
HAL Id: tel-00957763
https://theses.hal.science/tel-00957763v1

Submitted on 11 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specification and verification of quantitative properties :
expressions, logics, and automata

Benjamin Monmege

To cite this version:
Benjamin Monmege. Specification and verification of quantitative properties : expressions, logics, and
automata. Other [cs.OH]. École normale supérieure de Cachan - ENS Cachan, 2013. English. �NNT :
2013DENS0039�. �tel-00957763�

https://theses.hal.science/tel-00957763v1
https://hal.archives-ouvertes.fr

ENSC-2013no468

THÈSE DE DOCTORAT
DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Présentée par

Monsieur Benjamin MONMEGE

Pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Domaine :
Informatique

Sujet de la thèse :

Spécification et Vérification de Propriétés Quantitatives :
Expressions, Logiques et Automates

Thèse présentée et soutenue à Cachan le 24 octobre 2013 devant le jury composé de :

Benedikt BOLLIG Chargé de recherche Co-directeur de thèse
Olivier CARTON Professeur Examinateur
Manfred DROSTE Professeur Rapporteur
Paul GASTIN Professeur Co-directeur de thèse
Sylvain LOMBARDY Professeur Rapporteur
Jean-Marc TALBOT Professeur Examinateur
Jacques SAKAROVITCH Professeur Examinateur

Laboratoire Spécification et Vérification
École Normale Supérieure de Cachan, UMR 8643 du CNRS
61, avenue du Président Wilson
94235 CACHAN Cedex, France

English translation of the title: Specification and Verification of Quantitative Properties:
Expressions, Logics, and Automata.

Abstract

Automatic verification has nowadays become a central domain of investigation in computer
science. Over 25 years, a rich theory has been developed leading to numerous tools, both
in academics and industry, allowing the verification of Boolean properties – those that can
be either true or false. Current needs evolve to a finer analysis, a more quantitative one.
Extension of verification techniques to quantitative domains has begun 15 years ago with
probabilistic systems. However, many other quantitative properties are of interest, such
as the lifespan of an equipment, energy consumption of an application, the reliability of a
program, or the number of results matching a database query. Expressing these properties
requires new specification languages, as well as algorithms checking these properties over a
given structure. This thesis aims at investigating several formalisms, equipped with weights,
able to specify such properties: denotational ones – like regular expressions, first-order
logic with transitive closure, or temporal logics – or more operational ones, like navigating
automata, possibly extended with pebbles.

A first objective of this thesis is to study expressiveness results comparing these for-
malisms. In particular, we give efficient translations from denotational formalisms to the
operational one. These objects, and the associated results, are presented in a unified frame-
work of graph structures. This permits to handle finite words and trees, nested words,
pictures or Mazurkiewicz traces, as special cases. Therefore, possible applications are the
verification of quantitative properties of traces of programs (possibly recursive, or concur-
rent), querying of XML documents (modeling databases for example), or natural language
processing.

Second, we tackle some of the algorithmic questions that naturally arise in this context,
like evaluation, satisfiability and model checking. In particular, we study some decidability
and complexity results of these problems depending on the underlying semiring and the
structures under consideration (words, trees...).

Finally, we consider some interesting restrictions of the previous formalisms. Some permit
to extend the class of semirings on which we may specify quantitative properties. Another is
dedicated to the special case of probabilistic specifications: in particular, we study syntactic
fragments of our generic specification formalisms generating only probabilistic behaviors.

iii

Résumé

La vérification automatique est aujourd’hui devenue un domaine central de recherche en
informatique. Depuis plus de 25 ans, une riche théorie a été développée menant à de nom-
breux outils, à la fois académiques et industriels, permettant la vérification de propriétés
booléennes – celles qui peuvent être soit vraies soit fausses. Les besoins actuels évoluent
vers une analyse plus fine, c’est-à-dire plus quantitative. L’extension des techniques de véri-
fication aux domaines quantitatifs a débuté depuis 15 ans avec les systèmes probabilistes.
Cependant, de nombreuses autres propriétés quantitatives existent, telles que la durée de
vie d’un équipement, la consommation énergétique d’une application, la fiabilité d’un pro-
gramme, ou le nombre de résultats d’une requête dans une base de données. Exprimer ces
propriétés requiert de nouveaux langages de spécification, ainsi que des algorithmes vérifi-
ant ces propriétés sur une structure donnée. Cette thèse a pour objectif l’étude de plusieurs
formalismes permettant de spécifier de telles propriétés, qu’ils soient dénotationnels – expres-
sions régulières, logiques monadiques ou logiques temporelles – ou davantage opérationnels,
comme des automates pondérés, éventuellement étendus avec des jetons.

Un premier objectif de ce manuscript est l’étude de résultats d’expressivité comparant ces
formalismes. En particulier, on donne des traductions efficaces des formalismes dénotation-
nels vers celui opérationnel. Ces objets, ainsi que les résultats associés, sont présentés dans
un cadre unifié de structures de graphes. Ils peuvent, entre autres, s’appliquer aux mots et
arbres finis, aux mots emboîtés (nested words), aux images ou aux traces de Mazurkiewicz.
Par conséquent, la vérification de propriétés quantitatives de traces de programmes (poten-
tiellement récursifs, ou concurrents), les requêtes sur des documents XML (modélisant par
exemple des bases de données), ou le traitement des langues naturelles sont des applications
possibles.

On s’intéresse ensuite aux questions algorithmiques que soulèvent naturellement ces ré-
sultats, tels que l’évaluation, la satisfaction et le model checking. En particulier, on étudie
la décidabilité et la complexité de certains de ces problèmes, en fonction du semi-anneau
sous-jacent et des structures considérées (mots, arbres...).

Finalement, on considère des restrictions intéressantes des formalismes précédents. Cer-
taines permettent d’étendre l’ensemble des semi-anneau sur lesquels on peut spécifier des
propriétés quantitatives. Une autre est dédiée à l’étude du cas spécial de spécifications prob-
abilistes : on étudie en particulier des fragments syntaxiques de nos formalismes génériques
de spécification générant uniquement des comportements probabilistes.

v

Remerciements

J’ai eu la chance d’être dirigé par Paul Gastin et Benedikt Bollig durant mes trois années
de doctorat. Ils ont toujours pris le temps de m’écouter et su trouver les mots justes pour
me guider. Je les ai tout d’abord connus comme mes professeurs, que ce soit en première
année de mon cursus à l’École Normale Supérieure de Cachan, ou lors de mon M2 au
Master Parisien de Recherche en Informatique. Leurs talents pédagogiques à ces occasions
– comme d’ailleurs tout au long de ces trois ans – couplés à leur grande générosité ont
permis de construire une atmosphère stimulante bien que bon enfant, propice à la recherche
que nous avons menée ensemble. Pour leur patience et leur savoir, leurs interrogations et
leurs réponses, leurs encouragements et leur soutien inconditionnel, je voudrais les remercier
chaleureusement.

Je remercie également les rapporteurs de ce manuscrit, Manfred Droste et Sylvain Lom-
bardy, ainsi que les autres membres du jury, Olivier Carton, Jean-Marc Talbot et Jacques
Sakarovitch, pour leurs commentaires, et le temps qu’ils m’ont consacré.

Durant mon stage de Master 2, j’ai également été co-encadré par Marc Zeitoun, avec
qui j’ai pu continuer à travailler durant les trois dernières années. Un grand merci pour son
soutien et son écoute pendant le stage, ainsi que pendant le doctorat.

Durant ces trois années, j’ai eu la chance de faire partie du Laboratoire Spécification et
Vérification de l’École Normale Supérieure de Cachan. Je remercie tous ses membres qui
ont fait de mon passage parmi eux un moment fantastique. Une pensée toute particulière
pour mon ancien tuteur, Nicolas Markey, avec qui j’ai pu organiser le groupe de travail
des axes Tempo et Mexico, Serge Haddad, que j’ai assisté pour un cours de probabilités,
Sylvain Schmitz et Jean Goubault-Larrecq, pour les pauses déjeuner cruciverbistes, l’équipe
administrative pour leur travail indispensable d’organisation, en particulier pour les voyages
que j’ai pu réaliser... Je remercie également Michèle Sebag pour m’avoir fait découvrir le
vaste monde de l’apprentissage statistique.

J’aimerais également adresser mes remerciements à Rupak Majumdar et Pierre Ganty
qui m’ont encadré durant mon stage de Master 1, et Johan Montagnat qui m’a guidé pendant
mon stage de Licence 3 : je leur dois mes premières expériences du monde de la recherche,
et celles-ci furent des plus agréables et enrichissantes.

Une pensée toute particulière pour Peter Habermehl, Martin Leucker, Normann Decker
et Daniel Thoma avec qui j’ai pu collaborer au sein du projet LeMon. Je remercie également
Gilles Geeraerts et Thomas Brihaye pour m’avoir offert l’opportunité de rejoindre le projet
Cassting et les équipes de l’Université Libre de Bruxelles et de l’Université de Mons pour
mon post-doc.

Je ne peux résister à l’envie de remercier chaleureusement mes partenaires de bureau,
Benoît Barbot, Aiswarya Cyriac, Assalé Adjé, Baptiste Gourdin, Ştefan Ciobâcă et plus
généralement toutes les doctorantes et tous les doctorants du laboratoire pour l’ambiance
chaleureuse qu’ils y font régner.

vii

viii

Un petit mot supplémentaire pour Aiswarya, ma sœur jumelle académique, avec qui j’ai
passé d’incroyables moments de complicité et de chamailleries (et désolé Benoît si parfois
tu as eu l’impression d’être coincé entre deux feux...). Nous avons aussi eu le plaisir de
co-organiser le séminaire des doctorants, le bien nommé Goûter des doctorants, qui nous a
permis d’apprendre et de découvrir énormément dans un moment de convivialité. Que notre
amitié soit le socle de nos coopérations futures !

Je voudrais aussi remercier ici ma famille et mes amis pour leur soutien sans faille, leurs
encouragements tout au long de mon cursus et leur amour. Vous êtes le support sur lequel
je pourrai toujours venir me reposer. Finalement, tout mon amour et toute ma gratitude
vont à Florian pour avoir été à mes côtés depuis toutes ces années, que tu as remplies non
seulement de joie mais aussi des pâtisseries dignes des plus grands chefs !

Benjamin Monmege
Cachan, France
Octobre 2013

Contents

Abstract iii

Résumé v

Remerciements vii

1 Introduction 1
1.1 From Boolean to Quantitative Verification . 1
1.2 High-Level Specification Languages . 3
1.3 The Success Story of Automata . 6
1.4 Algorithms . 7
1.5 Outline . 8

2 Preliminaries 11
2.1 Graph Structures . 12
2.2 Weight Domains . 17

3 Hybrid Expressions 23
3.1 Hybrid Weighted Expressions . 24
3.2 Syntactical Subclasses of Hybrid Weighted Expressions 28
3.3 Algebraic Semantics of Hybrid Weighted Expressions 32

4 Navigating Automata 39
4.1 Weighted Automata over Graphs . 40
4.2 Pebble Weighted Automata . 51

5 Query Evaluation 67
5.1 Generic Evaluation of Pebble Weighted Automata 68
5.2 Specialized Algorithm for Words . 71
5.3 Extension to Trees . 75
5.4 Extension to Nested Words . 76

6 Logical Specifications 81
6.1 Monadic Second Order Logic over Graphs . 82
6.2 Emptiness of Pebble Weighted Automata is Decidable 84
6.3 Weighted logics . 85
6.4 From Logics to Automata . 90
6.5 From Automata to Logics . 95
6.6 Hybrid Navigational Logics . 105

7 Simple and One-Way Restrictions 113
7.1 Simple Semantics of Pebble Weighted Automata 114
7.2 One-way Pebble Weighted Automata . 115

ix

x CONTENTS

7.3 Undecidability of Emptiness . 117
7.4 One-way versus Simple over Words . 120
7.5 Restrictions over Expressions and Logics . 129

8 Probabilistic Specification Formalisms 135
8.1 Pebble Probabilistic Automata . 136
8.2 Hybrid Probabilistic Expressions . 138
8.3 The Probabilistic Kleene-Schützenberger Theorem 140
8.4 What it Implies for Rabin Probabilistic Automata 147

9 Implementation: QuantiS tool 151
9.1 Objective and Implementation Details . 151
9.2 Experiments . 152

10 Perspectives 155

List of Figures 159

List of Tables 161

References 163

Bibliography 165

Nomenclature 173

Index 175

CHAPTER 1
Introduction

1.1 From Boolean to Quantitative Verification

Automatic verification is nowadays a central domain of research in computer science. Soft-
ware supports systems in many critical applications: embedded and communication systems,
Internet and e-commerce, health, finance, transport, energy, etc. Due to the economic and
human cost of an error, it is important to develop tools to ensure a high degree of confidence
in these applications. Formal methods provide an appropriate framework for achieving this
goal: the development of the theory for over 25 years now provides many tools to verify prop-
erties of such systems, especially when the expected response is Boolean, namely whenever
the property is either satisfied or is not.

The process of verification with formal methods usually follows a classical pattern in
three steps.

1. Modeling. The system to be verified must be modeled in a formal way. Such a
model can be finite or infinite depending on the modeling and can have a more or less
rich structure: words, trees, or more complex graphs (such as Kripke structures). It
could also be the case that the model generates such structures (e.g., a finite state
automaton generating finite words), and that we want to check some properties of all
the generated structures.

2. Specification. The property that the system should verify must be formally speci-
fied, i.e., written in a predetermined language. Regular expressions, temporal logics
and first-order or monadic second-order logic are well-known high-level specification
languages of properties over finite or infinite words. They can be generalized to deal
with richer structures like trees for example. More specifically, properties of trees or
graphs may be specified using some propositional dynamic logics or XPath and their
extensions. Notice that we may also use some automata to specify properties.

3. Algorithms. The typical question consists in model checking the system against the
specification, i.e., verify whether or not the model verifies the property (see [CGP99]
for a general overview of model checking). This may be seen as an evaluation of the
property over a given structure. Another typical question, usually called satisfiability
problem (or emptiness problem), consists in checking whether the specified property
admits at least one structure verifying it. The golden tool for answering these problems
is to translate the high-level specification languages into a low-level one, namely au-
tomata, which are a powerful, yet tractable fragment of Turing machines (see [VW86]
for the first application of automata techniques to verification).

1

2 CHAPTER 1. INTRODUCTION

Current verification needs are evolving towards a more detailed analysis, i.e., a quantita-
tive one. The extension of the verification to quantitative fields began in the specific context
of probabilistic systems, i.e., systems that may use randomization. In this mature field, theo-
retical methods are already transferred into usable tools like PRISM [KNP11]. Nevertheless,
it is still an active area of research, see, e.g., [GO10, FGO12] with new (un)decidability re-
sults about probabilistic automata.

However, there are many other interesting quantitative properties outside the scope of
probabilistic systems. Specifically, we may want to assess costs required to complete a
task, the lifetime of a device, the energy requirements of an application, the reliability of a
program, or the number of responses selected by a query in a database.

In this manuscript, the quantities only come from the specifications. In particular, we
will consider the same models as in the Boolean setting, i.e., without any weights. This
differs from other extensions like real-time verification (see, e.g., [AD94] introducing timed
automata), where models can be seen as time words (every position of the word is associated
to a time stamp being a positive real number), probabilistic verification (see, e.g., [BK08])
where models are Markov chains or Markov decision processes, or verification of systems
dealing with unbounded data (see, e.g., [KF94] introducing finite-memory automata), where
models are data words (every position of the word has both a label from a finite alphabet
and a data from an infinite domain).

Henceforth, we consider a model, and a quantitative specification, and the model check-
ing problem becomes a model evaluation problem, i.e., the computation of the quantity
associated with the model by the specification. The classical model checking problem can
then be seen as a special case where the computed quantity is indeed a Boolean value.
However, the quantitative framework permits to address many more properties.

Counting Problems. A first common problem is to go from the verification of a property
over a model to the computation of the total number of witnesses of this property in the
model. As an example, a model could be an XML document representing a database, and
a quantitative specification could ask the number of elements of the database selected by
a given query: the quantity is in that case a natural number. Another interesting example
could consist of a picture (a finite two-dimensional grid with a finite alphabet encoding the
pixel colors) in which we may count the number of patterns of interest, e.g., counting the
number of monochromatic squares in a picture.

Cost Optimization. Another interesting application lies in the optimization field. For
example, considering a routing graph, we may ask for the length of the smallest path from
a vertex to another. In terms of energy, considering a model being the execution trace of a
sensor – with some actions requiring energy and some others representing an energy refill –
we may ask for the minimal amount of energy needed at the beginning in order to perform
the whole trace.

Probabilities. Even though our aim is to verify more general quantitative properties
than just probabilities, we still can consider the probabilistic setting as a special case of our
framework. For example, considering a graph as a finite arena, we may want to compute the
probability that a uniform random walk goes from one point to another. Probabilities may
also model reliability: e.g., it would be interesting to compute the reliability of a system,
namely the probability that it never fails or runs out of energy.

Transducers. In the formal language community, quantities may be languages. Hence-
forth, a quantitative specification can map a given word to a language of words, the automa-
ton view of it being commonly called transducers. Generalized to trees for example, this is
the basis of some XML tree transducers, a fundamental tool for the database and natural
language processing communities.

1.2. HIGH-LEVEL SPECIFICATION LANGUAGES 3

1.2 High-Level Specification Languages

Examples of high-level specification languages are regular expressions, or various kinds of
logics, like monadic second order logic, first order logic, temporal logics or propositional
dynamic logics. Whereas regular expressions are widely used for pattern matching in dif-
ferent areas, and lexical analysis in particular, temporal and propositional dynamic logics
are broadly used in the formal verification field, and first or second order logic have a more
theoretical interest. We give three examples below of extensions of classical specification
languages to the quantitative framework: weighted regular expressions, probabilistic linear
temporal logic and weighted monadic second order logic. In the three cases, the motto is
always the same: Maintaining a very similar syntax but evaluating a specification over a
richer weight structure permits to specify some quantitative properties easily.

1.2.1 Weighted Regular Expressions

Over finite words, Kleene first introduced in [Kle56] the theoretical bases for the study of
regular languages, namely those being definable by a regular expression such as a⋆ba⋆ or
(a + b)⋆ca⋆ + a⋆(bc)⋆. Schützenberger extended in [Sch61] these bases to the quantitative
setting considering some regular formal power series, i.e., regular functions mapping each
word to a weight (that we may seen as a generalization of the previous case if the weight is a
Boolean value). Keeping the same syntax as usual regular expressions – simply introducing
some constant weight additionally – we may represent easily those regular formal power
series. For example, if we want to map every word w over an alphabet A to the number
of occurrences of a pattern p in it, we may simply consider the weighted regular expression
A⋆pA⋆: if evaluated in the Boolean setting, it simply checks the occurrence of p as a factor
of w, but evaluated over the set of natural numbers, it will output the number of such
occurrences.

1.2.2 Probabilistic Linear Temporal Logic

For temporal logics, we may easily extend Linear Temporal Logic (LTL) with a probabilistic
version. Usually, an LTL formula is constructed from atomic formulae from the finite alpha-
bet A, namely a for every letter a ∈ A, on top of which we may apply temporal operators X

(next), F (finally) and G (globally) being unary and U (until) being binary – if ϕ and ψ are
formulae, Xϕ, Fϕ, Gϕ and ϕ U ψ are formulae too – and Boolean connectives – if ϕ and ψ
are formulae ¬ϕ, ϕ ∨ ψ and ϕ ∧ ψ are formulae too. The semantics is defined with respect
to a word w = a0a1 . . . an−1 ∈ A

⋆ and a position i of this word (0 ≤ i ≤ n− 1). We define
w, i |= ϕ by induction over the formula ϕ:

w, i |= a if ai = a

w, i |= Xϕ if i < n− 1 and w, i+ 1 |= ϕ

w, i |= Fϕ if there exists j ≥ i such that w, j |= ϕ

w, i |= Gϕ if for all j ≥ i w, j |= ϕ

w, i |= ϕ U ψ if there exists j ≥ i such that w, j |= ψ and for all i ≤ ℓ < j w, ℓ |= ϕ

w, i |= ¬ϕ if not w, i |= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= ϕ ∧ ψ if w, i |= ϕ and w, i |= ψ

For example, with the formula ϕ = F(a ∧ X b), a word w ∈ A⋆ verifies w, 0 |= ϕ if, and
only if, w contains ab as a factor. We may search for a probabilistic version of this logic.
Notice that, contrary to most of other works in this field (see, e.g., [BK08] for an overview
of model checking), we still consider non-probabilistic models, here words. However, we
enrich the specification, i.e., LTL formulae with some constant weights, here probabilities

4 CHAPTER 1. INTRODUCTION

p between 0 and 1. More precisely, we replace atomic formulae a and ¬a by pa and p(¬a)
with p a probability and a a letter of the alphabet. Now, each formula ϕ maps a pair
(w, i) of word and position of this word to a probability, denoted by [[ϕ]](w, i), namely the
probability that (w, i) verifies ϕ (the probabilities coming from the formula itself and not
from the model). Rather than probability, one may consider this as a way to model a system
receiving information from unreliable sensors. Naming a, b, c, ... the messages that may
be received from the different sensors, the quantitative specification verifies a property of a
given trace of execution of the system, associating to each message two different probabilities:
the true-positive probability, i.e., the probability p that a message a appearing in the trace
(checked by the LTL formula a) has really been sent by the sensor, and the true-negative
probability, i.e., the probability p′ that a message not appearing in the trace (checked by
the LTL formula ¬a) has really not been sent by the sensor. Such a situation is modeled by
the formula pa ∨ p′(¬a). In particular, this permits to consider false-positive events (with
probability 1 − p), namely when a message seems to be received but has not really been
sent, or false-negative events (with probability 1− p′), namely when a message is lost.

The semantics is defined inductively over the formulae: during the definition, we maintain
as an invariant the fact that the sum of the semantics of a formula and its negation is always
1. Henceforth, we let

[[¬ϕ]](w, i) = 1− [[ϕ]](w, i) .

For the other Boolean connectives, we may simply define the semantics of the conjunction as
a product (considering that the verification of each property is independant from the rest):

[[ϕ ∧ ψ]](w, i) = [[ϕ]](w, i)× [[ψ]](w, i) ,

and adapt from the de Morgan law ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), the semantics for the disjunction:

[[ϕ∨ψ]](w, i) = [[ϕ]](w, i)+[[ψ]](w, i)−[[ϕ]](w, i)×[[ψ]](w, i) = [[ϕ]](w, i)+[[¬ϕ]](w, i)×[[ψ]](w, i) .

For atomic formulae and operator X, we simply let

[[pa]](w, i) =

{
p if ai = a

0 otherwise,

[[Xϕ]](w, i) =

{
[[ϕ]](w, i+ 1) if i < n− 1
0 otherwise,

In classical LTL, a formula Fϕ may be developped in the equivalent formula ϕ ∨ X(Fϕ):
intuitively, it says that ϕ finally holds either when ϕ holds right now, or when Fϕ holds in
the next position. In the probabilistic setting, we may translate this statement (considering
the previous semantics for the disjunction and the negation) in

[[Fϕ]](w, i) = [[ϕ]](w, i) + [[Fϕ]](w, i+ 1)− [[ϕ]](w, i)× [[Fϕ]](w, i+ 1)

= [[ϕ]](w, i) + [[¬ϕ]](w, i)× [[Fϕ]](w, i+ 1) .

This equation can be applied iteratively to obtain the semantics of formula Fϕ:

[[Fϕ]](w, i) =
∑

j≥i

(∏

i≤ℓ<j

[[¬ϕ]](w, ℓ)
)
× [[ϕ]](w, j) .

We set the semantics of other temporal operators similarly, letting

[[Gϕ]](w, i) =
∏

j≥i

[[ϕ]](w, j)

[[ϕ U ψ]](w, i) =
∑

j≥i

(∏

i≤ℓ<j

[[¬ψ]](w, ℓ)× [[ϕ]](w, ℓ)
)
× [[ψ]](w, j) .

1.2. HIGH-LEVEL SPECIFICATION LANGUAGES 5

For example, consider the word abba. The formula ϕ = (2
3a ∨

2
3 (¬a)) U 3

4a, that we can
abusively write 2

3 U 3
4a since the left term is always interpreted as the constant probability

2
3 , interprets on this word as

[[ϕ]](abba, 0) =
3
4

+ 0 + 0 +
(

1
4
×

2
3

)
×

(
1×

2
3

)
×

(
1×

2
3

)
×

3
4
.

The intuition is that the left term of the Until operator models a discounting factor, modeling
the fact that a sooner witness is preferable. However, in order to keep a probabilistic
interpretation of the result, the first witness a, apart from counting to three fourth of the
result, also decreases the power of the second witness with an initial factor 1

4 = 1− 3
4 . Notice

also that the right term of the Until operator does not give a true-negative probability, that
we may interpret as a probability 0, which results in the two zeros in the semantics.

The Finally operator can then be seen as a special Until operation without discount:
indeed, as for the classical LTL, we have the following semantical equivalence Fϕ = ⊤ U ϕ
where ⊤ is an atomic formula always evaluating to 1 (that we can write 1a ∨ 1(¬a) for
example). Then, formula ϕ = F(2

3a) interprets over the word abb as

[[ϕ]](abb, 0) =
2
3

+ 0 + 0

as well as over the word bba:

[[ϕ]](bba, 0) = 0 + 0 + 1× 1×
2
3

No discount factor is taken into account in the Finally operator.

1.2.3 Weighted Monadic Second Order Logic

Apart from the previous probabilistic example, we may notice that this semantics has been
defined by the dual use of sums and products of probabilities. The same duality is used
to define the semantics of weighted regular expressions (one may find a formal definition
in [Sak09], or later in Chapter 3). Indeed, in many works about quantitative specification,
such a duality is common: the weight structure is equipped with an algebraic structure of
semiring. It permits to treat in a unified and elegant way many quantitative settings, as
for example, real numbers with the usual addition and multiplication (used for counting
or probabilities), natural numbers equipped with a minimum operation and the addition
(used for optimization) or languages of words with the union and the concatenation (used
in transducers for example).

Recently, Droste and Gastin introduced in [DG07] a weighted monadic second order
logic over words. They also defined a fragment of this latter which captures exactly the
regular formal power series. The main idea is again to keep a similar syntax to the classical
monadic second order logic – simply adding constant weights as atomic formulae – but to
give a quantitative semantics to every formula. This is done using semirings, by interpreting
(as for probabilistic LTL) disjunctions as sums, conjunctions as products and by extension,
existential and universal quantifications as addition and multiplication over positions or sets
of positions of the word.

However, Droste and Gastin showed that, in order for the series denoted by a formula to
remain regular, it is necessary to restrict the use of universal quantification, leading to the
first logical characterization of regular formal power series.

Notice that, apart from words, regular expressions and various logics have been inten-
sively extended to more complex models like ranked trees, nested words, pictures, or infinite
models. In particular, the logic defined in [DG07] has been further studied over many mod-
els: ranked and unranked trees [DV06, DV09], infinite words [DR07, DM10a], infinite trees
[Rah07], nested words [Mat10, DP12], or pictures [Fic11].

6 CHAPTER 1. INTRODUCTION

The first aim of this manuscript is to describe and study more general and ex-
pressive high-level specification formalisms of quantitative properties. Rather than
only considering words, or trees, we study a general framework of graphs, having
as special cases all previously mentioned finite models.

1.3 The Success Story of Automata

It is usually difficult to directly reason about, or verify, high-level specifications. It is well-
known, for instance, that the best method to parse a regular expression is to use automata
(see, e.g., [AU72] or [FHW10] with an original and recent presentation in both the classical
and the weighted settings). Also, checking a model against a logical specification is usually
achieved efficiently by first translating the specification into an equivalent automaton, as
introduced initially in [VW86].

In the classical setting, Kleene proves in [Kle56] the equivalence between languages de-
finable with regular expressions – namely the regular languages – and those recognized
by finite-state automata. A further equivalence between monadic second order logic and
finite-state automata, usually known as the Büchi-Elgot-Trakhtenbrot theorem, follows from
[Büc59, Elg61, Tra61].

In the weighted setting, Schützenberger also introduced weighted automata in [Sch61],
a quantitative extension of finite-state automata (see [DKV09, BR10, Sak09] for recent
books about extension of automata theory to the weighted setting among others). The
computation result of a weighted automaton on a word is not a Boolean value distinguishing
accepted behaviors from those rejected. Instead, a computation over a word produces a
weight in a semiring. The weight of a word is the sum of the weights of the different possible
computations over the word, each calculated as the product of the weight of the visited
transitions. In [Sch61], Schützenberger already presented an extension of Kleene theorem,
i.e., an equivalence between regular formal power series (that are definable by weighted
regular expressions for example), and formal power series recognized by weighted automata.
This seminal result is still a central object of research, either to make efficient translations
from weighted regular expressions to weighted automata [CF03, AM06] and implement them
[FHW10], or to extend it to other structures, like infinite words for example [DM10b].

Surprisingly, the logical equivalence generalizing the result of the Boolean case only
appeared recently, in terms of the logic introduced in [DG07]. As previously mentioned,
this is not the full weighted monadic second order logic, but rather a restricted fragment
of it. In particular, this fragment does not contain entirely the weighted first order logic,
by lack of power of weighted automata. The previously mentioned articles introducing
similar fragments over richer models, like trees or infinite models, also prove an equivalence
between the logic and weighted automata over the subsequent models. For example, in
[DPV04], authors prove the equivalence between a fragment of weighted monadic second
order logic over finite ranked trees, and a weighted extension of tree automata.

A second aim of this manuscript is to introduce a more general class of weighted
automata, at least able to compute all the formal power series definable by weighted
first order formulae.

Rather than considering branching automata (like bottom-up tree automata [CLDG+08]
or graph automata [Tho91]), we focus on navigating automata. Over words for instance,
these automata may be seen as a weighted generalization of two-way automata (first in-
troduced by Rabin and Scott in [RS59]). An advantage of these navigating automata is
their possible direct generalization to any class of graphs. These automata are still not

1.4. ALGORITHMS 7

general enough to recognize all formal power series defined by weighted first order formulae.
However, following ideas of [EH99], it is possible to add pebbles to navigating automata in
order to recognize more behaviors: those pebbles permit to mark temporarily the model
with some tokens. Tree-walking automata, and pebble tree-walking automata, have been
extensively studied recently [BSSS06, SS07, Boj08]. Such automata models have attracted
increasing interest, particularly in the context of queries manipulating XML documents and
XPath (XML Path Language) queries [tCS10]. In [EH07], considering ranked trees (and
also general classes of graphs), authors prove, in the Boolean setting, that pebble navigat-
ing automata are expressively equivalent to the first order logic enriched with a transitive
closure operator.

One of the main contributions of this manuscript is to define weighted pebble
navigating automata, and to introduce a weighted transitive closure operator, to
prove some equivalence results between formal power series recognized by such
automata and formulae of weighted first order logic with a weighted transitive
closure operator.

A weighted extension of tree-walking automata has been introduced and studied in
[FM09]. However, the authors only consider a non-looping version of these automata, and
do not consider the extension with pebbles.

It has to be noticed that some other results of equivalence between quantitative general-
izations of automata and quantitative logics have also been obtained by other authors, with
different purposes. Quantitive properties of infinite words have been considered in [Col09],
for example, by the mean of regular cost functions. These may be defined in terms of B-
or S-automata, and have equivalent logical and algebraic characterizations. More recently,
[ADD+13] investigates tree transducers as a way to define quantitative functions over finite
words: the model, called cost register automata, defines some regular functions, also with an
equivalent logical formalism based on monadic second order logic.

1.4 Algorithms

Translating high-level specification formalisms into automata is interesting because this en-
ables efficient algorithms, e.g., with respect to model checking (or evaluation) and emptiness
checking. For example, some classical automata-based techniques to verify systems have
been extended in [CCH+05] to the weighted setting: authors use bound functions in order
to transfer classical methods and results. Algorithms over weighted automata (determiniza-
tion, minimization, etc.) have also been extensively studied since the 60s, see [Moh09] for an
overview. For example, the minimization of a weighted automaton (over finite words) over
a field can be done in polynomial time (as already shown in the seminal paper of Schützen-
berger [Sch61]): as an interesting implication for the Boolean setting, this implies that the
equivalence of unambiguous finite-state automata can be performed in polynomial time, and
not only in polynomial space as it is the case for general non-deterministic finite-state au-
tomata. All these efficient algorithms have already permitted to apply the techniques to
several areas such as natural language processing [KM09] and language recognition, or the
compression of digital images (see [DKV09, Part IV]).

In this manuscript, we will consider the evaluation and emptiness problems of
our newly introduced class of pebble weighted automata. In particular, we give a
precise complexity for the evaluation of pebble weighted automaton, in terms of
the size of the model (usually huge), and the automaton (usually more reasonable).

8 CHAPTER 1. INTRODUCTION

Notice that other authors design algorithms for weighted automata, in other contexts.
For example, in [CDH08], authors study quantitative languages of infinite words: rather than
using a semiring, they consider more complex product operations in order to model discount-
ing or averaging. This has been further studied with alternating automata in [CDH09], and
also [AK11] over finite words. They also consider some mean-payoff expressions using au-
tomata as atomic expressions in [CDE+10], in order to specify more complex quantitative
properties.

1.5 Outline

This manuscript aims at studying different formalisms describing quantitative properties of
graph structures. We start in Chapter 2 by introducing the graphs we study, and the
weight domains we use.

We introduce hybrid weighted expressions in Chapter 3, namely a generalization of
weighted regular expressions over general classes of graphs. They may also use some variables
in order to generate more behaviors. As usual, we give a denotational (and inductive)
semantics of these expressions. As a preliminary for subsequent proofs, we also give a more
algebraic semantics of them, in terms of marked graphs.

Chapter 4 is devoted to the introduction of our class of pebble weighted automata. We
start by the special case of weighted navigating automata (without pebbles) and prove, in
this case as well as in the more general one, a Kleene-Schützenberger theorem stating the
equivalence with weighted expressions and hybrid weighted expressions respectively. The
translations from expressions to automata are done carefully in order to generate small
automata.

In Chapter 5, we explain how to evaluate a pebble weighted automaton over a given
model. After giving a very general evaluation algorithm, we consider some special cases
(words, trees and nested words) and give more efficient algorithms.

Logical specifications are studied in Chapter 6. We first recall monadic second order
logics over graphs, permitting to prove some decidability results for the emptiness of a
pebble weighted automaton. Afterwards, we introduce our class of weighted first order
logic with transitive closure. The main result of this chapter is to prove the expressive
equivalence between this logic and pebble weighted automata. The translation from logics
to automata is made efficiently (as for hybrid weighted expressions), in particular by a
careful use of the pebbles: this translation requires to consider searchable classes of graphs,
i.e., graphs in which a walking automaton can enumerate every vertex faithfully. Conversely,
the translation from automata to logic – with a more theoretical interest of completeness and
robustness of the class of automata – is also shown: it requires to consider the new concept
of zonable classes of graphs, namely graphs that we can partition into zones expressible into
the logic. Finally, hybrid navigational logics are considered at the end of this chapter: they
generalize the classical propositional dynamic logic and temporal logics to capture the power
of pebble weighted automata.

Chapter 7 focuses on some natural restrictions of the specification languages considered
before. In particular, these restrictions permit to extend the set of weights studied, and
consider for example the set of positive and negative real numbers (forbidden in the rest
of this manuscript for reasons that we present in Chapter 3). The restrictions are of two
sorts: one, semantical, restricts the set of runs that automata may follow to non-looping
ones, whereas the second, syntactical, directly restricts the possibility of the automata to
only one-way runs. We show that both restrictions indeed coincide over finite words. We
also prove that the emptiness problem quickly becomes undecidable in this restricted case,
in particular because we allow more general semirings.

We consider the probabilistic case as a special case of the weighted setting in Chapter 8.
The aim is to design a fragment of hybrid weighted expressions and pebble weighted au-
tomata generating only probabilistic behaviors of graphs. After presenting the restrictions,

1.5. OUTLINE 9

we again prove a Kleene-Schützenberger theorem relating these two formalisms. As a special
case, this permits to give a set of regular expressions (with probabilities) that define exactly
the behaviors recognized by Rabin probabilistic automata [Rab63]. If we forget about the
probabilities, this also gives an insight of some deterministic restrictions of the model of
automata we study in this manuscript.

Finally, we present in Chapter 9 an implementation of the algorithm of evaluation of a
hybrid weighted expression in the case of words.

References

The results presented in this manuscript are extensions of works published in articles co-
authored with Benedikt Bollig, Paul Gastin and Marc Zeitoun. These articles only explored
the case of finite words and nested words, and this manuscript presents the extension to
more general models of graphs. The following articles have been presented at international
peer-reviewed conferences:

[1] Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble weighted
automata and transitive closure logics. In Samson Abramsky, Friedhelm Meyer auf
der Heide, and Paul Spirakis, editors, Proceedings of the 37th International Colloquium
on Automata, Languages and Programming (ICALP’10), Lecture Notes in Computer
Science, pages 587–598. Springer, Bordeaux, France, 2010.

[2] Paul Gastin and Benjamin Monmege. Adding Pebbles to Weighted Automata. In
Nelma Moreira and Rogério Reis, editors, Proceedings of the 17th International Con-
ference on Implementation and Application of Automata (CIAA’12), Lecture Notes in
Computer Science, pages 28–51. Springer, Porto, Portugal, 2012.

[3] Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. A Proba-
bilistic Kleene Theorem. In Madhavan Mukund and Supratik Chakraborty, editors,
Proceedings of the 10th International Symposium on Automated Technology for Veri-
fication and Analysis (ATVA’12), Lecture Notes in Computer Science, pages 400–415.
Springer, Thiruvananthapuram, India, 2012.

[4] Benedikt Bollig, Paul Gastin, and Benjamin Monmege. Weighted Specifications
over Nested Words. In Frank Pfenning, editor, Proceedings of the 16th Interna-
tional Conference on Foundations of Software Science and Computation Structures
(FoSSaCS’13), volume 7794 of Lecture Notes in Computer Science, pages 385–400.
Springer, 2013.

The following articles have also been submitted to international journals:
[5] Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble weighted

automata and transitive closure logics. Submitted to Transactions on Computational
Logic. February 2012.

[6] Paul Gastin and Benjamin Monmege. Adding Pebbles to Weighted Automata: Easy
Specification & Efficient Evaluation. Accepted to Theoretical Computer Science: Spe-
cial Issue of the 6th International Workshop Weighted Automata, Theory and Appli-
cations. August 2012.

During my three years of PhD, I have also collaborated with other authors on topics
not directly related with the work presented in this manuscript. The following additional
articles have hence been published during my PhD studies:

[7] Pierre Ganty, Rupak Majumdar, and Benjamin Monmege. Bounded Underapproxi-
mations. Formal Methods in System Design, 40(2):206–231, 2012.

[8] Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A Fresh
Approach to Learning Register Automata. In Marie-Pierre Béal and Olivier Carton,
editors, Proceedings of the 17th International Conference on Developments in Lan-

10 CHAPTER 1. INTRODUCTION

guage Theory (DLT’13), volume 7907 of Lecture Notes in Computer Science. Springer,
Marne-la-Vallée, France, 2013.

CHAPTER 2
Preliminaries

2.1 Graph Structures . 12
2.1.1 Words . 13
2.1.2 Ranked Trees . 13
2.1.3 Nested Words . 14
2.1.4 Grids and Pictures . 15
2.1.5 Mazurkiewicz Traces . 15
2.1.6 Ordered Graphs . 16

2.2 Weight Domains . 17
2.2.1 Monoids . 17
2.2.2 Semirings . 18
2.2.3 Formal Power Series and Polynomials. 20
2.2.4 Matrices . 20

General Notations

|E| the cardinality of a finite set E
P(E) the powerset of a set E
[a, b] the closed real interval {x ∈ R | a ≤ x ≤ b}

[a .. b] the closed integer interval {i ∈ Z | a ≤ i ≤ b}
A→ B mapping (or function) from A to B
A ⇀ B partial mapping (or function) from A to B

f|A restriction of a function f : B → C to subset A of B

We will use the same notation (xi)i∈I for families and sequences of elements. The main
difference lies in the index set I: it is considered as an ordered set in the case of a sequence,
but families are not ordered.

The domain of a partial mapping f : A ⇀ B is the set of elements a ∈ A for which
image f(a) is well-defined: it is denoted by dom(f) in the following. Substitutions (also
called valuations in the following) are partial mappings from a (possibly infinite) set Var of
variables to a set A. The substitution of domain {x} mapping x to value a ∈ A is denoted
by [x 7→ a]. Moreover, if σ is a substitution of domain D, σ[x 7→ a] is the substitution σ′ of
domain D ∪ {x} such that σ′(x) = a and σ′(y) = σ(y) for every y ∈ D different from x.

11

12 CHAPTER 2. PRELIMINARIES

2.1 Graph Structures

In order to introduce the definitions and results of this manuscript in a unified way for
different kinds of structures like words, trees, nested words, etc. we will use graphs in the
sequel. Among other works, this unified presentation of our framework has been inspired by
[Tho91, EH07, Fic07]. Graphs we will consider are graphs of bounded degree with labels on
vertices and edges.

We fix a finite alphabet A and another finite set D that will be used for encoding
the directiondirections of the graph. This set is always supposed to be symmetrical in
the following meaning: there exists a bijective mapping ·−1 : D → D such that for every
direction d ∈ D, (d−1)−1 = d. For example {→,←} with →−1 = ← and ←−1 = → is
a valid set of directions. We extend the mapping ·−1 to sets of directions: if D′ ⊆ D,
D′−1 = {d−1 | d ∈ D′}.

Definition 2.1. An (A,D)-graph (or simply a graph, if A and D are clear from the context)
is a tuple G = (V, (Ed)d∈D, λ) such that
• V is a non-empty and finite set of vertices;
• for all d ∈ D, Ed ⊆ V × V is a functional irreflexive relation describing the d-edges of

the graph, i.e., for all v ∈ V , there exists at most a vertex v′ ∈ V such that (v, v′) ∈ Ed,
and then it verifies v′ 6= v;
• for all d ∈ D, d−1-edges are the reversed d-edges, i.e.,

Ed−1 = {(v, v′) | (v′, v) ∈ Ed} ;

• λ : V → A is a labeling of vertices with letters of the alphabet.
In the following, we denote E =

⋃
d∈D Ed the full set of edges of a graph. �

A path in such a graph is a finite non-empty sequence (vk)0≤k≤n of vertices of the
graph such that successive vertices are linked by an edge, i.e., for every 0 ≤ k ≤ n − 1,
(vk, vk+1) ∈ E. Such a path is said to be a path from v0 to vn, and its length is n, i.e.,
the number of edges it contains. Throughout this manuscript, we restrict ourselves
to connected graphs, i.e., such that for every pair of vertices, there always exists a path
from the first one to the second one. For a subset D′ of D, we say that a path is a D′-path
if every edge it contains is labeled by a direction of D′: with previous notations, for every
0 ≤ k ≤ n − 1, (vk, vk+1) ∈

⋃
d∈D′ Ed. A {d}-path is also called a d-path for conciseness.

Finally, a D′-cycle is a non-empty D-path from a vertex to itself.
We may equip every graph G = (V, (Ed)d∈D, λ) with a distance function d : V × V → N

with d(v, v′) being the length of the shortest path from v to v′. In particular, it verifies the
following properties:
• d(v, v′) = 0 if, and only if, v = v′, for every vertices v, v′ ∈ V ;
• d(v, v′) = d(v′, v) for every vertices v, v′ ∈ V ;
• d(v, v′′) ≤ d(v, v′) + d(v′, v′′), for every vertices v, v′, v′′ ∈ V .

Vertices of a graph come with a type. In a graph G, the type of vertex v, denoted type(v),
is the set of all possible directions available from v, namely

type(v) = {d ∈ D | ∃v′ ∈ V (v, v′) ∈ Ed}

A pointed graph is a tuple G = (V, (Ed)d∈D, λ, v(i), v(f)) with (V, (Ed)d∈D, λ, χ) a graph
and v(i), v(f) some vertices of V , used as initial and final vertices. The set of pointed graphs
with alphabet A and directions D is denoted by G(A,D).

Throughout this manuscript, if not specified, a graph G ∈ G(A,D) will be supposed to
have set of vertices denoted V , sets of edges (Ed)d∈D, etc.

2.1. GRAPH STRUCTURES 13

a a b b b a a b a b a→ → → → → → → → → →

← ← ← ← ← ← ← ← ← ←

Figure 2.1: Graph representation of a word

2.1.1 Words

A word is a finite sequence w = a0a1 · · · an−1 of letters ai ∈ A. The empty word is denoted
by ε. The set of words over the alphabet A is denoted by A⋆, whereas the set of non-empty
words is denoted by A+. The length of the word w is the number n of letters it contains,
and is often denoted by |w|. We also denote by |w|a the number of occurrences of letter a in
word w. Words may be concatenated: the concatenation of two words w1 and w2, denoted
w1 · w2 (or shortly w1w2), is the word obtained by appending the letters of w2 after the
letters of w1.

We model the set of words in our graph framework by considering as set of directions
D = {→,←}, with →−1 = ←. Notice that the set G(A,D) then contains all the words of
A+. However, it also contains graphs that do not represent words (e.g., cycles), and hence
we only consider the subset of graphs that represents finite words. More precisely, we let
Word(A) be the set of pointed graphs ([0 .. n − 1], (E→, E←), λ, 0, n − 1) with n ≥ 1, such
that E→ = {(i, i + 1) | i ∈ [0 .. n − 2]} and E← = {(i, i − 1) | i ∈ [1 .. n − 1]}. For these
graphs, the initial vertex is the first position of the word, whereas the final vertex is the last
one. The graph representation of the word aabbbaababa is depicted in Figure 2.1: this word
has length n = 11.

2.1.2 Ranked Trees

A ranked alphabet is an alphabet A where each letter a ∈ A comes with an arity denoted by
ar(a) ∈ N. A ranked tree is then a finite term labeled by letters of a ranked alphabet. More
formally, a ranked tree is a partial mapping1 t : N⋆ ⇀ A with domain dom(t) satisfying the
following properties
• dom(t) is finite and nonempty;
• dom(t) is prefix closed, i.e., if a sequence is in dom(t), each of its prefixes is also in

dom(t);
• for all u ∈ dom(t), if ar(t(u)) = n ≥ 0, then {i ∈ N | ui ∈ dom(t)} = [0 .. n− 1].

Notice that in the case n = 0, the interval [0 .. n − 1] is empty. Elements of the domain
dom(t) are called nodes of the tree. Each node u ∈ dom(t) inherits an arity ar(t(u)) from
its labeling. Nodes of arity 0 are called leaves, whereas nodes of non-null arity are called
internal nodes. The root of t is the node ε. A node ui ∈ dom(t) is said to be a child of node
u, sometimes called the ith child of u, whereas u is the parent of node ui. We denote by |t|
the cardinality of the domain dom(t) of t, i.e., its number of nodes.

We may represent these trees in our graph framework by considering the set of directions
D = {↑i, ↓i| 0 ≤ i < ar(a), a ∈ A}, with ↑−1

i = ↓i. The set G(A,D) then contains all the
ranked trees over alphabet A. Indeed this set of graphs contains also graphs which are
not well-formed, e.g., because a vertex admits as type {↓2}, or because the arity of the
symbol labeling a vertex is not correct. Hence, we let T ree(A) be the subset of G(A,D)
containing only well-formed ranked trees. More formally, T ree(A) is the set of pointed
graphs (dom(t), (Ed)d∈Dλ, ε, ε) where t is a ranked tree as defined previously, such that
λ(u) = t(u) for every vertex u ∈ dom(t), and for every i ∈ [0 .. maxa∈A ar(a) − 1], E↓i

=
{(u, ui) | u, ui ∈ dom(t)} and E↑i

= {(ui, u) | u, ui ∈ dom(t)}. Notice that in these graphs,
the initial and final vertices are the same, namely the root of the tree. An example of ranked

1Here, N⋆ denotes the set of words over the infinite alphabet N.

14 CHAPTER 2. PRELIMINARIES

c
c

b b c

b c
a

a
b

a

↓0

↓1

↓0

↓1

↓0

↓0

↓0

↓0

↓1

↓0

↑0

↑1

↑0

↑1

↑0

↑0

↑0

↑0

↑1

↑0

Figure 2.2: A ranked tree

a a

b

a a a

a

b

a a b

a b b→ → →

→ →

→

← ← ←

← ←

←

y y

y

y

x x

x

x

→

←

→ → →

→ →

→

← ← ←

← ←

←

Figure 2.3: A nested word

tree over the alphabet A = {a, b, c} with a of arity 2, b of arity 1 and c of arity 0, is depicted
in Figure 2.2: in this tree, the rightmost leaf is encoded by the sequence 101.

2.1.3 Nested Words

Nested words are structures particularly useful to denote XML documents or finite exe-
cutions of recursive programs. Indeed, these structures have in common to contain an
underlying linear order over their positions, and additional informations. In well-formed
XML documents, an opening tag (e.g., or <h1> for HTML documents) is linked to its
matched closing tag (and </h1>). In the same way, for recursive programs, positions
encoding a call of a program is linked to its matched return.

Formally, we will describe the set of nested words over an alphabet A as a subset of the
pointed graphs G(A,D) with D = {→,←,y,x} with →−1 =← and y−1 = x. Whereas
→ and← are used, as for words, to denote the successor and predecessor edges in the linear
order, directions y and x encode the links in the nested words (opening/closing tags,
call/matching return). We let N est(A) the subset of G(A,D) containing all pointed graphs
([0 .. n − 1], (E→, E←, Ey, Ex), λ, 0, n − 1) with n ≥ 1, E→ = {(i, i + 1) | i ∈ [0 .. n − 2]},
and Ey ⊂ {(i, j) | i < j} the set of nesting edges verifying for every (i, j), (i′, j′) ∈ Ey that
• nesting edges do not share positions: i = i′ if, and only if, j = j′;
• nesting edges do not cross: if i < i′ then either j < i′ or j > j′).
An example of nested word is depicted in Figure 2.3. Its set of vertices is [0 .. 13], depicted

in increasing order, and has as y-edges

Ey = {(1, 3), (5, 11), (6, 8), (12, 13)} .

On the picture, we have structured vertically the vertices with respect to their call-depth.
By definition, the call-depth of a vertex in a nested word is the number of nesting edges
jumping over this vertex: more formally, the call-depth of a vertex v is |{(v1, v2) ∈ Ey |

2.1. GRAPH STRUCTURES 15

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←
↓↑

→

←

↓↑

↓↑

↓↑

↓↑

Figure 2.4: A picture

v1 < v < v2}|. For example, vertex 4 and 5 have call-depth 0, vertex 9 has call-depth 1 and
vertex 7 is the only vertex of call-depth 2.

2.1.4 Grids and Pictures

Finite grids are another interesting example of graphs. As noticed by [BH67], pictures
may be seen as finite two-dimensional grids. We may model those by graphs with sets of
directions D = {→,←, ↓, ↑} (with→−1 =← and ↓−1 = ↑), labeled by letters in an alphabet
A encoding gray levels or colors of the pixels. Let Pict(A) be the subset of G(A,D) containing
all pointed graphs ([0 .. n1−1]× [0 .. n2−1], (E→, E←, E↓, E↑), λ, (0, 0), (n1−1, n2−1)) with
n1 ≥ 1 being the width of the picture, n2 ≥ 1 its height, and with edges

E→ = {((i, j), (i+ 1, j)) | i ∈ [0 .. n1 − 2], j ∈ [0 .. n2 − 1]}

E← = {((i, j), (i− 1, j)) | i ∈ [1 .. n1 − 1], j ∈ [0 .. n2 − 1]}

E↓ = {((i, j), (i, j + 1)) | i ∈ [0 .. n1 − 1], j ∈ [0 .. n2 − 2]}

E↑ = {((i, j), (i, j − 1)) | i ∈ [0 .. n1 − 1], j ∈ [1 .. n2 − 1]}

An example of picture with pixels either white or black is represented in Figure 2.4. Its
width is 7 and its height is 5. For example, the only black pixel is the vertex indexed (5, 1)
of the graph.

2.1.5 Mazurkiewicz Traces

Another domain of application is the study of distributed systems, and, for example, concur-
rent programs with a static set of processes that may synchronize through rendez-vous. In
this setting, Mazurkiewicz traces have been acknowledged to be a very useful and succinct
model for sets of communications of such programs.

We now define Mazurkiewicz in terms of their graph representations, following ideas of
[DR95]. We fix a finite set of n processes, that we index by integers in [1 .. n]. Vertices of
the graph represent actions executed by the processes: hence, we fix a finite alphabet A
representing internal actions and rendez-vous of the program. More precisely, we suppose
fixed a mapping proc : A → P([1 .. n]) such that proc(a) 6= ∅ for every a ∈ A: the set
proc(a) is the subset of processes involved in the execution of action a (a is an internal
action if, and only if, proc(a) is a singleton). Edges of the graph relate, for each process,
the actions in which this process is involved, ordered linearly: hence, for every process
p, we label edges by ↓p and ↑p to encode the linear order of actions of a process. Let

16 CHAPTER 2. PRELIMINARIES

a b

c

d

a b

c

↓1↑1

↓2↑2

↓2↑2

↓2↑2

↓2↑2 ↓3↑3

↓3↑3

↓3↑3

↓3↑3

1 2 3 4

Figure 2.5: A Mazurkiewicz trace

D = {↓p, ↑p| p ∈ [1 .. n]} be the set of directions. Formally, we denote by MT raceproc(A)
the subset of G(A,D) containing all pointed graphs G = (V, (Ed)d∈D, λ, v(i), v(f)) verifying
the following properties:
• every vertex v ∈ V is labeled by an action a such that proc(a) is compatible with the

type of v, i.e., {p ∈ [1 .. n] | ↓p ∈ type(v) ∨ ↑p ∈ type(v)} ⊆ proc(a);
• for every process p ∈ [1 .. n], the set of vertices Vp labeled by actions involving process
p is linearly ordered by the successor relation E↓p

: if Vp = {v ∈ V | p ∈ proc(λ(v))},
there exists a unique maximal ↓p-path, which visits exactly the vertices of Vp;

• the set of directions D′ = {↓p | p ∈ [1 .. n]} generates a partial order over the vertices:
if there is a D′-path from vertex v to v′ and from v′ to v, then v = v′;

• v(i) is the first vertex in the linear order induced by the smallest active process min{p ∈
[1 .. n] | ∃v ∈ V Vp 6= ∅};

• v(f) is the last vertex in the linear order induced by the largest active process min{p ∈
[1 .. n] | ∃v ∈ V Vp 6= ∅}.

The graph representation of a Mazurkiewicz trace is depicted in Figure 2.5. It is over
alphabet {a, b, c} with set of processes {1, 2, 3, 4} verifying proc(a) = {1, 2}, proc(b) = {3},
proc(c) = {2, 3} and proc(d) = {2, 3, 4}. It contains seven vertices. We have represented the
processes from left to right. In this Mazurkiewicz trace, the sequence of actions involving
process 2 is acdac, which is the linear order used in the definition. Action b is the unique
internal action (for process 3).

2.1.6 Ordered Graphs

Words and nested words have an interesting point in common, namely that these structures
are naturally linearly ordered, and that a particular direction in D defines this order. This
is an interesting property that we will exploit later. Let us formalize this notion in a more
general way. A direction set D is said to be ordered if there exists a partition of D into two
setsD→ andD← such that for all d ∈ D, d ∈ D→ if, and only if, d−1 ∈ D←. Directions inD→
(respectively, D←) are said to be forward directions (respectively, backward directions). In
the case of words, direction set {→,←} may be partitioned as D→ = {→} and D← = {←},
whereas for nested words, the partition is D→ = {→,y} and D← = {←,x}.

By extension, an (A,D)-graph G = (V, (Ed)d∈D, λ) is said to be →-ordered (or simply
ordered if → is clear from the context) if D is ordered, → ∈ D→, V comes with a total
linear order ≤ generated by → – in the sense that a vertex v′ is the direct successor of v
in the linear order ≤ if, and only if, (v, v′) ∈ E→ – and for all edge (v, v′) ∈ E, v < v′

if, and only if, there exists d ∈ D→ such that (v, v′) ∈ Ed. E.g., words and nested words

2.2. WEIGHT DOMAINS 17

are →-ordered graphs with respect to the natural linear order defined over their positions,
which is generated by the direction →.

Finally, a pointed graph G = (V, (Ed)d∈D, λ, v(i), v(f)) is said to be an ordered pointed
graph if G = (V, (Ed)d∈D, λ) is an ordered graph with ≤ the total linear order on V which
has v(i) as minimal element and v(f) as maximal one. Notice that this enforces that ordered
pointed graphs with set of vertices different from a singleton must have distinct initial and
final vertices.

2.2 Weight Domains

The definitions of algebraic tools used in this manuscript are extracted from several refer-
ences: [KS85, Kui97, DK09].

2.2.1 Monoids

A monoid is a set M equipped with a binary operation ◦ and a designated element 1 such
that:
• ◦ is associative, i.e., m ◦(m′ ◦m′′) = (m ◦m′) ◦m′′ for all elements m, m′, m′′ of M;
• 1 is a neutral element of ◦, i.e., m ◦ 1 = 1 ◦m = m for all elements m of M.

In the following, we will denote (M, ◦, 1) such a monoid. We often write mm′ instead of
m ◦m′. The monoid M is said to be commutative if the operation ◦ is commutative, i.e.,
m ◦m′ = m′ ◦m for all elements m and m′ of M. Alternatively, a commutative monoid may
be denoted by (M,+, 0).

A submonoid of a monoid (M, ◦, 1) is a subset M′ of M containing the neutral element
1 and stable by multiplication: for all m1,m2 ∈ M′, m1 ◦m2 ∈ M′. Then, denoting ◦ the
restriction of ◦ to elements of M′ (well-defined by hypothesis), the structure (M′, ◦, 1) is
automatically a monoid.

A morphism ϕ of a monoid M into a monoid M′ is a mapping ϕ : M → M′ compatible
with the neutral elements and operations in M and M′, i.e.,
• ϕ(1) = 1;
• ϕ(m1 ◦m2) = ϕ(m1) ◦ϕ(m2) for every elements m1,m2 of M.

The commutative monoid (M,+, 0) is said to be complete if every family (mi)i∈I of
elements of M over an arbitrary indexed set I is summable to some element in M, denoted∑
i∈I mi, and called sum of the family, such that the following conditions are satisfied:
•
∑
i∈∅mi = 0,

∑
i∈{j}mi = mj and

∑
i∈{j,k}mi = mj +mk;

• if I =
⋃
j∈J Ij is a partition,

∑
j∈J

(∑
i∈Ij

si
)

=
∑
i∈I si.

Intuitively, this means that it is possible to define infinite sums that extend the binary
addition and satisfies an infinite version of the associativity axiom.

The monoid (M,+, 0) is said to be continuous if it is a complete monoid and the following
conditions are satisfied:
• the relation ≤M defined over M by m1 ≤M m2 if m2 = m1 + m for some m ∈ M, for

every m1,m2 ∈M, is a partial order, that we call the natural order of the monoid;
• the sum

∑
i∈I mi is the least upper bound with respect to≤M of the finite sums

∑
i∈J mi

for J finite subsets of I, for every family (mi)i∈I in M: more precisely,
∑
i∈J mi ≤M∑

i∈I mi for every finite subset J of I, and for all m ∈ M, if
∑
i∈J mi ≤M m for all

finite subset J of I, then
∑
i∈I mi ≤M m.

Intuitively, this means that every infinite sum can be approximated by finite partial sums.
In the literature, such monoids are sometimes called ω-continuous monoids, especially when
the focus is on summation of countable families, as it will be the case in this manuscript.

A monoid (M, ◦, 1) is graded if it is equipped with a gradation, i.e., a morphism ϕ from
the monoid M to the monoid N of natural numbers (equipped with addition) such that
ϕ(m) > 0 for every element m of M different from 1.

18 CHAPTER 2. PRELIMINARIES

2.2.2 Semirings

A semiring is a set S equipped with two binary operations ⊕ and ⊗ and two designated
neutral elements 0S and 1S (respectively denoted by 0 and 1 if S is clear from the context)
such that:
• (S,⊕, 0S) is a commutative monoid;
• (S,⊗, 1S) is a monoid;
• ⊗ distributes over ⊕, i.e., m⊗ (m′⊕m′′) = (m⊗m′)⊕ (m⊗m′′) and (m⊕m′)⊗m′′ =

(m⊗m′′)⊕ (m′ ⊗m′′) for all elements m, m′, m′′ of M;
• 0S is a zero, i.e., m⊗ 0S = 0S ⊗m = 0S for all elements m of M.

If the monoid (S,⊗, 1S) is commutative, the semiring itself is said to be commutative. In
the following, we denote by (S,⊕,⊗, 0S, 1S) the semirings.

A subsemiring of a semiring (S,⊕,⊗, 0S, 1S) is a subset S′ of S containing the neutral
elements 0S and 1S, and stable by addition and multiplication: for all m1,m2 ∈ S′, m1⊕m2 ∈
S′ and m1 ⊗m2 ∈ S′. Then, denoting again ⊕ and ⊗ the restriction of these operations to
elements of S′ (well-defined by hypothesis), the structure (S′,⊕,⊗, 0S, 1S) is automatically
a semiring.

A morphism ϕ of a semiring S into a monoid S′ is a mapping ϕ : S→ S′ compatible with
the neutral elements and operations in S and S′, i.e.,
• ϕ(0S) = 0S′ and ϕ(1S) = 1S′ ;
• ϕ(m1 ⊕m2) = ϕ(m1)⊕ ϕ(m2) and ϕ(m1 ⊗m2) = ϕ(m1)⊗ ϕ(m2), for every elements
m1,m2 of S.

