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1 Introduction (en francais)

Ce présent travail est consacré pour I'essentiel a la résolution numérique de problemes d’évaluation
et de couverture d’actifs, et plus généralement de problémes de contréle stochastique, liés aux
marchés d’énergies, en particulier au marché de I’électricité. Ayant pour optique la résolution de
problemes de dimension élevée, tels que des problemes d’investissements en centrales électriques,
nous avons privilégié la construction et ’analyse de schémas numériques de type probabilistes.

Dans une premiere partie, nous avons commencé par nous intéresser a la modélisation propre-
ment dite du prix de I’électricité. Motivés par des considérations empiriques sur la formation du
prix d’électricité, nous avons commencé par proposer et étudier un nouveau modele structurel de
prix d’électricité, lequel présente I’avantage crucial de pouvoir rendre compte de la dépendence
fine entre le prix de 1’électricité et les prix des autres énergies (pétrole, charbon, gaz,...). Dans
cette premiére partie, nous avons fait usage de ce modele pour des problemes de valorisation
et de couverture d’actifs contingents faisant intervenir le prix d’électricité. En particulier, nous
avons cherché a améliorer les stratégies de couverture possibles pour ces produits en autorisant
I'usage d’actifs de couverture basés sur les autres énergies, et en exploitant leur dépendance
fine avec 'électricité. Divers tests numériques viennent illustrer I'effet de cet apport, lesquels
nécessiterent la mise en place d’algorithmes efficaces de calcul de stratégies de couverture.

Dans une deuxiéme partie, nous avons utilisé ce nouveau modele d’électricité pour un nouveau
probléeme, a savoir la valorisation de centrales électriques et, par extension, la détermination
de stratégies d’investissements économiquement optimales en nouvelles centrales dans le futur.
D’un point de vue mathématique, ce genre de probléme peut s’écrire sous la forme d’un probléme
de commutation optimale, qui correspond & un probleme de controle stochastique dont toute
modification de la stratégie, impulsionnelle, génére un cofit associé. Le nombre de dimensions
du probleme étant élevé, nous avons donc proposé un schéma probabiliste pour le résoudre, qui
combine programmation dynamique et régressions. Ce schéma s’inspire de ceux existant pour
la résolution du probleme plus simple de valorisation d’option américaine ([31]). Nous avons
analysé mathématiquement la convergence de ce schéma, ainsi que sa vitesse pour un choix
spécifique de base de régression (fonctions constantes par morceaux). Une partie numérique
vient illustrer la faisabilité de ce schéma, et viennent démontrer que les techniques et améliora-
tions mises en ceuvre ici rendent, de maniere plus générale, envisageable 1'idée d’une résolution
probabiliste directe de problemes de contréle stochastique multidimensionnels difficiles.

Enfin, dans une troisiéme partie nous avons étendu le schéma probabiliste précédent a des
problemes plus généraux, a savoir des problémes de controle stochastique dont la dérive et la
volatilité du processus d’état peuvent dépendre du contrdle. Jusqu’a présent, les schémas de
type probabilistes ne pouvaient pas traiter ce genre de problemes, puisque l'initiation de ceux-ci
nécessite la simulation de trajectoires du processus d’état sous-jacent, ce qui n’est pas possible ici
puisque le contréle optimal est initialement inconnu. Pour surmonter ce probleme nous avons fait
usage d’une représentation du probléme par Equations Différentielles Stochastiques Rétrogrades
(EDSRs) a sauts contraints, qui est une généralisation de la classe des EDSRs introduite dans
[72] qui permet d’englober les problémes de contrdle stochastique qui nous intéressent ici, et
plus généralement les équations de Hamilton-Jacobi-Bellman (HJB) totalement non-linéaires.
Nous avons donc proposé un schéma numérique probabiliste implémentable pour ces EDSRs
contraintes, basé sur une randomisation initiale du controle puis sur ’élimination ultérieure de
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ce bruit additionnel par I’ajout d’un calcul de supremum dans le schéma rétrograde. Nous avons
analysé mathématiquement ce schéma, en particulier I’étape de discrétisation de ces EDSRs
contraintes. Enfin, nous avons illustré numériquement les capacités de ce schéma sur le probleme
de sur-réplication d’option dans un modele a volatilité incertaine ([5]).

1.1 Un modéle structurel risque-neutre pour la valorisation et la
couverture de produits dérivés sur I’électricité

Cette premiere partie de la these a pour objet un modele structurel de prix d’électricité adapté
a la valorisation et la couverture partielle de produits dérivés sur ce marché. Elle a donné lieu
a la publication de l’article [1].

En mathématiques financieres, ’approche classique pour étudier un produit dérivé donné est
de commencer par proposer un modeéle pour la dynamique de 'actif sous-jacent, a partir de
laquelle la valorisation et la stratégie de couverture du produit dérivé peuvent étre déduites.
C’est 'approche dite par forme réduite.

Ainsi, dans le cadre de cette approche, plusieurs auteurs ont cherché a proposer des modeles
prenant en compte les caractéristiques propres au prix de ’électricité, tout en permettant de
maniere souple la valorisation et la couverture de produits dérivés standards (cf. [15] par exem-

ple).

Cependant, de par sa nature, d’autres types de modélisation du prix de ’électricité sont possibles.
En effet, ’électricité présente des caractéristiques uniques qui la différencient significativement
de toutes les autres classes d’actifs. La plus importante est que 1’électricité n’est pas stockable!,
ce qui implique que I’électricité soit produite en temps réel en quantité adéquate pour répondre
exactement & la demande.

Différents types de centrales électriques permettent cette production, notamment a base d’énergies
renouvelables (hydraulique, éolien, . ..) ou d’énergies fossiles (charbon, gaz,...). Par conséquent,
il est clair que la nature du parc électrique et le mécanisme de formation du prix vont significa-
tivement influer sur le prix de I’électricité. Ainsi, a 'opposé des modeles & forme réduite, les
modeles d’empilement cherchent a exploiter ce mécanisme. Ils consistent a modéliser de maniere
fine la demande d’électricité, les prix de combustibles, ainsi que toutes les centrales électriques
disponibles. Le prix d’électricité résulte alors d’une optimisation globale, qui permet de répondre
a la demande d’électricité en utilisant les actifs de production disponibles de maniére optimale
(cf. [61] par exemple).

Si cette approche par optimisation globale permet une grande précision de modélisation (il est
possible de prendre en compte nombre de détails, comme par exemple les contraintes dynamiques
de production des centrales thermiques, cf. [80]), elle a I'inconvénient d’étre tres lourde & mettre
en ceuvre, et d’étre tres peu adaptée & I’étude de produits dérivés.

A mi-chemin entre ces deux extrémes, la classe des modéles structurels cherche A tenir compte
de maniere simplifiée du mécanisme de formation du prix d’électricité, tout en utilisant les
outils mathématiques classiques de I'approche par forme réduite. En particulier, cette approche
est particulierement bien adaptée a la valorisation d’option multi-sous-jacents faisant intervenir
I’électricité et d’autres énergies comme le gaz par exemple, car elle permet de prendre en compte
la structure fine de dépendance entre ces variables. Un état de l'art de la littérature sur les
modeles structurels est disponible dans [30].

"Hormis via la production d’origine hydraulique, les barrages permettant un stockage indirect.



1.1. UN MODELE STRUCTUREL POUR LE PRIX DE L’ELECTRICITE

Le point de départ de ce chapitre est le modele structurel par cotit marginal de [3], dont voici
la description. Considérons un marché d’électricité donné, sur lequel existe n types de centrales
électriques. Pour chaque type i = 1,...,n soit:

« S} le prix du combustible utilisé par ce type de centrale (s’il s’agit d’une énergie renouvelable
alors S} = 0).

e h; son rendement énergétique, supposé constant (de sorte que h;S! soit exprimé en €/MWh).
e C} la capacité de production d’électricité a partir de ce type de centrale (en MW).

De plus, soit D; la demande d’électricité (en MW). Sans perte de généralité, supposons que les
technologies i = 1,...,n sont classées par ordre croissant de cofit de production : hy S} < ... <
hynSir. Alors, dans [3], le prix d’électricité P, est modélisé directement par le coit marginal de
production, défini par:

n i—1 7
C’Mt:ZhiSZI{Z CF < D; < Zcf} : (1.1.1)
=1 k=1 k=1

L’équation (1.1.1) signifie que, si la demande D; dépasse la capacité totale de production des
¢ — 1 technologies les moins cheres (22_:11 CF) mais n’excéde pas celle des i technologies les
moins chéres (22:1 C’tk), alors le colit marginal de production d’électricité est fixé par la i-eme
technologie, et est donné par h;S;.

L’inconvénient du modele P, = C'M; proposé dans [3] est que, si le colit marginal est effective-
ment un indicateur important du niveau de prix d’électricité, les deux peuvent étre différents
en pratique, du fait de tous les phénomenes secondaires négligés par cette modélisation simple?.
Cette différence peut parfois étre substantielle, comme par exemple lorsqu’un pic de prix inat-
tendu se produit. En effet, le modele P, = C'M; ne permet pas de générer de pic de prix, puisque
par définition C'M; < h, S} (et qu’une modélisation adéquate du prix S;* du combustible le plus
onéreux ne comporte pas de pics).

La premiére étape de ce chapitre est d’enrichir le modele (1.1.1) pour au moins pouvoir rendre
compte des pics de prix d’électricité observables sur les marchés. En confrontant le colit marginal
réalisé au prix réalisé (Figure 3.2.1a) et en préservant les quelques pics du jeu de données en
choisissant de modéliser le lien entre les quantiles des variables (Proposition 3.2.2), le modele
suivant apparait comme empiriquement pertinent (Figure 3.2.1b) :

n
k=1
ou la fonction g, que nous appelons fonction de rareté, est définie par :
g () = min (M,’l)l{x>0}+M1{x§0}. (1.1.3)
x

Ainsi, nous corrigeons le colit marginal par un terme multiplicatif qui est d’autant plus grand (en
v/x") que la capacité résiduelle disponible du systeme (3°7_; CF — D;) est faible. En particulier,
ce modele permet de générer des pics de prix précisément lorsque le systéme est tendu (faible
capacité résiduelle, proche de la défaillance). Ce terme correctif est plafonné a une valeur
maximale M. L’amélioration entre les modeles (1.1.1) et (1.1.2) est illustrée par la Figure 3.2.2.

2Citons la non homogénéité des centrales de méme type, les contraintes dynamiques de production, les réserves
de production pour la stabilité réseau, les effet des imports-exports, les comportements stratégiques des
producteurs,. . .
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La seconde étape de ce chapitre est d’utiliser le nouveau modele (1.1.2) pour valoriser et couvrir
des produits dérivés sur I’électricité. Comme le prix d’électricité dans ce modele est influencé
A la fois par des sources de risques couvrables (les prix de combustibles S¢) et des sources de
risques non couvrables (la demande Dy et les capacités de production C}), le marché est donc
incomplet. Autrement dit, la technique classique de couverture dynamique ne permet pas ici
de supprimer totalement le risque lié a un produit dérivé donné. Néanmoins, sans le supprimer
totalement, il reste possible de diminuer ce risque, en cherchant & minimiser un critere de risque
préalablement choisi.

Dans le cadre des marchés incomplets, il existe toute une gamme de critéres de risques poten-
tiels pour construire des couvertures dynamiques partielles. Ici, nous choisissons le critére de
minimisation du risque local, introduit par [52], pour sa simplicité, et pour le fait qu’il permet
de séparer naturellement la partie couvrable de la partie non couvrable de flux basés sur un
sous-jacent de type (1.1.2). Notons que le travail ci-dessous a par la suite été étendu au critere
d’indifférence d’utilité dans [13].

A ce stade, nous avons besoin de poser un modele sur les dynamiques des facteurs Cy, Dy et S;.
Nous choisissons des modeles tres simples:

o Les écarts Y} := h;S{ — h;_1Si ! sont modélisés par des browniens géométriques.
o La demande D; et les capacités C} sont modélisées par des diffusions générales (équations
(3.3.2) et (3.3.3)).

Le point important est que les browniens liés aux prix des combustibles sont supposés in-
dépendants des browniens liés & la demande et aux capacités (Hypothese 1), hypotheése qui
est raisonnable en pratique.

Apres avoir identifié I’ensemble des mesures martingales équivalentes dans notre modele (Propo-
sition 3.3.1), dont la mesure martingale minimale Q liée au critére de minimisation du risque
local, nous cherchons a valoriser quelques actifs dérivés significatifs.

Le premier exemple que nous étudions est celui d'un contrat a terme d’électricité Ff (T") avec
période de livraison instantanée T'. 1l s’agit bien stir d’un actif fictif, étant donné que les contrat
a terme d’électricité effectivement échangés sur les marchés comportent une période de livraison
[Ty, T5] avec Ty < T». Néanmoins, il est toujours possible de s’appuyer sur la brique intermédiaire
Ef (T) pour reconstruire le prix d’un vrai contrat a terme Ff (11, T5).

Dans notre modeéle, le prix a la date ¢ du contrat a terme d’électricité avec date de livraison T’
est donné par

n
Fte (T) :ZhZG;F (t,Ct,Dt) th (T) ) (114)
i=1
ott, pour i = 1,...,n, F/(T) correspond au prix & la date ¢ du contrat & terme sur le com-

bustible ¢ avec date de livraison T, et ol la quantité GZT (t,Cy, Dy), appelée fonction Espérance
Conditionnelle de la Rareté (ECR) est définie par

n i—1 i
GT (t,C,Dy) :=E [g (Z ck - DT> 1 {Z Ch<Dr<y 052} |ftD’C] . (1.1.5)
k=1 k=1 k=1

Ainsi, ’équation (1.1.4) nous indique que le prix & terme d’électricité peut s’écrire comme une
combinaison linéaire des prix a terme sur combustibles. Les poids de cette combinaison linéaire
sont donnés par le rendement énergétique h; multiplié par la fonction ECR (1.1.5). S’il n’y
avait pas la pénalité de rareté (¢ = 1), alors la fonction ECR du combustible ¢ correspondrait
simplement a la probabilité que le combustible 7 soit marginal a la date T (comme dans [3]).

10
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Ici, la présence de la fonction de rareté entraine que la probabilité de marginalité est pénalisée
de la facon décrite dans ’équation (1.1.5).

L’équation (1.1.4) permet de distinguer clairement I'influence des différentes sources de risques.
Ainsi, les sources de risques couvrables S} influencent les prix a terme de combustibles F} (T'),
tandis que I'influence des sources de risques non couvrables C} et D; se fait sentir sur les poids

GI(t,Cy, Dy).

Outre la valeur de Ff (T'), il est possible, a partir de ’équation (1.1.4), de déduire sa dy-
namique, laquelle fait intervenir les dérivées partielle de la fonction ECR (cf. équations (3.3.13)
et (3.3.14)).

Remarquons que, en utilisant des arguments similaires & ceux menant a I’équation (1.1.4), il est
possible d’écrire la prime de risque d’électricité comme une combinaison linéaire des primes de
risques sur combustibles (Proposition 3.3.2).

Nous passons ensuite a ’étude d’autres actifs. Outre les contrats a terme sur électricité, nous
explicitons, dans le cas n = 2 combustibles, la valorisation d’une option d’achat sur la différence
Pr — hiS% (Proposition 3.3.4), ainsi que celle d’'une option d’achat sur un contrat a terme
d’électricité (Proposition 3.3.6).

Enfin, nous nous intéressons a la stratégie de couverture des ces produits dérivés. Considérons
une option générale dont le résultat a échéance peut dépendre de la demande, des capacités,
et de prix a terme de combustibles et d’électricité. Considérons des portefeuilles de couverture
pouvant contenir des contrats a terme sur combustibles et électricité. Alors, et cela constitue
le résultat principal de ce chapitre, nous sommes en mesure d’expliciter les quantités optimales
a investir dans chacun des actifs de couverture (Proposition 3.3.7). Ces poids dépendent de
la forme de I'option, et des différents termes intervenant dans la dynamique des prix a terme
d’électricité (autrement dit de la fonction ECR et ses dérivées partielles). De plus, nous sommes
aussi en mesure de quantifier le risque résiduelle de la couverture, lequel résulte des sources de
risque non-couvrables (demande et capacités).

Le reste du chapitre consiste en des applications numériques de ces résultats.

Jusqu’ici nous avions modélisé la demande Dy et les capacités C} par des diffusions générales.
Pour les besoins de la partie numérique, il nous faut expliciter un choix de modeéle pour ces
variables. Nous choisissons des les modéliser par la combinaison d’une partie déterministe (per-
mettant de prendre en compte les différents niveaux de saisonnalité) et d’une partie stochastique
modélisée par un simple processus d’Ornstein-Uhlenbeck. Nous calibrons ces modeles sur les
données de la zone France (cf. Images 3.4.1 et 3.4.2). Quoique trés simple, ces modeéles s’averent
relativement fideles aux observations.

Avec ces modeles, nous cherchons ensuite & calculer en pratique le prix d’un contrat a terme
sur électricité. Comme l'indique I’équation (1.1.4), le point crucial est d’étre capable de calculer
efficacement la fonction ECR (1.1.5) et ses dérivées partielles.

Dans la littérature sur les modeles de prix d’électricité, que ce soit les modeles a forme réduite
ou les modeles structurels, la capacité a obtenir des formules explicites pour les prix a terme
d’électricité est généralement une caractéristique recherchée lors de la construction du modele.
Par exemple, dans le cadre des modeles structurels les auteurs peuvent préférer modéliser la
courbe d’offre (ou ses variantes) par une simple fonction exponentielle (cf. [30]). Au prix d’une
moindre précision, dont I’absence de pics de prix extrémes, ce choix garantit des calculs simples.

Dans ce chapitre, motivé par nos observations empiriques, nous avons fait le choix d’utiliser une
fonction puissance pour prendre en compte les pics de prix (équation (1.1.3)). Ce choix ne permet
malheureusement pas de calculer explicitement les poids (1.1.5). Néanmoins, conscients de leur
importance, nous avons cherché & rendre leur calcul le plus efficace possible numériquement.
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Tout d’abord, nous avons mis en évidence le fait que le calcul de cette fonction ECR. se résume
a la capacité de calculer les quantités suivantes :

G (z,y;v) /OO L e (1.1.6)
T,y V) = —— e z 1.
: (W+2)
~ o (F—my —mg— 092 2
H (my,ma,01,09; V) := g e L Uqu7m1+m2+02fu;V e~ du
-2 o1v2 o1v2

o2V
(1.1.7)

(cf. Propositions 3.4.3, 3.4.4 et 3.4.9). Considérons tout d’abord la quantité G (z, y; v). Comme
dans le cas ¥ = 1 cette intégrale correspond a une fonction spéciale appelée intégrale de Goodwin-
Staton incompléte (cf. [45]), nous avons baptisé la nouvelle fonction (1.1.6) intégrale de Goodwin-
Staton incompléte étendue. Cette fonction peut s’interpréter de maniere probabiliste, modulo
renormalisations, comme densité de la somme d’une variable aléatoire gaussienne et d’une vari-
able aléatoire de Pareto indépendantes (cf. Proposition B.1).

Nous avons établi le développement en série suivant:

(2y9)"
n!

~ 1-— n

12—
g(gjjy;y)zgefy ZF< 2y+27(x+y)2>
n=0

)

ou I' (a, z) correspond & la fonction Gamma incompléte. Combiné & des relations de récurrence
et des développements asymptotiques, ce développement permet de calculer tres efficacement

G (z,y;v). De la méme maniére, nous avons établi un développement en série pour la fonction
H (m1, mg, 01,09; V), ainsi que des relations de récurrence et des développements asymptotiques
appropriés, rendant son estimation numérique tres efficace. Finalement, nous avons explicité
comment calculer les dérivées partielle de la fonction ECR (1.1.5) a l'aide des deux fonctions G
et H.

Finalement, avec ces outils de calcul, nous avons pu tester numériquement sur deux exemples
la valorisation et la couverture partielle d’actifs dérivés sur I'électricité, a l’aide des formules
générales établies auparavant.

Le premier exemple numérique consiste en la valorisation d’un contrat a terme d’électricité
de maturité T = 3mois, avec test de la couverture partielle a base de contrats a terme sur
combustibles. Le comportement temporel de la couverture est tres intéressant, et est résumé
par la Figure 3.4.4. Deux phases temporelles bien distinctes apparaissent:

o Loin de la maturité, pour t € [0, — A] avec A ~ 2semaines, la couverture partielle est pra-
tiquement parfaite. En effet, dans cette phase, ce sont les risques sur les prix de combustibles
qui dominent. Or, il s’agit précisément des risques couvrables, que la stratégie de couverture
permet donc d’éliminer. Dans cette phase, le contrat a terme sur électricité se comporte
pratiquement comme un panier de contrats a terme sur combustibles.

o Proche de la maturité, pour ¢t € [T'— A, T}, la couverture partielle est totalement inefficace.
En effet, dans cette phase finale, ce sont les risques sur le niveau de demande et de capacités
qui dominent. Comme il s’agit des sources de risques non couvrables, la réduction de risque
apportée par la stratégie de couverture devient négligeable.

Cette observation empirique importante est tres générale. Elle n’est ni liée a la forme spécifique
de lactif contingent choisi, ni a celle du critére de couverture, mais au modele de prix (1.1.2)
et au fait que les sources de risque couvrables sont de type martingale, tandis que les sources
de risque non couvrables sont de type retour a la moyenne (de sorte que les lois de Cp et Dp
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ne dépendent guere des valeurs courantes Cy et D; lorsque T — t est grand, et que la valeur de
linstant de changement de phase T'— A dépend essentiellement des valeurs des coefficients de
retour a la moyenne). De maniere plus générale, cette observation fixe les limites de la capacité
des produits sur combustibles a réduire le risque de positions sur 1’électricité.

Enfin, le deuxiéme exemple numérique consiste en la valorisation d’options sur différence Pr —
h;Sk. Cette fois, il est nécessaire de recourir & des méthodes d’intégration numérique. Les
résultats sont donnés par la Figure 3.4.5. L’intérét pratique de cet exemple est d’illustrer
certains avantages pratiques d’une modélisation structurelle, dont la prise en compte sur les
prix des effets de saisonnalité, mais aussi de modifications structurelles du marché, telle que
I'installation anticipée de nouvelles centrales électriques.

1.2 Un algorithme probabiliste pour la résolution de problémes de
commutation optimale en grande dimension

La seconde partie de la thése a pour objet la résolution pratique de problemes de contrdle
stochastique en grande dimension, plus précisément des problémes appartenant a la classe des
problémes de commutation optimale. Elle a donné lieu a article [2], actuellement en cours de
révision pour publication.

Commencgons par définir cette classe de problemes. Nous considérons les éléments suivants :

o« X = (Xi);~0 un processus stochastique a valeurs dans R?, partant de 2o € R? & Dinstant
initial ¢ = 0.

o I* = (If*);>(, un processus constant par morceaux a valeurs dans RY | partant de ig € RY
a linstant initial ¢ = 0. Plus précisément, on suppose que I® prend ses valeurs dans un
sous-ensemble fini [, = {i1,...,4,} de R¥. Ce processus I* est commandé au cours du temps
par une stratégie a.

e « est une stratégie impulsionnelle définie par une séquence (7,,tn),cy de temps d’arréts
croissants 7, > 0 et de variables aléatoires F,, —mesurables a valeurs dans ;. Le processus
commandé I se déduit de cette séquence comme suit :

I =1, quand t € [Ty, Tnt1] -

e Parmi ’ensemble des stratégies o possibles, nous considérons seulement celles appartenant
a la classe des stratégies admissibles A. Essentiellement, cela revient a considérer seulement
les stratégies telles que 7,, — 400 p.s. quand n — oo (on exclut les points d’accumulation).

e [RXxRIXRY 5 Retk:RxRY x RY — R deux fonctions mesurables.

Alors, le probléeme de contréle stochastique que nous considérons est le suivant :

v (0,20,70) = sup E / ft X, I7) dt — Z k(Tnstn—1,tn)| - (1.2.1)
acA 0 n >0

Ainsi, 'objectif est de maximiser le gain apporté par la fonction f au cours du temps. Celui-ci
dépend d’une part de la variable d’état non contrélée X, et de la variable controlée I%. Le
moyen de maximiser le gain est donc d’ajuster de la maniére la plus avantageuse possible ce
contrble au cours du temps. Cependant, le fait de modifier I’état du contrdle géneére un cofit
défini par la fonction k. Ce colit dépend des valeurs du controle avant et apres ’action.
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Le probleéme (1.2.1) doit son appellation de commutation optimale au fait que le processus
commandé [ prend ses valeurs dans un ensemble fini.

De maniere plus précise, pour s’assurer que le probléme (1.2.1) est bien posé, il convient de
faire quelques hypotheses ordinaires de régularité sur les divers éléments qui interviennent (cf.
Section 4.2.2).

Tout d’abord, expliquons pourquoi nous nous sommes intéressés a ce probleme. Dans le premier
chapitre, nous avons construit un modele structurel de prix d’électricité qui permettait de mod-
éliser finement la dépendance temporelle entre le prix d’électricité et le prix des autres énergies.
En particulier, ce modeéle permet de valoriser de manieére adéquate des options sur différence de
prix (entre électricité et une autre énergie), et donc, par extension, de quantifier, par une ap-
proche d’option réelle, la valeur d’une centrale électrique donnée. Avec un tel outil a disposition,
nous avons voulu savoir s’il était possible de déterminer les meilleurs investissements possibles en
centrales électriques au cours du temps. (Quel type de centrale contruire ? Combien ? Et quand
?) Nous verrons plus loin que ce probleme d’investissement peut effectivement s’écrire sous la
forme d’un probléme de commutation optimale de type (1.2.1) en dimension élevée (d+d' > 3).
C’est pour cela que nous avons cherché a construire une méthode numérique capable de résoudre
en pratique le probléme (1.2.1) en dimension élevée.

Maintenant, détaillons la fagon dont nous allons procéder pour résoudre le probleme (1.2.1). Si

I’on n’autorise les modifications de stratégie que sur une grille temporelle fixe I = {t) =0 < t; < ...

<ty =T}, alors, en utilisant le principe de programmation dynamique, la fonction valeur dis-

crétisée vl va vérifier la relation d’induction rétrograde suivante:
UH (tn’ L, Z) = I]l’leaHX {E (tnv $,]) - k (tn? Z?])} ’ (122)
q

ou:

E(T,z,i) =E [/Toof(s,XS,i)dﬂXT:z:]

lnt1
E (tp,x,1) :—E[ f(s, Xs,0)dt | Xy, =

tn

+E [UH<tn+1,th+1,i) |th:(13} ,n:N—l,...,O.

En pratique, au dela des discrétisations de processus et du calcul des valeurs terminales, la
difficulté principale dans la mise en ceuvre pratique du schéma (1.2.2) réside dans le calcul
de 'espérance conditionnelle E [UH (tn+1, Xt, H,i) | Xy, = w} En effet, cette quantité ne peut
généralement pas étre calculée de manieére explicite, ce qui oblige a recourir a des méthodes
d’approximations.

Dans la littérature sur les options américaines (qui est un probléme plus simple que (1.2.1)),
le méme probléme se pose, et diverses méthodologies ont été proposées pour y faire face. On
peut notamment citer ’approche par régression linéaire ([83, 102]), 'approche par régression
non paramétrique ([101, 74]), Papproche par quantification ([8]) et ’approche par calcul de
Malliavin ([6]).

Dans le cadre des problemes de controle stochastique sans colit de commutation (k = 0),
lapproche par calcul de Malliavin a été testée dans [88], et I'approche par régression dans
[12]. Enfin, pour le probléme de commutation optimale qui nous intéresse ici, 'approche par
quantification est utilisée dans [55], et approche par régression linéaire dans [32]. Cependant,
la méthodologie employée dans [32] n’utilise pas directement le principe de programmation dy-
namique comme dans 1’équation (1.2.2) mais a recours a la représentation des problemes de
commutation optimale comme couches successives de problemes d’arréts optimaux.
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Dans ce chapitre, eu égard aux conclusions du comparatif numérique [28] (qui a pour cadre
les options américaines), nous avons décidé d’utiliser ’approche par régression locale pour ré-
soudre notre probleme de commutation optimale. Celle-ci apparait en effet comme la plus apte
aujourd’hui a manier des problemes de dimension élevée.

La premiere partie de ce chapitre est consacrée a ’analyse de l'erreur entre la quantité initiale
(1.2.1) que I'on veut estimer et le résultat du schéma numérique qui ’approxime. Entre les deux,
il est nécessaire d’effectuer une série d’approximations. Nous avons déja évoqué la discrétisation
temporelle pour I'équation intermédiaire (1.2.2), mais d’autres couches d’approximations sont
requises. En voici la liste :

o [Horizon temporel fini] La premiére est la gestion de ’horizon de temps. Il est nécessaire en
effet de limiter ’horizon de temps des stratégies a une date T' > 0 grande mais finie.

o [Discrétisation temporelle] Ensuite, on a besoin de discrétiser les processus X et I*. Pour
simplifier, on peut choisir une grille de temps I = {t) =0 < t; < ... <ty =T} avec un pas
de temps fixe h > 0.

o [Localisation spatiale] Nous aurons aussi besoin de projeter le processus X (qui peut a priori
rendr valeur n ut entier ns un sous-domain Vi mai rné.
endre ses valeurs dans R? tout entier) dans sous-domaine D, vaste mais borné. La

raison du besoin de cette étape sera donnée un peu plus loin.

o [Approximation des espérances conditionnelles]/ Enfin, la derniére étape consiste & approximer
les espérances conditionnelles qui apparaissent lorsqu’on utilise le principe de programmation
dynamique sur le probleme discrétisé. Nous choisissons de les approximer par régression
linéaire a partir d’un faisceau de trajectoires de Monte Carlo. Nous reviendrons sur le choix
de la base de régression.

Pour chacune de ces étapes, nous avons analysé I’erreur commise par ’approximation en ques-
tion.

Le passage a un horizon de temps fini est analysé dans la Proposition 4.3.1. L’élément clé est
I'inclusion d’une actualisation exponentielle dans la définition de f et k (cf les hypotheses listés
dans la Section 4.2.2). L’erreur se comporte en e *7.

La discrétisation temporelle est analysé dans les Propositions 4.3.2 et 4.3.3. L’essentiel de cette
analyse provient de [55]. L’erreur se comporte en v/A (ou en v/hy /log (%) lorsque la fonction
de coiit k dépend aussi de la variable d’état X).

Pour la localisation spatiale, le domaine D, est directement choisi tel que I'erreur commise se
comporte en £ (Proposition 4.3.4).

Finalement, nous en arrivons a I’étape la plus complexe, qui est I’analyse de I’erreur de régression.
A ce stade, la programmation dynamique appliquée a la fonction valeur approximée peut s’écrire
de la maniére simple suivante :

Ol (T,l’,l) =g (T,.fL',Z)
’EH(tnyx7i) = IJHE%Z( {hf(tnax7j) - k@na%]) +E|:1_JH (tn+1ath+17j) )th = IE:| } y = N_17 s 70'
(1.2.3)

Comme annoncé précédemment, nous choisissons d’approximer les espérances conditionnelles
apparaissant dans 1’équation (1.2.3) par régression. Afin de permettre 'obtention d’une borne
d’erreur explicite, nous avons dii restreindre notre analyse a une base de régression bien spé-
cifique, & savoir une base de fonctions indicatrices sur un ensemble d’hypercubes (By) k=1, K
partitionnant le domaine D, (cf. Hypothese 6).
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Pour la clarté et la simplicité, nous avons réalisé I’analyse d’erreur en deux étapes successives
(méme si les réaliser simultanément peut s’avérer plus précis, cf. [82] par exemple) :

o [Régression théorique] Nous remplacons tout d’abord, a chaque pas de temps t,,, les espérances
conditionnelles par une projection sur ’ensemble des variables aléatoires JFi, -mesurables
générables a partir de la base de régression choisie. Cette erreur se comporte en §/h, ou
0 est la taille maximale des cOtés des hypercubes.

o [Régression empirique] Puis, nous remplagons la projection ci-dessus par la projection em-
pirique calculée a partir d’'un échantillon de M réalisations indépendantes de la variable
d’état X;,. Nous avons montré que la L,—norme de la différence entre les variables régressées

1
théoriques et empiriques se comporte essentiellement en Cp/ (\/M X Pl_m), ou Cp > 0et
P = minsey ming, cp_ P ()_(t € Bk) (cf. Proposition 4.3.6).

Cette derniere estimation d’erreur généralise a la norme L, un résultat démontré dans [100]
dans le cas de la norme Lo. La démonstration fait usage du résultat pratique suivant, démontré
en Annexe 4.7.1 a I'aide des inégalités de Jensen et de Marcinkiewicz-Zygmund:

C
L Xy,

1 M
= ZXm < 2
Mm:l Ly \

ou Xi,..., X est un échantillon i.i.d. de variables aléatoires réelles centrées, dont le moment
d’ordre p V 2 existe.

Nous pouvons maintenant expliquer 'intérét de I’étape de localisation spatiale: elle permet de
garantir que la variable P au dénominateur de 'erreur de régression reste strictement positive
quel que soit M, ce qui assure la convergence de ’algorithme. Bien sfir, cette étape est requise
sur le plan théorique seulement, car en pratique, pour M fixé, un faisceau de M trajectoires
est déja contenu dans un espace fini, et une restriction supplémentaire de I’espace serait donc
redondante.

Finalement, le résultat théorique principal du chapitre est le Théoreme 4.3.1, qui fournit une
analyse complete, par combinaison de toutes les étapes décrites jusqu’ici, de ’erreur de con-
vergence entre le probléeme de contréle initial (1.2.1) et le résultat de algorithme que nous
proposons.

La seconde partie de ce chapitre est consacrée a la complexité de 'algorithme, a la fois sur le
plan du nombre d’opérations et de ’espace mémoire requis.

De maniere générale nous montrons que la complexité algorithmique du schéma que nous pro-
posons se comporte en O (q2 - N - M), ou ¢ est le nombre d’éléments de 1'ensemble de commu-
tation I, IV est le nombre de pas de temps sur la grille II, et M est le nombre de trajectoires de
Monte Carlo. Sous certaines conditions, explicitées a la Section 4.4.1.1, cette complexité peut
étre améliorée, pour atteindre O (¢ - N - M). Cette complexité améliorée est tres satisfaisante, et
est, selon nous, sans doute la meilleure que puisse atteindre un algorithme de résolution de prob-
leme de commutation optimale par Monte Carlo (le simple fait de parcourir chaque commutation
possible pour chaque trajectoire et chaque pas de temps cottant déja O (¢ - N - M)).

Comme le schéma d’Euler est progressif et que la programmation dynamique est rétrograde,
la premiere étape du schéma est de simuler, en partant de xg, des trajectoires du processus X

jusqu’au temps terminal T, pour pouvoir ensuite initier la programmation dynamique. Comme,
) 1<m<M

)

a chaque instant t,, € 11, ’étape de régression nécessite d’avoir acces a ’échantillon (XZZ
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la solution la plus simple, communément mise en ceuvre, est de stocker entierement les trajec-
. _ \1<m<M
toires (Xtm)
7/ 1<i<N

en O (N -M).

pendant le déroulement de la résolution. Cela nécessite un espace mémoire

Si cela ne pose pas de probléme lorsque I’horizon de temps est proche (N petit) ou que la
dimension du probléeme est peu élevée (M petit), cela peut rapidement devenir redhibitoire
en dimension élevée avec horizon de temps lointain (une combinaison que vérifie précisément
I’application numérique qui nous intéresse). Pour surmonter cette limitation, nous avons général-
isé une méthode de réduction de mémoire, introduite dans [36] dans le cas d’'un mouvement
brownien géométrique, afin qu’elle puisse fonctionner pour n’importe quel processus discrétisé
par schéma d’Euler. Celle-ci permet, au prix d’'un doublement du nombre d’opérations, de
diminuer la taille mémoire requise & O (N + M), ce qui est un gain considérable qui supprime
toute contrainte mémoire.

L’idée, détaillée, analysée et illustrée a la Section 4.4.2, est la suivante. Lors de la simulation
initiale du processus sous-jacent X, a chaque instant t¢,, € II, au lieu de stocker tout 1’échatillon

_ 1<m<M
(XZ:) il suffit de stocker simplement la valeur de la graine du générateur aléatoire juste

avant la simulation de I’échantillon courant. A la fin de ce premier passage, la mémoire contient
un échantillon de X7 (taille M) et les graines du générateur aléatoire (taille V). Ensuite, lors de

I’étape d’induction rétrograde, a chaque instant ¢, € I, il est possible, a partir de 1’échantillon
( Co \1Sm<M _ \1<m<M

H et de la graine de l'instant t,, de reconstruire 1’échantillon (X[Z) , en

inversant la formule du schéma d’Euler et en resimulant, a partir de la graine stockée, les aléas
_ )1§m§M . <7 )1§m§M

ayant permis de passer précédemment de (X{Z a (X[ '

Finalement, la derniere partie du chapitre est consacrée a une application numérique de notre
schéma de résolution au probléme d’investissement en centrales électriques.

En adaptant le modele de prix d’électricité développé au premier chapitre, il est possible
d’exprimer le probléeme d’investissement en centrales électriques sous la forme d’un probléme
de commutation optimale (équation (4.5.9)). Celui-ci est néanmoins lourd et imposant, car il
combine & la fois un horizon de temps treés lointain (plusieurs décennies) et une variable d’état
de grande dimension (demande, capacités, combustibles,. ..). Mais, comme nous ’avons vu lors
de l'analyse de complexité, notre algorithme est précisément congu pour pouvoir faire face, dans
une certaine mesure, a de tels problemes.

Nous avons appliqué avec succes notre algorithme sur un exemple numérique avec deux tech-
nologies. La Figure 4.5.1 illustre ’estimation de la distribution de nouvelles centrales a la date
terminale, et les Figures 4.5.2 et 4.5.3 illustrent 'impact des nouvelles centrales sur 1’évolution
du prix de I'électricité. On y constate 'effet prévisible des nouvelles centrales (prix d’électricité
plus faibles et moins volatils) ainsi que la moindre attractivité, relativement aux centrales de
base, des centrales de pointe lorsque les prix des combustibles sont élevés.

Terminons par quelques remarques:

e Afin d’évaluer empiriquement si les parametres numériques choisis étaient suffisants pour
garantir une convergence convenable des résultats obtenus, nous avons adapté une méthode
d’obtention d’intervalles de confiance empiriques décrite dans [28] (cf. Annexe 4.7.4).

¢ Pour garantir un certain réalisme du modele de prix de combustibles sur des horizons de temps
trés grands, nous avons ajouté de la cointégration au modele de browniens géométriques du
premier chapitre:

dSt = EStdt + diag (St) Zth s S() >0,
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ou = est la matrice de cointégration et ¥ la matrice de covariance. En Annexe 4.7.2, nous
démontrons une condition nécessaire et suffisante pour garantir la positivité de S (il faut et
il suffit que les termes non-diagonaux de la matrice de cointégration soient positifs).

e Pour finir, afin de représenter d’une maniére graphique intuitive I’évolution temporelle d’un
processus stochastique potentiellement multimodal (comme par exemple le prix d’électricité
généré par notre modele), nous avons généralisé la construction d’intervalles interquantiles a
des boréliens (potentiellement non connexes) ajustés aux lignes de niveau de la distribution
estimée (cf. Annexe 4.7.5). Cette construction générale pourrait s’avérer utile dans une large
gamme de domaines.

1.3 Un algorithme numeérique pour la résolution des équations de
HJB totalement non-linéaires via EDSRs a sauts négatifs

La troisieme et derniere partie de la theése a de nouveau pour objet la résolution de problemes de
controle stochastique, mais cette fois nous nous intéressons a des problémes dont la dynamique
du processus d’état sous-jacent peuvent étre influencées par le contréle. Le contenu de cette
partie synthétise le contenu deux articles [70] et [71].

Commengcons par I’exemple introductif suivant :

T

v(t,z) = supE / f(X& as)dt+g(X7) | X == (1.3.1)
acA t

dXg = b(XJ as)ds+o(XJ)dWs, (1.3.2)

ot la diffusion X® prend ses valeurs dans R?, f et g sont deux fonctions mesurables, et les pro-
cessus o = ()< 4 sont des stratégies choisies parmi un ensemble A de stratégies admissibles
a valeurs dans un sous-domaine compact A C RY.

Sur cet exemple (1.3.1), les stratégies peuvent effectivement venir modifier la dynamique du
processus sous-jacent X<, mais seulement au travers de la dérive b. Dans ce cas précis, le
probleme peut se résoudre par le biais d’'une Equation Différentielle Stochastique Rétrograde
(EDSR).

En effet, le probleme de controle stochastique (1.3.1) est relié, tout d’abord, a I’équation de
Hamilton-Jacobi-Bellman (HJB) suivante :

% + 21612 {b (z,a).Dyv + %tr (O'UT (x) D?UU) + f (z, a,)} =0, (t,z) € [0,T) x R?
v(T,z)=g(z) ,zeR?. (1.3.3)

Il est possible d’essayer de résoudre cette EDP numériquement, mais tout comme au chapitre
précédent, nous sommes ici & la recherche d’un algorithme de type probabiliste, afin d’étre
capable de traiter des problemes de dimension élevée.

Dans le cas ou o est de rang plein, I’équation (1.3.3) peut se réécrire sous la forme de 'EDP
semi-linéaire suivante :

ov T 1 T 2\ J
E +F <x,0 va) + §tr (aa (x) va) =0, (t,z) €[0,T) xR
U(Tv ZL‘) :g(x) y L GRda (134)
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ou la transformée F' est définie par F'(z,2) = sup,c4 {0 (z,a) .2+ f (z,a)}, ou 6 est tel que
o(x)60(x,a) =b(x,a). Cette nouvelle EDP (1.3.4) est elle-méme associée a 'EDSR suivante :

dX? = (X9)dw,
v, =g (x}) +/TF (x0.2,) ds—/TstWs.
t t

Comme divers schémas numériques probabilistes sont disponibles pour résoudre une EDSR
donnée ([27, 82, 58]), il est donc possible de résoudre effectivement le probléme de contrdle
stochastique (1.3.1) par un schéma numérique probabiliste.

Maintenant, intéressons nous au probléme plus complexe suivant :

T
v(t,x) = SUPEU f(X?aOés)dtJrg(X%)!Xf‘—x]
acA t

dXS = b(XJ as)ds+ o (XS as)dWs, (1.3.5)

lequel est associé a 1’équation de HJB totalement non-linéaire suivante:

v 1 T 2 d

— +supq b(z,a).Dyv+ —tr (ao (z,a) Dzv) + f(x,a)p =0, (t,z) €[0,T) xR

ot a€A 2

v(T,z) =g (z) ,zeRe. (1.3.6)
Cette fois-ci, la stratégie a peut influer a la fois sur la dérive b et sur la volatilité o du processus

X De fait, il s’agit d’'un probleme bien plus complexe que le précédent exemple (1.3.1), qui
ne peut pas se réduire a la résolution d’une simple EDSR.

Ainsi, I'objet de ce chapitre est précisément de construire un algorithme probabiliste capable de
résoudre des problémes de contrdle stochastique de type (1.3.5). L’idée est de s’inspirer de la
résolution décrite ci-dessus du probléme plus simple (1.3.1), et de ’étendre de maniére adéquate
pour pouvoir englober les problemes de type (1.3.5).

La premiere étape est d’identifier I’objet probabiliste adéquat pour représenter la solution du
probléme (1.3.5). Cet objet est défini et étudié dans [72], et consiste en une EDSR & saut
négatifs. Commencgons par rappeler cette construction, et son lien avec le probléme (1.3.6).

Soit I un processus de sauts pur, indépendant de W, a valeurs dans A. Sa dynamique est définie
comme suit :

dls = /A (@ —I;-)pa(ds,da), (1.3.7)

ol py (dt,da) est une mesure aléatoire de Poisson sur Ry x A, dont la mesure d’intensité
A4 (da) dt est finie.

Ensuite, considérons la diffusion markovienne & basculement de régime (X, I') dont la dynamique
de I est donnée par (1.3.7) et la dynamique de X par :

dX, = b(X,, L) ds + o (X, I,) dW, . (1.3.8)

Autrement dit, nous remplagons le contrdle o dans la dynamique (1.3.5) de X® par un nouveau
processus stochastique I indépendant du reste. L’espérance E UtT f(Xs, L) dt+ g (X7) | Xt = x}
est alors associée a la solution de 'EDSR a sauts suivante :

Vi = g (Xr) + / (XL ds / ' zaw, / ' /A Us (@) fia (ds, da) , (1.3.9)

ou fi4 est la mesure compensée de pi 4.
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Enfin, afin de retomber sur la solution de I’équation de HJB (1.3.6), il faut et il suffit d’ajouter
la contrainte suivante sur le terme Uy (a) de I’équation (1.3.9) :

Ui (a) <0, dP® dt ® X (da) p.s
Sous les hypotheses suivantes, que nous supposerons vérifiée dans toute la suite du chapitre :
o b et o lipschitziennes (H1),
o f et g lipschitziennes (H2),

il est démontré dans [72] que la solution minimale (Y, Z,U, K) de 'EDSR contrainte
T
Y, = g(Xr)+ f (X, I,) ds —/ Z,dW, (1.3.10)

+ K+ — Ky — // a)fig(ds,da) , 0<t<T, p.s.
U(a) < 0, dP®dt® A(da) p.s.sur Q x [0,T] x A

est reliée a la solution de I’équation de HIB (1.3.6). En effet, il y est démontré qu’il est possible
d’écrire le Y de la solution minimale de (1.3.10) comme une fonction de ¢ et de X; seulement :

Y, = o(t, X)), tel0,1], (1.3.11)

et que cette fonction v est 'unique solution de viscosité continue a croissance linéaire de
Iéquation de HJB (1.3.6). Ce résultat reste valide si f dépend aussi de Y et Z (ce qui permet
d’englober des problémes plus généraux que le probleme de contrdle stochastique (1.3.5)). De
plus, soulignons que ce résultat (ainsi que tous les résultats de ce chapitre) ne nécessitent aucune
condition d’ellipticité uniforme sur o.

Une conséquence de ce théoreme important est que pour trouver une solution a I’équation de
HJB totalement non-linéaire (1.3.6) (et donc au probleme de contrdle stochastique (1.3.5)), il
suffit de trouver une solution a 'EDSR contrainte (1.3.10). Aussi, l'objet de ce chapitre sera
donc de proposer, analyser et tester un schéma numeérique probabiliste pour 'EDSR. contrainte
(1.3.10).

La premiére étape consiste a discrétiser cette EDSR contrainte. Soit m:={0 =ty < ... <ty =T}
une grille de temps déterministe entre les instants 0 et 7', de pas |7| = maxo<g<n—1 {trk+1 — tk}-
Alors, en s’inspirant des schémas pour les EDSRs classiques, et en interprétant de maniére
adéquate la contrainte sur Uy (a), il apparait que le schéma discret suivant approxime 'EDSR
contrainte (1.3.10) (dans le cas général ou f dépend de y et z) :

Yy  =g(Xn)
A Z =E; |Yi AW,
Y aw/'] (1.3.12)
Vi =E; [Yig1 + f (Xi, L1, Yig, Zi) A
Y; = esssup,e g Eiq [Vi]

ou (X, Ii)i:l,.,.,N correspond & la discrétisation du processus (X¢, It)y<,< par schéma d’Euler,
E;[] == E[|F,], et Eig[] :== E[.|X;, i, [ = a] = E[.|X;,I; = a]. Pour bien comprendre ce
schéma, il faut remarquer que, par la propriété de Markov, les quantités intermédiaires V; et Z;
peuvent s’écrire comme fonction de X; et I; :

Vi, Zi) = (0 (X, 1) , 2 (X4, 1))
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On retrouve cette méme étape dans les schémas de discrétisation des EDSRs classiques. Ici
vient s’y ajouter la prise en compte de la contrainte sur U; (a), qui permet de retomber sur la
vraie approximation (Y;, Z;) = (v (X;), 2z (X)), qui ne dépend pas de I;. D’aprés la définition
de Ui (a), la contrainte peut se réécrire

Ui (Xi,a) —yi (X;) =U(a) <0 p.s.Va€ A,
ce qui implique que le terme Y; de la solution minimale doit satisfaire

Y; = y; (X;) = esssup §; (X;,a) = esssupE; o [V] .
acA a€A
Si nécessaire, il est possible d’extraire le terme Z; du schéma. En effet, en notant a; =
argess sup,ca Eiq [Vi], alors Z; = z; (X;) = 2 (X5, a)).
Une premiere partie de ce chapitre est consacrée a ’analyse théorique de cette discrétisation.

Nous procédons en deux étapes. Nous commencons d’abord par discrétiser la contrainte sans
modifier le processus X, puis nous remplagons X par son schéma d’Euler.

Ainsi, nous commengons par définir la séquence intermédiaire ’EDSRs (Y™, Y™, Z™ U™) (équa-
tions (5.2.13)-(5.2.14)-(5.2.15)), qui correspond a 'EDSR contrainte initiale (1.3.10) avec dis-
crétisation de la contrainte sur U. Nous définissons aussi les fonctions valeurs v™ et 9™ associées
aY™ et Y™ (équations (5.2.16)-(5.2.17)-(5.2.18)).

Cette construction d’une séquence d’EDSRs contraintes n’étant pas standard, nous commengons
par démontrer que tous ces éléments sont bien définis (Propositions 5.2.1-5.2.2-5.2.3). Ensuite,
nous démontrons que la fonction v™ associée au schéma discret converge bel et bien vers la
fonction v de 'EDSR contrainte initiale lorsque |r| — 0 (Corollaire 5.2.2). Pour finir, nous nous
intéressons a la vitesse de convergence de v™ vers v. Pour cette étape, nous avons besoin des
hypotheses supplémentaires suivantes :

o b et o uniformément bornées (H1’),
e f ne dépend pas de z, f(.,.,0) et g uniformément bornées, et y — f (x,a,y) convexe (H2’).

Avec ces hypotheses supplémentaires, en adaptant la méthode de perturbation de coefficients
de Krylov ([78], cf. aussi [49]) aux diffusions & sauts, nous parvenons a obtenir la vitesse de
convergence suivante (Théoreme 5.2.1) :

0<w(t,z)—v" (t,z) < C’|7r\l*10

pour tout (¢,z) € [0,T] x R? et toute grille 7. De plus, dans le cas ou f = f (z,a) ne dépend
pas de y, la représentation par probléme de contrdle stochastique combinée aux résultats de [77]

1
permet d’améliorer cette vitesse en C'|r|6. Autrement dit, la solution de P'EDSR contrainte

1
discrétisée converge vers la solution de 'EDSR contrainte continue a la vitesse O (|7r| 10) (ou

@ (‘71”%> quand f ne dépend pas de y), cf. Corollaire 5.2.3.

Ensuite, la seconde partie de I’étape de discrétisation consiste a remplacer la diffusion X par son
schéma d’Euler, aboutissant au schéma discret (1.3.12). En adaptant les propriétés du schémas
d’Euler (Lemme 5.2.1) et des résultats de régularité sur les EDSRs (Proposition 5.2.3), nous

1
parvenons a obtenir pour cette étape une estimation d’erreur en O <|7r| 5) (Théoréme 5.2.2). Par
conséquent, en combinant les résultats des deux étapes, nous obtenons, pour la discrétisation
1 1
temporelle compléte, une vitesse de convergence en O (|7r\ﬁ) (O (|7T\5) quand f ne dépend pas
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de y), ou, plus précisément, une erreur négative en O (|7r\%) et une erreur positive en O (‘7‘("%)
(O (\7?]%) quand f ne dépend pas de y), cf. Corollaire 5.2.4.

Ce résultat vient améliorer les résultats connus jusqu’alors (cf. Remarque 5.2.3). Par exemple,
1 1
dans le cas ou f ne dépend pas de y, nos bornes |r|2 et |r|6 améliorent respectivement les bornes

|7r|% et \7T|T10 obtenues par EDSR du second ordre (cf. [49]). Ensuite, et ¢’est un point important,
nos résultats sont obtenus sans aucune hypothese d’ellipticité uniforme sur o. Enfin, et cela est
tres utile en pratique, le schéma permet d’obtenir une approximation du controle optimal (cf.
Section 5.2.4.2). Tous ces éléments nous indiquent que les EDSRs contraintes semblent un bon
outil pour I’étude des équations de HJB totalement non-linéaires.

La seconde partie de ce chapitre est consacrée a 'approximation des espérances conditionnelles
du schéma discret (1.3.12). En effet, tout comme au chapitre précédent, nous avons affaire a un
schéma numérique rétrograde faisant apparaitre des espérances conditionnelles qui ne peuvent
généralement pas étre calculées de maniere explicite. Une nouvelle fois, nous avons choisi des
les approximer par méthode de simulation et régression. Cela a ici plusieurs avantages. Tout
d’abord, la simulation par Monte Carlo du processus progressif (X, ) permet de s’affranchir
dans une certaine mesure des contraintes de dimension. Ensuite, ce choix permet de réduire
le calcul de supremum du schéma discrétisé (1.3.12) a une simple maximisation d’une fonction
paramétrique donnée. Enfin, cela permet d’obtenir un estimateur paramétrique du controle
optimal.

Au chapitre précédent, dans le cadre des problemes de commutation optimale, nous n’étions
parvenus & analyser complétement l'erreur commise par cette approximation que dans le cas
spécifique d’une base de fonctions constantes par morceaux. Dans ce chapitre, nous avons voulu
analyser cette erreur sans faire d’hypotheése spécifique sur la base de fonctions de régression (a
I'image des travaux de [82] et [58] dans le cadre des EDSRs standards). Malheureusement, dans
le cadre des EDSRs contraintes, I’étape additionnelle de supremum complexifie significativement
I’analyse de l'erreur, et nous n’avons pu obtenir que des résultats partiels pour cette étape.

