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1 Introduction

"Le véritable voyage de découverte ne consiste pas a cherotie nouveaux paysages,
mais a avoir de nouveaux yeux"
Marcel Proust

Since 50 years, biology is undergoing a revolution. Drivey technological progress, the pos-
sibility to investigate the functioning of biological proesses at the cellular level are expanding at
an ever-increasing pace. Over the second half of the last tewy, the expansion of molecular and
cellular biology has been stunning. It is now possible to segce whole genomes for a few thou-
sands of dollars [81], to get access to the mRNA content of d¢glin a routine manner [64], to get
access to the protein content of whole tissues [58]. One catsa observe protein and mRNA levels
and locations in single cells for extended durations [54,]7@esides observing biological processes,
one can also manipulate them with unprecedented capabi#iti One can construct and integrate
large genetic circuits [43, 56], synthesize entire genomp®], hijack metabolism to e ciently pro-
duce biomolecules [69]. These techniques o er enormous appunities [52]. In biotechnology major
research e orts are invested for the production of biofuelroof high-value biomolecules, and for
the development of biosensors or of bioremediation systens medicine, virus-based or cell-based
therapies are envisioned using reprogrammed biologicategs that exploit and expand their nat-
ural capabilities to create arti cial tissues or even organ The development of biosensors for drug
screening and design is another application of high interes

The technological push in modern biology is so strong thatlitas cleaved the historical domains
of biology, ranging from biochemistry to physiology, intomo broad areas: small-scale and large-scale
biology [16]. In a nutshell, small-scale biology -also knowas bottom-up systems biology- focuses on
gathering detailed information on the speci ¢ componentsfa particular dynamical process. Data
is often acquired with high temporal resolution and at thergjle cell or even single molecule level.
Large-scale biology -also known as top-down systems biglogims at getting a snapshot of the state
of the cell for all biological processes. Because not evdryly can be observed at the same time,
one distinguishes genomics, transcriptomics, proteomiceetabolomics, etc, according to the focus
on the particular method employed [98, 45]. One of the mainsiges of large-scale approaches is that
they often o er extensive but disconnected views of biologal processes. The integration of these
di erent views is often extremely challenging at such a sea]98, 45]. Actually, rather than bringing
an increased understanding, these methods have revealest the complexity of the functioning of
cellular systems was even greater than originally assumethis currently limits the usefulness of
the "omics" approach. On the contrary, small-scale biologkias been more successful in providing
explanations on the functioning of biological processesatiks to a more integrated view [82, 65].
Naturally, it lacks extent. The integration of individual pcesses in the context of the functioning of
the whole cell is still drastically missing. Therefore, itppears that any form of "mid-scale" biology
that o ers a better compromise in depth and breadth of inforrtion than existing methods has a
signi cant potential to contribute to systems and synthett biology.

Extending the depth/breadth frontier is precisely what mading can do. Indeed, constructing a
model that involves observed inputs and outputs, and unobsed variables is precisely a way to test
assumptions on unobserved quantities. A striking examdelhie work of Suter and colleagues in which
promoter properties are deduced from the observation of pein levels [90]. The main conclusion
of the paper is that mammalian genes are transcribed with wlg di erent bursting kinetics, yet
transcription is never directly observed. In this case, naihg and carefully crafted experimental
design were the critical elements that enabled linking ansstved quantity, protein levels, with other,
unobserved quantities, transcription rate and promoter kating. A second example is the work of
Spencer et al [86]. Here the authors relate observed varléhiin protein concentrations and in time
of cell death via modeling apoptotic pathways and concludeat the naturally occurring di erences
in the levels of proteins regulating receptor-mediated gpiosis are the primary causes of cell-to-cell
variability in the timing of death. Here again, the joint usef an appropriate model and of question-
driven experiments has been instrumental to draw the propdsconclusions. Because models can
push the depth/breadth frontier beyong what is currently Esible by direct observation, modeling



has a potentially critical role in biology. One should noteoWwever, that genuine contributions of
modeling to biology are still rare. One possible explanatits that it necessitates the combination of
a well-de ned biological question, of a question-driven parimental approach, and of the use of an
appropriate modeling framework. Although this seems obug in practice, putting together these
three aspects so that they t perfectly together is an exquitly delicate work.

Eveniifitis still rarely the case that modeling can providelgl evidence to draw new conclusions, it
is often the case that modeling is e ective to detect inconstencies between existing data and current
understanding. For example data has been accumulated formpayears on bacterial adaptation to
a variety of environmental stresses. Many papers explairsgthptation to nutritional stress and the
subsequent changes in expression of many genes by the coetbimects of positive and negative
transcription regulators. Yet, careful modeling of the vasus genetic regulatory interactions that
were assumed to underlie the observed global response leadntonsistencies and motivated the
systematic analysis of the expression levels of all key geimwolved in the nutritional stress response.
This work lead to the striking conclusion that the large majidy of expression changes were due
to global changes of the gene expression machinery, rathbam to speci ¢ control by transcription
factors [15]. Therefore models have a signi cant role to pjain testing the consistency of current
understanding with actual experimental data. it is a critid tool to ensure that novel information can
be aggregated with previous ones on a solid ground.

| started my PhD in 2002 and since then my research deals witbhngputational systems biology.
| addressed a number of diverse problems, ranging from maodsidation, hypothesis testing, robust-
ness assessment, system design, optimization and contidly contributions include the development
of novel mathematical methods, their implementation in plibly-available tools, the application of
advanced modeling techniques, developed by myself or othend the joint development of experi-
mental plans and computational procedures to obtain a goaatégration of wet lab and dry lab data.
Even if the overall objective of my work is to better understa the functioning of cellular processes,
there is a marked trend towards problems that allow for a tigintegration between experiment and
modeling. In a sense my research has followed over the yeaes global trend of systems biology
of being more and more quantitative. But more speci cally, focused on problems that enabled a
good match between modeling predictions and experimentala. If modeling is expected to play an
important role, the experimental setup and the computati@h framework should be jointly selected
by the wet lab and dry lab biologists.

A second evolution of my research is to gradually evolve fronethod-driven research to problem-
driven research. In the rst case, the object of the researds a methodological tool, such as a
theorem that applies to a particular class of dynamical sgshs, that is then applied to the most
promising problems. In the second case, the object of the easch is a particular biological process
that one wants to understand, hijack for application purpes or control. This problem is solved
using any methods that are appropriate. Naturally, both tgpof research are of value and both
directions should be pursued. In my experiment, the seconckdtion is superior on a critical aspect:
it guarantees biological relevance of the work. Its poteatidrawback is that it does not guarantee
the generality of the solution. On a personal level, | foundhdt the rst aspect is more important
than the second. Both aspects can of course be combined anddtuld be argued that the main task
of the person in charge of directing research is to select theost interesting problems, namely those
that originate from a genuine biological question and whosesolution can be generalized to other
related problems. Those problems are probably the most dealging to solve, but also will guarantee
that the research will be original and innovative. They alsequire broad expertise to appreciate the
speci ¢ di culties on all aspects. On the biological side, he most critical domains of expertise are
molecular and cellular biology. A good knowledge of exigfiexperimental methods is required as
well. On the methodological side, the important domains ofxpertise are dynamical systems and
control, and computer science. One of the main objective ofymresearch work was to gain some
expertise in these various domains, that strengthen and cplement my initial background in biology
and computer science.