The semiring (S,⊕,⊗, 0S, 1S) is said to be complete if the monoid (S,⊕, 0S) is complete,
and if the product distributes over the infinite sums, i.e.,

(⊕

i∈I

si
)
⊗
(⊕

j∈J

tj
)

=
⊕

(i,j)∈I×J

(si ⊗ tj)

for all families (si)i∈I and (tj)j∈J of elements of S. Informally, this means that it is possible
to define infinite sums that extend the binary addition and satisfies infinite versions of
associativity (see the definition of complete monoids) and distributivity axioms.

In a complete semiring, every element s of S admits a star , denoted s⋆, and defined by

s⋆
def
=
⊕

i∈N s
i (where si is defined recursively by s0 = 1S and si+1 = si ⊗ s). Every element

s also admits a quasi-inverse, denoted s+, and defined by s+ def
=
⊕

i∈N\{0} s
i. These two

objects are related by the following proposition, immediate to prove by using the axioms of
the definition of complete semirings:

Proposition 2.2. Let S be a complete semiring. Then for all s ∈ S,

1. s+ = s⊗ s⋆ = s⋆ ⊗ s;

2. s⋆ = 1S ⊕ s+.

The semiring (S,⊕,⊗, 0S, 1S) is said to be continuous if it is a complete semiring, and if
the monoid (S,⊕, 0S) is continuous.

Example 2.3. We will use many examples of semirings in this manuscript:
• the real semiring (R,+,×, 0, 1), having a subsemirings the rational semiring (Q,+,×, 0, 1),

the integer semiring (Z,+,×, 0, 1) and the natural semiring (N,+,×, 0, 1);
• the positive real completed semiring (R+ ∪ {+∞},+,×, 0, 1), from which can be ex-

tracted the natural completed semiring (N∪ {+∞},+,×, 0, 1), which are both contin-
uous;

• the Boolean semiring ({0, 1},∨,∧, 0, 1), denoted B, which is continuous;
• the tropical semiring (R∪{+∞,−∞},max,+,−∞, 0), denoted T, and the arctic semi-

ring (R ∪ {+∞,−∞},min,+,+∞, 0), denoted A, which are continuous;

2.2. WEIGHT DOMAINS 19

• ([0, 1],min,max, 1, 0) used in some probabilistic applications, which is continuous;
• the language semiring (P(A⋆),∪, ·, ∅, {ε}) where the concatenation L1 ·L2 of two lan-

guages is defined as {w1 · w2 | w1 ∈ L1, w2 ∈ L2}, which is also continuous.
�

It is interesting to recall that not every complete semiring is continuous. For example,
if we equip the semiring (R+ ∪ {+∞},+,×, 0, 1) with the infinite summation defined by⊕

i∈I si = +∞ if, and only if, {i | si 6= 0} is infinite or if sj = +∞ for some j ∈ I (and
the well-defined finite sum otherwise), the semiring is complete but not continuous. Indeed,⊕

i∈N 1/2i = +∞ whereas every finite sum is bounded above by the usual infinite sum∑
i∈N 1/2i = limn→∞

∑n
i=0 1/2i = 2.

Continuous semirings are interesting since they permit to get more equalities involving
stars of elements. We give in the next theorem some of these, whose proofs may be found,
e.g., in [Kui97, Theorem 2.4].

Theorem 2.4. Let S be a continuous semiring. For every s, s′ ∈ S:

(i) (s⊗ s′)⋆ ⊗ s = s⊗ (s′ ⊗ s)⋆;2

(ii) (s⊕ s′)⋆ = s⋆ ⊗ (s′ ⊗ s⋆)⋆ = (s⋆ ⊗ s′)⋆ ⊗ s⋆.

The semiring (S,⊕,⊗, 0S, 1S) is said to be positive if the two following conditions are
verified:
• S is zerosumfree: if s1 ⊕ s2 = 0S, then s1 = s2 = 0S, for every s1, s2 ∈ S;
• S has no divisors of zero: if s1 ⊗ s2 = 0S, then s1 = 0S or s2 = 0S, for every s1, s2 ∈ S.
We easily have that

Proposition 2.5. [Gol99, Proposition 22.28] Every complete semiring is zerosumfree.

Proof. Let (S,⊕,⊗, 0S, 1S) be a complete semiring. Let s1 and s2 be two elements of S such
that s1 ⊕ s2 = 0S. By distributivity over infinite sums, we have

⊕

i∈N

(s1 ⊕ s2) =
⊕

i∈N

0S =
⊕

i∈N

0S ⊗ 0S = 0S ⊗

(
⊕

i∈N

0S

)
= 0S

By partitioning the infinite sum
⊕

i∈N(s1 ⊕ s2) in three parts, we obtain

0S = s1 ⊕
⊕

i∈N\{0}

s1 ⊕
⊕

i∈N

s2

Notice that N \ {0} is in bijection with N. Generally, if ϕ : J → I is a bijection, and (si)i∈I
a family of elements of S, then, by using the partitioning again, we have

⊕

i∈I

si =
⊕

j∈J

⊕

i∈ϕ(j)

si =
⊕

j∈J

sϕ(j)

the last equality coming from the first property of complete monoids. Hence, infinite sums
are preserved by bijective renaming of families. In our case, we obtain that

0S = s1 ⊕
⊕

i∈N

s1 ⊕
⊕

i∈N

s2

By refactoring the partition, we finally get

0S = s1 ⊕
⊕

i∈N

(s1 ⊕ s2) = s1 ⊕ 0S = s1

which proves that s1 = 0S. Since s1 ⊕ s2 = 0S, we also have s2 = 0S.
2One may equivalently state that (s⊗ s′)⋆ = 1S ⊕ s⊗ (s′ ⊗ s)⋆ ⊗ s′.

20 CHAPTER 2. PRELIMINARIES

However, it is not true that every complete (or even continuous) semiring is positive, as
it is shown in Remark 2.6.

Finally, the semiring (S,⊕,⊗, 0S, 1S) is said to be idempotent if it is idempotent for the
addition: it is sufficient to verify 1S ⊕ 1S = 1S. The tropical and arctic semirings are typical
examples of idempotent semirings.

2.2.3 Formal Power Series and Polynomials

In all this section, we fix a semiring (S,⊕,⊗, 0, 1).
Let Z be a set. A formal power series f over Z (or series for short) is a map f : Z → S.

Alternatively, f can be seen as a formal sum
⊕

z∈Z f(z)z, so that f(z) is called the coefficient
of z in f . The set of series over Z with coefficients in S is denoted by S〈〈Z〉〉.

The support of a series f ∈ S〈〈Z〉〉 is the set {z ∈ Z | f(z) 6= 0}, and is denoted supp(f).
A series with a finite support is called a polynomial. The set of polynomials over Z with
coefficients in S is denoted by S〈Z〉.

We can lift addition and product3 from S to S〈〈Z〉〉 pointwisely by defining for every
series f and g:

(f ⊕ g)(z) = f(z)⊕ g(z) and (f ⊙ g)(z) = f(z)⊗ g(z) for all z ∈ Z .

The product of series defined thereby is usually called the Hadamard product of two series.
Then (S〈〈Z〉〉,⊕,⊙, 0, 1) is a semiring where 0 (respectively 1) denotes the series mapping
every element z ∈ Z to 0 (respectively 1). This semiring is commutative if, and only if, S is
a commutative semiring.

When (Z, ◦, 1Z) is a monoid, it is possible to define another product for series: the
Cauchy product f ⊗ g of two series f and g is then defined by

(f ⊗ g)(z) =
⊕

z=x ◦ y

f(x)⊗ g(y) for all z ∈ Z .

This sum may be infinite, but is well-defined when either the monoid is graded or the
semiring is complete. The Cauchy product is then associative and admits as neutral element
the polynomial 1Z , whose only non null coefficient is the one of 1Z which is 1. Hence,
(S〈〈Z〉〉,⊕,⊗, 0, 1Z) is a semiring when the monoid is graded or the semiring is complete.

When the semiring S is complete, we can also lift infinite sums pointwise to S〈〈Z〉〉
which becomes a complete semiring. Moreover, if S is a continuous semiring, S〈〈Z〉〉 is also
continuous, equipped with a natural order defined as the pointwise extension of the natural
order of S.

2.2.4 Matrices

In all this section, we fix a semiring (S,⊕,⊗, 0, 1).
Let I and J be two non-empty sets. A matrix indexed by I×J is a mappingM : I×J → S:

value M(i, j) is often denoted as Mi,j , and called (i, j)-coefficient of M . The matrix itself
is sometimes denoted by (Mi,j)i∈I,j∈J . The set of all matrices indexed by I × J and with
values in S is denoted by SI×J . If I ′ ⊆ I and J ′ ⊆ J , we denote by M|I′×J′ the submatrix
of M indexed by I ′ × J ′.

We may define neutral elements and binary operations so that sets of matrices become
monoids and semirings. First, denoting by 0 the matrix in SI×J with all coefficients equal to
0, and defining M⊕M ′, for every matrices M,M ′ ∈ SI×J , as the matrix with (i, j)-coefficient
being Mi,j ⊕M

′
i,j , we obtain that (SI×J ,⊕, 0) is a commutative monoid.

3The notation ⊙ used instead of the more natural one, ⊗, to denote the lifting of the product is motivated
by the introduction of the Cauchy product below, often considered as the natural product of formal power
series.

2.2. WEIGHT DOMAINS 21

Moreover if J is finite, we may define the product of two matrices M ∈ SI×J and
M ′ ∈ SJ×K as being the matrixM ′′ ∈ SI×K with (i, k)-coefficient given by

⊕
j∈JMi,j⊗M

′
j,k.

Denoting by Id ∈ SI×I the square matrix with 1 on the main diagonal, and 0 at other
positions, (SI×I ,⊕,⊗, 0, Id) is a semiring. In case S is a continuous semiring, SI×I is also a
continuous semiring, and we denote by M⋆ the infinite sum

∑
n≥0 M

n.

Remark 2.6. If we consider the continuous semiring (R+ ∪{+∞},+,×, 0, 1), the semiring
of square matrices with coefficients in this semiring is continuous but not commutative, and
not positive, as it contains zero divisors: for example for square matrices of size 2, we have

(
0 1
0 0

)
⊗

(
0 1
0 0

)
= 0

�

In [Con71], Conway proved a very useful lemma permitting to compute the star of a
matrix with additions, products and stars in the semiring. It can also be seen as a rewriting
of McNaughton-Yamada algorithm, or the state elimination method used to construct a
regular expression equivalent to a finite-state automaton. We state it here and will use it
at several occasions in this manuscript. Proofs can be found in [KS85] or [Sak09]: they are
both based on an adaptation of Arden’s lemma in the case of continuous semirings.

Lemma 2.7. Let S be a continuous semiring and M ∈ SI×I be a square matrix. For any

block decomposition M =
(
A B
C D

)
with A and D square matrices, we have

M⋆ =
(

(A⊕B ⊗D⋆ ⊗ C)⋆ A⋆ ⊗B ⊗ (D ⊕ C ⊗A⋆ ⊗B)⋆

D⋆ ⊗ C ⊗ (A⊕B ⊗D⋆ ⊗ C)⋆ (D ⊕ C ⊗A⋆ ⊗B)⋆

)

CHAPTER 3
Hybrid Expressions

Simplicity is the glory of expression.

Walt Whitman

3.1 Hybrid Weighted Expressions 24
3.2 Syntactical Subclasses of Hybrid Weighted Expressions 28

3.2.1 Weighted Expressions 28
3.2.2 Chop Weighted Expressions: An Alternative to Variables 30

3.3 Algebraic Semantics of Hybrid Weighted Expressions 32
3.3.1 Partial Monoids . 34
3.3.2 Application to the Semantics of Hybrid Weighted Expressions 35

Regular expressions are widely used in many programming languages to concisely denote
string patterns. They permit to efficiently locate particular words or sequences of characters
in a text, a web page or any source of characters. Written with a flexible and handy syntax,
they are interpreted by a parser which aims at executing it over the source text.

More theoretically, they are bound to the name of Stephen Cole Kleene who exhibited
[Kle56] the concept of regular languages: regular expressions are then a way to denote such
regular languages easily. His famous eponymous theorem states that this class of languages
coincides with the ones recognized by finite state automata: we will come back to this
fundamental result in Chapter 4.

Whereas regular expressions are now widely used and studied in order to denote patterns
of sequences of characters, i.e., words over a finite alphabet, it is not so long ago that they
have been used for extended purposes. Amongst various works, we may cite caterpillar
expressions, introduced by [BKW00] – which are regular expressions navigating in unranked
trees – and forest expressions, to generate more branching behaviors, exposed in [Boj07]
(also exposed in [Cyr10, BS12] for nested words).

Another domain of extension consists in introducing quantities in expressions. Whereas
weighted regular series have been discovered by Marcel-Paul Schützenberger in [Sch61] – both
with weighted automata and the extension of Kleene theorem stating the equivalence of both
formalisms – the notion of weighted expression as a way to denote such series has emerged
later (see, e.g., [Sak09] for a recent presentation of this large field). It has to be noticed that
recent works are still produced in order to investigate further these weighted expressions

23

24 CHAPTER 3. HYBRID EXPRESSIONS

and several of their extensions. For example, new parsing algorithms of (weighted) regular
expressions are still implemented, as we may find in [FHW10] recently. Weighted expressions
have also been investigated in the framework of infinite words, with an average semantics,
in [DM10b].

Our goal in this chapter is to define and study a new extension of weighted expressions,
able to denote a broader class of quantitative properties, yet with a readable formalism
inspired by the rich history of regular expressions. An original part of this work is the use of
variables to enrich the power of expressions. After giving the syntax and semantics of these
new expressions, we will consider some possible restrictions or other denotations, that could
permit to express more easily some properties (for example, by hiding the use of variables,
which could be seen as a weak point of this formalism, even if it permits to express rich
quantitative properties). As a final section, we will give an algebraic view of the semantics
of these expressions, that will be of the greatest interest to prove several theorems of next
chapters.

3.1 Hybrid Weighted Expressions

In this section, we introduce expressions with weights and variables. Like classical regular
expressions, their syntax is based on operators + (for alternatives), · (for sequences), and
⋆ (for iteration). Then, + and · are interpreted as sum and Cauchy product in a semiring,
respectively.

We first introduce these expressions with some examples, one on words, a second on
nested words and a last one over graphs.

Example 3.1. We consider a word over the alphabet {a, b}. The classical regular expression
(a+ b)⋆ · b · (a+ b)⋆ checks that the given word contains an occurrence of letter b. For con-
ciseness reasons, and for seek of uniformity, we will rather use the shortcut → to denote the
non-guarded move to the right encoded by the choice (a+ b), and use a weighted semantics,
for example in the semiring (N∪{+∞},+,×, 0, 1). Hence, expression →⋆ · b ·→⋆ counts the
number of occurrences of letter b in the word: 4 in the word baabbaba for example. Possibly,
we can decouple the test and the move understood in the symbol b: indeed, we introduce
the test b? that stay on the same position and checks whether the current position holds
letter b. Therefore, we may alternatively use the equivalent expression →⋆ · b? · → ·→⋆. �

Example 3.2. We consider a nested word over the alphabet {a, b}. Consider the more
complex task of counting the total number of occurrences of the letter b inside a context
with a call position labeled with a: more formally we want to sum over all possible call
positions labeled with a, the number of occurrences of b that appear strictly in-between this
position and the matching return. For the nested word of Figure 2.3, we must count 4 (in
particular, position 7 must count for both call positions 5 and 6). In our formalism, we will
achieve this task again in semiring (N ∪ {+∞},+,×, 0, 1) using expression:

E =→⋆ · (a?∧y?) · x!
(
→⋆ · x? ·y · (¬x? · ←)+ · b? · →⋆

)
· →⋆ .

First, we search for a call position labeled with a using expression →⋆ · (a?∧ y?): there,
we again use the test a? to check the letter without moving, and moreover test whether the
current position is a call position using y?. Then, we mark, with x!−, the call position of the
interesting context with a variable of name x: this permits us to compute independently the
subexpression between parentheses on the nested word (starting from the beginning again)
with the previous position marked with variable x. The latter subexpression first searches for
the variable with→⋆ ·x?, follows the nesting edge from the call to the corresponding return,
and then moves backward inside the context with (¬x? · ←)+ to pick non-deterministically
a position carrying letter b. �

3.1. HYBRID WEIGHTED EXPRESSIONS 25

Figure 3.1: A picture with a highly contrasted rectangle

Example 3.3. Consider now a picture in grayscales, over the alphabet [0 .. 255] representing
the level of gray of the pixel. The same way regular expressions are a way to express word
patterns, our expression could be a way to define pictorial patterns. We start with the toy
example consisting of finding rectangles in a picture. The pattern will consist of monocolor
pixels grouped in a rectangle shape encircled by pixels of highly contrasted colors, like in
the Figure 3.1. Supposing that the top left corner of the rectangle is marked with a variable
of name x, the expression will follow the rectangle clockwisely, expecting to reach back the
position marked with variable x after changing directions 3 times. Moreover, the expression
checks at every point that the outside of the rectangle has a grayscale highly contrasted
with the (constant) grayscale of the rectangle.

Erectangle = x? ·
∑

c∈[0 .. 255]

(c? · F c↑ · →)+ · F c↑ · (c? · F
c
→ · ↓)

+ · F c→

· (c? · F c↓ · ←)+ · F c↓ · (c? · F
c
← · ↑)

+ · F c← · x?

where the expression F cd tests that the position in direction d has a color sufficiently distinct
from the grayscale c:

F cd =
∑

c′∈[0 .. c−50]
∪[c+50 .. 255]

d · c′? · d−1

Notice that we do not care about the color of the interior of the rectangle, but we could refine
our expression to also take it into account. Imagine that our final goal is to count the number
of such highly contrasted rectangles in a picture, and then compare this number with the
number of another pattern described by an expression Epattern, to compute the maximum
of these two cardinalities. A maximum operation is then necessary, which forces us to use
semiring (N∪{−∞,+∞},max,+,−∞, 0). Then, counting the number of rectangles cannot
be done by using a non-deterministic choice (as if in semiring (N ∪ {+∞},+,×, 0, 1)). We
rather use a deterministic search of the picture, using the variable x to check whether we
found a new rectangle:

Grectangle =
(
↓ ·
(
[0 + 1 · (x!(→⋆ · ↓⋆ · Erectangle · →

⋆ · ↓⋆))] · →
)+
·

¬(→?) · ←+ · ¬(←?)
)+

· ¬(↓?) · →⋆

The expression inside the rectangle bracket is the sum between weight 0 and weight 1
multiplied by the check of expression Erectangle over the current rectangle: sum is evaluated

26 CHAPTER 3. HYBRID EXPRESSIONS

as a maximum, and product as an addition, hence this whole expression computes 1 if there is
a highly contrasted rectangle with upper left corner at the current position, and 0 otherwise.
Inside the x!− operator, starting from the upper left pixel of the picture (as this is the initial
vertex we chose in our representation of pictures), we first search (unambiguously) for the
position holding variable x, evaluate expression Erectangle, and reach the lower right pixel
of the picture (the final vertex) to continue the computation. By the same way, we may
obtain a formulaGpattern counting the number of occurrences of the other pattern, and finally
consider formula Grectangle +Gpattern to count the maximum between these two cardinalities,
as + is evaluated using the first operation of the semiring, i.e., the max operation in this
case. �

We turn to the formal syntax of expressions. We let Var = {x, y, . . .} be an infinite
set of variables. In all this chapter, we let D be a fixed set of directions. Pebble weighted
expressions are built upon simple Boolean tests that we define first.

Definition 3.4. We let Test(A,D,Var) (or shortly, Test) be the set of formulae defined by
the following grammar:

α ::= ⊤ | init? | final? | a? | d? | x? | ¬α | α ∧ α | α ∨ α (3.1)

where a ∈ A, d ∈ D and x ∈ Var. �

Thus, a test is a Boolean combination of atomic checks allowing one to verify whether
a given vertex has label a, whether it enables a certain direction d, or whether it carries
an occurrence of variable x, respectively. Recall that we defined in Chapter 2 the notion of
type τ ∈ P(D) of a vertex of a graph, as a subset of D: in particular, we can check the type
of a vertex by using a maximal Boolean combination of directions.

Given a test α of Test, a variable x ∈ Var is free in α if the latter contains the atom x?.
More formally, we denote Free(α) the (finite) set of pebble names free in α, which is defined
inductively by letting

Free(⊤) = Free(init?) = Free(final?) = Free(a?) = Free(d?) = ∅

Free(x?) = {x}

Free(¬α) = Free(α)

Free(α1 ∧ α2) = Free(α1 ∨ α2) = Free(α1) ∪ Free(α2)

with a ∈ A, d ∈ D and x ∈ Var.
We are now ready to define the semantics of tests, in the general case of graphs. Let

G = (V, (Ed)d∈D, λ, v(i), v(f)) ∈ G(A,D) be a pointed graph. Let v ∈ V be a position and
σ : Var ⇀ V be a valuation. We define inductively the semantics of a test α ∈ Test with free
variables Free(α) contained in the domain dom(σ) of the valuation: we denote G, σ, v |= α
if α is verified over the given model which is defined in Table 3.1.

Notice that the semantics only depends on the valuation of free variables of the test.
Next, we present hybrid weighted expressions over a continuous semiring (S,⊕,⊗, 0, 1).

Definition 3.5. We let HWE(S, A,D,Var) (or shortly HWE) be the set of hybrid weighted
expressions defined by the following grammar:

E ::= s | α | d | E + E | E · E | E+ | x!E

where s ∈ S, α ∈ Test(A,D,Var), d ∈ D and x ∈ Var. �

The set of variables appearing in an expression E of HWE (either in tests or in con-
structions x!−) is denoted by Var(E). Given an expression E of HWE, a variable x ∈ Var
is free in E if it is free in some test used in E, and not bound by an expression x!−. More

3.1. HYBRID WEIGHTED EXPRESSIONS 27

Table 3.1: Semantics of tests in Test(A,D,Var)

G, σ, v |= ⊤
G, σ, v |= init? if, and only if, v = v(i)

G, σ, v |= final? if, and only if, v = v(f)

G, σ, v |= a? if, and only if, λ(v) = a
G, σ, v |= d? if, and only if, d ∈ type(v)
G, σ, v |= x? if, and only if, σ(x) = v
G, σ, v |= ¬α if, and only if, G, σ, v 6|= α
G, σ, v |= α ∧ α′ if, and only if, G, σ, v |= α and G, σ, v |= α′

G, σ, v |= α ∨ α′ if, and only if, G, σ, v |= α or G, σ, v |= α′

formally, we denote Free(E) the (finite) set of free variabes in E, which is defined inductively
by letting

Free(s) = Free(d) = ∅ Free(α) = Free(α)

Free(E+) = Free(E) Free(E1 + E1) = Free(E1) ∪ Free(E2)

Free(x!E) = Free(E) \ {x} Free(E1 · E2) = Free(E1) ∪ Free(E2)

with s ∈ S, α ∈ Test, d ∈ D and x ∈ Var.
We now turn to the semantics of hybrid weighted expressions. A hybrid weighted ex-

pression is interpreted over a pointed graph G = (V, (Ed)d∈D, λ, v(i), v(f)) ∈ G(A,D) with a
marked initial vertex v, a marked final vertex v′ and a valuation σ : Var ⇀ V . The atomic
expression d ∈ D has its natural interpretation as the binary relation Ed and is evaluated 1
or 0 depending on whether or not (v, v′) ∈ Ed. On the contrary, expressions s, α, x!E are
non-progressing and require v = v′. In particular, x!E evaluates E in the graph G, from v(i)

to v(f), with the current vertex marked with a new occurrence of variable x. Formally, the
semantics of a hybrid weighted expression E ∈ HWE with Free(E) ⊆ dom(σ) is the weight
in S denoted [[E]](G, σ, v, v′) defined inductively in Table 3.2. In this table, we denote En

the n-th iteration of expression E defined inductively by E1 = E and En+1 = En · E for
n > 0; occasionally, we may denote the expression 1 as E0. Notice that the infinite sum
used to define the semantics of E+ is well-defined as we consider a continuous semiring S.
We will see in Chapter 7 a way to remove the continuity condition over the semiring, at the
price of restricting the expressions.

Notice that the semantics does only depend on the valuation of free pebble names of
the pebble weighted expression. If the assignment σ is not relevant, i.e., if there are no free
pebble names in the expression, we may denote [[E]](G, v, v′) the semantics.

By default, v and v′ are the initial and final vertices of the pointed graph G, i.e., v(i)

and v(f), so that we use [[E]](G) (respectively, [[E]](G, σ)) as shortcuts for [[E]](G, v(i), v(f))
(respectively, [[E]](G, σ, v(i), v(f))): in that case, we may see [[−]] as a formal power series in
S〈〈G(A,D)〉〉.

Remark 3.6. We get the classical Kleene star as an abbreviation: E⋆ = 1 +E+. As usual,
we may sometimes remove the symbol · used for the concatenation of two expressions and
write E1E2 for E1 · E2. In words and nested words for example, it is also convenient to

introduce macros for “check-and-move”: a
def
= a? · →. This allows us, for example, to use

common syntax such as (ab)+abc, or to write →⋆abba←+init?→⋆baab→⋆ to identify words
having both abba and baab as factors. �

We call depth of an expression E in HWE, denoted by depth(E), its maximal number of

28 CHAPTER 3. HYBRID EXPRESSIONS

Table 3.2: Semantics of HWE(S, A,D,Var)

[[s]](G, σ, v, v′) =

{
s if v = v′

0 otherwise

[[α]](G, σ, v, v′) =

{
1 if v = v′ ∧G, σ, v |= α

0 otherwise

[[d]](G, σ, v, v′) =

{
1 if (v, v′) ∈ Ed
0 otherwise

[[E1 · E2]](G, σ, v, v′) =
⊕

v′′∈V

[[E1]](G, σ, v, v′′)⊗ [[E2]](G, σ, v′′, v′)

[[E1 + E2]](G, σ, v, v′) = [[E1]](G, σ, v, v′)⊕ [[E2]](G, σ, v, v′)

[[E+]](G, σ, v, v′) =
⊕

n>0

[[En]](G, σ, v, v′)

[[x!E]](G, σ, v, v′) =

{
[[E]](G, σ[x 7→ v], v(i), v(f)) if v = v′

0 otherwise

nested x!− operators. It is defined inductively by

depth(s) = depth(d) = depth(α) = 0

depth(E+) = depth(E)

depth(E1 + E2) = depth(E1 · E2) = max(depth(E1),depth(E2))

depth(x!E) = 1 + depth(E)

Example 3.7. Over the semiring (N ∪ {−∞,+∞},max,+,−∞, 0), consider the hybrid
weighted expression (over nested words)

E =
[
1·y? · → · ¬(x?) + 0 ·

(
¬(y?∨x?) · → · ¬(x?) + y+ x? · → · ¬(x?)

)]⋆
· x? · →⋆ .

Notice the use of 1 ∈ N which is not the unit of the semiring. Moreover, operations +
are resolved by the max operator, whereas concatenation implies the use of addition in
N∪{−∞,+∞}. For every nested word G ∈ N est(A) (with set of vertices [0 .. n]), and every
vertex v, [[E]](G, [x 7→ v]) computes the call-depth of vertex v. Indeed the first Kleene star
is unambiguous, meaning that only one path starting from position 0 will lead to x in this
iteration; along this path – the shortest one – we only count the number of times we enter
inside the context of a call position. Hence, the maximal call-depth of a nested word can be
computed with expression E′ =→⋆ · (x!E) · →⋆. �

3.2 Syntactical Subclasses of Hybrid Weighted Expressions

We described in the previous section the full class of hybrid weighted expressions we will
use in this manuscript. However, it may be the case that only a subset of the features we
presented is sufficient to model the desired quantitative property. In this section, we present
some interesting subclasses of HWE.

3.2.1 Weighted Expressions

At the first sight, the variable mechanism of hybrid weighted expressions may seem intricate
and far-fetched from the spirit of classical regular (or even weighted) expressions. We will see

3.2. SYNTACTICAL SUBCLASSES OF HYBRID WEIGHTED EXPRESSIONS 29

that this complication is unavoidable in order to express powerful quantitative properties,
and yet permits to express them in an elegant and concise way. However, we consider now
the subclass of HWE that does not use any variables. Let (S,⊕,⊗, 0, 1) be a continuous
semiring again.

Definition 3.8. We let WE(S, A,D,Var) (or shortly WE) be the set of weighted expressions
defined by the following grammar:

E ::= s | α | d | E + E | E · E | E+

where s ∈ S, α ∈ Test(A,D,Var) and d ∈ D. �

Notice that we keep in Test(A,D,Var) the possibility to check the presence of a variable
over a vertex, however, we discard the ability to place a new occurrence of a variable with
the x!− operator.

As a subclass of HWE, weighted expressions in WE inherits their semantics from those
of expressions in HWE. As an illustration that weighted expressions may be useful, even
without pebbles, we give another example here.

Example 3.9. Weighted expressions may be very handy in the field of Natural Language
Processing (see [KM09]), in particular for automatic translation, speech recognition or
transliteration. All these tasks have in common to split the problem into independent
parts, certain directly related to the specific task and others related to the knowledge of the
current language. For example, in the translation task from French sentences to English
sentences, one splits the problem into first knowing translation of single words and then
modeling English sentences (knowledge which is independent from the translation task).
The second part, namely to know whether a sequence of words is a good English sentence, is
known as language modeling. Often this knowledge is learned from a large corpus of English
texts, and stored into a formal model, e.g., a weighted finite state automaton represent-
ing the probability distribution P of well-formed English sentences. The translation task is
then resolved by first generating several English sentences from the original French one (due
to ambiguity of the word-by-word translation task), and then choosing among this set of
sentences the ones with highest probability.

One broadly used language model is the n-gram model, where the probability of a word
in a sentence depends only on the previous n − 1 words: for example in a 1-gram model,
only the individual word frequencies are relevant to generate well-formed English sentences,
whereas in a 2-gram model, the probability of a word depends on the very same frequency
distribution and also the previous word. Typical values of the parameter n are 2 or 3, and
the largest value for which a full model of English has been produced is 7 [BPX+07]. To
formally describe these models, and further study them, let us define them using weighted
expressions. Let D denote the dictionary of words in the language. Suppose we are given
the conditional probability distributions P(wn | w1, . . . , wn−1) in the n-gram model (with
wi ∈ D for all i). The probability of a sentence (wi)1≤i≤m ∈ Dm can be given by the
following weighted regular expression in a 1-gram model and a 3-gram model:

E1 =
(∑

u∈D

u · P(u)
)⋆

E3 =→ ·→ ·
(∑

u,v,w∈D

← ·← · u · v · w · P(w | u, v)
)⋆

Expression E3 uses the opportunity to move forward and backward to easily recover the
context. Notice that expression E3 is quite readable and intuitive. One could write an
equivalent expression only moving forward, but imagine how intricate it would be since
positions would have to encode the context, i.e., the last two words.

Actually, expression E3 is not small since the sum hides the very big set D3: for a
dictionary of size 1 million, this seems already unpracticable. But in practice, a much
smaller expression could be sufficient. First, for many words, the frequency distribution of

30 CHAPTER 3. HYBRID EXPRESSIONS

the word w is a sufficiently good approximation of the conditional probability P(w | u, v).
Let us denote D0 this set of words. For instance, the probability of observing the word the

may not really depend on the previous words. Then, let D1 be the set of words (disjoint
from D0) such that only the previous word is necessary to describe the probability. Finally,
let D2 be the rest of the dictionary, i.e., the set of words such that the two previous words
are really necessary to describe the probability P(un | un−2, un−1). Now, we may replace
expression E3 by the following expression, whose size is much smaller if D0 and D1 contain
enough words:
(∑

w∈D0

w · P(w) +
∑

w∈D1,v∈D

← · v · w · P(w | v) +
∑

w∈D2,u,v∈D

← ·← · u · v · w · P(w | u, v)
)⋆

�

3.2.2 Chop Weighted Expressions: An Alternative to Variables

Sometimes variables are unavoidable in order to express naturally some quantitative prop-
erties.

Example 3.10 (continued from Example 3.9). We add internationalization to the natural
language processing task previously studied, which means that the user has the ability to
write/speak alternately in two or more languages, e.g., English and French. All tasks such
as automatic translation or speech recognition are now more complex since there is no a
priori knowledge of the current language of the speaker. Again, splitting the problem into
independent parts, we have to know the probability distributions PL for every involved
language L, and, assuming a current language L, we should be able to solve the language
processing task with a procedure TaskL. Then, before processing the next word, we start a
computation which re-reads the current prefix of the text in order to compute using PL the
probability that the current language L is still valid. The next word is then processed with
the current or the alternate language. In order to compute the probability that the current
language is still valid, we may use variables (and intuitively we need): we mark the current
position with a variable and read the current prefix of the text with a subexpression modeling
the current language. Then we return to the marked position in order to resume the top
level computation, in either languages, depending on the probability we computed. �

More critically, variables really have some intrinsic expressiveness power:

Proposition 3.11. There exists a hybrid weighted expressions E over the semiring (N ∪
{+∞},+,×, 0, 1) such that no weighted expression E′ ∈WE is equivalent to E, i.e., gener-
ates the same semantics over every graph.

Proof. This result is more easily proved by means of automata, and is indeed a corollary of
Theorem 4.18 which states the same result for automata, by using translation from automata
to expressions and vice versa stated in Theorems 4.9 and 4.31. Stated in the syntax of hybrid
weighted expressions, the counter example that is shown to be not recognized by a weighted
expression is

E =
(
x!
(
(2 · →)+

)
· →
)+

evaluated over the set of words Word(A).

The expression used as a counter example in this proof indeed uses a variable in an
awkward manner. It is only used in order to ensure that we recompute the inner expression
as many times as the number of vertices in the graph. This suggests that we may still gain
in expressive power by enriching weighted expressions with a restricted version of variables
which would permit such an iteration. As an alternative, and following a terminology of

3.2. SYNTACTICAL SUBCLASSES OF HYBRID WEIGHTED EXPRESSIONS 31

v

Figure 3.2: Chop decomposition of a graph associated to vertex v

[LPS08], we propose to add a chop operation to the syntax of weighted expressions: this
basically mimics the sequentialization ·, but by chopping the structure at the position where
the sequence is performed. This new operator has also the flavor of the subtree relativisation
operator W introduced in [tCS10].

We start by defining what is a chop in a graph. Let G = (V,E, λ, χ, v(i), v(f)) be
an ordered pointed graph, with ≤ the total linear order on V . Given v ∈ V , the chop
decomposition of G associated to v is the pair of ordered pointed graphs (G1, G2) such that

G1 = (V1, (Ed ∩ (V1 × V1))d∈D, λ|V1
, v(i), v)

G2 = (V2, (Ed ∩ (V2 × V2))d∈D, λ|V2
, v, v(f))

where V1 = {v′ ∈ V | v′ ≤ v} and V2 = {v′ ∈ V | v ≤ v′}. We denote again ≤ the total
linear order on V1 and V2.

Definition 3.12. We let chopWE(S, A,D,Var) (or shortly chopWE) be the set of chop
weighted expressions defined by the following grammar:

E ::= s | α | d | E + E | E · E | E † E | E+

where s ∈ S, α ∈ Test(A,D,Var) and d ∈ D. �

We define the semantics of such expressions in the same way as for hybrid weighted
expressions (in particular, we may use free variables, even though it is not possible to place
fresh variables anymore). We only complete Table 3.2 with the semantics of the new chop
operator:

[[E1 † E2]](G, σ, v, v′) =

{
[[E1]](G1, σ, v

(i), v)⊗ [[E2]](G2, σ, v, v
(f)) if v = v′

0 otherwise

where (G1, G2) denotes the chop decomposition of G associated to v.
For example, over words of Word(A), the hybrid weighted expression in the proof of

Proposition 3.11 is equivalent to the chop weighted expression

((
2 · (2 · →)⋆ † (2 · →)⋆

)
· →
)+

Without much surprise, variables permit to simulate chop operations over ordered pointed
graphs.

Theorem 3.13. For every E ∈ chopWE, there exists E′ ∈ HWE with Free(E′) = Free(E)
equivalent to E, i.e., such that for all ordered pointed graph G ∈ G(A,D), v, v′ ∈ V and
σ : Var ⇀ V with domain containing Free(E), we have

[[E]](G, σ, v, v′) = [[E′]](G, σ, v, v′) .

32 CHAPTER 3. HYBRID EXPRESSIONS

Proof. We proceed by induction on the syntax of E ∈ chopWE. Once for all, we fix two
variables x and y of Var that do not appear in Free(E). We also denote → the direction in
D that generates the total linear order ≤ over V .

In case E is of the form s, α, d, E1 + E2, E1 · E2 or E+
1 , we can directly conclude by

induction, as these constructs are allowed in HWE.
The interesting case is when E = E1 †E2. By induction, let E′1 and E′2 be the expressions

in HWE equivalent to E1 and E2. We encode the chop vertex (i.e., the vertex where E will
be evaluated) with variable x: as E′1 must go from the initial vertex to the chop vertex and
E′2 from the chop vertex to the final vertex, we will consider expression

x!(E′1 · x? · E′2) .

However, this expression is not equivalent to E in general. Indeed, the crucial point dif-
ferentiating expressions in HWE and chop expressions is that E1 and E2 are evaluated on
subgraphs G1 and G2 of the original graph G, whereas hybrid weighted expressions E′1 and
E′2 are evaluated on the same graph G. In particular, if expression E1 performs a test d? or
a move d with d ∈ D, it may fail in the subgraph G1 on which it is evaluated, even though
it would have succeeded in the whole graph G: this is the case if the particular edge labeled
with d of the whole graph has been chopped. Hence, we have to slightly modify E′1 and E′2
before combining them to get expression E′. This is done by first replacing every test d?
over a direction d ∈ D→ appearing in E′1 by the concatenation d · d−1, and, similarly, every
test d? over a direction d ∈ D← appearing in E′2 by d · d−1. Then, we replace every move d
with d ∈ D→, appearing in E′1 by

d · y!(→⋆ · y? · →⋆ · x? · →⋆)

and, similarly, every move d with d ∈ D←, appearing in E′2 by

d · y!(→⋆ · x? · →⋆ · y? · →⋆) .

We denote E′′1 and E′′2 the expressions obtained after making these transformations. We let

E′ = x!(E′′1 · x? · E′′2) .

Consider now an ordered pointed graph G, a vertex v ∈ V and a valuation σ : Var ⇀ V .
Denoting by (G1, G2) the chop decomposition of G associated to v, we easily show by
induction over E1 and E2 that

[[E1]](G1, σ, v
(i), v) = [[E′′1]](G, σ[x 7→ v], v(i), v)

[[E2]](G2, σ, v, v
(f)) = [[E′′2]](G, σ[x 7→ v], v, v(f))

By definition of the semantics of the chop operator from one side, and the x!− and · operators
from the other side, we then obtain:

[[E]](G, σ, v, v) = [[E′]](G, σ, v, v) .

We let as future work the extension of this result to other classes of graphs (not necessarily
ordered). An interesting question is the reciprocal of this proposition, i.e., whether the chop
operation is strong enough to simulate the pebble features. Notice that this reciprocal has
a flavor of separation theorem, in the sense of [HR05, Mar04].

3.3 Algebraic Semantics of Hybrid Weighted Expressions

In this last section, we propose to redefine the semantics of hybrid weighted expressions in
a more algrebraic way. This will be particularly useful when proving Kleene-Schützenberger

3.3. ALGEBRAIC SEMANTICS OF HYBRID WEIGHTED EXPRESSIONS 33

theorems in Chapter 4. To introduce this algebraic semantics, we first consider the semantics
of usual weighted regular expressions over finite words1, i.e., expressions defined by the
grammar

E ::= sa | E + E | E · E | E+

where s ∈ S and a ∈ A. Notice that sa is now considered as a basic expression (and not
the sequence of weight s and letter a) in order to define only proper expressions, and hence
avoid difficulties in the definition of the semantics of the Kleene iteration. We may hence
consider general – not necessarily continuous – semirings S.

The semantics of an expression E is now a mapping from words in A+ to S: in particular,
no need for valuations or initial and final vertices to define the semantics as we will see.
Hence, we consider the semantics of an expression E as a formal power series |E| ∈ S〈〈A+〉〉
over the words of A+. As A⋆ is a graded monoid, (S〈〈A⋆〉〉,⊕,⊗, 0, 1ε) is a semiring, where
⊗ is the Cauchy product of two series. This permits to define trivially the semantics by
lifting the operations of the semiring2:

|sa| = sa |E1 + E2| = |E1| ⊕ |E2| |E1 · E2| = |E1| ⊗ |E2|

It only remains to deal with Kleene iteration. Indeed, we may define the Kleene iteration
of a series f ∈ S〈〈A⋆〉〉, in case this one is a proper series, i.e., if f(ε) = 0. In fact, the Kleene
iteration of a proper formal power series f ∈ S〈〈A⋆〉〉 is defined by f+(ε) = 0 and for every
word w ∈ A+ by

f+(w) =
⊕

n≥1

⊕

w1,w2,...,wn∈A
+

w=w1w2···wn

f(w1)⊗ f(w2)⊗ · · · ⊗ f(wn)

which is well-defined as the inner sum is empty for every n greater than the length of w.
As the semantics |E| of any expression is proper, as a formal power series of S〈〈A+〉〉, this
permits to define the semantics of the Kleene iteration of an expression E by:

|E+| = |E|+

Indeed, this definition of the semantics of a weighted regular expression by series opera-
tions is the way used by Schützenberger to define regular formal power series – the weighted
equivalent of regular languages – namely the smallest class of series which contains the series
sa with s ∈ S and a ∈ A, and which is closed by addition, Cauchy product and Kleene iter-
ation of proper series. Weighted regular expressions are just a way to denote such regular
series.

Remark 3.14. In that regular case, it is also possible, as explained in [Sak09, Chapter III.5],
to remove the graded condition of the monoid, at the price of ensuring that the semiring
is continuous. We do not present this generalization/restriction here in details, but we will
indeed follow the same path in our case. �

We now apply this elegant and powerful way of defining the semantics of expressions to
our hybrid weighted expressions. Considering the navigation feature, and the presence of
variables, this will be more complex than for the weighted regular languages. In particular,
this requires to find a structure – if possible a monoid, but indeed we will not achieve this
final goal – on which we will build formal power series, and the underlying operations. We
fix A a finite alphabet and D a finite set of directions. Objects of the structure will be
marked graphs. A marked graph is of the form (G, σ, v, v′) where G ∈ G(A,D) is a pointed

1We will indeed focus on proper weighted regular expressions as it is enough for our purpose.
2We recall that sw denotes the formal power series whose only non-zero coefficient is the one of w ∈ A⋆,

which is equal to s ∈ S.

34 CHAPTER 3. HYBRID EXPRESSIONS

graph, σ : Var ⇀ V is a valuation with a finite domain, and v, v′ ∈ V are vertices. These
are exactly the structures we use to define the semantics of hybrid weighted expressions.
Let MG(A,D,Var) (or shortly MG if the parameters are implicit) be the set of all marked
graphs.

We may equip the set of marked graphs with a product operation. Given (G1, σ1, v1, v
′
1)

and (G2, σ2, v2, v
′
2) two marked graphs, the product of these marked graphs, denoted by

(G1, σ1, v1, v
′
1) ◦ (G2, σ2, v2, v

′
2), is defined whenever G1 = G2, σ1 = σ2 and v′1 = v2, by

(G1, σ1, v1, v
′
1) ◦ (G1, σ1, v

′
1, v
′
2) = (G1, σ1, v1, v

′
2)

The product operation defined that way is a partial binary operation. It admits several
partial units: indeed we have

(G1, σ1, v1, v
′
1) ◦ (G1, σ1, v

′
1, v
′
2) = (G1, σ1, v1, v

′
1) if, and only if, v′2 = v′1

A marked graph of the form (G, σ, v, v) is henceforth called a partial unit. The set of all
partial units is denoted by U(A,D,Var) (or shortly U if the parameters are implicit).

We have now defined an algebraic structure over the set of marked graphs, not as neat
as a monoid structure, but this will be sufficient. Before coming back to the algebraic
definition of the semantics of hybrid weighted expressions, we explore the properties of this
new structure, that we call a partial monoid.

3.3.1 Partial Monoids

A partial monoid is a set M equipped with a partial binary operation ◦ and a subset of
elements called partial units, and denoted U such that:
• ◦ is partially associative, i.e., m ◦(m′ ◦m′′) is defined if, and only if, (m ◦m′) ◦m′′ is

defined, and in that case, m ◦(m′ ◦m′′) = (m ◦m′) ◦m′′ for all elements m, m′, m′′

of M;
• every partial unit u ∈ U is a partial neutral element of ◦, i.e., if m ◦u (respectively,
u ◦m) is defined then m ◦u = m (respectively, u ◦m = m) for all element m of M;
• every element admits a unique left partial unit, and a unique right partial unit, i.e.,

for all m ∈ M, there is a unique u ∈ U such that m ◦u is defined, and also, there is a
unique u ∈ U such that u ◦m is defined.

Ideally, a monoid is a partial monoid with the binary operation being totally defined and
with the set of partial units being the singleton set consisting of the neutral element.

Example 3.15. (MG(A,D,Var), ◦,U(A,D,Var)) is a partial monoid. Clearly, ◦ is partially
associative and every partial unit is a partial neutral element of it. Moreover, for every
marked graph (G, σ, v, v′) and every partial unit (G′, σ′, v′′, v′′), their product (G, σ, v, v′) ◦
(G′, σ′, v′′, v′′) is defined if, and only if, G = G′, σ = σ′ and v′ = v′′, which defines uniquely
the partial unit. Hence, every element admits a unique left partial unit, and a unique right
partial unit. �

Consider now a continuous semiring (S,⊕,⊗, 0, 1). The set S〈〈M〉〉 of formal power series
over the partial monoid M is equipped with an addition operation (this does not require
any operation over M indeed), and we may also define partial Cauchy products, basically
with the same definition as the Cauchy product when M is a monoid. Formally, the partial
Cauchy product f ⊗ g of two series f and g of S〈〈M〉〉 is defined by

(f ⊗ g)(m) =
⊕

m=m′ ◦m′′

f(m′)⊗ g(m′′) for all m ∈M .

The sum now ranges over all pairs (m′,m′′) for which the product m′ ◦m′′ is defined and
such that m = m′ ◦m′′. Notice that this sum may be infinite (but is well-defined since the

3.3. ALGEBRAIC SEMANTICS OF HYBRID WEIGHTED EXPRESSIONS 35

semiring is continuous) but is necessarily non empty because of the existence of the left and
right units of m. Interestingly, this Cauchy product permits to equip S〈〈M〉〉 with a structure
of semiring, which is indeed continuous.

Proposition 3.16. If (M, ◦, U) is a partial monoid, and (S,⊕,⊗, 0, 1) a continuous semi-
ring, then (S〈〈M〉〉,⊕,⊗, 0,1U) is a continuous semiring3.

Proof. We detail below the different elements proving that (S〈〈M〉〉,⊕,⊗, 0,1U) is a contin-
uous semiring.
• For every set M, (S〈〈M〉〉,⊕, 0) is a commutative monoid.
• The novelty is to prove that (S〈〈M〉〉,⊗,1U) is a monoid. Indeed, ⊗ is easily shown to

be an associative operation, by following the same proof as for monoids. Moreover,
1U is a neutral element for ⊗. As a matter of fact, we have for every m ∈M:

(f ⊗ 1U)(m) =
⊕

m=m′ ◦m′′

f(m′)⊗ 1U (m′′)

=
∑

m′∈M,m′′∈U
m=m′ ◦m′′

f(m′)

=
∑

m′′∈U
m=m ◦m′′

f(m)

= f(m)

where the last equality follows from the existence and unicity of the right partial unit
of m. A symmetric proof may be used to prove that 1U ⊗ f = f .

• ⊗ distributes over ⊕, and 0 is an annihilator by lifting these properties from the
semiring S.

• Sum of family (fi)i∈I is given, for every m ∈M, by

(∑

i∈I

fi
)
(m) =

∑

i∈I

fi(m) .

From this pointwise definition of the summation, it is not difficult to lift completeness
and continuity from the semiring S to S〈〈M〉〉.

Remark 3.17. The previous proposition permits to conclude that the structure

(S〈〈MG(A,D,Var)〉〉,⊕,⊗, 0,1U(A,D,Var))

is a continuous semiring. �

As in every continuous semiring, the Kleene iteration f⋆ of every series f ∈ S〈〈M〉〉 is
well-defined. We may use in the following the notation f+ as the partial Cauchy product
f ⊗ f⋆.

3.3.2 Application to the Semantics of Hybrid Weighted Expressions

We now come back to the main purpose of defining algebraically the semantics of hybrid
weighted expressions. To every hybrid weighted expression E ∈ HWE will be associated a
series |E| ∈ S〈〈MG〉〉, inductively on the structure of E.

3The neutral element for the Cauchy product, 1U , is the characteristic series of the partial units of M,
defined by 1U (m) = 1 if m ∈ U , and 0 otherwise.

36 CHAPTER 3. HYBRID EXPRESSIONS

The semantics of E = s (with s ∈ S) is defined by

|s| = s1U

the series which associates s to the partial units and 0 otherwise. Similarly, the semantics
of E = α (with α ∈ Test) is defined by

|α| = 1{(G,σ,v,v)∈U|G,σ,v|=α}

For every direction d ∈ D, we finally define

|d| = 1{(G,σ,v,v′)∈MG|(v,v′)∈Ed}

These three base cases are not surprising and resemble the previous definition of the seman-
tics. But, indeed, the hardest is done as the inductive cases are trivial, in the sense that they
are nothing more than a rewriting of the formulae used for weighted regular expressions:

|E1 + E2| = |E1| ⊕ |E2| |E1 · E2| = |E1| ⊗ |E2| |E+| = |E|+

It only remains to deal with the semantics of E = x!E1. Indeed, this can be seen as a
projection operation over the series, but is inductively defined by the same equation as
previously:

|x!E1|(G, σ, v, v′) =

{
|E1|(G, σ[x 7→ v], v(i), v(f)) if v = v′

0 otherwise

Proposition 3.18. For every E ∈ HWE, and for every marked graph (G, σ, v, v′) ∈ MG
with Free(E) ⊆ dom(σ), [[E]](G, σ, v, v′) = |E|(G, σ, v, v′).

Proof. We proceed by induction over E. The equality is trivially verified for expressions s,
α, d and x!E.

If E = E1 + E2, we have by induction

[[E1 + E2]](G, σ, v, v′) = [[E1]](G, σ, v, v′)⊕ [[E2]](G, σ, v, v′)

= |E1|(G, σ, v, v′)⊕ |E2|(G, σ, v, v′)

= |E1 + E2|(G, σ, v, v′)

as the addition of series is defined pointwisely.
If E = E1 · E2, we have

[[E1 · E2]](G, σ, v, v′) =
⊕

v′′∈V

[[E1]](G, σ, v, v′′)⊗ [[E2]](G, σ, v′′, v′)

=
⊕

v′′∈V

|E1|(G, σ, v, v′′)⊗ |E2|(G, σ, v′′, v′)

=
⊕

(G,σ,v,v′)=
(G1,σ1,v1,v

′
1)◦

(G2,σ2,v2,v
′
2)

|E1|(G1, σ1, v1, v
′
1)⊗ |E2|(G2, σ2, v2, v

′
2)

= (|E1| ⊗ |E2|)(G, σ, v, v′)

= |E1 · E2|(G, σ, v, v′)

Finally, if E = E+
1 , we have

[[E+
1]](G, σ, v, v′) =

⊕

n>0

[[En1]](G, σ, v, v′)

3.3. ALGEBRAIC SEMANTICS OF HYBRID WEIGHTED EXPRESSIONS 37

An induction over n shows that

[[En1]](G, σ, v, v′) = |E1|
n(G, σ, v, v′)

with fn defined for every series f by f1 = f and fn+1 = f ⊗fn. By definition of the Kleene
iteration of a series, we conclude that

[[E+
1]](G, σ, v, v′) = |E1|

+(G, σ, v, v′) = |E+
1 |(G, σ, v, v

′)

CHAPTER 4
Navigating Automata

Le petit Poucet les laissait crier, sachant bien par où il reviendrait à
la maison, car en marchant il avait laissé tomber le long du chemin
les petits cailloux blancs qu’il avait dans ses poches.1

Charles Perrault, Le Petit Poucet

4.1 Weighted Automata over Graphs 40
4.1.1 Syntax and Semantics over a Continuous Semiring 40
4.1.2 A First Kleene-Schützenberger Theorem. 44

4.2 Pebble Weighted Automata 51
4.2.1 Extended Syntax and Semantics 52
4.2.2 Layered Pebble Weighted Automata 56
4.2.3 Dynamically Marked Graphs 58
4.2.4 The Full Kleene-Schützenberger Theorem 59

In this chapter, we explore a more operational view of quantitative specification, in terms
of weighted automata. Originally investigated by Marcel-Paul Schützenberger in [Sch61] as a
way to compute rational series, they have been extended and studied extensively since then.
In particular, much has been done to transfer Kleene’s result, stating the equivalence of
regular expressions and finite-state automata. This result, extended to the weighted case in
Schützenberger theorem, is not only of theoretical interest, but is also practically important:
in particular, transforming a denotational specification into an automaton must be done
as fast as possible. Classical fast algorithms in the Boolean case are based on Glushkov
constructions (see [Glu60, Glu61]), further investigated, e.g., in Berry-Sethi algorithm (see
[BS86]). These algorithms have been extended into the weighted case (see [Sak09]): a unified
version of several algorithms is studied in [AM06].

Before presenting our framework of weighted automata navigating over graphs, we start
by recalling standard definitions of weighted automata (over words). Usually, a weighted
automaton over an alphabet A and semiring S is a tuple (Q,λ, µ, ν) with Q a finite set of
states, λ ∈ SQ a row vector of initial weights, µ : A → SQ×Q a mapping from letters to
matrices of transitions, and ν ∈ SQ a column vector of final weights. For example, over the

1“Little Thumb let them cry on, knowing very well how to get home again, for, as he came, he took care
to drop all along the way the little white pebbles he had in his pockets.”

39

40 CHAPTER 4. NAVIGATING AUTOMATA

1 2
1 22a

a, b a, b

Figure 4.1: A first weighted automaton

alphabet {a, b} and the semiring (N,+,×, 0, 1), we may consider the weighted automaton

defined by Q = {1, 2}, λ =
(
1 0

)
, µ(a) =

(
1 2
0 1

)
, µ(b) =

(
1 0
0 1

)
and ν =

(
0
2

)
. It is

depicted in Figure 4.1.
Its semantics may be defined using runs, having a certain weight: this is the way we will

define the semantics of our automata. However, in this simple example, the semantics may
be defined in a more algebraic and direct way. Indeed, notice that the mapping µ may be
uniquely extended as a morphism from the free monoid A⋆ (i.e., the monoid generated by
elements of A) to the monoid of square matrices SQ×Q. This is done by letting µ(ε) being
the identity matrix, and for every word w, and letter a ∈ A by letting µ(aw) = µ(a)× µ(w)
where × denotes here the matrix product. Then, the semantics of a weighted automaton A
is the formal power series obtained by associating to every word w ∈ A⋆ the coefficient

|A|(w) = λ× µ(w)× ν ∈ S .

For example, the weighted automaton A of Figure 4.1 generates the formal power series
mapping every word w to the coefficient 2(|w|a + 1). Indeed, as µ(b) is the identity matrix,
we have µ(w) = µ(a|w|a), and an induction shows that

µ(an) =
(

1 2n
0 1

)

A computation, shown in our setting in Theorem 4.18, shows that weighted automata over
the natural semiring may only recognize formal power series f such that f(w) = 2O(|w|),
bounding immediately their expressive power. Our starting point is then to explore more
expressive automata: this will be done by adding navigational features, as well as pebbles.

Whereas the first section investigates the navigational issue, and states a first Kleene-
Schützenberger theorem, the second one will add pebble features and prove an extended
theorem relating these automata with the expressions defined in the previous chapter. This
chapter is an extension of some of the results presented in [2] in the special case of words,
and [4] in the special case of nested words.

4.1 Weighted Automata over Graphs

4.1.1 Syntax and Semantics over a Continuous Semiring

In this section, we define weighted automata navigating over graphs. We will simply call
them weighted automata, even though they are not the same objects as weighted automata
we can find in the literature, and that we have described previously. We will see however
that they naturally contain weighted automata over words.

Definition 4.1. A weighted automaton over a semiring S is a tuple A = (Q,A,D, I,∆, F)
where
• Q is a finite set of states;
• A is a finite alphabet;
• D is a finite set of directions;
• I ∈ SQ is the vector of initial weights;

4.1. WEIGHTED AUTOMATA OVER GRAPHS 41

1 2
1

4a? 2a? + 2b?

(2a?)→

(1a? + 1b?)→ (1a? + 1b?)→

Figure 4.2: Weighted automaton A′

• ∆ ∈ S〈Test(A,D,Var)〉〈D〉Q×Q is the weighted transition matrix2: a transition goes
from a state q to a state q′ performing a test α and an action given by a direction d,
and has weight ∆q,q′(d)(α);
• F ∈ S〈Test(A,D,Var)〉Q is the final vector: each state q is mapped to a polynomial
Fq of tests.

The class of all weighted automata over S is denoted by WA(S) or WA if the semiring is
clear from the context, or not relevant. �

Example 4.2. We first consider the case of words in this example, i.e., we suppose that
D = {←,→}. Let A′ = ({1, 2}, {a, b}, D, I,∆, F) be the weighted automaton in WA(N)
(over the semiring (N,+,×, 0, 1)) defined by

I =
(
1 0

)
∆ =

(
(1a? + 1b?)→ (2a?)→

0 (1a? + 1b?)→

)
F =

(
4a?

2a? + 2b?

)

Automaton A′ is depicted in Figure 4.2. Notice that (1a?+1b?)→ denotes the formal power
series f ∈ S〈Test〉〈D〉 with f(←) = 0 and f(→) being the formal power series of S〈Test〉
having for only non-zero coefficients the one of tests a? and b? which are both equal to 1. �

Intuitively, a weighted automaton navigates in a pointed graph, keeping in its finite
memory the current state. At every time step, the automaton chooses an available direction
of D and follows it, under the condition that some test of Test(A,D,Var) is verified on the
current vertex of the graph. Notice that we allow the presence of some tests x? of a variable
x: this will become useful in the following of this chapter. Henceforth, to be evaluated,
the weighted automaton A also needs a valuation of the free variables Free(A), namely the
(finite) set of variables appearing in tests of non-zero coefficients of the polynomials in ∆
and F .

A run collects a sequence of moves from one vertex to another, and the weight of a run is
the product (in the semiring S) of the weights of the transitions taken during the run. The
non-determinism is resolved by using the sum of the semiring, i.e., a weighted automaton
maps every possible pointed graph to the sum of the weights of the accepted runs over this
graph, namely those that start in the initial vertex and end in the final one. Now, we
formalize this definition of the semantics.

A run will be described as a sequence of configurations of A. A configuration of A =
(Q,A,D, I,∆, F) is an element (G, σ, q, v) composed of a pointed graph G ∈ G(A,D), a
valuation σ : Var ⇀ V , a state q ofQ and a vertex v of V . Any two configurations with a fixed
graph G and a fixed valuation σ give rise to a concrete transition (G, σ, q, v) ❀ (G, σ, q′, v′)
whenever the pair (v, v′) is an edge in E. Its weight is then defined by

⊕

d∈D | (v,v′)∈Ed

α∈Test |G,σ,v|=α

∆q,q′(d)(α) . (4.1)

2We recall that Test(A, D, Var) is the set of test formulae defined in Chapter 3, sometimes called Test
in the following.

42 CHAPTER 4. NAVIGATING AUTOMATA

Remark 4.3. Notice that this sum is finite because ∆q,q′(d) is a polynomial for every
d ∈ D. �

A run of A is a sequence of configurations related successively by concrete transitions. Its
weight is the product of transition weights, multiplied from left to right. We are interested in
runs that start at some vertex v, in state q, and end in some configuration with vertex v′ and
state q′. Therefore, we let [[Aq,q′]](G, σ, v, v′) be the sum of the weights of all runs leading
from configuration (G, σ, q, v) to configuration (G, σ, q′, v′). If we consider a continuous
semiring, this a priori infinite sum is well-defined.

Finally, the semantics of weighted automaton A maps every pointed graph G ∈ G(A,D)
and valuation σ : Var ⇀ V with domain containing the free variables of A to an element of
the continuous semiring S by including the initial and final weights, letting

[[A]](G, σ) =
⊕

q,q′∈Q

Iq ⊗ [[Aq,q′]](G, σ, v(i), v(f))⊗
⊕

α∈Test |

G,σ,v(f)|=α

Fq′(α) .

As for the hybrid weighted expressions, we may write [[A]](G) and [[Aq,q′]](G, v, v′) in the
case where A has no free variables.

