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Il existe deux grandes familles de méthodes qui permettent de résoudre un système linéaire sur une architecture parallèle et pour lesquelles des implémentations utilisables en boite noire sont disponibles. Il s'agit des solveurs directs et des solveurs itératifs. Les solveurs directs sont robustes dans le sens où on peut garantir théoriquement, aux arrondis près, qu'ils vont trouver la solution en un certain nombre d'opérations peu importe la difficulté du problème. L'inconvénient est que si les problèmes sont trop gros alors la mémoire requise devient limitante. Les solveurs itératifs quant à eux sont naturellement parallèles et ne rencontrent pas de problèmes de mémoires puisqu'ils exploitent surtout des produits matrice-vecteur. Par contre ils manquent souvent de robustesse : pour des problèmes mal conditionnés le fait de préconditionner le problème devient incontournable et le choix du bon préconditionneur est un art à part entière.

Les méthodes de décomposition de domaine peuvent être vues comme des solveurs hybrides : elles résolvent le système avec une méthode itérative tout en exploitant des solveurs directs sur des sous problèmes pour réécrire le problème ou pour appliquer le préconditionneur (ou parfois les deux). L'idée derrière cette hybridation est de tirer le meilleur parti de chaque famille de solveur et ainsi d'allier la robustesse à la parallélisation.

Dans cette section nous présentons trois des méthodes de décomposition de domaine les plus populaires et nous illustrons le fait qu'elles peuvent manquer de robustesse quand elles sont confrontées à des problèmes particulièrement difficiles. Puis nous décrivons ce qu'est une méthode de décomposition de domaines à deux niveaux et comment l'ajout du second niveau peut contribuer à la robustesse. Finalement, nous présentons les contributions principales de cette thèse qui sont développées dans les chapitres suivants. La motivation qui lie l'ensemble des travaux est de fabriquer des méthodes de décomposition de domaines pour lesquelles on sait prouver qu'elles vont converger même pour des problèmes très difficiles et qui peuvent être implémentées en boite noire et donc utilisées sans connaissance particulière du problème sous-jacent au système linéaire.

Méthodes de décomposition de domaine

Nous introduisons deux familles de méthodes de décomposition de domaine pour lesquelles nous développerons des améliorations dans le coeur de cette thèse. La première est la méthode de Schwarz. L'un de ces principaux avantages est qu'elle peut être implémentée de manière purement algébrique : aucune connaissance du problème autre que sa formulation Ax = b n'est nécessaire. La seconde famille de méthodes est constituée des méthodes dites de sous-structuration. Elles sont plus sophistiquées puisqu'elles requièrent l'accès aux matrices élémentaires afin de pouvoir assembler les matrices du problème restreint à certains sous domaines. Dans un cadre industriel ce sont souvent les méthodes de sous-structuration qui sont mises en oeuvre.

Méthodes de Schwarz

Une présentation historique détaillée est donnée dans [START_REF] Gander | Schwarz methods over the course of time[END_REF] avec les références bibliographiques complètes. Les méthodes de décomposition de domaine de Schwarz sont nommées après H. A. Schwarz qui en 1870 [START_REF] Schwarz | Über einen Grenzübergang durch alternirendes Verfahren[END_REF] a proposé l'algorithme de Schwarz alterné afin d'étudier l'existence d'une solution au problème de Poisson homogène avec conditions aux limites imposées (1.1) :

� -Δu = 0 dans Ω, u = g sur ∂Ω, (1.1) 
où Ω = Ω 1 ∪ Ω 2 est dessiné dans la Figure 1.1. Partant de l'existence d'une solution sur des domaines réguliers (cercles, carrés...) l'idée de Schwarz est de démontrer par un argument de construction l'existence d'une solution sur un domaine Ω non régulier mais constitué d'éléments réguliers (comme celui de la Figure 1.1). Pour cela il propose de résoudre en alternance le problème dans chacun des sous domaines avec des conditions de transmission basées sur la solution qui vient d'être calculée dans le sous domaine voisin. Plus précisément Schwarz démontre que l'algorithme d'alternance de Schwarz initialisé par u 0 2 et mis à jour selon Les travaux [START_REF] Bjørstad | Iterative methods for the solution of elliptic problems on regions partitioned into substructures[END_REF] proposent d'adapter cet algorithme pour l'utiliser en tant que solveur itératif. L'adaptation la plus immédiate est la méthode de Schwarz multiplicative [START_REF] Chan | Domain decomposition algorithms[END_REF][START_REF] Cai | Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems[END_REF][START_REF] Smith | Domain decomposition[END_REF]. Son inconvénient est qu'elle est séquentielle par nature puisque le problème à résoudre dans chaque sous domaine dépend de la solution qui vient d'être obtenue dans les sous domaines voisins via la condition aux limites. L'adaptation parallèle est le préconditionneur de Schwarz additif auquel Matsokin et Nepomnyaschikh [START_REF] Matsokin | The Schwarz alternation method in a subspace[END_REF] ont largement contribué et que nous présentons à présent en nous basant sur la description que l'on trouve dans [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF].

-Δu n+1 1 = 0 dans Ω 1 u n+1 1 = g sur ∂Ω 1 ∩ ∂Ω u n+1 1 = u n 2 dans Ω \ Ω 1 , -Δu n+1 2 = 0 dans Ω 2 u n+1 2 = g sur ∂Ω 2 ∩ ∂Ω u n+1 2 = u n+1 1 dans Ω \ Ω 2 ,
Si la discrétisation par éléments finis de (1.1) s'écrit Au = b, et que R ⊤ 1 (respectivement R ⊤

2 ) est la matrice d'interpolation (booléenne) qui prolonge une fonction éléments finis définie sur Ω 1 (respectivement Ω 2 ) à Ω tout entier par zéro alors on peut définir les opérateurs locaux A 1 := R 1 AR ⊤ 1 , A 2 := R 2 AR ⊤ 2 ainsi que le préconditionneur de Schwarz additif :

M -1 := R ⊤ 1 A -1 1 R 1 + R ⊤ 2 A -1 2 R 2 . (1.3) 
Il est assez intuitif de voir que c'est un bon préconditionneur pour A. En effet il approche l'inverse de A par une somme d'inverses sur chacun des deux sous domaines. Ceci se généralise aisément au cas de N sous domaines et d'une matrice A symétrique définie positive quelconque. Tout ce dont on a besoin est un ensemble de sous espaces V i de l'espace V des degrés de liberté et d'opérateurs d'interpolation R ⊤ i :

V i → V qui vérifient V = N � i=1 R ⊤ i V i .
Le préconditionneur de Schwarz additif s'écrit alors comme la somme des N inverses locaux

M -1 := N � i=1 R ⊤ i A -1 i R i , où A i := R i AR ⊤ i . (1.4) 
Une manière courante d'appliquer ce préconditionneur est de découper l'espace V des degrés de liberté en sous domaines deux à deux disjoints puis de rajouter l couches de recouvrement à chaque sous domaines comme c'est illustré dans la Figure 1.2. Dans ce cas les opérateurs d'interpolation R ⊤ i sont booléens et les matrices A i sont simplement des sous matrices extraites de A. La partition de départ peut être obtenue à la main en se basant sur la géométrie ou grâce à un partitionneur de graphe automatique tel que Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] ou Scotch [START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF]. Comme nous le verrons plus tard le fait qu'il y ait du recouvrement est essentiel pour assurer la convergence avec le préconditionneur de Schwarz additif. Il y a deux inconvénients principaux à ce recouvrement. Le premier, et peut être le plus évident, est qu'il faut assumer le coût de résoudre plusieurs fois le problème dans la partie du domaine qui est dédoublée. Le second est que lorsqu'on simule un objet qui est constitué de plusieurs matériaux il est naturel de construire les sous domaines de manière à ce qu'un seul matériau soit présent dans chaque sous domaine, avec le recouvrement ce n'est pas possible.

Méthodes de sous-structuration

Nous présentons ici deux méthodes très populaires : BDD (Balancing Domain Decomposition) et FETI (Finite Element Tearing and Interconnecting). La méthode BDD est due à Mandel [START_REF] Mandel | Balancing domain decomposition[END_REF] et est basée sur la méthode Neumann-Neumann [START_REF] De Roeck | Analysis and test of a local domain-decomposition preconditioner[END_REF] par De Roeck et Le Tallec. La méthode FETI a été écrite par Farhat et Roux [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF]. Notre objectif dans ce chapitre d'introduction est d'illustrer les idées qui sont à la base de ces méthodes. Afin de gagner en clarté nous nous limitons à un problème d'élasticité linéaire. Des présentations rigoureuses pour un problème symétrique défini positif général seront données au Chapitre 5. Les travaux [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF][START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF][START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF] proposent des présentations très complètes des méthodes de sous-structuration. En particulier on trouve dans [START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF] leur interprétation mécanique ainsi que des techniques d'implémentation.

Soit Ω une partie ouverte de R d pour d = 2 ou d = 3. Soit ∂Ω le bord du domaine Ω et ∂Ω D ⊂ ∂Ω une partie de ce bord où une condition de Dirichlet homogène est imposée. On introduit l'espace V := {v ∈ H 1 (Ω) : v |Ω D = 0}. Pour une force extérieure f ∈ V ′ , la formulation variationnelle du problème d'élasticité linéaire est : Trouver le champ des déplacements v ∈ V tel que 2 ν (0 < ν < 0.5) du matériau selon

� Ω µ ǫ(u) : ǫ(v)dx + � Ω λ(∇ • u)(∇ • v)dx = � Ω �f, v�dx ∀ v ∈ V, (1.5 
λ := Eν (1 + ν)(1 -2ν) , µ := E 2(1 + ν) .
L'élasticité linéaire est une approximation, en petite déformation, des équations de l'elasticité [START_REF] Tallec | Numerical methods for nonlinear three-dimensional elasticity[END_REF]. Supposons que l'on a discrétisé (1.5) avec des éléments finis linéaires (P 1 ) et que dans cette base le problème discrétisé s'écrit : Trouver û ∈ R n tel que K û = f .

Nous pouvons maintenant introduire les composantes locales des méthodes de sousstructuration. Supposons que Ω a été partitionné en sous domaines disjoints deux à deux :

Ω = N � i=1 Ω i ; Ω i ∩ Ω j = ∅ ∀ i � = j.
On dénote par K i et f i la matrice du problème local et le terme de force extérieure local qui correspondent à la discrétisation de 2

� Ω i µ ǫ(u) : ǫ(v)dx + � Ω i λ(∇ • u)(∇ • v)dx et de � Ω i
�f, v�dx pour les fonctions {u |Ω i ; u ∈ P 1 }. L'équation d'équilibre du sous domaine Ω i s'écrit alors K i u i = f i + g i , où g i sont les forces surfaciques.

(1.6)

Nous constatons que dans l'équation d'équilibre mécanique une inconnue supplémentaire est apparue : le terme de force surfacique g i qui correspond à la pression exercée par les sous domaines voisins. C'est ce que nous illustrons avec les flèches rouges dans la Figure 1.3.

Nous introduisons à présent une partition des degrés de liberté en degrés de liberté à l'interface, qui sont partagés par deux sous domaines au moins et qui forment l'ensemble Γ := � i,j=1,...,N ; i� =j (∂Ω i ∩ ∂Ω j ) , et tous les autres degrés de liberté dénotés avec un I (pour Intérieur). Avec des notations évidentes, l'équation d'équilibre local (1.6) admet la formulation par blocs suivantes

� K II i K IΓ i K ΓI i K ΓΓ i � � u I i u Γ i � = � f I i f Γ i � + � 0 g Γ i �
.

(1.7)

Par définition les forces d'interfaces sont nulles pour les degrés de liberté à l'intérieur de Ω i et en utilisant un complément de Schur on peut aussi éliminer les inconnues de déplacements à l'intérieur du sous domaines. Sous la forme de système (1.7) s'écrit

� K II i u I i + K IΓ i u Γ i = f I i K ΓI i u I i + K ΓΓ i u Γ i = f Γ i + g Γ i ce qui est équivalent à          u I i = K II i -1 � f I i -K IΓ i u Γ i � � K ΓΓ i -K ΓI i K II i -1 K IΓ i � � �� � :=S i u Γ i = � f Γ i -K ΓI i K II i -1 f I i � � �� � := fi +g Γ i . (1.8) 
En plus de l'équation d'équilibre mécanique S i u Γ i = fi + g Γ i , chaque sous domaine doit satisfaire à des conditions de continuité et de compatibilité avec ces voisins. Ces conditions s'écrivent avec deux types opérateurs d'interpolation :

-Les opérateurs d'assemblage R ⊤ i sont des matrices booléennes : étant donné un vecteur u Γ i correspondant aux degrés de liberté de ∂Ω i ∩ Γ, R ⊤ i u i est un vecteur dont les entrées sur le bord Γ tout entier ont les mêmes valeurs que u Γ i pour les degrés de liberté sur ∂Ω i ∩ Γ et valent 0 partout ailleurs.

-Les opérateurs de saut B i sont des matrices booléennes signées où chaque ligne de B i correspond à un degré de liberté x de l'interface Γ et à deux sous domaines Ω k et Ω l tels que x ∈ ∂Ω k ∩ ∂Ω l . Si i = k ou l alors, à l'entrée de la ligne qui correspond à la numérotation locale de x, est assignée la valeur -1 si i = min(k, l) et +1 autrement. L'action des opérateurs de saut et d'assemblage est illustrée sur un exemple simplifié dans la Figure 1.4. Avec ces opérateurs le problème d'élasticité global K û = f se réécrit : Pour chaque sous domaine i = 1, . . . , N trouver le champ des déplacements u Γ i et le champ des forces d'interface g Γ i tel que

     S i u Γ i = fi + g Γ i , ∀ i = 1, . . . , N [Équilibre Local] � N i=1 B i u Γ i = 0 [Continuité à l'interface] � N i=1 R ⊤ i g Γ i = 0 [Équilibre de l'interface].
(1.9)

Les formulations FETI et BDD du problème d'élasticité sont toutes deux basées sur (1.9).

Formulation BDD La première étape est d'éliminer la condition de continuité à l'interface en cherchant les déplacements dans l'ensemble réduit {(u Γ 1 , . . . , u Γ N );

� N i=1 B i u Γ i = 0}.
Par définition des opérateurs d'assemblage et de saut cela revient à chercher un vecteur ûΓ défini sur l'interface globale entre les sous domaines et à choisir u Γ i = R i ûΓ dans chaque sous domaine. Dans ce cas (1.9) est équivalent à : Trouver ûΓ et g Γ 1 , . . . , g Γ N tels que

� S i R i ûΓ = fi + g Γ i , ∀ i = 1, . . . , N � N i=1 R ⊤ i g Γ i = 0.
(1.10)

Assemblage : R ⊤ 1    x 1 1 x 2 1 x 3 1    + R ⊤ 2    x 1 2 x 2 2 x 3 2    =    x 1 1 + x 1 2 x 2 1 + x 2 2 x 3 1 + x 3 2    Saut : B 1    x 1 1 x 2 1 x 3 1    + B 2    x 1 2 x 2 2 x 3 2    =    x 1 1 -x 1 2 x 2 1 -x 2 2
x 3 1x 3 Finalement on injecte la première ligne de (1.10) dans la seconde pour trouver la formulation BDD du problème : .11) Une fois que l'on a résolu le problème à l'interface on peut calculer les déplacements à l'intérieur des sous domaines via la première équation de (1.8). Puisque l'opérateur BDD est une somme de compléments de Schur il est naturel de le préconditionner avec une somme d'inverses de compléments de Schur. Plus précisément dans le cas où les matrices S i sont inversibles le préconditionneur pour BDD est

� N � i=1 R ⊤ i S i R i � ûΓ = N � i=1 R ⊤ i fi . ( 1 
M -1 := N � i=1 � R ⊤ i S -1 i � R i , (1.12) 
où � R ⊤ i et � R i sont les mêmes opérateurs que R ⊤ i and R i mais pondérés par une partition de l'unité.

Formulation FETI Cette fois c'est l'équation d'équilibre de l'interface que l'on élimine en cherchant le champ des forces d'interface dans le sous espace {(g Γ 1 , . . . , g Γ N );

� N i=1 R ⊤ i g Γ i = 0}.
Par définition des opérateurs de saut cela revient au même que de chercher un vecteur λ ∈ Im( � N i=1 B i ) et de choisir g Γ i = -B ⊤ i λ dans chaque sous domaine. De cette manière (1.9) est équivalente à : Trouver λ ∈ Im(

� N i=1 B i ) tel que � S i u Γ i = fi -B ⊤ i λ, ∀ i = 1, . . . , N � N i=1 B i u Γ i = 0.
(1.13) Supposons que l'on est dans le cas très particulier où les matrices S i sont inversibles. Dans ce cas on peut écrire

� u Γ i = S -1 i ( fi -B ⊤ i λ), ∀ i = 1, . . . , N � N i=1 B i u Γ i = 0, (1.14) 
et finalement la formulation FETI du problème s'obtient en injectant la première ligne dans la seconde :

� N � i=1 B i S -1 i B ⊤ i � λ = N � i=1 B i S -1 i fi . (1.15)
Une fois que l'on a trouvé l'inconnue λ le champ des déplacements est calculé via (1.14) pour les degrés de liberté à l'interface et (1.8) pour les degrés de liberté internes. Puisque l'opérateur FETI est une somme d'inverse de compléments de Schur il est naturel de le préconditionner par une somme de compléments de Schur. Plus précisément le préconditionneur pour FETI est

M -1 = N � i=1 � B i S i � B i , (1.16) 
où � B ⊤ i et � B i sont les mêmes opérateurs que B ⊤ i and B i mais pondérés par une partition de l'unité.

Remarque 1.1. Nous avons supposé que les opérateurs S i sont inversibles. C'est loin d'être le cas général. En fait, pour le système de l'élasticité linéaire, dès que le sous domaine n'est pas concerné par la condition de Dirichlet du problème global le noyau de S i est la trace des modes rigides sur le bord des sous domaines (où les modes rigides sont les déplacements de Ω i qui ne déforment pas le sous domaine). En dimension 2 l'espace des modes rigides est engendré par les deux translations et la rotation du plan. En dimension 3 l'espace des modes rigides est engendré par les trois rotation et les trois translations. Dans le Chapitre 5 nous considèrerons le cas général de matrices S i symétriques et positives et nous donnons dès la prochaine section une manière de contourner le problème. Le fait qu'il faut réserver un traitement particulier au noyau de S i pour FETI et BDD est bien connu depuis longtemps [START_REF] Farhat | Implicit parallel processing in structural mechanics[END_REF][START_REF] Mandel | Balancing domain decomposition[END_REF].

Défaut de robustesse : une première illustration

Puisque nous nous concentrons sur les problèmes symétriques et les préconditionneurs symétriques le solveur itératif naturel est le Gradient Conjugué Préconditionné (PCG) que nous présentons dans l'algorithme 1.1 (voir [START_REF] Lanczos | Solution of systems of linear equations by minimized-iterations[END_REF][START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF] pour les premières introductions et [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] pour une présentation moderne).

Une manière d'utiliser la robustesse d'un solveur basé sur PCG est d'utiliser le résultat de convergence suivant qui remonte à [START_REF] Meinardus | Approximation of functions: Theory and numerical methods[END_REF][START_REF] Kaniel | Estimates for some computational techniques in linear algebra[END_REF] (voir aussi [START_REF] Saad | Iterative methods for sparse linear systems[END_REF](Théorème 6.29) pour une preuve) :

�x * -x m � A ≤ �x * -x 0 � A C m � λ max + λ min λ max -λ min � , (1.17) 
où C m est le polynôme de Tchebyshev de degré m de la première espèce, x * est la solution exacte, Algorithm 1.1 Gradient Conjugué Préconditionné pour Ax * = b préconditionné par M -1 et initialisé avec x 0 . r 0 := b -Ax 0 ; z 0 := M -1 r 0 et p 0 = z 0 for j = 0, 1, . . . jusque convergence do α j := �r j , z j �/�Ap j , p j � x j+1 := x j + α j p j r j+1 := r jα j Ap j z j+1 := M -1 r j+1 β j := �r j+1 , z j+1 �/�r j , z j � p j+1 := z j+1 + β j p j end for x m est la solution approchée donnée par l'itération m de l'algorithme 1.1, λ max et λ min sont les valeurs propres extrêmes de l'opérateur préconditionné M -1 A, � • � A est la norme induite par A. Une simplification est le résultat de convergence linéaire suivant :

�x * -x m � A ≤ 2 � � λ max /λ min -1 � λ max /λ min + 1 � m �x * -x 0 � A .
(1.18)

Malgré le fait que ces bornes sont en général pessimistes, elles nous apprennent que tant que l'on peut borner le spectre de l'opérateur préconditionné, on peut aussi majorer l'erreur relative à l'itération m par une quantité qui ne dépend que de ces bornes. Notre ambition ici est de montrer que dès que l'on considère des simulations en milieu hétérogène il est assez facile de construire un cas test pour lequel le solveur itératif devient inefficace. Nous considérons le préconditionneur de Schwarz additif (1.4) appliqué à la discrétisation du problème scalaire elliptique (que l'on appelle aussi l'équation de Darcy)

     -∇ • (α∇u) = 1,
dans Ω, u(x, y) = 0, si x = 0, ∂u ∂n (x, y) = 0, sur le reste de ∂Ω.

(1. [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF] où Ω = [0; N ]×[0; 1]. On discrétise le problème par des éléments finis de Lagrange P 1 sur un maillage régulier à (20N +1)×21 noeuds (N ∈ N). Le coefficient α est une fonction à valeurs réelles α : Ω → R + . Le domaine simulé est constitué de deux matériaux (caractérisés par deux valeurs de α : α 1 et α 2 ) répartis en sept couches successives comme illustré dans la Figure 1.5. Afin de construire le découpage en sous domaines on partage Ω en N carrés unitaires puis on rajoute deux épaisseurs de maille à chacun. Dans le tableau 1.1 on présente les résultats de notre test de convergence. Nous donnons le nombre d'itérations nécessaires pour que le solveur converge ainsi que l'estimation du conditionnement de l'opérateur préconditionné M -1 A basée sur les valeurs de Ritz à la dernière itération du gradient conjugué (voir par exemple [START_REF] Demmel | Applied numerical linear algebra[END_REF]). Le critère d'arrêt est basé sur l'erreur relative à l'itération m

�x * -x m � ∞ �x * � ∞ < 10 -6 .
Nous observons que le nombre d'itération croit avec le nombre de sous domaines et l'ampleur du saut dans le coefficient à l'exception du cas α 2 = 10 6 qui demande moins d'itérations que le cas α 2 = 10 4 . Le fait que dans le tableau l'estimation du conditionnement ne dépend que du nombre de sous domaines n'est pas une faute de frappe. La géométrie est présentée dans la Figure 1.5. Deux couches d'éléments sont ajoutées à chaque sous domaine. On fait varier le nombre de sous domaines et le paramètre α 2 dans le matériau 2. On présente ici le nombre d'itérations nécessaire pour converger (en haut) et l'estimation du conditionnement de la matrice préconditionné basée sur les valeurs de Ritz (en bas).

Le préconditionneur de Schwarz que nous avons présenté est loin d'être la version la plus évoluée. Dans la prochaine section nous présenterons un moyen simple et bien connu d'améliorer la convergence et en particulier de récupérer la robustesse dans les cas à coefficients constants. Même avec cette amélioration, le défaut de robustesse à l'égard des hétérogénéités dans les coefficients posera problème et sera une parfaite illustration de la famille de problèmes auxquels nous nous attaquons dans les prochains chapitres de ce manuscrit. Mais d'abord nous discutons le lien entre la robustesse et le choix de la partition en sous domaines.

Agir sur la partition en sous domaines pour améliorer la robustesse

Il est bien connu que les méthodes de décomposition de domaine sont robustes si la partition en sous domaines est choisie d'une certaine manière, voir par exemple [START_REF] Dryja | Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions[END_REF][START_REF] Dryja | Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions[END_REF][START_REF] Mandel | Balancing domain decomposition for problems with large jumps in coefficients[END_REF]. Des généralisations de ces résultats existent (cf. [START_REF] Pechstein | Scaling up through domain decomposition[END_REF][START_REF] Pechstein | Analysis of FETI methods for multiscale PDEs[END_REF][START_REF] Scheichl | Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients[END_REF]...) et confirment qu'agir sur la partition n'aide pas seulement les analyses théoriques mais accélère aussi la mise en pratique.

FETI et BDD Comme nous l'avons déjà mentionné un avantage significatif des méthodes de décomposition de domaine sans recouvrement est que lorsque l'on effectue des simulations dans des domaines constitués de plusieurs matériaux on peut faire en sorte que les bords des sous domaines coïncident avec les bords des différents matériaux. En d'autres termes la partition en sous domaines accommode les sauts dans les coefficients. En agissant sur la partition de l'unité dans les préconditionneurs FETI et BDD il est alors possible de retrouver une convergence tout aussi bonne que dans le cas à coefficients constants. Pour FETI l'idée remonte à [START_REF] Rixen | A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF] où des poids basés sur les valeurs diagonales de la matrice de rigidité sont introduits et interprétés mécaniquement. La subtilité repose dans le fait que les poids pour les inconnues de déplacements et les poids pour les inconnues de forces à l'interface sont liés (mais différents). Dans [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF] une formulation mathématique abstraite de ces poids est introduite qui permet d'écrire l'analyse théorique de la méthode. Les résultats qui correspondent pour BDD peuvent aussi être trouvés dans cet article.

Plus récemment, pour FETI, les auteurs de [START_REF] Pechstein | Analysis of FETI methods for multiscale PDEs. Part II: interface variation[END_REF][START_REF] Pechstein | New theoretical coefficient robustness results for FETI-DP[END_REF][START_REF] Pechstein | Finite and boundary element tearing and interconnecting solvers for multiscale problems[END_REF] démontrent que certaines configurations particulières d'hétérogénéités qui ne sont pas accommodées par la partition en sous domaine ne nuisent pas non plus à la convergence mais cela reste loin d'être le cas général.

Qu'en est-il de Schwarz ? C'est Pierre-Louis Lions qui en 1990 introduisit la première version de l'algorithme de Schwarz sans recouvrement [START_REF] Lions | On the Schwarz alternating method. III. A variant for nonoverlapping subdomains[END_REF]. L'astuce est de remplacer la condition de transmission de Dirichlet dans (1.2) par une condition de Robin pour un paramètre β :

u n+1 1 + β ∂ ∂n 1 u n+1 1 = u n 2 + β ∂ ∂n 1 u n 2 sur ∂Ω 2 ∩ ∂Ω 1 ,
dans le premier pas de l'itération et

u n+1 2 + β ∂ ∂n 2 u n+1 2 = u n+1 1 + β ∂ ∂n 2 u n+1 1 sur ∂Ω 2 ∩ ∂Ω 1 ,
dans le second pas de l'itération (n 1 et n 2 sont les normales unitaires pour les sous domaines Ω 1 et Ω 2 ). Lions prouve que l'algorithme appliqué au problème de Poisson converge sans recouvrement quel que soit le nombre de sous domaines. L'idée qui consiste à changer les conditions de transmission a encore été généralisée pour trouver les conditions de transmissions optimales parmi tous les opérateurs linéaires. Il s'avère que les conditions optimales ne sont pas locales ce qui signifie que le solveur qui en résulte est coûteux à appliquer. Des développements de Taylor tronqués peuvent donner de bons résultats.

Parmi la vaste littérature sur le sujet nous renvoyons à [START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF][START_REF] Després | Méthodes de décomposition de domaine pour les problèmes de propagation d'ondes en régime harmonique. Le théorème de Borg pour l'équation de Hill vectorielle[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF][START_REF] Gander | Optimized Schwarz methods[END_REF] et aux références qui y sont présentées.

AGMG Les méthodes multigrilles [START_REF] Hackbusch | Multi-grid methods and applications[END_REF] sont étroitement liées à la décomposition de domaine. Du point de vue de la décomposition de domaine une méthode multigrille est une application récursive de la décomposition de domaine : un domaine global est divisé en sous domaines qui sont à leur tour divisés en sous domaines et ainsi de suite jusqu'à arriver à l'échelle du maillage. Du point de vue des méthodes multigrilles, la décomposition de domaine est une méthode multigrille où, en partant du maillage, une seule étape de déraffinement a été exécutée.

Les méthodes multigrilles algébriques [START_REF] Brandt | Algebraic multigrid (AMG) for sparse matrix equations[END_REF][START_REF] Ruge | Algebraic multigrid[END_REF] sont des variantes de la méthode de départ où la connaissance des matrices élémentaires n'est pas requise. Ceci convient particulièrement aux cas où la matrice ne découle pas d'un problème discrétisé sur un maillage ou alors aux cas où le maillage est non structuré. Plus généralement ces méthodes sont intéressantes car elles s'implémentent en boite noire.

Pour les problèmes à coefficients hétérogènes les méthodes de multigrille algébrique risquent de construire des agrégats (la contrepartie des sous domaines) qui intersectent les hétérogénéités et donc qui nuisent à la convergence. C'est pourquoi dans [START_REF] Napov | An algebraic multigrid method with guaranteed convergence rate[END_REF] les auteurs proposent une méthode multigrille algébrique où la convergence est garantie a priori. C'est la première analyse complète d'une méthode multigrille algébrique basée sur l'agrégation simple. Elle repose sur leurs travaux précédents [START_REF] Napov | Algebraic analysis of aggregation-based multigrid[END_REF]. Le résultat est prouvé pour le cas de M -matrices dont la somme des coefficients sur chaque ligne est positive ou nulle. L'idée est d'agir sur la manière dont on forme les agrégats : partant du résultat de convergence requis défini par l'utilisateur, un critère de qualité pour les agrégats est formulé. Puis les agrégats sont construits de manière adaptative en veillant à ce que le critère de qualité soit toujours satisfait : tout comme avec les méthodes de décomposition de domaine on peut agir sur la partition pour gagner en robustesse.

Pourquoi on ne mise pas sur cette stratégie Dans cette thèse l'un des objectifs est de ne jamais utiliser l'hypothèse que la partition en sous domaines exploite la connaissance des hétérogénéités. Notre objectif est de résoudre des problèmes industriels et plus particulièrement les problèmes Michelin (voir Figure 1.6 pour un exemple simplifié). Sachant cela les raisons pour lesquelles nous avons décidé de ne pas reposer sur une hypothèse concernant la partition sont les suivantes :

-La manière dont les matériaux sont distribués dans la Figure 1.6 suggère que si les bords des sous domaines suivent les hétérogénéités alors ils auront de mauvais aspects de forme. Ceci signifieraient que les problèmes locaux pourraient devenir très mal conditionnés, difficiles à résoudre et exiger des méthodes fines et potentiellement coûteuse (adaptées aux plaques et coques par exemple). -Si la partition en sous domaines est liée aux matériaux alors elle doit être implémentée dans une partie du code ou les matériaux sont connus. Ceci s'oppose à l'objectif d'avoir un solveur en boite noire qui interfère le moins possible avec les codes existants et futurs. -L'argument qui est peut être le plus décisif est que les hétérogénéités dans les matériaux ne constituent que l'un des paramètres qui nuisent à la convergence et dont Pour remettre les choses en perspective, rappelons que dans un contexte industriel la question n'est pas seulement : "existe-t-il une partition en sous domaines qui est compatible avec les hétérogénéités et qui conduit à des problèmes locaux bien posés ?" mais plutôt "combien de temps faudrait-il à un ingénieur pour trouver cette partition". S'il est possible de partitionner le domaine en utilisant un outil automatique comme Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] ou Scotch [START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF] puis de laisser le solveur trouver et contourner les difficultés alors cette possibilité semble très attrayante. C'est avec cet objectif en tête que nous travaillerons à construire des solveurs plus robustes dans les chapitres suivants.

Méthodes de décomposition de domaine à deux niveaux

Le défaut de robustesse que nous avons mis en évidence dans la section précédente peut s'expliquer par un manque de communication globale entre les sous domaines : au cours d'une itération un sous domaine échange de l'information seulement avec ses voisins ou dans certains cas (FETI et BDD préconditionnés) avec les voisins de ses voisins. Pour cette raison une amélioration possible est d'ajouter un mécanisme de communication globale. C'est ce qu'on appelle une méthode à deux niveaux. L'idée est d'utiliser un solveur direct non seulement dans les sous domaines locaux mais aussi sur un problème qui est commun à tous les sous domaines : le problème grossier. Ce problème grossier est une approximation de A et la manière de le choisir occupera une place importante dans la suite de ce manuscrit. Avant de s'y plonger introduisons ce qu'on appelle la théorie de Schwarz abstraite [START_REF] Tallec | Domain decomposition methods in computational mechanics[END_REF][START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] : un cadre théorique adapté à la formulation et l'étude des méthodes de décomposition de domaine.

Théorie de Schwarz abstraite

Ce qui suit est adapté du livre de Toselli et Widlund [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF](Chapitre 2). Nous renvoyons à ce livre pour les détails bibliographiques sur l'émergence de la théorie de Schwarz. Nous mentionnons tout de même les contributions [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] et [START_REF] Xu | Iterative methods by space decomposition and subspace correction[END_REF] qui sont souvent jugées importantes. Certains éléments de notation ont déjà été introduits mais ce n'est pas un problème car dans ce cas il s'agit de la généralisation des mêmes notions. Soit un espace de Hilbert V de dimension finie, soit une forme bilinéaire symétrique et coercive

a(•, •) : V × V → R, et un élément f ∈ V ′ , considérons le problème de trouver u ∈ V , tel que a(u, v) = f (v), v ∈ V.
(1.20)

Si A est la matrice de rigidité associée à la forme bilinéaire a(•, •) dans une certaine base de V , si f est le vecteur associé à f dans la même base alors le problème (1.20) est équivalent au système linéaire

Au = f , (1.21) 
où A est symétrique, définie et positive. On considère à présent une famille d'espaces {V i , i = 0, . . . , N } et on suppose qu'il existe des opérateurs d'interpolation

R ⊤ i : V i → V.
Supposons aussi que V s'écrit de la manière suivante (la somme n'étant pas nécessairement directe)

V = R ⊤ 0 V 0 + N � i=1 R ⊤ i V i . (1.22) 
Remarquons que les sous espaces sont désormais numérotés de 0 à N . Ceci ne change pas la définition au niveau abstrait mais dans de nombreux cas V 0 sera un espace bien particulier : l'espace grossier, tandis que les N autres espaces V i seront les sous domaines habituels basés sur la géométrie. Introduisons des formes bilinéaires locales et supposons qu'elles sont symétriques et coercives aussi ãi (•, •) : V i × V i → R, i = 0, . . . , N, et que les matrices de rigidité qui leurs sont associées sont les matrices Ãi :

V i → V i .
Les opérateurs de Schwarz sont définis à partir des opérateurs suivants :

P i = R ⊤ i Pi : V → R ⊤ i V i ⊂ V, i = 0, . . . , N, où Pi : V → V i , est défini par ãi ( Pi u, v i ) = a(u, R ⊤ i v i ), v i ∈ V i . (1.23)
On remarque que Pi est bien défini puisque les formes bilinéaires sont coercives.

Remarque 1.2. Dans le cas où on choisit d'utiliser la forme bilinéaire de départ sur un des sous espaces V i elle s'écrit

ãi (u i , v i ) = a(R ⊤ i u i , R ⊤ i v i ), u i , v i ∈ V i (1.24)
et on trouve que Ãi = R i AR ⊤ i = A i .

(1.25)

Dans ce cas on dit qu'on utilise un solveur exact sur V i .

Le lemme suivant se démontre aisément.

Lemma 1.1. Les P i s'écrivent avec la formulation

P i = R ⊤ i Ã-1 i R i A, 0 ≤ i ≤ N.
(1.26)

De plus les matrices P i sont auto-adjointes pour le produit scalaire induit par a(•, •) et elles sont positives. Si on a choisi la forme bilinéaire ãi suivant (1.24) alors P i est une projection c'est à dire P 2 i = P i .

(1.27)

A partir de maintenant on fait l'hypothèse suivante.

Hypothèse 1.3. Un solveur exact est utilisé sur l'espace grossier V 0 . (Et donc P 0 est une projection A-orthogonale).

A partir des opérateurs P i on peut définir trois familles d'opérateurs de Schwarz 1. Opérateurs Additifs :

P ad := N � i=0 P i .
(1.28)

Opérateurs Multiplicatifs :

P mu := I -(I -P N )(I -P N -1 ) . . . (I -P 0 ).

(1.29)

3. Opérateurs Hybrides :

P hy := P 0 + (I -P 0 ) N � i=1 P i (I -P 0 ). (1.30)
Les preuves de convergence dans la théorie de Schwarz abstraite reposent sur l'hypothèse 1.3 et trois hypothèses supplémentaires.

Hypothèse 1.4 (Inégalités de Cauchy-Schwarz généralisées). Il existe des constantes

0 ≤ ǫ ij ≤ 1, 1 ≤ i, j ≤ N , telles que |a(R ⊤ i u i , R ⊤ j u j )| ≤ ǫ ij a(R ⊤ i u i , R ⊤ i u i ) 1/2 a(R ⊤ j u j , R ⊤ j u j ) 1/2 , pour u i ∈ V i et u j ∈ V j .
Nous dénotons le rayon spectral de ǫ = {ǫ ij } par ρ(ǫ).

Hypothèse 1.5 (Stabilité locale des solveurs). Il existe ω > 0 tel que

a(R ⊤ i u i , R ⊤ i u i ) ≤ ωã i (u i , u i ), u i ∈ Im( Pi ) ⊂ V i , 1 ≤ i ≤ N. (1.31)
Hypothèse 1.6 (Existence d'une décomposition stable). Il existe une constante C 0 telle que chaque u ∈ V admette une décomposition

u = N � i=0 R ⊤ i u i , {u i ∈ V i , 0 ≤ i ≤ N } qui vérifie N � i=0 ãi (u i , u i ) ≤ C 2 0 a(u, u).
Le théorème suivant donne des résultats de convergence pour les méthodes de Schwarz 

C -2 0 a(u, u) ≤ a(P ad u, u) ≤ ω(ρ(ǫ) + 1)a(u, u), max (1, C 2 0 ) -1 a(u, u) ≤ a(P hy u, u) ≤ max (1, ωρ(ǫ))a(u, u).
et, sous l'hypothèse que ω < 2,

�I -P mu � A ≤ 1 - 2 -ω (2 max (1, ω) 2 ρ(ǫ) 2 + 1)C 2 0 < 1,
Plus précisément, pour l'opérateur hybride il est suffisant de démontrer l'hypothèse 1.6 sur Im(I -P 0 ). Les opérateurs additifs et hybrides P ad et P hy sont le produit d'une matrice symétrique par un préconditionneur symétrique et donc ils seront résolus avec le gradient conjugué préconditionné. Comme on l'a déjà exhibé dans (1.17) le taux de convergence du gradient conjugué préconditionné est borné par une quantité qui ne dépend que des valeurs extrêmes du spectre de l'opérateur préconditionné. Ces quantités sont à leur tour liées aux quotients de Rayleigh du résultat du théorème et donc les deux premiers résultats dans le Théorème 1.7 sont bien des résultats de convergence. La variante multiplicative P mu n'est pas symétrique. Plutôt qu'un préconditionneur pour une méthode itérative P mu servirait plutôt dans un algorithme de type Richardson. La norme dans le théorème est alors la norme (induite par A) du propagateur d'erreur et elle est bien liée à un résultat de convergence.

En général l'hypothèse 1.4 est démontrée en appliquant le lemme suivant. On y apprend qu'une borne pour la constante ρ(ǫ) dans le résultat de convergence dépend seulement de la géométrie du découpage en sous domaines (mais pas du nombre de sous domaines).

Lemme 1.8. Supposons que les sous espaces locaux V i , i = 1, . . . , N ont été coloriés de manière à ce que deux sous domaines V k et V l qui ont la même couleur soient orthogonaux

P k P l = P l P k = 0 et que N C couleurs ont été nécessaires. Alors l'hypothèse 1.4 est satisfaite et ρ(ǫ) ≤ N C .
Pour la preuve de tous ces résultats et plus de détails sur les méthodes de Schwarz nous référons de nouveau le lecteur à [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF](Chapitre 2).

Le préconditionneur de Schwarz additif introduit dans la sous section 1.1.1 est P ad pour un espace grossier vide V 0 = ∅ et des solveurs locaux exacts : les ãi sont définies selon (1.24). En supposant que l'espace grossier V 0 est non vide le préconditionneur de Schwarz additif à deux niveaux est défini comme suit. Définition 1.9. Le préconditionneur de Schwarz à deux niveaux est 

M -1 := N � i=0 R ⊤ i A -1 i R i , A i := R i AR ⊤ i , pour i = 0, . . . ,

Espaces grossiers basés sur les noyaux des opérateurs

Nous introduisons la famille la plus simple d'espaces grossiers qui est constituée des noyaux de certains opérateurs locaux. Le fait qu'un bon espace grossier doit contenir au moins ces vecteurs est maintenant bien connu dans la littérature. Dans certains cas (FETI ou BDD avec un préconditionneur) c'est même indispensable pour que les opérateurs soient bien définis.

Le préconditionneur de Schwarz additif et les espaces grossiers Nicolaides et Partition de l'unité Considérant le problème de Poisson sur un domaine Ω, Nicolaides a proposé en 1987 [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] d'accélérer la convergence d'un solveur itératif en partitionnant le domaine Ω en sous domaines disjoints Ω * i , i = 1, . . . , N puis en utilisant l'espace des fonctions constantes par sous domaine comme un espace grossier (puisqu'il fait ceci hors du cadre de la décomposition de domaine on parle plutôt de déflation) :

V N ICO 0 = span(1 Ω * 1 , . . . , 1 Ω * N ), où 1 Ω *
i est la fonction indicatrice de Ω * i . Il y a un inconvénient important à l'espace grossier de Nicolaides : les fonctions de base ont une énergie qui est de l'ordre de H/h où H est la taille d'un sous domaine et h est le pas du maillage. Pour cette raison on ne peut pas s'attendre à ce que la convergence de la méthode à deux niveaux correspondante soit indépendante du nombre de mailles. La solution est de remplacer les fonctions indicatrices par des fonctions plus régulières.

Dans [START_REF] Sarkis | Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] Sarkis introduit et analyse un espace grossier engendré par une fonction de base par sous domaine et dont l'ensemble constitue une partition de l'unité sur Ω. Il prouve que pour le problème de Poisson la méthode à deux niveaux converge indépendamment de la taille des sous domaines et du pas du maillage. Plus précisémment l'estimation du conditionnement varie linéairement avec la fraction du volume d'un sous domaine qui est recouverte par ses voisins :

κ(M -1 A) ≤ C � 1 + H δ � , (1.33) 
où H est la taille du sous domaine, δ est la largeur du recouvrement et C est une constante qui dépend de la géométrie du partitionnement mais pas de H, δ ou le pas du maillage h. Certaines hypothèses sur la régularité des sous domaines sont aussi requises. Nous renvoyons vers [START_REF] Sarkis | Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] (ou [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF](Lemme 3.24)) pour la construction précise de l'espace grossier basé sur une partition de l'unité et pour la preuve du résultat de convergence. Dans le cas où le maillage est régulier, pour chaque i = 1, . . . , N la fonction de base prend 

�u -u Ω� L p ( Ω) ≤ C�∇u� L p ( Ω) ; u Ω = 1 | Ω| u(y)dy.
Grâce au choix particulier de l'espace grossier cette inégalité (pour p = 2) peut être appliquée localement à des fonctions locales à moyenne nulle.

On illustre à présent numériquement l'efficacité de l'espace grossier basé sur une partition de l'unité sur le même test de robustesse que pour la méthode à un niveau (pour lesquels les résultats sont dans le tableau 1.1). Cette fois on reporte les résultats dans le tableau 1.2, et on remarque que si le coefficient est constant (α 2 = α 1 = 1) ou varie peu (α 2 = 100) la convergence n'est plus détériorée par l'augmentation du nombre de sous domaines. Par contre l'espace grossier basé sur une partition de l'unité ne suffit pas à assurer la robustesse lorsque les sauts dans les coefficients deviennent très significatifs. Le cas des coefficients très hétérogènes est un bon exemple des problèmes auxquels on s'intéressera dans les chapitres suivants. BDD, FETI et l'espace des modes rigides Rappelons que selon (1.11) et (1.12) la formulation BDD du problème d'élasticité est

� N � i=1 R ⊤ i S i R i � ûΓ = N � i=1 R ⊤ i fi préconditionné par M -1 = N � i=1 � R ⊤ i S -1 i � R i .
Nous avons jusqu'à présent supposé que les inverses S -1 i sont définis. Ceci n'est généralement pas le cas et un préconditionneur pour BDD s'écrirait plutôt

� � N i=1 � R ⊤ i S † i � R i � où
S † i est un pseudo inverse de S i . Puisque l'action de S † i est définie seulement sur Im(S i ) il est nécessaire d'introduire des opérateurs de projection qui permettent de s'assurer que le résidu vit toujours dans cet espace. On fait cela en utilisant un préconditionneur de type hybride (comme ceux définis par (1.30)). Si les poids dans les opérateurs

� R ⊤ i s'écrivent R ⊤ i D -1
i pour une matrice diagonale D i alors l'opérateur BDD [START_REF] Mandel | Balancing domain decomposition[END_REF] est

P bdd = P 0 + (I -P 0 ) � N � i=1 � R ⊤ i S † i � R i � � N � i=1 R ⊤ i S i R i � � �� � := Ŝ (I -P 0 ), (1.34) 
où le projecteur grossier P 0 , l'opérateur d'interpolation R ⊤ 0 : V 0 → V et l'espace grossier V 0 sont définis par

P 0 := R ⊤ 0 S -1 0 R 0 Ŝ, S 0 := R 0 ŜR ⊤ 0 , V 0 := Im(R ⊤ 0 ) = N � i=1 R ⊤ i D i (Ker(S i )) .
On appelle V 0 l'espace des modes rigides car dans le cas de l'élasticité le noyau de S i est la trace des modes rigides sur le bord du sous domaine.

Pour FETI les choses sont un peu plus compliquées. En effet, selon (1.15) et (1.16) la formulation FETI du problème d'élasticité est

� N � i=1 B i S -1 i B ⊤ i � λ = N � i=1 B i S -1 i fi préconditionné par M -1 = N � i=1 � B i S i � B i .
Dès que l'un des S i est non inversible la reformulation du problème doit être adaptée. En effet, si R ⊤ i est un interpolateur de R dim(Ker(S i )) dans le noyau de S i alors u

Γ i = S -1 i ( fi -B ⊤ i λ) dans (1.14) doit être remplacé par u Γ i = S † i ( fi -B ⊤ i λ) + R ⊤ i α i , α i ∈ R dim(Ker(S i )) .
Nous ne souhaitons pas rentrer dans les détails ici, ils seront présentés dans le Chapitre 

{λ ∈ U ; G ⊤ λ = N � i=1 R ⊤ i fi } où G := N � i=1 B i R ⊤ i .
Pour cette raison le solveur itératif pour FETI est le Gradient Conjugué Préconditionné et Projeté (PPCG) : il est initialisé avec λ 0 qui satisfait la contrainte (

G ⊤ λ 0 = � N i=1 R ⊤ i fi )
puis toutes les directions de recherche sont projetées dans le noyau de G ⊤ afin que les approximations successives retournée par PPCG satisfasse la contrainte. Si P est un opérateur de projection dont l'image est Ker(G ⊤ ) alors l'opérateur de FETI préconditionné s'écrit

P F ET I = P � N � i=1 � B i S i � B i � � �� � M -1 P ⊤ � N � i=1 B i S -1 i B ⊤ i � � �� � :=F .
Une autre grande différence avec la méthode de Schwarz additive et BDD est qu'on ne peut pas utiliser un solveur exact pour définir la projection P afin d'obtenir une projection F -orthogonale. En effet la raison pour laquelle on utilise P est justement de s'occuper d'un espace où F n'est pas défini. A la place on utilise la meilleure approximation de F dont on dispose : (M -1 ) -1 . Plus précisément l'opérateur de projection est

P = I -M -1 G � G ⊤ M -1 G � -1 G ⊤ , et il est (M -1 ) -1 -orthogonal.
L'algorithme PPCG appliqué à ce problème est présenté dans l'algorithme 1.2. Il s'applique bien sûr à tous les problèmes de type Schwarz hybride (1.30). Pour une étude détaillée des différentes alternatives qui permettent de résoudre ce problème voir [START_REF] Tang | Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods[END_REF][START_REF] Klawonn | Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results[END_REF] et les références qui y sont présentées. Algorithm 1.2 PPCG : Algorithme de Gradient Conjugué Projeté et Préconditionné pour résoudre P M -1 P ⊤ F λ = P M -1 P ⊤ d (où d := BS † f est le membre de droite pour FETI)

λ 0 := M -1 G � G ⊤ M -1 G � -1 � N i=1 R ⊤ i fi r 0 := P ⊤ (d -F λ 0 ) ; z 0 := M -1
r 0 ; p 0 := z 0 for j = 0, 1, . . . jusque convergence do p j = P p j α j := �r j , z j �/�F p j , p j � λ j+1 := λ j + α j p j r j+1 := r jα j P ⊤ F p j z j+1 := M -1 r j+1 β j := �r j+1 , z j+1 �/�r j , z j � p j+1 := z j+1 + β j p j end for Rappelons que pour le préconditionneur de Schwarz avec l'espace grossier basé sur une partition de l'unité il est possible de montrer que la convergence sur le problème de Poisson ne dépend pas du nombre de sous domaines (voir (1.33)), mais qu'à la place elle dépend de la taille relative du recouvrement H/δ. Pour le problème scalaire elliptique, FETI est par construction équipé d'un second niveau lié au noyau de S qui se trouve être la trace des fonctions constantes sur le bord de chaque sous domaine. Pour cette raison il est assez naturel qu'une fois de plus un résultat de convergence qui ne dépend que faiblement du nombre de sous domaines (à travers le nombre de mailles par sous domaine) soit disponible [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF] κ

(P M -1 P ⊤ F |range(P ) ) ≤ C � 1 + log � H h �� 2 , (1.35) 
où H est la taille d'un sous domaine et h est la taille d'une maille. Des hypothèses de régularité sur les sous domaines sont requises.

Espace grossiers analytiques

Il existe des problèmes pour lesquels un bon espace grossier, voire même l'espace grossier optimal est connu dans la littérature. Ici on présente certaines de ces contributions.

Espaces grossiers basés sur le coefficient Pour le problème scalaire elliptique en milieu binaire (où deux matériaux coexistent) les auteurs de [START_REF] Vuik | An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients[END_REF] considèrent le même problème que celui de la Figure 1.5 (des couches de matériaux). Leur objectif est d'appliquer PPCG au problème de Poisson en choisissant astucieusement l'espace projeté. Ils utilisent une factorisation de Cholesky incomplète dont le comportement est comparable à un préconditionneur de type Schwarz puisqu'il traite les grandes valeurs propres et laisse à régler le problème des plus petites valeurs propres. Leur conclusion est que l'espace grossier doit être constitué d'autant de vecteurs qu'il y a de couches à fort coefficient. Dans [START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF] la distribution des coefficients est constitué de nombreuses petites inclusions à fort coefficient qui n'intersectent le bord de chaque sous domaine qu'au plus une fois. Il est démontré qu'une seule fonction de base par sous domaine suffit à assurer la robustesse.

Autres espaces grossiers Pour FETI le premier espace grossier est introduit par [START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF] pour des problèmes d'élasticité instationnaires. Ces problèmes ont un terme d'ordre zéro qui les rend non singuliers et donc il n'y a pas d'espace grossier naturel lié aux modes rigides. Les auteurs de [START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF] proposent d'utiliser quand même un espace grossier avec les modes rigides.

Un autre problème pour lequel la recherche d'un espace grossier a été très active est celui des plaques et des coques. Dans [START_REF] Farhat | The two-level FETI method for static and dynamic plate problems. I. An optimal iterative solver for biharmonic systems[END_REF] un espace grossier est proposé pour la résolution des problèmes de plaques avec FETI puis il est adapté dans [START_REF] Farhat | The two-level FETI method. II. Extension to shell problems, parallel implementation and performance results[END_REF] aux coques. Pour BDD un espace grossier pour les problèmes de plaques et de coques est introduit, analysé et testé numériquement par [START_REF] Le Tallec | A Neumann-Neumann domain decomposition algorithm for solving plate and shell problems[END_REF].

Finalement, nous notons que dans le cadre de l'élasticité linéaire les auteurs de [START_REF] Dohrmann | An overlapping Schwarz algorithm for almost incompressible elasticity[END_REF][START_REF] Dohrmann | Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity[END_REF] proposent puis améliorent un espace grossier pour la méthode de Schwarz à deux niveaux pour lequel ils prouvent des résultats de convergence indépendants des propriétés du matériau et donc de la possibilité qu'il soit quasiment incompressible. Pour FETI un seul vecteur par sous domaine est nécessaire [START_REF] Vereecke | An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems[END_REF]. Plus récemment [START_REF] Gippert | Nonlinear domain decomposition, adaptive coarse spaces, and a new coarse space for almost incompressible linear elasticity[END_REF] arrive à la même conclusion et analyse théoriquement le comportement de cet espace grossier dans la limite incompressible.

Notre objectif Les espaces grossiers que nous venons de mentionner sont optimaux dans le sens où, étant donné un découpage en sous domaines, on ne peut pas espérer trouver un espace grossier plus petit qui assure la robustesse. L'inconvénient est que ces espaces ne peuvent pas être construit automatiquement sans connaitre a priori le type de difficultés que l'on trouve dans le problème. Notre ambition dans ce manuscrit est de définir des espaces grossiers qui peuvent gérer tous les types d'hétérogénéités dans les coefficients ainsi que d'autres difficultés et qui sont construits de manière automatique et implémentés en boite noire. Dans les cas où des espace grossiers optimaux sont connus ils constituent de bons points de comparaison pour nos nouvelles méthodes. En particulier nous les testerons sur des cas à coefficients discontinus ainsi que sur le système de l'élasticité linéaire dans la limite incompressible. Les problèmes aux valeurs propres généralisés constitueront un un outil fondamental.

Espaces grossiers qui utilisent des problèmes aux valeurs propres

Ce qu'apportent les problèmes aux valeurs propres généralisés Une fois qu'une méthode de décomposition de domaine a été écrite dans le formalisme de Schwarz afin de prouver qu'elle va converger il suffit de montre que les solveurs locaux sont stables (Hypothèse 1.5) et que chaque vecteur admet une décomposition stable (Hypothèse 1.6). Ces conditions sont des inégalités entre des normes induites par différents produits scalaires et la robustesse repose sur le fait qu'elles soient vérifiées avec des constantes qui ne dépendent pas de certains paramètres. En gardant cet objectif à l'esprit nous introduisons les problèmes aux valeurs propres généralisés ainsi que les propriétés des spectres qu'ils induisent dont nous aurons besoin par la suite.

Définition 1.11 (Problèmes aux valeurs propres généralisés). Soit �

A et � B deux matrices symétriques de l'espace R n×n . Les valeurs propres généralisées associées au couple

( � A, � B) sont λ ∈ R ∪ {+∞} tels que : -λ ∈ R et il existe x ∈ R n \{0} tel que � Ax = λ � Bx, (1.36) 
-ou alors λ = +∞ et il existe x ∈ R n \{0} tel que

� Bx = 0, et � Ax � = 0.
Dans les deux cas x est un vecteur propre généralisé associé à la valeur propre λ pour le couple ( Ã, B).

La définition ci-dessus prévoit l'existence de valeurs propres généralisées infinies. Une manière de comprendre pourquoi c'est tout à fait naturel est de se rendre compte que si (+∞, x) est un couple (valeur propre, vecteur propre) pour ( � A, � B) alors (0, x) est un couple (valeur propre, vecteur propre) pour ( � B, � A) et il n'y a aucune raison d'introduire une discrimination entre ces deux formulations. Si la matrice B est définie alors par définition toutes les valeurs propres sont finies et le lemme suivant donne une propriété fondamentale du spectre.

Lemme 1.12. Soit à ∈ R n×n une matrice symétrique et B ∈ R n×n une matrice symétrique définie positive. L'ensemble des vecteurs propres généralisés {x k } k=1,...,n associé au couple ( Ã, B) peut être choisi de manière à former une base B-orthonormale de R n :

�x k , Bx k � = 1, pour tout k = 1, . . . , n et �x k , Bx l � = 0, pour tout k, l = 1, . . . , n; k � = l.

