in mind.

We deal with classes of complexity separately, below this table of notations.

Complexity

ATM Alternating Turing Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Bb A set of (bounded) Boolean functions (a basis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Bu A set of (unbounded) Boolean functions (a basis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C Family of Boolean circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C, Cn Boolean circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CM The set of pseudo-configurations of a PM(p) M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :08

DFA(k) Set of deterministic Multi-Head Finite Automaton with k heads . . . . . . . . . . . . . . . . . . . 99

DPM(p) The set of deterministic pointer machines with p pointers . . . . . . . . . . . . . . . . . . . . . . . . :08

GM (x) Computation graph of an ATM M on input x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

GM ,n Computation graph of an ATM M on input of size n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

b(·) Translation from families of computation graphs to proof circuit families . . . . . . . . . . . 47

L(M ) Language accepted by a machine M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

LDC(C) Direct Connection Language of a family of Boolean circuits C . . . . . . . . . . . . . . . . . . . . . 23

LDC(P) Direct Connection Language of a family of Boolean proof nets P . . . . . . . . . . . . . . . . . . .33

[not a] Any symbol of the alphabet except a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

NFA(k) Set of Non-Deterministic Multi-Head Finite Automaton with k heads. . . . . . . . . . . . . .98

NPM(p) The set of non-deterministic pointer machines with p pointers . . . . . . . . . . . . . . . . . . . :08

O “Big O” asymptotic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

xi



xii List of Tables and Figures

PM(p) The set of (deterministic and non-deterministic) pointer machines with p pointers . :08

P+,1 Set of boolean observations of 1-norm ¶ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

P+ Set of boolean observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

P¾0 Set of positive observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Q↑ Extended set of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ::0

♯H Distance between Â and the bit currently read by the head H . . . . . . . . . . . . . . . . . . . . . 99

σ Transition relation of a NDPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

|x| The size of x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

⋆ First and last bit of a circular binary word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

Â Left end-marker on the input tape of a FA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Ã Right end-marker on the input tape of a FA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

⊢M (x) The transition relation between configurations in an ATM M on input x . . . . . . . . . . . . 7

< 1y , g , p, b > The tuples used to describe a proof net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

{X } Language decided by the set of observations X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Logic

A[B/D] The substitution of every occurrence of B by D in A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

A[D] The substitution of every occurrence of α by D in A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

α Literal (or atom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .:3
−→
A , (resp.

←−
A ) The ordered sequence of formulae A1, . . . ,An , (resp. An , . . . ,A1 ) . . . . . . . . . . . . . . . . . . . 24

⇒ The parallel evaluation of a proof net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B The Boolean type of MLLu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

b0, b1 Proof nets representing 0 and 1 in MLLu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

(·)⊥ Negation, or duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3

P Boolean proof net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

P A Boolean proof net familly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

d (A) Depth of a MLLu formula A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

→ev. The “evolution” through normalisation of a Boolean proof net . . . . . . . . . . . . . . . . . . . . 32



List of Tables and Figures xiii

⊢ Γ A sequent, Γ being a multiset of formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3

⇒ Classical implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :2

⊸ Linear implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3

MLLu Multiplicative Linear Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

• An axiom link, in a proof net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

! The “of course” modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3

` The multiplicative disjunction (“par”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3

P Piece of a proof circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Pb Set of pieces of bounded fan-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Pu Set of pieces of unbounded fan-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

P ,Q Proof nets of MLLu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

π A proof, in the sequent presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :4

⊗ The multiplicative conjunction (“tensor”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3

? The “why not” modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3

Mathematics

α Action of a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :37

| · | Absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :32

B(H) Banach algebra of continuous mapping over H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3:

det(M) Determinant of a matrix M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :35

d Distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :26

δi j Kronecker delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :26

∼
M

Murray and von Neumann equivalence over the von Neumann algebra M . . . . . . . . . :34

F Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :28

⌊·⌋ Floor function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :02

G Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :27

H Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .:30

ℓ2(S) Square-summable functions over S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :32



xiv List of Tables and Figures

M[i , j ] Element in the i th row and j th column of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :35

Mn,m(F ) Matrix of dimensions n×m with coefficients in the fieldF . . . . . . . . . . . . . . . . . . . . . . :35

M von Neumann algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3:

M⋊G Crossed product of a von Neumann algebra M with a group G . . . . . . . . . . . . . . . . . . . :38

‖·‖k
1

The 1-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

πk ,i Projection of dimension (k + 1)× (k + 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Π(M) Set of projections of a von Neumann algebra M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :34

Pfin(S) Set of finite subsets of S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

R The II1 hyperfinite factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .:34

(·)∗ Involution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :30

S (S) Permutation group of S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :28

S Group of all finite permutations over N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :28

sgn(σ) Signature of a permutation σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :28

⊗ Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :33

T Topology (over a set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :32

tr(M) Trace of a matrix M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .:35

Tr(Mn) Normalised trace of a n× n matrix Mn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :36

G Underlying set of the algebraic structure G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :28

V Vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :28

See referenced pages for formal definitions.

We are going to use several classes of complexity, some of them classical, some of them being
introduced in this work (in a yellow rectangle in the figure below). The following pictures describe
the situation at the end of our work. Some equalities and inclusions are classical, but we will in the
course of this work give at least ideas of proofs for every of them.

For all i > 1(3), we have at the end of Chapter 2 the following situation:

(3)Even if those bounds are going to be sharpened, we prefer to give our results in all generality at this point.
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Chapter 3 and Chapter 4 will define and prove properties about the following classes:

Definition 3.4.7
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Definition 4.2.:

Definition 4.3.:
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We are also going to introduce STA(∗,∗,∗) (Definition :.:.7) as a convenient notation to express
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Preface

This work is somehow two-sided, for it studies two models of computation —and the implicit
characterization of complexity classes that comes with— that share the same tool and the same

aim, but are not directly related. The tool —mainly proof theory, and more precisely Linear Logic—
and aim —to contribute to the complexity theory— are presented in Chapter :. The Section :.3 presents
some of the previous attempts to link those two fields.

The first model —presented in Chapter 2— is related to the simulation of efficient computation in
parallel with Boolean proof nets. It introduces proof circuits as an innovative way of understanding
the work led by Terui. It sharpens the characterization of some complexity classes, and provides new
evidence that this model is pertinent by linking it to the more classical Turing Machines. This chapter
is —almost— self-contained and a gentle introduction to some important concepts.

The second model is presented in Chapter 3, it develops a new world where logic is dynamically
built from von Neumann algebras. We tried to ease the reading of this quite technical material by
pushing slowly the constructions and taking time to explain some of the choices we made. We finish
this first part by showing how complex our object is from a complexity point of view.

Chapter 4 gently presents some “pointer machines” before defining a model that is proven adapted
to be simulated by the model of Chapter 3. It recollects some historical variation to help the reader to
understand the framework we are working with.

We made the choice to put aside in appendix A the introduction of the mathematical tools needed
to understand the most advanced elements of Chapter 3. This disposition could disturb the reader by
forcing him/her to go back and forth between Chapter 3 and this appendix. Yet, those tools should
remains only tools, for they are not what is at stake here, and we tried to go as rapidly as possible to
the point without getting too technical.

The appendix B gives an alternate proof of a statement of Chapter 4. It is somehowmore algorithmic,
for two problems are proved solvable by machines that are actually described. It is worth reading for it
get some insight on pointer computation, and by extension on log-space reduction.

The picture that follows presents some of the dependencies between the different parts of this work.

m
xvii
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Introduction

Logic is so tightly bound to computer science that the sonship is somehow reversed: computers,
through programming languages, now teach us how reasoning can be algorithmically represented.

We learnt how to modelise the cost of solving a problem, answering a question mathematically pre-
sented. And yet Logic, thanks to the proof-as-program correspondence, still has a lot to say about this
modelisation.

The first cost models that were developed on abstract machines discriminate between the “reason-
able” models of computation and the one that are not. Of course, they could not foresee the inherent
complexity of solving a precise problem: one had to actually run the program to observe the resources
it needs to obtain a result. Some important problems, in a way equivalent to any other “as complex”
problem, were defined and were taken as representative of the power of some complexity classes.

The Implicit Computational Complexity approach reversed this dependency, by defining frame-
works where any algorithm that could be expressed was “pre-bounded”. Among the approaches devel-
oped stands Linear Logic, and among the classes “captured” stands P, the class of “tractable” problems.
This class drew a large part of the attention because of the challenge its separation from the other classes
represents.

There is no reason to stick to that class, for Linear Logic has at its disposal numerous tools to
simulate other ways of computing. Modalities —the salt of Linear Logic— were proven fruitful to
handle the polynomial time complexity, but there are numerous other built-in mechanisms to cope
with the complexity.

This work presents two innovative ways to represent non-deterministic and parallel computation
with Linear Logic. They were not invented by the author, but by Terui and by Girard, respectively
in 2004 and in 20:2. Those approaches have some elements in common, at least a part of the tools and
the aims, and they are two natural extensions of a tradition of bridging the gaps between Linear Logic
and complexity. Still, they are largely unexplored, excepted for two works led by Mogbil and Rahli,
and except of Seiller’s PhD Thesis.

This work may be hard to get through, for it mixes three fields of research: complexity theory,
Linear Logic, and a mathematical framework known as Geometry of Interaction. We tried to ease the
presentation by developing some examples and by taking some time to discuss the general shape of
the construction as well as some details. May this work ease the understanding of those two exciting
approaches.

:





CHAPTER:
Historical and Technical Preliminaries

fContents
:.: Computational Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Complexity and models of computation

Alternating Turing Machine

Problems and complexity classes
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Proof Nets

Getting closer to a Geometry of Interaction
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This chapter will set up most of the elements needed to understand the rest of this work. A strict
minimal knowledge on set theory and graph theory is required to grasp some definitions, but

apart from that everything should be quite self-explanatory. However, we do not always take the time
to introduce gently the notions and go straight to the point, but many references are provided.

This work takes place in the complexity area, a subject that mix theoretical computer science and
mathematics, and tries to classify computational problems by their inherent complexity. This was
historically done by showing off algorithms that run on abstract machines, where every operation
is endowed with a cost, and by studying the overall cost of the computation. To be pertinent, this
consumption of resources is expressed relatively to the size of the input by a function that does not have
to be precise: we ignore the constant factors and the lower order terms to focus on a larger magnitude.

Later on came the Implicit Computational Complexity, that describe complexity classes without
explicit reference to a machine model and to bounds. It massively uses mathematical logic to define
programming language tools —like type-systems – that enforce resource bounds on the programs.
Among the techniques developed, one could mention

3
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◦ Recursion Theory, which studies the class characterized by restricting the primitive recursion schema(:).

◦ Model Theory, which characterizes complexity classes by the kind of logic needed to express the
languages in them. It is also known as Descriptive complexity, and we refer to Immerman77 for a clear
and self-contained presentation.

◦ Proof Theory, which uses the Curry-Howard correspondence to match up execution of a program and
normalisation of a proof.

This latter way of characterizing complexity classes by implicit means is a major accomplishment of
the cross-breeding of Logic and computer science. We will in the third section gives some examples of
the previous works led onto that direction, but we will first present its two components: computational
complexity theory, and a special kind of logic, Linear Logic.

:.: Computational Complexity Theory

A short and yet efficient introduction to the theory of complexity can be found in the chapters “Basic
notions in computational complexity” written by Jiang, Li, and Ravikumar [82] and published in a
classical handbook6. In the same book, the two chapters written by Allender, Loui, and Regan [:,
2], “Complexity Classes” and “Reducibility and Completeness” synthesise all the results that will be
used in this section. The handbook of Papadimitriou [:::] is often refereed to as “the” handbook for a
nice and complete introduction to this theory: its unique style allows to read it as a novel, and to grasp
the tools one after the other, but for the very same reason it is hard to look for a precise information
in it. The reader searching for a precise definition or a theorem should probably rather refer to the
textbooks of Greenlaw, Hoover, and Ruzzo66, and Arora and Barak4.

Complexity and models of computation

This section will quickly try to present what a “reasonable” model of computation is, what is at stake
when we take parallel models of computation, and gives hints toward the specificities of subpolynomial
classes of complexity. It borrows some elements from van Emde Boas:32, whose preliminary chapter
is clear and concise.

To study complexity in an “explicit” framework, one needs a machine model and a cost model. A
machine model is a class of similar structures, described set-theoretically as tuples most of the time,
endowed with a program, or finite control, and a definition of how computation is actually performed
with a machine of that model. The cost model fixes the cost of the basic operations, allowing to measure
the resources (most of the time understood as time and space) needed to process an input.
(:)The seminal work was made by Leivant, but one could with benefits look to a clear and proper re-statement of his results by

Dal Lago, Martini, and Zorzi [35].
(77)Neil Immerman Languages that Capture Complexity Classes. SIAM Journal on Computing, :6(4), pages 760–778, :987. doi:

10.1137/0216051
(6)Mikhail J. Atallah and Marina Blanton, editors Algorithms and Theory of Computation Handbook. CRC Press, :998. doi:

10.1201/9781584888239
(66)Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo Limits to Parallel Computation : P-Completeness theory.

Oxford University Press, USA, :995.
(4)Sanjeev Arora and Boaz Barak Computational Complexity: A Modern Approach. volume : Cambridge University Press,

2009. doi: 10.1017/CBO9780511804090
(:32)Peter van Emde Boas “Machine Models and Simulation” in: Handbook of Theoretical Computer Science. Volume A: Algo-

rithms and Complexity edited by Jan Van Leeuwen. Elsevier Science, :990. Pages :–66

http://dx.doi.org/10.1137/0216051
http://dx.doi.org/10.1201/9781584888239
http://dx.doi.org/10.1017/CBO9780511804090
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Two fundamentals of this theory is that something is “algorithmically computable” iff it is com-
putable by a Turing Machine (Church–Turing thesis), and that taking the Turing Machine or another
“reasonable” model of computation does not really matter, this is the invariance thesis:

Invariance Thesis. “Reasonable” machines can simulate each other within a polynomially bounded over-
head in time and a constant-factor overhead in space.

Of course, what is a simulation needs to be define.

Definition :.:.: (Simulation). Given two machines models M and M ′, we say that M ′ simulates M

with time (resp. space) overhead f (n) if there exists two functions c and s such that, for every machine
Mi in M :

◦ for all input x of M , c(x) is the translation of x in the setting of M ′;

◦ Mi (x) halts iff M ′
s (i)
(c(x)) halts, and Mi (x) accepts iff M ′

s (i)
(c(x)) accepts(2) ;

◦ if t (|x|) is the time (space) bound needed by Mi for processing x, then the time (resp. space) required
by M ′

s (i )
for processing c(x) is bounded by f (t (|x|)) ;

If the time overhead function f is linear, the simulation is said to be real-time.

Something is missing in this “definition”: what are the resources needed to compute s and c? It
would be meaningless to provide more computational power to compute M ′

s (i)
than what M ′

s (i )
can

actually provide: we could as well have computed the output directly! In other words, if the machine
used to process c and s is strictly more powerful than M ′

s (i )
, we cannot extract any knowledge about M ′.

In the following, we need to be careful about the cost of those simulations.
We will tend to keep the word simulation for the case where c and s are computed by a machine

of M ′ itself: in other word, provided a description of Mi , the machine M ′
i
will by itself “acts as Mi”,

without external intervention. If a third machine model M ′′, given the description of Mi and x, outputs
the description of M ′

s (i )
and c(x), we will speak of a translation.

Notice that f takes as input |x| the size of the input, for we measure the resources needed by the
computation relatively to the size of the input. This function should be proper(3), i.e. it should respect
some basic properties, but we won’t take that parameter into account, for we will use only the proper
functions below:

Polynomial i.e. there exists c , d ∈N∗ such that f (|x|) is bounded by c × (|x|d ).

Constant i.e. there exists c ∈N∗ such that f (|x|) is bounded by c × |x|.

(Binary) Logarithm i.e. there exists c ∈N∗ such that f (|x|) is bounded by c × (log(|x|)).

Poly-logarithmic i.e. there exists c , i ∈N∗ such that f (|x|) is bounded by c × (logi (|x|)).

We will use the “big O” asymptotic notation, i.e. we write that g = O( f ) iff ∃k ∈ N∗ such that
∀x, g (x) ¶ k × f (x). So if f is a polynomial (resp. the constant function, the logarithm, a poly-
logarithm), we will sometimes write nO(1) (reps. O(1), O(log), O(logi )) or even more simply poly
(resp. 1, log, logi ), without any reference to the size of the input.
(2)Where Mi (x) denotes the processing of x by Mi .
(3)For a precise definition, the reader should for instance refer to Papadimitriou [:::, p. :40, definition 7.:.].
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This notation is a bit counter-intuitive, because despite the equal sign, it is not symmetric: O(x) =
O(x2) is true but O(x2) = O(x) is not. As Sipser [:24, p. 277] writes it, “[t]he big-O interacts with
logarithms in a particular way”: the changing of the base of the logarithm affects the complexity only
by a constant factor, so we may simply ignore it and we will consider that the logarithmic function is
always in base 2. We will use in the course of this work some classical identities, but maybe it is worth
remarking that as n = 2log(n), for all d ∈N, nd = 2d log(n) and so 2(log(n))O(1) = nO(1). We can also remark
that as log(nd ) = d log(n), log(nO(1)) =O(log(n)). This will be more or less the only two equalities we
are going to use.

We will focus here on the subpolynomial world, that is to say the machines that use less resources
than polynomial time. This world is less studied than the polynomial word, as the “reasonable” compu-
tation is quite limited in it, but a fruitful approach often used is to look toward parallel computation.
This world also have a kind of invariance thesis to define what is a reasonable model:

Parallel Computation Thesis. Whatever can be solved in polynomially bounded space on a reasonable
sequential machine model can be solved in polynomially bounded time on a reasonable parallel machine,
and vice versa.

This thesis was first formulated by Goldschlager [64], and by Chandra, Kozen, and Stock-

meyer [25] quite simultaneously. The first one stated that “Time-bounded parallel machines are polyno-
mially related to space-bounded computers” by trying to “capture mathematically this intuitive notion
of parallel computation, much in the same spirit that ‘Church’s thesis’ captures the notion of effective
computation.” Chandra, Kozen, and Stockmeyer, on their way, definedAlternating Turing Machine
and proved that “an alternating Turing machine is, to within a polynomial, among the most powerful
types of parallel machines”.

Alternating Turing Machines are also the most general version of the most well-known model,
Turing Machines, so it is quite natural to take them as the reference, as the basic model. We should
make one last remark concerning this parallel world: time is sometimes refereed to as the depth, i.e. the
maximal number of intermediate steps needed ; and space is taken to be the size, i.e. the number of
processors needed to perform the computation. This will be the case with the Boolean circuits and the
proof circuits, defined in Chapter 2.

Alternating Turing Machine

This model of computation is really handy, for it will allow us to define at the same time parallel
and sequential computing, and it has a characterization of every complexity class we will use in the
following. The following definition borrows some elements of the clear presentation of Vollmer [:35,
p. 53].

Definition :.:.2 (ATM, Chandra, Kozen, and Stockmeyer [25]). An Alternating Turing Machine
(ATM) M with k ∈N∗ tapes is a 5-tuple

M = (Q,Σ,δ,q0, g )

with

◦ Q a finite set of states,

◦ Σ an alphabet(4),
(4)One should precise that every tape is divided into cells and that every letter of the alphabet need exactly one cell to be written.
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◦ δ : (Q ×Σk+1×Nk+1)→Pfin(Q ×Σ
k ×{−1,0,+1}k+1) the transition relation,

◦ q0 ∈Q the initial state,

◦ and g : Q→{∀,∃, 0, 1} the state type function.

This definition does not explain how one can actually perform a computation with ATMs, and we
will quickly expose those —very classical— mechanism right after we introduce some nomenclature.

The input is written on the input tape, and the head that scans it is read-only. The other k heads are
read-write, and each one of them work on a dedicated tape. A configuration α of M is an element of
Q × (Σ∗)k ×Nk+1 that entirely describe the current situation. It reflects the current state, the content
of the k working tapes and the position of the k + 1 heads, as a “snapshot” from where it is possible to
resume the computation, provided that we know the input and the transition relation.

The initial configuration α0 of M is when the entry is written on the input tape, the k working
tapes are blank(5), the k + 1 heads are on the first cell of their tape, and the state is q0.

A state q ∈ Q —and by extension a configuration whose state is q— is said to be universal (resp.
existential, rejecting, accepting) if g (q) = ∀ (resp. ∃, 0, 1). A state q ∈Q —and a configuration whose
state is q— is final if ∀a0, . . . ,ak ∈Σ, δ(q,a0, . . . ,ak ) = ;. This condition is equivalent to g (q) ∈ {0,1}.

Suppose that M is working on input x ≡ x1 . . . xn (we denote this situation with M (x)) and that at a
certain point, M is in configuration

α= (q, w1, . . . , wk , n0, . . . , nk )

where wi ≡ wi ,1 . . . wi ,li
for 1¶ i ¶ k. Suppose that δ(q, xn0

, w1,n1
, . . . , wk ,nk

) contains (possibly among
others) the tuple (q’,a1, . . . ,ak ,X0, . . . ,Xk ), where a1, . . . ,ak ∈Σ and X0, . . . ,Xk ∈ {−1,0,+1}. Then

β= (q’, w ′
1
, . . . , w ′

k
, n′

0
, . . . , n′

k
)

is a successor configuration of α, where for 1¶ i ¶ k, w ′
i
is obtained from wi as follow: replace the ni th

letter by ai , and to cover the case where the head moves to the left or right out of the word by prefixing
or suffixing the blank symbol ♭ ; and for 0¶ i ¶ k, let n′

i
= ni +Xi , if ni +Xi ¾ 0, otherwise we leave

n′
i
= ni .
Thatβ is such a successor configuration of α (and respectively that α is a predecessor ofβ) is denoted

by α ⊢M (x)β, or if M and x are clear from the context by α ⊢β. As usual, ⊢∗ is the reflexive transitive
closure of ⊢. Observe that a final configuration has no successor and that the initial configuration has
no predecessor.

A computation path of length n in M (x) is a string α1, . . . ,αn such that α1 ⊢M (x) . . . ⊢M (x)αn . We say
that M (x) has an infinite computation path if for every n ∈N there exists a computation path of length
n. A computation path α1, . . . ,αn is cyclic if α1 = αn .

We should be more rigorous and define the ATM to be a 6-tuple with k —the number of tapes—
to be a parameter. But thanks to some classical theorems, we know that the number of tapes does
not really matter, even if we have complexity concern: an Alternating Turing Machine with k tapes
can reasonably be simulated with an Alternating Turing Machine with 3 tapes, one for the entry, one
working tape, and one tape to write down the output.

In fact, we won’t even bother taking into account the output tape in most of the case, for our
Alternating Turing Machines will only decide, i.e. accept or reject an input, as the following definition
explains.
(5)Usually a special “blank” symbol ♭ is written on every cell, but it works as well to take any symbol of the alphabet.
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Definition :.:.3 (Accepted word). We define a labelling l from the configurations of M (x) to {0,1}: a
configuration α of M (x) is labelled with 1 iff

◦ g (α) = 1, or

◦ g (α) = ∀ and for every configuration β such that α ⊢β, l (β) = 1, or

◦ g (α) = ∃ and there exists a configuration β such that α ⊢β and l (β) = 1.

We can recursively label every configuration of M (x) with l . As soon as the initial configuration of
M has been labelled, we can stop the procedure and leave some configuration unlabelled.

A word x ∈Σ∗ is said to be accepted by M if the initial configuration of M (x) is labelled with 1. We
set L(M ) = {x ∈Σ∗ | M accepts x}.

Once the computation is done(6), that is to say when the initial configuration may be labelled, we can
know what are the resources consumed by the processing of the input. We define three costs models
on our ATMs.

Definition :.:.4 (Bounds on ATM). Given M an ATM and s , t and a three functions, we say that M

is space- (resp. time-, alternation-) bounded by s (resp. t , a ) if for every input x of size |x|,

at every moment, at most O(s (|x|)) cells of the working tapes are left non-blank(7),

every computation path is of length at most O(t (|x|)),

in every computation path, the number of times an existential configuration has for successor an uni-
versal configuration plus the number of times an universal configuration has for successor an existential
configuration is at most O(a(|x|)).

Note that if M is space-bounded by s then given an input x the number of configurations of M is at
most 2O(s (|x|)): M (x) can have Card(Q) different states, the working tapes can contains k×Card(Σ)s (|x|)

different words of length at most s (|x|), the head on the input tape can be in |x| different places and
the k heads can be in k × s (|x|) different positions. To sum up, M (x) can only have Card(Q)× (k ×
Card(Σ)s (|x|))× (|x|)× (k × s (|x|)) different configurations. As all those value except |x| are given with
M , so we know there exists a d such that M (x) has less that 2d×s (|x|) different configurations.

Moreover, if M is bounded in time by t , then M is bounded in alternation by t , for M cannot
“alternate more than it computes”.

If all the configurations are existential (resp. universal), we say that M is a non-deterministic (resp.
universally non-deterministic) Turing Machine. If the transition relation δ is functional, M is said to be
a deterministic Turing Machine.

The rest of this subsection will define some other important notions like problems, reductions
or complexity classes. We should dwell however on the links between Alternating Turing Machines,
graphs and parallel complexity. It will be proven very useful in the rest of this thesis.

(6)This is precisely what differentiate implicit and explicit computational complexity. Here, we have to perform the computation
to know the resources needed to solve a problem.

(7)The entry tape does not count in the measure of the space needed to perform a computation. We dwell on that point for it
would make no sense to speak of a computation using a logarithmic amount of space in the size of the input elsewhere: one
would not event have the space to write down the input! This is one of the “log-space computation oddities”, more are to
come.
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α0 ∀

α1 ∃

α2 ∃

. . .

. . .. . . αn ∀

. . .. .
. . . . . .

. . . .

0 1

time
alternation...

size (number of nodes) = 2O(s (|x|))

Figure :.:: The computation graph of an ATM

Definition :.:.5 (Computation graph, inspired by Vollmer [:35, p. 54]). Given an ATM M and
an input x ≡ x1 . . . xn , a computation graph GM (x) is a finite acyclic directed graph whose nodes are
configurations of M , built as follow:

◦ Its roots is the initial configuration of M ,

◦ if α ∈GM (x) and α ⊢β, then β ∈GM (x) and there is an edge from α to β,

A node in GM (x) is a sink if the associated configuration is final.
The computation graph associated to M on input x, GM (x), is of depth

(8) O(t (|x|)) if M is bounded
in time by t . If M is bounded in space by s , the number of configurations of M is bounded by 2O(s (|x|))

and so is the number of nodes of GM (x). Note also that if M is deterministic, GM (x) is a linear graph.

To get a better insight on this construction, one may refer to Figure :.: where the example of a
computation graph is sketched.

To determine from a computation graph if the course of computation described leads to acceptance
of rejection, we simply have to label every node following the procedure described in Definition :.:.3.
In Section 2.4, we will define ATMs in input normal forms (Definition 2.4.:) and use this crucial notion
to define family of computation graphs (Definition 2.4.2).

This definition as the others use some classical theorems without stating them. For instance, the
fact that a computational graph is finite and acyclic comes from two reasonable modifications that one
can perform on any ATM. We can always add a clock to our ATMs, and forgive any transition such
that α ⊢β ⊢∗ α, i.e. to prevent any loop in our program. Notice also that we did not bother to define
negative states for our ATMs, for it was proven in the very first paper on this topic [25, Theorem 2.5,
p. :20] that those states did not bring any computational advantage.

We will also use the following classical modifications: we can always take the alphabet Σ to be {0,1}
and the number of working tapes k to be 1. This has some minor consequences on the complexity of

(8)The depth of GM (x) is the maximal number of edges between the node associated to the initial configuration and any other
node.
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our object, but stay within the realm of “reasonable” modifications, i.e. does not modify the complexity
classes characterized.

Problems and complexity classes

Definition :.:.6 ((Decision) Problem). A problem P is a subset of N. If there exists M an ATM, such
that for all x ∈ N, M (x) accepts iff x ∈ P, we say that M decides P. We will sometimes say in this case
that P is the language of M , i.e. we define L(M ) = {n ∈N | M (x) accepts}.

Definition :.:.7 (STA(∗,∗,∗)(9) ). Given s , t and a three functions, we define the complexity class
STA(s, t,a) to be the set of problems P such that for every of them there exists an ATM bounded in
space by s , in time by t and in alternation by a that decides it.

If one of the function is not specified, there is no bound on that parameter and we write ∗, and if
—in the case of alternation— we allow only ∃ (resp. ∀), we write ∃ (resp. ∀) in the corresponding field.
If M is deterministic, we write d in the alternation field.

Decisions problems are not sufficient to define everything we need, for instance because the sim-
ulation of the Invariance Thesis needs to process functions. Roughly, we say that a function f is
computable in C if a machine with corresponding bounds can for all x ∈N write on a dedicated tape
(“the output tape”) f (x). Note that the space needed to write down this output may not be taken into
account when measuring space bound, for we can consider it is a write-only tape. This is one of the
reasons composition is so tricky in the log-space bounded word: if we compose two log-space bounded
machines M and M ′, the output-tape of M becomes one of the working tape of M ◦M ′, and so M ◦M ′

does not respect any more the log-space bound.
This also force us to trick the classical definition of “reductions”, that are the equivalent of simula-

tion between machine models when applied to problems:

Definition :.:.8 (Reduction). Given two problems P and P’, we say that P reduces to P’ with a C-
reduction and we write P¶C P’ iff there exists a function f computable in C such that for all x, x ∈ P
iff f (x) ∈ P’.

There is a whole galaxy of papers studying what a reduction exactly is, for one should be really
careful about the resources needed to process it. We refer to any classical textbook for an introduction
to this notion, but we define anyhow log-space reduction for it will be useful.

Definition :.:.9 ( log-space reduction). A function f : {0,1}∗ → {0,1}∗ is(:0) said to be implicitly log-
space computable if there exists a deterministic Turing Machine with a log-space bound that accepts
< x, i > iff the i th bit of f (x) is 1, and that rejects elsewhere.

A problem P is log-space reducible to a problem P’ if there exists a function f that is implicitly
log-space computable and x ∈ P iff f (x) ∈ P’.

Reduction should always be defined accordingly to the resources consumed, but in the following
we will always suppose that the “handy” reduction is taken, i.e. the one that uses the less (or supposedly
less) computational power. An other crucial notion for complexity theory is the notion of complete
problem of a complexity class: this notion somehow captures a “representative problem”, it helps to get
an intuitive understanding of what a complexity class is capable of.
(9)This acronym is of course to be read as Space, Time, Alternation.
(:0)Some hypothesis are required, we refer for instance to [4, Chapter 4: Space complexity] for a precise statement.
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Definition :.:.:0 (C-complete problem). A problem P is C-complete (under a C′-reduction) if

◦ P ∈C

◦ For all P’ ∈C, P’¶C′ P with C′ ⊆C.

If P entails only the second condition, P is said to be C-hard.

We can now define some classical complexity classes, first the sequential complexity classes, the one
that can be defined without really taking profit of alternation:

Definition :.:.:: (Complexity classes).

L= STA(log,∗,d) (:.:)

NL= STA(log,∗,∃) (:.2)

co-NL= STA(log,∗,∀) (:.3)

P= STA(log,∗,∗) = STA(∗, poly,d) (:.4)

We introduced here the complementary of a complexity class, namely co-NL. Let P be a problem,
PComp is {n ∈ N | n /∈ P}. For any complexity class C, co-C denotes the class {PComp | P ∈ C}. If
a problem P ∈C can be decided with a deterministic machine, it is trivial that PComp can be decided
with the same resources, it is sufficient to inverse acceptance and rejection, and so C= co-C.

We chose here to define the classical parallel classes of complexity AC and NC in terms of Alternat-
ing TuringMachines, the other definition in terms of Boolean circuits being postponed to Definition 2.:.5.
The correspondence between those two definitions is a mix of classical results from [:6, p. :4] (eq. (:.6)),
[26], [:23] and [::5] (eq. (:.8)).

Definition :.:.:2 (Alternation and parallel complexity classes). For all i ¾ 1

AC0 = STA(∗, log,1) (:.5)

NC1 = STA(∗, log,∗) (:.6)

ACi = STA(log,∗, logi) (:.7)

NCi = STA(log, logi,∗) (:.8)

We define ∪i ACi =AC and ∪i NCi =NC.

Theorem :.:.: (Hierarchy).

AC0 (NC1 ⊆ L⊆NL= co-NL⊆AC1 ⊆NC2 ⊆ . . .⊆AC=NC⊆ P

For all i ∈N, ACi ⊆NCi+1 is quite evident, for a bound of logi+1 on time is sufficient to perform
at least logi alternations. AC0 (NC1 is a major result of Furst, Saxe, and Sipser [44] and made the
Boolean circuits gain a lot of attractiveness, for separation results are quite rare!

The proof of NL⊆NC2 is rather nice, and one may easily find a clear explanation of it [:35, p. 4:,
Theorem 2.9]: a matrix whose dimension is the number of configurations of a log-space Turing Machine
is built in constant depth(::), and a circuit of depth log2 computes its transitive closure in parallel.
(::)That is to say with a family of constant-depth unbounded Boolean circuit. It might just be understand for the time being as

“with AC0 resources”, a more precise definition will be given in Chapter 2.
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At last, co-NL = NL is a major result of Immerman [78]. It was proven by showing how a
log-space bounded Turing Machine could build the computation graph of another log-space bounded
Turing Machine and parse it to determine if there is a path from the initial configuration to an accept-
ing configuration. That co-L = L is trivial, since every deterministic complexity class is closed by
complementation.

Turing Machines indeed share a lot with graphs, especially when they are log-space bounded. We
illustrate that point with two (decision) problems that we will use later on. They both are linked to
connectivity in a graph, and can be also refereed to as “reachability” or “maze-problem”. Numerous
papers are devoted to list the problems complete for a class, we can cite among them Jenner, Lange,
and McKenzie [8:] and Jones, Lien, and Laaser [85].

Problem A: Undirected Source-Target Connectivity (USTConn)

Input: An undirected graph G = (V , E) and two vertices s , t ∈ E
Output: Yes if s and t in the same connected component in G, i.e. if there is a path from

s to t .

Reingold [::4] proved that USTConn is L-complete (hardness was proved by Cook and McKen-

zie [29]). We will use in Chapter 2 its bounded variant, where G is of degree at most n, USTConn 2.
We will also use in Appendix B a small variant of its complementary, where s and t are not parameters,
but always the first and the last nodes of V .

This problem also exists in a directed fashion:

Problem B: (Directed) Source-Target Connectivity (STConn )

Input: A directed graph G = (V ,A) and two arcs s , t ∈A
Output: Yes if there a path from s to t in G.

STConn is NL-complete.
The proof that every NL-problem can be reduced to STConn is really interesting, for it links

closely log-space computation and graphs(:2). Let P ∈ NL, there exists non-deterministic log-space
bounded Turing Machine M that decides it (otherwise there would be no evidence that P ∈NL). There
exists a constant-depth boolean circuit that given n ∈ N and the description of M outputs GM (n) the
configuration graph of M . Then n ∈ P iff there is a path between the initial configuration and a
configuration accepting in GM (n), a problem that is STConn.

:.2 Linear Logic

Linear Logic (LL) was invented by Girard47 as a refinement of classical logic. Indeed, (classical) logic
is a pertinent tool to formalise “the science of mathematical reasoning”, but when we affirm that a
property A entails a property B (A⇒ B ), we do not worry about the number of times A is needed to
prove B . In other words, there is no need to take care of how resources are handled, since we are
working with ideas that may be reproduced for free.

We just saw that if we have complexity concerns, one should pay attention to duplication and
erasure, for it has a cost. The implication ⇒ superimposes in fact two operations that Linear Logic

(:2)For a more advanced study of those links, one could have a look at the work led by Wigderson [:36] and to its important
bibliography.

(47)Jean-Yves Girard Linear logic. Theoretical Computer Science, 50(:), pages :–:0:, :987. doi: 10.1016/0304-3975(87)

90045-4

http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
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distinguishes: first, there is the linear implication A⊸ B that has the meaning of “A has to be consumed
once to produce B”, and the of course modality !A that has the meaning of “I can have as many copies
(including 0) of A as I want”. Thus, the classical implication A⇒ B is encoded as (!A)⊸ B . From this
first remark, numerous tracks were followed: we will begin by recalling the main ideas of Linear Logic,
and then focus on proof nets before presenting the Geometry of Interaction (GoI) program.

The reference to study Linear Logic remains Proofs and Types62, and the reader not used to this sub-
ject could read with benefits the :0 pages of Appendix B, “What is Linear Logic?”, written by Lafont.
For anyone who reads french, Joinet’s Habilitation à diriger les recherches83 is an excellent starting
point to put Linear Logic into philosophical and historical perspective. The two volumes of Girard’s
textbook [55, 56] were translated in English58 and are the most complete technical introduction to the
subject.

Main concepts and rules

We will tend during the course of this work to dwell on the syntactical properties of Linear Logic,
but we should however remark that some of its elements appeared first in Lambek [94]’s linguistic
considerations. Linear Logic is a world where we cannot duplicate, contract and erase occurrences
of formula for free. This led to the division of classical logic(:3) into three fragment: additive, whose
rules are context-sensitive, multiplicative, whose rules are reversible, and exponential, which handles
the modalities. The negation of a formula is encoded thanks to the linear negation ⊥, which is an
involution.

We will only use the MELL fragment (without units)(:4), i.e. the multiplicative and exponential
connectives, whose formula are, for α a literal (or atom, a variable taken for a countable set), using the
inductive Backus Normal Form notation:

A := α | α⊥ | A⊗A | A`A | !A | ?A.

The ⊗ connective is called tensor, the ` connective is called par, ! and ? are respectively named of
course (or bang) and why not. Dualities are defined with respect to De Morgan’s laws, that allows us to
let the negation flows down to the literals:

(A⊗B)⊥ :=A⊥`B⊥ (A`B)⊥ :=A⊥⊗B⊥ (!A)⊥ := ?(A⊥) (α⊥)⊥ := α

The connective ⊸ is defined as A⊸ B ≡ (A⊥)`B . We let Γ and ∆ be two multisets of formulae, and
for ⋄ ∈ {!, ?}, if ∆=A1, . . .An , we let ⋄∆ be ⋄A1, . . . ,⋄An .

We borrow from Mogbil [:06, p. 8] the following presentation of rules and proofs, which is
specially handy. A sequent ⊢ Γ is a multiset of formulae of MELL, the order of the occurrences of
formula plays no role for the time being. We let S be the set of sequents of MELL. For n ¾ 0, a n-ary

(62)Jean-Yves Girard, Yves Lafont, and Paul Taylor Proofs and Types. volume 7 Cambridge Tracts in Theoretical Computer
Science Cambridge University Press, :989.

(83)Jean-Baptiste Joinet Logique et interaction. Thèse d’habilitation à diriger des recherches. Université Paris Diderot (Paris 7),
Dec. 2007.

(58)Jean-Yves Girard The Blind Spot: Lectures on Logic. edited by European Mathematical Society Sept. 20::. Page 550 doi:
10.4171/088

(:3)For a complete presentation of all the variations of Linear, Classical and Intuistionistic Logic, we refer for instance to Laurent
[95].

(:4)In a nutshell, it is natural to associate to the multiplicative fragment a parallel handling of the resources, whereas the additive
fragment is rather to be conceived as highly non-deterministic.

http://dx.doi.org/10.4171/088


:4 Chapter :. Historical and Technical Preliminaries

ax.
⊢A,A⊥

⊢ Γ,A ⊢∆,B
⊗

⊢ Γ,∆,A⊗B

⊢ Γ,A
der.

⊢ Γ, ?A

⊢ ?Γ,A
!

⊢ ?Γ, !A

⊢ Γ,A ⊢∆,A⊥
cut

⊢ Γ,∆

⊢ Γ,A,B
`

⊢ Γ,A`B
⊢ Γ

?
⊢ Γ, ?A

⊢ Γ, ?A, ?A
ctr.

⊢ Γ, ?A

From left to right, the names and the group of the rules are

Group Structural Multiplicative Exponential
:st line Axiom Tensor introduction Dereliction Promotion
2nd line Cut Par introduction Weakening Contraction

Figure :.2: The rules of MELL

rule Rn with n hypothesis and one conclusion is a n+ 1 relation on S , i.e. R⊆ Sn × S . The set of rules
of MELL is given in Figure :.2, where the principal formula is distinguished in the conclusion sequent.

A proof of height 0 in MELL is the unary rule ax.. For n 6= 0, a proof of height h 6= 0 Dh is a subset of
(D<h )

n ×Rn such that

◦ the set D<h is the set of proofs of height strictly inferior to h,

◦ the n conclusions of the n proofs of D<h are the n premises of Rn ,

◦ the conclusion of Dh is the conclusion of Rn .

A sequent ⊢ Γ is derivable in MELL if it admits a proof, i.e. if there exists a proof π whose
conclusion is ⊢ Γ. The η-expansion of a proof π is a proof π′ of same conclusion where the axioms
introduce only literals. Such a proof π′ always exists, and it is unique. A proof π is α-equivalent(:5) to
a proof π′ if π′ can be obtained from π by replacing the occurrences of the literals in π.

One of the fundamental theorem of logic is Gentzen’s Hauptsatz, or cut-elimination theorem,
proved first by Gentzen [45](:6) for classical and intuitionistic logic. This theorem applies as well
to MELL, and we sometimes say that a system eliminates cuts if it entails this theorem:

Cut-elimination Theorem. For every proof π of ⊢ Γ in MELL, there exists a proof π′ of same conclusion
that does not uses the rule cut.

The Curry-Howard-correspondence (a.k.a. the proof-as-program correspondence) tells us that the
operation of rewriting a proof with cuts into a proof without cuts corresponds to the execution of a
program written in λ-calculus. This link between computer programs and mathematical proofs justifies
the use of Linear Logic as a typing system on programs, and by extension, its use as a tool to modelise
complexity. Before studying in depth how this gateway was used, we still need to introduce two
other key-concepts of Linear Logic: proof nets and Geometry of Interaction (GoI). They correspond
respectively to the model we develop in Chapter 2, and to the model we develop in Chapter 3.

(:5)We won’t define this notion precisely here, for it is very tedious to do so, as attested by the :st chapter of Krivine [92].
(:6)The interested reader may find a translation [46].
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Proof Nets

Proof Nets are a parallel syntax to express proofs that get rid of some lumbering order in the application
of rules. For instance, one should not feel the urge to distinguish between the following two proofs
obtained from the same proof π:

... π

⊢A,B ,C , D
`

⊢A`B ,C , D
`

⊢A`B ,C ` D

... π

⊢A,B ,C , D
`

⊢A,B ,C ` D
`

⊢A`B ,C ` D

It was also introduced by Girard5: and provoked numerous studies, and yet there is to our knowl-
edge no “classical definition”. The most accurate one can be found in Mogbil’s Habilitation à diriger
les recherches [:06, Definition 2.::, p. ::], it defines proof nets as hyper-multigraphs.