Example 4.4 (Continued from Example 4.2). We consider a pointed graphG ∈ Word({a, b})
representing a finite word w ∈ {a, b}+. The weighted automaton A′ has no free variables
so that we can forget about the valuation part in the configurations and in the seman-
tics. A run with non-zero weight in A′ from a configuration (G, 1, v(i)) to (G, q, v(f)) (with
q ∈ {1, 2}) visits first only state 1, and then either stops in state 1, or uses the transition
from state 1 to state 2 and then loops in state 2. If it stops in state 1, to accept, and get
a non-zero weight, the final test a? must be verified, in which case weight 4 is multiplied.
This simulates the behavior of the (classical) weighted automaton A of Figure 4.1 where the
transition from state 1 to state 2 – with weight 2 – is taken in the last position of the word,
before accepting with weight 2. Otherwise, the run in A′ takes the transition from state 1 to
state 2, simulating the same behavior in A. It finally loops in state 2 before accepting with
weight 2 in the final vertex, since 2a? + 2b? is a polynomial which evaluates as the constant
polynomial 2. Finally, this shows that [[A′]](G) = |A|(w). �

Remark 4.5. Notice that the previous example indeed shows that we can translate every
(classical) weighted automaton over finite words in our navigating formalism. We must
particularly care about the vector of final weights: indeed, the last transition of a (classical)
weighted automaton leads from a configuration in the last vertex of a word to the outside
of this word. In contrast, it is forbidden in our setting to exit the set of vertices of a graph.
Henceforth, we simulate the last transition by the vector of final weights, by using the power
of test formulae in Test. For example, in automaton A of Figure 4.1, if a run ends with the
looping transition on state 2, it is simulated in A′ by testing a? + b? (without making the
→ move which would informally exit the set of vertices) and multiplying by the final weight
2 of state 2. �

Remark 4.6. In the sequel, we will continuously use terminologies borrowed from the usual
Boolean setting. For example, we may talk about initial state (respectively, final state) for a
state having an initial weight (respectively, final polynomial) different from 0. By extension,
an accepting run is a run which starts in a configuration (G, σ, q, v(i)) with q an initial state,
and ends in a configuration (G, σ, q′, v(f)) with q′ a final state, and having a weight different
from 0. �

Example 4.7. Consider the weighted automaton A ∈WA(R+ ∪{+∞}) (over the semiring
(R+ ∪ {+∞},+,×, 0, 1)) depicted in Figure 4.3, where p represents a probability in [0, 1],
and over alphabet A = {a}. It still runs over finite words, now using the capability to move
in two directions. Consider such a word w = a0 · · · an−1 of length n, encoded in a graph

4.1. WEIGHTED AUTOMATA OVER GRAPHS 43

1 1⊤

(
p a?

)
→+

(
(1− p)(a? ∧ ¬init? ∧ ¬final?)

)
←

Figure 4.3: A weighted automaton A ∈WA(R+ ∪ {+∞})

1
0

2

3
0⊤

min(2 a?, 1 b?)↓1

(0¬(↓1?))↑1

(0⊤)↓2

(0¬(↓1?))↑2

(0⊤)↑2

(0⊤)↑1

Figure 4.4: Weighted automaton A mimicking a depth-first-search of a binary tree

G ∈ Word({a}). Once in the final vertex of the graph, the automaton is forced to accept
with weight 1, since neither the → transition, nor the ← transition – because of the test
¬final? – can be taken. On the other hand, the test ¬init? in the transition is there to ensure
that direction ← is not taken on the first position of the word: notice however, that the
semantics of the automaton would not have been different if this test was removed. Indeed,
there is a bijection between the accepting runs of A, and the paths in G from the initial
vertex to the final vertex, that stop the first time they reach this final vertex. The weight
of an accepting run is then pm→(1 − p)m← where m→ (respectively, m←) is the number of
→ directions (respectively, ← directions) taken along the run: considering the length n of
the word, we must have m→ = m← + n − 1. Notice that there is an infinite number of
accepting runs, which means that the semantics of A involves an infinite sum, making it
crucial to consider a complete semiring. This example is further studied in Example 8.4,
giving a probabilistic interpretation of the semantics of this automaton. �

Example 4.8. We consider now an example over binary trees. Let A = {a, b, c} with a and
b being binary letters, and c a nullary letter. Hence, we will consider binary trees where
a and b are labels of internal nodes and c the label of the leaves. Let A be the weighted
automaton in WA(N ∪ {+∞}) (over the semiring (N ∪ {+∞},min,+,+∞, 0)) depicted in
Figure 4.4. Over each binary tree G ∈ T ree(A), the automaton A admits a unique accepting
run following a depth-first-search of the tree: it visits each leaf exactly once, in state 1, and
each internal node three times, the first one in state 1, then in state 2 and the last time in
state 3. During the first visit of each internal node, we count 2 if the node is labeled by a
and 1 if it is labeled by b. All other transitions count 0, hence, the weight of a run, defined
as the sum3 of the weights of the transitions, is precisely 2na + nb if na (respectively, nb)
is the number of internal nodes labeled by a (respectively, b). By adding to this automaton
three more states (in a separated connected component) related in the same way by simply
exchanging the weights 1 and 2 in the self loop, we produce an automaton with exactly
two accepting runs over each binary tree: the non-determinism is then resolved by taking a
minimum, and the semantics then maps a binary tree to the value min(2na+nb, na+2nb). �

3The weight of a run is the product (in the semiring) of the weights of the transitions of the run: here
the product operation of the semiring is an addition...

44 CHAPTER 4. NAVIGATING AUTOMATA

4.1.2 A First Kleene-Schützenberger Theorem

We are now ready to state the first result of this manuscript: its aim is to relate a denotational
formalism – weighted expressions – with a computational formalism – weighted automata.
From one side, translating weighted expressions into weighted automata may be seen as a
prerequisite to efficient parsing of weighted expressions: therefore, we will try to make this
translation as efficient as possible. From the other side, this is a theoretical result involving
some closure properties of the weighted automata: this shows the robustness of the class of
automata we considered.

Theorem 4.9. Let S be a continuous semiring.

1. For each weighted expression E ∈ WE(S), we can construct a weighted automaton
AE ∈WA(S) with Free(AE) = Free(E), equivalent to E, i.e., [[E]](G, σ) = [[AE]](G, σ)
for every pointed graph G and every valuation σ with domain containing Free(E).

2. For each weighted automaton A ∈ WA(S), we can construct a weighted expression
EA ∈WE(S) with Free(EA) = Free(A), equivalent to A, i.e., [[A]](G, σ) = [[EA]](G, σ)
for every pointed graph G and every valuation σ with domain containing Free(A).

The rest of this section is devoted to the proof of this theorem. We start by proving the
second item, as its proof will help us for the proof of the first one.

From Weighted Automata to Weighted Expressions

This section is devoted to the construction of a weighted expression EA equivalent to a
given weighted automaton A. We will show that we can use the classical constructions to
transform regular expressions into finite-state automata, e.g., the state elimination method
of Brzozowski and McCluskey [BM63], the procedure of McNaughton and Yamada [MY60] or
the recursive algorithm [Con71]. We refer to the survey of Sakarovitch [Sak12, Section 6.2]
where these methods are presented and compared for (classical) weighted automata over
finite words.

In the state elimination method, states are progressively suppressed and transitions are
labeled with weighted expressions. Therefore, it is convenient to consider automata allowing
weighted expressions in the labels of transitions: we first introduce these generalized weighted
automata and then show how to exploit them to translate automata into expressions.

Definition 4.10. A generalized weighted automaton is a tuple A = (Q,A,D, I,∆, F) where
• Q is a finite set of states;
• A is a finite alphabet;
• D is a finite set of directions;
• I ∈ SQ is the initial vector;
• ∆ ∈WE(S, A,D)Q×Q is the transition matrix;
• F ∈ S〈Test(A,D,Var)〉Q is the final vector.

The class of all generalized weighted automata over S is denoted by gWA(S) or gWA if the
semiring is clear from the context, or not relevant. �

The differences compared with weighted automata in WA reside in the introduction of
weighted expressions in the transition matrix. The semantics of such a generalized weighted
automaton is given by a variation of the semantics of weighted automata: now, the weight
of a concrete transition (G, σ, q, v) ❀ (G, σ, q′, v′) is defined by [[∆q,q′]](G, σ, v, v′) (the se-
mantics of a weighted expression). This permits to update accordingly the definition of
[[Aq,q′]](G, σ, v, v′). We introduce another step before giving the final semantics as this will
be useful in the following: we denote [[A]](G, σ, v, v′) the semantics of the generalized au-

4.1. WEIGHTED AUTOMATA OVER GRAPHS 45

tomaton from vertex v to vertex v′, which is defined by

[[A]](G, σ, v, v′) =
⊕

q,q′∈Q

Iq ⊗ [[Aq,q′]](G, σ, v, v′)⊗
⊕

α∈Test |
G,σ,v′|=α

Fq′(α) .

Finally, we let [[A]](G, σ) = [[A]](G, σ, v(i), v(f)) be the semantics from the initial to the final
vertex of the pointed graph G with valuation σ.

Notice that every weighted automaton can be seen as a generalized weighted automaton.

Proposition 4.11. From a weighted automaton A ∈WA(S), we can construct an equivalent
generalized weighted automaton Ã ∈ gWA(S) with the same set of free variables.

Proof. Let A = (Q,A,D, I,∆, F) be a weighted automaton. We construct an equivalent
generalized weighted automaton Ã = (Q,A,D, I, ∆̃, F) by letting for every q, q′ ∈ Q,

∆̃q,q′ =
∑

α∈Test,d∈D

∆q,q′(d)(α) · α · d

which is a weighted expression, since this sum is finite (∆ has finite support by definition).
A simple rewriting permits to show that both definitions of the semantics coincide in that
case.

We first relate the semantics of a generalized weighted automaton with the star of the
semantic matrix [[∆]], whose coefficients are given by [[∆q,q′]]. For each q, q′ ∈ Q, the entry
∆q,q′ is a weighted expression in WE(S) and its semantics [[∆q,q′]] may hence be seen as a
series over marked graphs ofMG(A,D,Var) (that we denoteMG in the following). Hence,
the semantic matrix verifies [[∆]] = ([[∆q,q′]])(q,q′)∈Q2 ∈ S〈〈MG〉〉Q×Q.

Recall that S〈〈MG〉〉 is a continuous semiring by Remark 3.17. For each finite set Q,
the semiring of matrices S〈〈MG〉〉Q×Q is also continuous. Hence, given a matrix H in
S〈〈MG〉〉Q×Q, the star matrix

H⋆ =
⊕

n≥0

Hn ∈ S〈〈MG〉〉Q×Q

is well-defined. Applying this to H = [[∆]] we can generalize the classical relation between
the semantics of a one-way weighted automaton and the star of a matrix of series.

Proposition 4.12. Let A = (Q,A,D, I,∆, F) be a weighted automaton. For all states
q, q′ ∈ Q, the two series [[Aq,q′]] and ([[∆]]⋆)q,q′ are equal, i.e.,

[[Aq,q′]](G, σ, v, v′) = ([[∆]]⋆)q,q′(G, σ, v, v′)

for all marked graph (G, σ, v, v′) ∈MG.

Proof. We show by induction on n ≥ 0 that for every marked graph (G, σ, v, v′) ∈ MG,
([[∆]]n)q,q′(G, σ, v, v′) computes the sum of the weights of runs of length n from configuration
(G, σ, q, v) to configuration (G, σ, q′, v′).

This is true for n = 0, as 1U (G, σ, v, v′) = 1 if, and only if, v = v′. Then, assuming the
property for n − 1 ≥ 0, we prove it for n. A run of length n > 0 starts with a transition
followed by a run of length n − 1. Hence, the sum of the weights of runs of length n from
configuration (G, σ, q, v) to configuration (G, σ, q′, v′) is computed by

⊕

q′′∈Q,v′′∈V

[[∆]]q,q′′(G, σ, v, v′′)⊗ ([[∆]]n−1)q′′,q′(G, σ, v′′, v′) .

46 CHAPTER 4. NAVIGATING AUTOMATA

Indeed, by using the definition of the matrix multiplication induced by the Cauchy product,
we have

([[∆]]n)q,q′(G, σ, v, v′) = ([[∆]]⊗ [[∆]]n−1)q,q′(G, σ, v, v′)

=
⊕

q′′∈Q

(
[[∆]]q,q′′ ⊗ ([[∆]]n−1)q′′,q′

)
(G, σ, v, v′) .

Then, applying the definition of the Cauchy product in the partial semiring over the partial
monoids of marked graphs, we obtain

([[∆]]n)q,q′(G, σ, v, v′)

=
⊕

q′′∈Q

⊕

(G,σ,v,v′)=
(G1,σ1,v1,v

′
1)◦

(G2,σ2,v2,v
′
2)

[[∆]]q,q′′(G1, σ1, v1, v
′
1)⊗ ([[∆]]n−1)q′′,q′(G2, σ2, v2, v

′
2)

which is equal to

⊕

q′′∈Q,v′′∈V

[[∆]]q,q′′(G, σ, v, v′′)⊗ ([[∆]]n−1)q′′,q′(G, σ, v′′, v′)

as (G, σ, v, v′) = (G1, σ1, v1, v
′
1) ◦ (G2, σ2, v2, v

′
2) implies G1 = G2 = G, σ1 = σ2 = σ, v = v1,

v′ = v′2 and v′1 = v2.

The same way we introduced the semantic matrix [[∆]] we may also introduce
• the semantic initial row vector [[I]] ∈ S〈〈MG〉〉Q defined by

[[I]]q =
⊕

G∈G(A,D)
σ : Var⇀V

Iq (G, σ, v(i), v(i)) ;

• the semantic final column vector [[F]] ∈ S〈〈MG〉〉Q defined by

[[F]]q =
⊕

G∈G(A,D)
σ : Var⇀V

⊕

α∈Test|

G,σ,v(f)|=α

Fq(α) (G, σ, v(f), v(f)) .

As a corollary of Proposition 4.12, we obtain that for every pointed graph G and every
valuation σ,

[[A]](G, σ) = ([[I]]⊗ [[∆]]⋆ ⊗ [[F]])(G, σ, v(i), v(f)) (4.2)

where ⊗ is interpreted as the matrix multiplication induced by the Cauchy product over
S〈〈MG〉〉.

Now, Lemma 2.7 shows that the entries of the star of a matrix H are in the rational
closure4 of the entries of H. Using this fact, we can prove

Proposition 4.13. Let A = (Q,A,D, I,∆, F) be a weighted automaton. We can construct
a matrix Φ(∆) ∈WEQ×Q which is equivalent to the automaton, i.e., such that the following
matrix equality holds:

[[Φ(∆)]] = [[∆]]⋆

Moreover, the entries of Φ(∆) are in the rational closure of the entries of ∆.

4The rational closure is the closure under sum (+), product (·) and star (⋆).

4.1. WEIGHTED AUTOMATA OVER GRAPHS 47

Proof. We construct by induction a matrix Φ(∆) with coefficients in WE such that [[Φ(∆)]] =
[[∆]]⋆. If |Q| = 1, i.e., when ∆ ∈ WE, then we simply let Φ(∆) = ∆⋆. From the algebraic
definition of the semantics of weighted expressions, we directly obtain [[Φ(∆)]] = [[∆]]⋆.

Next, if |Q| > 1, we apply Lemma 2.7 in the semiring S〈〈MG〉〉 with the decomposition

∆ =
(
E F
G H

)
that implies [[∆]] =

(
[[E]] [[F]]
[[G]] [[H]]

)

with H of size 1, to get

[[∆]]⋆ =
(

([[E]] ⊕ [[F]] ⊗ [[H]]⋆ ⊗ [[G]])⋆ [[E]]⋆ ⊗ [[F]] ⊗ ([[H]] ⊕ [[G]] ⊗ [[E]]⋆ ⊗ [[F]])⋆

[[H]]⋆ ⊗ [[G]] ⊗ ([[E]] ⊕ [[F]] ⊗ [[H]]⋆ ⊗ [[G]])⋆ ([[H]] ⊕ [[G]] ⊗ [[E]]⋆ ⊗ [[F]])⋆

)

As H is a matrix of size 1, this is a weighted expression, so that H⋆ is well-defined. To
mimick this semantical computation, we then let

Φ(∆) =
(

Φ(E + F ·H⋆ ·G) Φ(E) · F · (H +G · Φ(E) · F)⋆

H⋆ ·G · Φ(E + F ·H⋆ ·G) (H +G · Φ(E) · F)⋆

)

Notice that we apply the operator Φ twice over matrices of size |Q| − 1. Moreover, we
extend the concatenation of weighted expressions to matrices of weighted expressions in a
straightforward way. Finally, notice that G · Φ(E) · F is a matrix of size 1 so that (H +G ·
Φ(E) · F)⋆ is well-defined. We now prove that [[Φ(∆)]] = [[∆]]⋆.

From the algebraic definition of the semantics and Proposition 3.18 of weighted expres-
sions, H and (H +G · Φ(E) · F)⋆ being weighted expressions, we obtain

[[H⋆]] = [[H]]⋆ and [[(H +G · Φ(E) · F)⋆]] = ([[H]]⊕ [[G]]⊗ [[Φ(E)]]⊗ [[F]])⋆

By induction we get

[[Φ(E + F ·H⋆ ·G)]] = [[E + F ·H⋆ ·G]]⋆ = ([[E]]⊕ [[F]]⊗ [[H]]⋆ ⊗ [[G]])⋆

which permits to conclude by considering again the algebraic properties implied by Propo-
sition 3.18.

As a corollary, using (4.2) and the fact that [[F]] may be easily transformed into an equiv-
alent column vector with coefficients in WE(S, A,D), we have proved item 2 of Theorem 4.9.

Example 4.14 (Continued from Example 4.8). We apply the technique presented in this
section to find a weighted expression equivalent to the weighted automaton A presented in
Figure 4.4. Throughout this proof, we allow ourself to simplify the weighted expressions
produced, e.g., by remarking that, in the semiring (N ∪ {+∞},min,+,+∞, 0), +∞ · E is
always equivalent to +∞, +∞ + E is equivalent to E, and 0 · E is equivalent to E. Also,
we remove tests ⊤ which do not change the semantics of weighted expressions.

First, we translate A into a generalized weighted automaton. We obtain the following
matrix of weighted expressions

∆̃ =

(2a? + 1b?)↓1 ¬(↓1?)↑1 ¬(↓1?)↑2

↓2 +∞ +∞
+∞ ↑1 ↑2

Considering the initial and final vectors, we only need to compute the (1, 3)-coefficient of
the matrix Φ(∆̃). Considering the block decomposition given in the previous proof, we have

E =
(

(2a? + 1b?)↓1 ¬(↓1?)↑1

↓2 +∞

)
, F =

(
¬(↓1?)↑2

+∞

)
, G =

(
+∞ ↑1

)
and H = ↑2

48 CHAPTER 4. NAVIGATING AUTOMATA

A = ι

c
NJ U A =

(
1 0

)

0 J

0 N

c

U

Figure 4.5: Graphical and matrix representations of automata

Noticing that (+∞)⋆ = 0, we can compute Φ(E) and obtain

Φ(E)1,1 =
(
(2a? + 1b?)↓1 + ¬(↓1?)↑1↓2

)⋆

Φ(E)2,1 = ↓2

(
(2a? + 1b?)↓1 + ¬(↓1?)↑1 ↓2

)⋆

We finally find Φ(∆̃)1,3 by computing the upper coefficient of Φ(E) ·F · (H +G ·Φ(E) ·F)⋆:

Φ(∆̃)1,3 =
(
(2a? + 1b?)↓1 + ¬(↓1?)↑1↓2

)⋆
¬(↓1?)↑2

(
↑2 + ↑1↓2

(
(2a? + 1b?)↓1 + ¬(↓1?)↑1↓2

)⋆
¬(↓1?)↑2

)⋆

which also gives a weighted expression equivalent to the weighted automaton A. �

From Weighted Expressions to Weighted Automata

We now prove item 1 of Theorem 4.9, i.e., how to transform a weighted expression to an
equivalent weighted automaton. Efficient translations have been well-studied both in the
Boolean and in the weighted (one-way) cases. Glushkov’s translation [Glu61] (or Berry-Sethi
[BS86]) is acknowledged to be among the best ones. The good news is that this construction
can be adapted to cope with two-way moves as we will show in this section. The construction
is by structural induction on the expression. The induction hypothesis to maintain is slightly
strengthened, in order to prove the result, as presented in the following proposition.

Proposition 4.15. For each weighted expression E ∈ WE we can construct a weighted
automaton AE ∈WA such that [[AE]] = [[E]], i.e., for all (G, σ, v, v′) ∈MG we have

[[AE]](G, σ, v, v′) = [[E]](G, σ, v, v′) .

We define the literal-length ℓℓ(E) of a weighted expression as the number of occurrences
of directions from D. We construct an automaton AE with 1 + ℓℓ(E) states.

For the rational operations (+, ·, ⋆, and +), we can still use the classical constructions
even though we are working with navigating weighted automata. Nethertheless, for seek of
clarity, we repeat the whole proof in the following. We adopt the presentation of standard
automata found in [Sak12]. A standard automaton A = (Q,A,D, I,∆, F) has a single initial
state ι with (initial) weight 1, all other states have initial weight 0. Moreover, the initial
state ι has no ingoing transition. We use both the graphical representation and the matrix
representation of an automaton of Figure 4.5, where the entries of the matrices J and N are
polynomials in S〈Test〉〈D〉.

Since terminal weights allow polynomials over Test with the vector F ∈ S〈Test〉Q, we
will be able to cope with expressions of the form E ·ϕ? and E ·s without adding unnecessary
states. The constant term c and the entries of U are polynomials in S〈Test〉. For s ∈ S,
α ∈ Test and d ∈ D, we simply write s for s⊤, α for 1α, and d for 1⊤d.

We start with atoms. Compared to the classical (one-way) translation, a slight difference
is that we are using tests (α) and directions (d) instead of letters for the atoms. The automata
for the atoms are depicted in Figure 4.6 and we can easily see that they are equivalent to
the corresponding atoms.

4.1. WEIGHTED AUTOMATA OVER GRAPHS 49

As = ι
s

Ad = ι
d 1

Aα = ι
α

Figure 4.6: Automata for atomic expressions

A1 +A2 = ι

c1 ⊕ c2

N1J1 U1

N2J2 U2

A1 · A2 = ι

c1c2

N1J1 U1c2

N2
c1J2 U2

U1J2

Figure 4.7: Automata for sum and concatenation

The constructions for sum and concatenation are as usual, and are depicted in Figure 4.7.
In the concatenation, we are overloading5 the product notation as follows. The product

of two monomials s1α1 and s2α2 from S〈Test〉 should be understood as (s1 ⊗ s2)(α1 ∧ α2)
to stay in S〈Test〉. Hence c1 ⊗ c2 and the entries of U1 ⊗ c2 are in S〈Test〉. Similarly, in
U1 ⊗ J2, the product of a monomial s1α1 ∈ S〈Test〉 and a monomial s2α2d ∈ S〈Test〉〈D〉
(with d ∈ D) is defined as (s1 ⊗ s2)(α1 ∧ α2)d. Hence, the entries of the matrices c1 ⊗ J2

and U1 ⊗ J2 are in S〈Test〉〈D〉. The matrix representation is therefore:

A1 · A2 =
(

1 0 0
)

0 J1 c1 ⊗ J2

0 N1 U1 ⊗ J2

0 0 N2

c1 ⊗ c2

U1 ⊗ c2

U2

Example 4.16. For instance, the automaton for 2a = 2a?→ is computed as follows:

ι

2⊤

· ι

1a?

· ι
(1⊤)→

1⊤

= ι
(2a?)→

1⊤

Similarly, for the expression E = (2a? + b?)→(2b? + 3c?) we compute the concatenation of
3 automata as follows:

ι

2a? + b?

· ι
(1⊤)→

1⊤

· ι

2b? + 3c?

= ι
(2a? + b?)→

2b? + 3c?

�

Finally, the star is also computed as usual with the construction depicted in Figure 4.8,
where c′ ∈ S〈Test〉 is defined to be equivalent to c⋆ as follows. Since c ∈ S〈Test〉 and test
formulas are closed under Boolean connectives, we find an equivalent expression c =

∑
i siαi

with (αi)i pairwise incompatible test formulae (i 6= j implies αi ∧ αj unsatisfiable). Then

5Moreover, notice that we denote by M1M2 the product of matrices and elements in drawings, whereas
it is denoted by M1 ⊗M2 in texts, for spacing reasons.

50 CHAPTER 4. NAVIGATING AUTOMATA

A⋆ = ι

c′
N + Uc′Jc′J Uc′

A⋆ =
(

1 0
)

0 c′ ⊗ J

0 N ⊕ U ⊗ c′ ⊗ J

c′

U ⊗ c′

Figure 4.8: Automaton for Kleene star

we can easily check that [[c]]⋆ = [[c′]] with c′ =
∑
i s
⋆
iαi. The particular case c = 0 = 0⊤

gives c′ = 1 = 1⊤. Notice that s⋆i ∈ S is well-defined since the semiring is complete.
As for the concatenation, we can check that the entries of U ⊗ c′ are in S〈Test〉 and the

entries of U ⊗ c′ ⊗ J are in S〈Test〉〈D〉. The strict iteration A+ is computed similarly by
simply changing the final weight of ι to c′′ =

∑
i s

+
i αi (note that 0+ = 0), but keeping the

other occurrences of c′ in c′ ⊗ J , U ⊗ c′ ⊗ J and U ⊗ c′.

Example 4.17. (Continued from Example 4.16) For instance, for expression

E =→+a?←+b?→+c?←+d?→+ ,

we can compute the automaton as follows:

A→+ = ι

(1⊤)→

(1⊤)→ 1⊤
A→+·a? = ι

(1⊤)→

(1⊤)→ 1a?

AE = ι

(1⊤)→

(1⊤)→

(1⊤)←

(1a?)←

(1⊤)→

(1b?)→

(1⊤)←

(1c?)←

(1⊤)→

(1d?)→ 1⊤

�

Let us briefly discuss the complexity of our translation. Clearly, the number of states of
the automaton AE is 1 plus the literal-length ℓℓ(E) of expression E. The time complexity
is cubic in the length of E, since in the worst case, each step requires to compute a bounded
number of multiplications of a matrix and a vector of sizes bounded by ℓℓ(E). As future
works, it would be interesting to search for a quadratic algorithm: one possible direction
could be to generalize the notion of star normal form introduced in [BK93] for word languages
or the algorithm presented in [AM06] for classical weighted expressions and automata.

To conclude this section, we prove the correctness of the constructions. This correctness
is trivial for the atoms. For sum, product and star, the proof is similar to the case of
classical (one-way) weighted expressions and automata. Indeed, from (4.2), we know that
[[A]] = [[I]]⊗ [[∆]]⋆ ⊗ [[F]]: notice that this is an equality between series over marked graphs.
Using the special form of standard automata and Lemma 2.7, we have

[[∆]] =

0 [[J]]

0 [[N]]

 [[∆]]⋆ =

1 [[J]]⊗ [[N]]⋆

0 [[N]]⋆

and we get [[A]] = [[c]]⊕ [[J]]⊗ [[N]]⋆ ⊗ [[U]].

4.2. PEBBLE WEIGHTED AUTOMATA 51

For the concatenation, the matrix N of A = A1 · A2 satisfies (applying Lemma 2.7):

[[N]] =

[[N1]] [[U1 ⊗ J2]]

0 [[N2]]

[[N]]⋆ =

[[N1]]⋆ [[N1]]⋆ ⊗ [[U1 ⊗ J2]]⊗ [[N2]]⋆

0 [[N2]]⋆

 .

Hence we obtain

[[A]] = [[c]]⊕ [[J]]⊗ [[N]]⋆ ⊗ [[U]]

= [[c1 ⊗ c2]]⊕ [[J1]]⊗ [[N1]]⋆ ⊗ [[U1 ⊗ c2]]

⊕ [[J1]]⊗ [[N1]]⋆ ⊗ [[U1 ⊗ J2]]⊗ [[N2]]⋆ ⊗ [[U2]]

⊕ [[c1 ⊗ J2]]⊗ [[N2]]⋆ ⊗ [[U2]]

= ([[c1]]⊕ [[J1]]⊗ [[N1]]⋆ ⊗ [[U1]])⊗ ([[c2]]⊕ [[J2]]⊗ [[N2]]⋆ ⊗ [[U2]])

= [[A1]]⊗ [[A2]]

For the star construction, the correctness is obtained as follows using classical rational
identities and [[c]]⋆ = [[c′]]:

[[A]]⋆ = ([[c]]⊕ [[J]]⊗ [[N]]⋆ ⊗ [[U]])⋆

= ([[c]]⋆ ⊗ [[J]]⊗ [[N]]⋆ ⊗ [[U]])⋆ ⊗ [[c]]⋆

= ([[c′]]⊗ [[J]]⊗ [[N]]⋆ ⊗ [[U]])⋆ ⊗ [[c′]]

= [[c′]]⊕ [[c′]]⊗ [[J]]⊗ ([[N]]⋆ ⊗ [[U]]⊗ [[c′]]⊗ [[J]])⋆

⊗ [[N]]⋆ ⊗ [[U]]⊗ [[c′]]

= [[c′]]⊕ [[c′]]⊗ [[J]]⊗ ([[N]]⊕ [[U]]⊗ [[c′]]⊗ [[J]])⋆ ⊗ [[U]]⊗ [[c′]]

= [[c′]]⊕ [[c′ ⊗ J]]⊗ [[N ⊕ U ⊗ c′ ⊗ J]]⋆ ⊗ [[U ⊗ c′]] = [[A⋆]]

This closes the proof of Theorem 4.9.

4.2 Pebble Weighted Automata

We considered weighted automata navigating over graphs as a way to parse weighted ex-
pressions. Could it be possible to translate the full set of hybrid weighted expressions into
weighted automata? Consider as an example the hybrid weighted expression

E =
(
x!
(
2(2→)⋆

)
→
)⋆
x!
(
2(2→)⋆

)

over the set D = {→,←} of directions and the continuous semiring (N ∪ {+∞},+,×, 0, 1).
Over a graph G ∈ Word(A) representing a finite word of length n, it computes the weight
[[E]](G) = 2n

2

. Indeed, the expression successively marks every vertex of G with the variable
x, and then computes the subexpression 2(2→)⋆ over G, that computes 2n. We now show
that such a function cannot be generated by a weighted automaton.

Theorem 4.18. Let D = {→,←} and A an alphabet. There exists no weighted automaton
A ∈WA over the semiring (N ∪ {+∞},+,×, 0, 1) such that for every graph G ∈ Word(A),
[[A]](G) = 2|V |

2

.

52 CHAPTER 4. NAVIGATING AUTOMATA

Proof. We suppose that there exists a weighted automaton A ∈ WA such that for every
pointed graph G ∈ Word(A), [[A]](G) = 2n

2

if G has n vertices. In particular, the semantics
of every graph representing a word is finite. This implies that every accepting run visits only
distinct configurations. Indeed, if there exists an accepting run over G (having n vertices
indexed from 0 to n − 1), visiting two occurrences of the same configuration, it is of the
form (G, q0, 0) ❀∗ (G, q, i) ❀+ (G, q, i) ❀∗ (G, qf , n− 1) with Iq0 × s1 × s2 × s3 × Fqf

6= 0,
where s1 is the weight of the subrun from (G, q0, 0) to (G, q, i), s2 the weight of the loop
over (G, q, i) and s3 the weight from (G, q, i) to (G, qf , n− 1). Then, we may build a run of
weight Iq0

× s1 × s
k
2 × s3 × Fqf

over the same word, for every k ≥ 0, by iterating the loop
over configuration (G, q, i). Notice that s2 is a positive integer, hence, s2 ≥ 1. Finally, we
obtain

[[A]](G) ≥
∞∑

k=0

Iq0
× s1 × s2 × s3 × Fqf

= Iq0
× s1 ×

(
∞∑

k=0

s2

)
× s3 × Fqf

= +∞

which violates the fact that [[A]](G) must be finite.
Therefore, we have proved that every accepting run over a graph G must visit at most

once every configuration, and hence has a length bounded by |Q| × n. Denoting by M the
greatest weight appearing in the description of the automaton A, we obtain that the weight
of a run must be bounded by M |Q|×n+2. Moreover, a run is uniquely defined by the sequence
of states it visits and of directions (→ or ←) it follows: hence the number of runs (that do
not visit twice a configuration) is bounded by (2|Q|)|Q|×n. In total, we obtain that

[[A]](G) ≤ (2M |Q|)|Q|×n+2 = o(2n
2

)

Hence, for n large enough, [[A]](G) < 2n
2

, which proves that A cannot recognize the series
mentioned above.

As we way to overcome this limitation, we now decribe how to add pebbles to weighted
automata: a pebble is a device used to mark temporarily a vertex with a variable. It mimicks
in a more operational way the operator x!− of the hybrid weighted expressions. After giving
the extended syntax and semantics, we will consider in details what is the difference between
pebble weighted automata and hybrid weighted expressions. However, we will still be able
to prove some Kleene-Schützenberger theorem relating HWE and layered pebble weighted
automata.

4.2.1 Extended Syntax and Semantics

Pebbles have names taken from the infinite set Var of variables introduced in Chapter 3.

Definition 4.19. A pebble weighted automaton over a semiring S is a tupleA = (Q,A,D, I,∆, F)
where
• Q is a finite set of states;
• A is a finite alphabet;
• D is a finite set of directions;
• I ∈ SQ is the vector of initial weights;
• ∆ ∈ S〈Test(A,D,Var)〉〈Actions〉Q×Q is the weighted transition matrix, where Actions =
D ∪ {dropx | x ∈ Var} ∪ {lift} is the set of available actions;
• F ∈ S〈Test(A,D,Var)〉Q is the final vector: each state q is mapped to a polynomial
Fq of tests.

The class of all pebble weighted automata over S is denoted by PWA(S) or PWA if the
semiring is clear from the context, or not relevant. �

4.2. PEBBLE WEIGHTED AUTOMATA 53

Note that we add the ability for the weighted automata to drop a pebble of name x with
the action dropx and to later lift a pebble with the action lift. Pebbles are recorded in a
last-in-first-out fashion, i.e., they are handled by a stack. This is the reason why lift actions
are not labeled with the name of the pebble on which they will be applied: this is not a part
of the choice of the automaton. In this manuscript, we will only consider stacks of bounded
size, i.e., we will limit a priori the number of pebbles possibly dropped during an execution
of the automaton.

Moreover, variables are reusable: this means that we have an unbounded supply of
pebbles each marked by a pebble name in Var. More than one pebble with name x can be
placed during the run, but only the last dropped is visible. However, when the latter will be
lifted, the previous occurrence of pebble x will become visible again. Notice that our notion
of reusability is slightly different from the notion of invisibility introduced in [EHS07], where
only the last dropped pebbles are visible, even if several of them have the same pebble name.

Let K ≥ 0 be an integer bound. Configurations are enriched with the stack of pebbles
currently dropped: aK-configuration of a pebble weighted automatonA = (Q,A,D, I,∆, F)
is a tuple (G, σ, q, π, v) composed of a pointed graph G ∈ G(A,D), a valuation σ : Var ⇀ V ,
a state q of Q, a stack of length at most K containing pairs of variables and vertices,
π ∈ (Var × V)k with k ≤ K (by convention, the top of the stack will be placed on the
right of the word π), and a vertex v of V . A configuration is a K-configuration for some K.
Reusability of variables means that a pebble name may occur at several places in π, but
only its topmost occurrence is visible. Having this in mind, we associate to every stack π
and valuation σ, an enriched valuation σπ : Var ⇀ V by σε = σ, and σπ(x,v) = σπ[x 7→ v].

Any two K-configurations with such a fixed graph G and fixed valuation σ give rise to
a concrete transition (G, σ, q, π, v) ❀ (G, σ, q′, π′, v′). Its weight is then defined by

⊕

d∈D | (v,v′)∈Ed

α∈Test |G,σπ,v|=α

∆q,q′(d)(α) if π = π′

⊕

α∈Test |G,σπ,v|=α

∆q,q′(dropx)(α) if v′ = v(i), and π′ = π(x, v)

⊕

α∈Test |G,σπ,v|=α

∆q,q′(lift)(α) if v = v(f), and π = π′(y, v′) for some y ∈ Var

Remark 4.20. In this definition, we suppose that the valuation σπ has a domain that
contains the free variables in all the tests α that appear. We will come back later on this
point. �

Notice that the first case, dealing with actions being a direction of D, is a straightforward
extension of the semantics of weighted automata given in (4.1): we simply ensure that the
stack of pebbles is not changed during such a concrete transition. The second case, dealing
with drop transitions, set the next vertex to be the initial vertex v(i) of the graph, enriching
the stack of pebbles with the pair (x, v) composed of the name of the dropped pebble and
the vertex v where it is dropped. Notice that this transition is enabled only if π′ has size
bounded by K, i.e., if less than K pebbles have been dropped so far. The third case, dealing
with lift transitions, assumes that the current vertex is the final vertex v(f) of the graph,
pops the top of the stack (that therefore should be non-empty), and moves to the vertex v′

where the last dropped pebble was.

Remark 4.21. It might seem awkward to enforce the condition on the initial and final
vertices in the two last cases of this definition: we will indeed use these conditions to
simplify a little some proofs later on. Indeed, another natural choice would have been to let
the automaton stay on its current vertex when a pebble is dropped, and assume that it is on
the vertex holding the last dropped pebble to let it lift this pebble. In principle, this other
choice would have led to an automaton model generating the same behaviors. This is the

54 CHAPTER 4. NAVIGATING AUTOMATA

case if the class of graphs in which automata navigate permit to deterministically move to
the initial vertex, to the final vertex or to any vertex marked with a visible pebble: words,
ranked trees, nested words and pictures have clearly this property for example. Another
possibility could be to relax the property only for one of these two actions. For example,
it is possible to let lift transitions happen everywhere in the graph by simply erasing the
condition v = v(f) in the third case. Again, for the previously cited classes of graphs, this
would not have changed the behaviors since it is possible to deterministically move to the
final vertex and perform only lift transitions on v(f). In the following, we henceforth may
use the possibility to lift pebbles anywhere without harm. However, notice that in every
case, a lift transition must lead the automaton in the vertex where the lifted pebble was:
if this is not the case, pebbles are called strong in the literature, whereas our pebbles are
called weak, as detailed, e.g., in [BSSS06]. Even though strong pebbles are showed to have
the same expressive power as weak pebbles in the Boolean setting (see [BSSS06]), we do not
know if this is the case in our weighted setting, hence we leave the investigation of strong
pebbles for future work. �

A K-run is a sequence of K-configurations related successively by concrete transitions.
Its weight is the product of transition weights, multiplied from left to right. A run is
a K-run for some K. We are interested in runs that start at some vertex v, in state q
with empty stack, and end in some configuration with vertex v′, in state q′ with empty
stack. Therefore, we let [[Aq,q′]]K(G, σ, v, v′) be the sum of the weights of all K-runs leading
from configuration (G, σ, q, ε, v) to configuration (G, σ, q′, ε, v′). If we consider a continuous
semiring, this a priori infinite sum is again well-defined.

Before defining the semantics of pebble weighted automata, we must first extend the
notion of free variables to pebble weighted automata. It is not as simple as in the case of
weighted automata, since new pebbles can be dropped making the set of variables currently
allocated in the valuation σπ dynamic. Hence, we let Free(A) be the (finite) set of variables
that must be in the domain of a valuation σ such that at least one run starting in a config-
uration (G, σ, q, ε, v) requires this variable to be in the domain of σπ to define the weight of
one of its concrete transitions. We also let Var(A) be the whole set of variables appearing
in the transition matrix and the final vector of A (either in tests x? or in drop transitions
dropx).

Finally, the semantics of the pebble weighted automaton A maps every pointed graph
G and valuation σ with domain containing the free variables of A to an element of the
continuous semiring S by including the initial and final weights, letting

[[A]]K(G, σ) =
⊕

q,q′∈Q

Iq ⊗ [[Aq,q′]]K(G, σ, v(i), v(f))⊗
⊕

α∈Test |

G,σ,v(f)|=α

Fq′(α) .

Remark 4.22. As we did for weighted automata in Remark 4.6, we may introduce the
same notions of initial state, final state and accepting run in pebble weighted automata. In
particular, an accepting run starts and ends with an empty stack of pebbles. �

Example 4.23. Notice first that every weighted automaton of WA is also a pebble weighted
automaton in PWA, and that in this case, the definition of free variables coincide. More-
over, pebbles permit to design automata in a compositional way. For example, consider
the weighted automaton of Figure 4.2 mapping each word w represented by a graph G ∈
Word(A) to 2(|w|a + 1). Then, it is really easy to design a pebble weighted automaton

mapping the same graph to
(
2(|w|a + 1)

)|w|b . The idea is to drop a pebble (of name x in
the following) on every vertex of the graph labeled by b, and simply execute the weighted
automaton of Figure 4.2 each time a pebble is dropped, lifting the pebble at the end of its
computation. The pebble weighted automaton obtained is depicted in Figure 4.9. Notice
that if we allow lift transitions to happen anywhere in the graph as suggested in Remark 4.21,
then we should change the label of the transition from state 2 to state 3 to (2 final?)lift. �

4.2. PEBBLE WEIGHTED AUTOMATA 55

0

1

1(a? ∧ final?)

1 2

3
1(final?)

(1a?)→

(1b?)dropx

(2a?)→

(1a? + 1b?)→ (1a? + 1b?)→

(2⊤)lift

(1⊤)→

Figure 4.9: A pebble weighted automaton

0

...

A0

A255

0⊤

max((0⊤)→, (0⊤)↓)

(0⊤)dropx

max((0⊤)→, (0⊤)↓)

max((0x?)→, (0x?)↓)

max((0⊤)→, (0⊤)↓)

(0⊤)dropy

max((0⊤)→, (0⊤)↓)

(1(x? ∧ 0?))→

(1(x? ∧ 255?))→

(0⊤)lift

(0⊤)lift

max((0⊤)→, (0⊤)↓)

Figure 4.10: Pebble weighted automaton A computing the area of the biggest mono-
chromatic rectangle of a picture

Example 4.24. As another example of pebble weighted automaton, consider the formal
power series over pictures mapping each picture to the area of the biggest monochromatic
rectangle it contains, in semiring (N∪{−∞},max,+,−∞, 0). We show that we can generate
it using a pebble weighted automaton A. We consider A = [0 .. 255] to be the alphabet of
gray levels, and D = {→,←, ↓, ↑} as set of directions. Automaton A uses two variables x
and y in order to mark the upper-left and lower-right corners of a rectangle in the picture.
At first, A chooses non-deterministically a position to drop x and then a position to drop y.
The color c of the position hosting pebble x is put in the memory of the automaton. Then,
starting from this position, the automaton scans each position of the rectangle checking that
it has the gray level c, and computing 1 for each such position: to do so, the automaton
can for example drop a pebble of name z on this position, in order to check that (i) it is
below and on the right of x, (ii) above and on the left of y, and (iii) finally come back
to this position to continue the computation. We denote by Ac the sub-automaton having
two free variables x and y (and a further variable z which is not free) that checks whether
the area limited by positions marked by variables x and y is a monochromatic rectangle
of color c, and computing its area. Then automaton A is depicted in Figure 4.10: notice
that this is typically a case where lift transitions are not necessarily performed on the final
vertex, but as explained in Remark 4.21, this is not a problem in the case of pictures. Each
accepting run – a run having a weight different from −∞ in this case – computes the area
of a monochromatic rectangle, by summing (again addition is the product of the semiring)
1 for every position inside this rectangle. The non-determinism is resolved by taking the
maximum of the weights of all the accepting runs, which proves that A computes the area of

56 CHAPTER 4. NAVIGATING AUTOMATA

Layer 2:

Layer 1:

Layer 0:

→

←

←

→

→

←

→

←

→

←

→

←

→

→

→

←

←

←

lift dropx dropylift

lift dropx dropzlift

Figure 4.11: A 2-layered pebble weighted automaton

0 1

2

(1¬final?)dropx

(2⊤)→

(1 final?)lift

(1⊤)→

Figure 4.12: 1-layered pebble weighted automaton A

the biggest monochromatic rectangle. Notice that there are several accepting runs that check
the same rectangle – since in the initial state, we allow the automaton to follow any sequence
of→ and ↓ actions for example – but this is not an issue here as the semiring is idempotent,
in the sense that the maximum verifies max(s, s) = s for every s ∈ N ∪ {−∞}. �

4.2.2 Layered Pebble Weighted Automata

The bound K on the length of the stack can be seen as a semantical restriction, and it is
natural to transform it into a syntactical restriction. Hence, we consider the natural subclass
of pebble weighted automata that store in their state an information about the height of
the current stack of pebbles.

Definition 4.25. A PWA A = (Q,A,D, I,∆, F) is K-layered if there is a mapping ℓ : Q→
[0 ..K] satisfying, for all q, q′ ∈ Q,
• if Iq 6= 0 or Fq 6= 0 then ℓ(q) = K;
• if there is α ∈ Test and d ∈ D such that ∆q,q′(d)(α) 6= 0 then ℓ(q) = ℓ(q′);
• if there is α ∈ Test such that ∆q,q′(lift)(α) 6= 0 then ℓ(q′) = ℓ(q) + 1;
• if there is α ∈ Test and x ∈ Var such that ∆q,q′(dropx)(α) 6= 0 then ℓ(q′) = ℓ(q)− 1.

A layered PWA is a K-layered PWA for some K. �

Figure 4.11 schematizes a 2-layered PWA, whereas Figure 4.12 depicts a 1-layered PWA
with mapping ℓ given by: ℓ(0) = ℓ(1) = 1 and ℓ(2) = 0.

We naturally obtain the following lemma relating pebble weighted automaton and layered
ones.

Lemma 4.26. For every K-layered pebble weighted automaton A, [[A]]K(G, σ) = [[A]]K′(G, σ)
for every K ′ > K, every pointed graph G and every valuation σ.

4.2. PEBBLE WEIGHTED AUTOMATA 57

Proof. We only have to notice that every configuration appearing in an accepting run of
A is necessarily a K-configuration. Hence, allowing more configurations do not add any
accepting runs.

Hence, for a K-layered pebble weighted automaton, we let [[A]](G, σ) to be [[A]]K(G, σ).
The next lemma explains why the K-layered restriction is a syntactical equivalent to the
semantical restriction over the stack.

Lemma 4.27. For every pebble weighted automaton A and for every K ≥ 0, there exists
a K-layered pebble weighted automaton AK such that for every pointed graph G and every
valuation σ: [[A]]K(G, σ) = [[AK]](G, σ).

Proof. We simply extend the state space of A to contain the layer information. If A =
(Q,A,D, I,∆, F), we let AK = (Q× [0 ..K], A,D, I ′,∆′, F ′) with
• I ′(q,K) = Iq and I ′(q,k) = 0 for every state q ∈ Q, and k < K;

• ∆′(q,k),(q′,k)(d)(α) = ∆q,q′(d)(α) for every k ∈ [0 ..K], α ∈ Test, d ∈ D, and q, q′ ∈ Q;

• ∆′(q,k),(q′,k−1)(dropx)(α) = ∆q,q′(dropx)(α) for every k ∈ [1 ..K], α ∈ Test, x ∈ Var,
and q, q′ ∈ Q;

• ∆′(q,k),(q′,k+1)(lift)(α) = ∆q,q′(lift)(α) for every k ∈ [0 ..K−1], α ∈ Test, and q, q′ ∈ Q;

• all other transition weight in ∆′ is set to 0;
• F ′(q,K) = Fq and F ′(q,k) = 0 for every state q ∈ Q, and k < K.

By mapping a state (q, k) to layer ℓ((q, k)) = k, we can verify that AK is K-layered. Hence,
[[AK]](G, σ) = [[AK]]K(G, σ) for every pointed graph G and every valuation σ. Moreover,
by forgetting about the second component of states in AK , we can prove that K-runs of
A over (G, σ) are in bijection with K-runs of AK over (G, σ), and this bijection preserves
the weight of these runs. This shows that [[A]]K(G, σ) = [[AK]]K(G, σ), which concludes the
proof.

Henceforth, to study its semantics [[−]]K , we can always suppose that a pebble weighted
automaton is K-layered.

Another stronger restriction will be useful in the following. It consists of associating
every layer of an automaton to a given variable: every drop transition appearing in this
layer must then uses this special variable. We call such an automaton strongly layered.

Definition 4.28. A PWA A = (Q,A,D, I,∆, F) is K-strongly layered if it is K-layered
(with mapping ℓ as defined previously) and if there exists a mapping Pℓ : [1 ..K]→ Var such
that for every states q, q′ ∈ Q, if ∆q,q′(dropx)(α) 6= 0 then x = Pℓ(ℓ(q)). A strongly layered
PWA is a K-strongly layered PWA for some K. �

Every 0-layered PWA is trivially 0-strongly layered. Moreover, if the set of variables
appearing in drop transitions of a K-layered automaton is reduced to a singleton {x}, then
this automaton is strongly layered.

Interestingly, we may now define in another way the notion of free variables of a strongly
layered automaton as we know exactly the sequence of pebbles that may be dropped. Indeed,
x ∈ Var is a free variable if it appears in a test from a transition starting in layer k such that
x is not one of the pebbles dropped in upper layers, i.e., x /∈ {Pℓ(j) | j > k}. Notice that
this gives an algorithm to compute the set Free(A) of free variables of a strongly layered
automaton.

Finally, notice that, at the price of extending the state space of an automaton, every
series recognized by a K-layered PWA can also be recognized by a K-strongly layered PWA.

Proposition 4.29. For every K-layered PWA A, we can construct an equivalent K-strongly
layered PWA A′.

58 CHAPTER 4. NAVIGATING AUTOMATA

Proof. Let A = (Q,A,D, I,∆, F) be a K-layered PWA, and ℓ be the mapping describing
its layers as introduced in Definition 4.25. Let {z1, . . . , zK} be a fresh set of K pebble names.
We construct aK-strongly layered PWAA′ = (

⋃
0≤k≤K ℓ

−1(k)×Var(A)K−k, A,D, I ′,∆′, F ′)
equivalent to A: the second component of the states records the sequence of pebble names
of A that are supposed to be dropped, even though automaton A′ simulates it by drop-
ping some fresh pebble names. For initial and final weights, we simply set I ′(q,ε) = Iq and
F ′(q,ε) = Fq if ℓ(q) = K and I(q,θ) = F(q,θ) = 0 if ℓ(q) < K. For the transitions, we
first explain how to transform tests formulae: for every test formula α and every sequence
θ = θK · · · θk+1 ∈ VarK−k, we let αθ be the test formula defined by replacing in α every
basic test x?, for x = θi for some i by the basic test zj?, with j the smallest i such that
x = θi (this choice of j permits to conform with the reusability of pebble names). Then, we
define the new weighted transition matrix with:

∆′(q,θ),(q′,θ′)(d)(αθ) =

{
∆q,q′(d)(α) if θ′ = θ

0 otherwise

∆′(q,θ),(q′,θ′)(dropz)(αθ) =

{
∆q,q′(dropx)(α) if θ′ = θ · x and z = zℓ(q)

0 otherwise

∆′(q,θ),(q′,θ′)(lift)(αθ) =

{
∆q,q′(lift)(α) if θ = θ′ · y for some y ∈ Var
0 otherwise.

where d ∈ D, x ∈ Var. Clearly, by letting ℓ(q, θ) = ℓ(q), automaton A′ is K-layered.
Moreover, it is easy to check that A′ is even K-strongly layered as only pebble name zk
may be dropped in layer k. To prove that A and A′ are equivalent, we construct a bijection
f between configurations. This bijection transforms each configuration (G, σ, (q, θ), π, v)
appearing in a run of A′, with θ = θK · · · θK−k, into configuration (G, σ, q, πθ, v) of A where
πθ is built in the following way: every pair (zi, vi) appearing in π is replaced by the pair
(θi, vi). We extend the function f to runs. By distinguishing cases where the action is a
direction, a drop or a lift, we may verify that this mapping transforms a run of A′ into a run
of A having the same weight. Moreover, this function is a bijection as it preserves the length
of the runs and is a bijection when restricted to the configurations. Hence, this proves that
[[A]](G, σ) = [[A′]](G, σ) for every pointed graph G and valuation σ.

4.2.3 Dynamically Marked Graphs

In order to relate hybrid weighted expressions and pebble weighted automata, we need to
further study the semantics of our automaton model. Looking for a more algebraic definition
of the semantics similar to what we studied for weighted automata (without pebbles), we will
define dynamically marked graphs, as an extension of marked graphs in which the content
of the stack of pebbles will be encoded, as it can now change along the computation of a
pebble weighted automaton.

A dynamically marked graph is of the form (G, σ, π, v, π′, v′) where G ∈ G(A,D) is a
pointed graph, σ : Var ⇀ V is a partial mapping encoding a valuation of pebbles, v, v′ ∈ V
are vertices, and π, π′ ∈ (Var× V)⋆ are stacks of pebbles. Let DMG(A,D,Var) (or shortly
DMG if the parameters are implicit) be the set of all dynamically marked graphs. The
partial product defined over marked graphs may be extended over dynamically marked
graph by defining

(G1, σ1, π1, v1, π
′
1, v
′
1) ◦ (G2, σ2, π2, v2, π

′
2, v
′
2) = (G1, σ1, π1, v1, π

′
2, v
′
2)

in the case where G1 = G2, σ1 = σ2, π′1 = π2 and v′1 = v2, this product being not defined
in all other cases. By letting

DU(A,D,Var) = {(G, σ, π, v, π′, v′) ∈ DMG(A,D,Var) | π = π′, v = v′}

4.2. PEBBLE WEIGHTED AUTOMATA 59

be the set of dynamically partial units, we obtain the following algebraic structures, by
simply extending the results from the non-dynamic case.

Proposition 4.30. (DMG(A,D,Var), ◦,DU(A,D,Var)) is a partial monoid, and for every
continuous semiring S, (S〈〈DMG(A,D,Var)〉〉,⊕,⊗, 0,1DU(A,D,Var)) is a continuous semi-
ring.

Proof. (DMG(A,D,Var), ◦,DU(A,D,Var)) is a partial monoid for exactly the same reasons
as the ones developped in Example 3.15. Then, we conclude using Proposition 3.16.

4.2.4 The Full Kleene-Schützenberger Theorem

We will now prove our completed Kleene-Schützenberger Theorem.

Theorem 4.31. Let S be a continuous semiring.

1. For each hybrid weighted expression E ∈ HWE(S), we can construct a layered pebble
weighted automaton AE ∈ PWA(S) with Free(AE) = Free(E) equivalent to E, i.e.,
[[E]](G, σ) = [[AE]](G, σ) for every pointed graph G and every valuation σ with domain
containing Free(E).

2. For each layered pebble weighted automaton A ∈ PWA(S), we can construct a hybrid
weighted expression EA ∈ HWE(S) with Free(EA) = Free(A), equivalent to A, i.e.,
[[A]](G, σ) = [[EA]](G, σ) for every pointed graph G and every valuation σ with domain
containing Free(A).

From Pebble Weighted Automata to Hybrid Weighted Expressions

As for the case without pebble, we will start with the proof of the second item. For that, we
will need to introduce generalized pebble weighted automata, using a new sort of expressions
over their transitions: these will not be hybrid weighted expressions, but pebble weighted
expressions, able to perform decoupled drop and lift moves, contrary to the x!− operator of
HWE.

Definition 4.32. We let PWE(S, A,D,Var) (or shortly PWE) be the set of pebble weighted
expressions defined by the following grammar:

E ::= s | α | d | dropx | lift | E + E | E · E | E+

where s ∈ S, α ∈ Test(A,D,Var), d ∈ D and x ∈ Var. �

The semantics of these pebble weighted expressions is directly defined algebraically as a
series over dynamically marked graphs. Indeed, we denote {|E|} the series of the continuous
semiring S〈〈DMG(A,D,Var)〉〉 inductively defined in Table 4.1.

We can now define generalized pebble weighted automata, as weighted automata with
pebble weighted expressions over their transitions.

Definition 4.33. A generalized pebble weighted automaton is a tuple A = (Q,A,D, I,∆, F)
where
• Q is a finite set of states;
• A is a finite alphabet;
• D is a finite set of directions;
• I ∈ SQ is the initial vector;
• ∆ ∈ PWE(S, A,D,Var)Q×Q is the transition matrix;
• F ∈ S〈Test(A,D,Var)〉Q is the final vector.

The class of all generalized pebble weighted automata over S is denoted by gPWA(S) or
gPWA if the semiring is clear from the context, or not relevant. �

60 CHAPTER 4. NAVIGATING AUTOMATA

Table 4.1: Semantics of pebble weighted expressions

{|s|} = s1DU

{|α|} = 1{(G,σ,π,v,π,v)∈DU|G,σπ,v|=α}

{|d|} = 1{(G,σ,π,v,π,v′)∈DMG|e=(v,v′)∈E∧d∈χ(e)}

{|dropx|} = 1{(G,σ,π,v,π(x,v),v(i))∈DMG}

{|lift|} = 1{(G,σ,π′(y,v′),v(f),π′,v′)∈DMG|y∈Var}

{|E1 + E2|} = {|E1|} ⊕ {|E2|}

{|E1 · E2|} = {|E1|} ⊗ {|E2|}

{|E+|} = {|E|}+

The semantics is given by a variation of the semantics of PWA: now, the weight of
a concrete transition (G, σ, q, π, v) ❀ (G, σ, q′, π′, v′) (with fixed graph and valuation) is
defined by {|∆q,q′ |}(G, σ, π, v, π′, v′).

Then, for a dynamically marked graph (G, σ, π, v, π′, v′) ∈ DMG, we define

{|Aq,q′ |}(G, σ, π, v, π′, v′)

as the sum of weights of the runs from configuration (G, σ, q, π, v) to configuration (G, σ, q′, π′, v′).
As for the case without pebbles, we can define the semantic matrix {|∆|} whose (q, q′)-
coefficient is given by {|∆q,q′ |} ∈ S〈〈DMG〉〉. Copying, mutatis mutandis, the proofs of
Propositions 4.12 and 4.13 we obtain the following proposition.

Proposition 4.34. Let A = (Q,A,D, I,∆, F) be a generalized pebble weighted automaton.
For all q, q′ ∈ Q, the two series {|Aq,q′ |} and ({|∆|}⋆)q,q′ are equal. Moreover, we can construct

a matrix Φ(∆) ∈ PWEQ×Q (whose entries are in the rational closure of the entries of ∆)
satisfying the following matrix equality:

{|Φ(∆)|} = {|∆|}⋆ .

In particular, the semantics of a generalized pebble weighted automaton verifies: {|A|} =
{|I|} ⊗ {|∆|}⋆ ⊗ {|F |} = {|I|} ⊗ {|Φ(∆)|} ⊗ {|F |}.

Remark 4.35. The partial monoid MG is embedded in DMG by identifying the marked
graph (G, σ, v, v′) with the dynamically marked graph (G, σ, ε, v, ε, v′). Also, any peb-
ble weighted automaton A = (Q,A,D, I,∆, F) can be considered as generalized pebble
weighted automaton and the semantics over marked graphs coincide: [[Aq,q′]](G, σ, v, v′) =
{|Aq,q′ |}(G, σ, ε, v, ε, v′). This is in particular the case as we enforced the drop and lift ac-
tions to respectively reset the automaton to the initial vertex and to happen on the final
vertex of the graph, which is coherent with the semantics of generalized pebble weighted
automata. �

By applying this remark, Proposition 4.34 constructs a pebble weighted expression equiv-
alent over marked graphs to a pebble weighted automaton A. But our aim is to construct a
hybrid weighted expression which is equivalent to A. This is achieved below using as a tool
the detour via pebble weighted expressions.

First, we show that HWE can be seen as a fragment of PWE if we interpret x!E as a
macro for dropx · E · lift. Indeed with this interpretation, the semantics coincide:

4.2. PEBBLE WEIGHTED AUTOMATA 61

Lemma 4.36. Let E ∈ HWE and let (G, σ, π, v, π′, v′) ∈ DMG. Then,

{|E|}(G, σ, π, v, π′, v′) 6= 0 implies π′ = π .

Moreover, if π′ = π, we have

{|E|}(G, σ, π, v, π, v′) = [[E]](G, σπ, v, v′) .

Proof. We proceed by structural induction on HWE. For atoms of HWE, the result is clear
from the definition of {|− |}. For sum, concatenation and star, the result is trivial since both
semantics are compositional. The interesting case is x!E which is interpreted as dropx ·E · lift
in PWE. By definition of {| − |} and the Cauchy product in S〈〈DMG〉〉 we have

{|dropx · E · lift|}(G, σ, π, v, π
′, v′) =

⊕

y∈Var(E)

{|E|}(G, σ, π(x, v), v(i), π′(y, v′), v(f)) .

Since E ∈ HWE, we obtain by induction that each term of the sum above equals 0 if
π(x, v) 6= π′(y, v′). Hence, {|dropx · E · lift|}(G, σ, π, v, π

′, v′) 6= 0 implies π′ = π. Moreover,
in that case, either v′ 6= v and

{|dropx · E · lift|}(G, σ, π, v, π
′, v′) = 0 = [[x!E]](G, σπ, v, v′) ,

or v′ = v and

{|dropx · E · lift|}(G, σ, π, v, π
′, v′) = {|E|}(G, σ, π(x, v), v(i), π′(x, v′), v(f))

= [[E]](G, σπ(x,v), v
(i), v(f))

= [[x!E]](G, σπ, v, v)

where the second equality holds by induction and the third one follows from the definition
of σπ(x,v).

Hence, HWE can be seen as a fragment of PWE, and, in Proposition 4.34, if ∆ is a
matrix of hybrid weighted expressions, then, Φ(∆) is in the rational closure of the entries of
∆, hence is also a matrix of hybrid weighted expressions. However, if we start with A being
a layered pebble weighted automaton, ∆ is not a matrix of hybrid weighted expressions,
hence we must refine this proof to cope with this more specific setting.

We first start by extending the definition of layered pebble weighted automata to gen-
eralized pebble weighted automata. Again, the idea is to decompose the state space into
layers: the transition matrix relates states of the same layer with expressions in HWE, states
of a layer with states of the lower level (respectively, upper level) with pebble weighted ex-
pressions involving dropx (respectively, lift).

