. Si, P2)) déposées sur quartz. Pour une meilleure lisibilité les graphes sont représentés séparément. Liteseetio ette la taageete lige de poitillss à la paatie liaie de la oue et laae des abscisses donne le gap

. La-méthode-de-tauc, comme expliqué précédemment, consiste à représenter (?.hv) 1/2 en fonction de hv, où ? est le oeffiieet daasoptio ee -1 , et h est leegie des photos Références bibliographiques [1] Global Market Outlook For Photovoltaics, 2013.

]. W. Shockley and H. J. Queisser, 510. [6] O. Nichiporuk, Simulation, fabrication et analyse de cellules photovoltaïques à contacts arrières interdigités, Thèse de l'institut national des sciences appliquées de Lyon, 1961.

C. Jiang and M. A. Green, Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications, Journal of Applied Physics, vol.99, issue.11, p.114902, 2006.
DOI : 10.1063/1.2203394

L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, vol.57, issue.10, p.1046, 1990.
DOI : 10.1063/1.103561

J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, matrices, Journal of Applied Physics, vol.78, issue.7, p.4386, 1995.
DOI : 10.1063/1.359843

URL : https://hal.archives-ouvertes.fr/hal-00538600

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, Si rings, Si clusters, and Si nanocrystals???different states of ultrathin SiOx layers, Applied Physics Letters, vol.81, issue.22, p.4248, 2002.
DOI : 10.1063/1.1525051

A. J. Kenyon, P. F. Trwoga, C. W. Pitt, and G. Rehm, The origin of photoluminescence from thin films of silicon???rich silica, Journal of Applied Physics, vol.79, issue.12, p.9291, 1996.
DOI : 10.1063/1.362605

E. Cho, M. A. Green, G. Conibeer, D. Song, Y. Cho et al., Advances in OptoElectronics, 2007.

Y. Leconte, Croissance et propriétés du silicium granulaire en films minces : procédé basse température et rôle critique des radicaux hydrures dans le plasma, 2003.

G. Allan, C. Delerue, and M. Lannoo, Quantum confinement in the Si-III (BC-8) phase of porous silicon, Applied Physics Letters, vol.70, issue.18, p.2437, 1997.
DOI : 10.1063/1.118895

L. Wang and A. Zunger, Solving Schr??dinger???s equation around a desired energy: Application to silicon quantum dots, The Journal of Chemical Physics, vol.100, issue.3, p.2394, 1994.
DOI : 10.1063/1.466486

G. Ledoux, Etude de la photoluminescence du silicium nanocristallin : Application astophsiue à lEEissio 'ouge Eteedue, Thèse de l'école centrale de lyon, 1999.

L. Mangolini, E. Thimsen, and U. Kortshagen, High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals, Nano Letters, vol.5, issue.4, p.655, 2005.
DOI : 10.1021/nl050066y

M. Hiruoka, K. Sato, and K. Hirakuri, Correlation between surface composition and luminescence of nanocrystalline silicon particles dispersed in pure water, Journal of Applied Physics, vol.102, issue.2, p.24308, 2007.
DOI : 10.1063/1.2756048

F. Lacour, Les nanocristaux de silicium : synthèse, propriétés et applications, Thèse de l, 2007.

O. Renault, R. Marlier, M. Gely, B. De-salvo, T. Baron et al., Synchrotron radiation x-ray photoelectron spectroscopy of Si nanocrystals grown onto Al2O3???Si surfaces, Applied Physics Letters, vol.87, issue.16, p.163119, 2005.
DOI : 10.1063/1.2105990

URL : https://hal.archives-ouvertes.fr/hal-00394715

E. Cho, M. A. Green, J. Xia, R. Corkish, P. Reece et al., Clear quantum-confined luminescence from crystalline silicon/SiO2 single quantum wells, Applied Physics Letters, vol.84, issue.13, p.2286, 2004.
DOI : 10.1063/1.1691489

J. Dalla-torre, J. Bocquet, Y. Limoge, J. Crocombette, E. Adam et al., Study of self-limiting oxidation of silicon nanoclusters by atomistic simulations, Journal of Applied Physics, vol.92, issue.2, p.1084, 2002.
DOI : 10.1063/1.1489094

URL : https://hal.archives-ouvertes.fr/hal-00475872

A. Ermoline and E. L. Dreizin, Equations for the Cabrera???Mott kinetics of oxidation for spherical nanoparticles, Chemical Physics Letters, vol.505, issue.1-3, p.47, 2011.
DOI : 10.1016/j.cplett.2011.02.022

A. , M. Doooat, and J. , Jedzejeesk, I. Popo, I. Baleeg, Phsia " tatus " olidi aa, p.1491, 2007.

X. D. Pi, R. Gresback, R. W. Liptak, S. Campbell, and U. Kortshagen, Doping efficiency, dopant location, and oxidation of Si nanocrystals, Applied Physics Letters, vol.92, issue.12, p.123102, 2008.
DOI : 10.1063/1.2897291

S. H. Hong, Y. S. Kim, W. Lee, Y. H. Kim, J. Y. Song et al., Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell, Nanotechnology, vol.22, issue.42, p.425203, 2011.
DOI : 10.1088/0957-4484/22/42/425203

X. J. Hao, E. Cho, G. Scardera, Y. S. Shen, E. Bellet-amalric et al., Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.9, p.1524, 2009.
DOI : 10.1016/j.solmat.2009.04.002

URL : https://hal.archives-ouvertes.fr/hal-01067626

X. Pan, M. Shi, D. Zheng, N. Liu, G. Wu et al., Room-temperature solution route to free-standing SiO2-capped Si nanocrystals with green luminescence, Materials Chemistry and Physics, vol.117, issue.2-3, p.517, 2009.
DOI : 10.1016/j.matchemphys.2009.06.037