L’étape préalable de localisation spatiale se passe sans encombres (Lemme 5.3.1 et Proposition
5.3.1). Considérons maintenant I’étape de régression proprement dite. Soit {pb ‘R x RY — R},

b =1,...,B, une base de fonctions de régressions. Etant donnée une variable aléatoire Fip-
mesurable U, I'idée est de remplacer I'espérance conditionnelle E; [U] par la projection P; (U)
définie comme suit :

\i (U) = arg inf B (Op (X5, 1) = U] (1.3.13)
Pi (U) ==X\ (U) p(Xi, L) -

Il s’agit ici d’une régression théorique (’étape finale de régression empirique aboutissant & un
schéma implémentable consiste a remplacer lors de la minimisation de moindres carrés ci-dessus
I’espérance [E par une espérance empirique ﬁ Z%Zl). En effectuant cette substitution dans le
schéma discret (1.3.12), on obtient le nouveau schéma suivant :

?N =g(Xn)
AiZi =P (Yi-HAWiT)
Vi ="Pi (f/iﬂ + fi (Xz',fi, ﬁJrl,ZAi) Ai) =\ pi (Xi, 1)

V; = ess sup E; 4 [371} = €SS sup /A\?/Pz (Xi,a) , (1.3.14)
acA; acA;

ot A; est 'ensemble des variables aléatoires o (X;)-mesurables & valeurs dans A. (Pour simplifier,
on omet ici I’étape de localisation spatiale). Méme a ce stade théorique, si 'on veut étudier
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Perreur entre le schéma discret (1.3.12) et son approximation (1.3.14), la difficulté suivante
apparait : & cause de ’étape finale de maximisation, la variable 171-, contrairement a la variable
intermédiaire 5&, ne constitue pas en soi la projection d’une variable aléatoire donnée. Par
conséquent, il n’est pas possible d’utiliser les outils usuels (cf. Lemme 5.3.3) qui permettraient
de se défaire de l'opérateur P; lors de 'analyse de la différence entre (1.3.12) et (1.3.14).

Il est intéressant de noter que si I’on modifie la régression comme suit :
\. — ; oy 2
Aia (U) = arg inf B (P (X, 0) = Ua)’]
Pia (U) =X (U) p(Xi,a) , (1.3.15)

ou U, :=Ula, a € A;, alors il devient possible d’analyser 'erreur de régression (Proposition
5.3.2). La différence vient du fait que la maximisation et les régressions sont cette fois effectuées
simultanément, et non itérativement comme pour le schéma (1.3.14). Cependant, contrairement
a la version empirique du schéma (1.3.14), un schéma empirique basé sur la régression (1.3.15)
serait lourd et malaisé a mettre en ceuvre. C’est pourquoi nous choisissons d’implémenter
malgré tout un schéma basé sur la régression (1.3.13), tout en devant abandonner 'obtention
d’une analyse d’erreur exhaustive a des travaux ultérieurs.

Finalement, la derniére partie de ce chapitre est consacrée a des applications numériques de la
version empirique du schéma (1.3.14).

Tout d’abord, nous commencons par un exemple de probleme de contrdle stochastique de type
linéaire-quadratique (équations (5.4.1) et (5.4.2)). La solution explicite de ce type de problémes
étant connue (cf. [107]), cet exemple permet de fournir un premiére vérification de 'exactitude
du schéma. Les résultats numériques indiquent, comme l’illustre la Figure 5.4.1b, que le schéma
parvient a approximer le contrdle optimal avec une grande précision.

Apres cette vérification préliminaire, nous avons consacré le reste de nos applications numériques
au probléeme de sur-réplication d’options dans des modeéles a volatilités et/ou corrélations in-
certaines. Nous commencons avec un modele a deux actifs S7 et Sy dont les dynamiques sont
données par :

dS;(t) = 0:S;(t)dWi(t) , i=1,2 (1.3.16)
<dW1 (t),dWQ (t)) = pdt, (1.3.17)

ol le processus p est incertain ; on suppose seulement qu’il ne peut prendre ses valeurs que dans
un intervalle donné [pmin, Pmax] € [—1,1]. Les prix de sur-réplication de I'option de valeur finale

® = (S1(T) = S2(T) = K1)" = ($1(T) = S2(T) = K2)™ (1.3.18)

(non triviale car ni convexe ni concave en S (17') — Sz (T")) obtenus par notre algorithme sont
illustrés sur la Figure 5.4.3. On retrouve en particulier le fait que le modeéle a corrélation
incertaine est plus a méme d’estimer le risque associé au prix de 'option qu’une simple variation
d’une corrélation constante.

Apres cet exemple (1.3.18) qui permet d’illustrer concréetement U'intérét des modeles avec parametres
incertains, nous avons testé notre algorithme sur plusieurs autres options, dans 'optique cette
fois d’évaluer la qualité de ’algorithme méme. Ainsi, nous avons comparé les résultats de notre
algorithme sur les exemples numériques proposés dans [62]. Cet article présente en effet I'intérét

de fournir des estimations de prix de sur-réplication d’options par méthode d’EDP, ainsi que
par un algorithme Monte Carlo alternatif basé sur les EDSRs de second-ordre (cf. [49]).

Sur tous ces exemples, et comme au chapitre précédent, nous avons calculé deux prix complé-
mentaires formant un intervalle de confiance empirique asymptotique du prix (équations (5.4.8)
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et (5.4.9)), I'étendue de cet intervalle permettant d’évaluer la qualité de la base de régression
choisie.

Les Figures 5.4.4 & 5.4.9 illustrent nos résultats. Nous y faisons varier le nombre de trajectoires
de Monte Carlo, ainsi que la taille du pas de temps de discrétisation. Les résultats obtenus sont
ceux attendus, avec les deux prix encadrant le vrai prix (tel qu’estimé par la méthode d’EDP),
et ceux-ci étant d’autant plus précis que le pas de discrétisation est petit et que le nombre de
trajectoires de Monte Carlo est grand.

Si notre algorithme et celui proposé dans [62] présentent des résultats numériques comparables, le
nétre possede 'avantage crucial de comporter un processus progressif (X, I') aisément simulable,
ce qui, nous I'espérons, devrait permettre de I’étendre facilement & des problémes plus généraux
tels que les équations de HJB-Isaacs et les jeux a champs moyens.
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2 Introduction (in English)

The present work is devoted for the most part to the numerical solution of problems of pricing
and hedging of contingent claims, and more generally of stochastic control problems, related
to energy markets, in particular to electricity markets. Having high dimensional problems in
prospect, like investment problems in power plants, we opted for the construction and analysis
of probabilistic numerical schemes.

In the first part, we started by looking for a suitable model for the price of electricity. In the
light of empirical considerations on the price formation mechanism, we proposed and studied a
new structural model for the price of electricity, which has the crucial advantage of being able
to reproduce the fine dependence structure between the price of electricity and the prices of
other enegies (oil, coal, gas,...). In this first part, we made use of this model to price and hedge
electricity derivatives. In particular, we tried to improve the hedging strategies for these assets
by allowing, as hedging assets, the use of other energy derivatives, taking advantage of their
fine dependence with electricity. The effect of this addition is displayed on numerical tests, the
completion of which required the construction of efficient algorithms to compute the hedging
strategies.

In the second part, we used one again this new structural model, but on another application,
namely the problem of valuing power plants, and, by extension, the computation of econom-
ically optimal investment strategies in new power plants in the future. From a mathematical
point of view, this kind of problem can be expressed as an optimal switching problem, which
is a stochastic control problem for which every policy modification generates a corresponding
cost. This problem is high-dimensional, therefore we proposed a probabilistic scheme to solve it,
which combines dynamic programming with least-squares regressions. This scheme is inspired
by those existing for the simpler problem of American option valuation ([31]). We performed a
mathematical analysis of the convergence of this scheme, and retrieved its convergence rate for
a specific choice of regression basis (piecewise constant functions). Numerical applications illus-
trate the feasibility of this algorithm, and demonstrate more generally that the techniques and
improvements implemented here make it conceivable to try to tackle difficult, multi-dimensional
stochastic control problems by a direct probabilistic approach.

Finally, we extended in the third part our previous probabilistic scheme to more general prob-
lems, namely stochastic control problems for which the drift and the volatility of the underlying
state variable can depend upon the strategy. So far, probabilistic schemes could not handle
this kind of problems, as their initiation necessitates the simulation of trajectories of the un-
derlying state variable, which is not possible here as the optimal control is unknown at first.
To overcome this difficulty, we made use of a probabilistic representation of the problem using
Backward Stochastic Differential Equations (BSDEs) with constrained jumps, which is a gener-
alization, introduced in [72], of the class of BSDEs. This generalization encompasses the kind
of stochastic control problems we are interested in here, and, more generally, encompasses fully
nonlinear Hamilton-Jacobi-Bellman (HJB) equations. Therefore, we proposed an implementable
probabilistic numerical scheme for these constrained BSDEs, based on an initial randomization
of the control, combined with a subsequent removal of this additional randomness by the adjunc-
tion of the computation of a supremum within the numerical backward scheme. We performed
a mathematical analysis of this scheme, including the time discretization of these constrained
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BSDEs. Finally, we illustrated numerically the possibilities of the scheme on the problem of
superreplication of options under uncertain volatility ([5]).

2.1 A structural risk neutral model for pricing and hedging electricity
derivatives

This first part of the thesis deals with an electricity structural model suitable for pricing and
partially hedging power derivatives. It led to the publication of the article [1].

The classical approach in financial mathematics in order to study a given derivative product is
to first propose a model for the dynamics of the underlying asset, from which the pricing and
the hedging strategy can be deduced. This is the so-called reduced-form approach.

In this way, several authors tried to propose models that aim at taking into account the idiosyn-
crasies of the price of electricity, while remaining practical for pricing and hedging purposes (cf.
[15] for example). One of these distinguishing features is that electricity is non storable !, which
implies that electricity production has to be adjusted in real time to the exact level of electricity
demand.

There exist several types of power plants, based either on renewable energies (hydro, wind, ...)
or fossil energies (coal, gas, ...). Consequently, it is clear that the composition of the electric
fleet as well as the price formation mechanism will significantly impact the price of electricity.
Against this backdrop, on the opposite side from reduced-form models, the stacking models try
to take into account this mechanism. These models require a detailed modeling of the electricity
demand, of the prices of fuels, and of all the available power plants. A global optimization then
leads to the price of electricity, which is the smallest price that allows to satisfy the level of
demand, making an optimal use of the available production assets (cf. [61] for example).

This approach allows for a great modeling precision (it is possible to take into account many
details, like the dynamic production constraints of thermal plants for example, cf. [80]). How-
ever, its main drawback is that it is very heavy and clumsy to implement, and is ill-suited to
the study of derivative products.

Halfway between these two extremes, the class of structural models tries to take account in a
simplified manner of the price formation mechanism, all the while making use of the classical
mathematical finance tools from the reduced-form approach. In particular, this intermediary
approach is very well suited to the pricing of multi-asset options that include the electricity as
well as other energies like gas for example, as it allows to take into account the fine dependence
structure between these variables. A survey on this class of structural models is available in
[30].

The starting point of this chapter is the structural model by marginal cost developed [3], that
we recall below. Consider a given power market, which includes n types of power plants. For
eachi=1,...,n let:

o« S! be the price of the fuel used by this type of plant (if it is based on a renewable energy,
then S = 0).

o h; be its heat rate, that we assume to be constant (it is such that hiS,f is expressed in
€/MWh).

« C! be the power generation capacity from this type of plants (in MW).

! Apart from hydroelectric production, as dams provide an indirect power storage
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Moreover, let Dy be the electricity demand (in MW). Without loss of generality, suppose that
the technologies i = 1,...,n are sorted in increasing production cost order: h1S} < ... < h,SP.
Then, in [3], the power price P; is directly modeled by the marginal cost of production, defined
by:

n i—1 %
CMt:ZhiS{él{ZCf <D; < Zcf}. (2.1.1)
=1 k=1 k=1

Equation (2.1.1) means that, if the demand D; exceeds the total production capacity of the
i — 1 cheapest technologies ( ;;11 CF) but does not exceed that of the i cheapest technologies
(Zzzl CF), then the marginal cost of producing electricity is fixed by the i-th technology, and
is given by h;S;.

The drawback of the model P, = C'M; proposed in [3] is that, if the marginal cost is indeed
an important indication of the price level of electricity, these two quantities can be different
in practice, because of all the secondary phenomenons neglected by this simple model 2. This
difference can sometimes be substantial, like for instance when an unexpected price spike occurs.
Indeed, the simple model P, = C'M; cannot generate price spikes, as by definition CM; < h,, S}
(and an adequate modeling of the price S} of the most expensive fuel does not require spikes).

The first part of this chapter is devoted to the improvement of the model (2.1.1) in order to
be at least able to produce the kind of price spikes observable on power markets. After a
comparison between the realized marginal cost and the realized power price (Figure 3.2.1a), and
a careful preservation of the few spikes of the dataset by opting for a dependence model between
the quantiles of the variables at hand (Proposition 3.2.2), the following model appears to be
empirically satisfactory (Figure 3.2.1b) :

k=1

where the function g, that we called scarcity function, is defined by :
g () = min (M, 7) 1{z >0} + M1{z<0}. (2.1.3)
:CV

Therefore, we correct the marginal cost by a multiplicative term which is all the more so big
(iny/z") as the available residual capacity of the system (3>7_; CF — D;) is low. In particular,
this models generates price spikes precisely when the system is tensed (low residual capacity,
close to a blackout). This correction term is capped to a maximum value M. The improvement
from the model (2.1.1) to the model (2.1.2) is illustrated on Figure 3.2.2.

The second part of this chapter is devoted the use of the new model (2.1.2) for pricing and
hedging power derivatives. As the price of electricity in this model depends on hedgeable risks
(the fuel prices S}) as well as non-hedgeable risks (the demand D; and the production capacities
C?), the market is therefore incomplete. In other words, the classical dynamic hedging procedure
cannot suppress all the risk stemming from a given derivative. Nevertheless, without suppressing
all the risk, it is still possible to tame it, by minimizing a predefined risk criterion.

In the context of incomplete markets, there exists a whole range of possible risk criterions in
order to build partial dynamic hedging strategies. Here, we choose the local risk minimization
criterion, introduced in [52], for its simplicity and the fact that it enables a natural split between
the hedgeable part and the unhedgeable part of any derivative product based on an underlying

2Like for instance the non homogeneity between plants of the same type, the dynamic constraints of production,
the mandatory production reserves for the stability of the network, the impact of imports and exports, the
strategic behavior of the producers, ...
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modeled by (2.1.2). Remark that our present work was subsequently extended to the utility
indifference criterion in [13].

At this stage, we need to assume specific models for the dynamics of the factors Cy, D; and S;.
We choose very simple models:

o The spreads Y} := h; S} — hi_lS,f_l are modeled by geometric Brownian motions.

¢ The demand D; and the capacities C} are modeled by general diffusions (equations (3.3.2)
and (3.3.3)).

The key point is that the Brownian motions used for the fuel prices are assumed independent
from the Brownian motions used for demand and capacities (Assumption 1). This assumption
is reasonable in practice.

We identified the whole range of equivalent martingale measures in our model (Proposition 3.3.1),
including the minimal martingale measure Q related to the local risk minimization criterion.
Then, we tried to price a few significant power derivatives.

First, we studied a forward contract on electricity Ff (T') with instantaneous delivery period T'.
It is of course a fictitious asset, as real forward contracts on electricity involve a real delivery
period [T7,Ty] with 77 < Ty. Nevertheless, it is always possible to make use of the intermediary
block F¥ (T') to reconstruct the price of a true forward contract Ff (11,7%).

In our model, the price at time ¢ of a forward contract on electricity with delivery at time T is

given by
FE(T Zh G (t,C, Dy) F{(T) , (2.1.4)
=1
where, for i = 1,...,n, F} (T) corresponds to the price at time ¢ of the forward contract on

the fuel ¢ with delivery at time 7', and where the quantity GZT (t,Cy, Dy) , called Conditional
Ezpectation of Scarcity (CES) function, is defined by

1—1 7
GT (t,Cy, Dy) _E[ (ZCT )1{ZC%§DT§ZC%}IIDC
k=1 k=1

Thus, equation (2.1.4) tells us that the forward price of electricity can be expressed as a linear
combination of the forward fuel prices. The weights in this linear combination are given by the
heat rate h; multiplied by the CES function (2.1.5). Without the scarcity penalization (g = 1),
the CES function of the i-th fuel would simply correspond to the probability for the i-th fuel
to be marginal at time 7" (as in [3]). Here, the presence of the scarcity function means that the
probability of marginality is penalized in the manner described by equation (2.1.5).

(2.1.5)

Equation (2.1.4) provides a clear separation between the impact of the different sources of risk:
the hedgeable risks S} impact the forward fuel prices F{ (T), while the non-hedgeable risks C}
and D; impact the stochastic weights G7 (¢, Cy, Dy).

Aside from the value of Ff (T'), it is possible, from equation (2.1.4), to deduce its dynamics,
which makes use of the partial derivatives of the CES function (cf. equations (3.3.13) and
(3.3.14)).

Remark that, using arguments similar to those leading to equation (2.1.4), it is possible to
express the electricity risk premium as a linear combination of the risk premiums on fuels
(Proposition 3.3.2).

After this analysis of power futures, we then study other derivatives. In the case with n = 2 fuels,
we provide an explicit pricing formula for a call option on the spread Pr — h;S% (Proposition
3.3.4) and for a call option on a power futures (Proposition 3.3.6).
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Finally, we study the hedging strategy of these derivatives. Consider a general option whose
final payoff can can depend on demand, capacities, as well as power and fuel prices. Consider
hedging porfolios that can contain forward contracts on fuel and electricity. Then, and this
is the main result of this chapter, we are able to explicit the optimal weights of the hedging
porfolio (Proposition 3.3.7). These weights depend on the shape of the payoff, as well as on
the quantities involved in the dynamics of the power futures (namely the CES function and its
partial derivatives). Moreover, we are also able to assess the residual risk of the hedge, which
stems from the non-hedgeable sources of risk (demand and capacities).

The rest of this chapter is made of numerical applications of these results.

So far, we modeled the demand D; and the capacities C} by general diffusions. In order to
perform numerical tests, we now need to assume a more explicit model for these variables.
We choose to model them by a combination of a deterministic part (which accounts for the
various seasonalities) and stochastic part, modeled by a simple Ornstein-Uhlenbeck process.
We calibrated these models on the French dataset (cf. Pictures 3.4.1 and 3.4.2). Though very
simple, these models fit the data quite well.

Using these models, we then try to compute in practice the price of a forward contract on
electricity. As shown by equation (2.1.4), the crucial step is to be able to compute efficiently
the CES function (2.1.5) and its partial derivatives.

In the literature on power price modeling, for both reduced-form models as well as structural
models, being able to obtain closed-form formulas for the forward price of electricity is a much
sought-after ability when it comes to building and proposing a new model. For example, in the
context of structural model, people may prefer to model the stack curve (and its variants) by a
simple exponential function (cf. [30]). Though such a choice sacrifices some features, including
the possibility of extreme price spikes, it ensures that computations remain very simple.

In this chapter, motivated by empirical observations, we chose to use a power function to model
the price spikes (equation (2.1.3)). Unfortunately, this choice does not allow for explicit expres-
sions for the weights (2.1.5). However, being aware of their importance, we tried to make their
numerical computation as efficient as possible.

First of all, we established that the computation of this CES function boils down to the com-
putation of the following expressions:

G( ) /OO L 4 (2.1.6)

T,y V) = ——e 2z 1.
Y « (Y+2)

~ © (T —my —mae— 0av2u mq + mo+ oav2u 2

H (m1, mo, 01,09 V) 1= , v )e Y du
(m1,ma,01,09;v) g( 5 13

m2

02\/5

(2.1.7)

(cf. Propositions 3.4.3, 3.4.4 and 3.4.9). Consider first the function G (z,y;v). As in the case
v = 1 this integral corresponds to the special function called incomplete Goodwin-Staton integral
(cf. [45]), we called the new function (2.1.6) extended incomplete Goodwin-Staton integral. This
function can be interpreted probabilistically, up to some coefficient adjustments, as the density
of the sum of two independent Gaussian and Pareto random variables (cf. Proposition B.1).

We established the following series expansion:

n=0

2 n!

where T (o, ¥) corresponds to the incomplete Gamma function. Combined with recurrence re-
lations and asymptotic expansions, this series expansion allows to compute G (z,y;v) very effi-
ciently. Similarly, we established a series expansion for H (my, me, 01, 09; V), as well as adequate
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recurrence relations and asymptotic expansions, making its numerical estimation very efficient.
Finally, we explicited how to compute the partial derivatives of the CES function (2.1.5) using
the two functions G and H.

Finally, using these numerical tools, we were able to test numerically the pricing and partial
hedging of power derivatives on two examples, using the previously established general formulas.

First, we tested power futures with maturity 7' = 3months, with a test of a partial hedging
strategy based on fuel futures. We observed an interesting time behavior for this hedge, which
is displayed on Figure 3.4.4. Two very distinct temporal phases emerge:

o Far from maturity, for ¢t € [0,7 — A] with A ~ 2weeks, the partial hedge is almost perfect.
Indeed, in this phase, the prices of fuels are the dominant sources of risk. Now, these risks
correspond precisely to the hedgeable factors, that the hedging strategy is able to eliminate.
In this phase, the power futures behaves almost like a basket of fuel futures.

o Close to maturity, for ¢t € [T'— A, T], the partial hedge is completely inefficient. Indeed, in
this phase, the levels of demand and capacities become the dominant sources of risk. As they
correspond to the non-hedgeable factors, the mitigation provided by the hedging strategy
becomes negligible.

This important empirical observation is very general. It is neither due to the specific shape
of the payoff, nor to the hedging criterion, but to the power price model (2.1.2) and the fact
that the hedgeable factors are of a martingale type, while the non-hedgeable factors are of a
mean-reversion type (meaning that the laws of C7 and Dp barely depend on the current values
C; and Dy when T — ¢, and that the value of time threshold T'— A between the two phases
depends essentially on the mean-reverting parameters. More generally, this observation shows
the limits of the ability of fuel derivatives to mitigate the risks from power derivatives.

Then, we tested the pricing of a spread option, more precisely a call option on the spread
Pr — hiSrfp. This time, it is necessary to resort to numerical integration methods. Our results
are displayed on Figure 3.4.5. The practical interest of this example is to show that a structural
model can easily accomodate seasonality effects, as well as structural changes in the market, like
the expected setting up of new power plants.

2.2 A probabilistic numerical method for optimal multiple switching
problem in high dimension

The second part of this thesis deals with the numerical solution of stochastic control problems in
high dimension, more precisely of optimal switching problems. It led to the article [2], currently
under review for publication.

First, here is a definition of this specific class of problems. We consider the following elements:
« X = (Xt)tzo is a stochastic process taking values in R, starting from zy € R% at time ¢ = 0.

o I* = (If*),>( is a piecewise constant process taking values in RY | starting from iy € RY
at time ¢ = 0. More precisely, I* is supposed to take its values into a finite subset I, =
{i1,...,iq} of RY. This process I* is controlled over time by a strategy a.

e « is an impulse control defined by a sequence (7, t),, oy Of increasing stopping times 7, > 0
and [l;-valued F,, —measurable random variables. The controlled processed I can be deduced
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from this sequence as follows:
I =1, when t € [T, Tnt1] -

e Among the possible strategies a, we only consider those that belong to an admissible set
A. Broadly speaking, it means that we only consider the strategies such that 7,, — 400 a.s.
when n — oo (i.e. accumulation points are excluded).

e fiRxRIxRY 5 Rand k: R xRY x RY — R two measurable functions.

Then, the stochastic problem that we consider is the following:

v(0,70,0) = sup E
acA

/ ft, X, IY) dt — Z k(To,tn-1,tn)| - (2.2.1)

Tn >0

The goal is to maximize the gains brought by the function f over time. These gains depend
uncontrolled state variable X, as well as upon the controlled variable I¢. The goal is thus to
adjust adequately the strategy over time. However, every modification of the strategy generates
a cost given by the function k. This cost depends on the values of the control immediately
before and after the move.

The problem (2.2.1) is called optimal switching because th controlled process I takes its values
within a finite discrete set.

To be more precise, some usual regularity assumptions are required in order for the problem
(2.2.1) to be well defined (cf. Section 4.2.2).

First of all, here is why we were interested in the study of this specific problem. In the first
chapter, we built a structural model for the price of electricity, which is able to model properly
the time dependence between the prices of electricity and other energies. In particular, this
model allows to price spread options properly (between electricity and another energy), and
thus, by extension, to value, in a real option framework, a given power plant. Using this tool,
we wanted to know if it was possible to detect the best possible investments in power plants
over time. (Which type of plant to build? How much? And when?) We will see later that this
kind of investment problem can indeed be expressed as an optimal switching problem of the
form (2.2.1) in high dimension (d + d’ > 3). This is why we tried to build a numerical method
able to solve in practice the problem (2.2.1) in high dimension.

Now, let us detail how to proceed to solve the problem (2.2.1). If the strategy is allowed to
change only on a fixed time grid II = {t) =0 <t; <... <ty =T}, then, using the dynamic
programming principle, the discretized value function v'! satisfies the following backward induc-
tion:

Tty x,i) = Ijneaﬂz({E (tns 2, §) — k (tn,i,7)} , (2.2.2)
where
E(T,z,i): / stS,)dt]XT—x}
tnt1
E (tn,z,1) := El 5 f(s, Xs,0)dt | Xy, =x | +E {vﬂ(th,Xt"H,i) | X, = l‘} ,n=N-=1,...,0.

In practice, aside from time discretizations and the computation of final values, the major
difficulty to implement the scheme (2.2.2) consists in computing the conditional expectations

E [UH (tng1, Xtpir»t) | Xt = a:] Indeed, this expression cannot in general be computed explic-
itly, therefore one has to resort to approximations.
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In the literature on American options (which is a simpler problem than (2.2.1)), the same
problem arise, and several methodologies have been proposed to cope with it. Among them are
the linear regression approach ([83, 102]), the non-parametric regression approach ([101, 74]),
the quatization approach ([8]) and the Malliavin calculus approach ([6]).

In the context of stochastic control problems without switching cost (k = 0), the Malliavin
approach has been used in [88], and the regression approach in [12]. Finally, for the optimal
switching problem we are interested in here, the quantization has been used in [55], and the
linear regression approach in [32]. However, the methodology used in [32] does not make a direct
use of the dynamic programming principle as in equation (2.2.2). Instead, they resort to the
representation of optimal switching problems as successive layers of optimal stopping problems.

In this chapter, in light of the conclusions of the numerical comparison tests in [28] (in the
American options framework), we choose to use the local regression approach to solve our
optimal switching problem. This approach appears indeed to be currently to most capable of
handling high dimensional problems.

The first part of this chapter is devoted to the error analysis between the initial quantity (2.2.1)
that we want to estimate and the result of the approximating numerical scheme. Between them,
several approximations are required, listed below:

o [Finite time horizon] The first is concerned with the management of the time horizon. It is
indeed necessary to limit the time horizon of the strategies to a large but fixed date T" > 0.

o [Time discretization] Then, it is necessary to discretize the processes X and I*. To keep
things simple, one can choose a time grid IT = {tx =0 <t < ... <ty =T} with a fixed
time step h > 0.

o [Space localization] We will also need to project the process X (which can a priori take its
values anywhere in R?) in a large but bounded subset D.. The reason for this approximation
will be given later.

o [Approximation of conditional expectations] Finally, the last step consists in approximating
the conditional expectations arising when using the dynamic programming principle. We ap-
proximate them by empirical least-squares regression on a bundle of Monte Carlo trajectories.
We will come back later on the choice of regression basis.

For each approximation step, we computed a bound on the corresponding error.

The transition to a finite time horizon is analyzed in Proposition 4.3.1. The key element is the
inclusion of an exponential discounting in the definition of f and k (cf. the assumptions listed
in Section 4.2.2). The error behaves like e ~#7T.

The time discretization is analyzed in Propositions 4.3.2 and 4.3.3. Most of the analysis comes
from [55]. The error behaves like VA (or vh,/log (%) when the cost fuction k depends also
from the state variable X).

For the state localization, the bounded domain Dy is directly chosen such that the corresponding
error behaves like € (Proposition 4.3.4).

Finally, we come to the most complex step, namely the analysis of the regression error. So far,
the dynamic programming principle applied to the approximated value function can be simply
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expressed as follows:

o (T, z,1) = g(T,x,1)

ori{tn, ,7) = max {hf(tns2,5) = ktn,5,3) + Blon (tnsr, X115 [ Xen = 2|} o0 = N=1,..0.
(2.2.3)

As previously stated, we choose to approximate the conditional expectations arising in (2.2.3)
by regression. In order to be able to obtain an explicit error bound, we had to restrict our
analysis to a specific regression basis, namely a basis of piecewise constant functions on a set of
hypercubes (By);—; _ which partition the domain D, (cf. Assumption 6).

For clarity and simplicity, we proceeded in two successive step (even though performing them
simultaneously may improve the resulting bound, cf. [82] for example):

o [Theoretical regression] First, we replace, at each time step t,,, the conditional expectations by
a projection of the set of F;,-mesurable random variables generated by the chosen regression
basis. The error behaves like §/h, where ¢ is the maximum length of an edge of a hypercube.

o [Empirical regression]/ Then, we replace the previous projections by empirical projections
computed from a sample of M independent draws of the state variable X; . We established
that the L,—norm between the theoretical and empirical regressions behaves essentially like

Cp/ (\/M X Pkfi?), where C}, > 0 and P = minycyy ming, cp, P (X't € Bk) (cf. Proposition
4.3.6).

This estimate generalizes to the L,—norm a result established in [100] for the Lo—norm. The
proof makes use of the following useful result, established in Appendix 4.7.1, which combines
Jensen’s inequality with Marcinkiewicz-Zygmund’s inequality:

1 ¥ C
T2 X < —= [ Xilly,,, -
M rnzzl " Ly \/M LPV2
where X1,..., X is an i.i.d. sample of real-valued random variable with zero mean, with a

finite p V 2-order moment.

We now can explain the interest of the spatial localization step: it ensures that the variable
P in the denominator of the regression error remains strictly positive for every M, ensuring
the convergence of the algorithm. Of course, this step is only a theoretical requirement, as
in practice, for fixed M, a sample of M trajectories would already be included in a finite set,
therefore an additional space restriction would be redundant.

Finally, the main theoretical result of the chapter is the Theorem 4.3.1, which provides a compre-
hensive analysis, combining all the steps previously discussed, of the convergence error between
the initial control problem (2.2.1) and the result of our algorithm.

The second part of the chapter is devoted to the complexity of the algorithm, in terms of
computation as well as memory.

We establish that the general computational complexity of the algorithm behaves like
O (q2 - N - M), where ¢ is the number of elements in the switching set I;,, N is the number
of time steps on the grid II, and M is the number of Monte Carlo trajectories. Under some
conditions, specified in Section 4.4.1.1, this complexity can be improved to O (¢- N - M). This
improved complexity is very satisfactory, and is, in our view, probably the best attainable by
a Monte Carlo algorithm for optimal switching (as the mere access to every possible switch for
every trajectory at each time step already costs O (¢- N - M)).
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As the Euler scheme is a forward scheme, while dynamic programming is a backward scheme,
the first stage of the scheme is to simulate, starting from =z, trajectories of the process X up
to time T, so as to be able to initiate the dynamic programming. As, at each time ¢,, € II, the

_ 1<m<M
regression step requires to have access to the sample (XZZ) =, the simplest implementation

consists in storing the whole samples (X’fr’f) B beforehand. This requires a memory space

1
1<i<N
in O(N-M).

Such a memory space remains manageable when the time horizon is close (small N) or when
the dimension of the problem is low (small M), but it can become a major limitation in case
of both a distant time horizon and high dimension (two features of the numerical applications
we are interested in). To overcome this limitation, we generalized a memory reduction method,
introduced in [36] in the case of a geometric Brownian motion, to any stochastic processed
discretized using the Euler scheme. This technique allows, at the price of doubling the number
of operations, to decrease the required memory space to O (N + M), a considerable improvement
that solves the memory issue.

The idea, detailed, analyzed and illustrated in Section 4.4.2, is the following. During the intial

sumulation of the underlying process X, at each time step t, € II, instead of storing the whole
— 1<m<M
sample (X[:) o

immediately before the simulation of the current sample. After this first passage, the memory
contains a sample of the final X7 (size M) as well as the seeds of the random generator (size

N). Then, during the backward induction, at each time step ¢, € II, it is possible, from the
1<m<M _ ) _ \1<m<M
and the seed from time ¢,, to rebuild the sample (X{Z , using

, it is enough to store only the current state of the random generator

sample (X' He '

the inverse of the Euler scheme combined with the resimulation, using the stored seed, of the
_ )lngM ¢ ( _ )1§m§M
o .

sample that was used previously to go from (Xzz X

Finally, the last part of the chapter is devoted to a numerical application of our scheme on an
investment problem in power plants.

Using the power price model from the previous chapter, it is possible to express the power plant
investment problem as an optimal switching problem (equation (4.5.9)). This is however a heavy
problem, as it combines a very distant time horizon (several decades) with a high-dimensional
state variable (demand, capacities, fuels,...). Nevertheless, as shown by the complexity analysis,
our algorithm is precisely designed to cope, to some extent, with such problems.

We successfully implemented our algorithm on a numerical example with two power plant tech-
nologies. Figure 4.5.1 displays the estimated distribution of new power plants at time 7', and
Figures 4.5.2 et 4.5.3 display the impact of these new power plants on the time evolution of the
price of electricity. We observe the expected impact of the new plants (lower and less volatile
prices) along with the decreased attractivity, compared with base power plants, of peak power
plants when energy prices are high.

Finally, here are a few closing remarks:

e In order to obtain an empirical assessment of the distance to convergence of our numerical
results, we adapted a technique of empirical confidence intervals borrowed from [28] (cf.
Appendix 4.7.4).

e To ensure sensible fuel price trajectories on very long time horizons, we added cointegration
to the geometric Brownian motions modelling from the previous chapter:

dS; = =Sdt + diag (St) XdWy , So >0,
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where Z is the cointegration matrix and ¥ is the covariance matrix. In Appendix 4.7.2 is
established a necessary and sufficient condition to ensure that S; remains non-negative over
time (the non-diagonal elements of the cointegration matrix must be non-negative).

e Finally, in order to provide an intuitive visual display of the time evolution of a possibly
multimodal stochastic process (like the price of electricity generated with our model), we
generalized the construction of interquantile sets to (possibly disconnected) Borel sets ad-
justed to the level sets of the estimated distribution (cf. Appendix 4.7.5). This general
construction could prove to be useful in a wide variety of contexts.

2.3 A numerical algorithm for fully nonlinear HJB equations: an
approach by control randomization

The third and last part of the thesis deals once again with the numerical solution of stochastic
control problems, but this time we consider problems such that the dynamics of the underlying
state process can be modified by the control. The content of this part sums up the content of
the two articles [70] et [71].

Consider first the following introductory example:

T
v(t,z) = supE l/ (XS ag)dt+g(XP) | X == (2.3.1)
acA t
dXg = b(X$, as)ds+o(Xg)dWs, (2.3.2)

where the diffusion X takes values in R?, f and g are two measurable functions, and the
processes & = ()<, are strategies chosen among a set A of admissible strategies taking
values in a subset A C RY.

On this example (2.3.1), the dynamics of the underlying process X® can be modified by the
strategy a, but only through the drift . In this very specific case, the problem can be solved
using a Backward Stochastic Differential Equation (BSDE).

Indeed, the stochastic control problem (2.3.1) is, first of all, related to the following Hamilton-
Jacobi-Bellman (HJB) equation:

0 1

A sup {b (z,a).Dyv + —tr (O’O‘T (x) ng) +f (x,a)} =0, (t,r) € [0,T) x R?

8'[: acEA 2

v(T,z)=g(z) ,zeR?, (2.3.3)
A possibility is to try direct numerical methods on this PDE, but, as in the previous chapter,
we look for a probabilistic algorithm, in order to be able to handle high-dimensional problems.
If o is of full rank, then equation (2.3.3) can be transformed into the following semilinear PDE:

v

1
T - T 2 _ d
T +F (:g,o’ Dzv) + 2tr (O‘O’ (x) Dwv) =0, (t,x) € [0,T) xR

v(T,z)=g(z) ,zeR?, (2.3.4)

where F' is defined by F (z,2) := sup,c4 {0 (z,a) .z + f (x,a)}, where 6 is such that o (x) 0 (z, a)
=b(x,a). This new PDE (2.3.4) is itself associated with the following BSDE:

dX? = o (X0)dw,

y;:g(X%)+/tTF(XQ,ZS)ds—/tTZSdWS.
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As several probabilistic numerical schemes are available to solve a standard BSDE ([27, 82,
58)), it is therefore possible to solve the stochastic control problem (2.3.1) using a probabilistic
numerical scheme.

Now, consider the following, more difficult problem:

v(t,z) = supE / F(XE as dt+g(XT)|Xta—x]
acA

dX = b(XJ a5)ds+ o (XS, as)dWs, (2.3.5)

which is associated with the following fully-nonlinear HJB equation:

1
dv + sup {b (z,a).Dyv + —tr (oaT (z,a) ng) + f (z, a)} =0, (t,z) €[0,T) x R?
at acA 2

v(T,z)=g(z) ,zeRe, (2.3.6)

Now, the strategy o can impact both the drift b and the volatility o of the process X“. Such
a problem is much more difficult than the previous example (2.3.1). In particular, it cannot be
reduced to a simple standard BSDE.

Therefore, the aim of this chapter is to build a probabilistic algorithm able to solve stochastic
control problems of the type (2.3.5). The idea is to extend the methodology used for the simpler
problem (2.3.1), so as to be able to handle problems of the type (2.3.5).

The first step is to identify the adequate probabilistic representation for the problem (2.3.5).
The object we need is a BSDE with nonpositive jumps, which is defined and studied in [72]. Let
us recall this construction, and its link with the problem (2.3.6).

Let I be a pure jump process, independent of W, taking values in A. Its dynamics is defined as
follows:

dls = /A (a — I~ )pa(ds,da), (2.3.7)

where 4 (dt, da) is a Poisson random measure on Ry x A with finite intensity measure A4 (da) dt.

Then, consider the forward Markov regime-switching diffusion process (X,I) such that the
dynamics of I is given by (2.3.7) and the dynamics of X by:

dXs = b(X,, I,) ds + o (X, I,) dW, . (2.3.8)

In other words, we replace the control « in the dynamics (2.3.5) of X® by a new stochastic
process I independent of everything else. The expectation E [ftT f (X, I)dt + g (X7) | Xy = x}
is then associated with the solution of the following BSDE with jumps:

Yi=9(Xr)+ / f(Xs, I ds—/ ZsdWs — / / a) fia (ds,da) , (2.3.9)
t

where fi4 is the compensated measure of 4.

Finally, in order to retrieve the solution of the HJB equation (2.3.6), it suffices to constrain the
term Uy (a) in equation (2.3.9) as follows:

Ui(a) <0, dP®dt ® A(da) a.s
Under the following standing assumptions:

o bet o Lipschitz (H1),
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o f et g Lipschitz (H2),

it is proved in [72] that the minimal solution (Y, Z, U, K) of the constrained BSDE
T
Y, = g(Xp)+ f (Xs,1Is)ds —/ ZsdW (2.3.10)

+Kp — Ky — // a)fig(ds,da) , 0 <t <T, p.s.
Ui(a) < 0, dP®dt® X(da) p.s.sur Q x [0,T] x A

is related to the solution of the HJB equation (2.3.6). Indeed, it is shown that it is possible to
express the Y component of the minimal solution of (2.3.10) as a function of ¢ and X; only (and
not I;):

Y, = wo(t,Xy), tel0,T], (2.3.11)

and that this function v is the unique viscosity solution with linear growth of the HJB equation
(2.3.6). This result remains valid if f also depends on Y and Z (which allows to consider
problems more general than the stochastic control problem (2.3.5)). Moreover, we stress that
this result (as well as all the results from this chapter) does not require any uniform ellipticity
assumption on o.

A consequence of this important theorem is that in order to solve the fully nonlinear HJB
equation (2.3.6) (and therefore the stochastic control problem (2.3.5)), one can try to find a
solution to the constrained BSDE (2.3.10) instead. Therefore, the focus of this chapter will be
to propose, analyze and test a probabilistic numerical scheme for the constrained BSDE (2.3.10).

First of all, one needs to discretize this constrained BSDE. Let 7 := {0 =ty < ... <ty =T}
be a deterministic time grid between 0 and T', with mesh || = maxo<g<p—1 {tk+1 — tx}. Then,
drawing inspiration from the schemes for classical BSDEs, and taking adequately the constraint
on Uy (a) into account, it holds that the following discrete scheme approximates the constrained
BSDE (2.3.10) (in the general case when f depends also on y and z):

Yy =g(Xn)
A2 =E; Y AW,
YirraW/] (2.3.12)
Vi =E; [Yiq1 + f(Xi, L, Yigr, Zi) A
Y; = esssupgea Eig [Vi]

where (X, I;);_; _y corresponds to the Euler discretization of the process (X, It)<;<p: Ei [] :=
E[|F,],and E; o [.] :=E[.|X;, I;, I; = a] = E[.|X;, I; = a]. In order to understand this scheme,
notice that, by Markov property, the intermediary quantities ); and Z; can be expressed as a
function of X; and I;:

Vi, Zi) = (U: (Xi, i), 2 (X5, 1))
The steps involving ); and Z; are similar to those from classical BSDE schemes. Here, a new
operation is required in order to take the constraint on Uy (a) into account, and to retrieve
the true approximation (Y;, Z;) = (y; (X;), 2 (X;)), which does not depend on I;. From the
definition of Uy (a), this constraint can be expressed as follows:

i (Xisa) —yi (Xi) = Ui (a) <0 p.s. Va € A,
which implies that the Y; component of the minimal solution has to satisfy:

Y = i (Xi) = esssup @, (X, a) =esssupE; , [Vi] .
a€A acA
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If necessary, it is possible to retrieve the component Z; from the scheme indeed, defining a; =
argess sup,c 4 Eiq [Vi], then Z; = z; (X;) = 2; (X;, a)).

A first part of this chapter is devoted to the theoretical analysis of this discretization. We
proceed in two steps. We first discretize the constraint without changing the process X, and
then we replace X by its Euler scheme.

To do so, we start by defining the intermediary sequence of BSDEs (Y™, Y™, Z™ U™) (equations
(5.2.13)-(5.2.14)-(5.2.15)), which corresponds to the initial constrained BSDE (2.3.10) with dis-
cretization of the constraint on U. We also define the value functions v™ and 9™ associated with
Y7 and Y™ (equations (5.2.16)-(5.2.17)-(5.2.18)).

As this construction of a sequence of constrained BSDEs is not standard, we start by proving
that all these elements are well defined (Propositions 5.2.1-5.2.2-5.2.3). Then, we prove that the
function v™ associated with the discrete scheme does converge to the function v from the initial
constrained BSDE when || — 0 (Corollary 5.2.2). Finally, we establish a convergence rate of
v™ towards v. To do so, we need the following additional assumptions:

o b et o uniformly bounded (H1’),
o f does not depend on z, f(.,.,0) and g uniformly bounded, and y — f (x, a,y) convex (H2’).

With these additional assumptions, adapting the shaking coefficients method from Krylov ([78],
cf. also [49]) to the jump-diffusion framework, we manage to establish the following convergence
rate (Theorem 5.2.1) :

0<v(t,z) — v (t,z) < C x|
for every (t,x) € [0,7] x R? and every grid m. Moreover, in the case when f = f (,a) does not
depend on y, the stochastic control representation combined with the results from [77] allows
to improve this rate to C |7r\% In other words, the solution of the discretely constrained BSDE
converges to the solution of the continuously constrained BSDE at a rate O (\77|T10) (or O (\77|%)
when f does not depend on y), cf. Corollary 5.2.3.

Then, the second part of the discretization consists in replacing the diffusion X by its Euler
scheme, ending up with the discrete scheme (2.3.12). Adapting the properties of the Euler scheme
(Lemma 5.2.1) and regularity results on BSDEs (Proposition 5.2.3), we obtain for this second

1
step an error estimate in O ( ]WP) (Theorem 5.2.2). Consequently, combining the results from
1 1
both steps, we obtain, for a full time-discretization, a convergence rate in O (Wﬁ) (O (‘W’g)
1
when f does not depend on y), or, more precisely, a negative error in O (|7T|5> and a positive

error in O (|7r\%> (O (|7r|é) when f does not depend on y), cf. Corollary 5.2.4.

This convergence rate improves the existing results (cf. Remark 5.2.3). For example, when f
does not depend on y, our rates |7r\% and |7r|% improve respectively the bounds |7T|i an |7T|T10
obtained via second-order BSDEs (cf. [49]). Then, and it is a major feature of our approach,
our rates are obtained without any uniform ellipticity condition on ¢. Finally, a very useful
practical feature is that our scheme provides an estimate of the optimal control (cf. Section
5.2.4.2). All these observations indicate that constrained BSDEs seem to be a suitable tool for
the study of fully-nonlinear HJB equations.

The second part of this chapter is devoted to the approximation of the conditional expectations
from the discrete scheme (2.3.12). Indeed, as in the previous chapter, we are dealing with a
backward numerical scheme that requires the computation of conditional expectations, for which
no explicit expressions are available in general. One again, we choose to approximate them by
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least-squares regression. This choice has several advantages. First the Monte Carlo simulation
of the forward process (X, I') allows to get rid, to some extent, of dimensional constraints. Then,
this choice reduces the computation of supremum from the discrete scheme (2.3.12) to a simple
maximization of a given parametric function. Finally, it provides a parametric estimate of the
optimal control.

In the previous chapter, in the context of optimal switching problems, we only managed to assess
the regression error for a very specific basis of piecewise constant functions. In this chapter, we
wanted to establish a general error bound without specific assumption on the chosen regression
basis (in the spirit of [82] and [58] in the context of standard BSDEs). Unfortunately, in the
context of constrained BSDEs, the additional supremum step makes the analysis substantially
more difficult, and we could only manage to obtain partial results for this error analysis.

The preliminary space localization step does not generate any major difficulty (Lemma 5.3.1
and Proposition 5.3.1). Consider now the actual regression step. Let {pb :R? x R? — ]R},
b=1,...,B, be a basis of regression functions. An Fp-measurable random variable U being
given, the idea is to replace the conditional expectation E; [U] by the projection P; (U) defined
as follows:

~

Ai(U) = arg inf, (p (X3, 1) - U)] (2.3.13)
P (U) ==X\ (U) .p(Xi, L) .

This constitutes a theoretical regression (the final empirical regression step, in order to get
an implementable scheme, consists in replacing the expectation E by an empirical expectation
ﬁ S"M_ | in the above least-squares minimization). Performing this substitution within the
discrete scheme (2.3.12), one obtains the following new scheme:

A

Yy =g(Xn)
A2 =P (ffz‘HAWiT)
Vi =P (ffiﬂ + fi (XiaIi7yi+laZAi) Ai) =\ pi (X, 1)

V; = ess sup E; o [%} = ess sup S\Z/pz (X;,a) , (2.3.14)
acA; acA;

where A; is the set of o (X;)-measurable random variables taking values in A. (For readability
purposes, we omit here the space localization step). Even at this theoretical stage, the analysis
between the discrete scheme (2.3.12) and its approximation (2.3.14) raises the following difficulty:
because of the final maximization step, the random variable }Afi, contrary to the intermediary
variable ;, does not constitute in itself the projection of a given random variable. Consequently,
it is not possible to use the usual tools (cf. Lemma 5.3.3) that would allow to get rid of the
operator P; when performing the analysis of the difference between (2.3.12) and (2.3.14).

It is interesting to point out that, should the regression be modified as follows:

~

N (U) := arg inf E|[(\p(Xia) ~ U)’]
Pia (U) =N (U) .p(Xi,a) , (2.3.15)

where U, := Ula, a € A;, then it would become possible to analyze the regression error
(Proposition 5.3.2). The difference here lies in the fact that regression and maximization are
now performed simultaneously, and not iteratively as with the scheme (2.3.14). However, unlike
the empirical version of the scheme (2.3.14), an empirical scheme based on the regression (2.3.15)
would be tricky to implement. Therefore, we choose to stick after all with a scheme based on
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the regression (2.3.13), the comprehensive theoretical analysis of which being left for further
research.

Finally, the last part of this chapter is devoted to numerical applications of the empirical version
of the scheme (2.3.14).

First, we implement our scheme on a linear quadratic stochastic control problem (equations
(5.4.1) and (5.4.2)). The explicit solution to these problems being known (cf. [107]), this
example allows to check the accuracy of the scheme. As shown by our numerical results (cf.
Figure 5.4.1b), our scheme manage the approximate the optimal control with great accuracy.

After this preliminary check, we devoted our numerical tests to the problem of superreplication
of options under uncertain volatility (and/or correlation) models. We start with an example
with two assets S1 et Sy whose dynamics are given by:

dSZ (t) == O'iSi (t) dWl (t) s 1= 1,2 (2316)
(dW (t),dWs (1)) = pdt, (2.3.17)

where the process p is deemed uncertain; the only assumption is that it can only take values
within a given interval [pmin, Pmax] € [—1,1]. The superreplication prices of the option with
final payoff

®= (S (T) = So(T) — K1)" — (S1(T) — S2(T) — K) ", (2.3.18)

(non trivial because neither convex nor concave in Sq (1) — Sz (1)) estimated by our algorithm
are displayed on Figure 5.4.3. We retrieve the fact that uncertain correlation models are more
suited for risk analysis and model risk purposes than the mere variation of constant correlation.

After this example (2.3.18) which illustrates the practical interest of models with uncertain
parameters, we tested our algorithm on several other payoffs, in order to assess the quality of
the algorithm itself. We implemented our scheme on the numerical examples provided in [62],
as their paper provides superreplication price estimates obtained by PDE methods and by an
alternative Monte Carlo algorithm based on second-order BSDE (cf. [49]).

On all these examples, and as in the previous chapter, we computed two complementary prices
that form an asymptotic empirical confidence interval for the price (equations (5.4.8) and
(5.4.9)). The extent of this interval provides an empirical assessment of the suitability of the
chosen regression basis.

Figures 5.4.4 to 5.4.9 illustrate our results. We vary the number of Monte Carlo trajectories, as
well as the size of the time step. Our results behave as expected: both prices surround the true
price (as estimated by PDE methods), and those prices are all the more so accurate as the time
step is small and the number of Monte Carlo trajectories is high.

Even though our numerical results and those from [62] are relatively similar, the strong advantage
of our scheme is that our forward process (X, I) is easy to simulate, a fact which, we hope, should
allow to easily extend it to more general problems like HJB-Isaacs equations and mean-field
games.
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3 A structural risk-neutral model for pricing
and hedging power derivatives

In this chapter, we develop a structural risk-neutral model for energy market modifying along
several directions the approach introduced in [3]. In particular a scarcity function is introduced
to allow important deviations of the spot price from the marginal fuel price, producing price
spikes. We focus on pricing and hedging electricity derivatives. The hedging instruments are
forward contract on fuels and electricity. The presence of production capacities and electricity
demand makes such a market incomplete. We follow a local risk minimization approach to price
and hedge energy derivatives. Despite the richness of information included in the spot model,
we obtain closed-form formulae for futures prices and semi-explicit formulae for spread options
and European options on electricity forward contracts. An analysis of the electricity price risk
premium is provided showing the contribution of demand and capacity to the futures prices.
We show that when far from delivery, electricity futures behave like a basket of futures on fuels.

3.1 Introduction

This chapter is a contribution to the development of electricity price models that can provide
explicit or semi-explicit formulae for European derivatives on electricity markets. Since the
beginning of the liberalization process of electricity markets in the 90s in Europe and in the
USA, there has been an important research effort devoted to electricity price modeling for pricing
derivatives. Due to the non-storable nature of electricity, it was — and still is — a challenge
to reach to a completely satisfying methodology that would suit the needs of trading desks: a
realistic and robust model, computational tractability of prices and Greeks, consistency with
market data. Two main standard approaches have usually been used to tackle this problem.
The first one consists in directly modeling the forward curve dynamics and to deduce the spot
price as a futures with immediate delivery. Belonging to this approach are, e.g., [42] and [18].
This approach is pragmatic in the sense that it models the prices of the available hedging
instruments. However, it makes it difficult to capture the right dependencies between fuels
and electricity prices (without cointegration). The second approach starts from a spot price
model to deduce futures price as the expectation of the spot under a risk-neutral probability.
The main benefit of this approach is that it provides a consistent framework for all possible
derivatives. This approach has been successfully applied to commodities in [96] seminal work.
Its main drawback is that it generally leads to complex computations for the prices of electricity
derivatives. Within this approach, most of the authors use an exogenous dynamics for the
electricity spot price [47, 16, 29, 75, 34, 17, 19, 60] and only a few try to deduce futures and
option prices inside an equilibrium model or a model including a price formation mechanism

35, 93, 84, 3].

The main contribution of this work is to provide analytical formulae for electricity futures and
semi-explicit expressions for European options in an electricity spot price model that includes
demand and capacities as well as fuel dynamics. Being able to model the dependencies between
fuels and electricity is of great importance for spread options evaluation. To our knowledge, this
is the first attempt performed in that direction.
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Concerning the use of an equilibrium model or a price mechanism for pricing electricity deriva-
tives, the closest works to ours can be found in [93, 35, 84]. It has been recognized that the
mechanism leading to the electricity spot price was too complex to allow for a complete model-
ing that would fit the constraints of derivatives pricing. The simplest one is maybe [11]’s model
where the price is determined by the matching of a simple parametric offer curve and a random
demand. Many authors have then derived reduced equilibrium models for electricity prices in
this spirit [68, 43]. In [93]’s work, electricity dependency on fuel prices is taken into account by
modeling directly the dynamics of the marginal fuel. The authors manage to provide the partial
differential equation and its boundary conditions for the price of a European derivative. The
approach followed by [35] and [84] is quite similar. Therein, the price is modeled as an expo-
nential of a linear combination of demand and capacity. In general, it is difficult to introduce in
the same framework the dependency of the electricity spot price on fuels and at the same time
its dependency on demand and capacity. Dependencies among fuels are generally captured by
simple correlations between Ornstein-Uhlenbeck processes as in [54]’s paper or by cointegration
method as in [14]’s work.