Definition 4.37. A generalized pebble weighted automaton A = (Q,A,D, I,∆, F) is K-
layered if there is a mapping ℓ : Q→ [0 ..K] satisfying, for all q, q′ ∈ Q,
• if Iq 6= 0 or Fq 6= 0 then ℓ(q) = K;
• transitions may only relate neighbor layers, i.e., if the expression ∆q,q′ is not equal to

0 then |ℓ(q)− ℓ(q′)| ≤ 1;
• if ℓ(q) = ℓ(q′), then ∆q,q′ ∈ HWE;
• if ℓ(q′) = ℓ(q)− 1, then the pebble weighted expression ∆q,q′ is of the form

∑

x∈Var(A)

δxq,q′ · dropx

with δxq,q′ ∈ S〈Test〉;

62 CHAPTER 4. NAVIGATING AUTOMATA

• if ℓ(q′) = ℓ(q) + 1, then the pebble weighted expression ∆q,q′ is of the form

λq,q′ · lift

with λq,q′ ∈ S〈Test〉.
A layered generalized pebble weighted automaton is a K-layered generalized pebble weighted
automaton for some K. �

Notice that a K-layered pebble weighted automaton can be seen as a K-layered gen-
eralized pebble weighted automaton very easily. We now extend Proposition 4.13 to any
K-layered generalized pebble weighted automaton.

Proposition 4.38. Let A = (Q,A,D, I,∆, F) be a 1-layered generalized pebble weighted
automaton. We can construct a 0-layered generalized pebble weighted automaton A(1) =
(ℓ−1(1), A,D, I(1),∆(1), F (1)) which is equivalent to A, i.e., such that the two series {|Aq,q′ |}

and {|A
(1)
q,q′ |} are equal for all q, q′ ∈ ℓ−1(1).

By ordering the states of Q by layer, first states of layer 1 and then states of layer 0, we
obtain as a block decomposition

∆ =
(
N D
L P

)

with N a square matrix indexed by states of layer 1, and P a square matrix indexed by
states of layer 0.

Let q1, q
′
1 ∈ ℓ−1(1) be in layer 1 and q0, q

′
0 ∈ ℓ−1(0) be in layer 0. Then, D is a

ℓ−1(1)× ℓ−1(0) drop-matrix whose (q1, q0)-entry can be written
∑

x∈Var(A)

δxq1,q0
· dropx

with δxq1,q0
∈ S〈Test〉. The (q′0, q

′
1)-entry of the ℓ−1(0) × ℓ−1(1) lift-matrix L can similarly

be written
λq′0,q′1 · lift

with λq′0,q′1 ∈ S〈Test〉. Now, P is a ℓ−1(0) × ℓ−1(0) matrix of hybrid weighted expres-
sions in HWE and we may apply Proposition 4.34 in order to get a matrix Φ(P) of hybrid
weighted expressions which is equivalent to the iteration of P : {|Φ(P)|} = {|P |}⋆ which also
implies [[Φ(P)]] = [[P]]⋆ as P and Φ(P) only contains hybrid weighted expressions (by using
Lemma 4.36). From (D,P,L), we define the ℓ−1(1)× ℓ−1(1) matrix N ′ with coefficients in
HWE by

N ′q1,q′1
=

∑

q0,q′0∈ℓ
−1(0)

∑

x∈Var

δxq1,q0
· x!
(
Φ(P)q0,q′0

· λq′0,q′1
)
. (4.3)

The matrix N ′ is also denoted C(D,P,L) below. Note that the maximal depth of the entries
of N ′ is at most 1 plus the maximal depth of the entries of P since the construction Φ(P)
does not increase the depth of expressions.

Lemma 4.39. Series over dynamically marked graphs {|N ′|} and {|D|} ⊗ {|P |}⋆ ⊗ {|L|} are
equal.

Proof. Recall that when viewing hybrid weighted expressions as pebble weighted expressions,
expression x!E is interpreted as dropx · E · lift. This implies that the hybrid weighted
expression x!

(
Φ(P)q0,q′0

·λq′0,q′1
)

is equivalent to dropx ·Φ(P)q0,q′0
·λq′0,q′1 · lift. We deduce that

{|N ′q1,q′1
|} =

∑

q0,q′0

{|Dq1,q0
|} ⊗ {|Φ(P)q0,q′0

|} × {|Lq′0,q′1 |} .

Since {|Φ(P)|} = {|P |}⋆ by Proposition 4.34, the result follows.

4.2. PEBBLE WEIGHTED AUTOMATA 63

To conclude the proof of Proposition 4.38, we simply set ∆(1) = N + N ′. Now, for all
q, q′ ∈ ℓ−1(1), we have {|Aq,q′ |} = ({|∆|}⋆)q,q′ by Proposition 4.34. Moreover, the upper-
left block of {|∆|}⋆ is ({|N |} + {|D|} ⊗ {|P |}⋆ ⊗ {|L|})∗ which is, by Lemma 4.39, equal to
({|N |}+ {|N ′|})⋆ = {|∆(1)|}∗. Using again Proposition 4.34, we finally get for all q, q′ ∈ ℓ−1(1)
that {|A(1)

q,q′ |} = ({|∆(1)|}⋆)q,q′ = ({|∆|}⋆)q,q′ = {|Aq,q′ |}.

Proposition 4.38 can then be generalized to an arbitrary number of layers.

Proposition 4.40. Let A = (Q,A,D, I,∆, F) be a K-layered generalized pebble weighted
automaton. We can construct a 0-layered generalized pebble weighted automaton A(K) =
(ℓ−1(K), A,D, I(K),∆(K), F (K)) which is equivalent to A, i.e., such that the two series

{|Aq,q′ |} and {|A
(K)
q,q′ |} are equal for all q, q′ ∈ ℓ−1(K).

Proof. The proof is by induction on K. When K = 0 we simply set A(0) = A. For K > 0,
we order the states of Q by layer as previously, in a decreasing order. We obtain as a block
decomposition

∆ =

N (K) D(K) 0 . . . 0
L(K−1) N (K−1) D(K−1) . . . 0

0 L(K−2) . . .
. . . 0

... 0
. . . N (1) D(1)

0 0 . . . L(0) N (0)

with N (k) a square matrix indexed by states of layer k. We set

∆(K) = N (K) + C(D(K),∆(K−1), L(K−1))

where the matrix ∆(K−1) is the transition matrix of the 0-layered generalized pebble weighted
automaton obtained by induction, by considering only states of layers ≤ K−1. Correctness
follows from Proposition 4.38.

Finally, consider a K-layered pebble weighted automaton A = (Q,A,D, I,∆, F). By
using Remark 4.35, we may see A as a K-layered generalized pebble weighted automaton
with

{|Aq,q′ |}(G, σ, ε, v, ε, v′) = [[Aq,q′]](G, σ, v, v′) .

Proposition 4.40 then produces a 0-layered generalized pebble weighted automaton A(K)

verifying the series (of dynamically marked graphs) equality

{|A
(K)
q,q′ |} = {|Aq,q′ |}

for every states q, q′ of layer K. From Proposition 4.34, we deduce that the matrix H =
Φ(∆(K)) satisfies the series equality

{|Hq,q′ |} = {|Aq,q′ |}

for all q, q′ of layer K. Notice that the coefficients of the transition matrix ∆(K) of A(K)

(with 0 layers) are necessarily pebble weighted expressions of HWE. This is also the case of
matrix H = Φ(∆(K)). Hence, by Lemma 4.36, and using notations of this lemma, we have

{|Hq,q′ |}(G, σ, π, v, π, v′) = [[Hq,q′]](G, σπ, v, v′)

for all q, q′ of layer K. Therefore, the pebble weighted expression EA obtained by considering
the matrix product of row I (with coefficients in S), square matrix H and column F (with

64 CHAPTER 4. NAVIGATING AUTOMATA

A = ι

c
NJ U A =

(
1 0

)

0 J

0 N

c

U

Figure 4.13: A standard automaton A

x!A = ι′

ι

dropx

τ ′c lift

NJ U lift

x!A =
(

1 0 0 0
)

0 0 dropx 0
0 0 0 0
0 c lift 0 J

0 U lift 0 N

0
1
0

0

Figure 4.14: Automaton for x!−

coefficients in S) verifies

[[EA]](G, σ) =
⊕

q,q′∈Q

Iq ⊗ [[Hq,q′]](G, σ, v(i), v(f))⊗ Fq′

=
⊕

q,q′∈Q

Iq ⊗ [[Aq,q′]](G, σ, v(i), v(f))⊗ Fq′

= [[A]](G, σ)

This ends the proof of item 2 of Theorem 4.31. Notice that the depth of EA is at most K
if A is a K-layered pebble weighted automaton.

From Hybrid Weighted Expressions to Pebble Weighted Automata

We now give the proof of item 1 of Theorem 4.31. More precisely, we extend Proposition 4.15
as follows:

Proposition 4.41. For each hybrid weighted expression E ∈ HWE, we can construct
a layered pebble weighted automaton AE ∈ PWA such that [[AE]] = [[E]], i.e., for all
(G, σ, v, v′) ∈MG we have

[[AE]](G, σ, v, v′) = [[E]](G, σ, v, v′) .

The translation from weighted expressions to weighted automata has to be completed
to deal with the new operator x!E. We give this construction now: it should drop the
pebble on the current position, evaluate E from the initial to the final vertex of the pointed
graph and finally lift the pebble. We start from a standard automaton A equivalent to E,
as depicted in Figure 4.13. From it, we construct the following standard automaton x!A,
depicted in Figure 4.14. In the matrix representation, we have put first the states ι′ and τ ′

of the topmost layer.

4.2. PEBBLE WEIGHTED AUTOMATA 65

ι′
→

→

a?dropx

¬x?→

¬x?→

(b? ∧ ¬x?)→

(b? ∧ ¬x?)→

¬x?→ ←

c?←

→

d?→
lift

τ ′
→

→

1

Figure 4.15: Automaton equivalent to the expression of Example 4.42

Example 4.42. (Continued from Example 4.17) For instance, consider expression E (over
words) below:

E =→+a?x!
(

(¬x?→)⋆b?(¬x?→)+c?←+d?→+
)
→⋆ .

The construction applied to E, using an automaton for the expression inside the x!− operator
obtained similarly to the one of Example 4.17, gives the pebble weighted automaton depicted
in Figure 4.15. �

It remains to prove the correctness of the new construction for the x!− operation. Assume
for simplicity that A is a 0-layered automaton, then A′ = x!A is a 1-layered automaton. We

write the corresponding block decomposition of the transition matrix of A′ as ∆′ =
(

0 D
L ∆

)

where ∆ is the transition matrix of A, D is the drop-matrix with only non-zero entry being
Dι′,ι = dropx, and L is the lift matrix with non-zero entries being c lift and in the column
matrix U lift. By Lemma 2.7, the upper-left block of {|∆′|}⋆ is {|D|} ⊗ {|∆|}⋆ ⊗ {|L|}.

By Remark 4.35, we have

[[A′]](G, σ, v, v′) = ({|∆′|}⋆)ι′,τ ′(G, σ, ε, v, ε, v′)

= ({|D|} ⊗ {|∆|}⋆ ⊗ {|L|})ι′,τ ′(G, σ, ε, v, ε, v′)

= ({|C(D,∆, L)|})ι′,τ ′(G, σ, ε, v, ε, v′) .

Let Q be the set of non-initial states of A. By definition of C(D,M,L) given in (4.3), we
have

C(D,M,L)ι′,τ ′ = x!c+
∑

q∈Q

x!
(
Φ(∆)ι,q · Uq

)

which is equivalent to expression x!
(
c +

∑
q∈Q Φ(∆)ι,q · Uq

)
. Hence, [[A′]](G, σ, v, v′) is

different from 0 only if v = v′, as for [[x!E]](G, σ, v, v′). In that case, we have

[[A′]](G, σ, v, v) = [[c+
∑

q∈Q

Φ(∆)ι,q · Uq]](G, σ[x 7→ v], v(i), v(f)) .

By induction hypothesis, we have [[A]](G, σ[x 7→ v], v(i), v(f)) = [[E]](G, σ[x 7→ v], v(i), v(f))

66 CHAPTER 4. NAVIGATING AUTOMATA

which implies that

[[x!E]](G, σ, v, v) = [[E]](G, σ[x 7→ v], v(i), v(f))

= {|A|}(G, σ[x 7→ v], ε, v(i), ε, v(f))

=
(
{|I|} ⊗ {|∆|}⋆ ⊗ {|F |}

)
(G, σ[x 7→ v], ε, v(i), ε, v(f))

=
(
{|I|} ⊗ {|Φ(∆)|} ⊗ {|F |}

)
(G, σ[x 7→ v], ε, v(i), ε, v(f))

= {|c+
∑

q∈Q

Φ(∆)ι,q · Uq|}(G, σ[x 7→ v], ε, v(i), ε, v(f))

= [[c+
∑

q∈Q

Φ(∆)ι,q · Uq]](G, σ[x 7→ v], v(i), v(f))

= [[A′]](G, σ, v, v) .

This ends the proof of Theorem 4.31.

CHAPTER 5
Query Evaluation

The value of an idea lies in the using of it.

Thomas A. Edison

5.1 Generic Evaluation of Pebble Weighted Automata 68

5.1.1 Weights of Paths in Weighted Graphs 68

5.1.2 Application to the Evaluation Problem 69

5.2 Specialized Algorithm for Words 71

5.3 Extension to Trees . 75

5.4 Extension to Nested Words 76

This chapter is devoted to the evaluation of a quantitative property over a given graph.
For example, we may consider a quantitative property of XML documents (e.g., the number
of nodes verifying a given property) and try to evaluate this query over a fixed database.
This is the simplest problem to consider. However, it is far from trivial considering the
quantitative queries we introduced in Part 1. Indeed, the semantics of several of the spec-
ification formalisms we introduced involve infinite sums, and trivial attemps to compute
their semantics – even inefficient – are not possible a priori. We choose an automata-based
approach to solve this problem, i.e., we consider that the specification is given as a pebble
weighted automaton. It is another problem to efficiently translate other formalisms in au-
tomata models, and this has been presented previously. Our goal is henceforth to design
algorithms evaluating pebble weighted automata over given graphs.

The first section presents a first generic approach for general classes of graphs, with a
reasonable complexity. It is based on the computation of stars of matrices. Next sections
present specialized algorithms for words, trees and nested words with better complexities.
Whereas for words and nested words, we use the underlying linear order to guide our evalu-
ation algorithm, the case of trees is resolved by considering a bottom-up computation. The
special case of words has been originally published in [2], whereas the case of nested words
is presented in [4].

67

68 CHAPTER 5. QUERY EVALUATION

5.1 Generic Evaluation of Pebble Weighted Automata

Our procedure of evaluation consists in constructing the weighted graph of configurations
and, for each layer successively, computing the weights of paths for all pairs of vertices.
Before explaining this procedure and its complexity in detail, we present an algorithm for
computing the weights of paths in a weighted graph.

5.1.1 Weights of Paths in Weighted Graphs

In this section, we consider weighted finite graphs whose edges are equipped with weights in
a continuous semiring S. Every finite path of this graph has a weight, defined as the product
of the weights of the edges it visits. For every pair of vertices of this graph, we may consider
the set of paths leading from one to the other, and we associate to this pair the sum of the
weights of these paths.

As an example of instantiation, consider the tropical semiring (N∪{+∞},min,+,+∞, 0).
Every pair of vertices of a weighted graph is now associated with the distance separating
them. In this context, we may use the Floyd-Warshall algorithm [War62, Flo62] to compute
this distance for all pairs of points. The time complexity of this algorithm is cubic in the
number of vertices of the graph. Our method consists in generalizing this approach to graphs
equipped with weights in a general continuous semiring.

The method is based on matrix computations. Indeed, consider the adjacency matrix M
of the graph, namely the matrix indexed by V × V whose (v, v′)-coefficient is the weight of
the edge from vertex v to vertex v′ if it exists, and 0 (the zero of the semiring) otherwise.
Then, for every integer n, the (v, v′)-coefficient of matrix Mn is the sum of the weights of
the paths from v to v′ of length exactly n. Hence, the weight we are searching for is exactly
computed by the star M⋆ =

⊕
n≥0 M

n of matrix M . We show below that computing the
star of a square matrix has the same complexity as computing the product of matrices, i.e.,
can be done with a cubic number of sum and products in the semiring, to which we must
add a linear number of scalar star operations.

Lemma 5.1. Let S be a continuous semiring and M ∈ Sn×n be a square matrix of dimension
n. We can compute M⋆ with n scalar star operations and O(n3) scalar sum and product
operations.

Proof. Let M ∈ Sn×n be a matrix over a continuous semiring S. Consider the block decom-

position M =
(
A B
C D

)
with A a square matrix in S(n−1)×(n−1) and D ∈ S. The Conway

computation of the star of matrix given in Lemma 2.7 gives

M⋆ =
(

(A⊕B ⊗D⋆ ⊗ C)⋆ A⋆ ⊗B ⊗ (D ⊕ C ⊗A⋆ ⊗B)⋆

D⋆ ⊗ C ⊗ (A⊕B ⊗D⋆ ⊗ C)⋆ (D ⊕ C ⊗A⋆ ⊗B)⋆

)

This is not a good decomposition to obtain the complexity announced: in particular, to
compute M⋆ it requires to precompute A⋆ and (A ⊕ B ⊗D⋆ ⊗ C)⋆ which are two stars of
(n−1)×(n−1)-matrices, generating in total an exponential number of scalar star operations.
In contrast, we propose an a priori more complicated formula to compute the star of matrix
M , which will ensure the stated complexity:

M⋆ =
(

A′ A′ ⊗B ⊗D⋆

D⋆ ⊗ C ⊗A′ D⋆ ⊕D⋆ ⊗ C ⊗A′ ⊗B ⊗D⋆

)
. (5.1)

with A′ = (A⊕B ⊗D⋆ ⊗ C)⋆.
Indeed, it is only necessary to prove that the two right blocks are equal, i.e.,

A⋆ ⊗B ⊗ (D ⊕ C ⊗A⋆ ⊗B)⋆ = A′ ⊗B ⊗D⋆

(D ⊕ C ⊗A⋆ ⊗B)⋆ = D⋆ ⊕D⋆ ⊗ C ⊗A′ ⊗B ⊗D⋆

5.1. GENERIC EVALUATION OF PEBBLE WEIGHTED AUTOMATA 69

These identities are corollaries of the identities of Theorem 2.4. First,

A′ ⊗B ⊗D⋆ = (A⊕B ⊗D⋆ ⊗ C)⋆ ⊗B ⊗D⋆

= A⋆ ⊗ (B ⊗D⋆ ⊗ C ⊗A⋆)⋆ ⊗B ⊗D⋆ by identity (ii)

= A⋆ ⊗B ⊗D⋆ ⊗ (C ⊗A⋆ ⊗B ⊗D⋆)⋆ by identity (i)

= A⋆ ⊗B ⊗ (D ⊕ C ⊗A⋆ ⊗B)⋆ by identity (ii)

which proves the first identity. Then,

(D ⊕ C ⊗A⋆ ⊗B)⋆ = D⋆ ⊗ (C ⊗A⋆ ⊗B ⊗D⋆)⋆ by identity (ii)

= D⋆ ⊕D⋆ ⊗ C ⊗A⋆ ⊗B ⊗D⋆ ⊗ (C ⊗A⋆ ⊗B ⊗D⋆)⋆ by Proposition 2.2

By using again that

A′ ⊗B ⊗D⋆ = A⋆ ⊗B ⊗D⋆ ⊗ (C ⊗A⋆ ⊗B ⊗D⋆)⋆

we finally obtain

(D ⊕ C ⊗A⋆ ⊗B)⋆ = D⋆ ⊕D⋆ ⊗ C ⊗A′ ⊗B ⊗D⋆

which proves the second identity, and also concludes the proof of (5.1).

Then, computing the matrix A ⊕ B ⊗ D⋆ ⊗ C ∈ S(n−1)×(n−1) requires one scalar star
operation, and a quadratic number of scalar sum and product operations. By induction, we
can then compute its star, the matrix A′. Then, (5.1) allows us to compute M⋆ with an
additional quadratic number of scalar sum and product operations. The result follows by
induction.

5.1.2 Application to the Evaluation Problem

We fix in this section an alphabet A, a set of directions D and a continuous semiring S. Let
A be a layered pebble weighted automaton, G be a pointed graph and σ be a valuation with
domain containing the free variables of A. We now explain how to compute

[[A]](G, σ) =
⊕

qi,qf∈Q

Iqi
⊗ [[Aqi,qf

]](G, σ, v(i), v(f))⊗
⊕

α∈Test |

G,σ,v(f)|=α

Fqf
(α) .

This is done by induction on the number of layers of the automaton A.
In case of 0 layers, we may consider the weighted graph of configurations of A over a

fixed pair (G, σ): its adjacency matrix has size |Q| × |V |, and its ((q, v), (q′, v′))-coefficient
is 0 in case (v, v′) /∈ E, and otherwise is given by

⊕

d∈D | (v,v′)∈Ed

α∈Test |G,σ,v|=α

∆q,q′(d)(α) .

Remark 5.2. We suppose in the following that the set of all these coefficients, with v, v′

being fixed, is computable with O(|∆|) scalar sum operations, which highly depends on the
actual implementation of automata. Supposing that for every states q, q′, direction d, there
exists only a bounded number of tests α such that ∆q,q′(d)(α) would for example permit to
bound this computation time by O(|Q|2), supposing that D is fixed. �

Then, notice that [[Aqi,qf
]](G, σ, v(i), v(f)) is exactly the sum of the weights of the paths

from configuration (G, σ, qi, v(i)) to configuration (G, σ, qf , v(f)) in this weighted graph.
Hence, using Lemma 5.1, by computing the star of the adjacency matrix, and multiply-
ing by the initial and final weights, we obtain the semantics [[A]](G, σ). In total, we have

70 CHAPTER 5. QUERY EVALUATION

Proposition 5.3. We can compute the semantics [[A]](G, σ) of a 0-layered pebble weighted
automaton A over a pointed graph G, for a valuation σ with domain containing the free
variables of A, with

• O(|Q| × |V |) scalar star operations,

• O(|Q|3 × |V |3) scalar products, and

• O(|Q|3 × |V |3 + |∆| × |V |2) scalar sums.

We now apply the same technique to a K-layered pebble weighted automaton.

Theorem 5.4. We can compute the semantics [[A]](G, σ) of a K-layered pebble weighted
automaton A that may drop p distinct variables, over a pointed graph G, for a valuation σ
with domain containing the free variables of A, with

• O(|Q| × |V |p+1) scalar star operations,

• O((p+ 1)× |Q| × |∆| × |V |p+2 + |Q|3 × |V |p+3) scalar sums and products.

Proof. We apply recursively the method previously presented in the case of 0 layers. More
precisely, we denote by Ak the k-layered pebble weighted automaton obtained by removing
from A all the states of layer K, . . . , k+1. We then compute [[Akq,q′]](G, σ

′, v(i), v(f)) for every
states q, q′ ∈ ℓ−1(k) and every valuation σ′ compatible with σ and the layer k: this means
that we only consider valuations σ′ = σ[xK 7→ vK] · · · [xk+1 7→ vk+1] with xK , . . . , xk+1

variables that may be dropped in layers K, . . . , k + 1, respectively. Indeed, notice that the
semantics [[Akq,q′]](G, σ

′, v(i), v(f)) is exactly the sum of the weights of the runs of A from
configuration (G, σ, q, π, v(i)) to configuration (G, σ, q′, π, v(f)), with intermediary states in
layers no more than k, when σ′ = σπ.

For the base case, A0 is a 0-layered pebble weighted automaton. By applying Lemma 5.1,
we can compute the weights [[A0

q,q′]](G, σ
′, v(i), v(f)) for every states q, q′ ∈ ℓ−1(0) and every

valuation σ′ = σπ with π a stack of K dropped pebbles. As we consider reusable pebbles, the
number of possible valuations σ′ is at most |V |p. Hence, all these weights can be computed
with
• O(|ℓ−1(0)| × |V | × |V |p) scalar star operations,
• O(|ℓ−1(0)|3 × |V |3 × |V |p) scalar products, and
• O((|ℓ−1(0)|3 × |V |3 + |∆|ℓ−1(0)×ℓ−1(0)| × |V |

2)× |V |p) scalar sums.

Then, by supposing that all the weights for layers 0, 1, . . . , k have been computed, the
weights for layer k + 1 can be computed by the following procedure. For every valuation σ′

compatible with layer k+ 1, we consider the square matrix of length |ℓ−1(k+ 1)| × |V | with
the weights of the transitions inside layer k + 1 updated by adding the weight

⊕

x∈Var(A)

⊕

q′∈ℓ−1(k)

⊕

q∈ℓ−1(k)

⊕

α∈Test |
G,σ′,v|=α

∆r,q(dropx)(α)⊗ [[Akq,q′]](G, σ
′[x 7→ v], v(i), v(f))

⊗
⊕

α′∈Test |

G,σ′[x7→v],v(f)|=α′

∆q′,r′(lift)(α′)

in the coefficient ((r, v), (r′, v)). This update of the matrix can be done with some extra
scalar sums and products in S: indeed, the element in the brackets requires in total a
number of sums and products bounded by O(|ℓ−1(k)| × |∆|ℓ−1(k+1)×ℓ−1(k)|) whereas the
external computations require an additional O(p× |ℓ−1(k)| × |∆|ℓ−1(k)×ℓ−1(k+1)|) sums and
products. In total, for all the layers, vertices and valuations, these update operations require
O((p+ 1)× |Q| × |∆| × |V |p+2) scalar sums and products.

Afterwards, computing the star of the matrix permits to meet the requirement. For all
valuations, the computation for layer k + 1 therefore requires

5.2. SPECIALIZED ALGORITHM FOR WORDS 71

• O(|ℓ−1(k + 1)| × |V | × |V |p) scalar star operations,
• O(|ℓ−1(k + 1)|3 × |V |3 × |V |p) scalar products, and
• O((|ℓ−1(k + 1)|3 × |V |3 + |∆|ℓ−1(k+1)×ℓ−1(k+1)| × |V |

2)× |V |p) scalar sums.

We obtain a total number of operations of the shape
• O(

∑
0≤k≤K |ℓ

−1(k)| × |V |p+1) for the scalar star operations,
• O((p+ 1)× |Q| × |∆| × |V |p+2 +

∑
0≤k≤K |ℓ

−1(k)|3 × |V |p+3) for the products, and
• O((p+1)×|Q|×|∆|×|V |p+2+

∑
1≤k≤K(|ℓ−1(k)|3×|V |p+3+|∆|ℓ−1(k)×ℓ−1(k)|×|V |

p+2))
for the sums,

which can be overapproximated by the bound in the theorem.

It is important to notice that the complexity with respect to the pebble weighted au-
tomaton does not depend on the number K of layers but only on the total number of states.
The number of variables occurs in the exponent but since we allow reusability, this number
may be rather small. This is in the same vein as restricting the number of variables in
first-order logic, without restricting the quantifier depth. Restricting the number of vari-
ables often results in much lower complexity. For instance, the complexity of the evaluation
(model-checking) problem of first-order logic over relational structures drops from PSPACE
to PTIME when the number of variables is bounded [Var95a, Var95b]. In our case, if we
bound the number p of such variables, we obtain a polynomial complexity for the evaluation
of a quantitative query, even for pebble weighted automata with a large number of layers.

In the two next sections, we will give specialized and more efficient algorithms in the
case of words, trees and nested words.

5.2 Specialized Algorithm for Words

In this section, we study the evaluation problem of a K-layered pebble weighted automaton
A over a given finite word w, represented as a graph: given a graph G ∈ Word(A) and a
valuation σ : Var ⇀ V with domain containing the free variables of A, compute [[A]](G, σ).

Before explaining how to evaluate efficiently pebble weighted automata, we recall how
this can be done for classical finite-state automata. In case of a deterministic finite-state
automaton, we can easily check whether a word w is accepted by an automaton by following
the single computation in the automaton labeled by w, from left to right: at every position
of the word, we only have to keep one memory cell containing the state reached after the
current prefix of w. This memory cell can be updated with each letter in constant time using
the transition function. On the overall, this leads to a complexity O(|w|) (in particular,
independent of the automaton size).

For a non-deterministic finite-state automaton, this complexity is not achievable any-
more. A first solution consists of determinizing the automaton and then applying the pre-
vious method: we obtain a complexity O(2n + |w|) where n is the number of states of the
non-deterministic finite-state automaton. This method cannot be extended to weighted au-
tomata, as they are not necessarily determinizable. Hence, we would rather use a dynamic
programming method. We will pay the price of non-determinism by using more memory
cells during the left-to-right computation of the runs of the automaton over the word. We
use one memory cell sq for every state q of the automaton. Cell sq is a Boolean which is
true after reading a word w if, and only if, there exists a run labeled by w leading from some
initial state to state q. Cells are initially true for initial states and false otherwise. The
update of the cells when reading a letter a is done by the multiplication of the row vector of
cells (of dimension 1 × |Q|) with the adjacency matrix of the transitions of the automaton
labeled with letter a. Hence, each update requires a number of operations O(n2), leading to
an overall complexity of O(n2|w|). This method can naturally be extended to the weighted
setting using memory cells containing values in S. More precisely, cell sq holds the sum of

72 CHAPTER 5. QUERY EVALUATION

weights of runs starting from some initial state and ending in state q. The update now uses
the weighted transition matrix and can be done with the same complexity.

We now explain how to evaluate layered pebble weighted automata with similar methods,
in particular, permitting to avoid constructing the whole (|Q|× |V |)-square matrix as in the
previous section, and hence saving some scalar operations in S.

Theorem 5.5. We can compute the semantics [[A]](w, σ) of a K-layered pebble weighted
automaton A that may drop p distinct variables, over a nonempty finite word w ∈ A+, for
a valuation σ with domain containing the free variables of A,

• with O(|Q| × |w|p+1) scalar star operations,

• O((p+ 1)× |Q|3 × |w|p+1) scalar products, and

• O((p+ 1)× |Q|3 × |w|p+1 + |∆| × |w|p+1) scalar sums.

Proof. The navigation of automata is resolved by adding more memory cells (a quadratic
number with respect to n = |Q|), namely those that compute weights of the back-loops and
forth-loops. We deal with layers inductively. In the whole proof, we fix a word w ∈ A+

encoded in a graph G ∈ Word(A) with1 V = {1, . . . , |w|}, and a valuation σ with domain
containing the free variables of A.

Recall that, for all valuations σ′ : Var ⇀ V , layers k ∈ {0, . . . ,K} and states q, q′ ∈
ℓ−1(k), [[Aq,q′]](G, σ′) is the sum of weights of the runs from configurations (G, σ′, q, 1, ε) to
(G, σ′, q′, |w|, ε): observe that the stack of pebbles is empty at the beginning of these runs,
hence they stay in layers k, k − 1, . . . , 0. In the following, these values (and others that will
be defined later) will be grouped into matrices indexed by subsets of states (and no longer
by pairs of states and vertices). In particular, we let

B
(k)
σ′ = ([[Aq,q′]](G, σ′, 1, |w|))q,q′∈ℓ−1(k)

be such a matrix indexed by ℓ−1(k)× ℓ−1(k).
Let k ∈ {0, . . . ,K} be a layer of the automaton. If k > 0, we assume by induction that

for all valuations σ′ compatible with σ and layer k − 1 (with the same definition as in the
proof of Theorem 5.4) we have already computed the matrices B(k−1)

σ′ . For each valuation σ′

compatible with σ and layer k, we will compute the matrix B(k)
σ′ reading the graph G from

left to right. Formally, for 1 ≤ i ≤ |V |, we define the matrix B→iσ′ = (B→iσ,q,q′)q,q′∈ℓ−1(k) where
B→iσ′,q,q′ is the sum of weights of the runs from configuration (G, σ′, q, ε, 1) to (G, σ′, q′, ε, i)
with intermediary configurations of the form (G, σ′, r, π, j) with π 6= ε or j ≤ i (see left of
Figure 5.1). These are the runs which move from the beginning of the word to position i,
staying on the left of i, unless some pebbles are currently dropped (if a pebble is dropped,
then automaton can read the whole word). In order to compute inductively B→iσ′ using
B→i−1
σ′ , we also define the matrices B xi

σ′ = (B xi
σ′,q,q′)q,q′∈ℓ−1(k) where B xi

σ′,q,q′ is the sum
of weights of the runs from configuration (G, σ′, q, ε, i) to (G, σ′, q′, ε, i) with intermediary
configurations of the form (G, σ′, r, π, j) with π 6= ε or j ≤ i (see right of Figure 5.1). Again,
these runs stay on the left of their starting position except possibly when they drop pebbles.

By definition we have B→1
σ′ = B x1

σ′ . Moreover, for 1 < i ≤ |V |, a run from position 1 to
position i staying on the left of i can be decomposed as a run from position 1 to position
i− 1 followed by a right move, followed by a back-loop over position i:

B→iσ′ = B→i−1
σ′ ⊗M

→,(k)
σ′,i−1 ⊗B

xi
σ′ .

Here and in the following, we will denote by Md,(k)
σ′,i the ℓ−1(k)× ℓ−1(k)-matrix with (q, q′)-

coefficient given by ⊕

α∈Test |G,σ′,i|=α

∆q,q′(d)(α)

1We locally change in this proof the encoding of the positions of a word from {0, . . . , |w|−1} to {1, . . . , |w|}
in order to ease some notations.

5.2. SPECIALIZED ALGORITHM FOR WORDS 73

w w

q

q′

i

q

q′

i

Figure 5.1: Runs of a navigating automaton

for d ∈ {→,←}: this coefficient denotes the weight of taking a transition with move d
from state q to state q′ on position i with current valuation σ′. We will also need similar
matrices for drop and lift moves. We denote by M

dropx,(k)
σ′,i the ℓ−1(k) × ℓ−1(k − 1)-matrix

with (q, q′)-coefficient given by
⊕

α∈Test|G,σ′,i|=α

∆q,q′(dropx)(α) .

Lift transitions only occur on position |w| of the word, hence we do not need to give a
vertex to define similar matrix for lift: let M lift,(k)

σ′ be the ℓ−1(k − 1) × ℓ−1(k)-matrix with
(q, q′)-coefficient given by ⊕

α∈Test|G,σ′,|w||=α

∆q,q′(lift)(α) .

Notice that the precomputation of all these matrices (for every position and valuation) can
be computed with an additional number of scalar sums bounded above by O(|∆| × |w|p+1).

We now explain how to compute the matrices B xi
σ′ inductively from left to right. At the

bottom layer (k = 0) no further pebble can be dropped so that we get

B x1
σ′ = Id

B xi
σ′ =

(
M
←,(k)
σ′,i ⊗B xi−1

σ′ ⊗M
→,(k)
σ′,i−1

)⋆
if 1 < i ≤ |w| .

If k > 0, the run may immediately drop some pebble of name x ∈ Var on position
1 ≤ i ≤ |w| resulting in the nested computation of

N
(k)
σ′,i =

∑

x∈Var(A)

M
dropx,(k)
σ′,i ⊗B

(k−1)
σ′[x7→i] ⊗M

lift,(k)
σ′[x7→i] .

Notice that matrix B(k−1)
σ′[x7→i] has been precomputed since σ′[x 7→ i] is compatible with σ and

layer k − 1 (σ′ being compatible with σ and layer k). If i > 1, the run may also start by
moving left, hence we obtain

B x1
σ′ =

(
N

(k)
σ′,1

)⋆

B xi
σ′ =

(
N

(k)
σ′,i ⊕M

←,(k)
σ′,i ⊗B xi−1

σ′ ⊗M
→,(k)
σ′,i−1

)⋆
if 1 < i ≤ |w|

Finally, once all these matrices have been obtained, we can compute the behavior of layer
k with the formula

B
(k)
σ′ = B

→|w|
σ′ .

To conclude this proof, it remains to count the number of scalar operations in the whole
computation. For this, we first count the number of matrix operations (sum, product and
star) and then infer the number of scalar operations assuming standard algorithms on ma-
trices (quadratic for sum, cubic for product and cubic for star using Lemma 5.1).

74 CHAPTER 5. QUERY EVALUATION

Fix a layer k. For all valuations σ′ compatible with σ and layer k (there are at most
|w|p such valuations), matrices B→iσ′ , B xi

σ′ must be computed for every 1 ≤ i ≤ |w|. When
k = 0, the total number of matrix operations (sum, product, star) is O(|w|p × |w|), which
corresponds to O(|ℓ−1(0)| × |w|p+1) scalar star operations and O(|ℓ−1(0)|3 × |w|p+1) scalar
sum and product operations. For k > 0, the computation of N (k)

σ′,i takes O(p(|ℓ−1(k)||ℓ−1(k−
1)|2 + |ℓ−1(k)|2|ℓ−1(k − 1)|)) scalar sums and products for each σ′ and i. Hence, the total
number of scalar sum and product operations for computing all matrices B→iσ′ , B xi

σ′ of layer
k is now O(p(|ℓ−1(k)||ℓ−1(k − 1)|2 + |ℓ−1(k)|2|ℓ−1(k − 1)| + |ℓ−1(k)|3)|w|p+1), whereas the
total number of scalar star operations is O(|ℓ−1(k)| × |w|p+1).

Summing over all k ≤ K, we get a total number of O((p+ 1)|Q|3|w|p+1) scalar sum and
products operations since

|ℓ−1(0)|3 +
K∑

k=1

|ℓ−1(k)||ℓ−1(k − 1)|2 + |ℓ−1(k)|2|ℓ−1(k − 1)|+ |ℓ−1(k)|3 ≤ |Q|3

and similarly a total number of O(|Q| × |w|p+1) scalar star operations.

Indeed, we see below that it is possible to decrease again the complexity, if we start with
a strongly layered pebble weighted automaton.

Theorem 5.6. We can compute the semantics [[A]](w, σ) of a K-strongly layered pebble
weighted automaton A that may drop p distinct variables, over a word w ∈ A+, for a
valuation σ with domain containing the free variables of A,

• with O(|Q| × |w|max(p,1)) scalar star operations,

• O(|Q|3 × |w|max(p,1)) scalar products, and

• O(|Q|3 × |w|max(p,1) + |∆| × |w|max(p,1)) scalar sums.

Proof. The idea is to decrease by 1 the exponent of |w| in the complexity by reducing the
total number of valuations σ′ for which we must compute the matrices used in the proof
of Theorem 5.8. Indeed, knowing the unique pebble that may be dropped in a given layer
permits to forget the precise position of this pebble when computing the matrices of this
layer.

Let 0 ≤ k ≤ K be a layer of A. In addition to matrices defined in the proof of Theo-
rem 5.8, we introduce new matrices Bi

y

σ′ and Bi→σ′ in order to compute the sum of weights
of runs which stay on the right of their starting position (except when they drop pebbles).
For every states q, q′ ∈ ℓ−1(k) and 1 ≤ i ≤ |w|, we denote by Bi

y

σ′,q,q′ the sum of weights of
the runs from configuration (G, σ′, q, ε, i) to (G, σ′, q′, ε, i) with intermediary configurations
of the form (G, σ′, r, π, j) with π 6= ε or j ≥ i. Finally, we denote by Bi→σ′,q,q′ the sum of
weights of the runs from configuration (G, σ′, q, ε, i) to (G, σ′, q′, ε, |w|) with intermediary
configurations of the form (G, σ′, r, π, j) with π 6= ε or j ≥ i.

Hence, we will compute twice as many matrices, however we will gain in complexity by
replacing the usual valuation σ′ by its restriction σ′′ to the pebbles in Var(A)\{xk}, where
we denote by xk the pebble name being dropped in layer k. Indeed, with j = σ′(xk), we
can compute the matrix B(k)

σ′ by splitting the word w into three parts: positions appearing
before j, position j and positions appearing after j. Hence, for 1 < j = σ′(xk) < |w|, we
can compute B(k)

σ′ with (notice that σ′′[xk 7→ j] = σ′)

B
(k)
σ′ = B→j−1

σ′′ ⊗M
→,(k)
σ′′,j−1 ⊗

(
M

dropxk
,(k)

σ′,j ⊗B
(k−1)
σ′ ⊗M

lift,(k)
σ′

⊕M
←,(k)
σ′,j ⊗B xj−1

σ′′ ⊗M
→,(k)
σ′′,j−1

⊕M
→,(k)
σ′,j ⊗Bj+1

y

σ′′ ⊗M
←,(k)
σ′′,j+1

)⋆
⊗M

→,(k)
σ′,j ⊗Bj+1→

σ′′ .

5.3. EXTENSION TO TREES 75

When j = 1, the formula becomes

B
(k)
σ′ =

(
M

dropxk
,(k)

σ′,1 ⊗B
(k−1)
σ′ ⊗M

lift,(k)
σ′

⊕M
→,(k)
σ′,1 ⊗B2

y

σ′′ ⊗M
←,(k)
σ′′,2

)⋆
⊗M

→,(k)
σ′,1 ⊗B2→

σ′′

whereas for j = |w|, it is

B
(k)
σ′ = B

→|w|−1
σ′′ ⊗M

→,(k)
σ′′,|w|−1 ⊗

(
M

dropxk
,(k)

σ′,|w| ⊗B
(k−1)
σ′ ⊗M

lift,(k)
σ′

⊕M
←,(k)
σ′,|w| ⊗B

x|w|−1
σ′′ ⊗M

→,(k)
σ′′,|w|−1

)⋆
.

It remains to compute the matrices B→iσ′′ and B xi
σ′′ for 1 ≤ i ≤ |w| (in particular we will

use them in the previous formulae for i ∈ [1 .. j − 1]), and the matrices Bi

y

σ′′ and Bi→σ′′ for
1 ≤ i ≤ |w| (we use them for i ∈ [j+1 .. |w|]). First, if k > 0 then a pebble of name xk ∈ Var
may be dropped on position 1 ≤ i ≤ |w| (with i 6= j) resulting in the nested computation of

N
(k)
σ′′,i = M

dropxk
,(k)

σ′′,i ⊗B
(k−1)
σ′′[xk 7→i]

⊗M
lift,(k)
σ′′[xk 7→i]

.

We let N (0)
σ′′,i = 0. Then, it is easy to verify that for 1 < i ≤ |w|:

B x1
σ′′ =

(
N

(k)
σ′′,1

)⋆
and B→1

σ′′ = B x1
σ′′

B xi
σ′′ =

(
N

(k)
σ′′,i ⊕M

←,(k)
σ′′,i ⊗B

xi−1
σ′′ ⊗M

→,(k)
σ′′,i−1

)⋆

B→iσ′′ = B→i−1
σ′′ ⊗M

→,(k)
σ′′,i−1 ⊗B

xi
σ′′

and for 1 ≤ i < |w|:

B
|w|

y

σ′′ =
(
N

(k)
σ′′,|w|

)⋆
and B

|w|→
σ′′ = B

|w|

y

σ′′

Bi

y

σ′′ =
(
N

(k)
σ′′,i ⊕M

→,(k)
σ′′,i ⊗B

i+1

y

σ′′ ⊗M
←,(k)
σ′′,i+1

)⋆

Bi→σ′′ = Bi

y

σ′′ ⊗M
→,(k)
σ′′,i ⊗B

i+1→
σ′′ .

The computation of the four types of matrices, for all valid positions i and all partial
valuations σ′′, requires globally O(|w|p−1 × |w|) matrix operations (unless p = 0, in which
case O(|w|) matrix operations are required). Notice also that the precomputation of the
matrices Md,(k)

σ′′,i has to be done only for partial valuations σ′′ and i, and also for the complete
valuations σ′′[x 7→ j] and i = j, which requires only O(|∆|×|w|max(p,1)) scalar sums. Hence,
this improves the overall complexity as announced.

Notice that if p ≤ 1 then anyK-layered pebble weighted automaton is strongly K-layered.
In this case, we get an evaluation algorithm using O(|Q| × |w|) scalar star operations and
O(|Q|3 × |w|) scalar products and O(|Q|3 × |w|+ |∆| × |w|) scalar sums.

5.3 Extension to Trees

We now study the evaluation problem of layered pebble weighted automata over ranked
trees. Contrary to words, we modeled ranked trees by pointed graphs having their initial
and final vertex equal to the root. Hence, a run of a 0-layered pebble weighted automaton
is a sequence of configurations which follows a path from the root to the root. Hence, we
only need to compute the loop matrices from the previous proofs, which permits to even
simplify the proof.

76 CHAPTER 5. QUERY EVALUATION

Theorem 5.7. We can compute the semantics [[A]](t, σ) of a K-layered pebble weighted
automaton A that may drop p distinct variables, over a ranked tree t, for a valuation σ with
domain containing the free variables of A, with

• O(|Q| × |t|p+1) scalar star operations,

• O((p+ 1)× |Q|3 × |t|p+1) scalar products, and

• O((p+ 1)× |Q|3 × |t|p+1 + |∆| × |t|p+1) scalar sums.

Proof. Again, we reason by induction on the layers of the automaton, and, we use similar
notations as in the case of words. In particular, we consider a pointed graph G ∈ T ree(A),
that models the tree t.

Let k ∈ {0, . . . ,K} be a layer of the automaton. If k > 0, we assume by induction that
for all valuations σ′ compatible with σ and layer k − 1 (with the same definition as in the
proof of Theorem 5.4) we have already computed the matrices B(k−1)

σ′ . For each valuation σ′

compatible with σ and layer k, we now compute the matrix B(k)
σ′ by a bottom-up procedure

on the tree. Formally, we define the matrices Bu	σ′ = (Bu	σ′,q,q′)q,q′∈ℓ−1(k) where Bu	σ′,q,q′
is the sum of weights of the runs from configuration (G, σ′, q, ε, u) to (G, σ′, q′, ε, u) with
intermediary configurations of the form (G, σ′, r, π, v) with π 6= ε or v = uu′ with u′ ∈ N⋆

(i.e., v in the subtree rooted in u). Again, these runs stay in the subtree of vertex u except
when they drop pebbles.

For vertices u that are leaves, we have Bu	σ′ = Id for layer k = 0, and Bu	σ′ =
(
N

(k−1)
σ′,u

)⋆

otherwise. For vertices u that are internal nodes, if k = 0, a loop under node u is composed
of a succession of move to one of the children of u, a loop under that particular child, and
a move back to u. Hence, we let

Bu	σ′ =
(⊕

0≤i≤ar(λ(u))−1
M
↓i,(k)
σ′,u ⊗Bui	σ′ ⊗M

↑i,(k)
σ′,ui

)⋆

For k > 0, we must also consider the possibility to drop a pebble on u so that

Bu	σ′ =
(
N

(k−1)
σ′,u ⊕

⊕
0≤i≤ar(λ(u))−1

M
↓i,(k)
σ′,u ⊗Bui	σ′ ⊗M

↑i,(k)
σ′,ui

)⋆

Once all these matrices are computed, we obtain the behavior of layer k with

B
(k)
σ′ = Bε	σ′

since the root ε is both the initial vertex and the final one. The count of the number of
operations is similar to the previous cases.

We believe that ideas similar to those used for words in Theorem 5.6 would permit to
decrease the complexity in the case of trees. Indeed, a vertex of a tree separates the tree into
two parts: the subtree rooted by the vertex, and its context, i.e., the tree where the previous
subtree has been removed and the vertex replaced by a hole. Mimicking the procedure of
Theorem 5.6 would require to introduce several types of matrices for every vertex v: loops
in the subtree of v (the ones introduced in the previous proof), loops in the context, loops
below the root in the context of v and paths from the root to v in the context of v and
vice versa. Computing those five matrices for every vertex v requires to carefully order the
set vertices, as a bottom-up procedure would not be enabled anymore. Full details of this
procedure are left for future work.

5.4 Extension to Nested Words

Finally, we consider the case of nested words. A strategy could be to encode nested words into
binary trees, in a way that layered pebble weighted automata could be translated faithfully.
This is not at all trivial, since we consider walking automata and that usual encodings do

5.4. EXTENSION TO NESTED WORDS 77

istart(i) end(i)

Bi→
σ

p

q

Bi

y

σ

p

q

istart(i) end(i)

B←iσ

p

q

B x

i
σ

p

q

Figure 5.2: Representation of the four types of matrices

not preserve the paths between vertices: indeed, such paths must be translated in automata
in a non ambiguous way to preserve the semantics. Instead of this encoding, we give a
direct proof for nested words. This is also a good opportunity to illustrate the possibility to
extend the algorithm we applied for words and trees for more complex classes of graphs of
bounded degree: the key point is to consider carefully the different looping paths of a graph.
Nested words must then be seen as a complicated enough example permitting to illustrate
this reasoning.

Theorem 5.8. We can compute the semantics [[A]](G, σ) of a K-layered pebble weighted
automaton A that may drop p distinct variables, over a pointed graph G ∈ N est(A) modeling
a nested word, for a valuation σ with domain containing the free variables of A, with

• O(|Q| × |V |p+1) scalar star operations,

• O((p+ 1)× |Q|3 × |V |p+1) scalar products, and

• O((p+ 1)× |Q|3 × |V |p+1 + |∆| × V p+1) scalar sums.

Proof. In the whole proof, we fix a nested word G ∈ N est(A), with set of vertices V =
{1, . . . , |V |}, and a valuation σ with domain containing the free variables of A. We follow the
same basic idea used to evaluate pebble weighted automata over words, namely computing
matrices of weights for partial runs. The navigation is resolved by computing simultaneously
matrices of weights of the back-loops and forth-loops, whereas we deal with layers inductively.
Finally, we deal with call-return edges by using a hierarchical order based on the call-depth
to compute the different matrices. Hence, for every position i ∈ V we consider the pair
(start(i), end(i)) of start and end positions as follows

start(i) = min{j ∈ V | j ≤ i ∧ ∀ℓ j ≤ ℓ ≤ i =⇒ c-d(ℓ) ≥ c-d(i)}

end(i) = max{j ∈ V | i ≤ j ∧ ∀ℓ i ≤ ℓ ≤ j =⇒ c-d(ℓ) ≥ c-d(i)}

For positions of call-depth 0, the start position is 1 whereas the end position is |V |. For
positions of call-depth at least 1 (see Figure 5.2), the start position is the linear successor of
the closest call in the past such that its matched return is after position j, whereas its end
position is the linear predecessor of this return position.

Let A = (Q,A, {→,←,x,y}, I,∆, F) be a K-layered pebble weighted automaton. For
every layer k ∈ {0, . . . ,K}, we again want to compute the matrix B(k)

σ′ .
Fix a layer k ∈ {0, . . . ,K} of the automaton. Suppose by induction that we have

already computed matrices B(k−1)
σ′ for every valuation σ′ compatible with σ and layer k− 1.

For a valuation σ′ compatible with σ and layer k, the matrix B(k)
σ′ will be obtained by the

computation of four types of matrices for every position (see Figure 5.2). For example, Bi→σ′,p,q
(respectively, Bi

y

σ′,p,q) is the sum of weights of the runs from configuration (G, σ′, p, ε, i) to
(G, σ′, q, ε, end(i)) (respectively, (G, σ′, q, ε, i)) with intermediary configurations of the form
(G, σ′, r, π, j) with π 6= ε or i ≤ j ≤ end(i).

We compute these four types of matrices for every position i by decreasing value of
call-depth. Suppose this has been done for every position of call-depth greater than d. We
describe how to compute matrices Bi→σ′ and Bi

y

σ′ for every position i of call-depth d, by

78 CHAPTER 5. QUERY EVALUATION

decreasing values of i.2 Similarly, matrices B←iσ′ and B xi
σ′ can be computed by increasing

values of positions i having call-depth d.
We extend the definition of matrix Md,(k)

σ′,i to direction d ∈ {y,x} in a straighforward
manner.

There are four distinct cases:
If i = end(i): The only way to loop on the right of i, staying on the left of end(i) = i is

to drop a pebble a certain number of times. With the same definition of the matrix
Nσ′,i, we have

Bi

y

σ′ =
(
Nσ′,i

)⋆
= Bi→σ′ .

If i < end(i) and i is not a call: Then, looping on the right of i either starts by dropping
a pebble over i, or starts with a right move, followed by a loop on the right of i + 1
and a left move. All of this may be iterated using a star operation:

Bi

y

σ′ =
(
Nσ′,i ⊕M

→,(k)
σ′,i ⊗Bi+1

y

σ′ ⊗M
←,(k)
σ′,i+1

)⋆
.

Moving to the right of position i, until end(i), can be decomposed as a loop on the right
of i, followed by a right move (from that point, we will not reach position i anymore)
and a run from i+ 1 to end(i+ 1) = end(i):

Bi→σ′ = Bi

y

σ′ ⊗M
→,(k)
σ′,i ⊗Bi+1→

σ′ .

If i < end(i) and iy i+ 1: The situation is very similar except that there are two moves
leading from i to i+ 1 and two moves leading from i+ 1 to i.

Bi
y

σ′ =
(
Nσ′,i ⊕ (M→,(k)

σ′,i ⊕M
y,(k)
σ′,i)⊗Bi+1

y

σ′ ⊗ (M←,(k)
σ′,i+1 ⊕M

x,(k)
σ′,i+1)

)⋆

Bi→σ′ = Bi

y

σ′ ⊗ (M→,(k)
σ′,i ⊕M

y,(k)
σ′,i)⊗Bi+1→

σ′ .

If i < end(i) and iy j with j 6= i+ 1: Looping on the right of i consists of either (1) drop-
ping a pebble over i, or (2) looping on the right of i without ever reaching j, or (3)
going to j, looping on j staying between positions i+ 1 and end(i), and going back to
i without reaching position j again. All of this is again possibly iterated using a star
operation. Notice that positions i+1 and j−1 have a call-depth greater than d, hence
their four types of matrices have been computed previously. We have end(i) = end(j),
end(i+ 1) = j − 1 and start(j − 1) = i+ 1. First we define a matrix for the runs going
from i to j, another one for those looping over j, and a last one for those going from
j to i:

Goto-Returnσ′,i = M
y,(k)
σ′,i ⊕M

→,(k)
σ′,i ⊗Bi+1→

σ′ ⊗M
→,(k)
σ′,j−1

Loop-Returnσ′,j =
(
Bj

y

σ′ ⊗M
←,(k)
σ′,j ⊗B xj−1

σ′ ⊗M
→,(k)
σ′,j−1

)⋆
⊗Bj

y

σ′

Goto-Callσ′,j = M
x,(k)
σ′,j ⊕M

←,(k)
σ′,j ⊗B←j−1

σ′ ⊗M
←,(k)
σ′,i+1 .

Notice that the product of these three matrices generates exactly the runs described
above in (3). Runs looping on the right of i are then computed by

Bi

y

σ′ =
[
Nσ′,i ⊕M

→,(k)
σ′,i ⊗Bi+1

y

σ′ ⊗M
←,(k)
σ′,i+1

⊕Goto-Returnσ′,i ⊗ Loop-Returnσ′,j ⊗Goto-Callσ′,j
]⋆
.

2These positions can be partitioned according to their associated start and end positions, and computed
independently.

5.4. EXTENSION TO NESTED WORDS 79

Finally, to go from i to end(i), we split the runs considering the last time we reach
position i and the last time we visit a position on the left of j:

Bi→σ′ = Bi

y

σ′ ⊗Goto-Returnσ′,i ⊗
(
Bj

y

σ′ ⊗M
←,(k)
σ′,j ⊗B xj−1

σ′ ⊗M
→,(k)
σ′,j−1

)⋆
⊗Bj→σ′ .

If i = 1 then end(i) = |V | and we have B(k)
σ′ = B1→

σ′ . Hence, we have computed the behavior
of layer k.

Similar counts as for words permits to show the announced complexity of this algorithm.

Notice that if the nested word is in fact a word, our algorithm only needs to compute the
two sets of matrices Bi→σ′ and Bi

y

σ′ with a backward visit of the positions of the word. This
is indeed a slightly different algorithm than the one presented for words where the positions
are visited in a forward manner.

CHAPTER 6
Logical Specifications

Tweedledum and Tweedledee

Agreed to have a battle!

For Tweedledum said Tweedledee

Had spoiled his nice new rattle.

Just then flew down a monstrous crow,

As black as a tar-barrel!

Which frightened both the heroes so,

They quite forgot their quarrel.

‘I know what you’re thinking about,’ said Tweedledum; ‘but it isn’t
so, nohow.’
‘Contrariwise,’ continued Tweedledee, ‘if it was so, it might be; and
if it were so, it would be; but as it isn’t, it ain’t. That’s logic.’

Lewis Carroll, Through the Looking Glass

6.1 Monadic Second Order Logic over Graphs 82
6.2 Emptiness of Pebble Weighted Automata is Decidable 84
6.3 Weighted logics. 85

6.3.1 General definitions . 85
6.3.2 Previous expressiveness result 88
6.3.3 Weighted transitive closure 89

6.4 From Logics to Automata . 90
6.4.1 Searchable Classes of Graphs 90
6.4.2 Translation of Formulae into Automata 92

6.5 From Automata to Logics . 95
6.5.1 Zonable Classes of Graphs 96
6.5.2 Logical Characterization of Weighted Automata 103
6.5.3 Logical Characterization of Weighted Automata with Pebbles 105

6.6 Hybrid Navigational Logics 105
6.6.1 Weighted Propositional Dynamic Logic 107
6.6.2 Hybrid Weighted Propositional Dynamic Logic 112

81

82 CHAPTER 6. LOGICAL SPECIFICATIONS

In their book [CE11], the authors motivate the introduction of monadic logics over graphs
by claiming:

Monadic second-order formulas are even more important for specifying sets of
graphs than for specifying languages because there is no convenient notion of
graph automaton.

Indeed, monadic logics may be the foundations of a theory of regular languages of graphs.
As a special case, for finite or infinite words and trees, those languages coincide with the
ones recognized by some automata models. This is a hint for the robustness of this class
of languages. In the weighted setting, weighted extensions of monadic logics have been
defined [DG09] that do not coincide with any of the weighted automata models that have
been discovered so far. Indeed, it was shown by [DG09] that a very restricted fragment of
their logic generates exactly the languages recognized by weighted automata (one-way and
without pebbles) over finite words, namely the syntactically restricted monadic second order
logic. This logical characterization has been generalized to various other settings like finite
ranked trees [DV06], and unranked trees [DV06], nested words [DP12], or infinite words
[DM10a].

Our idea was initially to follow another path to get some logical characterization of a
family of weighted automata. Rather than starting from a very powerful logic, like weighted
monadic second order logic, and strongly restricting it to recover the power of weighted
automata, we chose to start with a weaker logic (weighted first order logic) to which we
add a weighted transitive closure operator. This idea has been partly inspired by results
of [EH07] claiming the equivalence, in the Boolean setting, between tree-walking automata
with pebbles and first order logic with transitive closure.

In this chapter, we will hence consider different logical formalisms starting with the
classical (Boolean) monadic second order logic. We show how to use the already known
decidability results to deduce the decidability of the emptiness of pebble weighted automata
under some hypotheses. We then develop our main weighted logic, composed of first-order
constructs to which we add a weighted transitive closure. Sections 6.4 and 6.5 then present
in full details the proof of equivalence between weighted logical and automatic formalisms.
We finish this chapter with the quick investigation of hybrid navigational logics, which can
be seen as an extension of weighted expressions with more powerful logical features. Some
logics and proof ideas present in this chapter are published in restricted cases in [1, 4], but
the graph setting is a new contribution of this manuscript, as well as the detailed study of
hybrid navigational logics.

6.1 Monadic Second Order Logic over Graphs

As a preliminary, we recall the classical definitions of monadic second order logic over graphs.
Let us fix infinite supplies of first-order variables Var = {x, y, z, t, x1, x2, . . .}, and of

second-order variables VAR = {X,Y,X1, X2, . . .}. The set MSO(A,D) (or simply MSO if
the alphabet A and the set D of directions are clear from the context) of monadic second-
order formulae over A and D is given by the grammar:

ϕ ::= ⊤ | (x = y) | init(x) | final(x) | Pa(x) | Rd(x, y) | R⋆d(x, y) | x ∈ X |

¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

where a ∈ A, d ∈ D, x, y ∈ Var and X ∈ VAR. As usual, the set FO(A,D) (or simply
FO) of first-order formulae over A is the fragment of MSO(A,D) without second-order
quantifications ∃X.

For ϕ ∈ MSO(A,D), we define as usual Free(ϕ) the set of free variables of ϕ. If Free(ϕ) =
∅, then ϕ is called a sentence. For a pointed graph G ∈ G(A,D), we now consider a valuation
σ to be a function that maps first-order variables in Var to elements of V and second-order

6.1. MONADIC SECOND ORDER LOGIC OVER GRAPHS 83

Table 6.1: Semantics of MSO

G, σ |= ⊤
G, σ |= (x = y) if, and only if, σ(x) = σ(y)
G, σ |= init(x) if, and only if, σ(x) = v(i)

G, σ |= final(x) if, and only if, σ(x) = v(f)

G, σ |= Pa(x) if, and only if, λ(σ(x)) = a
G, σ |= Rd(x, y) if, and only if, (σ(x), σ(y)) ∈ Ed
G, σ |= R⋆d(x, y) if, and only if, there is a d-path from σ(x) to σ(y)
G, σ |= x ∈ X if, and only if, σ(x) ∈ σ(X)
G, σ |= ¬ϕ if, and only if, G, σ 6|= ϕ
G, σ |= ϕ1 ∨ ϕ2 if, and only if, G, σ |= ϕ1 or G, σ |= ϕ2

G, σ |= ∃xϕ if, and only if, there exists v ∈ V such that G, σ[x 7→ v] |= ϕ
G, σ |= ∃X ϕ if, and only if, there exists I ⊆ V such that G, σ[X 7→ I] |= ϕ

variables in VAR to subsets of V . As usual, for x ∈ Var and v ∈ V , σ[x 7→ v] denotes the
valuation that maps x to v and, otherwise, coincides with σ, and for X ∈ VAR and I ⊆ V ,
σ[X 7→ I] is defined similarly.

For every pointed graph G and every σ with domain containing the free variables of ϕ, we
define G, σ |= ϕ by induction over the formula ϕ, as shown in Table 6.1. Note in particular
that the semantics of ϕ only depends on the restriction of σ to the free variables of ϕ.