In the remainder of this manuscript, | will present and disssia selection of my works that |
consider representative of my contribution to the domain afomputational systems biology and of
my research path. As it will appear | started by consideringtiher abstract models of gene networks,



adapted to the level of information that is generally avabiée in systems biology (Chapter 2), then
considered better characterized systems such as synthejéne networks and extended the previous
framework to a more quantitative setting (Chapter 3). When oe assumes that an even more
complete knowledge is available, one can work with distrilains of parameters and investigate the
robustness of various properties (Chapter 4). In all the pieus works, the work was done in tight
collaboration with biologists, but the biological relevae of the work was assessed based on existing
biological data. The application of modeling to practicalantrol problems o ered me the opportunity
to co-supervise, in collaboration with Pascal Hersen (MS&bl CNRS/Paris 7) interdisciplinary work
combining wet and dry lab biology (Chapter 5). | am now impaunttly involved in the continuation of
this work in several directions and in two other collaboraé projects with the Weiss lab for synthetic
biology (MIT) and with the Drasdo group on multicellular sygem modeling (Bang, INRIA). In the
near future, | plan to continue the development of these remeh directions that combine modeling
and experiment in an intricate manner (Chapter 6).



2 Testing the consistency of regulatory interactions in med ium-
scale gene networks

"All models are wrong but some are useful"
George Edward Pelham Box

2.1 Qualitative models of large gene networks

During my PhD | worked on a method developed for the modelin§relatively large genetic reg-
ulatory networks (up to 10-15 genes). These networks are maaf genes coding for proteins, mostly
transcription factors, and of regulatory in uences of the teins on gene expression. This framework
is appropriate to describe a number of processes that mostbly on intricate gene regulations. A
number of developmental processes falls into this realm. ©an notably mention the responses to
environmental changes, like the sporulation decision B subtilis [26] or the adaptation to nutri-
tional stress inE. coli [78] (Figure 1(a)), developmental processes, like ower mphogenesis [61] or
drosophila development [79], and oscillatory behaviori&el cell cycle [35, 25].

For such complex cell processes, the information needed tvdlop quantitative models is seldom
available. This seriously challenges the biological relege of the standard quantitative framework
used to model such networks: Hill-type models. These modale di erential equation models where
sigmoidal functions (Hill functions) are used to describegulatory in uences of proteins on gene
expression, and more precisely on promoter activity. In paunlar, when genes are regulated by several
transcription factors, obtaining a quantitative descripbn of the regulation function is particularly
challenging [80]. In most cases however, qualitative infioation is available on the "logic" of gene
regulation.
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Figure 1: Gene regulatory networks and PADE models. Network of key genes, proteins, and
regulatory interactions involved in the nutritional stresnetwork inE. coli [78]. (b) Piecewise a ne
di erential equation and parameter inequality constraistfor one protein in the network, the topoi-
somerase TopA. This model uses step functiorss .

2.2 Reasoning with qualitative constraints on parameters

Several modeling frameworks have been proposed to deal whils problem, most notably logical
regulatory models [91] and qualitative piecewise-a ne derential equations (PADE) systems [28]
(Figure 1(b)). The key idea of PADE system modeling is to abstct Hill functions appearing in
Hill-type models by step functions. Step functions do capt the non-linearity and the saturating
aspects of Hill functions, which are two critical featuresfdill functions for biological relevance.
However, the speci ¢ shape of the regulatory function, whhicis generally not known, is abstracted
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away. This framework leads to switched a ne systems. In eadegion of the switched system the
dynamics can be described and solved very easily. More pedyi transitions from one region to
another region can be inferred from qualitative informatioon parameters. Stated di erently, the
globally complex problem is recast in a set of locally simpleblems. The analysis of such systems
relies on the computation of a state transition graph that r@esents the dynamics of the system in
the state space. States represent a partition of the state ape into a set of hyperrectangular regions
and transitions represent local reachability between regs.

One of the main issues with this and related formalisms agsiom the simpli cations that are
employed. The dynamics of the system changes when proteimcentrations cross threshold con-
centrations. Within threshold hyperplanes the dynamicsnst de ned. Even if the set of all regions
that are in one or more threshold hyperplanes, called sireyulegions, is of measure zero in the whole
state space, these regions cannot be neglected because tbéfgn contain attractors of the dynam-
ics. Several attempts to de ne the dynamics in these regiohgve been made in PADE and related
formalisms [62, 73]. A mathematically satisfying solutiohas been proposed by Gouzé and Sari us-
ing Filippov regularizations [42]. In short, the dynamics de ned in singular regions as the convex
combination of the dynamics in neighboring regular regionghis extension leads to di erential in-
clusions, de ned everywhere, instead of di erential equans, de ned only almost everywhere [42].
Unfortunately, the analysis of this class of systems neciated quantitative information on param-
eters. Gouzé and de Jong found that using rectangular comaiions in place of Filippov's convex
combinations makes it possible to compute the state tran&n graph representing in an abstract
manner the dynamics solely by reasoning with the relativader of the model parameters [28]. This
is critical to solve the original problem in a mathematicgliwell grounded manner with qualitative
reasoning only.

2.3 Model validation

This qualitative framework is ideally suited to test the caistency of our understanding of the
functioning of complex biological processes and on the aftéeterogeneous and qualitative available
experimental information. Indeed, because one reasons famge sets of parameter values, simply
de ned in terms of ordering relations, the predictions obtaed by this method are by essence very
robust. Therefore, if an observed behavior is not accountdor by a qualitative model, it seriously
calls for model revision. Developing an approach for tegithe validity of qualitative models of
genetic regulatory networks was precisely the topic of my Bhwork. The objective is to encode
the observed property in some formal framework and test wihetr the model satis es this property
in an automated and e cient manner. This is precisely the obgtive of model checking [23]. Over
the years, the formal veri cation community has developedi&emely e cient methods for testing
whether discrete transition systems are satisfying dynami properties, often encoded in temporal
logic [22, 17]. Temporal logics are exible languages able txpress a broad range of dynamical
properties [72]. Therefore this framework is well suited foour problem. However, because the
available information is almost exclusively available irbigrary units, it is important to be able to
exploit the information on the direction of the variations. Stated di erently, although the exact
value of the measures we have is generally meaningless, ifiermation on their change in time
contains valuable information. Unfortunately, the levelf @bstraction of the classical analysis made
on PADE models, and the one used by similar formalisms, aretooarse to develop discriminant
model validation approaches: often, the sign of the deriva¢ of the variables is unknown, and so
could be matched with any observation. The main technicalmoibution of my thesis is therefore to
show that with the existing information on parameters, oneat make a ner-grained analysis that
leads to a more detailed representation of the dynamics iniatn derivative signs are known. This lead
me to reimplement the core of the qualitative simulataBenetic Network Analyzet (GNA) developed
by the Helix (now lbis) group at INRIA [27, 8]. This approachds been applied to the validation of
two models of bacterial stress adaptation responses: splation in B. subtilis [26] and nutritional
stress response it. coli [78]. In the rst case, the comparison with experimental dat[71] revealed

1. GNA is freely available for academic research at the address: http://ibis.inrialpes.fr/article122.html
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that the observed expression pattern of a protein, Hpr, isdompatible with the model. Further
analysis showed that this observation is also in contrad@t with the role generally assumed for
Hpr [89], calling for the experimental validation of Hpr exgession pattern. In the second case, we
obtained di erent discrepancies between model and obsetivas during the entry ofE. coli cells into
stationary phase [73]. This motivated the group to initiatean ambitious research program that lead
to the nding that the global regulation of gene expressiomeglected in our model as in the vast
majority of the experimental studies, has a major role in tredaptation to nutritional stress [15].
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Figure 2: Model validation. Temporal evolution of the concentration of proteins in the utritional
stress response network during the transition to stationaphase. (a) Predictions for Fis and CRP
in a path in the state transition graph generated by qualitae simulation. (b) Observation of Fis
concentration (open circles) during the growth-phase traition, as indicated by cell density (closed
circles) [4].