Here, we start from the marginal price model developed in [3] and enrich it substantially to take
into account the effect of the margin capacity uncertainty on futures prices. In order to include
the biggest price spikes in our model, we introduce a multiplying factor allowing the electricity
spot price to deviate from the marginal fuel price when demand gets closer to the capacity
limit. Since electricity is a non-storable commodity, this factor accounts directly for the scarcity
of production capacity. Although such an additional feature complexifies the model, we can
still provide closed form formulae for futures prices. Under this model, any electricity futures
contract behaves almost as a portfolio of futures contracts on fuels as long as the product is far
from delivery. In contrast, near delivery, electricity futures prices are determined by the scarcity
rent, ie. demand and capacity uncertainties.

The term scarcity is in line with the concept introduced by [56] since the multiplying factor is
the inverse of the excess capacity which can be considered the analog of the inventory level for
storable commodities. It is also consistent with Working’s seminal observations on the relation
between inventory and time spread price for agricultural commodities [106]. Moreover, the
idea that electricity spot price spikes are related to a lack of capacity is some sort of common
knowledge in the power system literature (see for instance [22]).

This chapter is structured as follows. We first present the spot price model in Section 3.2,
where we perform the estimation of the scaling factor allowing the spot price to deviate from the
marginal fuel price and comment on the production capacity scarcity effect. Then, in Section 3.3,
we apply the spot model for pricing and hedging derivatives. We first choose realistic as well
as tractable models for the dynamics of demand, capacities and fuel prices (Section 3.3.1).
Then, since we work in an incomplete market setting, we discuss in Section 3.3.2 our choice for
[52]’s Local Risk Minimization hedge criterion. Using such a criterion, a closed-form expression
for futures prices is provided (Section 3.3.3) and semi-explicit formulae are given for spread
options and for European options on futures (Section 3.3.4). Finally, an important part of this
work is devoted to numerical simulations and backtesting presented in Section 3.4. Despite the
apparent complexity of the model, the numerical computations essentially involve integration of
functionals against Gaussian kernels. This part requires simple but long and tedious calculations.
Thus, for the sake of readability, they have been relegated in Section 3.6.2 of the Appendix.

42



3.2. ELECTRICITY SPOT MARKET MODEL

3.2 Electricity spot market model

3.2.1 Spot model

We denote by P; the electricity spot price at time t. At any time ¢, the electricity producer can
choose, among n possible fuels, the most convenient to produce electricity at that particular
moment, called the marginal fuel. We will define the electricity spot price as a proportion of
the spot price of the marginal fuel, corrected by a scarcity factor, ie. a factor depending on the
current difference between available capacity and demand.

Denote as (Stl, ..., Sf) the fuel prices at time ¢, and (h1,...,hy) the corresponding heat rates,
assumed to be constant. That means that h;S{ corresponds to the t-price of the quantity of
i-th fuel necessary to produce IMWh of electricity. Unlike the model proposed in [3], we make
the further assumption that the production costs are ordered among fuels, ie. that hyS} <
-+ < hy,S{. This ranking is supposed fixed and known. This assumption is realistic, at least
when considering not too long maturities. Now, how does the electricity producer choose the
most convenient fuel to use? For each i = 1,...,n, let C} > 0 denotes the capacity of the i-th

technology for electricity production at time ¢. Denote as 6i the total capacity at time ¢ of the
first 4 fuels, ie. C; := > j<; C. For the maximal capacity C} we will use, alternatively, the
notation C{"**. We define the following production intervals:

—i—1 —i —An—1

I} = (~00,C}), I1:=[C,,C)),2<i<n—1, I}=|C; " +00), (3.2.1)

with the conventions that when n = 1 there is only one interval I} := R, and when n = 2 there
are only two intervals, the extreme ones, i.e. I} := (—o00,C}) and I? := [C}, +00). Thus, if the
market demand at time ¢ for electricity D; belongs to the interval I}, the last (marginal) unit of
electricity is produced using the i-th fuel, when the corresponding plant is available. Otherwise,
it is produced with the next fuel, more expensive, in the ranking. Having said that, we model
the electricity spot price P; by the following relation:

Py :g(CZnax_Dt)zhisgl{Dte]ti}a t=>0 (3.2.2)
i=1

where recall that C}"** = 6? =31, C! is the maximal capacity of the whole system at time t,

and ¢ is a bounded real-valued function given by:

g (x) = min (M7 7 ) 1{x>0} + Ml{xgo} (3.2.3)

=
where v, M and v are positive and constant parameters.

The term C}"** — D is the margin capacity of the system. It is an indicator of the tension
in the system due to scarcity, since electricity is non-storable, and the term g (C{"** — Dy)
models the effect of this tension on prices. This is why we will call g the scarcity function of
electricity prices. The margin capacity is better at capturing electricity price spikes than only
demand as in [11] and [68]. This remark has already been pointed out by several authors as,
e.g., [35, 43] and [84]. [43] provide the most complex framework, which is based on a model
for the bidding curves. Unfortunately their model does not allow for analytical expressions of
futures prices as soon as there are more than two fuels. On the contrary, in [35] and [84]’s
works, drastic simplifications of the electricity market rules allow them to provide analytical
expressions for futures prices, and, in [84]’s model, for European option prices as well. In their
models, the electricity spot price is expressed as an exponential of the margin capacity, which
simplifies considerably the computation of derivative prices and of the risk premium. However,
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the exponential fonction does not enable price spikes as sharp as those observed on electricity
spot data. On the contrary, as will be shown below, our choice (3.2.3) of a power law of margin
capacity can accurately reproduce such a behaviour, even for smooth and rather simple dynamics
of demand and capacity processes.

3.2.2 Estimation and backtesting

Before making further use of our model (3.2.2), we aim in this section at assessing its accuracy
on historical data. In particular, a methodology to estimate the scarcity function (3.2.3) will be
proposed.

3.2.2.1 Data set

We choose to test the model on the French deregulated power market. We retrieve the required
data from the following sources:

e PowerNext for the hourly power spot price P;.

e RTE, the French transmission system operator, for the hourly power demand D; and capacity
C? for each fuel.

o TFS (Tradition Financial Services) for the daily coal price (API#2).
o IPE (International Petroleum Exchange) for the daily oil price (Brent).

« ECB (the European Central Bank) for the daily USD/EUR exchange rate, to convert the
coal and oil prices, which are denominated in US dollars, into euros.

o ECX (European Climate Exchange) for the daily COsz price.
o EDF, French power utility, for heat rates h; and COg emission rates.

We focus our analysis on one particular hour of the day, namely the 19", which usually bears
the highest demand level of a day. As a consequence, during these peak hours, the electricity
price is almost always fixed by one of the two most expensive technologies that are coal and oil.
Consequently such a choice simplifies the model since it makes possible to work with only n = 2
technologies.

Thus, S} corresponds to the daily coal price, converted to EUR/MWh using the USD/EUR
exchange rate and the coal heat rate h;. We include the price of CO9 emissions in S}, using the
daily COs price and the emission rate of French coal plants. Similarly, S? corresponds to the
daily overall oil price.

For the simplification to n = 2 technologies to hold, it suffices to define D, as the residual
demand corresponding to coal and oil. This quantity can be extracted from RTE demand,
production and capacity data. More details are given in Appendix 3.6.1.

Our dataset covers the period going from November 13*", 2006 to April 30", 2010. The begin-
ning of the period was fixed by the availability of the production capacity data. On this period,
during the 19*" hours, the average electricity spot price was 74.5€/MWh (see Figure 3.2.2a),
the average coal price (including heat rate and COg) was 47.4€/MWh, and the average oil price
(including heat rate and CO2) was 102.0€/MWh.
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3.2.2.2 Parameters estimation

So far, we retrieved all the necessary data to test equation (3.2.2). The last remaining step is
to estimate the parameters M, v and v that characterize the scarcity function (3.2.3) recalled
below:

First, we fix M so as to roughly match the high cap on electricity spot price, defined by the
market as 3000€/MWh!. Our estimate is M = 30.

Now, we turn our attention to the parameters v and v. Remark first that ~, unlike M and v,
depends on the unit in which D; and C}, 1 <i < n, are denominated. This is a consequence of
the following result:

Proposition 3.2.1. (Change of Unit) Let N > 0 be a constant. The following holds:

B Cy Dy Y
Pt (C’taDtaStanf)l? V) - Pt <N7 W’St’M’ ]VV’V>

where we have explicited the parameters involved in the definition of P;.

Proof. First, one can easily check that g (x; M,~v,v) =g (%, M, %, v). The result follows then

from equation (3.2.2) and the fact that {% € %} ={D;el}} as,1<i<n. O

This useful change of unit formula indicates that we are free to choose the desired unit for Dy
and C¢. In our case, we choose to convert these data, which are provided in MWh, into GWh
(N = 1000), and to estimate the corresponding “GWh-v”. This renormalisation will prove to
be numerically convenient in Section 3.4.2.
Py

L hisgl{Dtelz}
as a function of x; := C}"* — D, for the period we consider, i.e. November 13" 2006 to April
30th, 2010. The quantity v; corresponds to the price of electricity corrected from the effect of
the marginal fuel price, while z; corresponds to the remaining available production capacity
(margin capacity). Recalling equation (3.2.2), the relation between x; and y; is to be captured
by g. Observe that the highest prices (high ;) occur mostly when there is not much available
capacity left (low z;), which simply translates the law of supply and demand. It suggests a
decreasing causality relationship between x; and 1.

Going back to the estimation of v and v, Figure 3.2.1a depicts the quantity y; := 5

First, note that as the high cap price is not reached in our time period, the parameter M will not
intervene in the following. Now, remark that such classical tools as least squares or maximum
likelihood are not adapted to the estimation of g. Indeed, both x; and y; are random, and the
slope of the relation between z; and y; becomes extremely steep as x; approaches zero. These
tools, that measure the error in one dimension only (y;) are bound to miss much of the slope
part. To overcome this difficulty, our idea is intuitively the following: if a strictly decreasing
deterministic relation between x; and y; was to be inforced, then a similar relation would link
their quantiles, from which the estimation would be easier. This is the content of the following
proposition:

Proposition 3.2.2. Let X and Y be two real random variables on the probability space (R, B (R),P),
where B (R) denotes the corresponding Borel o-field. Assume that both X andY have continuous

'see http://www.epexspot.com/en/product-info/auction/france
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and strictly increasing cumulative distribution functions. Thus, their quantile functions q¢x and
qy exist, are unique, and defined for all p € [0, 1] by:

P(X<qx(p)=p , P(Y <gqgy(p)=p

Suppose that there exists a strictly decreasing function h such that the relation Y = h (X)) holds
P-as. Then for all p € [0,1]:
qv (1 =p) = h(gx (p))

Proof. For every p € [0,1]:

l-p=1-P(X <gx(p)=1-P(h(X)>h(gx (p) =P <h(gx (p))
I1-p=P(Y <qv(1-p))

Thus P(Y < gy (1 —p)) = P(Y <h(gx (p))), and the unicity of the quantile function yields
qv (1 —=p) = h(gx (p))- N

Consequently, if one assumes a strictly decreasing deterministic relation h between x; and y,
then h can be estimated from the quantiles of z; and y;. This will prove to be very simple and
much more robust and accurate than working directly with the realizations of x; and ;.

g(.) estimation data g(.) estimation

o

T T T T T T T T T T T T T
0 2 4 6 8 10 -10 05 0.0 05 10 15 20 25

Xt log x

(a) Data (b) Regression of log (g) versus log (T)

Figure 3.2.1: g estimation

Denote as m the sample size, and (z1,%1),- .., (Tm,Ym) the realizations of (x¢,y). Define the
sorted vectors T := (Ty,...,Tm,) and Y = (yl,...,gm) in such a way that 71 < ... < 7,
(increasing order) and y, > ... > y  (decreasing order). The last step is to choose some

p € [0,1] and to estimate the quantiles gy (p) and ¢x (1 — p). A simple and natural choice is to
select p; := .-, 1 < i < m, and to choose as quantile estimator for qx (p;) and gy (1 — p;) the
inverse of the empirical cumulative distribution function, which yield in this case the estimates
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3.2. ELECTRICITY SPOT MARKET MODEL

Timp,] = Ti and y tmpe] = Yi ([z] stands for the upper integer part of any real number z). Figure
3.2.1b represents the quantity log (g) as a function of log (7).

A strikingly accurate linear relation appears. In particular it retranscribes very well the highest
peak prices, which advocates a power-law description of electricity price spikes. The very lowest
prices seem not to fit the linear relation. However a specific analysis of these few points reveals
that they correspond to the few holidays (hence low demand) of the period considered for
which the marginal fuel was gaz during the 19" hour of the day. As we neglected on purpose
this possibilily to work with only two fuels (coal and oil), the consequence is that the residual
capacity is undervalued at these specific dates, breaking the smooth relation. Otherwise, the
linear relation appears very plausible.

Denote as —v and log (y) the coefficients of the regression, ie. log (g) = —vlog(Z) + log (7).

Taking the exponential yields y = 2. Thus our estimation of the relation between the quantiles

4y, (1 — p) and g, (p) is given by h (z) = 5. Numerically, we found the estimates v = 1.022 and
v = 6.241 with the corresponding 95% confidence intervals of [1.017,1.028] and [6.186, 6.296]
respectively, and an adjusted R-squared equal to 0.9935 (see Figure 3.2.1b).

P
- :
T hiSiL

Now, using Proposition 3.2.2, we can trace back to the relation between y; = 5= -
Diel?
and xy = C{"* — D;. Indeed, the consequence of Proposition 3.2.2 combined with the enfpirictgl
power law relation between T and y is the following: if one assumes a strictly decreasing deter-
ministic relation between x; and y, , then it ought be a power law relation, defined by & (x) = 5.
This, combined with the modeling of the market cap price, leads to the relation (3.2.3) and to
our model (3.2.2). Therefore, our estimation of the parameters v and ~ provides also empirical

evidence for the relevance of our spot model.

3.2.2.3 Backtest

Finally, with our data and our estimated parameters, we can backtest our model, i.e. we
can compute the quantity g (C/"*® — Dy) >"" , h;Si1 (Dieri} for each date ¢ of our dataset, and
comparing it to the realized electricity spot prices for the same dates. Figure 3.2.2a illustrates
this comparison.

It can be seen that the base prices are described rather well by the model (thanks to the marginal
price S h;iSi1 (Die p}) and that the model is able to produce price spikes of relatively good
t

size (thanks to the multiplication to the scarcity function g and its power law shape (3.2.3)) and

timing (thanks to the choice of the margin capacity C7"** — D, as a state variable). It is these

adequate prisms C/"** — D, and S>7 , h;Si1 {Dicri} that enable g to be stationary over time,
t

making the model robust.

Figure 3.2.2b compares the model (3.2.2) to the simpler model > 7, hiszl{Dteli} (i.e. when
t

g = 1), with the price scale limited to 600€/MWh for readability. As one can see, both models
behave similarly as long as C{"** — Dy is large, but the simpler model is unable to produce large
price spikes in periods of tension (i.e. when C{"** — Dy is low). This lack is corrected by the
present model (3.2.2).

Remark 3.2.1. The estimation problem studied in this Section (see Figure 3.2.1a) is related
to the problem of estimating the electricity supply curve. The usual approach is to propose a
parametric modeling of this curve (or of a variant of this curve) and to estimate the corresponding
parameters via such methods as maximum likelihood ([11, 35, 43]), or non-linear regression
([84, 68]). In [93], a semi-parametric estimation is performed using local quadratic regression.
In our case, the supply curve considered is corrected from the marginal fuel price (as in [93]),
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Spot Backtest Model comparison
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Figure 3.2.2: Backtests

the input of the correction is the difference C; — D; (unlike the more common choices of Dy
or D;/C%), and the distinctive feature of our estimation procedure is that it is performed on
the quantiles of the inputs, which preserves the information provided by the peaks in the data,
and allow for a simple estimation using one simple linear regression. Consequently, we did not
investigate for other estimation techniques, as we did not need it. However, it cannot be excluded
that more involved estimation techniques may be required, for instance, to apply our model to
other specific electricity markets. For the time being, we leave these empirical investigations
and extensions for further research.

3.3 Pricing and hedging

In this section, we use the model (3.2.2) to derive pricing and hedging formulae for power
derivatives, including forward contracts. We first model the different processes involved in the
equation (3.2.2), namely the capacity processes C{, the electricity demand D; and the fuel prices
Si 1 <i<n. The fuels S? are clearly tradable, but demand and capacities D and C* are not,
which means that we are going to work in an incomplete market setting. Consequently, a perfect
hedging will not be possible, and, equivalently, the market will have infinitely many Equivalent
(local) Martingale Measures (henceforth EMM). Many criteria for the choice of a ‘good” EMM
are available in the literature. In this chapter, we use the local risk minimization criterion
introduced by [52], which is based on a financially meaningful decomposition of contingent
claims into hedgeable and non-hedgeable parts, and gives rise to explicit price formulae as we
will see next. Investigation of other criteria such as, e.g., utility indifference pricing or mean-
variance hedging, and their comparison are left for future research (one can refer to [26] and
[60] for applications of these other criteria to electricity markets).
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3.3.1 Model for capacity, demand and fuel prices

Let (Q,P, F) be a given probability space, where PP is the historical (or statistical) probability
measure. E will denote the expectation operator taken with respect to P. All the subsequent
processes, namely C', D and S, will be defined on this probability space. The market filtration
Fi will be the natural filtration generated by all Brownian motions driving the dynamics of
all such processes. We assume from the beginning that the spot interest rate r is a positive
constant. For the sake of simplicity, we set storage cost and convenience yield of every fuel
equal to zero.

Market of fuels. We recall from Section (3.2) that for 1 < i < n, S{ denotes the price of fuel
i at time ¢, that h; denotes the corresponding heat rate, such that h;S} is expressed in units of
currency per MWh, and that we assume a fixed order h St1 < ... < h, S between fuels. In order
to enforce this assumption, we model the dynamics of the fuels spreads Y} := h;S} — hi,lstifl
(with the convention S° = 0) rather than the dynamics of the fuels directly. We choose Y =
(Y1,...,Y"™) to be a vector of independent geometric Brownian motions under the statistical
measure P, i.e. for 1 <i < n:

dYy = Yidt + oY dWyi, Y§ >0,

where W = (W', ...W") is a n-dimensional Brownian motion for the measure P and pu;,o;
(1 < i < n) are fixed real numbers with o; > 0. F" = (F}V) denotes the natural (and P-
saturated) filtration generated by W. Note that h;S* = doi<i Y7 and, as a consequence of the
positivity of geometric Brownian motions, the condition h;S! < --- < h,S™ is satisfied.

The P-dynamics of S%, 1 < i < n, is then given by:
1 , , ,
dS; = +— > (Y dt + oY dWY). (3.3.1)
b i<i
Since each S} is a.s. positive, we can rewrite its P-dynamics in the following way:
dsi
St

= ,uf’idt + af’iths’i

where the drift uf ’i, the volatility Jf " and the Brownian motion W5+ are given by:

Si _ Y; Si Y; , si 1 Y; ;
H _Zh,giﬂj’ Ot = Z (h,Si> 95> AWy = S,iZﬁadet
gsi Tt j<i Nt oy j<i Mot

To verify that W is a Brownian motion it suffices to check that <Ws’i>t =t and use Lévy’s

characterization theorem to conclude. Notice that FWV = F WS, where FW* denotes the natural
filtration generated by the n-dimensional process W* := (Ws’l, ey WS”L).

Electricity demand and production capacities. = The demand for electricity is modeled by a
process D, adapted to the natural filtration .7-"tD generated by a Brownian motion WP under
P. Similarly, the production capacities from each fuel are modeled by processes C*, 1 < i < n,
adapted to the natural filtration .7-"tc generated by an n-dimensional Brownian motion W¢ =

(WL .., W) under P. We assume the following dynamics:
dD; = a (t, D) dt + b (t, D;) AW} (3.3.2)
dC} = a; (1,C}) dt + B; (t,CF) dw (3.3.3)
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where a, b, i, 5; : Ry x R +— R are measurable functions such that the SDE (3.3.2) and (3.3.3)
admit unique strong solutions on, respectively, F© and on the natural filtration generated by
W1 We make the following standing assumption.

Assumption 1. We assume that the Brownian motions W, W and WP are mutually in-
dependent under the true probability P. Moreover, the market filtration, denoted (F;), is the
natural filtration — satisfying usual conditions — generated by all these Brownian motions, i.e.
Fi=F VFVFP.

3.3.2 Choice of pricing measure
3.3.2.1 Some preliminaries on local risk minimization

We recall some basic facts on local risk minimization (henceforth LRM) approach for pricing
and hedging in incomplete markets. This approach has been introduced by [52]. We will
essentially follow the two survey papers by [91] and [97]. All the processes we will introduce
in this section refer to a given filtration (F;) satisfying usual conditions and representing the
market’s information flow.

Let X be a discounted continuous price process, i.e. X is an adapted continuous R%valued
semimartingale with decomposition X = X+ M + A, where Xj is a constant in R%, M is a
local martingale and A a finite variation process such that My = Ay = 0. We assume that
there exists a square integrable EMM Q for X, i.e. X is a local martingale under Q with
dQ/dP € L*(P). It is well known that under such an assumption, the finite variation part A is
absolutely continuous with respect to M’s quadratic variation, i.e. it satisfies

t
At:/ dM)N,, te[0,T]
0

for some predictable R™-valued process A\. A portfolio strategy is a pair ¢ = (V,1) where V
is a real-valued adapted process such that Vy € L?(P) and 9 is a predictable, R%valued, X-
integrable process such that fOT V:dX; € L*(P) and [9dX is a Q-martingale for all Q € M,
the set of all P-equivalent probability measures with square integrable derivative and making X
a local martingale. The set of all such strategies ¥ will be denoted by ©.

We now associate to each portfolio strategy ¢ = (V,4) a process, which will be very useful in
the sequel in describing the main features of the LRM approach: the cost process Cost(yp). The
cost process of a portfolio strategy ¢ = (V,4) is defined by:

t
Costi(p) = V4 —/ YudXy, te€][0,T]
0

A portfolio strategy ¢ is called self-financing if its cost process Cost(p) is constant P a.s..
It is called mean self-financing if Cost(¢) is a martingale under P. Let H be a square-
integrable, Fp-measurable contingent claim. We say that a portfolio strategy ¢ = (V,9) is
H-admissible if Vp = H, P a.s.. Therefore, an H-admissible portfolio strategy ¢ is called locally
risk minimizing (henceforth LRM-strategy) if the corresponding cost process Cost(y) belongs
to H2(P) (the Banach space of all P-martingales bounded in L?(P), equipped with the norm
|M||? = E[sup, |M¢]]?) and is orthogonal to X under P. There exists a LRM-strategy if and
only if H admits a decomposition:

T
H = Hy +/ OHdX, + L, Pas., (3.3.4)
0

!See, e.g., [69] or [94] for standard assumptions ensuring such properties.
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where Hy is a constant, 9% € © and L € H?(P) is orthogonal to X. Such a decomposition is
called the Féllmer-Schweizer decomposition of H under P, and the portfolio strategy ¢ = (V, 9H)
with

t
Vt:HoJr/m?deerLf{, Pas., tel0,T].
0

is a LRM-strategy for X. There is a very useful characterization of the LRM-strategy by
means of the Galtchouk-Kunita-Watanabe decomposition (henceforth GKW-decomposition) of
H under a suitable EMM, namely the minimal EMM introduced by [52]. We recall now some
basic facts about this measure and its deep relation with the LRM approach. We denote by Z
the minimal martingale density:

Zy =€ (—/)\dM)t, tel0,T). (3.3.5)

Since [46] we know that the existence of a Follmer-Schweizer decomposition (and so of a unique
LRM-strategy) for every H € L?(P, F;), for any ¢ € [0, T is equivalent to assuming an additional
integrability condition on Z, which is usually called Ry (P) (see [46] for details). Such a condition
will be verified in our model. Moreover, under such a condition, we can define on F;, for all
t €[0,7], an EMM Q for X, given by:

dQ -
Nz
dP |,

which is called minimal EMM for X. We will denote E the expectation operator under @
We now quote without proof (for which we refer to [52], Theorem 3.14, p. 403) the following
fundamental result relating the minimal EMM and the LRM-strategy:

Theorem 3.3.1. Let H be a contingent claim in L*(P, Fr). The LRM-strateqy @, hence also
the corresponding Follmer-Schweizer decomposition (3.3.4), is uniquely determined. It can be

computed in terms of the minimal EMM @ if XA/tH, t € [0,T], denotes a right-continuous version
of the Q-martingale E[H|F], t € [0,T], with GKW-decomposition:

t
wH:%H+/q9§dXS+Lf, te 0,71,
0

then the portfolio strategy @H = (‘A/H,ﬁH) is the LRM-strategy for H and its cost process is
given by Cost(@) = E[H] + L.

This theorem gives us a practical way for computing the LRM-strategy of a given contingent
claim H. Indeed, in order to find its LRM-strategy and the associated cost process, we need to
compute only its GKW-decomposition and identify the integral part and the orthogonal part.
The integral part represents the hedgeable part of the claim H, while the orthogonal part L
represents the unhedgeable part or residual risk. The expectation of H under the minimal EMM
@, IAE[H ], is clearly one of the infinitely many no-arbitrage prices of H and it can be also viewed
as the initial wealth allowing to hedge the hedgeable part of H. Moreover, in [66], it is shown
that in a large class of diffusion market models with non-tradable assets, the expectation of
a contingent claim H under the minimal EMM, i.e. IE[H |, is an upper bound for bid utility
indifference prices of H. In the next sections, we will use this approach to price and (partially)
hedge power derivatives.
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3.3.2.2 LRM in our energy market model

We have already noticed that our market is incomplete. Thus it admits infinitely many EMM:s.
Here is a complete description of such measures.

Consider first the submarket composed of fuels only. Since each Y admits a unique EMM Q°
and their corresponding Radon-Nikodym derivatives are independent, it is easy to see that the
measure Q defined as the product of all the Q%’s is an EMM for S. More precisely,

dQ aQ i X
% H 9 _He*AW =", on Fr (3.3.6)

where \; = % is the market price of risk of the i-th spread Y, i.e. the spread between fuels
t—1 and 3. Thus the assumption of non arbitrage is satisfied in the market of fuels (indeed, one
can easily prove that each 1/’\’ is a Q’ martingale if and only if each St s a Q martingale, where ~
denotes discounting). Let W = (W!,..., W™) be the Q-BM defined via Girsanov’s theorem as:

Wi =W} + At. (3.3.7)

Finally, one can show that the @—dynamics of the i-th fuel, 1 <14 < n, is given by:

) 1 . . , 1 S
dsi = — > Y (rdt + o;dW}) = rSidt + - > Yo dWy (3.3.8)
bi<i bi<i

and that of its forward price F{(T) with any maturity 7 > 0 is:

dF(T) = " T ZYJUJdWJ

]<Z

In order to generate the whole family of EMMs, we need to consider also possible changes of
measure for the demand D (equivalently its driving Brownian motion W) and all the capacities
C? (equivalently their driving multivariate Brownian motion W¢%). Thanks to the mutual
independence between fuels, capacities and electricity demand, it is not difficult to obtain the
following result. Let T" > 0 be a given finite horizon, e.g. the maturity of a forward contract on
electricity. The next proposition gives a full characterization of the (square-integrable) EMMs
of our model.

Proposition 3.3.1. The set of all EMMs M. of our model over the time horizon [0,T] is given
by all Fr-measurable random variables Z1 such that there exists adapted processes n = (nc, nD)

verifying: A
n d@l . .
2 (H TP ) &r (/0 T]stWSC) Er (/0 ndesD) (3.3.9)
i=1

and such that Ep[Z7] = 1, where Er(-) denotes the stochastic exponential at time T and Q' is
the unique EMM for the i-th spread Y, fori=1,...,n, as in (3.3.6).

Proof. Use the mutual independence of (W, W, WP) and the representation theorem for Brow-
nian martingales. O

In view of (3.3.5) and (3.3.9), it is easy to see that in our model the Follmer and Schweizer
minimal EMM corresponds to the case when n¢ = nP =0in (3.3.9).2 Thus, consistently with
our notation, the minimal EMM is exactly the measure QQ previously introduced.

2Indeed, in our model, the Radon-Nikodym derivative Z =E [d@/d]}” |]-'t} clearly satisfies the so-called inte-
grability condition R; (IP), so that Theorem C in [46] can be applied.
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3.3.3 Electricity futures

As a first important application of the LRM approach, we derive the price dynamics of a forward
contract on electricity with instantaneous delivery at a given time 7" under our model (3.2.2).
Such a dynamics will be of a great importance to obtain hedging strategies for energy derivatives.
To do so, we will apply LRM approach for pricing and hedging a futures contract on electricity
via trading on fuels. Then, from these results, we will be able to study the risk premium of
electricity. Forward contracts on electricity will be used as additional hedging instruments in
the next subsections on hedging and pricing of more complex energy derivatives.

3.3.3.1 Price and dynamics

We now derive the price and dynamics of electricity forward contracts. Using the notation of
the previous section, the contingent claim to hedge has terminal payoff H = Pr and the hedge
is performed by trading in the fuel process S, i.e. X = S, or equivalently in the fuel futures.?
Recall from Section 3.3.1 that we assume a constant spot interest rate r (futures and forwards
are thus identical, and we use both terms interchangeably), as well as independence between
fuels, demand and capacities. In this setting, and recalling our spot model (3.2.2), it is not
difficult to see that the formula relating the electricity forward price Ff(T') and the forward
prices of fuels F(T) , both with instantaneous delivery period, is given by:

= > WF{(T)E [g(C2*" = Dr)1yp,epy | 7] (3.3.10)
=1

for t € [0, T, where .FtD O FP v FF is the natural filtration generated by both WP and WC.
Recall that, by the definition of minimal EMM, one has Q = P on FP:C.

Remark 3.3.1. The previous formula is key in our approach. A similar formula is obtained in
the previous paper [3] for a slightly different model, the arguments used to prove it being the
same. The idea behind it is that, unlike usual approaches in energy market models, in our
model the use of a risk-neutral measure is motivated by embedding the energy market into the
larger market including the possibility of trading in fuels. Then, since in the latter market one
may in principle trade on fuels, the risk-neutral approach that proved to be successful in stock
markets can be applied. The final step is that, since a forward contract on energy can be viewed
as an option whose payoff is exactly the spot price at maturity and the latter is a function of
fuels (via the relation (3.2.2)), such a forward contract can be priced taking expectation under
a risk-neutral measure for fuels. For more details, we refer to [3]. The price to pay is, in some
sense, that the production function linking fuels and energy contains other non-tradable factors
as well, e.g. demand and capacities.

Remark 3.3.2. The same kind of factorization as in formula (3.3.10) can be obtained under any
EMM Q@ such that fuels S are independent from demand and capacities (D, C). For instance,
when Q is an EMM with deterministic (time-dependent) market prices of fuel, demand and
capacity risks, i.e. deterministic n°,n® as in Proposition 3.3.1, the same computations lead
to the same formula. Now, if one take an arbitrary EMM Q (under which fuels, demand and
capacities are not necessarily independent), one may obtain an analogue formula for electricity
futures price via an additional probability change. Indeed, set d@i / d@ = e_TTS} /S& on Fr for
alli=1,...,n. Thus we get:

F{(T) = B[Pp| 7] = Zth JE' [g(CF" = Dr)1pepy | FC]

3Indeed, one may easily switch from F} (T) to S} via the well-known formula F} (T) = e"T=1 8¢ Recall that
we assumed constant interest rate r and zero convenience yield and storage cost, for any fuel .
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where E¢ denotes expectation under @Z Of course, here the difficulty would be to compute the
weights multiplying the futures on fuels. The laws of D and C' under each Q' can of course be
obtained through Girsanov’s theorem, but their parameters might depend of S, C' and D in a
complicated way, and obtaining closed-form formulae may be very difficult.

The next step consists in evaluating the conditional expectation appearing in formula (3.3.10).
Since the process (C, D) is Markov, we have:

E g (CF* — Dr)1ip,en FC] = 6T (1,61, D)

for some real-valued measurable function G (¢, ¢, d) defined on [0, T] x R™ x R. We will call this
function the Conditional Ezpectation of Scarcity Function (henceforth CES function). Under
specific dynamics for Cy and Dy, the CES function, as well as its partial derivatives, can be
computed explicitly. This will be the purpose of Section 3.4.2. Our key relation (3.3.10) between
electricity forwards and fuel forwards now simply reads:

n
FE(T) =Y nGY (t,Cy, Dy) F{ (T) (3.3.11)
i=1
meaning that an electricity forward can be seen as a basket of fuels forwards, with stochastic
weights given by the CES function, driven by electricity demand and production capacities.
Note that this relation does not depend on the specific model chosen for fuels in Section 3.3.1,
except for the assumption that fuels are independent of capacities and demand.

We now derive the dynamics of electricity forwards. Assume that GT € C132([0,T] x R® x R).*
Then 1t6’s lemma provides the dynamics of G7 (¢, Cy, D) as follows:

" OGT

k=1 a

Gi L (t,Cy, Dy)b(t, Dy)dWP. (3.3.12)

(t Ct>Dt)ﬁk(t Ck)thCk ad

dGI(t,Cy,Dy) =

A simple application of integration-by-parts formula gives the following @—dynamics for electric-
ity T-forward prices :

dFE(T) = > hi |G (t,Cy, D)dF}(T) + F{(T)dGY (t,C, Dy)]

=1
et va S 7 anT D
= Z ZG (t,Cy, Dy) | oY AW + > hiF{(T) 5 (t, Cy, Dy)b(t, Dy)dW;
i=1 \k= =1
+) (T Z Dy) B (t, CFYaw,” (3.3.13)
=1 k=1

where recall from Section 3.3.2.2 that I//I\/ti is a Q-BM. Notice that the quadratic covariation
between F}(T) and G;(t,Cy, D;) vanishes, due once more to the independence between S° and
(C, D). From equation (3.3.7), one can deduce the P-dynamics of F¢(T'):

dFS(T) = T Z (Z GE(t,Cy, Dt)> oY} (dwg + )\idt)
] k=i

7 8GT D
+Zh i (t, Cy, Dy)b(t, Dy)dW;
i - 8GT k C.k
+ZhiFt (7)Y o L (t,Cy, Dy)Br(t, CEYAW (3.3.14)
= k=1 Yk

“Whether such an assumption is verified or not will depend on the regularity of the coefficients of the SDEs
governing the dynamics of D and C. Notice that the dynamics that we will use in Section 3.4 are such that
the CES functions G7 (t,c, z) are smooth enough to apply Ito’s formula (see also the explicit formulae for the
derivatives of CES functions in 3.4.2.7)
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3.3.3.2 Risk premium

Using the previous results, we are able to study the electricity risk premium 7¢(¢,T), defined
as:
w(t,T) := F{(T) — Ep[Pr|F], t<T. (3.3.15)

Just like the relation (3.3.11) between futures prices, the electricity risk premium can be ex-
pressed as a weighted linear combination of fuel risk premiums. Let 7(t,T) denote the risk
premium of the i-th fuel, i.e. 7(¢,T) := F{(T) —Ep[S%|F] for t < T. Recall that forward prices
are computed under the minimal EMM @

Proposition 3.3.2. Under our model assumptions, one has:

7°(t,T) =Y hiG;(t,Cr, Dy)my(t,T), te€0,T). (3.3.16)
=1

Proof. 1t follows from formulae (3.2.2) and (3.3.11), and the fact that the law of the processes
(C, D) under Q is the same as under P. O

Remark 3.3.3. An easy consequence of the previous equality is that if all the fuels are in normal
backwardation (or in contango), then it also holds for electricity. To our knowledge, no studies
have been performed to assess this particular point. Nevertheless, in [81] a systematic analysis
of commodity term structures is done. The authors show that energy prices (crude, heating oil,
gasoil, gas) are at least 40% of the time in contango. Hence, it is not unreasonable to imagine
that situations where they are all in contango at the same time may arise.

3.3.3.3 Electricity futures as hedging instruments

In the next sections, we will use these electricity forward contracts as tradable hedging instru-
ments to improve the hedging of more complex derivatives on electricity spot and forwards. In
other terms, we will consider an enlarged market (S, F°(T*)) where agents can trade on fuels
as well as on a forward contract with a given maturity 7". While the minimal EMM for the
market of fuels S is @, it is not garanteed a priori that the minimal EMM for the richer market
(S, F¢(T*)) is still Q. It will depend on the P-dynamics of the forward contract F€(T*). We
conclude this part of the chapter by showing that if the P-dynamics of F¢(T™) is given exactly
by (3.3.14), then the minimal EMM for (S, F¢(T*)) is given by Q.

Proposition 3.3.3. Let T* be any positive finite maturity. Assume that the P-dynamics of
S and F°(T*) are given by, respectively, (3.3.1) and (3.3.14). Then, the minimal EMM for
(S, Fe(T™)) is given by Q.

Proof. By the definition of the minimal EMM (see Definition (3.2) in [52]), we have to verify
that any square-integrable P-martingale M that is orthogonal to both S and F¢(T™), must be
a @ martingale. By the representation theorem of Brownian martingales and since F}V = F} W
for any t, such a P-martingale M satisfies

t t t
M, = My + / e dW? + / BedWE + / v dWP
0 0 0

for some predictable processes a, 3,7. Being M orthogonal to S, i.e. (M, W?) = 0, we have
a = 0. Moreover, M is also orthogonal to F'¢(T™*), which implies that

(M, F(T")): /,6’50 ds+/ vs0Pds = 0
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for all t, where % (for k = 1,...,n) and # are the integrads in, respectively, the dW©* part
and the dWP part appearing in the dynamics (3.3.14) of forward prices. Thus, ﬁtec + 1P =

for all t. As a consequence, since W¢ and WP are Brownian motions under Q, M is a Q
martingale. By uniqueness of the minimal EMM, we can conclude. O

3.3.4 Pricing formulae

In this section we compute the price of energy derivatives via LRM approach. It consists
in computing the expectation of the terminal pay-off under the minimal EMM @ Such an
expectation represents the initial wealth allowing to approximately replicate a given option in
a local risk minimization sense, as explained in Section 3.3.2.1.

In what follows, we will focus on options on spreads (between electricity and fuels) as well as on
options on electricity forward contracts. We will see in particular that any European options
on an electricity forward contract can be viewed as a basket option on fuels with random
(but independent) coefficients. Thus, numerical methods developed to price basket options on
securities can be applied to evaluate energy options as well. Finally, we will show how to obtain
explicit formulae in the case of two fuels, i.e. n = 2.

We will use the notation BS;(o, K) for the Black-Scholes formula of the ¢-price of a European
call option with volatility o and strike K. As the other parameters (like maturity or interest
rate) are fixed, they will not appear in the notation. Finally, fx(:) (resp. fX()) will denote
the density at time T’ of a process X under the statistical measure P (resp. under the minimal
EMM Q).

3.3.4.1 Spread options

Let us consider a spread option with maturity 7" between electricity and a fuel j chosen among
the n fuels used to produce electricity. Then, the corresponding pay-off is given by:

H := o(Pr — hjS5), (3.3.17)

where ¢ is a real-valued function such that H € L2(Q), e.g. ¢(z) = (z — K)* for K > 0. For
the sake of simplicity, we compute the price of this option at time ¢t = 0. The price at any time
t can be easily deduced from that case by using the Markov property of the price processes.
Using equation (3.2.2), one obtain:

o = e "TR[p(Pp — h;S%)] —”ZE[( CF* = Dp)hiSy — hiSh) 1 prersy ] -

Now, consider the case of two fuels (n = 2) and let j = 1. The other case j = 2 can be
treated similarly. Recall from equation (3.2.1) that in the two fuels case, the intervals I'. are
I} = (—00,C}) and I3 = [C}, +00). Using the independence between fuels S, demand D and
capacities C, and the fact that @ =P on ]-'g ’D, we have:

mo= [ Joppr(Mez(© {0106 sy + 62(6, L ey} ded (3:318)

where fo1 pp(-) and fez (.) are the P-densities of, respectively, C%. — Dy and CZ, while ¢1(c, 2)
and ¢(c, z) are given by:

p1(c,z) =eT E {@ ((g(c +2)—1) YTlﬂ
¢2(07 z) =T E {(p (g(c + Z)h2S% — hls%’)}
T R {@ ((g(c +2)=1)YE +g(c+ z)Yﬁ)} :
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We used the fact that h1S* = Y1 and hyS? = Y + Y2 (see Section 3.3.1). Recall that, by
assumption, Y and Y? are independent geometric Brownian motions. We need to compute
both terms ¢;(c,z). Since ¢,z are fixed, we can simplify the notation by dropping (c,z) in
¢i(c,z) (1 =1,2) and g(c+ z). We will simply write ¢; and g instead.

To push further our computations, let us consider a call spread option, i.e. p(z) = (z— K)* for
a given strike K > 0. In this case, the quantities ¢; can be computed more explicitly. Indeed,
if g < 1 one has ¢; = 0, while on the event {g > 1} the quantity ¢; is just (¢ — 1) times the
Black-Scholes formula for a European call option with strike K/(g — 1) and underlying Y'!, a
geometric Brownian motion with volatility o, i.e.

K
¢1 = (9 —1)BSo(o1, ﬁ)l{gx}-

On the other hand, we show that ¢ is a mixture of Black-Scholes formulae with respect to
strikes. Recall that fy%: (yi) denotes the log-normal density of Y under Q for i = 1,2. We have:

b= TE|((g- DY} + 97 - K)']

On the event {g < 1}, we have:

e K+1-gvi)" oo K+(1-
2 =ge'E (K%—(QQT> =9 ﬂn@DB&aGm, (g gw>dy
On the opposite event {g > 1}, we have:
— gefrTE (Yr_,g - —K (g 1)YT>
g
< . T K—(g—1Dy\"
= g/ Fra(w)e TE[O?—WM)]dy
0 9
K
T K—(g—1 o< _ K—(g—1
= o [T hawBS (o0 T gy g [T fe TR [y - K=,
0 T g e g
K
o1 2 K—(9-1y T\ 6 K
—rTh 1
+(g-1e EP%HW>fJ}
Observe that:
~ K K - K
—rT 1 _ —rT 1

so that on {g > 1} we have:

K

g—1 A K — —1 ~ K K
d1=g / " i () BSo (02, M) dy+9Y20 (Y% > )+<g 1) BS, (al, ) .
0 T g g—1 g—1

Since, from Sections 3.3.1 and 3.3.2.2, Y'! is a geometric Brownian motion under @, with volatil-
ity o1 and drift r, we have

g—1

; K (r=3)7 - (i)
Q(Y%_ ):N 0'1\/T ; ’

where A is the cumulative distribution function of a standard normal random variable. We
summarize these results in the following proposition:
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CHAPTER 3: A STRUCTURAL MODEL FOR THE PRICE OF ELECTRICITY

Proposition 3.3.4. Let n = 2, i.e. electricity is produced out of two fuels. The price my at
time t = 0 of a call spread option with pay-off H = (Pr — hls% — K)*, K >0, is given by the
following formula:

e /IR? Jos-pp(2)Ic3 () {91(¢,2)Lssy + da(e 2)1 ooy } dedz, (3.3.19)

where the quantities ¢p; = ¢i(c, z), i = 1,2, are given by:

K
¢ = (9—1)350(017F)1{g>1}

RN K 1-—
9/0 fy1(y)BSo (02’—1—(99)3/

?2

) (1{g31} + 1{g>1}1{y<;_<1}> dy

AN i (K
o gven (r 21)21\/1;((9—1>Y01)

K
+(g—1) BSQ (0’1,) 1{g>1}
g—1
where we have set g := g(c+ z).

3.3.4.2 Options on electricity forwards

Let us consider a contingent claim H with maturity 7" whose payoff is given by a function
¢ : R +— R of a forward contract on electricity with instantaneous delivery period at T* > T,
i.e.

H := o(Fr(T7))

We assume that ¢ is such that H &€ LQ(@). The next proposition gives a pricing formula for
such a contingent claim.

Proposition 3.3.5. Under the above assumptions, the price at time t < T of the contingent
claim H 1is given by:

Ele """ H|F] = & [y(t, F(T"), Cr, Dr)| F° (3.3.20)
where:
U(t, F(T*), Cp, Dp) = e "TIE | (Z hiGT (T, C’T,DT)F}(T*)> ‘ftW] . (3.3.21)
i=1

Proof. Tt follows from equation (3.3.11), independence between W and (WP, W¢) and the
properties of conditional expectations. O

Remark 3.3.4. The previous pricing formula (3.3.20) provides an easy way of computing prices
using basket options pricing algorithms. Indeed, the formula suggests the following procedure:

1. Evaluate first the expectation (3.3.21) with respect to FtW, i.e. the function %, taking the
weights G;fp* (T, Cp, D) as fixed, using a basket options evaluation procedure.

2. Finally, take the average with respect to the weights G (T,Cr, Dr).

These two steps can be performed separately thanks to independence between W and (WP, W©).
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3.3. PRICING AND HEDGING

As for spread options, we now look for explicit formulae for European call on electricity forward
in the two fuels case, i.e. n = 2, at time ¢ = 0. We compute the function @ from equation
(3.3.21) in this case. To simplify notation, we set w; := e " ~T)GT"(T,Cr, Dr). Recalling
that, regarding futures on fuels, Fi(T*) = eT(T*_T)S% for i = 1,2, we have:

w(O) = e_TTIE {(wlhlS% + wthS% — K)+

= e_TTIE [((wl + UJQ)Y% — (K — ’UJQYQ%))—’_

_ e—’r‘TE

+
((wl +wa) Yy — (K — w2YT2)> 1{Y7%§K/w2}:|

+e TR

+
(w1 +w2)¥7 — (K — ) 1{YT2>K/M}} — A+ As.

Let us compute separately A; and As. For Ay, we obtain:

K /w2 R N K —w +
Ar = (w1 +ws) / Frz()E [e""T (Y% - Qy) ] dy
0

w1 + w2
Kfwz K —way
(w1+w2)/0 fyj%(?ﬁ 0(01,w1+w2) Y

For As, we have:

Ay, = ¢"E [((wl +wa) Y7 — (K — szqg)) 1{Y7%>K/w2}}

K
—rT 2
e (YT - wQ) 1{Y1?>K/w2}}

~ K
— (wl + w2)YE)1Q(Y72 > K/QUQ) + w9 BSy <(72, 7’LU )
2

= (wl + UJQ)E |:e_rTYfl];1{Y72>K/w2}i| + ’U]QE

We summarize our findings in the following proposition.

Proposition 3.3.6. Consider the two fuels case, i.e. n = 2. The price ﬂg at timet =0 of a
FEuropean call option with maturity T on a T™-forward contract on electricity with T* > T is
given by the following formula:

wgz/fDT(Z)/ fea(er) foz (e2)tbo(er, e2, 2)dzderdes,
R R2

where the function Yo(cy,ca, z) is given by:

K/wa K — r—=2)T—In wﬁ
’(ﬁo(cl,CQ,Z) = (w1+w2) / fng(y)BSO <O’1, 710 +w2y>dy + YlN ( 2 ) ( 2)
0

1+ w2
K
+ wo BSy (O‘Q, )
w2
where w; == e " "DGI (T, ¢, ¢9,2), i = 1, 2.

To make full use of this result, the weights w;, and thus the CES function G;TF* (T, c1,c2,2), must
be computed explicitly. This will be done in Section 3.4.2 under more specific assumptions on
dynamics of capacities C and demand D.
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3.3.5 Hedging derivatives

Now we turn to hedging. In this subsection, we will identify the hedgeable and the unhedgeable
part of any contingent claim written on electricity as well as fuels.

As hedging instruments, we consider forward contracts on electricity and forward contracts on
fuels (or, equivalently, spot fuels). We consider a @—Square integrable European-type contingent
claim H written on a forward contract on electricity and fuels as well as on capacities and energy
demand, i.e.

H = o(Fr(T7), Fr(T7), Cr, Dr)

such that H € L2(@). Notice that spread options (Section 3.3.4.1) and options on electricity
forwards (Section 3.3.4.2) are of this type, as well as any option on electricity spot price.

Since Q is the minimal EMM for the market of fuels S (see Section 3.3.2.2) as well as for the
larger market (S, F¢(T*)) of fuels and electricity T*-forward contract (see Proposition 3.3.3),
we have to find, according to Theorem 3.3.1, an explicit expression for the GKW decomposition
of such an H under Q. More precisely, being F¢(T*) and F!(T*), 1 < i < n our hedging
instruments, we look for self-financing strategies £ and & = (¢1,...,£") such that:

R T T
H=E[H] + /O & - dE(T™) + /0 EEdFE(T™) + L (3.3.22)

where LI is the terminal value of a @—martingale LT orthogonal to F¢(T*) and F (T*), rep-
resenting the unhedgeable risk related to the contingent claim H. We are going to compute
explicitly these strategies as well the unhedgeable risk L¥ . We adapt methods developed in,
e.g., [65], for stochastic volatility diffusion models.

First, let @ = (6°,6¢,07) denote the integrands in the @—dynamics for the forward price F¢(T™*)
given by equation (3.3.13), i.e.:

dFf = 07.dW, + 0 .daw’ + 6P aw (3.3.23)

By the Markov property of the vector-valued process (F' (7%),C, D) and by the fact that F¥ (1)
is a function of (¢, F; (T*),Cy, D;) (see formula (3.3.11)), we have

Vil .= B[H|F)] = ¢(t, F,(T*), Cy, Dy)

for some measurable function ¢ : [0,7] x R™ x R" x R +— R. Moreover, under some regularity
assumptions on the coefficients of the underlying processes, which are satisfied by the model
considered in, e.g., Section 3.4, such a function is of class C1%%2([0, T] x R™ x R™ x R).5 From
now on we drop, for the sake of simplicity, the dependence from (¢, F}, Cy, D) from the function
¢ and its derivatives. In the next proposition we will use the notation [|#%, 6P|| for the norm of
the vector (8%, 6P).

Proposition 3.3.7. Let H = o(F¢(T*), Fr(T*),Cr, Dr) € L2(Q) be a T-contingent claim with
T < T*. The local risk minimizing strategy (£¢,€) is given by:

e _ 1 [§rpei0 i p9oo

é-t - ||9t070tDH2 {; 9t 862‘ Z(t7 Ct) + 0t 8db(t, Dt)} (3324)
i 8¢ th;T* (t, Ct, Dt) n Cyi 8¢ ‘ ; D8¢

& = o T 16,602 > 0; 87%/6’@(75,@) +0p 550t Dr) (3.3.25)

®See, e.g., Theorem 5.3 in [53] for such regularity assumptions
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while the residual risk L™ satisfies:

n C\k 8(;5 D 8¢
H __ ) K K
= ; (3 G- s ,HPH? b g opy>0) | AW
<ad (t, D;) — Wl{uef,eﬂ\w} AWy (3.3.26)

Proof. The maturity T* of the forward contracts being fixed, we drop it from the notation, so
that we now write FY, F} and G; instead of, respectively, I (T™), F}(T*) and GT". We also
assume w.l.o.g. that E[H] = 0. Since Vi = E[H|F,] = ¢(t, F}, C;, Dy) with ¢ regular enough to
apply Ito’s lemma, we have that

/Zayzd +/Z YAW S + gz (s,Dg)dWP.

Notice that there is no di-term in the expression above since we already know, by definition,
that V1 is a martingale under Q. Now, recall from equation (3.3.23) that:

dFf = 07.dW, + 0 .awF + 6P aw P

where explicit expressions for the integrands 6 = (6°,0¢, ) are provided by equation (3.3.13).
We consider only the non-redundant part of F¢, i.e. the part that cannot be hedged using fuels,
which is given by:

dFCP = 6Caw’ + oPawp .

This process can be rewritten in terms of a suitable Brownian motion WP (use Lévy’s char-
acterization theorem to prove that WP is a Brownian motion) defined as:

oD _ /t 0S¢ - dwC + oPaw P
S 1 1165, 6P|

From equation (3.3.13), one can check that||6f, 6P| > 0 for all t. Therefore:
dFP = 116C,0P)dw P, e [0, T,

Analogously, it holds that:

Z (¢, CHAW S + gﬁb(t D)AWL = Gdwe”

where:

G = Z (a%(t C’))2 + (gijw Dt>)

+—C,D . . . , .
and W is a standard Brownian motion (use Lévy’s criterion once more) defined as:

/ Y 52 Bi(s, CHAWE + ob(s, D)AWL
(s '

We require that {; > 0 for all ¢, which basically means that the contingent claim H does

depends on C and D. Observe that W and WP are correlated Brownian motions under
both probabilities P and @Q, with quadratic covariation p; given by:

>, 000 *Bit, Cf) + 0P 9eb(t, Dy)
165, 6P(1¢ ’

Pt =
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ie. d(WP ,WC’D>,5 = pydt. We can define a new standard Brownian motion W+ (under both

P and @), independent of WP such that:

t
Wi = /0 psdW P + / V1 — p2dW,

—7CD C,D
. tdW " —pedWS
i.e. th — (LW, —psdW

0 V172

B 0
a(é Bi(t,CHAWS" + azb(t Dy)dWP = ¢, (ptthC’D +4/1— p%de) .