Y. Leconte, H. Maskrot, L. Combemale, N. Herlin-boime, and C. Reynaud, Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nanopowders, Journal of Analytical and Applied Pyrolysis, vol.79, issue.1-2, p.465, 2007.
DOI : 10.1016/j.jaap.2006.11.009

URL : https://hal.archives-ouvertes.fr/hal-00141259

T. F. Deutsch, Infrared laser photochemistry of silane, The Journal of Chemical Physics, vol.70, issue.3, p.1187, 1979.
DOI : 10.1063/1.437598

L. Combemale, Y. Leconte, X. Portier, N. Herlin-boime, and C. Reynaud, Synthesis of nanosized zirconium carbide by laser pyrolysis route, Journal of Alloys and Compounds, vol.483, issue.1-2, p.468, 2009.
DOI : 10.1016/j.jallcom.2008.07.159

URL : https://hal.archives-ouvertes.fr/hal-00414736

S. Panda and S. E. Pratsinis, Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor, Nanostructured Materials, vol.5, issue.7-8, p.755, 1995.
DOI : 10.1016/0965-9773(95)00292-M

C. M. Sorensen, The Mobility of Fractal Aggregates: A Review, Aerosol Science and Technology, vol.60, issue.7, p.765, 2011.
DOI : 10.1080/02786820500529406

D. Horwat, J. F. Pierson, and A. Billard, Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films, Surface and Coatings Technology, vol.201, issue.16-17, p.7060, 2007.
DOI : 10.1016/j.surfcoat.2007.01.016

O. Sublemontier, X. Paquez, and Y. Leconte, Dispositif de synthèse d'un matériau composite nanostructuré et procédé associé, p.2630418, 2011.

R. Lechner, A. R. Stegner, R. N. Pereira, R. Dietmueller, M. S. Brandt et al., Electronic properties of doped silicon nanocrystal films, Journal of Applied Physics, vol.104, issue.5, p.53701, 2008.
DOI : 10.1063/1.2973399

Y. He, C. Yin, G. Cheng, L. Wang, X. Liu et al., The structure and properties of nanosize crystalline silicon films, Journal of Applied Physics, vol.75, issue.2, p.797, 1994.
DOI : 10.1063/1.356432

X. D. Pi, R. W. Liptak, S. Campbell, and U. Kortshagen, In-flight dry etching of plasma-synthesized silicon nanocrystals, Applied Physics Letters, vol.91, issue.8, p.83112, 2007.
DOI : 10.1063/1.2773931

P. G. Pai, films produced by plasma enhanced chemical vapor deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.4, issue.3, p.689, 1986.
DOI : 10.1116/1.573833

S. Chao, E. Tyler, Y. Takagi, P. G. Pai, G. Lucovsky et al., A study of chemical bonding in suboxides of silicon using Auger electron spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.4, issue.3, p.1574, 1986.
DOI : 10.1116/1.573510

R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, Journal of Physics E: Scientific Instruments, vol.16, issue.12, p.1214, 1983.
DOI : 10.1088/0022-3735/16/12/023

M. Otobe, H. Yajima, and S. Oda, Observation of the single electron charging effect in nanocrystalline silicon at room temperature using atomic force microscopy, Applied Physics Letters, vol.72, issue.9, p.1089, 1998.
DOI : 10.1063/1.120973

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, Silicon nanocrystals with ensemble quantum yields exceeding 60%, Applied Physics Letters, vol.88, issue.23, p.233116, 2006.
DOI : 10.1063/1.2210788

V. Maurice, Fonctionnalisation de nanoparticules de silicium pour l'iamgerie biomédicale, 2010.

X. Paquez, Dépôt de couches minces nanocomposites à base de nanocristaux de silicium pour des cellules photovoltaïques à haut rendement, 2010.

A. Stegner, R. Pereira, R. Lechner, K. Klein, H. Wiggers et al., Doping efficiency in freestanding silicon nanocrystals from the gas phase: Phosphorus incorporation and defect-induced compensation, Physical Review B, vol.80, issue.16, p.165326, 2009.
DOI : 10.1103/PhysRevB.80.165326

E. Drahi, Impression de silicium par procédé jet d'encre: des nanoparticules aux couches minces fonctionnelles pour applications photovoltaïques, Thèse de l'Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013.

M. A. Gaveau, Etude de la relaxation rovibrationnelle de la molécule CO en jets supersoniques libres produits à haute température, Thèse CEA, 1986.

R. Campargue, Aerodynamic Separation Effect on Gas and Isotope Mixtures Induced by Invasion of the Free Jet Shock Wave Structure, The Journal of Chemical Physics, vol.52, issue.4, p.1795, 1970.
DOI : 10.1063/1.1673220

H. Ashkenas and F. S. Sherman, Rarefied Gaz Dynamics, 1966.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux et al., Ellipsometric study of silicon nanocrystal optical constants, Journal of Applied Physics, vol.93, issue.7, p.4173, 2003.
DOI : 10.1063/1.1538344

M. A. Green, Rapport d'activité , Project:"Nanostructured Silicon-Based Tandem Solar Cells, 2009.

Z. Said-bacar, Elaboration et caractérisations du silicium polycristallin par cristallisation en phase liquide du silicium amorphe, 2012.

S. Bourdais, Etude du Dépôt et des Propriétés Physiques du Silicium Polycristallin obtenu par le procédé RTCVD sur substrats de Mullite: Application aux Cellules Photooltaïues e Couhes Mies

A. Zerga, Caractérisation, modélisation et simulation numérique des cellules photovoltaïques à base de silicium polycristallin en couche mince déposé par RTCVD, Thèse de lUUieesit de Tleeee