2.4 Scaling up

The proposed approach is based on the automated analysis o€lass of di erential inclusion
systems obtained by regularizing the dynamics of di ereatiequation systems with discontinuities.
Recently, we found that huge computational gains are podsitby using extended step functions [11].
Stated simply, the idea is to de ne the system directly usindj erential inclusions, instead of de ning
the dynamics with di erential equations and regularizing afterwards. Although, this comes at the
price of a second (modest) over-approximation, it greatlyrapli es the presentation of the approach
and, most importantly, the computations to be done. This ste has been critical to propose a fully
symbolic representation of the dynamics that enabled theeausf highly-e cient symbolic analysis
tools [21]. The computational gains have been obtained thigay signi cantly extended the class of
problems that are solvable via this approach [11]. As oftentkvtheory, it takes a lot of e orts to
nd a simple solution to a complex problem. But then, thanksat its simplicity, or more precisely to
its high regularity, this solution then o ers key advantagéor the resolution of the problem.

To illustrate the e ectiveness of the approach, we consided the problem of parameter search for
qualitative models (Figure 3(a)-(b)). By considering all gssible parameter orderings, it is possible
to explore exhaustively the parameter space. The challenggurally comes from the combinatorial
explosion of the number of parameter orderings -that is of mels to analyze- with the increase of
the size of the system, that is with the number of genes. The eiency of the approach has been
demonstrated on the redesign of one of the largest synthetienetic regulatory network constructed
so far [18] (Figure 3(c)-(d)). We have been able to nd amongHhousands of possible qualitative
parametrizations a handful of parameter orderings that guentee (in theory!) the robust control of
the behavior of the synthetic system.

2.5 Signi cance and perspectives

Proposed in 2003, the formal veri cation approach | develed during my PhD was one of the very
rst work proposing the application of model checking to sysms biology problems [9, 10]. Since
then model checking approaches for systems biology probtebecame quite popular (for reviews,
see e.g. [30, 46, 36]). To the best of my knowledge, the approla | developed during my PhD
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Figure 3: Network optimization. (a) Representation of the dynamics of a simple gene network,
represented in the state space, for di erent parameter ord@gs. (b) Abstract representation of the
dynamics of the system, represented by a state transitionagh, for di erent parameter orderings.
(c) The IRMA network in yeast: a network for in vivo assessmeaof reverse-engineering and modeling
approaches [18]. (d) Representation in temporal logic fourtas of the experimentally-observed gene
expression pro les in IRMA.

for the validation of genetic regulatory network models igil the sole approach able to generate a
ne grained representation of the dynamics adapted to modealidation against real-life experimental
data. In retrospect, | explain this by the fact that the apprach aiming at de ning the problem
at the continuous level, solving the various issues that swiat this level, and then abstracting is
more e ective for solving the issues raised by the discradion of the dynamics than those aiming
at de ning the dynamics directly at the abstract level. Thispproach is still lacking the capability
to reason in a compositional manner, so as to exploit the mddrity in biological systems, as done
in [60].

Even if the proposed approach is still one of the most attrage approach to make value of
the (essentially qualitative) data that has been producea gar on biological networks, it is not in
phase with a strong global trend in molecular and cellulablmigy: being more and more quantitative.
Even if the biological relevance of quantitative precisianered by the novel experimental methods
is still often largely questionable (lack of reproductiil, imperfect experimental designs, ...), in
terms of perspective it is of high interest to develop approlaes that can account for all the available
information. In this respect, synthetic biology can be coiagered as a niche for developing model-
ing approaches for quantitative systems biology since ssis are constructed to be manipulated,
observed and optimized. Therefore, during my postdoctorsiay at Boston University | worked on
adapting the idea of PADE system analysis to the quantitagvproblems found in synthetic biology.
This line of research is described in the following chapter.

Validation of qualitative models of genetic regulatory net works by model checking: Analysis
of the nutritional stress response in E. coli (2005)

G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, NPage and D. Schneider
Bioinformatics, 21(Suppl 1):i19-i28
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The modeling and simulation of genetic regulatory networkshave created the need for tools for
model validation. The main challenges of model validationra the achievement of a match between
the precision of model predictions and experimental data, @ well as the e cient and reliable
comparison of the predictions and observations. We presergn approach towards the validation of
models of genetic regulatory networks addressing the abovehallenges. It combines a method for
qualitative modeling and simulation with techniques for mael checking, and is supported by a new
version of the computer tool Genetic Network Analyzer (GNA) The model-validation approach has
been applied to the analysis of the network controlling the ntritional stress response in Escherichia
coli.

E cient parameter search for qualitative models of regulat ory networks using symbolic model
checking (2010)

G. Batt, M. Page, |. Cantone, G. Goessler, P. Monteiro and H.edJong

Bioinformatics, 26(18):i603-i610

Investigating the relation between the structure and behaior of complex biological networks often
involves posing the question if the hypothesized structuref a regulatory network is consistent
with the observed behavior, or if a proposed structure can geerate a desired behavior. The
above questions can be cast into a parameter search problerorf qualitative models of regulatory
networks. We develop a method based on symbolic model chedl that avoids enumerating all
possible parametrizations, and show that this method perfons well on real biological problems,
using the IRMA synthetic network and benchmark datasets. Wetest the consistency between
IRMA and time-series expression pro les, and search for pameter modi cations that would make
the external control of the system behavior more robust.
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3 Optimization of simple synthetic genetic circuits

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are.
If it doesn't agree with experiment, it's wrong."
Richard P. Feynman

3.1 Quantitative yet robust analysis of synthetic genetic ¢ ircuits

The number of biological processes that have been quantitetly studied with an accuracy that
enables the development of biologically relevant quantite models is still limited. Nevertheless
their number is steadily increasing and it is likely that thitrend will become a major direction in
systems biology in the coming years. This is particularlyu# in the eld of synthetic biology. The
objective of synthetic biology is to develop methods that ¢ditates the engineering of biological
systems implementing useful functions [3, 84]. Importantopential application domains include the
production or biofuels or of other types of biomolecules oéthnological or medical interest [69], or
the development of novel therapeutic strategies like cell tissue based therapies [38].

The correct functioning of such systems often involves qui#ative aspects, constraining for
example the minimal output amplitude or the maximal respanime of synthetic systems. Therefore
the qualitative approaches presented in the previous chapare not appropriate for such applications.
However, because of the intrinsic noisiness of the functing of biological systems and the fact
that they should accomplish their functions despite uctu#ng environments, traditional quantitative
engineering methods, based on numerical simulation of oty di erential equation systems, are
not appropriate either. One should design systems that befearobustly for sets of parameters or
perturbations.

3.2 Reasoning with quantitative constraints on parameters

This objective can be met by using an extension of the previbytpresented PADE method. In
PADE systems the nonlinear responses of promoter activityiten represented via Hill functions, is
abstracted by step functions. The idea here is to use a lessslic abstraction and use instead so-
called ramp functions, a class of piecewise a ne function. YBusing many segments, Hill functions
can be approximated to any degree of accuracy. As previousgulation functions describing the
promoter activity as a function of the concentrations of itgegulators are constructed by combining
these elementary functions. This leads to a class of pieceimultia ne (PWMA) models [6, 13].
This class of models has a nice mathematical property: in @etregions of the state and parameter
space, the ow of the system is a convex combination of the ovat extreme points (vertices) of
the region [14, 44]. Therefore, it is easy to identify that te ow is monotonic in some regions: the
ow at all vertices point in the same direction. A more quartitive version of this intuition states
that, given an appropriate partition of the state and paranter spaces, the derivative everywhere
in each region is included in the convex hull of the derivasvat the vertices of this region. It is
then possible to use the same idea as with qualitative PADE deds: de ning the state transition
graph in which states represent regions of the partition artcansitions represent the possibility for
the system to go from one region to another. This graph can agabe e ciently analyzed by model
checking. This allows to identify parameter sets for whichne can guarantee that a given behavior
is necessarily present or impossible. Because of the appmations that are made, the approach is
conservative. When parameter sets are identi ed as valih@has the guarantee that this holds. But
valid parameters might be missed. This happens when becaokthe approximations, the approach
cannot prove their validity.