On a alors aussi pour tout

k = 1, . . . , n �x k , Ãx k � = λ k , et �x k , Ãx l � = 0, si l = 1, . . . , n; l � = k.
Démonstration. Cette preuve est en majeure partie la réécriture de la preuve dans [START_REF] Leborgne | Diagonalisation : valeurs propres, valeurs propres généralisées[END_REF]. Un résultat bien connu est que pour une matrice réelle symétrique M ∈ R n×n , il existe une base orthonormale {y k } k=1,...,N de R n qui est constituée des vecteurs propres y k de M . Ceci se réécrit :

M y k = λ k x k ; �y k , y k � = 1; et �y k , y l � = 0, si k � = l.
(1.37)

La manière de prouver le lemme est de réduire le problème aux valeurs propres généralisé (1.36) en un problème aux valeurs propres classique. Tout d'abord remarquons que le fait d'écrire le problème sous la forme B-1 Ãx k = λ k x k n'apporte rien car le produit B-1 Ã n'est en général pas symétrique. A la place on utilise le fait que, B étant une matrice symétrique elle admet une factorisation de Cholesky : B = LL ⊤ ; où L et une matrice triangulaire inférieure inversible.

Avec cela (1.36) se réécrit M y k = λ k y k pour M = L -1 ÃL ⊤ -1 , y k = L ⊤ x k . Supposons que les y k ont été choisis de manière à ce que (1.37) soit vérifiée, alors l'ensemble des vecteurs x k = (L ⊤ ) -1 y k constitue la base de R n que nous cherchons puisqu'elle satisfait les conditions suivantes :

Ãx k = λ k Bx k ; �x k , Bx k � = 1; et �x k , Bx l � = 0, k � = l.
Maintenant le fait que �x k , Ãx k � = λ k est évident. Quant à la dernière propriété dans le lemme, soient (λ k , x k ) et (λ l , x l ) deux couples (valeur propre, vecteur propre) généralisés avec k � = l. Supposons que λ l � = 0, dans ce cas

� �x k , Bx l � = 0 and Ãx l = λ l Bx l � ⇒ 1 λ l �x k , Ãx l � = 0 ⇒ �x k , Ãx l � = 0.
Si λ l = 0 alors x l ∈ Ker( Ã) donc �x k , Ãx l � = 0 dans ce cas aussi.

Une conséquence directe est le lemme suivant qui nous laisse entrevoir comment, avec un problème aux valeurs propres généralisé, on identifie l'espace où des inégalités de la forme donnée dans les Hypothèses 1.5 et 1.6 sont satisfaites. Lemme 1.13. Avec les notations introduites dans le lemme 1.12 et étant donné un critère τ ∈ R + on définit les espaces

E 1 = Vect{x k ; λ k < τ } et E 2 = Vect{x k ; λ k ≥ τ }.

On a alors

� �x, Ãx� < τ �x, Bx�, pour tout x ∈ E 1 , �x, Ãx� ≥ τ �x, Bx�, pour tout x ∈ E 2 .
État de l'art En pratique la résolution d'un problème aux valeurs propres généralisés qui implique la matrice globale est plus coûteux que la résolution du système linéaire. Pour cette raison avant d'utiliser un problème aux valeurs propres il est nécessaire de réécrire l'estimation que l'on veut satisfaire sous une forme locale. On aura alors un problème aux valeurs propres généralisés par sous domaine et ils pourront être résolus en parallèle. Il nous semble que cette stratégie remonte à [START_REF] Brezina | An iterative method with convergence rate chosen a priori[END_REF] où elle a été appliquée pour construire une méthode multigrille algébrique avec agrégation basée sur les éléments (AMGe) pour laquelle on peut choisir a priori la vitesse de convergence que l'on souhaite atteindre. Les mêmes idées sont au fondement de la méthode spectral AMG [START_REF] Chartier | Spectral AMGe (ρAMGe)[END_REF]. Depuis, cette stratégie a été une direction de recherche prolifique et en particulier les méthodes introduites dans les chapitres suivant s'appuient sur ces idées fondamentales.

Plus récemment, de nombreuses contributions ont proposé de construire des espaces grossiers pour des problèmes à coefficients fortement hétérogènes en résolvant des problèmes aux valeurs propres dans les sous domaines. Comparé aux premiers travaux sur le méthode AMG cette nouvelle vague d'articles se différencie en utilisant des problèmes aux valeurs propres généralisés. On distingue trois familles de méthodes qui se distinguent par le choix de la matrice dans l'un des termes du problème aux valeurs propres généralisés. Dans [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF], cette matrice est la matrice de masse du problème aux éléments finis ou une version "homogénéisée" de la matrice de masse qui s'obtient en utilisant des fonctions de partitions de l'unité venant de la théorie multiéchelle. Dans [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF] la matrice correspond à un produit scalaire L 2 sur le bord du sous domaine. C'est la méthode que nous présentons et analysons dans le chapitre 3. Les deux familles d'espaces grossiers que l'on trouve dans [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF][START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF] sont taillées pour le problème scalaire elliptique (-∇ • α∇u = f ). La dernière vague de méthodes [START_REF] Scheichl | Weak approximation properties of elliptic projections with functional constraints[END_REF][START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF][START_REF] Mandel | Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods[END_REF][START_REF] Sousedík | Adaptive-Multilevel BDDC and its parallel implementation[END_REF][START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF], utilise une nouvelle forme de problème aux valeurs propres généralisés ou le matrice est choisie au travers de l'analyse théorique de convergence. Ce choix est particulièrement intéressant car il s'applique à la plupart des systèmes d'équations aux dérivées partielles discrétisés par éléments finis et en particulier aux problèmes d'élasticité linéaire ou aux systèmes issus de la linéarisation d'un problème d'élasticité. Dans le chapitre 4 nous présentons notre contribution à cette famille de méthodes pour le préconditionneur de Schwarz puis pour les solveurs FETI et BDD dans le chapitre 5.

Mentionnons aussi que des extensions à plus de deux niveaux de ces techniques existent (voir [START_REF] Efendiev | Spectral element agglomerate algebraic multigrid methods for elliptic problems with high-contrast coefficients[END_REF][START_REF] Efendiev | Multiscale spectral AMGe solvers for high-contrast flow problems[END_REF][START_REF] Willems | Robust multilevel solvers for high-contrast anisotropic multiscale problems[END_REF][START_REF] Scheichl | Multilevel methods for elliptic problems with highly varying coefficients on nonaligned coarse grids[END_REF][START_REF] Mandel | Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods[END_REF][START_REF] Sousedík | Adaptive-Multilevel BDDC and its parallel implementation[END_REF]).

Contributions de cette thèse

Le sujet de cette thèse a été défini en concertation avec l'entreprise Michelin à la suite des travaux [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF]. En milieu industriel la robustesse d'un solveur figure parmi les propriétés les plus importantes : il faut être capable de garantir qu'une fois le calcul lancé il va effectivement converger. Pour cette raison la stratégie développée dans cette thèse prend place au niveau le plus algébrique possible : on ne fait presque aucune hypothèse sur le système linéaire symétrique défini positif que l'on résout. Ainsi on est paré pour faire face à un large champ de difficultés (en particulier la présence de discontinuités dans les coefficients).

Le chapitre 3 de cette thèse se concentre sur les problèmes scalaires du type -∇ • (α∇u) = f . L'espace grossier, pour Schwarz, est construit à partir des modes à basse fréquence de l'opérateur Dirichlet-to-Neumann défini sur le bord de chaque sous domaine. Dans le chapitre 4 nous restons dans le cadre de Schwarz et nous proposons et analysons un espace grossier qui s'applique cette fois aux systèmes d'équations aux dérivées partielles. C'est celui-ci que nous appelons GenEO pour Generalized Eigenproblems in the Overlaps. Puis, le chapitre 5 propose d'appliquer la stratégie GenEO aux méthodes BDD et FETI. Si l'idée de départ est similaire la mise en oeuvre est très différente. Dans chaque cas on démontre que la convergence ne dépend pas des difficultés spécifiques à chaque problème et on illustre cela par des résultats numériques. L'objectif du chapitre 6 est de tester nos méthodes sur des problèmes d'elasticité dans la limite quasi incompressible. Enfin, dans le chapitre 7 nous proposons quelques pistes et travaux en cours pour améliorer la méthode GenEO et un premier cas test industriel.

L'idée fondamentale sur laquelle est basée l'ensemble de ce travail est qu'au sein d'un solveur itératif on peut, grâce à des projections bien choisies, séparer le problème en deux parties : la première est résolue avec le solveur itératif et on réserve un traitement particulier à la seconde (une résolution avec un solveur direct). Dans la suite de ce manuscrit l'enjeu sera d'identifier quelle est la partie de l'espace solution sur laquelle le solveur itératif est efficace. Le complémentaire de cet espace, qui ralentit la convergence, servira d'espace grossier et par ce biais c'est à lui qu'on lui appliquera un solveur direct.

Nous cherchons des espaces grossiers qui sont -engendrés par des vecteurs locaux (pour que la matrice du problème grossier soit creuse), -calculés de manière automatique, -en nombre raisonnable, -tels que la méthode à deux niveaux soit robuste. La stratégie pour le choix de l'espace grossier est toujours la même : grâce à la théorie de Schwarz abstraite on trouve quel est le point bloquant pour garantir la convergence de la méthode de décomposition de domaine. On définit ensuite un problème aux valeurs propres généralisés qui identifie quels vecteurs ont besoin d'être dans l'espace grossier. De cette manière on peut garantir la convergence théoriquement.

DtN : un espace grossier pour un problème scalaire

Nous présentons ici le chapitre 3 dans lequel nous nous concentrons sur un problème scalaire elliptique. En nous appuyant sur une idée d'espace grossier antérieure à cette thèse [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF] nous présentons l'heuristique derrière sa construction ainsi que son analyse théorique qui prouve qu'elle est robuste et des résultats numériques. Il s'agit de la refonte des articles [START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Jolivet | High performance domain decomposition methods on massively parallel architectures with freefem++[END_REF].

Étant donné un membre de droite f , le problème scalaire elliptique s'écrit : Trouver (1.38)

u * tel que -∇ • (α∇u * ) = f, où α : Ω → R + est
La figure 1.8 présente les mises à jour successives de l'erreur dans Ω 2 et dans les sous domaines voisins. On connait le comportement général de ces mises à jour par le principe du maximum : e n+1 2 va décroitre à l'intérieur du sous domaine en partant des conditions aux limites en x = A et x = D données par les voisins. Comme le montre la figure, la convergence peut être rapide ou lente selon que les solutions des problèmes locaux décroissent rapidement ou non à l'intérieur de la zone de recouvrement (rappelons que puisqu'on regarde le comportement de l'erreur l'objectif est de la mener à zéro). C'est exactement sur ce constat que s'appuie la construction de l'espace grossier DtN : on souhaite isoler les composantes de la solution qui, étant donné une condition de Dirichlet, décroissent lentement à l'intérieur du sous domaine, et transmettent donc une condition aux limites peu améliorée à leurs voisins. Sous l'hypothèse que la zone de recouvrement est étroite on peut estimer que si la dérivée normale de l'erreur au bord du sous domaine est grande alors on transmet au voisin une condition aux limites qui est plus proche de zéro.

Définition de l'espace grossier DtN

L'opérateur Dirichlet-to-Neumann permet exactement d'évaluer cela. En effet, pour un domaine Ω j il est défini ainsi. Définition 1.14. Soit tr j α la trace du coefficient α sur le bord Γ := ∂Ω j du sous domaine Ω j en venant de l'intérieur et n j la normale unitaire extérieure de Ω j sur Γ. Pour toute fonction v

Γ : Γ → R telle que v Γ | ∂Ω = 0 si Γ ∩ ∂Ω � = ∅ on définit DtN j (v Γ ) := tr j α ∂v ∂n j � � � � � Γ , où v est la solution de � -∇ • (α∇v) = 0 in Ω j v = v Γ on Γ .
(1.39) En d'autres termes l'opérateur DtN prend une fonction définie sur Γ, calcule son extension harmonique à l'intérieur du sous domaine et retourne la dérivée normale de celle-ci sur le bord.

En s'appuyant dessus la procédure pour construire l'espace grossier est la suivante :

1. Calculer (en parallèle sur les sous domaines) les valeurs propres généralisées λ et les vecteurs propres généralisés v Γ de DtN j (v Γ ) = λ tr j α v Γ .

2. Sélectionner les vecteurs propres qui correspondent à une valeur propre plus petite que 1/diam(Ω j ) (l'inverse de la taille du sous domaine). 3. Étendre ces vecteurs propres harmoniquement à l'intérieur du sous domaine.

Convergence rapide

4. Leur appliquer une partition de l'unité, interpoler dans l'espace éléments finis et prolonger par 0 à Ω tout entier.

Résultat théorique En construisant l'espace grossier de cette manière on peut garantir que la méthode à deux niveaux correspondantes convergera indépendamment de presque tous les paramètres du problème.

Théorème 1.15. Sous une certaine hypothèse sur α le conditionnement de A préconditionné par Schwarz additif à deux niveaux avec l'espace grossier DtN satisfait

κ(M -1 AS,2 A) � � C 2 P + N max j=1 diam(Ω j ) δ j � .
La constante qui est cachée par le symbole � ne dépend ni de la taille du maillage h, ni de celle du recouvrement δ j , ni de celle du sous domaine diam(Ω j ), ni du choix de α.

Quelques détails sur C P et sur l'hypothèse sous-jacente au théorème sont données dans la Figure 1.9.

L'hypothèse sur les coefficients est requise pour pouvoir appliquer des inégalités de Poincaré pondérées [START_REF] Pechstein | Weighted Poincaré inequalities[END_REF]. Elle n'est pas très restrictive et est toujours vérifiée dans le cas où le recouvrement est minimal (la taille δ j du recouvrement est égale à la taille d'une maille). Le cas typique où elle n'est pas vérifiée est celui où une zone où α est très élevé sert de séparation à deux zones de recouvrement où α prend une valeur plus faible. C'est ce qui est illustré dans la Figure 1.9. Le cas où l'inégalité ne s'applique pas correspond exactement au cas où, à cause de α, la valeur de la dérivée normale de l'erreur sur le bord du sous domaine n'est pas corrélée à la décroissance de l'erreur à l'intérieur du recouvrement et on ne peut donc pas garantir quelle sera la condition de raccordement transmise au sous domaine voisin. D'un point de vue de la décomposition de domaine, comme toujours avec le préconditionneur de Schwarz additif et comme on l'a déjà remarqué (Remarque 1.10) l'essentiel de la preuve consiste à montrer qu'il existe une décomposition stable de n'importe quel vecteur sur les sous domaines locaux et l'espace grossier (hypothèse 1.6). [START_REF] Vuik | An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients[END_REF][START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF] ou bien la discussion dans la sous section 1.2.3). Dans le chapitre 3 on présente une série de tests plus complète.

GenEO : un espace grossier pour Schwarz

Dans le chapitre 4 nous construisons un espace grossier qui permet de garantir la robustesse dans le cas beaucoup plus général des matrices symétriques définies positives. Ces travaux ont fait l'objet des publications [START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF].

Idées Nous expliquons ici les idées qui ont conduit à la construction de l'espace GenEO et nous renvoyons au chapitre 4 pour la présentation rigoureuse. La preuve de convergence pour l'espace grossier DtN repose sur deux arguments que l'on ne peut pas généraliser facilement à un système quelconque :

-des inégalités de Poincaré pondérées permettent d'obtenir une relation entre une norme sur le bord du sous domaine (qui est bornée par le problème aux valeurs propres) et une norme sur le recouvrement (dont on a besoin dans la preuve), -une propriété de stabilité de l'interpolant qui envoie dans l'espace éléments finis (dans la norme euclidienne et la norme induite par A) intervient lorsque l'on applique la partition de l'unité à un vecteur propre car il faut alors interpoler le produit χ j u j dans l'espace des éléments finis. Le problème aux valeurs propres que nous avons élaboré intègre ces deux difficultés dans sa définition même : l'une des formes bilinéaires dans le problème aux valeurs propre généralisé est définie sur la zone de recouvrement entre les sous domaines et elle est pondérée par une partition de l'unité. De cette manière l'estimation qui résulte des propriétés du spectre du problème aux valeurs propres généralisé GenEO via le lemme 1.13 permet de contourner les arguments de la preuve du chapitre précédent que l'on ne sait pas démontrer dans le cas général. Définition de l'espace grossier GenEO La définition de cet espace grossier est aussi présentée dans un poster en annexe de cette thèse. Ce poster a été présenté à la conférence Special Semester on Multiscale Simulation and Analysis in Energy and the Environment au RICAM à Linz (Autriche) en novembre 2011. Nous avons appelé l'espace grossier GenEO pour "Generalized Eigenvalues in the Overlaps". Ce mot apparait aussi dans le terme HeteroGenEOus ce qui est une coïncidence amusante. Afin de donner sa définition nous devons introduire quelques éléments de notation qui sont définis avec précision dans le corps du chapitre :

-pour tout domaine D ⊂ Ω qui est compatible avec le maillage, V h (D) est l'ensemble des restrictions à D des fonctions éléments finis, -pour tout domaine D ⊂ Ω qui est compatible avec le maillage, V h,0 (D) est l'ensemble des restrictions à D des fonctions éléments finis qui ont leur support dans D, -pour tout domaine D ⊂ Ω qui est compatible avec le maillage, la forme bilinéaire a D : D × D → R + est obtenue en assemblant seulement les matrices élémentaires des éléments qui composent D, -Ω • j est la partie de Ω j qui est recouverte par au moins un autre sous domaine, -pour j = 1, . . . , N ; Ξ j : V h (Ω j ) → V h,0 (Ω j ) est une famille de fonctions qui constituent une partition de l'unité subordonnée à la décomposition en sous domaines. Ces fonctions sont à valeurs directement dans un espace élément fini donc il n'y a pas besoin d'interpoler après les avoir appliquées.

Définition 1.16 (Espace grossier GenEO). Pour chaque sous domaine j = 1, . . . , N , on résout le problème aux valeurs propres généralisé suivant : trouver (λ, p) tel que On renvoie au corps du chapitre pour les hypothèse exactes sous lesquelles ce résultat s'applique. Elles sont très peu restrictives. On remarque qu'apparait dans le résultat λ m j +1 j qui, pour chaque sous domaine est la plus petite valeur propre qui n'a pas été sélectionnée par l'espace grossier. Une possibilité est d'utiliser le test λ k j < δ j /diam(Ω j ) pour décider quels vecteurs on met dans l'espace grossier. C'est alors cette quantité qui apparait dans le théorème comme dans le résultat du chapitre précédent :

a Ω j (p, v) = λ a Ω • j (Ξ j (p), Ξ j (v)), ∀ v ∈ V h (Ω j ). ( 1 
κ(M -1 AS,2 A) ≤ (1 + k 0 ) � 2 + k 0 (2k 0 + 1) max 1≤j≤N � 1 + diam(Ω j ) δ j �� , .
Résultat Numérique Avec ce choix nous soumettons GenEO au test de robustesse que nous avons déjà effectué avec le préconditionneur à un niveau, et le préconditionneur à deux niveaux pour l'espace grossier basé sur une partition de l'unité et l'espace grossier DtN. Comme pour DtN on sélectionne autant de modes par sous domaine qu'il y a de couche ou α est élevé (trois) et grâce à cela le solveur est robuste comme le montrent les résultats du tableau 1.4.

Espace grossier GenEO pour FETI et BDD

Nous résumons ici les contribution du chapitre 5. Elles ont fait l'objet de la publication [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF] ainsi que de la note [START_REF] Spillane | Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method[END_REF].

Une nouvelle fois nous exploitons au maximum le formalisme de Schwarz pour identifier quelle est l'estimation qui est difficile à démontrer. La différence majeure avec la méthode GenEO pour Schwarz est que cette fois c'est l'hypothèse de stabilité des solveurs locaux (Hypothèse 1.5) qui imposera le choix du problème aux valeurs propres alors que l'existence d'une décomposition stable (Hypothèse 1.6) est triviale sur tout l'espace grâce à la présence d'opérateurs de partition de l'unité dans les préconditionneurs.

La majeure partie de l'étude théorique consiste à reformuler l'hypothèse 1.5 pour trouver le bon problème aux valeurs propres. Une fois trouvé ce problème et étant donné un critère τ on construit l'espace grossier en sélectionnant tous les vecteurs propres associés à une valeur propre plus petite que τ . Grâce à cela on démontre que les conditionnement des opérateurs BDD et FETI préconditionnés sont bornés par N τ où N mesure le nombre maximal de voisins qu'a un sous domaine.

Si pour BDD le problème aux valeurs propres apparait naturellement grâce à la formulation de BDD dans le formalisme de Schwarz, pour FETI la procédure a été plus complexe puisque c'est sur la transposée F M -1 de l'opérateur préconditionné, qui a le même spectre que M -1 F , que nous avons travaillé. Grâce à cela le résultat s'écrit non seulement pour le préconditionneur de Dirichlet que nous avons déjà présenté mais aussi pour le préconditionneur appelé Lumped qui est moins coûteux à appliquer.

Des résultats numériques illustrent le comportement de la méthode pour le cas de FETI.

Application à l'élasticité quasi-incompressible

Les résultats obtenus pour GenEO avec la méthode de Schwarz sont très satisfaisant pour de nombreux problèmes. Malheureusement il subsistait un obstacle : le préconditionneur de Schwarz est tellement mal adapté aux problèmes d'élasticité quasi incompressible qu'avec notre processus de sélection automatique on construit un espace grossier constitué de tous les champs de déplacements dans le recouvrement. Puisque nos méthodes doivent s'appliquer aux calculs qu'effectuent Michelin le cas de l'élasticité quasi incompressible est incontournable : le caoutchouc avec lequel on conçoit des pneus est un matériau quasi incompressible.

Dans le chapitre 6 nous montrerons numériquement que contrairement au cas de Schwarz, FETI GenEO convient parfaitement aux problèmes quasi incompressibles. Ici nous illustrons comment nous avons eu l'intuition qu'il était nécessaire de changer de solveur.

Analyse en Fourier de la méthode de Schwarz On considère le cas où Ω = R 2 et le domaine est partitionné en deux demi plans Ω 1 = {(x, y); x < δ} et Ω 2 = {(x, y); x > 0}. L'épaisseur du recouvrement est δ (> 0).

En deux dimensions l'équation de l'élasticité linéaire à coefficients constants s'écrit sous forme développée pour l'inconnue vectorielle u = (u, v) T et le membre de droite

f = (f 1 , f 2 ) ⊤ comme suit � -µΔu -(λ + µ)∂ x ∇ • (u) = f 1 , -µΔv -(λ + µ)∂ y ∇ • (u) = f 2 , (1.41) 
où λ et µ s'écrivent en fonction des coefficients de Lamé

λ := Eν (1 + ν)(1 -2ν) , µ := E 2(1 + ν) .
Étant donné la géométrie particulière du domaine on peut lui appliquer une transformée de Fourier dans la direction y, ce qui permet d'écrire le problème sous la forme suivante :

� -(2µ + λ)∂ xx û + k 2 µû -ik(λ + µ)∂ x v = f1 , k 2 (2µ + λ)v -µ∂ xx v -ik(λ + µ)∂ x û = f2 .
(1.42)

A k > 0 fixé, ceci est une équation différentielle ordinaire dont la solution (obtenue avec Maple) est 

         û (x) = a 1 e -kx +
           û1 = (a 1 + b 1 x)e kx , v1 = i (a 1 µk+b 1 µkx+3b 1 µ+a 1 λk+b 1 λkx+b 1 λ)e kx k(µ+λ) , û2 = (a 2 + b 2 x)e kx , v2 = i (a 2 µk+b 2 µkx+3b 2 µ+a 2 λk+b 2 λkx+b 2 λ)e kx k(µ+λ)
.

(1.44)

Comparaison entre quatre types de conditions de transmission Afin de trouver la solution du problème global nous utilisons l'algorithme de Schwarz alterné (1.2) : le problème est résolu tour à tour dans chaque sous domaine en utilisant la solution fournie par le voisin pour faire office de condition aux limites. En fait, nous généralisons l'algorithme classique (1.2) en considérant quatre type de conditions de transmission différentes : (A) continuité des déplacements (normal et tangentiel), (B) continuité des contraintes (normale et tangentielle), (C) continuité de la contrainte normale et du déplacement tangentiel, (D) continuité de la contrainte tangentielle et du déplacement normal. Par le même argument que dans l'analyse heuristique pour DtN, les mises à jour de l'erreur obéissent au même schéma itératif mais pour le problème homogène. Dans la suite un bon schéma est donc un schéma qui permet de converger vers zéro rapidement.

         (A) u n+1 1 (δ, y) = u n 2 (δ, y), v n+1 1 (δ, y) = v n 2 (δ, y), u n+1 2 (0, y) = u n 1 (0, y), v n+1 2 (0, y) = v n 1 (0, y).          (B) σ 1 n+1 n (δ, y) = σ 2 n n (δ, y), σ 1 n+1 t (δ, y) = σ 2 n t (δ, y), σ 2 n+1 n (0, y) = σ 1 n n (0, y), σ 2 n+1 t (0, y) = σ 1 n t (0, y).          (C) v n+1 1 (δ, y) = v n 2 (δ, y), σ 1 n+1 n (δ, y) = σ 2 n n (δ, y), v n+1 2 (0, y) = v n 1 (0, y), σ 2 n+1 n (0, y) = σ 1 n n (0, y).          (D) u n+1 1 (δ, y) = u n 2 (δ, y), σ 1 n+1 t (δ, y) = σ 2 n t (δ, y), u n+1 2 (0, y) = u n 1 (0, y), σ 2 n+1 t (0, y) = σ 1 n t (0, y). où : σ n = (2µ + λ) ∂u ∂x + λ ∂v ∂y , et σ t = µ
Grâce à des substitutions de variable astucieuses et à l'utilisation de Maple on peut trouver pour les coefficients a 1 et b 1 dans les expressions de nos inconnues une matrice d'itération qui lie leurs valeurs à l'itération n -1 à leurs valeurs à l'itération n + 1 :

� a n+1 1 b n+1 1 � = M � a n-1 1 b n-1 1 � .
(1.45)

Puisque Ω 1 et Ω 2 jouent des rôles symétriques les coefficients dans Ω 2 satisfont aussi à cette équation. Bien sûr M dépend du choix des conditions de transmission. Dans le cas où les conditions de transmissions sont mixtes ((C) et (D)) la matrice d'itération prend une forme très simple :

M C ou D = � e -2 kδ -2 δ e -2 kδ 0 e -2 kδ

�

Dans les deux autres cas les matrices prennent des formes très compliquées et pour cette raison on s'intéresse désormais à leurs deux valeurs propres eig 1 et eig 2 indexées par A, B, C ou D en gardant à l'esprit que la convergence est bonne lorsque les valeurs propres sont petite et qu'elle est mauvaise lorsqu'elles approchent 1. On trouve

       eig A1 = � 1 + 2 (δk) 2 (3-4ν) 2 + 2 � (δk) 2 (3-4ν) 2 + (δk) 4 (3-4ν) 4 � e -2 kδ , eig A2 = � 1 + 2 (δk) 2 (3-4ν) 2 -2 � (δk) 2 (3-4ν) 2 + (δk) 4 (3-4ν) 4 � e -2 kδ .
(1.46) eig A2 = eig B 2 . Pour cette raison le fait que dans le cas (B) les valeurs propres ne dépendent pas des coefficients de Lamé n'est pas un avantage : avec les conditions de transmission en contrainte pure la convergence est toujours pire qu'avec les conditions de transmission en déplacement pur. Dans la figure 1.10 on trace les deux valeurs propres pour le cas (A) en fonction de δk et pour différentes valeurs du coefficient de Poisson ν. On observe effectivement un phénomène de convergence quand ν approche 0.5. Enfin, dans la Figure 1.11 on trace la plus grande valeur propre (et donc la plus mauvaise) en fonction du coefficient de Poisson ν pour différentes valeurs de δk. On se concentre sur les valeurs de δk ≤ 1 car le problème qu'on résout est en fait un problème discrétisé pour lequel les fonctions ne peuvent pas "osciller" plus vite que le pas du maillage ce qui restreint le champ des fréquences à k ≤ 1 h . Si de plus le recouvrement est minimal (δ = h) on a bien δk ≤ 1.

   eig B 1 = � 1 + 2 δ 2 k 2 + 2 √ δ 2 k 2 + δ 4 k 4 � e -2 kδ , eig B 2 = � 1 + 2 δ 2 k 2 -2 √ δ 2 k 2 + δ 4 k 4 � e -2 kδ . (1.47) � eig C 1 = eig C 2 = eig D1 = eig D2 = e
Les conclusions que nous tirons de cette étude est que les conditions de Dirichlet qui sont celles mises en oeuvre dans l'algorithme de Schwarz ne sont pas adaptées au problème d'élasticité quasi incompressible. L'étude en Fourier suggère que l'utilisation de conditions mixtes (une composante en déplacement, une composante en contrainte) conduirait à de bonnes performances même dans la limite quasi incompressible. Ce résultat est déjà connu [START_REF] Gosselet | A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems: Application to poroelasticity[END_REF][START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF][START_REF] Dolean | Deriving a new domain decomposition method for the Stokes equations using the Smith factorization[END_REF][START_REF] Pechstein | Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity[END_REF]. Nous n'avons pas poursuivi dans cette voie car il semblait difficile de tirer parti de ce type de conditions aux limites tout en raisonnant de manière algébrique. Pour cette raison nous nous sommes concentrés sur les formulations en sous-structuration (sans recouvrement) que sont FETI et BDD.

Nous tirons de [START_REF] Nataf | Construction of a new domain decomposition method for the Stokes equations[END_REF] un argument supplémentaire en faveur d'une formulation en sousstructuration. Les résultats de [START_REF] De Roeck | Analysis and test of a local domain-decomposition preconditioner[END_REF] montrent que pour la géométrie que nous avons considérée (R 2 divisé en deux demi plans), si on applique la formulation en sous-structuration pour itérer au sein d'une méthode de Richardson alors on obtient un solveur exact pour le problème de Poisson [START_REF] De Roeck | Analysis and test of a local domain-decomposition preconditioner[END_REF] : on trouve la solution en une itération. Dans le cas de l'équation de Stokes qui est très étroitement liée à une formulation mixte de l'élasticité quasiincompressible les auteurs de [START_REF] Nataf | Construction of a new domain decomposition method for the Stokes equations[END_REF] proposent un solveur exact et montrent aussi que la formulation BDD classique conduit à un algorithme qui converge indépendamment des Dans le chapitre 6 nous évoquons certains problèmes liés à la discrétisation dans la limite quasi incompressible mais surtout nous illustrons le comportement de nos problèmes aux valeurs propres et en particulier le fait qu'avec FETI-GenEO un seul mode grossier par sous domaine suffit à gérer le comportement incompressible et notre objectif est donc atteint.

Perspectives

Pour terminer ce manuscrit nous présentons dans le chapitre 7 quelques pistes d'amélioration ou d'exploration de nos algorithmes. Il s'agit de trois directions de recherche en cours d'investigation et nous ne considérons pas ces travaux comme étant finis. Nous présentons d'abord comment, grâce à la formulation abstraite que nous avons employée, il est possible d'étendre l'idée des espaces grossiers GenEO à un algorithme multiniveaux. C'est un atout important dans les cas où le problème est très difficile et où la grille grossière devient très grande. Puis nous exposons une manière alternative de construire l'espace grossier où la sélection des vecteurs de base ne se fait plus a priori en résolvant des problèmes aux valeurs propres mais à la volée au sein même des itérations du gradient conjugué. Nous appelons cette méthode Frugal FETI car il s'agit d'être économe avec les moyens de calcul. Enfin, nous montrons un premier résultat obtenu sur un cas test de pneu avec la version de Frugal FETI qui a été implémentée au sein des codes de calcul Michelin au cours de cette thèse.

Introduction

The same introduction is given in French in the previous chapter. When faced with the problem of solving a large linear system on a parallel architecture two families of solvers are available with optimized black box implementations: direct solvers and iterative solvers. Direct solvers are robust in the sense that it is guaranteed that they will find the solution in a given number of operations no matter how hard the problem. Their memory requirements however are such that they can become unreliable when the problem becomes too large. On the other hand iterative solvers are naturally parallel since they mostly use matrix vector products. The drawback is that they often lack robustness: for ill conditioned problems the use of a preconditioner becomes essential in order for convergence to be achieved and choosing the right preconditioner is an art in itself.

Domain decomposition methods can be viewed as hybrid methods: they solve the problem with an iterative solver within which local direct solvers on some subproblems are used to reformulate the original problem or to define the preconditioner (or both). The rationale is to get the advantages out of both families of methods: robustness and parallelizability. In the next section we present three of the most popular domain decomposition methods and illustrate the possible lack of robustness when confronted to particularly hard problems. Then we will describe what a two level method is and how it may help with robustness. In the final section we describe the main contributions of this thesis. The unifying motivation behind this work is to design domain decomposition methods which are proved to converge even for very ill conditioned problems and which can be implemented as black box algorithms without any prior knowledge of the problem underlying the linear system being solved.

Domain Decomposition

We introduce two families of Domain Decomposition methods which we will work to improve in subsequent chapters. The first is the family of Schwarz methods. Their main advantage is that they are algebraic methods: they can be applied without any knowledge of the problem other than its formulation Ax = f . The second family of methods consists of the substructuring methods. They are more sophisticated since they require access to the element matrices to assemble matrices of some local subproblems and are the solver of choice for many industrial applications.

Algebraic Domain Decomposition: the Schwarz method

A detailed historical approach is given in [START_REF] Gander | Schwarz methods over the course of time[END_REF] with complete bibliographical references. The Schwarz domain decomposition methods are named after H. A. Schwarz who in 1870 [START_REF] Schwarz | Über einen Grenzübergang durch alternirendes Verfahren[END_REF] proposed the alternating Schwarz method in order to study the existence of a solution to the homogeneous Poisson problem with prescribed boundary conditions (2.1):

� -Δu = 0 in Ω, u = g on ∂Ω, (2.1) 
where Ω = Ω 1 ∪ Ω 2 is as in Figure 2.1. Given the existence of a solution in domains with simple geometries (disks, rectangles...) Schwarz's idea is to prove the existence of a solution on the more complex domain Ω by a constructive argument: he proposes to solve the problem alternately on each of the regular subdomains and to use transmission conditions coming from the solution just computed by the neighbour. More precisely Schwarz proves that the Alternating Schwarz algorithm initialized with u 0 2 and updated with:

-Δu n+1

1 = 0 in Ω 1 u n+1 1 = g on ∂Ω 1 ∩ ∂Ω u n+1 1 = u n 2 in Ω \ Ω 1 , -Δu n+1 2 = 0 in Ω 2 u n+1 2 = g on ∂Ω 2 ∩ ∂Ω u n+1 2 = u n+1 1 in Ω \ Ω 2 , (2.2)
converges toward the solution of (2.1) and thus that the solution exists.

From a tool in functional analysis the alternating Schwarz method evolved into a solver for possibly complex domains [START_REF] Bjørstad | Iterative methods for the solution of elliptic problems on regions partitioned into substructures[END_REF]. The most immediate adaptation is what is now called multiplicative Schwarz [START_REF] Chan | Domain decomposition algorithms[END_REF][START_REF] Cai | Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems[END_REF][START_REF] Smith | Domain decomposition[END_REF]. The drawback of alternating Schwarz and of its discrete counterparts is that it is an inherently sequential approach to the problem. The parallel adaptation is the Additive Schwarz preconditioner which Matsokin and Nepomnyaschikh [START_REF] Matsokin | The Schwarz alternation method in a subspace[END_REF] significantly contributed to. We present it next based on the description given in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF].

If the finite element discretization of (2.1) reads Au = b, and R ⊤ 1 (respectively R ⊤ 2 ) is the (boolean) interpolation operator which prolongates a finite element function defined in Ω 1 (respectively Ω 2 ) to the whole of Ω by zero then we may define the local operators

A 1 := R 1 AR ⊤ 1 , A 2 := R 2 AR ⊤
2 and the Additive Schwarz preconditioner

M -1 := R ⊤ 1 A -1 1 R 1 + R ⊤ 2 A -1 2 R 2 . (2.
3)

It is quite intuitive that this is a good preconditioner for A. Indeed it approximates the inverse of A by the sum of the inverses on each of the two subdomains. This generalizes easily to the case of more than two subdomains, and to general symmetric positive definite matrices A. All that is needed is a set of subspaces V i of the space V of degrees of freedom and interpolation operators R ⊤ i :

V i → V which satisfy V = N � i=1 R ⊤ i V i .
Then the additive Schwarz preconditioner is the sum of N local inverses

M -1 := N � i=1 R ⊤ i A -1 i R i , where A i := R i AR ⊤ i . (2.4) 
A common way to use the Additive Schwarz preconditioner is to start by splitting all the degrees of freedom in V into a non overlapping partition and then adding l layers of overlap to each subdomain as illustrated in Figure 2.2. In this case the interpolation operators R ⊤ i are boolean and the local matrices A i are just extractions of the coefficients in A which correspond to the local degrees of freedom. The original splitting can be obtained either by hand based on the geometry of the underlying problem (if it is known) or with an automatic graph partitioner such as Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] or Scotch [START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF] based on the graph of A. As we will see later on the fact that the subdomains overlap is necessary in order to observe convergence with the Additive Schwarz preconditioner. There are two main drawbacks to this overlapping setting. The first and perhaps the most obvious is that solving multiple times in the overlap requires more work. The second is that in cases where the computational domain consists of two different materials a natural way to divide Ω is to follow the material separation and this is not possible with overlapping subdomains. In the next subsection we present two non overlapping domain decomposition methods.

Substructuring methods

Here we present two popular substructuring methods: the Balancing Domain Decomposition (BDD) method and the Finite Element Tearing and Interconnecting (FETI) method. The BDD method is due to Mandel [START_REF] Mandel | Balancing domain decomposition[END_REF] based on the Neumann-Neumann method by De Roeck and Le Tallec [START_REF] De Roeck | Analysis and test of a local domain-decomposition preconditioner[END_REF]. The FETI method is the work of Farhat and Roux [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF]. Our objective in this introductive chapter is to illustrate the ideas underlying substructuring methods and for sake of clarity we focus on the linear elasticity problem. Rigorous definitions of these methods for a general symmetric positive definite matrix are given in Chapter 5. Thorough presentations of the substructuring methods can also be found in [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF][START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF][START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF]. In particular [START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF] gives an insight into mechanical interpretations and implementation techniques.

Let Ω be an open subset of R d for d = 2 or d = 3. Let ∂Ω be the boundary of Ω and ∂Ω D ⊂ ∂Ω be a part of the boundary where a homogeneous Dirichlet boundary condition is imposed. Next, introduce the space V := {v ∈ H 1 (Ω) : v |Ω D = 0}. For a given body force f ∈ V ′ , the variational formulation of the linear elasticity equations can be written as: find the set of displacements v ∈ V such that 2

� Ω µ ǫ(u) : ǫ(v)dx + � Ω λ(∇ • u)(∇ • v)dx = � Ω �f, v�dx ∀ v ∈ V, (2.5) 
where the linear strain tensors terms are

ǫ(u) : ǫ(v) := d � i=1 d � j=1 ǫ ij (u)ǫ ij (v); ǫ ij (u) := 1 2 � ∂u i ∂x j + ∂u j ∂x i � , �f, v� := d � i=1 f i v i ,
and µ and λ are two parameters called the Lamé parameters which describe the material and can be expressed in terms of Young's modulus E and Poisson's ratio ν (0 < ν < 0.5) as

λ := Eν (1 + ν)(1 -2ν) , µ := E 2(1 + ν) .
The linear elasticity equations are an approximation, for small deformations, of the elasticity equations [START_REF] Tallec | Numerical methods for nonlinear three-dimensional elasticity[END_REF]. Lets assume that we've discretized (2.5) using piecewise linear (P 1 ) Lagrange finite element functions and that in matrix formulation the problem can be written as: Find û ∈ R n such that K û = f .

Let the original computational domain Ω be partitioned into a set of open non overlapping subdomains We denote by K i and f i the local problem matrix and discrete body force corresponding to the discretization of 2

Ω = N � i=1 Ω i ; Ω i ∩ Ω j = ∅ ∀ i � = j.
� Ω i µ ǫ(u) : ǫ(v)dx + � Ω i λ(∇ • u)(∇ • v)dx and
� Ω i �f, v�dx for the functions in {u |Ω i ; u ∈ P 1 }. The equilibrium of subdomain Ω i can be written as

K i u i = f i + g i ,
where g i are surface forces.

(

We notice that in this equilibrium equation an additional unknown has appeared: the surface force term g i which represents the pressure exerted by neighbouring subdomains. This is what is illustrated with the red arrows in Figure 2.3.

Next we introduce a splitting of the degrees of freedom into boundary degrees of freedom which are shared by at least two subdomains and form the set

Γ := � i,j=1,...,N ; i� =j (∂Ω i ∩ ∂Ω j ) ,
and all other degrees of freedom denoted with I (for Interior). With obvious notation, the local equilibrium equation (2.6) can be rewritten in block formulation as

� K II i K IΓ i K ΓI i K ΓΓ i � � u I i u Γ i � = � f I i f Γ i � + � 0 g Γ i � .
(2.7)

By definition the interface forces are zero for degrees of freedom in the interior of Ω i and using a Schur complement procedure we can also eliminate the interior displacement degrees of freedom. In system formulation (2.7) reads

� K II i u I i + K IΓ i u Γ i = f I i , K ΓI i u I i + K ΓΓ i u Γ i = f Γ i + g Γ i ,
which is equivalent to

         u I i = K II i -1 � f I i -K IΓ i u Γ i � � K ΓΓ i -K ΓI i K II i -1 K IΓ i � � �� � :=S i u Γ i = � f Γ i -K ΓI i K II i -1 f I i � � �� � := fi +g Γ i .
(2.8) As well as the local equilibrium equation S i u Γ i = fi + g Γ i , each subdomain must satisfy continuity and compatibility constraints with its neighbours. These conditions are written using two interpolation operators as:

Assembly: R ⊤ 1    x 1 1 x 2 1 x 3 1    + R ⊤ 2    x 1 2 x 2 2 x 3 2    =    x 1 1 + x 1 2 x 2 1 + x 2 2 x 3 1 + x 3 2    Jump: B 1    x 1 1 x 2 1 x 3 1    + B 2    x 1 2 x 2 2 x 3 2    =    x 1 1 -x 1 2 x 2 1 -x 2 2 x 3 1 -x 3 2   
-The assembly operators R ⊤ i are boolean matrices: given a vector u Γ i of entries for the degrees of freedom on ∂Ω i ∩ Γ, R ⊤ i u i is a vector of entries for the degrees of freedom on the whole of Γ which has the same values as u Γ i for the degrees of freedom on ∂Ω i ∩ Γ and is 0 everywhere else. -The jump operators B i are signed boolean matrices where each line in B i corresponds to one degree of freedom x on Γ and two subdomains Ω k and Ω l such that x ∈ ∂Ω k ∩ ∂Ω l . If i = k or l then the entry in that line of B i which corresponds to the local numbering of x is assigned -1 if i = min(k, l) and +1 otherwise. The action of the assembly and jump operators is illustrated on a simplified example in Figure 2.4. With these operators the global elasticity problem K û = f can be rewritten as: For each subdomain i = 1, . . . , N find the set of displacements u Γ i and interface forces

g Γ i such that      S i u Γ i = fi + g Γ i , ∀i = 1, . . . , N [Local Equilibrium] � N i=1 B i u Γ i = 0 [Interface compatibility] � N i=1 R ⊤ i g Γ i = 0 [Interface equilibrium].
(2.9)

Both the FETI and the BDD formulation of the elasticity problem are based on (2.9).

BDD formulation

The first step is to eliminate the interface compatibility constraint by searching for the displacements in the reduced set {(u Γ 1 , . . . , u Γ N );

� N i=1 B i u Γ i = 0}
where it holds. By definition of the assembly and jump operators this is the same as looking for a vector ûΓ defined on the global set of interfaces and then choosing u Γ i = R i ûΓ in each subdomain. With this (2.9) is equivalent to: Find ûΓ and g Γ 1 , . . . , g Γ N such that

� S i R i ûΓ = fi + g Γ i , ∀i = 1, . . . , N � N i=1 R ⊤ i g Γ i = 0. (2.10)
Finally injecting the first line into the second we get the BDD formulation of the problem:

� N � i=1 R ⊤ i S i R i � ûΓ = N � i=1 R ⊤ i fi . (2.11)
After solving this interface problem the interior degrees of freedom can be computed via the first equation in (2.8). Since the BDD operator is a sum of local Schur complements it is quite natural to precondition it by the sum of inverses of these local Schur complements, more precisely in the case where S i is non singular the BDD preconditioner is

M -1 := N � i=1 � R ⊤ i S -1 i � R i , (2.12) 
where � R ⊤ i and � R i are the same operators as R ⊤ i and R i but weighted by partitions of unity.

FETI formulation This time the interface equilibrium is eliminated by searching for the interface forces in the reduced set {(g Γ 1 , . . . , g Γ N );

� N i=1 R ⊤ i g Γ i = 0}
. By definition of the assembly and jump operators this is the same as looking for a vector λ ∈ range(

� N i=1 B i ) and choosing g Γ i = -B ⊤ i λ in each subdomain. With this (2.9) is equivalent to: Find λ ∈ range( � N i=1 B i ) such that � S i u Γ i = fi -B ⊤ i λ, ∀i = 1, . . . , N � N i=1 B i u Γ i = 0. (2.13)
Lets assume that we are in the highly unlikely case where S i is non singular then we may write

� u Γ i = S -1 i ( fi -B ⊤ i λ), ∀i = 1, . . . , N � N i=1 B i u Γ i = 0. (2.14)
and finally the FETI formulation of the problem is obtained by injecting the first line into the second:

� N � i=1 B i S -1 i B ⊤ i � λ = N � i=1 B i S -1 i fi . (2.15)
After solving for λ the set of displacements can be computed via (2.14) for the interface degrees of freedom and (2.8) for the interior degrees of freedom. Since the FETI operator is a sum of inverses of the local Schur complements it is quite natural to precondition it by the sum of the Schur complements, more precisely the preconditioner for FETI is

M -1 = N � i=1 � B i S i � B i ⊤ , (2.16) 
where � B ⊤ i and � B i are the same operators as B ⊤ i and B i but weighted by partitions of unity.

Remark 2.1. We have assumed that all the operators S i are non singular. This is not the general case. How to handle singularities in S i has been well understood since very early work on FETI and BDD [START_REF] Farhat | Implicit parallel processing in structural mechanics[END_REF][START_REF] Mandel | Balancing domain decomposition[END_REF]. In the next section we describe one way to handle the kernels for elasticity and in Chapter 5 we consider the case of general symmetric positive semi-definite matrices S i . .

Lack of robustness: a first illustration

Since we are concentrating on symmetric problems and symmetric preconditioners the iterative solver of choice is the Preconditioned Conjugate Gradient (PCG) algorithm which we present in Algorithm 2.1 (see [START_REF] Lanczos | Solution of systems of linear equations by minimized-iterations[END_REF][START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF] for its first introduction and [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] for a modern presentation).

Algorithm 2.1 Preconditioned Conjugate Algorithm for Ax * = f preconditioned by M -1 and initialized by x 0 .

r 0 := f -Ax 0 ; z 0 := M -1 r 0 and p 0 := z 0 for j = 0, 1, . . . until convergence do α j := �r j , z j �/�Ap j , p j � x j+1 := x j + α j p j r j+1 := r jα j Ap j z j+1 := M -1 r j+1 β j := �r j+1 , z j+1 �/�r j , z j � p j+1 := z j+1 + β j p j end for One way to evaluate the robustness of a solver that is based on PCG is to use the following convergence result [START_REF] Meinardus | Approximation of functions: Theory and numerical methods[END_REF][START_REF] Kaniel | Estimates for some computational techniques in linear algebra[END_REF] (see also [START_REF] Saad | Iterative methods for sparse linear systems[END_REF](Theorem 6.29) for the proof):

�x * -x m � A ≤ �x * -x 0 � A C m � λ max + λ min λ max -λ min � , (2.17) 
in which C m is the Chebyshev polynomial of degree m of the first kind, x * is the exact solution,

x m is the approximate solution returned by the m-th step of Algorithm 2.1, λ max and λ min are the extreme eigenvalues of the preconditioned operator

M -1 A, � • � A is the norm induced by the A inner product.
A simplification of this result is the following linear convergence bound:

�x * -x m � A ≤ 2 � � λ max /λ min -1 � λ max /λ min + 1 � m �x * -x 0 � A . (2.18)
Although these estimates are in general not sharp they tell us that, as long as bounds on the spectrum of the preconditioned operator are available, the error at iteration m can be bounded with respect to the original error and these bounds.

Our ambition here is to show that as soon as we consider simulations in heterogeneous media it is easy to build a test case for which the iterative solver becomes rather inefficient. ). The geometry is given in Figure 2.5. Two layers of overlap are added to each subdomain. The coefficient in material 1 is α 1 = 1. We make the number of subdomains and the coefficient α 2 in material 2 vary and report the number of iterations needed to reach convergence (top) and the estimate for the condition number of the preconditioned operator based on the Ritz values (bottom).

We consider the Additive Schwarz preconditioner (2.4) applied to a discretization of the scalar elliptic problem (also known as the Darcy equation)

     -∇ • (α∇u) = f, in Ω, u(x, y) = 0, if x = 0, ∂u ∂n (x, y) = 0, on the remainder of ∂Ω, (2.19) 
where

Ω = [0, N ] × [0, 1].
The problem is discretized by standard P 1 finite elements on a (20N + 1) × 21 regular mesh (N ∈ N) where the diffusivity parameter is a real valued function α : Ω → R + . The domain consists of two different materials (characterized by two values of α: α 1 and α 2 ) placed in seven alternating layers as illustrated in Figure 2.5.

In order to build the partition we first divide Ω into N non overlapping unit squares and then add two layers of overlap to each of these subdomains.

In Table 2.1 we report the results of our convergence test. We give the number of iterations needed to achieve convergence and also the estimate for the condition number of the preconditioned operator M -1 A which is based on the Ritz values of this operator at the final iteration of CG (see [START_REF] Demmel | Applied numerical linear algebra[END_REF] for instance). The stopping criterion is based on the relative error:

�x * -x m � ∞ �x * � ∞ < 10 -6 .
We observe that the number of iterations needed to achieve convergence grows both with the number of subdomains and the magnitude of the jump in the coefficients. An exception is the case where α 2 = 10 6 which requires fewer iterations than the case α 2 = 10 4 . The fact that in the table the estimated condition number depends only on the number of subdomains is not a typo. The Schwarz preconditioner which we've introduced is far from being the state of the art Schwarz preconditioner. In the next section we will show that there is a well known improvement to recover robustness with respect to the number of subdomains in the constant coefficient case. Even with this improvement, the lack of robustness with respect to heterogeneous materials will remain an issue and is a perfect illustration of the family of problems which we tackle in the subsequent chapters of this manuscript. But first we present some ways of improving robustness by acting on the partition into subdomains.

Acting on the partition to improve robustness

Classical domain decomposition methods are known to be robust for good choices of the partition into subdomains, see e.g. [START_REF] Dryja | Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions[END_REF][START_REF] Dryja | Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions[END_REF][START_REF] Mandel | Balancing domain decomposition for problems with large jumps in coefficients[END_REF]. Although some generalizations of these results exist (cf. [START_REF] Pechstein | Scaling up through domain decomposition[END_REF][START_REF] Pechstein | Analysis of FETI methods for multiscale PDEs[END_REF][START_REF] Scheichl | Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients[END_REF]...) it is undeniable that acting on the partition into subdomains can really help with robustness.

FETI and BDD As we have already mentioned a great advantage of domain decomposition methods without overlap is that in cases where the simulation domain consists of several materials it is possible to partition the domain in such a way that heterogeneities coincide with the subdomain interfaces. Then by making a smart choice for the weights in the FETI and BDD preconditioners just as good a convergence can be recovered as in the constant coefficient case. For FETI the idea goes back to [START_REF] Rixen | A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF] where weights based on the diagonals of the stiffness matrices are introduced and a mechanical interpretation is given. The subtlety lies in the fact that the weights for the displacement variables and the force variables are not identical but they are connected. In [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF] a mathematical formulation of this choice of weights is given which makes it possible to write the preconditioner in a general form and enables the theoretical study. The corresponding results for BDD can also be found there.

More recently, for FETI and the Darcy equation, the authors in [START_REF] Pechstein | Analysis of FETI methods for multiscale PDEs. Part II: interface variation[END_REF][START_REF] Pechstein | New theoretical coefficient robustness results for FETI-DP[END_REF][START_REF] Pechstein | Finite and boundary element tearing and interconnecting solvers for multiscale problems[END_REF] prove that even in some particular configurations where the heterogeneity overlaps the boundary it does not affect convergence but this is far from being the general case.

What about additive Schwarz? It is Pierre-Louis Lions who in 1990 derived the first non overlapping version of the Alternating Schwarz method [START_REF] Lions | On the Schwarz alternating method. III. A variant for nonoverlapping subdomains[END_REF]. The trick is to replace the Dirichlet transmission conditions in (2.2) by Robin transmission conditions for a parameter β:

u n+1 1 + β ∂ ∂n 1 u n+1 1 = u n 2 + β ∂ ∂n 1 u n 2 on ∂Ω 2 ∩ ∂Ω 1 ,
in the first step of the iteration and

u n+1 2 + β ∂ ∂n 2 u n+1 2 = u n+1 1 + β ∂ ∂n 2 u n+1 1 on ∂Ω 2 ∩ ∂Ω 1 ,
in the second step of the iteration (n 1 and n 2 are the unit outward normals for subdomains Ω 1 and Ω 2 ). Lions proves that this algorithm applied to the Poisson problem converges without overlap for any number of subdomains. The idea to change the transmission conditions was further developed into looking for the optimized transmission conditions within the whole range of linear transmission conditions. It appears that the optimal transmission conditions were highly non local with the result that the optimized solver is usually too expensive to use and truncations are necessary. Among the vast literature we refer to [START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF][START_REF] Després | Méthodes de décomposition de domaine pour les problèmes de propagation d'ondes en régime harmonique. Le théorème de Borg pour l'équation de Hill vectorielle[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF][START_REF] Gander | Optimized Schwarz methods[END_REF] and references therein.

AGMG Multigrid methods [START_REF] Hackbusch | Multi-grid methods and applications[END_REF] are very closely related to domain decomposition. From the domain decomposition point of view a multigrid method is a recursive application of domain decomposition: the global domain is divided into subdomains which are themselves divided into subdomains and so on until the partition is the mesh. From the multigrid point of view, a domain decomposition method is a multigrid method where, starting at the mesh level, the coarsening procedure is applied just once and results in the partition into subdomains.

Algebraic multigrid [START_REF] Brandt | Algebraic multigrid (AMG) for sparse matrix equations[END_REF][START_REF] Ruge | Algebraic multigrid[END_REF] is a variant of the original multigrid algorithms which does not require any information on the geometry of the underlying problem. This is particularly interesting if the matrix stems from a gridless problem or a problem on an unstructured grid but more generally algebraic methods are advantageous because they can be implemented as black box algorithms without any information other than the problem matrix and right hand side.

For problems with heterogeneous coefficients Algebraic Multigrid Techniques may build aggregates (the multigrid counterpart for subdomains) which do not resolve the heterogeneities and hence may lead to slow convergence. To overcome this fact, in [START_REF] Napov | An algebraic multigrid method with guaranteed convergence rate[END_REF] the authors propose an Algebraic Multigrid method based on aggregation which has a guaranteed convergence rate. This is the first complete convergence analysis of an AMG method with plain aggregation, it is based on their previous work [START_REF] Napov | Algebraic analysis of aggregation-based multigrid[END_REF]. The result holds for symmetric M -matrices with non negative row sum. The idea is to act on the way that the aggregates are formed: a maximal convergence bound is defined by the user and this is translated into a quality constraint for the aggregates. Then the aggregates are built adaptively in such a way that the quality constraint is always satisfied: just as with the domain decomposition methods, convergence can be highly accelerated by acting on the partition of the domain.