We will present in details and massively use proof nets for an unbounded version of Multiplicative
Linear Logic in Chapter 2. So despite the tradition to present some drawing to introduce them, we will
just express some global ideas and refer the reader to Section 2.: for a complete presentation. We will
use them only as examples and hints toward a sharper understanding in Chapter 3, and they do not
appear in Chapter 4.

A proof net is built inductively by associating to every rule of Figure :.2 a rule on drawings. We
obtain by doing so a labeleld graph, where the nodes are endowed with a connective of MELL, and the
edges represents sonships between occurrences of formulae. This parallel writing of the proofs gives a
quotient on proofs that “reduces the syntactical noise” and by doing so let the proofs be more readable.
Every derivation infers a proof net, and by applying some quotient on the different representations of
the same proof net, a proof net may be inferred by several proofs.

One should remark that none of those rules is local in this setting, for there is always (except for
the axiom rule) a constraint on the membership of the principal occurrences to the same context or to
two different contexts, not to state the constraint on the presence of a modality. This is the drawback
of this representation: the correctness of a proof is not tested locally any more, as opposed to any
other syntactical system that existed in the history. We call pseudo nets the structures freely-generated,
that is, such that we don’t know if there exists a proof that infers it. To determine whether a pseudo
net is a proof net, we need a global criteria to test its “legacy”. Those criterion are called criterion of
correctness and we refer once again to Mogbil’s work [:06, p. :6] for a complete list. We will use one
of them in Theorem 2.2.:.

We left aside the presentation of those (yet very important) tools to focus on a crucial point for the
well understanding of this thesis. As we presented it, the sequents of MLL are not ordered. An order
could be introduced thanks to a bit tedious notion of exchanges of occurrences of formulae, allowing
us to keep track of their positions. It is handy not to take care of this aspect, but we are forced to
re-introduce it when dealing with proof nets: suppose given a proof π of conclusion ⊢ ?A, ?A, ?A,B ,B .
The proof π can be completed as follows:

... π

⊢ ?A, ?A, ?A,B ,B
ctr.

⊢ ?A, ?A,B ,B
`

⊢ ?A, ?A,B `B
(5:)Jean-Yves Girard Proof-Nets: The Parallel Syntax for Proof-Theory. Logic and Algebra, :80, pages 97–:24, :996.
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The question is: if we label the conclusion of π with ⊢ ?A1, ?A2, ?A3,B1,B2, what is the conclusion of
the previous proof? It could be any sequent among

⊢ ?A1, ?A2,B1 `B2 ⊢ ?A1, ?A3,B1 `B2 ⊢ ?A2, ?A3,B1 `B2

⊢ ?A1, ?A2,B2 `B1 ⊢ ?A1, ?A3,B2 `B1 ⊢ ?A2, ?A3,B2 `B1

In fact, by dealing with non-ordered sequents, we already introduced a first quotient on our proofs,
which is not compatible with proof nets. Remark that it does not contradict the fact that proof nets
quotient proofs, for we may for this example performs the contractions and the par-introduction in
parallel.

But in the following, we will encode the truth-value of a boolean type in the order of the the
premise of a par-rule (Definition 2.2.:). The principal formulae of the contractions will later on encode
the value of a bit in a string (Section 3.3). This distinction, which by the way appears in Geometry
of Interaction, is crucial since it may be the only difference between the proofs corresponding to two
different binary lists.

Getting closer to a Geometry of Interaction

Geometry of Interaction (GoI) tended to be used as a motto to qualify several approaches to reconstruct
logic. As Joinet [83, p. 43] points it, the heading “Geometry of Interaction ” is used at the same time
to describe

◦ a way to rebuild logic from computational interaction,

◦ a formalization of the preceding idea in a functional analysis framework.

Their common point is a strong will to “rebuild logic from the inside”, by letting the cut-elimination
—and by extension the dynamic— be the the primary notion from which logic is built, and hence to
obtain immediately computational properties. This subsection does not recollect all the previous
attempts to work in the GoI setting, but gives some hints of its goal, its links with complexity being
postponed to the next section and to Section 3.4.

The name GoI was first introduced by Girard49 and it was accompanied with a clear justification
that we cite entirely:

“The only extant semantics for computation are denotational, i.e. static. This is the case for the
original semantics of Scott [::8], which dates back to :969, and this remains true for the more
recent coherent semantics of the author [47]. These semantics interpret proofs as functions,
instead of actions. But computation is a dynamic process, analogous to —say— mechanics.
The denotational approach to computation is to computer science what statics is to mechanics:
a small part of the subject, but a relevant one. The fact that denotational semantics is kept
constant during a computational process should be compared to the existence of static invariants
like mass in classical mechanics. But the core of mechanics is dynamics, where other invariants
of a dynamical nature, like energy, impulsion etc. play a prominent role. Trying to modelize
programs as actions is therefore trying to fill the most obvious gap in the theory. There is no

(49)Jean-Yves Girard “Towards a geometry of interaction” in: Proceedings of the AMS Conference on Categories, Logic and
Computer Science. :989. doi: 10.1090/conm/092/1003197

http://dx.doi.org/10.1090/conm/092/1003197
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appropriate extant name for what we are aiming at: the name ‘operational semantics’ has been
already widely used to speak of step-by step paraphrases of computational processes, while we are
clearly aiming at a less ad hoc description. This is why we propose the name

geometry of interaction

for such a thing.”
(Girard [49, p. 26])

Starting from the consideration that “linear negation behaves like transposition in Linear Algebra”
( [49, p. :0]), a community started to work on the building of the Logic in a Linear Algebra framework.
One leading idea was to define ex nihilo the concept of type, and to replace cut-elimination by the
action of some operators on the Hilbert space. Proofs were interpreted as symmetrical matrices, i.e.
equal to their own transpositions, and they were, so to say, “the written trace of underlying geometrical
structures” ( [49, p. :]). What was really interesting was the ability to express strong normalisation
as nilpotency thanks to the “Execution formula”. GoI was naturally conceived as a “new form of
semantics” and expressed within a C ∗-algebra.

Yet, coherent and Banach spaces had their limitations:

“quantum coherent spaces [. . .] have [. . .] two major drawbacks: that of a categorical inter-
pretation, whence unable to explain dynamics, thus complexity; and, at a deeper level, their
incompatibility with infinite dimension, the latter drawback being related to the former.”

(Girard [57, p. 26])

So the von Neumann algebra framework was developed, but we save this part for Chapter 3. One could
however mention that this approach is a more general theory, for the subtle notions of finiteness helps
to understand infinity in logic and in complexity.

A concrete version of the interpretation of cut-elimination by actions was provided by the context
semantics of proof nets. This could be interpreted as the wandering of token, starting from the
conclusions of the proof net and eventually exiting by some conclusion of the graph. Those pebbles
moving in the structure without modifying it led to the study of paths in proof net [5], the normal
form of the proof net being given by persistent paths. This led to the study of several kinds of token
machine [96] and to the development of the study of algebra weight.

:.3 Previous Gateways between Linear Logic and Complexity

We will rapidly scan the wide spectrum of links between Linear Logic and complexity. This small
section has two purposes: to present the numerous previous approaches, and that should ease the
understanding of our contribution. We won’t precise the settings that were developed, but gives several
key-references for the reader who would like to push this study further.

First of all, Linear Logic and complexity are linked because some problems regarding Linear Logic
arise naturally, and we can try to establish the complexity of those problems. This approach led to
numerous interesting problems, and allowed a better understanding of the nature of Linear Logic.

Cut-elimination Given two proofs and a confluent cut-elimination procedure, do they have the same
cut-free form? Mairson and Terui [:00] established a hierarchy, proving that this problem is P-
complete for MLL and co-NP-complete for MALL.
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Correctness Given a proof-structure, is it a proof net? This problem was proven to be NL-complete
no matter what the fragment considered is by Jacobé de Naurois and Mogbil [80].

Provability Given a formula, is it provable? This problem was proved to be NP-complete for MLL by
Kanovich [87]. The reader may also have a look at Lincoln [98] and its consequent bibliography to
learn more about the complexity of theorem proving.

Those problems give insights on the complexity of Linear Logic, but other approaches have been
developed to address this question. One can use Linear Logic to deliver certification to programs,
attesting that they will “behave well” no matter the context. This needs to define subsystems of LL and
to establish that any program typable with this subsystem will be of such or such complexity.

To get rid of a machine-based characterisation of complexity classes, one could also perform the
opposite operation: to design a “logic language of programming”. We get sure that any program written
in this syntax will be “pre-constrained”

The constraint on Linear Logic one could develop to moderate its expressivity was naturally the
modalities. One of the oldest—and yet, very accurate— formulation of this idea is the following:

“[T]he rule for ‘ !’ indicates unlimited possibilities of duplication, but not a concrete one [. . .].
The clarification of this point could be of great importance: consider for instance bounded
exponentials !αA, ?αA, that could be added to linear logic with the intuitive meaning of ‘iterate
α times’. [T]here is some underlying polynomial structure in the exponentials. Now, it is not
always the case that we can associate polynomials to all exponentials occuring in a proof of
standard linear logic, especially when we have to deal with cut ; hence the proofs admitting such
polynomial indexings are very peculiar.”

(Girard [49, p. 93])

This idea was later on developed by Girard, Scedrov, and Scott [63] under the name of “Boun-
ded Linear Logic”. It was later on refined [52], made more precise by Danos and Joinet [38] with the
introduction of Elementary Linear Logic (ELL) and generalized by the introduction of Linear Logic by
level by Baillot and Mazza [:4]. Those works managed to characterise elementary and deterministic
poly-time computation in Linear Logic, using sequents and proof nets. Schöpp [::7] adapted this idea
to second-order quantifier with benefits, for it gave a characterization of L.

Numerous studies were also developed with a purely semantical approach, but there is a conflict
between their will to “characterise all the programs that compute the same function” and our objective
to “characterise the good program that computes a function”. The semantics is somehow “talkative”,
whereas the syntax focuses on the good programs, the more significant. A quote —with our emphasis—
may clarify this point:

“A different approach to the semantics of bounded time complexity is possible: the basic idea is
to measure by semantic means the execution of any program, regardless to its computational
complexity. The aim is to compare different computational behaviours and to learn afterwards
something on the very nature of bounded time complexity.”

(de Carvalho, Pagani, and Tortora de Falco [40])

One should remark moreover that this setting is not an Implicit Complexity approach at all.
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Few works has been led in the GoI setting, which should recollect the advantages of the syntax
and the advantages of semantics. Among them, it is worth referring to Baillot and Pedicini [:5],
which proposed an interpretation of Elementary Linear Logic by an algebra of clause equipped with
resolution. We can also, to conclude this small scanning of the previous approaches, mention the work
led byDal Lago and Schöpp [36]. It is relevant for it introduces the functional programming language
IntML that rely on Linear Logic. What is interesting is that it led to an actual implementation, whose
source may be found at https://github.com/uelis/IntML.

In the Following. . .

The “level-by-level” approach has now reached a mature state. There is of course some enhancement
that could be developed, but this structure begins to be quite well understood, capturing more and
more programs, being less constraining. The work led by Schöpp [::7] and IntML [36] are to our
knowledge the only attempts to capture classes below P.

The two approach we are going to analyse do not rely heavily on the modalities to constrain the
power of Linear Logic. In fact, they do not even appears in Boolean proof nets, which handle the
computation by a kind of “hard-wire” setting: everything will be handled by the crossing of edges, or. . .
wires. This will take benefit from the parallel writing of proofs as proof nets, but we still have to define
a parallel execution for them. The next chapter will expose this setting and link it both to Boolean
circuits and Alternating Turing Machines.

The other approach will rely on the GoI program, for we will encode proofs of integers in a von
Neumann algebra and interpret nilpotency as normalisation, or in this case, acceptance. It will be
wildly non-deterministic, for the computation will take place in product of matrices computing in
parallel. Surprisingly, this framework can be “decided” with log-space resources, and that will conclude
our Chapter 3.

To prove that we capture log-space computation, we will use in Chapter 4 abstract machines that
manipulates pointers. This is a long-standing goal, as attested by a quotation that will conclude this
introductory chapter:

“[G]etting rid of syntax [. . .] is the ultimate aim, which has been achieved only for multiplica-
tives [. . .] by Vincent Danos and Laurent Regnier [39]. In this case, the basic underlying
structure turns out to be permutation of pointers, and the notion of a cyclic permutation plays
a prominent role (Danos and Regnier replaced cyclicity by conditions involving connected
acyclic graphs, i.e. trees). It seems that the general solution (not yet known, even for quantifiers)
could be something like permutations of pointers, with variable addresses, so that some (simple
form of) unification could be needed for the composition of moves : yet another connection with
logic programming !”

(Girard [49, p. :0:])

https://github.com/uelis/IntML
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Proof nets are the traditional way of representing proofs of Linear Logic in parallel. And yet,
they were not until the work by Terui:30 really used to model parallel computation. However,

it is rather easy to define a parallel cut-elimination procedure and to extend the Proof-as-program
correspondence to parallel evaluation in this setting. The ideal target to this extension are Boolean
circuits, which are the classical parallel model of computation: they can be seen as electronic or digital
circuits made of logic gates computing simple functions.

One of the computational property of Boolean circuits is that they are able to duplicate temporary
values previously computed and to distribute them to several logic gates. We saw that duplication could
be handled in an elegant way in Linear Logic by the ! and ? modalities, and yet we won’t use this tool

(:30)Kazushige Terui “Proof Nets and Boolean Circuits” in: LICS. IEEE Computer Society, 2004. Pages :82–:9: doi: 10.1109/

LICS.2004.1319612

2:

http://dx.doi.org/10.1109/LICS.2004.1319612
http://dx.doi.org/10.1109/LICS.2004.1319612
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in the setting we propose here. Instead, we will build proof nets as hardware devices, where everything
is explicit and where the duplication is “pre-constrained”.

The model of computation we are going to define is close to graph rewriting, where the proof
nets are made of only the multiplicative fragment of Linear Logic, and so every operation will be local.
Because of the linearity of this logic, we are forced to keep track of the partial results generated by the
evaluation that are unused in the result. It is a low-level of computation and every algorithm that can
be written on Boolean circuits will be “in hard” translated into Boolean proof nets.

Regarding this first link, we will use the approach developed by Mogbil and Rahli,:07,:05 who
focused on uniform classes of complexity. We will present a novel translation in AC0 from Boolean
proof nets to Boolean circuits by focusing on a simpler restricted notion of uniform Boolean proof
nets—proof circuits. That will allow us to compare complexity classes below log-s pace, which were
out of reach with the previous translations.

The second bridge we are going to build is between proof circuits and Alternating Turing Machines
(ATMs). It will help us to present ATMs as a convenient model of parallel computation, and to
prove that in some cases, logarithmic space is enough to establish the normal form of a proof net (see
Section 2.4). Last but not least, this results exhibits a difference between our unbounded proof circuits
and the bounded ones, something that could not be seen with the mere Boolean proof nets.

Regarding parallel complexity, a gentle introduction (in french) to this subject may be found in
Les petits cailloux,::2 but the most complete handbooks remains Introduction to Circuit Complexity: A
Uniform Approach:35 and Limits to Parallel Computation : P-Completeness theory.66

2.: Basic Definitions: Boolean Circuits and MLLu

We begin by introducing Boolean circuits: knowing them is not mandatory to understand how MLLu
proof nets compute, but it is useful to bear in mind notions like uniformity, families of Boolean circuits
or depth of a Boolean circuit. Proof nets for MLLu are an efficient way to model parallel computation
with Linear Logic.

Boolean circuits

Boolean circuits (Definition 2.:.2) were first defined and popularized as a parallel model of computa-
tion by Borodin [20]. One of their feature is that they work only on inputs of fixed length, and
that forces us to deal with families of Boolean circuits—and there arises the question of uniformity
(Definition 2.:.4).

Definition 2.:.: (Boolean function). A n-ary Boolean function f n is a map from {0,1}n to {0,1}. A
Boolean function family is a sequence f = ( f n)n∈N and a basis is a set of Boolean functions and Boolean

(:07)Virgile Mogbil and Vincent Rahli “Uniform Circuits, & Boolean Proof Nets” in: Proceedings of LFCS’07. edited by
Sergei N. Artëmov and Anil Nerode volume 45:4 Lecture Notes in Computer Science Springer, 2007. Pages 40:–42: doi:
10.1007/978-3-540-72734-7\28

(:05)Virgile Mogbil “Non-deterministic Boolean Proof Nets” in: FOPARA edited by Marko C. J. D. van Eekelen and Olha
Shkaravska. volume 6324 Lecture Notes in Computer Science Springer, 2009. Pages :3:–:45 doi: 10.1007/978-3-642-

15331-0_9
(::2)Bruno Poizat Les petits cailloux. Aléas, :995.
(:35)Heribert Vollmer Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag, :999.
(66)Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo Limits to Parallel Computation : P-Completeness theory.

Oxford University Press, USA, :995.

http://dx.doi.org/10.1007/978-3-540-72734-7\28
http://dx.doi.org/10.1007/978-3-642-15331-0_9
http://dx.doi.org/10.1007/978-3-642-15331-0_9
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function families. We define the two classical basis(:):

Bb = {Neg
,∨2,∧2} and Bu = {Neg

, (∨n)n¾2, (∧n)n¾2}

The Boolean function USTConn2 solves the problem USTConn 2 (Problem A), i.e. given in input
the coding of an undirected graph G of degree at most 2 and two names of gates s and t , this function
outputs 1 iff there is a path between s and t in G.

The purpose of this function will be detailed later on, and illustrated in Figure 2.4.

Definition 2.:.2 (Boolean circuit). Given a basis B, a Boolean circuit over B with n inputs C is a
directed acyclic finite and labelled graph. The nodes of fan-in 0 are called input nodes and are labelled
with x1, . . . , xn , 0, 1. Non-input nodes are called gates and each one of them is labelled with a Boolean
function from B whose arity coincides with the fan-in of the gate. There is a unique node of fan-out 0

which is the output gate(2). We indicate with a subscript the number of inputs: a Boolean circuit C with
n inputs will be named Cn .

The depth of a Boolean circuit Cn , denoted by d (Cn), is the length of the longest path between an
input node and the output gate. Its size |Cn | is its number of nodes. We will only consider Boolean
circuits of size nO(1), that is to say polynomial in the size of their input.

We say that Cn accepts (resp. rejects) a word w ≡ w1 . . . wn ∈ {0,1}n iff Cn evaluates to 1 (resp. 0)
when w1, . . . , wn are respectively assigned to x1, . . . , xn . A family of Boolean circuits is an infinite sequence
C= (Cn)n∈N of Boolean circuits, C accepts a language X ⊆ {0,1}∗ iff for all w ∈X , C|w| accepts w, and
for all w ′ /∈X , C|w ′| rejects w ′.

Boolean circuits are “the” classical model of parallel computing, because we consider that their
evaluation is linear in their depth: every gate is an independent processor evaluating its inputs as they
are “ready”. All the gates at the same depth are taken to compute at the same time, so depth is often
compared to time on a sequential model of computation: the depth reflects the number of intermediate
processing needed to output a value.

We now recall the definition of the Direct Connection Language of a family of Boolean circuits, an
infinite sequence of tuples that describes it totally.

Definition 2.:.3 (Direct Connection Language Ruzzo [::5, p. 37:]). Given (·) a suitable coding of
integers and C a family of Boolean circuits over a basis B, its Direct Connection Language LDC(C) is
the set of tuples < 1y , g , p, b >, such that g is a gate in Cy , labelled with b ∈B if p = ε, else b is its
pth predecessor.

We use the unary encoding to stay within suitable bounds for the uniformity, whose definition
follows.

Definition 2.:.4 (Uniformity Barrington, Immerman, and Straubing [:6]). A family C is said to
be DLOGTIME-uniform if there exists a deterministic Turing Machine with random access to the input
tape(3) that given LDC(C), 1n and g outputs in time O(log(|Cn |)) any information (position, label or
predecessors) about the gate g in Cn .
(:)Sometimes denoted respectively B0 and B1, but we adopt here the initials of bounded and unbounded as a reminder.
(2)We take into account in this definition only decision circuits, that is circuits that compute the characteristic function of a

language. We will later on compose Boolean circuits with more than one output but took the liberty not to define them
formally.

(3)Meaning that the Turing Machine, given n ∈N, can in one step read the value written in the nth cell. For some fine tuning of
this notion, we refer to Cai and Chen [24].
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We can adopt the fine tuning of DLOGTIME many-one reductions developed by Regan and
Vollmer [::3]. This notion preserves transitivity and the membership to individual levels of hier-
archy. Despite the fact that a DLOGTIME Turing Machine has more computational power than a
constant-depth circuit, “a consensus has developed among researchers in circuit complexity that this
DLOGTIME uniformity is the ‘right’ uniformity condition” (Hesse, Allender, and Barrington

[70, p. 698]) for small complexity classes. Some proposal towards a circuit uniformity “sharper” than
DLOGTIME were made by Bonfante and Mogbil [:9], but we will stick to this well-accepted notion
of uniformity and any further reference to uniformity in this chapter is to be read as DLOGTIME
uniformity.

Uniformity allows us to be sure that there is a “sufficiently simple” way of describing the conception
of any member of the family of Boolean circuits. Without it, even the problem not computable becomes
computable, simply define a family of Boolean circuits that solves this problem: as you don’t have to
describe the way they are built —what uniformity is—, you don’t have to bother if they may be
constructed or not! Defining non-uniform classes of complexity led to some interesting questions and
results, but it won’t be the topic here, for we focus on a more tractable approach of algorithms.

Definition 2.:.5 (ACi, NCi ). For all i ∈N, givenB a basis, a language X ⊆ {0,1}∗ belongs to the class
ACi(B) (resp. NCi(B)) if X is accepted by a uniform family of polynomial-size, logi -depth Boolean
circuits over Bu ∪B (resp. Bb ∪B). We set ACi(;) =ACi and NCi(;) =NCi.

Of course this definition of ACi and NCi is equivalent to the definition via Alternating Turing
Machines we gave previously in Definition :.:.:2.

Unbounded Multiplicative Linear Logic

We will here briefly expose the Logic underneath our proof circuits, a fragment of Linear Logic without
modalities. We introduce those notions rapidly, for they were already developed in Section :.2 and are
quite classical.

Rather than using Multiplicative Linear Logic (MLL), we work with unbounded(4) Multiplicative
Linear Logic (MLLu ) which differs only on the arities of the connectives but better relates to circuits
(see the remark about “unfolding MLLu ” for a better insight). The following definitions are partially
folklore since the introduction of “general multiplicative rule” by Danos and Regnier39.

Definition 2.:.6 (Formulae of MLLu ). Given α a literal and n ¾ 2, formulae of MLLu are:

A := α | α⊥ | ⊗n (A1, . . . ,An) | `
n (An , . . . ,A1)

We write
−→
A (resp.

←−
A ) for an ordered sequence of formulae A1, . . . ,An , (resp. An , . . . ,A1 ). Duality is

defined with respect to De Morgan’s law:

(A⊥)⊥ :=A (⊗n(
−→
A ))⊥ :=`

n(
←−
A⊥) (`n(

←−
A ))⊥ :=⊗n(

−→
A⊥)

As for the rest of this chapter, consider that A, B and D will refer to MLLu formulae. The result of
the substitution of all the occurrences of B by an occurrence of D in A will be written A[B/D], A[D]
if B = α.w We will sometimes write A`B (resp. A⊗B ) for `2(A,B) (resp. ⊗2(A,B)).
(4)That has nothing to do with Bounded Linear Logic: both have complexity concern, it is just that in our case we take the

connectives to be unbounded, and not the modalities, that are by nature unbounded.
(39)Vincent Danos and Laurent Regnier The Structure of Multiplicatives. Archive for Mathematical logic, 28(3), pages :8:–

203, :989. doi: 10.1007/BF01622878

http://dx.doi.org/10.1007/BF01622878
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•
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⊗
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`
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0

Figure 2.:: The components of a proof net: ax.-link, ⊗n -link and `
n -link

Definition 2.:.7 (Sequent calculus for MLLu ). A sequent of MLLu is of the form ⊢ Γ, where Γ is a
multiset of formulae. The inference rules of MLLu are as follow:

ax.
⊢A,A⊥

⊢ Γ1,A1 . . . ⊢ Γn ,An ⊗n

⊢ Γ1, . . . ,Γn ,⊗n(
−→
A )

⊢ Γ,A ⊢∆,A⊥
cut

⊢ Γ,∆

⊢ Γ,
←−
A

`
n

⊢ Γ,`n(
←−
A )

Proofs of MLLu are built with respect to those rules, following the construction explained page :3. MLLu
has neither weakening nor contraction, but admits implicit exchange and eliminates cuts. The formulae
A and A⊥ in the rule cut are called the cut formulae.

Proof Nets for MLLu

Proof nets are a parallel syntax for MLLu that abstracts away everything irrelevant and only keeps the
structure of the proofs. We introduce measures (Definition 2.:.:0) on them in order to study their
structure and complexity, and a parallel elimination of their cuts (Definition 2.:.::).

Definition 2.:.8 (Links). We introduce in Figure 2.: three sorts of links —•, ⊗n and `
n– which

correspond to MLLu rules.
Every link may have two kinds of ports: principal ones, indexed by 0 and written below, and

auxiliary ones, indexed by 1, . . . , n and written above. The auxiliary ports are ordered, but as we always
represent the links as in Figure 2.:, we may safely omit the numbering. Axiom links have two principal
ports, both indexed with 0, but we can always differentiate them (for instance by naming them 0r and
0l ) if we need to. Remark that there is no cut link: a cut is represented with an edge between two
principal ports.

Definition 2.:.9 (Proof nets for MLLu ). Given a proof of MLLu, we may as usual build a proof net
from it.

The type of a proof net P is Γ if there exists a proof of ⊢ Γ that infers it. A proof net always has
several types, but up to α-equivalence (renaming of the literals) we may always assume it has a unique
principal type. If a proof net may be typed with Γ, then for every A it may be typed with Γ[A]. By
extension we will use the notion of type of an edge.

Remark. The same proof net—as it abstracts proofs— may be inferred by several proofs. Conversely,
several graphs —as representations of proof nets— may correspond to the same proof net: we get round
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of this difficulty by associating to every proof net a single drawing among the possible drawings with
the minimal number of crossings between edges, for the sake of simplicity. Two graphs representing
proof nets that can be obtained from the same proof are taken to be equal.

Terui uses a notion of decorated proofs to build his proof nets directly from proofs. It allows not
to take into account pseudo nets and to avoid having to define a correction criterion. But it has a major
drawback: in fact Terui does not use proof nets to compute, but stick on this level of “description”.
They are a rather convenient linear description of the objects we manipulate, but our setting allows us
to skip this intermediate step, and to truly compute with proof nets.

Definition 2.:.:0 (Size and depth of a proof net). The size |P | of a proof net P is the number of its
links. The depth of a proof net is defined with respect to its type:

◦ The depth of a formula is defined by recurrence:

d (α) = d (α⊥) = 1 d (⊗n(
−→
A )) = d (`n(

←−
A )) = 1+max(d (A1), . . . , d (An))

◦ The depth d (π) of a proof π is the maximum depth of cut formulae in it.

◦ The depth d (P) of a proof net P is min{d (π) | π infers P}. The depth d (P) of a proof net depends on
its type, but it is minimal when we consider its principal type.

Now that we defined measurements on our objects, we can justify the use of unbounded Multiplica-
tive Linear Logic. Terui justifies this choice by writing that “MLLu just gives us a depth-efficient way of
writing proofs” and refer to the classical work on generalized multiplicatives previously mentioned [39].
This last approach is a classical work in Linear Logic and a major outbreak in the study of Linear Logic,
but it focused on logical, mathematical and somehow combinatorial topics. The following remark
explains from a complexity point of view this choice.

Remark (Unfolding MLLu, folding MLL). We take the more “depth-efficient” way of encoding MLL
into MLLu, namely:

⊗i (A1, . . . ,Ai )≡ (. . . ((A1⊗A2)⊗ (A3⊗A4))⊗ . . .⊗ ((Ai−3⊗Ai−2)⊗ (Ai−1⊗Ai )) . . .)

But we adopt MLLu not only for convenience, for going back and forth between MLLu and MLL
has a cost. To unfold a proof net of MLLu, we have to perform the two operations in Figure 2.2 for
every `

i - and ⊗i -link with i > 2. They are strictly local and thus can be performed with AC0 resources.
Doing the opposite operation —folding a MLL proof net into a MLLu proof net— is a more global

operation, for it has to identify the maximal chains of ` or ⊗ that can be folded and hence cannot
be performed efficiently in parallel. But a really simple algorithm could be written to perform such
folding, and it can be proved that log-s pace resources would be enough to execute it(5).

It could be easily proved that this (un)folding operation is sound with respect to the type and the
normalisation of the proof nets.

Concerning the bounds of such proof nets, let P be a MLLu proof net, d (P) its depth and |P | its
size. Let |ci |P be the number of links with i auxiliary ports in P , we have |P |¾

∑
i¾2 |ci |P . Now let

Q be the MLL un-folded version of P , it is clear that |Q|¾
∑

i¾2 |ci |P × log(i ). In the worst case the

(5)Those two algorithms and complexity bounds would require to be stated formally the Direct Connection Language for proof
nets, whose definition is to come. As it is not of major interest, we take the liberty to skip this red tape.
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`
i

i 1
. . .

 unfolding

`

`

`

`

i i − 1

`

`

`

2 1
. . . 




log(i )

⊗i

1 i
. . .

 unfolding

⊗

⊗

⊗

⊗

1 2

⊗

⊗

⊗

i − 1 i
. . . 




log(i )

Figure 2.2: Unfolding a MLLu proof net

maximal arity of a link in P is O(|P |), and we know that in this case |Q| is O(|P | × log(|P |)). For the
same reason, the depth of Q is in the worst case O(d (P)× log(|P |)).

Roughly, we lose a lot regarding the depth if we stick to MLL proof nets, because we will take our
proof nets to be of depth logarithmic in the size of the input. But as soon as the proof nets for MLL
develop a computational power superior or equal to L , we may “for free” rewrite them as MLLu proof
nets.

Definition 2.:.:: (Cuts and parallel cut-elimination). A cut is an edge between the principal ports of
two links. If one of these links is an ax.-link, two cases occur:

if the other link is an ax.-link, we take the maximal chain of ax.-links connected by their principal
ports and defines this set of cuts as a t -cut,

otherwise the cut is an a-cut.

Otherwise it is a m-cut and we know that for n ¾ 2, one link is a ⊗n -link and the other is a `n -link.
We define on Figure 2.3 three rewriting rules on the proof nets. For r ∈ {t ,a, m}, if Q may be

obtained from P by erasing all the r -c uts of P in parallel, we write P⇒r Q. If P⇒t Q, P⇒a Q or
P⇒m Q, we write P⇒Q. To normalise a proof net P is to apply⇒ until we reach a cut-free proof net.
We define⇒∗ as the transitive reflexive closure of⇒.
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For all ◦ ∈ {(`n)n¾2, (⊗n)n¾2}, ◦ may be • in→m .

• •

. . .

•
→t

•

`
⊗

. . . . . . . . . . . .

→m

. . . . . . . . . . . .
i 1 1 i i 1 1 i

•
→a

Figure 2.3: Cut-elimination in parallel: t -, a- and m-reductions

The t -cut is usually not defined, as it is just a special case of the a-c ut. It was introduced by Terui

in order to be able to eliminate the cuts of a proof net in parallel. We know since “Linear logic” [47]
that the number of steps needed to normalise a proof net is linear in its size. This is unsatisfactory for
us in terms of parallelization: we would like the number of steps to be relative to the depth of the proof
net, as it is the case for the Boolean circuits.

If we try roughly to reduce in parallel a cut between two ax.-links, we are faced with a critical pair, as
exposed in Figure 2.4. Terui avoids this situation by using this t -r eduction (tightening reduction) which
eliminates in one step all those critical pairs. Of course, this rule re-introduce some sequentialization
in the parallel cut-elimination(6) but after applying it, we can then safely reduce all the other cuts in
parallel.

Theorem 2.:.: (Parallel cut-elimination Terui [:30]). Every proof net P normalises in at mostO(d (P))
applications of⇒.

The idea of the proof is quite simple: after the application of⇒t and⇒a , no t -cut or a-cut remains
in the proof net, because⇒a cannot create a t -cut. So either the proof net obtained is cut-free, and the
proof is done, either some m-cuts are present. In this latter case, an application of⇒m eliminates at
least one m-cut and the depth of the whole proof net lowers by 1.

By iterating the procedure, we get the expected result. This procedure allows us to make the most
of the computational power of proof nets, by achieving a “speed-up” in the number of steps needed to
normalise them.

Now that we know that one could compute efficiently, in parallel, with proof nets, we should
wonder what we can compute!

(6)The process of identifying maximal chains of axioms with cuts between them is necessarily done sequentially.
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• •

a
•

a
•

aa

t

This application of →a erases the
left axiom and connect the edge to
the right axiom.

This application of →a erases the
right axiom and connect the edge
to the left axiom.

The application of→a and→a in paral-
lel cause a mismatch.

The reduction →t is precisely here to
solve this parallel critical pair.

The proof net at the top of the figure has a single cut between two axioms, but it can be reduced in two different
ways, depending on the axiom we “keep”. This is illustrated by the two rectangles, which emphasize the two
premisses of the application of →a . If we perform the two possible applications in parallel, we do not get the
expected result.
The t -r eduction will handle this situation, but it requires the USTConn2 function to be performed in parallel, in
order to identify the maximal chains of axioms with a cut between them.

Figure 2.4: An obstacle to cut-elimination in parallel
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2.2 Boolean Proof Nets

We will begin with a reminder of how a boolean value may be represented and computed with proof
nets. Next we will introduce our contribution, proof circuits, and make sure that they are proof nets.

Proof Nets that compute Boolean functions

We just saw that proof nets are accompanied by a mechanism of evaluation, but this is not sufficient
to represent actual computation. We have now to define how proof nets represent Boolean values
(Definition 2.2.:) and Boolean functions (Definition 2.2.2). To study them in a uniform framework we
define their Direct Connection Language (Definition 2.2.3). This will allow us later on to use them as
“true” model of computation, i.e. a “reasonable” model if we remember the Invariance Thesis.

We cannot in MLLu derive the classical representation of the Boolean values, i.e. α⊸ α⊸ α, but
we use its ternary variant, without weakening.

Definition 2.2.: (Boolean type, b0 and b1 Terui [:30]). Let B be the boolean type of MLLu:

B :=`
3(α⊥,α⊥, (α⊗α))

Its proof is

ax.
⊢ α,α⊥

ax.
⊢ α,α⊥

⊗2

⊢ α⊥,α⊥, (α⊗α)
`

3

⊢`3(α⊥,α⊥, (α⊗α))

But if we look closely, this proof is not unique: does the first literal α⊥ of the ` connective comes
from the right hand-side axiom or from the left hand-side axiom(7)?

Depending on the answer to this question, we obtain the two proof nets of type B: b0 and b1,
respectively used to represent false and true.

b0 :=

⊗

`

•
•

b1 :=

⊗

`

• •

We write
−→
b for bi1

, . . . , bin
with i1, . . . , in ∈ {0,1}.

As we can see, b0 and b1 differ only on their planarity: the proof nets exhibit the exchange that was
kept implicit in the proof. This difference of planarity is the key of the encoding of the boolean values
into proof nets.

We present briefly two examples of computation: Figure 2.5 shows how to inverse the planarity
and Figure 2.6 how conditional can be simulated thanks to planarity.

Definition 2.2.2 (Boolean proof nets). A Boolean proof net with n inputs is a proof net Pn(
−→p ) of type

⊢ B⊥[A1], . . . ,B
⊥[An],⊗

1+m(B[A], D1, . . . , Dm)

(7)This ambiguity rests of course on the implicit exchange. In fact, there could be more exchanges, but we can up to reordering
consider only this one.
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⊗

`

•
•

•

•
•

⊗
`

→m
•
• ⊗

`

•

•
•

↓a

⇊t

•
• ⊗

`

≡
⊗

`

• •

⇒
∗

The proof net we present is the result of the “branching”, i.e. the connection via a cut, of b0 with a proof net that
will be defined later on asNeg. This proof net adds during the cut-elimination a cross between two edges. One can
simply check that if the input was b1, this proof net would have removed the crossing between the edges. Therefore,
this small proof net is the function mapping 0 to 1 and 1 to 0: the negation.

Figure 2.5: Adding or removing a crossing: how negation works

⊗

`

• •

⊗
•

⊗

`

•
• ⊗

`

• •

→m

⊗

`

•
• ⊗

`

• •

⊗• •

•

⇒a

⊗

⊗

`

•
•⊗

`

• •

The input (here in a dashed rectangle) is a proof net of type B[B], and it “selects” —according to its planarity or
non-planarity— during the normalisation which one of b0 or b1 is connected to the first auxiliary port of the
tensor and will be considered as the result —the other being treated as garbage.
We will in the following replace b0 and b1 with more complex proof nets, let’s say P and Q, and we can remark
that this proof net compute “if the input is true then Q else P”.

Figure 2.6: The conditional, the core of the computation
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. . .bi1
bin

P

. . .

⊗

...P(
−→
b )≡

∗

⊗

br
. . .

ev. br

Figure 2.7: Branching variables on a Boolean proof net and evaluating it

The tensor in this type is the result tensor: it collects the result of the computation on its first
auxiliary port and the garbage —here of type D1, . . . , Dm– on its other auxiliary ports which will be
called the garbage ports.

Given
−→
b of length n, Pn(

−→
b ) is obtained by connecting with cuts B⊥[Aj ] to bi j

for all 1≤ j ≤ n.

We have that Pn(
−→
b )⇒∗ Q where Q is unique, cut-free and of type ⊗1+m(B[A], D1, . . . , Dm). Let br be

the proof net of type B connected to the first port of ⊗1+m . We know since Definition 2.2.: that the
only two(8)normal proof nets of type B are b0 and b1, so r ∈ {0,1} is considered as the result of this
computation, and we write Pn(

−→
b )→ev. br , see Figure 2.7 for a better insight.

As for the Boolean circuits, a Boolean proof net can only receive a fixed size of input, so we need
to work with families of Boolean proof nets P = (Pn)n∈N. We say that a Boolean proof net family P

represents a Boolean function f n if for all w ≡ i1 . . . in ∈ {0,1}n ,

Pn(bi1
, . . . , bin

)→ev. b f (w)

Remark that the Boolean type may contains more than literals, thanks to the substitution. Without
substitutions, Boolean proof nets would be flat, i.e. necessarily of type

B⊥[α], . . . ,B⊥[α],⊗1+m(B[α], D1, . . . , Dm)

and Terui proved that in this case we could not compute more than Parityn or its negation!

(8)Up to η-expansion, but we can safely ignore this fact by assuming that the type chosen is minimal, i.e. that br is of type B and
not of type B[C ] for any C 6= α.
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We may easily define language accepted by a family of Boolean proof nets and uniformity, thanks to
the definition of Direct Connection Language for proof nets that follows.

Definition 2.2.3 (Direct Connection Language for proof nets Mogbil and Rahli [:07]). Given
P= (Pn)n∈N a family of Boolean proof nets, its Direct Connection Language LDC(P) is the set of tuples
< 1y , g , p, b > where g is a link in Py , of sort b if p = ε else the pth premise of g is the link b .

If < 1y , p, 0, b > or < 1y , b , 0, p > belong to LDC(P), there is a cut between b and p in Py .

Of course this definition is really close to the definition of Direct Connection Language for Boolean
circuits (Definition 2.:.3), for the object are in fact very similar. We will make them even more similar
by constraining how Boolean proof nets are built.

Proof Circuits

Proof circuits were introduced in my mémoire de Master 28 and appears in a paper published in the
Proceedings of the Second Workshop on Developments in Implicit Computational Complexity.9 They
make it simpler to grasp the mechanisms of computation at work in the Boolean proof nets. They are
studied in a uniform framework, following the work initiated by Mogbil and Rahli [:07, :05], but
they help to avoid a complex and tedious composition and are closer to Boolean circuits; also strictly
speaking, for we extend the correspondence between them to sublogarithmic classes of complexity.

A proof circuit is a Boolean proof net (Theorem 2.2.3) made out of pieces (Definition 2.2.4) which
represents Boolean functions, constants or duplicates values. Garbage is manipulated in an innovative
way, as shown in Figure 2.9. The mechanisms of computation explained in Figure 2.5 and Figure 2.6
remain valid in this setting. Apart from the constants and theN

eg
piece, all pieces uses the conditional

presented in Figure 2.6 with a “built-in” composition.
From now on every edge represented by is connected on its right to a free (unconnected)

garbage port of the result tensor: it carries a piece of garbage. As there is no modality in MLLu, the
computation cannot erase the useless values generated during the course of the computation, so we
handle them differently.

Patrick Baillot argued that proof circuits should rather be seen as a target to the translation from
Boolean circuits to Boolean proof nets, as a technical tool of a proof, rather than as an object to define
classes of complexity. It is true that the original motivation that led to introduce them was to sharpen
the translation to be developed in Section 2.3. Yet, as a by-product, they allow to define a framework
where the fan-in of the pieces is bounded, and so to get an equivalent to the bounded Boolean circuits.
It is true that their nature makes them look rather as Boolean circuits, but the bridging they propose
between those two worlds is the key to the new correspondence developed in Section 2.4.

Definition 2.2.4 (Pieces). We present in Table 2.8 the set of pieces at our disposal. Entries are labelled
with e , exits with s and garbage with g . Edges labelled bk —for k ∈ {0,1}– are connected to the edge
labelled s of the piece bk .

A piece P with i ¾ 0 entries, j ¾ 1 exits and k ¾ 0 garbage is one of the pseudo nets in Table 2.8,
where i edges are labelled with e1, . . . , ei , j edges are labelled with s1, . . . , s j and k edges labelled with
g1, . . . , gk go to the garbage ports of the result tensor.

(8)Clément Aubert Réseaux de preuves booléens sous-logarithmiques. Mémoire de M2 L.M.F.I., Paris VII. L.I.P.N., Sept. 20:0.
(9)Clément Aubert “Sublogarithmic uniform Boolean proof nets” in: DICE. edited by Jean-Yves Marion volume 75 EPTCS

20::. Pages :5–27 doi: 10.4204/EPTCS.75.2

http://dx.doi.org/10.4204/EPTCS.75.2
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Table 2.8: Pieces of Proof Circuits

We set 2¶ j ¶ i . If i = 2, the edge a is the edge s in the pieces D i
isj
and C i

onj
.

b0 :=

⊗

`

•
•

s

b1 :=

⊗

`

• •

s

D1
upl

:= ⊗
•

b0 b1

`

•

• s

e

g

N
eg

:=

•

•
•

⊗
`

e
s

D i
upl

:=

⊗
•

⊗ ⊗

e

b0 b0

i times︷ ︸︸ ︷
b1 b1

i times︷ ︸︸ ︷

. . . . . . . . . . . .

`

•

`

•

g

...