. Therefore, we can write:

dFE—05dW,

Finally, since thC’D = lac6r]]
t vt

, we have:

9¢ pr 7

i Cyi e S _ 2 1
§ :a (6, CHAW 4 5 5b(t D)AWL = ¢ <|19§7,0D|| (dFf = 65dW,) + /1 = pRdw; )
and, using the fact that 67'dW; = h;G;(t, Cy, Dy)dF} for all i, we also have:

t t
H CsPs e ¢ Csps ) iy / . 1
K /0 oc, 9D|\dFS+/() Z(ay T6¢, gy i€ (5 Cns D) JAFS+ [ Ca 1 = ped W

which implies that:

3¢+ Cept
oy [l67, 0P

e _ Ctpt i_

t
— 2 h,Gy(t,Cy, Dy),  LE :/ Coy/1 — p2dW,
0

are the good candidates for the local risk-minimizing strategy and the residual risk process.
Thus, to conclude it suffices to verify that the proposed strategy and residual risk process
provide the GKW decomposition under the minimal EMM (@ and apply Theorem 3.3.1 to get
the result. This verification being straightforward, the details are therefore omitted. O

To complete our characterization of LRM-strategy for H = ¢ (F&(T*), Fr(T*),Cr, Dr), we
have to compute the pricing function ¢ and its derivatives, that appear in the formulae for £¢,
¢ and LY above. In Section 3.3.4, we have done so for the pricing function of some specific
options. More generally, one can use standard PDE’s techniques as follows. Notice that this
part is rather formal. Let us consider:

Vil .= E[H|F] = ¢(t, F,(T*), Cy, Dy)

where F,(T*) denotes the vector (F{(T*),..., F/(T*)). Under some regularity assumptions and
using [to’s formula, one can prove that the function ¢(t,y,c,d) is the solution to the following
PDE:

1<t

0 <~ 0¢ 8q§ 82¢>
0 = ot +2£Qi(t,c ad t d —‘r Z Z i yj_1)20]2-
8¢ 19%¢ 2
Z 9 Bi(t, i) + 5Wb(t,d) (3.3.27)
with boundary condition:
o(T,y,c,d) = p(y,c,d), forall (y,c,d) € R xR xR.

Notice that the hedging formulae from Proposition 3.3.7 (through 9,50 and 6P, see equation
(3.3.11)), as well as the previous pricing PDE, contain the derivatives of the CES function G;.
These derivatives will be computed explicitly in Section 3.4.2.
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3.4 Numerical results

3.4.1 Explicit model for capacities and demand
3.4.1.1 Model choice

So far, we have worked with the general diffusion models from equations (3.3.2) and (3.3.3)
for the demand and capacities processes. Now, in order to push further the computations, we
are going to choose and estimate more specific models. We decide to model the demand and
capacities processes as follows:

Dy = fp(t)+ Zp (1)
Ct=fi(t)+ Z (t) (3.4.1)

where fp and f; are deterministic functions, and Zp and Z; are independent Ornstein-Uhlenbeck
(henceforth OU) processes under P:

dZp (t) = —apZp (t) dt + bdW}
dZ; (t) = —a; Z; (t) dt + B;dW} (3.4.2)

where ap,b,a;,58;, 1 < i < n are real constants. In other words, we choose the following
functions as coefficients in (3.3.2) and (3.3.3):

a(t,d) = aD(fD(t)Jr’ég)—d) bitd) = b

£ (3.4.3)
a;(t,c) = o (fz’ () + 757 — C) Bi(t,d) = B

We will see that this simple choice combines both satisfactory empirical accuracy and tractability.
The ideas behind the definition (3.4.1) are the following:

e We decompose the demand between a deterministic part, that takes into account in a simple
way the yearly and weekly seasonalities, and a stochastic part modeling the randomness of
the demand.

e We use the same decomposition for the capacities, except that only a yearly seasonality is
considered (as no statistically significant weekly seasonality appears), and in addition the
deterministic part takes into account also the evolution of the installed capacity on the
reference fleet. Indeed, should some plants be planned to be added or removed in the near
future, the resulting shift in capacity has to be considered.

In equation (3.4.1), the deterministic functions fp and f; are defined as follows:

t—d t—d

p(t) =dy +dgcos | 27 + dgcos | 2w
f di +d 2 13 d 2 15
1 2

t—ch
Iy

fi (t) = ¢4 + ¢ cos (27r ) + f77(t) (3.4.4)

where dj, 1 < j < 5and c};, 1<k <3,1< 1< nare constants, and, assuming that ¢ is expressed
in years, l; = 1 (yearly seasonality) and ly ~ 5% (weekly seasonality), and f¥°, 1 < i < n are

the deterministic installed capacities evolutions.
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3.4.1.2 Model Estimation

Working on the dataset described in Section 3.2.2.1, we first estimate, using non-linear least
squares, the deterministic functions from equation (3.4.4) (without the fV° functions, which

are provided by RTE!). Figure 3.4.1 illustrates these estimates for the demand process and the
coal capacity process.

Demand seasonalities Coal Capacity seasonality
Dermand Hist | D d Capacity Historical Capacity
——— Histarical Derman -
{in Gvvh) —— Estimated seasonalities {in GWh) —— Estimated seasonality
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(a) Demand (b) Coal capacity

Figure 3.4.1: Seasonalities estimates

All parameters are statistically significant. After doing that, one can subtract the estimated
seasonalities from the data and work with the resulting series, that correspond to realizations of
the processes Zp (t) and Z; (t) as in equation (3.4.1). We estimate the mean-reversion parameters
ap and «;, 1 < i < n, by exploiting the link between continuous OU processes and discrete

AR(1) processes. Indeed, applying the Euler scheme to SDEs (3.4.2), denoting At as the time
stepsize, yields:

Zp (t+ At) = Zp (t) (1 — apAt) + bV AtNp ()
Z; (t+ At) = Z; (t) (1 — i At) + BiVALN; (t)

for each time step ¢, where Np (t) and N; (¢) are independent standard Gaussian white noises.
Consequently, simple linear regressions will yield estimates for ap, b, a; and 3;, 1 < i < n.
From the different hypothesis of the model, a statistical analysis of the residuals reveals that the
least accurate is the Gaussian hypothesis, as slight but statistically significant excess kurtosis
appears. This phenomenon is illustrated by Figure 3.4.2, where the residual densities of Zp and
Z1, estimated by the kernel method, are compared to Gaussian distributions with the same mean
and the same variance. Nevertheless, given the moderate excess kurtosis estimates (around 2.0,
see Table 3.4.1) and the tractability provided by the presence of Brownian motions, we choose

!The French transmission system operator.
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to stick to the model built so far. Possible extensions of the model may later accomodate these
empirical deviations.

Demand: Residual density vs. Gaussianity Coal capacity: Residual density vs. Gaussianity
05 < Iy ——— Residual density 14 - 7 ——— Residual density
By —— Gaussian distribution f“\ —— Gaussian distribution
Il

Zo (in GWWh) 71 (in GWhH)
(a) Demand (b) Coal capacity

Figure 3.4.2: Residuals estimated densities

residuals \ mean \ st.dev. | skewness \ (excess) kurtosis
demand | 0.00 | 1.01 —0.13 1.92
coal 0.00 | 0.40 —0.04 2.08

Table 3.4.1: Moments Estimates

3.4.2 Computing the Conditional Expectation of Scarcity Function

Using the dynamics of demand and capacities set in Section 3.4.1, we now study in detail the
conditional expectation of scarcity function G7 (t,Cy, D) and its partial derivatives, which are
key quantities for pricing and hedging electricity derivatives (see Section 3.3). We will see how
they can be mathematically and numerically computed.

3.4.2.1 Definition of the auxiliary function G (m, o)
We recall from Section 3.3.3.1 the definition of the CES function:
Gl (6,0, D) =E |9 (CF*" = Dr) 1,y | FPC) . 1<i<n (3.4.5)

Recall that the change of measure from P to the minimal EMM @ does not impact the processes
D and C%, 1 < i < n, meaning that the two measures @ and P coincide on .7-',5D ¢ for any t.
Therefore, these processes and their dynamics are still defined by equations (3.4.1) and (3.4.2),
which are casily solved to deduce the laws of Dp|FF “ and C%|]-}D O
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Proposition 3.4.1. Conditionally on ftD’C, the random variable Dy is Gaussian, i.e. DT\ftD’O ~
N (mt[,)TaagT) where:

mr = fp (T)+ e ** T~ (D, — fp (t)) (3.4.6)
py\2_ b —2ap(T—t)
(o) = 5q [1 =777

Stmilarly, C’%\ftD’c ~N (maT,J;T) where:

miz = f; (1) + e~ (Cf - £ (1)) (3.4.7)
i \2_ B —20;(T—t)
(vir) = 20 1 )
Proof. See Appendix 3.6.2.1. O

In view of equation (3.4.5), Proposition 3.4.1 indicates that the quantity of interest for computing
the CES function is given by:
G (m.0) = Eg (X) (3.4.8)

where X ~ N (m, o) is a Gaussian random variable under the measure considered.

3.4.2.2 Expressing the CES function via G (m, 0)

Indeed, one can express G (t,Cy, D;) using the auxiliary function G (m, ). This is the purpose
of this section. First, we consider the particular case with only one fuel (n = 1). The index i
can be dropped, and the result is the following:

Proposition 3.4.2. When n =1, we have is given by:
2
GT (tv Ct7 Dt) - g (m7 6) ) m = myT — m£T7 62 = (Ut7T)2 + (Utl,)T)
Proof. See Appendix 3.6.2.2. O

In this particular case n = 1, the link between the two functions is simple. We now turn to the
general case with n fuels. The link is now given by the following proposition:

Proposition 3.4.3. For2 <i<n—1, we have:
G'LT (t, Ct7 Dt) =H (m?Jrl? mi17D7 5'?+17 a-i’D) - H (m?v m’i—LD? 5@”7 5{_17D> (349)

)
H(ml,ﬂ’LQ,Ul,Ug) ::/ Q’(x —|—m1,01) (O (x;mQ,ag) dx (3.4.10)
0

where ®n(xz;m, o) is the probability density function of a normal random variable with mean m
and variance o> > 0 and where:

) n k —n\2 n k 2
my = Y p= my (@) = Xk (Ut,T) 34.11
—i,D i k D _i,D? i k2 D \? (3.4.11)
myT = Y p=1Mip — My (0'1 ) = k=1 (%,T) + (Gt,T>
Fori=1 ori=n, Gl (t,Cy, Dy) is given by:
GY (t,Cr, Dy) = H (my,my”, 03, 677) (3.4.12)

rno

GZ (t, CtaDt) =g (M?’Dﬁ?’D) — H (mzjmrf*LD " 5_?71,D)
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Proof. See Appendix 3.6.2.3. O

Therefore, equations (3.4.9) and (3.4.12) indicate that computing the CES function reduces to
compute the functions G (m, o) and H (mq,mso,01,02). This is why we devote the next sections
to the evaluation of these quantities. We first consider G (m, o), as computing H (m1,ma, 01, 02)
will involve results concerning G (m, o).

3.4.2.3 Computation of G (m, o)

The following proposition corresponds to the first step in the calculation of G (m, o).

Proposition 3.4.4. Let G (m,0) = E[g (X)] where X ~ N (m,0) and g (x) = min {M, 5} 11,50+
M1g,<oy with M >0,v>0,v>0ando>0. Then G (m, o) is given by the following expres-
ston:

T—m 0% ~/T—m m
G (m,o) = M/\/( ) + —G ( , ;V) (3.4.13)
o (Uﬂ) VT a2 oV2
where T = (%)%, N is the cumulative distribution function of a standard normal random

variable, and G is defined by:

G (z,y;v) ::/ (y_:z),,e%dz (3.4.14)

wherex +y >0 (x+y>0ifv>1)
Proof. See Appendix 3.6.2.4. O

The next step is to compute the function G defined in equation (3.4.14).

3.4.2.4 On the Extended Incomplete Goodwin-Staton integral

Definition. We recall the definition of G (equation (3.4.14)):

G ( ) / Tl -y
T,y V) = — e z

+ (Y+2)"
where~(x, y,v) ER3 withox +y > 0if v > 1, and x +y > 0 otherwise. These constraints ensure
that G is well-defined. In the particular case v =1, G corresponds to the incomplete Goodwin-
Staton integral (cf. [45]). This is why we call G the extended incomplete Goodwin-Staton integral
(henceforth EIGS integral). Note that this extension of the Goodwin-Staton integral is different
from the usual Generalized Goodwin-Staton integral (as defined in [85] for instance). Proposition
3.6.1 in Appendix 3.6.2.5 provides a probabilistic interpretation of the EIGS integral using the
density of the sum of independent Pareto and Gaussian random variables.

Properties. We establish two useful properties verified by the EIGS integral.

Proposition 3.4.5. Whenever v # 1, the following recurrence relation holds:

1 (o~ . 2
Gz, ysv)=1— (20 (z,y5v = 2) = 2G (2,0 = 1) = (@ + )" " e™) (3.4.15)

Proof. See Appendix 3.6.2.6. O
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This recursive formula can be used, for instance, to compute G (z,y; —n), n € N. Indeed, the
initial values to start the recursion, G (z,y;0) and G (z,y; —1) are given by:

2

G (@,y30) = V7 [1 _N(x\/?)} , G (z,y;—1) = yG (x,4;0) + 3e~°

We will get advantage of this useful application later, in Section 3.4.2.6. Now, we establish the
key property of the EIGS integral, which provides the ground for our evaluation algorithm.

Proposition 3.4.6. The following identity holds:

~ 1 1-— 1
G(z,y;v) = 5@‘112{‘ (21/’ (z +y)%: —2y; —2) (3.4.16)

where T' is the extended incomplete gamma function (cf. [40] p.266; henceforth EIG function):
I'(a,z;b; 8) := / t*Lexp (—t - bt_5> dt (3.4.17)
where x > 0 and (a,b, B) € R3 are such that T (a, z;b; B) exists.

Proof. See Appendix 3.6.2.7. O

3.4.2.5 Numerical computation of the EIGS integral

As indicated by equation (3.4.13),G (m, o) is composed of two parts. The first part involves
the cumulative distribution function N, for which efficient evaluation algorithms already exist.
The second part involves the EIGS integral (3.4.14), which is the quantity that remains to be
computed. Therefore, we provide in this section an algorithm to compute the EIGS integral.

Series expansion of the EIG function. Our idea to compute the EIGS integral is based on
equation (3.4.16): if one can compute the EIG function (3.4.17), then one can compute the EIGS
integral (3.4.14). In fact, there exist efficient algorithms to compute the (upper) incomplete
Gamma function (henceforth IG function) defined by:

I'(a,x) = /00 t* Lexp (—t)dt (3.4.18)

where z > 0 (z > 0 if @ < 0). However, this is not the case for the less standard EIG function.
We therefore propose below a simple algorithm to compute efficiently this function. It is based
on the following property (see [40] p.273):

Proposition 3.4.7. The EIG function has the following series expansion :

(o, z;0;8) = ZT a—nf,x) )”

(3.4.19)

Proof. Replace exp (—bt*5 ) in (3.4.17) by its MacLaurin series expansion, and recall the defi-
nition of the IG function (equation (3.4.18)). O

Consequently, a simple way to numerically evaluate I' (o, ;b; 3) is to compute the first terms

of the sum (3.4.19) up to numerical convergence, using an existing algorithm to compute
1

I'(a —npB,z). However, note that we only need to compute I' (o, z;b;3) for 3 = —5 (see
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equation (3.4.16) ; other values for § may require preliminary steps before exploiting equation
(3.4.19), see Appendix 3.6.2.8). In other words, in the sum (3.4.19), the terms I' (a + 5, x) are
to be computed. To do so, the following recurrence relation of the IG function can be used:

M'a+1l,z) =al (a,z) + z% " (3.4.20)

Thus, to compute the terms of the sum (3.4.19), the use of an IG evaluation algorithm will be
necessary only for the two first IG terms I' (o, ) and T’ (a + %, x), as the next IG terms can be
computed using (3.4.20). Such an implementation is provided in Appendix 3.6.3.1.

Approximation for large positive y. Combining equations (3.4.16) and (3.4.19), we obtain the
following identity:

G (z,y; _Llesop(lor e 2) v 3.4.21
) =5 T (g o) (3.4.21)
As a consequence, the smaller |y| is, the more efficient the computation of the EIGS integral is.
Therefore, finding accurate approximations when |y| > 0 sounds useful. In fact, when y > 0,
such an approximation will not only be useful but also necessary, because in our case where
x+y > 0 is constant (see equation (3.4.13)) while y can take large positive values (see equation
(3.4.9)), the decomposition (3.4.6) can involve the product of the very small term %6*92 with

the very large term T’ ( NEES y) s —2y; —%) For large y, it is possible that %e‘yz reaches

numerically zero, leading to the wrong estimate G (z,y;v) = 0. This phenomenon is illustrated
in Figure 3.4.3a, where the parameters have been chosen to be realistic in regard to the estimates
in Section 3.4.1 and to the equations (3.4.6), (3.4.7) and (3.4.11) and the subsequent equations
up to G and H. For large positive y, we propose the following approximation:

~ 1 v?
G(x,y;v) ~ ” exp <4y2> N3 l (\f;r + \@)] (3.4.22)

Its derivation is detailed in Appendix 3.6.2.9. Figure 3.4.3a illustrates this approximating func-
tion on an example, and compares it with the series expansion (3.4.21). The accuracy of (3.4.22)
for large y can be appreciated. Approximation (3.4.22) appears suitable to overcome the nu-
merical problem described above.

Approximation for large negative y. When y takes large negative values, the previous nu-
merical difficulty does not appear, as both terms ée_y and I’ ( , (x4 y) s —2y; —7) become

small. In fact, G (z,y;v) can readily reach zero numerically, and detecting when this occurs can
save much computation time. A simple way to check it is to compute the upper bound provided
below:

Proposition 3.4.8. For any y < 0 (and as usual x +y > 0):

0<G(2,y;v) < e V=@ (L2g) 1T (1 — v, (=2y) (2 + v))

Proof. See Appendix 3.6.2.10. O
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(a) Computing the EIGS integral (b) Computing H

Figure 3.4.3: Numerical approximations

3.4.2.6 Numerical computation of the CES function

So far, we have been giving a method for computing G (m,c). We have shown in Section
3.4.2.2, more precisely with equations (3.4.9) and (3.4.12), that the evaluation of the CES func-
tion G (t,Cy, D;) involves G (m, o) through the quantity H (mq,ms2, 01, 09) defined in equation
(3.4.10), recalled below:

o0
H (m1,ma,01,09) =/ G (z+my,01) Py (z;m2,02) dz
0

where (mi,ma,01,02) € R* with o1 > 0, o9 > 0. The following propositions are devoted to the
computation of such a quantity.

Proposition 3.4.9. The following holds:

)

()] o1 ?1 1+;§

H(m17m270'170'2) = MN (TM’W; [ 0 0 :| , [ oy 0(17-2 ]) (3423)

+$ﬁ (m17m2a 01,02, V)

T (01\/§>V

where N (x,y; { W1 2 } ,2) is the cumulative distribution function of the bivariate Gaussian

random vector with mean [ W1 2 } and covariance matriz 3, and H is defined by:

~ © [T —my —mae— 0avV2u my+ ma+ ooV 2u 2
H (my,ma,01,00;v) = -3 ; G ;v e du
1 1

(3.4.24)
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Proof. See Appendix 3.6.2.11. O

The cumulative distribution function N (J;,y; { W1 M2 } ,E) is efficiently computable. The

task is now to compute H (my, mg, 01,092;v). This is done below.

Series expansion.

Proposition 3.4.10. H (m1, mag, 01, 09;v) has the following series expansion:

. _ 205 \"
_ o1 _m2 S 1—-v n 72 =~ m1(7%—m20% maoi <T>
H m 7m ,O',O';V = —¢€ 252 F +*,7 g 9 7_n
( 1 2,01,02 ) 2% Z ( 2 2 20% 0‘10'25'ﬂ 0'25'\@

n!
n=0
(3.4.25)
where M =my + mg and & = \/o? + 03.
Proof. See Appendix 3.6.2.12. O

The terms I’ (I*T” + 3, %) can be computed using the recurrence relation (3.4.20) (see the
mm’%—mga% mo1
0'10'25'\/5 ? goV2’
puted using the recurrence relation (3.4.15) (see the discussion following proposition 3.4.5).
This provides an efficient way to compute H (m1, meo,o1,09;v), and hence the CES function
GT (t,Cy, Dy) (via equations (3.4.9), (3.4.12) and (3.4.23)). Such an implementation is provided

in Appendix 3.6.3.3.

discussion following Proposition 3.6.2), and the terms G ( —n) can be com-

Approximation for large positive m. Equation (3.4.25) involves the coefficient exp (—%)

Similarly to Section 3.4.2.5, this can prevent H from being correctly computed when m takes
large positive values. In that case, the following approximation can be used:
(3.4.26)

14
~ m (01\/5> V252 my M — T -2 L3
H(ml,mQ,Ul,JQ;V)ﬁTexp W N 0_727 o1 7[ % 01{1% :|? % 1_{_%
1
The derivation of this expression is detailed in Appendix 3.6.2.13. Figure 3.4.3b illustrates the
approximation (3.4.26) on an example, where it is compared to the series expansion (3.4.25).
Again, the approximation is quickly very accurate, and enables to consider large positive m.

Approximation for large negative m. Similarly to Section 3.4.2.5, we provide an upper bound
useful for large negative m.

Proposition 3.4.11. Suppose v > 0. Then the following holds:

. 2\"” ioonw 1 o2
OSH(ml,mmUl,Uz;V)§7T<Ul~\f> /\/’<m2;x+m5{0 0};102 ‘o2 ])

o1

Proof. See Appendix 3.6.2.14. O
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3.4.2.7 Derivatives of the CES function

Thanks to the various results established in the previous sections, we are now able to compute the
partial derivatives of the CESF function. They appear in the dynamics of the electricity forward
prices (3.3.13) as well as in the hedging strategies of electricity derivatives (see Proposition 3.3.7).

Proposition 3.4.12. The following derivatives hold:

0g vy ~/T—m m
(m, o) = - 0 (S v 1)
am ﬁ(aﬁ) +1 ENCRENG)
O0H v ~
87 (m17m270-170—2) = _—fyl,_i_lH (m17m270_170_2;y+ 1)
mi T (01\@)
oOH vy ~
87 (m17m2701702) - g (m1701) q)N (0;m2702) - —V-‘,-IH (m17m2701702; 14 + 1)
ma2 77(01\/@
oH

=G (my,01) PN (0;ma, 02) + p— (m1,ma,01,02)
mi

These formulae allow to compute the derivatives of GT (t,z,y):

For2<i<n—-1land1l<k<n:

8GT oH i, oOH 0 i A

L 01,0 =70 (2L (a1, 17) 20 (o, 27.077)
e —apr—ty((OH (4,

8CCk (taCt7Dt):e W(T t)<am1( 7,+17m1Da z+1701 )+g( m;iq,0 z+1) (I)N(O mlDygl )1{k§i}

OH (_, _i1D —pn -i-1,D D D
_Tm <m?)mll b ,O'in’O'i b ) g(mzao-z)(pN (0 mll ! O-i ! )1{k<z})

Fori=1ori=n:

oGT OH
t.C,. D —ap(T-t) -n =-1,D —-n =1,D
8y ( ty t) —€ 8m2 (m27m1 0-270-1 )
aGT oH (_, _ —n = -n —n = —
N (t,Ct, Dy) = e (1) (6m1 (mQam% P.6%,6 1D) + G (my,0%) PN (0;m1’D701’D) 1{k1}>
oGT g oOH _
n _ _—ap(T-t) (YY (-nD —nDY Y n -n—1,D —n —n—1,D
8y (ta CtaDt) =—e P <8m (ml 01 ) 6m2 (m » My 10ny 01 )>
oGT 0g OH _ _
n _ 7ak(T t) —n,DY —n -n—1D —n —n—1,D
81‘k (ta CtaDt) - (3m (m 01 ) 8m1 ( ns 11 »“nor Y1 )
-G (mn7 Un) PN (O m? b D7 5{1_17D) 1{k<n}>
Proof. See Appendix 3.6.2.15. O

This ends our derivation of results and algorithms to compute GiT (t,Ct, Dy) and its derivatives.

3.4.3 Pricing and Hedging

Finally, using the algorithms from Section 3.4.2 and our dataset, we briefly test and discuss the
pricing and hedging of some of the derivatives analysed in Section 3.3.
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3.4.3.1 Electricity futures

The simplest test to perform is the partial hedge of electricity futures using fuels futures. Re-
calling equations (3.3.11) and (3.3.13), one can see that the algorithms from Section 3.4.2 allow
us to compute F¥ (T) and dFf (T'), which are needed to simulate the partial hedge portfolio.
We consider a 3-month electricity futures with a delivery period of one single hour. We use a
constant rebalancing stepsize of one day, and neglect transaction costs. Figure 3.4.4a depicts
the distribution of the final hedging error, estimated from a sample of 1000 realizations. For
comparison, the distribution of the hedging error before maturity is represented as well, for
different remaining maturities.

Distribution of hedging error: Time evolution Standard deviation of hedging error (in €)
025 4 Remaining maturity
— 14 days 15 5
7 days
4 days
—  Odays
020
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015 4
010
5 —
005 4
000 o t\ 0
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-20 0 20 40 60 20 0 10 20 20 40 50 60
Hedging error (in €) MNumber of days to maturity
(a) Distribution (b) Standard deviation

Figure 3.4.4: Hedging error

One can observe that up to two weeks before the expiration of the 3-month futures, the hedge
generates hardly any error. However, during the last days of the product’s life, the distribution
of the error widens considerably. The standard deviation of the error, for instance, culminates
at maturity, as shown by Figure 3.4.4b. Similarly, the asymmetry of the error culminates at
maturity, where a positive skewness of 8.7 is measured (The maximum hedging error at maturity
reaches 212€ on this sample. For the sake of readability, the hedging error on Figure 3.4.4a was
limited to 80€). To sum up, depending on the time to maturity, two different behaviours can
be observed:

o Far from maturity, the partial hedge is almost perfect. Indeed, recall equations (3.4.6) and
(3.4.7). Because of the coefficients e=*P(T=%) and e=*(T=% (and the hypothesis of constant
volatilities, see equation (3.4.3)), the weights G} (t, C}, D;) can be considered constant when
T —t > 0. In this limit, the electricity futures are only driven by the fuels risks, ie. the
electricity futures behaves like a basket of fuels futures. Consequently, the partial hedge turns
out to be an almost perfect static hedge. With our estimates of ap and «; (around 70), this
behaviour can be considered to hold up to two weeks before maturity.
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ap(T=t) and

e Close to maturity, the partial hedge is almost useless. Indeed, the coefficients e~
e~(T=t) hecome no longer negligible, and consequently the unhedged risks stemming from
demand and capacities start to drive the electricity futures. In fact, the partial derivatives of
GT (t,Cy, Dy) can become huge, overwhelming the hedged fuel risks. It is such so that even if
demand and capacities happened to be tradable assets, the necessary use of discrete hedging
would lead to hedging errors similar to Figure 3.4.4. This behaviour is analogous to classical
barrier options close to expiry while close to the barrier, in which case static hedging is to

be preferred to dynamic hedging.

3.4.3.2 Spread options

Finally, we look at the prices of spread options obtained in our model. Using the results in Section
3.3.4.1, we compute the prices of options with payoff (Pr — hy Sk — K)+, K > 0, i.e. European
calls on dark spread with instantaneous delivery period. We compute equation (3.3.19) using
numerical integration, replacing the integration on R? (the spread Y% being the exponential
of a Gaussian random variable) by an integration on the hypercube [0, 1]3 using the bijective

transformations y = m. Figure 3.4.5a illustrates the price surface for different strikes K

and different instantaneous maturities 7.

Marginal oil probability (30)
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(a) Price surface (b) Probability of marginal oil

Figure 3.4.5: Call on dark spread

The most visible effect is that of seasonality. The shape of the seasonality is driven by the
quantity P (Dp > C1), which represents the probability of using the most expensive fuel 57 to
produce electricity at time T'. This quantity is depicted on Figure 3.4.5b for comparison. Recall
the weekly seasonality on demand and the deterministic evolution of installed capacities (equa-
tion (3.4.4)). Here the middle of the time period covers the next winter, where the likelihood of
using the expensive oil is at its highest.
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3.5 Conclusion

This chapter is a contribution to the pricing of contingent claims on electricity markets. As
opposed to the previous version of our model presented in [3], the introduction of a scarcity
function allows to capture the electricity spot price spikes at a cheap cost (only two param-
eters more, that can be easily estimated). The electricity spot price model developed here is
particulary well suited for spread options on the spot since it is based on the economic relation
that holds between fuel prices and electricity spot prices. Precise evaluation of electricty spread
options are of main importance since they are the building blocks for the pricing of generation
assets. Our structural risk-neutral model with scarcity function should enable us to assess in a
near future the problem of the optimal timing of investment in generation assets.

Moreover, for the sake of simplicity, we considered in this work only diffusion processes. While
this framework seems reasonable for such processes as demand, capacities, and some fuels like
oil and coal, it may be too restrictive, for example, for the gas price, which is noticeably prone
to spikes. However, enriching the dynamics of some fuel prices, for instance by adding a jump
component, would not alter the general methodology developed in this chapter. At the cost of
more complex computations, it may refine the pricing of such electricity derivatives as spark
spread options. This is a direction we plan to explore in our future research activities.

3.6 Appendices

3.6.1 Dataset
3.6.1.1 Retrieving the residual demand

RTE provides the following data, with their descriptions:
Demand:=Power Consumption+Network Losses —Pumping
Network Losses:=Power Production+Physical Import—Power Consumption—Physical Export
Interconnection:=Physical Export—Physical Import
(Incomplete) Production:=Hydro+Nuclear+Coal+Oil
In short, the following equations hold:

D=C+L— Pump

L=P-C-1

P =H+ N + Coal + Oil
The two first equations yield:

D+ Pump=P—-1

The available production data P covers, quoting RTE, “more than 90% of the generating units
that are connected to the French transmission network”. It covers therefore slightly less than
the overall production P. Regarding the fact that RTE does not provide the production of
the smallest units (<20MW), nor the production of non-hydroelectric renewables, we make the
following reasonable assumption:

P=R+H+N+Coal+0il = R+ P
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where R denotes the production from non-hydroelectric renewable energies. Consequently, the
residual demand can be retrieved as follows:

Residual Demand := (Total Demand) — (R+ H + N)
=(D+1I+ Pump)— (R+H+ N)
=P-R-H-N=P-H-N

Therefore computing the residual demand only requires ]5, H and N, which are available from
the same RTE record file.

3.6.1.2 Retrieving fuel capacity

RTE provides records of the actual production and the effective availability for each fuel. What
corresponds to our capacity variables C¥, 1 < i < n, is the effective availability. However, these
data must be slightly adjusted first, as the comparison between actual production and effective
availability reveals that even when electricity demand is at its highest, the actual production
never reaches the effective availability. This phenomenon can be explained by the steady presence
of primary and secondary reserves. For the accuracy of the model, in particular for the accurate
detection of the marginal fuels, we correct this effect by the following adjustment:

C} :=0.94 x (coal effective availability) |, C? :=0.80 x (oil effective availability)

The two coefficients were inferred from the data.

3.6.2 Proofs
3.6.2.1 Proposition 3.4.1

Proof. SDEs (3.4.2) have classical explicit solutions, which combined with equations (3.4.1) yield
at time T, starting from time ¢:

T
Dp = fp(T)+e T (D, — fp () + / e T=s)pqyy P
t

T
Ch = fi (T) 4 e~ (T (C,;" — fi (t)) + / e~ T=9) B, dW; (3.6.1)

t

In particular, Dy and C%» are Gaussian random variables. Computing their expected values and
their variances (using Ito’s isometry) concludes the proof. O

3.6.2.2 Proposition 3.4.2

Proof. When n = 1, then I; = |—o0, +00], and consequently equation (3.4.5) becomes G (¢, Cy, D;) =
E [g (Cr — Dr) |.7-"1P ’C}. We use Proposition 3.4.1 and the independence between the processes

C and D to deduce that, conditionally to F*°, Cp — Dy ~ N (1, &) where m = me T — me

2
and 62 = (01,7)" + (o). Therefore G7 (t,Cy, Dy) = E [g(Cr — Dr) |F”| = G (m,0). O
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3.6.2.3 Proposition 3.4.3

Proof. For every 1 <i < j <n, define C}7 := ¥7_. CF. Thus, for 2<i <n—1:

G000 =2 [o (O~ D) oy 72 2 o (O D)y oy
—F :g (e 1{DT<5;1.} 7O ~E g (Cr" - Dr) 1{%@?*1} yftD’C]
e :g (05 r) + 01y, ;gw} 362)
oo (T - 0) <Oy ;fuc]

Using the same arguments as in Section 3.6.2.2, 6%,? —Dpr ~ N (mi’D,Eri’D) where m’;D =

. N2 . 2 2 :
i k D —i,D . i k D . —t+1,n _ _
>ke1 M — myp and (0'1 ) = > b1 (Ut’T) + (O’uT) . Similarly, Cp " ~ N (M}, 074 1)
_ 2
where mf, | = i,y myp and (674,)" = Yi_i (O’ET> . Consequently:

2o (05 P+ )11y f]

=E |E

o(OF ~Dr) 4O Y1y, ] mac]

=E |G ((élﬂ _ DT> + m?ﬂ,&{ﬂrl) 1{6?_%20} FDO

00 | |
= /0 G (z+mi,,0) PN («T;ﬁlzl’D7 5;,13) d
O

where ®y (z;m,0) is the density of a Gaussian random variable with mean m and variance
02 > 0. Performing the same calculation for the second expected value of equation (3.6.2), we
get, for 2 <7 < n — 1, the desired result. In the cases when ¢ = 1 or ¢ = n, few simplificating
adjustments from the previous calculation give the desired results.

3.6.2.4 Proposition 3.4.4

Proof. The random variable X ~ N (m, o) can be written as X = m + o N where N ~ N (0, 1)
is a standard normal variable. Thus G (m,o0) = E[g(X)] = E[g(m + oN)]. Now, we remark
that the function g can be written in the following way:

g(x) = %1{$>g} + M1, 5
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1
v

where Z = (77) 7. Therefore:

Q(m,a):E[g(m—I—aN)]:/Rg(m—l—Jx)

-y oo ~y 1 _ﬁd
B $+/m(m+ax)yx/27re A

_MN< ) U”\/ﬂ/ 71}6_%6&
v (557) 4 g(i‘?fH

where G is defined by equation (3.4.14). O

7T

3.6.2.5 Interpretation of the EIGS integral

The EIGS integral has some probabilistic interpretations. The following proposition provides
one of them, involving Pareto distributions.

Proposition 3.6.1. If v > 1 and x +y > 0, then:

5 VT
G(z,yiv) = Dz 1y Pnyp (\/§y> (3.6.3)

where P ~ Par (1/ —1,V2(x + y)) is a Pareto random variable, N ~ N (0,1) is a standard
Gaussian random variable independent of P, and ®n1p is the density of the sum N + P.

Proof. We recall that, for & > 0 and z,, > 0, the probability density function of the Pareto
random variable Par(a, zy,) is given by ®p (230, ) = a4 1ipsg,}- When v > 1and x4y >
0, this Pareto density can be introduced as follows:

2

V2
1 (VZy—u)®

~ AT f, o (= 1R )

- (V—l)(\iz—y)l’—l/Rq)P (USV—17\/§(1‘+ZJ)) Dy (ﬂy—w(),l) du

JT
e L)

where @ (z;m, o) is the probability density function of a Gaussian random variable with mean
m and variance 02, and ® x4 p is the probability density function of the sum of a standard Gaus-
sian random variable N ~ N (0,1) and a Pareto random variable P ~ Par (V —1,V2(x+ y)),

N and P being independent. We have used the change of variable u = (y + 2) v/2 for the second
equality:. O
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3.6.2.6 Proposition 3.4.5

Proof. Suppose v # 1. Then:

g(m,y; v) = /:0 ((y + z)_l’> (6_22> dz

_ [(y jf):yezzr - /:O ((y ij)j”) (22 a:

T

(x + y)l_V 2 o0

T 1y e+ 1—v (y+2)"7" e dz
€T
1-v o)
S e ) ;_ y) e 4 1 2 / u' ™" (u —y) e~ (=9’ gy
—v —V Sty
1—-v i
_ ety ) e + 2 /OO u? Ve~ ()’ gy — y/oo ut e~ v’ gy
1—-v L—v [ Jayy Tty
1-v r oo 00
2
= ety 7 ;_;y)y e 4 T / (y+2)2" e de — y/ (y+2)'7" ez2dz}
LJ x x
1-v
T4y .2 2 15 ~
= —(1_)V€ Ty, 9@y =2) —yG (2 y - 1)}
O
3.6.2.7 Proposition 3.4.6
Proof. Using the definition of I' (equation (3.4.17)), we obtain:
1—v 1 *° 1
F( 5 ,(x+y)2;—2y;—2):/ Q@exp(—t—i-Zy\/i)dt
(z4y)” ¢ 2
:elﬂ /OO LGXP (_ [\/Z'—y:|2) dt:2@y2 /oo $6722dt:26y29~(|x+y|—y yV)
(z+y)? tH;/ lz+y|—y (y+2)" e

where we performed the change of variable 2 = vt —y. If 2 4+y > 0, then [z +y| —y = =
and we get (3.4.16). If x +y < 0, then |z +y| —y = —x — 2y, and the change of variable
{(X=—2-2y, Y=yl {z=-X-2Y,y=Y} gives:

G(X,Y;v)=G(~z—2y,y;v) = Lewr (1 — V,(w+y)2;—2y;—1>

2 2 2
= VT X Y)Y =) = 2 YT
5¢ ( 5 )75 ; 2) 5¢ (

1
(X 4Y)E -2y =
2

and we have recovered (3.4.16). Interestingly, the relation holds whatever the sign of x + y is.
However, we recall that, to ensure the definition of G (x,y;v) for any v, we imposed x +y > 0
(see equation (3.4.14)). The proposition provides an extension to z + y < 0, as long as the set
of parameters ensure that the EIG function is well defined. 0

3.6.2.8 Computing the EIG integral when 5 < —1
It can be shown that the condition 8 > —1 is required for the convergence of the series expansion

(3.4.19). Therefore, before exploiting this expansion , the following ordered preliminary steps
are to be performed:
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Proposition 3.6.2. The following relations hold:

1. If =0, then I' (a, 2;0; 8) = T' (v, )
a) If =0, then T (a, 2;b;0) = e T (o, )

wroel (e, 0+ 1)) ifd+1>0

b) If = —1 then I' (o, z;b; —1) = (_Jm,a ifb+1=0,a<0andz >0
400 else

c) If < —1andb >0, thenI'(a,x;b;8) = %F (—Q b:U*fB;b%; l)

Proof. The four relations are proved below: O
L T (a,2;0;8) = [t e tdt =T (a,z)
a) T (a,z;0;0) = [t le™"=dt = 7T (o, 2)

a—1

o U —u _du 1 .
o Jwi1ye (le) e it = ool (@ (b+ 1) 2)if b+1>0
b) Tleasb; —1)=[;7 107 tem0Fi=q oo ja—iqy — 22 fb+1=0,a<0,2>0
o0 , else

¢) If B < —1and b > 0, the change of variable u = bt~? provides the result ' (o, x; b; ) =

g 1
%F (—%, bz P b5, %) More generally, the constraint 5 < —1 can be replaced by 5 < 0,

but when 5 € [—1,0[, then % < —1 and thus the relation is of no help to compute

I (o, z;0; B).

After these four preliminary checks, I' (a, x; b; 3) is either already computed, or is to be computed
with 8 > —1 (as if § < —1 then % > —1), in which case the series expansion (3.4.19) can be
exploited.

3.6.2.9 Large y asymptotics

Let y take large positive values:

~ o0 1 1 00 1 1 00
G (z,y;v) = / e dz = / e Pz = / exp (—Vln (1 + z) - zz) dz
» (Y+2) v Ja (1 + z) v/, y
Y
1 [ 1 2 S 2
/ exp (_Vz —_ 22) dz = — exp LQ / exp | — <z+ V) dz
v e y v 2 ) ), 2y
1 2 o0 1 2
= —exp % / e dz = = exp V—z ﬁ{l/\/’(ﬂ(zﬂry)ﬂ
Y 4y T+ i 4y 2y

We have approximated In (1 + i) by its tangent in zero % because of the Gaussian kernel that

12

peaks at z = 0, which is where precision is needed. Ultimately, we have approximated ﬁ
Y

z

by e7Vv. Tt seems preferable to the tangent in zero of ﬁ directly (namely 1 — 1/5) ase v
Y
behaves more like the initial function (Hilg)” However, the difference, of course, vanishes for

large y.
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3.6.2.10 Proposition 3.4.8

Proof. Let y < 0 be given. We recall that, by definition of the function G (z,y;v) (see equation
(3.4.14)), x +y > 0. Thus, using equations (3.4.16) and (3.4.17):

~ 1 _»° 1—v 1 1 _ o [ 1ty
)= Loty 2._2-_>::y /1 i —t 4 2yV/1) dt
g (1"7 Y; V) 26 < 9 ($ + y) ) Y; 9 26 (ery)? 2 exp ( + y\[)
< 1e_y2 exp (— (x+ y)z) /00 =5 exp (Zyﬂ) dt
2 (a+y)*

— oY (z+y)? (—2y)" " / w Ve tdy = e~V (@)’ (—29)" "' T (1= v, (=2y) (x +v))
(—2y)(z+y)

where we have performed the change of variable u = —2y+/t for the next-to-last equality. O

3.6.2.11 Proposition 3.4.9

Proof. Equation (3.4.13) yields:

1 (ac—mg)2
H(mi,mz, 01,0 x+my,01) Py (x;me, o9)dx / (x+mq,0 exp|————|dx
(m1,ma,01,092) /Q 1,01) @n(z;m2, 02) g( 11)2\/% P( 202

o0 —mi—ma—oav/2u\ 1
_/ Q(m1+m2+02\[u G1>—exp du = M/ (x e a2\fu)e_“2du
mo f _m2 01
oov2Z oov2
* ~<f—ﬂn—nm—amfunn+nu+amfu >_ﬁ
v e " du

v
77(01\/5)” 01\/§ ’ 01\/§

m2
k) T — - 1 u2 ~

—M/ 2 N,(x mi m2+02u) 677du+%[—[<m17m2,0—1’0—2;y)
—00 o1 V21 7r<01\/§)

+

The integral above can be computed as follows:

mo - my  w—my-—mytogu
o2 T —mi — Mmoo+ o2u 1 .2 o9 o1 1 22 1 .2
N e 2du= e 2 dz e 2 du
_ o1 V2T oo J—00 V2 V2T

oo [0k o o
: / exp | —= <v + 2u> +u?| | dvdu = / > / ' exp
2 (o} 27T

T—mq—mg
1 £ o 1
1+ u? 4+ 2= uw + 02 dvdu—— : ' exp —f[u U}Zfl Y dvdu
1+% 2 1 -3
where Y71 = of o1 | and consequently ¥ = - Noting that |X| =
o2 —-92 1 + -2
o1 1 o1 o?
m2 ~ w2
1, we have shown that f_”cfoN(H“;—W> %ﬂe‘Tdu = N(ZL;, == 0,0, E), which
concludes the proof. O
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3.6.2.12 Proposition 3.4.10
Proof. Using equations (3.4.24) and (3.4.21), and using the notation m = m; + my and o =

\/ ol + o3

H(ml,mQ,UI,JQ;l/) :/ mo
e~

© (T —m—09vV2u m+ o9V 2u 2
g , v e " du
o1V2 o1V?2

metog /o ~ m+aoay/2u)"
_my_2° — 2’20% n!
o2V2 -
_ 2
(it ) (R )
=2 T2t ) ) \ T o2 -

T2
The integral can be computed as follows:
/OO m+ oov/2u\ " m -+ o9v/2u ? 2 4
——— | exp|—-|—————] —u U
—0’2’“‘% o1v2 o1V?2
/°° m+o2v/2u) " 72 ( mos )2 m?2 4
= ——— | exp|—— — | du
__m2 o1V?2 P 0% a2v/2 252
)
—e‘ﬁg 002 > (ﬁwl +— )n 2y =e” 200_1(0_2)ng~ oS __m20%7 ﬁpigl ,—N
o JMio%™ m201 ()'2\[ o o 0'10'20'\5 0'20'\/§

01020

where we have used the change of variable z = C% (u + _";“\’}) for the next-to-last equality.
Inserting this formula into equation (3.6.4) yields the desired result. O

3.6.2.13 Large m asymptotics

Let m take large positive values:

m ~— - p—

H (my,ma,01,00;V) = Gl 02\[u, m+02fu’ e~ du
Ul\f 0’1\[

o0 o0 1

22 2
= - e “ e Y dzdu
mo z—m—09v2u (m+a'2\[’u, +Z)
V2

mo

702\/5

sz 471\[ o1
Jl[ 1 2 _uzd d
(& e zZau
mo T—1m— o‘g\fu 02\/§+ZU1\/§ v
0'2\f Ulf T i

0_1\/> s = TV; oou 9 2
: ! exp (—Vln (1 — u— — z0_1> _ ) dzdu
m

1
2 mr
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o2 o2
142 _o2
where u = ¥22, v = & o2 and X1 = ts i o1 and consequently > = oL
= m Tim s .k QUENLY == 1 a5 14 23 |-
o1 o1 ot

In particular, |X| = 1. Thus, we have shown that, for large positive m:

1 a2

v
~ R AL = IS N P

H mi,Mmyo,01,02,V) = — —
( ’ I ) mY 2m?2 09 o1

3.6.2.14 Proposition 3.4.11

Proof. Suppose v > 0. Then:

~ o oo 1 _z2 _u2
H(mlam2701702;y): ~ V3 7 € e dzdu
__mg r—m—o9V22u m+02fu + P
ooV2 o1V2 o1 f

& >~ 1 m + 0'2\/§U 9
= . —expl|—|(v——F— | —u”]dvdu
me_ )z v¥ o1v2

Toav2 U V2
2 Voo o
< (Ulf> / /~ exp (— <v _mt U\?[u ) dvdu

(=) 2T () -5 )

:(Ulfﬂ> /:/j%e}{p(_;[x | 1; 1"1 } l;])dydx

() (Bt ok )

3.6.2.15 Proposition 3.4.12

Proof. First, differentiating equation (3.4.14) yields g—g (z,y;v) = —W@‘“’j and g—g (z,y;v) =

—vG (z,y;v + 1). Using these expressions to differentiate equation (3.4.13):

G M T—m ~
a—m(m,o)——;(I)N (0,0,1)—!- (gﬂ)y\/?r<_0\/§aff

1 8§<§m m ) Moy (G )+ 0 ( —m)?
a. ) v = — x;m,o —F—e€X B S _
V2 0y \ ov2 o2 N Vo2 p 202
T vy T—m m

(Uf;Llfg(x"_?"’%wH): (af)”“\fg(a e+

1 ag(f—m m ‘y)
ov2 o2’
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because = = M. Thus, differentiating equation (3.4.10) and using equation (3.4.24):

OH * 909G vy

7(m17m2701,02): 7(1“{‘7”1,0‘1)@]\[ (l‘,m270'2)dx:—#
omy o Om (01\/5) + 7

X T—mi—T M+ v
/ Q( : ,— ;V+1> DN ($§m2302)dl’:_—7,/+1H(m17m270'170'2§7/+1)
0 0—1\/5 0—1\/§ 77(0'1\/5)

X

0H

67m2( (x;me,09) dx

0 o0
mlam2701702):_/ g($+m1,01)7N
0
=G (my,01) Py (0;me,09) + I (x +mi,01) PN (z;ma, 02) dr

0
v ~
—VMH(mbm%UlaO'Q?V—F 1)
#(o1v2)

Now, for 1 <i <nand 1 <k < n, we differentiate equations (3.4.11):

— g (m17 Ul) <I>]\f (Oa m2702) -

omi _ omy _ —ax(T—t)q omy” __ap(r-1) omy” —ay(T—1) 1
ab; — ° o ack ~ © i<k} > Tap; T 7€ 7o {k<i}

Using all these results, the differentiation of equations (3.4.9) and (3.4.12) is straightforward. [

3.6.3 Algorithms

This appendix provides the guidelines to compute efficiently the trickiest quantities from section
3.4.2. The other quantities are straightforward to compute from these building blocks.

3.6.3.1 Extended Incomplete Gamma Function

Following the algorithm described in Section 3.4.2.5, we give details a numerically stable com-
putation of I' (oz,x; b; —%) We exploit the sum (3.4.19) and the recurrence relation (3.4.20).
Denote as z,, the n-th term of the sum :

Tp =T (a + n,x) (=)
2 n!

Then, for n > 2, using (3.4.20) :
b2

ST

ApTp—2 + Cp

where a, = a + %2 and ¢, = e*zx‘”‘nT_Q(_b)n computed usi = L and =
n = 2 n = e puted using an, = anp—1 + 5 and ¢, =

—%\/Ecn,g. Using these relations, the implementation of an algorithm to compute the EIG

function is straightforward.

3.6.3.2 Extended Incomplete Goodwin-Staton Integral

Combining the different methods described in section 3.4.2.5, the implementation of an algorithm
to compute G (z,y;v) is also straightforward. The only remaining detail is to choose when to
switch from one method to the other. We propose to use the large positive y approximation
when y > 10, to test the large negative y upper bound whenever y < 0 (before using the
series expansion if the upper bound is consider not small enough, say > 10730), and the series
expansion in the remaining cases.
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3.6.3.3 ﬁ (ml,TTlQ, 01,02, V)

The first step is to build an efficient implementation of the sum (3.4.25). Let skip the multi-
plicative constant for the moment. Denote as x,, the n-th term of the sum :

n ~ b"
Ty =T (a—i— 2,x> Q(X,Y;—n)m
where z, b, X and Y are constants. In order to exploit the recurrence relations (3.4.15) and
(3.4.20), for efficiency, while being numerically stable, we decompose z,, as:
_ _ n .y (V)" _G oy VB
Ln = Pnqn pn_r(a+2,l‘) Hn Vi Qn—g(XaY, n)HZl:l\ﬁ

=1

For n > 2, the recurrence relations result in:

—14+2 —
Pn=b s+ en Gn = 5= qn—2 + Y Yau1 + dy

n _ 2 n
where ¢,, 1= 2% le~® 1%@)% and d, := %;fy (()ﬁgli)g) are computed using ¢, = %qu and

i=1

dn = (X+};)\/Edn—1 .

N
Using these relations, the implementation of an algorithm to compute the sum (3.4.25) is
straightforward. Combining it with the different algorithms from Section 3.4.2.6, H (my, mg,01,02; V)
is easily computed. Again it remains to choose when to switch from one method to the other.

We propose to use the large positive y approximation when y > 10 max (o1, 02), to test, if v > 0,

the large negative y upper bound whenever y < 0 (before using the series expansion if the upper
bound is consider not small enough, say > 1073), and the series expansion in the remaining
cases.

85






4 A probabilistic numerical method for optimal
multiple switching problem in high dimension

In this chapter, we present a probabilistic numerical algorithm combining dynamic programming,
Monte Carlo simulations and local basis regressions to solve non-stationary optimal multiple
switching problems in infinite horizon. We provide the rate of convergence of the method in
terms of the time step used to discretize the problem, of the regression basis used to approximate
conditional expectations, and of the truncating time horizon. To make the method viable for
problems in high dimension and long time horizon, we extend a memory reduction method to
the general Euler scheme, so that, when performing the numerical resolution, the storage of
the Monte Carlo simulation paths is not needed. Then, we apply this algorithm to a model of
optimal investment in power plants in dimension eight, i.e. with two different technologies and
six random factors.

4.1 Introduction

This chapter presents a probabilistic numerical method for multiple switching problem. Our
approach in this chapter takes advantage of the considerable progress made in the last ten
years by numerical methods for high-dimensional American options valuation problems. For an
up-to-date state of the art on this subject, the reader is referred to the recent book [31].

In this chapter, we first adapt the resolution of American options problems by Monte-Carlo
methods and regression ([83, 102]), to the more general class of optimal switching problems.
The crucial choice of regression basis is done here in the light of the work of [28], so as to
obtain a stable algorithm suited to high-dimensional problems, aiming at the best possible
numerical complexity. The memory complexity, often acknowledged as the major drawback of
this Monte Carlo approach (see [32]), is drastically slashed by generalizing the memory reduction
method from [36, 37, 38] to any stochastic differential equation. We provide a rigorous and
comprehensive analysis of the rate of convergence of our algorithm, taking advantage of the
works of, most notably, [27], [100] and [55]. Note that such unusual features as infinite horizon
and non-stationarity are encompassed here.

Finally, we apply our algorithm to a long-term investment model for electricity generation based
on a structural model for the spot price of electricity developed in [3] and [1]. This model has
been shown to suitably reproduce the statistical and dynamical properties of the spot price
of electricity. Nevertheless, to suit the purpose of long-term electricity price modeling, it has
been adapted and extended in several directions (cointegrated fuels and COy prices, stochastic
availability rate of production capacities, new scarcity function). The resolution of this problem
using our algorithm is illustrated on a simple numerical example with two different technologies,
leading to an eight-dimensional problem (demand, COq price, and, for each technology, fuel price,
random outages and the controlled installed capacity). The time evolution of the distribution
of power prices and of the generation mix is illustrated on a forty-year time horizon. To the
knowledge of the authors, the highest dimension considered so far in the case of long-term
investment models in electricity generation was three ([87, 23]).
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CHAPTER 4: A PROBABILISTIC NUMERICAL METHOD FOR OPTIMAL SWITCHING PROBLEMS

The contribution of the chapter is twofold. Firstly, it provides a comprehensive analysis of
convergence of a regression-based Monte-Carlo algorithm for a class of infinite horizon optimal
multiple switching problems, large enough to handle realistic short term profit functions and in-
vestment cost structures with possible seasonality patterns. Secondly, we implement successfully
our algorithm to a new stylized investment model for electricity generation, by adapting and
generalizing a memory reduction method. A numerical resolution of this investment problem
with our algorithm is illustrated on a specific example, providing, among many other outputs,
an electricity spot price dynamics consistent with the investment decision process in power
generation.

The outline of the chapter is the following. Section 4.2 presents the class of optimal switch-
ing problems studied here, including the detailed list of assumptions considered. Section 4.3
describes the resolution algorithm and analyzes its rate of convergence, in terms of the dis-
cretization step, of the choice of regression basis, and of the truncating time horizon. Section
4.4 details the computational complexity of the algorithm, as well as its memory complexity,
along with the construction of the memory reduction method. In Section 4.5, we implement and
illustrate numerically our algorithm on an investment model in electricity generation based on
an extended structural model of power spot price. Finally, Section 4.6 concludes the chapter.