Drawbacks of this strategy

In this thesis work, one of the objectives was not to rely on the assumption that a partition can be built which resolves heterogeneities. Indeed the endgame is to solve hard industrial problems and more particularly the problems that Michelin is faced with of which Figure 2.6 is an example. The reasons for which we decided not to rely on a specific partition of the subdomains to ensure good convergence include the following -The material distribution in figure 2.6 suggests that if the subdomains resolve the heterogeneities then they will have very bad aspect ratios and in some cases they may even be plates or shells. This means that the local problems could potentially be very ill conditioned and solving them would require extra work and fine techniques. -If the partition into subdomains must accommodate the materials this must be implemented in a part of the code where the material distribution is known. This goes against the objective of having a black box solver which interferes the least possible with existing and future code. -Perhaps the most decisive argument is that heterogeneous materials is only one of the parameters which slows down convergence and what we are aiming for is a solver that tackles various kinds of difficulties. To put things into perspective, in an industrial context, the question is not only: 'is there a partition into subdomains which resolves all the heterogeneities and leads to well conditioned local problems?' but rather 'how much work would it require for an engineer to build this partition?'. If it is possible to partition the domain automatically with software such as Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] or Scotch [START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF] and then let the solver do the hard work this is a very attractive perspective and building that solver is exactly what we will aim for in subsequent chapters.

Two Level Methods: toward robustness

The lack of robustness which we pointed out in the previous section can be explained by a lack of global communication between subdomains: during one iteration a subdomain only exchanges information with its neighbours or in some cases (preconditioned FETI and BDD) the neighbours of its neighbours. For this reason a remedy is to add a global communication mechanism to the algorithm. This is what is called a second level. Among the first of this type were the BPS preconditioner introduced by Bramble, Paschiak and Schatz [START_REF] Bramble | The construction of preconditioners for elliptic problems by substructuring[END_REF] and the two-level overlapping Schwarz method introduced by Dryja and Widlund [START_REF] Dryja | Some domain decomposition algorithms for elliptic problems[END_REF]. The idea is to use a direct solver not only in each of the subdomains but also on a subproblem which is shared by all subdomains: the coarse problem. This coarse problem is a rough approximation of A and choosing it will be the subject of a large part of this manuscript. Before diving in we present the abstract Schwarz framework [START_REF] Tallec | Domain decomposition methods in computational mechanics[END_REF][START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]: a theoretical framework for studying domain decomposition methods.

Abstract Schwarz framework

This subsection is adapted from the book by Toselli and Widlund [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF](Chapter 2). We refer to there for the bibliographical details of the emergence of the Schwarz theory. We do mention contributions [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] and [START_REF] Xu | Iterative methods by space decomposition and subspace correction[END_REF] which are often deemed crucial. Some of the notation which we introduce has already been used in the previous section. This is not a problem since here we generalize the same notions. Given a finite dimensional Hilbert space V , given a symmetric, positive definite bilinear form,

a(•, •) : V × V → R,
and an element f ∈ V ′ , we consider the problem of finding u ∈ V , such that

a(u, v) = f (v), v ∈ V.
(2.20)

If A is the stiffness matrix relative to the bilinear form a(•, •) and a given basis for V , and f is the vector relative to f and the same basis then problem (2.20) is equivalent to the linear system

Au = f , (2.21) 
with A symmetric, positive definite. We next consider a family of spaces {V i , i = 0, . . . , N } and suppose that there exist interpolation operators

R ⊤ i : V i → V.
We assume that V admits the following decomposition (this is not necessarily a direct sum)

V = R ⊤ 0 V 0 + N � i=1 R ⊤ i V i . (2.22) 
Notice that the subspaces are now numbered between 0 and N . Although this makes no difference for this abstract definition, in many cases V 0 will be a particular space: the coarse space and the N other spaces V i will be the usual subdomains based on geometry.

We next introduce local symmetric, positive definite, bilinear forms on the subspaces, ãi (•, •) :

V i × V i → R, i = 0, . . . , N,
and the local stiffness matrices associated with them, Ãi :

V i → V i .
Schwarz operators are defined in terms of projection like operators

P i = R ⊤ i Pi : V → R ⊤ i V i ⊂ V, i = 0, . . . , N, where Pi : V → V i , is defined by ãi ( Pi u, v i ) = a(u, R ⊤ i v i ), v i ∈ V i . (2.23)
We note that Pi is well defined since the local bilinear forms are coercive.

Remark 2.2. In case we want to use the original bilinear form on a subspace

V i , we choose ãi (u i , v i ) = a(R ⊤ i u i , R ⊤ i v i ), u i , v i ∈ V i (2.24) and find that Ãi = R i AR ⊤ i = A i . (2.25)
In this case we say that we use an exact solver on V i .

We have the following lemma.

Lemma 2.3. The P i can be written as

P i = R ⊤ i Ã-1 i R i A, 0 ≤ i ≤ N.
(2.26)

In addition the P i are self adjoint with respect to the inner product induced by a(•, •) and positive semi-definite. If moreover the local bilinear form is given by (2.24), then P i is a projection, i.e., P 2 i = P i .

(2.27)

From now on we make the following assumption.

Assumption 2.4. An exact solver is used on the coarse space V 0 . (Then, P 0 is an Aorthogonal projection.)

Based on the projection like operators P i three families of preconditioned Schwarz operators are 1. Additive :

P ad := N � i=0 P i .
(2.28)

2. Multiplicative:

P mu := I -(I -P N )(I -P N -1 ) . . . (I -P 0 ). (2.29) 
3. Hybrid:

P hy := P 0 + (I -P 0 ) N � i=1 P i (I -P 0 ). (2.30) 
The convergence bounds in the Abstract Schwarz Framework rely on Assumption 2.4 and three additional Assumptions.

Assumption 2.5 (Strenghtened Cauchy-Schwarz inequalites). There exist constants 0

≤ ǫ ij ≤ 1, 1 ≤ i, j ≤ N , such that |a(R ⊤ i u i , R ⊤ j u j )| ≤ ǫ ij a(R ⊤ i u i , R ⊤ i u i ) 1/2 a(R ⊤ j u j , R ⊤ j u j ) 1/2 ,
for u i ∈ V i and u j ∈ V j . We will denote the spectral radius of ǫ = {ǫ ij } by ρ(ǫ).

Assumption 2.6 (Local Stability

). There exists ω > 0 such that

a(R ⊤ i u i , R ⊤ i u i ) ≤ ωã i (u i , u i ), u i ∈ range( Pi ) ⊂ V i , 1 ≤ i ≤ N. (2.31)
Assumption 2.7 (Stable splitting). There exists a constant C 0 , such that every u ∈ V admits a decomposition

u = N � i=0 R ⊤ i u i , {u i ∈ V i , 0 ≤ i ≤ N } that satisfies N � i=0 ãi (u i , u i ) ≤ C 2 0 a(u, u).
The following theorem gives some convergence results for the Schwarz Domain Decomposition Methods.

Theorem 2.8. Let Assumptions 2.4, 2.5, 2.6 and 2.7 hold. Then the operators defined by (2.28), (2.29) and (2.30) satisfy, for any u ∈ V ,

C -2 0 a(u, u) ≤ a(P ad u, u) ≤ ω(ρ(ǫ) + 1)a(u, u), max (1, C 2 0 ) -1 a(u, u) ≤ a(P hy u, u) ≤ max (1, ωρ(ǫ))a(u, u).
and, under the Assumption that ω < 2,

�I -P mu � A ≤ 1 - 2 -ω (2 max (1, ω) 2 ρ(ǫ) 2 + 1)C 2 0 < 1,
In fact, for the hybrid operator it is sufficient that Assumption 2.7 hold on range(I-P 0 ). The additive and hybrid operators P ad and P hy are symmetric so the natural choice is to solve with PCG. As stated in (2.17) the convergence of PCG is bounded with respect to the extreme eigenvalues of the preconditioned operators and these extreme values are in turn related to the Rayleigh quotients in the theorem so the two first results in Theorem 2.8 are indeed convergence results. The multiplicative variant P mu is not symmetric. Rather than a preconditioned operator to be solved with an iterative method it is the generalized discrete variant of the Alternating Schwarz method (2.2) and would typically be solved by a Richardson iteration. The norm in the theorem is the A-norm of the error propagator which is indeed relevant to the convergence behavior of the algorithm.

Assumption 2.5 is usually proved using the following Lemma and then the constant ρ(ǫ) in the convergence results depends only on the geometry of the partition (but not on the number of subdomains). Lemma 2.9. Suppose that the local subspaces V i , i = 1, . . . , N have been colored in such a way that two subspaces V k and V l which have the same color are orthogonal

P k P l = P l P k = 0
and that this required N C colors. Then Assumption 2.5 holds and ρ(ǫ) ≤ N C .

For the proofs of all of these results and more detail on the Abstract Schwarz framework we, again, refer the reader to [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF](Chapter 2).

The Additive Schwarz preconditioner introduced in Subsection 2.1.1 is P ad for an empty coarse space V 0 = ∅ and exact solvers on each of the local subspaces: i.e. ãi is defined according to (2.24). Assuming that we have chosen a non empty coarse space V 0 we define the two level Additive Schwarz preconditioner as follows.

Definition 2.10. The two level Additive Schwarz preconditioner is the Additive preconditioner where exact solvers are used on all subspaces

M -1 := N � i=0 R ⊤ i A -1 i R i ; A i := R i AR ⊤ i . (2.32)
Remark 2.11. Since the local solvers are all exact solvers Assumption 2.6 is automatically satisfied with ω = 1. Then, by Lemma 2.9 and Theorem 2.8 the condition number of M -1 A depends only on the stable splitting property (Assumption 2.7) and the condition number of M -1 A is bounded by C -2 0 (N C + 1). To simplify things further, in this expression the number N C of colors can be replaced by the maximal number of subdomains to which one element of the mesh belongs [25, Section 4].

Coarse spaces based on the zero energy modes

We introduce the most simple family of coarse spaces. They are based on the kernels of the local problems (by this we mean the problem restricted to a subdomain). It is by now common knowledge that a good coarse space should at least contain these zero energy modes. In some cases (FETI or preconditioned BDD) handling the zero energy modes is an absolute requirement.

Two level Additive Schwarz, Nicolaides and Partition of unity coarse spaces

Considering the Poisson problem on Ω, Nicolaides proposed as early as 1987 [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] to accelerate convergence by partitioning the domain Ω into non overlapping subdomains Ω * i , i = 1, . . . , N and using the space of functions which are constant on each of these subdomains as a coarse space:

V N ICO 0 = span(1 Ω * 1 , . . . , 1 Ω * N ), where 1 Ω * i is the indicator function of Ω * i .
There is however a significant drawback with the Nicolaides coarse space: the basis functions have an energy of the order H/h where H is the subdomain size and h is the mesh size. For this reason it is unrealistic to hope that the convergence of the resulting two level method will not depend on the mesh size. The solution is to make the basis functions decrease as smoothly as possible in the overlap.

In [START_REF] Sarkis | Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] Sarkis introduces and analyzes a Partition of unity coarse space (spanned by one basis function per subdomain) for which the two level Schwarz method applied to the Poisson problem converges independently of the mesh size and the number of subdomains. More precisely the condition number depends only linearly on the relative portion of a subdomain that is overlapped by others:

κ(M -1 A) ≤ C � 1 + H δ � , (2.33) 
where H is the subdomain size, δ is the width of the overlap and C is a constant that depends on the geometry of the partition but not on H, δ or the mesh size h. Some additional assumptions on the shape of the domains are required. We refer to [START_REF] Sarkis | Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] (or [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF](Lemma 3.24)) for the construction of the Partition of unity coarse space in a general framework and the proof of this result. In the case where the mesh is regular the basis function for a given i = 1 . . . , N takes the value 1 in the part of Ω i that is not overlapped by other subdomains, 0 outside Ω i and it decreases linearly from 1 to 0 in the overlap.

The main reason why the functions that are piecewise constant in the interior of each subdomain need to be in the coarse space is what is referred to in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] as the quotient space argument. A crucial argument in the proof of convergence is the Poincaré inequality: assume that 1 ≤ p ≤ ∞ and that Ω is a bounded connected open subset of R n with a Lipschitz boundary. Then there exists a constant C depending only on Ω and p such that every function u in the Sobolev space W 1,p ( Ω) satisfies

�u -u Ω� L p ( Ω) ≤ C�∇u� L p ( Ω) ; u Ω = 1 | Ω| u(y)dy.
Thanks to the Partition of unity coarse space, this inequality (for p = 2) can be applied to local functions with zero mean value. 

= 1.
We make the number of subdomains and the jump in the coefficient vary through α 2 (coefficient in material 2) and report the number of iterations needed to reach convergence (top) and the estimate for the condition number of the preconditioned operator based on the Ritz values (bottom).

Finally we illustrate the efficiency of the Partition of unity coarse space numerically. We run the same robustness test as in Table 2.1 with the two level preconditioner and display the results in Table 2.2, we observe that in the case where the coefficients are constant (α 2 = α 1 = 1) or almost constant (α 2 = 100) the convergence no longer deteriorates with the number of subdomains. However the Partition of unity coarse space does not contain enough information to ensure that the method is robust even with large jumps in the coefficients.

BDD, FETI and the Rigid body mode coarse space Recall from (2.11) and (2.12) that the BDD formulation of the elasticity problem is

� N � i=1 R ⊤ i S i R i � ûΓ = N � i=1 R ⊤ i fi preconditioned by M -1 = N � i=1 � R ⊤ i S -1 i � R i .
We have assumed that the inverse S -1 i is defined. This is usually not the case so the general form of the BDD preconditioner should rather be

� � N i=1 � R ⊤ i S † i � R i � with S † i a pseudo-inverse of S i . Since S †
i is only defined on range(S i ) it is necessary to introduce projection operators to ensure that the residuals remain in this space. This is done using a hybrid preconditioner (2.

30). If the weighted operators

� R ⊤ i are equal to R ⊤ i D -1
i for a diagonal matrix D i then the general form of the Balancing Domain Decomposition operator [START_REF] Mandel | Balancing domain decomposition[END_REF] is

P bdd = P 0 + (I -P 0 ) � N � i=1 � R ⊤ i S † i � R i � � N � i=1 R ⊤ i S i R i � � �� � := Ŝ (I -P 0 ), (2.34) 
where the coarse projector P 0 , coarse interpolation operator R ⊤ 0 : V 0 → V and coarse space V 0 are defined as

P 0 := R ⊤ 0 S -1 0 R 0 Ŝ, S 0 := R 0 ŜR ⊤ 0 , V 0 := range(R ⊤ 0 ) = N � i=1 R ⊤ i D i (Ker(S i )) .
We call V 0 the rigid body mode coarse space because for elasticity the kernel of S i is the trace of the rigid body modes of Ω i on the boundary.

For FETI things are slightly more complicated. Indeed recall from (2.15) and (2.16) that the FETI formulation of the elasticity problem is

� N � i=1 B i S -1 i B ⊤ i � λ = N � i=1 B i S -1 i fi preconditioned by M -1 = N � i=1 � B i S i � B i .
As soon as one of the S i is singular the reformulation of the problem must be adapted.

Indeed if R ⊤ i is an interpolator from R dim(Ker(S i )) into the kernel of S i then u Γ i = S -1 i ( fi - B ⊤ i λ) in (2.14
) must be replaced by

u Γ i = S † i ( fi -B ⊤ i λ) + R ⊤ i α i , α i ∈ R dim(Ker(S i )) .
We do not wish to go into the details here, they will be presented in Chapter 5. What is important is that even in the case where S is singular it is possible to rewrite the elasticity problem as a problem on the interfaces forces. The main difference is that the interface forces no longer live in the whole of U = range

� � N i=1 B i � but rather in the subset of admissible constraints {λ ∈ U ; G ⊤ λ = N � i=1 R ⊤ i fi } with G := N � i=1 B i R ⊤ i .
For this reason, the iterative solver for FETI is the Projected Preconditioned Conjugate Gradient algorithm (PPCG): it is initialized with an initial guess λ 0 which satisfies the constraint (

G ⊤ λ 0 = � N i=1 R ⊤ i fi
) and then the search directions are all projected into the space Ker(G ⊤ ) so that all subsequent approximations also satisfy the constraint. If P is a projection operator onto Ker(G ⊤ ) the preconditioned FETI operator is

P � N � i=1 � B i S i � B i � � �� � M -1 P ⊤ � N � i=1 B i S -1 i B ⊤ i � � �� � :=F .
Another big difference with Additive Schwarz and BDD is that we cannot use an exact solver in the definition of projection P in order to get an F -orthogonal projection. Indeed the whole point of P is to project out of the space where the FETI operator F is not defined. Instead we use the next best direction available, namely (M -1 ) -1 . More precisely the projection operator is

P = I -M -1 G � G ⊤ M -1 G � -1 G ⊤ ,
and it is (M -1 ) -1 -orthogonal.

The resulting problem is usually solved with the projected preconditioned conjugate gradient algorithm (PPCG) algorithm. Algorithm 2.2 PPCG: Projected Preconditioned Conjugate Algorithm for P M -1 P ⊤ F λ = P M -1 P ⊤ d (where d := BS † f is the right hand side for FETI)

λ 0 := M -1 G � G ⊤ M -1 G � -1 � N i=1 R ⊤ i fi r 0 := P ⊤ (d -F λ 0 ); z 0 := M -1 r 0 ; p 0 := z 0 for j = 0, 1, . . . until convergence do p j := P p j α j := �r j , z j �/�F p j , p j � λ j+1 := λ j + α j p j r j+1 := r j -α j P ⊤ F p j z j+1 := M -1 r j+1 β j := �r j+1 , z j+1 �/�r j , z j � p j+1 := z j+1 + β j p j end for
The PPCG algorithm can of course be used for any Hybrid Schwarz type operator (2.30). For a detailed study of the variants of CG available for this problem see [START_REF] Tang | Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods[END_REF][START_REF] Klawonn | Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results[END_REF].

Recall that for Additive Schwarz with the Partition of unity coarse space applied to the Poisson problem the convergence bound doesn't depend on the number of subdomains (see (2.33)), instead it depends on the amount of overlap H/δ. For the scalar elliptic problem, FETI is by construction equipped with a second level related to the kernel of S which turns out to be the trace of the constant function on the boundaries of the subdomains. For this reason it is quite natural that, once more, the condition number of the preconditioned operator depends only weakly on the number of subdomains [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF] through the number of elements in one subdomain:

κ(P M -1 P ⊤ F |range(P ) ) ≤ C � 1 + log � H h �� 2 , (2.35) 
where H is the subdomain size and h is the mesh size. Some regularity assumptions on the subdomains are required.

Analytical coarse spaces

There are a number of problems for which a good, if not the optimal, choice for the coarse space is available in the literature. Here we give a brief review of some of the contributions that propose such an analytical coarse space.

Coarse spaces based on the coefficient distribution For some families of heterogeneous media, coarse spaces have been proposed that are adapted to the heterogeneities. For the scalar elliptic problem in binary media (only two different materials) we refer to [START_REF] Vuik | An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients[END_REF], [START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF] and the very many references therein. In [START_REF] Vuik | An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients[END_REF] the authors consider the same problem as the one in Figure 2.5. Their objective is to apply a Projected Preconditioned Conjugate Gradient method to solve this problem. Instead of a Domain Decomposition preconditioner they use an incomplete Cholesky preconditioner but its behaviour is related to the Additive Schwarz preconditioner because both these preconditioners deal well with high frequency components and encounter problems for the low frequency ones. Their conclusion is that the coarse space must consist of as many vectors as there are high coefficient layers. In [START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF] a coarse space is proposed with one coarse basis vector per subdomain. It is proved that this coarse space is sufficient to take care of all heterogeneities as long as they are small islands that only intersect the boundary of the subdomain once.

Other Coarse spaces For FETI the first coarse space was introduced in [START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF] to achieve scalability even for time dependent problems in mechanics. These problems usually have a zero order term and so the local operators are non singular and there is no natural coarse space enticed by the rigid body modes. The authors in [START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF] propose to use the rigid body modes to define a coarse space anyway.

Another problem for which research of a coarse space was very active is the case of very thin domains. In [START_REF] Farhat | The two-level FETI method for static and dynamic plate problems. I. An optimal iterative solver for biharmonic systems[END_REF] for FETI a coarse space is proposed for plates and then adapted in [START_REF] Farhat | The two-level FETI method. II. Extension to shell problems, parallel implementation and performance results[END_REF] to shells. For BDD a coarse space for plate and shell problems is introduced, analyzed theoretically and tested numerically in [START_REF] Le Tallec | A Neumann-Neumann domain decomposition algorithm for solving plate and shell problems[END_REF].

Finally we mention that for the linear elasticity equations [START_REF] Dohrmann | An overlapping Schwarz algorithm for almost incompressible elasticity[END_REF] proposes a coarse space for the two level Schwarz method with guaranteed convergence even in the incompressible limit. In [START_REF] Dohrmann | Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity[END_REF] the same authors further reduce the size of the coarse space and also prove a convergence bound that is independent of the material properties. For FETI, a conclusion has been reached by [START_REF] Vereecke | An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems[END_REF] and more recently analyzed in [START_REF] Gippert | Nonlinear domain decomposition, adaptive coarse spaces, and a new coarse space for almost incompressible linear elasticity[END_REF]: one coarse vector per subdomain ensures robustness with respect to the almost incompressible behaviour.

Our objective

The coarse spaces which we have just mentioned are optimal in the sense that, for a given partition into subdomains and a given problem, we can't hope to achieve robustness with respect to the particular difficulties in the problem by using a smaller coarse space. The drawback is that the spaces cannot be built automatically without prior knowledge of the particular challenges which must be tackled. Our ambition throughout this manuscript is to design coarse spaces which can deal with all kinds of heterogeneities as well as other difficulties and are built automatically without requiring the knowledge of the underlying set of partial differential equations. In cases where the optimal results apply they are good points of comparisons for the new methods. In particular we will test our methods on cases with heterogeneous coefficients and elasticity in the incompressible limit. Generalized eigenvalue problems will be a crucial tool.

Coarse spaces that rely on generalized eigenvalue problems

How generalized eigenvalue problems can help Once a domain decomposition method has been reformulated to fit the Abstract Schwarz framework proving that it converges comes down to ensuring that the local solvers are stable (Assumption 2.6) and that each vector admits a stable splitting (Assumption 2.7). These are inequalities between energy norms and we can ensure robustness by making sure that they hold with constants that do not depend on any of the parameters with respect to which we want the method to be robust. With this in mind we explain why generalized eigenvalues problems will be one of the most crucial tools in the automatic construction of our robust domain decomposition methods. First we define generalized eigenvalue problems.

Definition 2.12 (Generalized eigenvalue problem). Let �

A and � B be two symmetric matrices in R n×n . Then the generalized eigenvalues associated with the 'pencil' ( � A, � B) are the λ ∈ R ∪ {+∞} which satisfy:

-either λ ∈ R and there exists x ∈ R n \{0} such that

� Ax = λ � Bx, (2.36) 
-or λ = +∞ and there exists x ∈ R n \{0} such that � Bx = 0, and � Ax � = 0.

In both cases x is called a generalized eigenvector associated with the generalized eigenvalue λ and (λ, x) is a generalized eigenpair of pencil ( Ã, B).

The definition above allows for infinite eigenvalues. This can be better understood by realizing that if (+∞, x) is an eigenpair for the pencil ( � A, � B) then (0, x) is an eigenpair for the pencil ( � B, � A) and there is no reason to discriminate between both formulations. In cases where the matrices are symmetric and � B is non singular there are no infinite eigenvalues and crucial properties on the eigenvalues and eigenvectors arise. Lemma 2.13. Let à ∈ R n×n be a symmetric matrix and B ∈ R n×n be a symmetric positive definite matrix. Then the set of generalized eigenvectors {x k } k=1,...,n associated with pencil ( Ã, B) can be chosen so that they form a B-orthonormal basis of R n :

�x k , Bx k � = 1, for all k = 1, . . . , n and �x k , Bx l � = 0, for all k, l = 1, . . . , n; k � = l.
Then, for every k = 1, . . . , n the following also holds

�x k , Ãx k � = λ k , and �x k , Ãx l � = 0, for all l = 1, . . . , n; l � = k.
Proof. Most of this proof is a rewrite of [START_REF] Leborgne | Diagonalisation : valeurs propres, valeurs propres généralisées[END_REF]. It is a well known result, for any real symmetric matrix M ∈ R n×n , that there exists an orthonormal basis {y k } k=1,...,N of R n which consists of eigenvectors y k of M . This can be written as:

M y k = λ k x k ; �y k , y k � = 1; and �y k , y l � = 0, if k � = l. (2.37) 
The way to prove the lemma is to reduce generalized eigenvalue problem (2.36) to a classical one. First of all notice that writing the problem as B-1 Ãx k = λ k x k does not help because there is no reason for the product B-1 Ã to be symmetric. Instead we use the fact that, since B is symmetric positive definite, it admits a Cholesky factorization: B = LL ⊤ ; where L is a lower triangular (invertible) matrix.

Then (2.36) wan be rewritten as M y k = λ k y k for M = L -1 ÃL ⊤ -1 , y k = L ⊤ x k . Assume that the y k have been chosen in order for (2.37) to hold, then the set of x k = (L ⊤ ) -1 y k is the basis of R n that we are looking for since it satisfies the following conditions:

Ãx k = λ k Bx k ; �x k , Bx k � = 1; and �x k , Bx l � = 0, k � = l.
With this the fact that �x k , Ãx k � = λ k is obvious. For the last property in the lemma, let (λ k , x k ) and (λ l , x l ) be two generalized eigenvectors with k � = l. Assume that λ l � = 0 then

� �x k , Bx l � = 0 and Ãx l = λ l Bx l � ⇒ 1 λ l �x k , Ãx l � = 0 ⇒ �x k , Ãx l � = 0. If λ l = 0 then x l ∈ Ker( Ã) so �x k , Ãx l � = 0 in this case too.
A direct consequence is the result in the following Lemma which lets us foresee how solving a generalized eigenvalue problem for pencil ( Ã, B) will allow us to find the spaces where Assumptions 2.6 and 2.7 hold.

Lemma 2.14. With the notation introduced in Lemma 2.13 and given a threshold

τ ∈ R + let E 1 = span{x k ; λ k < τ } and E 2 = span{x k ; λ k ≥ τ } then � �x, Ãx� < τ �x k , Bx�, for all x ∈ E 1 , �x, Ãx� ≥ τ �x k , Bx�, for all x ∈ E 2 .

State of the art

In practice solving a generalized eigenvalue problem which involves the global matrix is more expensive than solving the original problem. For this reason before resorting to a generalized eigenvalue problem to find the space where an estimate holds the robustness condition must first be rewritten in local form giving rise to one (local) generalized eigenvalue problem per subdomain. These can then be solved in parallel. To the best of our knowledge this strategy goes back to [START_REF] Brezina | An iterative method with convergence rate chosen a priori[END_REF] where it was used to build an Algebraic Multigrid with aggregation based on elements method for which any targeted convergence rate can be achieved. The ideas behind spectral AMG [START_REF] Chartier | Spectral AMGe (ρAMGe)[END_REF] are also closely related. Since then this has been quite a prolific direction of research. In particular the methods developed in the remainder of this thesis build on these seminal ideas.

More recently, several contributions propose to build coarse spaces for problems with highly heterogeneous coefficients by solving local eigenproblems. However, compared to the earlier work in the AMG context the recent papers all focus on generalized eigenvalue problems. We may distinguish between three sets of methods that all differ by the choice of the bilinear form on the right hand side of the generalized eigenproblem. In [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF], the right hand side is the local mass matrix, or a "homogenised" version obtained by using a multiscale partition of unity. In [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF] the right hand side corresponds to an L 2product on the subdomain boundary, so that the problem can be reduced to a generalized eigenproblem for the Dirichlet-to-Neumann operator on the subdomain boundary. This is the method we present in Chapter 3. It applies to the scalar elliptic problem. The latest set of papers, [START_REF] Scheichl | Weak approximation properties of elliptic projections with functional constraints[END_REF][START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF][START_REF] Mandel | Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods[END_REF][START_REF] Sousedík | Adaptive-Multilevel BDDC and its parallel implementation[END_REF][START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF], uses yet another type of bilinear form on the right hand side, inspired by theoretical considerations. The construction in this last set of papers is particularly interesting because it extends also to other equations such as Stokes, Brinkmann, linear elasticity, or the eddy current problem. In Chapter 4 we present our contribution to this family of methods for the Schwarz preconditioner and then for BDD and FETI in Chapter 5.

In the framework of two level additive Schwarz methods, [START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF][START_REF] Scheichl | Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF] identify the bottleneck for proving a convergence bound which is independent of the jumps in the coefficients to be the so called stable splitting property. Bypassing this bottleneck estimate is the objective behind the choice of many of the aforementioned coarse spaces. All these approaches have their advantages and disadvantages, which depend on many factors, in particular the type of coefficient variations and the size of the overlap. The choice of generalized eigenvalue problem is a delicate compromise between ensuring robustness and a moderate size of the coarse space. In this spirit, for the scalar elliptic equation, [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF][START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF] use multiscale partition of unity functions to eliminate some of the 'bad' eigenmodes a priori. While very effective in the scalar elliptic case, this may prove tricky in cases where there are several PDEs with several jumping coefficients. With the methods in [START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF] (see also Chapter 3 of this manuscript) for the scalar elliptic problem the eigenvalue problem is posed on the interface and this alone resolves many of the complications posed by coefficient variations that trigger non necessary coarse basis vectors. Throughout all of our numerical experiments we will keep a close eye on the size of the coarse space that is constructed automatically.

We mention that there have also been some recent multilevel extensions of some of the above approaches (see [START_REF] Efendiev | Spectral element agglomerate algebraic multigrid methods for elliptic problems with high-contrast coefficients[END_REF][START_REF] Efendiev | Multiscale spectral AMGe solvers for high-contrast flow problems[END_REF][START_REF] Willems | Robust multilevel solvers for high-contrast anisotropic multiscale problems[END_REF][START_REF] Scheichl | Multilevel methods for elliptic problems with highly varying coefficients on nonaligned coarse grids[END_REF]).

Contributions of this Thesis

The subject of this thesis was elaborated in cooperation with the tire manufacturer Michelin following the work [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF]. For a solver in an industrial context robustness is among the most important properties: it must be guaranteed that when a simulation is run it will converge. For this reason the strategy developed in this thesis takes place at the most algebraic level possible: hardly any assumptions are made on the symmetric positive definite problem at hand. This way we are ready to face a wide range of difficulties (in particular heterogeneous coefficients).

Chapter 3 of this thesis focuses on the scalar problems of the type -∇•(α∇u) = f . The coarse space, for Schwarz, is constructed using the low frequency modes of the Dirichlet-to-Neumann operator defined on the boundary of each subdomain. Chapter 4 concentrates once more on the Schwarz preconditioner. We propose and analyze a coarse space which applies to systems of partial differential equations. This is the first coarse space which we call GenEO for Generalized Eigenproblems in the Overlaps. Then, in Chapter 5 we propose to apply the GenEO strategy to build robust FETI and BDD methods. Although the starting point is the same, its application is quite different. In each case we will prove convergence bounds that don't depend on the specific difficulties of the problem and illustrate these results on numerical examples. Chapter 6 describes the behaviour of the GenEO algorithms on elasticity problems in the almost incompressible limit. Finally in Chapter 7 we propose some leads for future work in particular with the objective to improve the GenEO coarse spaces.

The fundamental idea on which this entire work is based is that within an iterative solver, by using well chosen projections, we can separate the problem into two parts: the first is solved with the iterative solver and a specific treatment is applied to the second (a direct solve). In the remainder of this manuscript the main objective will be to identify the part of the solution space on which the iterative solver does a good job. The complementary of this space is responsible for slow convergence and we make it into the coarse space so that it is taken care of by a direct solver.

We are looking for a (not too large) coarse space which is -spanned by local vectors (so that the coarse problem matrix is sparse), -computed automatically, -such that the corresponding two level method is robust. The strategy for the choice of the coarse space is the same throughout the manuscript: using the Abstract Schwarz framework the bottleneck estimate in the convergence proof is derived. Based on this a generalized eigenvalue problem is identified which separates the vectors that are problematic and need to be in the coarse space from the others. This way we can guarantee convergence theoretically.

DtN: a coarse space for the scalar elliptic problem

We present here Chapter 3 in which we focus on the scalar elliptic problem. We build on the work in [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF] which precedes the beginning of this thesis. The contents of Chapter 3 are a rewrite of articles [START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Jolivet | High performance domain decomposition methods on massively parallel architectures with freefem++[END_REF]. More precisely we give the heuristics motivating this particular choice for the coarse space as well as a theoretical analysis that guarantees robustness and some numerical results.

Given a right hand side f , the scalar elliptic problem is: Find u * such that

-∇ • (α∇u * ) = f,
where α : Ω → R + is a coefficient which varies within the domain. Since for now we just want to introduce some ideas we don't give any extra thought to the boundary conditions for the global problem.

Heuristics Consider the case where the domain is divided into slices (all boundaries between subdomains are in one direction only). In Figure 2.7 we present this geometry for the case of three subdomains. Then we apply the alternating Schwarz algorithm (2.2) to this problem. It is easy to prove that the updates of the error e n = |u nu * | satisfy the same algorithm but for the homogeneous problem. In particular each update of the error e 2 in subdomain Ω 2 satisfies (using notation from Figure 2.7):

-∇ • (α∇e n+1 2 ) = 0, e n+1 2 (A, y) = e n+1 1 (A, y), e n+1 2 (D, y) = e n 3 (D, y).
(2.38)

Figure 2.8 shows the successive updates of the error in Ω 2 and its neighbours. The general behaviour at each step is known since, by the maximal principal, e n+1 2 decreases in the interior of the subdomain with boundary conditions at x = A and x = D which are prescribed by the neighbours. As shown in the figure, convergence can be either fast or slow depending on whether the solutions of the local problems decrease rapidly or slowly in the overlap. (We recall here that since we are considering the error, our objective is to drive it to zero.) It is on this observation that the construction of the DtN coarse space relies: in each subdomain we want to isolate the components of the error which, for a given Dirichlet condition, decrease slowly inside the subdomain and thus pass on to their neighbours a boundary condition that is barely improved.

Under the assumption that the overlap is narrow a reasonable guess is that when the normal derivative of the error at the boundary of the subdomain is large then the boundary condition which is passed on to the neighbours is closer to zero.

Definition of the DtN coarse space

The Dirichlet-to-Neumann operator evaluates just the desired quantity. Indeed for a domain Ω j it is defined as follows.

Definition 2.15. Let tr j α be the trace of coefficient α in Ω j on the boundary Γ := ∂Ω j of subdomain Ω j and n j be the unit outward normal to Ω j on Γ. For any function v

Γ : Γ → R such that v Γ|∂Ω = 0 if Γ ∩ ∂Ω � = ∅ we define DtN j (v Γ ) := tr j α ∂v ∂n j � � � � � Γ , where v is the solution of � -∇ • (α∇v) = 0 in Ω j v = v Γ on Γ . (2.39)
In other words, given a function defined on Γ, the DtN operator extends it harmonically to the interior of the subdomain and returns the normal derivative of the extension at the boundary.

In order to fulfill this definition, the procedure for building the coarse space is the following:

1. Compute (in parallel over the subdomains) the generalized eigenvalues λ and generalized eigenvectors v Γ of DtN j (v Γ ) = λ tr j α v Γ .

2. Select the eigenvectors that correspond to an eigenvalue smaller than 1/diam(Ω j ) (the inverse of the diameter of the subdomain). 3. Extend these eigenvectors harmonically to the interior of the subdomain.

4. Multiply by a partition of unity function, reinterpolate into the finite element space and extend by zero to the whole of Ω.

Theoretical Result

By building the coarse space this way we can ensure that the resulting two level Schwarz method will converge independently of almost all parameters in the problem.

Theorem 2.16. Under an assumption on α the condition number of A preconditioned by two level Additive Schwarz with the DtN coarse space satisfies

κ(M -1 AS,2 A) � � C 2 P + N max j=1 diam(Ω j ) δ j � .
The constant hidden in the symbol � doesn't depend on the mesh size h, the overlap size δ j , the size of the subdomain diam(Ω j ) or on the choice of α. More detail on the constant C P is given in the caption of Figure 2.9.

The reason for the assumption on the coefficient distribution is that the proof requires applying weighted Poincaré inequalities [START_REF] Pechstein | Weighted Poincaré inequalities[END_REF]. It is not very restrictive and always satisfied in the case of minimal overlap (i.e. the size δ j of the overlap is equal to the mesh size). The case where the inequality does not apply is exactly the case where, because of α, the value of the normal derivative on the boundary of the subdomain is not correlated to the decay of the error in the overlap and thus, even by controlling the normal derivative, it cannot be guaranteed that a good transmission condition will be given to the neighbouring subdomain.

Fast convergence Slow convergence

First update: First Update:

Second update: Second Update:

Third update: Third Update: As usual with the Schwarz preconditioner and as we have already stated (see Remark 2.11) most of the proof consists in proving the existence of a stable splitting of any global vector onto the local subspaces and the coarse space (Assumption 2.7).

Numerical Results Now we illustrate the efficiency of the DtN coarse space. Table 2.3 presents the results of the robustness test which we already put the one level Schwarz preconditioner and the two level Schwarz preconditioner with the Partition of unity coarse space through. We observe that this time robustness is achieved. The number of vectors that are selected for the coarse space in each subdomain is equal to the number of layers where α is large (three in our case). This is the optimal choice (see [START_REF] Vuik | An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients[END_REF][START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF] or the discussion in Subsection 1.2.3). In Chapter 3 we present a more elaborate series of tests.

GenEO: a coarse space for the Additive Schwarz method

In Chapter 4 we build a coarse space which allows us to guarantee convergence for a larger range of symmetric positive definite matrices. This work is the object of publications [START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF].

Ideas We explain here the ideas which led to the construction of the GenEO coarse space and refer to Chapter 4 for a rigorous presentation. The proof of convergence for the DtN coarse space relies on two arguments that cannot be generalized easily to the case of systems of partial differential equations:

-Weighted Poincaré inequalities make it possible to derive estimates between a norm on the boundary of the subdomain (which we know to be bounded as a result of the generalized eigenvalue problem) and a norm in the overlap (which we need for the proof), -a stability property for the finite element interpolator (with respect to the Euclidean norm and also the operator norm) is required because each time a function is multiplied by the partition of unity, the result χ j u j must be interpolated into the finite element space. The generalized eigenvalue problem which we have elaborated incorporates both of these obstacles directly into its definition. Indeed one of the bilinear forms in the pencil is defined on the overlapping zone between two subdomains and it is weighted by the partition of unity operator. This way the estimate that follows from the definition of the eigenproblem and Lemma 2.13 bypasses the two arguments in the proof for the DtN coarse space that we were unable to generalize.

Definition of the GenEO coarse space

The definition of this coarse space is also presented in a poster in the Appendix of this thesis. The poster was presented at the conference Special Semester on Multiscale Simulation and Analysis in Energy and the Environment at RICAM in Linz (Austria) in November 2011.

We have called the coarse space GenEO for "Generalized Eigenvalues in the Overlaps". These letters also appear in the word HeteroGenEOus which is an amusing coincidence. In order to define the GenEO coarse space we need to introduce some elements of notation which are of course defined rigorously in Chapter 4:

-For every domain D ⊂ Ω that is resolved by the mesh, V h (D) is the set of restrictions to D of all finite element functions, -for every domain D ⊂ Ω that is resolved by the mesh, V h,0 (D) is the set of restrictions to D of all finite element functions that are supported in D, -for every domain D ⊂ Ω that is resolved by the mesh, the bilinear form a D : D×D → R + is obtained by assembling all element matrices corresponding to the elements in D, -Ω • j is the part of Ω j that is overlapped by at least one other subdomain, -for j = 1, . . . , N ; Ξ j : V h (Ω j ) → V h,0 (Ω j ) is a family of functions that form a partition of unity subordinate to the partition into subdomains. Notice that these functions directly return a finite element function so there is no need for interpolation after applying the partition of unity.

Definition 2.17 (GenEO Coarse Space). For each subdomain j = 1, . . . , N , solve the following generalized eigenvalue problem: find (λ, p) such that

a Ω j (p, v) = λ a Ω • j (Ξ j (p), Ξ j (v)), ∀ v ∈ V h (Ω j ).
(2.40)

For each j = 1, . . . , N , let (p k j ) m j k=1 be a set of eigenvectors of (2.40) that correspond to the m j lowest eigenvalues. The coarse space is defined as

V H := Vect{R ⊤ j Ξ j (p k j ) : k = 1, . . . , m j ; j = 1, . . . , N }.
Theoretical Result With this coarse space the two level Additive Schwarz method converges independently of the number of subdomains and the parameters in the problem as is guaranteed by the following theorem.

Theorem 2.18. The condition number of matrix A preconditioned by two level Schwarz with the GenEO coarse space is bounded by

κ(M -1 AS,2 A) ≤ (1 + k 0 ) � 2 + k 0 (2k 0 + 1) max 1≤j≤N � 1 + 1 λ m j +1 j �� ,
where the constant k 0 depends only on the geometry of the problem (but not on the number of subdomains) and is defined as in Lemma 2.9.

We refer to Chapter 4 for the exact assumptions under which this result applies. They are not very restrictive. We notice that perhaps the most important quantity in this estimate is λ m j +1 j , the smallest eigenvalue not to have been selected for the coarse space. One possibility is to use the test λ k j < δ j /diam(Ω j ) to select the vectors for the coarse space. Then the quantity in the estimate is diam(Ω j )/δ j as for the DtN coarse space:

κ(M -1 AS,2 A) ≤ (1 + k 0 ) � 2 + k 0 (2k 0 + 1) max 1≤j≤N � 1 + diam(Ω j ) δ j �� , .
Numerical results With this choice of the selection process we submit GenEO to the same robustness test as DtN and before that the Partition of unity coarse space and the one level preconditioner. As for DtN as many modes as there are layers where α is large (three) are selected and, thanks to the choice of the coarse space, the two level solver is robust as testified by the results in Table 2.4.

Generalization of GenEO to substructuring methods

We give here a brief summary of the contributions presented in Chapter 5. They are the subject of publication [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF] as well as the shorter note [START_REF] Spillane | Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method[END_REF].

Once more the idea is to rely heavily on the Abstract Schwarz framework to find which estimate in the convergence proof of FETI and BDD requires strong assumptions. The main difference with GenEO for Schwarz is that this time it is the stability of the local solvers (Assumption 2.6) which will determine the choice of the eigenvalue problem while the existence of a stable splitting (Assumption 2.7) is trivial on the entire solution space thanks to the presence of partition of unity operators in the preconditioners.

The major part of the theoretical study consists in reformulating Assumption 2.6 to find the right eigenvalue problem. Once it has been identified, and given a threshold τ , the coarse space is constructed by selecting all the generalized eigenvectors that correspond to an eigenvalue smaller than τ . Thanks to this we are able to prove that the condition numbers of the two level preconditioned BDD and FETI operators are bounded by N τ where N denotes the maximal number of neighbours of a subdomain. For BDD the eigenvalue problem stems quite naturally from the formulation of BDD in the abstract Schwarz framework. For FETI the procedure is more complex since it is on the transpose F M -1 of the preconditioned operator (which has the same spectrum as M -1 F ) that we have worked. The result can be written not only for the Dirichlet preconditioner that we've already introduced but also for the, cheaper, Lumped preconditioner.

At the end of Chapter 5 numerical results illustrate the behaviour of the method for FETI.

Application to elasticity in the almost incompressible limit

The results obtained with the Schwarz preconditioner and the GenEO coarse space are very satisfying for many problems. Unfortunately there remained one obstacle: the Schwarz preconditioner is so poor for elasticity problems in the almost incompressible limit that our automatic selection procedure leads to a coarse space that spans the whole range of displacements in the overlapping zone. Since our methods must apply to the Michelin simulations we could not ignore this: tires are essentially made of rubber which is the textbook example for an almost incompressible material.

In Chapter 6 we show numerically that contrary to Schwarz-GenEO, FETI-GenEO deals fine with almost incompressible problems. Here we explain how we got the intuition that it was necessary to change solver altogether.

Fourier analysis for the Schwarz Method We consider the case where Ω = R 2 and the domain is partitioned into two half planes Ω 1 = {(x, y); x < δ} and Ω 2 = {(x, y); x > 0}. The width of the overlap is δ > 0.

In two dimensions the (expanded) linear elasticity equations with constant coefficients write for the vector unknown u = (u, v) T and right hand side

f = (f 1 , f 2 ) ⊤ as follows � -µΔu -(λ + µ)∂ x ∇ • (u) = f 1 , -µΔv -(λ + µ)∂ y ∇ • (u) = f 2 , (2.41) 
where λ and µ can be defined with respect to the Lamé parameters

λ := Eν (1 + ν)(1 -2ν) , µ := E 2(1 + ν) .
Given the particularly simple geometry of the domain we may apply a Fourier transform in the y direction which allows us to write the problem as:

� -(2µ + λ)∂ xx û + k 2 µû -ik(λ + µ)∂ x v = f1 , k 2 (2µ + λ)v -µ∂ xx v -ik(λ + µ)∂ x û = f2 .
(2.42)

For a given k > 0, this is an ordinary differential equation which solution (obtained via Maple) is

         û (x) = a 1 e -kx + a 2 e -kx x + a 3 e kx + a 4 e kx x, v (x) = -i(µ a 1 ke -kx +µ a 2 ke -kx x-3 µ a 2 e -kx -µ a 3 ke kx -µ a 4 ke kx x-3 µ a 4 e kx ) k(µ+λ) + -i(kλ a 1 e -kx +kλ a 2 e -kx x-λ a 2 e -kx -kλ a 3 e kx -kλ a 4 e kx x-λ e kx a 4) k(µ+λ) , (2.43) 
with a 1 , a 2 , a 3 and a 4 (complex) integration constants. Denote by (û 1 , v1 ) the solution of this problem restricted to subdomain Ω 1 (x < δ) and by (û 2 , v2 ) the solution of this problem restricted to subdomain Ω 2 (x > 0). By a classical argument we know that û1 and v1 must be bounded at -∞ and that û2 and v2 must be bounded at +∞. With this we can eliminate half of the terms in (2.43):

           û1 = (a 1 + b 1 x)e kx , v1 = i (a 1 µk+b 1 µkx+3b 1 µ+a 1 λk+b 1 λkx+b 1 λ)e kx k(µ+λ) , û2 = (a 2 + b 2 x)e kx , v2 = i (a 2 µk+b 2 µkx+3b 2 µ+a 2 λk+b 2 λkx+b 2 λ)e kx k(µ+λ) . (2.44)
Comparison between four types of transmission conditions In order to find the solution of the global problem we use the alternating Schwarz algorithm (2.2): the problem is solved alternately in each of the subdomains using values of the local solution that was just computed by the neighbour as boundary conditions. We generalize the classical algorithm (2.2) by considering four different types of transmission conditions: (A) continuity of the displacements (normal and tangential), (B) continuity of the constraints (normal and tangential), (C) continuity of the normal constraint and tangential displacement, (D) continuity of the tangential constraint and normal displacement.

         (A) u n+1 1 (δ, y) = u n 2 (δ, y), v n+1 1 (δ, y) = v n 2 (δ, y), u n+1 2 (0, y) = u n 1 (0, y), v n+1 2 (0, y) = v n 1 (0, y).          (B) σ 1 n+1 n (δ, y) = σ 2 n n (δ, y), σ 1 n+1 t (δ, y) = σ 2 n t (δ, y), σ 2 n+1 n (0, y) = σ 1 n n (0, y), σ 2 n+1 t (0, y) = σ 1 n t (0, y).          (C) v n+1 1 (δ, y) = v n 2 (δ, y), σ 1 n+1 n (δ, y) = σ 2 n n (δ, y), v n+1 2 (0, y) = v n 1 (0, y), σ 2 n+1 n (0, y) = σ 1 n n (0, y).          (D) u n+1 1 (δ, y) = u n 2 (δ, y), σ 1 n+1 t (δ, y) = σ 2 n t (δ, y), u n+1 2 (0, y) = u n 1 (0, y), σ 2 n+1 t (0, y) = σ 1 n t (0, y).
where: By the same argument as for the heuristic analysis of DtN, the updates of the error satisfy the same equations as the iterative scheme but for the homogeneous problem. For this reason in what follows a good solving scheme is one which converges to zero rapidly.

σ n = (2µ + λ) ∂u ∂x + λ
With well chosen changes of variables and the use of Maple we can describe the values of the constants a 1 and b 1 through an iteration matrix that, when applied to the values of a 1 and b 1 at iteration n -1, returns the values of a 1 and b 1 at iteration n + 1:

� a n+1 1 b n+1 1 � = M � a n-1 1 b n-1 1 � .
(2.45)

Since Ω 1 and Ω 2 are interchangeable the coefficients for Ω 2 also satisfy this equation. Of course M depends on the choice of the transmission conditions. In the case where they are mixed ((C) or (D)) the iteration matrix takes a simple form:

M C or D = � e -2 kδ -2 δ e -2 kδ 0 e -2 kδ

�

In the two other cases the matrices are a lot more complicated. For this reason, from now on we focus on their two eigenvalues eig 1 and eig 2 indexed by A, B, C or D keeping in mind that convergence is good when these eigenvalues are close to zero and it is bad when they are close to 1. We get

       eig A1 = � 1 + 2 (δk) 2 (3-4ν) 2 + 2 � (δk) 2 (3-4ν) 2 + (δk) 4 (3-4ν) 4 � e -2 kδ , eig A2 = � 1 + 2 (δk) 2 (3-4ν) 2 -2 � (δk) 2 (3-4ν) 2 + (δk) 4 (3-4ν) 4 � e -2 kδ .
(2.46)

   eig B 1 = � 1 + 2 δ 2 k 2 + 2 √ δ 2 k 2 + δ 4 k 4 � e -2 kδ , eig B 2 = � 1 + 2 δ 2 k 2 -2 √ δ 2 k 2 + δ 4 k 4 � e -2 kδ . (2.47) � eig C 1 = eig C 2 = eig D1 = eig D2 = e -2 kδ := eig C := eig D . (2.48)
The following remarks are straightforward:

- eig A1 > eig C = eig D > eig A2 , (2.49) 
and

eig B 1 > eig C = eig D > eig B 2 .
(2.50)

eig B 1 , eig B 2 , eig C = eig D do not depend on the physical parameters λ and µ. They do however depend on the size of the overlap δ and the frequency k. -In all four cases if there is no overlap then the algorithm will not converge and conversely if there is overlap then the eigenvalues are all < 1 and convergence is guaranteed. -The convergence is at its worse (eigenvalues are close to 1) for low frequencies. This is what is expected with a primal domain decomposition method. Study of the incompressible limit The material parameters only have an impact in case (A) when the transmission conditions are pure displacement. In this case the almost incompressible limit is

   lim ν→0.5 eig A1 = � 1 + 2(δk) 2 + 2 � (δk) 2 + (δk) 4 � e -2 kδ , lim ν→0.5 eig A2 = � 1 + 2(δk) 2 -2 � (δk) 2 + (δk) 4 � e -2 kδ . (2.51) 
We observe that lim eig A2 = eig B 2 . For this reason the fact that with choice (B) the eigenvalues do not depend on the Lamé parameters is actually not an advantage: with these pure constraint transmission conditions convergence is always worse than with pure displacement. In Figure 2.10 we plot the two eigenvalues in case (A) with respect to δk for different values of Poisson's ratio. We indeed observe a convergence behaviour when ν approaches 0.5. Finally, in Figure 2.11 we plot the largest of the eigenvalues (also the worst) with respect to Poisson's ratio ν for different values of δk. We focus on values δk ≤ 1 because the problem that we solve is discretized and so the functions cannot 'oscillate' faster than the mesh: the field of frequencies is restrained to k ≤ 1 h . If moreover the overlap is minimal (δ = h) then we indeed find δk ≤ 1.

The conclusion that we draw from this study is that Dirichlet boundary conditions such as the ones implemented in the Schwarz algorithm are not well adapted to the elasticity problem in the almost incompressible limit. The Fourier analysis suggests that using mixed boundary conditions (one displacement component and one constraint displacement) would lead to better performances in the almost incompressible limit. This has already been observed [START_REF] Gosselet | A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems: Application to poroelasticity[END_REF][START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF][START_REF] Pechstein | Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity[END_REF][START_REF] Dolean | Deriving a new domain decomposition method for the Stokes equations using the Smith factorization[END_REF]. We have not continued down this path since it seemed difficult to take advantage of mixed boundary conditions while acting at the algebraic level. For this reason we focused on the substructuring (without overlap) methods that are BDD and FETI.

We find in [START_REF] Nataf | Construction of a new domain decomposition method for the Stokes equations[END_REF] an additional argument in favor of the substructuring formulation. The results in [START_REF] De Roeck | Analysis and test of a local domain-decomposition preconditioner[END_REF] show that for the geometry that we considered (R 2 divided into two half planes), if the substructuring formulation is used with a Richardson iteration then we get an exact solver for the Poisson problem [START_REF] De Roeck | Analysis and test of a local domain-decomposition preconditioner[END_REF]: we find the solution in just one iteration. In the case of the Stokes equation (that is very strongly connected to the mixed formulation of nearly incompressible elasticity) the authors in [START_REF] Nataf | Construction of a new domain decomposition method for the Stokes equations[END_REF] propose an exact solver and show that the classical BDD formulation leads to an algorithm that converges independently of the Lamé parameters.

In Chapter 6 we mention some problems related to the discretization of the almost incompressible elasticity equations but mostly we illustrate the behaviour of our generalized eigenvalue problems on them. In particular we show that with FETI-GenEO one coarse vector per subdomain is sufficient to deal with the almost incompressible behaviour and so our objective is achieved.

Perspectives

To end this manuscript but prepare for the future we present in Chapter 7 some ideas to improve our algorithm or explore their behaviour some more. There are three main directions of research that we mention. First we present how, thanks to the rather abstract formulation that we use, it is possible to extend the GenEO coarse spaces to multilevel methods. This is an important feature in case the GenEO coarse space becomes excessively large. Then we present a different way to build the coarse space where the coarse vectors are no longer selected a priori with an eigenproblem but rather selected on the fly within the conjugate gradient iterations. We call this method Frugal FETI because the idea is to use computational resources frugally. Finally, we present a first result for Frugal FETI on a Michelin test case. This result was obtained with the implementation of Frugal FETI at Michelin that is also a part of this thesis work.

Chapter 3

DtN: a coarse space for the scalar elliptic problem

The contents of this chapter were presented in Section 2.3.1 of the introduction. We have merged the following published work into this chapter:

- [START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF] 

Introduction

We consider the variational formulation of a second order elliptic boundary value problem with Dirichlet boundary conditions: Find u * ∈ H 1 0 (Ω), for a given polygonal (polyhedral) domain Ω ⊂ R d (d = 2 or 3) and a source term f ∈ L 2 (Ω), such that

� Ω α(x) ∇u * (x) • ∇v(x)dx � �� � := a(u * , v) = � Ω f (x)v(x)dx � �� � := �f, v�
, for all v ∈ H 1 0 (Ω).

(3.1)

In the following we often omit the arguments of the functions we integrate and dx. We are interested in the case where the diffusion coefficient α = α(x) is a positive piecewise constant function that may have large variations within Ω. In particular we aim to solve the case where the discontinuities in α are along subdomain interfaces as illustrated in Figure 3.1. In this case classical results break down.

In [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF], Nataf, Xiang and Dolean proposed the construction of a coarse space with the ambition that the two-level method be robust with respect to heterogeneous coefficients for fairly arbitrary partitions into subdomains, e.g. provided by an automatic graph partitioner such as Metis or Scotch [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF][START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF]. The construction is based on the low-frequency modes associated with the eigenvalue problem for the Dirichlet-to-Neumann (DtN) operator on the boundary of each subdomain. It is the harmonic extensions of these lowfrequency eigenvectors to the whole subdomain that span the coarse space. With this method, even for discontinuities along (rather than across) the subdomain interfaces, the solver is robust with respect to arbitrarily large jumps in the coefficients leading to a very efficient, automatic, preconditioning method for heterogeneous problems. As usual with domain decomposition methods, it is also well suited for parallel implementation.

The DtN coarse space is, by construction, ideally designed to deal with coefficient variations that are strictly interior to the subdomain. In this chapter, we recall the definition of the construction of the DtN coarse space in [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF] and prove the robustness of the two-level Additive Schwarz preconditioner with this coarse space. The proof uses weighted Poincaré inequalities to derive some crucial estimates. These were introduced and successfully applied to different domain decomposition methods in [START_REF] Pechstein | Weighted Poincaré inequalities[END_REF][START_REF] Pechstein | Weighted Poincaré inequalities and applications in domain decomposition[END_REF][START_REF] Pechstein | Analysis of FETI methods for multiscale PDEs. Part II: interface variation[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF][START_REF] Scheichl | Multilevel methods for elliptic problems with highly varying coefficients on nonaligned coarse grids[END_REF]. Our analysis is inspired by the approach in [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF], as well as by the abstract framework developed in [START_REF] Scheichl | Weak approximation properties of elliptic projections with functional constraints[END_REF]. The result that we obtain, generalizes the classical estimates of overlapping Schwarz methods to the case where the coarse space is richer than just the kernel of the local operators (which is the set of constant functions) [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF], or other classical coarse spaces (cf. [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]). It is particularly well suited in the small overlap case.