•
•

•
• s1

s2

si

si−1

D i
isj

:=

`

•
•

g1

b1

⊗•

e1
•

e2

a

⊗

b1

•

ei

`

•

g j−1

•

⊗

b1

•

e j

`

•

•

gi−1

s

i − 3 times




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Table 2.8: Pieces – continued from previous page

C i
onj

:=

⊗
`

e1
•b0

•

g1

••

e2

a

⊗

b0

•
`

•

g j−1

•

⊗

b0

•

e j

ei

`

•

•

gi−1

s

i − 3 times





We define two sets of pieces:

Pu = {b0, b1,N
eg

,{D i
upl
}i¾1,{D i

isj
}i¾2,{C i

onj
}i¾2}

and

Pb = {b0, b1,N
eg

,{D i
upl
}i¾1,D2

isj
,C 2

onj
}

To compose two pieces P1 and P2, we connect an exit of P1 to an entry of P2. It is not allowed to
loop: we cannot connect an entry and an exit belonging to the same piece. All the same, we cannot
have P1 connected to P2 connected to P3 . . . connected to P1.

An entry (resp. an exit) that is not connected to an exit (resp. an entry) of another piece is said to
be unconnected.

A piece with i entries and j exists will sometimes be referred to as having fan-in i and fan-out j , as
for the gates of the Boolean circuits.

Definition 2.2.5 (Proof circuits). A proof circuit Pn(
−→p ) with n inputs and one output is obtained by

composing pieces such that n entries and one exit are unconnected. If no garbage is created we add a
D1

upl
piece connected to the unconnected exit to produce some artificially. Then we add a result tensor

whose first auxiliary port is connected to the exit —which is also the output of the proof circuit— and
whose garbage ports are connected to the garbage of the pieces. We then label every unconnected
entries with p1, . . . , pn : those are the inputs of the proof circuit.

Given
−→
b of length n, Pn(

−→
b ) is obtained by connecting with cuts p j to bi j

for all 1≤ j ≤ n. The
Figure 2.7 can be used as it to describe the branching of the inputs.

Proof circuits come in two flavours: they may be composed of unbounded pieces (taken in the set
Pu or of bounded (or binaries) pieces (taken from the setPb ), as for the Boolean circuits over the basis
Bu or Bb . Yet the Linear Logic we use is in both cases the unbounded MLLu, and the D i

upl
pieces can

be of any fan-out.
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Without loss of generality, one may consider that the N
eg
piece are only connected to the inputs

of the proof circuit and that a D i
upl

piece is never connected to another D i
upl

piece: we do not lose
computational power if we negate only the entries, and we don’t need to duplicate i times the values
that have just been duplicated j times, for we might as well duplicate it i + j times directly. This comes
from a semantic of evaluation of those proof circuits that will come soon.

There are two main novelties in this way to define Boolean proof nets:

First, the composition is handled by the pieces themselves. If you recall Figure 2.6, you may notice
that the value computed, the output, is connected to this first port of the tensor. So to access this value,
one has to cut the tensor with a par, to “extract” the output to be able to compute with it. Here the
garbage is evacuated as soon as it is produced. We present in Figure 2.9 the difference of representation
of the disjunction of arity 4 between Terui’s framework and our setting.

We define directly proof nets that can be built easily and where mechanisms of computation are
simpler to grasp. This allow us to lower the computational power needed to build them, as we will see
in Section 2.3.

But first we must make sure that they are proof nets, and for that we will need the following definition.

Definition 2.2.6 (Height of a piece). Let P be a proof circuit, we define for any of its pieces P , its
height denoted by h(P ):

If the exit of P is connected to the result tensor, then h(P ) = 0.

If P has a single exit and it is connected to an entry of a piece P ′, then h(P ) = h(P ′)+ 1.

If P has i > 1 exits connected to entries of P1, . . . ,Pi , then h(P ) =maxn¶i (h(Pn))+ 1.

Why this definition ? For two reasons: as we don’t know yet that proof circuits are proof nets, we
do not know that they may be typed, and yet we need to be able to measure the degree of “overlapping”
of their pieces. The second reason is that the depth do not increase each time we cross a piece, as it will
be shown in Lemma 2.3.:, but we need a criterion to reason inductively with. We use this notion in
the following subsection, to prove Theorem 2.2.3.

Contractibility criterion: Proof Circuits are Boolean Proof Nets

For the time being, proof circuits are only freely-generated by connecting pieces, and we have no
insurance whatsoever that they are actually proof nets. They are only pseudo nets, for we don’t know
yet if they are typable, if every one of them may be linearized as a proof.

To prove that all proof circuit is a proof net, we use a generalized version of the contractibility
criteria of Danos.37 We adopt its variant introduced by Lafont [93] and refined by Guerrini and
Masini [67] who use parsing boxes.

The contraction rules —adapted to the unbounded case of MLLu— are reminded in Figure 2.:0.
Those rules have a different role: some of them (→ax.,→par and→ten. ) transform a pseudo net into a
dotted graph —i.e. they are only a relabelling of the pseudo net—, and the others (→arr.,→ctr. ) contract
the dotted graph, constitutes a rewriting system. Let→r be one of those rules, we write→r

∗
its transitive

reflexive closure.
(37)Vincent Danos La Logique Linéaire appliquée à l’étude de divers processus de normalisation (principalement du λ-calcul). PhD

thesis. Université Paris VII, :990.
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We give below two encodings of ∨4, the disjunction of arity 4.
The encoding proposed by Terui:

`

•

•
b1

⊗
•

e1

•

e2

⊗

b1

•

e3

`

•

•

⊗
`

•

•
•

⊗

b1

•

e4

`

•
•

⊗

The encoding we propose:

⊗

`

•

•
b1

⊗
•

e1

•

e2

⊗

b1

•

e3

`

•

•

⊗

b1

•

e4

`

•
•

Note that the couple ⊗/` in the first encoding (in a dashed rectangle) disappears in the second encoding, exactly
as if we had reduced this cut. It might look quite a minimal improvement, but it has to be conceived at the scale of
the whole Boolean proof net. We will show in the proof of Theorem 2.3.3 that it allows us to drastically lower the
size of the manipulated object.

Figure 2.9: The improvement of “built-in” composition
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•
→ax.

`

. . .

→par

. . .

⊗
. . .

→ten.

. . .

. . .
→ctr

→arr.

The three rules on the left goes from pseudo nets to dotted graphs, the two on the right from dotted graphs to
dotted graphs. The dots must be different in the case of →ctr and →arr.. In the →arr. case, there should be no
semi-arc coming from the relabelling of a `.

Figure 2.:0: Contractibility rules: relabelling and contracting a pseudo net

There is no need to define a relabelling for the cuts, for links eventually transforms into dots, and
an edge between two dots —that used to be a cut— will be contracted with a single application of→arr..

Theorem 2.2.: (Contractibility criterion, adapted from Danos [37]). A pseudo net is a proof net of
MLLu iff after applying →ax., →par and →ten. as many time as possible, the dotted graph obtained can be
reduced to a single dot applying→arr. and→ctr..

We will in the following write that a pseudo net “reduces” or “contracts” to a dot to express that it
is possible to obtain a dot from it by applying the rules of Figure 2.:0.

Definition 2.2.7 (→b
∗
). The proof nets representing the boolean values, b0 and b1, reduce themselves

easily into a dot. After an application of→ax.
∗
, b0 reduces itself into a dot by applying the following

sequence:

⊗
`

→ten.

`

→par. →arr.
∗ →ctr. →arr.

The case for b1 is the same up to a minor permutation of two wires, and we define→b
∗
as the reduction

in one step of all the pieces b0 and b1 into dots.

Lemma 2.2.2. A “piece” whose exits and garbage are connected to a single dot(9) reduces to a dot.

(9)Note that we are speaking of a structure midway between the pseudo net and the dotted graph. It is not strictly speaking a
piece, but this lemma is suited to prove Theorem 2.2.3 later on.
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Proof. Let P ∗ be the piece P where all exits and garbage are connected to the same dot. We study the
different cases:

b0 and b1 After applying→b and→arr., b ∗
0
as b ∗

1
contracts to a dot.

N
eg

After applying→ax.
∗
,→ten.,→par.,→arr.

∗
,→ctr. and→arr.,N ∗

eg
reduces to a dot.

D i
upl

After applying→b
∗
,→ax.

∗
,→ten

∗
,→arr.

∗
,→par.

∗
and then→arr.

∗
, D i∗

upl
is reduced to

. . .

If we apply→ctr.,→arr.,→ctr. and→arr., we get the expected result.

C i
onj

and D i
isj

After applying→b
∗
,→ax.

∗
,→ten

∗
,→par

∗
and→arr.

∗
, C i∗

onj
as well as D i∗

isj
is

If we apply i − 1 times the pattern→ctr.,→arr., we get the expected result.

Q.E.D.

Theorem 2.2.3. Every proof circuit is a Boolean proof net.

Proof. We will prove this by using the height of the pieces (recall Definition 2.2.6). Given P a proof
circuit, every of his piece has a height n ∈N, we prove that the set of pieces of height equal or inferior
to n contracts itself into a dot.

If n= 0 The set of pieces whose height is 0 is by definition a singleton. His exit and his garbage are
connected to the result tensor. There might be other garbage that come from piece of height > 0

connected to the result tensor, but we may safely ignore them. All we want is to fulfill the hypothesis
of Lemma 2.2.2, and this is the case after applying→ten and→arr.

∗
, so this piece contracts itself into a

dot.
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If n> 0 By definition, all pieces of height n are connected to pieces of height strictly inferior to n. By
induction, we know that this set of pieces of height inferior to n contracts itself into a single dot. So all
pieces of height n have their exits and garbage connected to a single dot, and by Lemma 2.2.2 this set
contract itself into a dot.

A proof circuit is made of pieces and of a result tensor, there always exists a n such that all its pieces
are of height inferior or equal to n, so it contracts itself into a single dot. The Theorem 2.2.: gives us
that all proof circuits are proof nets.

Regarding the type of the proof circuit P: we know that there exists several derivations that infer it.
The only conclusions are:

◦ unconnected entries of pieces, that is input,

◦ the result tensor.

We know that the type of an entry of a piece is —up to substitution— B⊥ and that the result tensor
recollect on its first port a formula of type B. Hence, any proof circuit can be typed with

⊢ B⊥[A1], . . . ,B
⊥[An],⊗

1+m(B[A], D1, . . . , Dm)

so it is a Boolean proof net. Q.E.D.

Patrick Baillot questioned this use of the contractibility criterion. His argument is that as proof
circuits are defined inductively, one could directly build its derivation by induction. This argument
is perfectly valid, and exhibiting concretely the derivation of a proof circuit would give us almost for
free Corollary 2.3.2 to come. Yet, we maintain that this proof technique is the “right” one, because
it highlights the graphical structure of our object, its parallel nature. Moreover, it dispenses us from
maintaining a high stack of variables for the number of inputs, the fan-in and fan-out of the piece under
study, the size of the result tensor, etc. Finally, it seems to us that this proof is in better adequation
with the situation, for it testifies of the role of the result tensor to “recollect” all the pending conclusion
regarding garbage.

Anyway, this theorem establishes that proof circuits are proof nets, so we can use the same evalua-
tion mechanism, and benefit from Theorem 2.:.: regarding the parallel cut-elimination. We can define
families of proof circuits P = (Pn)n∈N as for the Boolean circuits, and the notions of evaluation and
representation of a Boolean function can be used “as it” from Definition 2.2.2. As proof circuits are
just a special case of Boolean proof nets, we can adopt for them the same Direct Connection Language
we introduced in Definition 2.2.3. At last, concerning uniformity, simply substitutes “gate” by “link”
and “C” by “P” in Definition 2.:.4 to obtain the suitable definition.

This theorem also mean that a type or a formula can be associated to every edge of a proof circuit. In
the case of the entry or the exit of a piece, we will speak of a transported value: we know that this edge
“carries” a boolean type that can be associated to b0 or b1. This notion will turn out to be crucial when
we will parse proof circuits with Alternating Turing Machines to determine what are the values carried
along the edges without normalising the proof circuit. We refer to Section 2.4 and more precisely to
Theorem 2.4.3 for a demonstration of the utility of this notion.

We are now ready to study the computational power of proof circuits: we quickly expose how to
compose two proof circuits and then we define a Proof Circuit Complexity (PCC) class of complexity.
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Pieces of P1

Inputs of P1

. . .

Pieces of P2

Inputs of P2

. . .

Output of P1

⊗
Output of P2

...

Garbage of P1

...

Garbage of P2

Figure 2.::: Composing two proof circuits

Remark. To compose two proof circuits P1 and P2, we remove the result tensor of P1, identify the
unconnected exit of P1 with the selected input of P2, and recollect all the garbage with the result tensor
of P2. We then label the unconnected entries anew and obtain a proof circuit. The result of this
composition is illustrated in Figure 2.::.

Definition 2.2.8 (PCCi (resp. mBNi, Mogbil and Rahli [:07])). A language X ⊆ {0,1}∗ belongs to
the class PCCi (resp. mBNi ) if X is accepted by a polynomial-size, logi -depth uniform family of proof
circuits (resp. of Boolean proof nets).

If the pieces are taken from Pb , we write bPCCi , elsewhere the fan-in of the pieces is unbounded.

Remark. For all i ∈N, bPCCi ⊆ PCCi ⊆mBNi.

The first inclusion comes from the fact that every piece of Pb is a piece of Pu . The second comes
from Theorem 2.2.3.

Remark that PCCi ⊆ bPCCi+1 with the same argument that proves ACi ⊆NCi+1: every piece of
fan-in n > 2 can be replaced by n− 1 pieces of fan-in 2, organized in a “depth-efficient way”(:0), thus
multiplying the total depth of the proof circuit by a logarithm.

We are now ready to compare proof circuits with other models of computation: first come Boolean
circuits, and in the next section we will study the links with Alternating Turing Machines.

2.3 Correspondence With Boolean Circuits

The first part of this section is an improvement compared to the previous works about Boolean proof
nets, the second is just a reminder of those previous works.

(:0)With the same arrangement that the “unfolding procedure” of Figure 2.2.
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Translation from Boolean Circuits to Proof Circuits

By using our proof circuits we prove anew the translation from Boolean circuits to proof circuits, but
lower its complexity and by doing so, we extend the results to sublogarithmic classes of complexity. We
begin with an intermediate lemma and one of its corollaries.

Lemma 2.3.:. Let P be a proof circuit, P one of its piece with n ¾ 1 entries and m ¾ 1 exits. Let
Ae1

, . . . ,Aen
(resp. As1

, . . . ,Asm
) be the type associated to its entries (resp. exits), we have for j ∈ {1, . . . , n}

d (Ae j
)¶ d (B)+max(d (As1

), . . . , d (Asm
))

Proof. We simply consider the different cases and refers to Table 2.8:

◦ P /∈ {b0, b1} according to the hypothesis.

◦ If P =N
eg
, d (Ae1

) = d (As1
).

◦ If P =D i
isj
or C i

onj
, then d (Ae1

) = d (As ) and d (Ae j
) = d (B)+ d (As ) for 2¶ j ¶ i .

◦ If P =D i
upl
, then

d (Ae1
) = d (⊗3((`n(

←−
A⊥

sn
)` (`n(

←−
A⊥

sn
)),⊗n(

−→
Asn
),⊗n(

−→
Asn
)))

= 1+max(d ((`n(
←−
A⊥

sn
))` (`n(

←−
A⊥

sn
))), d (⊗n(

−→
Asn
)))

= 2+max(d (⊗n(
−→
Asn
)))

= 3+max(d (As1
), . . . , d (Asn

))

As d (B) = d (`3(α⊥,α⊥, (α⊗α)) = 3, the lemma is proved.

Q.E.D.

The “less or equal” sign should not misguide the reader: this lemma teaches us that the depth slowly
increase from the exits to the entries i.e. that the formulae associated to the entries are bigger than the
formulae associated to the exists. We should also remark that the depth increases independently from
the fan-in of the piece and that duplication has an impact on the depth. But since we cannot “duplicate
more than we compute”, the impact will only be a multiplication by a constant factor (see proof of
Theorem 2.3.3 for a precise statement).

Corollary 2.3.2. For all proof circuitPn(
−→p ) and all

−→
b , the cuts atmaximum depth inPn(

−→
b ) are between

the entry of a piece and an input bi j
for some 1≤ j ≤ n.

Proof. The formulae in the garbage are never cut, and in all pieces the cuts that do not connect an entry
or an exit (“the inner cuts”) are always of depth inferior or equal to cuts connecting the entries.

We just proved that the depths of the cut formulae slowly increase from the exit to the entry, and
as the entries that are not connected to other pieces are connected to values, this lemma is proved.

Of course, an entry could also be connected to a constant b0 or b1, but we may always consider
that two constants b0 and b1, eventually duplicated, are part of the input, as for the Boolean circuits.

Q.E.D.
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Problem C: Translation from Boolean circuits to proof circuits

Input: LDC(C) for C a uniform family of polynomial-size and logi -depth Boolean cir-
cuits over Bu .

Output: LDC(P) for P a uniform family of polynomial-size and logi -depth proof circuits
over Pu , such that for all n ∈ N, for all

−→
b ≡ bi1

, . . . , bin
, Pn(

−→
b ) →ev. b j iff

Cn(i1, . . . , in) evaluates to j .

Theorem 2.3.3. Problem C belongs to AC0.

Proof. The translation from C to P is obvious, it relies on coding: for every n, a first constant-depth
circuit associates to every gate of Cn the corresponding piece simulating its Boolean function, i.e. ∧k is
translated to C k

onj
, ∨k by Dk

isj
and ¬ byN

eg
. If the fan-out of this gate is k > 1, a Dk

upl
piece is associated

to the exit of the piece, and the pieces are connected as the gates. The input nodes are associated to
the inputs of Pn . A second constant-depth circuit recollects the single free exit and the garbage of the
pieces and connects them to the result tensor. The composition of these two Boolean circuits produces
a constant-depth Boolean circuit that builds proof circuits in parallel.

It is easy to check that C k
onj
, Dk

isj
andN

eg
represent ∧k , ∨k and ¬ respectively, that Dk

upl
duplicates a

value k times, and b0 and b1 represent 0 and 1 by convention. The composition of these pieces does
not raise any trouble: Pn effectively simulates Cn on every input of size n.

Concerning the bounds: the longest path between an entry or a constant and the result tensor goes
through at most 2× d (Cn) pieces and we know by Corollary 2.3.2 that the increase of the depth is
linear in the number of pieces crossed. We conclude that d (Pn)¶ 2×3×d (Cn) and we may also notice
that Pn normalises in O(d (Cn)) parallel steps.

Concerning the size, by simply counting we know that a gate of fan-in n and fan-out m is simulated
by two pieces(::) made of O(m+ n) links. As the number of edges in Cn is bounded by |Cn |

2, the size
of Pn is at most O(|Cn |

2). Q.E.D.

Corollary 2.3.4. For all i ∈N

ACi ⊆ PCCi

Note also that if the family C is overBb , P is made of pieces ofPb , and so NCi ⊆ bPCCi for i > 0,
as the translation is in AC0.

A Boolean circuit with unbounded (resp. bounded) arity of size s is translated to a proof circuit
of size quadratic (resp. linear) in s , whereas Terui considers only unbounded Boolean circuits and
translate them with Boolean proof nets of size O(s5). The previous translation [:07, Theorem 2, p. 8]
was in L and so the inclusion could not be applied to sublogarithmic classes. Our translation —thanks
mostly to the easier garbage collection— needs less computational power, is more clear and beside
lowers the size of the Boolean proof nets obtained.

Simulation of Proof Circuits by Boolean Circuits

Now we will prove the “reverse” inclusion, i.e. that PCCi ⊆ACi+1. This part will not be proved with
a translation: we do not build a Boolean circuit family that computes as a proof circuit family. Rather,

(::)One for the computation, one for the duplication of the result.
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Description of a Boolean proof net
Pn(
−→
b ) of depth d and size s

↓

Simulates⇒t

Simulates⇒a

Simulates⇒m

Simulates⇒t

Simulates⇒a

Simulates⇒m





d times

Establishes the output of P
n
(
−→
b )





Constant-depth
size s3





Boolean Circuit of
depth d , size s4 over
Bu ∪ {USTConn2}

Note that given a Boolean proof net in input, d steps of normalisation are enough to obtain the description of its
normal form. The t -reduction needs USTConn2 nodes to be made efficiently.

Figure 2.:2: The simulation of a Boolean proof net by a Boolean circuit

we define a Boolean circuit family that can evaluate any proof circuit, i.e. decide given an input and the
Direct Connection Language of its family if it evaluates to b0 or b1.

In other words, we define a family of Boolean circuits that is able to normalise in parallel any
Boolean proof net, and so they need to perform t -reductions. This operation needs to identify maximal
chains of axioms with cuts between them, and that require to solve the problemUSTConn 2 (ProblemA).
We simply add USTConn2-gates to the basis of the Boolean circuits that will in constant depth identify
the t -cuts and reduce them.

Problem D: Simulation from Boolean proof nets to Boolean circuits

Input: LDC(P) for P a polynomial-size, logi -depth uniform Boolean proof net family.
Output: LDC(C) for C a uniform family of Boolean circuits C over Bu ∪ {USTConn2},

such that for all
−→
b ≡ bi1

. . . bin
, Pn(

−→
b )→ev. b j iff Cn(i1, . . . , in) evaluates to j .

Terui managed to perform this simulation thanks to configurations, another kind of description of
the Boolean proof net that is updated during the course of the normalisation. We refer to [:30, :07] for
a technical presentation of this tool, and only give the sketch of the proof below. The Figure 2.:2 could
help the reader to grasp the general structure of the Boolean circuit we are building.

For r ∈ {t ,a, m}, an unbounded fan-in constant-depth Boolean circuit with O(|Pn |
3) gates —with

USTConn2 gates to identify chains of axioms if r = t– is able to reduce all the r -cuts of Pn in parallel.
A first constant-depth circuit establishes the configuration from LDC(P) and constant-depth circuits

update this configuration after steps of normalisation. Once the configuration of the normal form of
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Pn is obtained, a last constant-depth circuit identifies the first proof net connected to the result tensor
and establishes if it is b0 or b1 —that is to say if the result of the evaluation is false or true.

As all the circuits are of constant depth, the depth of Cn is linear in d (Pn). The size of Cn is
O(|Pn |

4): every circuit simulating a parallel reduction needs O(|Pn |
3) gates and in the worst case —if

d (Pn) is linear in the size of the proof circuit— O(|Pn |) steps are needed to obtain the configuration of
the cut-free Boolean proof net.

Theorem 2.3.5 ( [:07, Theorem 5, p. 9]). Problem D is in L.

Corollary 2.3.6. PCCi ⊆mBNi ⊆ACi+1 for all i .

Proof. We know since [:36] that USTConn is L-complete, but there is no proof that a weaker problem
as USTConn 2 belongs to a weaker class of complexity. But since L ⊆ AC1, we could replace all
USTConn2 gates by log-depth Boolean circuits, thus yielding ACi(USTConn2)⊆ACi+1. The previous
theorem and Theorem 2.2.3 complete the chain of inclusion. Q.E.D.

The simulation is slightly different from the translation: the Boolean circuit does not have to
identify the pieces or any mechanism of computation of Pn , but simply to apply⇒t ,⇒a and⇒m until
it reaches a normal form and then look at the obtained value.

Remark. We have focused on sublogarithmic classes of complexity, but we can draw more general
conclusions by re-introducing USTConn2. Terui proved that USTConn2 could be represented by
Boolean proof nets of constant-depth and polynomial size. So we could define “USTConn2-piece”,
Pu+s =Pu ∪ {USTConn2} and s+PCCi as the class of languages recognized by logi -depth, poly-size
proof circuits overPu+s . It would be easy to conclude that for all i ∈N, s+PCCi =ACi(USTConn2) =

mBNi.

2.4 Correspondence With Alternating Turing Machines

Alternating Turing Machines (ATMs) are “the” historical way of characterizing parallel computation.
Cook [28], in :985, defines ACk as “the class of all problems solvable by an ATM in space O(log n) and
alternation depth O(logk n).” Remark by the way that the “A” of AC stands for “alternation”.

In this setting, there is no worries to have regarding uniformity, but some slight changes will be
made in order to define “families of computation graphs” for ATMs (Definition 2.4.2). That will require
that all the runs of an ATM on inputs of the same size have the same “shape” (Definition 2.4.:). This
will help us to get closer to the computational behaviour of the proof circuits and to establish bridges.

This other characterization of the computational power of proof circuits has several advantages:

◦ it helps to grasp in a different manner parallel computation,

◦ it makes uses of log-space computation, and helps us to introduce some oddities of this calculus,

◦ it uses the paradigm “ATMs as graphs” that we sketched in Section :.:, for instance in Definition :.:.5

◦ and, last but not least, it refines the bounds we proposed in the previous section.

Recall that we proved, for all i ∈N,

ACi ⊆ PCCi ⊆ACi+1 NCi ⊆ bPCCi ⊆ PCCi ⊆ bPCCi+1
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...
∃

∀ ∀

suppose xi = 1 suppose xi = 0

α1
i

α0
i

proceed with xi = 1...
proceed with xi = 0...

Rather than directly reading xi , the ATM pursue the computation in parallel: on one way it makes as if xi was 0,
on the other it makes as if it was 1. The state α j

i
leads to acceptance iff xi = j , so it discriminate between the

correct and the wrong guess.

Figure 2.:3: The access to the input in an input normal form ATM

Here we will prove for j > 1 and k > 0,

NCj ⊆ PCCj bPCCk ⊆ACk

Whereas the first inclusion could be obtained from the previous section, the second inclusion is a
novelty and enlightens the position of bounded proof circuits.

Unfortunately, the simulation and translation we will define in the following are quite expansive,
and those results do not apply to constant-depth circuits. Anyway, by combining the results of the
previous section and the results to come, we obtain for all i > 1,

NCi ⊆ bPCCi ⊆ACi ⊆ PCCi ⊆ bPCCi+1

The results in this section are unpublished and new, they are the result of a strong motivation to
link together three classical models of parallel calculus. We begin with some remarks on ATMs, we
will refine them to obtain more easily the results we expect. We take the liberty to represent the ATM
program as a graph, following Definition :.:.5.

Definition 2.4.: (Input normal form). An ATM is in input normal form(:2), if for every input x ≡
x1 . . . xn , for all 1¶ i ¶ n, all accesses of M to xi are of the form illustrated in Figure 2.:3.

This mechanism is the core of the parallelism of ATMs: here, thanks to the random access to the
input, checking if xi = j has a constant cost, but imagine that we have to perform a computation with
a significant cost in terms of space, time or alternation. With this “guess and check” routine, we can
safely perform this checking and the course of the computation in parallel. Moreover, it is possible to
guess values longer than a single bit (cf. Definition 2.4.4).

(:2)This suppose that our ATMs have random access to their inputs [:35, p. 58].
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We will massively use this procedure in the following, but we dwell for now on one of its other
advantages: the course of the computation is now relative to the size of the input. This comes from the
remark that if M an ATM is in input normal forms and |x|= |y|, then GM (x) =GM (y). The difference
will rest on the labelling of the graph (recall Definition :.:.3), leading to acceptance or rejection.

Definition 2.4.2 (Family of computation graphs). Given M an ATM, its family of computation graphs
GM = (GM ,n)n∈N is such that for every p ∈N, GM , p is the computation graph of M on input of size p.
We will write α ⊢M , nβ if there is an edge between α and β in GM ,n .

The computation graph associated to M on input of size |x|, GM ,|x|, is of depth at most O(t (|x|))
if M is bounded in time by t (:3). If M is bounded in space by s , the number of configurations of M
is bounded by O(2s (|x|)) and so is the number of nodes of GM ,|x|. The bounds on alternation has no
consequence on the shape of the graph.

The depth of a node is the length of the computation path from the initial configuration to the
configuration corresponding to this node. It will be the equivalent of the height of a piece as defined in
Definition 2.2.6.

Translation from Alternating Turing Machines to Proof Circuits

Definition 2.4.3 (Translation, inspired from Vollmer [:35, p. 63]). We define inductively a translation
(b· ) from a family of computation graphs GM to a family of proof circuit P.

Given a size of input n, we proceed as follow:

◦ For 1¶ j ¶ n, there exists a ∈ N such that the input x j is tested a times. If a = 0, we simply connect
an edge labelled with x j to a garbage port of the result tensor, otherwise we display a Da

upl
piece whose

entry is labelled with x j .

◦ We then consider the sinks (nodes of height 0), which are final configurations or tests. Suppose that
the configuration is α and there exists β1, . . . ,βi such that for 1¶ k ¶ i , βk ⊢M , nα.

– If g (α) = 0 (resp. 1), the node is translated with b0 (resp. b1 ),

– if α tests the if the j th bit of the entry is 0 (resp. 1)(:4), the node is translated with the piece N
eg

connected (resp. by directly connecting it) to one of the free output of the Da
upl

piece connected to x j .

In both cases the output of the piece is connected to D i
upl
.

◦ If the height of the node is h ¾ 1, we proceed as follow: suppose the configuration associated is α. There
exists j , k ∈N∗, β1, . . . ,β j such that for all 1¶ m ¶ j , βm ⊢M , nα, and γ1, . . . ,γk such that for 1¶ l ¶ k,
α ⊢M , nγl . By induction, we already know pieces translating γ1, . . . ,γk , because their height is strictly
inferior to h. We know that g (α) /∈ {0,1} since α is not final.

If g (α) = ∃ (resp. ∀), the node associated to α is Dk
isj
(resp. C k

onj
), with its k input connected to

the translations of γ1, . . . ,γk . Its output is connected to D j
upl, which transmits the value to the pieces

translating β1, . . . ,β j .

(:3)This comes from the simple remark that it is always possible to halt the computation after O(t (|x|)) transitions.
(:4)Something we wrote α0

i
(resp. α1

i
) in Figure 2.:3.
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1 0 α1
1

α1
1

α0
2∀

∃

→

b1 b0
D2

upl

N
egC 3

onj

D3
isj

x1 x2

⊗

O(logi (n))
O(logi (n))

2log(n) = nO(1)

nO(1)

We take the Alternating Turing Machine here to be log-space and logi -time bounded, and only specify the state
type of every configuration (recall Definition :.:.2). The configuration α j

i
is labelled with 1 iff xi = j , 0 elsewhere.

For convenience we represented the edges of the proof circuit from top to bottom, but of course the pieces are
connected with cuts.

Figure 2.:4: The translation from Alternating Turing Machines to proof circuits

We then add a result tensor connected to the output of the translation of the initial configuration and
to the garbage. Since every computation graph is finite and presents no cycle, this translation ends.
As we simply connected together pieces and added a result tensor, the structure obtained is a proof
circuit—hence a proof net— and it has n edges labelled with xi , . . . , xn .

The Figure 2.:4might help the reader to check how simple this translation is. However, even if this
algorithm is simple to understand, it has a log-space complexity, as shown below.

Problem E: Translation from ATM to proof circuits

Input: A log-space, logi -time bounded ATM M .
Output: The Direct Connection Language of a uniform family of logi -depth proof circuits

C such that for all n ∈N, for all
−→
b ≡ bi1

, . . . , bin
, Cn(

−→
b )→ev. b1 iff M (i1, . . . , in)

accepts.

Theorem 2.4.:. Problem E belongs to L.

Proof. First, remark that we can always suppose that the ATM is in input normal form: if it is not,
there exists an ATM that accepts the same language with the same bounds(:5). Secondly, remember that
we sketched in Section :.: how a deterministic Turing Machine with logarithmic space could output the
computation graph GM (i1,...,in )

of a Turing Machine M . From that, it is easy to output with logarithmic

resources ÕGM ,n a proof circuit that will reduce as expected.
Concerning the bounds: we know that the number of configurations of M (x) —and so the size of

GM ,n– is bounded by 2O(log(n)). Every configuration with m predecessors and k successors is translated

(:5)Recall that being in input normal form has a cost in alternation only, but we say nothing regarding this bound in this theorem.
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in ÕGM ,n with a piece of size O(m+ k) and a number linear in n of D
upl

piece may be added to duplicate

the inputs. As |ÕGM ,n |=O(|GM ,n |) = 2O(log(n)) = nO(1), |ÕGM ,n | is polynomial in n.
Regarding the depth, the longest computational path form the initial configuration to a final confi-

guration is of length at most logi (n). Every node is translated with at worst two pieces, so the depth of
ÕGM ,n is linear in logi (n) by Lemma 2.3.: Q.E.D.

Corollary 2.4.2. For all i > 1,

STA(log, logi,∗)⊆ PCCi

Unfortunately this result could not be extended to the sublogarithmic case, as the reduction devel-
oped in the previous proof belongs to L. This result concerns only NC2 = STA(log, log2,∗) and above,
which has more resources than L.

Simulation of Proof Circuits by an Alternating Turing Machine

We will perform here a typical log-space-computation: the size of a Boolean proof net is polynomial in
the size of its input, so the Alternating Turing Machine cannot rewrite the description of the Boolean
proof net until it reaches a cut-free form, because it simply does not have enough space. Instead, the
Alternating Turing Machine will parse, or peruse, its Direct Connection Language in order to find
directly the result of the normalisation. We save space by doing that way and are able to write down an
algorithm à la log-space. This procedure shares a lot with the pointer machinery, a topic that will be
the center of Chapter 4.

It will rely at the same time on the Direct Connection Language of the Boolean proof nets (recall
Definition 2.2.3), on their unifomity, and for the last part on the constrained structure of a proof circuit.
We will use the same mechanism as in the guessing of the input by an input normal form ATM to guess
information regarding the proof circuit we are trying to normalise.

Definition 2.4.4 (How to guess?). We show how to guess numbers of links; to guess other values of
constant size is essentially the same mechanism. Given an input

−→
b of size n, it takes place log(|Pn |) to

write the number of a link in binary, and as |Pn |= nO(1), that is to say O(log(n)).
The semantic of the guessing is the following : “there is a :st bit which can be 0 or 1, there is a 2nd

bit which can be 0 or 1, . . . , there is a i th bit which can be 0 or 1”. The Figure 2.:5 shows how it works.
It takes time i , space i and has a constant cost in alternation to guess a value of size i .

Once the value we are looking for is guessed, we have to check that it is the actual value that we
are looking for. In other terms, if we are looking for the number of a link e such that e is connected
to the first auxiliary port of the link number s in the Boolean proof net Pn , we have to make sure that
< 1n , s , 1, e >∈ LDC(Pn). This question —once e is guessed— takes time O(log(n)) on a deterministic
Turing Machine to be answered, since our proof circuits are uniform.

We present in Figure 2.:6 the composition of the guessing and of the checking by the uniformity
machine. Remark that an important amount of useless work is done: this is typical of a log-space
computation. As we do not have enough space to memorize the number of the links, we just calculate
them again and again, when we need them.

Now that we defined how to obtain with efficiency some information regarding a Boolean proof net,
we have to show how an ATM can use them wisely to establish the outcome of its normalisation. To
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The tree has a depth equal to the size of the guessed value.

Figure 2.:5: How a value is guessed by an Alternating Turing Machine

∃

∀

< 1n , s , 1, e >∈ LDC(Pn)? t

∀

< 1n , s , 1, e >∈ LDC(Pn)? t

. . .

Guess all possible values for e .

We guess all possible values for e by guessing all the binary string of length log(|Pn |). Then, for every of them, we
test if it is the value we are looking for, by asking the uniformity machine if < 1n , s , 1, e >∈ LDC(Pn).
Among all the values guessed for e , only one will satisfy this belonging, for the first auxiliary port of the link
numbered e in Pn is connected to only one other link. So all the branches except one will reject, and the
computation will go on with the actual value for e .
We will write in Figure 2.:7 this routine as

∃

∀

t

< 1n , s , 1,e>?

Where e is in bold because it is the value we are looking for, and a dashed line means that the uniformity machine is
been asked. A constant number of values may be guessed and checked at the same time, with only one alternation,
as long as there is enough space to store the values.

Figure 2.:6: A shorthand for the “guess and check” routine



2.4. Correspondence With Alternating Turing Machines 5:

try to establish an algorithm with logarithmic resources for any Boolean proof net is a bit naive, for the
complexity of cut-elimination is quite high: it has been proven by Mairson and Terui [:00] that the
cut elimination procedure is P-complete for IMLL—the intuitionist fragment of MLL. As they write
it [:00, p. 24], “This result contradicts folkloric intuitions that MLL proofnets could be normalized
in logarithmic space—that is, with only a finite number of pointers into the proofnet, presumably
following paths in the style of the geometry of interaction.”

We proved it anyhow for a constrained fragment of the proof nets of MLLu: the proof circuits. In
this setting, we always know “what to expects”, as proof circuits are built following the simple pattern
of composing pieces. To each entry and exit of a piece, we may associate a value, i.e. the edges labelled
e and s in Table 2.8 may be typed with B, and they will “transport” a boolean value. Our algorithm
will find for every piece, starting from the exit of the proof circuit, what are the values carried by those
edges. We cannot associate to “the value carried is 0” rejection and to “the value carried is 1” acceptance,
because we rely on tests, on guess and checks, where rejection means “you did not made the right
hypothesis, I am not even able to perform this computation”.

So we define a recursive function f that given the number of a link and an expected value, leads
to acceptance if and only if the edge connected to the principal port of that link will “transport” the
expected value. That distinguishes “rejection cause the test fails” and “rejection because the value is 0”.

Definition 2.4.5 ( f : number of a link× value expected→ {accept,reject}). Given s the number of a
link and v ∈ {0,1}, f will accept iff the proof net connected to the principal port of s will normalise to
bv . This function is recursive and we give in Figure 2.:7 a representation of the computational graph of
an ATM computing this function: it massively uses the “guess and check” procedure and the shorthand
we introduced in Figure 2.:6. It does not cover the case when s is connected to an input: in this case,
simply accept if this input is bv , reject elsewhere.

We give some explanation on how this function computes: it takes as input v ∈ {0,1} —the
“expected” value— and s —the number of a link, that may safely be identified with the edge connected
to its principal port, i.e. with the edge labelled s in Table 2.8, the exit of a piece.

Then f proceeds by cases, with v = 0 if v = 1, 0 elsewhere:

:. If s is the output of a piece bi ( i ∈ {0,1}) accepts if i = v, rejects elsewhere.

2. If s is the output of a pieceN
eg
whose entry is connected to the link number e , do as f (v, e).

3. If s is the output of a piece D i
upl

whose entry is connected to the link number e , do as f (v, e)(:6).

4. If s is the output of a piece C 2
onj

whose entries are connected to the links number e1 and e2, and if v = 1

(resp. v = 0), universally (resp. existentially) branch on f (v, e1) and f (v, e2).

5. If s is the output of a piece D2
isj
whose entries are connected to the links number e1 and e2, and if if

v = 1 (resp. v = 0), existentially (resp. universally) branch on f (v, e1) and f (v, e2).

We prove that this procedure ends thanks to an inductive proof on the depth and by using
Lemma 2.3.:: in the N

eg
case, the call to f is performed on a link at same depth. In the D i

upl
case,

(:6)A remark should be made about this treatment of the duplication: there is no sharing. Every time we want to know the
output of a duplication, we test its input. So to say, the circuit is “splited” and treated as it was a tree.
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∀

accept

case2

< n, u, 1,w>,< n, s , i, w >?

< n, u,ε,⊗>?

∀

∃

∀

f (x, v)

< n,w, 3, u >,< n, w, 0,x>?

< n, u,ε,•>?

< n, s , 1,u>?

< n, s ,ε,`>?
∀

∃

∀

∃

∀

∃

∀

f (c , v)

< n, z,ε,`>?

∀

∃

∃

∀

∀

f (v, e1) f (v, e2)

case1

∀

∃

f (v, e1) f (v, e2)

case2

< n, z, 0,e1 >,< n, z, i ,e2 >?

< n, z,ε,⊗>?

< n, z, 0,a>,< n,b, 1,a >,< n, b , 0,c>?

< n,x, 1, s >,< n, x, 0,y>,< n,z, 1, y >?

< n, s ,ε,•>?

Figure 2.:7: A function to compute the value carried by an edge
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the call is performed at a greater depth. In the C 2
onj

and D2
upl

cases, two calls are made: one at the same
depth, the other at superior depth. In the bi case, no recursive call is made.

As theN
eg
pieces are limited to the entries (recall Definition 2.2.5), we can consider this case only

as a constant factor. Except for this case, each iteration performs at least one call to f with a link of
depth superior to the previous call. So the procedure ends, and in the worst case O(d (P|n|) calls are
performed. That f leads to accept with input v, s iff the link v will transport the value v is just a
matter of common sense.

Theorem 2.4.3. For all i > 0.

bPCCi ⊆ STA(log,∗, logi)

Proof. We build our ATM M as follows:

◦ It takes as input LDC(P) for P a uniform, polynomial-size, logi -depth proof circuit family overPb , and
an input

−→
b = i1, . . . , in .

◦ It identifies the number of the result tensor of Pn
(:7).

◦ It guesses the number of the link connected to the first auxiliary port of the result tensor, and it runs
f with this value and 1.

It should be clear that M accepts iff Pn(
−→
b )→ev. b1, and stops rejecting elsewhere.

Regarding the bounds:

Space At every moment M has only to store a constant number of addresses of links. We can at each transition
forget every data except the expected value and the number of the link under treatment. A logarithmic
amount of space is sufficient to store those values.

Alternation Each call to f uses a constant number of alternation, and O(d (Pn)) calls are made. As Pn is of depth
logi (n), O(logi (n)) calls are made.

Q.E.D.

Two remarks should be done:

◦ This algorithm cannot be extended as it to Boolean proof nets, even if they are uniform. As our
pieces are “normed”, the ATM knows what to expect, and so we can encode in the algorithm itself the
behaviour to adopt. A Boolean proof net in all generality is a too complex object to be treated the same
way.

◦ We work in the bounded case for complexity reasons. Our algorithm could work with just a slight
modification in the unbounded case, but the bounds would be problematic. We would need to introduce
a routine that guess and checks the arity of every D

isj
and C

onj
pieces. But that would re-introduce

linearity in our algorithm, for the ATM needs to establish the number of the ⊗ corresponding to the
i + 1th entry before establishing the number of the ⊗ corresponding to the i th entry. As in the worst
case, the fan-in of the piece is relative to the size of the proof circuit, we obtain a bound on time relative
to the size of our Boolean proof net.
(:7)That is to say to find the only ⊗-link with its principal port unconnected. That can be done in parallel, or more simply we

can by convention says that the first link described in the Direct Connection Language of the proof net is the result tensor.
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Results and perspectives

What have we done?

We recalled a reliable way of representing Boolean values and Boolean functions with MLLu proof nets.
We then restated a depth-efficient way of computing with them, letting them able to be normalised by
Boolean circuits, thus proving (Corollary 2.3.6), for all i ∈N,

PCCi ⊆ACi+1

We then constrained the structure of the Boolean proof nets by introducing proof circuits and gave
an AC0-reduction from them to Boolean circuits, establishing —even when i = 0 (Corollary 2.3.4)

ACi ⊆ PCCi

We adapted the classical representation of Alternating Turing Machines in Boolean circuits toward
proof circuits, and that gave us (Corollary 2.4.2), a new proof that for k > 1

NCk ⊆ PCCk

At last, we deeply used the parallelism of Alternating Turing Machines to prove that they were
able with log-space resources to obtain the cut-free form of any proof circuits with bounded fan-in. By
combining Theorem 2.4.3 with the equality ACi = STA(log,∗, logi) for all i ¾ 1, we obtain, for k > 1

bPCCk ⊆ACk

Wemanaged to lighten the simulation of the Boolean functions by proof nets and extended previous
results to sublogarithmic classes of complexity. We also managed to build strong gateways between
Boolean proof nets and ATMs, and even if those results does not apply to the very small classes, it shed
a new light on the links between logarithmic space computation and proof nets.