Notation
Here are some notation that will be used throughout the chapter:
o The notation 1 {.} stands for the indicator function.

e Throughout the chapter, C' > 0 denotes a generic constant whose value may differ from line
to line, but which does not depend on any parameter of our scheme.

 For any stochastic process X = (X,),-, taking values in a given set X, and any (t,z) €

R, x X, we denote as X% = (X;“")SN the stochastic process with the same dynamics as X,

but starting from z at time t: X = x.
o For any (a,b) € R xR, a Ab:=min(a,b) and a V b := max (a, b).

* Vp =1, the norms |||, and ||.|[, = denote respectively the p—norm and the L,- norm: vz € R"
and any R-valued random variable X such that E [| X|?] < oo:

1

1
lzll, = iy ) X, =EIXP]

-1
We recall that Vp > 1, Vo € R", ||z, <[z, < n' Iz,

4.2 Optimal switching problem

4.2.1 Formulation

Fix a filtered probability space (Q, F.F= (.7-})1520 ,P), where [ satisfies the usual conditions of

right-continuity and P-completeness. We consider the following general class of (non-stationary)
optimal switching problems:

v(t,z,i) = sup E /Oof (S,Xﬁ’x,fﬁ‘) ds — Z k(Tn, Cn) (4.2.1)
t

aGAt,i Tnzt
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where:

o X' = (X!7) ., is an R%valued, F-adapted Markovian diffusion starting from X; = x € R¢,

with generator L.

o I*=(I ?)szo is a cad-lag, R? -valued, F-adapted piecewise constant process. It is controlled

by a strategy «, described below. We suppose it can only take values into a fixed finite
set Iy = {i1,92,...,9¢}, ¢ € N* with iy = 0 (6 Rd/), which means that equation (4.2.1)
corresponds to an optimal switching problem.

« An impulse control strategy a corresponds to a sequence (7p,tn),cy Of increasing stopping
times 7, > 0, and F,, -measurable random variables ¢,, valued in I,. Using this sequence,
I = (I) 4> is defined as follows:

I?:L01{0§S<To}+ZLn1{Tn§S<Tn+1}€]1q
neN

Alternatively, o can be described by the sequence (7,,(n),cn, Where ¢, := tp — tp—1 (and
¢o := 0). Using this alternative sequence, I* can be written as follows:

IP=w+ Y Gel

Tn<s
e A is the set of admissible strategies: a strategy « belongs to A if 7,, — +00 a.s. as n — oo.

o For any (t,i) € Ry x I, the set Ay; C A is defined as the subset of admissible strategies o
such that I[* = 1.

e f and k are R-valued measurable functions.

4.2.2 Assumptions

We complete the above formulation with the following relevant assumptions.

Assumption 2. [Diffusion] The Re-valued uncontrolled process X is a diffusion process, gov-
erned by the dynamics

dXs = b(s,Xs)ds+o(s,Xs)dWs (4.2.2)
Xy = xz0€R?
where W is a d-dimensional Brownian motion, and b and o are respectively R%-valued and

R4 _yalued functions.

Assumption 3. [Lipschitz] The functions b : Ry x R — R? and o : Ry x R? — R4 gre
Lipschitz-continuous (uniformly in t) with linear growth: 3Cy, Cyr > 0 s.t. YVt € Ry, V (z,2') €

()"

b(t,z) = b(t,2")] < Cyplz—a/|
b(t,z)] < Cp(1+|z])

lo(t,z) —o (t,2")] < C,lz—2|
o (t,2)] < Co (14 [x])

89
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Remark 4.2.1. Assumption 3 is sufficient to prove the existence and uniqueness of a strong
solution to the SDE (4.2.2) (see for instance Theorem 4.5.3 in [73]).

Remark 4.2.2. Under Assumption 3, there exist, for every p > 1, positive constants C,, and p,
such that Vs > ¢ > 0 and Vz € R%:

B[

] <G (14 o) exp (py (s — 1) (4.2.3)

(use Burkholder-Davis-Gundy inequality and Gronwall’s Lemma, see for instance [73] Theorem
4.5.4 for the even power case).

Assumption 4. [Lipschitz& Discount] The functions f and k decrease exponentially in time:
3p >0 st V(i) € Ry x R x (I,)%:

ftwi) = e f(tz,0)
k (ta.] - Z) = e—pt% (taj - Z)
where the functions f and k are Lipschitz continuous with linear growth:

2
30y, Cr > 0 s.t. Y{(t,2,4, ), (¢,2,7,7)} € {Ry x REx (1)}

IN

‘f(t,x,i) — f(t',w’,i’)
Fte| < Cr+]al)

< Cro(t=t|+[G -9 -0 =)

Cr(lt—=t|+z—2'|+ i)

Moreover, we assume in the following that p > p1 where py is defined in equation (4.2.3).

Assumption 5. [Fized costs] The cost function k : Ry x RY — Ry is such that:
o Vte Ry, k(t,0)=0.
o In >0t VEER, V(i,j) € (1), {i # 5} = {k(t,j — i) > x}.
o (triangular inequality) Vt € Ry, V (4,4, k) € (]Iq)3 with ¢ # j and j # k:
E(t,k—1) < k(t,j—1i)+k(t,k—j).
Remark 4.2.3. The economic interpretations of Assumption 5 are the following:
1. There is no cost for not switching, but any switch incurs at least a positive fixed cost.

2. At any given date, it is always cheaper to switch directly from ¢ to k than to switch first from
1 to j and then from j to k.

Remark 4.2.4. Under those standard assumptions, the value function v from equation (4.2.1) is
well-defined and finite. Indeed, using equation (4.2.3), V (to,t,x,4) € Ry x Ry x R% x R with
to <t and Va € -Ato,i3

2 [l xeni)a] < o [T (e o
< Cf <e_pt + (1 + |z|) /00 e_psepl(s_to)ds)
t
< Cp(1+|z|)ertmrrio (4.2.4)
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where p := p — p; > 0 (Assumption 4). In particular, the costs being positive (Assumption 5),
and recalling (4.2.1), it holds that:

v(t,z,i) < Cr(l+|z))e (4.2.5)

4.2.3 OQOutline of the solution

From a theoretical point of view, the value functions v; := v (., .,4), i € [; from equation (4.2.1)
are known to satisfy (under suitable conditions on f; (.,.) := f(.,.,7) and k, see for instance
[98] in a much more general setting) the following Hamilton-Jacobi-Bellman Quasi-Variational
Inequalities (HIBQVI): V (¢,z,4) € Ry x R? x I

min {—881: (t.2) = Loy (t.2) = f; (6:2) , vy (6) e (v (00) — K (85 - i))} —0 (4.2.6)

together with suitable limit condition, which ensure existence and unicity of the solution to this
system (cf. [63] for instance).

Alternatively, the process v (t, Xt,4), ¢ > 0 can be characterized as the solution of a particular
Reflected Backward Stochastic Differential Equation ([64, 48]).

Moreover, the value function (4.2.1) satisfies the well-known dynamic programming principle,
i.e., for any stopping time 7 > ¢:

v(t,z,i) = sup E [/Tf (37X§’m7[g> ds — Z k(Tn,Cn) +v (77 Xﬁv‘”,lf‘) . (4.2.7)
t

A€ AL t<Tn<T

From a practical point of view, apart from a few simple examples in low-dimension, finding
directly the solution of the HIBQVI (4.2.6) is usually infeasible, and the numerical PDE tools
become cumbersome and inefficient in the multi-dimensional setting. Instead, probabilistic
methods based on (4.2.7), in the spirit of [32], are usually more practical and versatile.

Indeed, as the diffusion X is not controlled, this optimal switching problem can be seen as an
extended American option problem. This suggests that, up to some adjustments, the proba-
bilistic numerical tools developed in this context (see [28] for instance) may be adapted to solve
(4.2.1).

To be more specific, define a finite time grid [I = {tp =0 < t; < ... <ty =T} for a fixed T' > 0,
and consider the function v'! defined as v (equation (4.2.1)) but with the strategy set A replaced
by A C A, defined as the subset of strategies that can be modified only at the dates t € II.
In other words, the switching decisions can now only take place on the time grid II. Suppose,
moreover, that the cost function k is such that at most one switch can occur on a given date
ty (triangular condition). Then Vi € I, , Vz € R?, and V#;, € II, the dynamic programming
principle (4.2.7) becomes:

o (b, 2,1) = max { By (t, @) =k (b5 = 0) Lj | (4.2.8)
J€Elq

Ei(T,z) :=E [/Oo fi (s, x2) ds} (4.2.9)

T

trt+1
Ei (ty,z) :=E U fi (s, X807 ) ds + 0" (tkH,Xtt:ﬁ,z')] L k=N-—1,...,0 (4.2.10)
tk
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which is explicit in the sense that v'! (tg, .,.) directly depends on v' (41, .,.).

In practice, apart from the potential approximation of the stochastic process X and of the final
values (4.2.9), the difficulty lies in the efficient computation of the conditional expectations
(4.2.10).

In the American option literature, various approaches have been developed to solve (4.2.8) effi-
ciently. Notable examples are the least-squares regression approach ([83, 102]), the quantization
approach and the Malliavin calculus based formulation (see [28] for a thorough comparison and
improvements of these techniques). In the spirit of [33], one may also consider non-parametric
regression (see [74] and [101]) combined with speeding up techniques like Kd-trees or the Fast
Gauss Transform in the case of kernel regression.

Here, we intend to solve (4.2.1) on numerical applications which bears the particularity of
handling stochastic processes in high dimension (dim (X) = d > 3, with however dim (I) =
d' =~ 3, see Section 4.5). For such problems, the most adequate technique so far seems to be
the local regression method developed in [28]. We are thus going to make use of this specific
method to solve (4.2.8) in practice.

In the following, we provide a detailed analysis of the above suggested computational method.

4.3 Numerical approximation and convergence analysis

This section is devoted to the precise description of the resolution of (4.2.1), along the lines of
the discussions from Subsection 4.2.3. Moreover, the convergence rate of the proposed algorithm
will be precisely assessed.

4.3.1 Approximations

Recall equation (4.2.1) defining the value function v (¢, x,7) :

v(t,z,i) = sup E
OcE.At,i

/Oof (s, X207, 18 ) ds = 3 ki (i, Ca) (4.3.1)
t

Tn >t
We are going to consider the following sequence of approximations:
o [Finite time horizon] The time horizon will be truncated to a finite horizon 7.

o [Time discretization] The continuous state process X and investment process I will be dis-
cretized with a time step h.

o [Space localization] The R% valued process X will be projected into a bounded domain D,
parameterized by e.

o [Conditional expectation approzimation] The conditional expectation involved in the dynamic
programming equation will be replaced by an empirical least-squares regression, computed
on a bundle of M Monte Carlo trajectories, on a finite basis of local hypercubes with edges
of size 6.

The rate of convergence of the algorithm will then be provided, as a function of these five
numerical parameters: T', h, ¢, M and 9.
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4.3.1.1 Finite time horizon

The first step is to reduce the set of strategies to a finite horizon:

T
vr (t,z,i) = sup E / f(s,Xﬁ’w,I;")ds— 3 k(fn,gn)+gf(T,X;f,1%) 4.3.2)
acAf, t t<rn<T
g5 (T, ,4) = E/ f(s,XZ"”,i)ds] (4.3.3)
T

where 0 < t < T < 400, and .Azi C A;; is the subset of strategies without switches strictly
after time T'. Hence the final value g; corresponds to the remaining gain after 7.

Alternatively, one may choose, for convenience, another final value g instead of gy, as long as it
is Lipschitz-continuous and satisfies a suitable condition (cf. equation (4.3.20)). The set of such
functions will be denoted as ©4,. The difference between the two value functions is quantified
in Proposition 4.3.1.

This freedom on the final values will be used in practice to avoid a computation on an infinite
interval [T, 00 as in the definition of g.

From now on, we choose and fix one such g € O,.

4.3.1.2 Time discretization

Then, we discretize the time segment [0, 7']. Introduce a time grid Il = {tp =0<t; < ... <ty =T}
with constant mesh h. Consider the following approximation:

v (¢, z,i) = sup E
aEAEi

/tTf(s,X;@,Ig) ds— Y k(r,G)+g (T, X0 18)|  (434)

t<7, <T

where .Atr’[,; C AZ:i is the subset of strategies such that switches can only occur at dates 7, €
Iornit,T).

Now, with a slight abuse of notation, we can safely switch from the notation a = (7, (s),,~ to
the notation a = (74, tn),,>( (remember Subsection 4.2.1), replacing the quantity 3, <7k (7, (n)

by Crcrer b (Tun 18 4o 18) 01 by Socr crk (Tus tn1, tn), where k (t,7,5) = k(t,j — i). The

error between vy and vy is quantified in Proposition 4.3.2.

Next we also approximate the stochastic process X by its Euler scheme X = (X s)0< o with
<s<

dynamics:

dX, = b (77 (s) an(s)) ds+o (7‘(’ (s) ,Xﬂ(s)) dWs, 0<s<T (4.3.5)
XO = X0 € Rd

where Vs € [0,T], m(s) := max{t € II;# < s}. More precisely, we substitute the piecewise
constant X for X;. (Note that at this stage the process I is already piecewise constant).
The new value function reads:

o (t,z,i) = sup E
an.AEi

/tTf(yr(s),)‘(;fs),Ig)ds— > k(1) + g (T, X507, 1)

t<7m, <T

(4.3.6)
The error between vy and vy is computed in Proposition 4.3.3.
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4.3.1.3 Space localization

In order to derive a rigorous convergence analysis, our subsequent choices in terms of conditional
expectation approximation (Subsection 4.3.1.4 below) and specific choice of basis (Assumption
6) will require the underlying state process X to lie into a bounded set (cf. equation (4.3.16)).
Thus, we explicitly build such an approximation and assess the associated error. Remark,
though, that the usefulness of this step is more theoretical (for a proper convergence speed to
hold) than practical (on a finite sample, this localization step would be somewhat redundant,
and may safely be omitted).

Hence, let D = [-C, C’]d, C > 0, be a bounded convex domain of R that contains xy. For every
i=1,...,d, define the stopping time 7; and the killed process X*P = (XZ?D>0<t<T as follows:

no = if{te[0,1];X] ¢ [-C,C]}
X?D = Xti/\n st e [07T]

1<i<d

In other words the d—dimensional process XP = (XZ’D)O;ZT is equal to X most of the time

(i.e. when X, € D), except when one component of X, gets outside D, in which case the
corresponding component of X is killed and remains on the border of the domain D (the other
components being unaffected). In particular, the killed process X D is bounded and Markovian.

Finally, one can choose C sufficiently large such that

sup E H)_(t — XtDH <e (4.3.7)
te[0,7

for some € > 0 (in which case C' = C (T, ¢)). This is the parameterization of the domain D = D,
that we adopt in the following.

Define vf; as the value function vy from equation (4.3.6) with (Xw(t)) vert replaced by (Xﬁ%) -

The error between those two value functions is computed in Proposition 4.3.4.

Example 4.3.1. To clarify this construction of space localization, we explicit it on the very
simple example of a d-dimensional standard brownian motion (Wt),cjo 7). In this case, Xy =
X; = W;. In this example, equation (4.3.7) can be shown to hold by choosing for instance

C(T,e) = /2T log (2;[—?)

4.3.1.4 Conditional expectation approximation

From now on, in order to prevent the notation from becoming too cumbersome and clumsy, we
are going to drop the ¢ index in the following, i.e. X; will stand for X}, and vy for vf.

For the fully discretized problem (4.3.6), the dynamic programming principle (4.2.8) becomes:

_ . . .. _ Stn, . N
o (tn, x,1) = Igne%? {hf (tn,z,7) — k(tn,i,7) + E {vn (tn+1,th+f,j)H n=N-—1,...,0
(4.3.8)

The last step is to approximate the conditional expectation appearing in equation (4.3.8). As
discussed in Subsection 4.2.3, we choose to approximate it by least-squares regression. Consider
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basis functions (e (7)), <p< g, K € NU{+oc}, x € RY. For suitable functions ¢ : IxRIxI, — R,
define: o

A=Al (p) := arg min E

4.3.9
AERK ( )

X 2
(SO (tn+1,)_(tn+1,i) = e ()_(tn)>

k=1

Now, before using this projection, it is more cautious to truncate it within known bounds (see
[27, 57, 100]). Hence, suppose that there exist known bounds I () and e (p) around

E | (tas1, Xi7%,1)] -

L' () < E o (tnr. Xi7350 )| < T () (4.3.10)

tny1?

Then, Vi € I, the quantity E [gp (tn+1, Xf:fi,zﬂ is approximated by:

K
E [ (tnsr, Xi200) | =T (0) v 3 Aker () AT () (4.3.11)
k=1

which is used to define the next approximation oy of the value function:

on (T, z,i) = g(T,x,1)

o (tn, 2,1) = max {hf (tn,2,7) — k (tn,,§) + E [fm (th,ngjj,j)” ,n=N —1(4.3.12)

Interesting discussions on the choice of function basis can be found in [28]. In particular they
advocate bases of local polynomials, which is numerically efficient and well-suited to tackle
large-dimensional problems (see Subsection 4.4.1). However, for the sake of simplicity, we will
restrict our study in this section to a basis of indicator functions on local hypercubes (cf. [100]
and the numerical experiments of [57]) (which is the simplest example of local polynomials).
Assumption 6 below states this specific choice.

Assumption 6. The regression basis is set to a basis of indicator function on disjoint local
hypercubes, as described in Definition 4.5.1 below.

Definition 4.3.1. For every t, € 1I, consider a partition of the domain D, into hypercubes
(Bfn>k_1 K ie., Uk:l,u.,Kngn = D, and Bgn N Bgn = () Vi # j. It may be deterministic, or
computed f7rom a sample of X. We only assume that there exists (§,0) € Ri with § < § such
that the lengths of the edges of the hypercubes, in each dimension, belong to [9, d] (in particular,
the volume of each hypercube Bfn belongs to {éd, 5d} ). This freedom over the definition of the
partition enables to encompass to some extend the kind of adaptative partition described in
[28]. Then, the basis functions considered here are defined by ef (z):=1 {a: € Bfn}, r € RY
1<k<K..

Under Assumption 6, the error between v and oy is computed in Proposition 4.3.5.

_ \1<m<M %
Finally, let (Xt?:) 1;mgN be a finite sample of size M of paths of the process X. The final step
n

is to replace the regression (4.3.9) by a regression on this sample:

o 1 M - K - 2
A=A (p) == arg min - 3 [(gp (tn+1,Xf;+1,z') =3 e (X;jj)) ] . (4.3.13)
m=1 k=1
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n+1?

Then Vi € I, the quantity E {«p (tn+1, Xf"’x z)} is approximated by:

K
B | (tayr, X075,0) | =T (0) V7 Aweg (2) AT () (4.3.14)
k=1

leading to the final, computable approximation 0r; of the value function:
ot (tswy3) = max {hf (bny,5) = k (t,i5) + B [on1 (tasr, XE27505) |} = N = 1(4.3.10)

Jj€lq

Under Assumption 6, the error between oy and 9ry is given in Proposition 4.3.6. This proposition
will make use of the following quantity:

L . . v k
p(T,0,e) := min Brtglcl%E]P’ (Xt € Bt) (4.3.16)

which is strictly positive, as the domain D, is (purposely) bounded.

Example 4.3.2. Carrying on with Example 4.3.1 of a d-dimensional Brownian motion, we
explicit a lower bound for p (T, §,¢) in this simple case. First, P (WT € B:]ﬁ) =[5k fwy (z)dx
T

where fy,. is the density of Wp. As V&, B:]ﬁ C D¢, with C (T,e) = /2T log (%), it holds that

Ve € D%, fw, (2) > (fuy (C(T 5)))d = = Hence P (W, € B}) > —=;Vol (B}) >
PO - T ’ (2d)%T% )= T t) =
e 0% As a conclusion, p (T, d,¢e) > e 0% . Remark however that this lower bound is
(2d)¢T2 (2d)¢T2
very crude, and that it can be very far below p (T, 0, ¢) for large 0.
Combining all these results, we obtain a rate of convergence of 0y towards v:
Theorem 4.3.1. Vp > 1 , 4C, > 0 such that:
max ”U (to, Zo, Z) - @H (to, o, Z)’
icl, L
= 3 ) 1+C(T,¢e 1+C (T, ¢
< G (14 |zo|) e pT+(1+|1‘0|)2\/E+5+*+ ( 1) T ( )
h W/Mp(T,5,e) w2 hMp(T,5,¢)

In particular, oy (0,20,7) —r, v (0,20,7) uniformly in i € I, when T — oo, h — 0, € — 0,

60— 0 and M — oo with % — 0, 1+C(T\e) 1+C(Te)

— 0 and % — 0.
h\/Mp(T,a,g)l‘p% hMp(T,6,e)

The proof of Theorem 4.3.1 will be given at the end of the next Subsection 4.3.2.

Remark 4.3.1. If the cost function k (recall Assumption 4) were to depend on z, then, under a
usual Lipschitz condition on k (similar to that of f), Theorem 4.3.1 would still hold, replacing

only the term (1 + |m0|)% V'h by (1 + ]:U0|g) hlog (%) (recalling Remark 4.3.4).

Remark 4.3.2. The adaptative local basis can be such that each hypercube contains approxi-
mately the same number of Monte Carlo trajectories (see [28]). This means that ﬁ ~ b
where b is the number of functions in the regression basis. With this remark in mind, the leading

error term in Theorem 4.3.1 behaves like h\/\/% for p = 2. This is close to the corresponding sta-

tistical error term in [82] ( M%giﬂ(}/f)) in the context of BSDEs. The advantage of their approach

is that it can handle any (orthonormal) regression basis, while our approach (in the context of
optimal switching) provides a bound on the L, error for every p > 1.
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Example 4.3.3. In the case of a d-dimensional Brownian motion, the rate of convergence of
Theorem 4.3.1 can be explicited further, using the upper bound on C (T, ¢) from Example 4.3.1
and the lower bound on p (7,4, ) from Example 4.3.2. Moreover, one can express the rate of
convergence as a function of only one parameter, choosing the five numerical parameters T, h, €,
6 and M accordingly. For instance, assuming § = §, and minimizing over d, h, € and T', one can

get a convergence rate upper bounded by Cp (1 + |a:|)% z by choosing M ~ 2736+ Thig
is admittedly highly demanding in terms of sample size M, but remember that this expression
suffers from the crude lower bound on p (7', 6,¢) we chose previously.

4.3.2 Convergence analysis

From now on, we suppose that all the assumptions from Subsection 4.2.2 are in force.

4.3.2.1 Finite time horizon

Lemma 4.3.1. There exists C > 0 such that ¥ (t,z,i) € [0,T] x RY x R :

0<wv(t,x,i) —vp (t,x,7) < C(1+ |z|) o PtVT—pit

Proof. First, we introduce the following notations:

T
H(tT,za) = / f s X018 ) ds = > k(7 G) (4.3.17)
t

t<m, <T
J(t,T,z,a) = E[H(t,T,z,a)) (4.3.18)

for any admissible strategy o € A;;. In particular:

v(t,x,i) = sup J(t,4o00,z,0) , wr(t,z,i)= sup J(t, +oo,x,q) . (4.3.19)
€A ; aeAzi

Fix (t,z,1) € Ry x R x RY. Using equation (4.3.19):

vr (t,x,4) = sup J (t,00,z,a) < sup J(t,00,z, ) =0 (t,x,i)
acAl, Q€A ;

which provides the first inequality. Consider now the second inequality. Choose ¢ > 0. From
the definition of v (equation (4.3.1)) there exists a strategy o € A;; such that:

v(t,z,i) —e < J(t,00,2,a°%) <wv(t,z,i)

Define the truncated strategy of € Af; such that Vs € [t, T7, ST =TI andVs > T, I,T = I$.
In order not to mix up the variables 7,, and (,, from different strategies, we add the name of the
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strategy in index when needed. Then:

H (t,00,x,a%) — H (t,00, x, a7)

{Amﬂ&ﬁ&@jm§:k@§@ﬂ} [T (e - ()

TRt 2Ty
_ {/Oof(s,Xé’x,Igs)ds— 3 k;(fgﬁ,g;f)}
t T,?‘EZt
tvT 00
_ {/ f(s,Xﬁ’x,IS“E)ds—ir/ f (s X0 ) ds = Y k(ﬁ:e,gge)}
t tvT TS et >t
- /;; f (s X0, 187 ) ds — /t:; f (s X", I ) ds — T;g;wk (ra ¢
< /t:rf (s,X;f"”,I;‘E) ds — /t:;f (S,Xz’m,ItajT) ds

as k (s,0) = 0 and k > 0 (Assumption 5). Hence, using Jensen’s inequality and equation (4.2.4),
3C > 0 such that

|J (t,00,z,0%) — J (t,00,z,07)] < E[H(to00,z,a°)— H (t,00,z,07)|]
o0 [e.e]
< E / ‘f (s,X;’ff,IgE) ds] IE / ‘f (s,Xg””,If‘VETN ds}
tvT tvT

< C(L+[a)ePTrit

Finally, given that v (¢, z,i) < e+ J (¢,00,2,a%) and vr (t,z,7) > J (t,00,z,a%), the following
holds:

e+ J(t,00,x,a%) — J(t,00,x,07)
e+ C(1+ |z]) e PVI=pt,

v(t,z,i) —vp (t,x,i) <
<

Since this is true for any € > 0, and that C, p and p; do not depend on ¢, the proposition is
proved. ]

Now, we focus on the final boundary g¢. For the time being, denote the value function (4.3.2) as
v%f to emphasize the dependence of v on the terminal condition. As a consequence of equation
(4.2.4), ¥ (z,1) € R? x I;:

9(T,2,3)] < C (14 |z]) e T (4.3.20)

Hence, define the class ©g4, of Lipschitz functions from Ry x R? x [ into R such that Vg € O,
V(T,z,2',i) € Ry x R4 x RY x 1;:

|9(T, z,4) — g(T' 2',4)]

9(T,0, )]

for some Cy > 0. In particular, the growth rate of such functions is at most linear in x:

9(T,,1)| < Coe™#" (14 |a]) . (4.3.23)

Cye T |z — 2| (4.3.21)

<
< Cye T (4.3.22)

Obviously gy € ©,4,. Now, for any g € O, denote as v¥. the value function defined as in
equation (4.3.2) with g instead of gy. We are going to show that the precise approximation
error due to the choice of final value g does not matter much as long as ¢ is chosen in this class

Oy,

98



4.3. NUMERICAL APPROXIMATION AND CONVERGENCE ANALYSIS

Lemma 4.3.2. There exists C > 0 such that ¥ (t,x,i) € Ry x R? x I:

‘vgf (t,z,1) — v (1, x,z)‘ <O (1+ |a]) e VTt

Proof. Fix (t,x,i) € Ry x R? x T,. To shorten the proof, we assume that v}/ (resp. v{.) admits
an optimal strategy a} € Az:i (resp. a* € AtTl) (this assumption can then be relaxed using
e-optimal strategies as in the proof of Proposition 4.3.1)!. Therefore, recalling the notations H
(equation (4.3.17)) and J (equation (4.3.18)) introduced in the proof of Lemma 4.3.1:

oI (i) — v (i) = T (t,T, x,a;‘:) I E [gf (T, X;‘””,I?;> —Jt,T,z,0") —E [g(T, ngf,f%*)}

=J (t,T,x,a’}) +E {g (T, X%m,fg?)

—J(t,T,z,0") ~E |g (T, X¢", 1§")]

Symmetrically, the same inequality holds for v¥. (¢, x,i) — vy (t,z,i), ending the proof. O

Proposition 4.3.1. There exists C > 0 independent of T such that ¥ (t,x,i) € Ry x R? x T,
and Vg € Oy, :

v (t,2,7) — v (t,2,7)] < C (14 |zx]) e PVT =1t

Proof. Combine Lemmas 4.3.1 and 4.3.2. O

From now on, we choose and keep one final value function g € ©
from the notation of v and its subsequent approximations.

g;» and remove the index g

4.3.2.2 Time Discretization
Proposition 4.3.2. There exists a positive constant C such that for any (t,z,i) € II x R? x I,

[or (t,2,8) — ont (£, 8)] < Ce™ (14 |a|?) b3 (4.3.24)

Proof. Under the assumptions from Subsection 4.2.2, one can apply Theorem 3.1 in [55] to prove
(4.3.24), noticing that the cost function k£ does not depend on the state variable .

Use the discounting factor in the definition of f to factor the e *! term and to get that C does
not depend on T O

Remark 4.3.3. Another alternative to get this rate of h3 is to work with the reflected BSDE
representation of vy, as in [32] (adapting [27]) or [39)].

!Note that under the assumptions from Subsection 4.2.2, one may use Theorem 3.1 from [67] to get the existence

2
< o0

of a unique optimal strategy o™ for the value function (4.3.2), satisfying E |:‘Zo<-r”* <k (7’,?* , Cff*)
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Remark 4.3.4. Were the cost function k£ to depend on the state variable, the upper bound in

1
Proposition 4.3.2 would only be Ce (1 + |x\g) (hlog (%)) ?, as stated in [55] (making use
of results from [50]).

Proposition 4.3.3. There exists C > 0 such that for any (t,x,i) € I x R x 1 :
ot (¢, 2,4) — or (¢, 2,4)| < Ce Pth2

Proof. T and g being fixed, we can define, in the spirit of equations (4.3.17) and (4.3.18), the
following quantities:

T

H(t o a) = / F (X008 ) ds = S k(T tnoroen) + 9 (T.X57, 18) (4.3.25)
t t<m, <T

J(t,z,a) :=E[H (t,z,a)] (4.3.26)
T

H(t,z,0) = /t (), X001 ) ds = 30 k(Tustn1,t) +9 (T, X5 1F)  (4.3.27)

t<m, <T
J(t,z,a) :=FE [H (t,z, a)} (4.3.28)

for any admissible strategy a € .ARL For these discretized problems, the existence of optimal
controls o* and a* is granted. Hence:

v (t,x,1) — o (t,2,1) = J (t,2,0) — J (t, 2, &%)
:J(t,x,a*)—j(t,a?,a*)—i—{j(t,:c,a*)—j(t,x,d*)}
S J(thaa*) - j(t,m,a*)
T
_ —ps 3 tx ga*\ _ F i,z a*
— [ e PE[f(s,XS I ) f(w(s),Xﬁ(s),IS )]ds

+E [g (T, X;I,I%*) g (T, X;x,l%*)]

T
_ >,
< Cf/t PR [| x4 - x0T

] ds + Cye TR HX;’C — Xk

]

< C’e_”th%

< Ce P'E | sup ’Xﬁx — X:(ws)
t<s<T

using the strong convergence speed of the Euler scheme on [t,T]. Symmetrically, the same
inequality holds for vy (¢, x,1) — vry (¢, x, 1), ending the proof. O

4.3.2.3 Space localization

Recall from Subsection 4.3.1.3 the definition of the bounded domain D¢, t € [0, T].

Proposition 4.3.4. 3C > 0 such that Ve > 0 and ¥V (z,i) € RT x I, :

|T]H (07 l’,Z) - 616_[ (vaa Z)| <Ce

Proof. Recall the definitions of H(t,z, ) (equation (4.3.27)) and J(t, z,a) (equation (4.3.28)),
and define the quantities H* (f, z, @) and J® (¢, 7, ) like H (t,x, ) and J (¢, 7, o) but with X
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replaced by X;('). Then, for every (t,z,i) € II x R% x I, and o € Agi:

J(t,z,a) = JF (t,2,) +/TIE f (7 (), XE0), 1) = £ (m (), X3y 12) | ds
t
+ E[g (T, X5, 12) — g (T, X5, 12)

But:

/tTIE (7 (o), X008 10) = £ (7w (s), X0y 12) | ds + B [g (T, X7, 18) — 9 (T, X%t’x,l%)}’

)

T
— -, v et
gcf/t e P E Hxﬂé) - Xl

| ds + Cpe TR [| X5 - X5

It follows that:

T _ _
on (t,i) = a6 (1) < 5 [ B [[07, - K25

| ds+ Cpe TR [| X" - X7

}

In particular, at ¢t = 0, using equation (4.3.7), 3C > 0 such that:

o1 (0, 2, 7) — 95 (0, 2,4)| < Ce

4.3.2.4 Conditional expectation approximation

From now on the domain D, is fixed once and for all, and, with a slight abuse of notation, we
will drop ¢ from the subsequent notations.

We start with preliminary remarks. First, regarding the choice of regression basis, Assumption
6 is now supposed to hold. Then, recalling Subsection 4.3.1.4, and taking advantage of the
orthogonality of the basis, one can easily compute the explicit solution of the minimisation
equations that define the regression coefficients A" (¢) = (Xf”k (ap)) (equation (4.3.9))

and Xf" (p) = (;\f"k (‘P))

1<k<K

\<h<kK. (equation (4.3.13)). Namely:

o Ele (e Xoi) 1{X,, € BE ]

)‘;k (90) - P (th c Btkn)

1 Ty (tnsn, Xp i) 1{ X € BE }
A7 e 1 {ng € Bfn}

~E [¢ (tnﬂ,)’(tm,i)‘)‘(tn c Bfn} 1<E<K

S‘f,nk (¢) =

L 1<k<K

Extending these equations, define

E [ (w1, Kooy, 7) 1{ %o, € B, ()}

X () = B (X0 < By, () =E[(trs1, X1,00:1) | Xe, € Bi, (0)]
(4.3.29)
At () = R ey ¢ (tnr, Xp2, 0 0) 1{X" € By, (2) S S ot XP7 )

B Ia X e By, (@)} My, i,
(4.3.30)
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for every (t,,x,i) € Il x D x Iy, where Vo € D, By, (x) is the unique hypercube in the partition
which contains x at time ¢,, M} := {m €[1,M], X" € By, (x)} and M = #M;F .

Finally, recalling the approximated conditional expectations (4.3.11) and (4.3.14),

define for any (t,,,j) € Il x D x I, and any measurable function ¢ : IT x R? x I, — R, the
following quantities:

() = E [gp (th, X, J)} (4.3.31)
O (9) = Elp (tart, X5 5)] =D () VAT S () AT () (4.3.32)
S () = B (tars, Xi550d)]

S

A

tn,T Atn,T in,T
L (@) VAT () AT (9) - (4.3.33)

where (recalling equation 4.3.10) I (¢) and e () are lower and upper bounds on @;"’x (p):

L (p) < @7 () < T ()

Remark 4.3.5. These definitions are useful to express the dynamic programming equations
(4.3.8), (4.3.12) and (4.3.15). Indeed, these equations become:

EH (T,.’L‘,Z) = g(T7$aZ)

Ot (tn2,3) = max {hf (b, 5) = k (tn,i,§) + O (@)}, n=N = 1,...,0
jel,

on(T,z,i) = g(T,x,i)

Un (tnvxaz) = HleaHX{hf(tn,.’I},j)—k(tn,l,])+§);n7m (@H)} ) n:N—l,,O
A

@H (T,ZL‘,Z) = g(Tvva)

ot (tn, 2,9) = meaﬂx{hf(tn,x,j)—k(tn,i,j)—ki’;"’x(@n)},n:N—l,...,O
J&lq

Remark 4.3.6. For ¢ = vy, we can easily explicit bounding functions I'*»* (1) and o’ (Umr)
of @;”’m (vrr). Indeed, using the growth conditions on f and g, the nonnegativity of k and the
definition of C (T, €) (see Paragraph 4.3.1.3), there exists C' > 0 such that V (¢, x,j) € IxDxI,:

o1t (tn, 2, )] < Ce P (14+C(T,¢)) (4.3.34)
’@;n’x (@H)] < TP (vy) i= Ce ™ (1+C (T, ¢)) (4.3.35)
Moreover, the same is true for ¢ = O: there exists C' > 0 such that V (¢,,z,5) € Il x D x I
O (tn, 2, §)] < Ce ™ (1+C(T,e)) (4.3.36)
‘ci;"@ (@H)‘ < T (i) := Ce P (1+ C (T, ¢)) (4.3.37)
Finally, we impose the same bound for the definition of oy, i.e. I'* (dr7) := I't» (o).

Now we can start the assessment of the regression error.

Lemma 4.3.3. Consider a measurable function ¢ : II x R? x I, — R. Suppose that, for a fizved
tne1 € I, it is Lipschitz with constant Cypy1, uniformly in j: V (z1,x2,7) € R x R% x I,

lo (tns1,21,5) — @ (tns1, @2, 7)| < Cpgr |21 — 2 (4.3.38)

Then @;”’z () is Lipschitz with constant Cy41 (1 + Lh), uniformly in j, where L := C'b—|—%f2’ > 0.
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Proof. Choose (ty,j,z1,22) € I x I; x R? x R%. Then:

@07 (i) — @7 ()

B[ (b, X035) = (o K225
H‘P (tnﬂ,Xfffill’j) ¥ (t”“’Xt:-’HQ’]) HL1

< o (turn XE73) =0 (tmenn X225,

IA

Now, using equations (4.3.38) and (4.3.5), and G denoting a d-dimensional standard Gaussian
random variable, we have

[t o)

vin,x vin,x 2
< C2.E (th+11 —me) }
2

- 2, {(:cl = 22+ h (b (tn, 21) = b (b0, 22)))° + E [((0 (bn, 21) = 0 (tn, 22)) G)*] }
C2,, (21 — a2)° {1 + (2Cb + cg) h+ c§h2}

2
c2\? 1
2 o ~o -
CnJrl (1‘1 QZQ) <Cb+ 2) (Cb—’_%g +h> .

‘@ﬁ.’“ ') — Y («p)\ < Cnia (1 + (Cb + 2") h) |21 — o2

IN

IN

Thus:

O]

Lemma 4.3.4. Consider again a function ¢ : II x R% x I, = R such that (4.3.38) holds for a
given tp1 € II. Then, V(x,j5) € D x I;:

W‘"’x () — 7 (so)\ < Cpy10 (14 LA) .

In particular:

’@;"’x (p) — @l (gp)’ < Choi16 (1 + Lh) (4.3.39)
Proof. Recalling the definitions of By, (x), of :\;"’x () (equation (4.3.29)) and of @;"’x () (equa-
tion (4.3.31)), simply remark that:

min 7 (¢) §<I>§-”’x(<p) < max @;"’j(go)

#€By, (z) 7 T ZEB:, ()
(I)tn, < th,m < (I)t'n,fj .
me%“tm(x) S ) <A (e) < Jnax @ ()

Now, using Lemma 4.3.3:

X7 () = @7 ()

N

ax 77 () — olm®
:(:Ergt }%x) J (90) xE%ltln(x) (SD)

< Cpy1(1+Lh) max |z — 29
(21,22)€Buy ()

< Cn+1 (1 + Lh) 0
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2
Lemma 4.3.5. V (t,, z1,z2,7) € II X (Rd) X 1y:

011 (tn, 21,8) — 011 (tn, 22,9)| < Cp 21 — 22 (4.3.40)
where:
CN = e—pthg
C, = hCre? +Cpy1(1+Lh), n=N-1,...,0 (4.3.41)

In particular, 3C > 0 such that Vn =0,1,... N:
C, < CePlnel(T=tn) (4.3.42)

Proof. Recall Remark 4.3.5. We prove the lemma by induction. First, remark that, using
hypothesis (4.3.21), it holds for n = N. Now, suppose that it holds for some (n+1) € [1,..., N].
Then, using Lemma 4.3.3:

ort (tn, 21, 1)

o S .. t.n’:gl —
= e {f (b, 21,3) = F(tn: 1, 9) + B (on)}

= e {1 (b 22.7) =t )+ @5 (011) 41 s 21,) = (b 2))+ (@57 (00) = @7 (o) )}

< max {nf(tn, 2, 5) = Kltn, i, 5) + @7 (o) + he "' Cy |21 = @] + Coyr (1+ Lh) [ — 2]}
q

= 011 (tn, @2,) + (he """ Cy + Cst (1+ LR) ) |1 — o]
Symmetrically, the same inequality holds for vy (t,,x2,1) — vr (tn, x1,17), yielding equations

(4.3.40) and (4.3.41). Finally, use the discrete version of Gronwall’s inequality to obtain equation
(4.3.42) 0

Proposition 4.3.5. 3C > 0 s.t. V (¢t,2,i) € I x R% x I, :
|®H (tv x, ,L) —Upp (ta xz, Z)| < C%Q_pt .

Proof. For each t,, € II, we look for an upper bound FE,,, independent of = and ¢, of the quantity
|ont (tn, @, 1) — 011 (tn, x,4)|. First:

"l_)l_[ (T,HZ,Z) - T)H (T,x,l)‘ = ‘g (T,l’,l) —g(T,(IZ,Z)| =0

Hence Exy = 0. Fix now n € [0, N — 1]. Using Remark 4.3.5:
ot (t, 2,7) = max {hf (bn,,5) = K (tn, 7, 5) + B (o) }
J€ly

. N .. t.n,x —
= rjneaﬂz({hf(tn,x,]) k(tm%J)‘i‘(I’J (vrr)

+O7 (orr) — @5 (o)

+®I" (51) — B (om) }

Using Lemmas 4.3.4 and 4.3.5, Cf’;”’x (o) — @;”’x (vr1) < Cpy10 (1 + Lh) where Cyq1 is the
Lipschitz constant of vy at time ¢, 41 (see Lemma 4.3.5). Moreover,

(i)z»n’z (’DH) — é;nw (Q_JH) < E [T}H (tn—i-l, th+1,j) —Un (tn—i-ly thJrl,j) ‘ th S Btn (.Z‘)}
<

Bt .
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Hence:
011 (tn, 2,1) < Uiy (tny 2,4) + Cry16 (14 Lh) + Epgy

Symmetrically, the same inequality holds for vy (T, x,4) — Oy (s, z, 1), leading to:
ot (tn, z,1) — 01 (tn, 7,1)] < Ep

where:
Exn =0

En - Cn+15 (1 + Lh) + En+1 .

Consequently, using equation (4.3.42):
ol 5
E,=06(1+Lh) > Cp<Cre
h
k=n+1

where C' > 0 does not depend on t, nor 7T ]

The following lemma measures the regression error. It is an extension of Lemma 3.8 in [100]
(itself inspired by Theorem 5.1 in [27]).

Lemma 4.3.6. Consider a measurable function ¢ : II x R% x I, = R. For any p > 1, there
exists Cp, > 0 such that ¥ (t,,1,7) € I x [1, M] x I,;:

Atn,)_(l ~tn,Xl tn

Q7 () =@ ()

< O ' () + o™ e @
L, \/MP(theBtn(Xgn))lfp%z M[P’(the Btn()_(tln»
(4.3.43)

where ' € R, is such that ’gp (tn+1,)ztn+l,j>‘ < @n a.s. .

Proof. Define the following centered random variables:

() im LS (b X)X B (KL,) )~ B[ (e, X, ) 1K B (X))

m=1
1 M ~ B _ _
et (1) = 47 2.1 {Xien, (X)) -p (x5 e B, (X))
m=1
Then:
A X! ~ X! z ¢ :
875 () = 8 ()] = |87 () = 8 () nart o)

and:
_ tn, X},
o= o oy )
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B i P (X, € By, (X1,))
b ) e R e B (L))

- XL et Xi (1) S (U‘ .
o (o) Ly Xy e B, (X0,)) ! {P(th € By, (X1,)) =2
tn, X!
- s n((p)’ A 3T () +
R EE N e T
o 5 (1) et Xt (1) 1
o () LS Xy e, (X1,)) } ! {P(th € By, (X)) : 2}
§ 2 { Etn,)‘qn( )’ A 5Tt () + Etn,)?én(l) Tin ( )} 1 ctn X, (1)‘ < 1
P (the Btn(thn)) 7 v v i’ P (theBt"(Xé")) s

Now, for any p > 1:

o tn, X! = tn, X! p

Q" () =2 ()

tn, X},

7 @) nsr )} +

ctni X, (1)

r (o))}

23p72

B (%, € B, (L)) t
et (1) | et X (1) 1

emem oy 4 O e oy )
and:
d
< 2 {E H e
P (th N (Xgn))p

1921 (Ftn (¢))PP (‘Etm)‘qn (1)‘17 - P (th € By, (Xgn)) )

at X ~t X
¢;n7 tn (90) _ (P;T“ t

&P

: P (the B, (Xgn))p {E H

tn, X}

! (cp)’/\f)f‘t” (gp)}p} H{r @)} [l

(4.3.44)
tn, X!
€ ()

using Lemma 4.7.1 in Appendix 4.7.1. Suppose that Jgi» € R, s.t. ’gp (tn+1,th+1,j)‘ < @gtn

a.s. . Then, using Lemma 4.7.1, 3C}, > 0 such that:

ctn Xt (1)"’] and E { p}

using Markov’s inequality. We then obtain upper bounds for E {

Bl ] < Gnl(Fe (%)) P (Fue Bu(%L)[ ] w5
E [ gzn,Xén () p] < G, { (Sj\t;p)p 4 ]wlgE H(,D(tml, th+17j) 1{th€ Btn(Xén)}
B [t T d) 1{F 8, (1)} } (1.3.46)
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where, for the second inequality, the term m = [ in the sum was treated separately. Then:
2 [Jo o Funr9) 1 S0 50 (58)} - o (b X ) 1 (i B ()
< (2w () 1 (e B(5)) 4 ()1 (e B (5))]])
< ()P (X, € B, (X)) (43.47)
In a similar manner:
[ e B (%)) 2 (%o e B (R))] 7 < 2P (% e B (51))77 (s

Finally, the combination of inequalities (4.3.44), (4.3.45), (4.3.46), (4.3.47) and (4.3.48) proves
equation (4.3.43). O

We now apply Lemma 4.3.6 to vr in the following Corollary:
Corollary 4.3.1. For every p > 1, there exists Cp, > 0 s.t. ¥V (t,,1,j) € II x [1, M] x I,:

2ln, X! ~ > ln, X! ~ _ 1 C T, 1
N () — BN ()| < et ( f) 1+ .
LP vMp(T,(;,S) V2 VMp(Ta(S)e)m

Proof. First, recall from equation (4.3.36) and (4.3.37) that there exists C' > 0 such that for
every (tn,j) € II x I

Iy (on) = Ce (14 C(T¢))
’@H (tn—i-ly th+17j)‘ < Ceiptn (1 +C (T7 E))

Hence one can apply Lemma 4.3.6 to oy with these upper bounds. The final step is to re-
call that the minimum probability p (T,d,e) defined in equation (4.3.16) is a lower bound on

P (X, € By, (X{,)) for any (ta,1) € T x [1, M]. 0

Using this result, we can now assess the error between o1 and ory.

Proposition 4.3.6. Vp > 1, 3C), > 0 s.t. V (tp,1) € I x [1, M] :

< Ot 1+C(T,51) : n 1 1
. WaIp(T,6,6) 72\ VMp(T,6,¢)7=
P

sup [n (, X},,1) — on (. X} 1)

ey

where Hév is the set of Fi, -measurable random variables taking values in 1.

Proof. For each t,, € II, we look for an upper bound F,,, independent of [, such that:

sup |0 (t,Xﬁn,i) — U (t,an,z)‘ <E,.

ey

Lyp

First:

=0

sup |0 (T, X’_l[",i) — (T, X'%p,z')‘ =

ielly

sup ‘g (T, Xé",i) —g (T, X%,i)‘

ey

Ly Ly
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Hence Ey = 0. Fix now n € [0, N —1]. Recall the dynamic programming equations from
Remark 4.3.5, and, for every (i,l) € ]L];V x [1, M], introduce j* (resp. j*) the argmax for oy
(resp. r) at point X , ie.:

on (b, X{,00) = Af (tn X0, 57) =k (403, 57) + @70 (m)
on (b, X0,,7) = hf (tn, X}, 5) =k (tn3,57) +<i>§j’Xén (n)

Now:
b1 (thth,z’) = hf (tn,Xén,ﬁ*) —k (tn”) $.

+
J
_ {hf (tn, X{n,i*) —k (tn, 2]) + i (@H)}

J
stn, X)L = tn, X} atn, X atn, X)L
{05 @) = @ @) b {0 (o) - 85 (o) |
~ v . tn;X ~ ’“tn,X ~
< g (tn,Xén,Z> + Z (I)J tn ( H) — (I)j tn (UH)
jel,
Atn, XL Atn, XL
+ sup CI)] tn (UH) — (I)j tn (UH)’
jery
Symmetrically:
~ v . tn’ AtnaXl ~
I (tn,Xén,z) < U (tn, ) + Z —®; ()
J€ly
atn, XL atn, XL
+ sup <I) " (o) — @7 (On)
jery

Combining these two inequalities:

~ ol . A ol . "tny)?én ~ ’“tnyxén ~
sup | O (tn,th,Z) — b1 (tn,th,l)’ < > (@S () — @7 ()
7;6]1(]1\7 je]lq
Xl o nyXl ~
+sup [ (o) — &7 (o)
jeny

Hence, using the triangular inequality, Corollary 4.3.1, equation (4.3.30), and the induction
hypothesis:

- =1 . R =1 . _ 1+C (T, e
sup [o (1 KL, 8) — o (1 KL, ) || < Bim Gperie )
ie]lé\’ I \/Mp (1_’7 57 5) pV2

3
1+C(T,¢)

Cpe~ Pt E
+Cpe Mp (T, D) + L

for some constant Cj, > 0 which depends only on p. Consequently:
1+C(T 1
E, < Cpe P asl 761) — |1+ i
hvMp (T, 6,¢) 2 VMp(T,6,¢)r2

where C), > 0 depends only on p. O

Finally, the combination of Propositions 4.3.1 4.3.2, 4.3.3, 4.3.5 and 4.3.6 at time ¢t = y proves
Theorem 4.3.1.
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4.4 Complexity analysis and memory reduction

4.4.1 Complexity
4.4.1.1 Computational complexity

The number of operations required by the algorithm described below is in (’)(q2 - N - M), where
we recall that ¢ is the number of possible switches, N is the number of time steps and M is the
number of Monte Carlo trajectories.

o The ¢* term stems from the fact that for every i € I, one has to compute a maximum on
j € I (see equation (4.3.15)). However, this ¢ can be reduced to ¢ as soon as the two
following conditions are satisfied:

1. (Irreversibility) The controlled variable can only be increased (or, symmetrically, can only be
decreased)

2. (Cost Separability) There exists two functions ki and k such that V (¢,4,5) € Ry x I; x I,
k(t,i,j) = ki1 (t,i) + ko (t, 7). For instance, this is true of affine costs.

Indeed, under those two conditions, equation (4.3.15) becomes:

o11(tn, 2, 9)+k1 (tn,9) = max {hf(tn,:c,j) — ka(tn, 7) +E[®H (th,ngﬁ,j)” n=N-1,...

J€lg, 521

These maxima can be computed in O(q) instead of O(q2) by starting from the biggest element
i = iy, down to the smallest element ¢ = ¢; (in lexicographical order) and keeping track of the
partial maxima.

Note that these two conditions hold for the numerical application from Section 4.5, providing
the improved complexity O(q - N - M).

e The N term comes from the backward time induction.

o The M term corresponds to the cost of a regression, which is in O (M) (by using either the
Cholesky decomposition or the more stable Thin SVD decomposition) .

4.4.1.2 Memory complexity

The memory size required for solving optimal switching problems (as well as the simpler Amer-
ican option problems and the more complex BSDE problems) by Monte Carlo methods is often
said to be in O(N - M), because, as the Euler scheme is a forward scheme and the dynamic
programming principle is a backward scheme, the storage of the Monte Carlo trajectories seems
inescapable. This fact is the major limitation of such methods, as acknowledged in [32] for
instance.

Since such a complexity would be unbearable in high dimension, we describe below a general
memory reduction method to obtain a much more amenable O(N + M) complexity (or, more
precisely, of O(m - N + ¢ - M) with m < M). This improvement really opens the door to the
use of Monte Carlo methods for American options, optimal switching and BSDEs on high-
dimensional practical applications. Note that this tool can be combined with all the existing
Monte Carlo backward methods which (seem to) require the storage of all the trajectories.

A drawback of this tool is that it is limited to Markovian processes. However, one can usually
circumvent this restriction by increasing the dimension of the state variable.

109



CHAPTER 4: A PROBABILISTIC NUMERICAL METHOD FOR OPTIMAL SWITCHING PROBLEMS

4.4.2 General memory reduction method
4.4.2.1 Description

The memory reduction method for Monte Carlo pricing of American options was pioneered by
[36] for the geometric Brownian motion, and was subsequently extended to multi-dimensional
geometric Brownian motions ([37]) as well as exponential Lévy processes ([38]). These papers
take advantage of the additivity property of the processes considered. However, as briefly hinted
in [104], the memory reduction trick can be extended to more general processes. In particular,
it can be combined with any discretization scheme, for instance the Euler scheme or Milstein
scheme, as long as the value of the stochastic process at one time step can be expressed via its
value at the subsequent time step.

From a practical point of view, the production of “random” sequences usually involves wisely
chosen deterministic sequences, with statistical properties as close as possible to true randomness
(cf. [76] for instance for an overview). These sequences are usually set using a seed, i.e. a
(possibly multidimensional) fixed value aimed at initializing the algorithm which produces the
sequence:

{setseeds} — s1 — s2 = ... = sy
rand() rand() rand() rand()
| | . . (4.4.1)
€1 €2 €3 En

The rand() produces a new random value € and changes the internal seed value s. The internal
value of the seed can be read (getseed()) and changed (setseed()). Now two useful aspects can be
stressed. The first is that one can usually recover the current seed at any stage of the sequence.
The second is that, if the seed is set later to, say, once again the seed s from equation (4.4.1),
then the following elements of the sequence will be once again €1, €2, ... In other words, one
can recover any previously produced subsequence of the sequence (e5,),,~, provided one stored
beforehand the seed at the beginning of the subsequence. This feature is at the core of the
memory reduction method, which we are going to discuss below in a general setting.