The rest of the chapter is organized as follows. In Section 3.2 we present the model problem and some domain decomposition methods with an emphasis on coarse spaces. In Section 3.3 the DtN coarse space is introduced as well as the heuristics on which it is based. In section 3.4 we give the convergence theorem (Theorem 3.10) and the proof of this result. Finally, in Section 3.5 we present some numerical results.

Preliminaries and notation

Model problem and discretization

We consider a discretization of the variational problem (3.1) with continuous, piecewise linear finite element functions. To define the finite element spaces and the approximate solution, we assume that we have a quasi-uniform, simplicial triangulation T h of Ω:

Ω = � τ ∈T h τ.
The standard space of continuous and piecewise linear (with respect to T h ) functions is then denoted by V h , and the subspace of functions from V h that vanish on the boundary of Ω by V h,0 .

The Galerkin approximation of (3.1) is: Find

u h ∈ V h,0 such that a(u h , v h ) = �f, v h �, for all v h ∈ V h,0 . (3.2) 
Let {φ k } n k=1 be the usual basis for V h,0 consisting of nodal 'hat' functions with n := dim(V h,0 ). Then (3.2) is equivalent to the linear system

Au = f , (3.3) 
where

A k,l := a(φ k , φ l ), f k = �f, φ k �, k, l = 1, .
. . , n, and u is the vector of coefficients corresponding to the unknown finite element function u h in (3.2). We use boldface for vectors and roman for finite element functions. We will frequently switch between bilinear forms and the corresponding matrices (e.g. a(•, •) and A), as well as finite element functions in V h,0 and the vectors of their coefficients in R n (e.g. u h and u).

Two level Additive Schwarz preconditioner

In order to automatically construct robust two-level Schwarz type methods for (3.3) we first partition our domain Ω into a set of non overlapping subdomains {Ω * j } N j=1 using for example a graph partitioner such as METIS or SCOTCH [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF][START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF]. Each subdomain Ω * j is then extended to a domain Ω j by adding a number of adjacent fine grid elements, thus creating an overlapping decomposition {Ω j } N j=1 of Ω. This is illustrated in Figure 3.2. Next we define the local functional spaces. Let D ⊂ Ω be any subset of Ω that is resolved by T h . The space of restrictions to D of the functions in V h is denoted by V h (D)

V h (D) = {v |D ; v ∈ V h }. (3.4)
Similarly, the space of restrictions of functions from V h , which are supported in D is denoted by

V h,0 (D) V h,0 (D) = {v |D ; v ∈ V h , supp(v) ⊂ D}. (3.5)
In particular we have that V h (D) ⊂ H 1 (D) and V h,0 (D) ⊂ H 1 0 (D). The one level Additive Schwarz preconditioner for (3.3) is introduced by defining restriction operators R j from functions in V h,0 to functions in V h,0 (Ω j ) or from vectors in R n to vectors in R n j , where n j := dim (V h,0 (Ω j )). As usual we use simple injection, i.e. for any u ∈ V h,0 we set (R j u)(x i ) = u(x i ) at every grid node x i ∈ Ω j . With this the one-level Additive Schwarz preconditioner is

M -1 AS,1 = N � j=1 R ⊤ j A -1 j R j where A j := R j AR ⊤ j . (3.6) 
In terms of implementation this preconditioner is particularly well suited for preconditioning parallel iterative solvers, such as the conjugate gradient algorithm for (3.3) because all subdomain solves can be carried out independently of each other so M -1 AS,1 is significantly less expensive to compute than A -1 . In terms of performance, a better and more flexible preconditioner is the following. Lets assume that we have a coarse space V H ⊂ V h,0 and a restriction operator R H from V h,0 to V H , the two-level Additive Schwarz preconditioner can be defined just by adding a coarse solve to M -1 AS,1 :

M -1 AS,2 = M -1 AS,1 + R ⊤ H A -1 H R H where A H := R H AR ⊤ H . (3.7) 
For the scalar elliptic problem the coarse space V H classically consists of finite element functions on a coarser triangulation T H of Ω and R H is the canonical restriction from V h,0 to V H . In [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF], Nicolaides defines the interpolator R ⊤ H as follows (assuming that the degrees of freedom have been renumbered)

(R ⊤ H ) ij = � 1, if i ∈ Ω * j , 0, otherwise, ⇔ R ⊤ H =      1 Ω * 1 0 . . . 0 0 1 Ω * 2 . . . 0 . . . . . . . . . . . . 0 . . . 0 1 Ω * N      (3.8)
where, again, the subdomains Ω * j constitute the non overlapping partition of Ω and 1 Ω * j is a vector of all ones whose length is the number of unknowns in Ω * j . Let D j , j = 1, . . . , N , be diagonal matrices which correspond to a partition of unity subordinate to the partition of Ω into subdomains

N � j=1 R ⊤ j D j R j = I .
then the Nicolaides coarse space is adapted to the overlapping partition as follows

R ⊤ H = � R ⊤ 1 diag(D 1 ) | R ⊤ 2 diag(D 2 ) | . . . | R ⊤ N diag(D N ) � , (3.9) 
where diag(D j ) is the vector of the diagonal entries in D j . The length of this vector is the number of unknowns in the overlapping subdomain Ω j . We call this the Partition of unity coarse space and refer to [START_REF] Sarkis | Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] for a particular choice of D j and the corresponding proof of convergence.

Two variants

The two level Additive Schwarz preconditioner (3.7) is only one choice among a family of one and two level domain decomposition methods. Here we present an alternate way to include the coarse correction into the solver and a non symmetric variant for the one level preconditioner. These will be studied numerically in Section 4.5.

The balancing preconditioner As it is nicely presented in [START_REF] Tang | Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods[END_REF] (see also references therein) two-level domain decomposition methods as well as multigrid methods and methods based on deflation are all defined by two ingredients: a full rank matrix R ⊤ H ∈ R n×m whose columns span the m dimensional coarse space and an algebraic formulation of the coarse correction. These techniques imply solving a reduced size problem of order m × m called the coarse problem. The space spanned by the columns of R ⊤ H should contain the vectors responsible for the stagnation of the iterative method since they will be taken care of by the coarse solve (usually a direct solve).

In the next section we come back to the choice of R ⊤ H . For now lets focus on the way to include the coarse problem into the solver. Lets assume that we are given a problem matrix A, a preconditioner M -1 and a coarse interpolator R ⊤ H : V H → V h . The first way to include the coarse space is to proceed additively as we did to build M -1 AS,2 from M -1 AS,1 :

M -1 ad = M -1 + R ⊤ H A -1 H R H , where A H = R H AR ⊤ H . (3.10)
The main advantage is that then the coarse solve can be performed in parallel at the same time as the application of M -1 . Another choice is to apply the coarse correction in a multiplicative way. This is the balancing preconditioner and it was proposed by Mandel [START_REF] Mandel | Balancing domain decomposition[END_REF]. The abstract balancing preconditioner [START_REF] Mandel | Balancing domain decomposition[END_REF] for symmetric systems reads

P BN N = (I -R ⊤ H A -1 H R H A)M -1 (I -AR ⊤ H A -1 H R H ) + R ⊤ H A -1 H R H , where A H = R H AR ⊤ H . (3.11)
This is closely related to the hybrid Schwarz preconditioner in the abstract Schwarz framework (see (2.30) in section 2.2.1 of the introduction). For the preconditioner P BN N , if we choose the initial approximation [112, p.48]: the authors in [START_REF] Tang | Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods[END_REF] define

x 0 = R ⊤ H A -1 H R H f , then the action of (I -AR ⊤ H A -1 H R H ) is not required in practice, see
P ADEF 2 = (I -R ⊤ H A -1 H R H A)M -1 + R ⊤ H A -1 H R H . (3.12)
and prove that with the right initial guess P ADEF 2 and P BN N are equivalent. In particular P ADEF 2 is as robust as P BN N but requires one less coarse solve at each iteration. We mention also that for non symmetric problems the abstract balancing preconditioner is presented in [START_REF] Erlangga | Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices[END_REF].

The restricted additive Schwarz preconditioner In [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF] a variant of the Additive Schwarz preconditioner (3.6) that requires fewer communications between subdomains was introduced. This is the Restricted Additive Schwarz (RAS) preconditioner:

M -1 RAS := N � j=1 R⊤ j A -1 j R j , where once more A j := R j ARj ⊤ , (3.13) 
the interpolation operators R ⊤ j are unchanged and the R⊤ j are their counterparts for the non overlapping partition (assuming the unknowns have been renumbered)

R⊤ j =          . . . 0 I Ω * j 0 . . .          and R j = � . . . 0 I Ω j 0 . . . � ,
where we have denoted with I Ω j (respectively I Ω * j ) the identity matrix whose dimension is the number of unknowns in Ω j (respectively Ω * j ). A simple way to generalize the RAS preconditioner is to replace the R⊤ j corresponding to the non overlapping partition by R⊤ j := D j R j where once more the D j are partition of unity operators (

� N j=1 R ⊤ j D j R j = I).
The reason why in the numerical section we also study the behavior of the DtN coarse space with RAS is that it is expected to converge faster than the symmetric preconditioner. The reason why is explained in [START_REF] Efstathiou | Why restricted additive Schwarz converges faster than additive Schwarz[END_REF]: the Additive Schwarz preconditioner overcorrects the solution in the overlap by adding contributions from multiple subdomains.

Preconditioner M -1

AS is symmetric so the Krylov method of choice is the conjugate gradient (CG algorithm). Preconditioner M -1 RAS is not symmetric so we use GMRES [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF] as a solver.

Using M -1 AS or M -1 RAS , takes care of the very large eigenvalues of the coefficient matrix. The small eigenvalues on the other hand still exist and may hamper convergence. Next we design a coarse space which efficiently deals with them.

DtN coarse space

An ideal choice for the coarse basis would be to use exactly the eigenvectors of M -1 A corresponding to small eigenvalues. However the cost of computing the lower part of the spectrum of a matrix is larger than the cost of solving the linear system so this is not an great plan.

We will look for a coarse interpolator R ⊤ H that consists of local contributions:

R ⊤ H =        W 1 0 • • • 0 . . . W 2 • • • 0 . . . . . . • • • . . . 0 0 • • • W N        , (3.14) 
where the W j are rectangular matrices whose columns are vectors in V h (Ω j ). This way the computation of the basis vectors for the coarse space can be done locally and implemented in parallel. Also, the coarse operator A H = R H AR ⊤ H will be sparse as a result of the sparsity of R ⊤ H , the non zero components of A H corresponding to adjacent subdomains. In the next subsections we give the heuristic motivating the particular choice of W i which we call the DtN coarse space and its rigorous definition.
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Definition of the DtN coarse space

Lets motivate the choice for the DtN coarse space. Because the vectors in the coarse space receive a special treatment (the coarse solve), it is most efficient to span the coarse space with vectors that slow down the convergence of the one level method. The question is: how do we identify these problematic vectors?

The heuristics for the choice of DtN coarse space have already been presented in the introduction (Section 2.3.1). We sum up the main ideas here based on the one dimensional example in Figure 3.3. We consider applying the original alternating Schwarz algorithm (2.2) to this problem. At each step of the algorithm the error e n j in subdomain Ω j is computed by extending harmonically to the interior of the subdomain the boundary conditions that are transmitted by the neighbouring subdomains. By the maximum principle we are ensured that the error is a convex function: in non pathological cases the error decreases in the overlap and the transmission condition that is given to the neighbours is an improved condition. How much this condition is improved by depends on how much the error decreases in the overlap. This is what is illustrated in Figure 3.3: on the left hand side the error decreases faster that on the right leading to a faster convergence.

A good guess is that a fast decay of the error in the overlap is the direct consequence of a large normal derivative of the error on the boundary. This is why the Dirichlet to Neumann map plays such an important role. We introduce it next. To this end, let j = 1, . . . , N and let tr j α(x) := lim sup Ω j ∋y→x α(y), for almost every x ∈ ∂Ω j , denote the trace of α on ∂Ω j . Definition 3.1. Let Γ := ∂Ω j and n j be the unit outward normal to Ω j on Γ. Then for any v

Γ : Γ → R such that v Γ | ∂Ω = 0 if Γ ∩ ∂Ω � = ∅ define DtN j (v Γ ) := tr j α ∂v ∂n j � � � � � Γ , where v is the solution of � -∇ • (α∇v) = 0 in Ω j v = v Γ on Γ . (3.15)
With words, the DtN operator takes boundary data on Γ, computes its harmonic extension v to the whole of Ω j and returns the normal derivative of v on Γ. This is indeed a map between Dirichlet and Neumann data.

Our strategy is to span the coarse space with the low frequency modes of the Dirichlet to Neumann operator DtN j with respect to the weighted l 2 norm on Γ. More precisely the coarse space W j is spanned by the harmonic extensions of the generalized eigenvectors corresponding to the smallest generalized eigenvalues of the following generalized eigenproblem:

DtN j (v Γ ) = λ tr j α v Γ . (3.16) 
For simplicity let us consider an interior subdomain Ω j that does not touch the (Dirichlet) boundary of the global domain Ω. The other case carries through in a similar way. Instead of looking for an eigenpair of equation (3.16) and then computing v, the harmonic extension of v Γ , we directly search for the pair (λ, v). It is straightforward to check that it satisfies:

   -∇ • (α∇v) = 0 in Ω j ,
tr j α ∂v ∂n j = λ tr j α v on Γ .

(3.17)

The step by step construction of the coarse interpolator (at the continuous level) is described in Algorithm 3.1 with the use of partition of unity functions {χ j } N j=1 defined on Ω, subordinate to the overlapping decomposition {Ω j } N j=1 . One particular choice for χ j (for which we prove the convergence theorem) is given later on in (3.25).

Algorithm 3.1 DtN coarse space construction -In parallel for all subdomains 1 ≤ j ≤ N do:

1. Compute the generalized eigenpairs (v 1 j , λ 1 j ), (v 2 j , λ 2 j ), . . . , (v m j j , λ m j j ) ∈ V h (Ω j ) × R of (3.17) such that λ 1 j ≤ . . . ≤ λ m j j < 1/diam(Ω j ) ≤ λ m j+1 j ≤ . . . .

2.

Let the rectangular matrix W j with m j columns be

W j = [I h (χ j v 1 j )| . . . |I h (χ j v m j j )] ,
where I h is the standard nodal interpolator onto the finite element space and χ j is the partition of unity function.

-The global coarse interpolator is

R ⊤ H =        W 1 0 • • • 0 . . . W 2 • • • 0 . . . . . . • • • . . . 0 0 • • • W N        , (3.18) 
The strategy we advocate is to select the generalized eigenvectors such that

λ < 1/diam(Ω j ) (3.19)
where diam(Ω j ) is the diameter of subdomain Ω j . The reason why is that we want to do as well as the classical (Partition of unity) coarse space in the constant coefficient case. In that case, for a shape regular subdomain, the first non zero eigenvalue is of order 1/diam(Ω j ) (see [START_REF] Escobar | The geometry of the first non-zero Stekloff eigenvalue[END_REF]) the corresponding eigenvector is not in the coarse space and convergence is good.

DtN coarse space at the discrete level

The variational formulation of (3.17) is:

Find (λ, v) ∈ R × V h (Ω j ) such that � Ω j α∇v • ∇w = λ � Γ tr j α v w , ∀w ∈ V h (Ω j ). (3.20)
To obtain the discrete form of the generalized eigenvalue problem (3.20), we first introduce bilinear forms a j :

V h (Ω j ) × V h (Ω j ) → R and b j : V h (Ω j ) × V h (Ω j ) → R as a j (v, w) := � Ω j α∇v • ∇w and b j (v, w) := � Γ tr j α v w , ∀v, w ∈ V h (Ω j ) . (3.21)
Then, for the finite element basis {φ k } k=1,...,n , we introduce the matrices corresponding to these bilinear forms. Let A (j) be the coefficient matrix associated with the variational form a j

(A (j) ) kl = � Ω j α∇φ k • ∇φ l ,
and let M (j) be the weighted mass matrix on Γ associated with the variational form b j (M (j) ) kl :=

� Γ tr j αφ k φ l .
Then we can write the finite element approximation of generalized eigenproblem (3.20):

Find (λ, V) such that A (j) V = λM (j) V. (3.22) 
Let I (resp. Γ) be the set of indices corresponding to the interior (resp. boundary) degrees of freedom and n Γ := #Γ be the number of interface degrees of freedom. Then with block notations we get

A (j) = � A (j) I I A (j) IΓ A (j) ΓI A (j) ΓΓ � , and 
M (j) = � 0 0 0 M (j) Γ � Remark 3.2.
Notice that, the matrix A (j) in the generalized eigenvalue problem is not A j = R j AR ⊤ j from the definition of the Schwarz preconditioners and that it cannot be extracted from the original global matrix. Indeed, for the global domain Ω, the coefficient matrix is given by A kl = � Ω α∇φ k • ∇φ l and that may differ from � Ω j α∇φ k • ∇φ l . More precisely, three of the four blocks are identical A (j)

I I = A I I , A (j) ΓI = A ΓI and A (j) I Γ = A I Γ . However A (j) ΓΓ � = A ΓΓ , since A (j)
ΓΓ refers to the matrix prior to assembly with the neighbouring subdomains.

With block notation, generalized eigenproblem (3.22) can be rewritten as

A (j) V = λ � 0 0 0 M (j) Γ � V = λM (j) V, (3.23) 
or, as a system,

� A I I V I + A I Γ V Γ = 0, A (j) ΓΓ V Γ + A ΓI V I = λM (j) Γ V Γ .
We use the first equation to eliminate the interior unknowns V I and introduce the Schur complement S (j)

Γ := A (j)
ΓΓ -A ΓI A -1 I I A I Γ , then we get a generalized eigenvalue problem

S (j) Γ V Γ = λ M (j) Γ V Γ , (3.24) 
which is exactly the discrete form of the original generalized eigenproblem (3.16). Indeed, it is well known that the discrete counterpart of the DtN map is the Schur complement

S (j)
Γ (this results from the divergence theorem). Let (λ k j , V k j ) n Γ k=1 be the n Γ eigenpairs of (3.24) numbered in increasing order of λ k j . Since matrices S (j) Γ and M (j) Γ are symmetric, the eigenvectors V k Γ,j , k = 1, . . . , n Γ , satisfy

�V k Γ,j , S (j) 
Γ V l Γ,j � = 0 and �V k Γ,j , M (j) Γ V l Γ,j � = 0, if k � = l. Matrix M (j)
Γ is positive definite so we may say that this is an orthogonality property with respect to the norm induced by

M (j) Γ . Matrix S (j)
Γ is symmetric positive semi-definite and in the case of an interior subdomain, there is exactly one eigenvalue that is 0 corresponding to the constant eigenvector. The harmonic extension

V k j = � V k Γ,j -A -1 I I A I Γ V k Γ,j � of V k Γ,j
is an eigenvector corresponding to eigenvalue λ k j of generalized eigenproblem (3.22). These harmonic extensions also satisfy an orthogonality type property with respect to A (j) since for any k � = l

�V k j , A (j) V l j � = � -A -1 I I A I Γ V k Γ,j V k Γ,j � ⊤ � 0 S (j) Γ V l Γ,ij � = �V k Γ,i j , S (j) 
Γ V l Γ,j � = 0, and an orthogonality type property with respect to M (j)

Γ since for any k � = l

�V k j , M (j) V l j � = � -A -1 I I A I Γ V k Γ,j V k Γ,j � ⊤ � 0 0 0 M (j) Γ V l Γ,j � = �V k Γ,j , M (j) 
Γ V l Γ,j � = 0.

Since the kernel of

� 0 0 0 M (j) Γ �
consists of the vectors whose components in Γ are zero, all the remaining eigenvalues of (3.23) are ∞, and so the smallest eigenvalues of (3.24) are also the smallest eigenvalues of (3.23). This means that these two discrete generalized eigenproblems are suitable alternatives for implementing the DtN coarse space.

A remark

The construction we propose is, to some extent, inspired by two observations already made elsewhere, namely -that robust coarse basis functions can in many cases be obtained on standard simplicial meshes by harmonically extending suitable boundary data to the interior of coarse mesh elements [START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF] (i.e. multiscale finite element coarse spaces), -that local spectral information about the underlying differential operator can be used to obtain fully robust coarse spaces [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF][START_REF] Scheichl | Weak approximation properties of elliptic projections with functional constraints[END_REF]. By combining both ideas the goal is to identify all the vectors which need to be in the coarse space and at the same time not too many vectors. Inclusions that are inside a subdomain will not "trigger" (unnecessary) additional coarse basis functions. This can happen in the case of generalized eigenvalue problems that are defined on the entire subdomain, such as those in [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF], unless, as described in [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF], they are combined with a partition of unity constructed via the multiscale finite element techniques in [START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF].

Ω i Ω i-1 Ω i+1 Figure 
Let us illustrate one clear benefit of working with the DtN map on the one-dimensional example in Figure 3.4. Independently of the coefficient variations in the interior of Ω j the DtN coarse space consists of at most two basis functions per subdomain since the DtN map is a two by two matrix which has exactly two eigenmodes.

For one more illustration, consider the two-dimensional permeability field α on the subdomain Ω j shown in Figure 3.5. We see in Figure 3.6 (left) a typical DtN eigenvector associated with one of the boundary inclusions. Since it is harmonic in the interior of Ω j , it has much lower energy than a typical eigenvector of the corresponding eigenproblem -∇ • (α∇v) = λαv, posed on the entire subdomain Ω j and shown in Figure 3.6 (right). This is achieved without the use of a coefficient-adapted partition of unity (such as in [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF]).

Theoretical analysis

For the theoretical analysis we focus on two level Additive Schwarz preconditioner (3.7). With the Balanced preconditioner (3.11) convergence is always better than with the Additive preconditioner so the theory presented here goes through also in this case. 

A few theoretical assumptions and tools

Throughout the remainder of this chapter, the notation E � F (for two quantities E, F ) means that E/F is bounded from above independently, not only of the mesh size h and the method specific parameters (such as the diameter diam (Ω j ) of the subdomain and the size of the overlap δ j defined below), but also of the values taken by the coefficient α. Moreover E � F means that E � F and E � F .

Particular choice for the partition of unity Assume that the coarse space is built following the procedure in Algorithm 3.1 with the partition of unity functions defined in the following way: for each fine grid node x k ∈ Ω, let the index set N (x k ) contain the indices of all the domains Ω i such that x k ∈ Ω i , then, for each subdomain Ω j define χ j ∈ V h,0 (Ω j ) by setting

χ j (x k ) := dist(x k , ∂Ω j ) � i∈N (x k ) dist(x k , ∂Ω i ) , at all nodes x k ∈ Ω j . (3.25) 
Clearly these functions form a partition of unity on Ω and satisfy 0 ≤ χ j ≤ 1. Moreover, if Ω • j := {x ∈ Ω j : χ j (x) < 1} denotes the part of Ω j that overlaps neighbouring domains, then it is also easy to verify that

|∇χ j | � δ -1 j (3.26)
where δ j denotes the width of Ω • j at the narrowest place. Since T h was assumed to be quasi-uniform and the overlapping decomposition {Ω j } N j=1 was obtained by adding layers of fine grid elements, we have δ j � δ j ′ , for any two neighbouring subdomains Ω j and Ω j ′ .

Assumptions on the coefficient distribution We have assumed that the coefficient α is piecewise constant. To be more precise, we assume that the domain is a union of polygonal (polyhedral) subdomains Y l , such that: Ω = � m l=1 Y l and α(x) = α l , for all x ∈ Y l and l = 1, . . . , m. We also assume that the triangulation T h resolves Y l , namely, for l = 1, . . . , m, we have:

Ω j Ω j ω ω j Ω j j Ω l Ω l Ω l
Y l = � τ ∈T h,l τ, (3.27) 
where T h,l ⊂ T h , for l = 1, . . . , m. By definition of the parameter δ j , the overlap Ω • j contains all points which are at most at a distance δ j from the boundary ∂Ω j . For each j ∈ {1, . . . , N }, we define the following subset of the overlap:

� Ω • j := interior � � k=1,...,K j D jk � ⊂ Ω • j ,
where the regions D jk ⊂ Ω • j , k = 1, . . . , K j , are assumed to form a shape-regular (overlapping or non overlapping) partition of � Ω • j , such that for each k = 1, . . . , K j , diam (D jk ) � δ j , |D jk | � δ d j and D jk ∩ ∂Ω j � = ∅. We call � Ω • j the boundary layer of Ω j . An example is shown in Figure 3.7. Without loss of generality, we assume that the triangulation T h resolves each of the regions D jk .

We now make two technical assumptions on the distribution α(x) and on its interplay with the partition into subdomains. These assumptions are needed in our analysis. They are always satisfied in the case of minimal overlap (i.e. the case of one or two layers). Some examples are given in Figure 3.8. Assumption 3.3. We assume that there exists a (second) partition of unity

{ � χ j } N j=1 ⊂ V h,0 associated with {Ω j } N j=1 , such that 0 ≤ � χ j ≤ 1, supp(∇ � χ j ) ⊂ � Ω • j and |∇ � χ j | � δ -1 j
, in other words we assume that the overlap of the boundary layer � Ω • j with the boundary layers of the neighbouring domains is at least of width � δ j everywhere. 1Assumption 3.4. Again, let tr j α(x) := lim sup Ω j ∋y→x α(y), for almost every x ∈ ∂Ω j , denote the trace of α on ∂Ω j . For each j ∈ {1, . . . , N } and for each k = 1, . . . , K j , we assume that

(i) there exists a (d -1)-dimensional manifold X k ⊂ D jk ∩ ∂Ω j with |X k | � δ d-1 j
, such that ess sup x,y∈X k tr j α(x)/tr j α(y) = O(1), (ii) there exists a path P y from each point y ∈ D jk to X k , such that α(x) is an increasing function along P y (from y to X k , except possibly on a subset of P y of measure zero).

When (ii) holds, α(x) is called quasi-monotone on D jk with respect to X k and P y is called a quasi-monotone path.

Definition of weighted norms and semi-norms For any domain D ⊂ Ω we need the usual norms, with the standard notations

� • � L 2 (D) , | • | H 1 (D) and � • � H 1 (D)
, as well as the L 2 inner product (v, w) L 2 (D) . In addition to this, we need to define some related weighted quantities, which will prove very useful in the following:

-the weighted H 1 (or energy) norm When D = Ω we omit the domain from the subscript and write � • � a and � • � 0,α instead of � • � a,Ω and � • � 0,α,Ω , respectively. Finally, we will also need averages and norms defined on (d -1)-dimensional manifolds X ⊂ R d , namely for any v ∈ L 2 (X) and for any β ∈ L ∞ (X) we define

|v| 2 a,D = � D α|∇v| 2 . ( 3 
v X := 1 |X| � X v and �v� 2 0,β,X := � X βv 2 .

Intermediary estimates

The following lemma, based on Assumption 3.4, is from [START_REF] Pechstein | Weighted Poincaré inequalities[END_REF].

Lemma 3.5. Let Assumption 3.4 be satisfied. There exists a uniform constant C P > 0 independent of the coefficient values {α l } m l=1 , such that the following weighted Poincaré/ Friedrichs type inequalities hold for all j = 1, . . . , N and k = 1, . . . , K j :

�v -v X k � 0,α,D jk ≤ C P δ j |v| a,D jk , for all v ∈ V h (D jk ), and (3.30 
)

�v� 0,α,D jk ≤ C P δ j |v| a,D jk , for all v ∈ V h (D jk ) with v| X k = 0. (3.31)
The constant C P may depend on δ j /h (see Remark 3.6 for details).

Proof. Theorems 2.2, 2.7 and 3.3 in [START_REF] Pechstein | Weighted Poincaré inequalities[END_REF].

Remark 3.6. (a) Assumptions 3.3 and 3.4 are technical and so, in Figure 3.8, we give some typical examples where the assumptions are either verified or not verified. Essentially the only situation where they can not be verified is when a region Y l where the coefficient is large separates the remainder of the overlap Ω • j into two parts, but does not touch any of the boundaries of Ω • j , neither inner nor outer (see Figure 3.8 (d)). The assumptions are always satisfied in the case of minimal overlap (i.e. in the case of one or two layers). (b) Provided Assumptions 3.3 and 3.4 are satisfied, the constant C P in Lemma 3.5 will always be independent of the coefficient values, and thus of any jumps. It will also be independent of diam(Ω j ), but it may depend on the mesh size h and on the size of the overlap δ j through the ratio δ j /h. This was analyzed extensively in [START_REF] Pechstein | Weighted Poincaré inequalities[END_REF][START_REF] Pechstein | Weighted Poincaré inequalities and applications in domain decomposition[END_REF].

The constant C P is independent of δ j /h if the regions Y l , where the coefficient is constant, intersect always in (d -1)-dimensional manifolds of measure � δ ) or if some of the intersections are only of measure � h d-1 , then C P will in general be O(log(δ j /h)). In 3D, if some of the regions Y l touch each other only in a point, then C P may be O(δ j /h). Since we are mainly interested in the small overlap case (i.e. δ j ≤ ch for some small constant c = 2, 4, 6, etc.), we will not discuss this further.

(c) Extensions similar to those in [START_REF] Pechstein | Analysis of FETI methods for multiscale PDEs. Part II: interface variation[END_REF] to cases where some of the regions D jk only touch ∂Ω j in a point (or in an edge in 3D), or where the regions D jk may become long and thin would also be possible. These may also add dependencies of C P on diam(Ω j )/δ j .

(d) Due to (i) and (ii), the manifold X k has to lie in the closure of the region Y l where α takes its maximum on D jk .

The following result, which is essentially a corollary of Lemma 3.5 will be the key tool in the analysis below.

Lemma 3.7. Let Assumption 3.4 be satisfied. Then

�u� 2 0,α, � Ω • j � C 2 P δ 2 j |u| 2 a, � Ω • j + δ j �u� 2 0,tr j α,∂Ω j \∂Ω , for all u ∈ V h ( � Ω • j ).
Proof. Let {D jk } K j k=1 be as defined above and let X k be the (d -1)-dimensional manifold associated with D jk in Assumption 3.4. Let �α� ∞,D jk := esssup{α(x) : x ∈ D jk }. Then it follows from Lemma 3.5, as well as the triangle and the Cauchy-Schwarz inequalities, that

1 2 �u� 2 0,α,D jk ≤ �u -u X k � 2 0,α,D jk + �u X k � 2 0,α,D jk (3.32) ≤ C 2 P δ 2 j |u| 2 a,D jk + |D jk | |X k | 2 �α� ∞,D jk � � X k u � 2 ≤ C 2 P δ 2 j |u| 2 a,D jk + |D jk | |X k | �α� ∞,D jk � X k u 2 � C 2 P δ 2 j |u| 2 a,D jk + δ j �u� 2 0,α,X k .
In the last step, we have used Assumption 3.4(i) and the fact that α(x) reaches its maximum on D jk in a set containing X k (cf. Remark 3.6(d)). If ∂D jk ∩ ∂Ω � = ∅, we use (3.31) instead of (3.30). In this case, only the first term on the right hand side of inequality (3.32) appears. The final result follows by summing over k = 1, . . . , K j .

Note that this lemma is an extension of the small overlap trick in [START_REF] Dryja | Domain decomposition algorithms with small overlap[END_REF] to the variable coefficient case (see also [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]Lemma 3.10]).

Let us assume further, that the eigenvectors are normalised in the M (j) semi-norm:

�V k j , M (j) V k j � = 1 ⇔ b j (v k j , v k j ) = 1,
where b j is the bilinear form associated with M (k) as in (3.21). For any u ∈ V h (Ω j ), we can define the projection onto span{v k j } m j k=1 by

Π j u := m j � k=1 b j � v k j , u � v k j . (3.33) 
The projection is stable and satisfies a weak approximation property, as the following theorem shows.

Theorem 3.8. Let Assumption 3.4 hold. Then, for any u ∈ V h (Ω j ),

|Π j u| a,Ω j ≤ |u| a,Ω j and (3.34)

�u -Π j u� 0,α, � Ω • j � � c j (m j ) δ j |u| a,Ω j , (3.35) 
where c j (m j ) :=

C 2 P + � δ j λ (j) m j +1 � -1 .
Proof. The stability estimate (3.34) follows immediately from the fact that Π j is a projection satisfying a j (Π j u, u -Π j u) = 0. To prove (3.35) let us first apply Lemma 3.7, i.e. �u -

Π j u� 2 0,α, � Ω • j � C P δ 2 j |u -Π j u| 2 a, � Ω • j + δ j �u -Π j u� 2 0,tr j α,Γ , (3.36) 
It follows from the triangle inequality and (3.34) that

|u -Π j u| 2 a, � Ω • j ≤ |u -Π j u| 2 a,Ω j � |u| 2 a,Ω j (3.37)
and so it only remains to bound �u -Π j u� 2 0,tr j α,Γ with respect to |u -Π j u| a,Ω j ≤ |u| a,Ω j . This is where the particular choice of the DtN coarse space comes in.

The restriction of the functions {v k j } n Γ k=1 to the boundary Γ forms a complete basis of V h (Γ). This implies that �u -Π j u� 2 0,tr j α,Γ = �

� n Γ k=m j +1 b j � v k j , u � v k j � 2 0
,tr j α,Γ . It follows from the fact that the functions {v k j } n Γ k=1 are orthogonal in the (•, •) 0,tr j α,Γ inner product and that �v k j � 2 0,tr j α,Γ = 1 that �u -Π j u� 2 0,tr j α,Γ =

n Γ � k=m j +1 b � v k j , u � 2 �v k j � 2 0,tr j α,Γ = n Γ � k=m j +1 b � v k j , u � 2 = n Γ � k=m j +1 1 λ k j a � v k j , u � b � v k j , u � ≤ 1 λ m j +1 (j) n Γ � k=m j +1 a � v k j , u � b � v k j , u � = 1 λ m j +1 (j) |u -Π j u| 2 a,Ω j ≤ 1 λ m j +1 (j) |u| 2 a,Ω j (3.38)
and the result follows from (3.36), (3.37) and (3.38).

For any Ω j , 1 ≤ j ≤ N , let Π j be the projection onto the first m j local DtN eigenvectors defined in (3.33) and let χ j be the partition of unity function associated with Ω j defined in (3.25). For a given function u ∈ V h,0 , we introduce the coarse interpolation of u as

u 0 := I h   N � j=1 χ j Π j u| Ω j   ∈ V H .
(3.39)

In the following, to ease the presentation when there is no confusion and it is clear from the context, we will simply denote the restriction u| Ω j of u onto Ω j by u, and write, e.g., Π j u instead of Π j u| Ω j .

Stable splitting -Final convergence result

The next theorem is the main result needed to prove the robustness of the DtN coarse space construction. It states that Assumption 2.7 in the Abstract Schwarz framework is satisfied which, according to Remark 2.11, is the only challenge left in proving convergence for the two level additive Schwarz preconditioner. Theorem 3.9. Let Assumptions 3.3 and 3.4 hold. Let u ∈ V h,0 be given and let u 0 ∈ V H be the coarse interpolation of u, defined in (3.39). Then there exists a stable splitting

u = N � j=0 u j and N � j=0 �u j � 2 a � N max j=1 {c j (m j )} �u� 2 a ,
with u j ∈ V h,0 (Ω j ), j = 1, . . . , N . The constants c j (m j ) are defined as in Theorem 3.8 by

c j (m j ) := C 2 P + � δ j λ (j) m j +1 � -1 .
Proof. For any j ∈ {1, . . . , N }, we choose

u j := I h ( � χ j (u -u 0 )).
Then, since by definition

� N j=1 � χ j ≡ 1 and I h (u -u 0 ) = u -u 0 it is clear that N � j=1 u j = I h   N � j=1 � χ j (u -u 0 )   = u -u 0 .
Each point belongs to k 0 subdomains at most so

�u 0 � 2 a � �u� 2 a + N � j=1 �u j � 2 a
and so it suffices to bound the sum of the local energies. Since the interpolator I h is stable with respect to the a-norm (cf. [99, Lemma 2.3]),

�u j � 2 a � � � � � χ j (u -u 0 ) � � � 2 a � � � χ j � 2 ∞ |u -u 0 | 2 a,� ω j + �∇ � χ j � 2 ∞ �u -u 0 � 2 0,α,� ω • j � |u -u 0 | 2 a,� ω j + δ -2 j �u -u 0 � 2 0,α,� ω • j (3.40)
where we denote � ω j := interior(supp( � χ j )) and � ω • j := interior(supp(∇ � χ j )) (see Figure 3.7 for a sketch). Now, since I h is also stable with respect to the weighted L 2 -norm (cf. [99, Lemma 2.3]), using the definition of u 0 and the fact that supp

(χ i ) ⊂ Ω i and � ω • j ∩ Ω i ⊂ � Ω • i we get from Theorem 3.8 that �u -u 0 � 2 0,α,� ω • j � � i:Ω i ∩Ω j � =∅ �χ i (u -Π i u)� 2 0,α,� ω • j � � i:Ω i ∩Ω j � =∅ �χ i � 2 ∞ �u -Π i u� 2 0,α,� ω • j ∩Ω i � � i:Ω i ∩Ω j � =∅ δ 2 i c i (m i )|u| 2 a,Ω i (3.41) Similarly, |u -u 0 | 2 a,� ω j � � i:Ω i ∩Ω j � =∅ |χ i (u -Π i u)| 2 a,� ω j � � i:Ω i ∩Ω j � =∅ �χ i � 2 ∞ |u -Π i u| 2 a,� ω j ∩Ω i + �∇χ i � 2 ∞, � ω j ∩Ω • i �u -Π i u� 2 0,α,� ω j ∩Ω • i and since (� ω j ∩ Ω • i ) ⊂ � Ω • i we have, again using Theorem 3.8, |u-u 0 | 2 a,� ω j � � i:Ω i ∩Ω j � =∅ |u| 2 a,� ω j ∩Ω i +|Π i u| 2 a,� ω j ∩Ω i +δ -2 i �u-Π i u� 2 0,α, � Ω • i � � i:Ω i ∩Ω j � =∅ c i (m i )|u| 2 a,Ω i .
(3.42) Substituting (3.41) and (3.42) into (3.40) and using the facts that δ j � δ l for two neighbouring domains and that each point is contained in at most k 0 subdomains, we finally get

N � j=1 �u j � 2 a � N � j=1 � i:Ω i ∩Ω j � =∅ c i (m i )|u| 2 a,Ω i � N max i=1 {c i (m i )}�u� 2 a ,
which completes the proof.

As usual, the existence of a stable splitting established in Theorem 3.9 is sufficient to deduce the following bound on the condition number of M -1 AS,2 A from the abstract Schwarz theory (see e.g. [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]). Theorem 3.10. Let Assumptions 3.3 and 3.4 hold. Then the condition number of the two-level Schwarz algorithm with a coarse space based on the spectra of local DtN maps can be bounded by

κ(M -1 AS,2 A) � N max j=1 {c j (m j )} �   C 2 P + N max j=1 1 δ j λ (j) m j +1   .
The hidden constant is independent of h, δ j , and diam(Ω j ), as well as of any jumps in α.

We have only analyzed the additive preconditioner, but we note that other symmetric versions (in particular the balanced preconditioner in (3.11)) can be analyzed in the same way (cf. [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]). The restricted additive Schwarz (RAS) [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF] variant is different since it leads to a non symmetric iteration. However, it behaves in a similar way and even gives slightly better results than the classical additive version above. Numerical tests with the DtN coarse space in the next section will confirm this. Remark 3.11. By choosing the number m j of modes per subdomain in the coarse space as prescribed in Algorithm 3.1 we ensure that λ (j)

m j +1 ≥ diam(Ω j ) -1 so κ(M -1 AS,2 A) � � C 2 P + N max j=1 diam(Ω j ) δ j � .
Provided the weighted Poincaré constant C P in Assumption 3.4 is uniformly bounded, independently of any jumps in the coefficients, we retrieve the classical estimate for the Additive Schwarz Method. An interesting observation is that the bound depends only in an additive way on the constant C P and on the ratio of subdomain diameter to overlap. Note also that due to the small overlap "trick" in Lemma 3.7 (and contrary to the results in [START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high-contrast media[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF]) the bound in Theorem 3.10 only depends on δ -1 j and not on δ -2 j .

Numerical results

For a first illustration of the performance of the DtN coarse space we refer the reader to the introduction (Section 2.3.1). There, in the case of a long domain with alternating layers we observed that the DtN coarse space makes it possible to achieve both scalability and robustness with respect to the jumps in the coefficient. This required adding as many vectors per subdomain to the coarse space as the number of high coefficient layers: applying the automatic selection of coarse modes (Algorithm 3.1) led to the optimal coarse space.

From now on we solve the model problem

     -∇ • (α∇u * ) = 1 in Ω, u * = 0 on ∂Ω D , ∂u * ∂n = 0 on ∂Ω N , (3.43) 
where Ω = [0, 1] 2 is the unit square and its boundary is divided into ∂Ω D (D for Dirichlet) and ∂Ω N (N for Neumann). The coefficient α varies within Ω and we will give its definition when we describe each test case.

A regular simplicial mesh of Ω with n nodes × n nodes nodes is given and in all but the last case (3.43) is approximated by standard linear (P 1 ) finite elements. We use partitions of Ω into N × N overlapping subdomains which are obtained by adding n layers of elements to a non overlapping partition. We distinguish two cases: a partition into N × N regular subdomains or a partition into N × N non regular subdomains obtained using the automatic graph partitioner Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF].

We make three things vary in the solver:

-The one level preconditioner is either the Additive Schwarz preconditioner (AS) introduced in (3.6) or the Restricted Additive Schwarz preconditioner (RAS) defined in (3.13). In the first case the iterative solver is conjugate gradient and in the second it is GMRES. To make the comparison fair the stopping criterion will always be based on the error in the infinity norm

�u * -u m � ∞ �u * � ∞ < 10 -6 .
-The coarse space correction is based on (3.10) (two level additive preconditioner) or (3.11) (balanced preconditioner). -The coarse space is either -empty, in which case we are considering a one level method, -the Partition of unity coarse space [START_REF] Sarkis | Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] (one vector per subdomain) referred to as POU, -the DtN coarse space (introduced in this chapter). The corresponding discretizations and data structures are obtained using the software FreeFem++ [START_REF] Hecht | FreeFem++. Numerical Mathematics and Scientific Computation[END_REF] in connection with the Metis graph partitioner [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF]. Every time a condition number for the preconditioned operator is given it is in fact the estimate given by the extreme Ritz values at the final iteration (see e.g. [START_REF] Demmel | Applied numerical linear algebra[END_REF]).

Influence of the partition

The boundary conditions are zero-Dirichlet on the entire boundary (∂Ω D = ∂Ω and ∂Ω N = ∅). The mesh consists of 257 × 257 nodes and each subdomain is obtained by adding 2 layers of elements to each subdomain. Figure 3.9 shows both the problem setting and the convergence result for the test case. The coefficient α takes values between 1 and approximately 1.5 × 10 6 and the distribution contains both inclusions and channels. We consider 2 × 2, 4 × 4 and 8 × 8 subdomain partitions of Ω both regular and obtained with Metis. We compare the three types of coarse spaces and the AS and RAS preconditioners. The coarse correction is computed via the balanced preconditioner. As an illustration, we have chosen to present more extensively the 4 × 4 subdomain cases. In all cases the automatic selection process picks up no more than four vectors per subdomains. We observe that convergence with our new coarse space requires significantly fewer iterations and that it is robust (iteration counts vary between 22 and 31 for two level AS and 14 and 23 for two level RAS). As expected, even though we cannot prove it theoretically, convergence is best with RAS.

Channels

This time the boundary condition is u = 0 on the left hand side boundary ∂Ω D and ∂u ∂n = 0 on the remainder ∂Ω N . The mesh consists of 161 × 161 nodes and each subdomain is obtained by adding 1 layer of elements to a non overlapping partition. The geometry for the test problem is given if Figure 3.10. The partition into subdomains is the 4 × 4 Metis partition. The diffusion coefficient α contains both highpermeability inclusions and channels. When there are no channels, α varies between 1 and 10 6 . With all three channels present, α varies between 1 and 2.8 × 10 6 . We analyze the performance of the method by increasing the number of channels.

Coefficient distribution:

IsoValue

All results are reported in Figure 3.11. Our algorithm performs significantly better than the classical methods. The Partition of unity coarse space has virtually no effect on the performance of either AS or RAS, leading to iteration numbers that differ little from the results without any coarse grid in all four cases. Our new coarse space, on the other hand, is fully robust with respect to the coefficient variations and it leads to a gain of at least a factor 6 compared to the one-level method in all cases. The condition number is bounded independently of the coefficient variation. The situation is even more pronounced, if we use the balanced two level preconditioners: the gain is more than a factor 10 in all cases.

As well as the convergence results we give some information on the size of the coarse space that we build using our automatic selection strategy: for each number of channels we give min j m j and max j m j , as well as the global coarse space size n H = � j m j and the average number of modes included per subdomain n H /N . For comparison, we also include information on the total number n Γj of eigenmodes of the discrete DtN operator on each subdomain. We note that adding a small number of channels does not seem to have any significant influence on the size of the coarse space: the difference is less than 10% between the case of three channels and no channel. To sum up Test Problem 1: by using about 3 eigenvectors on average per subdomain we have reduced the condition numbers from O(10 7 ) to O(10 -100) in all four test cases.

The last series of tests in Figure 3.11 aims to prove that the number m j of eigenvectors per subdomain chosen by our automatic algorithm is indeed optimal in some sense. For the test problem with one channel, we first reduce the number of coarse basis functions per subdomain by one, this has a huge influence on the iteration count and the condition number: it goes from 7.7 • 10 1 to 4 • 10 6 so by removing one coarse vector per subdomain we've essentially ruined the robustness. Then we add one basis function per subdomain and notice that this has much less effect, with the condition number decreasing only from 7.7 • 10 1 to 4.0 • 10 1 . This suggests that the selection process we have designed is indeed in some sense an optimal compromise between robustness and size of the coarse space.

Large Inclusions

Now, using the same domain and the same partition we successively add inclusions without any channels present, as shown in Figure 3.12. The results are also presented in Figure 3.12. Again, the Partition of unity coarse space is ineffective for this test problem. The DtN coarse space, on the other hand, is robust to an increase in the number of inclusions and once more requires significantly fewer iterations than the one-level method in all cases. Note that the subdomain partition is not aligned with the inclusions at all. We see that for this test problem also, the coarse space size grows only slowly with the number of inclusions (i.e. roughly by a factor 2 when the number of inclusions has grown by a factor 9), and even in the hardest test case with 36 inclusions, n H is only 44 (compared to the global dimension n of V h,0 , and thus of A, which is 25600). As in Test Problem 1, by using on average less than three eigenvectors per subdomain, we have reduced the condition numbers from O(10 

Scalability test on a parallel architecture

The implementation for these test cases is the work of Pierre Jolivet. The detailed techniques are presented in [START_REF] Jolivet | High performance domain decomposition methods on massively parallel architectures with freefem++[END_REF].

Two dimensional test case

The model problem is solved on Ω = [0; 1]2 with mixed Dirichlet and Neumann boundary conditions using P 2 finite elements. The diffusivity is a highly heterogeneous function of Ω → R, c.f. where

α ↑ (z) = � ⌊9z⌋ if ⌊9z⌋ � ≡ 0 mod 3 1 otherwise
Results In order to assess the performance of the implementation of the parallel solver and the scalability of the two level solver with DtN, a speedup test is performed by solving the same problem with different numbers of processors (and hence of subdomains). The results are reported in Figures 3.14 (speedup normalized to 64 subdomains) and 3.15 (speedup normalized to 96 subdomains). A superlinear speedup is observed both in the two and three dimensional cases. These particular tests were performed on titane, a 40960-core computer hosted at CEA 2 .

In the tables, all the timings are obtained using the routine MPI_Wtime(). Only the GMRES is timed, meaning that the construction of the meshes, the partitioning of unity and the construction of the coarse operator A H are not considered. The stopping criterion is chosen so that the relative residual of the GMRES is inferior to a certain tolerance ε at convergence. The first way to assess the performance of the implementation of our parallel solver was done by checking its speedup when increasing the number of processes.

More tests were performed on babel, a 121912-core computer hosted at IDRIS3 and even when greatly increasing the number of subdomains, the Krylov method still converges quite quickly in terms of number of iterations, i.e. in less than [START_REF] Dryja | Domain decomposition algorithms with small overlap[END_REF] Strong scalability observed when solving a three dimensional test case on a fixed size problem using P 2 finite elements and a tolerance ε = 10 -12 . In the table p is the number of processors, T is the computation time, #V H is the number of DtN coarse vectors and #V h is the total number of unknowns counting the ones that are in the overlap multiple times. space with the aim to achieve robustness with respect to heterogeneities in any of the coefficients in the PDEs and the number of subdomains. In the previous chapter we proposed and studied the DtN coarse space for scalar elliptic problems. The proof for DtN relies on uniform (in the coefficients) weighted Poincaré inequalities [START_REF] Pechstein | Weighted Poincaré inequalities[END_REF]. While this allows for full robustness in the small overlap case (cf. [START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF]), in a completely general setting it has two drawbacks: (i) for larger overlap some assumptions are needed on the coefficient distribution in the overlaps and (ii) the arguments cannot be generalized easily to the case of systems of PDEs. This second point was the motivation to look for a new coarse space.

In this Chapter, we propose a coarse space construction based on Generalized Eigenproblems in the Overlap (which we will refer to as the GenEO coarse space). We define the coarse space, prove a convergence result and illustrate it with some numerical results. The coarse space construction applies to systems of PDEs discretized by finite elements with only a few extra assumptions. The implementation only relies on having access to element stiffness matrices and the connectivity graph between elements. The subdomain partition is carried out using Metis. Overlap is added based on the connectivity graph and the coarse space is constructed automatically solving a generalized eigenproblem on each subdomain. In our analysis, we identify the fact that the abstract Schwarz framework makes it possible to reduce the proof of convergence to an energy bound in the overlap, and for this reason, the second matrix in the pencil of our generalized eigenvalue problem is a matrix that has zero blocks corresponding to the interior of the subdomain.

The generalized eigenvalue problems which we solve here are closely related, but different to the ones proposed in [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF]. The major theoretical advance with respect to [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF] is that there, in order for the proof to go through for classical finite element spaces, a stable interpolation operator with a constant independent of the coefficients is needed. In many cases (elasticity for instance), such a stable interpolator does not yet exist to our knowledge. We overcame this problem by introducing partition of unity operators that work directly on the degrees of freedom bypassing the need for a stable interpolation operator. From a practical point of view, thanks to these partition of unity operators, the right hand side of the generalized eigenproblems can be constructed fully automatically from element stiffness matrices and diagonal weighting matrices. We only require access to some topological information (to build a suitable partition of unity), and to the element stiffness matrices (as in AMGe methods, cf. [START_REF] Chartier | Spectral AMGe (ρAMGe)[END_REF]). This is reasonable in standard finite element packages such as FreeFEM++ [START_REF] Hecht | FreeFem++. Numerical Mathematics and Scientific Computation[END_REF].

The rest of this Chapter is organized as follows. In Section 4.2 we define the problem that we solve and introduce the two-level additive Schwarz framework along with some elements of generalized eigenvalue problem theory. In Section 4.3 we define the abstract procedure to construct our coarse space and give the main convergence result (Theorem 4.33). Section 4.4 gives detailed guidelines on how to implement the two-level Schwarz preconditioner with the GenEO coarse space in a finite element code. Finally in Section 4.5 we test our method for Darcy and linear elasticity and make sure that it indeed converges robustly even for highly varying coefficients in two and three dimensions.

Preliminaries and notations

Problem Description

Given a Hilbert space V , a symmetric and coercive bilinear form a : V × V → R and an element f in the dual space V ′ , we consider the abstract variational problem: Find v ∈ V such that a(v, w) = �f, w�, for all w ∈ V, (

where �•, •� denotes the duality pairing. This variational problem is associated with an elliptic boundary value problem (BVP) on a given domain Ω ⊂ R d (d = 2 or 3) with suitable boundary conditions posed in a suitable space V of functions on Ω. We consider a discretization of the variational problem (4.1) with finite elements based on a mesh T h of Ω: Ω = � τ ∈T h τ. Let V h ⊂ V denote the chosen conforming space of finite element functions. In the case where a(•, •) is a bilinear form derived from a system of PDEs, V h is a space of vector functions. The discretization of (4.1) then reads:

Find v h ∈ V h such that a(v h , w h ) = �f, w h �, for all w h ∈ V h . (4.2)
Let {φ k } n k=1 be a basis for V h with n := dim(V h ), then from (4.2) we can derive a linear system

Av = f , (4.3) 
where the coefficients of the stiffness matrix A ∈ R n×n and the load vector f ∈ R n are given by A k,l = a(φ l , φ k ) and f k = �f, φ k � (k, l = 1, . . . , n) and v is the vector of coefficients corresponding to the unknown finite element function v h in (4.2). The basis {φ k } n k=1 can be quite arbitrary but it should fulfil a unisolvence property: the basis functions supported on each element τ ∈ T h are linearly independent when restricted to τ . This is the case for standard finite element bases.

The only significant assumption we make on the problem is that the stiffness matrix A is assembled from positive semi-definite element stiffness matrices. Assumption 4.1. Let V h (τ ) = {v| τ : v ∈ V h }. We assume that there exist positive semi-definite bilinear forms a τ :

V h (τ ) × V h (τ ) → R, for all τ ∈ T h , such that a(v, w) = � τ ∈T h a τ (v| τ , w| τ ), for all v, w ∈ V h . Remark 4.2.
If the variational problem is obtained from integrating local forms on the domain then this is not a problem at all. For instance in the case of the Darcy equation we can write for all v, w ∈ H 1 0 (Ω):

a(v, w) = � Ω κ∇v • ∇w = � τ ∈T h � τ κ∇v • ∇w = � τ ∈T h a τ (v| τ , w| τ ).

Additive Schwarz setting

In order to automatically construct a robust two-level Schwarz preconditioner for (4.3), we first partition our domain Ω into a set of non-overlapping subdomains {Ω ′ j } N j=1 resolved by T h using for example a graph partitioner such as METIS [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] or SCOTCH [START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF]. Each subdomain Ω ′ j is then extended to a domain Ω j by adding one or several layers of mesh elements in the sense of Definition 4.3, thus creating an overlapping decomposition {Ω j } N j=1 of Ω. Definition 4.3. Given a subdomain D ′ ⊂ Ω which is resolved by T h , the extension of D ′ by one layer of elements is

D = Int � � {k:supp(φ k )∩D ′ � =∅} supp(φ k ) �
and Int(•) denotes the interior of a domain. Extensions by more than one layer can then be defined recursively.

The proof of the following lemma is a direct consequence of Definition 4.3.

Lemma 4.4. For every degree of freedom k, with 1 ≤ k ≤ n, there is a subdomain Ω j , with 1 ≤ j ≤ N , such that supp(φ k ) ⊂ Ω j . Now, for each j = 1, . . . , N , let

V h (Ω j ) := {v| Ω j : v ∈ V h }
denote the space of restrictions of functions in V h to Ω j . Furthermore, let

V h,0 (Ω j ) := {v| Ω j : v ∈ V h , supp (v) ⊂ Ω j }
denote the space of finite element functions supported in Ω j . By definition, the extension by zero of a function v ∈ V h,0 (Ω j ) to Ω lies again in V h . We denote the corresponding extension operator by

R ⊤ j : V h,0 (Ω j ) → V h . (4.4) Lemma 4.4 guarantees that V h = � N j=1 R ⊤ j V h,0 (Ω j ). The adjoint of R ⊤ j R j : V ′ h → V h,0 (Ω j ) ′ ,
called the restriction operator, is defined by �R j g, v� = �g, R ⊤ j v�, for v ∈ V h,0 (Ω j ), g ∈ V ′ h . However, for the sake of simplicity, we will often leave out the action of R ⊤ j and view V h,0 (Ω j ) as a subspace of V h .

The final ingredient is a coarse space V H ⊂ V h which will be defined later. Let R ⊤ H : V H → V h denote the natural embedding and R H its adjoint. Then the two-level additive Schwarz preconditioner (in matrix form) reads

M -1 AS,2 = R T H A -1 H R H + N � j=1 R T j A -1 j R j , A H := R H AR T H and A j := R j AR T j , (4.5) 
where R j , R H are the matrix representations of R j and R H with respect to the basis {φ k } n k=1 and the chosen basis of the coarse space V H . As usual for standard elliptic BVPs, A j corresponds to the original (global) system matrix restricted to subdomain Ω j with Dirichlet conditions on the artificial boundary ∂Ω j \ ∂Ω.