In the following, we will use several shortcuts in order to keep formulae readable and
of reasonable size. It is however important to carefully notice what is the logical fragment
needed to express them. For example, we allow to state the existence of a d-path of length
k in a graph between two given vertices, with a formula denoted by Rkd(x, y), with k ≥ 0:
this formula can be obtained by the following recursive process, implying that this formula
is expressible in FO

R0
d(x, y) = (x = y) , Rk+1

d (x, y) = ∃z Rd(x, z) ∧Rkd(y, z) (6.1)

We will also allow modulo constraints on such paths following a direction d, denoted by
(x, y) ≡d m[ℓ] with 0 ≤ m ≤ ℓ − 1: this formula is evaluated to true if, and only if, there
exists a d-path from the vertex encoded by x to the one encoded by y, whose length is
congruent to m modulo ℓ. This formula is MSO-definable by

((x, y) ≡d m[ℓ]) = ∀X
([

(y ∈ X) ∧
(
∀z, z′(z ∈ X ∧Rℓd(z

′, z)) =⇒ z′ ∈ X
)]

=⇒ ∃z ∈ X Rmd (x, z)
)
.

Notice that this modulo operator may also be defined in first-order logic extended with a
transitive closure operator . More formally, such an operator, denoted by TC in the following,
takes a formula ϕ with two distinguished free variables, e.g., x and y, and gives a formula
TCx,yϕ with the same free variables as ϕ. Let G ∈ G(A,D) be a pointed graph and σ be a
valuation of the free variables of ϕ. We may interpret the semantics of ϕ as a binary relation
RG,σ(ϕ) over V

RG,σ(ϕ) = {(v, v′) | G, σ[x 7→ v, y 7→ v′] |= ϕ}

meaning that
G, σ |= ϕ if, and only if (σ(x), σ(y)) ∈ RG,σ(ϕ)

Consider the transitive closure relation RG,σ(ϕ)+ of RG,σ(ϕ) defined as usual as the union
of the sequence (RG,σ(ϕ)k)k≥1 defined by

RG,σ(ϕ)1 = RG,σ(ϕ)
RG,σ(ϕ)k+1 = {(v, v′′) | (v, v′) ∈ RG,σ(ϕ) and

(v′, v′′) ∈ RG,σ(ϕ)k for some v′ ∈ V }

84 CHAPTER 6. LOGICAL SPECIFICATIONS

The semantics of TCx,yϕ is then defined as

G, σ |= TCx,yϕ if, and only if (σ(x), σ(y)) ∈ RG,σ(ϕ)+

If we want to stress the fact that x and y are free variables of the new built formula, we
may write it [TCx,yϕ](x, y), or even [TCx,yϕ](x′, y′) if we want to change their name.

We denote by FO + posTC the logic composed of first order logic to which we add positive
transitive closure operators, i.e., having an even number of negations above them. Indeed,
if we push the negations over the atoms, it is exactly the logic defined by

ϕ ::= ⊤ | (x = y) | init(x) | final(x) | Pa(x) | Rd(x, y) | R⋆d(x, y) |

¬⊤ | ¬(x = y) | ¬init(x) | ¬final(x) | ¬Pa(x) | ¬Rd(x, y) | ¬R⋆d(x, y) |

ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | TCx,yϕ

where a ∈ A, d ∈ D and x, y ∈ Var. We may also denote formula ¬(x = y) by x 6= y in the
following.

The modulo operator can then be equivalently defined with formula

((x, y) ≡d m[ℓ]) = ∃z Rmd (x, z) ∧
(
[TCx,yRℓd(x, y)](z, y) ∨ z = y

)
.

In case D is an ordered set of directions, with a distinguished forward direction →, we
will use formula x ≤ y as a shortcut for R⋆→(x, y): this is in reference of →-ordered graphs
on which we may then interpret the formula, which come with a linear order ≤ generated
by →.

6.2 Emptiness of Pebble Weighted Automata is Decidable

Monadic second-order logic has been extensively studied over graphs, in particular the de-
cidability status of the satisfiability problem over a certain class G of graphs. For example,
it is well-known that for graphs of bounded degree, this problem is decidable if, and only if,
all the graphs of G have a bounded clique-width (see [CE11] for the definition and the proof
of this result).

Using this result, we now consider the emptiness problem of our classes of pebble weighted
automata, which is, given a layered pebble weighted automaton A, does there exist a pointed
graph G ∈ G and a valuation σ of the free variables of A such that [[A]](G, σ) 6= 0. This is
the simplest question that may be asked, and this is indeed decidable if we consider layered
automata over positive continuous semirings, and bounded clique-width graphs.

Theorem 6.1. Let G be a class of (A,D)-pointed graphs with bounded clique-width, and S

be a positive continuous semiring. The following problem is decidable:

Data: a layered pebble weighted automaton A over A, D, S
Question: does there exist G ∈ G and σ a valuation with domain con-
taining Free(A) such that [[A]](G, σ) 6= 0?

Proof. We reduce this problem to the same problem in the Boolean semiring (which is a
typical positive continuous semiring). We will then show the decidability status for the
Boolean semiring.

Consider a layered pebble weighted automaton A = (Q,A,D, I,∆, F) over a positive
continuous semiring S. Let G ∈ G(A,D) be a pointed graph and σ a valuation with domain
containing the free variables ofA. As the semiring is positive, it is zerosumfree (indeed, being
continuous would have been sufficient here, by using the result of Proposition 2.5). Then, as
the semantics of A over (G, σ) is defined as the sum of the weights of the accepting runs of
A over (G, σ), we have that [[A]](G, σ) 6= 0 if, and only if, there exists an accepting run ρ of

6.3. WEIGHTED LOGICS 85

A over (G, σ) with weight different from 0. As the semiring is positive, it contains no zero
divisor, and hence, every transition in ρ has a weight different from 0. Hence, let us consider
the layered pebble weighted automaton B = (Q,A,D, I ′,∆′, F ′) over the Boolean semiring
({0, 1},∨,∧, 0, 1) obtained from A by replacing every weight different from 0 appearing in I,
∆ or F by 1, and letting the weight 0 unchanged. The previous reasoning permits to prove
that for every pointed graph G

[[A]](G, σ) 6= 0 if, and only if, [[B]](G, σ) 6= 0 .

Now, we prove that the problem over the Boolean semiring is decidable. Let A =
(Q,A,D, I,∆, F) be a layered pebble weighted automaton over the Boolean semiring. The
decidability is shown by encoding runs of B into a formula of MSO. More precisely, we exhibit
a formula ϕ with free variables Free(A) such that for every pointed graph G ∈ G(A,D) and
every valuation σ with domain containing Free(A):

[[B]](G, σ) = 1 if, and only if, G, σ |= ϕ

Hence, we reduce the initial problem to the satisfiability of a formula of MSO over a class
of graphs which are of bounded clique-width. This problem is known to be decidable, as
recalled previously.

We do not present the construction of the formula ϕ in full details, but rather use the
translation from walking automata with nested pebbles into the logic FO + posTC proved
by [EH07]: notice that their model of automata may have several heads and uses strong
pebbles, hence our model can be translated in theirs. To conclude, it suffices to notice that
all formulae of FO + posTC can be translated into equivalent formulae of MSO: proof of
this fact is given in [CE11].

6.3 Weighted logics

Our aim is to define a denotational model to describe the behavior of weighted automata.
This has already been done by Droste and Gastin [DG09]: they have introduced weighted
logics with syntax close to monadic second-order logic, extending the semantics by using
addition and product of a semiring to evaluate disjunctions/existential quantifications, and
conjunctions/universal quantifications, respectively. At the price of strong restrictions on
the shape of the formulae, they succeeded to prove an expressiveness result (in our formalism,
this result is stated in Theorem 6.8).

The syntax of [DG09] is purely quantitative, though Boolean connectives can be ex-
pressed indirectly. As it may be somewhat confusing to interpret purely logical formulae in
a weighted manner, we slightly modify the original syntax, by clearly separating the Boolean
and the quantitative parts: our weighted logic consists of a Boolean kernel, such as MSO
or FO, augmented with quantitative operators (addition, multiplication, sum and product
quantifications, and possibly weighted transitive closure). Thus, our language will allow us
to test explicitly for Boolean properties, and to perform computations. We shall see that,
under some hypotheses, the formalism of [DG09] and ours are equivalent. However, in ad-
dition to being more intuitive, the new syntax allows flexibility to study expressiveness. For
instance, one can investigate how the underlying Boolean logic influences the computational
power (see Lemma 6.5).

6.3.1 General definitions

Definition 6.2 (Weighted logics). Given a class L of Boolean formulae, we denote by
wMSO(L) the class of weighted monadic second order logic defined by

Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ |
⊕

x Φ |
⊗

x Φ |
⊕

X Φ |
⊗

X Φ

86 CHAPTER 6. LOGICAL SPECIFICATIONS

[[s]](G, σ) = s

[[ϕ]](G, σ) =

{
1 if G, σ |= ϕ

0 otherwise

[[Φ1 ⊕ Φ2]](G, σ) = [[Φ1]](G, σ)⊕ [[Φ2]](G, σ)

[[Φ1 ⊗ Φ2]](G, σ) = [[Φ1]](G, σ)⊗ [[Φ2]]G, σ)

[[
⊕

x Φ]](G, σ) =
⊕

v∈V

[[Φ]](G, σ[x 7→ v])

[[
⊗

x Φ]](G, σ) =
⊗

v∈V

[[Φ]](G, σ[x 7→ v])

[[
⊕

X Φ]](G, σ) =
⊕

I⊆V

[[Φ]](G, σ[X 7→ I])

[[
⊗

X Φ]](G, σ) =
⊗

I⊆V

[[Φ]](G, σ[X 7→ I])

Table 6.2: Semantics of formulae in wMSO(L)

where s ∈ S, ϕ ∈ L, x ∈ Var and X ∈ VAR. Disabling the sum and product indexed by set
variables, we define the class wFO(L) of weighted first order logic by

Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ |
⊕

x Φ |
⊗

x Φ

where s ∈ S, ϕ ∈ L and x ∈ Var. �

We denote again by Free(Φ) the set of free variables of a formula Φ ∈ wMSO(L). The
semantics [[Φ]] of Φ maps a pair (G, σ), composed of a pointed graph G ∈ G(A,D) and
a valuation σ with domain containing the free variables of Φ, to a value in S as showed
inductively in Table 6.2. Hereby, if S is not commutative, we assume that the products
follow a specified order of V and the associated lexicographic order on the power set {0, 1}V .
As for the Boolean case, notice that the semantics [[Φ]] does not depend on the assignment
of variables not in Free(Φ). Alternatively, we may see [[·]] as a series in S〈〈G(A,D)〉〉, defining
only the semantics of sentences. Henceforth, a series f ∈ S〈〈G(A,D)〉〉 is said to be wMSO(L)-
definable if there exists a sentence Φ ∈ wMSO(L) such that [[Φ]] = f .

Example 6.3. In the Boolean semiring B, recognizable and wMSO(MSO)-definable series
of words (encoded as graphs in Word(A)) coincide. In contrast, for the natural semiring N,
the definition yields [[

⊗
x

⊗
y 2]](G) = 2|V |

2

for every G ∈ Word(A) modeling a word, which
is not recognized by a weighted automaton over words as proved in Theorem 4.18. �

Having the capability to mix Boolean and weighted operators permits to design more
easily complex formulae.

Example 6.4. Assume we have an XML document representing a database storing infor-
mation about car models and car parts: it is depicted in Figure 6.1 in the shape of a tree,
but we will consider it as a nested word in the following. Each car model is described, among
other things, by its list of car parts (Figure 6.1 (a)). Each model of car part has an attached
set of currently reported errors indicated by vertices labeled Err in Figure 6.1 (b). One can
express that there is a car model using some car part with an error by the first order formula
∃x, y, z, t ϕ(x, y, z, t), where

ϕ = [CModel(x) ∧ Part(y) ∧ x ≺ y] ∧ [PModel(z) ∧ Err(t) ∧ z ≺ t] ∧Match(y, z)

6.3. WEIGHTED LOGICS 87

CarCatalogue

CModel CModel

Part Part . . .

Description . . .

(a)

PartCatalogue

PModel PModel

Err Err . . .

Description . . .

(b)

DealersDirectory

Dealer Dealer

Sale Sale . . .

Car Customer

(c)

Figure 6.1: Part of an XML document for the car database

This is a purely logical statement where x ≺ y means that node x is an ancestor of node y
in the XML document which can be written as

∃z Ry(x, z) ∧R⋆→(x, y) ∧R⋆→(y, z)

and Match(y, z) is a shortcut meaning that the car part at y matches the part model at z.
In this manuscript, we abstracted data away but this is typically the place where we could
use data from an infinite alphabet to model more knowledge of the database.

One may want a more precise information, for example the total number of errors for
all car models. This can be achieved by replacing existential quantifications with sums:⊕

x,y,z,t ϕ(x, y, z, t), and computing in the natural semiring (N,+,×, 0, 1) instead of the
Boolean semiring.

Assume now that the database also includes car dealers, see Figure 6.1 (c). Each dealer
records a list of performed sales. Here is the shape of a formula computing the maximal
number of errors to be fixed per dealer:

⊕
d Dealer(d)⊗

⊗
u

[
(d ≺ u ∧ Car(u))⊗

⊗
x,y,z,t(Match′(u, x) ∧ ϕ(x, y, z, t))

]

Here, one needs to interpret ⊕ and ⊗ as max and sum operations which are available in the
semiring (N ∪ {−∞},max,+,−∞, 0). �

We denote by AP the class of atomic propositions, i.e., that contains only formulae x = y,
init(x), final(x), Pa(x), Rd(x, y), R⋆d(x, y), x ∈ X and their negations. As explained at the
beginning of the section, the logic wMSO(S) (respectively, wFO(S)) introduced in [DG09]
over words is exactly the class of formulae wMSO(AP) (respectively, wFO(AP)). Trans-
posed into our syntax, the transformation described in their Definition 4.3 and proved in
Lemma 4.4, permits to state:

Lemma 6.5. Let D be an ordered set of directions with a distinguished forward direction
→. Then, for every Boolean formula ϕ ∈ MSO(A,D) (respectively, ϕ ∈ FO(A,D)), there
exists a weighted formula Φ ∈ wMSO(AP) (respectively, Φ ∈ wFO(AP)), with the same
set of free variables, such that for every →-ordered pointed graph G and every valuation σ,
[[ϕ]](G, σ) = [[Φ]](G, σ).

Proof. We will express Boolean connectives with their quantitative counterparts.
We simulate disjunction with ⊕, existential first-order quantification with

⊕
x and exis-

tential second-order quantification with
⊕

X . More precisely, for each MSO-formula ϕ, we ef-
fectively construct two weighted formulae Φ+

ϕ ,Φ
−
ϕ ∈ wMSO(AP) (which, in addition, belong

to wFO(AP) if ϕ is an FO-formula) such that for every→-ordered pointed graph G and every
σ with domain containing the free variables of ϕ, we have [[Φ+

ϕ]](G, σ), [[Φ−ϕ]](G, σ) ∈ {0, 1},
and

[[Φ+
ϕ]](G, σ) = 1 ⇐⇒ G, σ |= ϕ and [[Φ−ϕ]](G, σ) = 0 ⇐⇒ G, σ |= ϕ .

88 CHAPTER 6. LOGICAL SPECIFICATIONS

To simplify notations, x ≤ y will denote the atomic proposition R⋆→(x, y) with→ generating
the order ≤ over the vertices, whereas X ≤ Y will denote the lexicographic order over the
sets of positions, that can be defined in wMSO(AP) by

X < Y =
⊕

y

[
y ∈ Y ⊗ ¬(y ∈ X)⊗

⊗
z(y ≤ z ⊕ (z < y ⊗ z ∈ (X∆Y)c))

]

X ≤ Y = X < Y ⊕
⊗

z z ∈ (X∆Y)c,

Here, z ∈ (X∆Y)c denotes the formula (z ∈ X ⊗ z ∈ Y)⊕ (¬(z ∈ X)⊗ ¬(z ∈ Y)), so that⊗
z (y ≤ z ⊕ (z < y ⊗ z ∈ (X∆Y)c)) tests whether X and Y agree before position y.
We define formulae Φ+

ϕ and Φ−ϕ by structural induction on ϕ, removing ambiguity by
picking the leftmost witness of the formulae (in particular in disjunction and existential
quantification):
• if ϕ ∈ AP then Φ+

ϕ = ϕ and Φ−ϕ = ¬ϕ (with ¬¬ψ = ψ by convention);
• Φ+

ϕ∨ψ = Φ+
ϕ ⊕ (Φ−ϕ ⊗ Φ+

ψ) and Φ−ϕ∨ψ = Φ−ϕ ⊗ Φ−ψ ;
• Φ+

¬ϕ = Φ−ϕ and Φ−¬ϕ = Φ+
ϕ ;

• Φ+
∃xϕ =

⊕
x

[
Φ+
ϕ ⊗

⊗
y[x ≤ y ⊕ (y < x⊗ Φ−ϕ)]

]
and Φ−∃xϕ =

⊗
x Φ−ϕ ;

• Φ+
∃Xϕ =

⊕
X

[
Φ+
ϕ ⊗

⊗
Y [X ≤ Y ⊕ (Y < X ⊗ Φ−ϕ)]

]
and Φ−∃Xϕ =

⊗
X Φ−ϕ .

Hence, in ordered graphs, we can always replace a Boolean FO or MSO formula by its
wFO(AP) or wMSO(AP) equivalent and we obtain:

Corollary 6.6. Let S be a semiring and D be an ordered set of directions. Let f ∈
S〈〈G(A,D)〉〉. Then,

• f is wMSO(MSO)-definable if, and only if, f is wMSO(AP)-definable.

• f is wFO(FO)-definable if, and only if, f is wFO(AP)-definable.

For a Boolean formula ϕ ∈ L and two formulae Φ,Ψ ∈ wMSO(L), we define the macro
ϕ? Φ : Ψ as

ϕ? Φ : Ψ = (ϕ⊗ Φ)⊕ (¬ϕ⊗Ψ)

as a natural generalization of the Boolean if-then-else operation: its semantics is [[Φ]] if ϕ
holds, and [[Ψ]] otherwise. We simply write ϕ? Φ for ϕ? Φ : 1.

6.3.2 Previous expressiveness result

For L a Boolean logic closed under ∨, ∧ and ¬, an L-step formula is a formula obtained
from the grammar

Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ, with s ∈ S and ϕ ∈ L. (6.2)

The following lemma shows in particular that an L-step formula can take only a finite
number of values.

Lemma 6.7. For every L-step formula Φ, one can construct an equivalent formula Ψ =⊕
I∈K(ψI ⊗ sI) with K finite, ψI ∈ L and sI ∈ S. More precisely, Free(Φ) = Free(Ψ) and

[[Φ]](G, σ) = [[Ψ]](G, σ) for all pairs (G, σ) of graph and valuation.

Proof. Call ϕ1, . . . , ϕp the L-formulae occurring in the expression of Φ given by the gram-
mar (6.2). For I ⊆ {1, . . . , p}, let ΦI be the formula obtained by replacing in Φ each ϕi
by 1 if i ∈ I and by 0 otherwise, so that ΦI has no free variable and [[ΦI]] is a constant
sI ∈ S. Let ψI =

∧
i∈I ϕi ∧

∧
i/∈I ¬ϕi, which is an L-formula, since L is closed under ∧

and ¬. Let Ψ =
⊕

I(ψI ⊗ sI). Clearly, Free(Φ) = Free(Ψ).
Fix a graph G and a valuation σ. Let J = {i | G, σ |= ϕi}, so that G, σ |= ψJ and

G, σ 6|= ψI for I 6= J . Therefore, [[Ψ]](G, σ) = sJ = [[ΦJ]](G, σ) = [[Φ]](G, σ), where the last
equality comes from the definition of J .

6.3. WEIGHTED LOGICS 89

From now on, we freely use Lemma 6.7, using the special form it provides for L-step
formulae. All MSO-step formulae are clearly recognizable. By [DG09],

⊗
x Φ is recognizable

over words for any MSO-step formula Φ. A restricted fragment sREMSO of wMSO(AP)
(called the syntactically restricted formulae) was defined in [DG09]. Essentially, sREMSO
consists of wMSO(MSO) formulae Φ in existential normal form (i.e., no second-order uni-
versal quantifier and all second-order existential quantifiers at the beginning of the formula)
such that if Φ contains Ψ ⊗ Ψ′ as a subformula then the values in S appearing in Ψ and
Ψ′ commute element-wise, and such that the use of first-order product

⊗
x is restricted to

MSO-step formulae. Note that if the semiring is commutative, the requirement over the
product Ψ⊗Ψ′ is trivially verified. A consequence of their work is the following statement.

Theorem 6.8 ([DG09]). A formal power series over finite words is recognizable by a (clas-
sical) weighted automaton if, and only if, it is definable in sREMSO.

6.3.3 Weighted transitive closure

We now define other fragments of wMSO(MSO), which also carry enough expressiveness
to generate all recognizable series of words, and even series recognized by pebble weighted
automata over some classes of graphs. Contrary to sREMSO that allows second-order quan-
titative operators, and finally restricts them, we rather extend the fragment wFO(AP), con-
taining only first-order quantitative operators, with a weighted equivalent of the Boolean
transitive closure.

Weighted transitive closure

For a formula Φ(x, y) with at least two free variables x and y, we introduce a weighted
transitive closure operator wTCx,yΦ having as free variables the same variable as Φ. As for
its Boolean counterpart, we may denote it [wTCx,yΦ](x, y) if we want to stress the existence
of two special free variables, or even [wTCx,yΦ](x′, y′) if we need to change the name of the
variables. Its semantics is defined by

[[[wTCx,yΦ](x′, y′)]](G, σ) =
⊕

σ(x′)=v0,v1,...,vm=σ(y′)

⊗

0≤k≤m−1

[[Φ]](G, σ[x 7→ vk, y 7→ vk+1])

(6.3)
where the sum ranges over all m > 0 and all sequences (vk)0≤k≤m of vertices of the graph G
with v0 = σ(x′) and vm = σ(y′). Notice that this sum may be infinite, and hence requires
the semiring to be continuous to be well-defined.

To ease notation, we sometimes write [[Φ(x, y)]](G, v, v′) instead of [[Φ(x, y)]](G, [x 7→
v, y 7→ v′]).

In order to compare automata and logics, we need to define a bounded restriction on
this very powerful operator.

Bounded restriction

We introduce a bounded weighted transitive closure operator wTCNx,y for each integer N > 0
(or wTCb

x,y if N is unspecified). Its semantics consists in restricting the sequences of (6.3)
so that d(vk, vk+1) ≤ N for every k ∈ {0, . . . ,m− 1}. Notice that given two vertices v and
v′, formula d(x, y) ≤ N , defined by

(d(x, y) ≤ N) = ∃x1∃x2 · · · ∃xN−1∨

d1,...,dN

Rd1
(x, x1) ∧

∧

1≤n≤N−2

Rdn+1
(xn, xn+1) ∧RdN

(xN−1, y)

90 CHAPTER 6. LOGICAL SPECIFICATIONS

when interpreted over the graph with x mapped to v and y mapped to v′, verifies that
d(v, v′) ≤ N . Equivalently,

wTCNx,yΦ = wTCx,y(d(x, y) ≤ N ⊗ Φ) .

We will see later that this restriction is a priori unavoidable in the weighted case.
In the following, if L is a Boolean logic, we denote by wFO+wTCb(L) the weighted logic

defined by
Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ |

⊕
x Φ |

⊗
x Φ | wTCNx,yΦ

with s ∈ S, ϕ ∈ L, x, y ∈ Var and N ∈ N \ {0}. A formula Φ of wFO+wTCb(L) is said to
be unambiguous if its semantics is either 0 or 1 for every possible graph and valuation.

It has to be noticed that modulo formulae can be simulated in wFO+wTCb(AP). Indeed,
for d a direction, we consider the formula

⊕
z R

m
d (x, z)⊗

(
[wTCℓx1,x2

(x1 6= y ⊗Rℓd(x1, x2))](z, y)⊕ z = y
)

where Rmd (x, z) is defined almost as in (6.1) but using
⊕

z instead of ∃z and ⊗ instead of
∧. The only change is the verification x1 6= y in the transitive closure, making sure that we
stop the first time y is reached. Notice that if y is not linked to x by a d-path, then the
transitive closure will evaluate to 0 which is correct. Then, for every graph G ∈ G(A,D)
and valuation σ of variables x and y, its semantics over (G, σ) is either 0 or 1. Moreover,
it admits the same semantics as the modulo constraint (x, y) ≡d m[ℓ]. Henceforth, we use
formula (x, y) ≡d m[ℓ] as a macro in the following.

6.4 From Logics to Automata

This section shows in which context series definable by formulae of wFO+wTCb(AP) are
recognizable by layered PWA. Indeed, we do not know how to show such a result in general,
but instead we need an hypothesis over the graphs on which the automata will run. This
restriction consists in considering searchable classes of graphs, as described in [EH07]:

A family of graphs is searchable if there exists a (fixed) [...] deterministic graph-
walking automaton with [...] pebbles that, for each graph in the family, and each
node of the graph, when started in that node in the initial state the automaton
halts after completing a walk along the graph during which each node is visited
at least once. [...] Thus the automaton serves as a guide for the family of graphs,
and makes it possible to establish and traverse a total order of the nodes of the
graph.

We first define formally the notion of searchable class of graphs in our context1, before giving
the translation from logics into automata.

6.4.1 Searchable Classes of Graphs

Definition 6.9. A class of pointed graphs G is said to be searchable if there exists a
weighted automaton AG ∈ WA with weights 0 and 1 (and hence independent from the
semiring), without free variables, and with two distinguished states qi and qo, verifying that
for every pointed graph G = (V, (Ed)d∈D, λ) ∈ G, there exists a total linear order ≤ over V ,
with minimal element v(i) and either v(f) = v(i) or v(f) is the maximal element of ≤, such
that

1Whereas, in [EH07] they use strong pebbles, i.e., pebbles that may be lifted without moving back the
head to the position of the pebble, we indeed chose to consider weak pebbles.

6.4. FROM LOGICS TO AUTOMATA 91

qi qo
(1⊤)→

(1final?)←

(1⊤)←

(1¬←?)→
(1⊤)←

Figure 6.2: Automaton exploring the class of →-ordered pointed graphs

1. for every vertex v ∈ V \ {v(f)}, there exists a unique non-zero run in AG from config-
uration (G, qi, v) reaching state qo: this run ends in configuration (G, qo, v′) where v′

is the direct successor of v in ≤;
2. if v(f) 6= v(i), there exists a unique non-zero run in AG from configuration (G, qi, v(f))

reaching state qo: this run ends in configuration (G, qo, v(i)).

AG is called a guide for the class G. �

Every class of pointed graphs G which contains only →-ordered pointed graphs is easily
searchable, by the automaton AG depicted in Figure 6.2. Hence, the linear order of the
previous definition matches the linear order ≤ defined in ordered graphs. However, not only
ordered graphs are searchable. For example, pictures are searchable: one possible linear
order is to read each line of the picture from left to right. Hence the automaton simply
does a right move if it is possible, otherwise, it goes to the next line and comes back to
its beginning. Notice that trees are also searchable by using a depth-first-search that may
be done using our navigational automata as stated for example in [Boj08], and used in
Example 4.8.

Mazurkiewicz traces are also searchable. Indeed, we enumerate processes in increasing
order, and once in the upper vertex of a given process, we may enumerate all vertices related
to this process, that have not been visited by smaller processes. Moreover, jumping from a
process to the next one can be done unambiguously in the following way: starting from the
upper vertex of a process, we explore with a depth-first-search the processes reachable from
this vertex, keeping in memory the (finite) set of processes visited so far. We stop when
the next process is found, and we simply go up to reach its top vertex. The graphs being
connected, this algorithm terminates. On the Mazurkiewicz trace depicted in Figure 2.5,
jumping from process 3 to process 4 is achieved in the following way. Starting in the top
vertex of process 3, we go down reaching a vertex in common with process 2. We reach the
top vertex of process 2, and henceforth jump to process 1. Visiting process 1 stops very
quickly, since its other vertex is common with process 2, already in memory. We go back to
the top vertex of process 2, and go down. Reaching the vertex in common with process 4
permits to conclude the algorithm.

Not all classes of graphs are known to be searchable however. For example, the class
of planar graphs is known to be not searchable [Rol80]. Mazes (which are subgraphs of
2-dimensional finite grids) are known to be not searchable [Bud78], even if automata are
allowed to use one pebble [Hof81]. However, it is an open problem to know if those mazes
are searchable with 2 or more layers of pebbles. We have chosen to restrict guides to be
automata without pebbles for sake of simplicity, and because our practical examples of
structures are all searchable without pebbles. However, we claim that our work may easily
be extended with guides using pebbles, in a layered way.

92 CHAPTER 6. LOGICAL SPECIFICATIONS

6.4.2 Translation of Formulae into Automata

Theorem 6.10. Let S be a semiring and G a searchable class of pointed graphs. For every
formula Φ ∈ wFO+wTCb(FO), there exists a layered pebble weighted automaton AΦ with
Free(AΦ) = Free(Φ), such that for every graph G ∈ G and every valuation σ with domain
containing the free variables of Φ, [[AΦ]](G, σ) = [[Φ]](G, σ).

Proof. In all of this proof, we consider the guide AG of the searchable class G.
We give a proof by induction over the formulae in wFO+wTCb(FO). We start by proving

the property for the unweighted part of wFO+wTCb(FO), i.e., for Booolean formulae of FO.
The difficulty lies in the fact that we must simulate a Boolean formula – which henceforth
has a weighted semantics [[−]] either 0 or 1 – with weighted automata that do not possess
a Boolean fragment. Indeed, we must produce automata that simulate first-order formulae
in an unambiguous way. Notice that, at least over the class of words, it could be rather
easy to produce a deterministic finite state automaton simulating every first-order formula.
However, the size of such an automaton would be non elementary in the size of the formula
(because of the alternance of quantifiers), and this is a priori no longer possible with more
general classes of graphs (even searchable). Indeed, we propose a totally different construc-
tion, that takes advantage of the pebbles, in order to design pebble weighted automata of
linear size with respect to the size of the formula. More precisely, for every ϕ ∈ FO, we
construct a layered pebble weighted automaton Bϕ having one initial state ι and two (final)
states ok and ko such that for all pointed graph G ∈ G and valuation σ : Var ⇀ V with
domain containing the free variables of ϕ, the semantics satisfies:

[[Bϕι,ok]](G, σ, v(i), v(f)) =

{
1 if G, σ |= ϕ

0 otherwise,

[[Bϕι,ko]](G, σ, v(i), v(f)) =

{
0 if G, σ |= ϕ

1 otherwise.

We obtain automaton Aϕ by considering Bϕ with ι (respectively, ok) having initial
(respectively, final) weight 1. To get an automaton for the negation of a formula, we simply
exchange states ok and ko. These automata will use free variables to encode free variables
of formula ϕ.

For formula init(x), the automaton starts by verifying that the initial vertex hosts variable
x, and then follows the guide to reach the final vertex of the graph. Formula final(x) is dealt
with similarly. For Pa(x), the automaton simply scans the input graph using the guide,
searching for a vertex that verifies the type a? ∧ x?. Similarly, for formula x = y, at vertex
x, we verify that the vertex also holds variable y. For the atomic formula Rd(x, y), the
automaton scans the input graph, searching for a vertex holding variable x, and at that
point follows the edge labeled with direction d to reach vertex holding variable y. It then
follows the guide until the final vertex of the graph.

The construction for formula R⋆d(x, y) has to be made carefully. Indeed, the automaton
must be able to compute both this formula and its negation. The latter states that there is
no d-path from x to y: this is the case when either there exists a vertex z without d-successor
but with a d-path from x to z not containing y, or there exists a d-cycle containing x but
not y. These two conditions, as well as the positive check that x and y are related by a
d-path, can be checked with an automaton. This automaton first follows the guide to reach
the vertex holding variable x. It then follows the unique d-path until either it reaches y, or
it reaches x, or it deadlocks. We finally follow the guide to reach the final vertex and accept
or reject depending on the case.

The construction for disjunction ξ = ϕ ∨ ψ is described in Figure 6.3: in this picture,
as well as the following ones, when the guide AG is called, we suppose it is from its initial
state qi to its final state qo. We start computing ϕ and stop if it is verified, otherwise, we

6.4. FROM LOGICS TO AUTOMATA 93

Bϕ
okϕ

koϕ

AG

Bψ
okψ

koψ

init?

¬init?

okξ

koξ

Figure 6.3: Weighted automaton for disjunction ξ = ϕ ∨ ψ

Bϕ
okϕ

koϕdropx
lift

okξ

koξ

AG

¬final?
lift

final?AG

final? ∧ ¬init?

¬final? ∨ init?

init? ∧ final?

¬init?

Figure 6.4: Weighted automaton for existential quantification ξ = ∃x ϕ

Bϕ
okϕ

koϕdropx
lift

okξ

koξ

AG

¬final?
lift

final?AG

final?
¬final?dropx

Figure 6.5: Weighted automaton for existential quantification ξ = ∃x ϕ in case v(i) 6= v(f)

reset to the initial vertex of the graph using the guide, and check formula ψ. Notice that
we use in this figure, and in the following, some transitions labeled with only tests, i.e., non
moving transitions. It is not difficult to translate these transitions into our model, e.g., by
enforcing the automaton to make a move d followed by its opposite d−1 in a deterministic
way, or to remove this non-moving transitions by merging them with the next moving one.

Finally, the construction for existential quantification ξ = ∃x ϕ is described in Figure 6.4.
During a run of this automaton, a pebble of name x is successively dropped over each vertex
of the graph using the guide, in order to simulate automaton Bϕ over every vertex: the
apparent complexity of the tests in layer 0 takes care of both cases v(i) = v(f) (then only
the transition labeled by init? ∧ final? permits to exit in state koξ) and v(i) 6= v(f) (then
only the transition labeled by final? ∧ ¬init? permits to exit in state koξ). The simplest
automaton, only taking care of the case v(i) 6= v(f) is described in Figure 6.5. If such a run
ends in state okξ, it means that at some vertex v, formula ϕ has been positively verified (the
part of the run in lower layer ended in state okϕ). More precisely, as Bϕ is unambiguous,
in that case, all the runs of non-zero weight will end in state okξ after dropping the pebble
on vertex v, henceforth computing the weight 1, meaning that formula ξ is verified. On the
contrary, if no position verifies formula ϕ, all the runs will end in state koξ, meaning that ξ
is not verified.

It remains to prove that the class of layered pebble weighted automata is closed under
the weighted constructs of wFO+wTCb(FO). First, notice that the constant series s ∈ S is
easily recognized by a 0-layered PWA, using the guide to go from v(i) to v(f) and computing
the weight s at the beginning of the unique run. Note also that if a series is recognizable
by a K-layered pebble weighted automaton, it is also recognizable by a (K + 1)-layered
pebble weighted automaton. Therefore, given two layered pebble weighted automata, one
can assume that they have the same number of layers, and the same set of pebble names.

94 CHAPTER 6. LOGICAL SPECIFICATIONS

Let A1,A2 be two K-layered pebble weighted automata over A. Closure under ⊕ is as usual
obtained using the disjoint union of the automata A1 and A2.

The K-layered pebble weighted automaton that recognizes the Hadamard product which
maps every graph G and valuation σ to [[A1]](G, σ) ⊗ [[A2]](G, σ) consists of three phases:
first, it simulates the automaton A1 until it reaches the final vertex v(f) in a final state of
A1; then, using the guide, it reaches back the initial vertex of the graph, unless v(f) = v(i)

which it can test by using the basic test formula init? on its current position; finally, it
simulates the automaton A2 and exits in a final state of A2. Notice that the guide is only
used in the topmost layer.

For first-order quantifiers, we use an extra layer. From a K-layered pebble weighted
automaton A computing [[Φ(x)]], we construct two (K+1)-layered pebble weighted automata
computing respectively [[

⊕
x Φ]] and [[

⊗
x Φ]].

Automaton for
⊕

x Φ follows the guide, and at some point nondeterministically (but not
going over v(f), and unambiguously as the guide visits exactly once every vertex) chooses a
vertex in the graph where it drops pebble x. Then, it simulates automaton A. After this
simulation, it lifts the pebble and terminates the computation, going to the final vertex of
the graph using again the guide. Notice that the guide visiting each vertex exactly once,
the automaton computes exactly the semantics of

⊕
x Φ.

For
⊗

x Φ, the new automaton drops successively pebble x on every position of the input
graph (again using the guide). Whenever it drops pebble x, it simulates A until it reaches
the final vertex where it lifts the pebble.

Finally, assume that we have a K-layered pebble weighted automaton A which evaluates
some wFO+wTCb(AP) formula Φ(x, y). We construct a (K + 2)-layered pebble weighted
automaton A′ in order to evaluate [wTCMx,yΦ](x′, y′): x′ and y′ are now two free variables.
Following the guide, A′ moves to the vertex vx′ holding the free variable x′. It drops pebble
x. Whenever A′ drops pebble x on some vertex vx, it enters some special state qdropx

.
Starting again from the beginning, it searches for vertex vx with the guide, and then moves
to some guessed vertex vy at a distance less or equal to M , remembering the sequence
of directions it uses to reach it. It drops pebble y. In order to compute the transitive
closure in an unambiguous way, the automaton now starts to check that the path it followed
from vx to vy is the minimal one amongst those that lead from vx to vy: the minimiality
criterion we consider is the lexicographic order over the sequences of directions, supposing
an order has been fixed over D. To check this, A′ explores deterministically the (finite)
set of sequences of directions of length at most M in the lexicographic order: it stops the
first time it reaches vertex vy and rejects the current run if the sequence of directions is
not the one recorded before. Now, this sequence can be flushed from the memory: this is
particularly interesting for complexity reasons we study after this proof. A′ then simulates
A resulting in the evaluation of Φ(vx, vy). When the simulation of A is completed, A′ uses
the guide to return to vertex vy. Then, A′ non-deterministically moves to vertex vx where
pebble x was dropped remembering the sequence of directions in the reverse order between
both vertices. Again, in order to simulate the transitive closure unambiguously, it checks
that the guessed sequence of directions is the minimal one in the lexicographic order. A′

lifts pebble y and pebble x, and then returns to vertex vy by using the memorized sequence
of directions. If y′ is held by the current vertex, A′ enters a final state. Also – even if y′ is
at the current vertex – A′ drops pebble x again in order to continue the evaluation of the
transitive closure.

Notice that the layered pebble weighted automaton constructed in this proof has a num-
ber of states linear with respect to the size of the formula Φ, defined as the number of
operators used in Φ, and denoted by |Φ| in the following. In particular, the constants M
appearing in the bounded transitive closuresare not considered for the complexity. We sup-
pose also that the size of AG is constant. In that case, every closure construction adds only

6.5. FROM AUTOMATA TO LOGICS 95

a fixed finite number of states.2 This is an interesting result even in the Boolean case as
it shows that we can construct unambiguous layered pebble automata for every formula of
first order logic (and even with some transitive closures).

Remark 6.11. Notice that it would have been possible to add some other atomic Boolean
formulae ϕ and still get the result of Theorem 6.10, as soon as we have an unambiguous
automaton Bϕ equivalent to it and its negation. We cite two non-trivial examples here.

Consider the class of trees and a Boolean formula over variables x and y, stating that x
is an ancestor of y, i.e., that there exists a {↓i | i ≥ 0}-path from x to y. The unambiguous
automaton for this formula first moves to vertex holding x, and then executes a depth-first
search of the subtree rooted in x until either it finds y and accepts, or reaches back x and
rejects.

As a second example, consider the class of pictures and a Boolean formula over variables
x and y, stating that y is at the bottom-right of x, i.e., that there exists a {↓,→}-path from
x to y. Getting an equivalent unambiguous automaton now requires the use of a pebble:
indeed, starting from the vertex holding x, we search in every row below and on the right
of x if y appears. This is done by marking with a pebble the vertex below x on this row
and searching the row from left to right. The pebble is then moved from one row to the
following one until the last row. �

As a side effect of this translation from logic to automata, it is possible to evaluate a
formula of wFO+wTCb(FO) by using the evaluation of layered pebble weighted automata,
presented in Theorem 5.4, and get the following complexity result:

Corollary 6.12. Let G be a searchable class of pointed graphs. We can compute the se-
mantics [[Φ]](G, σ) of a formula Φ ∈ wFO+wTCb(FO) that uses p distinct variables, over
a pointed graph G ∈ G, for a valuation σ with domain containing the free variables of A,
with O(|Φ| × |V |p+1) scalar star operations and O((p+ 1)× |Φ|3 × |V |p+3) scalar sums and
products in S.

This result can be made more efficient when specialized for words, trees or nested words,
accordingly to what is showed in Chapter 5.

6.5 From Automata to Logics

This section is devoted to a more theoretical result translating automata formalisms back
into logics. Mainly, the aim is to show robustness of the automaton model we exhibited,
even though the monadic second order logic is still unreachable by this mean.

Proofs of the next theorems are partly based on ideas present in [Tho82] and [EH07]. The
idea is to encode runs of automata into a formula using transitive closures. Interestingly,
the weighted extension we present – moreover in the case of graphs – leads to new problems
in this encoding: it is not sufficient to be able to simulate at least one run for every accepted
structure, but this simulation has to be done faithfully with respect to the weights.

We split the proof into two parts. First, we define the notion of zonable classes of graphs,
and prove that all of the graph classes we are interested in are zonable. Then, abstracting
the technical difficulties inherent of this definition, we start from a zonable class of graphs
and prove that we can construct a formula equivalent to a given automaton, for all the
graphs of this class.

2Notice that if M is taken into account for the complexity, then the construction for the transitive closure
requires an additional number of states of the form |D|M to remember the paths.

96 CHAPTER 6. LOGICAL SPECIFICATIONS

Figure 6.6: Zone partitioning of a graph: zones are related by wires depicted with dashed
lines. The encoding of wire (v, v′), for every integer n ∈ [0 .. N − 1] is depicted by a red area
linked to the vertex v′, or containing vertex v′.

6.5.1 Zonable Classes of Graphs

Zonability is a combinatorial notion we introduce to cut a graph into small zones, however
wide enough to encode each edge relating two distinct zones into one of these two zones. This
zone decomposition will be used later to encode runs of a weighted automaton navigating in
the graphs, abstracting the internal behaviors of a single zone, and simply considering the
jump through edges relating two distinct zones. Henceforth, we also need the zonability to
be uniformally computable by a fixed formula for the class.

Definition 6.13. Let A be an alphabet and D be a set of directions. A class G of pointed
graphs G(A,D) is said to be zonable if for every natural number3 N ∈ N, there exists a
bound M ∈ N such that for every pointed graph G = (V, (Ed)d∈D, λ, v(i), v(f)) ∈ G, there
exists
• an equivalence relation ∼ over V such that equivalence classes of ∼, which are called

zones, have a diameter bounded by M , i.e., for every pair of vertices v, v′ of the zone
there exists a path composed of vertices of the zones from v to v′ of length bounded
by M . In the following, edges (v, v′) ∈ E such that v 6∼ v′ are called wires, and the
set of wires of a graph are denoted by W;
• an injective mapping f : W× [0 .. N −1]→ V such that for every wire (v, v′) and every

integer n ∈ [0 .. N − 1], the vertex f((v, v′), n) is in the same zone as v or v′.
Moreover, for L a weighted logic, the class G is said to be L-zonable if these objects can
be effectively and uniformally definable by unambiguous formulae of L: for every natural
number N ∈ N, we must have an unambiguous formula same-zone(z1, z2) of L with free
variables z1 and z2, and for every n ∈ [0 .. N − 1], an unambiguous formula f(z1, z2, n) = x
of L with free variables x, z1 and z2, verifying that for every pointed graph G ∈ G:
• v ∼ v′ if, and only if, [[same-zone(z1, z2)]](G, [z1 7→ v, z2 7→ v′]) = 1;
• f((v1, v2), n) = v if, and only if, [[f(z1, z2, n) = x]](G, [z1 7→ v1, z2 7→ v2, x 7→ v]) = 1.

�

Figure 6.6 depicts a zone partition of the vertices of a graph. In the sequel, wires will be
depicted with the same dashed convention, and the red area linked to a vertex v part of a
wire (v, v′) depicts the set of vertices f((v, v′), n) (with n ∈ [0 .. N − 1] used to encode this
wire.

Notice that a zone, being of diameter bounded by M , must be of size bounded by |D|M ,
since the graphs we study are of bounded degree. Notice in particular that if a graph has
a number of vertices bounded by M – which is verifyable by a formula of FO for example

3Natural number N will encode the number of states of the automaton to translate into the logic.

6.5. FROM AUTOMATA TO LOGICS 97

0 2N−1

. . .

2(k−1)N 2kN−1 2kN 2(k+1)N

. . .

2KN |w|

︸ ︷︷ ︸

N−1≤|w|−2KN<3N−1

Figure 6.7: Zone partitioning of a word and description of the encoding function f

– then we can consider that there is a single zone containing all the vertices, and hence no
wires. Therefore, in the examples we give below, we only consider graphs having at least
M + 1 vertices.

It has to be noticed that wires relate two distinct zones of the graph. Hence, they can
be characterized by the formula

wire(z, z′) =
⊕

x

⊕
n∈[0 .. N−1](f(z, z

′, n) = x)

which is an unambiguous formula as f is an injection.
Before stating the translation theorems, we give a non-exhaustive list of zonable classes

of graphs.

Words

Zones of words will be subwords of length 2N (see Figure 6.7), except the last zone that
may contain at most positions 3N − 1 positions: hence each zone has a diameter bounded
by M = 3N − 1. They can be described using modulo computations: henceforth, we define
formula same-zone(z1, z2) by

⊕
x(init, x) ≡→ 0[2N]⊗

[⊕
0≤k1,k2<2N

Rk1
→(x, z1)⊗Rk2

→(x, z2)

⊕
⊕

0≤k<3N

Rk→(x, final)⊗
⊕

2N≤k1,k2<k

Rk1
→(x, z1)⊗Rk2

→(x, z2)
]
.

Moreover, wires will simply be edges of the form (2kN − 1, 2kN) or (2kN, 2kN − 1) (except
possibly the last ones). For every integer n ∈ [0 .. N − 1], we set f((2kN − 1, 2kN), n) =
2kN − 1 − n, and f((2kN, 2kN − 1), n) = 2kN + n. This defines an injection as wires are
separated by a distance of 2N . These functions may be defined by the following f(z1, z2, n) =
x formula:

[
R→(z1, z2)⊗Rn→(x, z1)⊗ ((init, z2) ≡→ 0[2N])

]

⊕
[
R←(z1, z2)⊗Rn→(z1, x)⊗ ((init, z1) ≡→ 0[2N])

]

Hence, Word(A) is a wFO+wTCb(AP)-zonable class of graphs.

Pictures

Similar ideas to cut pictures into zones have been used for other purposes in [Mat98]. Zones
of pictures will be square subpictures of width 4N (see Figure 6.8), except the zones on the
right and the bottom of the pictures that may be a little larger as in the case of words. The
largest zone possible is the one on the right bottom corner which can have width and height
bounded above by 6N−1. Hence, each zone has a diameter bounded by M = 2×(6N−1)−1.
Similarly to the previous case, this can be tested using modulo computations. Forgetting,
for the sake of simplicity, about the zones on the right and on the bottom, we obtain as

98 CHAPTER 6. LOGICAL SPECIFICATIONS

Figure 6.8: Zone partitioning of a picture

formula same-zone(z1, z2):

⊕
x,y(init, x) ≡→ 0[4N]⊗ (x, y) ≡↓ 0[4N]

⊗
⊕

z

⊕
0≤k1,k2<4N

Rk1
→(y, z)⊗Rk2

↓ (z, z1)

⊗
⊕

z

⊕
0≤k1,k2<4N

Rk1
→(y, z)⊗Rk2

↓ (z, z2)

Notice that in this formula, y denotes the position at the upper left corner of the zone
containing z1 and z2. Each zone (except the larger ones) has at most 4 × 4N wires, and
we will encode a wire in the zone from which it exits (as for the case of words): hence each
zone must have at least 4× 4N ×N = (4N)2 positions available which is exactly the case.
Deciding of a decodable order between the wires, it is easy to design a formula f(z1, z2, n) = x
for every n ∈ [0 .. N − 1]: for example, we may consider a partitioning of each zone into 4
disjoint rectangles of height N each reserved for the wires of one border of the zone. This
shows that Pict(A) is a wFO+wTCb(AP)-zonable class of graphs.

Trees

In ranked trees, we consider zones to be subtrees of height at least 2N with roots at height
0 modulo 2N : in particular, every subtree having a root at height 0 modulo 2N which has
height less than 2N is not a zone and hence belongs to the zone which is above it. However,
it is easy to check that each zone has a height bounded by 2×2N −1, and hence a diameter
bounded by M = 2×(4N−1)−1. Notice that the height of a node modulo 2N is computable
by a formula of wFO+wTCb(AP), as it suffices to check the length modulo 2N of the unique
path leading from the root to the node, which can be done by formula height(x) ≡ k[2N]

6.5. FROM AUTOMATA TO LOGICS 99

Figure 6.9: Chunk decomposition of a nested word: special calls and returns are the square
vertices, whereas special wires are depicted with dashed lines. There are 4 chunks, each of
call-depth at most 2× (2N).

defined by
⊕

z(x, z) ∈ R
k
↑ ⊗

(
[wTC2N

x,y(x, y) ∈ R2N
↑](z, init)⊕ z = init

)

where we have denoted (x, y) ∈ Rℓ↑ the formula

⊕
z1,...,zℓ−1

(x, zℓ−1) ∈ R↑ ⊗ (zℓ−1, zℓ−2) ∈ R↑ ⊗ · · · ⊗ (z2, z1) ∈ R↑ ⊗ (z1, y) ∈ R↑

and (x, y) ∈ R↑ the formula (x, y) ∈ R↑1 ⊕ · · · ⊕ (x, y) ∈ R↑K
with K the maximal arity of

a letter in the ranked alphabet A.
Wires are edges that enter or exit the root of a zone: hence, each root, except the root of

the whole tree is part of exactly two wires relating the root to its parent. Notice that it is not
possible, as for the case of words, to encode a wire in the zone from which it exits. Indeed,
a zone may be connected to an exponential number of wires – the wires at the bottom –
and the zone may not contain enough nodes to encode them all. Instead, we encode a wire
in the subtree of the root. Hence, each zone must encode at most 2 × N pairs, which is
possible as it contains at least this number of vertices (considering its height). Again, it is
easy to decide of a decodable order and to design a formula f(z1, z2, n) = x: for example, we
may consider the leftmost branch of this subtree of length 2N (which exists considering the
hypothesis on its height) and use the N first to encode the entering wire, and the others to
the exiting wire. This proves that T ree(A) is a wFO+wTCb(AP)-zonable class of graphs.

Nested Words

Let G ∈ N est(A) be a nested word of length n. Notice first that we cannot use the zone
partitioning of the underlying word: indeed, since there are nesting edges, each zone may
then be wired to too many zones, and it would then be impossible to encode all the wires.

Instead, we describe zones using two levels. First, we cut the nested words into chunks:
a chunk is a connected subset of vertices having call-depth of the form 2Nk + i for a fixed
k and i ∈ [0 .. 2N − 1]. For the same reasons than for trees, chunks that are have a size
less than 4N – in particular, they necessarily have a call-depth bounded by 2N – are glued
to the chunks above them. This implies that every chunk has a call-depth bounded by
2 × 2N . Every chunk (unless the topmost one with smallest call-depth) is surrounded by
a pair of special vertices, related by a nesting edge. A chunk decomposition is depicted in
Figure 6.9: the special vertices are represented by squares. More formally, we call v a special
call (respectively, a special return) if it is a call vertex (respectively, a return vertex) of
call-depth a multiple of 2N , such that there are at least 4N positions in-between the vertex
and its matched call (respectively return). We call special wires the edges relating one chunk
to another: these wires necessarily touch some special vertex.

100 CHAPTER 6. LOGICAL SPECIFICATIONS

Notice that we can test if a vertex x has a call-depth equal to 0 modulo 2N with the
following expression starting at x:

x?
((

x?→(y→+ ¬(y? ∨x?)→)⋆x?
)2N

)⋆
→(y→+ ¬(y? ∨x?)→)⋆final?

Intuitively, this expression iterates as many times as necessary a sequence of 2N moves
decrementing of one unit the call-depth. Each decrement is composed of a →-edge at a
return node, followed by the iteration of some moves not changing the call-depth: either a
y followed by a →, or a → move taking place on an internal vertex (neither a call or a
return). After this iteration, we simply verify that the final vertex has the same-call depth
than the current vertex.

One first attempt to prove that nested words are zonable could be to express with
a logical formula this expression, transforming each Kleene star iteration into a bounded
transitive closure. However, this is not immediate, since the external Kleene star iteration
is unbounded in the sense that it can make unbounded steps, because of the internal Kleene
star.

Henceforth, we test if a vertex x has a call-depth equal to 0 modulo 2N with a more
advanced method. We indeed use as a tool summary paths. The summary path issued from
a vertex v consists in the shortest path from position v to the final vertex of the nested
word. Indeed, it is the only path from v that jumps through the y-edges in call vertices,
and otherwise follow the →-edges. On the nested word depicted in Figure 2.3 for example,
the summary path from vertex 2 (first vertex labeled by b) visits exactly sequentially the
vertices 2, 3, 4, 5, 11, 12 and 13. We will say that this vertex is at a summary-distance
6 from the final vertex. More generally, the summary-distance between a vertex v and the
final vertex is defined as the length of the summary path issued from v.

We can verify that a vertex x is at summary-distance 0 modulo 2N from the final vertex
with the following expression:

x?
(
(y + ¬(y?)→)2N

)⋆
final? .

Notice that this Kleene star iteration is bounded, so that we can design an equivalent formula
σ-dist(x) ≡ 0[2N] of wFO+wTCb(AP) for this expression:

[
wTC2N

x0,y2N
(
⊗

x1,...,x2N−1

⊗
0≤i<2N

σ-step(xi, xi+1)
]
(x, v(f))

with

σ-step(x, y) = Ry(x, y)⊕ ¬(
⊕

z Ry(x, z))⊗R→(x, y) .

The key ingredient is that we can moreover compute the call-depth of a vertex v by following
the summary-path issued from v. Consider first a vertex v0 at a summary-distance 0 modulo
2N from the final vertex. We denote by (vk)0≤k≤K the ordered sequence of vertices of the
summary path issued from v0, with vK = v(f). Using the hypothesis over v0, we know that
K is a multiple of 2N . We will maintain the call-depth modulo 2N of the vertices v2iN

for i ∈ [0 ..K/2N], checking at the end that the call-depth of vertex vK we computed is 0.
We finally explain how to compute the call-depth modulo 2N of the vertices v2iN with a
bounded transitive closure: the transitive closure jumps over vertices v2iN + c that encode
the call-depth c modulo 2N of vertices v2iN . Henceforth, we must simply design a formula
Φ(x′, y′) with x′ encoding v2iN + ci and y′ encoding v2(i+1)N + ci+1:

Φ(x′, y′) =
⊕

x0,...,x2N

⊕
k0,...,k2N

⊗
0≤i<2N

βki,ki+1(xi, xi+1)

⊗ σ-dist(x0) ≡ 0[2N]⊗ σ-stepk0(x′, x0)⊗ σ-stepk2N (y′, x2N)

6.5. FROM AUTOMATA TO LOGICS 101

Figure 6.10: Zone partitioning of a nested word and encoding of wires: the special call
and returns on the right are parts of 4 wires (2 special wires and 2 non-special ones), and
henceforth linked to two zones of encoding each.

where4

βk,k(z, z′) = Ry(z, z′)⊕
(
¬(
⊕

tRy(z, t))⊗R→(z, z′)⊗ ¬(
⊕

tRy(t, z′))
)

βk,k−1(z, z′) = ¬(
⊕

tRy(z, t))⊗R→(z, z′)⊗
⊕

tRy(t, z′)

and we denote by σ-stepk(x, y) the iteration k times of formula σ-step, which is easily
definable in wFO+wTCb(AP).

Then, formula
[
wTC4N

x′,y′Φ(x′, y′)
]
(x− c, v(f))

when evaluated with x mapped to vertex v0 (at summary-distance 0 modulo 2N from the
final vertex), verifies that this vertex has call-depth equal to c modulo 2N . Notice that
variables x and y must be linked by a piece of the summary-path of length 2N , so that
variables x′ and y′ are at a distance at most 4N , justifying the bound on the transitive
closure. Finally, we are able to design a formula c-d(x) ≡ 0[2N] verifying that vertex x
has call-depth 0 modulo 2N , by first considering the first vertex v0 on the right of x with
summary-distance 0 modulo 2N from the initial vertex, and by applying the previous formula
with c the call-depth of v0 deduced from the hypothesis that x has call-depth 0 modulo 2N .

This is very easy to check that a call and its underlying return are separated by at least
4N positions, so that we can design formulae sc(x) and sr(y) of wFO+wTCb(AP) checking
that x and y are respectively a special call and a special return.

Chunks may be arbitrarily large, and hence may have an unbounded diameter. To
overcome this difficulty, we cut each chunk into zones by grouping vertices of a chunk into
sets of 3N vertices, following the linear order. As for words, the last zone of a chunk may
have between 3N and 4N − 1 vertices. In any case, each zone has a diameter bounded by
M = 4N − 1, and we may design a formula same-zone(z1, z2) similarly to the word case.

Finally, wires may be of two types: either a wire relates two vertices of different chunks
(called special wires previously), in which case they are encoded into the chunks containing
the vertices of greatest call-depth, or a wire relates two vertices of the same chunks, in which
case we follow the same kind of encoding as for words. Notice that every zone may have
many wires, but only hosts the vertices encoding at most two of them.

An example of zone partitionning, as well as the encoding of wires, is depicted in Fig-
ure 6.10.

This finishes the outline of the proof that N est(A) is a wFO+wTCb(AP)-zonable class
of graphs.

4In the second formula, if k = 0, we assume that k − 1 is equal to 2N − 1, as we count modulo 2N .

102 CHAPTER 6. LOGICAL SPECIFICATIONS

Mazurkiewicz Traces

We finally explain the zonability for the class MT raceproc(A) of Mazurkiewicz traces, with
a fixed distribution proc : A → P([1 .. n]) of the finite alphabet of rendez-vous or internal
actions, into the sets of processes it concerns. We recall that the set of directions is D =
{↓p, ↑p| p ∈ [1 .. n]}, i.e., we can follow the linear orders of each process.

Notice first that there exists a formula x < y whose semantics is exactly the partial order
of a trace. Indeed, a vertex v is smaller in this partial order that v′ if there exists some
vertices v = v1, v2, . . . , vn, vn+1 = v′ and a permutation σ of the n processes [1 .. n] such
that for all i ∈ [1 .. n], there exists a ↓σ(i)-path from vi to vi+1.5 Then we can easily deduce
the following formula x < y of FO:

∃x1, . . . , xn+1 (x1 = x) ∧ (xn+1 = y) ∧
∨

σ permutation
of [1 .. n]

∧

1≤i≤n

R↓σ(i)
(xi, xi+1) .

As for nested words, the zone partition of a Mazurkiewicz trace is achieved in a hier-
archical way: we first split the trace considering only the first process, then considering
the second one, etc. For each process, the splitting is done using the computation of some
distances modulo a fixed integer on the linear order of this process, as for words. The idea is
to consider the history of a vertex of the trace. In a trace G ∈MT raceproc(A), the history
of vertex v is the set of vertices that are smaller than or equal to v in the partial order of
the trace.

For a given natural number N , we now define the zone splitting of a trace G, with a
bound M = 4n2N . We first consider the set V1 of vertices attached to process 1. On the
linear order defined by ↓1, we consider all the vertices (vi)0≤i≤K1

at distance 0 modulo 2nN
from the minimial element of the process: in particular vi < vi+1 for every i ∈ [0 ..K1 − 1].
As for words, we may not consider the deepest such vertex if it is at a distance less than nN
from the last vertex of the process. Those vertices define a partition of the vertices of the
trace, by considering the histories they generate: we attach to vertex vi the set of vertices
in the history of vi that are not in the history of vi−1 (in case i 6= 0). The last set of vertices
of the partition consists of all the vertices that are not in the history of vK1 . The classes
defined by this partition are called 1-classes below.

Notice that a 1-class is necessarily connected, and moreover, the restriction to every
process is also connected: if it contains at least one vertex of process p ∈ [1 .. n], we call
minimum and maximum of the 1-class with respect to process p the smallest and the greatest
vertices of process p in the class, respectively. If a 1-class contains at most M vertices, it is
of diameter bounded by M , then it is considered as a zone. Otherwise, we further split the
1-class. Indeed, if the 1-class contains at least 4n2N+1 vertices, there should exist a process
p such that at least 4nN+1 vertices of the class are attached to process p: moreover, p must
be different to 1 since each 1-class contains at most 3nN vertices. We consider the smallest
p ∈ [2 .. n] verifying this property. We then split considering the set Vp of vertices attached
to process p. More precisely, we denote by (vi)0≤i≤K2

the vertices attached to process
p at distance 0 modulo 2nN from the minimum of the 1-class with respect to process p.
Then, we split the 1-class into several p-classes with the same process than before. We may
continue this construction until each class is indeed a zone (notice that we split the classes
by increasing order of processes which ensures the termination).

We now explain how to build the formula same-zone(z1, z2). The checking is done by
searching for the hypothetical zone in which z1 and z2 could be, by considering the successive
p-classes in which the two vertices are. Indeed, every zone is contained in a succession
of p-classes, and hence, we represent this zone with the sequence of pairs of minimum

5The definition of the partial order permits to use any {↓p | p ∈ [1 .. n]}-path, but we can transform any
such path into the succession of some ↓σ(i)-paths for a given permutation σ: in fact, the path comes back to
a process p already visited before, we can simply replace the path in-between by a succession of ↓p moves,
and hence simplify the path.