To improve the e ciency of the (exhaustive) exploration of he parameter space, one can extend
the approach previously sketched as follows. Instead ofljupartitioning the parameter space and
testing each parameter region, one can partition the paranee space in a dynamic manner. Parameter
constraints are added only when needed, leading to a hiehacal approach in which parameter space
partitioning and model veri cation alternate. This approeh has been shown to be much more
e cient [6]. However, it necessitated to work with paramete sets that are not equivalence classes
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(but are unions of equivalent classes) and non-trivial thestical extensions have been needed [12].
This approach has been implemented in the tool RoVerGeNeg(stling for robust veri cation of gene
newtorks)?.
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Figure 4: (a) Synthetic transcriptional cascade construetl and characterized in the Weiss lab [48].
(b) Piecewise-multia ne model of the cascade in (a). This mdel uses so-called ramp functions

3.3 Optimization of synthetic circuits: in silico studies

This approach has been applied to the analysis of a geneticgit made of a cascade of repressing
transcriptional factors [48] (Figure 4). We rst generatedconstraints on protein synthesis parameters
so as to optimize the input/output response of the circuit. & found a set of constraints on protein
production parameters (Figure 5(a)), suggesting biologait modi cations of the network, such as
tuning ribosome binding sites. Then, we tested the robusts® of the newly parametrized system
with respect to variations of all its parameters. We found #t the systems is guaranteed to satisfy
the desired behavior for a relatively large set of parametethe expected property is satis ed by the
system for any parameter uctuations in 10%ranges around their nominal values.

10%

@ (b)

Figure 5: (a) Valid parameters in the parameter space as idieed by RoVerGeNe (rectangular
regions) or by brute-force sampling (dots). jaci , ¢, and ey are production rate parameters for
three proteins of the transcriptional cascade. (b) Steadstate input/output behavior of the cascade
for extreme parameter values in the valid parameter sets repented (a) showing that relevant
parameter constraints have been identi ed by the approachThe output is expected to remain
between the bounds represented by dotted lines.

2. RoVerGeNe is freely available for academic research. It @n be downloaded from the address:
http://iasi.bu.edu/ batt/rovergene/rovergene.htm
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The property of interest stated that at steady state the outpt of the system should remain
between given bounds, these bounds depending on the inpuig(ffe 5(b)). Therefore, to express
this property in temporal logic, one typically states thatventually some constraints hold and that
they will then remain always true. To test whether a propertgventually hold, one should consider
trajectories of the system where the time diverges (ie is uminded). Because time is abstracted
away in the state transition graph that is analyzed by modehecking, a speci c analysis of the
divergence of time in the regions where the attractors lie @@ to be done before model checking [7].
An extension to capture more quantitative constraints on ttime spent in regions of the state
space has been carried out subsequently using timed autoaand timed logics instead of discrete
transitions systems and temporal logics [59].

3.4 Signi cance and perspectives

One should insist here on the computational di culty of the poblem. Indeed one tries to prove
that a global dynamical property holds for a 4 dimensional mmear system and for all parameters
in an 11 dimensional parameter space. We have demonstratbdttthe approach is computationally
feasible for systems of reasonable complexity as typicahcountered in the eld (the typical size of
synthetic gene network is 2 to 6 genes). Yet, scalability t@idger systems would be an issue, since
the complexity of the approach scales exponentially witheldimensionality of the system.

However, the main drawback of this and the previous approaoh PADE models is that the
discrete abstractions su er from the well-known transitity problem. In short, the problem is en-
countered when solutions can go from a region A to a region Bacéfrom a region B to a region C,
but no solution traverses the A, B, and C regions. Such infoation will be lost in the abstractions in
which transitions from A to B and from B to C will exists. Therds no information to infer that the
sequence of transition A B! C is not valid. As a consequence, one might not be able to prahat
some property hold based on the state transition graph. Farge classes of properties of interest
the conservativeness of the approach might prevent from faming informative analyses. This is
an intrinsic limitation of any approaches using discrete gtbactions. A second limitation comes from
the treatment of parameter uncertainties. In our models, pameters are assumed to lie in sets,
however, they can in principle vary in a unbounded mannertliese sets across time. While it is true
that parameters are likely to uctuate in time, assuming thiaall temporal variations are admissible
within the given bounds leads to overly conservative resultAn alternative approach is to work
with parameter distributions. That is, instead of set-vakd uncertainties we consider probabilistic
uncertainties. This second approach is employed in the nektapter.

Robustness analysis and tuning of synthetic gene networks (2007)
G. Batt, B. Yordanov, C. Belta and R. Weiss
Bioinformatics, 3(18):2415-2422

The goal of synthetic biology is to design and construct biabgical systems that present a desired
behavior. The construction of synthetic gene networks imptmenting simple functions has demon-
strated the feasibility of this approach. However, the degn of these networks is di cult, notably
because existing techniques and tools are not adapted to déwith uncertainties on molecular con-
centrations and parameter values. We propose an approachiféhe analysis of a class of uncertain
piecewise-multia ne di erential equation models. This mo deling framework is well adapted to the
experimental data currently available. Moreover, these maels present interesting mathematical
properties that allow the development of e cient algorithm s for solving robustness analyses and
tuning problems. These algorithms are implemented in the tol RoVerGeNe, and their practical
applicability and biological relevance are demonstratedrothe analysis of the tuning of a synthetic
transcriptional cascade built in Escherichia coli.
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4 Investigating dynamical properties of complex networks

"Un état dangereux : croire comprendre"
Paul Valéry

4.1 Quantitative analysis of large biological networks

In my previous works, | considered methods that enabled tasen for sets of parameters. The
preeminent advantage of these approaches is that they piwirobust predictions of the possible
behaviors of the biomolecular system under study. Given thsually high level of uncertainty on
precise mechanisms of biomolecular reactions, initial citions and parameter values, this aspect is
of utmost importance for systems and synthetic biology apghtions. By using highly e cient tools
from formal methods, one can exhaustively test dynamicaloperties of interest in the whole state
and parameter spaces. The exhaustiveness of the search ipartant for model (in)validation. We
have been able to identify that a previously-proposed qtetive model of nutritional stress response in
E. coli cannot account for the observed protein variations duringnd after the transition to stationary
phase or to propose robust network modi cations to improvehe all-or-none response of a synthetic
transcriptional cascade irkE. coli.

However, these approaches su er from discrete abstractigmoblems. In both cases, the idea is
to partition the state space, compute local reachability pperties (ie reachability between regions of
the partition), and de ne a state transition graph where noes are regions and transitions represent
the possibility to go from one region to another. Thereforehis state transition graph is an abstract
representation of the dynamics: to each trajectory of the m@inal system corresponds a path in the
graph. The problem comes from the fact that the converse do@®t necessarily hold: some paths in
the graphs correspond to no real trajectory. The fact that omtrajectory can reach region B from A
and that another con reach region C from B will result in the gsence of a path reaching C from A
in the graph irrespectively of the existence of trajectoseof the original system reaching C from A:
discrete abstraction creates spurious trajectories. Theften severely limit the prediction capabilities
of discrete-abstraction-based approaches.

A well-known alternative to model parameter uncertainty i® work with the set of trajectories
that one obtains by considering dynamical systems with parater distributions. The behavior of such
systems can then be seen as an (in nite) number of trajectes forming "tubes" of various densities in
the state space. Like discrete abstraction methods, scallty is an issue. When the size of the system
increases, the volume of the space to analyze or to samplereases exponentially. Moreover, because
biologically-relevant distributions for parameters anditial conditions have generally an unbounded
support (e.g., normal and log-normal distributions), a vgrbroad diversity of behaviors are possible
with low probability. Therefore one is then confronted to th analysis of a large number of trajectories
to systematically investigate and visual inspection rapjidoecomes impractical. The strategy we
developed is to use temporal logic to de ne the properties afterest and (a quantitative version of)
model checking to test whether (or more precisely how wellhe trajectories satisfy the expected
properties.