Consider a Markovian stochastic process (Xt)t207 for instance the solution of the stochastic
differential equation (4.2.2), recalled below:

Xo = xp€R?
dXs = b(s,Xs)ds+ o (s, Xs)dWs

The application of the Euler scheme to this equation can be denoted as follows:

w,,, = f (xiz,d) (4.4.2)

f(z,e) == x40b(ty,z)h+o(t,z)evh (4.4.3)

where Vi € [0, N — 1] and Vj € [1, M], 5{ € R? is drawn from a d-dimensional Gaussian random
variable. Suppose that for any ¢ € R% the function = + f(z,¢) is invertible (call fi,y its

inverse). Then, starting from the final value x{N of the sequence (4.4.2), one can recover the
whole trajectory of X:

o, = fv (l,,.6]) (4.4.4)

as long as one can recover the previous draws e};_4, ..., &). The following pseudo-code describes
an easy way to do it.
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Algorithm 4.1 Euler Scheme Inverse Euler Scheme
% Initialization
for j from 1 to M
X[i] < xj
end for
% LOOP 1: Euler scheme 1 % LOOP 2: Inverse Euler scheme
for i from 0 to N-1 2 for i from N-—1 down to O
S[i] <— getseed() 3 setseed (S[i])
for j from 1 to M 4 for j from 1 to M
E <— rand(d) 5 E <— rand(d)
X[j] < f(X[i].E) 6 X[j] < finv(X[j].E)
end for 7 end for
end for 8 end for
S[N] <— getseed () 9 setseed(S[N])

The first column of Algorithm 4.1 corresponds to the Euler scheme, with the addition of the
storage of the seeds. At the end of the first colum, the vector X contains the last values X7,
j =1,...,M. From this point, one can recover the previous values ng i =N-1,...,0,
j=1,..., M as done in the second column.

Inside this last loop, one can perform the estimation of the conditional expectations required
by the resolution algorithm of our stochastic control problem (equation (4.2.10)). Compared to
the standard storage of the full trajectories Xgi, 1=0,...,N,j=1,..., M, the pros and cons
are the following:

e The number of calls to the rand () function is doubled.

o The memory needed is brought down from O (M x N) to O (M + N) (storage of the vector
space and the seeds).

In other words, at the price of doubling the computation time, one can bring down the required
memory storage by the factor min (M, N), which is a very significant saving. Moreover, the
theoretical additional computation time can be insignificant in practice, as the availability of
much more physical memory makes the resort to the slower virtual memory much less likely.

Remark 4.4.1. Even though the storage of the seeds does take O (V) in memory size, the constant
may be much greater than 1. For instance, on Matlab®, a seed from the Combined Multiple
Recursive algorithm (refer for instance to [76] for a description of several random generators)
is made of 12 uint32 (32-bit unsigned integer), a seed from the Multiplicative Lagged Fibonacci
algorithm is made of 130 uint64, and a seed from the popular Mersenne Twister algorithm is
made of 625 uint32.

In order to relieve the storage of the seeds, we now provide a finer memory reduction algorithm
(Algorithm 4.2). Although Algorithm 4.2 requires three main loops, it enables to perform the
last loop without fiddling the seed of the random generator, and without any vector of seeds
locked in memory, which will thus be fully dedicated to the regressions and other resolution
operations. Moreover, the first two main loops can be performed beforehand once and for all,
storing only the last values of the vector X as well as the first seed S [0]. Finally, if the random
generator is able to leapfrop a given number of steps, the first loop can be drastically reduced.
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Algorithm 4.2 General Memory Reduction Method

% LOOP 1: Seeds storage 1 % LOOP 2: Euler scheme
for i from 0 to N-1 2 for i from 0 to N-1
S[i] <— getseed () 3 setseed (S[N-i —1])
for j from 1 to M 4 for j from 1 to M
E <— rand(d) 5 E <— rand(d)
end for 6 X[j] <= f(X[j].E)
end for 7 end for
8 end for
% Initialization 9 setseed(S[0]) ; free(S)
for j from 1 to M 10
X[j] <= xj 11 % LOOP 3: Inverse Euler scheme
end for 12 for i from N—1 down to O
% 13 for j from 1 to M
% 14 E <— rand(d)
% 15 X[j] <= finv(X[j].,E)
% 16 end for
% 17 end for

4.4.2.2 Numerical stability

Theoretically, the trajectories produced by the Euler scheme (4.4.2) and the inverse Euler scheme
(4.4.4) are exactly the same. In practice however, a discrepancy may appear, the cause of which
is discussed below.

On a computer, not all real numbers can be reproduced. Indeed, they must be stored on a
finite number of bits, using a predefined format (usually the IEEE Standard for Floating-Point
Arithmetic (IEEE 754)). In particular, there exists an incompressible distance ¢ > 0 between
two different numbers stored. This causes rounding errors when performing operations on real
numbers.

For instance, consider € R and an invertible function f : R — R. Compute y = f (x) and
then compute & = finy (y). One would expect that & = x, but in practice, because of rounding
effects, one may get & = x + €z for a small € > 0, where z is a discrete variable, which can be
deemed random, taking values around zero. This phenomenon is illustrated on Figure 4.4.1,
which displays a histogram of & — x for n = 107 different values of € [0,1] and for the simple
linear function f (z) = 2z + 3.
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o
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Figure 4.4.1: Histogram of rounding errors
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We now describe how this affects our memory reduction method. Recall equation 4.4.2:
Jj o _ JjoJ
i = f (xtz"gi)

Now, instead of equation (4.4.4), the inverse Euler scheme will provide something like:

J _ aJ
ytN - xt

vl = fv (yiiﬂ,ef) + ez] (4.4.5)

for a small € > 0, where zf, 1=0,...,N,j7=1,..., M, can be deemed realizations of a discrete
random variable Z, independent of W. The distribution of Z is unknown, but data suggests it
may be innocuously assumed centered, symmetric, and with finite moments.

We are now interested in studying the compound rounding error y;, — =, as a function of €. Of
course, its behaviour depends on the choice of f (equation (4.4.3)). Below, we explicit this error
on two simple examples: an arithmetic Brownian motion and an Ornstein-Uhlenbeck process.
These two examples illustrate how the compound rounding error can vary dramatically w.r.t.

f.

First example: arithmetic Brownian motion Consider first the case of an arithmetic Brownian
motion with drift parameter p and volatility parameter o. Here f and its inverse are given by:

f(z,e) = z+ph+ovhe
fiw (2,6) = x—ph—oVhe

Hence, using equation (4.4.5), for every j =1,..., M:
PR
k=i

In other words, the compound rounding error behaves as a random walk, multiplied by the small
parameter €. Hence, as long as € < h (which is always the case as real numbers smaller than e
cannot be handled properly on a computer), this numerical error is harmless.

Remark that a similar numerical error arises from the algorithms proposed in [36] , [37] and
[38], but, fortunately, as discussed above, this error is utterly negligible.

Second example: Ornstein-Uhlenbeck process Now, consider the case of an Ornstein-
Uhlenbeck process with mean reversion o > 0, long-term mean p and volatility o. Here:

f(z,e) = z+a(p—x)h+oVhe

1
finv (-7375) = 1—ah ($ — Otuh — U\/EE)
Using equation (4.4.5), for every j = 1,..., M the compound error is given by:
: : N-1 1 :
J J J
PR S g S
i (L—ah)™™

As (1 —ah)™ ~ exp(aT) when h — 0, one can see that, as soon as T > —ln(gf), this error

may become overwhelming. This phenomenon is illustrated on Figure 4.4.2a on a sample of 100
trajectories.
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In order to mitigate this effect, we propose to modify the Algorithm 4.2 as follows: in its second
loop (usual Euler scheme), instead of saving only the last values 7., one may define a small

subset II C II and save the intermediate values xii, t; € II. Then, in the last loop (inverse Euler

scheme), every time that t; € II, the current value of the set x{ may be recovered from this
previous storage.

Figure 4.4.2b illustrates the new behaviour of the compound rounding error with this mended
algorithm, on an example with 7' = 10 years and 4 intermediate saves (in addition to the final
values).

The drawback of this modification, of course, is that it multiplies the required storage space by
the factor #I1. However, this remains much smaller than the O (M x N) required by the naive
full storage algorithm.

2000 62X 10
5
1000
4
0 3
i 2 \ l \ A
-1000f \ i t\ ]\
A\ \
2000 o= SN
-1 //
-3000 i |
-2 i
-40000 2 4 6 8 10 0 2 4 6 8 10
(a) Without intermediate saves (b) With intermediate saves

Figure 4.4.2: Compound rounding error for the Ornstein-Uhlenbeck process

4.5 Application to investment in electricity generation

This section is devoted to an application of the resolution method studied in Section 4.3 to an
investment problem in electricity generation.

Since our intention here is to show that the algorithm described in Section 4.3 can handle high-
dimensional problems, our modeling of the electric system focuses on the various fundamental
drivers of the electricity spot price formation mechanism that are electricity demand, available
capacities and above all fuel prices.

Thus, were neglected some strategic aspects of investment, like construction delays and network
constraints. We did not consider dynamic constraints of production either, which are known to
increase spot price during peak hours and to decrease them during off peak hours (see [80]), as
we consider these effects to be negligible compared to the effect induced by a lack or an excess
of capacity.

We based our model on [3, 1] where the electricity spot price is defined as a combination of fuel
prices adjusted by a scarcity factor. This model exhibits the main feature wanted here, which
is that the spot price, being determined both by the fuel prices and the residual capacity, is
directly affected by the evolution of the installed capacity. When the residual capacity tends to
decrease, spot prices will tend to increase, making investment valuable. Thus, in this model,
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investments are undertaken not on the specific purpose of satisfying the demand but as soon
as they are profitable. Energy non-served and loss of load probability may still be adjusted
through the price cap on the spot market.

In this section, we first detail the chosen modeling and objective function (which will be shown
to be encompassed in the general optimal multiple switching problem (4.2.1)), and then solve it
numerically using the general algorithm developed in the previous sections.

4.5.1 Modeling

The key variable in order to describe our electricity generation investment problem is the price
of electricity. More precisely, the key quantities are the spreads between the prices of electricity
and other energies. To model these spreads accurately, it may be worth considering a structural
model for electricity (cf. the survey [30]). Here we choose such a model, mainly inspired by
those introduced in [3] and [1], albeit amended and customized for a long-term time horizon.
All the variables involved are detailed below.

4.5.1.1 Electricity demand

The electricity demand, or electricity load, at time ¢ on the given geographical zone considered
is modelled by an exogenous stochastic process (Dt)>q:

Dy = fo(t)+ 27 (4.5.1)
where Z° is an Ornstein-Uhlenbeck (henceforth O.U.) process:
dZ? = —apZ2dt + BodWP

where g and S are constants, and fy is a deterministic function that takes into account demand
seasonalities.

4.5.1.2 Production capacities

Let d’ be the number of different production technologies. Denote as I; = (Itl, . ,Itd') the
installed production capacities at time ¢. They represent the maximum amount of electricity
that is physically possible to produce. These fleets can be modified: at a given time 7,,, one can
decide to build (or dismantle) an amount ¢, of capacities:

I,

n

=L +G,n>0 (4.5.2)

Denote as a = (7y,(n),~; the corresponding impulse control strategy, where (7,),~, is an
increasing sequence of stopping times with 7,, ,/* co when n — oo, and (Cn)pso is a sequence of
vectors corresponding to the increases (or decreases) in capacities. Apart from these variations,
I; will be deemed constant, i.e.:

Li=I—+ Y G- (4.5.3)
n, T <t
Now, denote as Cy = (Ctl, ey C’td/) the available production capacities. Because of spinning re-

serves, maintenance and random outages, these quantities are lower than the installed capacities
I, which represent their physical maximum. In other terms, C} is a fraction of I;:

Ci=T1 x Al (4.5.4)
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for every 1 < i < d', where A} corresponds to the rate of availability of the i*" production

technology. Therefore one must choose a model for the process A; that ensures that it stays
within the interval [0, 1].

One possibility is to make use of the bounded Jacobi process (see for instance [103],where it is
used to model stochastic correlations, and the references therein for more information on this
process). This process is however tricky to estimate and simulate (see [59] for the description
of some possible methods). Moreover, its main simulation method, the truncated Euler scheme,
prevents the use of the memory reduction method described in Subsection 4.4.2. Hence we look
for a simpler model.

1<i<d’

Adapting the (bounded) wind power infeed efficiency model from [105], we model (A?) 50

follows:

p=T (i () + Z)) (4.5.5)

where Z, f and T are chosen as follows:

e Z'is an O.U. process : ‘ ‘ ]
dZ} = —a; Zldt + B;dWZ

where «; > 0, 5; > 0 and (Wtzi)po is a Brownian motion.

e The deterministic function f; accounts for the seasonality in the availability of production
capacities, which stems from the maintenance plannings, which usually mimic the long term
seasonality of demand (which in turn originates in the seasonality of temperature).

o The mapping 7 : R — [0,1] is here to ensure that V¢t > 0, 4; € [0, 1]d,. One can choose
the versatile logit function as in [105], or any other mapping of R into [0, 1]. For instance,
any cumulative distribution function would be suitable. As the process Z is Gaussian and
asymptotically stationary, we choose for 7 the (standard) normal cumulative distribution
function. In particular, this choice makes the calibration process instantaneous.

4.5.1.3 Fuels and CO, prices

For each technology i, denote as S} the price of the fuel i to produce electricity at time ¢.
In the particular case of renewable energies, which, per se, do not involve traded fuels, the
corresponding S can be chosen to be zero. Moreover, define SY as the price of CO3. Denote as

S; the full vector (S,?, Sk, St/).

Now, we introduce the multiplicative constants needed to convert theses quantities into €/MWh.
For each technology i = 1,...,d’, let h; denote its heat rate, and hY denote its COy emission
rate. Hence, the quantity . ‘

Sii=hdSY + S} (4.5.6)
expressed in €/MWh, corresponds to the price in € to pay in order to produce IMWh of
electricity using the ith technology. We note h° = (hY,...,h%) € RY and h = (hy,...,hg) €
R?.

Remark 4.5.1. One can choose to add a fixed cost into the definition of Si. This is all the more
so relevant for technologies whose fixed costs outweigh the cost of fuel (e.g. nuclear).

Over long time horizons, it is crucial to take into account the existence of long-term relation-
ships between energy prices (c.f.[90] for instance). Thus, extending the model of cointegrated
Brownian motions from [14], we model S; as cointegrated geometric Brownian motions:

dS; = ES;dt + diag (S;) SdW;®
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where Z is the (d' + 1) x (d’ + 1) cointegration matrix (which models the long term relations),
Y is the (d' +1) x (d' + 1) covariance matrix (which models the short term behaviour), and

(Wts ) 0 is a (d' 4+ 1)-dimensional Brownian motion. We assume that 1 < rank (Z) < d’ (so as

to produce “true” cointegration, see [14]), and that for every i # j, Z;; > 0 (so as to ensure
that the process S stays positive, see Appendix 4.7.2).

4.5.1.4 Electricity price

We model the price of electricity using a long-term structural model. We model it as the sum
of two building blocks: the marginal cost of producing electricity (cf. [3] for more details) plus

a power law scarcity premium (along the lines of [1]), this sum being capped at a fixed upper
bound !.

For any time ¢ > 0, define the permutation (1),...(d") of the numbers 1,...,d’, such that
§t(1) <...< gt(d ). Then, define aﬁ’) as the total capacity available at time ¢ from the 7 first
technologies, i.e. 63) =)< C't(J).

Now, from two points (z1,y1) and (x2,72) in R?, one can always find three positive constants
a:=a(x1,x2,91,Y2), b :=b(x1,22,y1,y2) and ¢ := ¢ (x1,x2,y1,y2) such that the function:

T
a— bz

p(z) == p(;21,22,Y1,Y2) = +c (4.5.7)

satisfies p (z1) = y1 and p (22) = yo 2.

Using this notation, we model the price P; of electricity as follows:

Po= 8"1{D, <0} + {8V +p(Dys0,c1", 5V, 5 b 1{o < b, < )}

1=

S 80 1 (D00, 50,5 1 (0 < < )
=2
R (puTE D T S0 r TV 0 s

where Ppax > 0 is a fixed upper bound on the price of electricity. In particular, the last term, the
one involving Pyax, enables price spikes to occur (when the residual capacity is small). Remark
that the price of CO9 emissions is explicitly included in the marginal cost (through equation
(4.5.6)). Finally, remark that thanks to the knitting function (4.5.7), the electricity price P is
a Lipschitz continuous function of the structural variables D, C' and S3.

Remark 4.5.2. Remark that the price model (4.5.8) is different from the one proposed in [1]. If
both model are indeed based on a penalization of the marginal cost by a scarcity factor, this
factor is multiplied to the marginal cost in [1], while here it is added to the marginal cost,
in a manner that ensures the continuity of the structural function that generates the power
price. Without this modification, one could try to preserve the continuity of the structural
function by including the electricity price P, regarded as a jump diffusion process, among the
state variables. However, the type of discontinuity (composition of an indicator function with a
diffusion) is such that P would not be a jump diffusion process (it would not admit any jump

'Indeed, in the French, German and Austrian markets for instance, power prices cannot be set outside the
[—3000, 3000]€/MWh range, see http://www.epexspot.com/en/product-info/auction.

a
b—xzq°

2For instance, fix a > 0, then define b = % (Jcl + z2 + \/(acz —1)? + 4aﬁ) and finally ¢ = y1 —

3Rigorously, this property requires that C' does not reach zero. One can, for instance, add a fixed minimum
availability rate 1 >> amin > 0 to the definition (4.5.5), replacing T by @min + (1 — amin) T
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measure, cf. Appendix 4.7.3). Therefore, we opted for the simple additive model (4.5.8). This
modification does not alter the calibration process very much, and seems to be better suited to
long term modeling.

4.5.1.5 Objective function

We now explicit the objective function of the investor in electricity generation. Suppose that,
at time ¢, the level of installed capacity of type j € [1,d'] is changed from I to I7 = I} + ¢/,
s >t . It generates the cost:

§++ij<¢§+ , ¢ >0
=0

= P j

3 _CJKJ]' ,¢7 <0

s O =

£ (e) -

where ;" and /€§+ are the fixed and proportional costs of building new plants of type j, and
ff

Kj

Consider the case of new plants (¢/ > 0). Assuming that the global availability rate(4.5.5) of
technology j applies to the new plants, they can then produce up to (A, s > t, or, more
precisely, according to the stack order principle, up to

min {CjAg, (DS — Cijl))+}

and ng’* are the fixed and proportional costs of dismantling old plants of type j.

assuming that, in the stack order, the new plants are called before the older plants I;_ of the
same technology (as their efficiency rate can be expected to be at least slightly better than the
older plants of the same technology, a phenomenon that can be seen as a partial interpretation
of the knitting function (4.5.7)).

At time s > ¢, this production is sold at price P, but costs Ss to produce (if Ps < S, then of
course the producer chooses not to produce). In addition, regardless of the output level, there
may exist a fixed maintenance cost ;. Summing up all these gains, discounted to time ¢ using
a constant interest rate p > 0, the new plants yield a (random) revenue of:

/too e P (min {(jAg, D — égj_l)} X (PS — §§)+ — m) ds

(noticing that our power price model is such that {Ds — égj_l) < 0} & {Ps — §§ < 0})

Now, after this cost-benefit analysis for one quantity ¢ of new plants, consider the gains of the
whole fleet of power plants on a given geographical zone. The maximization of the expected
discounted gains along the potential new plants yields the following stochastic control problem:

. ™ el (i G G\t ) NS g (i
v(t,x,i) = sup E Z/t e’ (mln{C’g,Ds Cy }x(PS Sg) ki | ds Tnzzzte P k(C])

a€A;; j=1
(4.5.9)
where the strategies « affect the installed capacities (equations (4.5.3)), hence also the available
capacities (equation (4.5.4)) as well as the power price (equation (4.5.8)), and where the cash
flows are purposely discounted up to time 0, which is the time of interest.

Remark 4.5.3. Replacing P in (4.5.9) by its definition (4.5.8), it is patent that this objective
function fits into the mould studied thoroughly in Section 4.3. In Subsection 4.5.2 below, we
apply our algorithm to this specific objective function.
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Remark 4.5.4. Remark that under this modeling, the demand is satisfied as long as it does
not exceed the total available capacity. Indeed, the effective output of the plant ¢’ is equal

~. . — (i +
to 1 {Ps -S> O} X min{(JAJS, (DS — ng 1)) } It is indeed governed by the electricity

spot price level, but, as under our modelling {PS — §g > 0} = {DS —égjil) > 0} a.s., sum-

ming up the effective outputs of all the power plants yields Z?;l min{C’g , Ds —égjfl)} X
1{D, - TV > 0} = min {D,,T\"}.

4.5.2 Numerical results

Finally, we solve the control problem described in Subsection 4.5.1 on a numerical example,
using the algorithm detailed in Subsection 4.3 combined with the general memory reduction
method described in Subsection 4.4.2.

Our purpose here is not to perform a full study of investments in electricity markets, but a more
modest attempt at illustrating the practical feasibility of our approach, with some possible
outputs that the algorithm can provide.

We consider a numerical example including two cointegrated fuels (in addition to the price of
COz): one “base fuel” and one “peak fuel”, starting respectively from 40€/MWh and 80€/MWh.
Hence, using the notations from Subsection 4.5.1, d’ = 2 (two technologies) and d = 6 ( electricity
demand, COs price, two fuel prices and two availability rates). The main choices of parameters
for this application (initial fuel prices and volatilities, initial fleet and proportional costs of
new power plants) are summed up in Table 4.5.1. Moreover, the demand process starts from
Dy = 7T0GW and does not integrate any linear trend.

1

1 | 40€/MWh | 5% | 67GW | 2.00 10°€/GW
80€/MWh | 15% | 33GW | 0.24 10°€/GW

IR0 I T A I S

Table 4.5.1: Model parameters

In order to take into account the minimum size of one power plant we restrict the values of the
installed capacity process(4.5.3) to a (bi-dimensional) fixed grid A%, with a mesh of IGW. We
make the simplifying assumptions that investments are irreversible, and that no dismantling can
occur (recall from Subsection 4.4.1 the computational gain provided by this assumption).

Remark 4.5.5. If such a grid is indeed manageable in dimension d’ = 2, it may less be the case if
additional technologies were considered. However, as discussed in [100] equation (3.2), instead
of performing one regression for each i € A%, one can solve equation (4.3.15) at time #; by only
one (d + d')-dimensional regression, by choosing an a priori law for the randomized control (;,.
The error analysis from Section 4.2 can be generalized to such regressions in higher dimension.

Finally, we consider the following numerical parameters. We choose a time horizon T' = 40 years
and a time step h = % (i.e. two time steps per day, allowing for some intraday pattern in
the demand process) but allow for only one investment decision per year. For the regression,
we consider a basis of b = 2¢ = 64 adaptative local functions, chosen piecewise linear on each
hypercube (which is a bit more refined than the piecewise constant basis studied in Section 4.3)
on a sample of M = 5000 trajectories.

With these numerical parameters, we obtain a non-parametric confidence interval of [3.731, 3.752] x
108 for the value function v (0, zg,ig) at time 0 (cf. Appendix 4.7.4 on how these bounds are
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computed), i.e. a relative error smaller than 1%, which is sufficiently small for the numerical
results obtained, displayed on Figures 4.5.1 and 4.5.2, to be considered relevant.

First, Figure 4.5.1 deals with the optimal strategies. Figure 4.5.1a displays the time evolution of
the average as well as the variability of the optimal fleet (only the new plants are shown). One
can distinguish a first short phase characterised by the construction of several GW of peak load
assets, followed by a much slower second phase involving the construction of both base load and
peak load assets. Moreover, the variability of the optimal fleet increases over time. The detailed
histogram of the optimal strategy at time T" = 40 years is displayed on Figure 4.5.1b, where it
is combined with the price of fuel. One can see that the more the peak fuel is expensive (and
hence both fuels are expensive on average, as they are cointegrated), the more constructions of
base load plants occur.

% . maxOstsT density(l,) 0.5 = Fuel Price
= - —-average investment E[1] (2 8 ¢ Euro/MWh
z 0.4 = °
2 £ 200
& 6 g P
§ : 03 g » 170
& ' z ® o o -
oy @
£ il 140
fc 4 Z 4 e ® o o
Wi 0.2 < 110
[ i .
. 80
2 0.1 2
50
0 0 0t
0 1 2 3 4 5 8 7 8 0 1 2 3 4 5 68 7 8 9
BASE (new capacity in GW) BASE (new capacity in GW)
(a) Time evolution of new capacities (b) Final fleet distribution

Figure 4.5.1: Optimal strategies

The fact that the average fleet seem to converge is related to the fact that this numerical example
does not consider any growth trend in the electricity demand. Otherwise, more investments
would occur, indeed, to keep pace with consumption.

Then Figure 4.5.2 provides information on the price of electricity. Figure 4.5.2a displays the
time evolution of the electricity spot price density. For better readability, each density covers
one whole year. One can see how the density moves away from the initial bimodal density
(with prices clustering around the initial prices of the two fuels) towards a more diffuse density.
Moreover, the downward effect of investments on prices can be noticed.

This downward effect is even more visible on Figure 4.5.2b. It compares the effect on electricity
prices of three different strategies: the optimal strategy, the optimal deterministic strategy
(computed as the average of the optimal strategy), and the do-nothing strategy. For each
strategy, the joint time-evolution of the yearly median price and the yearly interquartile range
are drawn. As expected, prices tend to be higher and more scattered without any new plant.
Nevertheless, on this specific example, the price distribution under the optimal deterministic
strategy is close to that under the optimal strategy (only slightly more scattered).
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Figure 4.5.2: Electricity spot price

Figure 4.5.3 provides an alternative graphical representation of the time evolution of the distri-
bution of the electricity spot price. The construction of these graphics is detailed in Appendix
4.7.5. Two strategies are compared: the do-nothing strategy (Figure 4.5.3a) and the optimal
strategy (Figure 4.5.3b). One can clearly see that the new constructions of plants decrease the
probability of extremely high prices (as shown by the extent of the 99% areas), and decrease
the use of the peak plants (to such an extent that the distribution turns unimodal before the
end of the time period).

Power price distribution: Without new plants Power price distribution: With new plants
200 200
10% 10%
20% 20%
150 30% 150 30%
40% 40%
50% 50%

100 100
60% \‘ 60%

70% 70%

90% 90%
99% 99%
0 0
5 10 15 20 25 30 35 40 \inimaliso- 5 10 15 20 25 30 35 40 \inimaliso-
Time probability sets Time probability sets
(a) Without new plants (no investments) (b) With new plants (optimal investments)

Figure 4.5.3: Time-evolution of electricity spot price

These few pictures illustrate the kind on information that can be be extracted from the resolution
of this control problem. Of course, as a by-product of the resolution, much more can be extracted
and analyzed (distribution of income, CO2 emissions, optimal exercise frontiers, etc) if needed.
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4.6 Conclusion

In this chapter, we presented a probabilistic method to solve optimal multiple switching prob-
lems. We showed on a realistic investment model for electricity generation that it can efficiently
provide insight into the distribution of future generation mixes and electricity spot prices. We
intend to develop this work in several directions in the future. First, we wish to take into ac-
count more generation technologies, most notably wind farms, nuclear production, as well as
solar distributed production. These additions would raise the dimension of the problem from
eight to fifteen. Yet another range of innovations in numerical methods will be necessary to
overcome this increase in dimension. Second, we wish to take time-to-build into account. And
last but not least, we wish to adapt the problem to a continuous-time multiplayer game and
contribute to the quest for an efficient algorithm to solve it.

4.7 Appendices

4.7.1 L, convergence speed of empirical mean

Lemma 4.7.1. For every p > 1, there exists C, > 0 such that for any i.i.d. sample X1,..., Xy
of R-valued random variables such that E[X1] =0 and E {\Xl\pvﬂ < 00, the following holds:

(4.7.1)

1 M
—E:X
M~ m

C.
< ——|IXull,
- ./ V2
L, M !

Proof. Using Marcinkiewicz-Zygmund’s inequality, there exists Cp, > 0 such that:

(Em)’

| M £
(M 3 |Xm|2> } (4.7.2)
m=1

p

E < C,R

M
> X
m=1

Multiplying both sides by ﬁ:

p Cp

E < 2E
Mz

1 M
—E:X
M “= m

If p> 2, then £ > 1 and, using Jensen’s inequality:

(S]]

1 M
= 37 Z ’Xm|p
Mm:l

@ mf |Xm12>g < o 2 (1)

m=1

Taking expectations on both sides:
P
1 M ) 2 ,
E |47 > Xl <E[|IX1|"] (4.7.3)
m=1
Now, if p < 2, then g < 1 and, using Jensen’s inequality:
b b
1 X 2\ 1 < 2 2

Then combine inequalities (4.7.2), (4.7.3) and (4.7.4) and take the power 1% to obtain inequality
(4.7.1). O

N
[NIS]

(4.7.4)
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4.7.2 Positivity of cointegrated geometric Brownian motions

Let (Q2, F,P) be a probability space. Consider the following d-dimensional process:

dS; = ESdt + diag (S;) dW,
S() > 0

where W is a F-adapted, d-dimensional Brownian motion, = is a d x d cointegration matrix,
and X is a d x d covariance matrix.

Proposition 4.7.1. S > 0 a.s. if and only if Vi # j, Z;; > 0

Proof. First, suppose that Vi, j = 1,...,d, ¢ # j, Z; ; > 0. Consider the following stopping time:
r=inf{t>0;3j€[1,d st.8 =0}

i.e. 7 is the first time when one component of S reaches 0. In particular, Sy > 0 a.s. Vt € [0, 7].

Now, suppose that 7 < co. There exists at least one component i such that St = 0. Recall the
dynamics of S*:

J=1 J=1

d d
dS; = (Z E,,jsg) dt + S| (Z zi,jdwg)
By Girsanov’s theorem, there exists a probability measure Q¢ , equivalent to P, such that
. . . d o
dSt=|{ Y. EiyS|dt+ S| > i ;dw
1<j<d;j#i j=1

where W is a d-dimensional Q'-Brownian motion. Then, using Proposition (2.3) from [95]

(Chapter IX):
ngg(Xi)t{Sng/ts(Xi)l( 3 zi7jsg) ds} (4.7.5)
0 S

1<j<d;j#i

where X} := Z;-lzl Eiydetj, and & (X’) denotes the exponential martingale of X*. At time 7,

it yields:
0=l =¢(X') {53 +/75 (X)_l ( 3 Ei,jsg) ds} >0
T 0

1<j<d;j#i

using the positivity of S§ and of the exponential martingale, as well as the non-negativity of
Zij, @ # j, and of S before 7. This contradiction means that S. > 0. As the same reasoning
can be applied for every i € [1,d], this means that 7 = oo, i.e. that S > 0 a.s. .

Next, suppose that S > 0 a.s. . Choose i € [1,d]. Using equation (4.7.5) and the positivity of
S, we obtain:

. t -1
Se+ Y Ej/ £(X7) " Slds>0 as.
1<j<d;j#i 0 °
, S
As S} > 0 and the coefficients fgé’ (XZ) Slds are a.s. positive with support R4, the only
S

possibility for the above inequality to hold a.s. is that Z; ; > 0 for all 7 # j. O
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4.7.3 No jump measure for diffusion-based discontinuities

This Appendix deals with discontinuous jump processes of the type 1yy,~0), ie. the composition
of an indicator function of a subset of R with a R—valued diffusion. Such processes arise for
instance in the electricity spot model studied in [1]. We show below (on the representative
example 1y, ~0y) that such processes cannot admit any jump measure.

Theorem 4.7.1. Let (2, F,P) be a probability space, T > 0 be a fized time horizon, and
W = (Wt)te[O,T] be a standard Brownian motion for the measure P. The filtration F = (}—t)te[mT]
is the natural filtration, satisfying the usual conditions, generated by W. Then, the stochastic
process JWV = (JtW)

defined by JJV = 1aw,s0y, t € [0,T], does not admit any jump
measure. }

tel0,T

Proof. Suppose that JW admits a jump measure, i.e. there exists a random measure M such
that:

Vwe Q,Vte[0,T], JY (w) = M (w,[0,t]) :/tM(w,ds)
0

Given that the stochastic process JV is a.s. non-monotone, the random measure M must be
a signed random measure, i.e. for a.e. w € Q, M (w,.) is a countably additive real function
defined on the o-algebra B ([0,7]). By simple properties of signed measures, M need to be a.s.
finite, and even bounded (cf. for instance [20], Corollary 3.1.3 p.176). Consequently, the Jordan
decomposition holds, i.e. there exists two positive (random) measures M+ and M~ such that:

M=M"—M"
Moreover, both measures M+ and M~ are a.s. finite.

Now, we are going to show that the finite measure M™ is not countably additive. The same
reasoning will hold for M.

For every n > 1, define A, := }O, H Then, for every n > 1 A, C Ap41, and N2, A,, = 0. Now,
the law of the iterated logarithm (cf. [95]) implies that a.s. limsups o W; > 0. Thus, for every
n>1, Mt (A,) > 1 as., and consequently lim, oo P (M™* (A4,) > 1) = 1. In particular the
relation lim, o Mt (A4,) = 0 a.s. does not hold. This shows that for a.e. w € €, the function
M™ (w,.) is not continuous at zero, and thus is not countably additive (cf. [20], Proposition
1.3.3 p.9), leading to a contradiction.

As a consequence, J" does not admit any jump measure. O

4.7.4 Empirical confidence intervals

This Appendix describes how to obtain an empirical confidence interval for v (0, xg,ip). Here
we adapt arguments from [28] to our optimal switching problem.

We assume that the parameters 7' (time localisation) and h (discretization) are chosen such that
the error between v and vy is negligible (the space localization being redundant in practice),
and focus on the error between vy and ory.

First, from equation (4.3.8), the dynamic programming principle for the process vy (tn, X, z)
reads:

V11 (T, XT, Z) =g (T, XT, Z)

B <tn,Xt,L,i) — sup {hf (tn,th,j) — K (tn,i,§) + E [@H (tnﬂ,)’(tm,j) |J-“th n=N-—1,...

jeln
(4.7.6)
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where I is the set of JF, -measurable random variables taking values in I,. Suppose that the
approximated conditional expectation K [. | F;, ] is unbiased, i.e. that

E[E[|F,]| =E[|7,]

Then, using equation (4.3.15) and Jensen’s inequality, the following holds:

E (o1 (tn, X1,1) | > sup {hf (tn, X 3) = K (tnsi25) + E[on (bns1, Xiey0 )| Foa| o= N=1,...,0

jeln
(4.7.7)

Combining equations (4.7.6) and (4.7.7), an induction argument yields:

E [@H (tn,f(tn,z'” >E [@H (tn,f(tn,iﬂ

In particular, E [or1 (0, 0,%)] > o1 (0, xo,%). This reasoning means that oy (0, o, %) can be used
approximatively as an asymptotic upper bound for vy (0, 2, 7).

For the lower bound, simply use the estimated optimal control &, which is a side-product of the
computation of 0y, and compute equation (4.3.6) by replacing the supremum over every control
a by this specific & By definition of the supremum, this yields a lower bound for vy (0, xg, 7).

4.7.5 Graphical representation of random processes

The purpose of this Appendix is to provide a simple one-dimensional graphical representation
of the distribution of a real-valued random variable. Such a representation can then be used
iteratively in order to display conveniently the time evolution of a random process.

Consider a real-valued random variable X. Suppose that its distribution is known, or that an
estimate is available. For simplicity, we suppose that X is a continuous random variable. Let
fx denote its probability distribution function. Then, proceed as follows:

o Choose a probability p € ]0,1[, and compute the smallest set A, such that P (4,) = p.
To do so, it suffices to find the highest y > 0 such that the set A := {z € R; fx (z) > y}
suits the condition. Call y, the level such that 4, = {z € R; fx (x) > y,}'. We call A4, the
p—minimal isoprobability (Borel) set. Figure 4.7.1a illustrates the area (Ap,y,) for p = 99%
when X is a mixture of two gaussian random variables ((mi,01,p1) = (—5,2,50%) and
(’ITLQ, O'Q,pz) = (5, 3, 50%)).

!To be more precise, this construction works if the function y — P (A) is continuous. If the density has flat parts
(eg. a uniform distribution), then this is not true anymore, and many sets A may satisfy P (A,) = p. To keep
the uniqueness of A,, one can simply choose to “consume” those flat parts by starting from their middle.
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(a) Step 1/5: p = 99%,y, = 0.005 (b) Step 2/5: p = 80%, yp, = 0.036

Figure 4.7.1: Density slicing

o Compute the area (Ap,y,) for several other values of p. On the same example, we illustrate
additional areas computed for p = 80% (Figure 4.7.1b), p = 60% (Figure 4.7.2a), p = 40%
(Figure 4.7.2b) and finally p = 20% (Figure 4.7.3a). At each step, we change the color of the
current bar according to the value of p.? Remark that, unlike a simple interquantile range, a
minimal isoprobability set can be a union of disjoints intervals.

0.08 0.08
0.07 0.07
0.06 0.06
40%
0.05 0.05
0.04 60% 0.04 60%
0.03 0.03
80% 80%
0.02 0.02
0 0
-10 0 10 -10 0 10
(a) Step 3/5: p = 60%, yp = 0.050 (b) Step 4/5: p = 40%, yp, = 0.059

Figure 4.7.2: Density slicing

20n these examples, we used the sequential colormaps from the MATLAB package cbrewer
(http://www.mathworks.com/matlabcentral /fileexchange /34087-cbrewer-colorbrewer-schemes-for-matlab)
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0.08 0.08
0.07 20% 0.07 20%
0.06 0.06
40% 40%
0.05 0.05
0.04 60% 0.04 60%
0.03 0.03
80% 80%
0.02 0.02
0.01 99% 001 99%
0 0
0 10 -10 0 10
(a) Skyline (b) Wedding cake

Figure 4.7.3: Inclusive histograms

Figure 4.7.3a does not constitute a histogram per se, as the classes A, are imbricated (for any
0<p1 <p2<1, Ay, CAp ). We call this construction an inclusive histogram. There are two
variants of it. Proceeding from the lowest p to the highest p (ie. adding taller but thinner bars
in front of the previous ones) generates the “skyline” version (as in Figure 4.7.3a), while the
other way around generates the “wedding cake” version (as in Figure 4.7.3b).

However, the real interest of these inclusive histograms is that they allow for an intuitive uni-
dimensional summary of the corresponding distribution. Indeed a look from above at the slices
from Figure 4.7.3 leads to the barcode-like summary of the distribution of X displayed on Figure
4.7 4a:

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

(a) Minimal isoprobability sets (b) Interquantile ranges

Figure 4.7.4: Barcodes

For comparison, Figure 4.7.4b displays the simple interquantile ranges of the same random
variables (for the same levels of probability, ie. the (centered) intervals [0.5%, 99.5%)], [10%, 90%],
[20%, 80%],[30%, 70%] and [40%, 60%)).

Figure 4.7.4a provides a summary of the distribution of X in one glance: two modes centered
around —5 and 5, the second one being more scattered. On the contrary, these informations are
not readily available from the interquantile ranges displayed on Figure 4.7.4b.

Basically, the reason for this is that the minimal isoprobability sets are based on the level
curves of the probability distribution function, while the interquantile ranges are based on the
level curves of the cumulative distribution function. This difference is minor for unimodal
distributions (for unimodal and symmetric distributions, like the gaussian distribution, both
constructions are identical), but is very significant for multimodal distributions, are shown by
Figure 4.7.4.
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To sum up, our construction provides, like interquantile ranges, a function p € [0,1] — A4, €
B (R), but this function, unlike interquantile ranges, can systematically account for the shape
of the distribution at hand.

Finally, one can use this construction to produce a graphical representation of a given random
process. Indeed, computing such barcodes, based on the minimal isoprobability sets, on a
given time grid provides an easy-to-grasp graphical representation of the time evolution of the
distribution of the random process. Figure 4.5.3 provides two examples of such graphics.
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5 A numerical algorithm for fully nonlinear HJB
equations via BSDEs with nonpositive jumps

We propose a new probabilistic numerical scheme for fully nonlinear equation of Hamilton-
Jacobi-Bellman (HJB) type associated to stochastic control problem, which is based on the
Feynman-Kac representation in [72] by means of control randomization and backward stochastic
differential equation with nonpositive jumps. We study a discrete time approximation for the
minimal solution to this class of BSDE when the time step goes to zero, which provides both an
approximation for the value function and for an optimal control in feedback form. We obtained
a convergence rate without any ellipticity condition on the controlled diffusion coefficient. Then,
we provide an explicit implementable scheme based on Monte-Carlo simulations and empirical
regressions, with a partial error analysis, and numerical experiments, notably on the problem of
superreplication of option with uncertain volatilities and/or correlations.

5.1 Introduction

Let us consider the fully nonlinear generalized Hamilton-Jacobi-Bellman (HJB) equation:

{ 90 4 sup,e 4 [b(x,a).Dyv + Str(oo (2, a)D2v) + f(z,a,v,07(z,a)Dyv)] = 0, on[0,T) x RY,
v(T,z) = g, on R
(5.1.1)
In the particular case where f(z,a) does not depend on v and D,v, this partial differential
equation (PDE) is the dynamic programming equation for the stochastic control problem:

o(t,z) = sng[/tTf(Xf,as)ds+g(X%)‘Xf‘ =), (5.1.2)

with controlled diffusion in R?:
dXta = b(X?, Oét)dt + O’(Xta, Odt)th,

and where « is an adapted control process valued in a compact space A of RY. Numerical methods
for parabolic partial differential equations (PDEs) are largely developed in the literature, but
remain a big challenge for fully nonlinear PDEs, like the HJB equation (5.1.1), especially in
high dimensional cases. We refer to the recent paper [49] for a review of some deterministic and
probabilistic approaches.

In this chapter, we propose a new probabilistic numerical scheme for HJB equation, relying on
the following Feynman-Kac formula for HJB equation obtained by randomization of the control
process . We consider the minimal solution (Y, Z, U, K) to the backward stochastic differential
equation (BSDE) with nonpositive jumps:
Y g(XT)+_/;Tf(XS7I&YS7Zs)d3+KT—Kt
— [ Zaw, — [T [, Us(a)fi(ds,da), 0<t<T, (5.1.3)
07

Ut(a)

IN
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with a forward Markov regime-switching diffusion process (X, I) valued in R? x A given by:

t t
X, = X0+/ b(XS,I)ds—i—/ o( X, I,)dW,

I, = Io+/ /a— wu(ds, da).
0,t]

Here W is a standard Brownian motion, u(dt, da) is a Poisson random measure on [0,00) x A
with finite intensity measure A\(da) of full topological support on A, and compensated measure
fa(dt,da) = p(dt,da) — A(da)dt. Assumptions on the coefficients b, o, f, g will be detailed in
the next section, but we emphasize the important point that no degeneracy condition on the
controlled diffusion coefficient o is imposed. It is proved in [72] that the minimal solution to
this class of BSDE is related to the HJB equation (5.1.1) through the relation Y; = v(¢, X3).

One purpose of this chapter is to provide and analyze a discrete-time approximation scheme for
the minimal solution to (5.1.3), and thus an approximation scheme for the HJB equation (5.1.1).
In the non-constrained jump case, approximations schemes for BSDE have been studied in the
papers [82], [25], which extended works in [27], [109] for BSDEs in a Brownian framework. The
issue is now to deal with the nonpositive jump constraint in (5.1.3), and we propose a discrete
time approximation scheme of the form:

= Vi = g(Xp)
Z = E{ﬁ%%\ftk}
Vo= E[YT|F] 4 e — ) FXEL Ly, VR 2E) (5.1.4)
Yr = essessz[ytthk,Itk: } E=0,....,n—1,

where m = {tp =0 < ... <ty < ... <t, =T} is a partition of the time interval [0,7], with
modulus |7|, and X™ is the Euler scheme of X (notice that I is perfectly simulatable once we
know how to simulate the distribution A(da)/ [, A(da) of the jump marks). The interpretation
of this scheme is the following. The first three lines in (5 1.4) correspond to the standard scheme
(Y™, Z™) for a discretization of a BSDE with jumps (see [25]), where we omit here the computa-
tion of the jump component. The last line in (5.1.4) for computing the approximation Y™ of the
minimal solution Y corresponds precisely to the minimality condition for the nonpositive jump
constraint and should be understood as follows. By the Markov property of the forward process
(X, 1), the solution (Y, Z,U) to the BSDE with jumps (without constraint) is in the form )
= O(t, Xy, I) for some deterministic function ¥. Assuming that 1 is a continuous function, the
jump component of the BSDE, which is induced by a jump of the forward component I, is equal
to U(a) = V(t, X¢,a) — U(t, X¢, I;-). Therefore, the nonpositive jump constraint means that:

V(t, Xy, I;-) > esssup 9(t, X¢, a). The minimality condition is thus written as:
ac€A

Y = v(t,X;) = esssupd(t,Xy,a) = esssupE[I| Xy, I = al,
acA acA

whose discrete time version is the last line in scheme (5.1.4).

In this work, we mainly consider the case where f(z,a,y) does not depend on z, and our aim
is to analyze the discrete time approximation error on Y, where we split the error between the
positive and negative parts:

=
N|=

Eet() = (ax B[ ~¥D])% Bt = (e {06 - ¥D7)
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We do not study directly the error on Z, and instead focus on the approximation of an optimal
control for the HJB equation, which is more relevant in practice. It appears that the maxi-
mization step in the scheme (5.1.4) provides a control in feedback form {a(t, XZ;), E<n-—1},
which approximates the optimal control with an estimated error bound. The analysis of the
error on Y proceeds as follows. We first introduce the solution (Y™, Y™, Z™,U™) of a discretely
jump-constrained BSDE. This corresponds formally to BSDEs for which the nonpositive jump
constraint operates only a finite set of times, and should be viewed as the analog of discretely
reflected BSDEs defined in [7] and [24] in the context of the approximation for reflected BS-
DEs. By combining BSDE methods and PDE approach with comparison principles, and further
with the shaking coefficients method of Krylov [78] and Barles, Jacobsen [10], we prove the
monotone convergence of this discretely jump-constrained BSDE towards the minimal solution
to the BSDE with nonpositive jump constraint, and obtained a convergence rate without any
ellipticity condition on the diffusion coefficient 0. We next focus on the approximation error
between the discrete time scheme in (5.1.4) and the discretely jump-constrained BSDE. The
standard argument for studying rate of convergence of such error consists in getting an estimate
of the error at time t: E[|Y;T — ¥;7|?] in function of the same estimate at time tj41, and then
conclude by induction together with classical estimates for the forward Euler scheme. However,
due to the supremum in the conditional expectation in the scheme (5.1.4) for passing from V™ to
Y™, which is a nonlinear operation violating the law of iterated conditional expectations, such
argument does not work anymore. Instead, we consider the auxiliary error control at time tx:

ELY) = E{essessztha[. ) 'eSSGSEpEt’““HyZ; — )_)Z;|2] H,

where E;, 4[.] denotes the conditional expectation E[.|F;,, I;, = a], and we are able to express
EF(Y) in function of £, (). We define similarly an error control &7 (X) for the forward Euler
scheme, and prove that it converges to zero with a rate |7|. Proceeding by induction, we then
obtain a rate of convergence |r| for £7(Y), and consequently for E[|Y;T — Y;T|?]. This leads

finally to a rate ’7‘(’% for Err” (Y), ]7r|% for Err’ (Y'), and so \w[Tlo for the global error Err™ (Y') =
Err’ (Y) + Err” (Y). In fact, as noticed in Remark ??, we believe that one can obtain a better
rate at least of the order |7r|é Anyway, our result improves the convergence rate of the mixed
Monte-Carlo finite difference scheme proposed in [49], where the authors obtained a rate |7T|%
on one side and ]7T|% on the other side under a nondegeneracy condition.

Once this time dicretization is performed, the above discrete time scheme is still not yet di-
rectly implemented in practice, as it requires the estimation and computation of the conditional
expectations together with the supremum. To do so, simulation-regression methods on basis
functions defined on R? x A appear to be very efficient, and provide approximate optimal con-
trols in feedback forms via the maximization operation in the last step of the scheme (5.1.4).
We provide a partial analysis of the impact of this regression approximation, and the remaining
obstacles towards a full analysis are highlighted. Notice that since it relies on the simulation
of the forward process (X, I), our scheme does not suffer the curse of dimensionality encoun-
tered in finite difference scheme or controlled Markov chains methods (see [79], [21]), and takes
advantage of the high-dimensional properties of Monte-Carlo methods.

Finally, we illustrate our scheme on several numerical tests, notably on the problem of super-
replication of options under uncertain volatility and (for multi-dimensional claims) correlation,
which is one of the major applications that takes advantage of the possibilities of our scheme. To
our knowledge, the only other Monte Carlo scheme for HJB equations that can handle continu-
ous controls as well as controlled volatility is described in [62], where they make use of another
generalization of BSDEs, namely second-order BSDEs. Therefore we compare the performance
of our scheme to the results provided in their paper.
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To sum up, here is the outline of the chapter. The analysis of the time-discretization is performed
in Section 5.2, and the analysis of the approximation of conditional expectations in Section 5.3.
The numerical tests and comparisons are performed in Section 5.4. Finally, Section 5.5 concludes
the chapter.

5.2 Time discretization

This long section is devoted to the analysis of the convergence of the solution of the discretized
scheme (5.1.4) towards the minimal solution of the constrained BSDE (5.1.3). In Subsection
5.2.1, we state some useful auxiliary error estimate for the Euler scheme of the regime switching
forward process. We introduce in Subsection 5.2.2 discretely jump-constrained BSDE and relate
it to a system of integro-partial differential equations. Subsection 5.2.3 is devoted to the conver-
gence of discretely jump-constrained BSDE to the minimal solution of BSDE with nonpositive
jumps. We provide in Subsection 5.2.4 the approximation error for our discrete time scheme,
and as a byproduct an estimate for the approximate optimal control in the case of classical HJB
equation associated to stochastic control problem.

5.2.1 The forward regime switching process

Let (Q, F,P) be a probability space supporting d-dimensional Brownian motion W, and a Pois-
son random measure p(dt,da) with intensity measure A(da)dt on [0,00) x A, where A is a
compact set of R?, endowed with its Borel tribe B(A), and A is a finite measure on (A, B(A))
with full topological support. We denote by F = (F;):>0 the completion of the natural filtration
generated by (W, ), and by P the o-algebra of F-predictable subsets of  x R.

We fix a finite time horizon 7' > 0, and consider the solution (X,I) on [0,7] of the regime-
switching diffusion model:

{ Xy = Xo+ [yb(Xs, L)ds + [3 o(Xs, I,)dW, (5:2.1)

L = [0+f(07t] Jula— I )u(ds, da),

where (Xo,Ip) € R x A, b: R?x A — R? and 0 : R x A — R4 are measurable functions,
satisfying the Lipschitz condition:

(H1) There exists a constant L; such that
|b(z,a) — bz, ad)| + |o(z,a) —o(2’,d")| < Li(lz —2'|+]a—d]),

for all 2,2’ € R? and a,a’ € A. The assumption (H1) stands in force throughout the chapter,
and in this section, we shall denote by C a generic positive constant which depends only on L1,
T, (Xo, Io) and A(A) < oo, and may vary from lines to lines. Under (H1), we have the existence
and uniqueness of a solution to (5.2.1), and in the sequel, we shall denote by (X®2 I%®) the
solution to (5.2.1) starting from (x,a) at time ¢.

Remark 5.2.1. We do not make any ellipticity assumption on ¢. In particular, some lines and
columns of 0 may be equal to zero, and so there is no loss of generality by considering that the
dimension d of X and W are equal.

132



5.2. TIME DISCRETIZATION

We first study the discrete-time approximation of the forward process. Denoting by (T}, tn)n
the jump times and marks associated to u, we observe that I is explicitly written as:

L = Iolpm)®)+ > wlm, o), 0<t<T,
n>1

where the jump times (75,),, evolve according to a Poisson distribution of parameter A := [, A(da)
< 00, and the i.i.d. marks (1), follow a probability distribution \(da) := A(da)/\. Assuming
that one can simulate the probability distribution A, we then see that the pure jump process I
is perfectly simulated. Given a partition 7 = {to =0 < ... <ty <...t, =T} of [0,T], we shall
use the natural Euler scheme X™ for X, defined by:

X7 = Xo
XtT,ZH = X;: + b(XZ;v Itk)(tk+1 - tk) + O'(XZ;Z’ Itk)(Wtk+l - Wtk)’
for k = 0,...,n — 1. We denote as usual by |7| = maxg<,_1(tk+1 — tx) the modulus of 7, and

assume that n|7| is bounded by a constant independent of n, which holds for instance when the
grid is regular, i.e. (tg41—tx) = |7| for all K < n—1. We also define the continuous-time version
of X™ by setting:

X[ = X] +b(X] L)t —tr) + o(X] Iy, ) (W — Wa,), t € [t tega], k <n.

By standard arguments, see e.g. [73], one can obtain under (H1) the L?-error estimate for the
above Euler scheme:

E| sup |X;— X[ 2} < Cir], k<n.
t€ [tk thr1]

For our purpose, we shall need a stronger result, and introduce the following error control for
the Euler scheme:

LX) = E[esssupEtl,a[...esssupEtkya[ sup \Xt—X;L]?]...H, (5.2.2)

acA acA tG[tk,tk+1]

where E;, ,[.] denotes the conditional expectation E[.|F;,, I, = a]. We also denote by Eq, [.]
the conditional expectation E[.|F;,]. Since I, is Fi, -measurable, and by the law of iterated
conditional expectations, we notice that

E| sup |Xt—XZH2} < (X)), k<n.

tE[tk,t;H_ﬂ

Lemma 5.2.1. We have

?gfsg(X) < Ci|n|.