To simplify the notation, if D is the union of elements of T h and

V h (D) := {v| D : v ∈ V h },
we write, for any v, w ∈ V h (D),

a D (v, w) := � τ ∈D a τ (v| τ , w| τ ) and |v| a,D = � a D (v, v),
where the latter is the energy seminorm. The definition of a D (•, •) extends naturally to v, w ∈ V h (D ′ ), for any D ⊂ D ′ ⊂ Ω which simplifies notations. On each of the local spaces V h,0 (Ω j ), the bilinear form a Ω j (•, •) is positive definite since

a Ω j (v, w) = a(R ⊤ j v, R ⊤ j w), for all v, w ∈ V h,0 (Ω j ),
and because a(•, •) is coercive on V . For the same reason, the matrix A j in (4.5) is invertible. Hence, | • | a,Ω j becomes a norm on V h,0 (Ω j ) and so we write

�v� a,Ω j = � a Ω j (v, v), for all v ∈ V h,0 (Ω j ).
If D = Ω, we omit the domain from the subscript and write � • � a instead of � • � a,Ω .

We use here the abstract framework for additive Schwarz (see [112, Chapter 2] or Section 2.2.1 of this manuscript). In the following we summarize the most important ingredients.

Definition 4.5. We define

k 0 = max τ ∈T h � #{Ω j : 1 ≤ j ≤ N , τ ⊂ Ω j } � .
This means that each point in Ω belongs to at most k 0 of the subdomains Ω j . Lemma 4.6. With k 0 as in Definition 4.5, the largest eigenvalue of M -1 AS,2 A satisfies

λ max (M -1 AS,2 A) ≤ k 0 + 1.
Proof. See, e.g., [START_REF] Dryja | Domain decomposition algorithms with small overlap[END_REF]Section 4].

Definition 4.7 (Stable decomposition). Given a coarse space V H ⊂ V h , local subspaces {V h,0 (Ω j )} 1≤j≤N and a constant C 0 , a C 0 -stable decomposition of v ∈ V h is a family of functions {z j } 0≤j≤N that satisfies

v = N � j=0 R ⊤ j z j , with z 0 ∈ V H , z j ∈ V h,0 (Ω j ), for j ≥ 1, (4.6) 
and

�z 0 � 2 a + N � j=1 �z j � 2 a,Ω j ≤ C 2 0 �v� 2 a . (4.7) 
Theorem 4.8. If every v ∈ V h admits a C 0 -stable decomposition (with uniform C 0 ), then the smallest eigenvalue of M -1 AS,2 A satisfies

λ min (M -1 AS,2 A) ≥ C -2 0 .
Therefore, the condition number of the two-level Schwarz preconditioner (4.5) can be bounded by κ(M -1 AS,2 A) ≤ C 2 0 (k 0 + 1). Proof. The statement is a direct consequence of [112, Lemma 2.5] and Lemma 4.6.

In the following, we will construct a C 0 -stable decomposition in a specific framework, but prior to that we will provide in an abstract setting, a sufficient and simplified condition of stability. Lemma 4.9. Using the notations introduced in Definition 4.7, if there exists a constant C 1 such that �z j � 2 a,Ω j ≤ C 1 |v| 2 a,Ω j , for all j = 1, . . . , N, (

then the decomposition (4.6) is C 0 -stable with

C 2 0 = 2 + C 1 k 0 (2k 0 + 1)
where k 0 is given in Definition 4.5.

Proof. From (4.8) and Definition 4.5 we get successively

N � j=1 �z j � 2 a,Ω j ≤ C 1 N � j=1 |v| 2 a,Ω j ≤ C 1 k 0 �v� 2 a . (4.9) 
We also have:

�z 0 � 2 a = � � � � � � v - N � j=1 z j � � � � � � 2 a ≤ 2 �v� 2 a + 2 � � � � � � N � j=1 z j � � � � � � 2 a , (4.10) 
and from Definition 4.5 and (4.9) we get

� � � � � � N � j=1 z j � � � � � � 2 a ≤ k 0 N � j=1 �z j � 2 a,Ω j ≤ C 1 k 2 0 �v� 2 a . (4.11) 
Using (4.11) in (4.10) yields

�z 0 � 2 a ≤ 2(1 + C 1 k 2 0 ) �v� 2 a . (4.12) 
By adding (4.9) and (4.12) we get (4.7) with

C 2 0 = 2 + C 1 k 0 (2k 0 + 1).
When �z 0 � 2 a can be bounded directly in terms of �v� 2 a (independently of the coefficient variation), this lemma is superfluous and leads to a suboptimal quadratic dependence on k 0 . In general, however, it is not possible to provide such a uniform bound on �z 0 � 2 a , which is why Lemma 4.9 is in fact absolutely crucial for our analysis.

Abstract generalized eigenproblems

In order to construct the coarse space we will use generalized eigenvalue problems in each subdomain. Since several variations of generalized eigenvalue problems exist in the literature (particularly concerning the interpretation of the 'infinite eigenvalue'), we state the definition that we use. It is in agreement with the matrix counterpart in Definition 2.12 of this manuscript.

Definition 4.10 (Generalized eigenvalue problem). Let

� V be a finite-dimensional Hilbert space, let � a : � V × � V → R and � b : � V × � V → R be two symmetric bilinear forms.
Then the generalized eigenvalues associated with the so called 'pencil' (� a, � b) are the following values λ ∈ R ∪ {+∞}: either λ ∈ R and there exists p

∈ � V \{0} such that � a(p, v) = λ � b(p, v), for all v ∈ � V , (4.13) 
or λ = +∞ and there exists p

∈ � V \{0} such that � b(p, v) = 0, for all v ∈ � V , and � a(p, v) � = 0, for a certain v ∈ � V .
In both cases p is called a generalized eigenvector associated with the eigenvalue λ.

The definition above allows for infinite eigenvalues. This results from the fact that if (+∞, p) is an eigenpair for the pencil (� a, � b) then (0, p) is an eigenpair for the pencil ( � b, � a) and there is no reason to discriminate between both formulations. In cases where the bilinear form � b is positive definite, the problem can be simplified and crucial properties on the eigenvalues and eigenvectors arise. In particular, it leads quite naturally to optimal projectors onto subspaces of the functional space, as the next lemma shows in an abstract setting.

Lemma 4.11. Let ã be positive semi-definite and b positive definite, and let the eigenpairs

{(p k , λ k )} dim( � V ) k=1
of the generalized eigenvalue problem (4.13) be ordered such that

0 ≤ λ 1 ≤ . . . ≤ λ dim( � V ) and � b(p k , p l ) = δ kl , for any 1 ≤ k, l ≤ dim( � V ),
where δ kl denotes the Kronecker delta. Then, for any integer 1 ≤ m < dim( � V ), the projection

� Π m v := m � k=1 � b(v, p k )p k satisfies | � Π m v| � a ≤ |v| � a and |v -� Π m v| � a ≤ |v| � a , for all v ∈ � V . (4.14)
Additionally, if m is such that λ m+1 > 0, we have the stability estimate

�v -� Π m v� 2 � b ≤ 1 λ m+1 |v -� Π m v| 2 � a , for all v ∈ � V .
Proof. Due to the additional assumptions on � a and � b, the generalized eigenvalue problem can be simplified to a standard eigenvalue problem, for which the existence of eigenvec-

tors {p k } dim( � V ) k=1
with associated non-negative real eigenvalues

{λ k } dim( � V ) k=1
is guaranteed by standard spectral theory. Moreover,

{p k } dim( � V ) k=1
can be chosen such that it is a basis of � V fulfilling the conditions:

� a(p k , p l ) = � b(p k , p l ) = 0 ∀ k � = l, |p k | 2 � b = 1 and |p k | 2 � a = λ k .
The proof of this result, in matrix formulation is given in the proof of Lemma 2.13. Now let v ∈ � V be fixed. From the � b-orthonormality of the basis we get

v = dim( � V ) � k=1 � b(v, p k )p k .
For any index set

I ⊂ {1, ..., dim( � V )} the fact that � a(p k , p l ) = 0 ∀ k � = l implies � � � � � � � k∈I � b(v, p k )p k � � � � � � 2 � a = � k∈I � b(v, p k ) 2 |p k | 2 � a ,
and thus

|v| 2 � a = | � Π m v| 2 � a + |v -� Π m v| 2 � a .
and (4.14) follows directly. Finally,

�v -� Π m v� 2 � b = � � � dim( � V ) � k=m+1 � b(v, p k ) p k � � � 2 � b = dim( � V ) � k=m+1 � b(v, p k ) 2 (by the � b-orthonormality of p k ) = dim( � V ) � k=m+1 � b(v, p k ) 2 1 λ k |p k | 2 � a (since λ k = |p k | 2 � a ) ≤ 1 λ m+1 dim( � V ) � k=m+1 � b(v, p k ) 2 |p k | 2 � a (since λ 1 ≤ . . . ≤ λ dim( � V ) ) = 1 λ m+1 |v -� Π m v| 2 � a (by � a(p k , p l ) = 0 ∀ k � = l).
This lemma will be one of the core arguments to prove the existence of a stable decomposition onto the new GenEO (Generalized Eigenproblems in the Overlap) coarse space and the local subspaces. It is in fact the central part in all the approaches that rely on solving eigenvalue problems, cf. Lemma 3.2 in the pioneering work [START_REF] Brezina | An iterative method with convergence rate chosen a priori[END_REF] where b is the l 2 (euclidean) inner product or equation (2.8) in [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF] where b is a particular bilinear form defined there. The choice of b is one of the defining elements that characterizes each of these methods and for GenEO it will be introduced in the next section.

Algebraic construction of a robust coarse space and its analysis

In this section we introduce the coarse space and give a bound on the condition number of the two-level additive Schwarz method with it along with a rigorous proof of this result. The proof will consist in proving the existence of a stable splitting for any function in V h in the sense of Definition 4.7.

The coarse space

The GenEO coarse space is constructed as follows. In each subdomain we pose a suitable generalized eigenproblem and select a number of low frequency eigenfunctions. These local functions are converted into global coarse basis functions using a partition of unity operator. As mentioned before, the eigenproblems are restricted to the overlapping zone, which is introduced in the next definition. Following this definition, we will then define the partition of unity operator, which will appear both in the eigenproblems themselves and in the construction of the coarse basis functions. Definition 4.12 (Overlapping zone). For each subdomain Ω j (1 ≤ j ≤ N ), the overlapping zone is given by Ω

• j = {x ∈ Ω j : ∃ j ′ � = j such that x ∈ Ω j ′ }.
We will also require the set of degrees of freedom associated with V h (Ω j ), as well as those associated with V h,0 (Ω j ), for 1 ≤ j ≤ N . Remark 4.14. Since the basis functions φ k of V h fulfil a unisolvence property on each element they also fulfil a unisolvence property on each subdomain Ω j , in other words the functions

{φ k | Ω j } k∈dof(Ω j ) (resp. {φ k | Ω j } k∈dof(Ω j )
) are linearly independent. A direct consequence is that these functions form a basis of V h (Ω j ) (resp. V h,0 (Ω j )).

Now we can introduce the partition of unity operators. Recall that, for any

v ∈ V h , we write v = � n k=1 v k φ k .
Definition 4.15 (Partition of unity). For each degree of freedom k ∈ dof(Ω) := {1, . . . , n}, let {µ j,k : k ∈ dof(Ω j ), 1 ≤ j ≤ N } be a family of weights such that µ j,k ≥ 1 and

� {j;k∈dof(Ω j )} 1 µ j,k = 1.
Then, for 1 ≤ j ≤ N , the local partition of unity operator Ξ j :

V h (Ω j ) → V h,0 (Ω j ) is defined by Ξ j (v) := � k∈dof(Ω j ) 1 µ j,k v k φ k | Ω j , for all v ∈ V h (Ω j ).
Remark 4.16. A possible choice for the weights in Definition 4.15 is to use the multiplicity of each degree of freedom: for any degree of freedom k ∈ dof(Ω), let µ k denote the number of subdomains for which k is an internal degree of freedom, i.e.

µ k := # {j : 1 ≤ j ≤ N and k ∈ dof(Ω j )}
and then use the equal weights µ j,k := µ k , for any j = 1, . . . , N with k ∈ dof(Ω j ).

Lemma 4.17. The operators Ξ j from Definition 4.15 form a partition of unity in the following sense:

N � j=1 R ⊤ j Ξ j (v| Ω j ) = v, for all v ∈ V h . (4.15) Moreover, Ξ j (v)| Ω j \Ω • j = v| Ω j \Ω • j , for all v ∈ V h (Ω j ) and 1 ≤ j ≤ N . (4.16)
Proof. Property (4.15) follows directly from the definition. To show (4.16), let v ∈ V h (Ω j ) and recall that by definition

Ξ j (v)| Ω j \Ω • j = � k∈dof(Ω j ) 1 µ j,k v k φ k | Ω j \Ω • j . Now note that if µ j,k > 1, then φ k | Ω j \Ω • j = 0, because k ∈ dof(Ω ′ j ) for j � = j ′ . Hence, Ξ j (v)| Ω j \Ω • j = � k∈dof(Ω j ) s.t. µ j,k =1 v k φ k | Ω j \Ω • j = � k∈dof(Ω j \Ω • j ) v k φ k | Ω j \Ω • j ,
and this is also the definition of v| Ω j \Ω • j .

Next we define the local generalized eigenproblems for the GenEO coarse space.

Definition 4.18 (Generalized Eigenproblems in the Overlaps). For each j = 1, . . . , N , we define the following generalized eigenvalue problem

a Ω j (p, v) = λ b j (p, v), for all v ∈ V h (Ω j ). (4.17) where b j (p, v) := a Ω • j (Ξ j (p), Ξ j (v)
), for all p, v ∈ V h (Ω j ). Remark 4.19. Although the form of the bilinear forms b j (•, •) seems somewhat artificial, we will see below that it arises naturally in the analysis. It is clear that the eigenvalues and eigenvectors will depend on the choice of the partition of unity in Definition 4.15.

The GenEO coarse space is now constructed (locally) as the span of a suitable subset of the eigenfunctions in (4.17). Finally, to obtain a global coarse space we apply the partition of unity operators. Consequently, we can also make explicit the final component in Definition 4.5 of the matrix form M -1 AS,2 of the additive Schwarz preconditioner, namely the prolongation matrix R T H . The columns of the rectangular matrix R T H ∈ R n×dim(V H ) are simply the vector representations of the functions {R ⊤ j Ξ j (p k j ) : k = 1, . . . , m j ; j = 1, . . . , N } with respect to the finite element basis {φ k } n k=1 . Clearly dim (V H ) = � N j=1 m j and a strategy for selecting m j will be given below. This completes the definition of M -1 AS,2 .

Analysis of the preconditioner

To confirm the robustness of the above coarse space and to bound the condition number of M -1 AS,2 A via Theorem 4.8 we will now show that there is a stable splitting for each v ∈ V h in the sense of Definition 4.7. First we will give some results on the local subspaces Ω j , then we use them to show that the eigenproblems from Definition 4.18 are well defined and that the eigenpairs have some particular properties. In order to do this we define a subspace � V j of each V h (Ω j ) on which the restriction of the local generalized eigenproblems satisfy the hypotheses of Lemma 4.11. This leads to local projectors onto subspaces of V h (Ω j ) which satisfy stability estimates. These stability estimates will generalize to the whole of V h (Ω j ) and enable us to split any v ∈ V h in a "C 0 -stable" manner. Definition 4.21. We partition the set dof(Ω j ) of degrees of freedom in V h (Ω j ) into three sets (see also Figure 4.1):

k ∈ β j 1 k ∈ β j 2 k ∈ β j 3 supp(φ k ) � ⊂ Ω j supp(φ k ) ⊂ Ω j \ Ω • j supp(φ k ) ⊂ Ω j , supp(φ k ) � ⊂ Ω j \ Ω • j
β j 1 := dof(Ω j ) \ dof(Ω j )
(the DOFs on the boundary of Ω j ),

β j 2 := dof(Ω j \Ω • j ) (the interior DOFs in Ω j \Ω • j ), β j 3 := dof(Ω j ) \ dof(Ω j \Ω • j ) (
the DOFs in the overlap, incl. the inner boundary). From these index sets we define subsets of functions of V h (Ω j )

B j 1 := span � φ k | Ω j � k∈β j 1 , B j 2 := span � φ k | Ω j � k∈β j 2 and B j 3 := span � φ k | Ω j � k∈β j 3 , such that V h (Ω j ) = B j 1 ⊕ B j 2 ⊕ B j 3 .
The following simple properties will be used frequently in the following. Lemma 4.22. For any 1 ≤ j ≤ N , the following properties are true

1. supp (v) ⊂ Ω • j , for all v ∈ B j 1 , 2. B j 1 = Ker(Ξ j ), 3. B j 2 = {v ∈ V h (Ω j ) : v| Ω • j = 0}, 4. a Ω j is coercive on B j 2 . Proof.
1. For any basis function φ k with k ∈ β j 1 , Lemma 4.4 implies that there is another subdomain Ω j ′ with supp(φ k ) ⊂ Ω j ′ , and so supp(

φ k ) ∩ (Ω j \ Ω • j ) = ∅. 2. Let v ∈ V h (Ω j ). Then v ∈ Ker(Ξ j ) ⇔ v k = 0, for all k ∈ dof(Ω j ) ⇔ v = � k∈β j 1 v k φ k | Ω j ∈ B j 1 .

It is clear from the definition of

B j 2 that B j 2 ⊂ {v ∈ V h (Ω j ) : v| Ω • j = 0}. Conversely, if v| Ω • j = 0, then from the unisolvence property, v k = 0, for all k ∈ dof(Ω • j ) = β j 1 ∪ β j 3 , and therefore {v ∈ V h (Ω j ) : v| Ω • j = 0} ⊂ B j 2 also.
Since, according to Lemma 4.29, b j (•, •) is coercive on � V j × � V j , we can apply Lemma 4.11 with �

V � → � V j , � a � → a Ω j , and � b � → b j to analyse the restriction of (4.17) to � V j . This completes the proof of (i).

For the restriction of (4.17) to � W j , we prove that all vectors in � W j are eigenvectors associated with the eigenvalue +∞ in the sense of Definition 4.10. Let v ∈ � W j . Then Ξ j (v)| Ω • j = 0 and so in particular

a Ω • j (Ξ j (v), Ξ j (w)) = 0 for all v, w ∈ � W j . (4.19)
Moreover, we have already seen in the proof of Lemma 4.27 that a Ω j is coercive on � W j , and so

a Ω j (v, v) � = 0 for all v ∈ � W j \{0}. (4.20)
Due to (4. [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF]) and (4.20), any v ∈ � W j is indeed an eigenvector to the eigenvalue +∞ in the sense of Definition 4.10. We can use any set of linearly independent vectors in � W j to form a basis, e.g.

{p k j } dim(V h (Ω j )) k=dim( � V j )+1 = {φ k | Ω j } k∈β j 1 ∪β j 2 .
We are now ready to define the crucial projection operators onto the local components of the GenEO coarse space that satisfy suitable stability estimates. 

(p k j , λ k j )} dim(V h (Ω j )) k=1
be as defined in Lemma 4.30. Suppose that m j ∈ {1, . . . , dim(V h (Ω j )) -1} such that 0 < λ j m j +1 < ∞. Then, the local projection operator

Π j m j v := m j � k=1 a Ω • j (Ξ j (v), Ξ j (p k j )) p k j satisfies
|Π j m j v| a,Ω j ≤ |v| a,Ω j and |v -Π j m j v| a,Ω j ≤ |v| a,Ω j , for all v ∈ V h (Ω j ), (4.21) as well as the stability estimate

� � �Ξ j (v -Π j m j v) � � � 2 a,Ω • j ≤ 1 λ j m j +1 � � �v -Π j m j v � � � 2 a,Ω j , for all v ∈ V h (Ω j ). (4.22)
Proof. The condition λ j m j +1 < ∞, ensures that m j ≤ dim( � V j ), so Π j m j maps to � V j . Therefore, for all v ∈ � V j , the estimates in (4.21) and (4.22) can be deduced from Lemma 4.11 again, with

� V � → � V j , � a � → a Ω j , � b � → b j
, and m � → m j . To prove the result for all v ∈ V h (Ω j ), we use again the fact that 

V h (Ω j ) = � V j ⊕ � W j and that a Ω j (v, w) = 0, for all v ∈ � V j and w ∈ � W j . Let v = v V + v W ∈ V h (Ω j ) with v V ∈ � V j and v W ∈ � W j . Then Π j m j v = Π j m j v V and
z 0 := N � j=1 Ξ j (Π j m j v| Ω j ), z j := Ξ j (v| Ω j -Π j m j v| Ω j ), for j = 1, . . . , N, is C 0 -stable with C 2 0 = 2 + k 0 (2k 0 + 1) max 1≤j≤N � 1 + 1 λ j m j +1 � . Proof. By definition �z j � 2 a,Ω j = |Ξ j (v -Π j m j v| Ω j )| 2 a,Ω • j + |Ξ j (v -Π j m j v| Ω j )| 2 a,Ω j \Ω • j .
However, due to property (4.16) in Lemma 4.17, Ξ j is the identity for restrictions of functions to Ω j \ Ω • j , and so

�z j � 2 a,Ω j = � � Ξ j (v -Π j m j v| Ω j ) � � 2 a,Ω • j + � � v -Π j m j v| Ω j � � 2 a,Ω j \Ω • j .
Now we can apply Lemma 4.31 to get

�z j � 2 a,Ω j ≤ � 1 + 1 λ j m j +1 � � � v -Π j m j v| Ω j � � 2 a,Ω j ≤ � 1 + 1 λ j m j +1 � |v| 2 a,Ω j ,
where in the last step we have used (4.21).

With this stable decomposition we can now state our main result on the convergence of the two-level Schwarz preconditioner with the new GenEO coarse space. It follows immediately from Theorem 4.8 and Lemma 4.32.

Theorem 4.33 (Bound on the condition number). Let Assumptions 4.1, 4.23, and 4.24 hold. Suppose that the coarse space V H is given by Definition 4.20 and M -1 AS,2 is as defined in (4.5). Then we can bound the condition number for the two-level Schwarz method by

κ(M -1 AS,2 A) ≤ (1 + k 0 ) � 2 + k 0 (2k 0 + 1) max 1≤j≤N � 1 + 1 λ j m j +1 �� ,
where k 0 is given in Definition 4.5.

The only parameters that need to be chosen in our coarse space are the numbers m j of eigenmodes on each subdomain Ω j , 1 ≤ j ≤ N , to be included in the coarse space. We suggest the following choice which recovers the condition number estimate for problems with no strong coefficient variation.

Corollary 4.34. For any j, 1 ≤ j ≤ N , let

m j := min � m : λ j m+1 > δ j H j � , (4.23) 
where δ j is a measure of the width of the overlap Ω • j and H j = diam (Ω j ). Then

κ(M -1 AS,2 A) ≤ (1 + k 0 ) � 2 + k 0 (2k 0 + 1) max 1≤j≤N � 1 + H j δ j �� .
Note that the number of subdomains and the coefficient variations do not appear in this bound on the condition number. This means that we have established rigorously that the algorithm is robust with respect to these two parameters. We will confirm this with some numerical tests in Section 4.5. The size of the coarse space induced by the criterion does however depend on the geometry of the coefficient variation in the overlaps and the choice of the partition of unity. In fact, for some problems it may happen that even for a very small criterion the number of eigenmodes which are selected is very large. This is the case for instance in the context of linear elasticity when one of the materials is almost incompressible (i.e. its Poisson ratio approaches 1/2), because then the bilinear form a Ω • j (Ξ j (•), Ξ j (•)) on the right hand side of eigenproblem (4.17) has very high energy.

Two variants

In this section we present two variants around the GenEO coarse space. First we change the two level additive Schwarz preconditioner for the hybrid Schwarz preconditioner and prove a convergence result for this preconditioner with the GenEO coarse space. Next we propose a slight modification of the GenEO eigenproblem and also give a convergence result.

Hybrid Schwarz preconditioner

The hybrid Schwarz preconditioner is

M -1 hy = R ⊤ 0 A -1 0 R 0 + (I -P 0 ) � N � i=1 R ⊤ j A -1 j R j � (I -P 0 ) ⊤ . (4.24)
We already introduced hybrid preconditioners in the introduction (2.30). For our theoretical analysis we will look at M -1 hy in the abstract Schwarz framework as an additive preconditioner:

-The local solvers are the same as for the Additive Schwarz preconditioner:

A j = R j AR ⊤ j , ∀i = 0, . . . , N . -The coarse interpolation operator is simply R ⊤ 0 .
-The local interpolation operators are (I -P 0 )R ⊤ j for j = 1, . . . , N . The fact that the coarse corrections are now also applied multiplicatively with respect to the one level additive Schwarz preconditioner leads to an improved upper bound for the eigenvalues of M -1 hy A. 

≤ k 0 �Au, u�,
where in the second line we used a result proved in [START_REF] Dryja | Domain decomposition algorithms with small overlap[END_REF]Section 4] and in the first and last lines we use the A-orthogonality of projection P 0 .

Because the local interpolation operators are (I -P 0 )R ⊤ j instead of R ⊤ j , Definition 4.7 of a stable splitting must be slightly adapted: in (4.6 

) the condition v = � N j=0 R ⊤ j z j must be replaced by v = � N j=1 (I -P 0 )R ⊤ j z j + R ⊤ 0 z 0 .
z 0 := v 0 , such that R ⊤ 0 v 0 = P 0 v, z j := Ξ j (v| Ω j -Π j m j v| Ω j ), for j = 1, . . . , N, is C 0 -stable with C 2 0 = 1 + k 0 max 1≤j≤N � 1 + 1 λ j m j +1 � .
Proof. This splitting is from [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF]. Let u ∈ V h , first we need to prove that the z j indeed provide a splitting of u:

R ⊤ 0 z 0 + N � j=1 (I -P 0 )R ⊤ j z j = P 0 v + (I -P 0 )R ⊤ j Ξ j (v| Ω j -Π j m j v| Ω j ) = P 0 v + (I -P 0 )R ⊤ j Ξ j (v| Ω j ),
where the argument is that (

I -P 0 )R ⊤ j Ξ j (Π j m j v| Ω j ) = 0 since R ⊤ j Ξ j (Π j m j v| Ω j ) ∈ span{R ⊤ j Ξ j (p k j ); k = 1, . . . , m j } and span{R ⊤ j Ξ j (p k j ); k = 1, . . . , m j } ⊂ V H = range(P 0 ) = Ker(I -P 0 ). Finally, R ⊤ 0 z 0 + N � j=1 (I -P 0 )R ⊤ j z j = P 0 v + (I -P 0 )v = v
The stability property has pretty much been proved already in the proof of Lemma 4.32:

�z j � 2 a,Ω j ≤ � 1 + 1 λ j m j +1 � |v| 2 a,Ω j , so by definition of k 0 N � j=1 �z j � 2 a,Ω j ≤ k 0 max 1≤j≤N � 1 + 1 λ j m j +1 � |v| 2 a ,
and finally

N � j=0 �z j � 2 a,Ω j ≤   1 + k 0 max 1≤j≤N � 1 + 1 λ j m j +1 �   |v| 2 a .
Theorem 4.37 (Bound on the condition number: hybrid operator). Let Assumptions 4.1, 4.23, and 4.24 hold. Assume that the coarse space V H is given by Definition 4.20 and M -1 hy is as defined in (4.24). Then we can bound the condition number of the preconditioned operator by

κ(M -1 hy A) ≤ k 0 � 1 + k 0 max 1≤j≤N � 1 + 1 λ j m j +1 �� ,
where k 0 is given in Definition 4.5.

A different eigenproblem Another variant for GenEO is to replace the generalized eigenvalue problem in Definition 4.18 by the following Definition 4.38 (Generalized Eigenproblems in the Overlaps: a Variant). For each j = 1, . . . , N , we define the following generalized eigenvalue problem

a Ω j (p, v) = λ a Ω j (Ξ j (p), Ξ j (v)), for all v ∈ V h (Ω j ). (4.25)
The difference is that the matrix in the right hand side of the generalized eigenvalue problem is no longer restricted to the overlap. The remainder of the definition of the coarse space is unchanged: Definition 4.39 (GenEO coarse space: a Variant). For each j = 1, . . . , N , let (p j k ) m j k=1 be the eigenfunctions of the eigenproblem (4.25) in Definition 4.38 corresponding to the m j smallest eigenvalues. Then,

V ′ H := span{R ⊤ j Ξ j (p j k ) : k = 1, . . . , m j ; j = 1, . . . , N }.
Thanks to this choice the technical Assumption 4.24 is no longer required. Next, we give the convergence theorems for the fully Additive and Hybrid preconditioners with these modified coarse spaces. The proofs are very similar and slightly more simple than with the original GenEO. AS,2 and M -1 hy are as defined in (4.5) and (4.24). Then we can bound the condition number of the preconditioned operators by

κ(M -1 AS,2 A) ≤ (1 + k 0 ) � 2 + k 0 (2k 0 + 1) max 1≤j≤N � 1 λ j m j +1 �� , and 
κ(M -1 hy A) ≤ k 0 � 1 + k 0 max 1≤j≤N � 1 λ j m j +1 �� ,
where k 0 is given in Definition 4.5.

Implementation

In this section we would like to address implementation issues of the proposed algorithm involving the GenEO coarse space. In the sections above, we have worked with function spaces as they are more convenient in the analysis. However, as we will demonstrate below, our algorithm requires only abstract information of the problem in form of the element stiffness matrices and no further information on the mesh, the finite element spaces, or any coefficients. Indeed, for running the algorithm we need (i) the list dof(τ ) of degrees of freedom associated with each element τ ∈ T h , (ii) the element stiffness matrix

A τ = (a τ (φ l , φ k )) k, l∈dof(τ ) associated with each element τ ∈ T h .
Unless the overlapping subdomain partition is available a priori, we additionally need (iii) the number ℓ of layers which determine the amount of overlap.

Before going into details, we note that as for the classical two-level overlapping Schwarz method (see, e.g. [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]Sect. 3]), our algorithm can be parallelized straightforwardly. In particular, the solution of the eigenproblems in the preprocessing step and the subdomain solves during each PCG iteration can be performed fully in parallel.

Preprocessing

We need the overlapping partition Ω = � N j=1 Ω j in form of the list of elements associated with each subdomain Ω j . To obtain this, we first create the connectivity graph of the elements (using the lists dof(τ ) from (i)) and partition it into disjoint sets of elements which make up the non-overlapping subdomains Ω ′ j using for instance METIS [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] or SCOTCH [START_REF] Chevalier | PT-Scotch: a tool for efficient parallel graph ordering[END_REF]. Then, for each (global) DOF k, we build the list elem(k) = {τ ∈ T h : k ∈ dof(τ )} of elements where DOF k is active. This list realizes supp(φ k ) without knowing the basis function φ k itself. In a second step we add ℓ layers to each non-overlapping subdomain Ω ′ j according to Definition 4.3, which finally results in a list of elements per (overlapping) subdomain Ω j . From this, we construct Definition 4.13). Then we can compute the set of internal degrees of freedom in Ω j Definition 4.15). Finally it is straightforward to get the list of elements that make up the overlapping zone Ω • j for each j = 1, . . . , N , namely {τ ⊂ Ωj : τ ⊂ Ωj ′ , j ′ � = j} .

dof(Ω j ) = � τ ⊂ Ωj dof(τ ) (cf.
dof(Ω j ) = � k ∈ dof(Ω j ) : � τ ∈elem(k) τ ⊂ Ωj � (cf.

The eigenproblems

For each subdomain Ω j , j = 1, . . . , N we use a local renumbering of the degrees of freedom dof(Ω j ) of V h (Ω j ). By assembling the element stiffness matrices for these DOFs over the elements τ ⊂ Ωj , we get the subdomain "Neumann" matrix �

A j . This is the matrix formulation of a Ω j (•, •) : V h (Ω j ) × V h (Ω j ) → R. For the same renumbering of DOFs, we assemble only over the elements τ ⊂ Ω• j in the overlap and obtain matrix � A

• j associated with the bilinear form a Ω

• j (•, •) : V h (Ω j ) → V h (Ω j
). Note that � A j and � A

• j have the same format, but � A

• j usually contains a block of zeros corresponding to the degrees of freedom that are in the part of Ω j which is not overlapped by other subdomains.

From Definition 4.15, we see immediately that the action of the operator Ξ j can be coded by a diagonal matrix X j , where the diagonal entry corresponding to DOF k is equal to 1/µ j,k .

With these notations, the eigenproblem given in Definition 4.18 reads: Find the eigenvectors p k j ∈ R #dof(Ω j ) and eigenvalues λ k j ∈ R ∪ {+∞} that satisfy

� A j p k j = λ k j X j � A • j X j p k j . (4.26)
To get the coarse basis functions, we need to solve these eigenproblems (at least we need sufficiently many eigenpairs corresponding to low frequent modes) and to then select m j of these eigenfunctions for our coarse space. With the criterion suggested in (4.23), we need measures δ j and H j for the width of the overlapping zone and the subdomain diameter, respectively. If the mesh can be assumed to be quasi-uniform, we may replace the ratio δ j /H j by the number of layers of extension we applied in subdomain Ω j divided by the number of layers Ω j contains in total (which is available via the connectivity graph).

The preconditioner

Having selected the eigenvectors p j k , the coarse basis functions are given by the vectors � R T j X j p k j , where the matrix � R T j maps the renumbered DOFs to the global DOFs and fills the rest of the vector with zeros. The columns of the matrix R T H are exactly the vectors � R T j X j p k j , where j = 1, . . . , N , k = 1, . . . , m j . The coarse matrix A H = R H AR T H can be efficiently assembled subdomain-wise by using the fact that the coarse basis functions corresponding to two subdomains only interact when the subdomains overlap. Thus, in a parallel regime, we basically only need next-neighbor communication.

As for the 'one level' part of the preconditioner we have made the list dof(Ω j ) of internal degrees of freedom for subdomain Ω j available in the preprocessing step. Then R j is simply a Boolean matrix which renumbers local vectors into global vectors and the matrix counterpart

A j of a Ω j (•, •) : V h,0 (Ω j ) × V h,0 (Ω j ) → R
is computed by assembling the element matrices for elements τ in the ready made list {τ ⊂ Â Ωj }.

Clearly, once the information above is stored and the matrices A j are factorized, each application of M -1 AS,2 (within the PCG) can be carried out efficiently.

An alternative way of solving the eigenproblems

The size of the (algebraic) eigenproblem (4.26) to be solved in each subdomain can be reduced. By rearranging the local DOFs dof(Ω j ) with respect to the sets β j 1 (the boundary), β j 2 (the overlap), and β j 3 (the interior) (cf. Definition 4.21), the matrices � A j and B j := X j � A

• j X j take the following block form 

� A j =     � A 11 j 0 � A 13 j 0 � A 22 j � A 23 j ( � A 13 j ) T ( � A 23 j ) T � A 33 j     , B j =    0 0 0 0 0 0 0 0 B 33 j    , where � A kl j = a Ω j (φ m , φ n ) n∈β j k ,
S j = � A 33 j -� A 13 j [ � A 11 j ] -1 � A 13 j -� A 23 j [ � A 22 j ] -1 � A 23 j
is well defined and we can reduce eigenproblem (4.26) to an eigenproblem for the Schur complement

S j p j,3 k = λ k j B 33 j p j,3 k . (4.27)
The two remaining blocks in p j can then be computed from

p j,1 k = -[ � A 11 j ] -1 � A 13 j p j,3 k , p j,2 k = -[ � A 22 j ] -1 � A 23 j p j,3
k (i.e. via discrete harmonic extension). The only difference is that with this version of the eigenproblem there are no infinite eigenvalues. Because we are only interested in the small eigenvalues we can solve eigenproblem (4.27) instead of (4.26). Due to the appearance of the Schur complement S j and because we are interested only in the first few eigenpairs, an iterative eigensolver could be applied, e.g., we could use the inverse power method [START_REF] Parlett | The symmetric eigenvalue problem[END_REF], ARPACK [START_REF] Lehoucq | ARPACK users' guide, volume 6 of Software, Environments, and Tools[END_REF] or the LOBPCG method [START_REF] Knyazev | Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method[END_REF], maybe using a suitable regularization of � A 33 jj or S j as a preconditioner. This, however, will be the subject of future research and we will use a direct eigensolver in the next section. Note finally, that the blocks p j,2 k never need to be calculated in practice as they are annihilated by the matrix X j .

Numerical results

We have introduced an algorithm for a wide range of problems. In this section we test its efficiency on the two-and three-dimensional Darcy equation and on the twoand three-dimensional linear elasticity equations with heterogeneous coefficients. We have already conducted, with success, a scalability and robustness test in the Introduction (Section 2.3.2). For all our numerical examples we have used FreeFem++ [START_REF] Hecht | FreeFem++. Numerical Mathematics and Scientific Computation[END_REF] to define the test cases and build all the finite element data. Throughout we have used standard piecewise linear (P 1 ) finite elements. The eigenvalue problems were solved using LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF]. For the remainder (including the subdomain solves and the coarse solve) we have used Matlab. Throughout this section we compare three methods.

1. The first one is the one-level additive Schwarz method (referred to as AS), defined by the preconditioner

M -1 AS,1 = � N j=1 R T j A -1 j R j . 2.
The second one (referred to as ZEM for Zero Energy Modes) is the two-level method given by (4.5) with the coarse space V H := span{R T j Ξ j (q j k )} j,k where the q j k span the kernel of the subdomain operator. For the Darcy equation these are the constant functions and for elasticity the rigid body modes. In the floating subdomains that do not touch the Dirichlet boundary, this basically coincides with choosing m j = dim(Ker(a Ω j )) in our GenEO method. 3. The third method (referred to as GenEO) is the two-level method introduced here, with the number m j , for j = 1, . . . , N , chosen according to (4.23) (except for one test where we will explicitly state this). The partition of unity operators are chosen to be the ones in Remark 4.16 where the weights are the multiplicities of each degree of freedom. For each of these methods we use the Preconditioned Conjugate Gradient (PCG) solver. As a stopping criterion we apply �v -v� ∞ < 10 -6 �v� ∞ where v is the solution of (4.2) obtained via a direct solver on the global problem (unless otherwise stated). Of course this criterion is not practical but in this context we have chosen it to ensure a fair comparison.

In the tables below, we provide the number of PCG iterations needed to reach convergence. We have also computed condition number estimates for each of the preconditioned matrices using the Rayleigh-Ritz procedure [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] on the Krylov subspaces within PCG. We do not give any detail on the maximal and minimal eigenvalue. However, we can report that adding/enriching the coarse space leads to larger minimal eigenvalues, whereas the maximal eigenvalue depends only on the geometry. This is in agreement with Lemma 4.6 and Theorem 4.8. Finally, we also display the dimension of the coarse space V H in each case.

For both three-dimensional scalability test (Sections 4.5.3 and 4.5.4), we use the domain Ω = [0, L]×[0, 1]×[0, 1] and a regular tetrahedral mesh of (10L+1×11×11) nodes which we divide into L subdomains, horizontally side by side. We will either use a regular partition into L unit cubes ( we get for GenEO with a barely positive threshold τ = 0 + . We have not plotted this on the graph purely for scaling issues. What this illustrates is that there is a good compromise to be found between the size of the coarse space and the efficiency of the method. An automatic optimal choice for K j is a subject for future research.

The two-dimensional linear elasticity equations

In this subsection, we look at the two-dimensional linear elasticity equations with a Dirichlet boundary condition at x = 0 and Neumann conditions otherwise:

Find u = (u 1 , u 2 ) T ∈ H 1 (Ω) 2 such that -div(σ(u)) = f , in Ω, u = (0, 0) T on ∂Ω D = {(x, y) ∈ ∂Ω : x = 0}
and σ(u) • n = 0 on the rest of ∂Ω, where the stress tensor σ(u), the Lamé coefficients λ and µ and the right hand side are given by We keep the problem size constant, but we make the number of subdomains vary. In all cases, we use a Metis partition and extend the non-overlapping subdomains by ℓ = 2 layers. As shown in Figure 4.5 (right) for a decomposition into 64 subdomains there are many floating subdomains. Table 4.1 shows the iteration counts and coarse space dimensions for different Metis partitions (some parameters are defined in the table's caption). From the iteration counts we see that the GenEO method is scalable.

       σ ij (u) = 2µε ij (u) + λδ ij div(u), ε ij (u) = 1 2 � ∂u i ∂x j + ∂u j ∂x i � , i, j = 1, 2 f = (0, g) T , µ = E 2(1+ν) , λ = Eν (1+ν)(1-2ν) .
It is not surprising that the coarse space dimension grows with the number of subdomains because we construct local coarse basis functions per subdomain. Note however that for the case of 64 subdomains, the coarse space dimension of 343 is still comparable to the average dimension of 205 of a subdomain problem.

The three-dimensional Darcy equation

On the domain Ω ⊂ R 3 given above, we solve the following problem:

Find v ∈ H 1 (Ω) such that -∇ • (κ∇v) = 0 in Ω, (4.28) 
v = 0 on ∂Ω D = {(x, y, z) ∈ ∂Ω : x = 0} and κ∇v • n = 0 on the rest of ∂Ω, where n is the outward unit normal. The coefficient distribution alternates between two different First, we study the robustness of our algorithm with respect to the coefficient variation. We partition Ω into L = 8 (non-overlapping) regular subdomains. Each subdomain is then extended by ℓ = 1 layer in order to create the overlapping partition. Table 4.2 shows the iteration counts and condition numbers for fixed value κ 1 = 1 and various κ 2 . As expected, for our algorithm the condition number and the number of PCG iterations are robust with respect to the jump κ 2 /κ 1 . Furthermore, for κ 2 = κ 1 , the algorithm automatically selects seven eigenmodes (one per floating subdomain) to build the coarse space, this leads essentially to the same choice as for the ZEM method except for the subdomain in which the Dirichlet boundary condition is active, where GenEO does not select any coarse mode.

The second test that we conduct is for the scalability with respect to the problem size and the number of subdomains. For simplicity, we make the problem parameter L vary. Recall that increasing L elongates the bar-shaped domain and at the same time increases the number of subdomains which equals L. Thus, the global number of degrees of freedom is also proportional to L. Table 4.3 gives the results for different problem sizes (we display the number of subdomains and the total number of degrees of freedom) and for regular and irregular partitions. For regular partitions we use (4.23); for irregular partitions, the choice of m j becomes more tricky since there may be additional 'bad' eigenmodes close to the ratio δ j /H j that are due to the irregularity of the subdomains and not due to any coefficient variation. In particular, the ratio δ j /H j which is constant for regular partitions, as L gets increased, may differ significantly for two 'Metis' decompositions into L and L ′ subdomains with L � = L ′ . In the regular case, (4.23) leads to m j = 2 and λ 3 = 0.5. Thus, in order for the bound on the condition number given by Theorem 4. [START_REF] Farhat | The two-level FETI method. II. Extension to shell problems, parallel implementation and performance results[END_REF] strict in the irregular ('Metis') case we set

m j := min � m : λ j m+1 > 0.5 � , (4.29) 
in each subdomain in Table 4.3. We note that the condition numbers in both the regular and irregular subdomain cases are stable and consistently low. Finally, Table 4.4 studies the dependence on the amount of overlap, or equivalently on the number ℓ of layers added to each non-overlapping subdomain. We can see that for this example, increasing the amount of overlap improves convergence without increasing the dimension of the coarse space.

The three-dimensional linear elasticity equations

For this family of tests the equations are the following. Find 

u = (u 1 , u 2 , u 3 ) T ∈ H 1 (Ω) 3 such that -div(σ(u)) = f , in Ω, AS ZEM GenEO L glob DOF it cond it cond dim it
   σ ij (u) = 2µε ij (u) + λδ ij div(u), ε ij (u) = 1 2 � ∂u i ∂x j + ∂u j ∂x i � , f = (0, 0, g) T , µ = E 2(1+ν) , λ = Eν (1+ν)(1-2ν) .
Once more E and ν denote respectively Young's modulus and Poisson's ratio, and we will let both parameters vary discontinuously over the domain taking the values (E 1 , ν 1 ) and (E 2 , ν 2 ) alternating in four layers, as shown in Figure 4.6. Table 4.5 displays iteration counts, condition numbers, and coarse space dimensions for various partitions into regular subdomains (the parameter choices are given below the table). Note that for GenEO, we need only 16 PCG iterations in all cases. As an example, Figure 4.7 shows the convergence profile for the case where Ω is split into 16 regular subdomains.

Conclusion

In this Chapter we have introduced a coarse space for symmetric positive definite variational problems. In order to remain as general as possible, we did so using an abstract formulation. We rigorously proved a bound for the condition number of the overlapping two-level additive Schwarz preconditioner for this coarse space. This bound does not depend on any of the coefficients in the equations or on the way the domain is split into subdomains. Numerical results on two-dimensional and three-dimensional problems are in agreement with the fact that the method is robust with respect to heterogeneities and rather irregular subdomains. We also gave details on how to implement the coarse space construction. This relies only on having access to finite element stiffness matrices and the underlying connectivity graph. No additional data is required and no additional elementary matrices need to be computed. This means that the method is quite easily applicable to simulations of actual physical problems and it is our ambition to do so.

Along the way we have identified promising leads to further improve the efficiency of the method. The first one is to take advantage of the fact that the partition of unity can be chosen differently since the proof holds as long as the partition of unity is defined by individual weights per interior degree of freedom in each subdomain. The second idea is to optimize the eigenvalue computations. Although this is a purely parallel task, this is the most costly part in the coarse space construction. Finally, the formulation of the GenEO coarse space makes it particularly well suited for a multilevel parallel implementation, which is of particular interest in cases where a two-level approach leads to excessively large coarse spaces. We begin to explore some of these leads in Chapter 7.

Chapter 5

Generalization of GenEO to substructuring methods

The content of this chapter was published in International Journal for Numerical Engineering [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF] in collaboration Daniel J. Rixen. The method and convergence result were first presented in the note [START_REF] Spillane | Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method[END_REF] with Victorita Dolean, Patrice Hauret, Frédéric Nataf, and Daniel J. Rixen. 

Introduction

With substructuring methods if the domain consists of a few different materials it is possible to partition it in such a way that the interfaces match the boundaries of the different materials. In this case by applying well chosen weights to each of the subdomains 

W h (Ωi) Local {u |Ω i ; u ∈ W h (Ω)} ((5.6); D = Ωi) Wi Local trace {u |Γ∩∂Ω i ; u ∈ W h (Ω)} ((5.6); D = Γ ∩ ∂Ωi) W Product trace W1 × . . . WN Ŵ Global trace {u |Γ ; u ∈ W h (Ω)} ((5.6) ; D = Γ)
Stiffness matrices (defined on) Matrix Bilinear form 

Global (W h (Ω)) K (5.3) â (5.1) Local 
(W h (Ωi)) Ki a Ω i (5.7) for D = Ωi Product space ( � N i=1 W h (Ωi)) K (5.11) none Lumped global (W h (Ω)) Kbb (5.18) âbb Lumped product space ( � N i=1 W h (Ωi)) K bb (5.
� N i=1 Γ ∩ ∂Ωi f Γ (5.21)
the negative effect of heterogeneous coefficients can be annihilated [START_REF] Rixen | A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF][START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF] even for nonsmooth decompositions (where the interfaces are jagged) [START_REF] Klawonn | An analysis of a FETI-DP algorithm on irregular subdomains in the plane[END_REF]. If this is not the case one may observe very bad convergence of the iterative solvers for the interface problem (see e.g. [START_REF] Bhardwaj | Application of the FETI method to ASCI problems: Scalability results on a thousand processors and discussion of highly heterogeneous problems[END_REF][START_REF] Klawonn | Robust FETI-DP methods for heterogeneous three dimensional elasticity problems[END_REF]). It is also well known that bad aspect ratios of the domains [START_REF] Farhat | Mesh partitioning for implicit computations via iterative domain decomposition: impact and optimization of the subdomain aspect ratio[END_REF] can also lead to poor convergence. This is what we work to improve: we aim to design FETI and BDD solvers for which the convergence rate does not depend on the choice of the decomposition into subdomains or on any of the coefficients in the equations.

In order to achieve this we will use the strategy introduced in the additive Schwarz framework by [START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] and [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF] and presented in the previous chapter of this manuscript. This strategy is based on the abstract theory of the two-level additive Schwarz method [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]. The strategy is to write the Schwarz theory up to the point where it depends on the set of equations we are dealing with and where assumptions on the coefficient distribution with respect to the decomposition into subdomains are needed to write estimates which do not depend on the parameters. For the Darcy equation (-∇•∇(αu) = b) with the minimal coarse space (the constant functions) the Poincaré inequality and trace theorem are needed to complete the proof and they require quite strong assumptions. Instead, the authors in [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF][START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF] and the previous chapter of this thesis propose to solve a generalized eigenvalue problem in each subdomain which selects the modes of the solution that satisfy the required estimates. The other modes, which do not satisfy the estimate, are used to build the coarse space and are basically taken care of with a direct solve in the coarse space. This is what we will refer to as the Schwarz-GenEO coarse space (Generalized Eigenvalues in the Overlaps). It leads to a two-level method with a convergence rate chosen a priori for problems described by a symmetric positive definite matrix.

As it turns out [START_REF] Mandel | Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods[END_REF] also proposes to solve generalized eigenvalue problems to deal with heterogeneous coefficients in the BDDC and FETI-DP frameworks. More recently a multilevel extension of this work for BDDC was proposed in [START_REF] Sousedík | Adaptive-Multilevel BDDC and its parallel implementation[END_REF] with thorough numerical results. Although, at a glance, the generalized eigenvalue problems look similar to the ones in this chapter they are in fact the result of two different approaches. In [START_REF] Mandel | Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods[END_REF] the global generalized eigenvalue problem which would need to be solved on the entire domain in order to achieve a targeted convergence rate is given and then it is made local by restricting it to each of the interfaces between two subdomains. The global condition number indicator is chosen to be the maximum over all the set of interfaces of a local estimate. In other words the global to local conversion of the estimate for the condition number is based on heuristics. The approach in this paper is different because it is inspired by previous work in the Schwarz framework. In particular the global to local conversion of the condition number estimate is justified theoretically. It relies very strongly on the abstract Schwarz theory with the result that each local generalized eigenvalue problem is posed on the boundary of a subdomain and not on the interface between two subdomains. With this choice the fact that the targeted condition number will be achieved is guaranteed theoretically.

FETI (Finite Element Tearing and Interconnecting) and BDD (Balancing Domain Decomposition) are two well known non overlapping domain decomposition methods. Balancing Domain Decomposition (BDD) is the work of [START_REF] Mandel | Balancing domain decomposition[END_REF] who added a coarse space to the preexisting Neumann Neumann method [START_REF] De Roeck | Analysis and test of a local domain-decomposition preconditioner[END_REF] to deal with singularities in the local problems. We will refer to the analysis of BDD in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] which is very closely related to the analysis of the two-level Schwarz preconditioner. The FETI algorithm was first introduced in [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF] and the convergence proof is due to [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF][START_REF] Tezaur | Analysis of Lagrange multiplier based domain decomposition[END_REF]. It is generalized in [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF]. Coarse spaces for the FETI method are introduced first in [START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF] and further developed in [START_REF] Farhat | The two-level FETI method for static and dynamic plate problems. I. An optimal iterative solver for biharmonic systems[END_REF][START_REF] Farhat | The two-level FETI method. II. Extension to shell problems, parallel implementation and performance results[END_REF]. In both cases (BDD and FETI) the generalized eigenvalue problem which we solve is used to prove a bound for the largest eigenvalue of the preconditioned operator. As usual the lower bound for the eigenvalues of the preconditioned operator is 1 regardless of the coarse space.

The rest of the Chapter is organized as follows. In Section 5.2 we introduce the notation which will be needed for both algorithms. In Section 5.3 we introduce the two-level GenEO preconditioner for the BDD algorithm and in Section 5.4 we introduce the twolevel preconditioner for the FETI algorithm. The definitions of each of the coarse spaces with the corresponding generalized eigenvalue problems can be found in Definitions 5.15 and 5.31 respectively. These generalized eigenvalue problems are chosen specifically to ensure the properties in Lemmas 5.20 and 5.36 (i.e. the stability of the local solvers) are satisfied. As for the convergence results they are stated (and proved) in Theorems 5.23 and 5.38. Finally in section 5.5 we give a few numerical results.

Notation for FETI and BDD

For a given domain Ω ∈ R d and a finite dimensional Hilbert space W h (Ω), given a symmetric, positive definite bilinear form,

â(•, •) : W h (Ω) × W h (Ω) → R, (5.1) 
and an element ĝ ∈ W h (Ω) ′ , we consider the problem of finding u ∈ W h (Ω), such that

â(u, v) = ĝ(v), ∀ v ∈ W h (Ω). (5.2) 
In order to introduce the BDD and FETI algorithms we will need to introduce notation for discrete operators at the global and local (on each subdomain) levels.

Problem setting

We begin by rewriting Problem (5.2) in an algebraic framework. As usual in the finite element setting, we start with a triangulation T h of Ω: Ω = � τ ∈T h τ and a basis {φ k } 1≤k≤N for the finite element space W h (Ω). Assumption 5.1. Given any element τ of the mesh T h , let W h (τ ) := {u| τ : u ∈ W h (Ω)}. We assume that for each element τ ∈ T h , there exists a symmetric positive semi-definite (spsd) bilinear form a τ :

W h (τ ) × W h (τ ) → R, such that â(u, v) = � τ ∈T h a τ (u| τ , v| τ ), ∀ u, v ∈ W h (Ω),
and an element

g τ ∈ W h (τ ) ′ such that ĝ(v) = � τ ∈T h g τ (v| τ ), ∀ v ∈ W h (Ω).
The stiffness matrix is assembled with the following entries

( K) kl := â(φ k , φ l )   = � τ ∈T h a τ (φ k|τ , φ l|τ )   , ∀ k, l = 1, . . . , n, (5.3) 
and the discrete right hand side f ∈ R n is defined by the entries

( f ) k := ĝ(φ k )   = � τ ∈T h g τ (φ k | τ )   , ∀ k = 1, . . . , n.
As is quite customary we identify vectors of degrees of freedom, which are in some spaces R m , with the associated finite element functions. Operators between the spaces are represented as matrices, and we frequently commit an abuse of notation by using matrices and operators interchangeably. With this abuse of notation the original problem (5.2) is equivalent to the linear system: find u ∈ W h (Ω) such that Ku = f , (

with K symmetric, positive definite (spd).

Local setting and notation

Local Setting We introduce a partition of the global domain Ω into N non-overlapping subdomains Ω i which are resolved by the mesh

Ω = N � i=1 Ωi and Ω i ∩ Ω j = ∅, i � = j,
and the resulting set of boundaries between subdomains

Γ := � i� =i ′ Ωi ∩ Ωi ′ .
The reason why we have required the information on the non-assembled stiffness matrices is that we want to have access to local matrices for any choice of the partition into subdomains. In order to do this we also need to define local finite element spaces and local bilinear forms.

Assumption 5.2. The basis functions φ k are continuous on Ω. In particular for any subset D ⊂ Ω the restriction φ k|D of φ k to D is well defined. 

where 0 |D : D → R is identically zero. Then the finite element space on D is defined as

W h (D) := {u |D ; u ∈ W h (Ω)} = span{φ k|D ; k ∈ dof (D)}. ( 5.6) 
The second equality in the definition of W h (D) is an immediate consequence. 

a D : W h (D) × W h (D) → R; a D (v, w) := � τ ⊂D a τ (v |τ , w |τ ), (5.7) 
and the local right hand side be the element

g D ∈ W ′ h (D); g D (v) := � τ ⊂D g τ (v |τ ). (5.8) 
For any i = 1, . . . , N , the space of finite element functions on each Ω i follows from (5.6) with D = Ω i :

W h (Ω i ) = {u |Ω i ; u ∈ W h (Ω)
}, as well as the trace spaces for D = ∂Ω i ∩ Γ:

W i := W h (Γ ∩ ∂Ω i ) = {u |Γ∩∂Ω i ; u ∈ W h (Ω)}.
Finally, we define the product space

W := N � i=1 W i .
We know from (5.6) that W i = span{φ k|∂Ω i ∩Γ ; k ∈ dof (∂Ω i ∩ Γ)}, we make the further assumption that this set of functions is a basis of W i .