What could be done?

This work could be pushed further in several directions:

:. Girard [49, p. 8] was very enthusiast regarding non-commutative Linear Logic, “which should play
a prominent role in the future”. This fragment does not forbid exchange, but constrains them by
allowing only circular permutations, that is to say planar proof nets. This particular framework led
to numerous fruitful studies, including specific correctness criterion [:03]. Her, our modelization of
computation used permutations, something that was at a hidden level in the sequent calculus. We made
explicit those exchanges thanks to the proof nets, but other approaches has been developed, for instance
by Andreoli, Maieli, and Ruet [3]. Although the main interest of our setting is to compute in
parallel, it could be interesting to see how computation may be represented by cyclic linear logic, which
has a part of non-determinism in it.

2. Non-determinism was also simulated with the Boolean proof nets by introducing a part of the additive
fragment byMogbil [:05]. The simplicity of the proof circuits allows to write quite directly “by hands”
proof nets and to compute with them. By introducing small doses of non-determinism in the pieces,
it could be possible to understand precisely what is at stake in this setting. Some promising results
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between proof nets and non-deterministic were obtained by Maurel [:0:]. But non-deterministic
computation in this setting looks more like a juxtaposition of deterministic computation than true
non-determinism.

3. Semi-Unbounded-Fanin AC (SACk ) is the class of decision problems solvable by a family of logk (n)-
depth circuits with unbounded-fanin ∨ and bounded-fanin ∧ gates. Of course, we take as a constraint
that negations are only allowed at the input level. It was introduced by Borodin et al. [2:] and
proven that this class was closed under complement for every k > 0. We know also that SAC1 =

LOGCFL/poly since the work of Venkateswaran [:34]. To investigate in this direction could offer
a very nice framework to grasp non-uniform classes of complexity, recently sketched by Mazza [:02].
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In this chapter, we are going to define another model of computation inspired from the Linear Logic,
and more precisely from the Geometry of Interaction (GoI). Although the inspiration comes from

Linear Logic, the objects we are going to manipulate are purely mathematical. This comes from the GoI
program, and more precisely from its fifth version57, that tells us that operators in the II1 hyperfinite

(57)Jean-Yves Girard Geometry of Interaction V: logic in the hyperfinite factor. Theoretical Computer Science, 4:2(20),
pages :860–:883, 20::. doi: 10.1016/j.tcs.2010.12.016

57

http://dx.doi.org/10.1016/j.tcs.2010.12.016
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von Neumann algebra describe totally the computational behaviour of proofs. Others variants of the
GoI programs were already used with complexity concerns, and we present some of them in Section 3.:,
before making clear that our approach here is a total novelty.

We build patiently in Section 3.3 the representation of binary words with matrices starting from
proofs, and the ELL representation in particular. From this construction, it is rather easy to build a
representation of integers in the hyperfinite factor, and then to define programs that will interact with
them (or, as we call them later, observations), in Section 3.4. We take the time in the second subsection
of Section 3.4 to explain and motivate Girard’s choices, and to dwell on the difference of the approach
we developed with Thomas Seiller.

Once the representation of computation in this setting is defined, we fix a parameter (the normative
pair) and constraint the program on a mathematical level, with the positiveness of the coefficients and
the 1-norm. We then define a particular normative pair, which relies heavily on permutations. The
group of finite permutations over N is well-known to the Linear Logic community for it was used to
interpret the multiplicative fragment of Linear Logic.

The last part is devoted to prove that the computation that takes place in the Hyperfinite factor
can be grasped with logarithmic space. This can be achieved thanks to a complex lemma presented in
Section 3.5, whose purpose can easily be explained as the trip back from hyperfinite factor to finite
matrices. It is the first step toward a mathematical characterisation of the log-space computation. It
borrows some concepts to the Implicit Computatonal Complexity (ICC) approach, but we will stick
in this chapter to a mathematical level.

This setting was first proposed by Girard59 and enhanced by Aubert and Seiller::,:2 recently.
This chapter borrows a large part of the content of those works, but presents it in a innovative ways,
with examples and a more pedagogical development (see in particular Section 3.2, when the construction
is explained step-by-step for the unary representation of the integers).

This chapter is to be read at the light of its dual Chapter 4, where the computational behaviour of
the observations in a particular normative pair is compared to pointer machines. It is largely in debt to
Seiller’s precious intuitions, his patience and well understanding of the von Neumann algebras. Even
if it uses some quite complex mathematical tools, as the von Neumann algebra or the crossed-product,
we preferred to define those technical tools in the appendix A. The technical details are not what is
important in this innovative construction, so we felt free to give rather global ideas to explain it. Yet,
some useful element are reminded in the second moment of Section 3.:.

3.: Complexity and Geometry of Interaction

Past approaches

Linear Logic always had a tight link to complexity, thanks to its resource-awareness. Geometry of
Interaction, while giving a dynamics semantics to Linear Logic, preserved that concern and gave new
tools to express cut-elimination. The famous “execution formula” [48, p. 222] defined a way to express
strong normalisation as the nilpotency of a set of operators.

(59)Jean-Yves Girard “Normativity in Logic” in: Epistemology versus Ontology edited by Peter Dybjer et al. volume 27 Logic,
Epistemology, and the Unity of Science Springer, 20:2. Pages 243–263 doi: 10.1007/978-94-007-4435-6_12

(::)Clément Aubert and Thomas Seiller Characterizing co-NL by a group action. Arxiv preprint, abs/:209.3422, 20:2.
arXiv:1209.3422 [cs.LO]

(:2)Clément Aubert and Thomas Seiller Logarithmic Space and Permutations. Arxiv preprint, abs/:30:.3:89, 20:3.
arXiv:1301.3189 [cs.LO]

http://dx.doi.org/10.1007/978-94-007-4435-6_12
http://arxiv.org/abs/1209.3422
http://arxiv.org/abs/1301.3189
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This first approach gave rise to numerous semantics for various fragments of Linear Logic, much of
them being sensitive to the cost of normalization in terms of time: the studies of IMELL [34] and ELL
[:5] being probably the two most famous examples.This first paper use some games and ICC techniques
to build an interpretation for IMELL proofs that reflects their time-complexity. The second paper is
a bit closer to our work, for it uses an algebra of clauses to interpret proofs of ELL. In this setting,
proof nets are represented with operators, and a novel way of executing them —independent from the
nilpotency— is defined and proven to preserve some complexity properties. Context semantics is one
of the model of the GoI and was used to prove some interesting computational complexity properties
[32].

On a more syntactical level (even if the GoI tries to “scramble” the distinction between syntax and
semantics), the GoI was often understood as a novel approach that subsumes the proof nets into a set
of permutations. Stated differently, the type of the proof net is not the center of our object anymore:
all the information is contained in the paths. This perspective gave rise to some hope that proof nets
could be parsed with pointers and described with log-space (but we saw in the previous chapter, page 5:,
how Mairson and Terui [:00] proved that it was only “a rumour”, provided of course that L 6= P).
Anyway, this gave numerous works where Linear Logic was linked to complexity and apprehended
thanks to various kind of token machines.

Last but not least, the bridges between Linear Logic and operator algebra led to think that Linear
Logic could be a place to express quantum computation.Indeed, quantum mechanics is expressed by
mathematical formulations in a complex separable Hilbert space(:)—as for the GoI. Since the pioneer
work by Selinger [:22] that linked λ-calculus and quantum computation(2), numerous attempts have
been made to link those two world by the entanglement of von Neumann algebras, Girard [54] being
the first. Quantum complexity was not left aside, and quantum circuits were proven to have a closed
link with Linear Logic by Dal Lago and Faggian [33].

Complexity with operator algebra

We define in this chapter a new way of linking Linear Logic and complexity via von Neumann algebras
by using operators as representations of algorithms. The multiplication of the representation of an
integer and the representations of a program will be the execution of the program, so there is no
need to define transition functions. Despite its high degree of mathematical abstraction, the model of
computation we are going to define is a low-level one: every operation can be understood in its most
modest details.

This attempt can be considered as the first success toward a purely mathematical way of defining
a model of computation and complexity classes(3) It uses operators acting on an infinite-dimensional
(separable) Hilbert space, but can largely be understood in terms of matrices. It does not refer to any
exterior measure of complexity and takes its place in the fast-growing field of ICC.

We give below some intuitions regarding the choice of those mathematical tools. The reader might
refer to appendix A for a short reminder of the algebraic and topological elements needed to grasp
the usefull part of von Neumann algebras. It also contains some useful references and bibliographical

(:)This is not the place to develop such a complex subject, but the interested reader may find some useful hints in the textbook
of Nielsen and Chuang [::0].

(2)One may also have a look at another pionner work [:33, Section 9].
(3)Ugo Dal Lago kindly made me notice that “any model of computation is defined mathematically”, so that this was a bit

pretentious. Yet, it seems to us that the framework we are going to define can be fully understood from a mathematical
point of view, in an innovative way.
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indications. We simply give in the following some insights of the mathematical properties of the
von Neumann algebras. We will not explore the definitions and properties of von Neumann algebras,
factors, hyperfiniteness and crossed-product in this chapter. We use only the core of those notions
in our construction, but they do not really play an important role. Although those tools won’t be
used before Section 3.4, we remind of them now, so that we won’t have to interrupt the quite subtle
construction that will follows.

We begin by recalling that a Banach Algebra —a C-vector space enriched with the structure of an
algebra, a norm, and complete for that norm— endowed with an involution is a C∗-algebra. A von
Neumann algebraM is a C∗-algebra of operators(4) that can be understood —depending on the reader’s
preferences— as

a C∗-subaglebra of B(H), which is closed for one of the topology among the weak operator, the strong,
the ultrastrong or the ultraweak topologies;

a C∗-algebra that have a predual, i.e. there exists a Banach algebra such that M is its dual;

a C∗-algebra equal to its bi-commutant, i.e. the set of elements of B(H) which commute with the
elements that commute with themselves.

The beauty of von Neumann algebras comes partially from this plurality of definitions, which allowed
transfers from a mathematical field to another.

The hyperfinite von Neumann algebras are of particular interest to us, because we can approximate
every of their operators with finite matrices. We can also quotient the von Neumann algebras to study
only their factors, which can be classified according to their projections. For most types hyperfinite
factors are unique, and it is the case for the factor we will use in the following: the type II1 hyperfinite
factor.

As we have already said, permutations are a natural way of interpreting the multiplicative fragment
of Linear Logic. Yet, to express the power of exponentials, we need to be able to express infinite objects.
Operator algebra is quite an obvious choice, for it generalizes finite permutation thanks to partial
isometries. A partial isometry u establishes an isometric bijection between its domain —the closed
subspace associated with the projection u∗u— and its image —the closed subspace associated with the
projection u u∗(5). Partial isometries have a tight bound with projections, i.e. operators which give an
orthonormal projection of H onto a closed subspace of H. The permutation of the elements of an
infinite separable Hilbert space generalise quite elegantly the permutations.

Permutations will be re-integrated in this setting on a second level, thanks to the crossed product.
This operation internalizes the action of a group —in this setting, the group of finite permutations
over N— into the von Neumann algebra. This operation won’t modify our object —which will remain
the II1 hyperfinite factor— but it will allow us in the next chapter to study easily the computational
behaviour of our object.

3.2 First Taste: Tallies as Matrices

We will begin by explaining how integers in the unary notation (“tally sticks”) can be represented as
matrices via the Curry-Howard correspondence. It has two interests: to see the computation from a
(4)An operator is a continuous or equivalently bounded linear maps between Hilbert spaces. The set of operators on a Hilbert

space H will be denoted B(H).
(5)A restatement of [58, p. 400].
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dynamics point of view, and to represent any proof (hence, integer) inside the same object. As the
construction is quite complex, we felt it necessary to begin with the unary representation, simpler to
grasp. We won’t use it in the following, so the reader quite used to this idea may safely skip this section
and go straightforward to Section 3.3. Nevertheless, most of the explanations we make in the following
are still valid when applied to the binary representation.

The representation of integers as matrices goes through the following journey:

:. Represent integers with λ-terms (Church encoding).

2. Represent λ-terms with derivations (Curry-Howard isomorphism).

3. Represent derivations with proof nets (“Parallel syntax”).

4. Represent proof nets with matrices (Geometry of Interaction).

We will in the following make one step further: to embed those matrices in the type II1 hyperfinite
factor. Those unary integers are not efficient from a complexity point of view: they are introduced
only for pedagogical reasons, to show how data can be represented by matrices. A first version of this
encoding —more in the “GoI V-style”— was developed [57, section A.3, p. 3:], and then simplified [59,
p. 25:]. The version we propose here rather comes from this latter simplification, but has the pretension
to be a bit more explanatory. We will first present it without the contraction rule, and introduce this
subtlety in the next subsection.

First representation of the unary integers, without the contraction rule

Without the contraction rule, n ∈N can be represented as a proof of

(X ⇒X ), . . . , (X ⇒X )︸ ︷︷ ︸
n times

⊢X ⇒X

This representation is not exactly the Church encoding of numerals, that represent n as the higher-order
function that maps any function f to f ◦ f ◦ . . . ◦ f . Due to the absence of contraction, that could
allow us to get sure that the same function is applied n times(6), this encoding should rather be seen as
the function that takes n functions f1, . . . fn and returns the composition of them fn ◦ . . . ◦ f1, whose
corresponding λ-term would be λ f1 . . .λ fnλx · fn(. . . ( f1(x) . . .). We know that they all have the same
type X ⇒X , but we have no insurance whatsoever that they are identical.

To represent n ∈N, this encoding uses 2n+ 2 times the literal X , and we set for convenience that
2n+ 2= m. We add in the following a subscript to help us to differentiate the m different occurrences
of X , but keep in mind that the one-sided Linear Logic proof that corresponds to n represented in
Figure 3.: contains a single literal(7). The bits are “chained” with ⊗, and ` represents the end of the
chain: it will be at the same time its beginning and its end, thus yielding a circular representation. But
we have time for that and should first remark that the poverty of this proof is even more clear if we
represent it as a proof net, as in Figure 3.2.

Nevertheless, we can then represent for all n ∈ N∗ its proof by a square matrix Ln
(8), with one

column and one row per occurrence of X —i.e. of dimension m×m— in the corresponding proof. We
interpret the axiom rule
(6)This approach will be developed in the following subsection. We felt it necessary to begin with the an even simpler case.
(7)Otherwise the axiom for instance introducing at the same time X2 and X⊥

3
would be false.

(8)The notation we use regarding matrices is summed up in Definition A.2.5.
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ax.
⊢Xm−2,X⊥

m

ax.
⊢X4,X⊥

5

ax.
⊢X2,X⊥

3

ax.
⊢Xm−1,X⊥

1 ⊗
⊢X⊥

1
⊗X2,X⊥

3
,Xm−1

⊗
⊢X⊥

1
⊗X2,X⊥

3
⊗X4,X⊥

5
,Xm−1

...

⊢X⊥
1
⊗X2, . . . ,X⊥

m−3
,Xm−1

⊗
⊢X⊥

1
⊗X2, . . . ,X⊥

m−3
⊗Xm−2,Xm−1,X⊥

m
`

⊢X⊥
1
⊗X2, . . . ,X⊥

m−3
⊗Xm−2,Xm−1 `X⊥

m

We gives in all generality the derivation of the unary representation of n ∈N∗, remember that we set 2n+ n = m.

Figure 3.:: The derivation of a unary integer, without contraction rule.

⊗ ⊗ ⊗ ⊗ `

2 3 4 . . . m− 5 m− 4 m− 3

m− 2 m

1
m− 1

Figure 3.2: Unaries as proof net

ax.
⊢X j ,X⊥

i

as the symmetric exchange between i and j (i.e. Ln[i , j ] = 1 iff there is an axiom between X⊥
i
and X j )

and we define τ to be the anti-diagonal matrix of dimension 2. For all n ∈N∗, we interpret the proof
corresponding to n with a m×m matrix:

τ =

�
0 1

1 0

�
Ln :=




0 0 0 . . . 0 0 0 1 0

0 τ . . . 0 0 0 0 0

0 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...

0 0 0 . . . τ 0 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 0 1

1 0 0 . . . 0 0 0 0 0

0 0 0 . . . 0 0 1 0 0




Of course this representation is not satisfactory, for the dimension of the matrix itself —as for the type—
tells us the represented integer. It inflates the space needed to encode the information without giving
any dynamics. But this is the first step toward a more efficient representation. We add in the following
the first enhancement: to allow the contractions.
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Maybe we should before that remark that Ln is symmetric and that its diagonal is empty. Some
more interesting properties are yet to come when we will have defined the associated projections, but
we keep this further step for the following subsection.

Unary integers with the contraction rule

In λ-calculus, the Church representation yields that n ∈N∗ is encoded by

λ f λx · f ( f (. . . ( f︸ ︷︷ ︸
n times

x) . . .)

and the Curry-Howard correspondence tells us that the construction of this λ-term corresponds to the
derivation of the type (X ⇒X )⇒ (X ⇒X ).

To get this representation, we allow the contraction rule(9). Any proof of conclusion

(X ⇒X ), . . . , (X ⇒X )︸ ︷︷ ︸
n times

⊢X ⇒X

can easily be transformed into a proof of conclusion (X ⇒ X ) ⊢ (X ⇒ X ), where X occurs only four
times. This representation is isomorphic to the representation of the integers in system F(:0), which
associate to n ∈N∗ a proof of ∀X (X ⇒X )⇒ (X ⇒X ).

In Linear Logic, this yelds a proof of ?(X⊥ ⊗X ), !(X⊥ ⊗X ), which is obtained from the sequent
derivation of the previous subsection (in Figure 3.:) as follows:

...

⊢X⊥
1
⊗X2, . . . ,X⊥

m−5
⊗Xm−4,X⊥

m−3
⊗Xm−2,Xm−1 `X⊥

m
?

⊢ ?(X⊥
1
⊗X2), . . . ,X⊥

m−5
⊗Xm−4,X⊥

m−3
⊗Xm−2,Xm−1 `X⊥

m

...

⊢ ?(X⊥
1
⊗X2), . . . , ?(X

⊥
m−5
⊗Xm−4),X⊥

m−3
⊗Xm−2,Xm−1 `X⊥

m
?

⊢ ?(X⊥
1
⊗X2), . . . , ?(X

⊥
m−5
⊗Xm−4), ?(X

⊥
m−3
⊗Xm−2),Xm−1 `X⊥

m ctr.
⊢ ?(X⊥

1
⊗X2), . . . , ?(X

⊥
1
⊗X2),Xm−1 `X⊥

m

...

⊢ ?(X⊥
1
⊗X2),Xm−1 `X⊥

m
!

⊢ ?(X⊥
1
⊗X2), !(X3 `X⊥

4
)

The literals in the conclusion are in bold and with a fresh labelling, to dwell on the fact that they do not
stand only for themselves: ?(X⊥

1
⊗X2) is made of “strata” of contracted occurrences, and !(X3`X⊥

4
) can

be reproduced, it is the result of the computation. The Figure 3.3 is the introduction of the contractions
in the proof net presented in Figure 3.2.

(9)As Girard likes to write, contraction is the “fingernail of infinity” [49, p. :2].
(:0)The system F is the second-order λ- calculus, discovered independently by Jean-Yves Girard and John C. Reynolds, one

may easily find a precise definition in textbooks [62, Chap. ::].
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⊗ ⊗ ⊗ ⊗ `

2 3 4 . . . m− 5 m− 4 m− 3

m− 2 m

1
m− 1

? ? ? ? !

. . .

. . .

? ?

?

This proof net permutes the applications of ! and ctr. compared to the derivation we gave. The ! rule needs all the
occurrences in the context to be under a ? modality, hence the “box”, a classical tool we did not introduce.

Figure 3.3: Unaries as proof net, with contraction

Informally, if we give n times 1 stick, we are able to obtain 1 pack of n sticks. What a low-level
of computation ! But a least we are able —and this is the precise interest of Linear Logic— to handle
resources within proofs.

Contrary to the previous subsection, the type does not reflect all alone the integer encoded, it just
reflects the mere fact that an integer has been encoded. More precisely, each tally stick X⊥

i
⊗X j lives in

a different slice, and all those slices are “compressed” into one single occurrence of ?(X⊥
1
⊗X2).

In this case, n occurrences of X⊥⊗X are contracted, it should be more clear if we precise that the
original proof of

X1⇒X2,X3⇒X4, . . .Xm−1⇒Xm−2 ⊢Xm−1⇒Xm

can be renumbered as

X1.1⇒X2.1,X1.2⇒X2.2, . . .X1.n⇒X2.n ⊢X3.0⇒X4.0

And thus we contract all the occurrences of X1.y into X1, and all the occurrences of X2.y into X2.
We are beginning to introduce two-dimensional considerations: we have 4 literals, and each of them

contains n+ 1 “floors”(::): the “ground floor”(:2) is reserved for the result, and every tally stick lives on
a different storey i.e. on a floor that is not the ground floor.

Note that nothing in the Logic prevents from displaying the first stick and the result on the same
floor: we preferred to separate them, in order to clearly distinguish the beginning (X3.0) and the end
(X4.0) of the integer represented.
(::)Although “slice” is the consecrated term for this notion, it is a bit misleading in this precise case. Contraction is handled as

superimposition of copies of occurrences, as in the classical GoI framework, but that does not justify why (3,0) and (4,0)
lives in different slices.

(:2)To whom we give the number 0, as in the British convention.
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We borrow from Seiller’s thesis [:2:, p. 25:] a quite explanatory figure, representing the proof of
the integer 5:

(1,1) (2,1) (3,1) (4,1)

(1,2) (2,2) (3,2) (4,2)

(1,3) (2,3) (3,3) (4,3)

(1,4) (2,4) (3,4) (4,4)

(1,5) (2,5) (3,5) (4,5)

(1,0) (2,0) (3,0) (4,0)

It would need too much material to explain in details this figure, which actually represent a thick graph
in the graph-theoretical representation introduced by Seiller [:2:]. Two literals side-by-side are in
black if they are “active” (present in the proof), and for each of them there is a⇒-connective between
them in the conclusion (before the contractions). The arrows represent the axiom links: remember
for instance that X3.0 and X1.1 were respectively numbered with Xm−1 and X1 previously, and refer to
Figure 3.:.

Remark that X1.0, X2.0, X3.x and X4.x for 0 < x ¶ n are necessary empty, because no contracted
occurrence will ever rest on those “slots”.

Now for the matricial representation, we still interpret the axiom rule as the symmetric exchange
between two occurrences, but we split the information between several coefficient of M, a 4× 4 matrix,
as the number of occurrences of X. Each of these coefficient is a (n+1)× (n+1)matrix, as the number
of “floors” in the proof.

So far, we did not really took into account the case where n = 0, for it is at the same time quite
different and not really interesting. Simply notice that 0 is quite an exception, for its proof is simply an
axiom and a weakening, so there is only one symmetric exchange, and we represent the proof of 0 with

M0 :=




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0




The general case —i.e. n 6= 0— is a bit more complex, let us remember that the axiom links are
between
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X3.0 and X1.1,

X2.1 and X1.2,

X2.2 and X1.3,

. . .

X2.(n−1) and X1.n ,

X2.n and X4.0.

We will represent any integer n ∈N∗ with the same canonical 4× 4 matrix M:

M :=




0 vn un 0

v t
n

0 0 w t
n

u t
n

0 0 0

0 wn 0 0




The matrix M is such that the entry M[i , j ] in the ith row and jth column encodes the exchanges
between occurrences labelled with Xi .x and X j .y for all 0 ¶ x ¶ n and 0 ¶ y ¶ n. So for instance,
M[i , i] is necessarily empty, and M= (M)t because the exchanges are symmetric.

The coefficients of M —un , vn and wn— are (n+ 1)× (n+ 1) matrices that encodes (:3) respectively
the exchanges between X1.x and X3.x —the beginning of the integer—, X1.x and X2.x —the body of the
integer—, X4.x and X2.x —the end of the integer. Their size vary with n the integer represented, but
they always have the same shape:

un :=




0 0 . . . 0 0

1 0 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0




vn :=




0 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0

0 1 0 0 . . . 0 0 0

0 0 1 0 . . . 0 0 0

0 0 0 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 0 0

0 0 0 0 . . . 0 1 0




wn :=




0 . . . 1
...

. . .
...

0 . . . 0




What is really interesting is their properties as matrices. We need before that to define the projections
πn,i of dimension (n+ 1)× (n+ 1) with 0¶ i ¶ n.

πn,i :=

i


0 . . . 0 . . . 0
...

. . .
... . .

. ...

0 . . . 1 . . . 0
... . .

. ...
. . .

...

0 . . . 0 . . . 0




i

Remark that for all i , π2
n,i
=πt

n,i
=πn,i and that

∑
0¶ j¶nπn, j = Idn+1.

(:3)We take as a convention that those matrice’s rows and columns are numbered from 0 to n, whereas M was numbered from 1
to 4. This may seem illegitimate, but this help us to conserve the same numbering of the literals and floors.



3.2. First Taste: Tallies as Matrices 67

Then one can remark that un , vn and wn are such that:

un u t
n
=πn,1

vn v t
n
=πn,2+ . . .+πn,n

wn w t
n
= u t

n
un =πn,0

w t
n

wn =πn,n

It will become of greatest importance when we will represent un , vn and wn as operators: instead
of the mere transposition we will conserve those equalities when we use the conjugate-transposition
(·)∗ and that will establish that those three operators are partial isometries.

For the time being, and that will conclude this first part, let us remark that the following equalities
hold:

unπn,i =

¨
un if i = 0

0 elsewhere
πn,i un =

¨
un if i = n
0 elsewhere

vnπn,0 = vnπn,n =πn,0vn =πn,n vn = 0

πn,n vn = vnπn,n−1

vn =πn,2vn + . . .+πn,n vn = vnπn,1+ . . .+ vnπn,n−1

wnπn,i =

¨
wn if i = n

0 elsewhere
πn,i wn =

¨
wn if i = 0

0 elsewhere
wn = u t

n
(v t

n
)−1

πn,i+1 = vnπn,i v t
n
for 1¶ i < n

It is not of major interest for the time being to understand them precisely, they are just here to help the
reader to grasp that we are able to go back and forth between projections and those coefficients: their
sum “is a sort of circular permutation of n+1 projections π0,n , . . . ,πn,n”, they “organise a ‘round-trip’”
(Girard [59, pp. 253–254]).

They make it possible to cycle through the encoded representation. They are the core of the
representation, for we represent the data by its dynamic, and only its dynamics has to be preserved by
the embedding in the hyperfinite factor. We won’t develop that point here, all interesting equalities
will be developed in Section 3.3 for the binary representation.

This representation, with the contraction, is a gain in term of uniformity(:4), for every integer is
represented with a 4×4 matrix, but if we look closely, those matrices are equivalent to 4(n+1)×4(n+1)

matrices. To obtain a true uniformity, we will embed those matrices in the II1 hyperfinite factor R,
as detailed in Proposition 3.4.: for the binary representation: the operators will represents integers no
matter their size, but conserve their properties.

We postpone this embedding for the case that interests us the most: the representation of the binary
integers.

(:4)Uniformity being understood in this case as “one object to represent them all”.
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3.3 Binary Integers

We make one last time the construction from integers to matrices in this section, but it is to pre-
pare the ground for Section 3.4, which pushes the construction one step further by embedding this
representation in the hyperfinite factor.

In the previous chapter, we encoded binary words as a sequence of proof nets encoding bits. The
information whereas the bit was 0 or 1 was encoded in the planarity of the proof net—in the presence
or the absence of a permutation, or an exchange, between two literals.

Here we will proceed differently: we will encode binary words into a single proof net and the
planarity will play no role. The information whereas the ith bit is a 0 or a 1 will rest in the order of the
contractions. Every binary word of arbitrary size will have the same type ?(X⊗X⊥), ?(X⊗X⊥), !(X⊥⊗
X ). Whereas the conclusion is always the same, the number of application of the contraction rule and
their principal formulae will differ from one proof to another.

We identify binary words with integers, using the “binary strings to integers” classical bijection:
For ak ak−1 . . .a2a1 a binary list of length k, a j ∈ {0,1} for all 0¶ j ¶ k,

ak ak−1 . . .a2a1→ (ak × 2k−1)+ (ak−1× 2k−2)+ . . .+ (a2× 21)+ (a1× 20) =
∑

k

(ak × 2k−1)

Here we won’t have a bijection, because for instance 0ak . . .a1 will be accepted as a representing the
same integer as ak . . .a1. Anyway, we can always uniquely associate an integer to every binary word,
and we will sometimes commit the small abuse of speaking of the representation of an integer as a
binary word.

The reader who read the previous section should not get confused: in the unary representation, the
size of the representation was the integer represented, so we spoke of n as well as the integer and as its
size. This setting is of course different, for several integers n1, . . . , n2k can all be represented with k bits.
We will always assume in the following that the length of the binary word under study is k 6= 0.

Binaries as proofs

Following the Church-Howard representation, the binary word ak . . .a1 for a1, . . . ,ak ∈ {0,1}k is rep-
resented with the λ-term λ f0λ f1λx · fak

( fak−1
(. . . ( fa1

x) . . .). Given two function f0 —a.k.a. “append a
0 to the list”— and f1 —a.k.a. “append a 1 to the list”—, the binary word is encoded in the order of
application of those two functions. Of course, we need only one copy of each of those functions: in
Linear Logic, this will correspond to contractions(:5).

In ELL(:6), binary lists are typed with

∀X !(X ⊸X )⊸ (!(X ⊸X )⊸ !(X ⊸X ))

To a binary integer corresponds a proof of the —annotated— Linear Logic sequent

∀X
�

?(X (0i )⊗X (0o)
⊥)`

�
?(X (1i )⊗X (1o)

⊥)` !(X (S)⊥`X (E)))
��

(3.:)

(:5)Yes, to contraction, for the proof is built upside-down and is one-sided: so what could normally look like a duplication
—“gives me one function and I will apply it several times”— is in reality a contraction—“I used the function several times but
it will appear only once in the conclusion”.

(:6)This notion and all the references were introduced p. :8.
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We should take some time to explain those annotations: X (0i )⊗X (0o) plays the role of adding a
0 at the end of the list, and it has an input (the original list) and an output (the list with a 0 appended),
respectively at the left and the right of the ⊗-connective. The other “function” X (1i )⊗X (1o) plays the
same role for “append a 1 to the list”.

The last part of this formula —X (S)⊥`X (E)— is the “exterior interface”: it has also an output (the
“S” part, as in start) and an input (the “E” part, as in end)(:7). It acts like a marker of the beginning and
the end of the word. We use the symbol ⋆ to represent this marker, from which we may in one step go
to the end or to the beginning of the word.

Each element is connected by its output node to its successor’s input node and by its input node to
its predecessor’s output node. The successor of the last element and the predecessor of the first element
is ⋆.

So a binary word will be circular, we represent this fact by using the notation ⋆ak . . .a1⋆. The bits
are numbered in the reverse order: the leftmost bit is the last (the end of the word, the kth one) and
the rightmost bit is the first (the start of the word). By convention, the k + 1th and the 0th bits are ⋆.
Or, more graphically, and with labels regarding the input / output structure:

⋆ ES

o

ak
i

o
. . .

i

i
a1
o

One could see above that S can be read as ⋆’s output and E as ⋆’s input.
The size and the structure of the derivation of such a list change a lot in some cases: the empty list

uses the weakening rule twice, and the proof representing a list containing only 0s (resp. only 1s) uses
a weakening to introduce ?(X (1i )⊗X (1o)⊥) (resp. ?(X (0i )⊗X (0o)⊥)). The reader may refer to earlier
works [:2:, ::, p. 254–257] to see the proofs and the associated graphs in those cases.

We won’t take them into account, for we may safely assume that we are always working with binary
words containing 0 and 1. Any sequence 11 . . . 11 can safely be replaced by 011 . . . 11, and we can always
suppose we don’t need any representation of 0.

The derivation of the sequent (3.:) is given in all generality in Figure 3.4. We labelled the variables
in order to distinguish between the different occurrences of the variable X . This is necessary because we
need to keep track of which formulae are principal in the contraction rule. Without this information,
a lot of proofs could not be distinguished.

Example 3.3.: (Eleven (:/3)). We propose in Figure 3.5 an example of a binary word ⋆001011⋆ rep-
resented as a proof net and as a circular word. This sequence —which is one of the representation of
eleven— will be a running example in this first part of this chapter and should help the reader to grasp
the general shape of the construction.

There is one last representation that we chose not to develop: the interaction graphs invented by
Seiller [:2:, :20, ::9]. This approach is enlightening as it allows us to see the Geometry of Interaction
as a combinatorial object. Yet we do not develop this setting here, for it would need to introduce too
many objects at the same time. A first taste of this representation was given page 65: we refer the

(:7)“Start” and “End” rather than the more classical “Head” and “Tail”, mainly because in this setting, the head is the tail, and
that could be misleading.
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We give below the derivation of the proof corresponding to ⋆ak ak−1 . . .a1⋆, which could be read backward and with
the labels as Sai1ao1 . . .ai (k−1)ao(k−1) . . .ai k aok E .

ax.
⊢X (S)⊥,X (ai1)

ax.
⊢X (ao1)

⊥,X (ai2) ⊗
⊢X (S)⊥,X (ai1)⊗X (ao1)

⊥,X (ai2)
ax.

⊢X (ao2)
⊥,X (ai3) ⊗

⊢X (S)⊥,X (ai1)⊗X (ao1)
⊥,X (ai2)⊗X (ao2)

⊥,X (ai3)

...

⊢X (S)⊥,X (ai1)⊗X (ao1)
⊥, . . . ,X (ai (k−1))⊗X (ao(k−1))

⊥,X (ai k )
ax.

⊢X (aok )
⊥,X (E)

⊗
⊢X (S)⊥,X (ai1)⊗X (ao1)

⊥, . . . ,X (ai (k−1))⊗X (ao(k−1))
⊥,X (ai k )⊗X (aok )

⊥,X (E)
`

⊢X (ai1)⊗X (ao1)
⊥, . . . ,X (ai (k−1))⊗X (ao(k−1))

⊥,X (ai k )⊗X (aok )
⊥,X (S)⊥`X (E)

!
⊢ ?(X (ai1)⊗X (ao1)

⊥), . . . , ?(X (ai (k−1))⊗X (ao(k−1))
⊥), ?(X (ai k )⊗X (aok )

⊥), !(X (S)⊥`X (E))
ctr.

...

⊢ ?(X (0i )⊗X (0o)
⊥), ?(X (1i )⊗X (1o)

⊥), !(X (S)⊥`X (E))
`

⊢ ?(X (0i )⊗X (0o)
⊥), (?(X (1i )⊗X (1o)

⊥)` !(X (S)⊥`X (E)))
`

⊢ (?(X (0i )⊗X (0o)
⊥)` (?(X (1i )⊗X (1o)

⊥)` !(X (S)⊥`X (E))))
∀

⊢ ∀X (?(X (0i )⊗X (0o)
⊥)` (?(X (1i )⊗X (1o)

⊥)` !(X (S)⊥`X (E))))

The formulae ?(X (ai c )⊗X (aoc )
⊥) and ?(X (ai d )⊗X (aod )

⊥) are contracted iff ac = ad . After the applications of the
contraction rule, we have only two occurrences of ?(X (ai )⊗X (ao)

⊥) for a ∈ {0,1}, gathering the occurrences of 0
and the occurrences of 1.

Figure 3.4: Binary integers as derivations

reader to this subsection or to an earlier version of this work [::] for a better insight on binary words
as interaction graphs.

In the forthcoming setting, proof nets are not our main objects, we will use matrices as representa-
tions of (proofs of) integers. Yet, it would probably be wiser to avoid the non-planarity of our proof
nets, since in this case it only depends on a convention regarding where is the input and output of our
word. That would require a careful renaming of the variable corresponding to S and E in this work,
but would give another property to our representation and probably make it gain in clarity. We did
not make this small change —suggested by Paul-André Meliès— since our next representation is not
sensitive to that property of proof nets.

Binaries as matrices

The idea to represent proofs as matrices comes from the simple remark that all cut-free proofs in LL
of same conclusion differs essentially only on their axioms. The reader who looked at the previous
section should be used to this idea, but it is not mandatory to understand this motivation to grasp the
following construction.

Any binary word will be represented by the same 6× 6 matrix where one row and one column
is dedicated to a literal of Equation 3.:. We recall that those literals handle the information about the
input and output structure of 0, 1 and ⋆. So for instance the coefficient at the intersection of the “input
of 0” row and the “output of 1” will contains the positions in the sequence where a 1 is followed by a 0.
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We indicate the “binary values” (0 and 1) next to the logical connectives ⊗, but their values comes from the order
of the contractions.
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Figure 3.5: The binary sequence ⋆001011⋆ as a proof net and as a circular string



72 Chapter 3. Computing in the Hyperfinite Factor

Definition 3.3.: (Matricial representation of a list). Given a binary representation ⋆ak . . .a1⋆ of an
integer n, it is represented by Mn , a 6× 6 block matrix(:8) of the following form:

Mn =

0︷ ︸︸ ︷ 1︷ ︸︸ ︷ ⋆︷ ︸︸ ︷






0 l00 0 l10 lS0 0
�

0
l00

t 0 l01
t 0 0 l0E

t

0 l01 0 l11 lS1 0
�

1
l10

t 0 l11
t 0 0 l1E

t

lS0
t 0 lS1

t 0 0 0
�
⋆

0 l0E 0 l1E 0 0

whose entries are (k + 1)× (k + 1) matrices(:9) defined —for u, v ∈ {0,1}— by:

◦ luv[i , i + 1] = 1 iff ai = u and ai+1 = v, luv[a, b] = 0 otherwise;

◦ luE[0,1] = 1 iff ak = u, and luE[a, b] = 0 otherwise,

◦ lSv[k , 0] = 1 iff a1 = v, and lSv[a, b] = 0 otherwise.

Remark that —as the output of a bit is always connected to the input of its direct neighbor—
luv[a, b] = 1 implies that b = a + 1. This was for the body of the word. Regarding the start (resp.
the end) of the word, only one among lS0, lS1 (resp. l0E, l1E ) is different from 0: only one value among
0, 1 may be connected to S (resp. E ), that is, the sequence necessarily starts (resp. ends) with a 0 or
with a 1.

A sketch in Figure 3.6 should help the reader to grasp some properties of this matrix, as well as its
inner structure.

Example 3.3.2 (Eleven (2/3)). Our example ⋆001011⋆ is represented by M11 whose coefficients(20) are
as follows:

◦ l00[a, b] = 0 except for l00[5,6] = 1

◦ l01[a, b] = 0 except for l01[3,4] = 1

◦ l10[a, b] = 0 except for l10[2,3] = l10[4,5] = 1

◦ l11[a, b] = 0 except for l11[1,2] = 1

◦ l1E[0,1] = 1, lS0[6,0] = 1, and all the other coefficients of l1E and lS0 are 0

◦ l0E = lS1 = 0

This representation of binary integers is still “non-uniform”: the size of the matrix —6(k + 1)×
6(k + 1)— depends on the size k of the binary string representating the integer.

To get a uniform representation of integers, we still need to embed the coefficients of Mn in R. But
before that, we should dwell on some properties of this matricial representation.

(:8)The embraces are only pedagogical.
(:9)Matrices whose rows and columns are numbered from 0 to k, for convenience.
(20)Remember that the first element of the word is the rightmost one.
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The semantics of the coefficients of Mn is, given a string where ak is the last bit, a1 the first, a and b any two bits:
lab Goes from the output of a ∈ {0,1} to the input of b ∈ {0,1}.

lab
t Goes from the input of b ∈ {0,1} to the output of a ∈ {0,1}.

lSak
Goes from the output of ⋆(= S) to the input of ak ∈ {0,1}.

lSak

t Goes from the input of ak ∈ {0,1} to the output of ⋆(= S).
la1E Goes from the output of a1 ∈ {0,1} to the input of ⋆(= E).

la1E
t Goes from the input of ⋆(= E) to the output of a1 ∈ {0,1}.

Each of those coefficient is a (k + 1)× (k + 1) matrix: the dimension corresponds to the size of the string encoded
plus an additional room to handle ⋆. The matrix Mn is a 6× 6 matrix —as the number of occurrence of literals in
the conclusion of the proof— organized as follows:

Where does a 0 preceeds a 1?

Is ⋆ connected to a 0?

Inputs of the occurences of 0

Outputs of the occurences of 1

⋆ cannot be connected to ⋆!

0 l00 0 l10 lS0 0

l00
t 0 l01

t 0 0 l0E
t

0 l01 0 l11 lS1 0

l10
t 0 l11

t 0 0 l1E
t

lS0
t 0 lS1

t 0 0 0

0 l0E 0 l1E 0 0







Symetric

Empty diagonal

The values in a rectangle are 0 because an input (resp. output) will never be connected to another input (resp.
output), or because ⋆ will never be connected to itself.
The reader should of course refer to Definition 3.3.: for a precise definition of Mn the matrical representation of
n.

Figure 3.6: Some explanations about the matricial representation of a binary word
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Some remarkable properties of the matricial representation

For k ∈N∗ and 0¶ i ¶ k, we define πk ,i to be the (k + 1)× (k + 1) matrix such that

πk,i[a, b] =

¨
1 if a = b = i

0 elsewhere
i.e. πk ,i :=

i


0 . . . 0 . . . 0
...

. . .
... . .

. ...

0 . . . 1 . . . 0
... . .

. ...
. . .

...

0 . . . 0 . . . 0




i

We will in the following omit the subscript k, for the dimension of the projection should always
be clear from context. Those projections shares a lot with the encoding we defined, as the small list of
equalities that follow shows. This subsection can bee seen as a small break in our journey, where we
look at how the objects we defined behave.

π1 = (l0E+ l1E)(l0E+ l1E)
t

π0 = (l0E+ l1E)
t(l0El1E)

Depending on the last bit, l0E or l1E is



0 0 . . . 0

1 0 . . . 0
...

...
. . .

...

0 0 . . . 0




The other being the 0 matrix. And it is quite clear that



0 0 . . . 0

1 0 . . . 0
...

...
. . .

...

0 0 . . . 0







0 1 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0



=




0 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 0







0 1 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0







0 0 . . . 0

1 0 . . . 0
...

...
. . .

...

0 0 . . . 0



=




1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0




We have a similar result regarding the beginning of the word represented:

π0 = (lS0+ lS1)(lS0+ lS1)
t

πk = (lS0+ lS1)
t(lS0+ lS1)

According to the value of the first bit, one among lS0 and lS1 is the 0 matrix, the other being



0 . . . 1
...

. . .
...

0 . . . 0



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And a simple computation proves our claim.



0 . . . 1
...

. . .
...

0 . . . 0







0 . . . 0
...

. . .
...

1 . . . 0


=




1 . . . 0
...

. . .
...

0 . . . 0







0 . . . 0
...

. . .
...

1 . . . 0







0 . . . 1
...

. . .
...

0 . . . 0


=




0 . . . 0
...

. . .
...