6.5. FROM AUTOMATA TO LOGICS 103

and maximum with respect to process p of each p-class in which it is contained. We first
consider the 1-class in which z1 and z2 lie: this is done in a similar way as for words, i.e., by
considering the successive vertices attached to process 1 at a distance 0 modulo 2nN to the
minimal element, and stopping when we obtain a vertex that has z1 and z2 in its history.
We then check the size of the 1-class obtained, to know whether we should continue to split
the current class or not. If it is the case, the process p along which we should split can
be computed easily, and then, the following splitting is done similarly by considering the
distance modulo the minimal element of the class with respect to p.

Finally, the encoding of the wires is very similar to the one of words. Indeed, each zone
contains at most 2 wires per process, and hence at most 2n wires. We encode a wire in
the zone from which it exits (as for words) so that 2nN vertices are required. Notice, from
the construction above, that each p-class contains at least 2nN vertices attached to process
p. Hence, the formula f(z1, z2, n) = x is written by considering any computable ordering of
those vertices and the wires of the zone.

This finishes the outline of the proof thatMT raceproc(A) is a wFO+wTCb(AP)-zonable
class of graphs.

6.5.2 Logical Characterization of Weighted Automata

Theorem 6.14. Let G be a wFO+wTCb(FO)-zonable class of graphs in G(A,D). Then,
from every weighted automaton A, we can construct a formula ΦA of wFO+wTCb(FO),
with Free(ΦA) = Free(A), that is equivalent to A over G, i.e., such that for every graph
G ∈ G and every valuation σ of the free variables of A, we have [[A]](G, σ) = [[ΦA]](G, σ).

Proof. From a weighted automaton A with set of states Q, we construct a formula of
wFO+wTCb(FO) in several steps. First, we will use an outermost transitive closure in or-
der to make macro steps in the graph, and then compute the weight of the runs in-between
macro steps with a tower of transitive closures, inspired by the Kleene theorem. The main
difficulty in this second step is that Kleene iterations in our weighted expressions are not
naturally bounded (in the sense that they perform jumps of possibly unbounded length):
otherwise, we could mimick proof of [EH07] and construct a formula of wFO+wTC(FO)
equivalent to the automaton. The current impossibility to translate this fragment of logic
back into our automaton model prevents us to use this simpler proof. As a way to overcome
this challenge, we cut the input graph into zones that have a bounded diameter. Then,
the outermost transitive closure simply jumps from one zone to an adjacent one, and the
inner ones simulate the behavior of automaton A over a zone of bounded diameter, using
McNaughton-Yamada construction [MY60] for example: this ensures that every transitive
closure operator performs only bounded jumps.

Using formula same-zone(z1, z2) and f(z1, z2, n) = x for N = |Q|, we may design a
formula Ξqi,qf

that computes the weight of the runs from qi at initial vertex to qf at final
vertex. Then, the semantics of the automaton A is obtained by considering the formula

⊕
qi,qf

Iqi
⊗ Ξqi,qf

⊗
(⊕
α∈Test

ϕα(final)⊗ Fqf
(α)
)
.

In this formula and in the following ones, we denote by ϕα(z) the FO formula – with free
variables z and the free variables of α – that permits to verify the local test α ∈ Test over the
vertex denoted by z. We can easily associate such a formula with every test by induction,
letting

ϕ⊤(z) = ⊤, ϕinit?(z) = init(z), ϕfinal?(z) = final(z)

ϕa?(z) = Pa(z), ϕd?(z) = ∃y Rd(z, y), ϕx?(z) = (x = z)

and by directly translating the Boolean closure from test formulae to FO formulae.

104 CHAPTER 6. LOGICAL SPECIFICATIONS

We first describe a formula single-transitionq,q′(z1, z2) that computes the sum of the
weights of the transitions going from vertex z1 in state q to vertex z2 in state q′:

single-transitionq,q′(z1, z2) =
⊕

d∈D,α∈Test

(ϕα(z1) ∧Rd(z1, z2))⊗∆q,q′(d)(α) .

We will then use a transitive closure to compute the weights of the runs that remain in a
given zone, knowing the first and last vertices and the states. This transitive closure will be
bounded, since the zone is supposed to be of diameter bounded by M . More precisely, under
the condition that vertices z1 and z2 are in the same zone Z, formula Φq,q′(z1, z2) computes
the sum of the weights of the non-empty runs, that remain inside zone Z, going from vertex
z1 in state q to vertex z2 in state q′. To build such a formula, we follow the McNaughton-
Yamada algorithm, i.e., we generate formulae ΦRq,q′(z1, z2) with R ⊆ Q, computing the sum
of the weights of the non-empty runs, that remain inside zone Z, going from vertex z1 in
state q to vertex z2 in state q′, that visit as intermediary states only states of R. We will
then let Φq,q′(z1, z2) = ΦQq,q′(z1, z2). We construct these formulae by induction over R. As
a base case, we have

Φ∅q,q′(z1, z2) = single-transitionq,q′(z1, z2) .

Then, if q′′ /∈ R, the runs from q to q′ with intermediary states in R ∪ {q′′} either do not
visit state q′′ or visit it at least once. Hence, we may compute their weights with formula

ΦR∪{q
′′}

q,q′ (z1, z2) = ΦRq,q′(z1, z2)⊕
⊕

z′1,z
′
2

same-zone(z1, z
′
1)⊗ ΦRq,q′′(z1, z

′
1)

⊗
(
[wTCMx,y(Φ

R
q′′,q′′(x, y))](z′1, z

′
2)⊕ (z′1 = z′2)

)

⊗ same-zone(z′2, z2)⊗ ΦRq′′,q′(z
′
2, z2) .

Finally, formula Ξqi,qf
initializes the run and then uses a transitive closure operator to

jump from a zone to the following one (see Figure 6.11):

Ξqi,qf
=

⊕
q,q′∈Q

⊕
z1,z2,z′1,z

′
2

[
same-zone(init, z1)⊗ Φqi,q(init, z1)

⊗
⊕

x′,y′

(
f(z1, z

′
1, q) = x′ ⊗ f(z2, z

′
2, q
′) = y′ ⊗ [wTC3M

x,yΨ](x′, y′)
)

⊗ same-zone(z′2, final)⊗
⊕
q′′∈Q

single-transitionq′,q′′(z2, z
′
2)⊗ Φq′′,qf

(z′2, final)
]

with Ψ(x, y) the formula

⊕
z1,z2,z′1,z

′
2

⊕
q,q′∈Q

[
(f(z1, z2, q) = x)⊗ (f(z′1, z

′
2, q
′) = y)

⊗
⊕

q′′∈Q single-transitionq,q′′(z1, z2)⊗ Φq′′,q′(z2, z
′
1)
]
.

In formula Ψ as well as in the final part of formula Ξqi,qf
, as single transition has to be

performed in order to jump through the wire: indeed, formula Φq,q′ only remains inside a
zone and hence cannot perform it.

Notice that variables x and y in formula Ψ must be at a distance bounded by 3M since
each zone has a diameter M and position encoding a wire must be in one of the two zones
adjacent to this wire. Formula Ψ(x, y) simply makes the first step jumping over the wire,
before using formula Φq′′,q′ computing the weights of all the interesting parts of runs. The
correctness of this construction follows from the fact that semirings are distributive: indeed,
we merge the whole set of runs into subsets visiting the same sequence of wires.

Notice that the set of free variables of formula produced by this proof is exactly the set
of free variables of the test formula appearing in the description of the automaton, which is
exactly the set of free variables of the automaton.

6.6. HYBRID NAVIGATIONAL LOGICS 105

z2

z
′
2

z1

z
′
1

x
′

y
′

v
(i)

v
(f)

Figure 6.11: Instantiation of formula Ξqi,qf

6.5.3 Logical Characterization of Weighted Automata with Pebbles

We now generalize the previous result to also deal with pebbles.

Theorem 6.15. Let G be an wFO+wTCb(FO)-zonable class of graphs in G(A,D). Then,
from every layered pebble weighted automaton A, we can construct an equivalent formula
ΦA of wFO+wTCb(FO), with Free(ΦA) = Free(A), equivalent to A over G, i.e., such that
for every graph G ∈ G and valuation σ of the free variables of A, we have [[A]](G, σ) =
[[ΦA]](G, σ).

Proof. Very little has to be done with respect to the proof in the case without pebbles.
Indeed, the proof goes by an induction on the number of layers of automaton A. The case
of 0 layer is done in Theorem 6.14.

Then, considering a (K+1)-layered automaton A, we apply the same construction as be-
fore over the states of layer K+1, and simply enriching the formula single-transitionq,q′(z1, z2)
to also deal with the pebbles. This formula must now compute the sum of the weights of
the transitions from z1 in state q to z2 in state q′ if z1 6= z2, and if z1 = z2 must compute
the sum of the weights of the runs from z1 in state q to z1 in state q′ with intermediary
states in lower layers. By induction, for every states q′1 and q′2 of layer K, we have a formula
Ξxq′1,q′2(z1) that computes the sum of the weights of the runs only visiting states of layers at
most K from the initial vertex in q′1 to the final vertex in q′2, initially with pebble x dropped
on vertex z1. Hence, we now define single-transitionq,q′(z1, z2) by

(z1 6= z2)⊗
[⊕
d∈D,α∈Test

(ϕα(z1) ∧Rd(z1, z2))⊗∆q,q′(d)(α)
]

⊕ (z1 = z2)⊗
[⊕

q′1,q
′
2∈Q

x∈Var
α1,α2∈Test

(ϕα1(z1) ∧ ϕα2(final))⊗∆q,q′1
(dropx)(α1)

⊗ Ξq′1,q′2(x 7→ z1)⊗∆q′2,q
′(lift)(α2)

]

where Ξq′1,q′2(x 7→ z1) denotes the formula Ξq′1,q′2 where free occurrences of x in the test
formulae are replaced by z1. In particular, if a variable remains free in the automaton A, it
will not be replaced in such a way in the construction, so that it will be a free variable of
the formula produced.

6.6 Hybrid Navigational Logics

As a conclusion of this chapter dealing with logics, we now present some alternative ways of
specifying quantitative properties. These are based on Propositional Dynamic Logic (PDL)
introduced by Fischer and Ladner in [FL79], and that we formally define later, or XPath: this
may seem very close to our weighted expressions, and this is indeed the case, as we designed

106 CHAPTER 6. LOGICAL SPECIFICATIONS

the latter keeping PDL or XPath in mind. The main difference is the clear separation
between state formulae and path formulae (also called programs in the literature). Moreover,
in our weighted extension, we clearly separate the Boolean fragment from the weighted part,
as we did for the previous logics. In weighted expressions, we inserted no Boolean fragment:
henceforth this is the biggest novelty and advantage of this new fragment of logic. As we did
for weighted expressions though, we then consider adding some expressive power by adding
some variables that can be placed on the graph temporarily: this is refered in the literature
as Hybrid Proposition Dynamic Logic (HPDL) (see, e.g., [ABM00, FdRS03]). Again, we
give some efficient translation from these logics to weighted automata with pebbles. As
a corollary, this may permit to apply the evaluation algorithms presented in Chapter 5,
and hence extends algorithms presented in [FL79, Lan05] for model checking PDL formulae
against some fixed Kripke structures.

Indeed, we may alternatively have considered linear temporal logics and their extensions
by first-order quantifications, automata, or expressions as done for the Boolean case by
[LS07]. We have investigated this direction in [4]: it can be seen as a special case of the
weighted propositional dynamic logic we present in this manuscript. The following example
simply presents some ideas specific to temporal logics.

Example 6.16. We consider in this example the probabilistic Linear Temporal Logic (LTL)
presented in Chapter 1. Using pebbles in probabilistic expressions or automata is a natural
and powerful way to deal with nesting in LTL formulae. Indeed, temporal logics implicitly
use a free variable to denote the position where a formula has to be evaluated. We will mark
this position with a pebble, say x, in expressions Eϕ(x) or automata Aϕ(x) associated with
LTL formulas ϕ.

Consider an LTL formula Fϕ, for Finally ϕ. Given a word w and a position i in w, we
are interested in the probability [[Fϕ]](w, i) that ϕ holds in w at position i. As reminder,
the semantics has been defined by

[[Fϕ]](w, i) =
∑

j≥i

(∏

i≤ℓ<j

[[¬ϕ]](w, ℓ)
)
× [[ϕ]](w, j) .

For every LTL formula ϕ, we are aiming at an equivalent hybrid weighted expression
Eϕ(x) which evaluates to [[ϕ]](w, i) over word w when pebble x marks position i: in par-
ticular, we require the expression to run from the initial position to the final one. Let us
illustrate this inductive construction for LTL formulas. For Fϕ, we set

EFϕ(x) = init?→⋆x?
((
y!E¬ϕ(y)

)
→
)⋆(

y!Eϕ(y)
)
→⋆final? .

The expression starts at the beginning of the word and moves to the right until it discovers
the position marked with variable x. Then, for each j ≥ i, it iterates j − i times the
computation of ¬ϕ with the current position marked by y, moving to the right between two
computations. Finally, it computes ϕ with y!Eϕ(y) before moving to the last position of the
word. Indeed, we only need a single variable name, by using the reusability, so that we let

EFϕ(x) = init?→⋆x?
((
x!E¬ϕ(x)

)
→
)⋆(

x!Eϕ(x)
)
→⋆final? .

Similarly, for Gϕ, we have [[Gϕ]](w, i) =
∏
j≥i[[ϕ]](w, j), leading to the simpler expression

EGϕ(x) = init?→⋆x?
((
x!Eϕ(x)

)
→
)⋆

final? .

The last test (final?) is useful to enforce the preceding star operation to capture the whole
suffix of the word from the position marked by x.

Finally, the expression for the Until modality is

EϕUψ(x) = init?→⋆x?
((
x!(E¬ψ(x)←⋆Eϕ(x))

)
→
)⋆(

x!Eψ(x)
)
→⋆final? .

6.6. HYBRID NAVIGATIONAL LOGICS 107

okFϕ

koFϕ

Aϕ(x)
okϕ

koϕ

→

x? →

dropx

final?lift

final?lift

→

final?

Figure 6.12: Automata for the Finally operator

In terms of automata, let us assume – as in the proof of Theorem 6.10 – that, for every
formula ϕ, there is an automaton Aϕ with two designated terminal states, ok and ko, such
that runs ending in ok (and at the end of the word) compute expression Eϕ and those ending
in ko compute expression E¬ϕ. The figure below depicts the pebble weighted automaton
for the modality Finally. The one for Globally is obtained by considering the equivalence
Gϕ = ¬F(¬ϕ), i.e., by exchanging the states okϕ and koϕ, as well as the two final states.

�

6.6.1 Weighted Propositional Dynamic Logic

First, we present the Boolean fragment of formulae from Propositional Dynamic Logic that
we consider. It is composed of state formulae α and local path formulae (or programs) π
defined by

α ::= ⊤ | init | final | a | x | ¬α | α ∧ α | α ∨ α | Eπ

π ::= ⊥ | stay | d | π;π | α?π : π

where a ∈ A, d ∈ D and x ∈ Var. We let DPDL (for Deterministic Propositional Dynamic
Logic) the set of state formulae hence defined. The determinism comes from the fact that we
can see a program π as deterministic once the state formula α are evaluated (no disjunction
or Kleene iteration over programs in particular). We consider this restriction for technical
reasons that we stress later.

The semantics of a state formula α is a set of vertices of a graph equipped with a valuation
of free variables. The semantics of a path formula π is a set of pairs of vertices of a graph
equipped with a valuation of free variables. These semantics are defined in Table 6.3 for
a given pointed graph G ∈ G(A, d), for vertices v and v′, and a valuation σ of domain
containing the free variables of the formula.

Remark 6.17. The path formula α? stay : ⊥ is necessarily non moving, in the sense that
if G, σ, v, v′ |= α? stay : ⊥ then v = v′, and is indeed equivalent to the state formula α. �

The fact that we disallow disjunction and Kleene iteration of path formulae implies the
following deterministic condition:

Lemma 6.18. Programs of DPDL are deterministic, i.e., for every program π ∈ DPDL,
graph G, valuation σ, and vertices v,

• either there exists a unique vertex v′ such that G, σ, v, v′ |= π;

• or for all vertices v′, G, σ, v, v′ 6|= π.

Proof. The proof goes by induction over the program π ∈ DPDL.
If π = ⊥, the second case holds. If π = stay, the first case holds with v′ = v. If π = d,

either d ∈ type(v) (d is enabled in v), in which case the first case holds with v′ the unique
vertex such that (v, v′) ∈ Ed, or d /∈ type(v), in which case the second case holds.

If π = π′;π′′, by applying the induction hypothesis to π′, we may have two cases:

108 CHAPTER 6. LOGICAL SPECIFICATIONS

Table 6.3: Semantics of DPDL formulae

G, σ, v |= ⊤
G, σ, v |= init if, and only if, v = v(i)

G, σ, v |= final if, and only if, v = v(f)

G, σ, v |= a if, and only if, λ(v) = a
G, σ, v |= x if, and only if, σ(x) = v
G, σ, v |= ¬α if, and only if, G, σ, v 6|= α
G, σ, v |= α ∧ α′ if, and only if, G, σ, v |= α and G, σ, v |= α′

G, σ, v |= α ∨ α′ if, and only if, G, σ, v |= α or G, σ, v |= α′

G, σ, v |= Eπ if, and only if, there exists v′ ∈ V such that G, σ, v, v′ |= π

G, σ, v, v′ 6|= ⊥
G, σ, v, v′ |= stay if, and only if, v = v′

G, σ, v, v′ |= d if, and only if, (v, v′) ∈ Ed
G, σ, v, v′ |= π;π′ if, and only if, there exists v′′ ∈ V such that

G, σ, v, v′′ |= π and G, σ, v′′, v′ |= π′

G, σ, v, v′ |= α?π : π′ if, and only if, G, σ, v |= α and G, σ, v, v′ |= π,
or G, σ, v 6|= α and G, σ, v, v′ |= π′

• either there exists a unique vertex v′ such that G, σ, v, v′ |= π′: the property then
follows from the induction hypothesis applied to π′′ starting in vertex v′;

• or for all vertex v′, G, σ, v, v′ 6|= π′, in which case the same property holds for π.
Finally, for π = α?π′ : π′′, there are two cases again:
• either G, σ, v |= α, in which case the result follows from the induction hypothesis

applied to π′;
• or G, σ, v 6|= α, in which case the result follows from the induction hypothesis applied

to π′′.

On top of that fragment of logic, we add weights by mimicking the Boolean operators
with a weighted semantics.

Definition 6.19. We denote by WPDL the class of weighted propositional dynamic logic
defined by

ϕ ::= s | ϕ⊕ ϕ | ϕ⊗ ϕ | Σψ

ψ ::= d | α?ψ : ψ | ϕ | ψ · ψ | ψ + ψ | ψ+

where s ∈ S, a ∈ A, d ∈ D and α ∈ DPDL. �

As for weighted expressions, the semantics will map a pointed graph, a valuation and
either one or two vertex(ices) to a weight of a continuous semiring S, as described in Ta-
ble 6.4. As for weighted expressions, we denote in this table, ψn the n-th iterate of ψ defined
inductively by

ψ1 = ψ and ψn+1 = ψn · ψ for n ∈ N .

Remark 6.20. Notice that if ϕ and ϕ′ are state formulae of WPDL, the weighted path
formula α?ϕ : ϕ′ is necessarily non moving and is indeed equivalent to the state formula
Σ(α?ϕ : ϕ′). This is the reason why we did not introduce construction α?ϕ : ϕ′ directly in
the weighted state formulae. �

Every weighted expression of WE can be seen as a path formula of WPDL where the
Boolean path formulae are disallowed. In particular, notice that a Boolean state formula α

6.6. HYBRID NAVIGATIONAL LOGICS 109

Table 6.4: Semantics of WPDL

[[s]](G, σ, v) = s

[[ϕ⊕ ϕ′]](G, σ, v) = [[ϕ]](G, σ, v)⊕ [[ϕ′]](G, σ, v)

[[ϕ⊗ ϕ′]](G, σ, v) = [[ϕ]](G, σ, v)⊗ [[ϕ′]](G, σ, v)

[[Σψ]](G, σ, v) =
⊕

v′∈V

[[ψ]](G, σ, v, v′)

[[d]](G, σ, v, v′) =

{
1 if G, σ, v, v′ |= d

0 otherwise.

[[α?ψ : ψ′]](G, σ, v, v′) =

{
[[ψ]](G, σ, v, v′) if G, σ, v |= α

[[ψ′]](G, σ, v, v′) otherwise.

[[ϕ]](G, σ, v, v′) =

{
[[ϕ]](G, σ, v) if v = v′

0 otherwise.

[[ψ · ψ′]](G, σ, v, v′) =
⊕

v′′∈V

[[ψ]](G, σ, v, v′′)⊗ [[ψ′]](G, σ, v′′, v′)

[[ψ + ψ′]](G, σ, v, v′) = [[ψ]](G, σ, v, v′)⊕ [[ψ′]](G, σ, v, v′)

[[ψ+]](G, σ, v, v′) =
⊕

n≥1

[[ψn]](G, σ, v, v′)

can be transformed into a non moving path formula by the construction α? 1 : 0. However,
this logic seems strictly more expressive, by the use of a richer Boolean fragment, and the
summation operator Σψ. We now prove that we can efficiently translate this logic into the
formalism of pebble weighted automata.

Theorem 6.21. Let S be a continuous semiring and G be a searchable class of graphs.
For each path formula ψ in WPDL, we can construct a layered pebble weighted automa-
ton (using a single variable) A ∈ PWA(S) with Free(A) = Free(ψ), equivalent to ψ, i.e.,
[[ψ]](G, σ, v, v′) = [[A]](G, σ, v, v′) for every pointed graph G, every valuation σ with domain
containing Free(ψ) and every vertices v and v′.

Proof. Once again the proof contains two separate parts: the constructions for the Boolean
part, and the ones for the weighted operators.

We first explain the constructions for the Boolean part DPDL. As in Theorem 6.10, we
produce, for every Boolean state formula α, a layered pebble weighted automaton Bα with
one initial state ι and two (final) states ok and ko such that for all pointed graph G ∈ G,
every vertex v and every valuation σ,

[[Bαι,ok]](G, σ, v, v′) =

{
1 if G, σ, v |= α and v = v′

0 otherwise,

[[Bαι,ko]](G, σ, v, v′) =

{
1 if G, σ, v 6|= α and v = v′

0 otherwise.

Notice that contrary to the previous proof, automaton Bα starts in vertex v (which is not
encoded as a free variable anymore), and must accept on this vertex.

110 CHAPTER 6. LOGICAL SPECIFICATIONS

ι

ok

ko

1a?

1¬(a?)

Figure 6.13: Automaton for state formula a

Bα
okα

koα
Bα

′

okα′

koα′

okα′′

koα′′

Figure 6.14: Weighted automaton for disjunction α′′ = α ∨ α′

The constructions for all the formulae but the new construct Eπ are very similar to
the proof for first-order formulae6. E.g., for the atom α = a, the automaton is depicted in
Figure 6.13, whereas the disjunction α ∨ α′ is depicted in Figure 6.14.

For a formula α = Eπ, we follow an exploration close to the first-order existential
quantification. Indeed, we start by dropping a pebble x on the current position, in order to
be able to come back to it at the end of the computation. However, during the computation
of the path formula π we do not use the variable x. When the pebble is dropped, we use
the guide to find the pebble again. We now explain how to translate the program π into
an automaton Bπ with a single initial state and two final states ok and ko again. For every
graph G, valuation σ, and vertices v, there are two possibilities thanks to Lemma 6.18
• either there exists a unique vertex v′ such that G, σ, v, v′ |= π in which case, for every
v′′ ∈ V :

[[Bπι,ok]](G, σ, v, v′′) =

{
1 if v′′ = v′

0 otherwise ,

[[Bπι,ko]](G, σ, v, v′′) = 0 ;

• or for all vertex v′, G, σ, v, v′ 6|= π in which case there exists a unique vertex v′ such
that for all v′′ ∈ V :

[[Bπι,ok]](G, σ, v, v′′) = 0

[[Bπι,ko]](G, σ, v, v′′) =

{
1 if v′′ = v′

0 otherwise .

Automaton Bπ is produced similarly to the proof of Theorem 4.9 (by induction over π),
and the proof works since the programs are supposed to be deterministic. Indeed, automata
for atoms ⊥, stay and d are depicted in Figure 6.15, whereas the one for the concatenation
is depicted in Figure 6.16. Notice that it verifies the desired property since, either π is not
executable (the second case above), and then the exit point is uniquely determined by it, or
π is executable (the first case above) and reach a unique vertex from which we can apply
the property to π′: however, it can be the case that π;π′ is not executable but still do not
accept in state koπ′′ in the vertex in which it started. Finally, making use of automaton Bα

constructed inductively, we give an automaton for program α?π : π′ in Figure 6.17: again
the property is verified for this automaton because the test α is either true or false at the
current position and then we can use the inductive property for π and π′. Finally, we

6Here again, we allow the use of non-moving transitions, knowing that we can remove them with standard
techniques, as explained in page 93.

6.6. HYBRID NAVIGATIONAL LOGICS 111

ι

ok

ko
1

ι

ok

ko

1

ι

ok

ko

(1⊤)d

1¬(d?)

Figure 6.15: Automata for program ⊥, stay and d

Bπ
okπ

koπ
Bπ

′

okπ′

koπ′

okπ′′

koπ′′

Figure 6.16: Automaton for program π′′ = π;π′

Bα
okα

koα

Bπ
okπ

koπ

Bπ
′

okπ′

koπ′

okπ′′

koπ′′

Figure 6.17: Automaton for program π′′ = α?π : π′

obtain the automaton for state formula Eπ as explained before by dropping a pebble, using
the guide AG to find it, simulating automaton Bπ and lifting the pebble to come back to the
original vertex (indeed, we need to use the guide again to reach the final vertex before lifting
the pebble, but we forget about this search in the picture). This construction is depicted in
Figure 6.18.

It remains to translate the weighted constructions of WPDL. We construct for every
state formula ϕ an automaton Aϕ such that [[Aϕ]](G, σ, v, v′) = 0 if v 6= v′ and

[[Aϕ]](G, σ, v, v) = [[ϕ]](G, σ, v) .

Simultaneously, we construct for every path formula ψ an automaton Aψ such that

[[Aψ]](G, σ, v, v′) = [[ψ]](G, σ, v, v′) .

These constructions are done with a simulatneous induction.
For base cases, namely s for state formulae and d for path formulae, this is done as for

weighted expressions in Theorem 4.9. The sum ϕ⊕ϕ′ and the product ϕ⊗ϕ′ are translated
respectively with a non-deterministic choice or a sequential composition: we strongly use
at that point that automata Aϕ and Aϕ′ come back to their original position at the end
of their computation. For the Σψ formula, exactly the same construct as for Eπ is done

AG Bπ
okπ

koπ

okα

koα

dropx lift

lift

Figure 6.18: Automaton for state formula α = Eπ

112 CHAPTER 6. LOGICAL SPECIFICATIONS

in this weighted case: supposing that automaton Aψ is constructed, the automaton starts
by dropping a pebble at the current vertex, uses the guide to find it, and then simulates
automaton Aψ (ignoring the pebble however); at the end of its computation, we simply lift
the pebble (after reaching the final vertex by using the guide again) to come back to the
original vertex (since Σψ is a state formula). Path formulae are translated using exactly
the same constructions as in the proof of Theorem 4.9: notice that we add the if-then-
else construct that simply use automaton Bα before launching one of the two continuations
depending on the result obtained.

The number of layers of the automaton constructed is linear in the depth of operators Σ
in the formula. Moreover, the number of states of A is linear in the size of ψ. We strongly
used the determinism of the Boolean path formulae DPDL in order to obtain this result.
Indeed, notice that we could extend the fragment of Boolean path formulae as long as the
result of Lemma 6.18 holds: for example, a construction (α?π)⋆;¬α, iterating the program
π as many times as α holds, would still be deterministic and enable the same proof, modulo
some cycle checking. As an example, we refer to Chapter 8 where expressions are made
deterministic (before adding to them probabilities) in a more general setting.

6.6.2 Hybrid Weighted Propositional Dynamic Logic

In Hybrid Propositional Dynamic Logics, variables are used to mark temporarily some po-
sitions in order to be able to come back to it later in the computation. This is similar to
the variable feature we adopted in hybrid weighted expressions. Indeed, we simply extend
WPDL with an operator x!ψ whose semantics is the semantics of ψ from the initial vertex
to the final one with a valuation updated with x mapping to the current vertex. As we re-
stricted ourselves to local Boolean formulae, it is useless to add this operator in the Boolean
setting.

Definition 6.22. We denote by HWPDL the class of hybrid weighted propositional dynamic
logic defined by

ϕ ::= s | ϕ⊕ ϕ | ϕ⊗ ϕ | Σψ | x!ψ

ψ ::= d | α?ψ : ψ | ϕ | ψ · ψ | ψ + ψ | ψ+

where s ∈ S, a ∈ A, d ∈ D, x ∈ Var, and α ∈ DPDL. �

We simply give the definition of the new operator x!ψ: for every graph G, valuation σ
and vertices v, v′, we let

[[x!ψ]](G, σ, v, v′) =

{
[[ψ]](G, σ[x 7→ v], v(i), v(f)) if v = v′ ,

0 otherwise.

The proof of Theorem 6.21 coupled with the translation of the operator x!− proved
in Theorem 4.31 permits to translate efficiently every formula of this extended logic into
layered pebble weighted automata.

Theorem 6.23. Let S be a continuous semiring and G be a searchable class of graphs. For
each path formula ψ in HWPDL, we can construct a layered pebble weighted automaton
A ∈ PWA(S) with Free(A) = Free(ψ), equivalent to ψ, i.e., [[ψ]](G, σ, v, v′) = [[A]](G, σ, v, v′)
for every pointed graph G, every valuation σ with domain containing Free(ψ), and every
vertices v and v′.

CHAPTER 7
Simple and One-Way Restrictions of

the Specification Languages

La semplicità è l’ultima forma della sofisticazione.1

Leonardo da Vinci

7.1 Simple Semantics of Pebble Weighted Automata. 114
7.2 One-way Pebble Weighted Automata 115
7.3 Undecidability of Emptiness 117
7.4 One-way versus Simple over Words 120
7.5 Restrictions over Expressions and Logics 129

7.5.1 One-way Weighted Expressions 130
7.5.2 First-order logic with Restricted Transitive Closure. 132

We consider in this chapter some restrictions of the specification languages that permit
to consider non necessarily continuous semirings, and in particular (R,+,×, 0, 1) and its
subsemirings. In order to avoid infinite sums in the semantics, which are no longer well-
defined, we have to limit the constructions of expressions and logics, and the power of
automata. We mainly focus on automata. In the following, we will consider two possible
directions. The first one is of a semantical nature, namely to consider a simple semantics
of automata by taking into account only those runs that do not contain cycles. Another
orthogonal possibility would consist in a syntactical restrictions over automata, we consider
one-way pebble weighted automata, being able to move in ordered graphs only in the forward
direction. Indeed, we will see that these two restrictions generate the same behaviors, at
least for the word case.

The first section gives a formal definition of a simple semantics of automata, disallowing
cyclic runs. In Section 2, we define one-way pebble weighted automata. In both cases,
weights are taken from a (non necessarily complete) semiring. We show in Section 3 that
this relaxation over the semiring permits to turn the emptiness problem of an automaton
undecidable very quickly. Finally, we prove that over words, the semantical and syntactical
restrictions generate the same class of formal power series. Last section is devoted to some

1“Simplicity is the ultimate sophistication”.

113

114 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

1 1⊤

(
1

2
a?

)
→+

(
1

2
(a? ∧ ¬final?)

)
←

Figure 7.1: A weighted automaton A ∈WA(R+ ∪ {+∞})

perspectives. Most of the results are extracted from [1], and further extended to the setting
of this manuscript.

7.1 Simple Semantics of Pebble Weighted Automata

A run (respectively a K-run) of a weighted automaton (respectively, a pebble weighted
automaton) is said to be simple if it contains at most one occurrence of each configuration
(respectively K-configuration). Equivalently, a run is not simple if it contains twice the
same configuration.

Lemma 7.1. The number of simple runs (respectively, K-runs) of a weighted automaton
(respectively, a pebble weighted automaton) over a given pointed graph is finite.

Proof. The number of configurations orK-configurations is finite, and hence so is the number
of simple runs which are sequences of pairwise distinct configurations.

The simple semantics of a weighted automaton or a pebble weighted automaton is then
adapted from the semantics we defined before by only considering simple runs. In the
following, it will be denoted by [[A]]s for a weighted automaton A and [[A]]s,K for a pebble
weighted automaton A. Notice that this simple semantics may be defined even in non-
continuous semirings, since the number of simple runs is finite and hence, this semantics
only involves a finite summation. Before taking advantage of this relaxation, we consider in
the two following propositions cases of continuous semirings. Over Boolean semirings first,
this does not add any power.

Proposition 7.2. Over the Boolean semiring, both semantics coincide. More precisely, for
every pebble weighted automaton A over the Boolean semiring, and integer K (equal to 0 if
A is a weighted automaton), we have [[A]]K = [[A]]s,K .

Proof. In the Boolean semiring, a pointed graph G is mapped to 1 by the semantics [[A]]K
if, and only if, there exists an accepting run of A over G that uses only stack of height at
most K. If such an accepting run contains a loop, we may simply remove it, i.e., remove
all configurations in-between the two occurrences of the same configuration as well as one
occurrence of this latter. By repeating this process, we may construct a simple run, which
permits to prove that a pointed graph G is mapped to 1 by the semantics [[A]]K if, and only
if, there exists a simple accepting run of A over G that uses only stack of height at most
K.

This property is very specific to the Boolean semiring, as in other continuous semirings,
simple semantics may restrict the power of a weighted automaton.

Proposition 7.3. Over the continuous semiring (R+ ∪ {+∞},+,×, 0, 1), there exists a
series over finite words that is recognizable by a weighted automaton with the usual semantics,
and not the simple one.

7.2. ONE-WAY PEBBLE WEIGHTED AUTOMATA 115

Proof. Consider the weighted automaton A depicted in Figure 7.1 over alphabet A = {a},
already studied in Example 4.7.

We fix a pointed graph G ∈ Word(A) with n > 0 vertices. We now show that [[A]](G) =
1
n . To prove it, let pi be the sum of the weights of the runs that start in vertex i ∈ [0 .. n−1]
and end in vertex n−1 (in this vertex, any run is blocked as no transition of non-zero weight
is still fireable). Indeed, [[A]](G) = p0.

First, notice that pn−1 = 1 and p0 = 1
2p1. Then, for every i ∈ [1 .. n− 2], we have

pi =
1
2
pi−1 +

1
2
pi+1

This recurrence relation admits as solutions the sequences

pi = λ+ µi

since the polynomial X = 1
2 + 1

2X
2 admits 1 as only root. Then, using the seed equation

pn−1 = 1, we obtain λ + µ(n − 1) = 1, and using the seed relation p0 = 1
2p1, it comes

λ = 1
2 (λ+ µ). We deduce from the second that λ = µ, and with the first conclude that

λ = µ =
1
n

From this, we obtain p0 = λ = 1
n .

Suppose now that there exists a weighted automaton A such that [[A]]s(G) = 1
|V | for

every pointed graph G ∈ Word(A). Denoting by s1, . . . , sk the set of non-negative reals
appearing in the transition matrix and in the initial and final vectors of A, we obtain that
the set of {1/n | n ∈ N \ {0}} should then be entirely included into the N[s1, . . . , sk] the set
of polynomials over s1, . . . , sk with coefficients in N. A fortiori, {1/n | n ∈ N \ {0}} is also
included in ring generated by s1, . . . , sk over Z. As the ring generated by {1/n | n ∈ N\{0}}
over Z is Q, this would mean that Q is included in a finitely generated ring over Z, which is
false (as the remark after this proof recalls). Finally, this proves that there is no weighted
automaton A such that [[A]]s(G) = 1

|V | for every pointed graph G ∈ Word(A).

Remark 7.4. We simply recall why Q cannot be included in a finitely generated ring K over
Z. If it was so, considering I a maximal ideal of K, we know that the quotient K/I would
be a field (by maximality) which is finite (using, e.g., [Bou64], Corollary 1, page 64). By
considering an homomorphism of the ring Q into the ring K, and by taking the quotient of
K by I, we would obtain a homomorphism from the field Q to the finite field K/I: however,
as a homomorphism of fields is injective, this leads to a contradiction. �

The previous proposition shows that loops are indeed useful in weighted automata nav-
igating in graphs (even without pebbles): this must be understood as the fact that the
classical semantics is strictly more expressive than the simple one. However, we will see that
this is no longer the case if we consider weighted automata (with or without pebbles) that
may only visit ordered graphs in a one-way fashion.

7.2 One-way Pebble Weighted Automata

We restrict our attention to ordered pointed graphs in this section. Similarly to our study
of one-way pebble weighted expression, we will first define a special class of automata that
may run over these ordered graphs and generate a semantics even in non-continuous semir-
ings. We will afterwards come back to the relation between these one-way pebble weighted
automata and the pebble weighted automata equipped with the simple semantics.

Definition 7.5. A one-way pebble weighted automaton over a semiring S is a pebble weighted
automaton A = (Q,A,D, I,∆, F) with D an ordered set of directions, verifying

116 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

• ∆q,q′(d)(α) = 0 for every states q, q′ ∈ Q, α ∈ Test and backward direction d ∈ D←;
• if ∆q,q′(lift)(α) 6= 0 for some states q, q′ ∈ Q, and test α ∈ Test, then ∆q′,q′′(dropx)(α′) =

0 for every state q′′ ∈ Q, α′ ∈ Test and x ∈ Var.
The class of all one-way pebble weighted automata over S is denoted by 1PWA(S) or 1PWA
if the semiring is clear from the context, or not relevant. �

Notice that the second condition is easily justifiable: indeed, a lift transition followed
by a drop transition would just result in resetting the current position to the initial vertex
of the graph, without dropping a new pebble. Similarly, we may adapt this definition to
let 1WA(S) be the class of one-way weighted automata over S (only the first condition is
necessary in that case).

As subclasses of PWA and WA, these one-way (pebble) weighted automata inherit the
notions of configurations and runs. We show that, over an ordered pointed graph, these
automata have a finite number of accepting K-runs for every K. This will permit to define
their semantics, even over non-continuous semirings. Indeed, we show that all runs of a
one-way (pebble) weighted automaton are simple.

Lemma 7.6. All runs of a one-way pebble weighted automaton are simple. As a special
case, this is also true for one-way weighted automata.

Proof. Consider a one-way pebble weighted automaton A = (Q,A,D, I,∆, F) and its se-
mantics [[A]]K with K ≥ 0: in the following, we only consider K-configurations. Given an
ordered pointed graph G, we define a total order on the set of configurations of A over G,
so that runs of A over G form an increasing sequence of configurations.

To do so, we consider the measure of a K-configuration (G, σ, q, π, v) (with π ∈ (Var ×
V)k, k ≤ K) to be the word over the alphabet V ⊎ {⊥,⊤} defined by2

meas(G, σ, q, π, v) =

π|V · v · ⊥ if ∃q′ ∈ Q,α ∈ Test, x ∈ Var
such that ∆q,q′(dropx)(α) 6= 0

π|V · v · ⊤ otherwise.

We order the set V ⊎ {⊥,⊤} by the order ≤ given by the ordered graph, and by letting
⊥ < v < ⊤ for every vertex v ∈ V . Henceforth, finite sequences over this set are ordered
with the associated lexicographic (total) order, denoted by ≺.

We now show that for every accepting K-run ρ = (G, σ, qm, πm, vm)0≤m≤h of A, the
sequence of measures of the configurations is increasing, i.e.,

meas(G, σ, qm, πm, vm) ≺ meas(G, σ, qm+1, πm+1, vm+1)

for all 0 ≤ m < h. This ensures that the run is simple (and also that it is of bounded length
as the set of K-configurations is finite). Let 0 ≤ m < h. The concrete transition from
configuration γm = (G, σ, qm, πm, vm) to configuration γm+1 = (G, σ, qm+1, πm+1, vm+1) has
non-zero weight (as the run ρ is accepting). In particular,
• If πm = πm+1, then the weight of the transition is

⊕

d∈D|(vm,vm+1)∈Ed

α∈Test|G,σπm ,vm|=α

∆qm,qm+1
(d)(α)

Using the first condition in the definition of one-way pebble weighted automata, we
know that this weight is non-zero only if one of the directions is a forward direction
d ∈ D→. By definition of ordered graphs, this ensures that vm < vm+1. Therefore, for
some α, β ∈ {⊤,⊥}:

meas(γm) = (πm)|V · vm · α ≺ (πm)|V · vm+1 · β = meas(γm+1) .

2In this proof, for π ∈ (Var × V)k, we denote by π|V the word in V k obtained from π by erasing the
name of the variables in Var.

7.3. UNDECIDABILITY OF EMPTINESS 117

• If πm+1 = πm(x, vm) and vm+1 = v(i) (the initial vertex), then the non-zero weight of
the transition is ⊕

α∈Test|G,σπm ,vm|=α

∆qm,qm+1(dropx)(α)

Again, this implies that for some α ∈ {⊥,⊤} we have

meas(γm) = (πm)|V · vm · ⊥ ≺ (πm)|V · vm · v
(i) · α = meas(γm+1) .

• If πm = πm+1(y, vm+1) for some y ∈ Var, then the non-zero weight is

⊕

α∈Test|G,σπm ,vm|=α

∆qm,qm+1
(lift)(α)

Hence, for some α ∈ {⊥,⊤} we have

meas(γm) = (πm+1)|V · vm+1 · vm · α ≺ (πm+1)|V · vm+1 · ⊤ = meas(γm+1) .

Notice that the ⊤ in meas(γm+1) comes from the fact that lift transitions may not be
followed by drop transitions, by definition of 1PWA.

In all cases, we have meas(γm) ≺ meas(γm+1), which concludes the proof.

Alternatively, we may define the semantics of one-way (pebble) weighted automata as
the simple semantics defined in the previous section. The previous lemma shows that this
indeed define the same semantics.

7.3 Undecidability of Emptiness

Recall from Theorem 6.1 that the emptiness problem is decidable for layered pebble weighted
automata over continuous semirings with no zero divisors. The fact that the semantics of
one-way pebble weighted automata may be defined over non-continuous semirings makes
the emptiness problem become undecidable.

Theorem 7.7. The emptiness problem of threshold languages of series recognizable by one-
way pebble weighted automata is undecidable. This is already the case when automata have 2
pebbles names, 2 layers and weights in the semiring (Z,+,×, 0, 1) (in particular, a semiring
without zero divisor).

Proof. We reduce the emptiness problem of 2-counter machines. A 2-counter machine M
is a tuple (Loc,∆, init, F) with Loc a finite set of locations, ∆ = Loc × Instr × Loc the set
of transitions where Instr = {Incp,Decp,ZTestp | p ∈ {1, 2}}, init ∈ Loc the initial location
and F ⊆ Loc the set of final locations. If w = (ℓ0, D1, ℓ1) · · · (ℓn−1, Dn, ℓn) ∈ ∆⋆ and
D ∈ Instr , we set |w|D = |{k ∈ [1 .. n] | Dk = D}|, and wj = (ℓ0, D1, ℓ1) · · · (ℓj−1, Dj , ℓj)
for 1 ≤ j ≤ n. We define the value of counter p ∈ {1, 2} after step j ∈ {1, . . . , n} as
cpj (w) = |wj |Incp − |wj |Decp , and we also set cp0 = 0.

An accepting run of M may be seen as a graph G ∈ Word(∆), representing a word
w = (ℓ0, D1, ℓ1) · · · (ℓn−1, Dn, ℓn) ∈ ∆+ such that:

1. ℓ0 = init and ℓn ∈ F ,
2. cpj (w) ≥ 0 for all j ∈ {1, . . . , n} and p ∈ {1, 2},
3. if Dj = ZTestp, then cpj−1(w) = 0 for all j ∈ {1, . . . , n} and p ∈ {1, 2}.

We also denote cpj (G) the value cpj (w) in the following. The emptiness problem for 2-counter
machines consists in deciding whether a given 2-counter machine has an accepting run. It
is well known to be undecidable [Min67]. This problem reduces to emptiness of one-way
weighted automata with 2 pebble names and 2 layers over (Z,+,×, 0, 1), as we show now.

118 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

1

2 3

4(1¬Dec
p?)→

(1⊤)→ (1⊤)→

(1Dec
p?)dropx

(−1Dec
p? + 1Inc

p?)→

(1x?)lift

(1⊤)→
1 1⊤ 1⊤

Figure 7.2: Automaton checking that the counter p is non-negative

From a 2-counter machineM, we build such an automaton A assigning a nonzero weight
to accepting runs ofM, and weight 0 to all other words. Hence, A has a nonzero semantics
if, and only if, M has an accepting run.

A graph G ∈ Word(∆), representing a word (ℓ0, D1, ℓ1) · · · (ℓn−1, Dn, ℓn), is not an
accepting run ofM if, and only if, it does not consist of consecutive transitions, or it violates
either 1, 2 or 3. Let Dp = {j ∈ V | Dj = Decp} and Zp = {j ∈ V | Dj = ZTestp}. Then G
violates 2 if, and only if, for some p ∈ {1, 2}, there exists j ∈ Dp such that cpj−1(G) = 0, i.e.,

∏

j∈Dp

cpj−1(G) = 0 . (7.1)

The value computed to check that the counter always stays non-negative can also be com-
puted with the 1-layered one-way pebble weighted automaton of Figure 7.2: this automaton
drops a pebble on each letter Decp and then computes the difference between the number of
Incp symbols and the number of Decp symbols before the pebble, using a non deterministic
choice to mimic the sum. We now prove that this automaton computes the weight in (7.1).
We fix a graph G ∈ Word(∆) representing a word w = (ℓ0, D1, ℓ1) · · · (ℓn−1, Dn, ℓn), and
denote by i1 < i2 < · · · < im the vertices of G such that Di = Decp. Notice that each
accepting run of the automaton drops pebble x on each vertex ik (for every 1 ≤ k ≤ m),
and, after each such drop, must choose a vertex jk to follow the transition from state 2 to
state 3: moreover, we have 1 ≤ jk < ik and Djk

∈ {Incp,Decp}. Denoting Jk the set of
such vertices jk for every k, the set of accepting runs is therefore in bijection with the set
J = J1 × · · · × Jm. The weight of the run defined by the tuple (jk)1≤k≤m is then given by

m∏

k=1

f(jk)

where f(j) = 1 if Dj = Incp, −1 if Dj = Decp, and 0 otherwise. Hence, the semantics of
the automaton over G is given by

∑

(jk)1≤k≤m∈J

m∏

k=1

f(jk) =
∑

j1∈J1

∑

j2∈J2

· · ·
∑

jm∈Jm

m∏

k=1

f(jk)

=
m∏

k=1

∑

jk∈Jk

f(jk) (by distributivity of × over +)

=
m∏

k=1

cpik−1(G)

Next, if 2 holds, w violates 3 if, and only if, for some p ∈ {1, 2}, there exists j ∈ Zp such
that cpj−1(G) > 0, that is, if, and only if,

∏

j∈Zp

∏

1≤k≤j−1

(cpj−1(G)− k) = 0 (7.2)

7.3. UNDECIDABILITY OF EMPTINESS 119

1 1⊤ 1⊤

(1¬ZTest
p?)→

(1ZTest
p?)dropx

(1x?)lift

(1⊤)→

(1⊤)dropy

(1⊤)→

(−1Dec
p? + 1Inc

p?)→

(1⊤)→

(1x?)→

(1⊤)lift

(1⊤)→

(1⊤)dropy

(1⊤)→

(−1⊤)→

(1⊤)→

(1y?)→(−1y?)→

Figure 7.3: Automaton checking the zero tests ZTestp

since cpj−1(G) ∈ [0 .. j− 1]. This weight can be computed with the 2-layered one-way pebble
weighted automaton of Figure 7.3. Intuitively, it drops pebble x sequentially on every
position performing action ZTestp to compute the external product. When pebble x is
dropped (over a vertex j), on every vertex k before the one holding x (i.e., k ≤ j − 1), it
drops a pebble y choosing non-deterministically either to compute cpj−1(G) (the upper part)
or −k (the lower part). The proof of correctness is done similarly to the previous automaton,
and strongly relies on the distributivity of the multiplication over the addition again.

Furthermore, automaton A has weight 0 transitions to check if 1 is violated, or if two
consecutive letters of ∆ are not consecutive transitions in M. Further, on each position
j ∈ D1 ∪D2 ∪Z1 ∪Z2, automaton A drops a pebble in order to compute the products (7.1)
or (7.2) as explained just before.

It is easy to construct a formula of wFO(AP) equivalent to automaton A, showing that
emptiness is also undecidable for wFO(AP). Indeed, the weight of (7.1) may be computed
by3

⊗
x

[
PDecp(x)?

(⊕
y

[
y < x⊗

(
PIncp(y)⊕ (PDecp(y)⊗ (−1))

)])]

whereas the one of (7.2) may be computed by

⊗
x

[
PZTestp(x)?

(⊗
z z < x?

{⊕
y

[
(−1⊗ y ≤ z)⊕

(
y < x⊗

(
PIncp(y)⊕ (−1⊗ PDecp(y))

))]})]

An anecdotic, yet intriguing, question concerns the emptiness problem of threshold lan-
guage of automata with one or zero layers. We do not know the decision status of these
problems, and let them as open questions.

3We recall that if ϕ is a Boolean formula and Φ a weighted formula, ϕ? Φ denotes the formula (ϕ⊗Φ)⊕
(¬ϕ). Intuitively, it computes Φ only when ϕ holds.

120 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

7.4 One-way versus Simple over Words

We show in this section that every pebble weighted automaton equipped with the sim-
ple semantics can be effectively translated into an equivalent (over words) one-way pebble
weighted automaton, with the same number of layers. Notice that the simple assumption
is necessary to state such a result, as Proposition 7.3 exhibits a weighted automaton that
cannot be recognized by a simple weighted automaton.

In all the rest of this section, we let D = {→,←}. The only hypothesis required over
the semiring is its commutativity. We suppose at the beginning that the pebble weighted
automaton is K-strongly layered, but Proposition 4.29 and Lemma 4.27 show that this is
not a restriction indeed.

Theorem 7.8. Let S be a commutative semiring. For every K-strongly layered pebble
weighted automaton A with the simple semantics over words, there exists an equivalent K-
strongly layered one-way pebble weighted automaton B with the same set of free variables,
i.e., for every non-empty finite word w ∈ A+, and every valuation σ, we have [[A]]s(w, σ) =
[[B]](w, σ).

The proof is by induction on the number of layers. We start with the base case of
automata without pebbles. The next proposition is a generalization in the weighted setting of
the result, originally proved in [RS59], stating that two-way feature does not add expressive
power to non-deterministic finite automata over finite strings. There are mainly two proof
techniques for this result. Most textbooks presenting this result, or article elaborating over it,
use the proof of [She59], which starts with a two-way automaton and construct an equivalent
one-way automaton by enriching the state with a relation table recording for every pair of
states (q, q′), whether it is possible to reach q′ from q with a loop on the current prefix. The
key argument is that there is a finite number of such tables and that it can be computed
simultaneously to the main run.

Observe that this method is not applicable in our weighted setting. Indeed, the relation
table should now be enriched with the precomputed weights of the subruns, which cannot
be recorded within a finite memory (as the weights may grow with the length of the prefix
read so far). Instead, we will use the crossing-sequence method which is closer to the proof
technique in [RS59], and fully explained in [HU79]. For the sake of clarity, we provide a
complete proof below in our weighted setting. In [Ans90], a similar proof was given for
weighted automata without pebbles, but we discovered it only after the publication of our
article [1]. However, it has to be noticed that our proof is a priori stronger. Indeed, Anselmo
considers only syntactically simple weighted automaton, i.e., automata that only generate
simple accepting runs, whereas we consider the simplicity as a semantical restriction.

Proposition 7.9. Let S be a commutative semiring. For every weighted automaton A with
the simple semantics over words, there exists an equivalent one-way weighted automaton B,
i.e., for every word w ∈ A+ and every valuation σ, we have [[A]]s(w, σ) = [[B]](w, σ).

Proof. Let A = (R,A,D, I,∆, F) be a weighted automaton. We construct an equivalent
one-way weighted automaton B = (Q′, A,D, I ′,∆′, F ′) such that [[B]] = [[A]]s over the set of
words A+ (represented as graphs in Word(A)).

Intuitively, the idea is to record in a state of B the crossing-sequence of states of A which
is observed in some accepting run ρ while scanning the current position of the input word,
see Figure 7.4. Since the simple semantics of a weighted automaton is computed as the sum
over simple accepting runs, a crossing-sequence consists of pairwise distinct states and its
length is therefore bounded by the number of states of A. Finally, the commutativity of the
semiring allows us to compute the weight of an accepting run ρ along a corresponding run
of B.

In order to ease the matching of consecutive crossing-sequences of A, we also record in
a state of B the input letter from A of the current position, its type (as a subset of D),

7.4. ONE-WAY VERSUS SIMPLE OVER WORDS 121

· · · a a′ · · ·

r0

→ r1

→

r2

←r3

←

r4

←
r5

→ r6

→

Figure 7.4: Run of a WA and some crossing-sequences

and the sequence of moves from D performed by A. Therefore, we will define Q′ as a finite
subset of

T = A×P(D)× Free(A)× (RD)⋆(R ∪R→) .

The first component records the letter of the current position, the second component its
type, and the third the exact set of free variables over it. Those three components together
are sufficient to decide whether a test formula α ∈ Test is verified or not over the current
position. Indeed, if (a, t,P) ∈ A ×P(D) × Free(A), we define in Table 7.1 the satisfaction
relation (a, t,P) |= α by induction over α. We can easily verify by induction that for every

Table 7.1: An alternative definition of the semantics of tests in Test

(a, t,P) |= ⊤
(a, t,P) |= init? if, and only if, ← /∈ t
(a, t,P) |= final? if, and only if, → /∈ t
(a, t,P) |= b? if, and only if, a = b
(a, t,P) |= d? if, and only if, d ∈ t
(a, t,P) |= x? if, and only if, x ∈ P
(a, t,P) |= ¬α if, and only if, (a, t,P) 6|= α
(a, t,P) |= α ∧ α′ if, and only if, (a, t,P) |= α and (a, t,P) |= α′

(a, t,P) |= α ∨ α′ if, and only if, (a, t,P) |= α or (a, t,P) |= α′

pointed graph G ∈ Word(A), valuation σ and vertex v,

G, σ, v |= α if, and only if, (λ(v), type(v), σ−1(v)) |= α

We say that a state in T is R-simple if the word in its (RD)⋆(R ∪ R→)-component
does not contain two occurrences of some state in R. For instance, Figure 7.4 exhibits two
crossing-sequences which are

q = (a,D, ∅, r0→r3←r4←r5→) and q′ = (a′, D, ∅, r1→r2←r6→) .

We describe now the transition matrix ∆′ of B. Two states q = (a, t,P, τ) and q′ =
(a′, t′,P ′, τ ′) in Q′ can be matched in a transition of B if τ has one more right move than the
number of left moves in τ ′: |τ |→ = 1 + |τ ′|←. The weight4 ∆q,q′(→)(a?∧ t?∧P?) associated
with this transition is the product of the weights of the transitions of A contained in the

4In the following, for t ∈ P(D) (respectively, P ⊆ Free(A)), we use t? (respectively, P?) as a shortcut
for
∧

d∈t
d? ∧

∧
d/∈t
¬d? (respectively,

∧
x∈P

x? ∧
∧

x∈Free(A)\P
¬x?).

122 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

pair (q, q′), i.e., right transitions from q to q′ and left transitions from q′ to q. On Figure 7.4,
these transitions are on a gray background. If q and q′ cannot be matched we let ∆q,q′ to
be 0.

Formally, a triple (r,→, r′) with r, r′ ∈ R is said to be contained in (q, q′) if there exists
k ∈ [1 .. |q|→] such that (1) r is the state just before the kth occurrence of → in q, and (2)
r′ the state just after the (k− 1)th occurrence5 of ← in q′. Similarly, a triple (r′,←, r) with
r, r′ ∈ R is said to be contained in (q, q′) if there exists k ∈ [1 .. |q′|←] such that (1) r′ the
state just before the kth occurrence of ← in q′, and (2) r is the state just after the kth
occurrence of → in q. For instance in Figure 7.4, triples contained in the depicted pair of
states are (r0,→, r1), (r5,→, r6), and (r2,←, r3).

We let Tr(q, q′) be the set of triples contained in (q, q′). We then define the polynomial
∆′q,q′(→) ∈ S〈Test〉 of → transitions of B induced by the matching states (q, q′) as the
monomial6:

∆′q,q′(→)(a? ∧ t? ∧ P?) =
⊗

(r,→,r′)∈Tr(q,q′)

⊕

α∈Test
(a,t,P)|=α

∆r,r′(→)(α)

⊗
⊗

(r′,←,r)∈Tr(q,q′)

⊕

α∈Test
(a′,t′,P′)|=α

∆r′,r(←)(α) (7.3)

where q = (a, t,P, τ) and q′ = (a′, t′,P ′, τ ′).
Finally, the initial vector I ′ maps the R-simple states of the form

(a, {→},P, r→(R→)⋆) or (a, ∅,P, r)

to Ir, and all other states to 0. The final vector F ′ must moreover check that the (a, t,P)-
component of the final state is correct, so that it maps the R-simple states of the form

(a, {←},P, (R←)⋆r) or (a, ∅,P, r)

to the monomial of S〈Test〉 given by

Fr (a? ∧ t? ∧ P?)

with t = {←} or t = ∅ respectively, and other states to 0.
Lemma 7.10 below proves that there is a weight preserving bijection between the simple

accepting runs of A and the accepting runs of B. We conclude that [[B]] = [[A]]s since for all
G ∈ Word(A) and valuation σ, [[A]]s(G, σ) is the sum of the weights of the simple accepting
runs of A over (G, σ), whereas [[B]](G, σ) is the sum of the weights of the accepting runs of
B over (G, σ).

Lemma 7.10. For every G ∈ Word(A) and valuation σ, there is a weight preserving bijec-
tion between the simple accepting runs of A over (G, σ) and the accepting runs of B over
(G, σ).

Proof. Let G ∈ Word(A) with n vertices be a graph denoting a word w = a0 · · · an−1, and
a valuation σ. We first show how to map a simple accepting run ρ = ρ0ρ1 · · · ρm of A over
(G, σ) (where each ρj is a configuration of the form (G, σ, q, v)), to an accepting run of B
over (G, σ).

For i ∈ [0 .. n−1], we construct the crossing-sequence qi = (ai, type(i), σ(i), τi) of B asso-
ciated with vertex i, as illustrated in Figure 7.4. Formally, we define τi as the “projection”
of the configurations visiting vertex i, where configuration (G, σ, r, i) is “projected” to r→

5In case k = 1, the state just after the 0th occurrence of ← in q′ is simply the first state of q′.
6All coefficients of tests distinct from a? ∧ t? ∧ P? are set to 0. Notice also that a product over an

emptyset is equal to 1.

7.4. ONE-WAY VERSUS SIMPLE OVER WORDS 123

(respectively, r← or r) if it is followed by some (G, σ, r′, i+ 1) (respectively, (G, σ, r′, i− 1)
or is the last configuration). Note that the word τi is R-simple since ρ is a simple run, so
that qi ∈ Q′.

Observe also that |τi|→ = 1 + |τi+1|← for every i ≤ n− 2. Indeed, ρ must reach position
i+1 for a first time, and then, each time the run ρ goes to the left of position i+1, it will in
the future come back to i+1 from i. Therefore, qi and qi+1 can be matched for all i ≤ n−2.
Moreover, the weight ∆′qi,qi+1

(→)(ai?∧ type(i)?∧ σ(i)?) is not equal to zero, since for every
triple (r, d, r′) ∈ Tr(qi, qi+1) there is at least one weight ∆r,r′(d)(α) of (7.3) which is different
from 0 (the run ρ being accepting). We deduce that f(ρ) = (G, σ, q0, 0) · · · (G, σ, qn−1, n−1)
is an accepting run of B.

We now show that f preserves the weights, i.e., that the weight of ρ in A is equal
to the weight of f(ρ) in B, for all simple run ρ of A over (G, σ). Indeed, the weight of
ρ in A is the product of the weights of (left or right) transitions appearing in ρ. With
f(ρ) = (G, σ, q0, 0) · · · (G, σ, qn−1, n − 1), every right transition of ρ starting from vertex i
is contained in the pair (qi, qi+1), so that its weight is computed in the transition from i to
i + 1 in f(ρ), whereas every left transition of ρ starting from vertex i is contained in the
pair (qi−1, qi), so that its weight is computed in the transition from i − 1 to i in f(ρ). We
obtain the result by commutativity of the semiring S. Moreover, initial and final weights
are preserved by the transformation.

We finally prove that f is a bijection by constructing its inverse function. We consider
an accepting run (G, σ, q0, 0) · · · (G, σ, qn−1, n − 1) of B. Write qi = (ai, ti,Pi, τi) for i ∈
[0 .. n − 1]: necessarily, ti = type(i) and Pi = σ(i). We recover a simple run ρ of A over
(G, σ) as the output of Run(0, τ0, . . . , τn−1) where the recursive function Run is defined by:

Function Run(i, τ0, . . . , τn−1)

match τi with
r→τ ′i :

output (G, σ, r, i);
Run (i+ 1, τ0, . . . , τ

′
i , . . . , τn−1);

r←τ ′i :
output (G, σ, r, i);
Run (i− 1, τ0, . . . , τ

′
i , . . . , τn−1);

r : (* necessarily i = n− 1 *)

output (G, σ, r, n− 1);

We can show by induction that

f(Run(0, τ0, . . . , τn−1)) = (G, σ, q0, 0) · · · (G, σ, qn−1, n− 1)

Also, for every simple accepting run ρ of A with

f(ρ) = (G, σ, (a0, t0,P0, τ0), 0) · · · (G, σ, (an−1, tn−1,Pn−1, τn−1), n− 1)

we have Run(0, τ0, . . . , τn−1) = ρ. Therefore, f is a bijection.