Assumption 5.5. The set

{φ k|∂Ω i ∩Γ ; k ∈ dof (∂Ω i ∩ Γ)} is a basis of W i .
Throughout the analysis, we will consider elements in the product space W . Each component u i ∈ W i is defined on a part Γ ∩ ∂Ω i of the boundary and two contributions from two neighbouring subdomains do not necessarily match on the shared interface. This is a result of the partition of Ω into subdomains. Our finite element approximation of the elliptic problem is, however, based on functions in W h (Ω) which are defined on the whole of Ω with one value per degree of freedom. We denote the space of restrictions of these functions to the set of internal boundaries Γ by Ŵ :

Ŵ := W h (Γ) = {u |Γ ; u ∈ W h (Ω)} � = span{φ k|Γ ; k ∈ dof (Γ)} � .
(

Next we introduce interpolation (prolongation) operators

R ⊤ i : W i → Ŵ for i = 1, . . . , N : ∀ u i = � k∈dof (Γ∩∂Ω i ) α k i φ k|Γ∩∂Ω i (α k i ∈ R); R ⊤ i u i := � k∈dof (Γ∩∂Ω i ) α k i φ k|Γ .
These are the natural interpolation operators represented by boolean matrices: the continuous global function R ⊤ i u i ∈ Ŵ shares the same values as u i for degrees of freedom in dof (Γ ∩ ∂Ω i ) and has no contributions from any other degrees of freedom. The corresponding restriction operator R i : Ŵ → W i is defined as

∀ u = � k∈dof (Γ) α k φ k|Γ (α k ∈ R); R i u := � k∈dof (Γ∩∂Ω i ) α k φ k|Γ∩∂Ω i . We note that Ŵ � ⊂ W and Ŵ = � N i=1 R ⊤ i W i .
It is obvious from the definition of R ⊤ i and Assumption 5.5 that for i = 1, . . . , N and u i ∈ W i :

u i = 0 |Γ∩∂Ω i ⇔ R ⊤ i u i = 0 |Γ . (5.10) 
Stiffness matrices The local stiffness matrix

K i : W h (Ω i ) → W h (Ω i )
is the matrix associated with bilinear form a Ω i defined by (5.7) for D = Ω i . From these, the stiffness matrix on the product space is defined as

K : W h (Ω 1 ) × . . . W h (Ω N ) → W h (Ω 1 ) × . . . W h (Ω N ); K :=      K 1 0 . . . 0 0 K 2 . . . 0 . . . . . . . . . . . . 0 0 . . . K N     
(5.11) so that

Ku = (K 1 u 1 , . . . , K N u N ) ⊤ , ∀ u = (u 1 , . . . , u N ) ⊤ ∈ W h (Ω 1 ) × . . . W h (Ω N ). (5.12)
Schur complement matrices The degrees of freedom dof (Ω i ) in W h (Ω i ) can be split into the set b i := dof (Γ ∩ ∂Ω i ) of degrees of freedom that are also in the trace space W i and the remainder I i := dof (Ω i ) \dof (Γ∩ ∂Ω i ). This way we can rewrite the local stiffness matrix in block formulation

K i = � K b i b i i K b i I i i K I i b i i K I i I i i � .
The interior variables of any subdomain are then eliminated in work that can be parallelized across the subdomains. The resulting matrices are the local Schur complements

S i : W i → W i ; S i := K b i b i i -K b i I i i (K I i I i i ) -1 K I i b i i , i = 1, . . . , N, (5.13) 
and the Schur complement on the product space is

S : W 1 × . . . W N � �� � W → W 1 × . . . W N � �� � W ; S :=      S 1 0 . . . 0 0 S 2 . . . 0 . . . . . . . . . . . . 0 0 . . . S N      (5.14) so that Su = (S 1 u 1 , . . . , S N u N ) ⊤ , ∀ u = (u 1 , . . . , u N ) ⊤ ∈ W. (5.15) 
The Schur complement S on the product space W admits the following counterpart Ŝ for functions in Ŵ :

Ŝ : Ŵ → Ŵ ; Ŝu := N � i=1 R ⊤ i S i R i u. (5.16) 
We notice that this is the usual Schur complement for the global problem reduced to the set Γ of internal boundaries:

Ŝ = Kbb -KbI ( KII ) -1 KIb , (5.17) 
where Kbb , KbI , KII and KIb are the components in the bloc formulation of K

K = � Kbb KbI KIb KII � , b := dof (Γ) and I := dof (Ω) \ dof (Γ). (5.18) 
Lumped matrices In the FETI literature the lumped version of the stiffness matrix is the extraction of the entries in the stiffness matrix which correspond to boundary degrees of freedom. We have already introduced Kbb and K b i b i i , let K bb be the counterpart on the product space W :

K bb : W 1 × . . . W N � �� � W → W 1 × . . . W N � �� � W ; K bb :=      K b 1 b 1 1 0 . . . 0 0 K b 2 b 2 2 . . . 0 . . . . . . . . . . . . 0 0 . . . K b N b N N      . (5.19) 
We notice that Kbb = The first inequality follows by noticing that �( KII ) -1 KIb û, KIb û� ≥ 0 because ( KII ) -1 is spd. For the second, let u ∈ W . Then by definition of S �Su, u�

� N i=1 R ⊤ i K b i b i i R i
= N � i=1 �S i u i , u i � = N � i=1 �(K i b i b i -K i b i I i (K i I i I i ) -1 K i I i b i )u i , u i � = �K bb u, u� - N � i=1 �(K i I i I i ) -1 K i I i b i u i , K i I i b i u i �.
And the second inequality follows by noticing that �(K i

I i I i ) -1 K i I i b i u i , K i I i b i u i � ≥ 0 for any i = 1, . . . , N because (K i I i I i ) -1 is spd.
Right hand sides In order to reduce the problem to the set of interfaces between subdomains, we define the following right hand side

fΓ := f b -KbI ( KII ) -1 f I , (5.20) 
which is the right hand side of the original problem (5.4) condensed onto the degrees of freedom in Ŵ . As for the right hand side on the product space W , for each subdomain i = 1, . . . , N : first let f i be the local right hand side given by (5.8) with D = Ω i . Then condense it onto the interfaces following:

f Γ,i := f b i i -K b i I i i (K I i I i i ) -1 f I i i .
(We have used the identification between the finite element representation of f i and its vector representation.) Finally, the right hand side for the problem condensed onto the space W is

f Γ =    f Γ,1 . . . f Γ,N    .
(5.21)

Most of this notation is summed up in Table 5.1 at the beginning of the article. Some comments are given in subsection 5.2.4, along with an important lemma on which of these matrices are positive definite.

Remark 5.7. Assumption 5.1 is actually stronger than what we really need but enables the use of any partition into subdomains and allowed us to define each component of the algorithm thoroughly. For a given non overlapping partition into subdomains it is enough to have access to the local matrices K i on each subdomain, the local right hand sides f i , the local-global interpolation operators R ⊤ i and the information on the boundary of each subdomain Γ ∩ ∂Ω i .

Partition of unity and weighted operators

An important role in the description of the BDD algorithms is played by a weighting (counting) function on W . As in the original GenEO algorithm [START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] this induces partition of unity operators Ξ i which act directly on the degrees of freedom of the finite element functions. Definition 5.8 (Partition of unity). Let µ = (µ 1 , . . . , µ N ) ∈ W be a discrete partition of unity:

� i=1,...,N R ⊤ i µ i = 1 | Ŵ
, where 1 | Ŵ ∈ Ŵ and all vector entries are 1.

Then for any function u i ∈ W i written as

u i = � k∈dof (Γ∩∂Ω i ) α k i φ k|Γ∩∂Ω i , α k i ∈ R,
the local partition of unity operator Ξ i : W i → W i is defined by:

Ξ i (u i ) := � k µ k i α k i φ k|Γ∩∂Ω i ,
where

µ k i is the k-th entry in µ i . The inverse Ξ -1 i : W i → W i is defined by: Ξ -1 i (u i ) := � k 1 µ k i α k i φ k|Γ∩∂Ω i .
It is clear that the Ξ i define a partition of unity from Ŵ onto the product space

W = W 1 × • • • × W N in the sense that u = N � i=1 R ⊤ i Ξ i (R i u) � �� � ∈W i , ∀ u ∈ Ŵ . It is also clear that Ξ -1 i is the inverse of Ξ i since any u i ∈ W i satisfies Ξ -1 i (Ξ i (u i )) = Ξ i (Ξ -1
i (u i )) = u i . Remark 5.9. Two common choices for µ are the multiplicity scaling where µ k i is chosen as (#{i = 1, . . . , N ; k ∈ dof (Γ ∩ ∂Ω i )}) -1 and the K-scaling where µ depends on the diagonal entries of the stiffness matrices [START_REF] Rixen | A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF][START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF]. In the numerical result section we mostly use Kscaling.

We introduce the local bilinear forms which correspond to the local Schur complements S i as follows. For i = 1, . . . , N define

s i : W i × W i → R, s i (u i , v i ) := �S i u i , v i �; ∀u i , v i ∈ W i . (5.22) 
Next we use the partition of unity operators to define weighted versions of the Schur complements which will be instrumental in defining the BDD algorithm.

Definition 5.10 (Weighted Schur complements). For any i = 1, . . . , N , let si :

W i ×W i → R be the bilinear form defined by si (u i , v i ) := s i (Ξ -1 i (u i ), Ξ -1 i (v i )); ∀ u i , v i ∈ W i , (5.23) 
where s i is the local Schur complement, and Ξ -1 i is the inverse partition of unity operator introduced in Definition 5.8. Next, let the matrix Si : W i → W i be the matrix counterpart of si :

� Si u i , v i � := si (u i , v i ).

One level BDD in the abstract Schwarz framework

The only thing that is needed in order to define the one-level preconditioner is a solver on each subdomain. Then we will precondition the global problem (5.24) with a sum of these local solves. The usual BDD strategy is to use the weighted Schur complements Si introduced in Definition 5.10 to build local problems. Then each local solve is the solution of a Neumann problem: S † i . Definition 5.13 (One level preconditioner). For each i = 1, . . . , N , let Pi and P i be defined as Pi := S † i R i Ŝ and

P i := R ⊤ i Pi , (5.25) 
where S † i is a pseudo inverse of Si . Equivalently for any u ∈ Ŵ , Pi u is the unique vector in range( S † i ) which satisfies si

( Pi u, v i ) = ŝ(u, R ⊤ i v i ), ∀ v i ∈ W i . (5.26) 
The one-level preconditioner is the sum of local solves

� N i=1 R ⊤ i S † i R i so the one-level preconditioned operator is � N i=1 P i .
The next lemma gives a lower bound for the eigenvalues of the one-level preconditioned operator. It does not depend on the specific choice of the pseudo inverse or on any coarse space.

Essentially what we do is check that a stable splitting assumption (Assumption 2.2 in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]) holds on the whole of Ŵ . Then we give the result of Lemma 2.5 in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] which is that this implies a lower bound for the condition number of the one-level preconditioned operator. One of the assumptions in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] is that the local bilinear forms ( Si in this case) be positive definite. Here they are only positive semi definite but the proof goes through in the exact same way so we don't give it again. Lemma 5.14 (Stable splitting -Lower bound for the eigenvalues of the preconditioned operator). For any u ∈ Ŵ there exists a stable splitting (v 1 , . . . , v N ) of

u onto W = W 1 × • • • × W N : u = R ⊤ 1 v 1 + • • • + R ⊤ N v N ; v i ∈ W i and N � i=1 si (v i , v i ) ≤ ŝ(u, u). (5.27) 
This implies that the one-level preconditioned operator satisfies

ŝ(u, u) ≤ ŝ � N � i=1 P i u, u � for any u ∈ Ŵ . (5.28) 
Proof. Let u ∈ Ŵ . The fact that, by definition, the operators Ξ i define a partition of unity allows us to write an obvious splitting of u onto W :

(v i := Ξ i (R i u), ∀ i = 1, . . . , N ) Â ⇒ u = N � i=1 R ⊤ i v i .
We prove (5.27) for this splitting using only the definitions of si and ŝ:

N � i=1 si (v i , v i ) = N � i=1 s i (Ξ -1 i (Ξ i (R i u)), Ξ -1 i (Ξ i (R i u)) = N � i=1 s i (R i u, R i u) = ŝ(u, u).
The second part of the lemma is the result of Lemma 2.5 in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF], we refer the reader to there for the proof.

The fact that (5.28) provides a lower bound for the eigenvalues of the preconditioned operator � N i=1 P i is easy to see: suppose u is an eigenvector associated with eigenvalue λ, then

N � i=1 P i u = λu ⇒ Ŝ N � i=1 P i u = λ Ŝu ⇒ ŝ( N � i=1 P i u, u) = λŝ(u, u),
and (5.28) implies that λ ≥ 1.

In other words the lower bound for the eigenvalues of the preconditioned operator does not depend on the choice of the coarse space. This is a big difference with the Additive Schwarz method where the proof of a lower bound depends very strongly on the choice of the coarse space and on restrictive assumptions on the coefficient distribution. This is why the Schwarz-GenEO strategy in [START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] is precisely to build an enriched coarse space for which the stable splitting property and thus a lower bound for the spectrum of the preconditioned operator hold regardless of the partition into subdomains and the coefficient distribution. Luckily, the upper bound for the eigenvalues of the Additive Schwarz operator depends only on the number of neighbours of each subdomain enabling the proof of a bound for the condition number of the preconditioned operator.

Here the situation is reversed: Lemma 5.14 gives a lower bound for the eigenvalues of the preconditioned operator which does not depend on the choice of the coarse space thanks to the adequate weighting of the local solvers. However the upper bound requires more work and with the usual coarse space it can only be independent of the coefficients in the equation if some assumptions on the coefficient distribution are satisfied. The GenEO strategy will enable us to waive all of these assumptions.

GenEO coarse space for BDD

The abstract Schwarz theory tells us that the upper bound for the eigenvalues of the preconditioned operator is implied by the stability of the local solvers si on the local subspaces once the coarse components have been removed (this is made explicit in Lemma 5.20). This is where the GenEO strategy comes in. We solve a generalized eigenvalue problem which identifies the 'bad' modes: in this case those for which we cannot ensure that the local solver is stable for a constant independent of the coefficients in the equations. These 'bad' modes are then used to span the coarse space, and the local solvers are stable on all remaining local components (the 'good' components). More precisely, the next two definitions introduce the generalized eigenvalue problem, the coarse space and the corresponding two-level BDD-GenEO preconditioners. Definition 5.15 (GenEO coarse space for BDD). For each subdomain i = 1, . . . , N , find the eigenpairs (

p k i , λ k i ) ∈ W i × R + of the generalized eigenvalue problem: si (p k i , v i ) = λ k i âbb (R ⊤ i p k i , R ⊤ i v i ) for any v i ∈ W i . (5.29)
Next, given a threshold K i > 0 for each subdomain, define the coarse space as

W 0 = span{R ⊤ i p k i ; λ k i < K i , i = 1, . . . , N } � ⊂ Ŵ � .
(5.30)

Let the interpolation operator R ⊤ 0 be the matrix whose columns are the coarse basis functions {R ⊤ i p k i ; λ k i < K i , i = 1, . . . , N }. Finally, let the coarse solver be the exact solver on W 0 : S 0 := R 0 ŜR ⊤ 0 , and P 0 be the Ŝ-orthogonal projection operator defined by .31) This definition gives rise to a few immediate remarks.

P 0 := R ⊤ 0 S † 0 R 0 Ŝ. ( 5 
Remark 5.16.

(i) The operator R ⊤ 0 is a mapping between the coordinates of a vector from W 0 in the set of coarse basis functions and its representation in Ŵ (range(R ⊤ 0 ) ⊂ Ŵ ). Its transpose R 0 is a restriction operator which maps an element in Ŵ to the coordinates of its l 2 projection onto W 0 in the set of coarse basis functions.

(ii) Eigenvalue 0 for eigenproblem (5.29) is associated with the kernel of si so in some sense the coarse space will take care of the fact that si is not necessarily coercive. Note that if the coarse space includes only the kernel of si , one obtains the usual coarse space for BDD.

(iii) In the definition of P 0 we used a pseudo inverse S † 0 because the columns of R ⊤ 0 are not necessarily linearly independent. The pseudo inverse is defined up to an element in Ker(R ⊤ 0 ) and the specific choice of the pseudo inverse makes no difference because the application of S † 0 is followed by an application of R ⊤ 0 . (iv) The fact that P 0 is an Ŝ-orthogonal projection can be proved easily using the definitions of P 0 and S 0 and it is equivalent to the fact that P 0 is self adjoint with respect to S 0 .

We are now ready to introduce the BDD-GenEO preconditioner. There are mainly two ways to add the second level once that we have chosen the coarse space: either we use the balanced preconditioner (5.33) with the preconditioned conjugate gradient (PCG) algorithm or we use the projected preconditioned conjugate gradient (PPCG) algorithm in the space range(I -P 0 ) with the deflated preconditioner (5.32). Both alternatives will lead to essentially identical convergence bounds. In fact for certain starting vectors in exact arithmetic they produce the same iterates. Comparison (both theoretical and in terms of implementation) between (5.33), (5.32) and some other variants can be found in [START_REF] Tang | Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods[END_REF] or, more specifically for FETI and BDD, in [START_REF] Klawonn | Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results[END_REF]. The deflated preconditioner is the more natural since it simply restricts the problem to a smaller subspace. However it suffers from robustness problems when the coarse solves are not sufficiently accurate. The balanced preconditioner is more robust but its application is slightly more expensive. Definition 5.17 (Two-level preconditioners). Recall that, according to (5.25) and (5.31), we have defined

P i = R ⊤ i S †
i R i Ŝ for any i = 1, . . . , N and P 0 = R ⊤ 0 S † 0 R 0 Ŝ. Then define the deflated preconditioned operator as

P def := N � i=1
(I -P 0 ) ⊤ P i (I -P 0 ), (5.32) and the balanced preconditioned operator as

P bal := P 0 + N � i=1
(I -P 0 ) ⊤ P i (I -P 0 ). (5.33) In the remainder of this subsection we show that the BDD-GenEO coarse space leads to an upper bound for the eigenvalues of the preconditioned operators which does not depend on the number of subdomains or the coefficients in the equations. Instead it depends on the thresholds K i which were introduced to select the coarse basis functions. First we give some properties of the family of generalized eigenvectors (Lemma 5.18). Then we use these properties to show that the local bilinear forms are stable on the deflated local subspaces (Lemma 5.20) and the upper bound follows from there (Lemma 5.22). Lemma 5.18. For a given subdomain i = 1, . . . , N , the eigenpairs (p k i , λ k i ) of generalized eigenproblem (5.29) can be chosen so that the set {p k i } k of eigenvectors is an orthonormal basis of W i with respect to the inner product induced âbb (R ⊤ i •, R ⊤ i •). This can be written as âbb (R

⊤ i p k i , R ⊤ i p k i ) = 1; and âbb (R ⊤ i p k i , R ⊤ i p k ′ i ) = 0, k � = k ′ .
An orthogonality type property with respect to si (which is not necessarily coercive) also holds:

si

(p k i , p k ′ i ) = 0, k � = k ′ . Proof. Lemma 5.11 tells us that R i Kbb R ⊤ i is positive definite on W i so we may indeed speak of a âbb (R ⊤ i • , R ⊤ i • ) orthonormal basis of W i .
The proof is an application of Lemma 2.13.

Remark 5.19. The fact that the generalized eigenproblem (5.29) is equivalent to a nongeneralized eigenproblem implies that all eigenvalues are finite. Because both matrices are symmetric positive semi definite, the eigenvalues are also non negative: for any k, 0 ≤ λ k i < +∞. The next lemma states that the local solvers are stable and strongly relies on the definition of the GenEO coarse space. In fact the purpose of the GenEO strategy is specifically to ensure that Lemma 5.20 holds. This corresponds to Assumption 2.4 in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF].

Lemma 5.20 (Stability of the local solvers). Suppose the pseudo inverse S †

i in Definition 5.13 is chosen such that range( S † i ) = span{p k i ; λ k i > 0}. Then for any i = 1, . . . , N , the local solvers are stable in the sense

ŝ(R ⊤ i u i , R ⊤ i u i ) ≤ 1 K i si (u i , u i ), ∀ u i ∈ range( Pi (I -P 0 )),
where the K i are the thresholds that were used to select eigenvectors for the coarse space in Definition 5.15.

Proof. We may indeed choose range( S † i ) = span{p k i ; λ k i > 0} because the pseudo inverse of an operator is defined up to an element in the kernel of this operator. Precisely there are an infinity of pseudo inverse and we may choose the range of S † i among all the spaces which satisfy range( S † i ) ⊕ Ker( Si ) = W i . Here, Ker( Si ) = span{p k i ; λ k i = 0} and the set of all p k i is a basis of W i so our choice fits this limitation.

Next we prove that range( Pi (I -P 0 ))

� = range( S † i R i Ŝ(I -P 0 )) � ⊂ {p k i ; λ k i ≥ K i }.
We will use the following linear algebra identity:

Ker((I -P 0 ) ⊤ ŜR ⊤ i ) ⊕ ⊥ range(R i Ŝ(I -P 0 )) = W i , (5.34) 
where the symbol ⊥ refers to the l 2 orthogonality between both spaces and ⊕ means that the sum is direct. By definition (5.31) of P 0 , (I -P 0 ) ⊤ = I -ŜR ⊤ 0 S † 0 R 0 so range( ŜR ⊤ 0 ) ⊂ Ker((I -P 0 ) ⊤ ). In particular, for a given i = 1, . . . , N : span{ ŜR ⊤ i p k i ; λ k i < K i } ⊂ Ker((I -P 0 ) ⊤ ), which implies span{p k i ; λ k i < K i } ⊂ Ker((I -P 0 ) ⊤ ŜR ⊤ i ).

(5.35)

Next we use another linear algebra identity: W i is finite dimensional so

span{p k i ; λ k i < K i } ⊕ ⊥ � span{p k i ; λ k i < K i } � ⊥ = W i .
(5.36)

According to Lemma 5.18 the

{p k i } k form a R i Kbb R ⊤ i -orthonormal basis of W i so �p k i , R i Kbb R ⊤ i p k ′ i � = 0, ∀k � = k ′ . This implies that span{R i Kbb R ⊤ i p k i ; λ k i ≥ K i } ⊂ � span{p k i ; λ k i < K i } � ⊥ .
The equality between these subsets follows by a dimensional argument: the set {p k i } k forms a basis of

W i and R i Kbb R ⊤ i is spd so rank{R i Kbb R ⊤ i p k i ; λ k i ≥ K i } = rank{p k i ; λ k i ≥ K i } = rank � {p k i ; λ k i < K i } ⊥ � ,
and in turn the inclusion becomes an equality:

span{R i Kbb R ⊤ i p k i ; λ k i ≥ K i } = � span{p k i ; λ k i < K i } � ⊥ .
Injecting this into (5.36) implies

span{p k i ; λ k i < K i } ⊕ ⊥ span{R i Kbb R ⊤ i p k i ; λ k i ≥ K i } = W i .
(5.37)

Putting together (5.34), (5.35) and (5.37) we get range(R i Ŝ(I -P 0 ))

⊂ span{R i Kbb R ⊤ i p k i ; λ k i ≥ K i }
, where the argument is:

(E 1 ⊕ ⊥ E 2 = E 3 ⊕ ⊥ E 4 and E 1 ⊂ E 3 ) ⇒ E 4 ⊂ E 2 ,
for any vector spaces E 1 , . . . , E 4 .

By definition of eigenproblem (5.29),

λ k i R i Kbb R ⊤ i p k i = Si p k i so range(R i Ŝ(I -P 0 )) ⊂ span{ Si p k i ; λ k i ≥ K i }.
Finally, for the specific choice of the pseudo inverse S † i it follows that range( S † i R i Ŝ(I -P 0 ))

� = range( Pi (I -P 0 )) � ⊂ span{p k i ; λ k i ≥ K i }.
Now we prove the inequality in the lemma. Any u i ∈ range( Pi (I -P 0 )) can be written as

u i = � {k;λ k i ≥K i } α k i p k i for some coefficients α k i ∈ R. From Lemma 5.6, it is obvious that ŝ(R ⊤ i u i , R ⊤ i u i ) ≤ âbb (R ⊤ i u i , R ⊤ i u i ) = âbb   R ⊤ i � {k;λ k i ≥K i } α k i p k i , R ⊤ i � {k;λ k i ≥K i } α k i p k i    .
Using successively the first orthogonality property in Lemma 5.18, the definition of the eigenproblem and the second orthogonality property in Lemma 5.18 we get

ŝ(R ⊤ i u i , R ⊤ i u i ) ≤ � {k;λ k i ≥K i } α k i 2 âbb (R ⊤ i p k i , R ⊤ i p k i ) = � {k;λ k i ≥K i } 1 λ k i α k i 2 si (p k i , p k i ) ≤ 1 K i � {k;λ k i ≥K i } α k i 2 si (p k i , p k i ) = 1 K i si (u i , u i ).
Remark 5.21 (Local stability, Exact solvers, and Choice of the eigenproblem). The bilinear form on the left hand side of the inequality in the lemma is ŝ(

R ⊤ i •, R ⊤ i •)
. This is the so called exact solver on subdomain i for the global problem given by Ŝ. The exact solvers are by definition the solvers which are used to build the Additive Schwarz preconditioner. For the problem Ŝu = fΓ the Additive Schwarz preconditioner would be

� N i=1 R ⊤ i ŜR i .
If these exact solvers were used instead of Si the upper bound for the eigenvalues of the preconditioned operator would depend only on a constant related to the number of neighbours (introduced in the next lemma). The nice bound that we have for the lowest eigenvalue of the preconditioned operator would no longer hold though. The most straightforward generalized eigenproblem which arises from the theory is

si (p k i , v i ) = λ k i ŝ(R ⊤ i p k i , R ⊤ i v i ) for any v i ∈ W i , (5.38) 
so the eigensolve operates some sort of spectral comparison between the exact solver (on the right) and the one which we actually use (on the left). We then isolate the modes for which the chosen preconditioner is not a good enough approximation in the coarse space and use a direct solve on these modes. It is however expensive to assemble and to solve (5.38). This is is why in this article we have chosen to go through only with eigenproblem (5.29) where ŝ is replaced by âbb . For a coarse space based on Eigenproblem (5.38) the theory goes through to the exact same final estimate simply by replacing âbb by ŝ in the proofs.

The following lemma gives a consequence of the stability of the local solvers. It is very narrowly related to Lemma 2.6 in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF].

Lemma 5.22 (Upper bound for the eigenvalues of the preconditioned operator). The stability of each of the local solvers which was proved in Lemma 5.20 implies

ŝ � N � i=1 P i u, u � ≤ N max 1≤i≤N � 1 K i � ŝ(u, u) ∀ u ∈ range(I -P 0 ),
where N is the maximal number of neighbours of a subdomain (including itself) in the sense:

N := max 1≤i≤N � #{j; R j R ⊤ i � = 0} � .
Proof. This is basically the proof of Lemma 2.6 in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] but where we have chosen not to rely on strengthened Cauchy Schwarz inequalities. Instead we make the number of neighbours of a subdomain appear explicitly. Let u ∈ range(I -P 0 ), then ŝ(P i u,

P i u) = ŝ(R ⊤ i Pi u, R ⊤ i Pi u) ≤ 1 K i si ( Pi u, Pi u) (Lemma 5.20) = 1 K i ŝ(u, R ⊤ i Pi u) (definition of Pi (5.26)) = 1 K i ŝ(u, P i u).
We use the fact that P i = R ⊤ i Pi and the definition of ŝ to write

ŝ(P i u, u) = N � j=1 s j (R j R ⊤ i Pi , R j u) = � {j;R j R ⊤ i � =0} s j (R j R ⊤ i Pi , R j u).
We apply the Cauchy Schwarz inequality first for s j then for the Euclidean inner product to this and inject the previous result (in the last step)

ŝ(P i u, u) ≤ � {j;R j R ⊤ i � =0} s j (R j R ⊤ i Pi , R j R ⊤ i Pi ) 1/2 s j (R j u, R j u) 1/2 ≤    � {j;R j R ⊤ i � =0} s j (R j R ⊤ i Pi , R j R ⊤ i Pi )    1/2    � {j;R j R ⊤ i � =0} s j (R j u, R j u)    1/2 = ŝ(P i u, P i u) 1/2    � {j;R j R ⊤ i � =0} s j (R j u, R j u)    1/2 ≤ � 1 K i ŝ(u, P i u) � 1/2    � {j;R j R ⊤ i � =0} s j (R j u, R j u)    1/2 .
Raising to the square and simplifying by ŝ(P i u, u) yields

ŝ(P i u, u) ≤ 1 K i    � {j;R j R ⊤ i � =0} s j (R j u, R j u)    .
Finally summing these inequalities over i gives the result.

Main theorem: convergence bound for BDD with GenEO

We are now ready to give the estimates for the condition number of BDD with the GenEO coarse space.

Theorem 5.23 (Main theorem for BDD with the GenEO coarse space). The condition number for BDD solved in range(I -P 0 ) with the deflated operator (5.32) satisfies

κ (P def ) ≤ N max 1≤i≤N � 1 K i � .
(5.39)

As for the condition number of the balanced operator (5.33) with the GenEO coarse space, it satisfies

κ (P bal ) ≤ max � 1, N max 1≤i≤N � 1 K i �� .
(5.40)

These bounds depend only on the chosen thresholds K i which we use to select eigenvectors for the coarse space in Definition 5.15 and on the maximal number N of neighbours of a subdomain:

N = max 1≤i≤N � #{j; R j R ⊤ i � = 0} � .
Proof. The proof of this theorem is the proof of Theorem 2.13 in [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF]. The fact that the local solvers ( S † i here) are not spd does not play a role in the proof. The idea is to prove the following bounds:

ŝ(u, u) ≤ ŝ(P def u, u) ≤ N max 1≤i≤N � 1 K i � ŝ(u, u); u ∈ range(I -P 0 ), (5.41) 
and ŝ(u, u) ≤ ŝ(P bal u, u)

≤ max � 1, N max 1≤i≤N � 1 K i �� ŝ(u, u); u ∈ Ŵ . (5.42) 
Following Lemma C.1 in the appendix of [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] these bounds imply the bounds for the condition numbers. They are proved using Lemma 5.14 and Lemma 5.22 combined with the fact that P 0 is an ŝ-orthogonal projection.

Remark 5.24. The fact that K i can be chosen such that [START_REF] Gander | Schwarz methods over the course of time[END_REF]) is not a contradiction: in this case the space range(I -P 0 ) is simply empty.

� N max 1≤i≤N � 1 K i �� < 1 in (5.

Finite Element Tearing and Interconnecting

We use the following references to introduce FETI: the book by Toselli and Widlund [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF], Tezaur's dissertation [START_REF] Tezaur | Analysis of Lagrange multiplier based domain decomposition[END_REF] and the article by Klawonn and Widlund [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF]. A second level was introduced for FETI in [START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF], and further developed in [START_REF] Farhat | The two-level FETI method for static and dynamic plate problems. I. An optimal iterative solver for biharmonic systems[END_REF][START_REF] Farhat | The two-level FETI method. II. Extension to shell problems, parallel implementation and performance results[END_REF].

The FETI formulation

In the BDD section we built the coarse space for problem (5.24) which we simply recall here: find û ∈ Ŵ such that Ŝ û = fΓ , where Ŵ is the space of functions defined on the interface Γ. Instead the FETI formulation of the problem is on the product space W with an additional matching constraint at the interfaces. This constraint is ensured using matrix

B = (B 1 , B 2 , . . . , B N ); Bu = � i=1,...,N B i u i , ∀ u ∈ W, (5.43) 
which is constructed from entries 0, 1, -1 such that the components u i of a vector u in the product space W coincide on Γ when Bu = 0. More precisely each line in B corresponds to one continuity constraint for one degree of freedom and two of the subdomains to which it belongs: each line in B contains one 1 and one -1 while all other entries are zero. Denoting by λ the vector of Lagrange multipliers which is used to enforce the constraint Bu = 0 we obtain a saddle point formulation of the problem: find (u, λ) ∈ W × U such that

� S B ⊤ B 0 � � u λ � = � f Γ 0 � . (5.44) 
We note that the solution λ of (5.44) is unique only up to an additive element of Ker(B ⊤ ) however the solution u to our problem does not depend on the choice of λ so this is not an issue in practice. For the theoretical study we introduce the space U := range(B) = Ker(B ⊤ ) ⊥ , and will search for λ ∈ U . Given a basis for Ker(S) which consists of n K vectors, an important role is played by the prolongation operator R ⊤ N : R n K → W which columns are these basis functions. The transpose R N is a restriction operator which maps an element in W to the coordinates of its l 2 -orthogonal projection onto Ker(S) in the same basis. We have used the subscript N because Ker(S) is often referred to as the Natural coarse space for FETI. Going back to the system, the solution of the first equation in (5.44) can be written as

u = S † (f Γ -B ⊤ λ) + R ⊤ N α, for some α ∈ range(R N ), (5.45) 
if the right-hand side associated to the operator S is such that

f Γ -B ⊤ λ ⊥ Ker(S) ⇔ R N (f Γ -B ⊤ λ) = 0, (5.46) 
or with notation inspired by the usual FETI notation:

G ⊤ N λ = R N f Γ , G N := BR ⊤ N .
(5.47)

Injecting (5.45) into the second equation in (5.44) we get

BS † B ⊤ λ -G N α = BS † f Γ , for some α ∈ range(R N ).
We may again rewrite the problem using a saddle point formulation as

� F -G N G ⊤ N 0 � � λ α � = � d e � , (5.48) 
where

F := BS † B ⊤ , d := BS † f Γ , e := R N f Γ , and again G N = BR ⊤ N . (5.49) 
In order to homogenize the second equation and bring the problem down to a single equation we decompose λ into λ = λ + λ N where G ⊤ N λ = 0 and G ⊤ N λ N = e. Then we introduce a projection operator P N as follows: let Q : U → U be a self-adjoint matrix which is positive definite on range(G N ), then define

P N : U → U ; P N := I -QG N (G ⊤ N QG N ) -1 G ⊤ N .
(5.50)

Remark 5.25. It is straightforward to prove that P N is a projection operator from U onto Ker(G ⊤ N ) and that its transpose

P ⊤ N = I -G N (G ⊤ N QG N ) -1 G ⊤ N Q is a Q-orthogonal projection.
It is however less obvious to prove that the inverse (G ⊤ N QG N ) -1 is well defined. This can be derived from the fact that Q is positive definite on range(G N ) so

G ⊤ N QG N β = 0 implies G N β = 0 ⇔ BR ⊤ N β = 0.
In other words R ⊤ N β ∈ Ker(S) ∩ Ker(B) and this intersection is zero because the problem is well posed. 1 Finally β = 0 and (G ⊤ N QG N ) -1 is well defined.

The system which we solve is the projected system into the space V N := Ker(G ⊤ N ) = range(P N ).

(5.51)

For the choice λ

N := QG N (G ⊤ N QG N ) -1 R N f Γ (which fulfills the condition G ⊤ N λ N = e) the problem is: find λ ∈ V N and α ∈ range(R N ) such that F λ -G N α = d -F λ N .
(5.52)

Testing this against elements in V N yields the final form of the problem before preconditioning

P ⊤ N F λ = P ⊤ N (d -F λ N ), (5.53) 
whereas testing against function in range(I -P N ) allows us to define the component α of the solution completely with respect to λ:

(I -P ⊤ N )G N α = (I -P ⊤ N )(F λ -d + F λ N ) ⇔ α = (G ⊤ N QG N ) -1 G ⊤ N Q(F λ -d),
where we simply used a multiplication by (G ⊤ N QG N ) -1 G ⊤ N Q to write the equivalence. Next we introduce the two usual FETI preconditioners.

Usual preconditioners for FETI

We first need to introduce diagonal scaling matrices D i : W i → W i for each i = 1, . . . , N . These are the matrix counterparts of the partition of unity operators Ξ i used in the BDD section. Then let D : W → W be the diagonal scaling matrix D := , on the product space. We will consider two different preconditioners for (5.53): the Dirichlet preconditioner with the subscript D and the lumped preconditioner with the subscript L [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF]. When scaled, those preconditioners can be written as the following operators on U [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF]:

M -1 D = � D -1 B ⊤ (BD -1 B ⊤ ) † � ⊤ S � D -1 B ⊤ (BD -1 B ⊤ ) † � (5.54) M -1 L = � D -1 B ⊤ (BD -1 B ⊤ ) † � ⊤ K bb � D -1 B ⊤ (BD -1 B ⊤ ) † � . (5.55) 
We use the subscript * to refer to either of these preconditioners generically: if * denotes

D then M -1 * = M -1 D is the Dirichlet preconditioner and if * denotes L then M -1 * = M -1 L
is the Lumped preconditioner. When the diagonal scaling matrix D is chosen to be the diagonal of the local operator matrix K, the scaling in the preconditioners (5.54,5.55) are equivalent to so-called super-lumped scaling (or K-scaling) originally proposed in [START_REF] Rixen | A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF].

Remark 5.26. In (5.54,5.55) we have used a pseudo inverse where the usual FETI theory uses an inverse. This has no impact on what follows. Indeed, (BD -1 B ⊤ ) † is defined up to an additive element in Ker(BD -1 B ⊤ ) and we have the inclusion Ker(BD

-1 B ⊤ ) ⊂ Ker(B ⊤ ) since λ ∈ Ker(BD -1 B ⊤ ) ⇒ D -1 B ⊤ λ ∈ Ker(B) ⇒ B ⊤ λ = Dv for some v ∈ Ker(B),
and Ker(B) = (range

(B ⊤ )) ⊥ so v ⊤ B ⊤ λ = v ⊤ Dv = 0 ⇒ v = 0 ⇒ λ ∈ Ker(B ⊤
). The operator (BD -1 B ⊤ ) † is applied to elements in range(B) = Ker(B ⊤ ) ⊥ so this application is well defined. Moreover the application of (BD -1 B ⊤ ) † is followed by an application of B ⊤ so D -1 B ⊤ (BD -1 B ⊤ ) † is uniquely defined independently of the choice of the pseudo inverse. This pseudo inverse can be avoided by defining scaling matrices directly on the space of Lagrange multipliers which is done for instance in the redundant Lagrange multiplier section of [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF]. For sensible choices both approaches can lead to identical preconditioners and in practical implementations the scaling matrices are actually never computed explicitly as is explained in [START_REF] Rixen | A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF].

Using the subscript * for either D or L, the preconditioned operator is M -1 * P ⊤ N F . Because we solve the system using a projected conjugate gradient method we require that the search directions remain in V N . Therefore we actually solve: find λ ∈ V N such that

P N M -1 * P ⊤ N F λ = P N M -1 * P ⊤ N (d -F λ N ).
(5.56)

Because of the projection step (5.53) and the choice λ N := QG N (G ⊤ N QG N ) -1 R N f this is already a two-level preconditioner where the coarse space is Ker(P N ) = range(QG N ) = range(QBR ⊤ N ). The PPCG solver is initialized with λ N and the entire solution space is λ N + V N . We will refer to P N as the natural coarse space projector.

The theoretical study of the preconditioner is related to operator

P D : W → W ; P D := D -1 B ⊤ (BD -1 B ⊤ ) † B, (5.57) 
where D : W → W is the diagonal scaling matrix already introduced. This is a projection that is orthogonal in the scaled l 2 inner product x ⊤ Dy (x, y ∈ W ). The next two lemmas follow essentially by noticing that BP D u = Bu. They are Lemmas 4.1 and 4.3 in [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF]. We give the proofs for sake of completeness because they are short.

Lemma 5.27. For any µ ∈ U there exists ũ ∈ range(P D ) such that µ = B ũ.

Proof. By definition of U there exists u ∈ W such that µ = Bu. Now take ũ = P D u, B ũ = Bu = µ.

Lemma 5.28. Let u ∈ W , then

P D u = u -E D u, (5.58) 
where E D u : W → W is an averaging operator defined by its components as:

(E D u) i = R i � N j=1 R ⊤ j D j u j .
Proof. We start by noticing that B(u -P D u) = 0. This means that u -P D u matches at the interfaces and thus its weighted average satisfies E D (u -P D u) = u -P D u. A sufficient condition to ensure that the result holds is now

E D P D u = 0.
By definition of E D , E D P D u is a D-weighted average of the values of P D u which correspond to the same global dof. One way to compute the averaged value for global dof k is to first compute DP D u = B ⊤ (BD -1 B ⊤ ) † Bu and then sum the contributions from the different subdomains for which k is a degree of freedom. This is the same as computing an l 2 scalar product between B ⊤ (BD -1 B ⊤ ) † Bu and the function e x ∈ W which is zero everywhere except at the degrees of freedom which correspond to global dof k. By definition Be x = 0. The orthogonality of Ker(B) and range(B ⊤ ) allows us to conclude that �Be x , B ⊤ (BD -1 B ⊤ ) † Bu� = 0 and thus E D P D u = 0. This last lemma allows us to prove that two suitable choices for Q in the projection operator P N are M -1 D and M -1 L .

Lemma 5.29. Both preconditioners M -1 D and M -1 L defined by (5.54) and (5.55) are self adjoint on U and positive definite on range(G N ). Consequently they are possible choices for matrix Q in the natural projection operator defined by (5.50).

Proof. We will only prove positive definiteness. Any λ ∈ range(G N ) can be writteb as λ = Bz for some z ∈ Ker(S). Moreover, according to Lemma 5.6, λ ∈ Ker(M -1 L ) implies λ ∈ Ker(M * is positive definite on range(G N ).

We have just given two possible choices which complete the definition of the natural coarse space projector and thus the definitions of the spaces V N and V ′ N . The main result which we prove holds for these particular choices. For * denoting either D or L, we introduce the notation: (5.60)

P * ,N := I -M -1 * G N (G ⊤ N M -1 * G N ) -1 G ⊤ N (5.
The next lemma states a crucial property for the preconditioners which is that they are positive definite. The operator G * ,0 is a mapping between the coordinates of a vector from U * ,0 in the set of coarse basis functions and its representation in U . Its transpose G ⊤ * ,0 is a restriction operator which maps an element in W to the coordinates of its l 2 projection onto W * ,0 in the set of coarse basis functions. The main difference with the coarse space for BDD is that we have left out the zero eigenvalues which correspond to the kernel of S because they are already taken care of by the natural coarse space through P N .

Remark 5.32. One common point with the BDD GenEO eigenvalue problem is that one of the operators (S i ) is a non assembled operator on the local space W i whereas the other (B ⊤ i M -1 * B i ) is an assembled operator restricted to the local space W i . This time the words assembled and restricted are to be understood in the FETI context and rely on the mappings B i between the degrees of freedom in W i and the Lagrange multipliers in U . In the same way as for BDD, the role of the GenEO eigenvalue problem for FETI can be interpreted as finding the modes necessary for describing the discrepancy between the interface behavior as seen from a single domain (left hand side of (5.61)), and the assembled interface operator F -1 , approximated by M -1 * (right hand side of (5.61)). The idea is then to introduce those differences, which will not be well accounted for by the preconditioner, into the coarse space.

For two spd matrices M 1 and M 2 of same size, the spectrum of M 1 M 2 is identical to the spectrum of M 2 M 1 . Following this idea we decide to look at the problem in reverse: Is F a good preconditioner for M -1 * ? The reason why we do this is that then we recognize an abstract Schwarz type preconditioner F =

� N i=1 B i S † i B ⊤ i .
In this framework, the local subspaces are the W i and the local solvers are the pseudo inverses S † i of the local bilinear forms S i . The prolongation operators are the B i : W i → U and the restriction operators are the B ⊤ i : U → W i . Taking advantage of the abstract Schwarz framework, in Lemmas 5.35 and 5.37 we will prove the same estimates as in the BDD subsection for F viewed as the preconditioner and M -1 * viewed as the matrix problem. In the proof of our final theorem it will become apparent that the se estimates makes it possible to prove the condition number of FETI with the two-level preconditioners given by (5.64). In the next Lemma, applying the exact same strategy as in Lemma 5.14 we give an estimate related to a lower bound for the eigenvalues of the preconditioned operator F P * ,N P * ,0 M -1 * . This bound does not depend on the choice of the coarse space. 

. , v N ) ∈ W 1 × • • • × W N of µ : µ = B 1 v 1 + . . . B N v N ; v i ∈ W i and N � i=1 �S i v i , v i � ≤ �M -1 * µ, µ�. (5.65) 
This implies �M -1 * µ, µ� ≤ �F P * ,N P * ,0 M -1 * µ, P * ,N P * ,0 M -1 * µ� for any µ ∈ range(P ⊤ * ,0 P ⊤ * ,N ).

Proof. Let µ ∈ V ′ * ,N and let v i = D -1 i B ⊤ i (BD -1 B ⊤ ) † µ for each i = 1, . . . , N . This provides a splitting of µ:

N � i=1 B i v i = N � i=1 B i D -1 i B ⊤ i (BD -1 B ⊤ ) † µ = (BD -1 B ⊤ )(BD -1 B ⊤ ) † µ = µ, since µ ∈ range(BD -1 B ⊤ ) = range(B) = U .
Moreover, the splitting is stable:

N � i=1 �S i v i , v i � = N � i=1 �S i D -1 i B ⊤ i (BD -1 B ⊤ ) † µ, D -1 i B ⊤ i (BD -1 B ⊤ ) † µ� = �SD -1 B ⊤ (BD -1 B ⊤ ) † µ, D -1 B ⊤ (BD -1 B ⊤ ) † µ� = �M -1 D µ, µ�, ≤ �M -1
* µ, µ�, by Lemma 5.6. This is exactly (5.65). Now let µ ∈ range(P ⊤ * ,0 P ⊤ * ,N ), then �M -1 * µ, µ� = �P * ,N P * ,0 M -1 * µ, µ�. Moreover, the fact that the v i provide a splitting implies

�M -1 * µ, µ� = �P * ,N P * ,0 M -1 * µ, N � i=1 B i v i � = N � i=1 �P * ,N P * ,0 M -1 * µ, B i (S † i S i )v i � = N � i=1 �S i v i , S † i B ⊤ i P * ,N P * ,0 M -1 * µ�.
Then we apply the Cauchy Schwarz inequality twice, first in the S i inner product and then in the l 2 inner product and finish by using (5.65)

�M -1 * µ, µ� ≤ N � i=1 � �S i v i , v i � 1/2 �S i S † i B ⊤ i P * ,N P * ,0 M -1 * µ, S † i B ⊤ i P * ,N P * ,0 M -1 * µ� 1/2 � ≤ � N � i=1 �S i v i , v i � � 1/2 � N � i=1 �S i S † i B ⊤ i P * ,N P * ,0 M -1 * µ, S † i B ⊤ i P * ,N P * ,0 M -1 * µ� � 1/2 ≤ �M -1 * µ, µ� 1/2 �P * ,N P * ,0 M -1 * µ, N � i=1 B i S † i B ⊤ i P * ,N P * ,0 M -1 * µ� 1/2 .
The result follows by raising to the square, simplifying by �M -1 * µ, µ� and recognizing

F = � N i=1 B i S † i B ⊤ i .
The next lemma is the FETI counterpart of lemma 5.20 and the proof follows the exact same steps. We prove a crucial result which relies very strongly on the choice of the coarse space. In fact the coarse space was chosen specifically to ensure that this estimate holds. i be chosen such that range(S † i ) = span{q k i ; Λ k i > 0}. Then the following estimate for the local solver holds

�M -1 * B i u i , B i u i � ≤ 1 K i �S i u i , u i �, ∀u i ∈ range(S † i B ⊤ i M -1 * P ⊤ * ,0 P ⊤ * ,N ), (5.66) 
where the K i are the thresholds that were used to select eigenvectors for the coarse space in Definition 5.31.

Proof. First we prove that range(

S † i B ⊤ i M -1 � range(G * ,0 ) ∪ range(M -1 * G N ) � .
By definition of G * ,0 and G N , in particular, for each i = 1, . . . , N ,

span{M -1 * B i q k i ; Λ k i < K i } ⊂ Ker(P * ,N P * ,0 ), so span{q k i ; Λ k i < K i } ⊂ Ker(P * ,N P * ,0 M -1 * B i ). (5.68) 
Following the same procedure as to prove (5.37) in Lemma 5.20, the first orthogonality property in Lemma 5.33 implies that 

span{q k i ; Λ k i < K i } ⊕ ⊥ span{B ⊤ i M -1 * B i q k i ; Λ k i ≥ K i } = W i . ( 5 
P ⊤ * ,N ) ⊂ span{B ⊤ i M -1 * B i q k i ; Λ k i ≥ K i }. Next the definition of eigenproblem (5.61), S i q k i = Λ k i (B ⊤ i M -1 * B i ) q k i , yields range(B ⊤ i M -1 * P ⊤ * ,0 P ⊤ * ,N ) ⊂ span{S i q k i ; Λ k i ≥ K i }.
Finally for the specific choice of the pseudo inverse S † i it is obvious that range(S † i B ⊤ i M -1 * P ⊤ * ,0 P ⊤ * ,N ) ⊂ span{q k i ; Λ k i ≥ K i }. Now it is easy to prove (5.66) using the orthogonality type properties in Lemma 5.33 and the definition of the eigenproblem. Any

u i ∈ range(S † i B ⊤ i M -1 * P ⊤ * ,0 P ⊤ * ,N ) can be written as u i = � {k;Λ k i ≥K i } α k i q k i for some coefficients α k i ∈ R, so: �M -1 * B i u i , B i u i � = � {k;Λ k i ≥K i } α k i 2 �M -1 * B i q k i , B i q k i � = � {k;Λ k i ≥K i } 1 Λ k i α k i 2 �S i q k i , q k i � ≤ 1 K i � {k;Λ k i ≥K i } α k i 2 �S i q k i , q k i � = 1 K i �S i u i , u i �
The next lemma is a direct consequence. It is the FETI counterpart of Lemma 5.22 and gives an estimate related to an upper bound for the eigenvalues of the preconditioned operator. The relationship will become apparent in the proof of the final theorem. Lemma 5.37 (Upper bound for the eigenvalues of the preconditioned operator). The following estimate holds

�F M -1 * λ, M -1 * λ� ≤ N max 1≤i≤N � 1 K i � �M -1
* λ, λ� for any λ ∈ range(P ⊤ * ,0 P ⊤ * ,N ), (5.70) where N is, as for BDD 2 , the maximal number of neighbours of a subdomain (including itself) in the sense

N = max 1≤i≤N � #{j; R j R ⊤ i � = 0} � .
Proof. In order to simplify notation lets write P * ,i := Taking a close look at the definition of the preconditioners in (5.54) and (5.55) we notice that they can be written as a sum of local contributions:

S † i B ⊤ i M -
M -1 * = N � j=1 M -1 * ,j ; M -1 * ,j := � D -1 j B ⊤ j (BD -1 B ⊤ ) † � ⊤ S j � D -1 j B ⊤ j (BD -1 B ⊤ ) † � , and if �M -1 * ,j B i u i , B i u i � � = 0 then R j R ⊤ i � = 0. 3 A consequence of this is that �M -1 * λ, P * ,i λ� = �M -1 * λ, B i P * ,i λ� = � {j;R j R ⊤ i � =0}
�M -1 * ,j λ, B i P * ,i λ�.

We apply the Cauchy Schwarz inequality for M -1 * ,j and then for the Euclidean inner product 2. in the article the definition of a neighbour was slightly different:

N = max 1≤i≤N � #{j; B ⊤ j Bi � = 0}
� . It was brought to our attention that in the case of non redundant Lagrange multipliers we had comitted a mistake since it is possible to have B ⊤ j Bi = 0 at the same time as RjR ⊤ i � = 0 (see next footmark for the line in the proof where this appears).

3. We have changed this line compared to the article (in agreement with the previous footnote).

to this and inject the previous result

�M -1 * λ, P * ,i λ� ≤ � {j;R j R ⊤ i � =0} �M -1 * ,j λ, λ� 1/2 �M -1 * ,j P * ,i λ, P * ,i λ� 1/2 ≤    � {j;R j R ⊤ i � =0} �M -1 * ,j λ, λ�    1/2    � {j;R j R ⊤ i � =0} �M -1 * ,j P * ,i λ, P * ,i λ�    1/2 =    � {j;R j R ⊤ i � =0} �M -1 * ,j λ, λ�    1/2 �M -1 * P * ,i λ, P * ,i λ� 1/2 ≤    � {j;R j R ⊤ i � =0} �M -1 * ,j λ, λ�    1/2 � 1 K i �M -1 * λ, P * ,i λ� � 1/2
(from (5.71)).

Raising to the square and simplifying by �M -1 * λ, P * ,i λ� yields

�M -1 * λ, P * ,i λ� ≤ 1 K i � {j;R j R ⊤ i � =0} �M -1 * ,j λ, λ�.
Finally summing these inequalities over i and noticing that

� N i=1 P * ,i = F M -1 * ends the proof.
We are now ready to prove the main theorem for the GenEO FETI algorithm which is similar to Theorem 5.23. (5.72)

As for the balanced two-level preconditioner with the GenEO coarse space in range(P * ,N ), it satisfies

κ � P * ,N P * ,0 M -1 * P ⊤ * ,0 P ⊤ * ,N F + P * ,N G * ,0 F † * ,0 G ⊤ * ,0 P ⊤ * ,N F � ≤ max � 1, N max 1≤i≤N � 1 K i �� .
(5.73) These bounds depend only on the chosen thresholds K i we use to select eigenvectors for the coarse space in Definition 5.31 and on the maximal number N of neighbours of a subdomain (including itself):

N = max 1≤i≤N � #{j; R j R ⊤ i � = 0} � .
Proof. From Lemma C.1 in the appendix of [START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF], in order to prove (5.72), it is sufficient to show that, for any λ ∈ range(P * ,N P * ,0 ), the following holds:

In the same way as for the lower bound we may then show the upper bound in (5.74). This ends the proof for the condition number of the deflated preconditioned operator (5.72).

The proof for the balanced operator (5.73) is similar to the BDD case, it relies simply on the fact that the projection operator P * ,0 is (P ⊤ * ,N F P * ,N )-orthogonal.

Numerical results for two dimensional elasticity (FETI)

We give here a few numerical results to confirm the estimate for the condition number in the FETI case. The system of equations which we solve is related to two dimensional linear elasticity where the domain is clamped on the left hand side and subject to gravity. An important feature of the methods which we presented is that, given a FETI code, they do not demand a lot of implementation work: all the mathematical objects which are used to build the coarse space already appear in the algorithms.

All the results that follow were obtained using Freefem++ [START_REF] Hecht | FreeFem++. Numerical Mathematics and Scientific Computation[END_REF] to build the problem matrices and visualize solutions and Matlab for the solving procedure. The test problems we present here are only small tests which we use to validate our theoretical results. Of course, a full validation of the efficiency of the method would require larger scale tests with an optimized code. Full reorthogonalization at each iteration is used in PPCG. The meshes are regular with quadrilateral elements and the finite element discretization of the two dimensional elasticity equation uses standard P 1 (linear) functions. There are two parameters in the linear elasticity system of equations: Young's modulus E and Poisson's 

� � N i=1 R ⊤ i S i D -1 i B ⊤ i (BD -1 B ⊤ ) † P ⊤ * ,0 P ⊤ * ,N (d -F λ k )� 2 � fΓ � 2 < 10 -4 .
The fact that this is indeed the primal residual is explained in [START_REF] Rixen | Extended preconditioners for FETI method applied to constrained problems[END_REF] and proved for instance in [START_REF] Mandel | An algebraic theory for primal and dual substructuring methods by constraints[END_REF].

Checkerboard coefficient distribution

We discretize a square of size 1 × 1 using 81 × 81 nodes. We use two different decompositions of this unit square: a regular decomposition into 8 × 8 regular subdomains (Figure 5.1 -left) and a decomposition into 64 subdomains obtained using Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] (Figure 5.1 -middle). Throughout this subsection, the scaling matrices are chosen to be the K-scaling matrices [START_REF] Rixen | A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF][START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF], meaning that in the definitions of the preconditioners (5.54) and (5.55) we set D i = diag(K i ).

(5.75)

The criterion for selecting which modes are used to build the coarse space is set to

K i = 0.1; ∀ i = 1, . . . , N,
so the condition number should satisfy κ ≤ 10 × N where N is the maximal number of neighbours.