0 . . . 1




Informally, π0 is the bridge between the start and the end of our word. To read the beginning of the
word, we should go toward πk , whereas π1 gives information about the end of the sequence.

The representation of the body of the word has also a tight link with the projections. First, we
should remark that the sum of the matrices has always the same structure, in fact it is the same that the
one used to represent unary structures.

(lS0+ lS1)+ (l00+ l01+ l10+ l11)+ (l1E+ l0E) =




0 0 0 . . . 0 0 1

1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0

0 0 0 . . . 0 1 0




This is not surprising, for it simply tells us that every single bit “is defined”: for every one of them,
there is one and only one matrix that contains information about it. The part regarding the body of
the word

(l00+ l01+ l10+ l11) =




0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0

0 0 0 . . . 0 1 0




has an internal structure that links it to a sum of projections:

(l00+ l01+ l10+ l11)(l00+ l01+ l10+ l11)
t =π2+π3+ . . .+πk

(l00+ l01+ l10+ l11)
t(l00+ l01+ l10+ l11) =π1+π2+ . . .+πk−1

Moreover, for k > i > 0,

πi+1 = (l00+ l01+ l10+ l11)πi (l00+ l01+ l10+ l11)
t (3.2)
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This equality tells us somehow how to go read the next bit. Of course, this equality does not apply
for the first or the last bit, because those matrices contains no information about those bits. This is
expressed by (l00+ l01+ l10+ l11)

k = 0. This can be easily checked:

(l00+ l01+ l10+ l11)
2 =




0 0 0 . . . 0 0 0 0

0 0 0 . . . 0 0 0 0

0 0 0 . . . 0 0 0 0

0 1 0 . . . 0 0 0 0

0 0 1 . . . 0 0 0 0
...

...
...

. . .
...

...
...

...

0 0 0 . . . 1 0 0 0

0 0 0 . . . 0 1 0 0




and so

(l00+ l01+ l10+ l11)
k−1 =




0 0 0 . . . 0 0 0 0

0 0 0 . . . 0 0 0 0

0 0 0 . . . 0 0 0 0

0 0 0 . . . 0 0 0 0

0 0 0 . . . 0 0 0 0
...

...
...

. . .
...

...
...

...

0 0 0 . . . 0 0 0 0

0 1 0 . . . 0 0 0 0




This dynamics is interesting not only in itself, but also because we will use it as a definition in the
next section: what represents an integer is not its size or the shape of those matrices, but their dynamic
when iterated or multiplied with projections, something that can be perfectly expressed by operators.

3.4 How to Compute

We will first explain how it is possible to represent integers in the hyperfinite factor, relying on the
classical embedding of the matrix algebra into the type II1 hyperfinite factorR. As you may guess, this
embedding will strongly rely on the previous construction. A first approach on how matrices could be
avoided by using C ∗ algebra was already developed [50, Proposition ::, p. 58].

We will then spend some time discussing the representation of computation (or more precisely, ac-
ceptance) and then explain how programs can be represented in this setting. This part gives the answers
to our concerns regarding uniformity and objectivity: we want a single kind of object to represent all the
integers, and at the time we want the program to interact in the same way no matter the representative
chosen.

Binaries as operators

We will embed the (k + 1)× (k + 1) matrices of Definition 3.3.: in the hyperfinite factor R in order to
have a uniform representation of the integers: an integer —no matter its size— will be represented by an
operator in M6(R) fulfilling some properties. To express them we define, given a sequence ⋆ak . . .a1⋆
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representing an integer n and for j , l ∈ {0,1}, the sets:

In
j l
= {m | am = j ,am+1 = l , 1¶ m ¶ k}

In
S j
= {1} if a1 = j ,; elsewhere

In
j E
= {k} if ak = j ,; elsewhere

Roughly speaking, In
S j

(resp. In
j E
) tells us about the first (resp. last) bit of the sequence and In

j l
is the set

of sequences of a j followed by a l . We let � ∈ {00,01,10,11, S0, S1,0E , 1E} as a shortcut.
Those sets allow us to be more precise regarding the formulation of Equation 3.2:

∑
d∈I�

l�πd = l� (3.3)

∑
d∈I�

πd+1l� = l� (3.4)

This explain in hard-to-read terms a very simple fact that our example will help to grasp.

Example 3.4.: (Eleven (3/3)). Our sequence ⋆001011⋆ yields

IS0 = ; IS1 = {1} I0E = {6} I1E = ; I00 = {5} I01 = {3} I11 = {1} I10 = {2,4}

Remember (Example 3.3.2) for instance that in this case,

l10 =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0




This comes from the fact that in the 2nd and the 4th positions (counting from right to left) of our
sequence there is a 1 followed by a 0. And so Equation 3.3, when instantiated to I� = I10, gives

∑
d∈I10

l10πd =
∑
i=2,4

l10πi

= (l10π2)+ (l10π4)

= l10

This is simple to check, as

l10π2 =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




=




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



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and as

l10π4 =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




=




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0




The “converse” Equation 3.4 can easily be checked the same way.

Now for the representation by operators: we will keep the same notation, simply change the family
(from roman to italic), i.e. the operator representing l10 will be denoted by l10. The only change will
be that instead of taking the mere transposed of a matrix (·)t, we will use the the conjugate-transpose of
operators, denoted by (·)∗. The Proposition 3.4.: will justify this identical notation.

Definition 3.4.: (Binary representation of integers). An operator Nn ∈M6(R) is a binary representa-
tion of an integer n if there exists projections π0,π1, . . . ,πk in R that satisfy

∑k
i=0
πi = 1 and

Nn =




0 l00 0 l10 lS0 0

l ∗
00

0 l ∗
01

0 0 l ∗
0E

0 l01 0 l11 lS1 0

l ∗
10

0 l ∗
11

0 0 l ∗
1E

l ∗
S0

0 l ∗
S1

0 0 0

0 l0E 0 l1E 0 0




The coefficients of Nn are partial isometries fulfilling the following equations (where πk+1 =π0 ).

l� =
∑
i∈I n
�

πi+1 l�πi (� ∈ {00,01,10,11, S0, S1,0E , 1E}) (3.5)

π0 = (lS0+ lS1)(l00+ l01+ l10+ l11)
k−1(l0E + l1E ) (3.6)

Equation 3.5 and Equation 3.6 are the core of the computational behaviour we expect, they sum up
the equations of the previous subsection and define our representation of integers as operators.

For all i ∈ {1, . . . , k}, let ui = ((l00+ l01+ l10+ l11)
i (l0E + l1E )). We should remark that ui u∗

i
= πi

and that u∗
i

ui =π0, i.e. that π0 is equivalent
(2:) to πi .

Proposition 3.4.: (Binary and matricial representations). Given Nn ∈M6(R) a binary representation
of the integer n, there exists an embedding θ : Mk+1(C)→R such that(22) Id⊗θ(Mn) = Nn , where Mn is
the matricial representation of n.

The global picture of the embedding we are going to define is as follows:

(2:)In the sense of the Murray-von Neumann equivalence (remember Definition A.2.3).
(22)We denote by Id the identity matrix of M6(C). We will allow ourselves the same abuse of notation in the following statements

and proofs in order to simplify the formulae.
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M6 ( Mk+1(C)) )

M6 ( R )

Id θ⊗

It uses the fact that M6(k+1)(C) is isomorphic to M6(C)⊗Mk+1(C). We explained the main steps to
embed a matrix algebra into the hyperfinite factor in Definition A.2.7, and perform this construction
anew below.

Proof. Let Nn ∈M6(R) be a binary representation of n ∈N, and π0, . . . ,πk the associated projections.
We now define an embedding θ : Mk+1(C)→R:

θ : M 7→
k∑

i=0

k∑
j=0

M[i , j ]ui , j

with:

ui , j =





(l00+ l01+ l10+ l11)
j−1(l0E + l1E ) if i = 0 (3.7a)

(l00+ l01+ l10+ l11)
j−1 if i < j and i 6= 0 (3.7b)

((l00+ l01+ l10+ l11)
i−1(l0E + l1E ))

∗ if j = 0 (3.7c)

((l00+ l01+ l10+ l11)
i−1)∗ if i > j and j 6= 0 (3.7d)

πk if i = j = k (3.7e)

We can easily check that the image by Id⊗θ of the matrix Mn representing n is equal to Nn .
For instance, let ◊ ∈ {00,01,10,11},

θ(l◊) =
k∑

i=0

k∑
j=0

l◊[i , j ]ui , j (By definition of θ)

=
∑
p∈I◊

l◊[p, p + 1]up, p+1 (By definition of l◊ )

=
∑
p∈I◊

l◊[p, p + 1](l00+ l01+ l10+ l11)
p−1 (By applying case 3.7b)

When we embed the transposed of (l00+ l01+ l10+ l11), the computation is the same except that we use
case 3.7d.

Regarding θ(l1E + l0E ), remember that (l1E+ l0E)[i , j ] = 0 except if i = 0 and j = 1, so by applying
case 3.7a, θ(l1E+ l0E) = (l00 + l01 + l10 + l11)

0(l0E + l1E ) = (l0E + l1E ). The embedding of (lS1+ lS0) is
quite similar, by applying case 3.7c.

We have of course that θ(Mt) = (θ(M))∗, and ui , j is defined so that u∗
i , j
= u j ,i . Remark also that θ

is not always defined, for instance θ(un,n) where n 6= 0, k is not defined. Q.E.D.

Rather than having (k+1)× (k+1) matrices in a 6×6 matrix, we have partial isometries in a 6×6

matrix: partial isometries adapts themselves to the size of the word we represent. So having the same
matrix of operators is a gain in terms of uniformity, as all the integers are represented by matrices of
the same size. But at the same time, as any embedding θ : Mk+1(C)→R defines a representation of the
integers, we have to check that they all are equivalent.
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Proposition 3.4.2 (Equivalence of binary representations). Given Nn and N ′
n
two binary representa-

tions of n ∈N∗, there exists a unitary u ∈R such that (Id⊗u)Nn(Id⊗u)∗ =N ′
n
.

Proof. Let π0, . . . ,πk (resp. ν0, . . . , νk ) be the projections and l� (resp. l ′
�
) the partial isometries asso-

ciated to Nn (resp. N ′
n
). It is straightforward that π0 and ν0 are equivalent according to Murray-von

Neumann definition, so there exists a partial isometry v such that vv∗ = ν0 and v∗v = π0. For all
0¶ i ¶ k we define the partial isometries:

vi =
�
(l ′

00
+ l ′

01
+ l ′

10
+ l ′

11
)i−1(l ′

0E
+ l ′

1E
)
�

︸ ︷︷ ︸
ν0

v
�
(l00+ l01+ l10+ l11)

i−1(l0E + l1E )
�∗

︸ ︷︷ ︸
π∗

0

We can easily check that:

v∗
i
vi =πi vi v∗

i
= νi

It follows that the sum u =
∑n

i=0
vi is a unitary and (Id⊗u)Nn(Id⊗u)∗ =N ′

n
. Q.E.D.

All the representations of the same integer are equivalent, from a mathematical point of view, but if
we want to compute with those integers, we have to be sure that the algorithm will make no difference
between several representations. This will be the subject of the third subsection of this section, but
before that we take some time to study how integers and programs interact, because that interaction
experienced several definitions.

Where programs and integers interact

This small subsection is here to justify some choice, to dwell on the advances we proposed and to link
this representation to an other choice made regarding GoI. The equivalence of all the representations
has some philosophical motivations: Girard wanted all the representations to be “egal”, none of them
should be more “normal” than any other(23). This notion of a norm as an unjustified constraint explains
the title “Normativity in Logic”.

But of course, what makes two representations equal or not is their behaviour from a computational
point of view. We want to define “observations”, programs acting on them, and we want them to be
“objective”, i.e. insensitive to the representation chosen. In this context, “abnormality” should become
relative to the evaluating context.

Observations and integers will be the same kind of objects, i.e. operators in the II1 hyperfinite
factor, and they will interact through plain multiplication. The question is: “How can we represent the
end of the computation?” We will define an accept / reject pattern, the observations do not produce
any complex output. This first criteria proposed was “When the determinant of the product is 0”, the
answer we developed with Seiller is “When the product gets to 0”, i.e. if it is nilpotent. To be fair,
this second criteria was already in use in “Normativity in Logic” [59], but only in background.

Technically speaking, there was a first attempt to define a frame where programs and integers could
nicely interact, using a commutation condition, but it was way too constraining. In this setting, an
algorithm could express only trivial computation [59, Proposition :2.:].

(23)In fact, there is a detail that goes again the success of this plan: there is still a norm on the representations. If we look closely
to Proposition 3.4.2, we should see that all the representations of an integer n has to have the same number of bits. This
contradicts lightly the introductory remark of Section 3.3, but does not really alter the whole construction.
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The interaction used by Girard was based on Fuglede-Kadison determinant, a generalization
of the usual determinant of matrices that can be defined in a type II1 factor. This requires to define
“normalised” determinant and trace, for them to be independent on the dimension of the matrix under
treatment. In Proposition 3.4.2, we showed that two representations were unitary equivalent, as the
trace of a unitary is 1, that let the determinant of the representation of the integer unchanged. This used
to be crucial when cancellation of determinant was used as a marker for the end of the computation. It
was also interesting for the trace of the projections are independent of their size, and those “normalised”
traces and determinants are invariant under the embedding of Proposition 3.4.:.

Those notions are nicely developed in Seiller’s thesis [:2:, chap. 4.2] and it was proven, thanks
notably to a technical lemma [:20, Lemma 6:], that this condition on determinant was equivalent to the
condition on nilpotency in some cases. In fact, it even relax some constrains: most notably, it allows
one to consider a broader class of groups. This comes from the fact that the use of the determinant
forces to consider only amenable groups, so that the result of the crossed product in Proposition 3.4.3
yields the type II1 hyperfinite factor. Defining acceptance with a clause on determinant but using
nilpotency forced Girard to consider languages obtained from finite positive linear combinations of
unitaries induced by the group elements. This positivity is needed so that the condition involving the
determinant implies nilpotency. Taking directly nilpotency as a marker for acceptance allows us to get
rid of this condition, and we could use negative coefficients.

The notion of normative pair is a joint restriction on the pair of two subalgebras (N,O) where we
pick the representations and the programs. It was defined by Girard [59] in order to describe the
situations in which an operator in O acts uniformly on the set of all representations of a given integer
in N.

Normative Pairs

Wewill introduce here at the same time the constraint we put on programs so they interact “indifferently”
of the representation of the input, and the constraint we will use later on. The technical tools needed
for the crossed product and in general to grasp the interactions between von Neumann algebras and
groups are defined in Section A.2.

Definition 3.4.2 (Normative Pairs). Let N and O be two subalgebras of a von Neumann algebra M.
The pair (N,O) is a normative pair (inM) if:

◦ N is isomorphic to R;

◦ For all φ ∈M6(O) and Nn ,N ′
n
∈M6(N) two binary representations of n,

φNn is nilpotent⇔φN ′
n
is nilpotent (3.8)

Proposition 3.4.3. Let S be a set and for all s ∈ S, Ns =R. For all group G and all action α of G on S,
the algebraM= (

⊗
s∈S Ns )⋊α̂G contains a subalgebra generated by G that we will denoteG. Then for all

s ∈ S, the pair (Ns ,G) is a normative pair (inM).

Proof. From the hypotheses, Ns is isomorphic to R. Regarding the second condition (Equation 3.8),
we will only show one implication, the other being obtained by symmetry. By Proposition 3.4.2, for
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all Nn , N ′
n
two representation of n in Ns , there exists a unitary u such that (Id⊗u)Nn(Id⊗u)∗ = N ′

n
.

We define v =
⊗

s∈S u and πv the unitary in M induced by v. Then πv commutes with the elements
of G(24), so if there exists d ∈ N such that (φNn)

d = 0, then (φN ′
n
)d = (φuNn u∗)d = (uφNn u∗)d =

u(φNn)
d u∗ = 0. Q.E.D.

Definition 3.4.3 (Observations). Let (N,G) be a normative pair, an observation is an operator in
M6(G)⊗Q, where Q is a matrix algebra, i.e. Q=Ms (C) for an integer s , called the algebra of states.

For the time being, we may just think of Q as a technical trick to have some more space where the
action of the group is not needed. Its role will be seen later on. Just remark that from now on, we have
to take the tensor product of Nn and IdQ as an input of an observation.

Definition 3.4.4 (Set “recognized” by an operator). Let (N0,G) be a normative pair andφ ∈M6(G)⊗Q

be an observation. We define the set of natural numbers:

[φ] = {n ∈N | φ(Nn ⊗ IdQ) is nilpotent, Nn ∈M6(N0) any binary representation of n}

This could be seen as the language recognized by the operator φ, but for the time being it is only a
mathematical definition.

Definition 3.4.5 (Language decided by a set of observations). Let (N0,G) be a normative pair and
X ⊆∪∞

i=1
M6(G)⊗Mi (C) be a set of observations. We define the language decided by X as the set(25):

{X }= {[φ] | φ ∈X }

Now we will give the normative pair used as well by Girard [59] and by Aubert and Seiller [::,
:2].

Corollary 3.4.4 (of Proposition 3.4.3). Let S be the group of finite permutations over N, and for all
n ∈N,Nn =R. Then (N0,G) is a normative pair in (

⊗
n∈NNn)⋊α̂S .

In this particular case, the algebra (
⊗

n∈NNn)⋊α̂S is the type II1 hyperfinite factor. This is one of
the reason why Girard considered it, as it is then possible to use Fuglede-Kadison determinant. From
now on, we will consider this normative pair fixed, and we will study three sets of observations. We
first need to define the 1-norm:

Definition 3.4.6 (1-norm). We define the family of norms ‖·‖k
1
on Mk (M6(R)) by:

‖(ai , j )1¶i , j¶k‖
k
1
= max

1¶ j¶k

 
k∑

i=1

‖ai , j‖

!

where ‖ai , j‖ is the usual norm, i.e. the C∗-algebra norm (Definition A.:.:7), on M6(R). We will simply
write ‖·‖1 when the superscript is clear from the context.
(24)A precise proof of this fact is Seiller’s PhD Seiller [:2:, Proposition ::.2.5].
(25)To be consistent with our notation, we should have written them in bold, as {X}. But we are going to introduce sets of

observations denoted by P+, and it could mislead the reader by reminding him/her of P, the polynomial-time hierarchy.
Morevoer, we wanted to keep the notation adopted in our previous works.
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Definition 3.4.7 (P¾0, P+ and P+,1 ). An observation φ ∈M6(G)⊗Ms (C) is said to be positive (resp.
boolean) when for all 0¶ i , j ¶ 6s , φ[i , j ] is a positive finite linear combination (resp. a finite sum) of
unitaries induced by elements of S , i.e. φ[i , j ] =

∑6s
l=0
αlλ(gl ) with αl ¾ 0 (resp. αl = 1).

We then define the following sets of observations:

P¾0 = {φ | φ is a positive observation}

P+ = {φ | φ is a boolean observation}

P+,1 = {φ | φ ∈ P+ and ‖φ‖1 ¶ 1}

We have trivially that P+,1 ( P+ ( P¾0 and {P+,1} ⊆ {P+} ⊆ {P¾0}.

3.5 Nilpotency Can Be Decided With Logarithmic Space

We defined a way of representing computation with mathematical objects, but we should now wonder
how complex it is to simulate this computation on another device. As usual, the Turing Machine will
be the model of computation we chose to prove that the observations are a “reasonable” model of
computation.

For the hyperfinite factor is a too complex object to be written on an input tape, we will need to
prove that it is possible to work only with the significant part of the operator. This will be the aim of
the following subsection, which states and proves a lemma of utmost importance. It is a hard proof
that is due to Seiller and is taken from [::], it uses some mathematical notions that were not defined
in this work: we refer to any classical textbook referenced in appendix A or to Seiller [:2:].

Going back to finite-dimensional

We are going to perform here the reverse operation of the embeding of Definition 3.4.:: we will take
the representation of an integer by an infinite operator and enclose it in a finite matrix. And we will do
the same for the operator acting on it. Even though the hyperfinite factor R is necessary in order to
have a uniform representation of integers, it is an algebra of operators acting on an infinite-dimensional
Hilbert space. It is therefore not obvious that one can check the nilpotency of such an operator with
a Turing Machine, and it is of course not possible in general. However, the following lemma has as a
direct consequence that checking the nilpotency of a product φNn where φ is an observation in P¾0 is
equivalent to checking the nilpotency of a product of matrices.

Lemma 3.5.:. We consider the normative pair (N0,G) defined in Corollary 3.4.4 and denote by M the
algebra (

⊗
n¾0R)⋊S . Let Nn be a binary representation of an integer n in M6(N0) and φ ∈M6(G)⊗Q

be an observation in P¾0. Then there exist an integer k , an injective morphism Ψ : Mk (C)→M and two

matrices M ∈M6(Mk (C)) and φ̄ ∈M6(Mk (C))⊗Q such that Id⊗Ψ(M ) = (Nn⊗1Q) and Id⊗Ψ⊗IdQ(φ̄) =
φ.

Proof. We denote by n the integer represented by Nn and R ∈ M6(n+1)(C) its matricial representa-
tion. Then there exists a morphism θ : Mn+1(C)→R such that Id⊗θ(R) = Nn by Proposition 3.4.:.
Composing θ with the inclusion µ : Mn+1(C)→

⊗N
n=0

Mn+1(C), x 7→ x ⊗ 1⊗ · · · ⊗ 1, we get:

Id⊗(
N⊗

n=0

θ(µ(R)) =Nn ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N copies
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where Nn is the representation of n in M6(C)⊗R (recall the representation Nn in the statement of the
lemma is an element of M6(C)⊗M).

Moreover, since φ is an observation, it is contained in the subalgebra induced by the subgroup
SN where N is a fixed integer(26), i.e. the subalgebra of S generated by {λ(σ) | σ ∈ SN }. We
thus consider the algebra (

⊗N
n=0

Mn+1(C))⋊SN . It is isomorphic to a matrix algebra Mk (C): the
algebra

⊗N
n=0

Mn+1(C) can be represented as an algebra of operators acting on the Hilbert space
CN (n+1), and the crossed product (

⊗N
n=0

Mn+1(C))⋊SN is then defined as a subaglebra I of the al-
gebra B(L2(SN ,C(n+1)N )) ∼=M(n+1)N N !(C). We want to show that (Nn ⊗ 1Q) and φ are the images of
matrices in I by an injective morphism Ψ which we still need to define.

Let us denote by α the action of SN on
⊗N

n=0
Mn+1(C). We know by Definition A.2.:: that

I= (
⊗N

n=0
Mn+1(C))⋊SN is generated by two families of unitaries:

◦ λα(σ) where σ ∈SN ;

◦ πα(x) where x is an element of
⊗N

n=0
Mn+1(C).

We will denote by γ the action of S on
⊗∞

n=0
R. Then M = (

⊗
n¾0R)⋊S is generated by the

following families of unitaries:

◦ λγ (σ) for σ ∈S ;

◦ πγ (x) for x ∈
⊗

n¾0R.

As we already recalled, φ is an observation in P¾0 and is thus contained in the subalgebra induced by
the subgroup SN . Moreover, Nn is the image through θ of an element of Mn+1(C). Denoting β the
action of SN on

⊗N
n=0

R, the two operators we are interested in are elements of the subalgebra J ofM
generated by:

◦ λβ(σ) for σ ∈SN ;

◦ πβ(
⊗N

n=0
θ(x)) for x ∈

⊗N
n=0

Mn+1(C).

We recall that φ is a matrix whose coefficients are finite positive linear combinations of elements λγ (σ)
where σ ∈SN , i.e. (denoting by k the dimension of the algebra of states):

φ= (
∑
i∈Ia,b

αi
a,b
λγ (σ

i
a,b
))1¶a,b¶6k

We can therefore associate to φ the matrix φ̄ defined as

φ̄= (
∑
i∈Ia,b

αi
a,b
λα(σ

i
a,b
))1¶a,b¶6k

We will now use the theorem stating the crossed product algebra does not depend on the chosen
representation (Theorem A.2.:). The algebra

⊗N
n=0

R is represented (faithfully) by the morphism
πβ ◦

⊗∞
n=0
θ. We deduce from this that there exists an isomorphism from I to the algebra generated by

(26)That comes from the fact that φ “uses” only a finite number of permutations.
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the unitaries λβ(σ) (σ ∈SN ) and πβ ◦
⊗∞

n=0
θ(x) (x ∈

⊗N
n=0

Mn+1(C)). This isomorphism induces an
injective morphism ω from I into J such that:

ω(πα(x)) =πβ(
N⊗

n=0

θ(x))

ω(λα(σ)) = λβ(σ)

We will denote by ι the inclusion map
⊗N

n=0
R⊆

⊗∞
n=0

R and υ the inclusion map SN ⊆S . We will
once again use the same theorem as before, but its application is not as immediate as it was. Let us
denote by SN\S the set of the orbits of S for the action of SN by multiplication on the left, and let
us chose a representant τ̄ in each of these orbits. Recall the set of orbits is a partition of S and that
SN ×SN\S is in bijection with S . As a consequence, the Hilbert space L2(SN , L2(SN\S ,

⊗∞
n=0
H))

is unitarily equivalent to L2(S ,
⊗∞

n=0
H). We will therefore represent

⊗N
n=0

R on this Hilbert space
and show this representation corresponds to πγ . For each x ∈

⊗N
n=0

R, we define ρ(x) by:

ρ(x)ξ (τ̄) = γ (τ̄−1)(ι(x))ξ (τ̄)

This representation is obviously faithful. We can then define the crossed product of this representation
with the groupSN on the Hilbert space L2(SN , L2(SN\S ,

⊗∞
n=0
H)). The resulting algebra is generated

by the operators (in the following, ξ ∈ L2(SN , L2(SN\S ,
⊗∞

n=0
H))):

λ(ν)ξ (τ̄)(σ) = ξ (τ̄)(ν−1σ)

π(x)ξ (τ̄)(σ) = ρ(β(σ−1)(x))ξ (τ̄)(σ)

= γ (τ̄−1)(γ (σ−1)(ι(x)))ξ (τ̄)(σ)

= γ (τ̄−1σ−1)(ι(x)))ξ (τ̄)(σ)

= γ ((στ̄)−1)(ι(x)))ξ (τ̄)(σ)

Through the identification of L2(SN , L2(SN\S ,
⊗∞

n=0
H)) and L2(S ,

⊗∞
n=0
H)), we therefore get:

λ(ν)ξ (στ̄) = ξ (ν−1στ̄)

= λγ (ν)ξ (στ̄)

π(x)ξ (στ̄) = γ ((στ̄)−1)(ι(x)))ξ (στ̄)

=πγ (ι(x))ξ (στ̄)

Applying Theorem A.2.: we finally get the existence of an injective morphism ζ from J into M such
that:

πβ(x) 7→πγ (ι(x))

λβ(σ) 7→ λγ (σ)

Figure 3.7 illustrates the situation. We now define Ψ : I →M by Ψ = ζ ◦ω. Noticing that Nn =
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(
⊗N

n=0
R)⋊βSN

(
⊗

n¾0R)⋊γ S

(
⊗N

n=0
Mn+1(C))⋊αSN

⊗N
n=0

R

⊗∞
n=0

R

⊗N
n=0

Mn+1(C)

SN

S

SN

πβ

πγ

πα

λβ

λγ

λα

⊆ ιζ

⊗N
n=0
θω

Figure 3.7: Representation of the main morphisms defined in the proof of Lemma 3.5.:

IdM6(C)
⊗(πγ (ι ◦µ(Nn)), we get:

IdM6(C)
⊗Ψ(M ) = IdM6(C)

⊗Ψ(Id⊗πα(Id⊗µ)(R))

= IdM6(C)
⊗πγ (ι ◦

N⊗
n=0

θ(µ(R)))

= IdM6(C)
⊗πγ (ι(Nn ⊗ 1⊗ · · · ⊗ 1))

= IdM6(C)
⊗πγ (ι ◦µ(Nn))

=Nn

IdM6(C)
⊗Ψ⊗ IdQ(φ̄) = (

∑
i∈Ia,b

αi
a,b
Ψ(λα(σ

i
a,b
)))1¶a,b¶6k

= (
∑
i∈Ia,b

αi
a,b
λγ (σ

i
a,b
))1¶a,b¶6k

=φ

The (injective) morphism Ψ thus satisfies all the required properties. Q.E.D.

Stated less technically, the previous lemma tells us that no matter the operator φ, it always uses only
a finite number of elements of S , i.e. of permutations. Therefore, we can identify a finite subgroup
SN of S , and m ∈ N such that ∀σ ∈ S ,∀i ¾ m,σ(i ) = i . It follows that the computation of the
iterates of φ(Nn ⊗ 1Q) takes place in the algebra M6(C)⊗Q⊗ (

⊗m
i=1

Mn+1(C)⋊SN ), which acts on a
finite Hilbert space.

Recognizing operators with logarithmic space

This last part is devoted to the study of the complexity of deciding if the product of operators represent-
ing a program and an integer is nilpotent. It uses the previous lemma as an evidence that this product
can be written as a finite object.



3.5. Nilpotency Can Be Decided With Logarithmic Space 87

bi0
0

b 1
i0

b 2
0

b 2
p2

. . .

φ̄

b 3
0

b 3
p3

. . .

φ̄

. . .

φ̄

M ⊗ 1Q

M ⊗ 1Q M ⊗ 1Q

︸ ︷︷ ︸
Bounded by L

bi0

b 1
i0

bi1

b 1
i1

...

M ⊗ 1Q

M ⊗ 1Q

φ̄

φ̄

For φ̄ a matrix obtained from φ ∈ P¶0 and M a representation of an integer, the iteration of φ̄(M ⊗ 1Q) may be
represented as a tree, where b j

i
denotes the elements of the basis encountered.

On the right hand-side, if φ ∈ P+,1, the computation is simply a line graph.

Figure 3.8: A representation of the computation of an operator

Problem F: Nilpotency of φ(Nn ⊗ 1Q) for φ an operator in P¾0

Input: n ∈N and φ ∈ P¾0

Output: Accepts iff φ(Nn ⊗ 1Q) is nilpotent for Nn ∈M6(N0) and φ ∈M6(G)⊗Q.

Theorem 3.5.2. Problem F is in STA(log,∗,∀).

Proof. The Turing Machine we are going to define cannot take as input φ, but we know there is a finite
object that behave the same way. Indeed, we know thanks to Lemma 3.5.: that φ(Nn ⊗ 1Q) is nilpotent
iff φ̄(M ⊗ 1Q) is nilpotent. Moreover, the degree of nilpotency of the these two products is the same.

Using the bound p given by Lemma 3.5.:, we know that our algebra is

M6(C)⊗ ((Mn+1(C)⊗ · · · ⊗Mn+1(C)︸ ︷︷ ︸
p copies

)⋊SN )⊗Q

We let K be the dimension of the Hilbert space this algebra is acting on, i.e. for q the dimension of
Q, K = 6(n+ 1)p p!q . The elements of its basis are of the form

(π,a1, . . . ,aP ;σ ; e)

where π ∈ {1,6} is an element of the basis (0o, 0i , 1o, 1i , s , e) of M6(C), ai ∈ {1, . . . , p} are the elements
of the basis chosen to represent the integer n, σ ∈ SN and e is an element of a basis of Q. When we
apply M ⊗1Q representing the integer to an element of this basis, we obtain one and only one vector of
the basis (π,a1, . . . ,ap ;σ ; e). The image of a basis element by the observation φ̄ is a finite linear positive
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combination of L ∈N elements of the basis:

φ̄(π,a1, . . . ,ap ;σ ; e) =
L∑

i=0

αi (ρ,aτi (1)
, . . . ,aτi (p)

;τiσ ; ei ) (3.9)

This combination is finite thanks to Lemma 3.5.:, and it is linear positive by definition of P¾0 (Defini-
tion 3.4.7).

So we are going to define a universally non-deterministic Turing Machine that will follow the
computation on each basis vector thus obtained. The computation can be represented by a tree, as
shown in Figure 3.8.

We know that L and the nilpotency degree of φ̄(M ⊗ 1Q) are both bounded by the dimensions
of the underlying space, that is to say by K . Since every coefficient αi is positive, the matrix is thus
nilpotent if and only if every branch of this tree is of length at most K . What ends a branch being of
course reaching 0.

This Turing Machine has a logarithmic amount of information to store: the current basis element
(i.e. bi0

0
), the last computed term of the sequence and its index. Every time a branch splits –that is, every

time we apply φ̄–, a non-deterministic transition takes place in order to continue the computation on
every branch. Two branches cannot cancel each other, because they have positive coefficients, and the
overall product is nilpotent iff every element of its basis goes to 0. As our Turing Machine is “universally
non-deterministic ”, it can test for nilpotency every element in parallel.

If a branch ends, our Turing Machine halts accepting, if after K applications of M ⊗ 1Q and φ̄ the
basis is not null, the Turing Machine starts anew the computation with a “fresh” element of the basis.
Once all the elements of the basis has been “tested” and none of them led to nilpotency, the Turing
Machine halts rejecting. So the Turing Machine accepts iff there exists an element of the basis such that
all branches cancel, that is to say iff φ̄(M ⊗ 1Q) is nilpotent, and by Lemma 3.5.: this is equivalent to
φ(Nn ⊗ 1Q) nilpotent. Q.E.D.

There is a variant of Problem F, when φ ∈ P+,1, and we define the following problem.

Problem G: Nilpotency of φ(Nn ⊗ 1Q) for φ an operator in P+,1

Input: n ∈N and φ ∈ P+,1

Output: Accepts iff φ(Nn ⊗ 1Q) is nilpotent for Nn ∈M6(N0) and φ ∈M6(G)⊗Q .

Theorem 3.5.3. Problem G is in STA(log,∗,d).

Proof. In the case when φ̄ is obtained from an observationφ ∈ P+,1. In this particular case, Equation 3.9
becomes:

φ̄(π,a1, . . . ,ap ;σ ; e) = (ρ,aτb0
(1), . . . ,aτb0

(p);τb0
σ ; eb0

) (3.:0)

Indeed, writing φ̄ as a Card(Q)×Card(Q) matrix (here Q denotes a basis of Q, which is a matrix
algebra from Definition 3.4.3 of observations), we use that ‖φ̄‖1 ¶ 1 to deduce that for all q ∈ Q,∑

q ′∈Q‖φ̄[q , q ′]‖¶ 1.
From the equation:

φ̄(π,a1, . . . ,ap ;σ ; e) =
l∑

i=0

αi (ρ,aτi (1)
, . . . ,aτi (p)

;τiσ ; ei )
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we have ‖φ̄[e , ei]‖= 1 ( i = 1, . . . , l ), and thus
∑

e ′∈Q‖φ̄[e , e ′]‖¾ l . Therefore, l ¶ 1, and we refer to
Figure 3.8 for a graphical representation.

Notice that the nilpotency degree of φ̄M is again bounded by K (the dimension of the Hilbert
space the algebra is acting on). One can thus easily define a deterministic Turing Machine that takes the
basis elements one after the other and compute the sequence bi0

, bi1
, . . .: if the sequence stops before

the Kth step, the machine starts with the next basis element as bi0
, and if the sequence did not stop

after K step it means the matrix was not nilpotent. Q.E.D.

Corollary 3.5.4.

{P¾0} ⊆ co-NL {P+,1} ⊆ L

Proof. From Lemma 3.5.:, given an observation and an integer, we know there is a finite product of
matrix that is nilpotent iff the product of this observation and integer is nilpotent. Then, by Theo-
rem 3.5.2 and Theorem 3.5.3, we know that a log-space Alternating Turing Machine can decide if this
product is nilpotent, i.e. if the observation is going to accept or reject the input. If this observation is of
1-norm strictly greater than 1, the Alternating Turing Machine has to be universally non-deterministic,
to test in parallel every element of the basis. If this observation is of 1-norm less or equal to 1, the
Alternating Turing Machine only has to test the elements of the basis one after the other, therefore it
can be deterministic. Q.E.D.

Results and perspectives

What have we done?

We showed how to represent data and programs as mathematical objects. We first used the Church
encoding and the Curry-Howard isomorphism to represent data —in this case integers— as proofs.
Then, by using the proof net representation, we showed how it was possible to represent those proofs as
matrices. As this representation was not uniform, i.e. the size of the matrix depends on the size of the
integer, we showed how the matrices could be embedded in the II1 hyperfinite factor. The motivations
to use this mathematical object was exposed in the first section.

There is infinitely many ways of representing integers as operators in a von Neumann algebra, but
we managed to define a framework —normative pairs— where integers and programs interact nicely, i.e.
where the programs are indifferent to the particular representation chosen. We used the most convenient
normative pair, i.e. the one that internalise permutations over N. We chose to take nilpotency as a
criteria of acceptance rather than the cancellation of the determinant, and that allows us to consider
broader classes of groups.

At last by using a lemma proven by Thomas Seiller, we showed that it was possible to come
back to finite objects and to decide their nilpotency with logarithmic space resources. This algebra has
for the time no precise computational meaning, but we introduced a norm that somehow represent
deterministic computation, the “basic” computation being widely non-deterministic, and to be more
precise universally non-deterministic.

What could be done?

The purely mathematical way of modelling computation we defined in this chapter is a brand new and
exciting field of research. Our first task will be to understand its computational nature, and that will
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be one of the purposes of the next chapter, by proving that a specific kind of “pointer machine” can be
reasonably simulated by operators.

And yet, there are already numerous hints toward extensions or modification of this framework:

:. We could try to embed other kinds of data in the von Neumann algebras, to have several constructors.
As long as a data can be represented by a proof, we can follow exactly the same construction and obtain
a representation in the hyperfinite factor. For instance, any finite list of objects of type U can be typed
with ∀X X → ((U → (X →X ))→X ) in system F [62, pp. 90 sqq.]. This could take place in a general
movement to go back to logical considerations.

2. As we sketched in Section 3.4, we could try to take the crossed-product of a von Neumann algebra
with other groups. A good candidate could be “l’algèbre des boîtes”, introduced by Girard [56,
pp. 506 sqq.]. That would be really nice if we could prove some property like “if G is a strict subgroup
ofH , then the set of elements recognized by a crossed product with G is strictly included in the set of
elements recognized by a crossed product withH .” That could lead to separation results, but that the
construction maintains strict inclusion could be hard to prove.

3. We could also play on another level with our normative pair, by allowing negative coefficients. In this
setting, there could be cancellation between different “branches” of a computation, thus giving to our
decomposition of the basis the structure of a graph —instead of the tree we saw in Figure 3.8. Such
sharing in the computation reminds of classes of complexity stronger than log-space computation.

4. Another perspective could be to try to get rid of von Neumann algebras(27). We could define observa-
tions that act only on a fixed size of input and stay on a matricial level. We should be really cautious
about duplication in such a setting, but as well as one could give a bound on time for a space-bounded
Turing Machine, maybe we could guarantee that an operator would not need matrices bigger than
a pre-computed bound. That would probably need a uniformity similar to the one defined for the
Boolean circuits (recall Definition 2.:.4), i.e. to define how to build a family of observations.

5. A last perspective would be to consider some advanced works in von Neumann algebra, which is a
very active field of research. For instance, Fulman [43] developed a construction similar to the crossed
product of a von Neumann algebra by a group, the crossed product of an abelian von Neumann algebra
by an equivalence relation. Surely a discussion with an expert on those topics could leads to numerous
other ideas!

(27)Since the writing of this memoir, Girard developed a new approach on Geometry of Interaction, using unification techniques
[60]. A large part of the work presented in Chapter 3 and Chapter 4 has been rephrased in terms of “unification algebra” in
a joint work with Marc Bagnol [:0].
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Our goal in this chapter will be to build a computational model that accounts for the computation
of the operators (or observations) defined in the previous chapter. For reasons that should be

clear after reading Section 4.4, the computation of operators may be seen as a wander in the structure
of the binary word that cannot modify it, but that may “save” values in registers. It is quite natural
to think of pointers in this setting, and to Girard [59] it went without saying that the stroll of some
“fingers” was the log-space-computation.

However, we saw that speaking of “the” log-space computation could be misleading: recall (Defini-
tion :.:.::) that depending on the bounds on time and alternation, an Alternating Turing Machine with
only a logarithmic amount of space can characterise from NC1 up to P! So another approach —more
reasonable— is to start from this idea of fingers wandering in an input and to wonder to what model
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and what complexity class it could correspond. That makes us dive into another vivid field of research,
closer to computer science, that deals with pointers, and we will see that depending on the kind of
pointers we manipulate and the way we manipulate them, we can capture more, less, or exactly L.

We propose here a chapter mid-way between a brief summary of the “pointer machines” that were
defined and an illustration of the flexibility of a model of computation —Finite Automaton—, but both
will be necessary to achieve our goal, i.e. to define Non-Deterministic Pointer Machines as the model of
computation that corresponds to operators. We will prove that claim thanks to a low-level simulation:
the proof is mainly based on the definition of the encoding of instructions (read a value, move a pointer,
change the state) as operators. This section will be quite long, for we have to recall the framework of
Chapter 3 and introduce notations to ease the simulation. We moreover handle the case of deterministic
computation.

The first two sections were greatly inspired by some discussions with Arnaud Durand, and Paulin
Jacobé de Naurois gave me some precious hints during the redaction of this chapter. The first part
of the following subsection witness a work led with Margherita Zorzi and Stefano Guerrini that
unfortunately turned out to be a deadlock. Some elements of this chapter, especially the last two
sections, is a joint work [::, :2] with Thomas Seiller and constitute our main contribution. Some
elements, as Theorem 4.2.2, are presented in an innovative way.

It could be helpful to keep in mind some notions on descriptive complexity to fully grasp the first
section of this chapter(:), but apart from that, everything was defined in Chapter : and in Chapter 3.
Some parts of the second section may be really redundant to a complexity expert, but we felt it could
be advantageous to recall some fundamentals in this topic.

4.: A First Round of Pointers Machines

We will not make the inventory of the pointer machines that were defined, for they are really numer-
ous(2). Ben-Amram [:7] made it clear that the heading of “pointer machines” was really misleading,
for it covers at the same time “pointer algorithms” and “abstract machine models”, both atomistic and
high-level. We will apply his advice and call the atomistic pointer machines model we are going to
work with . . . pointers machines! We will nevertheless blur this distinction, for the subjects we are
going to evoke are sometimes midway between models of computation, programming languages and
descriptive complexity: it comes from the “fact that it is natural to implement a Pointer Algorithm
using the capabilities of [SMM or LISP machines].” ( [:7, p. 94])

Instead, this section will go against the intuitive idea that “pointers are log-space”, by showing that
depending on the precise definition of the machine that manipulates “pointers” (whose definition also
fluctuate), we can characterise less (with JAG and PURPLE) or more (with SMM and KUM) than L.
The exact characterization of L by a pointer machine will be postponed to the next section.

This journey towards the understanding of the “pointer complexity” will help us to define a subtle
variation of Finite Automata that will end up characterizing the kind of computation we mimic with
the operators of Chapter 3.

(:)And the reader may with benefit take a look at two classical textbooks, Immerman [79] and Ebbinghaus and Flum [4:].
(2)We could only mention Tarjan [:29]’s reference machine as one of the first model refereed to as “pointer machine”.
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JAGs and PURPLE: on the limitations of pebbles and pure pointers

We begin with two models, strongly linked, that cannot decide a problem that was proven to belong to
L.

