
Errata

S
ome minor editions have been made since the defence of this thesis (improvements in the bibliog-

raphy, fixing a few margins and some typos): they won’t be listed here, as those errors were not

altering the meaning of this work.:

However, while writing an abstract for TERMGRAPH 20:4, I realized that the simulation of Proof

Circuits by an Alternating Turing Machine, in the Section 2.4 of Chapter 2 was not correct.

More precisely, bPCC
i is not an object to be considered (as it is trivially equal to PCC

i ) and

Theorem 2.4.3, p. 5:, that states that “For all i > 0, bPCC
i
✓ STA(log,⇤, logi)”, is false. The ATM

constructed do normalize the proof circuit given in input, but not within the given bounds. This flaw

comes from a mismatch between the logical depth of a proof net (Definition 2.:.:0) and the height of a

piece (Definition 2.2.6), which is close to the notion of depth of a Boolean circuit (Definition 2.:.2).

First, remark that the class bPCC
i (Definition 2.2.8) is ill-defined: recall that (Lemma 2.3.:) in the

case of Dk
isj
and C k

onj
pieces, one entry is at the same logical depth than the output, and all the other

entries are at depth 3 plus the depth of the output.

In the process of decomposing a single n-ary operation in n− 1 binary operations, the “depth-efficient

way” is not the “logical depth-efficient way”. Let us consider a tree with n leafs (f) and two ways to

organize it:

f f f f f f f f f f

f

f

Let us take the distance to be the number of edges between a leaf and the root of the tree. Then, on the

left tree, every leaf is at the same distance log(n), and on the right tree, the greatest distance is n.

Everything differs if one consider that every binary branching is a D2
isj or C

2
onj piece and consider the

logical depth rather than the distance. In that case, on the left-hand tree, the i th leaf (starting from the

left) is at logical depth 3 times the number of 1 in the binary encoding of i .2 On the right-hand tree,

every leaf is at logical depth 3, except for the red leaf (the left-most one), which is at logical depth 0.

So the logical depth is in fact independent of the fan-in of the pieces, and it has the same “logical cost”

in terms of depth to compute D i
isj
or C i

onj
for any i æ 2. A proof circuit of PCC

i is a proof circuit of

bPCCi: every piece of Pu can be obtained from pieces of Pb without increasing the logical depth. So

we have that for all i 2N,

PCC
i = bPCC

i.

Secondly, the proof of Theorem 2.4.3 was an attempt to adapt the function value(n, g , p) [:35, p. 65]

that prove that an ATM can normalize a Boolean circuit with suitable bounds. The algorithm is correct,

:Except maybe for a silly mistake in Proposition 4.3.:, spotted by Marc Bagnol.
2Sic. This sequence is known as A000:20 and starts with 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4, . . ..

iii



iv

but not the bounds: it is stated that “Each call to f uses a constant number of alternations, andO(d (Pn))

calls are made. As Pn is of depth logi (n), O(logi (n)) calls are made.”, and this argument is wrong.

Consider that Pn 2 PCCi (this is harmful taking the first remark into account), when the ATM calls f

to evaluate the output of a Dk
isj
or C k

onj
piece, it makes k − 1 calls to f at a lesser depth, and one call at

the same depth. The only bound on the fan-in of the pieces, k, is the size of the proof circuit, that is to

say a polynomial in the size of the input: this is a disaster.

tl;dr: bPCC
i should not be considered as a pertinent object of study and the correspondence

between the proof circuits and the Alternating Turing Machines is partially wrong. This does

not affect anyhow the rest of this work and this part has never been published nor submitted.

Créteil, 7 November 20:4.