Proof. From the definition of the Euler scheme, and under the growth linear condition in (H1),
we easily see that
Sr 12 S 12
B, [|X5,, 7] < Cl+|X5[), k<n. (5.2.3)
From the definition of the continuous-time Euler scheme, and by Burkholder-Davis-Gundy in-
equality, it is also clear that
E¢

sup | X[ — Xt’;ﬂ < Ci(1+ |XZ;}2)\71'], k <mn. (5.2.4)

y
tety,tht1]
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We also have the standard estimate for the pure jump process I (recall that A is assumed to be
compact and A\(A) < oo):
2
Ey| swp |L-L[] < Cil. (5.2.5)
tE[tk,tk+1]

k

Let us denote by AX; = X; — X7, and apply Itd’s formula to |AX;|? so that for all ¢ € [tg, tx11]:

t —_ -
|AXt|2 = |Ath‘2 —I—/t Q(b(Xs,Is) — b(XZ;,Itk)).AXS + |U(XS,IS) — U(Xg;,ftk)ﬁds
k
t
+ 2/ (AX,) (0(Xs, Is) — J(Xg;,ltk))dWs
tg

t
< IAXGP 4Oy [ AXLP +IXT - XL P+ 1L - I Pds

ty

+ 2/t(AXS)’(a(XS,IS) — o(X], I,)) W,

173

from the Lipschitz condition on b, o in (H1). By taking conditional expectation in the above
inequality, we then get:

t — —
E,, |[[AX?] < ]AthIZJrC'l/]Etk[]AXS|2+|X§—X§§C2+\IS—Itk]2]ds

tg

IN

_ t
AXy P+ Cu(1+ | X7 ) + 01/ B [IAX,[?]ds, t € [th, tora],

tg

by (5.2.4)-(5.2.5). From Gronwall’s lemma, we thus deduce that
By, [[AXy,[P] < e@MAX, 2+ Ci(+ X7 )x?, k<n. (5.2.6)
Since the right hand side of (5.2.6) does not depend on I, this shows that

esssup By ||AX ] < eOIAX, P+ Co(1+ X )i,
ac

By taking conditional expectation w.r.t. F;, | in the above inequality, using again estimate
(5.2.6) together with (5.2.3) at step k— 1, and iterating this backward procedure until the initial
time ty = 0, we obtain:

E{ess supBy, of ... esssup By, o[|AXG, 2] .. H
a€A acA
Cin|n| 2 2 2€Cln\7r| -1

< 01’71", (527)

IN

since AXy = 0 and n|x| is bounded.

Moreover, the process X satisfies the standard conditional estimate similarly as for the Euler
scheme:

Etk |:’th+1’2:| < 01(1 + ’th|2)7

B[ swp |X-X, )" < O+ [X, )l k<n,
tE [t tyt1]
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from which we deduce by backward induction on the conditional expectations:

ElesssupEy, o[...esssupBEy, o[ sup [ X¢— th|2] .. ” < Cq«l. (5.2.8)
acA acA tety, tht1]

Finally, by writing that sup,c, 4, .11 Xt — XZUQ < 28UPsery tyq] 1 Xt — Xt |? + 2AXy, , taking
successive condition expectations w.r.t to F;, and essential supremum over I;, = a, for ¢ going
recursively from k to 0, we get:

> 2
E; | sup |X;— XZ;P] < 2E {ess supE¢, of...esssupEy, o[ sup | Xy — Xy | .. H
L€ty tpt1] acA acA L€ty tpt1]
+ 2FE [ess sup By, of .. esssup By, o[|AX, 2] .. H
acA acA
S C]. |7T|7
by (5.2.7)-(5.2.8), which ends the proof. O

5.2.2 Discretely jump-constrained BSDE

Given the forward regime switching process (X, I) defined in the previous section, we consider
the minimal quadruple solution (Y, Z, U, K) to the BSDE with nonpositive jumps:

Y, = g(Xp)+ [ f(Xs, Is, Ys, Zs)ds + Ky — K,
— (I Zdw, — [T [, Usa)ji(ds,da), 0<t<T. (5.2.9)
Ui(a) < 0,

By solution to (5.2.9), we mean a quadruple (Y, Z,U, K) € 82 x L2 (W) x L?(fi) x K2, where
S? is the space of cad-lag or cag-lad F-progressively measurable processes Y satisfying ||Y]|?
= Elsupejo 7 |Yi?] < oo, L*(W) is the space of R-valued P-measurable processes such that
||Z||%2(W) = E[fOT |Zy|?dt] < oo, L%(ji) is the space of real-valued P ® B(A)-measurable processes
U such that ||U|]%2(ﬂ) = ]E[fOT L4 1Ut(a)|?*A(da) dt] < oo, and K2 is the subspace of S? consisting
of nondecreasing predictable processes such that Ky = 0, P-a.s., and the equation in (5.2.9)
holds P-a.s., while the nonpositive jump constraint holds on © x [0,7] x A a.e. with respect to
the measure dP ® dt ® A(da). By minimal solution to the BSDE (5.1.3), we mean a quadruple
solution (Y, Z, U, K) € 8? x L*>(W) x L?(j1) x K? such that for any other solution (Y’, Z', U’ K')
to the same BSDE, we have P-as.: Y; <Y/, ¢t € [0,T].

In the rest of this chapter, we shall make the standing Lipschitz assumption on the functions f
‘R¥x AxRxRY— Rand g: R — R,

(H2) There exists a constant L such that
’f(l',a,y,z) - f(xlaa,vylaz/)’ + ’g(x> - g(.’IJ,)| < L2(’x - .%'/‘ + ’a’ - a/’ + ’y - y,‘ + ’Z - Z/’)a

for all z,2’ € R, y, ¢/ € R, 2,2 € R?% a,a’ € A. In the sequel, we shall denote by C a generic
positive constant which depends only on L1, Lo, T, (Xo, Iy) and A(4) < oo, and may vary from
lines to lines.
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Under (H1)-(H2), it is proved in [72] the existence and uniqueness of a minimal solution
(Y, Z,U,K) to (5.2.9). Moreover, the minimal solution Y is in the form

Y, = u(t,Xy), 0<t<T, (5.2.10)

where v : [0,T] x R? — R is a viscosity solution with linear growth to the fully nonlinear HJB
type equation:

0, on [0,7) x R?,

—SUpgea [L% + f(z,a,v,07(z,a)Dyv)]
{ WTm) — g onRi. (5.2.11)
where
1
L% = g;) + b(x,a).Dyv + §t1‘(O'O'T($, a)D?v).

We shall make the standing assumption that comparison principle holds for (5.2.11).

(HC) Let w (resp. w) be a lower-semicontinuous (resp. upper-semicontinuous) viscosity super-
solution (resp. subsolution) with linear growth condition to (5.2.11). Then, w > w.

When f does not depend on y, z, i.e. (5.2.11) is the usual HJB equation for a stochastic control
problem, Assumption (HC) holds true, see [51] or [92]. In the general case, we refer to [44]
for sufficient conditions to comparison principles. Under (HC), the function v in (5.2.10) is
the unique viscosity solution to (5.2.11), and is in particular continuous. Actually, we have the
standard Holder and Lipschitz property (see Appendix in [78] or [10]):

lv(t,z) —o(t',2")| < C(jt - t’]% +lx =), (t,t)€[0,T),z,a €¢RL  (5.2.12)

This implies that the process Y is continuous, and thus the jump component U = 0. In the
sequel, we shall focus on the approximation of the remaining components Y and Z of the minimal
solution to (5.2.9).

We introduce in this section discretely jump-constrained BSDE. The nonpositive jump constraint
operates only at the times of the grid 7 = {tp =0 < t; < ... <t, =T} of [0,T], and we look
for a quadruple (Y™, Y™, Z™ U™) € §% x 8% x L*(W) x L?(j1) satisfying:

Y7 = Vi = g(Xp) (5.2.13)
and
tet1
Vro= Y;;HJF/ F(Xs, I, VT, Z5)ds (5.2.14)
t
tea tk+1
- / Zraw, — / / U (a)ji(ds, da) |
t t A
Y[ = y{r]l(tkvtkﬁ)(t)—i—esssXpIE{yﬂXt,It = a}ﬂ{tk}(t), (5.2.15)
ac

for all t € [tg,tg+1) and all 0 < k <n — 1.
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Notice that at each time ¢ of the grid, the condition is not known a priori to be square integrable
since it involves a supremum over A, and the well-posedness of the BSDE (5.2.13)-(5.2.14)-
(5.2.15) is not a direct and standard issue. We shall use a PDE approach for proving the
existence and uniqueness of a solution. Let us consider the system of integro-partial differential
equations (IPDEs) for the functions v™ and 9™ defined recursively on [0, 7] x R? x A by:

e A terminal condition for v™ and 97:

v (T, x,a) = 9°(T,z,a) = g(z), (z,a)cRIxA, (5.2.16)

e A sequence of IPDEs for 97

—LYY9™ — f(z,a,97, 07 (x,a)Dy97)
— [y (O™ (t,z,d/) — 9™ (t,z,a))\(da') = 0, (t,3,a) € [tg,tpr1) X RY x A, (5.2.17)
uT (t];Jrlv x, CL) = SUPge4 ﬁﬂ(tk-l-l) Z, a/) (CL‘, CL) S RY x A

fork=0...,n—1,

e the relation between v™ and 97

V" (tx,a) = OT(tx,a) Ly, (1t )—i—slégﬁ (t,z,a" )Ly, (1), (5.2.18)

for all ¢ € [tg,tx+1) and kK = 0...,n — 1. The rest of this section is devoted to the proof
of existence and uniqueness of a solution to (5.2.16)-(5.2.17)-(5.2.18), together with some uni-

form Lipschitz properties, and its connection to the discretely jump-constrained BSDE (5.2.13)-
(5.2.14)-(5.2.15).

For any L-Lipschitz continuous function ¢ on R% x A, and k < n — 1, we denote:
Tfr[gp](tv Z, a) = ’U)(t, £, a)v (ta x,a) € [tk7tk’+1) X Rd X A7 (5219)

where w is the unique continuous viscosity solution on [ty,t;41] X R? x A with linear growth
condition in x to the integro partial differential equation (IPDE):

—L% — f(z,a,w,0"Dyw)
— [y (w(t,z,d) —w(t,z,a))A(da') = 0, (t,z,a) € [ty tit1) x R x A, (5.2.20)
(tl;+17377a) = ¢(z,0), (v,0) eRIx A,

and we extend by continuity T*[p](tg41,2,a) = @(z,a). The existence and uniqueness of such

a solution w to the semi linear IPDE (5.2.20), and its nonlinear Feynman-Kac representation in
terms of BSDE with jumps, is obtained e.g. from Theorems 3.4 and 3.5 in [9].

Lemma 5.2.2. There exists a constant C such that for any L-Lipschitz continuous function o
onRx A, and k < n— 1, we have

TRle)(t @ a) = TRlel(t, @', a)| < max(L,1)y/1+ [ale (jo — 2| + |a = d])

for allt € [ty tpy1), and (z,a), (2',a’) € R? x A.
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Proof. Fix t € [ty tpr1), k < n—1, (z,a),(2',a’) € R x A, and ¢ an L-Lipschitz continuous
function on R% x A. Let (Y%, 29, U¥) and (Y¥?', Z¥' ,U#?") be the solutions on [t, t;41] to the
BSDEs

trt1
YP = X000 )+ / fXLme b Y2, Z€)dr

tet+1 tet+1
— / Zpdw, — / / Uf(e)i(dr,de), t<8<tps1,
s s A

! ! ! tk+1 !/ ! !/ ! /
v = (X ) / FXE 1 Y el 78 dr

1 tht1

tri1 , trt1 ’
_ / Z$ dW, — / / Ut (e)i(dr,de), t<s <t
s A

S
From Theorems 3.4 and 3.5 in [9], we have the identification:
v = Tl and VP = THeta',d). (5.2.21)
We now estimate the difference between the processes Y ¥and Y®' and set 6Y¥ = Y¥ — Y¥',

67¢ = 7¢ — 7% §X = Xtwa _ xta'ad §7 — Jha _ 1ta’ By [tg’s formula, the Lipschitz
condition of f and ¢, and Young inequality, we have

E[|5Y;"|2}+E{/tk+l 6z2ds] < L2E[|5XT|2+151T12]+C/tk“15:[|5w|ﬂdr

1 b 2 2 2
+2E[/ (10, 2 + 81,2 + |02 )],

for any s € [t,tx11]. Now, from classical estimates on jump-diffusion processes we have

sup EU&XT\Q + \6[,«]2} < |z — 2 + |a — d')?),
S AT

and thus:
tet1
E[[oYS] < (L2+ |r))e(jz — 2/ + |a— a'[?) + c/ E|[[oY,¢[?]dr,
for all s € [t, tg+1]. By Gronwall’s Lemma, this yields

sup E[[0YSP] < (L2 + [n))e* (o — 2] + |a — o),
s€[t,thy1]

which proves the required result from the identification (5.2.21):

TE[](t, 2, 0) = TE[@)(t, 2/ )| < /L2 + |w]e“T(lo = /| + |a — o))
< max(L,1)y/1 + |7|e“I (|2 — /| + |a — d/)).
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Proposition 5.2.1. There exists a unique viscosity solution U™ with linear growth condition to
the IPDE (5.2.16)-(5.2.17), and this solution satisfies:

|197T(t7 xz, a) - ﬂﬂ(ta :E/a CL/)|

—k
< max(Lg, 1)\/<e207f|(1 + \ﬂ\))n (Jz = 2'| + |a — d'|), (5.2.22)
forallk =0,...,n—1,t € [tg, tps1), (z,a),(2',a’) € R? x A.

Proof. We prove by a backward induction on k that the IPDE (5.2.16)-(5.2.17) admits a unique
solution on [t;, T] x R? x A, which satisfies (5.2.22).  For k = n—1, we directly get the existence

and uniqueness of ¥™ on [t,_1,T] x R? x A from Theorems 3.4 and 3.5 in [9], and we have ¥™
=T g] on [t,_1,T) x R? x A. Moreover, we also get by Lemma 5.2.2:

W7 (t,,a) = 97 (t,a/,d)| < max(La, 1)y/e207 (14 |x)) (& — 2| + |a — o]

for all t € [t,_1,tn), (z,a),(2',a’) € R? x A. e Suppose that the result holds true at step k + 1
i.e. there exists a unique function 9™ on [tyy1,T] x R% x A with linear growth and satisfying
(5.2.16)-(5.2.17) and (5.2.22). It remains to prove that ¥™ is uniquely determined by (5.2.17) on
[tr,trs1) x RY x A and that it satisfies (5.2.22) on [tg, tr11) X R% x A. Since 9™ satisfies (5.2.22)
at time tx41, we deduce that the function

Vpp1(x) = sup™(tper,x,a), =R,
acA

is also Lipschitz continuous, and satisfies by the induction hypothesis:

n—k—1
e () = (@) < mw@mn¢@wwu+wm v =a'l,  (5.2:23)

for all z,2/ € R%. Under (H1) and (H2), we can apply Theorems 3.4 and 3.5 in [9], and we
get that 9™ is the unique viscosity solution with linear growth to (5.2.17) on [tg, try1) x RE x A,
with 9™ = T¥[¢p41]. Thus it exists and is unique on [t,T] x R% x A. From Lemma 5.2.2 and
(5.2.23), we then get

Ww(t,% a) - ﬁ”(t,gj/,a/” = |T§r[¢k+1}(tv'x7a) - Tfr[wk—i-l](tvx/va/)’
n—k—1
< max(Lo, 1)\/<e2C7T|(1 + |7T|))
A (L +[m)eC | (2 — 2" + |a — )

n—k
< maX(Lg,l)\/<eQCW|(1+ |7T|)> (|Jz — 2| + |a — d'])

for any t € [ty, txr1) and (z,a), (2, a’) € R? x A, which proves the required induction inequality
at step k. ]

Remark 5.2.2. The function a — ¥™(t,x,.) is continuous on A, for each (¢,x), and so the
function v™ is well-defined by (5.2.18). Moreover, the function ¥" may be written recursively
as:

I9(T,.,.) = g on R?x A
o ’ 5.2.24
{ 97 = TrT(tear, )], on [tk teer) X R x A, (5.2.24)
for k =0,...,n — 1. In particular, 9™ is continuous on (t;,tx11) x R* x A, k < n — 1.
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As a consequence of the above proposition, we obtain the uniform Lipschitz property of 9™ and
v™, with a Lipschitz constant independent of .

Corollary 5.2.1. There exists a constant C (independent of |7|) such that
|97 (t, z,a) — 9" (t, ', d')| + |[v" (t,z,a) — 0" (t,2",d")| < C(jz — 2|+ |a—d']),

for allt € [0,T), z,2' € R?, a,a’ € RY.

Proof. Recalling that n|r| is bounded, we see that the sequence appearing in (5.2.22): ((eQC\ﬂl (14

|7T|))n_k>0<k<n,1 is bounded uniformly in |7| (or n), which shows the required Lipschitz prop-

erty of ¥™. Since A is assumed to be compact, this shows in particular that the function v™
defined by the relation (5.2.18) is well-defined and finite. Moreover, by noting that

|sup 9™ (t, z,a) —sup V7™ (t,2’,a)] < sup |97 (t,x,a) — 9" (¢, 2, a)|
acA acA acA

for all (t,z) € [0,T] x R%, we also obtain the required Lipschitz property for v™.

We now turn to the existence of a solution to the discretely jump-constrained BSDE.

Proposition 5.2.2. The BSDE (5.2.13)-(5.2.14)-(5.2.15) admits a unique solution (Y™, Y™, Z™ U™)
in 8? x 82 x L2(W) x L%(ji). Moreover we have

yt” = ﬁw(t,Xt,It), and er == Uﬂ—(t,Xt,It) (5225)

for allt € [0,T].

Proof. We prove by backward induction on k that (Y™, Y™, Z7,U™) is well defined and satis-
fies (5.2.25) on [tg,T]. e Suppose that & = n — 1. From Corollary 2.3 in [9], we know that

(Y™, Z™ U™), exists and is unique on [t,_1,T]. Moreover, from Theorems 3.4 and 3.5 in [9],
we get VI = TE[g](t, Xy, I;) = 97 (t, Xy, I;) on [t,_1,T]. By (5.2.15), we then have for all ¢ €
[tn—hT):

Y7 = 1, ,n)@) 07t Xe, It) + 1y, () esssup 9™ (¢, Xy, a)
acA

= ]l(tn—LT) (t) 197‘,@7 Xt, It) + ]]'tn—l (t) Sug 1971—(757 X, a) = Uw(ta X, It)7
ac
since the essential supremum and supremum coincide by continuity of a — 97 (¢, X, a) on the
compact set A. e Suppose that the result holds true for some £k < n — 1. Then, we see that

(Y™, Z™,U™) is defined on [tx_1, tx) as the solution to a BSDE driven by W and fi with a terminal
condition v™ (tx, Xy, ). Since v™ satisfies a linear growth condition, we know again by Corollary
2.3 in [9] that (Y™, Z™,U™), thus also Y™, exists and is unique on [tx_1,tx). Moreover, using
again Theorems 3.4 and 3.5 in [9], we get (5.2.25) on [tg_1, k). O

We end this section with a conditional regularity result for the discretely jump-constrained
BSDE.
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Proposition 5.2.3. There exists some constant C such that

sup By [[VF -V PI+ sup B [V -V ] < CO+ X[l
te[tk,tk+1) tG(tk,tk+1]

forallk =0,...,n—1.

Proof. Fix k < n — 1. By Ito’s formula, we have for all t € [tg, tx11):

t

28| [ S(Xo I VT ZDOT, = V)ds|

+ By | ttz;fﬁ] B[ t [ @ PAdays]

Etkﬂyf - yg}iﬂ

IN

Etk[ ttyyg—yg|2]+0|w|(1+Etk[ sup IXslz})
k

Se[tk,tk+1}

+ClrlEn | swp (VFP+12P+ [ U (@)PAa)) |
A

se[tk,tk+1}

by the linear growth condition on f (recall also that A is compact), and Young inequality. Now,
by standard estimate for X under growth linear condition on b and o, we have:

B, | sup [X,P2] < CO+|XP). (5.2.26)

se[tk,tk+1]

We also know from Proposition 4.2 in [25], under (H1) and (H2), that there exists a constant
C' depending only on the Lipschitz constants of b, o f and v™(tx41,.) (which does not depend
on m by Corollary 5.2.1), such that

| sup (IVIP+|2712+ /A U (@)PAda))] < CO+|X, D). (5:2.27)

Se[tk,tk+1}

We deduce that
2 ! 2 2
B 07 - Y0P) < Bu[ [ D7 - Y0P+ Il + 1P,
k
and we conclude for the regularity of Y™ by Gronwall’s lemma. Finally, from the definition

(5.2.14)-(5.2.15) of Y™ and Y™, It6 isometry for stochastic integrals, and growth linear condition
on f, we have for all t € (t,tgp41):

bt 2 2 2
< oBy [ [ (IO LY DR+ |22P + [ 1 @ Ada))as]
th A
< ClrlBy[1+ sup (112 + V52 + 2717 + / U7 (a)2A(da)) |
A

Se[tk,tk+ﬂ

< Cla|(1+ 1%, ),

where we used again (5.2.26) and (5.2.27). This ends the proof. O

5.2.3 Convergence of discretely jump-constrained BSDE

This section is devoted to the convergence of the discretely jump-constrained BSDE towards
the minimal solution to the BSDE with nonpositive jump.

141



CHAPTER 5: A NUMERICAL ALGORITHM FOR FULLY NONLINEAR HJB EQUATIONS

5.2.3.1 Convergence result

Lemma 5.2.3. We have the following assertions:

1) The familly (™), is nondecreasing and upper bounded by v: for any grids = and 7’ such that
m C 7', we have

O (t,x,a) < 7 (tx,a) < v(t,z), (tx,a)e[0,T] xR x A.

2) The familly (97), satisfies a uniform linear growth condition: there exists a constant C' such
that

[0 (t, 2, 0)] < C(+ [z]),

for any (¢,z,a) € [0,T] x R? x A and any grid «.

Proof. 1) Let us first prove that 9™ < v. Since v is a (continuous) viscosity solution to the HJB
equation (5.2.11), and v does not depend on a, we see that v is a viscosity supersolution to the
IPDE in (5.2.17) satisfied by 9™ on each interval [tg, tx11). Now, since v(T,x) = 9"(T, z,a), we
deduce by comparison principle for this IPDE (see e.g. Theorem 3.4 in [9]) on [t,_1,T) x R% x A
that v(t,z) > 97 (t,z,a) for all t € [t,—1,T], (z,a) € R4x A. In particular, v(t, ;,7) = v(ty_1,7)
> sUpgea V" (th—1,2,a) = 97(t,_,,x,a). Again, by comparison principle for the IPDE (5.2.17)
on [ty,_2,tn_1) xR%x A, it follows that v(t,z) > 97 (¢, , a) for all t € [t,_2,t, 1], (z,a) € R x A.
By backward induction on time, we conclude that v > 9™ on [0,T] x R? x A.

Let us next consider two partitions m = (tx)o<k<n and @’ = (¢} )o<k<ns of [0,T] with = C =/,
and denote by m = max{k < n':t/, ¢ w}. Thus, all the points of the grid 7 and 7’ coincide
after time t/,, and since 9™ and 9™ are viscosity solution to the same IPDE (5.2.17) starting
from the same terminal data g, we deduce by uniqueness that 9™ = 9™ on [t T] x R% x A.
Then, we have 97 (£, ,a) = supge 4 9 (th,, T, a) = supgye 4 9™ (th,, x,a) > 07 (t,, x,a) since Y7
is continuous outside of the points of the grid 7 (recall Remark 5.2.2). Now, since 9™ and 9™ are

viscosity solution to the same IPDE (5.2.17) on [t _1,tm), we deduce by comparison principle
that 9™ > 97 on [t/ _,, 1] x R? x A. Proceeding by backward induction, we conclude that 9™

> 9™ on [0,7] x R% x A. 2) Denote by mgp = {tg = 0,1 = T} the trivial grid of [0,T]. Since

970 < Y7 < v and ¥ and v satisfy a linear growth condition, we get (recall that A is compact):
(07t z,a)] < |97 z,a)| + [o(t, z)| < C(1 4+ [z)),

for any (t,z,a) € [0,T] x R? x A and any grid =. O

In the sequel, we denote by ¥ the increasing limit of the sequence (97), when the grid increases
by becoming finer, i.e. its modulus |7| goes to zero. The next result shows that ¥ does not
depend on the variable a in A.

Proposition 5.2.4. The function ¢ is l.s.c. and does not depend on the variable a € A:

It ,z,a) = I(t,zd), (t,z)e[0,T]xRY a,d € A.

142



5.2. TIME DISCRETIZATION

To prove this result we use the following lemma. Observe by definition (5.2.18) of v™ that the
function v™ does not depend on a on the grid times 7, and we shall denote by misuse of notation:
V™ (ty, ), for k < n, x € RY

Lemma 5.2.4. There exists a constant C (not depending on ) such that
97 (t,2,a) — v (tpsr, )| < C(+ |z|)|x|2

forallk=0,....n—1,t€ [ty trs1), (v,a) € R? x A,

Proof. Fix k=0,...,n—1,t € [ty,tx41) and (z,a) € R x A. Let (), Z,U) be the solution to
the BSDE

-~ tkt1 -
ys = (thrlykagif)_'_/ f(tha,I§a7yS7Zs)d8

tht1 (%]
—/ ZsdWg — / /U fi(ds,da’) , s € [ty try1] -

From Proposition 5.2.2, Markov property and uniqueness of a solution to the BSDE (5.2.13)-
(5.2.14)-(5.2.15) we have: Vs = 97 (s, XL®@ [L) for s € [t,tg11], and so:

’ﬁw(t7xva)_v7r(tk‘+lv$)| = D~Jt—vﬁ(tk+1al‘)|
< BTtk Xi) — 0" (b, @)
tkt1
+E[/ |Fxbme, 10, 3, Z,)|ds). (5.2.28)
t
From Corollary 5.2.1, we have
E[0™ (tha1, XE00) = 0" (g1, )| < CH/E[IXED0 —a2] < Cy/In] . (5.2.29)

Moreover, by the growth linear condition on f in (H2), and on 9" in Lemma 5.2.3, we have

B [ o3 2] < o [ (e e+ 124 as)

By classical estimates, we have

sup E[|XE5?] < C(1+ |z]?).
s€[t,T)

Moreover, under (H1) and (H2), we know from Proposition 4.2 in [25] that there exists a
constant C' depending only on the Lipschitz constants of b, o f and v™ (tx11,.) such that

E[ sup |Z[] < OO+l

SE[tk,t}H_l]

This proves that

bt
B [ 110 2las] < c fabial.

Combining this last estimate with (5.2.28) and (5.2.29), we get the result. O
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Proof. of Proposition 5.2.4. The function ¢ is l.s.c. as the supremum of the l.s.c. functions 9.
Fix (t,2) € [0,T) x R? and a,a’ € A. Let (7P), be a sequence of subdivisions of [0, 7] such that
|7P| 1 0 as p T co. We define the sequence (t,), of [0,T] by

tp = min{sen? : s>t}, p>0.
Since 7P| — 0 as p — oo we get t, — t as p — +00. We then have from the previous lemma:

0™ (t,x,a) — 9™ (t,z,a")] < |97 (tx,a) — o™ (ty,x)| + [0 (tp, ) — 9™ (t,z,d)]

IN
Do
Q
3
=

Sending p to oo we obtain that J(t, z,a) = V(t, z,d’). O

Corollary 5.2.2. We have the identification: 9 = v, and the sequence (vV™)r also converges to
v.

Proof. We proceed in two steps.

Step 1. The function ¥ is a supersolution to (5.2.11). Since 9™+ (T,.) = g for all k > 1, we first
notice that ¥(7T',.) = g. Next, since ¥ does not depend on the variable a, we have

I (t,x,a) T I(t,z) as |x| L O

for any (t,z,a) € [0,T] x R? x A. Moreover, since the function 9 is L.s.c, we have

¥ = ¥, = liminf,97, (5.2.30)
|| —0
where
liminf .97 (¢, z,a) := I‘II{I inf 9", 2 ), (t,z,a) € [0,T] x R? x RY .
| — 0
Irl=0 (t’w/,a;) — (t,z,a)
tt < T

Fix now some (t,x) € [0,7] x R? and a € A and (p,q, M) € J>~9(t,z), the limiting parabolic
subjet of ¥ at (t,z) (see definition in [44]). From standard stability results, there exists a
sequence (7, tg, Tk, A, Pk, Gk, My ) such that

(P Qs My) € T 79 (g, ak)
for all kK > 1 and
(tg, Tk, ag, V™" (tg, xg, ar)) — (t,z,a,9(t,x,a)) as k — oo, |mg| — 0.
From the viscosity supersolution property of ¥ to (5.2.17) in terms of subjets, we have
1
—pr — b(Tk, ag).qx — §tr(UUT($k, ar)My) — f(xk, ag, 9™ (tg, xg, ag), 0" (g, ar)qr)
—/ (197”“ (tk,l’k,a/) — 97k (tk,xk,ak)))\(da') > 0
A

for all £ > 1. Sending k to infinity and using (5.2.30), we get

—p—b(z,a).q — %tr(UUT(x,a)M) — f(z,a,9(t,z),07(z,a)q) > 0.
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Since a is arbitrary in A, this shows

—p — sup [b(z,a).q + %tr(oaT(aj, a)M) + f(x,a,9(t,z),07(x,a)q)] > 0,
acA

i.e. the viscosity supersolution property of ¥ to (5.2.11). Step 2. Comparison. Since the PDE

(5.2.11) satisfies a comparison principle, we have from the previous step ¥ > v, and we conclude
with Lemma 5.2.3 that ¢ = v. Finally, by definition (5.2.18) of v™ and from Lemma 5.2.3, we
clearly have 9™ < v™ < v, which also proves that (v™), converges to v. O

In terms of the discretely jump-constrained BSDE, the convergence result is formulated as
follows:

Proposition 5.2.5. We have Y[ <Y <Y, 0<t<T, and

E[ sup [¥; - V[?] +E[ sup m—n’“\?hE[/Tth—Zﬂ?dt] — 0,
t€[0,7) t€[0,T] 0

as || goes to zero.

Proof. Recall from (5.2.10) and (5.2.25) that we have the representation:
}/t = U(t,Xt), er = Uﬂ(t,Xt,It), ytﬂ— == ﬁ(t,Xt,It), (5231)

and the first assertion of Lemma 5.2.3, we clearly have: Y[ <Y/ <Y, 0 <t <T. The
convergence in 2 for Y™ to Y and Y™ to Y comes from the above representation (5.2.31), the
pointwise convergence of ¥" and v™ to v in Corollary 5.2.2, and the dominated convergence
theorem by recalling that 0 < (v —v™)(¢,z,a) < (v —97)(t,z,a) < v(t,z) < C(1+ |z|). Let us

now turn to the component Z. By definition (5.2.13)-(5.2.14)-(5.2.15) of the discretely jump-
constrained BSDE we notice that Y™ can be written on [0, 7] as:

T T T
VE o= g(Xr)+ / J(Xo, L, VT, 2T) / ZTaw, - / / U (@)ji(ds, da) + KF — KT,
t t t A

where K™ is the nondecreasing process defined by: KT =37, (Y7 =V}, ), for t € [0,T]. Denote
by Y =Y -Y" 6Z2=2—-Z2Z",6U=U —U" and 6K = K — K™. From Itd’s formula, Young
Inequality and (H2), there exists a constant C' such that

E[lovi?] + ;E[/T 62, 2ds) + ;E[/T 16U, (a) 2A(da)ds]
t t
< c/tTE[wmﬂdHiE[ sup [0Yi[?| + eB|[0Kr — 0K, [’] (5.2.32)

s€[0,T7]

for all t € [0, 7], with ¢ a constant to be chosen later. From the definition of K we have
T
K~ 0Ki = 0%~ [ (F(Xa LYo Z) ~ f(X L VT 2)ds

t
T T
+/ 5ZSdWS+/ /5U5(a)ﬂ(ds,da).
0 t A
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Therefore, by (H2), we get the existence of a constant C’ such that

E[|5KT —5Kt|2} < C/(E[SSE?T] !5Ys|2} +E[/tT5Zs\2ds] +E[/tT|5Us(a)\2A(da)d8D

Taking € = %/ and plugging this last inequality in (5.2.32), we get the existence of a constant
C" such that

T T
E[/t \625\2ds]+E[/t [0U(a)[A(da)ds| < C”(E[SSE%}‘(SYS’QD’ (5.2.33)

which shows the L?(W) convergence of Z™ to Z from the S? convergence of Y™ to Y. O

5.2.3.2 Rate of convergence

We next provide an error estimate for the convergence of the discretely jump-constrained BSDE.
We shall combine BSDE methods and PDE arguments adapted from the shaking coefficients
approach of Krylov [78] and switching systems approximation of Barles, Jacobsen [10]. We make
further assumptions:

(H1’) The functions b and o are uniformly bounded:

sup |b(z,a)| +|o(z,a)] < oo.
z€R4 . a€A

(H2’) The function f does not depend on z: f(z,a,y,2) = f(z,a,y) for all (z,a,y,2) € R? x
A x R x R% and

[(3)]
1. the functions f(.,.,0) and g are uniformly bounded:

sup | f(z,a,0)[+ |g(z)] < oo,
rzeR4,acA

2. for all (z,a) € RY x A, y + f(x,a,y) is convex.

Under these assumptions, we obtain the rate of convergence for v™ and ¥™ towards v.

Theorem 5.2.1. Under (H1’) and (H2’), there exists a constant C' such that
0 < wlt,z)—v"(ta,a) < v(t,z)—0"(tz,a) < Clr|1o0

for all (t,z,a) € [0,T] x R x A and all grid = with |r| < 1. Moreover, when f (x,a) does not

1
depend on y, the rate of convergence is improved to |m|6.

Before proving this result, we give as corollary the rate of convergence for the discretely jump-
constrained BSDE.
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Corollary 5.2.3. Under (H1’) and (H2’), there exists a constant C' such that

5] sup v~ 7] + 5[ swp -] +8[ [ 12 zpPal] < it
te[0,T te[0,7 0

for all grid m with |7| < 1, and the above rate is improved to |7r|% when f (z,a) does not depend
on y.

Proof. From the representation 5.2.31, and Theorem 5.2.1, we immediately have

IE[ sup |Y; — V/| } +E{ sup |Y; — ]2} < C]7r|%. (5.2.34)
te[0,T] telo,T

(resp. |7T|§ when f (z,a) does not depend on y). Finally, the convergence rate for Z follows
from the inequality (5.2.33). O

Remark 5.2.3. The above convergence rate ‘71"% is the optimal rate that one can prove in our
generalized stochastic control context with fully nonlinear HJIB equation by PDE approach and
shaking coefficients technique, see [78], [10], [49] or [100]. However, this rate may not be the
sharpest one. In the case of continuously reflected BSDEs, i.e. BSDEs with upper or lower
constraint on Y, it is known that Y can be approximated by discretely reflected BSDEs, i. e.
BSDEs where reflection on Y operates a finite set of times on the grid m, with a rate |7r|
(see [7]). The standard arguments for proving this rate is based on the representation of the
continuously (resp. discretely) reflected BSDE as optimal stopping problems where stopping is
possible over the whole interval time (resp. only on the grid times). In our jump-constrained
case, we know from [72] that the minimal solution to the BSDE with nonpositive jumps has the
stochastic control representation 5.1.2 when f(z,a) does not depend on y and z. We shall prove
an analog representation for dlscretely jump-constrained BSDEs, and this helps to improve the
rate of convergence from |r|10 1 to |7T|

The rest of this section is devoted to the proof of Theorem 5.2.1. We first consider the special
case where f (z,a) does not depend on y, and then address the case f (z,a,y).

Proof. Case f (z,a).

In the case where f (z,a) does not depend on y, z, by (linear) Feynman-Kac formula for 97
solution to (5.2.17), and by definition of v™ in (5.2.18), we have:

tet1
0" (tg,x) =supE l/ f (Xt’“xa It )dt—i—v (tkH,Xtt:ﬁ’a)} k<n-—1,zeR?.
acA t

By induction, this dynamic programming relation leads to the following stochastic control prob-
lem with discrete time policies:

V" (tg,z) = sup E l/Tf (th,:ca )dt—i—g (th,x a)] :
t

(IEA]}T k

where Af is the set of discrete time processes o = (atj) - with oy, Fi,-measurable, valued

j<n—
in A, and

t t
X[me =g / b (XL, 1) ds + / o (XLme I ) dWy, t <t<T,
t 23

]_ta:atj+/ /(afg),u(ds,da),tk§t<tj+1,j§n1.
tj’t]
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In other words, v™ (tx,z) corresponds to the value function for a stochastic control problem
where the controller can act only at the dates t; of the grid 7, and then let the regime of the
coefficients of the diffusion evolve according to the Poisson random measure . Let us introduce
the following stochastic control problem with piece-wise constant control policies:

0" (tg,x) = sup E /:f (j(:kw,ajta) dt + g <)~(§l“’”“)] ,

a€Af

where for a = (atj) A € Af:
j<n-—1

t t
oo g +/ b(XLme, 1) ds +/ o (XLmeIg)aw,, ty <t <T,
ti ty
ff‘:atj, tj§t<tj+1, 1<n—1.

It is shown in [77] that 0™ approximates the value function v for the controlled diffusion problem
1
(5.1.2), solution to the HJB equation (5.2.11), with a rate |7|5:

0<v(tya) - (thz) < Clals (5.2.35)

for all t;, € m, € R% Now, recalling that A is compact and A (A) < oo, it is clear that there
exists some positive constant C' such that for all a € AR, j <n —1:

_ ~ 12
E[mm\w—wwscwm
telt) tit1)

and then by standard arguments under Lipschitz condition on b, o:

_ - 2
E[ sup ‘Xf’“’w’a—Xf’“’gc’a‘ <Cln|,k<j<n-1, zeR

telt; tj+1l

By the Lipschitz conditions on f and g, it follows that
1
W™ (tg, ) — 07 (g, x)| < Clr[?

and thus with (5.2.35):

0 < sup (v—2") (tg,z) < C’|7r|é .
z€RY

Finally, by combining with the estimate in Lemma 5.2.4, which gives actually under (H2”)(i):
197 (t,2,a) — 0" (tpp1,2)| < C |2, t € [tr,ter1) 5 (z,0) € RY x A,
together with the 1/2-Holder property of v in time (see (5.2.12)), we obtain:

sup (v =97 (t,z,0) < C (|nf +[x]2) < C e
(t,x,a)€[0,T]xRIx A

for |m| < 1. This ends the proof in the case f (x,a).
Case f(z,a,y).

Let us now turn to the case where f (x,a,y) may also depend on y. We cannot rely anymore
on the convergence rate result in [77]. Instead, recalling that A is compact and since o, b and
f are Lipschitz in (x,a), we are allowed to apply the switching system method of Barles and
Jacobsen [10], which is a variation of the shaken coefficients method and smoothing technique
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used in Krylov [78], in order to obtain approximate smooth subsolution to (5.2.11). By Lemmas
3.3 and 3.4 in [10], one can find a family of smooth functions (we)o<c<1 on [0, 7] x R? such that:

sup |we| < C, (5.2.36)
0,T]x R4
sup  |we —w| < Csé, (5.2.37)
[0,T] x R4
d i
sup |8,550D5w€| < Ol B , BoeN, B=(BL....50H) eNd,  (5.2.38)

[0,T]xRd

for some positive constant C' independent of €, and by convexity of f in (H2”)(ii), for any ¢ €
(0,1], (t,z) € [0,T] x RY, there exists a; .. € A such that:

—ﬁat‘z’swa(ta x) - f(ac, At x5 ws(ta x)) Z 0. (5'2'39)

O]

Recalling the definition of the operator T% in (5.2.19), we define for any function ¢ on [0,7] x
R? x A, Lipschitz in (z,a):

TW[@](tv’I’a) = Tf}r[so(tk-‘rlv B ')Ktul‘aa)u te [tk7tk+1)7 (.’E,CL) € Rd X A7

for k=0,...,n—1, and

St = [e(ta) - Toldl(te.a)
(ki1 — 1) (Lt 2) + f(2,0, 0t 7)) |,

for (t,x,a) € [ty tper) X REx A, k <n—1.

We have the following key error bound on S;.

Lemma 5.2.5. Let (H1’) and (H2’)(i) hold. There exists a constant C such that
Selee](t, 2, a)| < C'(|7T|%(1 +e )+ \W!E’B), (t,z,a) € [0,T] x RY x A,

for any family (¢2)- of smooth functions on [0,T] x R? satisfying (5.2.36) and (5.2.38).

Proof. Fix (t,z,a) € [0,T] x R* x A. If t = T, we have |S;[p:](t,z,a)] = 0. Suppose that

t < T and fix k < n such that t € [ty,tx11). Given a smooth function ¢, satisfying (5.2.36) and
(5.2.38), we split:

‘SW[QOE](t,.%,CL)‘ S A€(t7‘r7a> +B8(tvx7a)7

where

)

1 x,a
Ae(t,x,a) = H‘TW[QD&](taxva) _E[Soa(tk—‘thz];#l )] - (tk+1 —t)f((lf,(l,QDg(t, l‘))
and

1 a a
Beltir,a) = o[Elpetionn, XT0] = 0e(t:2) = (i = 0L 0e(t ),
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and we study each term A. and B. separately. 1. Estimate on A:(t,x,a).

Define (Y%=, Z¥< U%<) as the solution to the BSDE on [t, tx1]:
tet1 ‘) .
}/8505 = @E(tk+1’th+1) / f(X xa’Ira’Yﬂos)d

tkt1 tet1
—/ ZpedW, — / / Ut (a)i(dr,da) , s € [t,tgt1]- (5.2.40)

From Theorems 3.4 and 3.5 in [9], we have Y,;?* = T.[p.](t,z,a), and by taking expectation in
(5.2.40), we thus get:

tet1
VP = Talp(tz,a) = Elpe(tor, X(00] + B / F(XEme I8, Y Ee)ds|
t

trt+1

and so:

Atra) < E[/tkH FOXEP 15 Y89) — fl,a, 02 (t, )| ds]

yts
||

IN

C(E[ sup |XI™—a|+|It" —al] +E[ sup [V —o.(t2)]),
s€[ttpy1] s€[t k1]

by the Lipschitz continuity of f. From standard estimate for SDE, we have (recall that the
coefficients b and o are bounded under (H1’) and A is compact):

E[ sup [XP% — x|+ |I0"—a]] < C]7T|%. (5.2.41)
Se[t,tk+1]

Moreover, by (5.2.40), the boundedness condition in (H2”)(i) together with the Lipschitz con-
dition of f, and Burkholder-Davis-Gundy inequality, we have:

E[ sup V& —ot2)l] < Ellocltern, X050) — ¢e(t )]

Se[t,tk+1]
+ Cr|E[14+ sup [Y7<|]
s€[t,ty1]
+Clrl(EL_swp (Z7FI+EL s [ (U (@A),
s€[t,try1] Se[t tt1]

From standard estimate for the BSDE (5.2.40), we have:

E[ sw Y& < C
sE[t,trr1]
for some positive constant C' depending only on the Lipschitz constant of f, the upper bound of
|f(z,a,0,0)] in (H2’)(i), and the upper bound of |¢.| in (5.2.36). Moreover, from the estimate
in Proposition 4.2 in [25] about the coefficients Z¥< and U¥< of the BSDE with jumps (5.2.40),
there exists some constant C' depending only on the Lipschitz constant of b, o, f, and of the
Lipschitz constant of ¢.(tx11,.) (which does not depend on € by (5.2.38)), such that:

E[ sup |Z8P]+E[ sup / U (@)PA(da)) < C.
Se[t,tk+1} SE[t,t)H,l] A
From (5.2.38), we then have:

E[ sup [V& —o(t,a)l] < Cltepr -t + B[ X0 — al] + |x))
s€[t,thy1]

IN

Clalz (147,
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by (5.2.41). This leads to the error bound for A.(t,z,a):
A(t,z,a) < Clrlz2(1+¢7Y).

2. Estimate on Bc(t,x,a).

From It6’s formula we have

1 b ta z,a a
B.(t,x,a) = W‘E{/t (L1 (s, X0 — L goa(t,a:))ds”

< BX(t,z,a) + B2(t,z,q)

where
1 1 bt t,x,a 7t,a t,x,a
Blt,z,a) = WIE[/t (B(X1™a 189) — b(x, ). Dyepe (s, X0
1 t,x,a 7t,a 2
+ itr[(aaT(Xs’ 8 )—GUT(:E,a))Dxcpe(t,x)]’ds}
and
2 1 Pt ~a t,x,a ~a
Bi(t,z,a) = |7T|I[£f[/t |Et’mgog(s,Xs’ g )—Ctﬂwgog(t,xﬂds} ,

with £f, defined by

~ e 1
Lot 1) = O ) () Dapall ) + Sir{o0T (2, 0) Dt ).

Under (H1), (H1’), and by (5.2.38), we have

B\El(t7$7 a) < C(l + Eil)E[ sup ‘Xé:x’a _ .’L’| + |I§’a . au
Se[t,tk+1]

C(1+e Y|z,

IN

where we used again (5.2.41). On the other hand, since . is smooth, we have from It6’s formula

1 tkt1
Bi(t,z,a) = WE[/t

Under (H1’) and by (5.2.38), we then see that

/t LB x50 ) drds)] .

Bg(t,x,a) < C|7T|€73,
and so:
L -1 -3
Be(tyra) < C(|n2(1+e7") +|nle™®).

Together with the estimate for A.(¢,z,a), this proves the error bound for |S;[p:|(t,z,a)]. O

We next state a maximum principle type result for the operator T.
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Lemma 5.2.6. Let ¢ and ¢ be two functions on [0,T] X R? x A, Lipschitz in (z,a). Then,
there exists some positive constant C independent of m such that

sup (Trle] = Tal))(t @) < €T sup (¢ = ¥)(tsr, 2, 0)
(t,z,a) €tk tk+1) XRIX A (z,a)€ERIx A

forallk =0,...,n—1.
Proof. Fix k < n —1, and set

M = sup (¢ = U)(tps1, 7 0).
(z,a)ERIX A

We can assume w.l.o.g. that M < oo since otherwise the required inequality is trivial. Let us
denote by Av the function

Av(tvxva) - Tﬂ[@](t7mva)_Tﬂ[w](taxva>v

for all (¢,7,a) € [tg, tps1] x R x A. By definition of Ty, and from the Lipschitz condition of f,
we see that Av is a viscosity subsolution to

7‘CGAU(ta €, a) - C(|A’U(t, x, CL)| + ‘DAU(t, €, CL)|)
— [y (Av(t,z,d') — Av(t,z,a))A(dd’) =0, for (t,x,a) € [tk thr1) x RTx A, (5.2.42)
Av(tgir,x,a) < M, for (z,a) € R x A.
Then, we easily check that the function ® defined by
®(t,z,a) = MeCHn™D (£ xa) € [ty tper] X RY x A
is a solution to

_Ea@(taxaa) - C’(|(I>(t,x,a)| + |D<I>(t,a:,a)|)
— [, (®(t, z,a') — ®(t,z,a))A\(da’) = 0, for (t,x,a) € [ty tit1) x REx A, (5.2.43)
O(tyq1,,0) = M, for (z,a) € R x A.

From the comparison theorem in [9] for viscosity solutions of semi-linear IPDESs, we get that Av
< ® on [tg, tpr1] x R? x A, which proves the required inequality. O

Proof. of Theorem 5.2.1. By (5.2.18) and (5.2.24), we observe that v™ is a fixed point of Ty, i.e.
T[] = o™
On the other hand, by (5.2.39), and the estimate of Lemma 5.2.5 applied to w,, we have:
we(t,2) — Telwe](t, 2, a10e) < |7[Selwe](t, 2, a02) < Cln|S(m,e)

where we set: S(m,¢) = (|7T|%(1 +e7 1) + |7|%c73). Fix k < n— 1. By Lemma 5.2.6, we then
have for all ¢t € [t, tp1], 2 € R%:

Wwe(t,x) =V (t, 7, a10e) = we(t,x) = Trlwe](t, @, a0,6) + (Tr[we] — Tr[v™])(t, 2, ata.c)
< COlr|S(m,e) + 1" sup  (we — v™)(tpg1,x,0).  (5.2.44)
(z,a)€ERIX A
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Recalling by its very definition that v™ does not depend on a € A on the grid times of 7, and
denoting then M}, := sup,cpa(we — v™)(tk, ), we have by (5.2.44) the relation:

M, < Clx|S(r,e)+ eCIm M.

By induction, this yields:

Cnln| _1
sup (we —v")(tg,x) < C’GCTWS(W,&) + e sup (we — v™)(T, z)
zERY e —1 zER?
< OS(m,e) + C sup (we —v)(T, ),

z€R4

since n|r| is bounded and v(T,z) = v™(T,z) (= g(z)). From (5.2.37), we then get:

sup (v —v™)(ty, @) < C(e5 + |n[2(1+e7") + |n]e ™).
zERI

By minimizing the r.h.s of this estimate with respect to e, this leads to the error bound when

taking ¢ = ]7T|1ST> <1

sup (v — v™)(tg,z) < Cla|T.
z€R4

Finally, by combining with the estimate in Lemma 5.2.4, which gives actually under (H2’)(i):
97 (t,2,0) — v (tpp1,2)] < C|7|2, tE [thtis), (z,a) € RY x A,
together with the 1/2-Holder property of v in time (see (5.2.12)), we obtain:

sup (v —9")(t,z,0) < C(la|T + |x]2) < O,
(t,z,a)€[0,T]xRx A

This ends the proof. O

5.2.4 Approximation scheme for jump-constrained BSDE and stochastic control
problem

We consider the discrete time approximation of the discretely jump-constrained BSDE in the
case where f(x,a,y) does not depend on z, and define the scheme (Y™, Y™, Z™) by induction on
thegridm={tp=0< ... <tx <...<t, =T} by:

VI = V7 = g(X})

J?Z; = [ D_/;:H] + i(XZ;v Itkaj}g;)Atk’ (5.2.45)
Vi = esssupEy, o[V ], k=0,...,n—1,
acA

where Aty = tg41 — ti, By, [] stands for E[.|F, |, and Ey, 4[] for E[.|F,, I, = al.

By induction argument, we easily see that 37[; is a deterministic function of (ng,[tk), while

)_/t: is a deterministic function of X7, for k = 0,...,n, and by the Markov property of the

_ tk’
process (X™,I), the conditional expectations in (5.2.45) can be replaced by the corresponding
regressions:

Ey, [V/F

tet1

} = E[}_/;Z+1|Xg):7ltk} and Etkaa[:)_)Z;] = E[J_)Z}rJXg]rc’Itk :a]'
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We then have:
J_)Z; = gz()zgc’[tk)v }/t: = @g()z;;)a

for some sequence of functions (J7) and (v]); defined respectively on R? x A and R by
backward induction:
vp(z,a) = 97(z) = g(x)
Ti(w,a) = B[of (X, I )(XT Iy) = (2,0)] + (2, 0,0 (2,)) Aty
T (z) = supueq 95 (z,a), k=0,...,n— 1.

(5.2.46)
There are well-known different methods (Longstaff-Schwartz least square regression, quantiza-
tion, Malliavin integration by parts, see e.g. [7], [82], [27]) for computing the above conditional
expectations, and so the functions @Z and v7. It appears that in our context, the simulation-
regression method on basis functions defined on R? x A, is quite suitable since it allows us to
derive at each time step k < n — 1, a functional form ax(x), which attains the supremum over
A in 97 (z,a). We shall see later in this section that the feedback control (Gx(z))) provides an
approximation of the optimal control for the HJB equation associated to a stochastic control
problem when f(z,a) does not depend on y. The practical details about the computation of
functions @z, vf, i by simulation-regression methods will be provided in Section 5.3.

5.2.4.1 Error estimate for the discrete time scheme

The main result of this section is to state an error bound between the component Y™ of the
discretely jump-constrained BSDE and the solution (Y™, Y™) to the above discrete time scheme.

Theorem 5.2.2. There exists some constant C such that:

T |2 T \/ 2 T o (2
B =il + s B[]+ sw B[y -Yif] < Ol
tE(tk,t}c+1} tE[tk,tk+1)

forallk =0,...,n—1.

The above convergence rate ]7r|% in the L?—mnorm for the discretization of the discretely jump-
constrained BSDE is the same as for standard BSDE, see [27], [109]. By combining with the
convergence result in Section 5.2.3, we finally obtain an estimate on the error due to the discrete
time approximation of the minimal solution Y to the BSDE with nonpositive jumps. We split
the error between the positive and negative parts:

1

0 ._ )2 o \2 Comy21)2
i (Y) = e, ([0 n‘“)+}+te(f£+1]E{m nk+1)+}+te[ii5+1)E[(n )

1

Er™(Y) := max (E[(Y; — V™) |+ sup E|(Y; =Y~ 2] 4 sup EY—J}”Q ?
( ) kén_l( [( tk tk)_} te(tstrr1] [( ' tkﬂ)_} L€ty trr1) [( ' tk)_D

Corollary 5.2.4. We have:
En™(Y) < Clrlz.
Moreover, under (H1’) and (H2’),
Enl(Y) < Cla|o,
and when f (z,a) does not depend on y:

EnT(Y) < Clafs.
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Proof. Recall from Proposition 5.2.5 that Y[ <Y;" <Y;, 0 <t <T. Then, we have: (Y, —Yt:)_
< Y7 - V7|, (Y- Y7,)- < Y7 — Y7, |, and (Y;, — Vf)- < Y7 — V7|, forall k < n— 1,
and t € [0,T]. The error bound on Err™ (V') follows then from the estimation in Theorem 5.2.2.
The error bound on Err”™ (Y') follows from Corollary 5.2.3 and Theorem 5.2.2. O

Remark 5.2.4. In the particular case where f depends only on (x,a), our discrete time approx-
imation scheme is a probabilistic scheme for the fully nonlinear HJB equation associated with
the stochastic control problem (5.1.2). As in [78], [10] or [49], we have non symmetric bounds

. . . 1

on the rate of convergence. For instance, in [49], the authors obtained a convergence rate |r|1
L . . . 1 .

on one side and |7|10 on the other side, while we improve the rate to |r|2 for one side, and

]77]% on the other side. This induces a global error Err”"(Y') = Err’ (V') + Err” (Y') of order \W\%,
which is derived without any non degeneracy condition on the controlled diffusion coefficient.