Jumping Automaton for Graphs ( JAG) were introduced by Cook and Rackoff [30] to try to
demonstrate a lower-bound for maze-threadability problem, a variation on STConn (recall Problem B).
This model takes a graph as input, and moves pebbles, or tokens, along its edges. It has a finite state
control, the ability to know if two pebbles are at the same vertex and to make one pebble “jump” to
another. This model can easily be considered as a strict restriction of Turing Machine, it illustrates
once again the importance of graphs for the log-space computation. It manipulates pointers in the sense
that those pebbles are only location, addresses, in the input graph, they cannot be used to store any
other kind of information. This model was designed to solve accessibility problems, but numerous
modifications were proposed to handle other problems.

And yet, Hofmann and Schöpp [73] thought that this approach could be led further, for “neither
JAGs nor [Deterministic Transitive Closure (DTC)]-logic adequately formalise the intuitive concept of
“using a constant number of graph variables only"”. This work is also greatly inspired by Cai, Fürer,
and Immerman [23], who proved that First-Order Logic (FO) with least fixed point operator and
counting, but without ordering, failed to capture P. So they define PURPLE, in order to make formal
the idea that “log-space is more than ‘a constant number of pointers’”.

PURPLE is a while programming language, without quantifiers loop, and it is “pure” in the sense
that pointers are abstract values, without internal structure. PURPLE’s input are partially ordered
graphs, for a precise reason: if there was a total order on graphs, then one could encode information
in it. Without going further into details, we can mention that on ordered structures, FO and DTC
corresponds to L, but it is not true on partially ordered structures. They tried to prove lower bounds
and this approach was thrilling, for they proved that

◦ PURPLE cannot solve “the number of nodes of a graph is a power of 2” nor USTConn ( [73]) which
are in L. This remains true even if we add to PURPLE iteration (the quantifier loop) (this was a new
lower bound, the purpose of [72]).

◦ With counting, PURPLE can decide USTconn.

◦ By introducing some elements of non-determinism, Hofmann, Ramyaa, and Schöpp [7:] tries
to prove that L (? PTIME. By doing so, they managed to show that even with counting, a non-
deterministic version of PURPLE could not solve a L-complete problem, tree isomorphism.

Those numerous variations on PURPLE help to provide new lower bounds, and it is inspired by tech-
niques of descriptive complexity. In this perspective, one can easily add or remove a single “ingredient
to our recipe”, the logic under study, and try to establish new bounds. The interested reader may for
instance refer to the work of Grädel and McColm [65], where it is proven that transitive closure
logic is strictly more powerful that DTC.

We tried with Margherita Zorzi and Stefano Guerrini to link together PURPLE and Girard’s
approach. Unfortunately, we came to the conclusion that our functional setting could not match the
imperative setting of PURPLE, for we could encode structured information in our finite control.



96 Chapter 4. Nuances in Pointers Machineries

KUM and SMM: questioning the meaning of log-space

The Kolmogorov Uspenskĭı Machine (KUM) was first presented in Russian [89], but the English
translation90 of this article is better known. This model of computation is a “pointer machine” in the
sense that instead of operating on registers —displayed as a tape— it manipulates a graph, not only by
reading it —as for PURPLE—, but by making it evolves.

The Storage Modification Machine (SMM), introduced by Schönhage::6, was defined indepen-
dently, but can be conceived as a special kind of KUMwhere the graph manipulated is directed, whereas
it is undirected for the KUM. We give below an informal definition of the SMM.

Definition 4.:.: (SMM). A SMM is composed from a finite control given as a program and a dynamic
∆-structure for ∆ an alphabet. The machine reads an input string and writes on an output string, and
uses as a storage a dynamic labelled graph (X ,a, p), where

◦ X is a finite set of nodes,

◦ a ∈X is the center (the active node),

◦ p = (pα | α ∈∆) is the family of pointer mappings pα : X →X

To write pα(x) = y means that the pointer with label α originating from x goes to y. We define
p∗ :∆∗→X recursively:

p∗(ε) = a,where ε is the empty word

p∗(W α) = pα(p
∗(W )) for all α ∈∆,W ∈∆∗

A SMMmanipulates a graph by moving its “center” in it, by merging and creating nodes, by adding
or removing pointers, i.e. labelled edges. It manipulates pointers in the sense that p expresses addresses,
it encodes paths from the center to any node.

One simple example should show how to compute with this kind of machine.

Example 4.:.: (Sort with SMM). We want to build a simple program that sort integers. Suppose we
want to sort 9,12,10 and 2, the input will be #1001#1100#1010#10#. The SMM will proceed as follows:
every time the bit currently read is a 0 (resp. a 1), it tests for an edge labelled with 0 (resp. 1) leaving
its actual center. If its exists, it follows it, elsewhere it creates a node, add an edge labelled with 0 (resp.
1) and follows it. When it reads a #, it goes back to its initial center. For the input we gave, when the
SMM reaches the end of the input tape, the graph looks as in Figure 4.:

Then, the results is read simply by a depth first search, following in priority the edges labelled by #,
0, and then 1. This gives us for the current example : 10,1001,1010,1100, i.e. the integers sorted.

The algorithm we gave is linear in the size of the input if we take the “uniform time measure”, a.k.a.
one transition count for one unit of time. It might look too efficient, for the best comparison-based
sorting algorithms are O(n log(n)), and O(log2(n)) in parallel(3). All the same, it was proven [::6,
(90)Andrey Nikolaevic Kolmogorov and Vladimir Andreyevich Uspenskĭı On the definition of an algorithm. Translations.

Series 2. American Mathematical Society, 29, 2:7–245, :963.
(::6)Arnold Schönhage Storage Modification Machines. SIAM Journal on Computing, 9(3), pages 490–508, :980. doi: 10.1137/

0209036
(3)Of course, it is a different story if we consider Counting Sort or Bucket Sort algorithms.

http://dx.doi.org/10.1137/0209036
http://dx.doi.org/10.1137/0209036
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Remember we are sorting #1001#1100#1010#10#.

Figure 4.:: How a KUM sorts integers

Theorem 6.:, p. 503] that a SMM could perform integer-multiplication in linear time, whereas the best
known algorithm for other models needs O(n log(n)) steps.

It is the same regarding space: it seems reasonable to consider that the number of nodes is the
measure of space-complexity of a SMM. But on a ∆-structure with n nodes and if Card(∆) = k, one
can encodeO(nk log(n)) bits of information, whereas a Turing Machine with n cells on alphabet∆ can
encode O(n log(k)) bits. This results follows from a combinatorial analysis [::6, p. 492] of the number
of graphs of n nodes with edges labelled by elements of ∆.

In this setting, “one should be aware of the fact that for such a model log-space has become a
different concept.” (van Emde Boas [:3:, p. :06]) SMM and KUM does not belong to the class of
“reasonable models of computation”, for their time- and space-complexity —or at least the measure we
defined on them— do not seem realistic(4). They are a good way to express an algorithm, a sort of
generalized or universal pointer machine that was rather used as a way of conceiving the problems and
the algorithms than a model of computation actively used.

Yet, the ICC framework gave some new perspectives to that model with the recent work of Leivant
and Marion97. They develop a program with a dynamic data-structure, that support the creation, dele-
tion and update of vertices and edges. Thanks to ramification, they managed to enforce a polynomial
time-complexity on that structure.

It seems really complicated to see the computational behaviour of observations as a rewriting of a
graph. We were addressing the notion of pointer rather because our framework does not seem to have
the ability to write, but only to parse. So no matter how interesting that model is, we will move to
another, more suited. The reader who would like to learn more about this subject should look at the
special issue of the Journal for Universal Computer Science [22], which is devoted to the celebration
of the ten years of Gurevich’s Abstract State Machines.

(4)This is a matter of taste: one could perfectly say that those models are the “reasonable” ones, and that the other models are
too bureaucratic, inefficient, to handle smoothly complex algorithms based on pointers.

(97)Daniel Leivant and Jean-Yves Marion “Evolving Graph-Structures and Their Implicit Computational Complexity” in:
ICALP (2). edited by Fedor V. Fomin et al. volume 7966 Lecture Notes in Computer Science Springer, 20:3. 349–360 doi:
10.1007/978-3-642-39212-2_32

http://dx.doi.org/10.1007/978-3-642-39212-2_32
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4.2 Finite Automata and L

We will recall the definition of a classical model of computation, Multi-Head Finite Automaton (FA),
a read-only variant of the multi-head Turing Machines(5). This model was introduced in the early
seventies by Hartmanis69 and provided many interesting results. Their nice characterization of L and
NL (Theorem 4.2.4) and the similarities they share with Non-Deterministic Pointer Machines motivate
their presence here in this small tutorial: even if they are called “(read-only) heads”, they are exactly
what we mean when we speak of “pointers”. We will play a bit with this model of computation, take
some times to understand how to compute with pointers and illustrate the flexibility of this model.

All the definitions and properties that follow are classical results, stated in a uniform way whereas
the references sometimes mixes the notations. They are mostly borrowed to the recently published
Holzer, Kutrib, and Malcher [75], which is a nice overview of the main results and open problems
of the theory. Whereas the number of heads is an important criteria from a complexity point of view
(in fact, it is the only relevant one), and even if separations results are known regarding that criteria
(cf. Theorem 4.2.:), we won’t count precisely the number of heads (the reason should be clear after
looking at Theorem 4.2.4) in the modifications that follows.

Presentation and variations

Definition 4.2.: (Non-Deterministic Multi-Head Finite Automaton (NFA)). For k ∈ N∗, a non-
deterministic two-ways k -heads finite automaton (NFA(k)) is a tuple M = {S,A, k ,Â,Ã, s0, F ,σ} where:

◦ S is the finite set of states;

◦ A is the alphabet;

◦ k is the number of heads;

◦ Â and Ã are the left and right endmarkers, Â,Ã/∈A;

◦ s0 ∈ S is the initial state;

◦ F ⊆ S is the set of accepting states;

◦ σ ⊆ (S × (A∪ {Â,Ã})k )× (S × {−1,0,+1}k ) is the transition relation, where −1 means to move the
head one square to the left, 0 means to keep the head on the current square and 1 means to move it one
square to the right.

Moreover, for all a1, . . .ak ∈Ak , 1¶ i ¶ k and mi ∈ {−1,0,+1}, whenever(6)

(s, (a1, . . . ,an)σ(s’, (m1, . . . , mk )))

then ai =Â implies mi ∈ {0,+1}, and ai =Ã implies mi ∈ {−1,0}. That is to say that the heads cannot
move beyond the endmarkers.
(5)Although this model was first defined as a variant of Finite Automaton, we thought it would be more convenient to introduce

it as a variation of Turing Machine. We will nonetheless use some of their properties as a Finite Automaton, and will refer
to the literature of this field. For an excellent overview of this theory, we refer for any classical textbook, like the one by
Hopcroft, Motwani, and Ullman [76].

(69)Juris Hartmanis On Non-Determinancy in Simple Computing Devices. Acta Informatica, :(4), pages 336–344, :972. doi:
10.1007/BF00289513

(6)Of course, one may see σ as a partial function from S× (A∪{Â,Ã})k to Pfin(S×{−1,0,+1}k ), and that justifies this notation
that we will use from now on.

http://dx.doi.org/10.1007/BF00289513
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One defines configurations and transitions in a classical way. Let M ∈NFA(k) and w ∈An an input
of length n. We say that M accepts w if M starts in state s0, with Â w Ã written on its input tape
and all of its heads on Â, and if after a finite number of transitions at least one branch of M reaches a
state belonging to F and cannot perform any transition. We say that M always halts if for all input all
branches of M reach after a finite number of transitions a configuration such that no transition may
be applied. Remark that if no transition may be applied and the current state is not in F , this branch
rejects the input. If all branches reject the input, that is, they all halt in a state not in F , M rejects the
input.

If σ is functional, M is said to be deterministic and we write DFA(k) the set of deterministic two-way
k heads automata (DFA). We will write Finite Automata (FA) in all generality, if we don’t want to be
specific about the (non-)determinacy of our Finite Automata. There are numerous other variation of
the FA that we did not mention. Among them, the 1-way (Non-Deterministic) Finite Automata, which
has exactly the same definition as the NFA, except that the heads can only go from left to right, i.e.
−1 is not in the set of movements. This model is however interesting, for it provided some separation
results and helped to be even more precise in the study of the computational power of the FA (we refer
to the following subsection for that topic).

We will denote as usual by L(M ) the language accepted by M . We will denote by DFA and NFA

the sets of languages decided by respectively the sets ∪k∈N∗DFA(k) and ∪k∈N∗NFA(k). The weight of
the font should help the reader to get the context: a machine belongs to NFA(k) and a problem to
NFA.

Now we will assert several claims and give ideas of proofs. They are quite classical and some of their
equivalent for Turing Machines were asserted without any proof, but we felt it should be made precise
in this case.

Remember for instance that due to its definition, it is not trivial at all that for all M ∈DFA(k) there
exists M ′ ∈DFA(k) such that M accepts iff M ′ rejects! It was an open problem for Hartmanis [69],
denoting by C k

D
“the set of all languages accepted by deterministic k-head automata”: “It would be also

interesting to determine whether for every A ∈ C k
D
also Ā ∈ C k

D
. Again we do not know the answer

to this problem. If C k
D
should not be closed under complementation then it would be interesting to

find out how many additional heads are needed to obtain the complements of all sets in C k
D
. We know

that 2k heads suffice but we suspect that a considerably smaller number of heads is really required to
accept the complements.” We won’t bother answering this question here: all we need to know is that
DFA= co-DFA.

Before we develop some basic computation with our FA, we define some syntactical sugar:

◦ For every alphabet A, we define A′ to be A∪ {Â,Ã}.

◦ We write ∗ for any symbol in A′, [not a] for any symbol in A′ \ {a}.

◦ We will sometimes do as if the heads could make several movements in one transition, i.e. take
σ ⊆ (S × (A′k )× (S ×{q}k ) with q ∈Z. It is only a shorthand, for it is really easy to modify a FA that
uses this feature to a one that does not.

◦ For all head H , we write ♯H the distance (i.e. the number of cells) between Â and H .

This last point will be used to show how some information can be encoded in the position of the heads:
what will matter won’t be any more the value pointed, but its position in the input string.
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Every of our claims will apply as well to the deterministic and the non-deterministic cases, and the
resources needed to process the translation and the overhead will be studied only for the first case, the
proof being always the same.

Claim :: We can always take the alphabet A to be {0,1}.

Proof. Formally, we prove that for all k ∈ N∗, all M ∈ FA(k) with alphabet A 6= {0,1} there exists
M ′ ∈ FA(k) with B = {0,1} and f : A∗→ B∗ such that f (L(M )) =L(M ′). We will prove moreover that
M ′ simulates M in real-time.

Let p be such that 2p−1 < Card(A)¶ 2p . If p = 1, then f is simply a renaming of A. If p > 1, we
encode any symbol of A with p bits in B . This is simply done by associating to every symbol of A a
binary integer expressed with p bits.

Then, for all a1, . . . ,ak ∈ Ak and and (m1, . . . , mk ) ∈ {−1,0,+1}k , every transition of M is of the
shape

(s, (a1, . . . ,ak ))σ(s’, (m1, . . . , mk )) (4.:)

For all such transitions, we introduce p states sa i
1
...ak

1
, . . . , sa i

1
a i

2
...a i

p
...ak

1
ak

2
...ak

p
where a j

w
denotes the wth bit

of the binary encoding of a j , i.e. ai ≡ a i
1
. . .a i

p
.

We then translate the transition of Equation 4.: by

(s, (a i
1
, . . . ,ak

1
))σ ′(sa i

1
...ak

1
, (+1, . . . ,+1))

(sa i
1
...ak

1
, (a i

2
, . . . ,ak

2
))σ ′(sa i

1
a i

2
...ak

1
ak

2
, (+1, . . . ,+1))

...

(sa i
1
a i

2
...a i

p
...ak

1
ak

2
...ak

p
, (a i

m
, . . . ,ak

m
))σ ′(s’, (m′1, . . . , m′k ))

where m′ j =




−(2× p) if m j =−1

−p if m j = 0

+1 if m j =+1

We can easily check that M accepts an entry w ∈ An iff M ′ accepts f (w) ∈ {0,1}n×log(p). The
number of states of M ′ grows quite violently compared to M , but M ′ does not need more heads and
simulates M in real time, i.e. with a linear overhead. Q.E.D.

It is worth mentioning that two letters- and three letters-alphabets are not always equivalent, as
proven by Kozen [9:], for instance when we study their properties as context-free languages. We won’t
study such properties here, but we have to pay attention to the complexity of f and the resources
needed to describe M ′ given n and the description of M . The encoding f is really classic, and can be
performed by a constant-depth circuit. The description of M ′ is mainly obtained by inserting routines
in the description of M . With a log-time bounded ATM, one can guess in parallel the description of
M , label every state with the k p different values that may be read, and modify the transition function
accordingly. This translation can then be performed with NC1 resources, using the power of alternation
of the ATM. The following claims admit the same bounds on the complexity of the translation.

Claim 2: It is possible to move only one head at every transition.
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Proof. Formally, we prove that for all k ∈ N∗, for all M ∈ FA(k), there exists M ′ ∈ FA(k) such that
L(M ) =L(M ′) and such that for all transition in M ′,

(s1, (a1, . . . ,ak ))σ
′(s2, (m1, . . . , mk ))

for all 1¶ i ¶ k, only one among mi is different from 0.
Every translation in M

(s1, (a1, . . . ,ak ))σ(s2, (m1, . . . , mk ))

can be translated, for si
1

k “fresh” states, i.e. not in S, by

(s1, (a1, . . . ,ak ))σ
′(s1

1
, (m1, 0, . . . , 0))

(s j
1
, (∗, . . . ,∗))σ ′(s j+1

1
, (0, . . . , 0, mi , 0, . . . , 0)) (For 1¶ j < k )

(sk
1
, (∗, . . . ,∗))σ ′(s2, (0, . . . , 0, mk ))

Q.E.D.

Definition 4.2.2 (Sensing heads). We say that a FA has sensing heads if it has states si= j ? such that

(si= j ?, (a1, . . . ,ak ))σ




(s1, (m1, . . . , mk )) if ♯Hi = ♯H j

(s2, (m′
1
, . . . , m′

k
)) elsewhere

(4.2)

In other words, our FA can “sense” if two heads are at the same cell and act accordingly. Note
that it has nothing to do with non-determinacy: only one among the two transition of Equation 4.2 is
applied.

Claim 3: One additional head is sufficient to mimic the sensing heads ability.

Proof. We prove that for all M ∈ FA(k) with sensing heads, there exists M ′ ∈ FA(k+1) without sensing
heads such that L(M ) =L(M ′).

The simulation needs an additional head Hk+1 that is on the beginning of the tape. Every translation
of the form of Equation 4.2 is translated thanks to two fresh states si= j and si 6= j , with the following
routine(7):

(si= j ?, (. . . ,ai , . . . ,a j , . . . ,Â))σ
′(si= j ?, (. . . ,−1, . . . ,−1, . . . ,+1))

(si= j ?, (. . . ,[not Â], . . . ,[not Â], . . . ,∗))σ
′(si= j ?, (. . . ,−1, . . . ,−1, . . . ,+1))

(si= j ?, (. . . ,Â, . . . ,[not Â], . . . ,∗))
(si= j ?, (. . . ,[not Â], . . . ,Â, . . . ,∗))

«
σ ′(si 6= j , (. . . ,+1, . . . ,+1, . . . ,−1))

(si= j ?, (. . . ,Â, . . . ,Â, . . . ,∗))σ ′(si= j , (. . . ,+1, . . . ,+1, . . . ,−1))

(si= j , (. . . ,∗, . . . ,∗, . . . ,[not Â]))σ
′(si= j , (. . . ,+1, . . . ,+1, . . . ,−1))

(si 6= j , (. . . ,∗, . . . ,∗, . . . ,[not Â]))σ
′(si 6= j , (. . . ,+1, . . . ,+1, . . . ,−1))

(si= j , (. . . ,∗, . . . ,∗, . . . ,Â))σ
′(s1, (m1, . . . , mk , 0))

(si 6= j , (. . . ,∗, . . . , h j , . . . ,Â))σ
′(s2, (m′

1
, . . . , m′

k
, 0))

(7)Where the . . . are to be read as ∗ on the left hand side, and as 0 on the right hand side of σ ′.
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The symbol Â has the role of a buttress, the configurations store if we had ♯Hi = ♯H j and we can check
that at the end of the test Hi , H j and Hk+1 are back to their position. We also need to modify all the
other transition to add “whatever Hk+1 reads” and “Hk+1 does not move”.

Every time M performs a comparison, M ′ have to perform at most 2× n transitions. Q.E.D.

We considered in Section :.: that it was trivial to define a Turing Machine that always halts from
a Turing Machine that may loop, provided a bound, and we will prove the same for FA. We felt it
necessary to give a proof, for it is amusing (the heads acts like hands of a clock) and not evident that
without a writing ability such mechanism could be developed.

Claim 4: We can consider only FA that always stops.

Proof. We will prove that for all M ∈ FA(k), there exists M ′ ∈ FA(k ′) such that M ′ always halt and
L(M ) =L(M ′).

Given an input w ∈An , we know that the number of configurations of M is bounded by Card(S)×
(Card(A′))k × (n+ 2)k , lets d ∈N be such that the number of configurations is inferior to nd . We will
construct M ′ so that it halts rejecting after performing more than this number of transitions.

We set k ′ = k + d , and we construct M ′ so that its k first heads act as the heads of M , and the d
heads act as the hands of a clock, going back and forth between the two endmarkers. We set

S ′ = {s ×{→,←}d | s ∈ S}

that is to say that we copy every state of S and encode in them the current d directions of the d heads(8).
At every transition the d th head moves according to the direction encoded in the state. For k < i < k ′,
when the i th head reaches an endmarker, it changes its direction, something that is encoded in the state.
If this endmarker was Â, the i + 1th head moves of one square according to its direction. If the k ′th
head has made a roundtrip on n —that is, is back on Â— M ′ halts rejecting(9).

If M did not stop after Card(S)× 2k × (n+ 2)k transitions, it means that it was stuck in a loop and
therefore will never accept. By construction, M ′ always halts after nd transitions and accepts exactly as
M does, so we proved that L(M ) =L(M ′) and that M ′ always halts. Q.E.D.

Claim 5: Finite Automata can compute addition, subtraction, power, multiplication, division(:0) and
modulo over integers.

Proof. We prove that given two heads Hp and Hq such that ♯Hp = p and ♯Hq = q , M ∈ FA(k) with
k ¾ 4 can put a head at distance q + p, q − p, q p , q × p or ⌊q/p⌋.

Suppose H1 and H2 are at Â, they will be used to compute the value we are looking for. We define
the following routines:

q+p H1 goes right until ♯H1 = ♯Hq , and every time H1 goes right, Hp moves one square right.

When H1 reaches Hq , Hp is at distance q + p from Â.

q−p Hp goes left until it reaches Â, and every time Hp goes left, Hq moves one square left.

When Hp reaches Â, Hq is at distance q − p from Â. If Hq reaches Â before Hp , p was greater than q .

(8)So if we had Card(S) = s , Card(S ′) = s×2d , and we should even double the number of states to handle the fact that the d+1th
head has already read Â or not.

(9)That can be simply done by halting the computation in a state not belonging to F .
(:0)Rounded by the floor operation ⌊·⌋, with ⌊x⌋=max{m ∈Z | m ¶ x}.
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qp H1 goes right until ♯H1 = ♯Hq

H1 goes back to Â and every time H1 moves left, Hq moves one square right.

When H1 is at Â, Hp goes one square left.

We iterate this routine until Hp read Â, when it does, ♯Hq = q p .

q×p H1 goes right until ♯H1 = ♯Hq

H2 goes right until ♯H2 = ♯Hq , and every time H2 moves, Hp goes one square right.

When H2 reaches Hq , H1 goes one square left.

H2 goes left until it reaches Â, every time H2 moves, Hp goes one square right.

When H2 reaches Â, H1 goes one square left.

When H1 reaches Â, Hp is at distance q × p from Â.

⌊q/p⌋ H1 goes right until ♯H1 = ♯Hp , and every time H1 moves, Hq goes one square left.

When ♯H1 = ♯Hp , H2 moves one square right.

Then H1 goes left until it reaches Â, and every time H1 moves, Hq goes one square left.

When H1 reaches Â, H2 moves one square right.

We iterate this routine until Hq reaches Â. When it does, H2 is at distance ⌊q/p⌋ from Â.

Regarding q mod p, simply remark that q mod p = q − (⌊q/p⌋× q), and we saw we can perform any
of those operations, provided we have three extra heads to perform some intermediate computation.

About k and time: in the computations as developed above, up to three additional heads are
required and the FA is supposed to have sensing heads(::). The routines are linear in q , and they
sometimes “destroy” the value q or p, but we may simply add an additional head that will be used as a
marker to store the value. Q.E.D.

Classical results

To motivate the use of FA, we begin by giving some separation results, and then we study the links
between L, NL and FA.

Theorem 4.2.: (Separation results). For all k ¾ 1,

L(1DFA(k))(L(1DFA(k + 1))) (4.3)

L(1NFA(k))(L(1NFA(k + 1)) (4.4)

L(1DFA(k))(L(1NFA(2)) (4.5)

L(DFA(k))(L(DFA(k + 1)) (4.6)

L(NFA(k))(L(NFA(k + 1)) (4.7)

NL= L iff L(1NFA(2))⊆∪k¾1L(DFA(k)) (4.8)

(::)But we saw how to get rid of that feature with an additional head previously.
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Yao and Rivest [:37] proved eqs. (4.3) to (4.5), eqs. (4.6) and (4.7) are due to Monien [:08], and
the proof of eq. (4.8) may be found in Sudborough [:25, p. 75].

It is often taken for granted that the computation of FA is equivalent to log-space computation on
a Turing Machine. For instance, in [:08, p. 67]: “[i]t is wellknown that SPACE(log n ), the class of
languages acceptable within space bound log n, is identical with the class of languages acceptable by
two-way multihead automata”, and Holzer, Kutrib, and Malcher [75] gives as a reference for this
theorem Hartmanis [69], who introduced those “simple computing devices”. It is true that this paper
proves that “log n-tape bounded T.M.’s and k-head automata” are equivalent, but it is only a part of a
more complex proof. So we begin with a reformulation of the proof that a FA can simulate a log-space
bounded Turing Machine.

Theorem 4.2.2. For all Turing Machine M using a logarithmic amount of space, there exists k ′ ∈ N∗ and
M ′ ∈ FA(k ′) such that L(M ) =L(M ′).

Proof. We can assume without loss of generality that M has k working tapes, that its alphabet is {0,1},
that during the course of the computation, M won’t use more than log(n) cells on each tape, and that
all of its cells contains at the beginning of the computation the symbol 0. We will prove that M ′ accepts
the same language as M , with (k × 2) + 5 heads, H 1

b
, H 1

a
, . . . , H k

b
, H k

a
, Hr and four additional heads to

perform some intermediate computation without destroying the values, following Claim 5(:2).
Informally, Hr will act as the reading head of M , H i

b
will encode the bits at the left (“before”) of the

head on the ith tape, and H i
a
will encode the bits at the right (“after”) of this head. The bit currently

read is encoded, by convention, in H i
b
.

For instance, suppose the head on the ith tape is on the j th cell, and the first j bits on this tape
corresponds to the binary writing of the integer e . Then H i

b
will be at distance e from Â (i.e. ♯H i

b
= e ).

The remaining j − log(n) bits are encoded backward by an integer e ′, and H i
a
will be at distance e ′ from

Â (i.e. ♯H i
a
= e ′ ). The trick is that the least significant bit is in both case near the head of M ′.

The following table explains how to mimic the basic operation of M with M ′:

Turing Machine Finite Automata
Move reading head Moves Hr accordingly

Read the value under the head on the i th tape Compute ♯H i
b

mod 2

Write a 0 instead of a 1 (resp. a 1 instead of a 0) Move H i
b
one square right

under the head on the i th tape (resp. move H i
b
one square left)

Move the head on the i th tape right
Let ♯H i

b
be (2× ♯H i

b
)+ (♯H i

a
mod 2)

Let ♯H i
a
be ♯H i

a
/2

Move the head on the i th tape left
Let ♯H i

a
be (2× ♯H i

a
)+ (♯H i

b
mod 2)

Let ♯H i
b
be ♯H i

b
/2

All those intermediate computation may be written as routines, they all take time linear in |n|, even
without sensing heads. Those are not states, just the basic of the Turing Machine computation, how it
actually runs. By just replacing the reading / writing pattern by movements of heads, we can encode
the content of the tapes in the position of the heads.

(:2)A lot of optimization could be performed on this algorithm, of course, but this is not what is at stake here.
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Input tape

Read-only head

0 1 1 . . .. . .

r

Working tape

0 1 . . . 0 1. . .10 1. . . . . .

Read-write head

TM M

e in binary e ′ in binary

Â

Input tape

Ã

Hr

0 1 1 . . .. . .

r

H 1
b

01 1

e

. . .. . .

H 1
a

1 11

e ′

. . . . . .

FA M ′

For simplicity, we considered a log-space bounded Turing Machine M with only one working tape. Remember
that e ′ corresponds to the string at the right of the read-write head encoded backward, to lighten the simulation of
the writing. Of course, the working-tape should be of length logarithmic in the length of the input tape: the scale
is not correct!
The Finite Automata M ′ encodes all the informations within the distance between the beginning of the input tape
and the heads. We refer to Theorem 4.2.2 for a precise statement.

Figure 4.2: How to simulate Turing Machines with Finite Automata

Since M cannot write more than log(n) bits on each tape, it is obvious that the heads of M ′ does
not need to be at a distance greater than |n|. Moreover, it is quite obvious that L(M ) =L(M ′), and that
if M is (non-)deterministic, so is M ′.

Once we know the number of tapes and if the Turing Machine is deterministic or not, it is easy to
build a Boolean circuit family that takes as input (Q,Σ,δ, q0, g ) the description of M and that output
{S,A, k ,Â,Ã, s0, F ,σ} the description of M ′(:3). This can be done with constant-depth circuit. Q.E.D.

The Figure 4.2 should help the reader to get how this simulation works.

Corollary 4.2.3.

L⊆DFA NL⊆NFA

(:3)That would require to complete the proof to take care of the “special states” of M accept and reject, and to encode Q and δ
in binary, but this is just a matter of plain encoding.
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To obtain the converse inclusion is quite trivial: a Turing Machine simulates a FA(k) with k×log(n)
space by writing and updating the addresses of the k pointers, and that obviously take a logarithmic
amount of space in n to write an address on a string of size n. If the FA was deterministic, so is the
Turing Machine, otherwise they are both non-deterministic.

Theorem 4.2.4.

L=DFA NL=NFA

What is the exact meaning of this theorem? It is of interest to us because it gives an implicit
characterization of both L and NL: any program that can be written with this device will use a
logarithmic amount of space to be simulated on a Turing Machine, any language that can be recognized
belong to L or NL. It is also the reason why 2-ways FA are more studied that their 1-way variant.

It might not be evident at first glance, but Finite Automata in general and this model in partic-
ular shares a lot with descriptional complexity, as illustrated by an (other) excellent survey recently
published by Holzer and Kutrib [74].

4.3 Non-Deterministic Pointer Machines

All those previous modifications and theorems are classic, but now we will introduce some ad-hoc
modifications to build a machine model called Pointer Machines (PM). This device is suited to be
simulated by operators, it will help us to grasp the computational behaviour of observations. It was
introduced and refined in two previous works [::, :2] led with Thomas Seiller, but the proofs and
explanations below are far more advanced that what was proposed.

The main feature of this model is that it is universally non-deterministic, something that has been
foreseen by Girard:

“[One of the goal of the GoI program is] to define an abstract computer that should not be too
far from concrete ones. As we explained in [49], the geometrical analysis should essentially free
us from ad hoc time, i.e. artificial causalities, overcontrol, and this means that we are clearly
seeking a parallel computer.”

(Girard [48, p. 222])

The universally non-deterministic setting is clearly what we are looking for(:4): there is strictly no
sharing, no communication, in this setting, every computation goes wildly in its own direction, even if
the acceptance of the overall process (the nilpotency) is obtained by the cancellation of all the branches.

Pointers Machines (PMs) are designed to mimic the computational behaviour of operators: they do
not have the ability to write, their input tape is cyclic, and rejection is meaningful whereas acceptance is
the default behaviour. In a sense, the PMs are somehow the dual of FA, concerning acceptance, for a PM
rejects if one of its branch reaches reject. We will present and motivates the other peculiarities of this
model before defining them, and then we will prove that the similarities it shares with FA are “stronger”
than their differences. An alternate proof of the characterization of co-NL by Non-Deterministic
Pointer Machines may be found in appendix B. This proof is somehow more direct for it does not need

(:4)And yet we did not used the “Alternating Multihead Finite Automata” proposed by King [88], for we would have used not
enough of their features to justify their introduction.
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FA, but it cannot be extended to deterministic computation and does not provide the elements for a
better understanding that are exposed below.

Presentation

First, we list some peculiarities of any PM:

:. Its alphabet is {0,1,⋆} and ⋆ occurs only once.

2. It moves at most one pointer at every transition.

3. It does not have sensing heads.

4. It always stops(:5).

5. Its input is written on a circular input tape.

6. Acceptance and rejection are not states nor “labeled states”, but in the co-domain of the transition
function. They are, so to say, configurations.

7. Its transition relation is “total”, i.e. for every configuration that is not accept or reject, there is a
transition that can be applied.

8. The initialisation is quite different, because the value is read only when the pointer moves.

9. It suffices that one branch reaches reject to make the computation rejects.

We already showed that items : to 4 are reasonable modifications of FA, i.e. that provided we are not
concerned by the number of heads, we can add or remove those features. We prove in the following
(Claim 6, Claim 7) that item 5 and item 7 are not really important(:6), i.e. that we can for free add or
remove this feature to FA.

The introduction of another name is justified(:7) by item 7 and item 8: they would have needed to
strongly modify the definition of FA to be implemented. If we took into account that co-NL =NL,
item 9 could be implemented in the FA. We do not admit this theorem here, for it would mask one of
the specificity of our machine, that justifies to see it as a complementary of FA and ease the gateways
with operators.

We immediately prove that item 5 is not a big change:

Claim 6: The input tape of a FA can be circular.

Proof. Let M ∈ FA(k) whose input w is written as ⋆w on a circular input tape i.e. that M can with two
transitions goes from the last (resp. first) to the first (resp. last) bit of w. Suppose moreover that M
moves only one head at a time.

(:5)A property we called acyclicity when applied to NDPMs in our works with Thomas Seiller.
(:6)The item 7 may be seen as the reverse operation of minimization cf. [76, p. :59, section 4.4.3].
(:7)Beside, we wanted to keep the original naming we developed with Tomas Seiller.
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To simulate M , we define M ′ ∈ FA(k), with Â≫ ⋆w⋆≪Ã written on its (flat) input tape. The
transition function σ ′ of M ′ is the same as the transition function σ of M , except that for all state s ∈ S ,
for all 1¶ i ¶ k, we add:

(s, (∗, . . . ,∗,≫,∗, . . . ,∗))σ ′(send
i

, (0, . . . , 0,+1,0, . . . , 0)

(send
i

, (∗, . . . ,∗,[not Ã],∗, . . . ,∗))σ ′(send
i

, (0, . . . , 0,+1,0, . . . , 0))

(send
i

, (∗, . . . ,∗,Ã,∗, . . . ,∗))σ ′(s, (0, . . . , 0,−1,0, . . . , 0)

(s, (∗, . . . ,∗,≪,∗, . . . ,∗))σ ′(sbeg
i

, 0, . . . , 0,−1,0, . . . , 0)

(sbeg
i

, (∗, . . . ,∗,[not Â],∗, . . . ,∗))σ ′(sbeg
i

, 0, . . . , 0,−1,0, . . . , 0)

(sbeg
i

, (∗, . . . ,∗,Â,∗, . . . ,∗))σ ′(s, 0, . . . , 0, 1, 0, . . . , 0)

where the instructions depends on, and give instructions to the ith head of M ′. Those two routines
permits to “freeze” the computation when a head is told to “use the ciclicity of the input tape”. We
move it to the other side of the tape and then resume the computation. Q.E.D.

Claim 7: We can take F the set of accepting states to be a singleton, and make that every branch of the
computation halt in that state or in another predefined state.

Proof. Let M be a FA that always stop, we defined M ′ with two additional states accept and reject. For
every state s ∈ S and every configuration (s, (a1, . . . ,ak )) such that σ(s, (a1, . . . ,ak )) = ;, we have in σ

′

(s, (a1, . . . ,ak ))σ
′




(accept, (0, . . . , 0)) if s ∈ F

(reject, (0, . . . , 0)) elsewhere

(4.9)

Q.E.D.

This is an important claim, for it shows how to get closer to a model of computation similar to
the Turing Machine, where the computation ends when we reach accept or reject. By the way, we can
notice that the FA M ′ we defined respects item 7, i.e. its transition relation is “total”.

A Pointer Machine is given by a set of pointers that can move back and forth on the input tape
and read (but not write) the values it contains, together with a set of states. For 1 ¶ i ¶ p, given a
pointer pi , only one of three different instructions can be performed at each step: pi+, i.e. “move one
step forward”, pi−, i.e. “move one step backward” and εi , i.e. “do not move”. In the following, we
let I{1,..., p} be the set of instructions {pi+, pi−,εi | i ∈ {1, . . . , p}}. We will denote by ♯pi the distance
(clockwise) between ⋆ and the current position of pi .

Definition 4.3.:. A non-deterministic pointer machine (NPM) with p ∈ N∗ pointers is a couple
M = {Q,→} where Q is the set of states; we always take the alphabet Σ to be {0,1,⋆} and the set of
instructions to be I{1,..., p}; and→⊆ (Σ

p×Q)×((I p

{1,..., p}
×Q)∪{accept, reject}) is the transition relation

and it is total. We write NPM(p) the set of non-deterministic pointer machines with p pointers.

We define a pseudo-configuration c of M ∈ NPM(p) as a “partial snapshot”: c ∈ Σp ×Q contains
the last values read by the p pointers and the current state, but does not contain the addresses of the p
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pointers. The set of pseudo-configurations of a machine M is written CM and we should remark that it
corresponds to the domain of the transition relation. If→ is functional, M is a deterministic pointer
machine, and we write DPM(p) the set of deterministic pointer machines with p pointers. We let
PM(p) =DPM(p)∪NPM(p).

Let M ∈ PM(p), s ∈ CM and n ∈ N an input. We define Ms (n) as M with n encoded as a string
on its circular input tape (as ⋆a1 . . .ak for a1 . . .ak the binary encoding of n and ak+1 = a0 = ⋆) starting
in the initial pseudo-configuration s with ♯pi = 0 for all 1 ¶ i ¶ p (that is, the pointers starts on
⋆). Each of them is associated to a memory slot (or register) that store the values it reads, but (recall
item 8) as the pointers did not moved yet, no value has been read, and the slots are empty. The initial
pseudo-configuration s gives the p values for the p registers and the initial state s.

Remark that the initial pseudo-configuration s does not initializes those p registers necessarily in
a faithful way (it may not reflect the values contained at ♯pi ). That is to say that the first transition
will rely on the values enclosed in the pseudo-configuration, and not on the values the pointer actually
points at (that are always, by definition, ⋆). This complex definition will be justified in the following
section.

The entry n is accepted (resp. rejected) by M with initial pseudo-configuration s ∈ CM if after a
finite number of transitions every branch of Ms (n) reaches accept (resp. at least a branch of M reaches
reject). We say that Ms (n) halts if it accepts or rejects n and that M decides a set S if there exists a
pseudo-configuration s ∈CM such that Ms (n) accepts if and only if n ∈ S.

We write as usual L(M ) the language of a PM M , and DPM (resp. NPM) the set of languages
decided by ∪p∈N∗DPM(p) (resp. ∪p∈N∗NPM(p)).

A modification of Finite Automata

One could quite simply prove that PM are just reasonable re-arranging of the presentation of FA “of
a special kind”. The minor modifications (among which the initial pseudo-configuration, the fact that
accept and reject are not in the set of the states) are just red tape and does not enhance nor lower the
power of computation of FA. What is really at stake, here, is to take into account that co-NL =NL

or not. If we do, then it is obvious that PM can recognise any language in NL, if we don’t, we should
rather see them as some kind of complementary of FA. We prefer not to take as granted this result for
the computation of operator algebra we are going to mimic should really be understood as universally
non-deterministic.

Proposition 4.3.: (Simulation of a FA by a PM). For all k ∈ N∗, there exists M ′ ∈ PM(k + 2) such that
for all M ∈NFA(k), co−L(M ) =L(M ′).

Proof. We can assume that M always halts, does not have sensing heads and has for alphabet {0,1}. The
construction of M ′ is really simple: given w ∈ {0,1}∗ an input, M ′ takes as input the description of
M as a list S Â w Ã σs0F . Then M ′ is initialized by placing k pointers on Â, a pointer on s0 and the
last one on the first symbol of σ . This last pointer scans σ to find a transition that can be applied. To
simulate a transition, M ′ moves the k first pointers according to σ and the k + 1th pointer is moved to
a new state according to σ .

When a transition that may be applied is found, a non-deterministic transition takes place: on
one way M ′ simulates this first transition, on the other way M ′ keeps scanning σ to look for another
transition to apply. When no transition may be applied —and it always happens, as M always halts— ,
M ′ checks if the current state belongs to S: if it does, M ′ rejects, elsewhere M ′ accepts.
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It can be easily verified that M ′ accepts iff M rejects, that k + 2 pointers are enough to perform
this simulation, and that if M is deterministic, so is M ′, because there is no need to look for another
transition to apply. Note moreover that M ′ always halts, as M does. Q.E.D.

Corollary 4.3.2.

L⊆DPM co-NL⊆NPM

We do not prove the reverse inclusion by proving that FA can simulate PM, even if that would not
be difficult. Instead, we will prove that the model we defined in the previous chapter, operators, can
simulate PM: together with the results of the previous chapter, that gives us the reverse inclusion.

4.4 Simulation of Pointer Machines by Operator Algebra

This section recalls the results previously obtained [::] and the enhancements that were proposed
later [:2]. We tried to use the space at our disposal to ease the comprehension of this simulation: we
will recall the framework we are working with, give a general idea of the simulation, introduce some
notations and then encode the basic operations of a PM. Our efforts to define properly the basic
mechanisms will give us the main result of this section almost for free, but a last subsection will be
devoted to the careful analysis of the deterministic case.

Our aim in this section is to prove (Lemma 4.4.:) that for any PM M and initial pseudo-configu-
ration s ∈ CM , there exists an observation M •

s
∈M6(G)⊗QM such that for all Nn ∈M6(N0) a binary

representation of n, Ms (n) accepts if and only if M •
s
(Nn ⊗ IdQM

) is nilpotent. We will prove moreover
that M •

s
∈ P+, and that if M is deterministic, then M •

s
∈ P+,1, i.e. that the encoding of DPMs satisfies a

particular property: their 1-norm is less or equal to 1.
We will proceed carefully, for the encoding is a bit unintuitive, mainly because the computation as

simulated by operators is widely parallel.