The partition resolves the heterogeneities

It is well known by now that in the case of a regular decomposition into subdomains which resolves the jumps in the coefficients and the Dirichlet preconditioner, the use of the K-scaling matrices (5.75) is sufficient to ensure good convergence. We check here that in these cases the (automatic) GenEO strategy is to do nothing special which is to say that no extra modes are selected to build the additional coarse space U 0 . Table 5.2 gives the results for the regular partition (Figure 5.1 -left) into subdomains and a constant coefficient distribution (E; ν) = ( 10 5.2: Checkerboard (64 regular subdomains) κ : condition number; #U 0 : size of the GenEO coarse space; it: number of iterations -For the Dirichlet preconditioner the GenEO coarse space is empty so FETI-GenEO and FETI-1 are identical 5.1 -right) where the coefficients take the values (E 1 ; ν 1 ) = (10 7 ; 0.4) and (E 2 ; ν 2 ) = (10 12 ; 0.3). We have solved each of these problems with the Dirichlet preconditioner and the Lumped preconditioner with and without the GenEO coarse space (we re fer to these cases as FETI-GenEO and FETI-1 respectively). For each test we give the condition number κ of the preconditioned operator, the size of the GenEO coarse space #U 0 (if there is one) and the number it of iterations needed to reach convergence. The first thing that we notice is that in all four cases where the GenEO coarse space is used the estimate for the condition number is satisfied. In the Dirichlet preconditioner case, no modes where selected to build the coarse space which is what we expected since the K-scaling alone is known to be efficient. With the Lumped preconditioner case only few modes were selected (less than one per subdomain). This test indicates that the GenEO coarse space circumvents the fact that the lumped preconditioner does not properly predict the corrections needed on the interface for checkerboard problems.

The partition does not resolve the heterogeneities

This time we use the automatic partition into 64 subdomains obtained using METIS [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] (Figure 5.1 -middle). The coefficient distribution is still the checkerboard distribution shown on the right hand side of Figure 5.1 so the subdomain interfaces do not coincide with the jumps in the coefficients. The coefficients are a fixed (E 1 ; ν 1 ) = (10 7 ; 0.4) and a variable (E 2 , ν 2 ) one. Table 5.3 gives the results for different values of (E 2 , ν 2 ). The middle line shows a case where the coefficients are constant throughout the subdomain ((E 2 , ν 2 ) = (E 1 ; ν 1 )). Once again we observe that in all cases the condition number satisfies the estimate and that it hardly varies with the jumps in the coefficients. In the worse case the number of modes used to build the coarse space is 370 (less than 6 modes per subdomain on average). Because of bad numerical conditioning there are a few cases where the FETI-1 residual never reaches 10 -4 , instead it stagnates. In this case we report the iteration count before the plateau and the corresponding residual. Figure 5.2 shows a comparison between the convergence curves with and without the additional GenEO coarse space where this phenomenon can be observed. Figure 5.3 shows the spectrum of the preconditioned operators with and without the additional coarse space. The spectrum is represented in the complex plane but the imaginary part is always almost zero (imaginary parts result from numerical errors in the eigensolver). The zeros in the spectrum correspond to the coarse modes (either natural or GenEO) as well as the null space of B ⊤ . Whether the GenEO coarse space is used or not, the first non zero eigenvalue of the preconditioned operator is (4) (1) the relative residual reaches a plateau at 2 • 10 -4 after 142 iterations.

(2) the relative residual reaches a plateau at 3 • 10 -4 after 154 iterations. (3) the relative residual reaches a plateau at 2 • 10 -3 after170 iterations. (4) the relative residual reaches a plateau at 1 • 10 -3 after 198 iterations.

Table 5.3: Checkerboard (64 Metis subdomains) (E 1 ; ν 1 ) = (10 7 ; 0.4); κ : condition number; #U 0 : size of the GenEO coarse space; it: number of iterations. When (E 2 ; ν 2 ) = (10 7 ; 0.4) there are no jumps in the coefficients. 

Discontinuities along the interfaces

In this subsection we focus only on the GenEO coarse space for the Dirichlet preconditioner and we conduct a more extensive study. We use a partition into N regular subdomains of a rectangle of size N × b where b is the aspect ratio of each subdomain (see Figure 5.4). The discretization of each subdomain is n el × n el rectangular elements so that each element has the same aspect ratio as the subdomain to which it belongs. The coefficient distribution consists of a constant value ν = 0.3 of Poisson's ratio and 7 layers of E (4 soft layers, 3 hard layers, see again Figure 5.4). Throughout this subsection we use again the K-scaling matrices (5.75) which is in fact, for this case, equivalent to choosing multiplicity scaling since the coefficient jumps are only along the interfaces.

The parameters are: b = 1 (aspect ratio), n el = 21 (number of elements per direction per subdomain) and E 1 /E 2 = 10 -5 (jump in the coefficient). The spectrum is shown in Figure 5.5 along with the first 11 generalized eigenvectors and corresponding eigenvalues. We observe that there is a gap in the spectrum of the generalized eigenproblem after the 9-th generalized eigenvalue since λ 9 = 0.11 and λ 10 = 0.98. For this reason a judicious choice of the threshold for selecting eigenvectors which are put into the coarse space is for instance K i = 0.15, we will use this in all following numerical tests. With this criteria, the GenEO eigenproblem for a floating subdomain will provide 9 modes: the first three are rigid body modes included in the usual FETI natural coarse space, and 6 deformation modes that are included in the GenEO coarse space. As can be seen in Figure 5.5 those deformation modes represent the behavior of the subdomain when the hard layers deform the soft ones. The 9 modes can be seen as a basis to describe the nearly rigid motion of the hard layers (3 modes for each of the 3 layers, amounting to 9 modes) and the basis spanned by those modes represent the behavior of the domain as if the hard layers were its backbones. In some sense the GenEO coarse space can be interpreted in this case as a skeleton of the overall problem describing the dominant behavior of the structure according to its hard layers.

Next we actually solve the problem for different numbers of subdomains, different aspect ratios and different discretizations. The results are shown in Table 5.4. The two level method with the GenEO coarse space is robust throughout all of these tests: the condition number varies between 1.34 and 4.51 only, which is indeed lower than the upper bound given by the theory, N /K i = 20, N being equal to three in this simple decomposition. Further the following observations are noteworthy:

-When the number of domains increases, the classical FETI-1 method sees its number of iteration increase significantly, whereas equipped with the GenEO coarse space, Various number of subdomains (N ), fixed aspect ratio (b = 1), fixed discretization (n el = 21),fixed jump in coefficients (E 1 /E 2 = 10 Table 5.4: Three tests for the geometry in Figure 5.4κ : condition number; #U 0 : size of the GenEO coarse space; it: number of iterations the number of iteration remains small. The dimension of the GenEO coarse spaces is roughly proportional to the number of domains in this case. -The classical FETI method convergences very slowly when the height of the domain is large compared to its width (b = 5). For that case the GenEO strategy generates only a small number of modes (43 in total) and converges very fast. -For this layered structure, the preconditioned interface problem of FETI-1 has a condition number that barely depends on the number of elements per domain, and the number of iterations is nearly invariant with respect to the discretization step.

When equipped with the GenEO coarse space, a small number of modes is included in the coarse space (38 GenEO modes, independent of the discretization step), and the number of iteration is very small It is thus remarkable that the GenEO coarse space can handle automatically (once a proper threshold K has been chosen) the difficult cases of bad aspect ratios and heterogeneities along the interface.

Discontinuities along and across interfaces

In this subsection we consider the case of Figure 5.6 where the only difference with the previous subsection is that we have added jumps across the interfaces in subdomains 3 and 6 by inverting the soft and hard layers. The parameters are as follows: n el = 21 Table 5.5: Geometry given in Figure 5.6 (discontinuities across and along the interfaces), n el = 21, N = 8, E 1 /E 2 = 10 -5κ : condition number; #U 0 : size of the GenEO coarse space; it: number of iterations elements in each direction and each subdomain, N = 8 subdomains, ν = 0.3 for Poisson's ratio, E 1 /E 2 = 10 -5 for the magnitude of the jump in the coefficient, b = 1 for the aspect ratio of the subdomains and K i = 0.15 for the threshold on the GenEO eigenvalues. This is a known hard problem for FETI even with the Dirichlet preconditioner (which we use here again). In this case we show in Table 5.5 that with the K-scaling matrices (5.75) the number of bad eigenmodes is largely reduced compared to the case where multiplicity scaling is used (here multiplicity scaling reduces to setting all entries of each D i to 1/2).

In deed with K-scaling we have selected 46 modes which is only 8 more than for the same case but without the extra jumps across the interfaces (see Table 5.4 -top -N = 8 subdomains). With the multiplicity scaling the GenEO strategy selects 173 modes. In fact, with K-scaling fewer modes are necessary because jumps across the interfaces are already accounted for in the preconditioner. The additional modes are needed to take into account the jumps across the interfaces. This confirms that GenEO compensates for the discrepancy between the preconditioner and the actual inverse of F : when inadequate weighting is used the preconditioner is less effective and hence a larger coarse space is needed. The condition numbers for both types of scaling are almost equal when the GenEO coarse space is introduced, which confirms the theory.

Choice of the threshold

Finally, we study the method on a unit square square discretized with a simplicial mesh consisting of 101 × 101 nodes and P 1 finite elements. The local components of the diagonal scaling matrix D in the preconditioner are chosen to be the K-scaling matrices D i = diag(K i ). The coefficient distribution is given in Figure 5.7 along with two partitions of the domain into 25 subdomains. In both cases the interfaces do not match the jumps in the coefficients. The results are shown in Figure 5.6 where κ is the condition number of the preconditioned operator, #U 0 is the number of bad eigenmodes selected in Definition 5.31 using the threshold K i . As is expected the condition number decreases when the threshold increases. In all cases the estimate is satisfied. We also observe that for a fixed threshold more eigenmodes are used to build the coarse space in the Metis partition case. This is in agreement with the fact that this is a harder problem.

K i κ #U 0 κ #U 0 0 2.

Conclusion

We have constructed a two-level BDD method and two two-level FETI methods for which the convergence rates depend only on a chosen parameter and the maximal number of neighbours of a subdomain. The choice of this parameter is key in dimensioning the coarse space. Optimizing the choice of the parameter with respect to efficiency and the size of the coarse space is crucial. Here it has been set heuristically. For FETI the result holds for the full preconditioner based on solving Dirichlet problems in the subdomains and also on the lumped version which is a lot less expensive to implement. Compared to the Schwarz-GenEO algorithm these methods have the advantage of being non overlapping methods which means that they do not carry the extra cost of computations in the overlap.

In this Chapter the fundamental ideas and proofs underlying the GenEO coarse space have been explained and the numerical efficiency has been illustrated on problems hard to solve with classical FETI approaches. Future research should investigate the computational cost incurred by the GenEO coarse space (computation of the GenEO modes per domain, building and solving the coarse space) in order to assess the overall computational efficiency of the FETI-GenEO when applied to realistic engineering problems.

Chapter 6

Application to elasticity in the incompressible limit Almost incompressible elasticity is a known challenge for domain decomposition methods. Tackling it was one of the objectives of this thesis since Michelin tires, as all tires, are made of rubber and rubber is an almost incompressible material. In the introduction of this manuscript (Section 2.3.4) we have motivated, with a Fourier analysis, the reason why we chose to switch from Additive Schwarz methods to substructuring methods. Here we introduce more precisely the almost incompressible framework and then illustrate the behaviour of the GenEO algorithms: we will explain why the Schwarz-GenEO coarse space cannot handle the incompressible limit and show that on the other hand FETI-GenEO performs very well. 

v ∈ V such that 2 � Ω µ ǫ(u) : ǫ(v)dx + � Ω λ(∇ • u)(∇ • v)dx = � Ω �f, v�dx ∀v ∈ V, (6.1) 
where the contribution of the linearized strain tensor is

ǫ(u) : ǫ(v) := d � i=1 d � j=1 ǫ ij (u)ǫ ij (v); ǫ ij (u) := 1 2 � ∂u i ∂x j + ∂u j ∂x i � , �f, v� := d � i=1 f i v i ,
and µ and λ are two parameters called the Lamé parameters which describe the material and can be expressed in terms of Young's modulus E and Poisson's ratio ν as

λ := Eν (1 + ν)(1 -2ν) , µ := E 2(1 + ν)
.

In this chapter we assume that the material properties are constant throughout the domain. The incompressible limit is the following limit on Poisson's ratio: ν → 1 2 . This in turns implies that λ → +∞. For classical choices of finite elements (such as the standard P 1 elements we have used on previous test for elasticity) the solution becomes strongly mesh dependent. This is known as the locking phenomenon and it deteriorates the solution to the point where it becomes unreliable. We illustrate this rather naively in Figure 6.1. In the top plot we have solved (6.1) for E = 2 • 10 7 and ν = 0.4999 in Ω = [0, 3] × [0, 1] × [0, 1] with zero Dirichlet boundary conditions at x = 0, free surfaces on the remainder of the boundary and a body force corresponding to a gravity term in the z direction: f (v) = �v, g� and g = (0, 0, -10) ⊤ . There is obviously a problem with the solution because even without taking into account the values of the magnitudes of the displacements we notice that the (x, z) median plane is not an axe of symmetry as it should be. In the bottom of the figure we show that with an almost incompressible formulation we recover the right symmetry properties. Next we introduce this formulation.

An almost incompressible formulation

Even when λ → +∞, the term

� Ω λ(∇ • u)(∇ • v)dx must
remain bounded for all v and so this implies that ∇ • u → 0 or, by the divergence theorem, that in the incompressible limit the volume remains constant. This is the explanation for the locking phenomenon: if each element does not have enough degrees of freedom it cannot move while satisfying the constant volume constraint. A well-known remedy [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF][START_REF] Tallec | Numerical methods for nonlinear three-dimensional elasticity[END_REF][START_REF] Brenner | The mathematical theory of finite element methods[END_REF] is to introduce the new variable p = λ∇ • u referred to as the pressure variable and living in a space P ⊂ L 2 (Ω). With it the problem can be written: find (u, p) ∈ V × P such that

� Ω [2µǫ(u) : ǫ(v) + p ∇ • v] dx = � Ω f (v)dx ∀v ∈ V, (6.2) 
under the constraint that p = λ∇ • u.

Finally, the mixed (pressure -displacement) formulation of the problem is: find (u, p) ∈ V × P such that

� Ω [2µǫ(u) : ǫ(v) + p ∇ • v] dx = � Ω f (v)dx ∀v ∈ V. � Ω p qdx = � Ω λq∇ • udx ∀ q ∈ P. (6.3) 
Next we discretize the problem. The choice of the finite element spaces is very important. In particular the spaces should satisfy the inf-sup condition. The choice Q 2 -P 1 of continuous tri-quadratics and discontinuous piecewise linears, for instance, is a good choice. Here we have made the more simple choice to use Lagrange finite elements: P 2 -P 0 . More precisely we introduce the space V h = P d 2 for the field of displacements, and P h = P 0 for the field of pressures.

Although this choice of elements does not satisfy the discrete inf-sup condition it is known to be stable. We write the discretized problem as:

Find (u h , p h ) ∈ V h × P h such that �� Ω 2µǫ(u h ) : ǫ(v h ) + p h ∇ • v h � dx = � Ω f (v h )dx ∀v h ∈ V h , � Ω 1 λ p h q h dx - � Ω q h ∇ • u h dx = 0 ∀ q h ∈ P h . (6.4) 
It is obvious that we have made an approximation in writing the discretized system. Indeed we have replaced λ ∇•u h by p h and imposed that p h be a constant over each mesh element.

The equivalent matrix version of this system is the perturbed formulation: Find (u, p) ∈ R m × R n such that:

� A B ⊤ B -C � � u p � = � f 0 � , (6.5) 
where, given a basis {φ k } of V h and a basis {ψ k } of P h , the coefficients in the matrices are

a kl = � Ω 2µǫ(φ k ) : ǫ(φ l )dx, (6.6) 
b kl = � Ω ψ k ∇ • φ l dx, (6.7 
)

c kl = � Ω 1 λ ψ l • ψ k dx, (6.8) 
and

f k = � Ω f (φ k )dx. ( 6.9) 
Because the ψ j are the basis functions for the P 0 finite elements, C is a diagonal with coefficients c ii = � τ i 1 λ = 1 λ area(τ i ). The perturbed formulation is equivalent to the following system on the vector valued unknown

A u + B ⊤ p = f , B u -C p = 0. (6.10)
From the second equation we get B u = C p. Since C is by definition non singular, we can write p as a function of u as p = C -1 B u, (6.11) and inject this into the first equation in order to get the penalized formulation

� A u := A u + B ⊤ C -1 Bu = f . (6.12)
We have recovered a pure displacement formulation. As we have already noted, we have made an approximation so the penalized formulation (6.12) is less accurate than the original formulation. It is still a better choice in the incompressible limit because it is stable.

Remark 6.1. Although we refer to (6.12) as the penalized formulation we have not strictly speaking used a penalization procedure. This would have been necessary if the material was incompressible (ν = 1/2) in which case the block matrix in (6.5) would have been

� A B ⊤ B 0 �
. The penalization technique replaces the zero block by ǫ times the identity where ǫ is very small and then eliminates the pressure variable using static condensation just like we did.

We have already assumed that λ is a constant. If furthermore the mesh is regular then C is a diagonal matrix with coefficients c ii = |τ |/λ, |τ | being the volume of a mesh element and the equation is

A u + λ |τ | B ⊤ Bu = f (6.13)
which is particularly easy to implement. We remark that another option would have been to solve directly the augmented formulation of the problem by summing both equations in system (6.4): Find

(u h , p h ) ∈ V h × P h such that for all (v h , q h ) ∈ (V h , P h ) � Ω � 2µǫ(u h ) : ǫ(v h ) + p h ∇ • v h + q h ∇ • u h - 1 λ p h q h � dx = � Ω f (v h )dx. (6.14)
The advantage which is not of particular interest to us here is that then the pressure field is known.

We may apply GenEO to the almost incompressible formulation

The main assumption in order to compute the GenEO coarse spaces for the penalized formulation (6.12) is that the problem matrix à be a sum of element matrices Ãτ k over all the elements τ k in the mesh T h . This way we can compute the restrictions of à to each subdomain Ω j and the overlap Ω • j . Let's make sure that this is indeed the case for

� A = A + λ |τ | B ⊤ B.
Obviously the only part which may be problematic is B ⊤ B. By definition, for i, j = 1, . . . , #P h the entries are

� B ⊤ B � ij = #P h � k=1 � B ⊤ � ik (B) kj = #P h � k=1 (B) ki (B) kj = #P h � k=1 �� Ω ψ k ∇ • φ i dx � �� Ω ψ k ∇ • φ j dx � = #T h � k=1 �� τ k ψ k ∇ • φ i dx � �� τ k ψ k ∇ • φ j dx � .
So B ⊤ B wan also be written as a sum of element matrices

� B ⊤ B � τ k with entries � � B ⊤ B � τ k � ij = �� τ k ψ k ∇ • φ i dx � �� τ k ψ k ∇ • φ j dx � .
Denoting by B τ k the matrix with entries

� τ k ψ j ∇ • φ i dx we have B = � τ k ∈T h B τ k and � B ⊤ τ k B τ k � ij = #P h � l=1 � B τ k ⊤ � il (B τ k ) lj = #P h � l=1 (B τ k ) li (B τ k ) lj = (B τ k ) ki (B τ k ) kj
because all other terms in the sum are zero by definition of B τ k and P h . Finally

B ⊤ τ k B τ k = � B ⊤ B � τ k and � B ⊤ B � τ k is positive semi definite: � � B ⊤ B � τ k u, u� = �B τ k u, B τ k u� ≥ 0,
so we can compute the two local matrices needed for the GenEO eigenproblems.

Schwarz-GenEO and the incompressible limit

Next we consider solving the penalized formulation of the problem (6.12) preconditioned by the two level Schwarz preconditioner. Although in the introduction we concluded that Additive Schwarz is not the best preconditioner for this problem we study whether or not the GenEO coarse space can fix the slow convergence. First we introduce a good choice for the coarse space from the literature to show that such a choice exists.

Analytical coarse space

In [START_REF] Dohrmann | Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity[END_REF] the authors propose a coarse space for the penalized formulation of the three dimensional linearized elasticity equations and a certain choice of the discretization spaces. They use a hybrid Schwarz preconditioner which means that the coarse correction in the two level preconditioner is a multiplicative contribution. With a coarse space consisting of 3 degrees of freedom per subdomain vertex, 5 degrees of freedom per subdomain edge and 1 degree of freedom per subdomain face they prove that the condition number of the preconditioned operator P hy is bounded by

κ(P hy ) � � H δ � 3 � 1 + log � H h �� 2
, where H is the subdomain size, δ is the width of the overlap, h is the mesh size and the constant hidden in � does not depend on the number of subdomains, their diameters, the mesh size and the values of the Lamé parameters. It depends only on the shape regularity of the elements and the subdomains.

In particular this convergence result holds even in the incompressible limit. This tells us that there does exist a reasonably sized coarse space with which we can achieve robustness with respect to the almost incompressible behaviour using the Schwarz preconditioner. Unfortunately although the theoretical results will not be proved wrong GenEO does find this good coarse space for Additive Schwarz. Figure 6.2: top: Original Mesh -bottom: Displaced mesh, the displacement on the left hand side boundary is prescribed and propagates through the domain, the color is a measure of the displacement in the x-direction: it is zero on the top and bottom boundaries and maximal on the median horizontal line.

Schwarz-GenEO does not find the 'best' coarse space

For this test case the domain is two-dimensional: (x, y) ∈ [0, 8] × [0, 1]. The boundary conditions are: u(0, y) = (1/2 2 -(y -1/2) 2 , 0), u(x, 0) = (0, 0), u(x, 1) = (0, 0) and the right hand side boundary is free. There is no body force. If the material were strictly incompressible we would be studying the Poiseuille flow and the theoretical solution would be u

(x, y) = (1/2 2 -(y -1/2) 2 , 0).
The domain, is split into 24 × 3 subdomains, each of size 1/3 × 1/3. Every subdomain is discretized using a regular mesh with 6 × 6 mesh nodes and then extended by 1 layer of elements over each of its neighbours. Finally, the choice for the Lamé coefficients is E = 10 7 and ν varies between ν = 0.4 and ν = 0.4999. Figure 6.2 shows the numerical solution for ν = 0.4999 computed with Freefem++ [START_REF] Hecht | FreeFem++. Numerical Mathematics and Scientific Computation[END_REF]: the prescribed displacement propagates throughout the domain, this is what is expected. Now we build the GenEO coarse space (4.20) and study more particularly the solution of the GenEO generalized eigenproblem (4.18) for a floating subdomain with both formulations (a standard P 2 discretization of (6.1) and the P 2 -P 0 penalized formulation (6.12)). Even though neither of these formulations is a good choice for the whole range of ν we make Poisson's ratio vary between ν = 0.4 and ν = 0.4999 with E = 10 7 in all cases. The values of the first 50 eigenvalues are shown in Figures 6.3 and 6.4. Because of the logarithmic scale we have not plotted the three first eigenvalues which are zero in all cases.

We notice that the spectrum does not vary very much depending on the formulation. The most important remark is that if we set the criterion to K i = 0.5 or even K i = 0.1 as we have in previous numerical examples, as soon as we approach the almost incompressible limit the coarse space becomes very large (recall that the number of degrees of freedom per subdomain is small in this example). What this means is that GenEO detects the challenge posed by the almost incompressible behaviour (it wants to enrich the coarse space) but it is not possible to conclude that just a few generalized eigenvectors slow down convergence and hence that a small coarse space will guarantee fast convergence. This becomes even more clear looking at the first ten eigenvectors plotted in Figure 6.5 (in increasing eigenvalue order): the first three are the rigid body modes and then there is no particular trend.

In the next section we will observe that the FETI-GenEO eigenproblem deals very well with the almost incompressible limit. First we try to explain the shortcoming of

A heuristic explanation

It is quite easy to understand heuristically what is happening. If we look at the GenEO eigenproblem in subdomain Ω j and in matrix formulation it reads: find

(λ, v) ∈ R + × R n j such that A Ω j v = λD j A Ω • j D j v (6.15)
where n j is the number of degrees of freedom in Ω j including the boundary, A Ω j and A Ω • j are the matrices of the problem assembled only over subdomain Ω j and the overlap Ω • j respectively:

� A Ω j � kl = 2 � Ω j µ ǫ(φ k ) : ǫ(φ l )dx + � Ω j λ(∇ • φ k )(∇ • φ l )dx, � A Ω • j � kl = 2 � Ω • j µ ǫ(φ k ) : ǫ(φ l )dx + � Ω • j λ(∇ • φ k )(∇ • φ l )dx,
and D j is the partition of unity matrix for subdomain Ω j . In particular it has zero values corresponding to degrees of freedom on the boundary ∂Ω j .

Because D j has zero values corresponding to the degrees of freedom on the boundary, D j A Ω • j D j is the matrix of a Dirichlet problem (imposed displacements on the boundary). In the incompressible limit any displacement u j which does not preserve the volume of the subdomain has very high elastic energy: the energy with respect to the matrix on the right hand side of the generalized eigenvalue problem blows up if D j v does not preserve the volume. Since the matrix on the left hand side of the generalized eigenvalue problem is the matrix of a problem with Neumann boundary condition there is no reason for �A Ω j v, v� to blow up also. This explains why there are so many tiny eigenvalues as soon as ν → 1/2 in Figures 6.3 and 6.4 and why the corresponding eigenvectors are pretty much all the vectors (see Figure 6.5 for the first ten).

FETI-GenEO and the incompressible limit

Now we illustrate the fact that FETI-GenEO builds a very small coarse space to deal with the incompressible limit.

Analytical coarse space

Looking at coarse spaces for solving the linear elasticity problem in the incompressible limit with FETI, in [START_REF] Vereecke | An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems[END_REF] it is is explained that, with a discontinuous pressure field, one coarse vector per subdomain suffices to ensure that the volume is preserved or, equivalently, that the net flux over the subdomain boundary is zero. More recently [START_REF] Gippert | Nonlinear domain decomposition, adaptive coarse spaces, and a new coarse space for almost incompressible linear elasticity[END_REF] arrives at the same conclusion and gives a theoretical analysis. This is due to the non overlapping nature of FETI. Next we will check that GenEO finds that coarse vector.

In [START_REF] Mandel | Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods[END_REF] (which proposes a coarse space quite similar to GenEO but where the generalized eigenvalue problems are posed on an interface) an almost incompressible elasticity problem is also solved. The authors report that the adaptive process make it possible to recover good convergence. The size of the coarse space is given without any more detail but it seems that it is larger than just one vector per subdomain. A further comparison between [START_REF] Mandel | Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods[END_REF][START_REF] Sousedík | Adaptive-Multilevel BDDC and its parallel implementation[END_REF] and GenEO would be very interesting. Figure 6.5: Schwarz-GenEO: E = 10 7 and ν = 0.499 -Penalized formulation (6.12) -Eigenvectors 1 to 10 for a floating subdomain (the eigenvalues are 0; 0; 0; 3 • 10 -3 ; 6 • 10 -3 ; 9 • 10 -3 ; 1 • 10 -2 ; 1 • 10 -2 ; 1 • 10 -2 ).

GenEO finds the 'best' coarse space

We test the FETI-GenEO algorithm on the same test case as in the previous subsection. This time each subdomain is discretized with a regular mesh consisting of 11 × 11 nodes. Unless otherwise specified the FETI preconditioner is the Dirichlet preconditioner with K-scaling and the stopping criterion in the convergence tests is that the primal residual be reduced by 10 -4 . In Figure 6.6 we plot the value of all eigenvalues smaller than 1 with the classical formulation (6.1) when ν varies between 0.4 and 0.4999. We notice that there are some small eigenvalues which appear as ν → 1/2 but there are far fewer than with Schwarz-GenEO and, maybe most importantly, there is a large gap in the spectrum which ensures that putting the smallest eigenvalues into the coarse space will actually help with convergence. Since we know that we cannot use the classical formulation in the incompressible limit we have not looked into this any further.

In Figure 6.7 we plot the eigenvalues smaller than 1 for the GenEO eigenproblem in a floating subdomain when the penalized formulation (6.12) is used and ν varies between 0.4 and 0.4999. It seems that GenEO is able to find exactly the one basis vector which is needed. Indeed, as usual, the first three eigenvalues are zero regardless of the value of ν and we also notice that the fifth eigenvalue is roughly 0.4 for all ν. The fourth eigenvalue is the interesting one: it varies very strongly with Poisson's ratio. In the incompressible limit it approaches zero whereas far away from the limit it approaches 0.4 (and hence the fifth eigenvalue). What this means is that the eigenvector corresponding to Λ 4 is directly related to the almost incompressible behaviour of the material.

We confirm this by showing in Figure 6.8 the eigenvectors corresponding to the first seven non zero eigenvalues. In the two first columns we compare the classical and penalized formulations at ν = 0.4. The eigenvectors which arise are almost identical (although not necessarily in the same order), this is to show that the particular behaviour which we observe next is not just due to the new formulation but really to the incompressible limit. In the third column we plot the eigenvectors for ν = 0.4999 and we notice that -the first eigenvector in the column does not appear in any of the other families of eigenvectors. This is the eigenvector which corresponds to the very small fourth eigenvalue present only when ν → 1/2 in Figure 6.7. -the next eigenvectors are very similar to eigenvectors which occur when ν = 0.4.

These would typically not be picked up by the coarse space since they are after the gap in the spectrum.

Finally the convergence results in table 6.1 confirm that with the FETI-GenEO coarse space we can ensure robustness with respect to ν even in the incompressible limit with a small coarse space. The size of the coarse space is not always exactly one vector per subdomain because we have used the automatic criterion τ = 0.15 rather than impose its size.

As a last remark we have solved the FETI-GenEO eigenproblem for ν = 0.4999 with the Lumped preconditioner. The spectrum is plotted in Figure 6.9. The result is really quite terrible with more than 100 very small eigenvalues. This is exactly what was to be expected: the Lumped preconditioner makes the assumption that the interior of each subdomain is infinitely hard and very many vectors are needed in the coarse space to make up for how wrong that is. .7: FETI-GenEO: Penalized Formulation (6.12), Constant Coefficients: solution of the GenEO eigenproblem, for ν varying between 0.4 and 0.4999. In the incompressible limit just one bad eigenvalue appears! ν = 0.4 -Classical (6.1) ν = 0.4 -Penalized (6.12) ν = 0.4999 -Penalized (6.12) .9: Solution (eigenvalue versus eigenvalue number) of the FETI-GenEO eigenproblem with the Penalized formulation (6.12) and the lumped preconditioner for FETI. Poisson's ratio is ν = 0.4999.

Conclusion

In the introduction of this manuscript (Section 2.3.4), thanks to a Fourier analysis we explained why the choice to move on to FETI from Additive Schwarz stemmed from the need to solve elasticity problems in the almost incompressible limit. In this chapter we have illustrated the fact that our Schwarz-GenEO coarse space cannot provide a satisfying fix to compensate for the fact that Additive Schwarz performs rather weakly in the almost incompressible limit. On the other hand FETI-GenEO performs exactly as expected by finding the one eigenvector per subdomain which is responsible for slow convergence meaning that the automatic construction recovers the coarse space built analytically in [START_REF] Vereecke | An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems[END_REF][START_REF] Gippert | Nonlinear domain decomposition, adaptive coarse spaces, and a new coarse space for almost incompressible linear elasticity[END_REF]. Making sure of this was absolutely crucial to Michelin since the tires which they make are in a large part rubber, the textbook example for an almost incompressible material. This final test as well as the others and the theoretical analysis in Chapter 5 are arguments toward the fact that FETI-GenEO is a Domain Decomposition method that is worth considering in an industrial code. 

Conclusions

Throughout this manuscript we have developed coarse spaces that are constructed automatically and lead to two level methods with guaranteed convergence rates. We have studied these coarse spaces both theoretically and numerically. Our main target, which was driven by the need to run industrial simulations, has been met: we are able to guarantee that even if the problem is very hard the solver will converge.

Of course there are still many ways to improve these methods. In the next three sections we describe three directions of research that seem promising. Each of them addresses one of the main concerns that is raised by GenEO:

-The coarse space may become very large. The solution we propose is to generalize GenEO to a multilevel method: if the coarse problem becomes too large for a direct solver then we apply GenEO to it. This would be the three level method and we may repeat the process recursively. -The eigensolves, even though they can be performed in parallel, could we discouraging. We propose a FETI algorithm where the coarse space is built on the fly within the conjugate gradient iterations. -Finally the evaluation of the method on real industrial cases is perhaps our highest priority. What follows is still work in progress.

Multilevel Schwarz -GenEO

The ideas in this section are the result of many conversations with Frédéric Nataf, Clemens Pechstein and Robert Scheichl, most of the progress was made during my month long stay at the RICAM in Linz (Austria) for the Special Semester on Multiscale Simulation and Analysis in Energy and the Environment.

In the multigrid setting there are three main ingredients for each algorithm: the prolongation operator (how to navigate between levels), the smoother (what to do on each level) and an iterator which combines both of these contributions (additive, multiplicative, V-cycle, W-cycle, non linear AMLI iteration...).

In this section we describe the multilevel GenEO framework. More precisely we describe how to build the next coarse level. The following requires a graph partitioner (e.g. Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF]).

Multilevel setting

Notation

We use the subscript • [l] to refer to the levels. The finest level (the mesh) is denoted by • [L] while the coarsest level is denoted by • [0] . The indices corresponding to the subdomains within a level are the (i) . Finally k denotes one of the basis functions for one level and one subdomain.

Required setting to build the coarser level

Because the GenEO algorithm was specifically defined to be as algebraic as possible all the information we need is the finite element information at level l:

-a basis {φ k [l] } 1≤k≤n [l] which spans the solution space V [l] , -for each element τ ∈ Ω [l] the corresponding elementary matrix A [l] τ or the corresponding elementary bilinear forms a [l] τ . These can either be provided by the initial problem (on the finest grid) or be the results of a previous iteration during which level l was itself built from level l + 1 using the process which is described below.

We denote by A [l] ∈ R n [l] ×n [l] the assembled global matrix problem: the entries of

A [l] are A [l] ij = � τ a [l] τ (φ i [l] , φ j [l]
). Three assumptions are required:

1. For any element τ , the elementary matrix A [l] τ is symmetric positive semi definite (spsd), 2. A [l] is symmetric positive definite (spd),

The basis {φ k

[l] } 1≤k≤n [l] verifies a unisolvence property on each element τ (the basis functions which are non zero on the element are linearly independent on the element).

Local setting

We use the graph partitioner to build a splitting of Ω [l] into N [l] subdomains. Then we add a chosen number of layers to each of these subdomains returning an overlapping partition Ω

[l] = �N [l]
i=1 Ω (i) [l] . We also define the partition of unity operators {Ξ (7.

2)

The components satisfy the following estimates:

N [l] � i=1 �u (i) [l] � 2 a [l] ,Ω (i) [l] ≤ k 0[l] � 1 + 1 K [l] � �u [l] � 2 a [l] , (7.3) 
and

�R (0) ⊤ [l] u (0) [l] � 2 a [l] ≤ � 2 + 2 � 1 + 1 K [l] � k 0 2 [l] � �u [l] � 2 a [l] . (7.4) 
where k 0[l] is the coloring constant.

Initialize the next level

In order to be complete we must give the prolongation operator from level l to level l+1 and describe the initialization for adding the space for the next (coarser) level, making sure that the assumptions are verified.

-The basis functions are the low frequency eigenmodes:

{φ k ′ [l+1] } k ′ =1,...,#V H [l] = {R (i)⊤ [l] Ξ (i) 
[l] (p

(i),k [l] ); λ (i),k [l] < K [l] ; i = 1, . . . , N [l] }.
This means that we have chosen the next space to be V [l+1] = V -The projection operator used in the multilevel setting is:

P [l] : V [l+1] → V [l] , P [l] u [l+1] = R 0⊤ [l] u [l+1] .
Assumptions that must be satisfied on each level These assumptions were already stated in the previous paragraphs but I will sum them up here:

-Matrix A [l+1] = P ⊤ [l] A [l] P [l] must be spd. A sufficient condition for this is that all the basis vectors for V [l+1] be linearly independent. The only problem which may occur is for basis functions which come from two different eigenvalue problems on two subdomains.

-Elementary matrices must be spsd.

-The basis functions must satisfy a unisolvence property on each element (all of the ones which are non zero on an element must be linearly independent on this element). This implies the first property. -Having defined the subdomains, the coercivity -of bilinear form a 

[l] \ Ω (i),•

[l] )} for each subdomain, must be ensured.

Fully additive multilevel preconditioner

We next define the fully additive preconditioner even though we are well aware that it is probably not the most optimal way to solve the problem. There is a small chance that the fact that all solves are done in parallel will be a sufficient argument to use this if there are only three levels. [L-1] is the exact coarse solve on the coarsest level and for l = 0, . . . , L-1, Λ -1

[l] are the smoothers. In our case we choose Λ -1

[l] to be the scaled one level Schwarz preconditioner for

A [l] , Λ -1 [l] = 1 ρ [l] N [l] � i=1 R (i)⊤ [l] A -1 [l] R (i) [l] , (7.6) 
where ρ [l] > 0 is the scaling constant.

In fact defining composite interpolation matrices 

P ⊤ [L] + L-1 � l=0 N [k] � i=1 1 ρ [l] � R(i) ⊤ [l] A (i) [l] -1 R(i) [l] � . (7.8) 
To be complete we define P[0] u = u implying R(i)

[0] = R (i) [0] .

Convergence study when ρ [l] = 1

If all the ρ [l] = 1 this multilevel preconditioner is the classical One level Schwarz preconditioner applied to the original matrix A [0] and the set of subspaces

V = P[L] V [L] + L-1 � l=1 N [k] � i=1 R(i) ⊤ [l] V (i) [l] .
This means that the abstract Schwarz theory for exact solvers applies and the cornerstone for a convergence proof is, once more, the existence of a stable splitting. Lemma 7.3. For any u ∈ V [0] , there exists a stable splitting onto

V = P[L] V [L] + L-1 � l=1 N [k] � i=1 R(i) ⊤ [l] V (i) [l] .
The constant is

C 2 0 = Π L-1 m=0 � 2 + 2 � 1 + 1 K [m] � k 0 2 [m] � + L-1 � l=0 � k 0[l] � 1 + 1 K [l] � Π l-1 m=0 � 2 + 2 � 1 + 1 K [m] � k 0 2 [m]
�� (7.9)

Proof. For u [0] ∈ V [0] we write

u = P[L] v [L] + L-1 � l=1 N [k] � i=1 R(i) ⊤ [l] v (i) [l] .
On each level, the local component for level l = 0, . . . , L-1 and subdomain i = 1, . . . , N [L] , is defined by

v (i) [l] = Ξ (i) [l] (u [l] -Π (i) [l] u [l]
). (7.10) where, for l = 1, . . . , L -1, these contributions are based on the coarse component (u [l] ) from the previous level:

u [l] = v (0) [l-1] = N [l-1] � i=1 Ξ (i) [l-1] (Π (i) [l-1] u [l-1]
). (7.11) Finally, the component on the coarsest level is

v [L] = N [L-1] � i=1 Ξ (i) [L-1] (Π (i) [L-1] u [L-1]
). (7.12)

We recognize, with slightly modified notation, the splitting from (7.2) generalized to more levels. If all the assumptions for the GenEO framework are satisfied then so are estimates (7.4) and (7.3), namely

�u [l+1] � 2 a [l+1] = �P l u [l+1] � 2 a [l] ≤ � 2 + 2 � 1 + 1 K [l] � k 0 2 [l] � �u [l] � 2 a [l] , (7.13) 
and

N [l] � i=1 �v (i) [l] � 2 a [l] ,Ω (i) [l] ≤ k 0[l] � 1 + 1 K [l] � �u [l] � 2 a [l] . (7.14) 
Using the first of these estimates recursively from the finest level to level l = 1, . . . , L gives us

�u [l] � 2 a [l] ≤ Π l-1 m=0 � 2 + 2 � 1 + 1 K [m] � k 0 2 [m] � �u [0] � 2 a [0] , (7.15) 
We inject this into the other estimate in order to get a bound on the local components for l = 0, . . . , L -1 with respect to the initial function

N [l] � i=1 �v (i) [l] � 2 a [l] ,Ω (i) [l] ≤ k 0[l] � 1 + 1 K [l] � Π l-1 m=0 � 2 + 2 � 1 + 1 K [m] � k 0 2 [m] � �u [0] � 2 a [0] . (7.16) 
Finally we add all the contributions from each level and get that the decomposition is stable for a constant

C 2 0 = Π L-1 m=0 � 2 + 2 � 1 + 1 K [m] � k 0 2 [m] � + L-1 � l=0 � k 0[l] � 1 + 1 K [l] � Π l-1 m=0 � 2 + 2 � 1 + 1 K [m] � k 0 2 [m]
�� (7.17) which does not depend on any of the problem parameters or the number of subdomains (k 0[l] is the coloring constant at level l and K [l] is the criterion which we've chosen to select eigenvectors). �� , a more simple stability constant C ′2 0 for the splitting is

C ′2 0 =2 L (1 + k 2 0 C) L + L-1 � l=0 � k 0 C2 l (1 + k 2 0 C) l � =2 L (1 + k 2 0 C) L + k 0 C L-1 � l=0 � 2 l (1 + k 2 0 C) l � =2 L (1 + k 2 0 C) L + k 0 C � 1 - � 2(1 + k 2 0 C) � L 1 - � 2(1 + k 2 0 C) � � . (7.18) 
It seems pretty reasonable to replace the cut off constants K [l] by one common bound for all levels and all subspaces. In view of our experience, an acceptable choice would be K [l] = 0.5 for all levels l , in which case C = 3. As for k 0 , if regular decompositions onto regular meshes are considered and subdomains are aggregated in a natural way at each level, it should be pretty much constant over the levels. Even using Metis for the initial partitioning into subdomains and the aggregating from one level to the next, it seems reasonable enough to use a common value k 0 in the approximation.

The next simplification is a little bit more of a stretch but it simplifies the expression some more. What we mean by this is that the decomposition is C 0 -stable with all the C 0 , C ′ 0 , C ′′ 0 that we introduce but the bound is getting less sharp each time we simplify the expression. Using the fact that k 0 C > 1 and starting from the second last line of the last calculation we get that a suitable constant is For 'one level' these formula apply because it is one level as well as the fine level. In fact for L = 1 in the formula for C 2 0 we find the result that is in our GenEO paper

C ′′2 0 =k 0 C L � l=0 � 2(1 + k 2 0 C) � l =k 0 C � 1 - � 2(1 + k 2 0 C) � L+1 1 - � 2(1 + k 2 0 C) � � . ( 7 
C 2 0 = k 0 � 1 + 1 K � [2k 0 + 1] + 2.
Theorem 7.4 (Condition number for the fully additive multilevel GenEO). The condition number for the l-level GenEO method with the coarse space based on generalized eigenvalue problems as defined in this paper can be bounded by

κ(B add MG -1 A) ≤ (1 + L-1 � l=0 k 0[l] ) C 2 0 ,
where C 2 0 depends only on the number of levels L + 1, the coloring constant k 0[l] at each level and the cut-off parameter K [l] for level l and is given by (7.9).

Fully additive multigrid with scaled smoother

Lets assume now that the smoother we use on each level is the one level Schwarz preconditioner with a damping by a factor ρ [l] from equation (7.6). That is

Λ -1 [l] = 1 ρ [l] N [l] � i=1 R (i)⊤ [l] A -1 [l] R (i) [l] ,
Then the fully additive multigrid preconditioner also fits into the abstract Schwarz theory but with inexact solvers. The stable splitting uses the norm induced by Λ [l] . In particular if ρ [0] = 1 and on each level l, for 1 ≤ l ≤ L, the damping factor ρ [l] is chosen such that 1

ρ [l] < 1 
ρ [l-1] � 2 + 2 � 1 + 1 
K [l-1] � k 0[l-1] � , (7.20) 
then the splitting which we have already introduced is stable with a constant

C 2 0 = 1 + L-1 � l=0 � k 0[l] � 1 + 1 K [l]
�� . (7.21) This relies on the fact that (7.13) can be rewritten for the norm implied by the damped smoother Λ [l]

1

ρ [l] �u [l+1] � 2 Λ [l+1] = �P l u [l+1] � 2 Λ [l] ≤ � 2 + 2 � 1 + 1 K [l] � k 0 2 [l] � �u [l] � 2 Λ [l] , (7.22) 
so �u [l+1] � 2 Λ [l] < �u [l] � 2 Λ [l]
. This damping however has a dramatic bound on the upper bound which measures whether or not the inexact solver is a good approximation of the exact one. As expected damping really doesn't have much effect for the additive version of the multigrid preconditioner. However, for the multiplicative version it would be very efficient. The theoretical analysis of this, more complex, multilevel method is left for future work. It should rely on the results in Subsection 4.3.3 for the two level Hybrid Schwarz preconditioner. We expect that based on this we could recover better convergence estimates that the ones in other multilevel extensions of GenEO type methods [START_REF] Efendiev | Multiscale spectral AMGe solvers for high-contrast flow problems[END_REF][START_REF] Willems | Robust multilevel solvers for high-contrast anisotropic multiscale problems[END_REF].

On the fly construction of the coarse space 7.3.1 Motivations

With FETI GenEO (Chapter 5), the overhead cost of solving the eigenproblems may be discouraging. For this reason we propose a two level FETI method where the basis vectors for the second level are selected on the fly within the conjugate gradient (CG) iterations. Thanks to this adaptive process we bypass the eigensolves meaning that the preprocessing step is expected to be a lot cheaper. The adaptive process we propose is different but inspired by the Adaptive Algebraic Multigrid [START_REF] Chartier | Spectral AMGe (ρAMGe)[END_REF].

The idea is to take full advantage of all the information which we compute or, in other words, to be frugal with our computational resources. In [START_REF] Rixen | Substructuring and dual methods in structural analysis[END_REF] it was pointed out that within each application of the FETI preconditioner a local problem is solved per subdomain but then all the different contributions are averaged and some valuable information may be lost. The FETI-S algorithm is proposed there where the next approximate solution is optimized over all the local search directions (before the averaging process). Here we build on the same initial statement since the crucial point is to operate the so-called τtest (line 9 in Algorithm 7.2) on each local contribution to the preconditioner in order to evaluate whether it should be averaged or not. If it is deemed crucial then it is used as a basis vector for the coarse space.

We have not yet managed to write a full proof of convergence. One direction which we have been looking in is to use the Ritz vectors and values. Indeed it is well known that the Ritz values are approximations for the eigenvalues and in turn the eigenvalues govern the convergence of the conjugate gradient method. The tight relationship between the convergence of CG and Ritz values is a prolific direction of research (see [START_REF] Van Der Sluis | The rate of convergence of conjugate gradients[END_REF][START_REF] Gosselet | Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems[END_REF][START_REF] Havé | Algebraic domain decomposition methods for highly heterogeneous problems[END_REF]). Lemmas 7.6 and 7.5 provide us with ways to find bounds for the extremal Ritz values, more precisely the condition in Lemma 7.5 motivates the coarse space selection in our new algorithm.

The algorithm

The Frugal FETI algorithm for solving (2.15) preconditioned by M -1 is introduced in Algorithm 7.2 using two simple routines defined in Algorithm 7.1 and the following additional notation: G F is the basis for the coarse space, P F is the coarse projector, τ user > 0 is a threshold chosen by the user, k is an integer used to count iterations. For simplicity we have written it in the case where the S i are non singular but the other case is not a problem either. Next we make two remarks meant to help understand Frugal FETI.

-If at each iteration and for each subdomain τ s ≥ τ user , i.e. the test in line 13 of Algorithm 7.2 always succeeds, then Frugal FETI is the usual FETI algorithm. -When the τ -test (line 13 of Algorithm 7.2) fails, we update the coarse space and restart the CG (line 16 in Algorithm 7.2). The intializeCG routine includes the computation of the new coarse projector. The coarse space is updated until the τ -test succeeds in all subdomains.

Some of our ideas for the proof

We are currently looking for a full proof of convergence for this algorithm. We next describe a few of the ideas that we have had. Let θ (m) j for j = 1, . . . , m be the Ritz values at iteration m of the conjugate gradient algorithm. A well known result is that the (sharp)

Proof. This proof is inspired by the proof of convergence of GMRES in [START_REF] Saad | Iterative methods for sparse linear systems[END_REF].

First we recall some features of the GMRES algorithm. Let r 0 := b -Ax 0 be the initial residual. The standard GMRES method for solving Ax * = b generates a sequence x 1 , x 2 , ... with the following characterizing property: If for any M ∈ N the set of polynomials of degree at most M is denoted by P M then

x m ∈ x 0 + K m ,
x ∈ x 0 + K m ⇔ x = x 0 + q(A)r 0 with q ∈ P m-1 ⇔ xx 0 = r(A)(x *x 0 ) with r ∈ P m and r(0) = 1.

With this (7.24) implies �r m � = min {p∈P m ; p(0)=1} �p(A)(r 0 )�. (7.25) By definition of the Krylov subspace, r 0 ∈ K m+1 . Moreover p is a polynomial of degree at most m so we may apply the result from Lemma 7.7 for Q m+1 = Π m+1 (the l 2 -orthogonal projection onto K m+1 ): and we can prove both convergence estimates. Lets assume that A is diagonalizable then for any m, A m+1 is diagonalizable because A = V m+1 A m+1 V ⊤ m+1 where V m+1 is the matrix whose columns are the orthonormal basis vectors for K m+1 generated by GMRES. We may write

A m+1 = X (m+1) Λ (m+1) � X (m+1) � -1
where Λ (m+1) is a diagonal matrix which entries are the eigenvalues of A m+1 . These are also the Ritz values of A at iteration m + 1 and which we again denote with θ )|

In the last line we used the fact that Λ is a diagonal matrix. The proof of (7.23) is ended by applying a result from approximation theory (see for instance [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] Corollary 6.33).

An industrial problem

As part of the collaboration with Michelin, the work for this thesis included spending several months at the technology center in Clermont Ferrand (Auvergne, France) to implement some of the ideas that were developed to make domain decomposition more robust. Since the FETI method was already implemented, and is more suitable for incompressible problems, it was natural to choose to implement either FETI GenEO (Chapter 5) or the adaptive Frugal FETI algorithm from the previous section. For reasons related to implementation techniques it was decided to test the Frugal FETI algorithm. It requires no eigensolver. Another nice feature of the Frugal FETI algorithm is that if no vectors are selected for the coarse space then the additional cost compared to the usual FETI is very low.

Of course the simulations which are run at Michelin are a lot more complex than any of the examples that we considered in the previous chapters. One of the main differences is that Michelin solves non linear systems. The only part of the code which we modified is the linear solver which is applied at each step of Newton's method. A very natural and probably very efficient idea would be to reuse information from one iteration of Newton's method to the next. In particular the coarse space, or parts of it, could be reused in a way inspired by [START_REF] Gosselet | Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems[END_REF][START_REF] Havé | Algebraic domain decomposition methods for highly heterogeneous problems[END_REF].

The numerical results which we present correspond to the simulation of a whole tire, the geometry of which is illustrated in Figure 7.1. The displacement is caused by an obstacle and the mesh is most refined around this indent. Away from this zone of interest the mesh is rather coarse which explains the polygonal shape of the model. The domain is partitioned into four subdomains and we compare the results for Frugal FETI (see previous subsection) with a threshold τ = 0.1 and the 'usual' FETI. The Frugal FETI algorithm was implemented during this thesis and when we mention FETI we mean that no modification was made to the FETI code already available at Michelin. In Table 7.1 we compare the performance of the two methods in terms of number of Newton steps, total number of iterations (adding together the number of iterations at each Newton step) and computation time. We notice that with Frugal FETI, seven Newton steps are necessary instead of four with FETI. In our opinion there is no particular reason for this behaviour and it can be explained by the fact that the stopping criterion for each linear solve is quite complicated and has been slightly modified in Frugal FETI. There is a regularization step in the Michelin FETI code and another possible explanation is that it has not been well incorporated into Frugal FETI. Once more we remind the reader that this is still work in progress and that we do not consider out current implementation to be at a stage advanced enough to draw any final conclusions. In Table 7.2 we compare the behaviour of the linear solvers more precisely by giving for each Newton step the number of iterations needed to reach convergence, the final primal residual and, for Frugal FETI, the number of times that the coarse space was updated. On average the coarse space was updated 61 times. This is very small compared to the size of the FETI operator (14577). 
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 12 converge vers la solution du problème de Poisson (1.1) et donc que cette solution existe.
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 11 Figure 1.1 -Le domaine Ω consiste d'un rectangle et d'un disque avec une partie superposée.
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 212 Figure 1.2 -Partition de Ω = [0; 1] 2 en N = 5 sous domaines avec différentes valeurs du paramètre de recouvrement.
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 13 Figure 1.3 -Partition de Ω en sous domaines réguliers (gauche : domaine de départdroite : domaine partitionné). Le domaine est encastré à gauche et soumis à une force surfacique sur le bord de droite. Les flèches rouges entre les sous domaines correspondent aux forces surfaciques qui résultent de l'interaction du sous domaine du milieu avec ses voisins.
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 14 Figure 1.4 -Illustration de l'action des opérateurs de saut B i et des opérateurs d'assemblage R ⊤ i sur un cas à deux sous domaines, où l'interface est constituée de trois degrés de liberté.
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 15 Figure 1.5 -Géométrie pour le test de robustesse -le domaine est composé de sept couches de deux différents matériaux. Des conditions de Dirichlet homogènes sont imposées sur le bord gauche et des conditions de Neumann homogènes partout ailleurs. Le nombre de sous domaines N et donc la longueur du domaine varient.
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 16 Figure 1.6 -Une illustration du type de problème auquel est confronté Michelin
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 22 un coefficient dont la valeur varie au sein du domaine. Puisqu'il s'agit pour le moment d'introduire des idées on passe sous silence les questions de conditions aux limites pour le problème global.Heuristique Considérons le cas où un domaine est découpé en tranches (dans une seule direction). Dans la Figure1.7 on présente cette géométrie en se concentrant sur trois des sous domaines. Appliquons l'algorithme de Schwarz alterné (1.2) à ce problème. Il est facile de vérifier que les mises à jour de l'erreur e n = |u nu * | obéissent au même algorithme mais pour le problème homogène. En particulier chaque mise à jour de l'erreur e 2 dans le sous domaine Ω 2 vérifie (en utilisant les notations de la Figure1.7) :-∇ • (α∇e n+1 D, y) = e n 3 (D, y).
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 17 Figure 1.7 -Géométrie sur laquelle est basée l'heuristique derrière le choix de l'espace grossier DtN (voir aussi la Figure 1.8)
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 18 Figure1.8 -Illustration de l'intérêt de l'opérateur DtN pour prédire la vitesse de convergence. (Puisqu'on regarde les mises à jour de l'erreur on a envie qu'elle décroisse le plus rapidement possible.) On constate que si le composante locale de l'erreur décroit rapidement dans le recouvrement on donne au sous domaine voisin une "bonne" valeur.
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 19 Figure 1.9 -Zone de recouvrement entre deux sous domaines (plus le niveau de gris est foncé plus la valeur de α correspondante est grande). Dans les deux premiers cas en partant de la gauche l'hypothèse sur les coefficients est vérifiée et C P = O(1) dans le théorème (a & b), dans le troisième cas l'hypothèse est vérifiée et C P = O(log(δ j /h)) dans le théorème (c), dans le dernier cas l'hypothèse n'est pas vérifiée (d).

  normales et tangentielles des forces à l'interface. Après transformée de Fourier selon y les forces à l'interface s'écrivent σn = (2µ + λ) ∂ û ∂x + ikλv, et σt = µ � ∂v ∂x + ikû � .
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 1 Figure 1.11 -Cas (A) : plus grande valeur propre en fonction du coefficient de Poisson ν pour différentes valeurs de δk.
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 21 Figure 2.1: The domain Ω consists of a rectangle and a disk with an overlapping zone.
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 22 Figure 2.2: Partition of Ω = [0; 1] 2 into N = 5 subdomains with different values for the overlap parameter
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 23 Figure 2.3: Partition of Ω into regular subdomains (left: original domain -right: partitioned domain). The domain is clamped on the left hand side and submitted to a surface force on the right hand side. The red arrows between subdomains in the partitioned domain represent the surface forces resulting from the interaction with that subdomain's neighbours.
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 24 Figure 2.4: Illustration of the action of the jump operators B i and assembly operators R ⊤ i
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 25 Figure 2.5: Geometry for the robustness test -the domain consists of seven layers of two different materials. Homogeneous Dirichlet boundary conditions are imposed on the left hand side, homogeneous Neumann boundary conditions are imposed on all other boundaries. The number N of subdomains (and thus the length of the domain) varies.Iteration count: 8 subdomains 16 subdomains 32 subdomains 64 subdomains α 2 = 1 18 33 62 120 α 2 = 10 2 24 37 64 117 α 2 = 10 4 32 63 117 187 α 2 = 10 6 21 51 107 208 Estimated Condition number: 8 subdomains 16 subdomains 32 subdomains 64 subdomains α 2 = 1 321 1.37 • 10 3 5.63 • 10 3 2.29 • 10 4 α 2 = 10 2 321 1.37 • 10 3 5.63 • 10 3 2.29 • 10 4 α 2 = 10 4 321 1.37 • 10 3 5.63 • 10 3 2.29 • 10 4 α 2 = 10 6 321 1.37 • 10 3 5.63 • 10 3 2.29 • 10 4
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 26 Figure 2.6: An illustration of the type of problems Michelin are faced with
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 27 Figure 2.7: Geometry for motivating the choice of the DtN coarse space (see also Figure 2.8).
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 28 Figure 2.8: Illustration of the fact that the DtN operator can predict the speed of convergence. (Since we are looking at the updates of the error the objective is to drive it to zero as fast as possible.) We notice that if the local component of the error decreases rapidly in the overlap then we give to the neighbouring subdomain a good boundary value.
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 29 Figure 2.9: Overlap between two subdomains (darker shades of gray correspond to larger values of α). In the two first cases (starting from the left) the assumption holds and C P = O(1) in the theorem (a), (b); in the third case the assumption holds and C P = O(log(δ j /h)) in the theorem (c); in the last case the assumption does not hold (d).