4.2 Reasoning with large sets of trajectories

Typical properties that interest systems and synthetic Hamgists include verifying that the output
of a three-stage transcriptional cascade iB. coli has reached the desired value in at most 7 hours, or
that caspase-3 is never activated before caspase-8 durimpptosis in certain mammalian cell lines.
Then, how can one relate these biological properties witheh(in nite) set of trajectories generated
by the corresponding models? Because parameter distribus are generally unbounded, asking that
such properties always hold does not make much sense. In faxte would like to get a score on
how well trajectories satisfy the properties of interest sthat statistics or optimization can be made,
typically for robustness evaluation or optimization purges.

The solution that we proposed is to use temporal logic to ende the desired dynamical properties
and a quantitative interpretation of their satisfaction owiolation. The notion of satisfaction degree
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of a temporal logic property captures whether a speci ¢ bekr satis es (or violates) robustly the
property. With this tool, one can then represent graphicgllin the space of parameters or of initial
conditions the satisfaction degree of various propertiasse them to perform statistics or optimization,
or even apply global sensitivity analysis methods to idépntihe parameters that are most in uential
for the property [76, 88].

In what follows, this idea is applied to two problems. In thest case, we propose to use temporal
logic as a property speci cation language and present a countptional framework that enables the
computation of the robustness of many properties in a uniqeetting. In the second case, we show
that temporal logics can be used to encode precisely obsehsystem behaviors and that this enable
to systematically challenge model predictions for varioegperimental observations and cell types.

4.3 Application to robust timing of a synthetic transcripti onal cascade

In a seminal paper Kitano de ned the robustness of a propegyof a systems with respect to a set
of perturbationsP as the average of an evaluation functioD3 of the system over all perturbations
p2 P, weighted by the perturbation probabilitieprob(p) [53]: R3p = p2P prob(p) D dp

Unfortunately, Kitano does not provide much information ohow to de ne the so-calledevaluation
function D} of the system. This function should determine if the systentils maintains its function
under a perturbation and to what degree. The evaluation futien needs to be de ned for each
speci ¢ problem in an ad-hoc manner. In [74, 75] we introdudbe notion of satisfaction degree
sd(Tp; ) of a trajectory T, of the system under perturbatiorp with respect to the temporal logic
property and show that one can then provide a generic computationar fine robustess simply by
usingsd(T,; ) in place ofD3 in Kitano's de nition.

In [75] we investigate whether the transcriptional cascadmnstructed in [48] and presented in
the previous chapter can robustly be used as a biologicaléimThe response of the cascade to the
addition of an inducer is characterized by a rapid increadelee uorescence preceded by a signi cant
lag-phase. This system could therefore be used as a timer fymthetic biology applications, for
example for developmental programs. Unfortunately, the teeogeneity of the cell responses may
prevent its robust use as a timer. Indeed, having even a lowportion of cells sending a signal too
early or too late might compromise the correct functioningfahe whole system.

To investigate the robustness of the "well-timed" behavioof the cascade, we developed a Hill-
type model and searched for parameter distributions that téd the observed mean and variance.
Then simulation and model checking showed that the propeniyvas not fully robustly satis ed and
global optimization was used to optimize the robustness df¢ behavior of the cascade. Interestingly,
with the proposed parameter modi cations, the variabilitys reduced at moments that are important
for the speci cation as expected, but increased at less cdraned times, suggesting the existence of
a robustness/fragility trade-o .

Finally, we used global sensitivity analysis to study howrpgaeter changes a ect the robustness
of the property. Our analysis suggested that heterogeneisi in growth rates have a strong in uence
on the robustness of the property and that the performance ttie cascade is limited by the fact that
one repressor is not fully able to robustly repress its tatggene.

4.4 Application to the comparison of di erent apoptotic res ponses in di erent
cell types

In higher eukaryotic cells, a given environmental signgbiscessed in di erent manners in di erent
cell types. Although the identi cation of the exact origin®f such di erences is still an open problem
of major importance, experimental evidence indicates thatibtle di erences in the concentrations
of signal transduction proteins may have an important impadn [1], Sorger and colleagues provide
detailed experimental data on extrinsic apoptosis in threell types and propose a model of this
pathway for these three dierent cell types. In agreement Wi the current understanding, cell
type models have the same set of reactions but di erent ingi protein concentration distributions.
However, in [1] model predictions have not been systematlgacompared with the produced data.
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In [88], we encode in temporal logic a set of observation diegl with the relative order of caspases
activation, the necessity of mitochondria outer membraneepmeabilization (MOMP) for e ector
caspase activation, and the survival of cell lines overesgsing Bcl2. All these properties deal with
the role of mitochondria in cell death and are interchangdghused to classify cell lines in two types:
type | (mitochondria independent death) and type Il (mitoandria dependent death). Then, using
simulation and model checking, we systematically testedetltonsistency of all observed behaviors
with respect to all cell lines. This systematic proceduréustrated that these three properties are not
equivalent and therefore result in inconsistent type I/lledl line classi cations.

Figure 6: Property-based model analysis framework. Hetgemeous observations on the system are
formalized as STL properties. Consistency between modeldaexperimental observations is tested
via STL diagrams and population data. Inconsistencies caa kesolved via property-guided model
revision. In contrast to the DLE-based approach proposed Bydridge and colleagues [1], STL

properties explicitly encode speci ¢ aspects of cell's panse, in our case, of the role of mitochondria
in type /1l apoptosis.

4.5 Signi cance and perspectives

The analysis of large ODE models is challenging. To obtain@asonable picture of the dynamics,
one needs to simulate many trajectories for many di erent itial conditions and parameter values.
Visual inspection of the resulting set of trajectory then lm®mes impractical.

Temporal logics are property speci cation languages. Thegllow to express a broad class of
observed or expected behaviors in a precise manner. Moreawzent theoretical developments
introduced the notions of satisfaction degree for temporédgic formula evaluated on numerical traces.
This is a signi cant contribution since the usual tools fortte analysis of high dimensional systems
(global sensitivity analysis, global optimization, etc)perate on real-valued quantities. Using the
natural Boolean interpretation of temporal logic formulagould be inappropriate. A last advantage
of temporal logics is their simplicity. A number of intereistg properties can be expressed in an intuitive
manner. On the negative side, the apparent simplicity to engss properties can be misleading. It is
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sometimes di cult to identify that what one has written is nat exactly what one intended to write.
Still, one should hope that these formal methods will be wigieadopted by computational biologists
working in systems and synthetic biology communities.

In comparison to the set-based approached presented in thexpous chapters, deterministic
models with parameter distributions adopt an other extremeiew on parameter values. As seen
previously, in set-based approaches, parameters can varyam arbitrary manner across time within
given bounds. That is, the model does not exclude behavianswhich parameters would jump at
each time instant between two extreme values. This is obvEy not realistic. In the probabilistic
models that we presented here, parameters are initially galed according to distributions, but then
keep their values in time. Given that the physiology of the lceecessarily changes in time, let alone
because it ages, this assumption is certainly not valid eith Therefore e orts should be made to
develop a modeling framework in which parameters could dipehange in time. Experimental e orts
should accompany these modeling developments to provideéadt constrain the novel parameter
uctuation models. This will be all the more important that te duration of the experimentation
increases.