“[O]ur modelisation is without global external time, i.e. without any kind of synchronisation.
Due to this lack of synchronisation, some ‘actions at distance’ familiar to the syntax cannot
be performed [. . .]. We have therefore gained a new freedom w.r.t. time, and this should be
essential in view of parallel execution.”

(Girard [48, p. 223])

This freedom regarding time is for the moment hard to capture, and that is one of the reasons we
are going to simulate non-deterministic log-space computation, in a highly parallel way.

Recalling the framework

The setting is as we left it in Chapter 3: we take the binary representation of integers Nn as operators
in M6(N0) (Definition 3.4.:), we consider only the normative pair (N0,G) as defined in Corollary 3.4.4
and we take the sets of observations P¾0, P+ and P+,1 defined in Definition 3.4.7.
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Intuitively, the encoding of M = {Q,→} a PM with p pointers and an initial pseudo-configuration
s will be an observation M •

s
, which is an operator of M6(G)⊗QM , where the algebra of states(:8) QM is

QM =M6(C)⊗M6(C)⊗ · · · ⊗M6(C)︸ ︷︷ ︸
p times

⊗Mq ′ (C)

This algebra QM represents a set of pseudo-states, i.e. it will encode the memory slots that store the last
p values read by the pointers, and the extended set of states Q↑. We extend the set of states Q of M with
some intermediate states needed to encode the basic operations of M properly. We let Card(Q↑) = q ′

and will call an extended pseudo-configuration an element of {0,1,⋆}p ×Q↑.
The intuition is that the j th copy of M6(C) represents the memory slot that contains the last value

read by the j th pointer. We will therefore distinguish for each copy of M6(C) a basis (0o, 0i , 1o, 1i , s , e)
corresponding to the different values that a pointer can read(:9). To sum up, the distinguished basis of
QM considered will be denoted by tuples (a1, . . . ,ap ,q). Notice that such a tuple naturally corresponds
to an extended pseudo-configuration.

A crucial remark should be made to explain properly how the computation will be performed.
Recall that the input of M •

s
will be Nn ⊗ IdQM

, i.e. the tensoring of Nn with the unit of the algebra of
states. For the product M •

s
(Nn⊗ IdQM

) to be nilpotent means to be nilpotent for any basis of QM , that is,
for any possible initial pseudo-configuration.

Stated differently, the integer is considered at the same time in every possible pseudo-configuration.
As a result, the computation represented by the sequence

M •
s
(Nn ⊗ IdQM

), (M •
s
(Nn ⊗ IdQM

))2, . . .

somehow simulates for all c ∈ CM the computations of Mc (n) simultaneously. Of course, this applies
only for the initialisation: once the first pseudo-configuration is fixed, the computation is led according
to it. But among all the computations started in parallel, only one effectively has for initial pseudo-
configuration s .

The representation of reject cannot be done without considering an initial pseudo-configuration,
because if the computation starts with the “wrong” pseudo-configuration, we will under certain circum-
stance start it again with the “good” initial pseudo-configuration, i.e. s . This will be explained when
we will encode rejection.

Encoding a machine

In fact, our operator could be conceived as having a single pointer, and p registers. This explains
the “one movement at a time” motto, our single pointer will travel a lot, but this is algorithmically
equivalent to having p pointers. Girard [59, p. 262] refers to this oddity as if we had at our disposal a
“thumb” and several fingers. Only the thumb can move, but it can exchange its position with any other
finger.

We know how to access the values of Nn thanks to projections, but we have to handle two difficulties:
that every other bit is redundant, and that the instruction will depend on the previous projection, “go

(:8)That should rather be called the algebra of pseudo-states, but we wanted to stay consistent with the notation of Chapter 3, and,
besides, the state will also be encoded in it.

(:9)As Thomas Seiller points it, we should rather consider those values dynamically: our observation will always be on the edge
of reading the next value, so reading an occurrence of 0o rather corresponds to reading the input of the value connected to
this output of a 0.
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deeper” or “lift back to the surface”. What we mean is that changing the direction of the movement
will not be trivial: we will handle differently a movement from left to right on the string (a “forward
move”) and a movement from right to left (a “backward move”), and furthermore we will handle them
differently depending on the previous orientation of the movement. Decomposing this movement and
handling the different case will require some intermediate steps and extended states.

We will encode the transition function(20) of M as if it were a function between CM and CM ∪
{accept,reject}. This could seem really surprising, for establishing the pseudo-configuration c ′ reached
after applying the transition → from a pseudo-configuration c needs to take care of the actual input
and of the positions of the pointers(2:). Here the actual position of the pointers and the reading of the
input will be handled differently: the actual operation of reading the input and moving the pointers
will be handled directly within the transition, i.e. c ′ will be reached iff the values read correspond
to a “legal move” from c to c ′. So to say, we will skip the “instruction part” to go directly to the
pseudo-configuration resulting from the movement of the pointer and the reading of the new value(22).

So we will encode each couple (c , c ′) of pseudo-configuration such that “nothing in → prevents
c ′ to be reached from c” by an operator φc ,c ′ . How can we know that c → c ′ is possible without
knowing nor the input nor the position of the heads? Well, every time there is c → (i1, . . . , ip ,q’) for
i instructions i1, . . . , ip ∈ I{1,..., p} , we consider that every pseudo-configuration c ′ whose state is q’ can
be reached from c . The following will explain how those pseudo-configurations are sorted between the
one that are actually reachable considered an input and the one that are not.

All the possibles transitions from the pseudo-configuration c are then encoded by
∑
c→c ′

φc ,c ′

and the encoding of the transition relation will then correspond to the sum:

M •
s
=
∑

c∈CM

∑
c ′ s.t. c→c ′

φc ,c ′ + rejects (4.:0)

As we may see, M •
s
is entirely defined by the encoding of the transition function of M , decomposed in

all its possible applications. Every transition from every pseudo-configuration will be encoded in the
sum, and a built-in way of assuring that it corresponds to the actual position of the pointers and the
input will discriminate between the transitions that are actually possible and the one that aren’t.

In fact the instructions to move a pointer will be performed by the selection of the pointer, a
projection onto the values that may have been read, the storing of the value read, the deactivation of
the pointer and the changing of state.

Notations

Before describing the encoding in details, we need to introduce several notations that will be used for
the definition of the φc ,c ′ operators. The von Neumann algebra M6(G)⊗QM will be considered as
M6(C)⊗G⊗QM and we will define the operators needed to encode the basic operation of M as tensor
products u ⊗ v ⊗w, where u ∈M6(C), v ∈G⊆R and w ∈QM . We will explain the main patterns of
those three operators.
(20)We continue for the sake of clarity to speak of → as if it was a function, but it is of course eventually a relation, in the

non-deterministic case.
(2:)Or, equivalently, of the position of our “traveler” and of the values of the registers.
(22)For M move only one pointer at a time.
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Some of these definitions are tiresome, because the values of Nn are encoded in the pattern we
defined in Chapter 3, and so every bit comes in a “input” and “output” version. That is to say, if we re-
member Figure 3.4 and more generally Section 3.3, that ⋆ak . . .a1⋆ is in fact encoded as eai1ao1 . . .ai k aok s .
Moreover, we need to cope(23) with the “last direction of the pointer” to adapt cleverly the projections.

The operator u ∈M6(C) will alternatively read a value, and enforce the direction. We define the
projections π� of M6(C) for � ∈ {0i , 0o, 1i , 1o, e , s} as the projections on the subspace induced by the
basis element �. We will sometimes denote e (resp. s ) by ⋆i (resp. ⋆o ). The reading part will be
essentially handled by those projections.

The direction is managed by

:. πin =π0i +π1i +πe and πout =π0o +π1o +πs . They are such that πinπout =πoutπin = 0.

2. [in→ out] and [out→ in] are such that

[in→ out][out→ in] =πout [out→ in][in→ out] =πin
[out→ in]πout = [out→ in] [in→ out]πin = [in→ out]
[out→ in]πout = 0 [in→ out]πin = 0

They are “the memory of the direction of the previous movement”, but one should notice that they
are not projections, i.e. [out→ in]2 = [in→ out]2 = 0.

We can express those operators as matrices, to ease the checking of the previous equalities:

πin ≡




1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0




[in→ out]≡




0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0




πout ≡




0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1




[out→ in]≡




0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0




The operator v ∈G⊂R will in fact always be a permutation. We will only need in the following
τi , j , the transposition exchanging the integers i and j (24).

The last operator w ∈QM will encode an updating in the registers and a changing of state, i.e. the
evolution from an extended pseudo-configuration c = (a1, . . . ,ap ,q) to an extended pseudo-configura-
tion c ′ = (a′

1
, . . . ,a′

p
,q′). We define the partial isometry:

(c→ c ′) = (a1→ a′
1
)⊗ · · ·⊗ (ap → a′

p
)⊗ (q→ q′)

(23)This comes from a concern regarding the norm of the operators we are going to define, something we did not bother with in
our first work [::, p. :8]. In this work, [in] and [out] directly encodes the movement, regardless of the orientation of the
previous movement.

(24)To be more precise, τi , j is the unitary induced by the transposition
�

i j
�
.
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where (v→ v ′), for v, v ′ ∈ {0i , 0o, 1i , 1o, e , s} or v, v ′ ∈Q↑, is simply defined as:

(v→ v ′) :=

v


0 . . . 0 . . . 0
...

. . .
... . .

. ...

0 . . . 1 . . . 0
... . .

. ...
. . .

...

0 . . . 0 . . . 0




v ′

We should remark that for all c , c ′, c” ∈CM ,

(c→ c ′)c”=





c ′ if c ′ = c”

0 elsewhere

(4.::)

A transition will always impact on at most one value stored in the registers and on the state q. Suppose
it acts on the the j th register, we define

([a j → a′
j
] j ,q→ q’)

as

(Id, . . . , (a j → a′
j
), . . . , Id,q→ q’)

It is of course possible to encode a transition that let the state unchanged: just let q→ q′ be Id if q= q′.
In practise, we won’t need to be specific about a j and a′

j
at the same time. All that will matter will

be the value stored or the value we are going to store in the j th register, for we will decompose the
action of reading the value and the action of storing it in two steps(25).

We will use two shorthands to encode the actions on the j th register. For ∗ ∈ {0,1,⋆} and d ∈ {o, i},
we define

[→∗d] j =
∑

�∈{0i ,0o,1i ,1o,e ,s}

[�→∗d] j

[∗d →] j =
∑

�∈{0i ,0o,1i ,1o,e ,s}

[∗d → �] j

At last, we will sometimes let the ∗ of the previous equation be a subset of {0,1,⋆}.
This somehow complicated way of writing the operators could be explained with two examples:

[{0i , 1i ,⋆i}→] j should be read as “no matter what the previous value stored in the j th slot was, we
just make sure that it came from a forward move, i.e. it is endowed with a i”.

[→ 0i] j will simply be “store a 0i in the j th slot, no matter what the previous stored value was”.

The left hand side of the arrow tells us something about the value a j of c , the right hand side of the
arrow tells us something about the value a′

j
of c ′.

We are now ready to define the operators needed to encode the basic operations of the PM. accep-
tance will be especially easy, but basic movement and rejections are a more complex sum of operators
defined in Figure 4.3 and Figure 4.4.
(25)That will explain the introduction of additional states to handle this intermediate step.
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bfc
j ,q’
= πout ⊗ τ0, j ⊗ ([{0o, 1o,⋆o}→] j ,q→movq,q’

j
)

ffc
j ,q’
= [in→ out] ⊗ τ0, j ⊗ ([{0i , 1i ,⋆i}→] j ,q→movq,q’

j
)

fbc
j ,q’
= πin ⊗ τ0, j ⊗ ([{0i , 1i ,⋆i}→] j ,q→movq,q’

j
)

bbc
j ,q’
= [out→ in] ⊗ τ0, j ⊗ ([{0o, 1o,⋆o}→] j ,q→movq,q’

j
)

frecc
j ,q’
=

∑
∗∈{0,1,⋆}

�
π∗i ⊗ τ0, j ⊗ ([→∗i] j ,movq,q’

j
→ q’)

�

brecc
j ,q’
=

∑
∗∈{0,1,⋆}

�
π∗o ⊗ τ0, j ⊗ ([→∗o] j ,movq,q’

j
→ q’)

�

bfc
j ,q’

encodes “if the previous movement was a backward move, change the direction, activate the j th pointer,
erase the j th register”.
ffc

j ,q’
encodes the same operation in the case where the previous movement was already a forward move.

fbc
j ,q’

and bbc
j ,q’

encodes the same couple of operations for a backward movement.
frecc

j ,q’
is made of a sum over ∗ ∈ {0,1,⋆}, and every of its member encode “put the j th pointer back to its position,

store ∗ in the j th register and adopt state q’.” brecc
j ,q’

encodes the same operation for the other direction.

Figure 4.3: The operators encoding the forward and backward move instructions

Basic operations

From now on, we consider given M a PM with p pointers and c = (a1, . . . ,ap ,q) ∈ CM a pseudo-
configuration. An initial pseudo-configuration s ∈ CM will be needed to encode rejection. There are
only three cases in M : either c→ c ′ for c ′ a pseudo-configuration (but remark that c ′ is not unique if M

is non-deterministic), c→ accept, or c→ reject. We will define the encoding relatively to those three
cases.

Moving a pointer, reading a value and changing the state Suppose that M , in pseudo-configu-
ration c = (a1, . . . ,ap ,q), moves the j th pointer right, reads the value a′

j
stored at ♯p j , updates the

j th memory slot in consequence and changes the state to q′. The new pseudo-configuration is then
c ′ = (a1, . . . ,a j−1,a′

j
,a j+1, . . . ,ap ,q′).

There are two cases: either the last movement of the j th pointer was a forward move or it was a
backward move. The case we are dealing with is obtained from the value stored in the j th memory slot:
if the value is 0i , 1i or ⋆i , then the last move was a forward move, if the value is 0o, 1o or ⋆o, the last
move was a backward move. In the first case, the operator ffc

j ,q’
will be applied, and in the second the

bfc
j ,q’

operator will be applied. Remark that we have to make the sum of those two operators, for we
cannot foresee what was the direction of the last movement. The fact that the “wrong case” gets to 0

should be evident from the definitions of [in→ out], [out→ in], πin and πout.
Both these operators somehow activate the j th pointer by using the transposition τ0, j and prepare

the reading of the representation of the integer. This representation will then give the value of the next
(when moving forward) digit of the input. The frecc

j ,q’
or the brecc

j ,q’
operator is then applied in order

to simultaneously update the value of the j th memory slot and deactivate the j th pointer. Remark that
this careful decomposition requires the introduction of a new (i.e. extended) state movq,q’

j
.

To sum up, we let

forwardc
j ,q’
= bfc

j ,q’
+ffc

j ,q’
+ frecc

j ,q’
backwardc

j ,q’
= fbc

j ,q’
+ bbc

j ,q’
+ brecc

j ,q’
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We insist one last time: this sum is here to cope with all the possible situations regarding the
orientation of the previous movement of the j th pointer and the value actually read. All the “incorrect
situations” will get cancelled and only the “legal transition between two pseudo-configurations ” will
be applied.

In the following, we will forget about the subscripts and superscripts of these operators and write ff,
fb, bf, bb, and rec for bref or frec.

This —by the way— justifies once again the “one movement at every transition” (item 2), for we
apply only one permutation at every transition.

Accept The case of acceptance is especially easy: we want to stop the computation, so every transition
(a1, . . . ,an ,q)→ accept will be encoded by 0.

This justifies the item 7 of the previous section: we need the transition function to be always defined.
If there is a pseudo-configuration h such that h → ;, this will be encoded by the operators as h → 0,
hence the default behaviour is to accept when the function is not defined.

So if the computation of M does not lead to acceptance, it is because M rejects (thanks to the
“always stops” item 4). On the other hand, if the computation of M •

s
halts, it is in any case because it

accepts, so we want to mimic the rejection by a loop. An attempt to define a naive “loop projection”
fails: to illustrate it, we define an observation rejectnaive ∈M6(C)⊗G⊗QM that does nothing but reject,
thanks to a yet-to-be-defined “loop projection” πreject:

rejectnaive = IdM6(C)
⊗ Id

R
⊗πreject

It succeeds to make the computation loops, as for all d ∈N and Nn :

((Nn ⊗ IdQM
)rejectnaive)

d = ((Nn ⊗ Id
R
⊗ IdQM

) IdM6(C)
⊗ Id

R
⊗πreject)

d

= (Nn ⊗πreject)
d

=N d
n
⊗πreject

And we know that Nn is not nilpotent, so neither is (Nn ⊗ Id
R
)rejectnaive: this attempt succeeds in

creating a loop.
On the other hand, as the encoding of→ is built as a sum of the basic operations, πreject appears in

it, and M •
s
(Nn ⊗ IdQM

) cannot be nilpotent. So this solution is excessive and we have to find another
way to be sure that the operator will loop if and only if the operator that simulates the reject is reached.
To do so, we build an operator that simulates the reinitialisation of M in pseudo-configuration s with
its p pointers on ⋆ when reached.

It comes with another advantage: remember that the computation of M •
s
started in all possible

configurations, not only in s , so in all the other cases, if reject was reached after starting the computation
with a pseudo-configuration c ′ 6= s , we enforce the computation of the machine on s . As a consequence,
if Ms (n) accepts, the rejection of M •

s
(Nn ⊗ IdQM

) that corresponds to a computation on c ′ will be
temporary: once rejection attained, the computation restarts with pseudo-configuration s and will
therefore halts accepting. The fact that c ′ 6= s could lead to acceptance is not relevant: as we said
(item 9), “acceptance is the default behaviour”, what really matters is rejection.

Reject Rejection should lead to the creation of a loop, in fact it is encoded by “put the p pointers
back to ⋆ and starts the computation again with initial pseudo-configuration s”. This is why we needed
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Remember we are given an initial pseudo-configuration s = (a1, . . . ,an ,q0).

rmi = Id ⊗ τ0,i ⊗ (backi →mov-backi )
rr0

i
= π0o ⊗ τ0,i ⊗ ([→ 0o]i ,mov-backi → backi )

rr1
i
= π1o ⊗ τ0,i ⊗ ([→ 1o]i ,mov-backi → backi )

rci =

¨
π⋆ ⊗ τ0,i ⊗ ([→ ai ]i ,mov-backi → backi+1) (1¶ i < p)
π⋆ ⊗ τ0, p ⊗ ([→ ap]p ,mov-backp → q0) (i = p)

rmi encodes “if you are in state backi , no matter what you read, activate the i th pointer and go to statemov-backi”.
rr0

i
(resp. rr1

i
) encodes “if you read a 0 (resp. a 1), deactivates the ith pointer, store the value you read and go to

state backi”.
rci encodes “If you read ⋆, deactivates the i th pointer, put the i th value of the initial pseudo-configuration s in the
i th register, and change state to mov-backi+1. If you were dealing with the last pointer, go to the state q0 provided
by the initial pseudo-configuration.”

Figure 4.4: The operators encoding rejection

the initial pseudo-configuration s to be a parameter, for the rejects operator will depend of it. We also
need two extended states, backi and mov-backi for each i = 1, . . . , p.

The transitions of the form (a1, . . . ,an ,q)→ reject are encoded by the operator that represents the
“transition” (a1, . . . ,an ,q)→ (a1, . . . ,an ,back1).

We can then define

rejects =
p∑

i=1

(rmi + rr0
i
+ rr1

i
+ rci )

How does this operator encodes a reinitialization of M ? The operator rmi initializes the process, rr
0
i

and rr1
i
encodes “as long as the ith pointer is reading a 0 or a 1, keep moving it backward”. We are

forced to alternate between the extended states backi and mov-backi to handle the redundancy of the
input. When ⋆ is read by the i th pointer, the actual value of the initial pseudo-configuration s is stored
in the corresponding register and rci starts this process for the i + 1th pointer.

Lemma 4.4.:. For all k ∈ N, for all M ∈ NPM(k), for all s ∈ CM an initial pseudo-configuration, there
exists an operator M •

s
such that for all n ∈ N and every binary representation Nn ∈ M6(N0) of n, Ms (n)

accepts iff M •
s
(Nn ⊗ IdQM

) is nilpotent.

Proof. We obtain M •
s
thanks to the encoding we just defined. We can remark that M •

s
∈ P+, and as we

are acting in a normative pair, it does not matter which representation Nn of n we pick. So let us fix
n ∈N and Nn one of its binary representation.

Considering the representation of the rejection it is clear that if a branch of Ms (n) rejects, the
operator M •

s
(Nn ⊗ IdQM

) will not be nilpotent, so we just have to prove that if Ms (n) accepts then
M •

s
(Nn ⊗ IdQM

) is nilpotent.
We prove its reciprocal: suppose M •

s
(Nn ⊗ IdQM

) is not nilpotent. In this product Nn is given to the
operator M •

s
that starts the simulation of the computation of M with input n in every possible initial

pseudo-configuration at the same time. Since the encoding of M is built with respect to s , we know
that there exists a j such that M •

s
(Nn ⊗ IdQM

)π j is the simulation of Ms (n), but the computation takes
place in the other projections too: for i 6= j it is possible that M •

s
(Nn ⊗ IdQM

)πi loops where for a d

(M •
s
(Nn ⊗ IdQM

))dπ j = 0.
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We can handle this behaviour because for all c ∈CM , Ms always halts. This is due to our “built-in
clock”, that insures us that M will always stops, no matter what the initial configuration considered
is. So if M •

s
(Nn ⊗ IdQM

) is not nilpotent it is because at some point the reject state has been reached.
After this state is reached (let’s say after r ∈N iterations) we know that M •

s
(Nn ⊗ IdQM

)rπi is exactly
the simulation of Ms (n). If it loops again, it truly means that Ms (n) rejects.

So we just proved that M •
s
(Nn ⊗ IdQM

) is not nilpotent iff (M •
s
(Nn ⊗ IdQM

))dπ j 6= 0 for all d ∈ N.
But it is clear that in this case Ms (n) rejects. Q.E.D.

Proposition 4.4.2.

co-NL⊆ {P+} ⊆ {P¾0}

Proof. Even if the previous simulation may be hard to grasp, to output the description of M •
s
form

M = {→,Q} ∈ NPM(p) is AC0: all we have to do is to list all the 3p × Card(Q) possible pseudo-
configurations of M , and to output φc ,c ′ for every of them. The pseudo-configuration c ′ is simply
obtained by looking in→ if there is a transition from c to a set of instructions (no matter what they
are) endowed with the state of c ′. Outputting the members of the sum can obviously be done in parallel,
for it relies on simple routines. The rejects operator is simply a constant factor in the processing.

Thus, the previous proposition tells us that NPM⊆ {P+} since the representation M •
s
of a couple

(M , s ), where M is an NPM and s ∈CM , is obviously in P+. Moreover, since P+ ⊂ P¾0, we have {P+} ⊆
{P¾0}. The Corollary 4.3.2 gives us the last element to conclude, i.e. that co-NL⊆NPM. Q.E.D.

The deterministic case

This subsection is dedicated to the somehow tedious verification that if M is a DPM, then M •
s
will be

of 1-norm (Definition 3.4.6) less than 1. This will conclude this chapter by proving that operators can
also mimic deterministic computation.

Proposition 4.4.3. Let A,B be operators such that AB∗ = B∗A= 0. Then:

‖A+B‖=max{‖A‖,‖B‖}

Proof. Actually, this proposition is proved byMaher [99, Theorem :.7 (b)], but stated differently, with
conditions on ranges(26). It is proven that if Ran(A)⊥Ran(B) and Ran(A∗)⊥Ran(B∗), then ‖A+ B‖ =
max{‖A‖,‖B‖}.

To obtain the result as we stated it, simply notice that AB∗ = 0 implies Ran(B∗) ⊆ ker(A) =
(Ran(A∗))⊥ so Ran(B∗) ⊥ Ran(A∗). Similarly, B∗A = 0 implies that Ran(A) ⊆ ker(B∗) = (Ran(B))⊥

so Ran(A)⊥ Ran(B). Thus, if AB∗ = B∗A= 0, we have Ran(A)⊥ Ran(B) and Ran(A∗)⊥ Ran(B∗) and
one can then apply the theorem cited. Q.E.D.

Corollary 4.4.4. The operators ff+ bf, rec, bb+ fb, and rr0
i
+ rr1

i
+ rci (i fixed) are of norm 1.

Proof. The proof is in fact reduced to a simple verification, by looking at the projections in the last
algebra of the operators we defined, recalling that πaπb = 0 when a 6= b and using the previous
proposition.

(26)The range being the image or co-domain, i.e. Ran(B) = {x | ∃yBy = x}. The kernel is defined as ker(A) = {x | Ax = 0}.
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Sinceπoutπin =πinπout = 0, we have that bf×ff∗ and ff∗×bf are equal to 0. Thus, using the preceding
proposition, we have ‖ff+ bf‖=max{‖bf‖,‖ff‖}= 1. A similar argument shows that ‖fb+ bb‖= 1.

Clearly, as πaiπb i =πaoπb o = 0 for a 6= b , we deduce by Proposition 4.4.3 that ‖rec‖= 1.
Concerning rr0

i
+ rr1

i
+ rci , we fix 1 ¶ i ¶ p and notice that rci × (rr

0
i
)∗ = 0 as a consequence of

πmov-backi
×πbacki

= 0. Conversely, (rr0
i
)∗× rci = 0 as a consequence of(27) πbacki+1

×πmov-backi
= 0. A

similar argument shows that rci×(rr
1
i
)∗ = 0 and (rr1

i
)∗×rci = 0. Moreover, we know that (rr0

i
)∗×rr1

i
= 0

and rr1
i
× (rr0

i
)∗ = 0 by just looking at the first term of the tensor in their definition. By an iterated use

of Proposition 4.4.3, we get that ‖rr0
i
+ rr1

i
+ rci‖=max{‖rr0

i
‖,‖rr1

i
‖,‖rci‖}= 1. Q.E.D.

We are now in possession of all the material needed to study the 1-norm of the operator obtained
by encoding of a deterministic pointer machine.

Proposition 4.4.5. Let M be a DPM, s an initial configuration and M •
s
its encoding, then ‖M •

s
‖1 ¶ 1.

Proof. Since we are working with deterministic machines, the transition relation is functional: for each
c ∈ CM there is exactly one t ∈ CM —as the transition function is “total”— such that c → t . Thus,
Equation 4.:0 becomes in this setting:

M •
s
=
∑

c∈CM

φc ,t + rejects

Since M •
s
is isomorphic to an element of MN (M6(R)), we will now compute ‖M •

s
‖N

1
. We first show

that this matrix has at most one non-null coefficient in each column. Then we will use the fact that
these coefficients are of norm at most 1.

To prove this we introduce the set P = {1, . . . , 6}p ×Q↑ of extended pseudo-configurations, where
1, . . . , 6 are a shorthand for 0i , . . . ,⋆o. This set is a basis of the algebra of pseudo-states, and we write
M •

s
= (a[c , c ′])c ,c ′∈P . This way, the 1-norm of M •

c
is defined as

‖M •
s
‖N

1
=max

c ′∈P

�∑
c∈P

‖a[c , c ′]‖
	

Let c = (a1, . . . ,an ,q) be a (non-extended) pseudo-configuration. If c is a pseudo-configuration of the
machine (i.e. q is an element of Q ), then there is at most one pseudo-configuration t such that c → t .
This atomic transition can be:

Accept The operator φc ,t is equal to 0 and the column is empty.

Reject The column corresponding to c contains only the operator (q → back1) that encodes the
transition c→ (a1, . . . ,an ,back1). And the norm of this operator is equal to 1.

Move forward the j th pointer and change state to q’ The only extended pseudo-configurations in-
troduced by the encoding is c̃ = (a1, . . . ,an ,movq,q’

j
). The column corresponding to c (resp. c̃ ) contains

the operator ff+ bf (resp. rec), which is of norm 1 by Corollary 4.4.4.

Move backwards. . . This case is similar to the previous one.

(27)When i = p, we consider that q0 = backi+1 to ease the argument.
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Now we consider the extended pseudo-configurations, they are all introduced by the operator rejects ,
and for i = 1, . . . , p they are all of one of the following form:

c̄ m
i
= (a1, . . . ,an ,mov-backi ) c̄ b

i
= (a1, . . . ,an ,backi )

The column corresponding to c (resp. c̄ b
i
, c̄ m

i
) contains only the operator encoding the transition from

c to c̄ b
1
(resp. the operator rmi , the operator rri + rci ), which is a norm 1 operator by Corollary 4.4.4.

We just showed that each column of the matrix contains at most one operator different from 0, and
that this operator is always of norm 1. Hence, for any extended pseudo-configuration c ∈ P :

∑
c

a[c , c ′]¶ 1

As a consequence of the definition of the 1-norm (Definition 3.4.6), we get

‖M •
s
‖N

1
=max

c ′∈P

�∑
c∈P

a[c , c ′]
	
¶ 1

Q.E.D.

Proposition 4.4.6.

L⊆ {P+,1}

Proof. By Corollary 4.3.2 we know that L ⊆ DPM and the previous proposition shows that the
encoding of a DPM is of 1-norm inferior to 1, i.e. belongs to P+,1. Q.E.D.

Theorem 4.4.7.

co-NL= {P+}= {P¾0} and L= {P+,1}

Proof. By combining Proposition 4.4.2, Proposition 4.4.6 and Corollary 3.5.4 from previous chapter.
Q.E.D.

Results and perspectives

What have we done?

We presented several “pointers machines” to break the myth that “Pointers are log-space”: without any
further assumption on the nature of the pointers and the way they are manipulated, this statement is
not correct. JAG, PURPLE, SMM and KUM illustrate the way pointers may be handled as pebbles or
data structure, without characterizing L.

We then focused on a special kind of Finite Automata, that is considered as the better way to capture
“pointer computation” as a Turing Machine would do it. We did not considered its alternating variant,
but proved several classical claims about them. This was done to ease the introduction of Pointer
Machines, which are similar on many points, but should rather be seen as universally non-deterministic.
This machine model is introduced as a suitable model to be embedded in the operators.

The last section describes in its finest details this simulation, and encodes the basic operations of a
PM so that they fulfil a constrain on their norm. The encoding of the rejection is somehow the more
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complicated part, for the only way to mimic rejection is to make the computation loop. Due to some
oddity of the operator presentation, the simulation starts in parallel in all the possible initial states.
This made the encoding of rejection even more pertinent: instead of a plain loop, the computation is
started again from scratch, taking this time the actual initial pseudo-configuration.

What could we do?

This work is still very young and could be simplified in numerous ways(28). We made some choices
regarding the presentation, but the cursor between mathematics and computational complexity could
be elsewhere. For instance, we could have defined the rejection of the PM as much closer to the
way it is encoded in operators, that would have saved us the introduction of the “extended pseudo-
configurations”, which is not very handy. Yet, we made this choice for it could look very surprising to
define PM this way without having some insight on the way we are going to simulate their computation.

Regarding the future of this framework, we can mention —among numerous other, like the devel-
opment of a higher-order programming language— the following ideas:

:. We gave the definition of 1-way FA not only to expose our culture, but because it should be clear that
they can be encoded in operators all the same, with even a simpler presentation, for we would only
need to define ff and frec to encode the movement of a head. But if we recall Theorem 4.2.:, there
are separations results both for non-deterministic and deterministic FA, 1-way and 2-ways. We know
how to simulate every variation of FA: could we provide a new proof of those separation results? How
could we reformulate the L=NL conjecture? Is there any way to prove in a new setting co-NL=NL?
In short, what is in our mathematical framework the meaning of those theorems and conjectures?

2. All the same, if we get rid of the tensor product and allow only one copy of M6(C), we describe
the computation of a (one-head) Finite Automaton. The languages recognized by Finite Automata
(2DFA(1) in our notation) corresponds to regular languages, which admits many other definitions,
among them “being expressed using a regular expression”, or taking tools from the Chomsky hierarchy.
But on the contrary, could a regular expression captures the computation of our observations?

3. What does the mathematical properties of operators teach us from a computational point of view? It
is not very likely that M •

s
for M a 1-way FA has some mathematical properties that the encoding of a

2-way FA has not. All the same, there is a lot of isometries that go trough our object, identifying a lot
of them. Does that always corresponds to “reasonable” transformations between PM, or is it possible
to determine a discrepancy between what is acceptable from a mathematical point of view, and what is
acceptable from a computational point of view?

4. We took the dimension of the algebra of the pseudo-states to be bounded, but nothing restrain us from
taking an infinite-dimensional algebra of state. What could that mean? Well, one way to grasp it would
be to allow an infinite number of states in a PM. To what complexity class could correspond such a
setting? It is natural to look in the direction of non-uniforms complexity classes, and to ask ourselves
what could be the difficulty to enumerate all the states of such a machine.

(28)A first attempt using “unification algebra” can be found in a joint work with Marc Bagnol [:0].
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In some sense, this work lacks imagination: we spent a lot of time carefully checking that all the
components of our constructions were sound and well defined. The understanding of those ob-

jects requires some work, and we have the feeling that the work of simplification we led for proof
circuits could be pushed further, and applied to operators. We hope this work will help to get a better
understanding of those wonderful objects.

Proof circuits do not seem to offer that much perspectives: it is a practical way to define properly
the parallel computation of Proof Nets, as it is perfectly suited to mimic Boolean circuits. But it seems
at the same time that this framework is too restrictive: there is no clear way to handle types other than
boolean, and it is really pertinent to study them only for constant-depth resources. It could nevertheless
be interesting to build proof circuits that actually solves some problems: maybe the type constraints
could tell us something about the necessity of increasing the depth of the formulae?

On the other hand, the opportunities to push the study of operators forward seem endless: for
instance, how could we build a concrete algorithm as operator? The framework may not look very
handy, but in fact the properties of the projections does all the hard work. This could open new
perspectives, by bounding more precisely the resources: Jones [84] showed using a pointer-like pro-
gramming language that a constant factor was a significant in the case of actual computation, when we
come back from theoretical models to computation with computers. This work was pushed further by
Ben-Amram and Jones [:8] and proposes another way of handling the complexity, by paying more
attention to what is hidden inside this O-notation. We believe our operators could offer a framework
to handle such concerns.

The study of the logical part of this work could also be developed: what could be the proof of
an observation? Could we adapt this construction to other logics? The tensor logic of Melliès and
Tabareau [:04] could allow us to bridge the gap with categorical semantics, in a framework where we
already know precisely how to handle resources. This logic moreover allows to express sequentiality
without being forced to renounce to proof nets, among other tools provided by Linear Logic. This
could also offer a nice alternative to λ-calcul to study Boolean proof nets from a sequential perspective.
One could also benefit from the work led by Seiller [:2:], to approach GoI with combinatorial tools.

There are other perspectives we could mention, but we prefer to conclude with an intriguing remark:
we saw that graphs were heavily linked to log-space computation. On the other hand, matrix are usually
related to Boolean circuits, for they are the ideal input to process in parallel (you may think of the
multiplication of two matrices, a problem that is in NC1 ). And yet we modelised non-deterministic
log-space computation with matrices, and parallel computation with graphs. Could we try to apply
operators to proof circuits, and vice-versa?

m
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Operator algebra can be seen as an “harmonious blend of algebra and analysis” (Curien [3:]). It
is also a complex subject, where spectral theory, functional analysis, linear algebra and topology

meet. Each one of those perspectives came with its own notation, interpretation and nomenclature(:).
So we felt it could be useful to synthesize in this first appendix the material needed to fully under-

stand the construction of Chapter 3 and the encoding of Section 4.4. We tried to use a clear and neutral
notation —summed up in the table of notations, p. xi.

Operators are taken here to be continuous linear functions on a separable Hilbert space, and
operators algebras are taken to be self-adjoint. It makes us focus on C ∗-algebras and von Neumann
algebras, and we will go straightforward to the definitions of those notions, in order to rapidly define
projections, factors, hyperfinitness and type. Those notions are the one in use in our construction, and
even if it is not mandatory to be an expert on this subject to understand it, we felt it necessary to ease
their introduction by some reminders.

The first section defines von Neumann algebras following two paths: the first one will set up all
the material needed to understand them as an algebraic object whereas the second offers a topological

(:)Even the definition of operators is subject to variations! A textbook on Operator Theory and Operator Algebra [:09, p. 3]
defines operators as “the bounded linear maps from a normed vector space to itself”, a Linear Algebra handbook [:3, p. 57]
defines them as “linear map[s] from a vector space to itself” whereas a handbook of Theory of Operator Algebra [86, p. 2]
takes" them to be mappings between two vector spaces. Here, we will constraint operators to be bounded linear maps from
a normed vector space to itself.

:25
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approach. The two definitions we propose —Definition A.:.:8 and Definition A.:.22— are of course
completely equivalent, thanks to the famous “double commutant theorem”. We left aside the so-called
“abstract” definition of von Neumann algebras, a.k.a. W∗-algebras, as C∗-algebras that are the dual space
of a Banach algebra.

The second section exposes some basis regarding von Neumann algebras, explain their links with
matrices, and develop the quite complex operation of crossed product. This last part involves massively
groups and is useful to understand the normative pair we use in our construction (cf. Corollary 3.4.4).

Almost everything in this appendix is called a definition, but in fact it mixes definitions, lemmas and
theorems. This appendix is in debt to some notes written by Curien [3:] and by Girard [53], which
prepared and eased the lecture of more complex handbooks. Thomas Seiller patiently explained me
a lot regarding those notions, and the reader may find a quick overview of the needed material in the
appendix of one of his article [:20]. His thesis [:2:] presents extensively this subject and constitutes an
excellent bridge toward those objects. Some motivation and a different way of exposing the subject can
also be found in Girard [50, Appendix on C∗-algebra, pp. 48–60]. All those references could help the
reader more used to Linear Logic to adapt to operator algebra.

The reader who would like to go further could refer to the textbooks of Conway [27] for the bases
of the theory (starting from Hilbert and Banach spaces, C∗-algebra, topologies on them), of Murphy

[:09] for an excellent introduction to the theory of operator algebras. The series of Takesaki [:26–:28]
remains the most complete reference.

A.: Towards von Neumann Algebras

There is not much to say about prerequisites needed to read this section, for we tried to define everything
in a simple manner. Just agree that we use δ for the Kronecker delta, defined by

δi j =

¨
0, if i 6= j

1, if i = j

The algebraic way

The reader used to vector spaces, operators and C∗-algebra, may directly go to Definition A.:.:8 of von
Neumann algebras. Elsewhere, (s)he can have a look at Figure A.: to see the summary of the algebraic
structures we need to properly defines von Neumann algebras.

Definition A.:.: (Distance, Metric space). Ametric space is a pair (S, d ) with S 6= ; a set and d : S2 7→R
a distance over S such that ∀x, y, z ∈ S

d (x, y) = d (y, x) (Symmetry)

d (x, y) = 0 iff x = y (Separation)

d (x, z)¶ d (x, y)+ d (y, z) (Subadditivity)
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Vector space

Pre-Hilbertian space Algebra Normed vector space

Hilbert space Normed algebra Banach Space

Banach algebra

Involutive Banach algebra

C ∗-algebra

‖·‖
×

〈·|·〉

Complete for 〈·|·〉 ‖·‖ Complete for ‖·‖×

Complete for ‖·‖ ×

·∗

‖x∗x‖= ‖x∗‖‖x‖

Figure A.:: Dependency of the algebraic structures

Definition A.:.2 (Algebraic Structures). Let E be a set, + and × two binary operations, we define the
following set of rules:

∀a, b ∈ E, (a+ b ) ∈ E (Closure)

∀a, b , c ∈ E, (a+ b )+ c = a+ (b + c) (Associativity)

∃e+ ∈ E,∀a ∈ E, e++ a = a+ e+ = a (Identity element)

∀a ∈ E,∃− a ∈ E, a+ (−a) = (−a)+ a = e+ (Inverse element)

∀a, b ,∈ E, a+ b = b + a (Commutativity)

∀a1,a2,a3 ∈ E, (a1+ a2)× a3 = (a1× a3)+ (a2× a3) (× is right-distributive over +)

∀a1,a2,a3 ∈ E, a1× (a2+ a3) = (a1× a2)+ (a1× a3) (× is left-distributive over +)

The rules are instantiated to +, but a simple substitution makes clear what are the rules for ×.
This set of rules allow us to define several key-concepts at the same time:

◦ If G = (E,+) respects eqs. (Closure) to (Inverse element), then G is a group. If G moreover respects
eq. (Commutativity), then G is said to be commutative (or abelian).

◦ If R = (E,+,×) is such that (E,+) is a commutative group, × respects eq. (Closure), eq. (Identity
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element) and is distributive over +(2), then R is a pseudo-ring. If moreover × is associative, R is a ring
and if moreover × is commutative then R is a commutative ring.

◦ IfF = (E,+,×) is such that (E,+) and (E\{e+},×) are two commutative groups and × distributes over
+, thenF is a field (also called a corpus).

In all of those case, we call E the underlying set. For the sake of simplicity, we will denote the underlying
set of a group G (resp. a field F ) with G (resp. F ). We will also use later on this notation for vector
spaces.

The operations + and × are mostly refereed to as addition and multiplication, and the neutral
elements e+ and e× are most of the time denoted 0 and 1. The inverse of a ∈ E under + is usually
written −a whereas the notation a−1 is kept for the inverse under ×.

Of particular interest to us will be the group of permutations over a set.

Definition A.:.3 (Permutation of a set, Symmetric group). Let S be a set, a permutation of S is a
bijection from S to itself. We set S (S) to be the group of all permutations of S, we write Sn if
S = {1, . . . , n} and S if S =N.

For < a total ordering over S and for all σ ∈S (S), we define its signature sgn(σ) to be the parity of
the number of inversions for σ

sgn(σ) :=Card({(x, y) | x < y and σ(x)> σ(y)}) (mod 2)

Definition A.:.4 (Subgroup). Let G = (E,+) be a group,H = (F ,+↾F ) is a subgroup of G if F ⊆ E and
+↾F is a group operation on F . We writeH ≤G . If F ( E,H is said to be a proper subgroup of G .

If ∀h ∈ F ,∀x ∈ E, x + h + x−1 ∈ F ,H is a normal subgroup of G and we writeH ⊳G .

We introduce in the following two operations, the vector addition and the vector multiplication,
and denote also them with + and ×. This is quite classical and harmless, since the type and the context
should always make clear which one is in use. Moreover, the algebras axioms tells us basically that
those operations are the same over different sets.

Definition A.:.5 (Vector space, Algebra over a field). A vector space V over a field F = (F ,+,×) is
a set V endowed with two binary operations, + : V2 7→ V the vector addition and · :F ×V 7→ V the
scalar multiplication, such that (V,+) is a commutative group and such that for all vectors u, v, w ∈ V,
for all scalars λ,µ ∈F , the following holds:

λ · (u + v) = (λ · u)+ (λ.v) ( · is left-distributive over +)

(λ+µ) · u = (λ · u)+ (µ · u) ( · is right-distributive over +)

(λ×µ) · u = λ · (µ · u) (Distributivity of × over ·)

e× · u = u (Identity element of ×)

We say that W is a linear subspace of V overF if W⊆ V, W 6= ; and ∀x, y ∈W, ∀λ ∈F , x+ y ∈W and
λx ∈W.