  ∂v ∂y , and σ t = µ � ∂v ∂x + ∂u ∂y � , are respectively the normal and tangential components of the interface force. Following a Fourier transform in the y direction the interface forces write σn = (2µ + λ) ∂ û ∂x + ikλv, and σt = µ � ∂v ∂x + ikû � .

Figure 2 .

 2 Figure 2.10: Case (A): eigenvalues with respect to δk for different values of Poisson's ratio ν.

ν→0. 5 eig

 5 A1 = eig B 1 and lim ν→0.5

Figure 2 .

 2 Figure 2.11: Case (A): largest eigenvalue with respect to Poisson's ratio ν for different values of δk.
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 231 Figure 3.1: Coefficient α varying along and across the interface.
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 332 Figure 3.2: Illustration of the Domain Decomposition on a one dimensional three subdomain case. There are two partitions of Ω: an overlapping partition into Ω 1 , Ω 2 , Ω 3 and a non overlapping partition into Ω * 1 , Ω * 2 , Ω * 3 .
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 33 Figure 3.3: Fast or slow convergence of the Schwarz algorithm.
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 35 Figure 3.5: Coefficient distribution on a subdomain Ω j for a two-dimensional model problem with high-permeability inclusions.
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 36 Figure 3.6: Typical eigenvector of the DtN map for the model problem in Figure 3.5 (left plot) and typical eigenvector of the full subdomain eigenproblem -∇•(α∇v) = λ αv (right plot).
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 37 Figure 3.7: Overlap region between two subdomains Ω j and Ω l with the various subsets used in the analysis.

. 28 )

 28 Note that | • | a,D is indeed a norm on H 1 0 (D); on all of H 1 (D) it is only a seminorm. -the weighted L 2 norm and the weighted L 2 inner product �v� 2 0,α,D = � D αv 2 and (v, w) 0,α,D =

Figure 3 . 8 :

 38 Figure 3.8: Overlap region between two subdomains with high-permeability inclusions (darker color represents higher permeability). We distinguish three cases: Assumption 3.4 is verified and Lemma 3.5 holds with C P = O(1) (a & b), with C P = O(log(δ j /h)) (c) and not verified (d).

d- 1 j

 1 (e.g. Figure 3.8(a & b)). If any regions Y l intersect only in (d -2)-dimensional manifolds (i.e. a point in 2D or an edge in 3D

Figure 3 . 5 Figure 3 . 13 :

 35313 Figure 3.13: Two dimensional diffusivity α in the scalability test cases

Figure 3 .

 3 Figure 3.15: Strong scalability observed when solving a three dimensional test case on a fixed size problem using P 2 finite elements and a tolerance ε = 10 -12 . In the table p is the number of processors, T is the computation time, #V H is the number of DtN coarse vectors and #V h is the total number of unknowns counting the ones that are in the overlap multiple times.
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 413 Given a subdomain D that is a union of elements from T h , let dof(D) := {k = 1, . . . , n : supp (φ k ) ∩ D � = ∅} denote the set of degrees of freedom that are 'active' in D, including those associated with the boundary. Similarly, we denote by dof(D) := {k : 1 ≤ k ≤ n and supp(φ k ) ⊂ D} the set of internal degrees of freedom in D.

Definition 4 . 20 (

 420 GenEO coarse space). For each j = 1, . . . , N , let (p k j ) m j k=1 be the eigenfunctions of the eigenproblem (4.17) in Definition 4.18 corresponding to the m j smallest eigenvalues. Then,V H := span{R ⊤ j Ξ j (p k j ) : k = 1, . . . , m j ; j = 1, . . . , N },where Ξ j are the partition of unity operators from Definition 4.15 and R ⊤ j are the extension operators defined in (4.4).
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 41 Figure 4.1: Three types of finite element basis functions on each subdomain Ω j . The hashed surface is the overlap Ω • j .
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 431 Local stability estimate). Let j ∈ {1, ..., N } and let {

Lemma 4 . 35 .

 435 With k 0 as in Definition 4.5, the largest eigenvalue of M -1 hy A satisfies λ max (M -1 hy A) ≤ k 0 . Proof. As usual we use Rayleigh quotients to prove the result �M -1 hy Au, Au� = �AP 0 u, P 0 u� + N � j=1 �R ⊤ j A -1 j R j A(I -P 0 )u, (I -P 0 )u� ≤ �AP 0 u, P 0 u� + k 0 �A(I -P 0 )u, (I -P 0 )u�

Lemma 4 . 36 (

 436 Stable Decomposition: Hybrid preconditioner). Let v ∈ V h , then with notation introduced in Lemma 4.32 the decomposition

Theorem 4 . 40 (

 440 Bound on the condition numbers: modified coarse space). Let Assumptions 4.1 and 4.23 hold. Suppose that the coarse space V H is given by Definition 4.39 and M -1

Figure 4 . 2 (

 42 left)) or an automatic partition into L subdomains using Metis (Figure4.2 (right)). In the two dimensional test cases (Sections 4.5.1 and 4.5.2), we will use Metis partitions of the unit square.
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 42 Figure 4.2: Partition of Ω into L = 8 subdomains -regular (left) and Metis (right)

Figure 4 . 3 :

 43 Figure 4.3: Left: coefficient distribution (pink or dark is high conductivity) -Right: Metis partition of the 200 × 200 mesh into 100 subdomains

Figure 4 . 4 :

 44 Figure 4.4: For the geometry given in Figure4.3 we plot the condition number with respect to the coarse space size when the threshold successively takes the values τ ∈ [0.01; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9]. We observe that the most troublesome eigenmodes are identified for quite a small value of the threshold and a reasonable size of the coarse space, then the condition number stagnates.

Figure 4 . 5 :

 45 Figure 4.5: 2D Elasticity: coefficient distribution (left) -Metis decomposition into 64 subdomains (right)

Figure 4 . 6 :

 46 Figure 4.6: Coefficient distribution (four alternating layers)

2 :

 2 3D Darcy: number of PCG iterations (it), condition number (cond) and coarse space dimension (dim) vs. jump in κ for κ 1 = 1, ℓ = 1 added layer, L = 8 regular subdomains constant values κ 1 and κ 2 of κ on four horizontal layers (as shown in Figure 4.6).

Figure 4 . 7 :

 47 Figure 4.7: 3D Elasticity: Relative error vs. iteration count for L = 16 regular subdomains
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 53 Local finite element spaces). For any subset D ⊂ Ω let the set of degrees of freedom in D be the set dof (D) := {k = 1, . . . , n; φ k|D � = 0 |D },

Definition 5 . 4 (

 54 Local bilinear forms and local right hand sides). For any open subset D ⊂ Ω which is resolved by the mesh T h , let the local bilinear form on D be

Lemma 5 . 6 .

 56 and the next Lemma gives an important relation between lumped matrices and Schur complement matrices. For any û ∈ Ŵ and any u ∈ W the following inequalities hold � Ŝ û, û� ≤ � Kbb û, û� and �Su, u� ≤ �K bb u, u�. Proof. Let û ∈ Ŵ . Then by definition of Ŝ � Ŝ û, û� = �( Kbb -KbI ( KII ) -1 KIb )û, û� = � Kbb û, û� -�( KII ) -1 KIb û, KIb û�.

- 1 D 28 0 = �M - 1 D

 1281 ) so whether * denotes D or L we get λ = Bz ∈ Ker(M -1 D ). Using the definitions of M -1 D and P D as well as Lemma 5.Bz, Bz� = �SP D z, P D z� = �S(z -E D z), z -E D z�. Now we have z ∈ Ker(S) and z -E D z ∈ Ker(S) so necessarily E D z ∈ Ker(S). By definition E D z ∈ Ker(B) (it is the D-weighted average of z). The problem is well posed so Ker(S) ∩ Ker(B) = 0. Finally z = 0 and M -1

  [START_REF] Knyazev | Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method[END_REF] and V * ,N = range(P * ,N ), V ′ * ,N = range(P ⊤ * ,N ).
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 530 The preconditioners P * ,N M -1 * : V ′ * ,N → V * ,N are symmetric positive definite for * denoting either D or L.

Lemma 5 . 35 (

 535 Stable splitting -Lower bound for the eigenvalues of the preconditioned operator). For any µ ∈ V ′ * ,N there exists a stable splitting (v 1 , . .

Lemma 5 . 36 (

 536 Stability of the local solvers). Let * denote either D or L. For each i = 1, . . . , N , let the pseudo inverse S †

Theorem 5 . 38 (

 538 Main theorem for FETI with the GenEO coarse space). Let * denote either L for Lumped or D for Dirichlet. The condition number for FETI solved in range(P * ,N P * ,0 ) with the deflated operator satisfies κ � P * ,N P * ,0 M -
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 51 Figure 5.1: Decomposition of the unit square into 64 regular subdomains (left) -Decomposition of the unit square into 64 subdomains using Metis (middle) -Checkerboard coefficient distribution (right)

Figure 5 . 2 :

 52 Figure 5.2: Checkerboard coefficient distribution -Convergence curve: primal residual versus iteration count -Left: with GenEO, Right : without GenEO -Lumped preconditioner for the Metis decomposition into 64 subdomains -(E 1 ; ν 1 ) = (10 7 ; 0.4) and (E 2 ; ν 2 ) = (10 12 ; 0.3).
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 53 Figure 5.3: Checkerboard coefficient distribution -Spectrum of the preconditioned operator -Left: with GenEO, Right : without GenEO -Lumped preconditioner for the Metis decomposition into 64 subdomains -(E 1 ; ν 1 ) = (10 7 ; 0.4) and (E 2 ; ν 2 ) = (10 12 ; 0.3).
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 54 Figure 5.4: Discontinuities along the interfaces

3 λ 7 = 9 . 6 • 10 -3 λ 8 = 4 . 1 • 99 Figure 5 . 5 :

 3796108419955 Figure 5.5: Eigenvalues and eigenmodes of the GenEO generalized eigenproblem for the geometry given in Figure 5.4 -dark or pink: hard material, light or yellow: soft material -The first eigenmodes (rigid body modes) are part of the natural coarse space, and the next 6 are selected for the GenEO coarse space.

Figure 5 . 6 : 5 •

 565 Figure 5.6: Discontinuities across and along interfaces (subdomains 3 and 6)

Figure 5 . 7 :

 57 Figure 5.7: Left: Coefficients (Young's modulus 10 7 < E < 3 • 10 13 ; Poisson's ratio 0.3 < ν < 0.4) -Middle: Metis partition into 25 subdomains (1896 interface degrees of freedom) of the unit square -Right: Regular partition into 25 subdomains (1736 interface degrees of freedom) Metis partition Regular partitionK i κ #U 0 κ #U 0 0 2.9 • 10 6 0 1.4 • 10 5 0 0.05 18.59 114 12.61 14 0.1 10.36 122 9.01 19 0.5 2.50 225 2.93 95 1 1.56 509 1.32 238 4 1.87 3295 1.00 3101

6. 1 . 1

 11 The need for a particular discretization scheme Let Ω be an open subset of R d for d = 2 or d = 3. Let ∂Ω be the boundary of Ω and ∂Ω D ⊂ ∂Ω be a part of the boundary where a homogeneous Dirichlet boundary condition is imposed. Next, introduce the space V := {v ∈ H 1 (Ω) d : v |Ω D = 0}. For a given body force f , the variational formulation of the linear elasticity equations can be written: find the set of displacements

Figure 6 . 3 :

 63 Figure 6.3: Schwarz-GenEO: Solution of the eigenproblem with the classical formulation (6.1) for a floating subdomain, ν varies between 0.4 and 0.4999. Eigenvalue (log scale) versus eigenvalue number.

Figure 6 . 4 :

 64 Figure 6.4: Schwarz-GenEO: Solution of the eigenproblem with the penalized formulation (6.12) for a floating subdomain, ν varies between 0.4 and 0.4999. Eigenvalue (log scale) versus eigenvalue number.

Figure 6 . 6 :

 66 Figure 6.6: FETI-GenEO: Classical Formulation (6.1), Constant Coefficients: solution of the GenEO eigenproblem, for ν varying between 0.4 and 0.4999.

Figure 6

 6 Figure 6.7: FETI-GenEO: Penalized Formulation (6.12), Constant Coefficients: solution of the GenEO eigenproblem, for ν varying between 0.4 and 0.4999. In the incompressible limit just one bad eigenvalue appears!

Figure 6 . 8 :

 68 Figure 6.8: FETI-GenEO: Eigenvectors corresponding to the first seven non zero eigenvalues (in increasing order from top to bottom). For ν = 0.4 the modes found with the classical and the penalized formulation are almost identical. At ν = 0.4999 a new mode appears (top right), this is the almost incompressible mode.

Figure 6

 6 Figure 6.9: Solution (eigenvalue versus eigenvalue number) of the FETI-GenEO eigenproblem with the Penalized formulation (6.12) and the lumped preconditioner for FETI. Poisson's ratio is ν = 0.4999.

  } 1≤i≤N [l]following the algebraic definition. This is exactly as described in Chapter 4 for GenEO applied to additive Schwarz. (u[l] -Π (i) [l] u [l] ).

  of elements is the smallest (in the sense of inclusion) partition of Ω[l] ; I ⊂ {1, . . . , n [l] } � .-The elementary bilinear form for a coarse element τ ∈ Ω [l+1] is given by a[l+1] τ = � τ ′ ∈τ a [l] τ ′ = a [l] τ .

  ) for each subdomain, -and of bilinear form a[l] Ω (i) [l] on span{φ k [l] ; supp(φ k [l] ) ⊂ Ω[l] (i) and supp(φ k [l] ) � ⊂ (Ω

Definition 7 . 2 .

 72 Using the framework and notation introduced in the previous subsection, the L level additive multigrid preconditioner is:B add MG -1 = P [0] . . . P [L-1] A -1 [L-1] P ⊤ [L-1] . . . P ⊤ [0] + L-1 � l=1 P [0] . . . P [l-1] Λ -1 [l] P ⊤ [l-1] . . . P ⊤ [0] + Λ -1 [0] ,(7.5) where A -1

P

  [l] : V [l] � → V [0] ; P[l] := P [0] . . . P [l-1] ,andR(i) [l] : V [0] � → V

7. 2 . 4 1 �� 1 + 1 K

 24111 The constant inLemma 7.3 Introducing the largest coloring constant k 0 = max 0≤l≤L-1 k 0[l] and the largest cut offterm C = max 0≤l≤L-max 1≤i≤N [l] [l]

. 19 ) 1 ×

 191 Suppose that k 0 = 4 and C = 3 which corresponds to K = 0.5 (these are pretty optimistic values) then we get the following values for C ′2 0 and C ′′2 0 10 4 1.1 × 10 6 1.0 × 10 8 1.0 × 10 10 C ′′2 0 1.2 × 10 3 1.2 × 10 5 1.1 × 10 7 1.1 × 10 9 1.1 × 10 11

  and �r m � := �Ax m -b� = min {x∈x 0 +Km} �Ax -b�. (7.24)

  p(A)r 0 = p(A m+1 )r 0 .Now the norm of the residual at iteration m can be rewritten without any occurrence of A:�r m � = min{p∈P m ; p(0)=1}�p(A m+1 )(r 0 )�(7.26) 

  i = 1, . . . , m + 1. Now (7.26) can be rewritten as�r m � = min {p∈P m ; p(0)=1} �p(A m+1 )(r 0 )� = min {p∈P m ; p(0)=1} �X (m+1) p(Λ m+1 )X (m+1) -1 (r 0 )� ≤ min {p∈P m ; p(0)=1} �X (m+1) ��X (m+1) -1 ��p(Λ (m+1) )��r 0 � ≤ �X (m+1) ��X (m+1)

1 :

 1 Time (seconds) Nb. of Newton steps Total nb. of iterations FETI Comparison of Frugal FETI and FETI on the test case illustrated in Figure 7.1.

Figure 7 . 1 :

 71 Figure 7.1: Michelin test case. The different colors correspond to different materials. The rank of the FETI operator is 14577.
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Table 1 .

 1 1 -Résultats de convergence pour le problème scalaire elliptique (1.19) discrétisé par des éléments finis P 1 avec le préconditionneur de Schwarz additif (1.4).

	Nombre d'itérations : 8 sous domaines 16 sous domaines 32 sous domaines 64 sous domaines
	18 24 32 21 Estimation du Conditionnement : α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6 8 sous domaines 16 sous domaines 32 sous domaines 64 sous domaines 33 62 120 37 64 117 63 117 187 51 107 208
	α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6	321 321 321 321	1.37 • 10 3 1.37 • 10 3 1.37 • 10 3 1.37 • 10 3	5.63 • 10 3 5.63 • 10 3 5.63 • 10 3 5.63 • 10 3	2.29 • 10 4 2.29 • 10 4 2.29 • 10 4 2.29 • 10 4

  Théorème 1.7. Sous les hypothèses 1.3, 1.4, 1.5 et 1.6 les opérateurs définis par (1.28), (1.29) et (1.30) vérifient, pour tout u ∈ V ,

  Remarque 1.10. Puisque les solveurs locaux sont tous des solveurs exact l'hypothèse 1.5 est automatiquement vérifiée pour ω = 1. Dans ce cas, selon le lemme 1.8 et le théorème 1.7 le conditionnement de M -1 A dépend seulement de l'existence d'une décomposition stable dans le sens donné par l'hypothèse 1.6 et si elle est vérifiée le conditionnement de M -1 A est borné par C -2 0 (N C + 1). Dans cette expression le nombre de couleurs N C peut être remplacé par le plus grand nombre de sous domaines auxquels appartient un élément du maillage[START_REF] Dryja | Domain decomposition algorithms with small overlap[END_REF] Section 4].

	N.	(1.32)

Table 1 .

 1 2 -Résultats de convergence pour le problème scalaire elliptique (1.19) discrétisé par des éléments finis P 1 avec le préconditionneur de Schwarz à deux niveaux (1.32) et V 0 est l'espace grossier Partition de l'unité (fonctions constantes à l'intérieur d'un sous domaine, nulles en dehors du sous domaine et qui décroissent linéairement dans

	Nombre d'itérations : 8 sous domaines 16 sous domaines 32 sous domaines 64 sous domaines
	18 22 36 31 Estimation du Conditionnement : α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6 8 sous domaines 16 sous domaines 32 sous domaines 64 sous domaines 24 24 23 25 25 24 62 95 128 51 89 154
	α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6	28.0 28.0 415 479	28.2 28.2 1.29 • 10 3 2.02 • 10 3	28.1 28.1 2.39 • 10 3 7.96 • 10 3	28.1 28.1 1.36 • 10 3 2.76 • 10 4

le recouvrement). La géométrie est présentée dans la Figure

1

.5. Deux couches d'éléments sont ajoutées à chaque sous domaine. On fait varier le nombre de sous domaines et le paramètre α 2 dans le matériau 2. On présente ici le nombre d'itérations nécessaire pour converger (en haut) et l'estimation du conditionnement de la matrice préconditionné basée sur les valeurs de Ritz (en bas). la valeur 1 dans la partie de Ω i qui n'est pas recouverte par les sous domaines voisins, 0 en dehors de Ω i et décroit linéairement de 1 vers 0 dans le recouvrement. La raison principale pour laquelle les fonctions constantes par sous domaines ont besoin d'être dans l'espace grossier est ce qu'on appelle dans

[START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF] 

l'argument de la topologie quotient. Plus précisément, un outil très important est l'inégalité de Poincaré : supposons que 1 ≤ p ≤ ∞ et que Ω est un domaine ouvert, connexe et lipschitzien de R n . Dans ce cas il existe une constante C qui dépend seulement de Ω et de p telle que chaque fonction u de l'espace de Sobolev W 1,p ( Ω) vérifie

  a 2 e -kx x + a 3 e kx + a 4 e kx x, v (x) = -i(µ a 1 ke -kx +µ a 2 ke -kx x-3 µ a 2 e -kx -µ a 3 ke kx -µ a 4 ke kx x-3 µ a 4 e kx ) -kx +kλ a 2 e -kx x-λ a 2 e -kx -kλ a 3 e kx -kλ a 4 e kx x-λ e kx a 4)

		k(µ+λ)	(1.43)
	+	-i(kλ a 1 e k(µ+λ)	,
	a 1 , a 2 , a 3 et a 4 étant des constantes d'intégrations complexes.	
	Notons (û 1 , v1 ) la solution de ce problème restreinte au sous domaine Ω 1 (x < δ) et (û 2 , v2 ) la solution de ce problème restreinte au sous domaine Ω 2 (x > 0). Par un argument
	classique on sait que û1 et v1 doivent être bornées en -∞ et que û2 et v2 doivent être bornées en +∞ ce qui nous permet d'éliminer la moitié des termes dans (1.43) :

  -2 kδ := eig C := eig D .

	Figure 1.10 -Cas (A) : valeurs propres en fonction de δk pour différentes valeurs du
	coefficient de Poisson ν.						
	On observe que lim ν→0.5	eig A1 = eig B 1 et lim ν→0.5		
									(1.48)
	On peut d'ores et déjà faire les remarques suivantes :		
	-							
				eig A1 > eig C = eig D > eig A2 ,			(1.49)
	et							
				eig B 1 > eig C = eig D > eig B 2 .			(1.50)
	-eig B 1 , eig B 2 , eig C = eig D ne dépendent pas des paramètres physiques λ et µ. Ils dépendent par contre de la taille du recouvrement δ et de la fréquence k.
	-Dans l'ensemble des quatre cas, s'il n'y a pas de recouvrement l'algorithme ne
	converge pas et réciproquement si la taille du recouvrement est non nulle alors les
	valeurs propres sont < 1 et la convergence est garantie.		
	-La convergence est la plus mauvaise (les valeurs propres sont proches de 1) pour
	les basses fréquences. C'est ce qu'on attend d'une méthode de décomposition de
	domaine primale.						
	Étude de la limite incompressible Les paramètres du matériau n'ont d'influence
	que dans le cas (A) où les conditions de transmission sont des conditions purement sur le
	déplacement. Dans ce cas la limite incompressible est		
	  	lim ν→0.5 lim ν→0.5	eig A1 = eig A2 =	� �	1 + 2(δk) 2 + 2 � (δk) 2 + (δk) 4 1 + 2(δk) 2 -2 � (δk) 2 + (δk) 4	� �	e -2 kδ , e -2 kδ .	(1.51)
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1: Convergence results for the scalar elliptic problem (2.19) discretized by P 1 finite elements and preconditioned by Additive Schwarz (2.4

Table 2 .

 2 2: Convergence results for the scalar elliptic problem (2.19) discretized by P 1 finite elements and preconditioned by two level Additive Schwarz (2.32) where V 0 is the Partition of Unity coarse space (piecewise constants in the interior of each subdomain and linear decay to zero in the overlap). The geometry is given in Figure2.5. Two layers of overlap are added to each subdomain. The coefficient in material 1 is always α 1

	Iteration count: 8 subdomains 16 subdomains 32 subdomains 64 subdomains
	18 22 36 31 Estimated Condition number: α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6 8 subdomains 16 subdomains 32 subdomains 64 subdomains 24 24 23 25 25 24 62 95 128 51 89 154
	α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6	28.0 28.0 415 479	28.2 28.2 1.29 • 10 3 2.02 • 10 3	28.1 28.1 2.39 • 10 3 7.96 • 10 3	28.1 28.1 1.36 • 10 3 2.76 • 10 4

Table 2 .

 2 3: Convergence results for the scalar elliptic problem (2.19) discretized by P 1 finite elements and preconditioned by two level Additive Schwarz(2.32) where V 0 is the DtN coarse space. The geometry is given in Figure2.5. Two layers of overlap are added to each subdomain. The coefficient in material 1 is always α 1 = 1. We make the number of subdomains and the jump in the coefficient vary through α 2 (coefficient in material 2) and report the number of iterations needed to reach convergence (top) and the estimate for the condition number of the preconditioned operator based on the Ritz values (bottom).

	Iteration count: 8 subdomains 16 subdomains 32 subdomains 64 subdomains
	18 21 22 17 Estimated Condition number: α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6 8 subdomains 16 subdomains 32 subdomains 64 subdomains 25 25 25 26 27 26 28 28 26 25 25 25
	α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6	22.4 22.4 22.4 22.4	25.3 25.3 25.3 25.3	26.1 26.1 26.1 26.0	26.2 26.2 26.2 26.2

Table 2 .

 2 4: Convergence results for the scalar elliptic problem (2.19) discretized by P 1 finite elements and preconditioned by two level Additive Schwarz(2.32) where V 0 is the GenEO coarse space. The geometry is given in Figure2.5. Two layers of overlap are added to each subdomain. The coefficient in material 1 is always α 1 = 1. We make the number of subdomains and the jump in the coefficient vary through α 2 (coefficient in material 2) and report the number of iterations needed to reach convergence (top) and the estimate for the condition number of the preconditioned operator based on the Ritz values (bottom).

	Iteration count: 8 subdomains 16 subdomains 32 subdomains 64 subdomains
	19 23 26 17 Estimated Condition number: α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6 8 subdomains 16 subdomains 32 subdomains 64 subdomains 24 25 24 26 27 26 26 27 27 21 22 25
	α 2 = 1 α 2 = 10 2 α 2 = 10 4 α 2 = 10 6	31.8 31.8 31.8 31.8	31.9 31.9 31.9 31.9	31.9 31.9 31.9 31.9	31.9 31.9 31.9 31.9

  in collaboration with Frédéric Nataf, Hua Xiang and Victorita Dolean published in SIAM Journal on Scientific Computing. -[21] in collaboration with Victorita Dolean, Frédéric Nataf and Robert Scheichl published in Computational Methods in Applied Mathematics. -[52] in collaboration with Pierre Jolivet, Victorita Dolean, Frédéric Hecht, Frédéric Nataf, and Christophe Prud'Homme published in Journal of Numerical Mathematics. The idea which we build upon was introduced in [78] (Compte rendu à l'Académie des Sciences) by Frédéric Nataf, Hua Xiang and Victorita Dolean.

  3.4: 1D example with many high coefficient inclusions per subdomain.

	IsoValue -42104.2 21053.6 63158.8 105264 147369 189474 231580 273685 315790 357895 400000 442106 484211 526316 568421 610527 652632 694737 736842 842105

  Γj of Number m j of functions included in V H from Ω j Γj of Number m j of functions included in V H from Ω j

		Partition into 16 subdomains using Metis: Number of iterations and condition number (in brackets)	
		with the additive coarse grid correction:	
		AS -iteration count (condition number)	RAS -iteration count
		1-level	POU	DtN	1-level POU DtN
	no channel 385 (6.0 • 10 7 ) 393 (6.0 • 10 7 ) 42 (6.1 • 10 1 ) 1 channel 430 (1.2 • 10 7 ) 454 (8.2 • 10 6 ) 44 (7.7 • 10 1 ) 2 channels 479 (1.2 • 10 7 ) 499 (8.6 • 10 6 ) 43 (8.1 • 10 1 ) 3 channels 460 (1.1 • 10 7 ) 470 (8.4 • 10 6 ) 46 (7.1 • 10 1 )	264 243 237 232	255 246 240 234	41 36 42 38
		with the balanced coarse grid correction:	
		AS -iteration count (condition number)	RAS -iteration count
	1-level Coefficient distribution -we add channels: POU DtN 1-level POU DtN IsoValue -47367.4 23685.2 71053.6 118422 165790 213159 260527 307895 355264 402632 450001 497369 544737 592106 639474 686842 734211 781579 828947 947368 IsoValue -99998.9 50001 150001 250001 350001 450001 550001 650001 750001 850001 950000 1.05e+06 1.15e+06 1.25e+06 1.35e+06 1.45e+06 1.55e+06 264 237 20 no channel 385 (6.0 • 10 7 ) 349 (7.2 • 10 6 ) 25 (1.9 • 10 1 ) 1 channel 243 232 21 430 (1.2 • 10 7 ) 419 (5.8 • 10 6 ) 29 (3.6 • 10 1 ) 237 227 21 2 channels 479 (1.2 • 10 7 ) 423 (5.9 • 10 6 ) 29 (3.7 • 10 1 ) 232 220 20 3 channels 460 (1.1 • 10 7 ) 433 (5.8 • 10 6 ) 29 (3.3 • 10 1 ) 1.65e+06 1.75e+06 2e+06 Size of the coarse space :
	IsoValue -121052 60527.3 181580 302632 423685 544738 665790 786843 907895 1.02895e+06 1.15e+06 1.27105e+06 1.39211e+06 1.51316e+06 1.63421e+06 1.75526e+06 1.87632e+06 1.99737e+06 2.11842e+06 2.42105e+06 Number of iterations and Condition number (in brackets) (with the additive coarse grid IsoValue -142104 71053.6 213159 355264 497369 639474 781580 923685 1.06579e+06 1.2079e+06 1.35e+06 1.49211e+06 1.63421e+06 1.77632e+06 1.91842e+06 2.06053e+06 2.20263e+06 2.34474e+06 2.48684e+06 2.84211e+06 Total number n eigenvalues on Γ j no channel 1 channel 2 channels 3 channels Minimum 71 1 1 1 correction): 1 Maximum 207 4 4 4 AS -iteration count (condition number) RAS -iteration count 4 Average 143 2.75 2.75 2.88 1-level POU DtN 1-level POU DtN 3 Sum 2280 44 44 46 48 "Optimality" of the automatic selection strategy for m j , the number of coarse basis functions per subdomain: AS with additive coarse space correction 109 87 41 2 × 2 incl. 107 (2.9 • 10 7 ) 82 (2.2 • 10 6 ) 43 (8.8 • 10 1 ) 164 150 45 3 × 3 incl. 184 (2.8 • 10 7 ) 185 (3.8 • 10 6 ) 47(8.4 • 10 1 ) 264 255 41 5 × 5 incl. 385 (6.0 • 10 7 ) 393 (1.4 • 10 7 ) 42 (6.1 • 10 1 ) 6 × 6 incl. 425 (5.1 • 10 7 ) 475 (8.5 • 10 6 ) 46 (1.0 • 10 2 ) 262 248 44 iterations condition number DtN space with max{m j -1, 1} functions from Ω j 409 Size of the coarse space: 4.6 • 10 6 DtN space with m j functions from Ω j 44 7.7 • 10 1 DtN space with m j + 1 functions from Ω j 35 4.0 • 10 1 Total number n eigenvalues on Γ j 2 × 2 inc. 3 × 3 inc. 5 × 5 inc. 6 × 6 inc. Minimum 71 1 1 1 1
	Maximum	207	3	4	4	5
	Figure 3.10: Test Problem from subsection 3.5.2: Geometry (see Figure 3.11 for the results) Average 143 1.43 1.87 2.75 2.75 Figure 3.11: Test Problem from subsection 3.5.2: Results (see Figure 3.10 for the geome-try) Sum 2280 23 30 44 44
	Figure 3.12: Test problem from Subsection 3.5.3: Geometry and Results
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) to O(10 -100) in all cases.

  Strong scalability observed when solving a two dimensional test case on a fixed size problem using P 2 finite elements and a tolerance ε = 10 -9 . In the table, p is the number of processors, T is the computation time, #V H is the number of DtN coarse vectors and #V h is the total number of unknowns counting the ones that are in the overlap multiple times.

						iterations for partitions
	into as many as 4096 subdomains.					
			10			
	T (64)	T (p)	5			
	p 64 65.7 s 1890 36.5 × 10 6 T #V H #V h 128 21.4 s 3810 36.7 × 10 6 192 12.7 s 5730 36.9 × 10 6 256 9.4s 7650 37.1 × 10 6 320 8.4 s 9570 37.2 × 10 6 512 6.0 s 15330 37.5 × 10 6 T #V H #V h Figure 3.14: p 96 26.5 s 1920 6.9 × 10 6 128 18.6 s 2560 7.1 × 10 6 160 13.0 s 3200 7.4 × 10 6 192 10.4s 3840 7.6 × 10 6 224 8.1 s 4480 7.7 × 10 6 288 6.9 s 5760 8.1 × 10 6		1	100	200	300 p	Observed Linear speedup 400 500

  so (4.21) follows due to the a Ω j -orthogonality of

	� V j and � W j . Estimate (4.22) follows similarly from Ξ j (v W )| Ω • j = 0.
	Lemma 4.32 (Stable decomposition). Let v ∈ V h and suppose the definitions and nota-tions of Lemma 4.31 hold. Then, the decomposition

Table 4 .

 4 

		AS		ZEM		GenEO
	κ 2	it cond it cond dim it cond dim
	1	16 229	11 6.3	8	11 8.4	7
	10 2 27 230	19	22	8	13 8.4	14
	10 4 29 230	23 210	8	15 8.4	14
	10 6 26 230	22 230	8	11 8.4	14

Table 4 .

 4 to be at least as 3: 3D Darcy: number of PCG iterations (it), condition number (cond) and coarse space dimension (dim) vs. problem size for κ 1 = 1, κ 2 = 10 6 , ℓ = 1 added layer, L subdomains

							Regular		
					AS		ZEM		GenEO
	L glob DOF	it	cond it cond dim it cond dim
	4	4840		14	51	15	51	4	10 8.4	6
	8	9680		26	230	22 230	8	11 8.4	14
	16	19360	51	980	36 970	16	13 8.4	30
	32	38720	103 4000 61 3900 32	13 8.4	62
					Metis with criterion given by (4.29)
					AS		ZEM		GenEO
	L glob DOF	it	cond it cond dim it cond dim
	4	4840		21	67	18	63	4	9	3.0	19
	8	9680		36	290	29 280	8	9	3.0	40
	16	19360	65 1200 45 1200 16	11 3.1	81
	32	38720	123 4900 79 4700 32	11 3.1	171
				AS		ZEM			GenEO	
		ℓ	it cond it cond dim it cond dim
		1	26 230	22 230	8	11 8.4	14
		2	22 150	18 150	8	9	5.4	14
		3	16 110	15 110	8	9	4.0	14
		4	15	92	13	92	8	7	3.3	14

Table 4 . 4

 44 

: 3D Darcy: number of PCG iterations (it), condition number (cond) and coarse space dimension (dim) vs. number ℓ of layers added to each domain, for L = 8 regular subdomains, κ 1 = 1 and κ 2 = 10 6

Table 4 .

 4 5: 3D Elasticity: number of PCG iterations (it), condition number (cond), and coarse space dimension (dim) vs. number of regular subdomains, for ℓ = 1 added layer, g = 10, (E 1 , ν 1 ) = (2 • 10 11 , 0.3) and (E 2 , ν 2 ) = (2 • 10 7 , 0.45).

	cond dim

Table 5 .

 5 1: Summary of Notations

	Function space	Description	Definition
	W h (Ω)	Global	solution space for (5.1)

  7 ; 0.4) as well as a checkerboard coefficient distribution (Figure

			Dirichlet			Lumped
					FETI-GenEO	FETI-1
	Coefficients	κ #U 0 it	κ	#U 0 it	κ	it
	Constant	9.5	0	15 11.1	15	17 86 24
	Checkerboard 6.3	0	13	9.7	49	19 93 25
	Table					

  1 which is what is expected. 12 ; 0.3) 10.4 126 18 1.5 • 10 6 142 (1) 11.7 186 19 6.2 • 10 6 154 (2) ; 0.49) 12.2 182 21 5.3 • 10 6 170 (3) 16.3 370 23 4.0 • 10 7 198

			Dirichlet Preconditioner			Lumped Preconditioner
		FETI-GenEO	FETI-1		FETI-GenEO	FETI-1
	(E 2 ; ν 2 )	κ	#U 0 it	κ	it	κ	#U 0 it	κ	it
	(10 (10 7 ; 0.4) (10 2	10.5	26	18	447	31	12.2	99	23 2.1 • 10 3	58

  -5 ), the problem size increases with N

		FETI-GenEO	FETI-1
	N subdomains	κ	#U 0 it	κ	it
	4 8 16 32 64	3 1.34 1.34 1.35 182 4 2.2 • 10 3 137 14 5 1.4 • 10 3 20 38 5 1.9 • 10 3 39 86 4 2.1 • 10 3 75 1.35 374 4 2.2 • 10 3 190
	Various aspect ratios (b), fixed number of subdomains (N = 8), fixed discretization
	(n el = 21),fixed jump in coefficients (E 1 /E 2 = 10 -5 ) FETI-GenEO FETI-1
	aspect ratio b	κ	#U 0 it	κ	it
	5 2 1 1/2	2.33 1.42 1.34 4.51	43 40 38 27	6 5 5 9	1.7 • 10 5 47 ( * ) 43 1.0 • 10 4 40 1.9 • 10 3 446 33
	1/5	4.07	14	11	70	22
		FETI-GenEO		FETI-1	
	n el elements 21 42 70 84	κ 1.34 1.42 1.46 1.47	#U 0 38 38 38 38	it 5 5 5 5	κ 1.92 • 10 3 1.93 • 10 3 1.94 • 10 3 1.94 • 10 3	it 39 40 40 40

( * ) the relative residual reaches a plateau at 2 • 10 -3 after 47 iterations.

Various discretizations (n el ), fixed aspect ratios (b = 1), fixed number of subdomains (N = 8), fixed jump in coefficients (E 1 /E 2 = 10 -5 ), the problem size increases with n el .

Table 5 .

 5 6: Condition number κ and number of bad eigenvectors #U 0 versus several values of the threshold K i for the configurations in Figure 5.7

	0.05	9 • 10 6 18.59	0 114	1.4 • 10 5 12.61	0 14
	0.1	10.36	122	9.01	19
	0.5	2.50	225	2.93	95
	1	1.56	509	1.32	238
	4	1.87	3295	1.00	3101
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	6.1 Almost incompressible elasticity
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 6 1: FETI convergence results, the criterion is always 0.15κ: condition number, it: number of iterations, #U 0 : size of the GenEO coarse space (does not include the rigid body modes). FETI-1 is the classical FETI.

		Penalized formulation (6.12) Classical formulation (6.1)
		FETI-GenEO	FETI-1	FETI-GenEO	FETI-1
	ν	κ	it #U 0	κ	it	κ	it #U 0	κ	it
	0.4	5.9 12	16	13.4 19 7.1 14	16	15.9 21
	0.45	5.7 12	16	14.5 19 8.2 16	16	18.4 23
	0.49	11.9 15	16	34.8 23 8.3 15	57	49	33
	0.499	5.2 11	37	281 28 3.1 9	156	380 52
	0.4999	5.3 11	37	2749 30 6.6 15 158	3652 84
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We do not need to construct this second partition of unity in practice. It is only needed for the analysis.
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In case the global operator K is singular, a solution exists for the original problem if f is in the range of K. In that case the natural coarse space becomes singular but the FETI approach can still be applied[START_REF] Rixen | Dual Schur complement method for semi-definite problems[END_REF].
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 Chapter 4GenEO: a coarse space for the Additive Schwarz method

The content of this chapter was published in Numerische Mathematik [START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] in collaboration with Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens Pechstein and Robert Scheichl. We first presented the method and convergence result in the note [START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF]. The numerical results in the proceedings paper [START_REF] Spillane | Achieving robustness through coarse space enrichment in the two level Schwarz framework[END_REF] have also been incorporated into the last section of this chapter. Finally in section 4.3.3 we present results for slightly modified preconditioners, these were first studied in the proceedings of the LSSC conference [START_REF] Spillane | How to make a domain decomposition method more robust[END_REF]. 

Introduction

Once more we work in the already extensively studied framework of the overlapping additive Schwarz preconditioner [START_REF] Smith | Domain decomposition[END_REF][START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF], and focus on the definition of a suitable coarse 4. The previous property implies that B j 2 ⊂ V h,0 (Ω j ) and so

The coercivity of a Ω j (•, •) on B j 2 follows from the coercivity of a(•, •).

To carry out a robustness analysis we need to make the following two assumptions.

Assumption 4.23. For any 1 ≤ j ≤ N , a Ω j is coercive on B j 1 .

Assumption 4.24. For any 1

Note that by the first property in Lemma 4.22, Assumption 4.23 is equivalent to assuming that, for any 1

Remark 4.25. Assumptions 4.23 and 4.24 are not too restrictive. If all the element stiffness matrices are positive definite, then a Ω j and a Ω • j are positive definite on the whole of V h (Ω j ). For the Darcy equation or linear elasticity, the element stiffness matrices are not positive definite. However, any function v ∈ B j 1 satisfies v k = 0, for k � ∈ β j 1 , and any function v ∈ B j 3 vanishes on the boundary of Ω j (i.e. v k = 0, for k ∈ β j 1 ). Therefore, in the Darcy case and in the case of standard H 1 -conforming finite elements, Assumptions 4.23 and 4.24 hold if each of the sets β j 1 and β j 3 contains at least one DOF. To make the assumptions hold for linear elasticity, the sets β j 1 and β j 3 need to contain enough DOFs to fix the rigid body modes in Ω • j , i.e., at least 3(d -1) DOFs. Hence, for standard H 1conforming finite elements, it is sufficient to have d non-collinear points (with associated DOFs for all components of the vector function) that lie on the outer boundary ∂Ω j , respectively in Ω • j \ ∂Ω j .

The final technical hurdle to construct a stable splitting is that we cannot apply the abstract Lemma 4.11 to the specific eigenproblems used in the construction of the GenEO coarse space V H directly, because the bilinear forms b j (•, •) := a Ω • j (Ξ j (•), Ξ j (•)) from Definition 4.17 are not necessarily positive definite on all of V h (Ω j )×V h (Ω j ), for all 1 ≤ j ≤ N . To complete the analysis we thus need to define a suitable subspace �

Definition 4.26. Let the spaces � V j and � W j be defined by

Lemma 4.27. Under Assumption 4.23,

Proof. Since a Ω j is coercive on B j 1 (cf. Assumption 4.23) and on B j 2 (cf. Lemma 4.22 (4)) and since functions in B j 1 and B j 2 have disjoint supports, we also have that a Ω j is coercive on � W j . It follows from the definition of � V j (via some simple linear algebra) that �

Remark 4.28. While this lemma shows that � V j and B j 3 contain the same degrees of freedom, it does not imply that � V j = B j 3 . Indeed having chosen values for the degrees of freedom in β j 3 , the corresponding function in � V j is the discrete PDE-harmonic extension to the whole of Ω j while the corresponding function in B j 3 is the extension by zero. The discrete harmonic extension into Ω j \ Ω • j is always well defined because of the coercivity of a Ω j on B j 2 (cf. Lemma 4.22 (4)). The fact that the discrete harmonic extension onto B j 1 is well defined is a consequence of Assumption 4.23.

The role of Assumption 4.24 becomes clear in the next lemma. 

We need to show that necessarily v = 0. There exists a unique decomposition

The second property in Lemma 4.22 states that B j 1 = Ker(Ξ j ), and so

From the definition of Ξ j it is obvious that Ξ j | B j 2 : B j 2 → B j 2 is the identity, and so Ξ j (v 2 ) ∈ B j 2 and in particular from the third property in Lemma 4.22

From these two remarks and the definition of b j it follows that

Moreover, from the definition of Ξ j it is also obvious that Ξ j | B j 3 : B j 3 → B j 3 is a bijection, and so Ξ j (v 3 ) ∈ B j 3 . Now, (4.18) and Assumption 4.24 imply that Ξ j (v 3 ) = 0. The fact that Ξ j | B j 3 is a bijection in turn implies that v 3 = 0, and so v ∈ � W j . From Lemma 4.27, we know that � V j ∩ � W j = {0}, and so v = 0 which ends the proof.

We can now apply Lemma 4.11 to the restriction of the GenEO eigenproblems to � V j × � V j and characterize the entire spectrum (including the infinite eigenvalues).

Lemma 4.30. For each j = 1, ..., N , consider the generalized eigenproblem (4.17) in Definition 4.18.

(i) There are dim

< ∞ (counted according to multiplicity) with corresponding eigenvectors denoted by

and normalized to form an orthonormal basis of � V j with respect to b j (•, •).

(ii) There are dim

forming a basis of � W j .

V j and w ∈ � W j , the eigenproblem (4.17) can be decoupled into two eigenproblems: one on � V j and one on � W j .

Summary of the notation and complements

We have introduced quite a lot of notation. Table 5.1 at the beginning of the article sums up most of the notation which will appear in the description of the algorithms and the reference to where it is first introduced. Some of the operators are introduced for the first time (â bb , a bb , ŝ and s) as the bilinear forms associated with a matrix. More precisely, let âbb and ŝ be defined as

for any û and v ∈ Ŵ , and let a bb and s be defined as

for any u and v ∈ W .

The operators with a • always correspond to functions defined either on the whole of Ω or the whole of Γ. The subscript i always refers to a local operator defined on a subdomain Ω i or its boundary. Operators without a • or a subscript i are defined on the product spaces. Finally operators Si are weighted by the inverse partition of unity operators.

In many cases the local stiffness matrices K i are not spd on all floating subdomains. (A floating subdomain is a subdomain which does not touch the Dirichlet part of the boundary). For example, in the case of the Darcy equation, the kernel of K i for a floating subdomain is the set of constant functions. In the case of linear elasticity, the kernel of K i is the set of rigid body motions. It is easy to see that these kernels induce kernels for the corresponding Schur complements S i as well as their weighted counterparts Si and, possibly, the lumped matrices K b i b i i .The next lemma makes precise which matrices are positive definite. They are all symmetric positive semi definite.

Lemma 5.11. The stiffness matrix K, lumped stiffness matrix K bb and Schur complement S, which correspond to the product spaces, can be singular. Their respective counterparts, K, Kbb and Ŝ, on the original spaces of functions W h (Ω) and Ŵ are symmetric positive definite. Finally, under Assumption 5.5 each of the local matrices R i Kbb R ⊤ i and R i ŜR ⊤ i is also symmetric positive definite.

Proof. The fact that K and Ŝ are positive definite is clear because the original problem is well posed. The positive definiteness of Kbb follows from Lemma 5.6 and the positive definiteness of Ŝ:

The positive definiteness of R i ŜR ⊤ i and R i Kbb R ⊤ i is obvious from the positive definiteness of K and Ŝ and (5.10) which is a direct consequence of Assumption 5.5.

Remark 5.12. Note that in nearly all practical cases K bb is also symmetric positive definite.

We are now ready to introduce the BDD preconditioner.

Balancing Domain Decomposition

The problem which we solve is the original problem (5.4) reduced to the set Γ of interfaces between subdomains: find u ∈ Ŵ such that Ŝu = fΓ .

(5.24)

Two level FETI preconditioner with the GenEO coarse space

The proof of an upper bound for the spectrum of the preconditioned FETI system usually relies on strong assumptions on the set of equations at hand and the coefficient distribution. Once again we build a coarse space which allows us to waive all of these assumptions. The coarse space is defined next along with the two-level FETI preconditioners (deflated and balanced). We use again the subscript 0 to refer to the coarse space. In order to avoid confusion with the BDD case we use calligraphic notation for the projection operator P * ,0 . Definition 5.31 (GenEO coarse spaces for FETI). Let * denote either D (for Dirichlet) or L (for Lumped). For each subdomain i = 1, . . . , N , find the eigenpairs (q k i , Λ k i ) ∈ W i × R + of the generalized eigenvalue problem:

where M -1 * is the preconditioner defined either by (5.54) or (5.55). Next, given a threshold K i > 0 for each subdomain, define the coarse space as

(5.62)

Let the interpolation operator G * ,0 be the matrix whose columns are the coarse basis functions

Let the coarse solver be the exact solver on U * ,0 :

Once again in proving our estimate for the condition number we will take advantage of the orthogonality type properties which result from the generalized eigenvalue problem. Lemma 5.33. Let * denote either D or L. For a given subdomain i = 1, . . . , N , the eigenpairs (q k i , Λ k i ) of the generalized eigenproblem (5.61) can be chosen so that the set {q k i } k of eigenvectors is an orthonormal basis of W i with respect to the inner product induced by B ⊤ i M -1 * B i . This can be written as

An orthogonality type property with respect to S i (which is not necessarily coercive) also holds:

* is spd on range(G N ) = Ker(P ⊤ N ). We also proved in Lemma 5.30 that M -1 * is spd on

i is symmetric positive definite on W i and the result is well known.

In the next lemma we give some useful properties of the projections. Almost incompressible (penalized) formulation (6.12), P 2 -P 0 elements: The local setting must verify three assumptions:

Each basis function φ k

[l] is in the interior of at least one subdomain, 2. For each i = 1, . . . , N [l] , the bilinear form a

in the overlap is coercive on Ker(Ω

)}. The first of these two assumptions is automatically satisfied if we add the layers of overlap following the procedure that is described in the GenEO chapter. Proving the last two would require more work. Another option is to replace the matrix on the right hand side of the generalized eigenvalue problem by the matrix of the problem restricted to the whole subdomain Ω j reduced by one layer of elements. Then the assumptions are no longer required.

Coarse space construction and estimates

On each subdomain solve the generalized eigenvalue problem: find λ

∈ [0, +∞] and

(p

[l] (v

Then, given a threshold

Let Π (i)

[l] be the projector onto this space of local contributions defined by

[l] (u))p

The coarse space is the sum of the local contributions weighted by the partition of unity functions:

and the prolongation operator is the rectangular matrix

⊤ whose columns are the

) that appear in the previous definition. It is then straightforward to define the coarse matrix A 0

as long as the vectors in R (0) are linearly independent.

Theorem 7.1. (GenEO stable splitting) The GenEO theory tells us that any u

⊲ start with empty coarse space [λ 0 , r 0 , z 0 , p 0 , P F ] = initializeCG(λ 0 , G F ) k = 0 5: while convergence not achieved do ⊲ CG outer loop while true do ⊲ τ -test: loop until success for s = 1, . . . , N do 

test for convergence k = k + 1 end while Return λ k lower bound for the spectrum of the preconditioned FETI operator is λ min = 1 [START_REF] Klawonn | FETI and Neumann-Neumann iterative substructuring methods: connections and new results[END_REF] and the, by now classical, result in Lemma 7.5 ensures that θ (m) min ≥ 1 also. Lemma 7.5. At any given iteration m, the Ritz values are the eigenvalues of the section of the original matrix A to the m-th Krylov subspace K m for the l 2 projection so θ (m) min ≥ λ min where λ min is the smallest eigenvalue of A.

Finding a bound for the largest of the Ritz values is a lot trickier because there is no simple upper bound for the spectrum of the preconditioned FETI operator. Lemma 7.6. Let m ∈ N. If there exist m vectors u 1 , . . . , u m ∈ K m which are orthogonal in the l 2 (Euclidean) inner product and which satisfy �Au j , u j � ≤ C�u j , u j �, ∀ j = 1, . . . , m, for some constant C > 0 then θ (m) max ≤ mC. The successive conjugate gradient residuals are l 2 orthogonal so these are good test vectors for Lemma 7.6. In fact the whole purpose of the τ -test is to ensure that the lemma applies with constant N /τ user .

It remains to prove that the convergence of the conjugate gradient algorithm is driven by the Ritz values. In fact we are not sure that this is true. For GMRES applied to diagonalizable matrices we have derived such a result so maybe we should build the adaptive algorithm within GMRES. The theorem uses the following proposition where the Krylov subspace is K m := span(r 0 , Ar 0 , . . . , A m-1 r 0 ). Lemma 7.7 (Part of Proposition 6.3 in Saad's book ). Let Q m be any projector onto K m and let A m be the section of A to K m ; that is, A m = Q m A |Km . Then, for any polynomial q of degree not exceeding m -1

Proof. See the proof of Proposition 6.3 in [START_REF] Saad | Iterative methods for sparse linear systems[END_REF].

Next we recall the definition of the Ritz values and Ritz vectors of A following the presentation given in [START_REF] Van Der Sluis | The rate of convergence of conjugate gradients[END_REF]. A particular choice of projection operator onto K m is the l 2 (Euclidean)-orthogonal projection upon K m which we denote by Π m . For any m ≤ n the Ritz values θ Theorem 7.8 (Convergence rate of GMRES based on the Arnoldi matrix). Let r m be the residual associated with the approximate solution x m obtained at the m-th step of the GMRES algorithm and r 0 be the residual associated with the initial guess x 0 . In the case where A is diagonalizable the following convergence bound holds at iteration m:

in which C m is the Chebyshev polynomial of degree m of the first kind, A (m+1) = X (m+1) Λ (m+1) X (m+1) -1 , Λ (m+1) is a diagonal matrix whose entries are the Ritz values θ (m+1) i

, these eigenvalues are in the Ellipse(c (m+1) , d (m+1) , a (m+1) ) which excludes the origin and κ 2 (X (m+1) ) = �X (m+1) ��X (m+1) -1 �. It appears that the number of iterations needed to solve one linear system is indeed significantly reduced with Frugal FETI. In fact, even if seven Newton steps are needed instead of four, the total number of iterations is still smaller with Frugal FETI (388 versus 856). For this reason we are optimistic about future results and writing a bug free and tuned code is one of our top priorities.

Résumé -Abstract

Nicole SPILLANE Méthodes de décomposition de domaine robustes pour les problèmes symétriques définis positifs Résumé : L'objectif de cette thèse est de concevoir des méthodes de décomposition de domaine qui sont robustes même pour les problèmes difficiles auxquels on est confronté lorsqu'on simule des objets industriels ou qui existent dans la nature. Par exemple une difficulté à laquelle est confronté Michelin est que les pneus sont constitués de matériaux avec des lois de comportement très différentes (caoutchouc et acier). Ceci induit un ralentissement de la convergence des méthodes de décomposition de domaine classiques dès que la partition en sous domaines ne tient pas compte des hétérogénéités. Pour trois méthodes de décomposition de domaine (Schwarz Additif, BDD et FETI) nous avons prouvé qu'en résolvant des problèmes aux valeurs propres généralisés dans chacun des sous domaines on peut identifier automatiquement quels sont les modes responsables de la convergence lente. En d'autres termes on divise le problème de départ en deux : une partie où on peut montrer que la méthode de décomposition de domaine va converger et une seconde où on ne peut pas. L'idée finale est d'appliquer des projections pour résoudre ces deux problèmes indépendamment (c'est la déflation) : au premier on applique la méthode de décomposition de domaine et sur le second (qu'on appelle le problème grossier) on utilise un solveur direct qu'on sait être robuste. Nous garantissons théorétiquement que le solveur à deux niveaux qui résulte de ces choix est robuste. Un autre atout de nos algorithmes est qu'ils peuvent être implémentés en boîte noire ce qui veut dire que les matériaux hétérogènes ne sont qu'un exemple des difficultés qu'ils peuvent contourner.

Abstract : The objective of this thesis is to design domain decomposition methods which are robust even for hard problems that arise when simulating industrial or real life objects. For instance one particular challenge which the company Michelin is faced with is the fact that tires are made of rubber and steel which are two materials with very different behavior laws. With classical domain decomposition methods, as soon as the partition into subdomains does not accommodate the discontinuities between the different materials convergence deteriorates. For three popular domain decomposition methods (Additive Schwarz, FETI and BDD) we have proved that by solving a generalized eigenvalue problem in each of the subdomains we can identify automatically which are the modes responsible for slow convergence. In other words we can divide the original problem into two problems : the first one where we can guarantee that the domain decomposition method will converge quickly and the second where we cannot. The final idea is to apply projections to solve these two problems independently (this is also known as deflation) : on the first we apply the domain decomposition method and on the second (we call it the coarse space) we use a direct solver which we know will be robust. We guarantee theoretically that the resulting two level solver is robust. The other main feature of our algorithms is that they can be implemented as black box solvers meaning that heterogeneous materials is only one type of difficulty that they can identify and circumvent.