The proof of Proposition 7.9 may be easily adapted to various extensions of weighted
automata. For instance, instead of restricting to simple runs when computing the semantics
of a weighted automaton A, we may allow k-simple runs (for some fixed k) in which no
configuration is visited more than k times. Even when k = 2, we do not know an easy way
to construct a weighted automaton A′ whose semantics over 1-simple runs coincide with the
semantics of A over 2-simple runs. But the proof of Proposition 7.9 allows to cope with
this extension simply by allowing k-simple words when defining the set Q′ of states of B.
Hence, we can construct a one-way weighted automaton B whose semantics coincides with
the semantics of A over k-simple runs, showing that this extension does not add expressive
power.

124 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

· · · a a′ · · ·

r0

→ r1

→

r2

←r3

drop
x

lift
r4

←

r5

drop
x

lift
r6

→ r7

→

Figure 7.5: Run of a pebble weighted automaton and some crossing-sequences

We introduce another extension which will be useful in the proof of Theorem 7.8 below.
We generalize the initial and final vectors of a weighted automaton A = (R,A,D, I,∆, F)
by letting I (respectively, F) be a mapping from simple sequences of R+ to S (respectively,
S〈Test〉). The weight of a run is adapted by considering as initial weight the one computed
by I over the sequence of states visiting the initial position, and the final weight computed
by verifying the test formula on the last configuration of the run as usual. Notice that this is
indeed a generalization as every weighted automaton A = (R,A,D, I,∆, F) can be encoded
into this new formalism by letting I (respectively, F) map all simple sequences of states
starting with a state q (respectively, ending with a state q) to the original initial weight
(respectively, final polynomial) of this state. Again, the proof of Proposition 7.9 allows to
cope with this extension easily.

We extend now the translation of Proposition 7.9 to pebble weighted automata. The
general idea is an induction on the number of layers, but it has to be done with great care
so that all and only the simple runs of the weighted automaton are taken into account.

Proof of Theorem 7.8. We start with a K-strongly layered pebble weighted automaton A =
(R,A,D, I,∆, F), and a generalized acceptance condition: I (respectively, F) is mapping
of simple sequences in R+ to S (respectively, to S〈Test〉). The semantics is computed as
previously by appending to the weight of the runs the initial weight of the sequence of states
visiting the initial position while no pebbles are dropped, and the final weight of the sequence
of states visiting the final position while no pebbles are dropped with the test formula verified
on the last configuration of the run. This generalization will be useful in the inductive step
of the construction.

If K = 0, Proposition 7.9 permits to conclude, as noticed previously. We now explain
the construction for K > 0. By the strongly layered hypothesis, we know that the states in
layer K of the automaton may only drop pebbles of a certain name, that we denote by x
in the following. In particular, a crossing-sequence may now also include dropx moves, see
Figure 7.5. The parts of a run having at least one pebble dropped (dashed in Figure 7.5)
will be deferred to the inductive step. Hence, a crossing-sequence consists only of the states
visiting some position when no pebbles are dropped. If the run is simple, then this sequence
of states is also simple.

7.4. ONE-WAY VERSUS SIMPLE OVER WORDS 125

layers
K − 1, . . . , 0

of A

s′
0

s1

(1 init?)→ (∆q)s1,r(←)←

s′
1

(1⊤)←

s2

(1 init?)→ (∆q)s2,r(←)←

s′
2

(1⊤)←

s3

(1 init?)→ (∆q)s3,r(←)←
s′

3

(1 init?)→

(∆q)r′,s′

3
(←)←

(∆q)r′,s′

1
(←)←

(∆q)r′,s′

2
(←)←

Figure 7.6: The pebble weighted automaton Aq filling the drop-lift gaps of the crossing-
sequence q

As in the proof of Proposition 7.9, we let Q′ be the (finite) set of R-simple states in
T = A×P(D)× Free(A)× (R{←,→, dropx})

∗(R ∪R→). For instance, Figure 7.5 exhibits
the crossing-sequence

q = (a,D, ∅, r0→r3dropxr4←r5dropxr6→)

in which the states r0, r3, r4, r5, r6 must be pairwise distinct.
For each state q = (a, t,P, τ) ∈ Q′, we construct a (K − 1)-strongly layered pebble

weighted automaton Aq = (Rq, A,D, Iq,∆q, Fq) which computes the sum of the weights of
the tuples of runs filling the drop-lift gaps in the crossing-sequence q, i.e., the dashed lines
in Figure 7.5.

From a crossing-sequence q = (a, t,P, τ) ∈ Q′, we first extract the sequence θ(τ) of pairs
of states surrounding dropx actions. For instance,

θ(r0→r3dropxr4←r5dropxr6→) = (r3, r4)(r5, r6)

and θ(r1dropxr2dropxr3→) = (r1, r2)(r2, r3) .

We assume below that θ(τ) = (r1, r
′
1)(r2, r

′
2) · · · (rN , r′N) with N > 0, and ℓ(ri) = ℓ(r′i) = K.

Note that N ≤ |R| since r1, r2, . . . , rN must be pairwise distinct.
We let Rq = {r ∈ R | ℓ(r) < K} ⊎ {s′0, s1, s

′
1, . . . , sN , s

′
N} be the set of states of Aq. The

automaton Aq should fill the drop-lift gaps (rj , r′j) for all j ∈ [1 .. N]. To do so, it simply
simulates A from state rj to r′j without jumping in layer K: here we use the fact that a
pebble weighted automaton may test the presence of a pebble without even having dropped
it. The additional states in {s′0, s1, s

′
1, . . . , sN , s

′
N} and transitions will make sure that all

gaps (rj , r′j) are filled, see Figure 7.6. States s′j−1 are used to reset the head to the initial
vertex between two simulations, and we move from s′j−1 to sj at the beginning of the word7:

(∆q)s′
j−1

,s′
j−1

(←)(⊤) = 1 for 1 < j ≤ N

(∆q)s′
j−1

,sj
(→)(init?) = 1 for 1 ≤ j ≤ N .

A dropx transition of A from state rj , j ∈ [1 .. N], to state r of layer K − 1 is simulated in
Aq by a← transition from sj to r reading the second letter of the word (note that when Aq
is in state sj it must be on the second position of the word due to the → transition from
s′j−1 to sj): it outputs weight (∆q)sj ,r(←)(⊤) defined by

(∆q)sj ,r(←) =
⊕

α∈Test
(a,t,P)|=α

∆rj ,r(dropx)(α)⊤ . (7.4)

7In case w is a single letter word, we may precompute the whole weight and compute it by using final
weight (testing also that the current vertex is both initial and final). Henceforth, we suppose in the following
that w /∈ A.

126 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

A lift transition of A from a state r′ of layer K − 1 reaching r′j , j ∈ [1 .. N], is simulated in
Aq by a ← transition from r′ to s′j given by

(∆q)r′,s′
j
(←) =

⊕

a′∈A,P′⊆Free(A)

⊕

α∈Test
(a′,{←},P′)|=α

∆r′,r′
j
(lift)(α)(a′? ∧ {←}? ∧ P ′?) .

Finally, when Aq reaches s′N , it terminates with → moves until the final vertex of the word:

(∆q)s′
N
,s′

N
(→)(⊤) = 1

All other unspecified coefficients of the matrix ∆q are set to 0.
We finally let Iq map simple sequences in s′0R

⋆s′1R
⋆ · · · s′N−1R

⋆ to 1 and others to 0, and
we let Fq map simple sequences in R⋆s′N to 1⊤ and others to 0. Considering these definitions,
an accepting run ρ̂ of Aq can be split into a sequence of runs ρ̂ = ρ′0ρ̂1ρ

′
1 · · · ρ̂Nρ

′
N where for

each 1 ≤ j ≤ N
• the run ρ̂j fills the drop-lift gap (rj , r′j). It goes from sj to s′j and simulates a run ρj

of A which starts with a dropx transition from rj to a state r of layer K − 1, and ends
with a lift transition from a state r′ of layer K − 1 to r′j without lifting this pebble
in-between. Moreover, runs ρ̂j and ρj have the same weight, for all 1 ≤ j ≤ N ;

• the run ρ′0 consists of a single transition from s′0 to s1, the run ρ′j for 0 < j < N loops
on state s′j to reset the head to the initial position and then moves to state sj+1, and
the run ρ′N consists of transitions looping on s′N to reach the final position. Moreover,
runs ρ′j have weight 1, for all 0 ≤ j ≤ N .

Note that, the run ρ̂ is simple if, and only if, the sequence of runs ρ1, . . . , ρN is globally
simple, i.e., a configuration may not occur twice in some ρj and it may not occur both in
ρi and ρj with i 6= j. This is important since the runs ρ1, . . . , ρN fill the drop-lift gaps of
the crossing-sequence (a, t,P, τ) and are therefore part of a single run of A. This explains
why we have a single copy of A in Aq. If instead we used N copies of A inside Aq, one for
each drop-lift gap (rj , r′j) then the simplicity of ρ̂ would not imply the global simplicity8 of
ρ1, . . . , ρN .

Clearly, all accepting runs of Aq start from state s′0 and end in state s′N . But this basic
initial and final condition is not sufficient to ensure that the drop-lift gaps are filled correctly.
For instance, Aq could go directly from s′0 to s′N without ever visiting s′1, . . . , s

′
N−1. It could

also visit all the new states but not in the intended order, which would not correspond to a
sequence of runs of A filling the gaps (r1, r

′
1) · · · (rN , r′N). This is why we use the generalized

acceptance condition for Iq.
Towards a uniform construction below, we also define an automaton Aq when the

crossing-sequence q has no dropx (N = 0). In this case, Aq has a single state s′0 with a
loop moving right with weight 1 in order to simply scan the word from beginning to end.

By induction, for each q ∈ Q′ we can construct a (K − 1)-strongly layered one-way
pebble weighted automaton Bq which is equivalent to Aq, more precisely, such that for each
graph G ∈ Word(A) and each valuation σ, there is a weight preserving bijection between
the simple accepting runs of Aq over (G, σ) and the accepting runs of Bq over (G, σ). We
let Bq = (Q′q, A,D, I

′
q,∆

′
q, F

′
q). Note that, if the crossing-sequence q has no drop then we

may choose Bq = Aq.

We define now the K-strongly layered one-way pebble weighted automaton B = (Q,A,D,
I ′,∆′, F ′) associated with A. Its set of states is

Q = Q′ ⊎Q′ ⊎
⊎

q∈Q′

Q′q .

8Alternatively, we could define an equivalence relation ∼ on states of Aq and use a ∼-simple semantics
of runs, as originally done in [1].

7.4. ONE-WAY VERSUS SIMPLE OVER WORDS 127

The initial mapping I ′ maps the states in Q′ of the form

(a, {→},P, (R{→, dropx})
⋆R→) or (a, ∅,P, (Rdropx)⋆R)

to the weight given by I over their projections on R. Similarly, the final mapping F ′ maps
the states in q′ ∈ Q′ with q′ of the form

(a, {←},P, (R{←, dropx})
⋆R) or (a, ∅,P, (Rdropx)⋆R)

to the polynomial given by F over their projections on R with the test formulae enriched
with a? ∧ t? ∧ P?, where t = {←} or t = ∅ respectively.

The automaton B contains a copy of each Bq in order to simulate the parts of a run when
the first pebble x is dropped (dashed lines in Figure 7.5).

From each state q = (a, t,P, τ) ∈ Q′, we first call (the copy of) the automaton Bq
dropping pebble x and when the computation of Bq is done we lift the pebble returning to
the copy q̄ ∈ Q′ of q ∈ Q′: for every s, s′ ∈ Q′q,

∆′q,s(dropx)(⊤) = (I ′q)s and ∆′s′,q̄(lift) = (F ′q)s′ .

Then, we perform a → action to the next crossing-sequence q′ ∈ Q′. As in the proof of
Proposition 7.9, two crossing-sequences q = (a, t,P, τ) and q′ = (a′, t′,P ′, τ ′) of Q′ match if
|τ |→ = 1 + |τ ′|←. We assume Tr(q, q′) to be defined as in the proof of Proposition 7.9, so
that we may define the weight of→ moves of B induced by the matching crossing-sequences
(q, q′) as the product of the weights of the (left or right) transitions of A contained in (q, q′):

∆′q̄,q′(→)(a? ∧ t? ∧ P?) =
⊗

(r,→,r′)∈Tr(q,q′)

⊕

α∈Test
(a,t,P)|=α

∆r,r′(→)(α)

⊗
⊗

(r′,←,r)∈Tr(q,q′)

⊕

α∈Test
(a′,t′,P′)|=α

∆r′,r(←)(α)

Lemma 7.11 below proves that there is a weight preserving bijection between the simple
accepting runs of A and the accepting runs of B. We conclude that [[B]] = [[A]]s since for
all G ∈ Word(A) and all valuation σ, [[A]]s(G, σ) is the sum of the weights of the simple
accepting runs of A over (G, σ), whereas [[B]](G, σ) is the sum of the weights of the accepting
runs of B over (G, σ).

Lemma 7.11. For every G ∈ Word(A) and valuation σ, there is a weight preserving bijec-
tion between the simple accepting runs of A over (G, σ) and the accepting runs of B over
(G, σ).

Proof. Let G ∈ Word(A) with n vertices denoting a word w = a0 · · · an−1, and a valuation σ.
We will decompose the bijection into several ones, all preserving the weights in an adequate
manner.

To extend the proof of Lemma 7.10, we first associate with a simple accepting run ρ of
A over (G, σ) a tuple

f(ρ) = (q0, g0, q1, g1, . . . , qi, gi, . . . , qn−1, gn−1)

where qi = (λ(i), type(i), σ(i), τi) is the crossing-sequence at vertex i ∈ [0 .. n − 1] and the
tuple gi = (ρi1, . . . , ρ

i
Ni

) consists of the sequence of subruns of ρ with pebble x dropped on
vertex i, together with the surrounding drop-lift transitions.

Formally, for 0 ≤ i ≤ n−1, to define the crossing sequence qi, we let τi be the “projection”
of the configurations visiting vertex i with an empty stack of pebbles, where configuration
(G, σ, r, ε, i) is “projected” to r → (respectively, r ←, rdropx or r) if it is followed by some
(G, σ, r′, ε, i+1) (respectively, (G, σ, r′, ε, i−1), (G, σ, r′, (x, i), 0) or is the last configuration).

128 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

Moreover, for 0 ≤ i ≤ n − 1 with Ni = |τi|dropx
, we extract from ρ the tuple gi =

(ρi1, . . . , ρ
i
Ni

) of subruns of the form

(G, σ, r0, ε, i)(G, σ, r1, π1, 0) · · · (G, σ, rk−1, πk−1, n− 1)(G, σ, rk, ε, i)

where πℓ = (x, i) · π′ℓ for all 0 < ℓ < k, i.e., where the first pebble is continuously dropped
on position i.

We first show that f is a bijection from simple accepting runs of A over (G, σ) to the
set, denoted SeqG,σ, of sequences

(q0, g0, q1, g1, . . . , qi, gi, . . . , qn−1, gn−1)

verifying:
• qi ∈ Q

′ for all i ∈ [0 .. n− 1], I ′q0
6= 0, and F ′qn−1

6= 0;
• for all i ∈ [0 .. n− 2], the pair (qi, qi+1) matches, i.e., |τi|→ = 1 + |τi+1|←;
• for all i ∈ [0 .. n − 1], denoting Ni = |τi|dropx

, gi is a tuple (ρi1, . . . , ρ
i
Ni

) of subruns of
A, globally simple, each starting with a dropx on position i, ending with the first time
this pebble is lifted, and that matches with θ(qi) (i.e., the jth pair in θ(qi) contains
exactly the pair of first and last states of the run ρij).

It is not difficult to check that f(ρ) ∈ SeqG,σ whenever ρ is a simple accepting run of A over
(G, σ). We define the weight of such a sequence in SeqG,σ as

I ′q0
⊗
(n−2⊗

i=0

[
∆(gi)⊗∆′qi,qi+1

(→)(ai? ∧ ti? ∧ Pi?)
])
⊗∆(gn)⊗ F ′qn−1

where ∆(gi) is the product of the weights of runs ρij for j ∈ [1 .. Ni] if gi = (ρi1, . . . , ρ
i
Ni

).
We can easily show that f preserves the weights.

We finally prove that f is a bijection by constructing its inverse function. For every
(q0, g0, q1, g1, . . . , qn−1, gn−1) ∈ SeqG,σ, consider qi = (ai, ti,Pi, τi) for i ∈ [0 .. n− 1]. We re-
cover a simple accepting run ρ ofA over (G, σ) as the output of RunP(0, τ0, g0, . . . , τn−1, gn−1)
where the recursive function RunP is defined by:

Function RunP(i, τ0, g0, . . . , τn−1, gn−1)

match τi with
r→τ ′i :

output (G, σ, r, ε, i);
RunP (i+ 1,(. . . , τ ′i , gi, . . .));

r←τ ′i :
output (G, σ, r, ε, i);
RunP (i− 1,(. . . , τ ′i , gi, . . .));

rdropxτ
′
i :

match gi with
(ρ′, g′i) :

output ρ′;
RunP (i,(. . . , τ ′i , g

′
i, . . .));

r : (* necessarily i = n− 1 *)

output (G, σ, r, ε, n− 1);

We then consider each tuple gi of runs of A with the first pebble x dropped. It has
already been explained in the previous proof how to construct a weight preserving bijection
between a tuple gi = (ρi1, . . . , ρ

i
N), which matches with a sequence of pairs θ(qi), and an

accepting run ρ̂i = ρ′0ρ̂
i
1ρ
′
1 · · · ρ̂

i
Nρ
′
N of Aqi

over (G, σ[x 7→ i]) so that gi is globally simple if,
and only if, ρ̂i is simple: it consists of filling some gaps (with the runs ρ′j).

7.5. RESTRICTIONS OVER EXPRESSIONS AND LOGICS 129

Using the induction hypothesis, we know that there is a weight preserving bijection
between simple accepting runs ρ̂i of Aqi

over (G, σ[x 7→ i]) and accepting runs ρi of Bqi
over

(G, σ[x 7→ i]).
We finally build a weight preserving bijection between accepting runs ρi of Bqi

over
(G, σ[x 7→ i]) and runs gi of B over (G, σ) from position 0 to position n− 1. Finally, coming
back to the sequences of SeqG,σ, these intermediary bijections permit to build a weight
preserving bijection from sequences (q0, g0, . . . , qi, gi, . . . , qn−1, gn−1) ∈ SeqG,σ to accepting
runs

(G, σ, q0, ε, 0)g0(G, σ, q0, ε, 0) · · · (G, σ, qn−1, ε, n− 1)gn−1(G, σ, qn−1, ε, n− 1)

of B over (G, σ), which concludes the proof of correctness.

This theorem does not hold in the case of more general classes of ordered graphs, as
nested words for example. Indeed, even in the Boolean semiring, consider the language of
nested words where every call vertex is labeled with the same letter as its matching return.
This language is clearly recognizable with an automaton (without any pebbles) walking in
the nested word from left to right and checking on every call vertex – by jumping back
and forth to its matching return – that these two vertices are labeled with the same letter.
Notice that this automaton requires only simple runs. However, it is not difficult to prove
that no one-way automaton can recognize this language. Indeed, consider such a one-way
automaton A (without pebbles), having n = |Q| states. We consider nested words belonging
to the language and of length 2n + 1, where vertex i ∈ [0 .. n − 1] is a call vertex matched
with the return vertex 2n− i, and vertex n is labeled with a fixed letter. Over an alphabet
with two letters, there are 2n such nested words, since it suffices to choose the labels of the
n first vertices (those of index i ∈ [0 .. n − 1]). For each of these nested words, automaton
A must have an accepting run, that visits every vertex (otherwise we may easily swap the
labels of one of the vertex not visited and obtain a contradiction). As it is one-way, it
necessarily visits the first n vertices before the n last ones. Considering the state reached
on vertex n (the one with a fixed letter), there are two distinct nested words with this state
being identical. By considering the nested word composed of the first n letters of one, and
the last n ones of the other, we obtain a nested word that is not in the language, but that is
recognized by A. Hence, this contradicts the existence of a one-way automaton recognizing
the language.

However, even for general classes of graphs, every layered pebble weighted automaton
equipped with the simple semantics is equivalent to a weighted graph automaton, namely a
graph automaton covering graphs with tiles as described, e.g., by [Tho91], where transitions
are moreover equipped with weights. This model has been explored in [Fic07]. We do not
investigate the question in further details in this manuscript but the idea is again to use
crossing-sequences: whereas for words, we can verify with a one-way automaton that two
successive crossing-sequences can be matched, we need the power of graph automata for
more general classes of graphs. For example, in nested words, at a given return vertex, we
may use the information of the corresponding call vertex to check if the crossing-sequences
form a real run.

7.5 Restrictions over Expressions and Logics

We informally propose in this last section some possibilities to restrict expressions and logics
to remove the need of computing infinite sums. Throughout this section, we only consider
ordered graphs. Hence, we let D be an ordered set of directions, and we denote by D→
and D← the partition of D into forward and backward directions. We also fix a semiring
(S,⊕,⊗, 0, 1), not necessarily continuous.

130 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

7.5.1 One-way Weighted Expressions

Restricting ourselves to continuous semirings seems somewhat annoying but unavoidable in
order to ensure the well-definition of the semantics of expressions E+ which, in the most
general case, involve an infinite sum (see Table 3.2). Mimicking one-way pebble weighted
automata, we may consider one-way hybrid weighted expressions, with a proper restriction,
as considered by Schützenberger: proper expressions are the only expressions allowed under
a Kleene star operation. Hence, we consider the set of one-way hybrid weighted expressions
E defined by the following grammar:

E ::= s | α | x!E | E | E + E | E · E

E ::= d→ | E + E | E · E | E · E | E+

where s ∈ S, α ∈ Test, d→ ∈ D→, and x ∈ Var. Expressions E are called proper one-way
hybrid weighted expressions.

As a subclass of HWE, one-way hybrid weighted expressions inherits their semantics
from those of hybrid weighted expressions, in the case of a continuous semiring. We now
show that, indeed, we can extend the semirings to non necessarily continuous ones.

Lemma 7.12. Let E and E be respectively a one-way and proper one-way hybrid weighted
expression. Then,

[[E]](G, σ, v, v′) 6= 0 implies v ≤ v′ and [[E]](G, σ, v, v′) 6= 0 implies v < v′

for every ordered pointed graph G ∈ G(A,D), vertices v, v′ ∈ V and valuation σ : Var ⇀ V ,
where ≤ denotes the order on the vertices of G.

Proof. The proof is by simultaneous induction over one-way and proper one-way hybrid
weighted expressions. For convenience, we present first the induction over one-way hybrid
weighted expressions.

If E = s ∈ S, E = α ∈ Test or E = x!E′, [[E]](G, σ, v, v′) 6= 0 implies v = v′, and hence
v ≤ v′.

If E = E is proper, we directly conclude by induction.
If E = E1 + E2, then [[E]](G, σ, v, v′) 6= 0 implies that either [[E1]](G, σ, v, v′) 6= 0 or

[[E2]](G, σ, v, v′) 6= 0 (as 0⊕ 0 = 0), which permits to conclude by induction.
If E = E1 · E2, then [[E]](G, σ, v, v′) 6= 0 implies that there exists a vertex v′′ ∈ V such

that [[E1]](G, σ, v, v′′)⊗ [[E2]](G, σ, v′′, v′) 6= 0, and hence that both [[E1]](G, σ, v, v′′) 6= 0 and
[[E2]](G, σ, v′′, v′) 6= 0 (as 0⊗ s = s⊗ 0 = 0 for every s ∈ S). By induction, this proves that
v ≤ v′′ and v′′ ≤ v′, which permits to deduce that v ≤ v′ by transitivity.

We now turn to the part of the induction proof related to proper one-way hybrid weighted
expressions. If E = d→ ∈ D→, [[E]](G, σ, v, v′) 6= 0 implies (v, v′) ∈ Ed→ : by definition of
ordered graphs, this ensures that v < v′.

The proofs in case E is of the form E1 +E2, E1 ·E2 or E1 ·E2 are similar to the one-way
case, achieved previously.

Finally, if E = (E1)+, then [[E]](G, σ, v, v′) 6= 0 implies that there exists n ≥ 1 such that
[[(E1)n]](G, σ, v, v′) 6= 0. An easy induction over n permits to show that

[[(E1)n]](G, σ, v, v′) =
⊕

v1,...,vn−1∈V

n−1⊗

j=0

[[E1]](G, σ, vj , vj+1)

where we let v0 = v and vn = v′. Hence, we can deduce that there exists v1, . . . , vn−1 ∈ V
such that for all j ∈ [0 .. n− 1], [[E1]](G, σ, vj , vj+1) 6= 0. By induction, this shows that

v = v0 < v1 < · · · < vn−1 < vn = v′

Knowing that n ≥ 1, this shows by transitivity that v < v′.

7.5. RESTRICTIONS OVER EXPRESSIONS AND LOGICS 131

This lemma shows that the a priori infinite sum used to define the semantics of E+

contains indeed only a finite number of non-zero elements, and hence exists in all semirings
S: more precisely, if n is the number of vertices in an ordered pointed graph G, and E is a
proper one-way pebble weighted expressions, we have

[[Ek]](G, σ, v, v′) = 0

for every k ≥ n+1, valuation σ : Var ⇀ V (with Free(E) ⊆ dom(σ)), and v, v′ ∈ V . Finally,
we have shown that we can define the semantics of one-way hybrid weighted expressions
with weights in a semiring, non necessarily continuous.

We believe that it is now possible to prove another correspondence theorem between
one-way pebble weighted automata and one-way hybrid weighted expressions. The idea
would be to adapt the proof of Theorem 4.31 so that both constructions ensure the one-way
restrictions. Starting with an automaton, we would need to prove that the proof of the
general case (in particular the computation of the star of a matrix) still goes through this
one-way restriction: even though the set of series over (dynamically) marked graphs is no
longer a continuous semiring, we think that it would be possible to extract from it a star
semiring (see e.g., [KS85] for a formal definition) considering only proper marked graphs,
i.e., those in which initial and final vertices are not the same. For the other direction, the
construction of an automaton from an expression is exactly the same, and only the proof of
correctness has to be adapted, again dealing with star semirings.

Our choice of one-way pebble weighted expressions may seem too restrictive. In partic-
ular, for the operator x!E, it is not absolutely necessary that E is one-way too. We could
also imagine that E is going backward only, or more generally is changing from a forward
to a backward computation and vice versa only a finite number of times. However, Kleene
iterations must still be applied over expressions using only one type of directions, and being
proper. Hence, a Kleene operator will only be allowed over forward-proper or backward-
proper expressions, namely expressions that may only move in one direction, and will not
stay on the same position. An alternative restriction would then consist in defining simulta-
neously forward, forward-proper, backward, backward-proper and one-way hybrid weighted
expressions by the following grammar:

E ::= F | B | E + E | E · E

F ::= s | α | x!E | F | F + F | F · F

F ::= d→ | F + F | F · F | F · F | F+

B ::= s | α | x!E | B | B +B | B ·B

B ::= d← | B +B | B ·B | B ·B | B+

where s ∈ S, α ∈ Test, d→ ∈ D→, d← ∈ D←, and x ∈ Var. Expressions F (respectively,
B) are called forward hybrid weighted expressions (respectively, backward hybrid weighted
expressions), whereas their underlined versions are their proper versions.

The proof of Lemma 7.12 can easily be adapted to prove that

Lemma 7.13. Let F and F be respectively a forward and proper forward hybrid weighted
expression. Then,

[[F]](G, σ, v, v′) 6= 0 implies v ≤ v′ and [[F]](G, σ, v, v′) 6= 0 implies v < v′

for every ordered pointed graph G = (V,E, λ, χ, v(i), v(f)) ∈ G(A,D), vertices v, v′ ∈ V and
valuation σ : Var ⇀ V , where ≤ denotes the order on the vertices of G.

Similarly, let B and B be respectively a backward and proper backward hybrid weighted
expression. Then,

[[B]](G, σ, v, v′) 6= 0 implies v′ ≤ v and [[B]](G, σ, v, v′) 6= 0 implies v′ < v .

132 CHAPTER 7. SIMPLE AND ONE-WAY RESTRICTIONS

Indeed, only the base case of formulae x!E has to be adapted, and the proof for the
backward version is symmetrical. Hence, this shows that we can again define the semantics of
one-way hybrid weighted expressions with weights in a semiring, not necessarily continuous.

In the case of words, reversal-bounded hybrid weighted expressions can not generate
more behaviors than one-way hybrid weighted expressions. Indeed, using Theorem 4.31
again, reversal-bounded hybrid weighted expressions can be translated into pebble weighted
automata that do not loop: in particular, we can use their simple semantics and use Theo-
rem 7.8 to transform them into one-way pebble weighted automata. We may then conclude
by the result stated before linking one-way hybrid weighted expressions and one-way pebble
weighted automata.

7.5.2 First-order logic with Restricted Transitive Closure

We now finish this chapter by presenting a logical fragment permitting to express exactly
the expressive power of pebble weighted automata equipped with a simple semantics. We
have studied this extension in [1] in a slightly different formalism and thus do not develop
it further in this manuscript.

Indeed, the idea is to restrict the transitive closure to a simple and a one-way transitive
closure, as we did for automata.

The simplicity restriction, which is a semantical restriction, permits to define a transitive
closure in non-continuous semirings. For a formula Φ(x, y) with at least two free variables x
and y, the simple weighted transitive closure operator [swTCx,yΦ](x′, y′) has as free variables
the fresh variables x′ and y′, and all the free variables of Φ except x and y. Its semantics
is defined by the same formula as in (6.3) where the sum now runs over all m > 0 and all
sequences (vk)0≤k≤m of vertices of the graph G with v0 = σ(x′) and vm = σ(y′), such that,
either m = 1, or m > 1 and all positions of the sequence are pairwise distinct. This sum
is finite as the graph has finitely many vertices. Notice that if σ(x′) = σ(y′) = v, then the
semantics is [[Φ]](G, σ[x 7→ v, y 7→ v]).

Example 7.14. Let Ψ = swTCx,y1 over N. Then for a word u of length n, we have
[[Ψ]](u, 1, n) =

∑n−2
m=0 m!

(
n−2
m

)
, since the sum in the semantics of swTC ranges over all

sequences of pairwise distinct positions in [1 .. n] starting in 1 and ending in n. �

For the one-way restriction, we introduce the operator wTC→x,yΦ whose semantics consists
in restricting the sum of (6.3) when m > 1 to increasing sequences (vk)0≤k≤m of vertices of
the ordered graph G. Equivalently, we can define it by

wTC→x,yΦ = swTCx,y(x ≤ y ⊗ Φ) = (x = y ⊗ Φ(x, y))⊕ wTCx,y(x < y ⊗ Φ)

as the simplicity condition ensures that non-decreasing simple sequences of length m > 1
are indeed increasing. Intuitively, the wTC→x,y operator generalizes the forward transitive
closure operator of the Boolean case: a formula ϕ(x, y) with two free variables defines a
binary relation on positions of a word w, namely {(i, j) | (i < j)∧w, i, j |= ϕ}. The relation
defined by wTC→x,yϕ is the transitive closure of this relation.

An alternative to define the semantics of this operator, is to use powers of the formula:
we define recursively the m-th power of a formula Φ, with this one-way restriction

Φ1
≤(x, y) = (x ≤ y)⊗ Φ(x, y),

Φm+1
≤ (x, y) =

⊕
z

[
(x < z < y)⊗ Φ(x, z)⊗ Φm≤ (z, y)

]
, for m ≥ 1.

The left-to-right restriction of the transitive closure permits finally to give a third equivalent
definition, a priori simpler to use:

[[wTC→x,yΦ]] =
∑

m≥1

[[Φm≤ (x, y)]] .

7.5. RESTRICTIONS OVER EXPRESSIONS AND LOGICS 133

This infinite sum is well-defined, since on each pair (G, σ), only finitely many terms assume
a nonzero value: indeed [[Φm≤ (x, y)]](G, σ) = 0 if m ≥ |V |, the number of vertices of G.

Finally, we can reconsider the bounded restriction considered in Chapter 6, and introduce
bounded one-way and bounded simple weighted transitive closure operators, respectively
denoted by wTCb→

x,yΦ and swTCb
x,yΦ.

Following exactly the same proof as the one of Theorem 6.10 with the one-way re-
striction over the transitive closure, we would be able to prove that every formula of
wFO+wTCb→(FO) can be translated into an equivalent layered one-way pebble weighted
automaton 1PWA, over a searchable class of graphs. This is an extension of Theorem 11(3)
in [1].

Reciprocally, we proved in the case of words in [1] that layered pebble weighted automata
equipped with the simple semantics can be translated into a formula of wFO+wTCb→(FO),
first by making them one-way and then by mimicking the proof we gave in a more general
setting for Theorem 6.15.

CHAPTER 8
Probabilistic Specification Formalisms

Les grands artistes ont du hasard dans leur talent et du talent dans
leur hasard.1

Victor Hugo, Océan Prose

8.1 Pebble Probabilistic Automata 136
8.2 Hybrid Probabilistic Expressions 138
8.3 The Probabilistic Kleene-Schützenberger Theorem 140
8.4 What it Implies for Rabin Probabilistic Automata 147

This chapter is devoted to the study of probabilistic specifications. There are actually
a variety of models for probabilistic systems, comprising Segala systems, generative sys-
tems, stratified systems, Markov chains, etc. (see [vGSS95, Seg06] for overviews). Those
models may involve non-determinism and generate some behavior according to probability
distributions over states. Alternatively, they may make a probabilistic decision depending
on the input letter, like (reactive) probabilistic automata [Paz71]. The latter go back to
Rabin [Rab63] and are an object of ongoing research considering decision problems such as
emptiness, language equivalence [Sch61, Tze92, CMR06, KMO+12], and the value 1 problem
[GO10].

Our starting point of view, as in all this manuscript, is that specifications shall represent
quantitative properties of graphs. In particular, rather than at bisimulation equivalence,
we are looking at language equivalence in terms of formal power series, i.e., mappings from
graphs to elements from the real-valued interval [0, 1]. Our goal is to apply our results in this
particular case of probabilistic specifications. Especially, what kind of probabilistic proper-
ties can we specify with hybrid weighted expressions/pebble weighted automata/formulae?
As a first attempt, we could simply consider these specification formalisms with weights
restricted to the subset [0, 1] of the continuous semiring (R+ ∪ {+∞},+,×, 0, 1). However,
this first naive solution is not satisfactory. Indeed, having only weights in [0, 1] does not
ensure that the semantics of every graph will lie in the interval [0, 1] and henceforth be
interpreted as a probability.

In the first section, we consider pebble probabilistic automata (that capture two-way
probabilistic automata [DS89, Rav07] over words for instance) and define the class of hybrid

1“Great artists have randomness in their talent and talent in their randomness.”

135

136 CHAPTER 8. PROBABILISTIC SPECIFICATION FORMALISMS

probabilistic expressions, as a syntactical fragment of hybrid weighted expressions. In par-
ticular, the sum and the Kleene star operator have to be handled with care. We prove that
these two models generate exactly the same probabilistic behaviors: it has to be noticed
that we have not been able to avoid redoing the whole proof of Theorem 4.31.

In the second section, we study the special case of classical Rabin probabilistic automata,
i.e., one-way automata over finite words. We define a set of probabilistic expressions that
are equivalent to probabilistic automata.

It has to be noted that there have been numerous approaches to characterizing proba-
bilistic systems in terms of algebraic expressions and process calculi [vGSS95, BK01, DP07].
A unifying framework is due to [SBBR11], who consider probabilistic systems in a general
coalgebraic setting. This allows them to derive algebraic expressions and a corresponding
Kleene theorem, as well as full axiomatizations for many of those (and even for weighted
automata over arbitrary semirings). Their and above-mentioned works are mainly aiming
at axiomatization of probabilistic-system behaviors in terms of bisimulation equivalence, so
their focus is on system models including non-determinism and generative probability distri-
butions. In this chapter, we consider probabilistic automata, which are a more appropriate
machine model for our purpose, e.g., for evaluating queries. Moreover, while the syntax of
process-algebraic expressions is tailored to modeling probabilistic systems and uses action
prefixing, fixed points, and process variables, we provide expressions with concatenation and
a Kleene star. Thus, our expressions are closer to language-theoretic operations and more
convenient to use in query languages.

Note that the fact that we also consider navigating devices distinguishes our work from
all above-mentioned references. To the best of our knowledge, we present the first Kleene-
Schützenberger correspondence for probabilistic two-way automata. Results of this chapter
have been presented in [3] in the case of words.

Throughout this chapter, we consider the continuous semiring (R+ ∪ {+∞},+,×, 0, 1).

8.1 Pebble Probabilistic Automata

In this section and the following, we explain how to interpret (pebble) weighted automata
and (hybrid) weighted expressions in a probabilistic setting.

Considering first automata, not every pebble weighted automaton with weights in the
subset [0, 1] of the semiring (R+ ∪ {+∞},+,×, 0, 1) can be interpreted as a probabilistic
automaton. Indeed, a first property of interest should be that every graph (e.g., word) is
mapped to a weight in [0, 1]. The definition below puts some syntactical restrictions over
the pebble weighted automata to ensure it. Naturally, they have the flavor of those for
probabilistic Rabin automata, as introduced in [Rab63].

We reuse here ideas introduced in the proof of Theorem 7.8, namely the fact that a
test formula α can be verified using a finite abstraction of the current configuration of an
automaton. Whereas only three components were needed over words (namely the letter, the
type and the set of pebbles), we now add two more Booleans bi and bf in {0, 1} to check
respectively formula init? and final?. Indeed, we define (a, τ,P, bi, bf) |= α as in Table 7.1,
simply changing the cases where α is either init? and final? by

(a, τ,P, bi, bf) |= init? if, and only if, bi = 1

(a, τ,P, bi, bf) |= final? if, and only if, bf = 1

For other formulae, bi and bf are not used. Similarly to the case of words, for every graph
G ∈ G(A,D), valuation σ and vertex v ∈ V , we may define bi(v) (respectively, bf (v)) to be
1 if, and only if, v = v(i) (respectively, v = v(f)). Then,

G, σ, v |= α if, and only if, (λ(v), type(v), σ−1(v), bi(v), bf (v)) |= α .

8.1. PEBBLE PROBABILISTIC AUTOMATA 137

In the following, a tuple (a, τ,P, bi, bf) will be called a local configuration. The set of
local configurations of an automaton A is denoted Γ:

Γ = A×P(D)×P(Var(A))× {0, 1}2

and such a local configuration will be denoted by γ.

Definition 8.1. A pebble probabilistic automaton (PPA) is a pebble weighted automaton
A = (Q,A,D, I,∆, F) over (R+ ∪{+∞},+,×, 0, 1) such that the following conditions hold:

1. I is a probability distribution over the states, i.e.,
∑
q∈Q Iq = 1;

2. for all q ∈ Q, and local configuration γ ∈ Γ, we have2

∑

α∈Test|γ|=α

(
Fq(α) +

∑

m∈Actions,q′∈Q

∆q,q′(m)(α)
)
≤ 1 .

�

The idea is to ensure that for every possible configuration, the transition function defines
a probability distribution over the possible continuations (or termination), i.e., the next
action to follow, and the next state.

Remark 8.2. In the following, a state q ∈ Q will be said accepting if Fq is different
from 0. �

A priori, [[A]]K associates to every pair (G, σ) of graph and valuation an element of
R+ ∪ {+∞}. However, one can show the following:

Proposition 8.3. For every pebble probabilistic automaton A and bound K > 0, every
graph G ∈ G(A,D) and every valuation σ, we have [[A]]K(G, σ) ∈ [0, 1].

Proof. For every pair (G, σ), we prove that the graph of K-configurations is a finite Markov
chain, so that the semantics [[A]]K(G, σ), being interpreted as a probability to reach a set of
states of the Markov chain, must be in [0, 1].

We first recall that a K-configuration has the shape (G, σ, q, π, v) with q ∈ Q, π ∈
(Var(A) × V)k with k ≤ K, and v ∈ V . For a fixed pair (G, σ), this generates a finite set
of states for the Markov chain. To this set of K-configurations, we add a single fresh state
denoted X.

Clearly, the initial distribution reflects the distribution I, so that the K-configuration
(G, σ, q, ε, v(i)) has initial probability Iq and others have probability 0.

The transitions of the Markov chain are defined by the concrete transitions between
K-configurations (G, σ, q, π, v) ❀ (G, σ, q′, π′, v′), whose weight has been defined after Def-
inition 4.19. Moreover, we add a transition from any final K-configuration (G, σ, q, ε, v(f))
to the state X with probability defined by the polynomial Fq where test formulae are again
interpreted as before. It is not difficult to see that the weights only depend on the lo-
cal configuration (λ(v), type(v), σ−1(v), bi(v), bf (v)), so that the restriction of Definition 8.1
actually generates a Markov chain.

Finally, the semantics [[A]]K(G, σ) is the probability to reach the state X, so that it
belongs to [0, 1].

The proof above establishes a strong connection between pebble probabilistic automata
and finite Markov chains. This connection also provides an algorithm for evaluating a
pebble probabilistic automaton with respect to a given graph and valuation, which reduces
to computing the probability of reaching a final configuration in the synchronized Markov
chain (see, for example, [BK08]).

138 CHAPTER 8. PROBABILISTIC SPECIFICATION FORMALISMS

1 final?p

(
p (¬final?)

)
→+

(
(1− p)⊤

)
←

0 1 n− 2 n− 1 X

p

1− p

. . .

p

1− p

p

Figure 8.1: A probabilistic automaton A ∈ PPA and the Markov chain obtained by syn-
chronizing A with a word of length n

Example 8.4. (Continued from Example 4.7) Consider the pebble probabilistic automaton
A (2-way, without pebbles) depicted on the left of Figure 8.1 (where 0 < p < 1) with
D = {←,→}. The synchronized Markov chain of A with respect to a graph G ∈ Word(A),
representing a word of length |V | = n, is depicted on the right of the same figure. This
Markov chain represents a random walk over a straight line of bounded length. Using the
same proof as the one used in Proposition 7.3 for the special case p = 1/2, we can show that
A verifies

[[A]](G) =
1

1 + s+ . . .+ sn+1

where s = 1−p
p , for every G ∈ Word(A). �

8.2 Hybrid Probabilistic Expressions

Now, we define hybrid probabilistic expressions that capture the expressive power of prob-
abilistic pebble automata. These are syntactical restrictions of hybrid weighted expressions
in HWE. In the following, we consider hybrid weighted expressions with weights in [0, 1],
modulo the following trivial identities:

0 + E ≡ E + 0 ≡ E E · 0 ≡ 0 · E ≡ 0 E · 1 ≡ 1 · E ≡ E 0∗ ≡ 1

as well as p · E ≡ E · p (for p ∈ [0, 1]) which models commutativity.
As for automata, we have to restrict the syntax of expressions since otherwise values

greater than 1 could be obtained. For instance, the weighted expression over words (a +
ab)(ba+ a) should not be a probabilistic expression since it evaluates to 2 on the word aba.
The restriction will be both on sum and star.

Since we aim at expressions which are equivalent to pebble probabilistic automata, we
examine first which type of hybrid weighted expressions are obtained from pebble prob-
abilistic automata by applying our construction of Theorem 4.31 (interpreting a pebble
probabilistic automaton as a pebble weighted automaton). For the example automaton in
Figure 8.2, the weighted expression would be

[
1
6a(a + b) + 1

2a
]⋆
· (1

3a? + b?). Now, the ex-
pression

[
1
6a(a+ b) + 1

2a
]⋆
· (a? + b?), obtained by changing the subexpression 1

3a? into a?,
should be disallowed, because it corresponds to an automaton violating the condition over
its transition matrix. On the other hand,

[
1
6a(a+b)+ 1

2a
]∗
·(1

3a?+ 1
2b?) would be acceptable:

we obtain a corresponding probabilistic automaton from the previous automaton depicted
in Figure 8.2 by setting P(1, b, 3) = 1

2 .
Henceforth, we will restrict the sum and star operations to get the probabilistic fragment.

Doing so, we lose commutativity, associativity and distributivity hence we enforce these
properties explicitly. The rule for introducing concatenation is also strengthened to allow
concatenation inside a context: if E1 + E2 and G are probabilistic expressions, so does
E1 + E2 ·G.

2Actions = D ∪ {dropx | x ∈ Var} ∪ {lift} is the set of available actions

8.2. HYBRID PROBABILISTIC EXPRESSIONS 139

1

1

1

3
a? + b?

2

(1

2
a?)→

(1

6
a?)→

(1a?)→
(1b?)→

Figure 8.2: A probabilistic automaton equivalent to
[

1
6a(a+ b) + 1

2a
]⋆
· (1

3a? + b?)

Definition 8.5. Hybrid probabilistic expressions (HPE) are expressions in HWE built by
the following rules3:
• the atom rules:

(p)
p ∈ [0, 1]
p ∈ HPE

(α)
α ∈ Test
α ∈ HPE

(d)
d ∈ D

d ∈ HPE

• the inductive rules:

(+det)
E1 ∈ HPE E2 ∈ HPE α ∈ Test

α · E1 + (¬α) · E2 ∈ HPE

(+prob)
E1 ∈ HPE E2 ∈ HPE p ∈ [0, 1]

p · E1 + (1− p) · E2 ∈ HPE

(·)
E1 + E2 ∈ HPE G ∈ HPE

E1 + E2 ·G ∈ HPE
(⋆)

E1 + E2 ∈ HPE
E⋆1 · E2 ∈ HPE

(x!)
E ∈ HPE x ∈ Var

x!E ∈ HPE

• the following associativity, commutativity and distributivity rules (later denoted as
ACD-rules):

A+ E + (G+H) ∈ HPE ←→ (E +G) +H ∈ HPE
C+ E +G ∈ HPE ←→ G+ E ∈ HPE
A· E · (G ·H) ∈ HPE ←→ (E ·G) ·H ∈ HPE
D· E · (G+H) ∈ HPE ←→ E ·G+ E ·H ∈ HPE
D· (E +G) ·H ∈ HPE ←→ E ·H +G ·H ∈ HPE
Dx! x!(E +G) ∈ HPE ←→ x!E + x!G ∈ HPE

�

There are two guarded sums. The first one (+det) is deterministic and guarded by a
test formula. The second one (+prob) is probabilistic. Also, the star operation contains an
implicit choice which is either to iterate again the expression or to exit the loop. This choice
also has to be guarded which is the reason for the precondition E1 +E2 ∈ PE in the rule (⋆).
The guard could be deterministic as in (ab)⋆b, i.e., (a? ·→ · b? ·→)⋆ · b? ·→ when written in
plain, or probabilistic as in (1

3 (aa+ bb))⋆ 2
3 . Finally, with the above restrictions, we lose the

classical ACD identities, hence we enforce these properties explicitely with the ACD-rules
which allow to rewrite a hybrid probabilistic expression in order to apply the star rule as
needed.

The semantics of hybrid probabilistic expressions is inherited from the one of hybrid
weighted expressions. It is not straightforward that expressions from HPE generate only
probabilistic behaviors, in particular because of the rules (·) and (⋆). We will indeed not
prove it directly but obtain this fact from Theorem 8.8 translating every hybrid probabilistic
expression into an equivalent pebble probabilistic automaton.

3The rules have to be understood in the following sense: on the top, there are preconditions to be
fullfilled, in which case, the bottom builds a new hybrid probabilistic expression. For example, the rule
(+prob) constructs the expression p ·E1 +(1−p) ·E2 at the condition that E1 and E2 are hybrid probabilistic
expressions and that p is a probability.

140 CHAPTER 8. PROBABILISTIC SPECIFICATION FORMALISMS

Example 8.6 (Continued from Example 8.4). An equivalent probabilistic expression to
describe the probability associated with the previous random walk is given by

E = (p(¬final?)→+ (1− p)←)⋆final? p .

Moreover, let G = p(¬final?)→+ (1− p)← so that E = G⋆final? p. Notice that E is indeed
an expression in HPE because G+ final? p ∈ HPE, since it can be rewritten by ACD-rules,
and equivalences into p(final? + ¬final?→) + (1− p)← ∈ HPE. �

We define now the multiset Terms(E) of terms of an expression E ∈ HPE. This will be
crucial for the translation from expressions to automata in the next section. Intuitively, if we
suppose that summation is pushed up as much as possible by means of ACD-rules, then the
multiset of terms consists of all expressions that occur in this big outermost sum. Formally,
the definition is by induction over E ∈ HPE. When E is an atom, we let Terms(E) = {{E}}
be the singleton multiset containing only the atom itself. Moreover,4

Terms(E1 + E2) = Terms(E1) ⊎ Terms(E2)

Terms(E1 · E2) = {{E′1 · E
′
2 | E

′
1 ∈ Terms(E1), E′2 ∈ Terms(E2)}}

Terms(E⋆) = {{E⋆}}

Terms(x!E) = {{x!E′ | E′ ∈ Terms(E)}} .

Note that, if an expression G can be obtained from an expression E through ACD-rules,
then we have Terms(G) = Terms(E). Also, it is immediate by induction that the converse
also holds:

Lemma 8.7. Let E ∈ HPE with Terms(E) = {{Ei | i ∈ I}}. Using ACD-rules, we can
rewrite E into

∑
i∈I Ei. In particular, we have [[E]] =

∑
i∈I [[Ei]]. Henceforth, we identify

E and
∑
i∈I Ei.

Notice finally that, by making use of the context in the rule (·), any sum of (some) terms of
a probabilistic expression is also a probabilistic expression: if I ′ ⊆ I we get

∑
i∈I′ Ei ∈ HPE

by concatenating expression 0 after expressions Ei with i /∈ I ′, and applying equivalences.

8.3 The Probabilistic Kleene-Schützenberger Theorem

We prove in this section that pebble probabilistic automata are effectively equivalent to
hybrid probabilistic expressions. Notice that we cannot simply use the proof of the general
Schützenberger-Kleene theorem, stated in Theorem 4.31, as there are restrictions both on
the automata and the expressions, which are of different natures.

We start with the construction of automata from expressions. The problematic cases
are concatenation and iteration due to the precondition E + F ∈ HPE. To deal with these
cases, we construct from E ∈ HPE a pebble probabilistic automaton A which simultaneously
recognizes all terms of E.

Theorem 8.8. From any expression E ∈ HPE, we can effectively construct an equivalent
layered pebble probabilistic automaton A = (Q,A,D, I,∆, F). More precisely, if Terms(E) =
{{Ei | i ∈ I}}, the set of accepting states of A is {fi | i ∈ I} and for all i ∈ I the expression

Ei is equivalent to the pebble probabilistic automaton A[fi] = (Q,A,D, I,∆, F̃) obtained by

considering fi as only accepting state, i.e., F̃fi
= Ffi

and F̃q = 0 for q 6= fi.

4Here, and in the following, A ⊎ B denotes the sum (i.e., the disjoint union) of the multisets A and B:
in particular, it takes into account the repetitions.

8.3. THE PROBABILISTIC KLEENE-SCHÜTZENBERGER THEOREM 141

ι
1

Fι

Ff1

Ff2

...
Ffn

NJ

Figure 8.3: Standard pebble probabilistic automaton produced by the construction, from a
hybrid probabilistic expression with terms {{E1, E2, . . . , En}}. Notice that the initial state ι
may be related to one of the terms, as it is shown on the picture.

Proof. The construction is by structural induction on the expression E ∈ HPE. As for
Theorem 4.31, the automaton we construct is a standard automaton, i.e., it has a unique
initial state ι, with no ingoing transition. We have depicted in Figure 8.3 the pebble prob-
abilistic automaton A constructed from a hybrid probabilistic expression E. In particular,
we separate the matrix ∆ of transitions, in blocks, J regrouping the transitions from the
initial state ι, and N the transitions from (and to) states distinct from ι.

In this proof, we say that A and E are equivalent if, for all graphs G ∈ G(A,D), valuation
σ : Free(E)→ V , and vertices u, v ∈ V ,

[[E]](G, σ, u, v) =
∑

q,q′∈Q

Iq × [[Aq,q′]](G, σ, u, v)×
∑

α∈Test|G,σ,v|=α

Fq′(α) .

The cases p ∈ [0, 1], α ∈ Test, and d ∈ D are done as in the non-probabilistic case. For
each atom, the resulting automaton is in fact a probabilistic automaton, making use of the
fact that F may contain some test for the expression α.

Now let E,E′ ∈ HPE be such that Terms(E) = {{Ei | i ∈ I}} and Terms(E′) = {{E′j |
j ∈ J }}. By induction hypothesis, we have constructed two suitable pebble probabilistic
automata A = (Q,A,D, I,∆, F) and A′ = (Q′, A,D, I ′,∆′, F ′) with respective accepting
states {fi | i ∈ I} and {f ′j | j ∈ J }. Without loss of generality, we assume that Q∩Q′ = ∅,
and we denote ι and ι′ their respective unique initial states.

Consider E′′ = αE + ¬αE′. We have Terms(E′′) = {{αEi | i ∈ I}} ⊎ {{¬αE′j | j ∈ J }}.
We construct a pebble probabilistic automaton A′′ = (Q⊎Q′ ⊎ {ι′′}, A,D, I ′′,∆′′, F ′′) with
a fresh state ι′′, unique initial state in the distribution I ′′. We let

F ′′ι′′ =
∑

α′∈Test

Fι(α′) (α ∧ α′) + F ′ι′(α
′) (¬α ∧ α′)

whereas F ′′q = Fq if q ∈ Q and F ′′q = F ′q if q ∈ Q′. From the new initial state ι′′, we duplicate
each transition from ι to a state q ∈ Q by testing moreover the formula α, and similarly for
transitions to q′ ∈ Q′:

∆′′ι′′,q(d)(α ∧ α′) = ∆ι,q(d)(α′) for q ∈ Q,α′ ∈ Test, d ∈ D

∆′′ι′′,q(d)(¬α ∧ α′) = ∆′ι′,q(d)(α′) for q ∈ Q′, α′ ∈ Test, d ∈ D

∆′′q,q′ = ∆q,q′ for q, q′ ∈ Q

∆′′q,q′ = ∆′q,q′ for q, q′ ∈ Q′

The construction for E′′ = pE + (1 − p)E′ is similar, and depicted in Figure 8.4. We
simply multiply the probability of the first transition from ι′′ by the probability p or 1− p
depending on whether the next state is in Q or Q′, and let F ′′ι′′ = pFι + (1 − p)F ′ι′ . Notice
that in the picture, we did not mention the previous initial states ι and ι′ as they are not
reachable anymore.

For the concatenation, we assume that E = G + H and E′′ = G + H · E′. We have
I = K ⊎ L with Terms(G) = {{Ei | i ∈ K}} and Terms(H) = {{Ei | i ∈ L}}. Hence, we have

142 CHAPTER 8. PROBABILISTIC SPECIFICATION FORMALISMS

ι′′
1

pFι + (1− p)F ′ι′

Ff1

Ff2...
Ffn

NpJ

F ′f ′

1

F ′f ′

2...
F ′f ′

n
′

N ′(1− p)J ′

Figure 8.4: Construction for the rule (+prob)

A : ι
1

Ff1...
Ffm−1

Ffm...
Ffn

}

G

}

H

NJ

A′′ :

ι
1

Ff1...
Ffm−1

...

}

G

NJ
F ′f ′

1... F ′f ′

n
′

N ′Ffm
J ′

...
F ′f ′

1... F ′f ′

n
′

N ′Ffn
J ′

H · E′

Figure 8.5: Construction for the rule (·): on the top, automaton A equivalent to expression
E = G + H (for simplifying, ι is supposed to be not associated to a term in this picture),
and on the bottom, automaton A′′ equivalent to expression E′′ = G+H · E′

Terms(E′′) = {{Ei | i ∈ K}}⊎{{Ei ·E′j | (i, j) ∈ L×J }}. Notice that the construction used in
Theorem 4.9 does not work here, because of the requirement to keep track of the different
terms of the expression. The idea is rather to use multiple copies of A′, one for each term of
E′′, as depicted in Figure 8.5. More precisely, the automaton A′′ for E′′ consists of one copy
of A and a copy A′i of A′ for every i ∈ L. First, A′′ simulates A until it reaches some final
state fi of A. Then, if i ∈ L, transitions starting from the initial state of A′i are duplicated
from fi in the same way as previously. The accepting states of A′′ consist of {fi | i ∈ K}
and a copy of accepting states in Q′ for each i ∈ L.

For the Kleene star, we assume that E = G + H and E′′ = G⋆ · H. We have I =
K ⊎ L with Terms(G) = {{Ei | i ∈ K}} and Terms(H) = {{Ei | i ∈ L}}. Hence, we
have Terms(E′′) = {{G⋆ · Ei | i ∈ L}}. We construct the pebble probabilistic automaton
A′′ = (Q,A,D, I,∆′′, F ′′) with accepting states {fi | i ∈ L} and by duplicating transitions
exiting from ι, to transitions from the states fi for i ∈ K.

Construction for E′′ = x!E is done similarly as for the non-probabilistic case: however,
as for the previous construction for the rule (·), we need to keep track of the terms of E′′,
henceforth we must duplicate the final states. More precisely, the terms of E′′ are of the
form x!Ei for all terms Ei of E. Hence, we construct the automaton A′′ = (Q⊎{ι′′}⊎ {f ′′i |

8.3. THE PROBABILISTIC KLEENE-SCHÜTZENBERGER THEOREM 143

ι
1

...

Ffm...
Ffn

}

G⋆ ·H

NJ

Ff1
J

Ffm−1
J

Figure 8.6: Construction for the rule (⋆), supposing that automaton A, equivalent to expres-
sion E = G+H, is given in Figure 8.5: the automaton depicted is equivalent to expression
E′′ = G⋆ ·H.

i ∈ I}, A,D, I ′′,∆′′, F ′′) with a fresh state ι′′, unique initial state in the distribution I ′′,
and as many fresh states f ′′i as terms in E. The transitions in-between states of Q are kept
in A′′, whereas we add drop transitions

∆′′ι′′,ι(dropx) = 1⊤

and lift transitions
∆′′fi,f ′′i

(lift) = Ffi

for every i ∈ I.
Finally, if E′′ is obtained from E via ACD-rules, we have Terms(E′′) = Terms(E) so we

can keep the same automaton: A′′ = A.

By Proposition 8.3, the semantics of pebble probabilistic automata only assumes values
in [0, 1]. This carries over to hybrid probabilistic expressions.

Corollary 8.9. For every hybrid probabilistic expression E, for every pointed graph G ∈
G(A,D) and valuation σ, we have [[E]](G, σ) ∈ [0, 1].

We turn now to the construction of expressions (HPE) which are equivalent to automata
(PPA). We cannot directly follow the same procedure as in the non-probabilistic case (The-
orem 4.31). Indeed, we must ensure throughout the proof that we produce expressions in
HPE. To this aim, we strongly rely on ACD-rules. The rough idea is again to construct
a generalized automaton and remove one by one each state (Brzozowski-McCluskey algo-
rithm), starting with the deepest layers. For the purpose of the presentation, we rather
follow a method similar to the McNaughton-Yamada algorithm.

Theorem 8.10. Let A = (Q,A,D, I,∆, F) be a K-layered pebble probabilistic automa-
ton. We can effectively construct a hybrid probabilistic expression E such that [[E]](G, σ) =
[[A]](G, σ) for every pair of graph G ∈ G(A,D) and valuation σ.

Proof. As usual, we denote by ℓ the mapping defining the layers of A. For every local
configuration γ = (a, τ,P, bi, bf) ∈ Γ, we use a macro γ? denoting the test formula

a? ∧ τ? ∧ P? ∧ αi ∧ αf

with αi being init? if bi = 1 and ¬init? otherwise, and similarly for αf . It simply tests
whether the current configuration verifies the local configuration γ.

For each state q ∈ ℓ−1(k) (k < K), we let

Endq =
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∑

q′∈ℓ−1(k+1)

∆q,q′(lift)(α)

144 CHAPTER 8. PROBABILISTIC SPECIFICATION FORMALISMS

be the hybrid probabilistic expression representing the lift transitions starting from state q:
it is a hybrid probabilistic expression since

∑

α∈Test|γ|=α

∑

q′∈ℓ−1(k+1)

∆q,q′(lift)(α) ∈ [0, 1]

by using the fact that A is a pebble probabilistic automaton, and by using repeatedly rule
(+det) over each local configuration5. Similarly, when q ∈ ℓ−1(K), we let

Endq =
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

Fq(α)

which is a hybrid probabilistic expression, for the same reason.
For each q ∈ ℓ−1(k) (k ≤ K), we will construct a hybrid probabilistic expression

Eq = Endq +
∑

q′∈ℓ−1(k)

Eq,q′ · Endq′

with Eq,q′ that computes the sum of the probabilities of non-empty runs starting from state
q, ending in state q′ and visiting only states in layers 0, . . . , k. This construction is by
induction on k ∈ {0, . . . ,K}. Within each layer k ≤ K, we follow usual procedures to
translate automata into expressions.

For q ∈ ℓ−1(k) and X ⊆ ℓ−1(k) we let

EndXq =

{
Endq if q ∈ X
1 otherwise.

and we will construct by induction on X a hybrid probabilistic expression

EXq = Endq +
∑

q′∈ℓ−1(k)

EXq,q′ · EndXq′ .

For every q, q′ ∈ ℓ−1(k), [[EXq,q′]](G, σ, v, v
′) is the sum of the probabilities of non-empty

runs starting from configuration (G, σ, q, v, ε), ending in configuration (G, σ, q′, v′, ε), with
intermediary states either in X or in layers 0, . . . , k − 1. Notice in particular that Eq =

E
ℓ−1(k)
q .