(2)Meaning that × is left-distributive over + and × is right-distributive over +.
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If moreover V is endowed with a binary operation × such that

(u + v)×w = (u × v)+ (u ×w) (× is right-distributive over +)

u × (v +w) = (u × v)+ (v ×w) (× is right-distributive over +)

(λ · u)× (µ · v) = (λ×µ) · (u × v) (Compatibility with scalars)

Then A = (V,+, ·,×) is an algebra over the field F . If moreover × is associative, i.e. if u × (v ×w) =

(u × v)×w, then A is said to be an associative algebra overF .
We say that U is a subalgebra ofA overF if U ⊆A, U is a linear subspace ofA overF and ∀u, v ∈ U ,

u × v ∈ U .

Definition A.:.6 (Basis of a vector space). A basis B of a F -vector space V is a linearly independent
subset of V that spans V.

B ⊆ V is linearly independent if for every B0 = { f1, . . . , fn} ⊂ B, ∀(λ1, . . . ,λn) ∈ F
n , (λ1. f1) + . . .+

(λn . fn) = e+ implies λ1 = . . .= λn = e+.

B = ( fi )i∈I spans V if ∀u ∈ V there exists (λi )i∈I ∈ F
I with {i ∈ I | λi 6= 0} finite such that

u =
∑

i∈I λi fi .

All bases of a vector space V have the same cardinality, called the dimension of V and denoted by dim(V).

Definition A.:.7 (Inner product, orthogonality, pre-Hilbertian space). Let V be a C-vector space, an
inner product is a map 〈·|·〉 : V2 7→C, such that ∀x, y, z ∈ V, λ ∈C

〈x|y〉= 〈y|x〉 (Conjugate symmetry)

〈λx|y〉= λ〈x|y〉 (Linearity in the first argument)

〈x + y|z〉= 〈x|z〉+ 〈y|z〉

〈x|x〉 ≥ 0 and 〈x|x〉= 0 implies x = 0 (Positive-definiteness)

Where (·) is the conjugate defined by a+ i b = a− i b . We call this product sesquilinear(3).
If 〈x|y〉= 0, we say that x and y are orthogonal and we define W⊥ as the orthogonal complement of

a subspace W of V by W⊥ = {x ∈ V | ∀y ∈W, 〈x|y〉= 0}.
A pre-hilbertian space (E, 〈·|·〉) is a vector space E with an inner product 〈·|·〉.

Definition A.:.8 (Norm, normed vector space). Let V be a F -vector space, a norm over V is a map
‖·‖ : V 7→R such that ∀u, v ∈ V, ∀λ ∈F , the following holds:

‖u‖= 0Riff u = e+ (Separation)

‖u + v‖¶ ‖u‖+ ‖v‖ (Subadditivity)

‖λ.u‖= |λ|.‖u‖ (Positive homogeneity)

A normed vector space is a pair (V,‖·‖) where V is a vector space and ‖·‖ is a norm on V. The norm
induces a distance by letting d (x, y) = ‖x − y‖.

(3)We take the mathematical convention, our inner product is linear in the first argument and anti-linear in its second. The
physicists use the opposite convention.
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Definition A.:.9 (Convergent sequence, Cauchy sequence). A sequence x1, x2, . . . of a metric space
(S, d )converge (in S) if ∃l ∈ S—called the limit— such that ∀ε ∈R>0, ∃N ∈N, ∀n ∈N,

n ≥N ⇒ d (xn − l )< ε

We write x1, x2, . . . → l . We say that x1, x2, . . . is a Cauchy sequence if ∀ε ∈ R>0, ∃n ∈ N, ∀p >
n,∀q ∈N,

d (xp+q − xp )< ε

Every convergent sequence is a Cauchy sequence, and (S, d ) is called complete (or a Cauchy space) if
every Cauchy sequence in S converges.

This definition can easily be adapted to normed vector space: we only have to replace the distance
by the norm.

Definition A.:.:0 (Pointwise convergent). Let { fn} be a sequence of functions with the same domain
and co-domain, { fn} converges pointwise to f iff for all x in the domain, limn→∞ fn(x) = f (x).

Definition A.:.:: (Banach space). A Banach space is a normed vector space which is complete for the
induced distance.

Definition A.:.:2 (Normed algebra, Banach algebra). A normed algebra (S,+, ·,×,‖·‖) is

(S,+, ·,×) an associative algebra over R or C,

(S,‖·‖) a normed vector space

such that the algebra multiplication and the norm respects: ∀u, v ∈ S, ‖u × v‖¶ ‖u‖×‖v‖.

In particular, if (S,‖·‖) is a Banach space, (S,+, ·,×,‖·‖) is a Banach algebra. If × admit an identity
element e×, and ‖e×‖= 1R, (S,+, ·,×,‖·‖) is unital.

Definition A.:.:3 (Involutive Banach algebra, C∗-algebra). If a Banach algebra B = (S,+, ·,×,‖·‖)
admits a map (·)∗ : S→ S such that ∀u, v ∈ S,λ ∈C:

(λ · u)∗ = λ · u∗ (u + v)∗ = u∗+ v∗ (u × v)∗ = v∗× u∗ u∗∗ = u ‖u∗‖= ‖u‖

then V is called an involutive Banach algebra and the map (·)∗ is called the involution. If the involution
satisfies the following additional condition:

‖u∗u‖= ‖u∗‖‖u‖= ‖u‖2

then B is called a C∗-algebra (or stellar algebra).
A ∗-homomorphism between two C∗-algebras B and C is a bounded linear map f : B → C that

“preserve (·)∗”, i.e. ∀x, y ∈ B, f (x∗) = f (x)∗ and f (xy) = f (x) f (y).
If f is injective, it is an isometry, and if f is bijective, it is a C∗-isomorphism.

Definition A.:.:4 (Hilbert space). A Hilbert space H is a C-vector space with a norm 〈·|·〉 such that H
is a complete metric space with respect to the distance d defined by

d (x, y) = ‖x − y‖=
Æ
〈x − y|x − y〉

It is a Banach space where ∀x ∈H, 〈x|x〉= ‖x‖2.
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We always take our Hilbert spaces to be infinite-dimensional and separable. That induces the
existence of an orthonormal separable basis, but the usual concept of basis (defined in Definition A.:.6)
cannot be applied “as it” to infinite Hilbert spaces. In this setting, we use Hilbert basis that allow us to
approximate every element with an infinite sequence of finite elements.

Definition A.:.:5 (Hilbert basis). A family F= (xi )i∈I ⊆H is a Hilbert basis of H if

∀i , j ∈ I2, 〈xi |x j 〉= δi j (F is orthonormal)

∀x ∈H,∃{λi}i∈I ∈C
I , x =

∑
i∈I

λi xi (F is complete)

We will speak of “homomorphism” between two algebraic structure as long as this function preserve
the algebraic structure under treatment. For instance, given (G ,+) and (G ′,+′) two groups, f :G →G ′

is an homomorphism if ∀g1, g2 ∈G , f (g1+ g2) = f (g1)+
′ f (g2).

Among the homomorphisms, of particular interest to us are the homomorphisms between vector
spaces, called linear maps.

Definition A.:.:6 (Linear map). Let V and W be two F -vector spaces, f a map from V to W is said
to be a linear map (or isF -linear) iff

∀x, y ∈F ,∀µ ∈ V, f (x + (µ · y)) = f (x)+ (µ · f (y))

Let L(V ,W ) be the set of linear applications from V to W, we define the dual space V∗ to be L(V,F ).
If V = W, f is said to be an endomorphism and we write L(V) the set of linear maps from V to

V. For all V a F -vector spaces, L(V) endowed with the pointwise addition and the composition of
functions as a multiplication operation is an algebra over the fieldF .

In fact, we instantiate the previous definition to the special case of the Hilbert space, and restrict
ourselves to the case we will use to define operators as the bounded mappings between two Hilbert
spaces.

Definition A.:.:7 (Operator, B(H)). A linear map u from H to itself is bounded if there exists c ∈N
such that ∀x ∈H, ‖u(x)‖H ¶ c‖x‖H. We define B(H) to be the set of bounded linear maps from H to
itself, and we define a norm on B(H):

‖u‖
B(H) := sup

x∈H

�
‖u x‖H
‖x‖H

�

For all u ∈ B(H), there exists a unique u∗ ∈ B(H), the adjoint of u, such that (·)∗ is an involution
satisfying ‖u∗u‖= ‖u‖2.

If we take the addition to be the addition of vectorial spaces, the multiplication to be the composi-
tion and + to be the multiplication by a scalar, then (B(H),+,×,+,‖·‖, (·)∗) is a C∗-algebra.

It is equivalent for an operator to be bounded or to be continuous, see Definition A.:.20.

Definition A.:.:8 (Commutant, von Neumann algebra). LetM⊂ B(H) be a C∗-subalgebra, we define
the commutant of M(relatively to B(H), but we will omit this precision) to be the set

M′ := {u ∈ B(H) | ∀m ∈M, mu = u m}

If M=M′′, M is a von Neumann algebra.
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The topological way

This path will be way shorter, mainly because we only need weak operator topology in the following.
Some of the notions previously defined (as norm, Hilbert space, or convergence) are required for this
section. We will spend some time with a classical example midway between topology and algebra.

Definition A.:.:9 (Topology, Topological space). Let X be a set and T ⊆Pfin(X) a family of subset of
X. We say that T is a topology on X if:

X ∈ T ,; ∈ T ∀x1, x2 ∈ T , x1 ∩ x2 ∈ T ∀I ,∀(xi )i∈I ∈ T
I ,∪i∈I xi ∈ T

If T is a topology on X then the pair (X,T ) is a topological space. The elements of T are called open sets
in X. The subset Y ⊆X is said to be closed if its complement is in T .

For all x ∈ X, the neighbourhood of x is a set N ⊆ X such that there exist an open set O with
x ∈O⊆N . We write N(x) the set of the neighbourhoods of x. We call Xcompact if for all {Uα}α∈A of
open subsets of X such that X =

⋃
α∈A

Uα, there is a finite J ⊆A such that X =
⋃

i∈J
Ui . We say that X

is locally compact, if ∀x ∈X, N(x) is compact.

Definition A.:.20 (Continuous map). Let (X,T ) and (X ′,T ′) be two topological spaces, a map f :

X → X ′ is continuous if and only if for every x ∈ X and every V ′ ∈ N( f (x)) there exists V ∈ N(x))

such that y ∈V implies f (y) ∈V ′.
Said differently, f is continuous if for every open set O⊆X ′, f −1(V ) = {x ∈X | f (x) ∈V } is an

open subset of X.

Definition A.:.2: (Weak topology on H and B(H)). Let H be a Hilbert space, we say that a sequence
{xi}i∈N converges weakly to 0 when 〈xi |y〉→ 0 for all y ∈H. Weak convergence is thus a point-wise or
direction-wise convergence.

On B(H), we says that {ui}i∈N converges weakly to 0 when, for any x ∈H, ui x converges weakly
to 0. This defines the weak operator topology.

We can show that B(H) is the dual of a space denoted by B(H)∗ containing the trace-class operators.
For further details, the reader may refer to Murphy [:09, section 2.4, pp. 53 sqq.] or Takesaki [:26,
p. 63]. We recall this result only to define the σ -weak topology: if A is a topological space and A∗ is its
dual, the weak∗ topology on A∗ is defined as the point-wise topology.

Definition A.:.22 (von Neumann algebra (2)). A von Neumann algebraM is a C∗-subaglebra of B(H)
which is closed in the weak operator topology and contains the identity operator.

We are beginning to mix topology and linear algebra with the following example of one of the most
famous Hilbert space. The following construction could be generalized with the Lesbegue spaces L2

over measurable spaces, i.e. the set of measurable functions whose power of 2 has finite integral.

Example A.:.: (ℓ2(S)). Let S be a set, we define ℓ2(S) to be the set of square-summable functions

ℓ2(S) = { f : S 7→C |
∑
s∈S

| f (s )|2 <∞}

where | · | is the absolute value of the complex number, i.e. if f (s ) = a+ i b , | f (s )|=
p

a2+ b 2.
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This set ℓ2(S) is aC-vectorial space if we take for the addition the pointwise addition of the functions,
for the multiplication the multiplication of C. It is a Hilbert space if we define an inner product
∀ f , g ∈ ℓ2(S)

〈 f |g 〉=
∑
s∈S

f (s )g (s )

where g (s ) = g (s ) is the conjugate of g (s ). The norm is as usual defined as ‖ f ‖=
p
〈 f | f 〉 and we can

easily check that ℓ2(S) is complete with respect to that norm.

This example is interesting because every Hilbert space with an Hilbert basis F is isomorphic to
ℓ2(F). In particular, if F is a discrete group G , ℓ2(G ) is a von Neumann algebra.

And if G is the set bijections from N to N that permute a finite number of elements, the von
Neumann algebra obtained is a II1-factor, whose definition follows.

A.2 Some Elements on von Neumann Algebras

In this section we go one step further by introducing some more complex notions. We recall some
of the terminology of the von Neumann algebras, explains the links between operator algebra and
matrices algebra, and then study the crossed-product of a von Neumann algebra with a group.

Basics of von Neumann algebras

First, we should remark that von Neumann algebras also admit a tensor product, which comes basically
from the tensor product for Hilbert spaces.

Definition A.2.: (Tensor product for the von Neumann algebras). If for i = 1,2,Mi is a von Neumann
algebra on the Hilbert space Hi , then M1⊗M2is the von Neumann algebra on H1⊗H2.

Much of the terminology of C∗-algebras is the same as for the operator theory on Hilbert space.

Remark (Operators zoo). Let u ∈ B(H), we say that u is

Normal if u u∗ = u∗u

Self-adjoint or Hermitian if u∗ = u

A projection if u = u∗ = u2

A partial isometry if u u∗ = p for p a projection

If B(H) is unital (it admits an identity operator Id
B(H) ), we say that u is

Unitary if u u∗ = u∗u = Id
B(H)

An isometry if u u∗ = Id
B(H)

Definition A.2.2 (Center of a von Neumann algebra, factor). The center of a von Neumann algebra
M is defined as {x ∈M | ∀y ∈M, xy = y x}. This is the same as the setM∩M′ forM′ the commutant
of M.
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A von Neumann algebra N is a factor if its center is trivial, i.e. if its consists only of multiples
(scalar operators) of the identity operator.

Every von Neumann algebra on a separable Hilbert space is isomorphic to a direct integral (a
continuous direct sum) of factors, and this decomposition is essentially unique.

So the study of von Neumann algebras is partially subsumed by the study of classes of factors. The
factors themselves can be classified by their sets of projections, whose definition follows. Informally, a
projection sends the Hilbert space H onto a closed subspace of H. Depending on the dimensions and
the properties of this closed subspace, we may define an equivalence relation on them.

Definition A.2.3 (Finite and infinite projections). A projection is an operators p ∈ B(H) such that
p = p∗ = p2. We write Π(M) the set of projections in M. Let p, q be two projections of a von
Neumann algebra, if q p = pq = p or equivalently if dim(p)⊆ dim(q), then we write p ¶ q .

In a von Neumann algebra, we can define an equivalence relation on Π(M) by p ∼
M

q if there
exists a partial isometry u ∈M such that u u∗ = p and u∗u = q . This equivalence relation is sometimes
called the Murray and von Neumann equivalence.

If there exists q such that q < p and q ∼ p, p is said to be infinite. Conversely, a projection p is
finite if ∀q a projection, q ∼ p and q < p implies q = p. A projection p is said to be minimal if q ¶ p
implies q = 0 or q = p.

A von Neumann algebra can be “recreated” from its projections, it is sufficient to know Π(M) to
describe totally M. In fact, there is a bijection between the projections of M and the subspaces of H
that belong to it. Projections also allow to classify them, whenever they have minimal projections or
not, finite projections or not. We will only use the II1 factor, so we define only this one, and we define
at the same time hyperfinitness.

Definition A.2.4 (Hyperfinite type II1 factor). A von Neumann algebra N where ¶ is total is a factor,
and it is said to be of type II if N contains finite projections but has no minimal projections. If the
identity of N is a finite projection, N is of type II1.

A von Neumann algebra M is hyperfinite if there exists an ascending sequence (Mi )i∈N of finite-
dimensional subalgebras of M such that their union ∪Mi is dense in M(4). Equivalently,

dim(Mi )<∞ for all i M1 ⊂M2 ⊂M3 . . . M= ∪i∈NMi

The type II1 hyperfinite factor is unique up to isomorphism and we will write it R.

The hyperfinitness of a factorM implies that the operators ofM can be approximated(4) by matrices,
i.e. by operators acting on a finite-dimensional Hilbert space.

On matrices

Matrices shares a lot with hyperfinite von Neumann algebras, partly thanks to the possibility they have
to represent linear functions. We will also see how to represent matrices algebra with operator algebra.
But first, let’s agree on some notations.

(4)For the σ -weak topology that we did not defined.
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Definition A.2.5 (Matrices). Let Mn,m(F ) be the set of matrices with coefficients inF , with n rows
and m columns. If n = m, the matrices are said to be square and we write Mn(F ) the set of square
matrices. Most of the time we won’t specify the field where the matrix takes it coefficients, and we
define as usual:

◦ In to be the identity matrix of size n, 0n to be the null matrix.

◦ M[i , j ] to be the the entry in the i th row and j th column of M.

◦ If ∀i , j ¶ n,M[i , j ] = 0 if i 6= j , Mn is a diagonal matrix.

◦ If ∀i , j ¶ n,M[i , j ] =M[ j , i], Mn is a symmetric.

◦ The trace of a matrix Mn is defined by tr(Mn) =
∑n

i=1
M[i , i].

◦ A matrix Mn is a projection if M2
n
=Mn .

◦ The determinant of a matrix Mn is defined as usual by the Leibniz formula:

det(Mn) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

mi ,σ(i )

◦ If M1[i , j ] =M2[ j , i], we say that M2 is the transpose of M1 and we write M1
t =M2.

◦ If M[i , j ] =M[i , j ], we say that M is the conjugate of the matrix M.

◦ If M∗ =Mt, we say that M∗ is the conjugate-transpose of M.

◦ If Mn is such that ∃d ∈N∗ and Mn
d = 0n, Mn is said to be nilpotent and the smallest such d is the degree

(of nilpotency) of Mn .

We should remark that ∀n ∈ N, the set of matrices Mn(C) is a non-commutative algebra over C.
We simply takes the classical matrix addition and multiplication, the scalar multiplication, and Mn(C)
inherits all the properties of C as an algebra.

Definition A.2.6 (Matrix representation of linear maps). Let V be a F -vector space of dimension n
and let B= {b1, . . . , bn} be a basis of V and u ∈L(V).

∀1¶ k ¶ n,∃λk
1
, . . . ,λk

n
∈F such that u(bk ) = λ

k
1
(b1)+ . . .+λk

n
(bn)

And we define

[u]B :=




λ1
1

. . . λn
1

...
. . .

...

λ1
n

. . . λn
n




Remark that

◦ u is nilpotent (u ◦ . . . ◦ u = 0) iff [u]B is nilpotent.

◦ If u is nilpotent, det([u]B) = tr([u]B) = 0.
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◦ For all B1 and B2 two basis of V, tr([u]B1
) = tr([u]B2

). So we can speak of the trace of a linear map.

In the case of the II1 hyperfinite factor, any element can be approximated by finite matrices, and we
can always define a “normalised trace” by Tr(Mn) =

tr(Mn )

n
. This trace allows us to define a generalization

of the determinant, the Fuglede-Kadison determinant.
But for now we consider the reverse operation, i.e. representing any matrix algebra in the II1

hyperfinite factor.

Definition A.2.7 (Embedding matrices algebra in the II1 hyperfinite factor). Let R be the II1 hyperfi-
nite factor and Π(R) be the set of projections of R. As R is of type II, it has no minimal projection,
so we can always decompose a projection, i.e. for all p ∈ Π(R), there exists q1, q2 ∈ Π(R) such that
q1q2 = 0 and q1+ q2 = p. Moreover, we can chose q1 and q2 such that q1 ∼ q2 i.e. such that they act on
subspaces with the same dimensions.

If we generalize, ∀p ∈ Π(R), for all n ∈ N∗, there exists q1, . . . qn ∈ Π(R) such that the following
holds:

qi ∼ q j for all 1¶ i ¶ j ¶ n
n∑

i=1

qi = p qi q j = δi j qi

Now we take p1, . . . , pn ∈Π(R) such that
∑n

i=1
pi = 1. As pi ∼ p j , we know that there exists ui , j a

partial isometry such that

ui , j u∗
i , j
= p j u∗

i , j
ui , j = pi

Such a partial isometry is not unique, and we may chose the ui ,i+1 such that

ui , j =





ui ,i+1 . . . u j−1, j if i < j

u∗
j , j+1

. . . u∗
i−1,i

if i > j

pi if i = j

And we have that

ui+1,i = u∗
i ,i+1

(A.:)

ui , j uk ,m = δ j k ui ,m (A.2)

Now we define the embedding Θ from the set of n× n matrices over C to the II1 hyperfinite factor
R. Let M be a n× n matrix, we define Θ(M[i , j ]) =M[i , j ]ui , j , i.e. Θ(M) =

∑n
i , j

M[i , j ]ui , j .
Let Mn and M′n be two matrices over C, we check that Θ commutes with the operations of the

algebra. There is not much to check, because Θ basically inherits of all the algebraic properties of C, so
we just illustrate with +, × and the transposition.

(ΘMn)+ (ΘM′n) = (
n∑

i , j

M[i , j ]ui , j )+ (
n∑

i , j

M′[i , j ]ui , j )

=
n∑

i , j

((M[i , j ]ui , j )+ (M
′[i , j ]ui , j ))

=
n∑

i , j

(M[i , j ]+M′[i , j ])ui , j

=Θ(Mn +M′n)
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(ΘMn)× (ΘM′n) = (
n∑

i , j

M[i , j ]ui , j )× (
n∑

i ′, j ′

M′[i ′, j ′]ui ′, j ′ )

=
n∑

i , j

n∑
i ′, j ′

(M[i , j ]ui , j ×M′[i ′, j ′]ui ′, j ′ )

=
n∑

i , j

n∑
k

(M[i , k]×M′[k , j ])ui , j (By Equation A.2)

=Θ(
n∑

i , j

n∑
k

(M[i , k]×M′[k , j ])

= Θ(Mn ×M′n)

Θ(Mt
n
) =

k∑
i , j

(M[ j , i]ui , j )

=
k∑

i , j

(M[ j , i]u∗
j ,i
) (By Equation A.:)

=Θ(Mn)
∗

So we just checked that Θ is an isomorphism, and we can check that the properties of the normalised
trace is preserved by this isomorphism.

In fact Θ depends on the size of n, so we should write Θn+1 : Mn(C)→ R, and we should also
remark that such an embedding is not unique.

Groups and von Neumann algebras

We will in the following show how to internalize the action of a group into a von Neumann algebra.
We need first some preliminaries definitions.

Definition A.2.8 (Topological group). Let G = (E ,+) be a group endowed with a topology T , G is a
topological group if + and (·)−1 are continuous maps.

A topological group is a compact group if it is compact, any compact group is locally compact.

Definition A.2.9 (Action of a group). Let G = (E,+) be a group and X be a set, an action of G on
X is a function α : E×X→ X such that for every a, b ∈ E and x ∈ X, α(e+, x) = x and α(a,α(b , x)) =

α(a+ b , x).
Equivalently, if we set S (X) to be the group of all permutations of X, an action α of G on X is a

homomorphism α : E→S (X).
An action of a topological group G on a von Neumann algebraM is a continuous homomorphism

of G into Aut(M), the set of automorphisms of M.

Definition A.2.:0 (Representations). Let M be a von Neumann algebra. A couple (H,ρ) where H is
a Hilbert space and ρ is a ∗-homomorphism from M to B(H) is a representation of M. If ρ is injective,
we say the representation is faithful.
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Haagerup [68] proved that among the numerous representations of a von Neumann algebra, there
was a standard representation, a representation satisfying several important properties.

The operation that will be of interest to us will be that of taking the crossed product of an algebra
and a group. This operation is closely related to that of semi-direct product of groups and is a way
of internalizing automorphisms. Given an algebra M and a group G of automorphisms of M, we
construct the algebra M⋊G generated by the elements of M and the elements of G .

Definition A.2.:: (Crossed product (representations)). Let (H,ρ) be a representation of a von Neu-
mann algebra M, G a locally compact group, and α an action of G on M. Let K = L2(G ,H) be the
Hilbert space of square-summable H-valued functions on G . We define representations πα of M and λ
of G on K as follows:

(πα(u).x)(g ) = (ρ(α(g )
−1(u))x(g ) (u ∈M, x ∈H, g ∈G )

(λ(g ).x)(h) = x(g−1h) ( g , h ∈G , x ∈K)

Then the von Neumann algebra on K generated by πα(M) and λ(G ) is called the crossed product
of (H,ρ) by α.

An important fact is that the result of the crossed product does not depend on the chosen represen-
tation of M.

Theorem A.2.: (Takesaki [:27, Theorem :.7, p. 24:]). Let (H,ρ) and (K,ρ′) be two faithful representa-
tions of a von Neumann algebraM, and let G be a locally compact group together with an action α onM.
Then there exists an isomorphism between the crossed product of (H,ρ) by α and the crossed product (K,ρ′)
by α.

As a consequence, one can define the crossed product of a von Neumann algebra and a group acting
on it by choosing a particular representation. Of course, the natural choice is to consider the standard
representation.

Definition A.2.:2 (Crossed product). Let M be a von Neumann algebra, G a group and α an action
of G onM. The algebraM⋊αG is defined as the crossed product of the standard representation ofM
by α.

A particular case of crossed product is the crossed product of C by a (trivial) action of a group G .
The resulting algebra is usually called the group von Neumann algebra N(G ) of G . As it turns out,
the operation of internalizing automorphisms of algebras (the crossed product) and the operation of
internalizing automorphisms of groups (the semi-direct product) correspond: the algebra N(G ⋊α H )
is isomorphic to N(G )⋊α̃ H where α̃ is the action of H on N(G ) induced by the action of H on G .
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This short appendix is here to recollect the first version of the proof that co-NL⊆NPM, developed
in [::], a part of Corollary 4.3.2 according to the notation in this thesis. It is quite different to

the one given in Chapter 4 for it does not use the characterization of NL provided by FA, but exhibits
a NPM that solves a co-NL-complete problem and a transducer that perform reductions between any
co-NL problem and the problem we solve. We develop a “pointer reduction” a bit complex and yet
interesting, for it was not previously developed as far as we know.

This proof was written when we were not aware of the existence of FA: it is in some sense more
direct, but it does not present our PMs as a member of the large family of “reasonable” computational
model. We will use the most common method(:): first we define and solves a co-NL-complete problem
with a NPM, and then define a “pointer reduction”. Of course a co-NL problem is also a NL problem,
but once again we won’t take this equality for granted.

Numerous elements of Chapter : and Chapter 4 are needed to understand this appendix, for we
won’t recall for instance the definitions of reductions (Definition :.:.8 and Definition :.:.9), complete
problem (Definition :.:.:0), computation graph (Definition :.:.5), NPM (Definition 4.3.:). Some of
the claims stated in Section 4.2 will be used “as it”, even if they were proved for FA and not for PM, we
consider the proofs could be adapted really easily.

B.: Solving a co-NL-Complete Problem

We are going to solve the most common co-NL-complete problem, the complementary of stconn
(Problem B). It is reasonable to modify stconn so that the path we are looking for is always from the

(:)That can be reminded to the reader for instance in Arora and Barak [4, pp. 88–89].

:4:
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node numbered 1 to the “last” node, i.e. the one with the highest number, which corresponds to the
size of the graph.

We define the set

STConnComp= {k ∈N | k encode a directed graph of size n with no path from 1 to n}

As we will produce the actual transition function that solves this problem, we should be precise
regarding the encoding of a graph we adopt: given a graph of size n, the input will be

⋆00 . . . 00︸ ︷︷ ︸
nbits

:

edges going from1︷ ︸︸ ︷
a110a120 . . . 0a1n−10a1n : . . . :

edges going from n︷ ︸︸ ︷
an10an20 . . . 0ann−10ann :

where (ai j ) is the adjacency list , i.e. ai j = 1 if there is an edge from the node numbered by i to the
node numbered by j , 0 elsewhere. The boxed bits in the figure above are “separating” bits, between the
unary encoding of n and the adjacency list, and between the coding of the edges going from i to the
coding of the edges going from i + 1. This will allow us a trick in our algorithm: when we read the bit
following ai j , if it is a 0 then the next bit corresponds to ai j+1, elsewhere it corresponds to ai+11.

Proposition B.:.:. There exists M ∈NPM(5) that decides STConnComp .

Proof. We define M such that Ms (k) with s = {⋆,⋆,⋆,⋆, Init} accepts iff k ∈ STConnComp.
The transition relation of M is presented in Figure B.:. Informally, our algorithm goes as follow:

◦ We have a counter on the size of the path followed, p1. It moves right on the unary expression of
n every time an edge is found (on the second line of Equation B.:0). If it reads a 1 after moving
(Equation B.:2), it means we already followed n edges, so we accept because if there is a path from 1 to
n then there exists a path of size at most n. Note that p1 does not move in any other transition, except
for the initialisation.

◦ The couple p2, p3 acts as follow: when p2 is reading ai j , p3 is at a j 1. If ai j = 1 (premise of Equation B.:0),
a non-deterministic transition takes place: on one way we continue to scan the outgoing edges from i ,
on the other we increment p1, place p2 at a j 1 and p3 at a11.

◦ The last pointer p4 is here to check when ai j = 1 if j = n, it also stays on the unary encoding of n. If
p4 reaches a 1 when p2 reads that there is an edge, it means that there is an edge whose target is n, and
so we reject (Equation B.::).

◦ When p2 finishes to browse the adjacency list of an edge, we accept (Equation B.6).

We can make easily sure that Ms (k) accepts iff k ∈STConnComp , elsewhere Ms (k) rejects, i.e. Ms (k)

always halts. As defined, M is not a NPM, for it does not fulfil all the requisites we listed in Section 4.3.
But we can easily “complete” the transition function: for all c ∈ CM such that c → ;, add c → accept.
We may also reasonably modify it so that at most one head move at each transition. Q.E.D.
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(⋆,⋆,⋆,⋆, Init)→ (p1+, p2+, p3+, p4+, Init) (B.:)
(∗, 0,∗,∗, Init)→ (ε1, p2+, p3+,ε4, Init) (B.2)
(∗, 1,∗,∗, Init)→ (ε1, p2+,ε3,ε4,out.edge?) (B.3)

(∗, 0,∗,∗,out.edge?)→ (ε1, p2+,ε3, p4+,no.edge) (B.4)
(∗, 0,∗,∗,no.edge)→ (ε1,ε2, p3+,ε4,p3.next.node) (B.5)
(∗, 1,∗,∗,no.edge)→ accept (B.6)

(∗,∗,∗,∗,p3.next.node)→ (ε1,ε2, p3+,ε4,reading.sep.bit) (B.7)
(∗,∗, 0,∗,reading.sep.bit)→ (ε1,ε, p3+,ε4,p3.next.node) (B.8)

(∗,∗, 1,∗,reading.sep.bit)→ (ε1, p2+,ε3,ε4,out.edge?) (B.9)

(∗, 1,∗,∗,out.edge?)→

(
(ε1, p2+,ε3, p4+,no.edge)

(p1+,ε2,ε3, p4+,edge.found)
(B.:0)

(∗,∗,∗, 1,edge.found)→ reject (B.::)
(1,∗,∗, 0,edge.found)→ accept (B.:2)
(∗,∗,∗, 0,edge.found)→ (ε1, p2−,ε3, p4−,rewind.p2.p4) (B.:3)

(∗,∗,∗,[not ⋆],rewind.p2.p4)→ (ε1, p2−,ε3, p4−,rewind.p2.p4) (B.:4)
(∗,∗,∗,⋆,rewind.p2.p4)→ (ε1, p2−,ε3,ε4,rewind.p2) (B.:5)

(∗,[not ⋆],∗,∗,rewind.p2)→ (ε1, p2−,ε3,ε4,rewind.p2) (B.:6)
(∗,⋆,∗,∗,rewind.p2)→ (ε1, p2+, p3−,ε4,exchange.p2.p3.) (B.:7)

(∗,∗,[not ⋆],∗,exchange.p2.p3)→ (ε1, p2+, p3−,ε4,exchange.p2.p3.) (B.:8)
(∗,∗,⋆,∗,exchange.p2.p3)→ (ε1,ε2, p3+,ε4,get.p3.to.start) (B.:9)
(∗,∗, 0,∗,get.p3.to.start)→ (ε1,ε2, p3+,ε4,get.p3.to.start) (B.20)
(∗,∗, 1,∗,get.p3.to.start)→ (ε1, p2+,ε3,ε4,out.edge?) (B.2:)

Recall that ∗ (resp. [not ⋆]) is any symbol among {0,1,⋆} (resp. {0,1}).

Figure B.:: The transition relation that decides STConnComp

B.2 Pointer-Reduction

So now, we have to prove that we can reduce any co-NL-problem to STConnComp using only pointers.
We will adapt the classical log-space implicitly computable function that reduces any problem in NL

to stconn. Given a co-NL-problem P, there exists a universally non-deterministic log-space Turing
Machine M that decides it. To solve P is just to establish if there is no path in the computational graph
of M from the initial configuration to a rejecting configuration.

We will in the following:

◦ shows how PMs can express “any integer” and perform some computation,

◦ explains the properties of the encoding of GM (n) as an integer,

◦ prove that a DPM can “compute” GM (n) given M and n,

◦ explain how to compose PMs, and that will complete the demonstration.
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Claim 8: A PM can express any power of the size of the input.

Proof. Let fix an input n of size |n|, our claim is that given j pointers, a PM can count up to |n| j . We
use once again the additional pointers as the hands of a clock: we make the :st pointer go right, and
every time the ith pointer made a round-trip (that is, is back on ⋆), the i + 1th pointer goes one cell
right. Clearly, we can express any distance inferior to |n| j . Q.E.D.

We will for the sake of simplicity consider that any distance inferior to |n| j can be expressed by a
single pointer, even if it may require several pointer to be properly expressed.

Claim 9: A PM can compute addition, subtraction, power, division, multiplication, modulo and bi-
nary logarithm.

Proof. We can adopt the same proof as the one we developed for Claim 5 regarding the FA. To compute
log, just remember that log(x) = y iff x = 2y , so our PM can put a pointer (that will be an estimation
for y ) on a cell, computes its power of two, and looks if it is the same value as x. It it is, the value we
are looking for is found, elsewhere it just make the pointer move one cell right and makes again this
computation. Q.E.D.

Given any problem P ∈ co-NL, there exists a universally non-deterministic Turing Machine M such
that M accepts n(2) iff n ∈ P. We assume that P is a decision problem, that M works on alphabet {0,1},
has one read-only tape and one read-write working tape whose precise bound is k × (log(|n|)). We may
also assume that the name of the states is written in binary, so that for |Q|= q the number of states of
M , any state may be written with ⌈log(q)⌉ bits. At last, we may assume that the instructions to move
the heads are written with two bits. All those assumptions make clear that M may be entirely described
with a binary string.

We remind the reader that the computation graph GM (n) is finite and acyclic and that its size is the
number of configuration of M (n). We can take M to always halt, so M (n) rejects iff there is a branch that
reaches reject, and we can also assume that only one configuration has for state reject: this will allow
us to test only for the existence of a path in GM (n) from the initial configuration to that configuration.

We know that M (n) has less than

2(k×(log(|n|)))× (k × (log(|n|)))× (log(|n|))×⌈log(q)⌉

different configurations. It reflects respectively the content of the working tape, the position of the
read-write and the read-only heads and the state. This is equivalent to 2O(log(|n|)), so we know there
exists a d such that M (n) has less than |n|d different configurations.

Any configuration of M (n) may be described as

0100011110 . . . 010110︸ ︷︷ ︸
Position of the read head

Working tape and position of the working head︷ ︸︸ ︷
σ0σ0 . . .σ0σ1σ0 . . .σ0σ0σ0σ0σ0σ0σ001 . . . 10︸ ︷︷ ︸

state

where the ⌈log(|n|)⌉ first bits encode in binary the position of the reading head, the symbols σ corre-
spond to the bits on the working tape, the bit that follows σ equals 1 iff the working head is on that
cell. The remaining ⌈log(q)⌉ bits express the current state.

(2)Meaning that all branches reach accept after a finite number of transitions.
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This binary string is of length ⌈log(|n|)⌉× (2× (k ×⌈log |n|⌉))×⌈log(q)⌉, i.e. there exists a e such
that this string is of length inferior to e × log(|n|)2.

Among all the binary string of size e × log(|n|)2, some of them corresponds to configurations, and
some of them don’t (for instance because the working head is supposed to be in several places at the
same time), we will call them “phantom configurations”.

Lemma B.2.: (Pointer-reduction). For all universally non-deterministic log-space Turing Machine M ,
there exists a DPM T such that for all n, given a pointer pd with ♯pd = j , T accepts if the j th bit of the
encoding of GM (n) is 1, rejects if it is 0.

Proof. Recall we use the encoding exposed earlier to express the encoding of GM (n) the computation
graph of M on input n. Let T proceed as follows:

◦ It computes the number of binary strings of size e × log(|n|)2. This number is bounded by 2(e×log(|n|))2

and we saw previously that a PM could express such distances. Then T compares this value to j : if j

is inferior, it rejects, if j is equal, it accepts, elsewhere it goes on. This reflects the n initial bits set to 0

to express in unary the size of the graph.

◦ Elsewhere T establishes if j corresponds to a “separating bit” and accepts or rejects accordingly, that
can be simply made with the division and modulo operations.

◦ Elsewhere, j encodes a query regarding the presence or absence of transition between two configura-
tions a and b . If a = b , there is no need to explore this transition(3), and T rejects. Elsewhere T

establishes if there is a transition between a and b , and accepts or rejects accordingly.

This last point needs to be made more precise: if j > 2e×log(|n|)2 and if j does not corresponds to a
“separating bit”, it means that the value of j corresponds to the absence or presence of an edge between
two nodes. So there exists a and b such that j = aab . A simple arithmetic of pointers allows us to
retrieve those two values expressed as integers (i.e. as a distance).

Then, they are converted to binary strings: the positions of the read-only heads needs a bit of
pointer arithmetic to be obtained and compared, but the rest of the integer just needs to be compared
bitwise. The rest of the binary expression of the node encodes directly the configuration, and as all the
transitions makes only local changes in them, there is only a constant number of information to be
remembered.

Every time there is a difference between the binary expression of a and the binary expression of b ,
T checks that the difference between them is legal regarding the transition function of M —that may
be encoded in the states of T or may be given as a parameter.

The transducer T also have to check that a and b are not “phantom configurations” and that j is
not “too big”, i.e. does not represent a query on nodes that does not exists. Q.E.D.

One should notice that even if this computation is quite violent, for the number of pointer of T
will be very high, we did not used non-determiancy, so T is a DPM.

Corollary B.2.2.

co-NL⊆NPM

(3)Because that would imply that there is a transition from a configuration to itself, and so M (n) is stuck in a loop.
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Proof. Let P ∈ co-NL, there exists a universally non-deterministic Turing Machines N such that L(N ) =
P. Suppose given n ∈ N, we will compose the NPM M that solves STConnComp with the transducer
T that compute GM (n).

Every time M has to read a value, it asks T by letting a pointer be on the position j of the value it
wants to know. There is some kind of layer of abstraction in this composition, for M go through the
input tape without ever reading the actual values, but asks the values to T , which actually read n.

We have to make sure that the j of Lemma B.2.: can be big enough: what is the size of the encoding
of GN (n)? We encode the graph as being of size 2e×log(|n|)2 , i.e. we also take “phantom configurations”
to be nodes of GN (n). The encoding of this “completed” graph —for every string of size e × log(|n|)2 is
taken to be one of its node, even if it is not reachable— is of size O((2log(|n|)2 )2), an expression bounded
by a power of |n|, so we can express it.

We can suppose moreover that there is a transition between the “phantom configuration” encoded
by 000 . . . 001 and the initial configuration, and that there exists a transition between any rejecting
configuration and the “phantom configuration” encoded by 111 . . . 111. This allows us to keep the
STConnComp algorithm as it it, computing only if there is no path from the node 1 to the node n.

The transducer T can compute the configuration graph of N (x) bit-by-bit and pass it to N which
solves STConnComp . So M ◦T (n) accepts iff there is no path from 1 to an rejecting configuration in
GN (n), i.e. iff N (n) accepts. So P ∈NPM. Q.E.D.
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Linear Logic and Sub-polynomial Classes of Complexity

fAbstract This research in Theoretical Computer Science extends the gateways between Linear Logic and Com-
plexity Theory by introducing two innovative models of computation. It focuses on sub-polynomial
classes of complexity: AC and NC —the classes of efficiently parallelizable problems— and L and NL
—the deterministic and non-deterministic classes of problems efficiently solvable with low resources on
space. Linear Logic is used through its Proof Net presentation to mimic with efficiency the parallel
computation of Boolean Circuits, including but not restricted to their constant-depth variants. In
a second moment, we investigate how operators on a von Neumann algebra can be used to model
computation, thanks to the method provided by the Geometry of Interaction, a subtle reconstruction
of Linear Logic. This characterization of computation in logarithmic space with matrices can naturally
be understood as a wander on simple structures using pointers, parsing them without modifying them.
We make this intuition formal by introducing Non Deterministic Pointer Machines and relating them
to other well-known pointer-like-machines. We obtain by doing so new implicit characterizations of
sub-polynomial classes of complexity.

fKeywords Linear Logic, Complexity, Geometry of Interaction, Operator Algebra, Alternating Turing Machines,
Boolean Circuits, Uniformity, Proof Nets.

fDiscipline Computer science

K

Logique linéaire et classes de complexité sous-polynomiales

fRésumé Cette recherche en informatique théorique construit de nouveaux ponts entre logique linéaire et théo-
rie de la complexité. Elle propose deux modèles de machines abstraites qui permettent de capturer
de nouvelles classes de complexité avec la logique linéaire, les classes des problèmes efficacement pa-
rallélisables (NC et AC) et celle des problèmes solutionnables avec peu d’espace, dans ses versions
déterministes et non-déterministes (L et NL). La représentation des preuves de la logique linéaire
comme réseaux de preuves est employée pour représenter efficacement le calcul parallèle des circuits
booléens, y compris à profondeur constante. La seconde étude s’inspire de la géométrie de l’interaction,
une délicate reconstruction de la logique linéaire à l’aide d’opérateurs d’une algèbre de von Neumann.
Nous détaillons comment l’interaction d’opérateurs représentant des entiers et d’opérateurs représen-
tant des programmes peut être reconnue nilpotente en espace logarithmique. Nous montrons ensuite
comment leur itération représente un calcul effectué par des machines à pointeurs que nous définissons
et que nous rattachons à d’autres modèles plus classiques. Ces deux études permettent de capturer de
façon implicite de nouvelles classes de complexité, en dessous du temps polynomial.

fMot-clés Logique Linéaire, Complexité, Géométrie de l’interaction, Algèbre d’opérateurs, Machines de Turing
Alternantes, Circuits Booléens, Uniformité, Réseaux de Preuves.
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