A general computational method for robustness analysis wit h applications to synthetic gene
networks (2009)

A. Rizk, G. Batt, F. Fages and S. Soliman

Bioinformatics, 25(12):i169-i178

Robustness is the capacity of a system to maintain a functiorin the face of perturbations. It is
essential for the correct functioning of natural and enginered biological systems. Robustness is
generally de ned in an ad-hoc, problem-dependent manner,htus hampering the fruitful develop-
ment of a theory of biological robustness, advocated by Kitao [Mol Syst Biol, 3:137, 2007]. In
this paper, we propose a general de nition of robustness thaapplies to any biological function
expressible in temporal logic LTL, and to broad model classeand perturbation types. Moreover,
we propose a computational approach and an implementatiomiBIOCHAM 2.8 for the automated
estimation of the robustness of a given behavior with respedo a given set of perturbations. The
applicability and biological relevance of our approach iseimonstrated by testing and improving the
robustness of the timed behavior of a synthetic transcriptonal cascade that could be used as a
biological timer for synthetic biology applications.

STL-based analysis of TRAIL-induced apoptosis challenges the notion of type Il/type Il cell
line classi cation (2013)

S. Stoma, A. Donzé, F. Bertaux, O. Maler, G. Batt

PLoS Computational Biology 9(5):e1003056

Extrinsic apoptosis is a programmed cell death triggered bexternal ligands, such as the TNF-
related apoptosis inducing ligand (TRAIL). Depending on ttke cell line, the specic molecular
mechanisms leading to cell death may signi cantly di er. Precise characterization of these di er-
ences is crucial for understanding and exploiting extrinsiapoptosis. Cells show distinct behaviors
on several aspects of apoptosis, including (i) the relativeorder of caspases activation, (ii) the
necessity of mitochondria outer membrane permeabilizatio (MOMP) for e ector caspase acti-
vation, and (iii) the survival of cell lines overexpressin@cl2. These di erences are attributed to
the activation of one of two pathways, leading to classi cation of cell lines into two groups: type
| and type Il. In this work we challenge this type l/type Il cel line classi cation. We encode the
three aforementioned distinguishing behaviors in a formalnguage, called signal temporal logic
(STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced
apoptosis with respect to experimental observations made ro di erent cell lines. After having
solved a few inconsistencies using STL-guided parameter aeh, we show that these three criteria
do not de ne consistent cell line classi cations in type | ortype Il, and suggest mutants that are
predicted to exhibit ambivalent behaviors. In particularthis nding sheds light on the role of a
feedback loop between caspases, and reconciliates two apeatly-con icting views regarding the
importance of either upstream or downstream processes foredl-type determination.
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More generally, our work suggests that these three distingishing behaviors should be merely
considered as type I/l features rather than cell-type de ring criteria. On the methodological
side, this work illustrates the biological relevance of STkdiagrams, STL population data, and
STL-guided parameter search implemented in the tool BreachSuch tools are well-adapted to the
ever-increasing availability of heterogeneous knowledgen complex signal transduction pathways.
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5 Computer-assisted control of biocellular processes

"What | cannot control, | do not understand."
Freely adapted from Richard P. Feynman

5.1 Real-time control in systems and synthetic biology

How predictive can models be? This question is critical fouantitative systems biology. The
objective of this eld is to propose explanation to observeghenomena in terms of well de ned
biological processes. Adaptation to an hyper-osmotic s§®in yeast results from the activation of
enzymes via a signal transduction pathway and subsequemitisgsis of glycerol. To test whether our
understanding can quantitatively explain observationsodels are proposed that should at the very
least account for the observations, and in the best casesosifd predict new situations.

Yet, it is apparent that models have a very limited predicvpower. It is rarely the case that a
model developed to account for observation made in one speaontext extends easily to obser-
vations made in a slightly di erent context. Does it indica that our understanding is inaccurate
or is it something that is to be expected given the importanaef the cellular context for biological
processes? This is a very fundamental question at the coresgstems biology research.

To address this problem, | proposed to consider real-time o predictive control (MPC) prob-
lems. Given a target temporal pro le for the output and a modeof the system, the problem is to
nd how to play with the input so that the desired output behaior is obtained. In close collaboration
with Pascal Hersen, we developed an automated experimemtaitform that in real time observes the
current state of a biological process (outputs) and acts o inputs) based on algorithms for state
estimation, parameter inference and active control.

With this platform, one can investigate model predictive peer from di erent perspectives. How
performance degrades when observation times are more dista time? Answering this question will
give us valuable information on the predictive horizon of omodels. Can we get better performance
with more detailed models? Answering this question enablesto compare the predictive power of
di erent models.

5.2 Proof of principle: controlling gene expression in yeast

To demonstrate the potential of the approach, we considerettie problem of controlling gene
expression in yeast cells by using a osmoresponsive promatel applying osmotic stresses to cells.
The platform integrates microscopy for monitoring gene exgssion at the cell level, micro uidics to
manipulate the cells environment, and original softwarerfautomated imaging, quanti cation, and
online learning or control (Figure 7). The challenges residh the tight integration of all the platform
components and the real time constraint. In particular, thenage processing step should be robust
enough to be able to track single cells over the full coursetbe experiment (15hrs) without human
assistance. Yet the image analysis process should not lasidger than 2 to 3 minutes. All other
elements of the platform should comply with the same robusss and e ciency criteria.

An extremely simple model of the osmostress response patiwas been used. We showed that
this model alone is not able to propose temporal input pro$ethat lead to accurate results (Fig-
ure 8(E)-(F); open loop framework). However, when one usedservations on the current state of
the cell to adapt the control policy, good control performares are obtained (Figure 8(A)-(D)) [95].
To appreciate the di culty of the control problems that we addressed, one should keep in mind that
the controlled system, a yeast cell, is an extremely complard partially known dynamical system
and that the controlled process, gene expression, is ingically stochastic. We are currently investi-
gating the e ects on control performance of decreasing theasnpling rate (in the current framework,
observations are made every 6 minutes) or of using more coaxpmodels in the controller [97]. This
should provide valuable information on the current state @ur understanding of the hyperosmotic
stress response pathway in yeast.
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Figure 7: A platform for real-time control of gene expression in yeast Yeast cells grow as a monolayer in a
micro uidic device which enables to rapidly change the cedl osmotic environment (valve, blue frame) and to
image their response. After image processing (orange framéhe measured yECitrine uorescence, either of
a single cell or of the mean of all cells, is sent to a state estiator connected to a MPC controller. A model
(center, black frame) of pSTL1 induction is used to nd the best possible series of osmotic pulses to apply
in the future so that the predicted yECitrine level follows atarget pro le. At the present time point (orange
disk), the system state is estimated (green) and the MPC searhes for the best input pro le for the next 2
hours (blue curve). The selected hyperosmotic pro le is sento the micro uidic command. This control loop

is iterated every 6 minutes.

5.3 Signi cance and perspectives

In addition to be a valuable tool to investigate the importare of various factors on the predictivity
of models, our real-time control platform is a unique tool fosystems biologists to realize well-
controlled physiological modi cations of the level of prains in live cells. Stated di erently, this
enables biologists to perturb cellular processes with anpuecedented accuracy. This can be a very
important contribution to dissect the functionning of manybiological processes, since identi cation
theory clearly indicates, that the possibilities to undeend (ie identify) a process is limited by the
possibilities to perturb it (notion of practical identi aklity) [96]. This platform also o er perspectives
for synthetic biology applications. Indeed, one could septe the actual biological processes that are
of interest for the biotechnology or medical applicationdm its control. Indeed, so far, the goal of
biologists is to engineer cells that implement a desired fition in a fully automated way, meaning
that process and control were implemented within cells. Hewer, in many cases it turned out that
implementing complex control functions in cells was challging. Therefore, by o ering the possibility
to externalize part of the problem, we might o er important slutions to synthetic biology.