Proof. of Theorem 5.2.2. Let us introduce the continuous time version of (5.2.45). By the
martingale representation theorem, there exists Z™ € L>(W) and U™ € L?(fi) such that

_ _ lht1 tha1 _
Yo, = E, V7 ]+ / ZFdW, + /t /A Ur(a)i(dt,da), k < n,
k

ty

and we can then define the continuous-time processes Y™ and Y™ by:

th+1 th+1 N
_ / Zraw, / / UF(a)i(dt, da), £ € [t tiss),
t t A
" o= Y+ (e — O f(XE 1y, V) (5.2.48)

tht1 lkt1 N
- / Zraw, - / /A UF(a)j(dt, da),  t € (to trral,
t

t

for k =0,...,n—1. Denote by 6Y; = Y~ Y™, 6¥F = VI = V[, 02F = Z[ — ZF, 0UF = U] —UF
and 0fy = f(Xe, I, V') — f(X], Iy, V) for t € [ty txr1). Recalling (5.2.14) and (5.2.47), we
have by It6’s formula:

tet1 l41
Ay = By, []5yf|2+/ \5Zgy2ds—|—/ /\5U§(a)]2)\(da)ds}
t t A
9 tht1
— B 0 Pl B[ [ 209708 ds
t

for all t € [tg,tg+1). By the Lipschitz continuity of f in (H2) and Young inequality, we then
have:

A< B ll6vr P 4E ] [ nisyrids + Caloyr 2
o S B[OV P+ [ 0l6VTPds+ vy ]

c bt VT2 2 T T |2
+ nEtk[/t (’XS—th‘ +|15_Itk’ +’ys _ytk’ )d5:|
From Gronwall’s lemma, and by taking n large enough, this yields for all k¥ < n — 1:

B, [0V 2] < TRy, oY, [P + CBy (5.2.49)
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where
bt VT2 2 T T2
B = B[ [ (X = KR - 1R DT - Y P
k
< Clr|(Bo [ sup  |Xo = X712 + [ml(1+ X)), (5.2.50)
SG[tk,t]H_l}

by (5.2.5) and Proposition 5.2.3. Now, by definition of Yy, and Y;’;H, we have
|0Y;"

tk+1|2 < eSSESXPEtkH,adeZ;HH' (5.2.51)
a

By plugging (5.2.50), (5.2.51) into (5.2.49), taking conditional expectation with respect to I,
= a, and taking essential supremum over a, we obtain:

esssupEtk,a“éyt’;F] < eC‘WIeSSsupEtk,a[esssupEtkH,a[|5y;;+1|2]
acA acA acA

+ C]W|(ess supEy, o[ sup |Xs-— )_([;|2] + |m|(1 + |th\))
acA s€[tgstrr1]

By taking conditional expectation with respect to F;, ,, and I;, |, = a, taking essential supre-
mum over a in the above inequality, and iterating this backward procedure until time ¢ty = 0,
we obtain:

EFY) < eOMEL (V) + Clal (EF(X) + |x|(1 + B[| Xy, ]]))
< Omer )+ Ot k<n—1, (5.2.52)

where we recall the auxiliary error control £ (X) on X in (5.2.2) and its estimate in Lemma
5.2.1, and set:
EL(Y) = E[esssupIEtha[...esssupIEtk’aH&yZ;F] ]}
acA acA
By a direct induction on (5.2.52), and recalling that n|r| is bounded, we get
&) < CEO)+Ir)
< CEX) +Inl) < Clnl,

since g is Lipschitz, and using again the estimate in Lemma 5.2.1. Observing that E[|5Y,7|?],
E[|6Y 2] < EF(V), we get the estimate:

|2 D |2
max B[V, - YII] + B[V - Vil < Clal
Moreover, by Proposition 5.2.3, we have

sup B[V - VI + sup B[V - Y7
te[tk,thrl) te(tk,tk+1]

P < ca+EX, )il

IN

C(1+ |Xol)|m].
This implies finally that:
sup ]EDY;“ — f@:ﬂﬂ < 2 sup I[~3[|Y{r -Yr

tpi1
Se(tk:tk+1] SE(tk,t)H,l]

Cll,

2] + 28 (¥, - Vi)

IN

as well as

sup B[V VIR < 2 sw B[y - Vo] +2E[f - r
Se[tk:thrl) Se[tk:thrl)

Cn|.

IN
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5.2.4.2 Approximate optimal control

We now consider the special case where f(x,a) does not depend on y, so that the discrete time
scheme (5.1.4) is an approximation for the value function of the stochastic control problem:

Vo = supJ(a) = Y, (5.2.53)
acA
T
Je) = B[ [ et +a(xp)

where A is the set of G-adapted control processes « valued in A, and X% is the controlled
diffusion in R%:

t t
X7 = Xo +/ (X, as)ds +/ o(X& as)dW,, 0<t<T.
0 0

(Here G = (Gt)o<t<T denotes some filtration under which W is a standard Brownian motion).
Let us now define the discrete time version of (5.2.53). We introduce the set A™ of discrete time
processes o = (ay, )i with oy, Gy -measurable, and valued in A. For each a € A™, we consider
the controlled discrete time process (ch’a)k of Euler type defined by:

k k
XP* = Xo+ >, b(X7, ;) At + > o(X[% a ) AWy, k<,
=0 =0

where AWtj = Wi, ,, — Wi, and the gain functional:

J+1

n—1

J(@) = E[ Y FXTT an) At + g(X7)].
k=0

Given any o € A", we define its continuous time piecewise-constant interpolation o € A by
setting: oy = ay,, for t € [tg, tr+1) (by misuse of notation, we keep the same notation « for the
discrete time and continuous time interpolation). By standard arguments similar to those for
Euler scheme of SDE, there exists some positive constant C' such that for all « € A™, k < n—1:

E| sup |XP-X7° 2} < C|n|,
tE€[th,trr1]

from which we easily deduce by Lipschitz property of f and g:
[J(a) = J™(a)] < Clr|2, VYac A" (5.2.54)

Let us now consider at each time step k < n— 1, the function a,(z) which attains the supremum
over a € A of ¥f(x,a) in the scheme (5.2.46), so that:

Let us define the process (ch)k by: X’g = X,

A A A

XF = XT Ab(X], ap(X])) Aty + o(XT, an(X]))AW,,, k<n,

tet1

and notice that X™ = X™% where & € A is a feedback control defined by:
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Next, we observe that the conditional law of X{;H given (X’g,; =, Iy, = ag (XZ;) = ag(x)) is the

same than the conditional law of XZ;’fl given ng’d =z, for kK < n —1, and thus the induction
step in the scheme (5.2.45) or (5.2.46) reads as:

TXTY) = B[ ()X + F(XT G ) Ay, k<n—1.
By induction, and law of iterated conditional expectations, we then get:
Y7 = 05(Xo) = J™(&). (5.2.55)

Consider the continuous time piecewise-constant interpolation & € A defined by: &; = &, , for
t € [tg,tk+1). By (5.2.53), (5.2.55), (5.2.54), and Corollary 5.2.4, we finally obtain:

0 < VW—J@) = Yo-YJ+J7(&)—J(a)
Clzls + C|x|2 < Clnls,

IN

for || < 1. In other words, for any small € > 0, we obtain an e-approximate control & for the
stochastic control problem (5.2.53) by taking || of order °.

5.3 Approximation of conditional expectations

So far, we proposed and analyzed the discrete-time scheme (5.1.4) to approximate the minimal
solution of the BSDE with nonpositive jumps (5.1.3), and thus an approximation scheme for
the HJB equation (5.1.1), under the assumptions (H1) (b and o Lipschitz) and (H2) (f and
g Lipschitz). Now, the discrete scheme (5.1.4) is in general not readily implementable because
it involves conditional expectations that cannot be computed explicitly. It is thus necessary in
practice to approximate these conditional expectations. Here we follow the empirical regression
approach ([82, 28, 58, 108, 2]). In our context, apart from being easy to implement, the strong
advantage of this choice is that, unlike other standard methods, it provides as a by-product
a parametric feedback estimate & (¢, X;) for the optimal control. The idea is to replace the
conditional expectations from (5.1.4) by empirical regressions. This section is devoted to the
analysis of the error generated by this replacement.

5.3.1 Localizations

The first step is to localize the discrete BSDE (5.1.4), i.e. to truncate it so that it admits a.s.

deterministic bounds. Introduce Rx € ]Ri and R, € Ry and define the following truncations
of X; and AW;:

[X] ::—RX\/Xi/\RX:{—RlX\/X“-/\Rlx,...,—RdXdei/\RdX}T (5.3.1)
.

[AW;],, = — Rt/ D VAW AR /A, = { R/ DiVAW L ARG, . i~ R/ D VAW AR /A }
(5.3.2)

Define R = {Rx, R,,} and define the localized version of the discrete BSDE (5.1.4), using the
truncations (5.3.1) and (5.3.2).

Yy o =g ([{)(N] [) ] ]

AZZZR =K H—l AwT

VE =Y+ (Xl B Y 2F) A (5.3.3)
Y;R = esssuPye Eia {yﬂ
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First, we check that this localized BSDE does admit a.s. bounds.

Lemma 5.3.1. [almost sure bounds] For every R = {Rx, Ry} € [0,00)% x [0,00] and every
1 <i < N, the following uniform bounds hold a.s.:

IN

eC|7T‘
Cy =G,y ( C2 (Rx) + 02 (Rx)

IN

C,=0Cy(Rx C

VA Y

where C' := 3L§c (¢ + |7r\)+é, Cy (Rx) := max_py<z<Ry |9 (z)|and Cy (Rx) := Ly <|RX] + ‘AD%—
£(0,0,0,0) (A is an upper bound of the compact set A, Ly is the Lipschitz constant of f and
L, is the Lipschitz constant of g).

Proof. First, as g is continuous, there exists Cy = Cy (Rx) > 0 such that for all —-Ry < z < Ry,
lg (x)] < Cy(Rx). Hence

(Yﬁ)z = ¢* ([Xnlx) < C} (Rx) (5.3.4)

Next,
AiZz'R:E [ i+1 [AW;] } [(Yz—i—l E; [ z+1D [AW;] }

Thus, using the Cauchy-Schwarz inequality and dividing by A;:
2
Ai (ZiR> <q <E <Yz+1) - [YH—I} )

Now, using Young’s inequality (a + b)* < (1 +~A;) a® + (1 + ﬁ) b? with v > 0:

(yﬁ) < (1+~A)E; [ ZEJ —1—( A >A2E [fQ ([ ]X?IZsz+1azR>}

Remark that

£ (X I v, 28) | < [F (XD, B Vi 28) = £(0,0,0,0)] +1£(0,0,0,0)
< Ly (X1l + 1]+ Y|+ | 25]) + 1£ 0,0,0,0)]
< Cf(RX)+Lf< z+1’+ )

where Cy (Rx) := Ly (|Rx| + ‘AD +1£(0,0,0,0)|. Hence

()] 235, J2) )

3L% (Ai — q) + 3CF (Rx) AZ)

L3R |

(yz-R)Q < (1+7A)E[i1] +3<Ai+i)Ai<O}(RX)+LE

< (Ai + i) (Ez [}/ilil}Q (’Y - 3qL?) +E; <Yz+1)2

2
Thus, for every v > 3¢qL> %, one can group together the terms involving E; {Yl +1} and E; [(Yﬁl) }

using Jensen’s inequality:

PR < s a)E | ()] +3 (r+ 1) € (R A,
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where 0 (¢,7y) = v+ cL?c (\W! + %) Finally:

(V)

Using equations (5.3.4) and (5.3.5), one obtains by induction that:

(YR>2 < esssup E;
7 = p 1,a
acA

(1403, )A)+3(]7r|+ )Cf(RX)A (5.3.5)

9 N—-1
() <1 3o G (o) +3 (Il + =) € (Rx) S TE (7 (5.3.6)
k=i

where Fg (c,7) = Hi:i (146 (c,v) Ag). Finally remark that Ve, > 0

ln(FZ'(cm):X]:ln(H@( ) Ay) sﬁj Y) A =0(c,7) (tir1 — i)
k=1 k=1
Thus
T (e,7) < exp (0(c,7) (tjs1 — i) (5.3.7)

And

N-1 N-—

If (e,7) Ay < Z (entn—td A < f fvlﬂz M=t A
k=i k=i

k=1
(el
< el / (e)(t—t:) o) in—t) _ 1) (53,
< Ut = ) (e ) (5.38)

Finally, combine equations (5.3.6), (5.3.7) and (5.3.8) with ¢ = 3 and v > SQL?c to obtain the
following a.s. bound for Y;R :

0(3,7) I

2 vy 1 e
(V) < SOOI (Ry) 43 (w + 7) cj% (7x) G5

63T | A2 (37|

In particular, for ¢ = 3 and v = 3qL?c:

(ePemien—t _1)

IN

R\2 or eCll 2
(YZ- ) < TN (Bx) + —-CF (Rx) p = €
f

where C' := BL?C (q+ |7|) + %. The same inequality holds for (yi ) For Z[t

7 )

use the Cauchy-
Schwarz inequality to obtain:

(28) < g |(vi4) | < Lz = o
and the same inequality holds for (ZiR)Q. O

Lemma 5.3.2. For R > 0, define Tp = E {(/\/— (—R) \/NAR)Z} where N is a Gaussian
random variable with mean 0 and variance 1. Then:

21 _r?
Tr < 7rRe 2
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Proof. Developing the square yields
Tr = 2R*P (N > R) — 4RE [N1{N > R}] + 2E [N?1{N > R}|

Then the two expectations can be explicited as follows

N

EN1{N >R} = e\;ﬁ
E|N1{N >R} = \/}%6_132+IP(/\/>R)

o,

Finally, the use of Mill’s ratio inequality P (N > R) < %e concludes the proof. O

9

Then, we can estimate bounds between the BSDEs (5.1.4) and (5.3.3).
Proposition 5.3.1. The following bounds hold:
2 * N1 *
(Yz- B YiR) < 0T {Lg (\AXN|2) +C Z A (\AXM?) + QqC’TCS'E{w}
k=i

where C := BL? (2g + |7|) + 2%1, and (|AXk|2)*, k > i, is the solution of the following linear
constrained BSDE:
{Yk = (Xk, — [Xilx)?
Y; =esssup,eaEjo[Yjp1], j=k—1,...,i

Proof. Define AX; = X; — [Xi]y, AY; = Y, =Y AV, = Vi - VB, AZ = Z; — Z} and
AZ; = Z; — ZE. First

[AYN] =g (Xn) — g ([Xn]x)| < Ly |AXY]

Then
AAZ = E |[Yin AW, -YH [Awﬂw}
= B [AYin AW +VE {aW; - (AW, )]
Ei [(AYip1 — Ei [AYi]) AW | + B [V (AW, - [aW;],} ]
Hence
A (AZ)? <2 (Ez‘ [(AY¢+1)Q] —E; [AY2'+1]2) +2¢C; TR,
Then

AY; =E; [AYiH + {f (Xi, 1, Yip1, Zi) — f ([Xi]x 7Ii’YiEhZiR)}Ai}

Using Jensen’s inequality and Young’s inequality with parameter yA;, v > 0:

1
(AY)? < (1+7A)E AVl + (14 - &) ABLIE [(AX)? + (AYia)* + (AZ)7]
1 1
< Ei[AYi] <Ai + 7) (7 - 6(1[@) + E; {(AYiJrl)z} (Az’ + 7> 3L% (Ai + 2q)

1
+ <Ai + 7) ALY {(AXi)2 it 2qC§TRw}
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Now, for any v > 6qL?c, one can group together the terms in E; [AYiH]Q and E; [(AY}H)Q}
using Jensen’s inequality:

(AV:)? < B, [(AYig1)’] {146(3,7) Ai} + 3L <\7r\ - '1y) A {(AX:)* +2¢C2 T, }

where, as in Lemma 5.3.1, 0 (¢c,7y) := v+ cL?c (\ﬂ] + %) Hence, using that for any random
variables © and ©’,

2
(ess supE; , [©] — supE; , [@’]) <esssupE;, [(9 — 6’)2} ,
a€A acA acA

the following holds:

(AY;)? < {140(3,7) A} ess sup Eiq (AYi1)?] +3L3 (w + i) A {(AX)’ +24C2TR, }

acA

By induction

(AY)? < LyEN 1 (3,9) (IaXNP)
N-1

1 *
4315 (Iel+ ) 3 ATE (3 {(1AXF) + 200 T

where, as in Lemma 5.3.1, TY (¢, ) := HZ::Z- (146 (c,v)Ag) <exp(0(c,v) (tj+1 —t;)) . Finally,
take v = 6qL?c to obtain the desired bound. O

5.3.2 Projections

In its current form, the scheme (5.3.3) is not readily implementable, because its conditional
expectations cannot be computed in general. Therefore, there is a need to approximate these
conditional expectations. For handiness and efficiency, we choose, in the spirit of [82] and [58],
to approximate them by empirical least-squares regression.

First, we will study the impact of the replacement of the conditional expectations by theoretical
least-squares regressions. We will see that the resulting scheme is not easy to analyze. Therefore,
we will study a stronger version of it, and discuss their practical differences. As it is already
a daunting task for standard BSDEs (cf. [82]), and in view of the difficulties already raised at
theoretical regression level, we leave the study of the final replacement of these regressions by
their empirical counterparts for further research.

Hence, for each i € {0,...,N — 1}, consider S} and S7 = {S-Z’l,...,SiZ’q} that are non-

K3
empty closed convex subsets of La (Fi,,P), as well as the corresponding projection operators

PY and P# = {PlZ A ,PiZ ’q}. Using the above projection operators in lieu of the conditional

expectations in (5.3.3), we obtain the following approximation scheme:
v =g(Xnlx)
N
PE [Py (T (Xl LT 2E) A)] (5:3:)
= es

Y/iR SSuPgeq Eiq {yﬂ '
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where []; . == —A;C. A.V A;C; and [], := —Cy A.V Cy are truncation operators that ensure

that the a.s. upper bounds for (YR, ZR) from Lemma 5.3.1 will also hold for (?R, ZR).

To be more specific, choose the subsets SZ»Y and SZZ as follows:

Sy {)\pz (XZ,I);)\G]RBiY}
SZk {)\pl (Xi,IZ-);)\ERBiZ’k},kzl,...,q

T T
where pzf = (pl}jb s ’szB.Y> ) Bly > 17 and pZZ’k = (pfik;, o 7p;Zég,k) ) BZk: > 1 are prede—
fined sets of deterministic functions from R? x RY into R. Hence, for any random variable U in
Ly (Fr,P), PY (U) is defined as follows:
oy 2
N (V) :=arg inf E|(Ap} (X, L)~ U) (5.3.10)
AeRPi
PY(U) =\ (U) .p! (Xi, L)

7

and PZ (U) is defined in a similar manner. With these notations, the scheme (5.3.9) can be
explicited further as follows:

Vi =g(Xnlx)
AZR [AZ (Vi [aw]] ) 7 (Xz-,Iz-)]m (5.3.11)
YiR = €SSSUPge 4, P\Z/ (Y/i]il + f ([Xi]x ’Iivffz‘il’ Zﬁ) Ai) 'sz (X, a)Ll J

where A; is the set of o (X;)-measurable random variables taking values in A. Now, we would
like to analyze the error between (YR,ZR) and (?R,ZR). Unfortunately, in spite of the

simplicity of the scheme (5.3.11), this analysis is made strenuous by the fact that YiR is not
itself a projection, as it combines regression coefficients computed using the random variable
I; and regression functions valued at another random variable a. This prevents the analysis
from taking advantage of standard tools to deal with least-squares regressions. For comparison,
consider the following alternative scheme:

Y =g ([Xn]x )
a2R = [N (VR [awT] ) ? (Xz-,Ii)LZ ,a €A (5.3.12)
}A/iR = €SSSUP,e 4, [)‘i,a (Yzil + f ([Xl]X i, }Afiil’ ZAiﬁ) Ai) 'sz (Xiv a)}y

where, unlike equation (5.3.10), the regression coefficients /\ ., are computed as follows:

3 2
Na(U) :=arg inf E {(A-pz’f (X;,a) — Us) ] (5.3.13)
AeRPi

P (U) =\, (U) .pY (Xi,a)

for every U € Ly (Fr,P) and a € A;, where U, corresponds to the conditional random variable
UNI = a}. PZ (U) is defined in a similar manner. Remark that P;1, (U) = P; (U), and that
P; o (Ua) = P; o (U). With this new scheme, the estimated regression coefficients are changed
along with the strategy a when computing the optimal strategy. Therefore, compared with the
scheme (5.3.11), the implementation of an empirical version of the scheme (5.3.12) is much more
involved, as it may require, for the same time step, many regressions involving several random
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variables a different from I; (which is used to simulate the forward process). However, these
modifications ease considerably the analysis of the impact of the projections compared with
(YR, Z R) as shown below in the remaining of this subsection.

First, the scheme (5.3.12) can be written as follows:

se b W )],
AZR VR AW
Vi [m(iiil+f([ T T 2 2R) A)] (5.3.14)

’ )
SSSUPge A yz a

YR
Then, we recall below some useful properties of the projection operators P; o

Lemma 5.3.3. For any fized a € A;:

PiaU) = P;,(Eia[U]) , VU € Ly (F,,P) (5.3.15)
2
E [(P (U) =Py (V) } < E[(Us—Vo)] , VU VinLy (Fr,P).  (5.3.16)
Proof. The proof can be found in [58]. =

We now assess the error between (YR, Z R) and (}A/R, A R).

Proposition 5.3.2. [projection error] The following bound holds:

E

AE|

w5 (e [(amn) ] coue [ ((azir)

where C := 2L5 (|| + q) + %, and (yAPyk\z)* (resp. (\APZk\Q)*), k > i, is solution of the
linear constrained BSDE:

)

-7 ()]

, (resp.esssup,cy Eiq { Z

2
-7 (oF)
Y; =esssup,eaEjalYjr], j=k—1,...,i

Y., =esssup,caEiq {

Moreover, the same upper bound holds for E [ess SUDPgc A ] and AR [ess SUPgc A
Proof. Fix a € A;. Define AY? = Y — VE AYE = yE — YE AzE = ZE — ZF and
AZZ-I?Q = Zfa - E:’fa, where, as in equation (5.3.13), y;f; (resp. Zfa) stands for the conditional
variable VP |{I; = a} (resp. ZI'|{I; = a}).
First, using that A;Zf = [AiZiRa} _and the 1-Lipschitz property of []; .:

K b Z,Z b

izt < a2t - P2, (5 [awy] )

Using Pythagoras’ theorem:

E [‘AiAZﬁa

2} UA Al

}+E

Pfa (AiZi]?a) PzZa ( i+1 [AWT} )‘2:|
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where, using equation (5.3.15):
P (v [aWT] ) = P2 (Bua [$2 [aW] ])
=P (B [ (7 B [W4]) [aW2T] ])

Then, using equation (5.3.16):

(|

f(oizl) —rL (R [awT] )| <l maizh] - el (7 - 7] JawT] ]
- & [ (8% ~ Bua [a¥5]) [awrT] )]

< AR [Ei |(AVE)

—Eiq {AYZEJ i

To sum up for the Z component:

AE UA o

]<AE[

-7 (et)

} +q]E{ {(AYEI) ] —Fiq [Ayiilﬂ

For the Y component, start similarly by using the 1-Lipschitz property of [.] , and Pythagoras’
theorem:

]E[ L 2} K [(yf; ~ P, (yffa))2] +E[(P{a (V) - Pr (Vi + £ (X x 1 VL 21 Ai)ﬂ

And then, using again equations (5.3.15), (5.3.16), Jensen’s inequality and Young’s inequality
with parameter vA;, v > 0:

[P (35) P2 (75, £ (e, 278,28 )
)al)’
<E {(1 A Eia [AVE] + <1 + A) A?L32 { - {(AYﬁl)Q +

< (A + }y) E[('y - 2qu) [AYﬁl] +2L% (Ai+q) E; [(AYH)

<B| (B [AY + L (|AVE| +]a2E,

Ei,a [

+2L5A; | 2],

2l

~P4(2h) ’

(v

2
For all v > 2quc, one can group together the terms involving E; , {Y;il} and E; ,

Il

using Jensen’s inequality:
E UA 2} <E (yR -~ (VR))

+2L% <|7r|+ >AE[

F4+0(20) 80 E B |(AYE)
-PZ (2h) 2}

<E -ess 21611131 (yR P{a (3’51))2: +(14+6(2,v)A)E less 21613 Eia {(AY;TJ)
1

]

(5.3.17)

a€A

1
+ 2L?f <|7r| + 7) AE less sup Zﬁa _ fpfa (Zi}?a)

where 0 (¢,y) = v+ CL?C (\ﬂ'[ + %)
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2
Therefore, as equation (5.3.17) is true for every a € A; on its left-hand side, and as ‘AY£1‘ <

2
, the following holds by induction:

R
€SS SUPge A ‘Ayi—i-l,a

E lessilelg AYE[ SJZZ: r¥ (2,7) {E [(1aPYx[2) ] + 223 (w + }y) AKE [(\Apzk\g)*}}

where I’g (¢,v) = Hi:i (14+0(c,v)Ag) < exp(0(c,7) (tj+1 —t;)). Finally, take v = 2qL3c to

2 2 2
obtain the desired bound for ‘Ayfa . Moreover, as ’AYZ-R‘ < SUpgeq ’Ayfa , the same bound

2 2
holds for ‘AYiR . For the bound on ’AZZR , use that:

+E

2
AJEUAZZ-R ] < AE less sup AZfa

a€A

2] < AE less sup ‘Zfa - fPfa (Zﬁa) :

a€A

21

ess sup ‘Ayﬁl’a
acA

O]

5.4 Applications
In this section, we illustrate our numerical scheme on various examples.

5.4.1 Linear Quadratic stochastic control problem

The first application is an example of a linear-quadratic stochastic control problem. We consider
the following problem:

T
v(t,z) =supE l—)\o/ (a)® ds — Ay (X$)? (5.4.1)
acA t
ng = (—MoXsa + ulas) dt + (O’o + alas) dWs , Xg =0 (5.4.2)

where \;, i, 0; > 0,1 = 1,2. It is called linear-quadratic because the drift and the volatility of
X are linear in a and X%, while the terms in the objective function v are quadratic in a and
X% We choose this example as a first, simple application for our numerical scheme because
there exists analytical solutions to this class of stochastic control problem (cf. [107]) to which
our results can be compared in order to assess the accuracy of our method.

Now, let us look closer to this specific example. As can be seen from equation (5.4.1), the
objective function v penalizes the terminal value X7 of the controlled diffusion if it is away
from zero (with the —\; (X$)? term). Hence, X®, which starts from zero, has to be controlled
carefully over time so as not divert too much from this initial value. This can be achieved
through the control « in the drift term (—puo X + p1as), which can reinforce the default mean-
reversion speed pg. However, this control also impacts the volatility (o¢ + o1as), which makes
it easier to decrease X¢ than to increase it. Moreover, the controls are penalized over time
(—Xo ftT (ars)? ds), meaning that they must be exerted parsimoniously.

We test our numerical scheme on this specific problem. We set the parameters to the following
values:
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For the numerical parameters, we use n = 52 time-discretization steps, and a sample of M = 106
Monte Carlo simulations. For the regressions, we use a basis function of global polynomial of
degree two:

¢ (t,x,0) = Bo + 1w + Pocx + Pawar + ux® + Bra” .

In particular, assuming B5 < 0, the optimal control will be linear w.r.t. x:
of =a* (t,x) :=argmax ¢ (t,z,a) = A(t) x + B (t)
«

B __ D
205 B(®):= 2035

This behaviour is illustrated on Figure 5.4.1 below.

Alt) =

Comparison of control coefficients A(t) and B(t)
Optimal Control

o (t,z) ‘ 0 TS e—w o

B(t) - estimated

O theoretical

-0.5 0
0.5 .
0 _4 - estimated
1 A O theoretical

Diffusion value x 0.5 15 <« Timet

0 0.5 1 1.5 2
Time t

(a) Shape (b) Optimal coefficients vs. theoretical values

Figure 5.4.1: Optimal control

Figure 5.4.1a displays the shape of the optimal control o* (¢, ).

First, as expected from the drift term in the dynamics of X (equation (5.4.2)), a* is a decreasing
function of = (A (¢) < 0):

- If X§* takes a large positive value, then o (¢, X;) will take a large negative value so as to push
it back more quickly to zero (recall the drift term —puo X + pias).

- Conversely, if X/ takes a large negative value, then o* (¢, X;) will take a large positive value
for the same reason.

Second, the strength of the control increases as time reaches maturity (i.e. A(t) decreases
with t). Indeed, the penalization of the control becomes relatively cheaper compared with the
penalization of the final value when time is close to maturity.

The strengthening of the control can also be assessed on Figure 5.4.1b, which displays the time
evolution of the estimated coefficients A and B (a* (t,2) = A(t) z + B (t)). Moreover, one can
see that the coefficient B is slightly negative close to maturity. This creates an asymmetry in
the control (as a* (t,0) = B (t) # 0), which comes from the asymmetric effect of the control on
the volatility of X¢.

The effect of the optimal control o is clearly visible on Figure 5.4.2 below, which compares
the distribution of X without control (Figure 5.4.2a) and when the optimal control is used
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(Figure5.4.2b). The strengthening of the control at the end of the time period, as well as the
slightly asymmetric shape of the distribution are prominent.

Uncontrolled diffusion Optimally controlled diffusion

10% 0.6 10% 0.6
20% 20%

04 0.4
30% 30%
40% 0.2 40% 0.2
50% 50%

0 0
60% 60%
70% 0.2 70% 0.2
80% 80%

0.4 0.4
90% 90%
99% 0.6 99% 0.6
Interquantile 05 1 1.5 2 Interquantile 05 1 15 2
Ranges Time Ranges Time

(a) Without control (b) With control

Figure 5.4.2: Time-evolution of the distribution of the diffusion

Finally, regarding the accuracy of the method, the comparison between the estimated coefficients
and their theoretical values is reported on Figure 5.4.1b. Indeed an analytical characterization of
the solution of linear quadratic stochastic control problems is available using ordinary differential
equations (cf. [107]). On our one-dimensional example (5.4.1), it is given by:

o (t,Xy) = A(t) Xy + B(t)

P (t)
Alt) = ———75-—
®) 2X0 + U%P (t)
2
M1 0001 01
B(t) = ——QI(t At ——Q (1
1) = —FQ)+ <><m %Q())
where P (t) and @ (t) are the solutions of the following ordinary differential equations:
2P2 (t)
Pl(t) = 2uP(t)+ 12
P(T) = 2\
2P (t) oo P2 (1)
(1) = o) Tt Sl S
@ <“°+2/\0+0%P(t) Q® 2\ + 02 P (t)
QT =0
As can be seen from the comparison on Figure 5.4.1b, our estimates of the control coefficients are
very accurate. Regarding the value function, our method provides the estimate ¢ (0,0) = —5.761.

The theoretical value being equal to —5.705, this means a relative error of 1%.

5.4.2 Uncertain volatility /correlation model

The second application is the problem of pricing and hedging an option under uncertain volatility.
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Instead of specifying the parameters of the dynamics of an underlying process, one can, for
robustness, consider them uncertain. To some extent, this parameter uncertainty provides
hedging strategies that are more robust to model risk (cf. [99]). To handle these uncertain
parameters, the usual approach is to resort to superhedging strategies, that is, to find the
smallest amount of money from which it is possible to superreplicate the option, i.e. to build a
strategy that will almost surely provide an amount greater than (or equal to) the payoff at the
maturity of the option.

To compute these prices in practice, the most common approach is to resort to numerical
methods for partial differential equations. For instance, [86] computes the superhedging price
under uncertain correlation of a digital outperformance option using a finite differences sheme.
Unfortunately, these PDE methods suffer from the curse of dimensionality, which means that
they cannot handle many state variables (no more than three in practice).

This is why a few authors tried recently to resort to Monte Carlo techniques to solve this problem
of pricing and hedging options under uncertain volatility and/or correlation.

To our knowledge, the first attempt to do so was made in [88]. In this thesis, along the usual
backward induction, the conditional expectation are computed using the Malliavin calculus
approach. This approach uses the representation of conditional expectations in terms of a
suitable ratio of unconditional expectations. Then, to find the optimal covariance matrix at
each time step, an exhaustive comparison is performed. Of course, this methodology works only
if the set of possible matrices is finite, which is the case when the optimal control is of bang-
bang type. For instance, it includes the case of unknown correlations with known volatilies,
but not the case when both volatilities and correlations are unknown, a shortcoming that is
acknowledged in [88]. This means that this methodology can only deal with optimal switching
problems, for which the control set is finite.

To overcome this limitation, [62] propose to restrict the maximization domain to a parameterized
set of relevant functions, indexed by a low-dimensional parameter. They then perform this much
simpler optimization inductively at each time step, by the downhill simplex method (when the
optimum is not of bang-bang type). Once it is done, say, at time t;, they immediately use these
estimated volatilities and correlations (along with those from ¢; > t;) to resample the whole
Monte Carlo set from ¢; to T' (and idea also used in the Multiple Step Forward scheme from
[58]). Remark that this parameterization avoids the computation of conditional expectations
for each point and time step.

In [62], a second Monte Carlo scheme is proposed. It is a Monte Carlo scheme for 2-BSDEs, very
similar to the schemes [41] and [49], but fine-tuned for the uncertain volatility problem under
log-normal processes. The conditional expectations are computed by parametric regression (non-
parametric regression in dimension 1). Then for each point and each time step, a deterministic
optimization procedure has to be performed to find the optimal covariance matrix. However,
unlike their previous algorithm, there is no resampling of the underlying diffusion using the
newly computed covariances, which means that ensuring a proper simulation of the forward
process becomes an issue.

Finally, we would like to draw attention to the work [89], which is not devoted to the uncertain
volatility problem (it deals with the partial hedging of power futures with others futures with
larger delivery period), but the probabilistic numerical scheme they propose can deal with a
control in the volatility. Their specific application allows to retrieve the optimal control by a
fixed point argument, within a backward scheme. However, as in the previous algorithm, an a
priori control has to be used to simulate the forward process.

Here, our numerical scheme provides an alternative numerical sheme for dealing with the problem
of pricing and hedging an option under uncertain volatility. To illustrate this, we implement it
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below on a simple example.

Consider two underlyings driven by the following dynamics:

dSZ (t) = O‘z'Si (t) dWi (t) s 1= 1, 2 (5.4.3)
AWy (t),dWs (£)) = p(t,S1(t), 5 (1)) dt (5.4.4)

where 01,09 > 0, W7 and W5 are two correlated brownian motions. We consider no drift and
no interest rate for simplicity. We instead focus our attention on the following crucial feature:
we consider the correlation p to be uncertain. We only assume that p always lies between two
known bounds —1 < ppin < Pmax < 1:

Pmin < P < Pmax (545)

Notice that when pmin = —1 or pmax = 1, the diffusion matrix of (S1,S2) can be degenerate.

We could also consider the two volatilities to be uncertain as well, but for illustration purposes,
we focus on the uncertainty of the correlation parameter.

Finally, consider a payoff function ® = ® (7,51 (1), 52 (T')) at a time horizon T' > 0.

Now, the problem is to estimate the price of an option that delivers the payoff ® at time T,
and, if possible, to build a hedging strategy for this option.

Given that p is uncertain, the model is incomplete, i.e. it is not possible to construct a hedging
strategy that replicates perfectly the payoff ® from any given amount of money. We thus look
for superhedging strategies instead.

Hence, consider the class Q of all probability measures Q on the sets of paths {.S; (¢) BE%KQT such

that equations (5.4.4) and (5.4.5) hold for a particular p@. The superhedging price is thus given
by:

Py = sup EQ[® (T, 8 (T), Ss (T))] (5.4.6)

QeQ

and the superhedging strategy is simply given by the usual delta-hedging strategy with p equal
to the correlation that attains the supremum in equation (5.4.6). In particular it provides an
upper arbitrage bound to the price of the option. Symmetrically, a lower bound is provided by
the subreplication price:

Py i= inf ES [ (T, 5, (T), S (T))] (5.4.7)

The practical computation of POJr and B, falls within the scope of our numerical scheme.

We thus test our numerical scheme on this specific problem. We consider the example of a call
spread on the spread Sy (T') — S (T), i.e.:

® = (51 (T) = 2 (T) = K1) = (S1(T) = 82 (T) — K2)"

where K7 < Ks. Unless stated otherwise, the parameters of the model are fixed to the following
values:

[ 51(0) | 52(0) | 01 | 02 | pumin | pmax | K1 | Ko | T |
| 50 | 50 [04]03][-08] 08 [|—-5] 5 [0.25]|

For the numerical parameters, we use n = 26 time-discretization steps, and a sample of M = 105
Monte Carlo simulations. For the regressions, we use a basis function of sigmoid transforms of
polynomial of degree two:

¢ (t,s1,82,p) = (Ko — K1) xS(Bo+ P51+ Basa+ Bz3p + Bapsi + Bsps2)

1
S(u) = Ty
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We chose the sigmoid function for its resemblance to the call spread payoff, and the terms inside
the sigmoid according to their statistical significance. With this choice of basis, the optimal
control will be bang-bang:

pr=p*(t,s1,52):=arg max o(t, 51,52, P) = pmax1{B3+Las1+P552 > 0} + pmin1{ B3+ Bas1+ P52 < 0}

Figure 5.4.3 below reports our results.

Figure 5.4.3a reports the superhedging and subhedging prices of the option, for different values
of the moneyness (52 (0) = 50 is kept fixed and different values of S; (0) = 50 + Moneyness are
tested). One can clearly see the range of non-arbitrage prices that they define. For comparison,
the prices obtained when p is constant are reported on the same graph for different values
(Pmin, 0 and ppax). One can see that, even though these prices belong to the non-arbitrage
range, they do not cover the whole range, especially close to the money. This clearly indicates
that, as already observed in [86] for instance, the practice of pricing under the hypothesis of
constant parameters, and then testing different values for the parameters can be a very deceptive
assessment of risk (as “uncertain” is not the same as “uncertain but constant”).

Figure 5.4.3b illustrates the impact of the size of the correlation range [pmin, Pmax|- Naturally,
the wider the correlation range, the wider the price range. On average, an increase of 0.1 of the
correlation range increases the price range by 0.135.

Price of Call Spread on S1(T)-S2(T) Price of Call Spread on S1(T)-S2(T)
10 Lo
— s
p=0 _ 9
-- -gulﬁ;‘&‘i‘ging o 0.9
0.8
7
0.7
6
0.6
5
0.5
4
0.4
3
0.3
2
0.2
1
0.1
0 0
20 -15 -10 -5 0 5 10 15 20 25 Correlaion —15 -10 -5 0 5 10 15 20 25
Moneyness ( = S1(0)-S2(0) ) Ranges (+-) Moneyness ( = S1(0)-S2(0) )
(a) Price of Call Spread (b) Influence of the correlation range

Figure 5.4.3: Prices under uncertain correlation

5.4.3 Comparisons with [62]

Finally, we test our algorithm on several payoffs proposed in [62], and compare the behaviour of
our method to their results. To be more specific, we will not focus our comparison of algorithms
to their parametric approach!, but to their second-order BSDE approach, as both algorithms
are similar in nature (forward-backward schemes involving simulations and regressions).

!For comprehensiveness, here are the main pros and cons of the parametric approach: it is very accurate (espe-
cially when the optimal control belongs to the chosen parametric class) but requires O (N 2x M ) operations,
as at each time step t; the simulations of the forward process are recomputed between ¢; and ¢ty using the
newly estimated optimal controls.
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Actually, we are going to implement and compare two different versions of our scheme. The first
one correspond to the empirical version of the scheme studied in Section ?77:

Yy =g(Xn)

Vi =L [}Afi-&-l + f(Xi, L) Az’:|

Y; = esssup Eiq [37,} (5.4.8)
a€A

where E; corresponds to an empirical least-squares regression which approximates the true
conditional expectation E;. In the simpler context of American option pricing, this scheme
would correspond to the Tsitsiklis-van Roy algorithm ([102]).

The second one makes use of the estimated optimal policies computed by the first algorithm,
which are then directly plugged into the stochastic control problem under consideration:

&; = argesssupE; {:)72}
a€A
= b(X;
1

iy Oy )AZ + U(Xi, OAJZ)AWZ
M
 (to, o) = Z

N
[Zf z+17az)A +Q(XN)1 (549)

In the context of American option pricing, this scheme would correspond to the Longstaff-
Schwarz algorithm ([83]).

We compute both prices as they are somehow complementary. Indeed, as noticed in [28] and
detailed in [2], the first algorithm tend to be upward biased (up to the Monte Carlo error
and the regression bias) compared with the discretized price, while the second one tend to be
downward biased (up to the Monte Carlo error). Therefore, computing both prices provides a
kind of empirical confidence interval, with the length of the interval being due to the choice of
regression basis, thus providing an empirical assessment of the quality of the chosen regression
basis.

Call Spread Let S be a geometric brownian motion with S (0) = 100 and with uncertain
volatility o taking values in [0.1,0.2].

Consider a call spread option, with payoff (S (T) — K1)" — (S(T) — K2)* and time horizon
T =1, with K1 =90 and K2 = 110. The true price of the option (as estimated by PDE methods
n [62]) is Cppr = 11.20, and the Black-Scholes price with constant volatility opyig = 0.15 is
Cps = 9.52. We implement our scheme using the following set of basis functions:

6 (t,5,0) = (K2 = K1) x S (Bo+ Bus + Bas” + By + Baos + Byos”)

where, as in Subsection 5.4.2, S denotes the sigmoid function.

Figure 5.4.4 describes the estimates obtained with both algorithms (5.4.8) and (5.4.9), for var-
ious values of the number M of Monte Carlo simulations, and of the length of the constant
discretization time step. For comparison, the red line corresponds to the price Cppg of the
option.
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First, for a small enough time step, the prices computed using the first algorithm (5.4.8) (Figure
5.4.4a) tend as expected to be above the true price, while the second algorithm (5.4.9) (Figure

5.4.4b) tend to be below it.

Our best estimate here (M = 22! | A; = 1/128) is 11.31 with the first algorithm (+1% compared
with the true price) and 11.14 with the second one (—0.6%). The true price lies indeed between
those two bounds, and their average (11.22) is even closer to the true price than any of the two

estimates (4+0.2%).

The prices computed with the first algorithm always lie above the prices computed with the
second algorithm. As these prices are expected to surround the true discretized price (as would
be computed by the scheme (5.4.8) with E; instead of [;), the fact that for large discretization
steps (A; = 1/8 or 1/16) the prices computed using the first algorithm are below the true price
11.20 simply means that, for such discretization steps, the true discretized price lies below the
true price (in other words the time discretization generates here a negative bias).

Finally, increasing the number of Monte Carlo simulations tends as expected to improve the price
estimates. However, the Monte Carlo error can be negligible compared with the discretization
error for small time steps, which is why both a large number of Monte Carlo simulations and a
small discretization time step are required to obtain accurate estimates.

In [62], the algorithm based on second-order BSDEs produces the estimates 11.04 for (1/Ay, log, (M)
= (8,16) and 11.11 for (1/A4,logy (M)) = (8,17). This is close to our estimates for simi-
lar parameters. However, a more accurate comparison would require to test their algorithm
with smaller time steps and more Monte Carlo simulations (they only consider parameters
(1/A¢,logy (M)) within [2, 8] x [12,17], whereas we consider here the range [8, 128] x [16, 21], as
it provides much greater accuracy of the estimates, providing a sound basis for the analysis of

the results).

Digital option: Consider a digital option, with payoff 100 x 1 {S(T)) > K} and T'= 1 on the
samee asset, with K = 100. The true (PDE) price is Cppp = 63.33, and the Black-Scholes price
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with mid-volatility is Cpg = 46.54. We use the following set of basis functions:

6 (t,5,0) =100 x S (Bo + Bus + Ba5> + By + Baors + fs0s?)

Estimated superreplication price: Algorithm 1 Time Step Estimated superreplication price: Algorithm 2 Time Step
64
L 1/128 1128
\e\\g 63
1/64 1/64
62//'
"2 g /\/\/ 1132
e 80 116
59
118 8
16 17 18 19 20 21 16 17 18 19 20 21
log2(M) log2(M)

(a) First Algorithm

(b) Second Algorithm

Figure 5.4.5: Price of Digital Option

As can be seen on Figure 5.4.5, the time discretization error is much more pronounced with
this discontinuous payoff, compared with the previous call spread example. We manage to reach
estimates of 63.04 (—0.5%) and 62.15 (—1.9%), even though smaller time steps would be required
for better accuracy.

For small parameters ((1/A¢,logs (M)) = (8,16)), the accuracy is better in [62] (60.53), even
though shortening the time step tends to degrade the results in their case.

Outperformer Option: Consider now two geometric Brownian motions S; and Sy, starting
from 100 at time 0, with uncertain volatilities o; and o9 taking values in [0.1,0.2]. For the
moment, suppose that the correlation p between the two underlying Brownian motions is zero.

Consider an outperformer option, with payoff (Sy (') — Sz (T))" and time horizon T = 1. The
true price is C = 11.25. We use the following set of basis functions:

o (t,s1,82,01,02) =100 X (50 + B181 + B25T + B3s2 + Bass + Bssis2 + Beo1 + Bro1s1 + Bsorsi

+B90152 + B100155 4 Br109 + F120251 + 13025t + +Praoass + 5150’23%>
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Estimated superreplication price: Algorithm 1 Time Step Estimated superreplication price: Algorithm 2 Time Step
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Figure 5.4.6: Price of Outperformer Option (p = 0)

Here, in contrast with the previous examples, the bulk of the error comes from the Monte Carlo
simulations, and not from the time discretization. Moreover, both algorithms provide very
accurate estimates. Indeed, this convex option is easy to price under the uncertain volatility
model, as it is given by the price obtained with the maximum volatilities. With our choice of
regression basis, the algorithm correctly detects that the maximum volatilities are to be used,
leading to these very accurate estimates 11.31 (4+0.5%) and 11.25 (—0%). For the same reason,
the estimates from [62] are accurate too.

Figure 5.4.7 below depicts the estimated price of the same option but now with a negative

constant correlation p = —0.5. Its true price is C = 13.75.
Estimated superreplication price: Algorithm 1 Time Step Estimated superreplication price: Algorithm 2 Time Step
14.5 14.5
1128 1128
1/64 1/64
14 14
——— 1/32 e 1/32
13.5 13.5
1/16 1/16
1/8 1/8
B6 17 18 19 20 21 Be 17 18 19 20 21
log2(M) log2(M)
(a) First Algorithm (b) Second Algorithm

Figure 5.4.7: Price of Outperformer Option (p = —0.5)

The same behaviour can be observed. Both algorithms are accurate here (13.69 (—0.4%) and
13.75 (—0%)).
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As the estimate from the first algorithm happens to lie below the true price, we take advantage
of this result to recall from the introduction of this subsection that the bias of the first algorithm
bears one more source of error (the regression bias) than the bias of the second algorithm. This
means that in general the sign of the bias wrt. the true discretized price is more reliable with
the second algorithm. With this observation in mind, we propose, from the two estimates P;
and P, computed by the two algorithms, to consider the following general estimate P:

P :=max (Pg, M)
2

Indeed, if Py > P, (which is the expected behaviour), then P := # may provide a better

estimate than both P, and P, separately (as is the case for the call spread example from Figure

5.4.4). However, when P; < P, (which is not expected), then, recalling that P, may be more

accurate than P, it is better to consider P := P, (as is the case here of this outperformer

option with p = —0.5). In the following, we will call P the mid-estimate (with a slight abuse of

terminology, as P is usually but not always the average between P; and P,).

Outperformer spread option: We now analyze a more complex payoff. Consider an outper-
former spread option, with payoff (Sy (T') — K151 (T))" — (So (T') — K251 (T'))", time horizon

= 1 and constant correlation p = —0.5. The true (PDE) price is Cppp = 11.41, and the
Black-Scholes price with mid-volatility is Cpg = 9.04. We use the following set of basis func-
tions:

2 2
S S S S
¢ (t,51,82,01,02) = 51 X (Ko — K1) xS (ﬁo +31;j + B2 <Sj) + 301 +54018% + B501 (;)

S9 S92 2
+560’2+570281+5802( )

S1
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(a) First Algorithm (b) Second Algorithm

Figure 5.4.8: Price of Outperformer Spread Option (p = —0.5)

In this example, one can see that the time discretization produces a large downward bias (as
in the call spread and digital option examples), but both algorithms behave as expected (the
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first algorithm produces high estimates, the second produces low estimates, and both are close
to the true price (11.53 (+1%) and 11.31 (—0.9%))). Moreover, the mid-estimate 11.42 is very
accurate.

In [62] is reported the estimate 10.83 for (1/A,logy (M)) = (8,20), which is slightly worse than
our estimates for the same choice of M and A; (11.01 and 10.95), but the difference can be due
to the different choice of basis. However, the three estimates are well below the true price, and
our numerical results indicate that the reason is that A; = 1/8 is too large a time step.

This suggests that the estimates from [62] could be improved by considering smaller time steps.
However, as acknowledged in their paper, the second-order BSDE method does not work properly
when A; is too small. Indeed, their BSDE scheme makes use of the first order component Z
and the second order component I'. The problem here is that, for fixed M, the variance of the
estimators of Z and I' tends to infinity when A; tends to zero. However, as detailed in [4],
this problem can be completely solved by amending the estimators using appropriate variance
reduction terms. Therefore, in our opinion, a fair comparison of the jump-constrained BSDE
approach and the second-order BSDE approach would require the use of the variance reduction
method from [4] to allow for smaller time steps for the second-order BSDE approach.

As a final numerical example, we consider again the same outperformer spread option, with the
exception that the correlation p is now considered uncertain, within [—0.5,0.5]. The true (PDE)
price is Cppg = 12.83, and the Black-Scholes price with mid-volatility is Cpg = 9.24. We use
the following basis functions:

2 2
S S S S
¢ (t,s1,52,01,002,p) =51 X (Ko — K1) xS (/3’0 +51;j + B2 <sj) + f301 +540’18*i + B501 (Si)
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Remark that at each time step we perform here a five-dimensional regression.

Estimated superreplication price: Algorithm 1 Time Step Estimated superreplication price: Algorithm 2 Time Step
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(a) First Algorithm (b) Second Algorithm

Figure 5.4.9: Price of Outperformer Spread Option (p uncertain € [—0.5,0.5])

On this example, we observe a wide gap between the two estimates 13.57 (+5.8%) and 12.12
(—5.6%) ((1/A¢,logy (M)) = (128,21)). As neither the number of Monte Carlo simulation nor
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the discretization time step seem able to narrow the gap, it means that it is due to the chosen
regression basis. Indeed, our basis is such that the optimal volatilities and correlation are of
bang-bang type, as in the previous examples. However, unlike the previous examples, here
both the volatilities and the correlation are uncertain, and in this case it is known (cf. [88] for
instance) that the optimum is not of a bang-bang type. Therefore, one should look for a richer
regression basis in order to narrow the estimation gap on this specific example. Remark however
that the mid-estimated 12.84 remains very accurate. On the same example and with another
regression basis, [62] manage to reach a price of 12.54 for (1/Ay,log, (M)) = (8,20).

To conclude these subsection, here are the differences we could notice between the jump-
constrained BSDE approach and the second-order BSDE approach applied to the problem of
pricing by simulation under uncertain volatility model:

e Both are forward-backward schemes. Thus, the first step is to simulate the forward process.
At this stage the jump-constrained BSDE approach is advantaged, because its forward process
is a simple Markov process, therefore easy to simulate. Its randomization of the control is
fully justified mathematically. On the contrary, the second-order BSDE requires to resort to
heuristics in order to simulate the forward process despite the fact that the control is involved
in its dynamics. [62] propose to use an arbitrary constant volatility (the mid-volatility) to
simulate the forward process, and they notice that the specific choice of prior-volatility does
impact substantially the resulting estimates.

e Then comes the estimation of the backward process. If both schemes require to perform
regressions, this step is more difficult in the jump-constrained BSDE approach, because
the dimensionality of the regressions is higher as the state process contains the randomized
controls. In particular the choice of regression basis is more difficult.

e On the set of options considered here and within the same range of numerical parameters
M and A; we could not detect any significant and systematic difference between the two
algorithms. Nevertheless, we strongly suggest the following two points:

e First, the second-order BSDE approach would strongly benefit from the use of the variance
reduction method from [4]. It would allow for smaller time steps to be considered, and there-
fore allow for a sounder and more precise numerical comparison between the two approaches.
Indeed, the accurate estimates recorded in [62] for very large time steps may be, as in Figure
5.4.9a for A; = 1/16, an incidental cancellation of biases of opposite signs. The significant
quantity is the level where the estimates converge for small A;.

e Second, to complement the downward biased, “Longstaff-Schwartz like” estimator considered
in [62], we suggest the computation of the upward biased, “Tsitsiklis-van Roy like” estimator,
as we did in this chapter, as both estimators appear to be informative in a complementary
fashion, and the mid-estimator proposed here (which requires both estimators) seems to
perform staggeringly well.

5.5 Conclusion

We proposed in this chapter a general probabilistic numerical algorithm, combining Monte
Carlo simulations and empirical regressions, which is able to solve numerically very general HJB
equations in high dimension. That includes general stochastic control problems with controlled
volatility, possibly degenerate, but more generally, it can solve any jump-constrained BSDE

([72]).
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5.5. CONCLUSION

We thoroughly analyzed the time-discretization step, including the establishment of a conver-
gence rate. We initiated a partial analysis of the theoretical error of the scheme, and we provided
several numerical application of the scheme on the problem of pricing under uncertain volatility,
the results of which are very promising.

In the future, we would like to extend this work in the following direction:

o First, we would like to manage to obtain a comprehensive analysis of the error of the scheme,
including the empirical regression step.

e Then, we would like to perform a more systematic numerical comparison with the alternative
scheme described in [62], taking into account our empirical findings.

e Finally, we would like to extend the general methodology of control randomization and sub-
sequent constraint on resulting jumps to more general problems, like HJB-Isaacs equations or
even mean-fields games, with possible advances on the numerical solution of such problems.
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