We now present the details of the induction over (k,X) (with the lexicographic order):
for presentation purpose, we start by first presenting the base case on X, i.e., X = ∅, for
k = 0 and then k > 0, followed by the inductive step on X, common for all k.
• Consider first the construction for X = ∅. Recall that, for each state q ∈ ℓ−1(k), and

for every local configuration γ ∈ Γ, by definition of pebble probabilistic automata, we
have ∑

α∈Test|γ|=α

(
Fq(α) +

∑

m∈Actions,q′∈Q

∆q,q′(m)(α)
)
≤ 1 . (8.1)

– We start with the case k = 0 and K = 0. Now, since q is in layer 0, drop actions
may be discarded. Moreover, layer 0 is the only layer, so that lift transitions are
also discarded. Starting from (8.1) and using (+det) rule repeatedly, we obtain
that ∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

(
Fq(α) +

∑

d∈D,q′∈ℓ−1(0)

∆q,q′(d)(α)
)

5Indeed, we use again some semantical equivalence, noticing that if γ 6= γ′ are two different local
configurations, test formula γ? ∧ ¬(γ′?) is equivalent to γ?.

8.3. THE PROBABILISTIC KLEENE-SCHÜTZENBERGER THEOREM 145

is a hybrid probabilistic expression. Hence, using ACD-rules and rule (·), expres-
sion

E∅q =
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

Fq(α)

+
∑

q′∈ℓ−1(0)

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∑

d∈D

∆q,q′(d)(α) · d

is a hybrid probabilistic expression. We conclude by letting

E∅q,q′ =
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∑

d∈D

∆q,q′(d)(α) · d

and noticing that the first term of the sum in E∅q is equal to Endq and that

End∅q′ = 1.
– In case k = 0 but K > 0, layer 0 is not the topmost layer. Henceforth, we

will consider lift transitions, rather than the probabilities of acceptance: starting
again from (8.1), we obtain that

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

(∑

q′∈ℓ−1(1)

∆q,q′(lift)(α) +
∑

d∈D,q′∈ℓ−1(0)

∆q,q′(d)(α)
)

is a hybrid probabilistic expression. Similarly to the previous case, expression

E∅q =
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∑

q′∈ℓ−1(1)

∆q,q′(lift)(α)

+
∑

q′∈ℓ−1(0)

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∑

d∈D

∆q,q′(d)(α) · d

is a hybrid probabilistic expression. We conclude as previously letting

E∅q,q′ =
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∑

d∈D

∆q,q′(d)(α) · d .

– We then consider the case 0 < k = K. Compared to the case k = 0, we also
have to consider drop transitions which lead to the lower layer. By induction, we

have already constructed expressions Eℓ
−1(k−1)
r for all states r ∈ ℓ−1(k − 1) of

the lower layer:

Eℓ
−1(k−1)
r = Endr +

∑

r′∈ℓ−1(k−1)

E
ℓ−1(k−1)
r,r′ · Endr′ .

Recall that
Endr =

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∑

q′∈ℓ−1(k)

∆r,q′(lift)(α) .

By applying ACD-rules, we obtain that Eℓ
−1(k−1)
r is equivalent to the hybrid

probabilistic expression

∑

q′∈ℓ−1(k)

(
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∆r,q′(lift)(α)

+
∑

r′∈ℓ−1(k−1)

E
ℓ−1(k−1)
r,r′ ·

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∆r′,q′(lift)(α)

)
.

146 CHAPTER 8. PROBABILISTIC SPECIFICATION FORMALISMS

We may use the rule (x!), as well as ACD-rules again to obtain the hybrid prob-
abilistic expression

Gr =
∑

q′∈ℓ−1(k)

Gr,q′

Gr,q′ = x!

(
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∆r,q′(lift)(α)

+
∑

r′∈ℓ−1(k−1)

E
ℓ−1(k−1)
r,r′ ·

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

∆r′,q′(lift)(α)

)
.

Then, if q ∈ ℓ−1(k), (8.1) can be rewritten (removing the lift transitions since we
are in the topmost layer) as

∑

α∈Test|γ|=α

Fq(α) +

∑

α∈Test|γ|=α

(∑

d∈D,q′∈ℓ−1(k)

∆q,q′(d)(α) +
∑

x∈Var(A)

r∈ℓ−1(k−1)

∆q,r(dropx)(α)
)
∈ [0, 1]

Using rule (+det) repeatedly to concatenate the tests γ? to the left, and rule (·)
to concatenate the previous Gr expression on the right of the drop transition, as
well as the directions d, we obtain that

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

Fq(α)

+
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

(∑

d∈D
q′∈ℓ−1(k)

∆q,q′(d)(α) · d+
∑

x∈Var(A)

r∈ℓ−1(k−1)

∆q,r(dropx)(α) ·Gr
)

is a hybrid probabilistic expression. Finally, using ACD-rules a last time, we may
rewrite it as

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

Fq(α)

+
∑

q′∈ℓ−1(k)

∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

(∑

d∈D

∆q,q′(d)(α) ·d+
∑

x∈Var(A)

r∈ℓ−1(k−1)

∆q,r(dropx)(α) ·Gr,q′
)

We conclude as previously by letting

E∅q,q′ =
∑

γ∈Γ

γ? ·
∑

α∈Test|γ|=α

(∑

d∈D

∆q,q′(d)(α) · d

+
∑

x∈Var(A)

r∈ℓ−1(k−1)

∆q,r(dropx)(α) ·Gr,q′
)
.

– The last case, 0 < k < K, requires to combine the two last cases: indeed, contrary
to the case k = K, lift transitions rather than probabilities of acceptance have to
be taken into account.

8.4. WHAT IT IMPLIES FOR RABIN PROBABILISTIC AUTOMATA 147

• We turn now to the induction step on X, which is common for every layer k. Let
X ⊆ ℓ−1(k) and r ∈ ℓ−1(k) \ X. By induction, we assume that hybrid probabilistic
expressions EXq have been constructed for all q ∈ ℓ−1(k). We construct EX∪{r}q .

We have EXr = Endr +
∑
q′∈ℓ−1(k) E

X
r,q′ · EndXq′ ∈ HPE and EndXr = 1 since r /∈ X.

With rule (⋆) we get

GXr =
(
EXr,r

)⋆
·
(

Endr +
∑

q′∈ℓ−1(k)\{r}

EXr,q′ · EndXq′

)
∈ HPE .

Now, EXq = Endq +
∑
q′∈ℓ−1(k) E

X
q,q′ · EndXq′ ∈ HPE and EndXr = 1. Using rule (·), we

can plug GXr after EXq,r and we obtain the hybrid probabilistic expression

EX∪{r}q = Endq + EXq,r ·G
X
r +

∑

q′∈ℓ−1(k)\{r}

EXq,q′ · EndXq′

= Endq + EXq,r ·
(
EXr,r

)⋆
· Endr +

∑

q′∈ℓ−1(k)\{r}

(
EXq,q′ + EXq,r ·

(
EXr,r

)⋆
· EXr,q′

)
· EndXq′

= Endq +
∑

q′∈ℓ−1(k)

E
X∪{r}
q,q′ · End

X∪{r}
q′

where the last equality uses EndX∪{r}r = Endr and End
X∪{r}
q′ = EndXq′ if q′ ∈ ℓ−1(k) \

{r}.
Finally, the HPE

∑
q∈ℓ−1(K) Iq · Eq is equivalent to the automaton A which concludes

the proof.

8.4 What it Implies for Rabin Probabilistic Automata

We finish this chapter by some corollaries of the previous result in terms of classical proba-
bilistic finite automata as introduced and studied in [Rab63, Paz71], recognizing finite words.
A probabilistic finite automaton over alphabet A is usually a tuple A = (Q, I,P, F) where
Q is the finite set of states, I ∈ [0, 1]Q is an initial probability distribution, F ∈ [0, 1]Q is a
column vector mapping every state to its probability of acceptance, and P : (A→ [0, 1])Q×Q

is a matrix that assigns a probability to every pair of states, and every letter of the alphabet,
verifying ∑

q′∈Q

Pq,q′(a) ≤ 1

for all (q, a) ∈ Q×A.
A run ofA over w = a0 · · · an−1 ∈ A

+ is a sequence of states ρ = q0q1 · · · qn. In particular,
after reading letter an−1 the automaton ends without any letter to read, forced to accept or
reject the word, i.e., giving it a probability of acceptance6. For such a run ρ, we set

P(ρ) = Iq0
×

(
n−1∏

i=0

Pqi,qi+1
(ai)

)
× Fqn

.

The semantics of the probabilistic automaton A is the formal power series [[A]] : A+ → [0, 1]
given by

[[A]](w) =
∑

ρ

P(ρ)

6This definition is not completely consistent with the rest of this manuscript where runs are sequences
of configurations, each of these being attached to a position of the word.

148 CHAPTER 8. PROBABILISTIC SPECIFICATION FORMALISMS

1 3
1

2

a, 1

2

a, 1

3

b, 1

a, 1

6

a, 1
b, 1

Figure 8.7: A probabilistic finite automaton

where the sum ranges over all runs ρ over w. It is well-known that probabilistic automata
associate to every word a probability, i.e., [[A]](w) ∈ [0, 1] for every word w ∈ A+.

Notice that this model is not formally a special case of the pebble probabilistic automata
introduced previously. Indeed, a pebble probabilistic automaton can only test the last letter
of a word by making either a left move, by dropping a pebble or by accepting. In the
contrary, finite-state automata – and thus probabilistic finite automata too – may read the
last letter and access a virtual position on the right of the word, forced to accept (or reject)
when they reach this deadlock position. As done in Example 4.2, we may however very
easily translate every probabilistic finite automaton into a pebble probabilistic automaton
by merging the final acceptance probability with the last transition.

Example 8.11. We depict in Figure 8.7 as a classical probabilistic automaton the pebble
probabilistic automaton depicted in Figure 8.2. Transitions with probability 0 are omitted.
You may observe that state 3 is not used in the pebble probabilistic automaton since it is
not neccessary anymore after the transformation explained before this example. �

Theorems 8.8 and 8.10 indeed permit to define a fragment of hybrid probabilistic ex-
pressions equivalent to these probabilistic automata. Again, we use a as a shortcut for the
expression a?→. However, to stop the computation, we use test formula final? signifying
that the expression has reached the end of the word.

Definition 8.12. We let PE be the class of probabilistic expressions, fragment of WE,
defined by the following rules:
• the atom rules:

(p)
p ∈ [0, 1]
p ∈ PE

(a)
a ∈ A

a ∈ PE
(final?)

final? ∈ PE

• the inductive rules:

(+act)
Ea ∈ PE (∀a ∈ A) p ∈ [0, 1]
final?p+

∑
a∈A a · Ea ∈ PE

(+prob)
E1 ∈ PE E2 ∈ PE p ∈ [0, 1]
p · E1 + (1− p) · E2 ∈ PE

(·weak)
E1 ∈ PE E2 ∈ PE

E1 · E2 ∈ PE
(⋆)

E1 + E2 ∈ PE
E⋆1 · E2 ∈ PE

• the following associativity, commutativity and distributivity rules (later denoted as
ACD-rules):

A+ E + (G+H) ∈ PE ←→ (E +G) +H ∈ PE
C+ E +G ∈ PE ←→ G+ E ∈ PE
A· E · (G ·H) ∈ PE ←→ (E ·G) ·H ∈ PE
D· E · (G+H) ∈ PE ←→ E ·G+ E ·H ∈ PE
D· (E +G) ·H ∈ PE ←→ E ·H +G ·H ∈ PE

�

8.4. WHAT IT IMPLIES FOR RABIN PROBABILISTIC AUTOMATA 149

There are two guarded sums. The first one (+act) is deterministic and guarded by the
letter to be read. The second one (+prob) is probabilistic. Probabilistic expressions clearly
are a subset of hybrid probabilistic expressions. However, contrary to hybrid probabilistic
expressions, probabilistic expressions are forced to read the last letter (as for probabilistic
finite automata). Henceforth, to define easily their semantics, we may add a last position on
the right of the word, labeled with a fresh symbol ⊳, and define the semantics [[E]](w) of the
probabilistic expression E ∈ PE over a word w, as the probability [[E]](w⊳) where E is seen
as an expression of HPE here. For instance, the probabilistic automaton in Figure 8.7 may
be translated into probabilistic expression

[
1
6a(a+ b) + 1

2a
]⋆
· (1

3a+ b) · final?: in particular,
the last position labeled with ⊳, is never tested by probabilistic expression. Notice that the
concatenation rule (·) has been weakened to (·weak) in this definition. In this simpler case,
the stronger rule can indeed be derived from the weaker one, which we do not know for the
general case:

Lemma 8.13. Let E ∈ PE with Terms(E) = {{Ei | i ∈ I}}. Let Fi ∈ PE for each i ∈ I.
We have

E =
∑

i∈I

Ei · Fi ∈ PE .

Proof. We proceed by structural induction over the rules generating E. This is trivial for
atoms and also for ACD-rules since they preserve the multiset of terms. Let G,H ∈ PE
with Terms(G) = {{Gj | j ∈ J }} and Terms(H) = {{Hk | k ∈ K}}.

Consider E = p·G+(1−p)·H. Then, Terms(E) = {{p·Gj | j ∈ J }}⊎{{(1−p)·Hk | k ∈ K}}.
Hence we have I = J ⊎K, Ei = p ·Gi for i ∈ J and Ei = (1−p) ·Hi for i ∈ K. By induction,
we haveG =

∑
i∈J Gi·Fi ∈ PE andH =

∑
i∈KHi·Fi ∈ PE. Therefore, p·G+(1−p)·H ∈ PE.

This expression can be rewritten into E with ACD-rules.
The proof is similar for E = final?p+

∑
a∈A a · Ea.

Consider E = G ·H so that I = J ×K and E(j,k) = Gj ·Hk for (j, k) ∈ I. By induction,
for every j ∈ J , we get Hj =

∑
k∈KHk · F(j,k) ∈ PE. Again by induction we obtain∑

j∈J Gj ·Hj ∈ PE. This expression can be rewritten into E with ACD-rules.
Consider now E = G⋆ ·H assuming G+H ∈ PE instead of G,H ∈ PE. We have I = K

and Ei = G⋆ · Hi for i ∈ I. Applying the induction hypothesis to the expression G + H
with Fj = 1 for j ∈ J , we obtain

∑
j∈J Gj + (

∑
k∈KHk · Fk) ∈ PE. From the star rule we

deduce that (
∑
j∈J Gj)

⋆ · (
∑
k∈KHk · Fk) ∈ PE. Using ACD-rules, this can be rewritten

into E =
∑
i∈I G

⋆ ·Hi · Fi.

Using special cases of the proofs of the main general theorem, it is possible to show:

Theorem 8.14. Probabilistic finite automata and probabilistic expressions in PE recognize
the same series of finite words.

With Theorem 8.14, decidability of the equivalence problem for probabilistic automata
carries over to probabilistic expressions (provided the probabilities in an expression are ratio-
nal numbers), whereas their threshold problem is undecidable (as this problem is undecidable
for automata, as originally proved in [Paz71]). We could also state further undecidability
results about isolated cutpoints using, e.g., results of [BMT77].

Corollary 8.15.
1. The equivalence problem for probabilistic expressions is decidable: given probabilistic

expressions E and F of PE, does [[E]] = [[F]] hold?

2. The threshold problem for probabilistic expressions is undecidable: given an alphabet
A, a probabilistic expression E ∈ PE and 0 < p < 1, is there a word w ∈ A+ such that
[[E]](w) ≥ p?

CHAPTER 9
Implementation: QuantiS tool

Quanti, Quantos, Quantorum, Quantis, Quantis.

Plural declension of latine word for “how much”.

9.1 Objective and Implementation Details 151
9.2 Experiments . 152

We describe in this last chapter an implementation of some algorithms presented in this
manuscript. It is available in tool called QuantiS. Further informations and the instruc-
tion to install this tool may be found on the webpage http://www.lsv.ens-cachan.fr/

Software/quantis/.

9.1 Objective and Implementation Details

The goal of this tool is to permit the evaluation of quantitative specifications over finite
words. Henceforth, we focus on the specialized algorithms presented in Theorem 5.5. We
also use the translation presented in Theorem 4.31 from hybrid weighted expressions to
layered pebble weighted automata.

The tool has been written in Objective Caml1. The first released version of QuantiS

permits the evaluation of a hybrid weighted expression over a word in the semiring (R+ ∪
{+∞},+,×, 0, 1). The syntax to use the tool is the following:

QuantiS -expr <expression> -word <non-empty word> [-timer]

The expression may be written in plain text2, since a parser deduces from it the formal
hybrid weighted expression. For instance,

QuantiS -expr ’(x!((2..->)ˆ*).->)ˆ*’ -word ’aaa’

evaluates the expression (x!((2 · →)⋆) · →)⋆ over the word aaa, outputting the weight 16:

1http://caml.inria.fr
2Notice that weights being floating numbers, they must have a dot: e.g., the real number 2 may be

written 2., whereas the real number 0.2 may be written either 0.2 or .2. Also, the Kleene operators are
written ˆ* and ˆ+, in order to differentiate them with the sum of two expressions.

151

http://www.lsv.ens-cachan.fr/Software/quantis/
http://www.lsv.ens-cachan.fr/Software/quantis/
http://caml.inria.fr

152 CHAPTER 9. IMPLEMENTATION: QUANTIS TOOL

Evaluation of expression :

(x!((2..->)ˆ*).->)ˆ*

on string :

aaa

Result: 16.

We allow the use of a timer with the -timer option. For instance,

QuantiS -expr ’(x!((2..->)ˆ*).->)ˆ*’ -word ’aaa’ -timer

outputs

Evaluation of expression :

(x!((2..->)ˆ*).->)ˆ*

on string :

aaa

Result: 16.

Time: 0.000266s

The use of a timer permits to observe the time of execution of the evaluation algorithm (the
transformation from the expression to the automaton is not taken into account here).

9.2 Experiments

In the archive containing the tool, the script file tests.sh of directory /examples contains a
list of examples of usage of the tool. Here are the expressions we may find in this list:
• (2 · a? + b?) · → · (2 · b? + 3 · c?);
• a? · x!(2 · →⋆), in order to test the use of a variable;
• (x!(2 · →⋆) · →)⋆, mapping a word w to 2(|w|−1)2

;
• →+a?x!

(
(¬x?→)⋆b?(¬x?→)+c?←+d?→+

)
→⋆, used in Example 4.42;

• (x!((x!((2 ·→)⋆) ·→)⋆) ·→)⋆, testing the reusability of variables, and mapping a word w
to 2(|w|−1)3

. In particular, over the word a10, the tool outputs the value 2.82× 10219:
even if this value is large, the computation time is only of roughly 8 milliseconds,
instead of 0.3 milliseconds over the word aa;
• (¬final? · (0.25 ·→+ 0.75 ·←))⋆ ·final?, inspired from Examples 4.7 and 8.4. Figure 9.1

depicts the execution time needed to evaluate the expression over a word of the form
an as a function of n. We may clearly observe the linear dependency in the size n of
the word, as observed in Theorem 5.5 (here the number p of variables that may be
dropped by the automaton equivalent to E is 0).
• (→⋆ · ←⋆)n, concatenating n zigzag expressions. This a priori useless expression per-

mits to observe the behavior of the tool over expressions of increasing size. Figure 9.2
depicts the execution time needed to evaluate the expression over a word of length
1000 as a function of the parameter n. We may guess a cubic dependency in n, as
observed in Theorem 5.5.
• expressions En constructed by induction letting for n ≥ 1:

{
E0 =→∗

En =→∗ · xn!(→⋆ · ←⋆ · xn? · En−1) · →⋆

Expression En uses n different variables, henceforth, this example permits to observe
the behavior of the tool over expressions with increasing number of variables. Fig-
ure 9.3 depicts the execution time needed to evaluate En over a word of length 3 as a
function of the parameter n: notice the use of a logarithmic scale for the vertical axis.
We may see an exponential dependency in n, as observed again in Theorem 5.5.

9.2. EXPERIMENTS 153

0 500 1000 1500 2000

0.005

0.010

0.015

0.020

0.025

Length of the word

E
x
ec
u
ti
o
n
ti
m
e
(s
)

Figure 9.1: Plot of the execution time of the tool over expression (¬final? · (0.25 ·→+ 0.75 ·
←))⋆ · final? as a function of the length of the word

0 5 10 15 20
0

2

4

6

8

10

12

Number of zigzags

E
x
ec
u
ti
on

ti
m
e
(s
)

Figure 9.2: Plot of the execution time of the tool over zigzag expressions as a function of
the size of the expression

154 CHAPTER 9. IMPLEMENTATION: QUANTIS TOOL

1 2 3 4 5

10−3

10−2

10−1

100

101

102

Number of variables

E
x
ec
u
ti
on

ti
m
e
(s
)

Figure 9.3: Plot of the execution time of the tool over expressions using n variables as a
function of n

CHAPTER 10
Perspectives

The aim of this manuscript was to study high-level formalisms to specify quantitative prop-
erties, and to use automata techniques in order to evaluate them efficiently over general
classes of graphs. The process of specification and verification in the quantitative field
requires a three-dimensional diagram: the first dimension consists of selecting the set of
weights – semirings in all this manuscript – in which the desired quantitative result lies, the
second contains the classes of graphs representing the model to be verified – finite words,
trees, nested words, pictures, traces, or abstract sets of graphs, for instance – and the last
dimension permits to choose the language of specification adequate to model faithfully the
property of interest – we studied hybrid weighted expressions, weighted first order logic
with transitive closure and other fragments of weighted monadic second order logic, hybrid
weighted propositional dynamic logic, and probabilistic special cases.

Along the manuscript, we already presented some short-term perspectives, that are the
basis for future works. For instance, in Chapter 7, we briefly presented high-level for-
malisms (expressions and logics) able to recognize exactly the quantitative behaviors of
one-way weighted automata (with and without pebbles). In this case, where the semiring
must not be continuous, we may try to apply the results to various areas. However, this
application process may require to further refine the high-level specification languages, in
order to make them more practical. In this perspective, the chop expressions that we intro-
duced in Definition 3.12 can be seen as a first step to reduce the usage of variables in the
high-level frameworks. For instance, we believe that one-way chop expressions, i.e., where
we restrict the use of directions to forward directions (over ordered pointed graphs), would
be equivalent to one-way pebble weighted automata in the case of finite words: whereas
the translation from these chop expressions to automata is made possible by Theorem 3.13,
the reverse translation would certainly hold in this very specialized case. In other cases,
it would be interesting to find some strong enough specification formalisms not using vari-
ables, still able to generate a large class of quantitative behaviors: it appears, at the end of
this manuscript, that a compromise always seems to be done between the use of variables
(sometimes not handy) and the potential power of the specifications.

In Chapter 5, we presented several specialized algorithms for evaluating a layered pebble
weighted automaton over words, trees and nested words. Whereas we considered the case of
strongly layered automata for words, we did not explore it in the setting of general classes
of graphs, trees or nested words. We believe it is of the greatest interest: in particular, the
case of strongly layered automata is very useful if the high-level specification formalism we
consider is directly translatable into a strongly layered pebble weighted automaton, as it

155

156 CHAPTER 10. PERSPECTIVES

is the case, e.g., for weighted propositional dynamic logic in Theorem 6.21, or probabilistic
linear temporal logic as we briefly showed in Example 6.16.

In the probabilistic setting of Chapter 8, we only considered expressions as a high-level
formalism. It could be interesting to also find a syntactical fragment of logical formalisms
translatable into the model of probabilistic automata we considered. For instance, such prob-
abilistic logics equivalent to probabilistic automata (without pebbles) have been considered
in [Wei12], for finite and infinite words.

We conclude this manuscript with some broader perspectives. First, the structures we
consider, finite graphs with labeled vertices and edges, could be further generalized. For
instance, we may consider adding data in the models, i.e., consider the labeling of vertices
as a pair composed of a letter from a finite alphabet and a data value from an infinite data
domain. This is of great interest when considering nested words or trees as a model of
databases. For instance, in Example 6.4, we used a formula Match(x, y) supposed to match
two nodes of an XML document holding similar data: in the setting of logics over data
words for instance, this would be a new atom of the logic. Notice that hybrid propositional
dynamic logics are close to logics used in this context, like freeze linear temporal logic
[DL06]. Moreover, pebble automata have also been studied in the context of models with
data [NSV04]. Pebbles are then used both as a way to mark a vertex of the graph, but also
to store the data value of this vertex in order to compare it with other data values. It would
be interesting to study the interleaving of weighted specifications and the data part of XML
documents: can we extend the translation results and the evaluation algorithms presented
in this manuscript for instance?

Another way to generalize the structures we consider might be to add weights in the
models (notice that this can be seen as a special case of the previous one, since weights are
data from an infinite data domain being the semiring). Indeed, our graphs currently do not
handle any weights: only the specification generates some weights. In certain applications,
like in the probabilistic setting, it is important that the model contains probabilities too. We
believe that this generalization could be handled by the following method. First, we must
consider a new operator (both in the high-level formalisms, and the automata) in order to
replace a constant weight of the semiring, by the weight in the graph. Afterwards, we believe
that it is easy to modify the translations from specification formalisms to automata, as well
as the evaluation algorithms in order to take into account this new operator.

A second direction of further research lies in the evaluation problem itself. Indeed, with
respect to usual model-checking problems, we consider an instance where we check one single
fixed structure against a specification. A natural question is then the following: considering
a model generating some structures, a finite-state automaton generating finite words for
example, can we evaluate the specification over all the generated structures, and aggregate
the results? The aggregation operator should be able to take as an input a (possibly infinite)
set of weights from the semiring, and generate a weight as output.

For instance, considering the semiring of positive real numbers equipped with the usual
addition and product, we may consider an aggregation operator being a supremum (or an
infimum) of the set of weights. This way, we would be able to check that all the specified
values of the generated structures are lower (or greater) than a given threshold: this becomes
closer to the traditional point of view of probabilistic computation tree logic (see [BK08],
for an overview) or the quantitative languages studied in [CDH08].

The frontier between decidability and undecidability is very thin when we consider this
extension: for instance, as we recalled in Chapter 8, the threshold problem of probabilistic
Rabin automata – whether or not all probabilities generated by such an automaton are
greater than a constant probability (that can be seen as a special case of the previous
problem where the finite-state automaton generates all words) – is undecidable [Paz71].

Another way to extend the model-checking problem is to rather consider bisimulation
tasks, i.e., comparing two models to check whether they can simulate each other, and hence

157

behave the same in every context. This setting has been generalized recently in [FLT10]:
authors consider some distances between weighted automata models. We believe that this
direction is promising and would be worth to be considered with the broader and more
powerful models of automata introduced in this manuscript.

Last, but not least, we would like to apply the techniques developped in this manuscript
to several areas, like natural language processing or for the quantitative verification of soft-
wares. This requires a richer implementation of the algorithms presented. The tool QuantiS

developped, and presented in Chapter 9, must be seen as a first prototype in this context:
the latter is focused on a single semiring and only for words. We would like to extend this
tool to richer semirings and graph structures, in a modularised way, similar to the Vaucanson
platform [LRGS04].

List of Figures

2.1 Graph representation of a word . 13
2.2 A ranked tree . 14
2.3 A nested word . 14
2.4 A picture . 15
2.5 A Mazurkiewicz trace . 16

3.1 A picture with a highly contrasted rectangle . 25
3.2 Chop decomposition of a graph associated to vertex v 31

4.1 A first weighted automaton . 40
4.2 Weighted automaton A′ . 41
4.3 A weighted automaton A ∈WA(R+ ∪ {+∞}) . 43
4.4 Weighted automaton A mimicking a depth-first-search of a binary tree 43
4.5 Graphical and matrix representations of automata 48
4.6 Automata for atomic expressions . 49
4.7 Automata for sum and concatenation . 49
4.8 Automaton for Kleene star . 50
4.9 A pebble weighted automaton . 55
4.10 Pebble weighted automaton A computing the area of the biggest mono-chromatic

rectangle of a picture . 55
4.11 A 2-layered pebble weighted automaton . 56
4.12 1-layered pebble weighted automaton A . 56
4.13 A standard automaton A . 64
4.14 Automaton for x!− . 64
4.15 Automaton equivalent to the expression of Example 4.42 65

5.1 Runs of a navigating automaton . 73
5.2 Representation of the four types of matrices . 77

6.1 Part of an XML document for the car database 87
6.2 Automaton exploring the class of →-ordered pointed graphs 91
6.3 Weighted automaton for disjunction ξ = ϕ ∨ ψ 93
6.4 Weighted automaton for existential quantification ξ = ∃x ϕ 93
6.5 Weighted automaton for existential quantification ξ = ∃x ϕ in case v(i) 6= v(f) . . 93
6.6 Zone partitioning of a graph: zones are related by wires depicted with dashed

lines. The encoding of wire (v, v′), for every integer n ∈ [0 .. N − 1] is depicted
by a red area linked to the vertex v′, or containing vertex v′. 96

6.7 Zone partitioning of a word and description of the encoding function f 97
6.8 Zone partitioning of a picture . 98
6.9 Chunk decomposition of a nested word: special calls and returns are the square

vertices, whereas special wires are depicted with dashed lines. There are 4 chunks,
each of call-depth at most 2× (2N). 99

159

160 List of Figures

6.10 Zone partitioning of a nested word and encoding of wires: the special call and
returns on the right are parts of 4 wires (2 special wires and 2 non-special ones),
and henceforth linked to two zones of encoding each. 101

6.11 Instantiation of formula Ξqi,qf
. 105

6.12 Automata for the Finally operator . 107
6.13 Automaton for state formula a . 110
6.14 Weighted automaton for disjunction α′′ = α ∨ α′ 110
6.15 Automata for program ⊥, stay and d . 111
6.16 Automaton for program π′′ = π;π′ . 111
6.17 Automaton for program π′′ = α?π : π′ . 111
6.18 Automaton for state formula α = Eπ . 111

7.1 A weighted automaton A ∈WA(R+ ∪ {+∞}) . 114
7.2 Automaton checking that the counter p is non-negative 118
7.3 Automaton checking the zero tests ZTestp . 119
7.4 Run of a WA and some crossing-sequences . 121
7.5 Run of a pebble weighted automaton and some crossing-sequences 124
7.6 The pebble weighted automaton Aq filling the drop-lift gaps of the crossing-

sequence q . 125

8.1 A probabilistic automaton A ∈ PPA and the Markov chain obtained by synchro-
nizing A with a word of length n . 138

8.2 A probabilistic automaton equivalent to
[

1
6a(a+ b) + 1

2a
]⋆
· (1

3a? + b?) 139
8.3 Standard pebble probabilistic automaton produced by the construction, from a

hybrid probabilistic expression with terms {{E1, E2, . . . , En}}. Notice that the
initial state ι may be related to one of the terms, as it is shown on the picture. . 141

8.4 Construction for the rule (+prob) . 142
8.5 Construction for the rule (·): on the top, automaton A equivalent to expression

E = G+H (for simplifying, ι is supposed to be not associated to a term in this
picture), and on the bottom, automatonA′′ equivalent to expression E′′ = G+H ·E′142

8.6 Construction for the rule (⋆), supposing that automaton A, equivalent to expres-
sion E = G+H, is given in Figure 8.5: the automaton depicted is equivalent to
expression E′′ = G⋆ ·H. 143

8.7 A probabilistic finite automaton . 148

9.1 Plot of the execution time of the tool over expression (¬final? · (0.25 · →+ 0.75 ·
←))⋆ · final? as a function of the length of the word 153

9.2 Plot of the execution time of the tool over zigzag expressions as a function of the
size of the expression . 153

9.3 Plot of the execution time of the tool over expressions using n variables as a
function of n . 154

List of Tables

3.1 Semantics of tests in Test(A,D,Var) . 27
3.2 Semantics of HWE(S, A,D,Var) . 28

4.1 Semantics of pebble weighted expressions . 60

6.1 Semantics of MSO . 83
6.2 Semantics of formulae in wMSO(L) . 86
6.3 Semantics of DPDL formulae . 108
6.4 Semantics of WPDL . 109

7.1 An alternative definition of the semantics of tests in Test 121

161

References

[1] Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble weighted
automata and transitive closure logics. In Samson Abramsky, Friedhelm Meyer auf der
Heide, and Paul Spirakis, editors, Proceedings of the 37th International Colloquium on
Automata, Languages and Programming (ICALP’10) – Part II, volume 6199 of Lecture
Notes in Computer Science, pages 587–598, Bordeaux, France, July 2010. Springer.

[2] Paul Gastin and Benjamin Monmege. Adding pebbles to weighted automata. In Nelma
Moreira and Rogério Reis, editors, Proceedings of the 17th International Conference on
Implementation and Application of Automata (CIAA’12), volume 7381 of Lecture Notes
in Computer Science, pages 28–51, Porto, Portugal, July 2012. Springer.

[3] Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. A probabilistic
Kleene theorem. In Madhavan Mukund and Supratik Chakraborty, editors, Proceed-
ings of the 10th International Symposium on Automated Technology for Verification and
Analysis (ATVA’12), Lecture Notes in Computer Science, pages 400–415, Thiruvanan-
thapuram, India, October 2012. Springer.

[4] Benedikt Bollig, Paul Gastin, and Benjamin Monmege. Weighted specifications over
nested words. In Frank Pfenning, editor, Proceedings of the 16th International Conference
on Foundations of Software Science and Computation Structures (FoSSaCS’13), volume
7794 of Lecture Notes in Computer Science, pages 385–400, Roma, Italy, March 2013.
Springer.

163

Bibliography

[ABM00] Carlos Areces, Patrick Blackburn, and Maarten Marx. The Computational
Complexity of Hybrid Temporal Logics. Logic Journal of IGPL, 8(5):653–679,
2000.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[ADD+13] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Ragothaman,
and Yifei Yuan. Regular Functions and Cost Register Automata. In 28th
Annual Symposium on Logic in Computer Science (LICS’13). IEEE Computer
Society Press, 2013. Invited paper.

[AK11] Shaull Almagor and Orna Kupferman. Max and Sum Semantics for Alternating
Weighted Automata. In Automated Technology for Verification and Analysis
(ATVA’11), volume 6996 of Lecture Notes in Computer Science. Springer, 2011.

[AM06] Cyril Allauzen and Mehryar Mohri. A Unified Construction of the Glushkov,
Follow, and Antimirov Automata. In Proceedings of the 31st international con-
ference on Mathematical Foundations of Computer Science (MFCS’06), volume
4162 of Lecture Notes in Computer Science, pages 110–121. Springer-Verlag,
2006.

[Ans90] Marcella Anselmo. Two-Way Automata with Multiplicity. In Proceedings of
the 17th International Colloquium on Automata, Languages and Programming
(ICALP’90), volume 443 of Lecture Notes in Computer Science, pages 88–102.
Springer, 1990.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and
Compiling. Prentice-Hall, 1972.

[BH67] Manuel Blum and Carl Hewitt. Automata on a 2-Dimensional Tape. In Pro-
ceedings of the 8th Annual Symposium on Switching and Automata Theory
(SWAT’67), 1967.

[BK93] Anne Brüggeman-Klein. Regular Expressions into Finite Automata. Theoretical
Computer Science, 120:197–213, 1993.

[BK01] Peter Buchholz and Peter Kemper. Quantifying the Dynamic Behavior of Pro-
cess Algebras. In Process Algebra and Probabilistic Methods. Performance Mod-
elling and Verification, volume 2165 of Lecture Notes in Computer Science,
pages 184–199. Springer, 2001.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[BKW00] Anne Brüggeman-Klein and Derick Wood. Caterpillars: A Context Specifica-
tion Technique. Markup Languages, 2(1):81–106, 2000.

165

166 BIBLIOGRAPHY

[BM63] John A. Brzozowski and Edward J. McCluskey. Signal Flow Graph Techniques
for Sequential Circuit State Diagrams. IEEE Transactions on Electronic Com-
puters, 12(9):67–76, 1963.

[BMT77] Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. Some Recursive Unsolv-
able Problems Relating to Isolated Cutpoints in Probabilistic Automata. In
Proceedings of the Fourth Colloquium on Automata, Languages and Program-
ming, pages 87–94, 1977.

[Boj07] Mikołaj Bojańczyk. Forest Expressions. In Computer Science Logic: 21st In-
ternational Workshop (CSL’07), volume 4646 of Lecture Notes in Computer
Science, 2007.

[Boj08] Mikołaj Bojańczyk. Tree-Walking Automata. In Language and Automata The-
ory and Applications (LATA’08), volume 5196 of Lecture Notes in Computer
Science. Springer, February 2008.

[Bou64] Nicolas Bourbaki. Algèbre commutative, Chapitre V. Hermann, 1964.

[BPX+07] T. Brants, A.C. Popat, P. Xu, F.J. Och, and J. Dean. Large Language Models in
Machine Translation. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 858–867, 2007.

[BR10] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series
With Applications. Cambridge University Press, 2010.

[BS86] Gérard Berry and Ravi Sethi. From Regular Expressions to Deterministic Au-
tomata. Theoretical Computer Science, 48:117–126, 1986.

[BS12] Laura Bozzelli and César Sánchez. Visibly Rational Expressions. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’12), volume 18 of LIPIcs, pages 211–223. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[BSSS06] Mikołaj Bojańczyk, Mathias Samuelides, Thomas Schwentick, and Luc
Segoufin. Expressive Power of Pebble Automata. In Proceedings of the 33rd
international conference on Automata, Languages and Programming - Volume
Part I (ICALP’06), volume 4051 of Lecture Notes in Computer Science, pages
157–168. Springer, 2006.

[Büc59] J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Tech-
nical report, University of Michigan, 1959.

[Bud78] Lothar Budach. Automata and Labyrinths. Mathematische Nachrichten,
86:195–282, 1978.

[CCH+05] Arindam Charkrabarti, Krishnendu Chatterjee, Thomas A. Henzinger, Orna
Kupferman, and Rupak Majumdar. Verifying Quantitative Properties Using
Bound Functions. In Proceedings of the 13 IFIP WG 10.5 international con-
ference on Correct Hardware Design and Verification Methods (CHARME’05),
volume 3725 of Lecture Notes in Computer Science, pages 50–64, 2005.

[CDE+10] Krishnendu Chatterjee, Laurent Doyen, Herbert Edelsbrunner, Thomas A.
Henzinger, and Philippe Rannou. Mean-Payoff Automaton Expressions. In
Proceedings of the 21st international conference on Concurrency theory (CON-
CUR’10), volume 6269 of Lecture Notes in Computer Science, pages 269–283.
Springer, 2010.

BIBLIOGRAPHY 167

[CDH08] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantita-
tive Languages. In Proceedings of the 22nd International Workshop: Computer
Science Logic (CSL’08), volume 5213 of Lecture Notes in Computer Science,
pages 385–400. Springer, 2008.

[CDH09] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating
Weighted Automata. In Proceedings of the 17th International Conference on
Fundamentals of computation theory (FCT’09), volume 5699 of Lecture Notes
in Computer Science, pages 3–13, 2009.

[CE11] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic-Second-
Order Logic, a Language Theoretic Approach. Cambridge University Press,
2011.

[CF03] Pascal Caron and Marianne Flouret. From Glushkov WFAs to Rational Ex-
pressions. In Proceedings of the 7th International Conference on Developments
in Language Theory (DLT’03), volume 2710 of Lecture Notes in Computer Sci-
ence, pages 183–193, 2003.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[CLDG+08] Hubert Comon-Lundh, Max Dauchet, Rémi Gilleron, Florent Jacquemard, De-
nis Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and
Applications. 2008.

[CMR06] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. On the Computation of
Some Standard Distances Between Probabilistic Automata. In Proceedings of
the 11th International Conference on Implementation and Application of Au-
tomata (CIAA’06), volume 4094 of Lecture Notes in Computer Science, pages
137–149. Springer, 2006.

[Col09] Thomas Colcombet. The Theory of Stabilisation Monoids and Regular Cost
Functions. In Proceedings of the 36th Internatilonal Colloquium on Automata,
Languages and Programming: Part II (ICALP’09), number 5556 in Lecture
Notes in Computer Science, pages 139–150. Springer, 2009.

[Con71] John Horton Conway. Regular Algebra and Finite Machines. Chapman & Hall,
1971.

[Cyr10] Aiswarya Cyriac. Temporal Logics for Concurrent Recursive Programs. Mas-
ter’s thesis, Master Parisien de Recherche en Informatique, Paris, France, 2010.

[DG07] Manfred Droste and Paul Gastin. Weighted Automata and Weighted Logics.
Theoretical Computer Science, 380(1-2):69–86, June 2007.

[DG09] Manfred Droste and Paul Gastin. Weighted Automata and Weighted Logics.
In Werner Kuich, Heiko Vogler, and Manfred Droste, editors, Handbook of
Weighted Automata, EATCS Monographs in Theoretical Computer Science,
chapter 5, pages 175–211. Springer, 2009.

[DK09] Manfred Droste and Werner Kuich. Semirings and Formal Power Series.
In Manfred Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of
Weighted Automata, EATCS Monographs in Theoretical Computer Science,
chapter 1, pages 3–27. Springer, 2009.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Au-
tomata. EATCS Monographs in Theoretical Computer Science. Springer, 2009.

168 BIBLIOGRAPHY

[DL06] Stéphane Demri and Ranko Lazić. LTL with the Freeze Quantifier and Register
Automata. In Proceedings of the 21st Annual IEEE Symposium on Logic in
Computer Science (LICS’06), pages 17–26, Seattle, Washington, USA, August
2006. IEEE Computer Society Press.

[DM10a] Manfred Droste and Ingmar Meinecke. Describing Average- and Longtime-
Behavior by Weighted MSO Logics. In Proceedings of the 35th International
Conference on Mathematical Foundations of Computer Science (MFCS’10),
volume 6281 of Lecture Notes in Computer Science, pages 537–548, 2010.

[DM10b] Manfred Droste and Ingmar Meinecke. Regular Expressions on Average and
in the Long Run. In Proceedings of the 15th International Conference on Im-
plementation and Application of Automata (CIAA’10), volume 6482 of Lecture
Notes in Computer Science, pages 211–221. Springer-Verlag, 2010.

[DP07] Yuxin Deng and Catuscia Palamidessi. Axiomatizations for Probabilistic Finite-
State Behaviors. Theoretical Computer Science, 373:92–114, 2007.

[DP12] Manfred Droste and Bundit Pibaljommee. Weighted Nested Word Automata
and Logics Over Strong Bimonoids. In Proceedings of the 17th International
Conference on Implementation and Application of Automata (CIAA’12), vol-
ume 7381 of Lecture Notes in Computer Science, pages 138–148. Springer, 2012.

[DPV04] Manfred Droste, Christian Pech, and Heiko Vogler. A Kleene Theorem for
Weighted Tree Automata. Theory of Computing Systems, 38(1):1–38, Septem-
ber 2004.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

[DR07] Manfred Droste and George Rahonis. Weighted Automata and Weighted Logics
with Discounting. In Proceedings of the 12th International Conference on Im-
plementation and Application of Automata (CIAA’07), volume 4783 of Lecture
Notes in Computer Science, pages 73–84. Springer, 2007.

[DS89] Cynthia Dwork and Larry J. Stockmeyer. On the Power of 2-Way Probabilis-
tic Finite State Automata. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science (SFCS’89), pages 480–485. IEEE Computer
Society, 1989.

[DV06] Manfred Droste and Heiko Vogler. Weighted Tree Automata and Weighted
Logics. Theoretical Computer Science, 366(3):228–247, November 2006.

[DV09] Manfred Droste and Heiko Vogler. Weighted Logics for Unranked Tree Au-
tomata. Theory of Computing Systems, June 2009.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Tree-Walking Pebble Automata.
Jewels are forever, contributions to Theoretical, pages 72–83, 1999.

[EH07] Joost Engelfriet and Hendrik Jan Hoogeboom. Automata with Nested Peb-
bles Capture First-Order Logic with Transitive Closure. Logical Methods in
Computer Science, 3:1–27, 2007.

[EHS07] Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. XML Transfor-
mation by Tree-Walking Transducers with Invisible Pebbles. In Proceedings of
the twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS’07), pages 63–72. ACM, 2007.

BIBLIOGRAPHY 169

[Elg61] Calvin C. Elgot. Decision Problems of Finite Automata Design and Related
Arithmetics. Transactions of the American Mathematical Society, 98:21–52,
1961.

[FdRS03] Massimo Franceschet, Maarten de Rijke, and Bernd-Holger Schlingoff. Hybrid
Logics on Linear Structures: Expressivity and Complexity. In Proceedings of the
10th International Symposium on Temporal Representation and Reasoning, and
Fourth International Conference on Temporal Logic (TIME’03), pages 192–202.
IEEE Computer Society, 2003.

[FGO12] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Deciding the
Value 1 Problem for Probabilistic Leaktight Automata. In Proceedings of
the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science
(LICS’12), pages 295–304. IEEE Computer Society Press, 2012.

[FHW10] Sebastian Fischer, Frank Huch, and Thomas Wilke. A Play on Regular Ex-
pressions: Functional Pearl. In Proceedings of the 15th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’10). ACM, 2010.

[Fic07] Ina Fichtner. Characterizations of Recognizable Picture Series. PhD thesis,
Universität Leipzig, 2007.

[Fic11] Ina Fichtner. Weighted Picture Automata and Weighted Logics. Theory of
Computing Systems, 48(1):48–78, 2011.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of
Regular Programs. Journal of Computer and System Sciences, 18:194–211,
1979.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest Path. Communication of the ACM,
5(6):345, 1962.

[FLT10] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. Quantitative Analysis of
Weighted Transition Systems. Journal of Logic and Algebraic Programming,
79:689–703, 2010.

[FM09] Zoltán Fülöp and Loránd Muzamel. Weighted Tree-Walking Automata. Acta
Cybernetica, 19:275–293, 2009.

[Glu60] Victor M. Glushkov. On a Synthesis Algorithm for Abstract Automata.
Ukrainian Mathematical Journal, 12(2):147–156, 1960. In Russian.

[Glu61] Victor M. Glushkov. The Abstract Theory of Automata. Russian Mathematical
Surveys, 16:1–53, 1961. In Russian.

[GO10] Hugo Gimbert and Youssouf Oualhadj. Probabilistic Automata on Finite
Words: Decidable and Undecidable Problems. In Proceedings of the 37th In-
ternational Colloquium conference on Automata, Languages and Programming:
Part II (ICALP’10), volume 6199 of Lecture Notes in Computer Science, pages
527–538. Springer, 2010.

[Gol99] Jonathan S. Golan. Semirings and their Applications. Springer, 1999.

[Hof81] Frank Hoffmann. One Pebbles Does Not Suffice to Search Plane Labyrinths.
Fundamentals of Computation Theory, 117:433–444, 1981.

[HR05] Ian Hodkinson and Mark Reynolds. Separation - Past, Present, and Future.
Essays in Honour of Dov Gabbay on his 60th Birthday, 27:117–142, 2005.

170 BIBLIOGRAPHY

[HU79] John E. Hopcroft and Jeffrey D. Ullman. An Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[KF94] Michael Kaminski and Nissim Francez. Finite-Memory Automata. Theoretical
Computer Science, 134(2):329–363, 1994.

[Kle56] Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Au-
tomata. Automata Studies, pages 3–42, 1956.

[KM09] Kevin Knight and Jonathan May. Applications of Weighted Automata in Natu-
ral Language Processing. In Manfred Droste, Werner Kuich, and Heiko Vogler,
editors, Handbook of Weighted Automata, EATCS Monographs in Theoretical
Computer Science, chapter 14, pages 555–579. Springer, 2009.

[KMO+12] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James
Worrell. On the Complexity of the Equivalence Problem for Probabilistic Au-
tomata. In Proceedings of the 15th International Conference on Foundations of
Software Science and Computational Structures (FoSSaCS’12), volume 7213 of
Lecture Notes in Computer Science, pages 467–481. Springer, 2012.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verifica-
tion of Probabilistic Real-time Systems. In Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11), volume 6806 of Lecture
Notes in Computer Science, pages 585–591. Springer, 2011.

[KS85] Werner Kuich and Arto Salomaa. Semirings, Automata and Languages. EATCS
Monographs in Theoretical Computer Science. Springer-Verlag, 1985.

[Kui97] Werner Kuich. Semirings and Formal Power Series: Their Relevance to Formal
Languages and Automata. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 9, pages 609–678. Springer-
Verlag, 1997.

[Lan05] Martin Lange. Model Checking Propositional Dynamic Logic with All Extras.
Journal of Applied Logic, 4(1):39–49, 2005.

[LPS08] Kamal Lodaya, Paritosh K. Pandya, and Simoni S. Shah. Marking the Chops:
An Unambiguous Temporal Logic. In Fifth IFIP International Conference On
Theoretical Computer Science (TCS’08), pages 461–476. Springer, 2008.

[LRGS04] Sylvain Lombardy, Yann Régis-Gianas, and Jacques Sakarovitch. Introducing
Vaucanson. Theoretical Computer Science, 328(1-2):77–96, 2004.

[LS07] Martin Leucker and César Sánchez. Regular Linear Temporal Logic. In Proceed-
ings of the 4th International Conference on Theoretical Aspects of Computing
(ICTAC’07), volume 4711 of Lecture Notes in Computer Science, pages 291–
305. Springer, 2007.

[Mar04] Maarten Marx. Conditional XPath, the First Order Complete XPath Dialect.
In Proceedings of the twenty-third ACM SIGMOD-SIGACT (PODS’04), pages
13–22, New York, NY, USA, 2004. ACM.

[Mat98] Oliver Matz. One Quantifier Will Do in Existential Monadic Second-Order
Logic over Pictures. In Proceedings of the 23rd International Symposium on
Mathematical Foundations of Computer Science (MFCS’98), volume 1450 of
Lecture Notes in Computer Science, pages 751–759. Springer, 1998.

[Mat10] Christian Mathissen. Weighted Logics for Nested Words and Algebraic Formal
Power Series. Logical Methods in Computer Science, 6(1), 2010.

BIBLIOGRAPHY 171

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
Inc., 1967.

[Moh09] Mehryar Mohri. Weighted Automata Algorithms. In Werner Kuich, Heiko
Vogler, and Manfred Droste, editors, Handbook of Weighted Automata, EATCS
Monographs in Theoretical Computer Science, chapter 6, pages 213–254.
Springer, 2009.

[MY60] Robert F. McNaughton and Hisao M. Yamada. Regular Expressions and State
Graphs for Automata. IRE Transactions on Electronic Computers, EC-9(1):39
–47, 1960.

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite State Machines for
Strings over Infinite Alphabets. ACM Transactions on Computational Logic,
5:403–435, 2004.

[Paz71] Azaria Paz. Introduction to Probabilistic Automata. Academic Press, 1971.

[Rab63] Michael O. Rabin. Probabilistic Automata. Information and Control, 6(3):230–
245, 1963.

[Rah07] George Rahonis. Weighted Müller Tree Automata and Weighted Logics. Jour-
nal of Automata Languages and Combinatorics, 12:455–483, 2007.

[Rav07] Bala Ravikumar. On some Variations of Two-Way Probabilistic Finite Au-
tomata Models. Theoretical Computer Science, 376(1-2):127–136, 2007.

[Rol80] H. A. Rollik. Automaten in Planaren Graphen. Acta Informatica, 13(3):287–
298, 1980.

[RS59] Michael O. Rabin and Dana Scott. Finite Automata and Their Decision Prob-
lems. IBM Journal of Research and Development, 3(2):114–125, 1959.

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University
Press, 2009.

[Sak12] Jacques Sakarovitch. Automata and Expressions. In AutoMathA Handbook.
2012. To appear.

[SBBR11] Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Quan-
titative Kleene Coalgebras. Information and Computation, 209(5):822–849,
2011.

[Sch61] Marcel-Paul Schützenberger. On the Definition of a Family of Automata. In-
formation and Control, 4:245–270, 1961.

[Seg06] Roberto Segala. Probability and Nondeterminism in Operational Models of
Concurrency. In Proceedings of the 17th International Conference on Con-
currency Theory (CONCUR’06), volume 4137 of Lecture Notes in Computer
Science, pages 64–78. Springer, 2006.

[She59] John C. Shepherdson. The Reduction of Two-Way Automata to One-Way
Automata. IBM Journal of Research and Development, 3(2):198–200, 1959.

[SS07] Mathias Samuelides and Luc Segoufin. Complexity of Pebble Tree-Walking Au-
tomata. In Proceedings of the 16th International Conference on Fundamentals
of Computation Theory (FCT’07), volume 4639 of Lecture Notes in Computer
Science, pages 458–469. Springer, 2007.

172 BIBLIOGRAPHY

[tCS10] Balder ten Cate and Luc Segoufin. Transitive Closure Logic, and Nested Tree
Walking Automata, and Xpath. Journal of the ACM, 57(3):1–41, March 2010.

[Tho82] Wolfgang Thomas. Classifying Regular Events in Symbolic Logic. Journal of
Computer and System Sciences, 25:360–376, 1982.

[Tho91] Wolfgang Thomas. On Logics, Tilings, and Automata. In Proceedings of
the 18th International Colloquium on Automata, Languages and Programming
(ICALP’91), volume 510 of Lecture Notes in Computer Science, pages 441–453.
Springer, 1991.

[Tra61] Boris A. Trakhtenbrot. Finite Automata and Logic of Monadic Predicates.
Doklady Akademii Nauk SSSR, 149:326–329, 1961.

[Tze92] Wen-Guey Tzeng. A Polynomial-Time Algorithm for the Equivalence of Prob-
abilistic Automata. SIAM Journal on Computing, 21(2):216–227, 1992.

[Var95a] Moshe Y. Vardi. Alternating Automata and Program Verification. In Computer
Science Today, volume 1000 of Lecture Notes in Computer Science, pages 471–
485. Springer, 1995.

[Var95b] Moshe Y. Vardi. On the Complexity of Bounded-Variable Queries. In Pro-
ceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’95), pages 266–276. ACM, 1995.

[vGSS95] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, Gen-
erative and Stratified Models of Probabilistic Processes. Information and Com-
putation, 121(1):59–80, 1995.

[VW86] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to Au-
tomatic Program Verification. In Proceedings of the 1st Annual Symposium on
Logic in Computer Science (LICS’86), pages 332–344. IEEE Computer Society
Press, 1986.

[War62] Stephen Warshall. A Theorem on Boolean Matrices. Journal of the ACM,
9(1):11–12, 1962.

[Wei12] Thomas Weidner. Probabilistic Automata and Probabilistic Logic. In Pro-
ceedings of the 37th International Conference on Mathematical Foundations
of Computer Science (MFCS’12), volume 7464 of Lecture Notes in Computer
Science, pages 813–824. Springer, 2012.

Nomenclature

A+ Set of non-empty words over alphabet A, page 13

A⋆ Set of words over alphabet A, page 13

α Test formula, page 26

ar(a) Arity of letter a, page 13

|E| Cardinality of set E, page 11

depth(E) Depth of expression E, page 27

d(v, v′) Distance between two vertices of a graph, page 12

ε Empty word, page 13

chopWE(S, A,D,Var) Set of chop weighted expressions, page 31

WE(S, A,D,Var) Set of weighted expressions, page 29

HWE(S, A,D,Var) Set of hybrid weighted expressions, page 26

PWE(S, A,D,Var) Set of pebble weighted expressions, page 59

Free(A) Set of free variables in automaton A, page 41

Free(E) Set of free variables in expression E, page 27

Free(α) Set of pebble names free in formula α, page 26

G(A,D) Set of pointed graphs with alphabet A and directions D, page 12

[a, b] Closed real interval, page 11

[a .. b] Closed integer interval, page 11

A ⇀ B Partial mapping (or function), page 11

A→ B Mapping (or function), page 11

MG(A,D,Var) Set of marked graphs, page 34

MT raceproc(A) Set of graph representations of Mazurkiewicz traces with alphabet
A, page 16

M Monoid, page 17

N est(A) Set of graph representations of the nested words over A, page 14

Pict(A) Set of graph represetations of the pictures with pixel in A, page 15

173

174 BIBLIOGRAPHY

P(E) Powerset of set E, page 11

f|A Restriction of a function, page 11

S Semiring, page 18

S〈Z〉 Set of polynomials over Z with coefficients in S, page 20

S〈〈Z〉〉 Set of formal power series over Z with coefficients in S, page 20

SI×J Matrices indexed by I × J with coefficients in S, page 20

supp(f) Support of a formal power series f , page 20

Test(A,D,Var) Set of test formulae, page 26

T ree(A) Set of graph representations of the ranked trees over A, page 13

type(v) Type of vertex v, page 12

U(A,D,Var) Set of units of the marked graphs, page 34

Var(E) Set of variables in E, page 26

WA(S) Set of weighted automata over S, page 41

PWA(S) Set of pebble weighted automata over S, page 52

gWA(S) Set of generalized weighted automata over S, page 44

gPWA(S) Set of generalized pebble weighted automata over S, page 59

1WA(S) Set of one-way weighted automata over S, page 116

1PWA(S) Set of one-way pebble weighted automata over S, page 116

|w| Length of word w, page 13

w Word, page 13

Word(A) Set of graph representations of the words in A+, page 13

Index

Cauchy product, 20
partial, 34

chop weighted expression, 31

direction, 12
ordered, 16
symmetrical, 12

formal power series, 20, 33
proper, 33
regular, 33
support, 20

gradation, 17
graph, 12

cycle, 12
distance, 12
ordered, 16
ordered pointed, 17
path, 12
pointed graph, 12
searchable, 90
zonable, 96

Hadamard product, 20

logic
hybrid weighted propositional dynamic,

112
unambiguous formula, 90
weighted first order, 86
weighted monadic second order, 85
weighted propositional dynamic, 108

marked graph, 33
dynamically, 58
dynamically partial units, 59
partial unit, 34
product, 34

matrix, 20
monoid, 17

commutative, 17
complete, 17
continuous, 17

graded, 17
least upper bound, 17
morphism, 17
natural order, 17
partial, 34
submonoid, 17

pebble weighted automaton, 52
K-configuration, 53
generalized, 59
layered, 56
one-way, 115
strongly layered, 57

polynomial, 20
probabilistic automaton, 147

pebble, 137
probabilistic expression, 148

hybrid, 139

semiring, 18
arctic semiring, 18
Boolean semiring, 18
commutative, 18
complete, 18
continuous, 18
divisor of zero, 19
idempotent, 20
integer semiring, 18
morphism, 18
natural completed semiring, 18
natural semiring, 18
positive, 19
positive real completed semiring, 18
quasi-inverse, 18
rational semiring, 18
real semiring, 18
star, 18
subsemiring, 18
tropical semiring, 18
zerosumfree, 19

test formula, 26
free pebble name, 26

175

176 INDEX

transitive closure, 83
bounded one-way weighted, 133
bounded simple weighted, 133
bounded weighted, 89
one-way weighted, 132
simple weighted, 132
weighted, 89

tree, 13
child, 13
internal node, 13
leaf, 13
node, 13
parent, 13
ranked, 13

type, 12

weighted automaton, 40
accepting run, 42
configuration, 41
final state, 42
generalized, 44
initial state, 42
run, 42
simple run, 114

weighted expression, 29
depth, 27
free variable, 26
hybrid, 26
literal-length, 48
one-way hybrid, 130
pebble, 59

word, 13
length, 13

	Abstract
	Résumé
	Remerciements
	Introduction
	From Boolean to Quantitative Verification
	High-Level Specification Languages
	The Success Story of Automata
	Algorithms
	Outline

	Preliminaries
	Graph Structures
	Words
	Ranked Trees
	Nested Words
	Grids and Pictures
	Mazurkiewicz Traces
	Ordered Graphs

	Weight Domains
	Monoids
	Semirings
	Formal Power Series and Polynomials
	Matrices

	Hybrid Expressions
	Hybrid Weighted Expressions
	Syntactical Subclasses of Hybrid Weighted Expressions
	Weighted Expressions
	Chop Weighted Expressions: An Alternative to Variables

	Algebraic Semantics of Hybrid Weighted Expressions
	Partial Monoids
	Application to the Semantics of Hybrid Weighted Expressions

	Navigating Automata
	Weighted Automata over Graphs
	Syntax and Semantics over a Continuous Semiring
	A First Kleene-Schützenberger Theorem

	Pebble Weighted Automata
	Extended Syntax and Semantics
	Layered Pebble Weighted Automata
	Dynamically Marked Graphs
	The Full Kleene-Schützenberger Theorem

	Query Evaluation
	Generic Evaluation of Pebble Weighted Automata
	Weights of Paths in Weighted Graphs
	Application to the Evaluation Problem

	Specialized Algorithm for Words
	Extension to Trees
	Extension to Nested Words

	Logical Specifications
	Monadic Second Order Logic over Graphs
	Emptiness of Pebble Weighted Automata is Decidable
	Weighted logics
	General definitions
	Previous expressiveness result
	Weighted transitive closure

	From Logics to Automata
	Searchable Classes of Graphs
	Translation of Formulae into Automata

	From Automata to Logics
	Zonable Classes of Graphs
	Logical Characterization of Weighted Automata
	Logical Characterization of Weighted Automata with Pebbles

	Hybrid Navigational Logics
	Weighted Propositional Dynamic Logic
	Hybrid Weighted Propositional Dynamic Logic

	Simple and One-Way Restrictions
	Simple Semantics of Pebble Weighted Automata
	One-way Pebble Weighted Automata
	Undecidability of Emptiness
	One-way versus Simple over Words
	Restrictions over Expressions and Logics
	One-way Weighted Expressions
	First-order logic with Restricted Transitive Closure

	Probabilistic Specification Formalisms
	Pebble Probabilistic Automata
	Hybrid Probabilistic Expressions
	The Probabilistic Kleene-Schützenberger Theorem
	What it Implies for Rabin Probabilistic Automata

	Implementation: QuantiS tool
	Objective and Implementation Details
	Experiments

	Perspectives
	List of Figures
	List of Tables
	References
	Bibliography
	Nomenclature
	Index