Despite the fact that the importance of control theory for sgtems and synthetic biology has
been widely recognized for more than a decade [24, 50], thdwad use ofin silico feedback loops to
control intracellular processes has only been proposedergty. In 2011, we were the rst to show
that the signaling activity in live yeast cells can be conifed by an in silico feedback loop [94]. Using
a proportional-integral (PI) controller we controlled theoutput of a signal transduction pathway by
modulating the osmotic environment of cells in real time. Me recently, Toettcher et al. used
elaborate microscopy techniques and opto-genetics to cooltin real time and at the single cell level
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Figure 8: Real-time control of gene expression can be achieved at theopulation level. (A) and (B) Set-
point control experiments with di erent target values (red dashed line). The timeline of osmotic events is
shown at the bottom of each graph (see color code for shock duations, bottom). Shock starting times
and durations are computed in real-time. The measured meanetl uorescence is shown as solid blue lines.
The enveloppes indicate standard deviation of the uorescece distribution across the yeast population. (C)
and (D) Tracking control experiments. In both cases, the mea level of uorescence successfully follows the
time-varying target pro le. (E) and (F) Open-loop control e xperiments. Two examples of open-loop control
(the osmotic inputs were computed using our model, before sirting the experiments) showing poor control
quality. Errors accumulate over time. The simulated behawr of the system is represented in violet.

the localization and activity of a signal transduction prein (PI3K) in eukaryotic cells [92]. Also using
optogenetic techniques, Milias-Argeitis et al. managed twontrol the expression of a yeast gene to
a constant target value over several hours [63]. Their apprch is based on a chemostat culture and
is therefore better adapted to biotechnological applicatns than to probing biological processes for
single-cell quantitative biology applications. These wa have been reviewed in Chen et al. [20].

Long-term model predictive control of gene expression at th e population and single-cell levels
(2012)

J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fage$. Bottani, G. Batt and P. Hersen
PNAS, 109(35):14271-14276
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Gene expression plays a central role in the orchestration @kllular processes. The use of inducible
promoters to change the expression level of a gene from its piiological level has signi cantly
contributed to the understanding of the functioning of regulatory networks. However, from a
quantitative point of view, their use is limited to short-term, population-scale studies to average
out cell-to-cell variability and gene expression noise anlimit the nonpredictable e ects of internal
feedback loops that may antagonize the inducer action. Hergve showthat, by implementing an
external feedback loop, one can tightly control the expredsn of a gene over many cell generations
with quantitative accuracy. To reach this goal, we developd a platform for real-time, closed-loop
control of gene expression in yeast that integrates microsapy for monitoring gene expression at
the cell level, micro uidics to manipulate the cells? envionment, and original software for auto-
mated imaging, quanti cation, and model predictive control. By using an endogenous osmostress
responsive promoter and playing with the osmolarity of the ells environment, we show that long-
term control can, indeed, be achieved for both time-constahand time-varying target pro les at
the population and even the single-cell levels. Importani] we provide evidence that real-time
control can dynamically limit the e ects of gene expressionstochasticity. We anticipate that our
method will be useful to quantitatively probe the dynamic poperties of cellular processes and drive
complex, synthetically engineered networks.
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6 Conclusion and future directions of research

"For success, attitude is equally as important as ability."
Walter Scott

6.1 Cells as members of a population

The investigation of the functioning of cells at the molecar level has so far mostly been addressed
at the cell population level. Standard molecular biology deniques provide population-averaged
measurements of cellular compounds and activities. Yet,cently, great progress has been been
made in single-cell measurements, revealing a signi carglleto-cell variability [66, 87]. Although
cell-to-cell variability at the molecular level does notwshys generate physiological di erences [2],
it has been shown in a few cases at least that variability musé accounted for to explain certain
cellular processes [68, 34].

One can distinguish two di erent causes of "noisy" cell beldors. The rst and most obvious
cause is the stochasticity of biological processes [66, 81hdeed at the molecular level, biological
reactions rely on the stochastic encountering of individuaolecules. The second cause is unobserved
deterministic factors. Di erences in initial molecular cotent, in cell size, in cell age, or in local cell
density can cause heterogeneous cell responses to an homeges stimulation, and therefore an
apparently noisy behavior [85, 99, 49]. In any observed bmital process, biological variability
originates from both sources, with one possibly dominatirte other. It is important to be able
to distinguish these two types of variability, since a lot diological knowledge can be learned by
identifying unknown deterministic causes. Modeling canlpéo disentangle those two types of noise.

However, from a modeling and system identi cation point ofiew distinguishing these noises
is challenging [41, 93]. Not only it necessitates appropgahigh quality data but also e ective
parameter estimation methods. Indeed the stochastic natuof reactions is generally captured by a
class of stochastic models based on the chemical master ep@ and the unknown deterministic
in uences are generally captured by models with parametdstlibutions. The problem of parameter
estimation of stochastic models with multidimensional pameter distributions is open. Actually,
approximate methods have been recently developed for thet extreme case, where all the variability
is assumed to exclusively originate from molecular noiséthngood performances [67, 97]. However,
no e cient method has been proposed so far for the estimatioaf deterministic models with parameter
distribution, the other extreme case, based on single celitd. One should note that the method
used by Zechner and colleagues does support the identi @atiof models mixing the two sources of
variability mentioned above [97]. However, no analysis Hasen made to evaluate the capability of
the proposed approach to appropriately proportionate thevb in uences on the overall variability.

The naive approach for the identi cation of deterministic madels with parameter distributions
would be to t a model to the mean behavior and from this t, ret the model to single cell data.
This way, one would obtain a set of “individual-cell" paranters. One could then identify the multi-
dimensional distributions that describe the identi ed seif parameters. The major drawback of such
an approach is that one has no guaranty that this gives an aptable model of the population. Indeed
if one resamples parameters in the identi ed distributionsind computes the simulated population
behaviors, large deviations are encountered. With the Far@recate group (Pavia Univ.), we inves-
tigate the use of mixed e ect parameter identi cation methals to identify parameter distributions
from single cell videomicroscopy data generated in the Hemdab (CNRS/Paris 7). Importantly mixed
e ect methods capture parameter multidimensional correfimns and search for distributions that t
the behaviors of the entire population [29]. This will be ti¢al for the identi cation of biologically
meaningful models.

This framework then enables to assign speci c parameter uak to specic cells. Therefore
this directly addresses questions related to cell indivadity. How e ective are single cell models
in predicting the cell behavior? For how long is the predio#i power of the model better than the
one of the mean model, or stated di erently how long is this dividuality preserved? What are
the connections with protein mixing times as introduced byigal et al [83]? We investigate these
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guestions in the context of long-term prediction of a cell gmulation subjected to repeated TRAIL
applications as described in more details in the followingcsion.

6.2 Cells within their environment

Environment matters. It is clear that growth conditions a et the cell physiology and hence all
biomolecular processes. However, how and to which degrea ispeci ¢ biological process a ected
by environmental changes? This question is too often nedled. In bacterial systems it has been
shown that the probability of switching from growth on glucge to growth on lactose depends on
cellular growth rate and is not purely stochastic as posttéal earlier [77]. At a much larger level, it
has been shown that gene expression is globally a ected bywth conditions, and that this global
in uence plays a major regulatory role in the orchestratioof the adaptation response [15]. This has
consequences in systems and synthetic biology applicasisince biological systems are often analyzed
or developed in conditions that are di erent from the standa, natural or operating, conditions. In
eukaryotic cells, and most notably in mammalian cells, emgimous and ectopic genes are subject to
epigenetic modi cations and silencing [51]. Growth condins, such as possible oxidative stresses,
are known factors that in uence the epigenetic status of gess. But the main determinants are still
unknown. This is a major issue for the development of prediat functional systems in mammalian
synthetic biology. Similarly, the contribution of enviramental changes to the orchestration of cell
responses in the human body is de facto neglected in most o fim vitro studies. This may severely
hamper our capacity to understand and interfere with cellrfationing for systems or pharmaceutical
biology.

To detect the in uence of environmental factors and assesi¢ir impact, quantitative approaches
are needed. To obtain a quantitative understanding of the &gm in its changing environment, one
needs to model the systenand its environments, and to obtain the corresponding data. Inhat
follows, | will describe two problems and for each of thosenwsion the approaches that can be
developed.

The rst problem that we considered is the creation of a patteing system. More precisely,
we consider engineered yeast cells derived from [19] whosewgh depends on a small di usible
molecule, IP, in a band pass manner. That is, growth is podsitonly when the IP concentration is
within given bounds. In e ect, two "killing modules"”, a low hreshold and a high threshold, have
been implemented to trigger cell death outside the desiré® lange. Moreover, these cells have been
engineered to produce IP in an inducible manner. Therefoir, principle this system could exhibit
patterning capabilities on solid media, typically agar pés. Indeed di erent initial seedings will result
in di erent non trivial con gurations of the system in time. In this project, our objective is to develop
models of the intracellular synthetic network and of cell gwth in solid environments, tune these
models based on data collected independently, and test thecaracy of our predictions for the full
system. Deviations from model predictions will indicate éiences in the functioning of the system.

The development of such systems is di cult. Indeed, one typally considers a dynamical system
with a dynamical structure. Indeed, unlike standard probts, the structure of the system itself (ie
cell number and cell locations) is changing with time. Thigsanot be neglected. Moreover, the scale
of the phenomena spans several orders of magnitude, from t®ll size to the Petri dish. Therefore
one should employ multiscale methods. This work is done inllaboration with the groups of Ron
Weiss (MIT) for the synthetic biology constructions and of Bk Drado (INRIA) for the cell-based
spatial simulations.

A second problem of interest is understand how the geometriytbe cell population a ects tissue
response. In most studies the cell response is charactatine monolayer conditions. This notably
gives access to single cell behaviors. However, in vivo|scatlopt more complex 3D organizations.
For example, cancer cells form spheroids at the early tumdages. Such spheroids can be recreated
in vitro but cell observations is more di cult. This explais at least partly why drug testing and drug
treatment optimization is mostly made in vitro on monolaygb5]. However, it is unclear how those
results will transpose to spheroids or even to in vivo tumor$ndeed, the 3D structuration of the
tissue a ects the physical accessibility of cells in the §ge (molecular di usion) and possibly the cell
physiology as well (contact inhibition). Following the saitegy employed in the previous project, the
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idea here is to combine a model of cell death following ant4tcerous treatment calibrated based on
monolayer cell cultures with a 3D model of spheroid growth@molecule di usion and compare model
predictions with experimental data. Deviations from pregtions will indicate important di erences
between cell responses in di erent conditions. These ndjs will likely guide the development of
novel therapeutic strategies.

Existing 3D models of tumors growth have already been deysd by collaborators in the Bang
research group (Dirk Drasdo Multi-cellular Systems grou39, 32, 47]. A challenging missing piece
is a model of long term cell response to drug treatments. Forample, even if TRAIL is one of the
most studied and best characterized death-inducing molée(31], the quantitative understanding of
the e ect of repeated TRAIL additions on (monolayer) cellssi still missing [37]. It has been shown
that accounting for cell-to-cell variability was essentidor explaining the observed variable delay in
the times of death following Trail treatment [86]. Howeverthe solution proposed to implement
cell-to-cell variability does not allow for long term prediions: cell heterogeneity is modeled using
distributions on protein concentrations, serving as irafi conditions of the simulation. Clearly, this
heterogeneity is cast into stone at the beginning and cannlo¢ regenerated with time in the surviving
population. Therefore, we extended this model with stochiés gene expression processes generating
the same steady state distributions but able to dynamicaldgpture protein uctuations. Preliminary
results suggest that our extended model is able to captureettobserved reversible resistance of the
population of surviving cells. Equipped with these two mdd@ne can test consistency between model
predictions and recently published data on spheroids TRAteatments [57]. The development and
validation of such tools will hopefully prove valuable foramy therapeutic studies.

6.3 A platform for well-controlled physiological perturba tions

To provide means to better control intracellular processewe have developed a platform for real-
time control of gene expression. As described in the predathapter this platform enables to control
the concentration of a protein in a time-varying manner at thsingle-cell level with unprecedented
accuracy. At the same time a few other works have been pubéshon this problem using di erent
approaches and di erent focuses but with comparable accasa Collectively, these works have at-
tracted quite some attention from the community and press Possible extensions can be classi ed
in two groups: further methodological developments and nehapplications. In what follows, | brie y
present perspectives for each research direction.

Methodological developments are needed to produce data ofea higher quality and develop
models that make even better use of the available data. Getji quantitative readout, devoid of
biological or optical artifacts, for each cell along the eime experiment in an automated manner
necessitates in fact non-trivial image processing techo@&s and tools. Excellent image segmentation,
tracking, and whenever possible, lineage reconstructiore aeeded is one wants to get biologically
relevant conclusions. We are working with the BioComputingroup in Lille in this direction. The
use of the novel optogenetics methods in place of osmotic esises to trigger gene expression would
also be bene cial since it would limit the in uence of the int on the cell under investigation (better
orthogonality) [5].

To make better use of available data during control experimis one needs to have e cient state
reconstruction methods and control algorithms. In collabation with Eugenio Cinquemani (IBIS
group, INRIA) and Alessandro Abate (Oxford Univ.) we dev@anethods for stochastic systems.
We expect that these methods will outperform their determistic counterparts in conditions of single
cell control. This would be the rst experimental demonstition that stochastic models and methods
improve our prediction capabilities at the single cell ldveA second direction for improving single
cell control is to tune the parameters of deterministic modeto the individual cell that is controlled
based on either mixed e ect model parameter distributions @nline learning methods.

The second main research direction deals with novel applicas. Our publication in PNAS was a
proof of concept for real-time control in yeast. It simply stbwed that closed loop control was possible

3. 'Cyborg' yeast genes run by computer appeared in BBC news and Une étape de plus vers la pleine maitrise du
vivant appeared in I'Humanité Dimanche describing the works of Lygeros, Khammash, El Samad and colleagues, and
Hersen, Batt and colleagues, respectively
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with good accuracy in a simple eukaryotic cell. Going beyath@ proof of concept and demonstrating
that real-time control can be developed for higher eukaryotcells are two natural extensions of our
previous results.

In the context of the INRIA/INSERM "action d'envergure" prgect that notably aims at under-
standing the connection between the availability of the trscription machinery and the cell physiology
and growth, we will "clamp" the level of key transcriptiondiactors for extended duration and observe
the cellular e ects. Closed loop control is motivated by th@resence of endogenous feedback loops
(at the very least, the transcription machinery componentseed to be transcribed). Without our
control platform, the quantitative analysis of the long ten e ects of transcription de ciency can
hardly be investigated. This project is done in collaborati with the group of Hidde de Jong and
Hans Geiselman (INRIA Grenoble Rhoéne-Alpes and CNRS/Godre University) who have been
working for several years on the global regulation of gengpgassion inkE. coli.

In the context of the ANR Investissement d'Avenir project éberg, we investigate real-time control
of gene expression in mammalian cells. In close collabamatwith the group of Pascal Hersen
(CNRS/Paris7), and with four other partners, we are develapg cell lines that enable us to observe
and control gene expression in a reliable manner. One catitssue is to design and construct an
induction system that is responsive enough to get interesgi dynamics at the time scale of a cell
cycle and for many cell generations. To develop this systeme will base our work on a "landing
pad" technology developed with the Weiss lab (MIT). This pteorm uses recombinases and enables
the e cient integration of a complex genetic construct at a wique and targeted position in the
genome [33]. All the other elements of the platform (micro idic device and microscopy for long
term experiments, image analysis; modeling and control @lighms)need to be adapted to this new
system. Being able to control in live cells protein conceations in mammalian cells would open a
number of interesting research directions for the pharmagecal industry.
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"The idea is to try to give all the information to help others ¢ judge the value of your contribution;
not just the information that leads to judgment in one partialar direction or another."
Richard P. Feynman
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