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1 Introduction

"Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages,
mais à avoir de nouveaux yeux"

Marcel Proust

Since 50 years, biology is undergoing a revolution. Driven by technological progress, the pos-
sibility to investigate the functioning of biological processes at the cellular level are expanding at
an ever-increasing pace. Over the second half of the last century, the expansion of molecular and
cellular biology has been stunning. It is now possible to sequence whole genomes for a few thou-
sands of dollars [81], to get access to the mRNA content of cells in a routine manner [64], to get
access to the protein content of whole tissues [58]. One can also observe protein and mRNA levels
and locations in single cells for extended durations [54, 70]. Besides observing biological processes,
one can also manipulate them with unprecedented capabilities. One can construct and integrate
large genetic circuits [43, 56], synthesize entire genomes[40], hijack metabolism to e�ciently pro-
duce biomolecules [69]. These techniques o�er enormous opportunities [52]. In biotechnology major
research e�orts are invested for the production of biofuel or of high-value biomolecules, and for
the development of biosensors or of bioremediation systems. In medicine, virus-based or cell-based
therapies are envisioned using reprogrammed biological systems that exploit and expand their nat-
ural capabilities to create arti�cial tissues or even organs. The development of biosensors for drug
screening and design is another application of high interest.

The technological push in modern biology is so strong that ithas cleaved the historical domains
of biology, ranging from biochemistry to physiology, into two broad areas: small-scale and large-scale
biology [16]. In a nutshell, small-scale biology -also known as bottom-up systems biology- focuses on
gathering detailed information on the speci�c components of a particular dynamical process. Data
is often acquired with high temporal resolution and at the single cell or even single molecule level.
Large-scale biology -also known as top-down systems biology- aims at getting a snapshot of the state
of the cell for all biological processes. Because not everything can be observed at the same time,
one distinguishes genomics, transcriptomics, proteomics, metabolomics, etc, according to the focus
on the particular method employed [98, 45]. One of the main issues of large-scale approaches is that
they often o�er extensive but disconnected views of biological processes. The integration of these
di�erent views is often extremely challenging at such a scale [98, 45]. Actually, rather than bringing
an increased understanding, these methods have revealed that the complexity of the functioning of
cellular systems was even greater than originally assumed.This currently limits the usefulness of
the "omics" approach. On the contrary, small-scale biologyhas been more successful in providing
explanations on the functioning of biological processes thanks to a more integrated view [82, 65].
Naturally, it lacks extent. The integration of individual processes in the context of the functioning of
the whole cell is still drastically missing. Therefore, it appears that any form of "mid-scale" biology
that o�ers a better compromise in depth and breadth of information than existing methods has a
signi�cant potential to contribute to systems and synthetic biology.

Extending the depth/breadth frontier is precisely what modeling can do. Indeed, constructing a
model that involves observed inputs and outputs, and unobserved variables is precisely a way to test
assumptions on unobserved quantities. A striking example is the work of Suter and colleagues in which
promoter properties are deduced from the observation of protein levels [90]. The main conclusion
of the paper is that mammalian genes are transcribed with widely di�erent bursting kinetics, yet
transcription is never directly observed. In this case, modeling and carefully crafted experimental
design were the critical elements that enabled linking an observed quantity, protein levels, with other,
unobserved quantities, transcription rate and promoter bursting. A second example is the work of
Spencer et al [86]. Here the authors relate observed variability in protein concentrations and in time
of cell death via modeling apoptotic pathways and conclude that the naturally occurring di�erences
in the levels of proteins regulating receptor-mediated apoptosis are the primary causes of cell-to-cell
variability in the timing of death. Here again, the joint useof an appropriate model and of question-
driven experiments has been instrumental to draw the proposed conclusions. Because models can
push the depth/breadth frontier beyong what is currently possible by direct observation, modeling
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has a potentially critical role in biology. One should note however, that genuine contributions of
modeling to biology are still rare. One possible explanation is that it necessitates the combination of
a well-de�ned biological question, of a question-driven experimental approach, and of the use of an
appropriate modeling framework. Although this seems obvious, in practice, putting together these
three aspects so that they �t perfectly together is an exquisitely delicate work.

Even if it is still rarely the case that modeling can provide solid evidence to draw new conclusions, it
is often the case that modeling is e�ective to detect inconsistencies between existing data and current
understanding. For example data has been accumulated for many years on bacterial adaptation to
a variety of environmental stresses. Many papers explainedadaptation to nutritional stress and the
subsequent changes in expression of many genes by the combined e�ects of positive and negative
transcription regulators. Yet, careful modeling of the various genetic regulatory interactions that
were assumed to underlie the observed global response lead to inconsistencies and motivated the
systematic analysis of the expression levels of all key genes involved in the nutritional stress response.
This work lead to the striking conclusion that the large majority of expression changes were due
to global changes of the gene expression machinery, rather than to speci�c control by transcription
factors [15]. Therefore models have a signi�cant role to play in testing the consistency of current
understanding with actual experimental data. it is a critical tool to ensure that novel information can
be aggregated with previous ones on a solid ground.

I started my PhD in 2002 and since then my research deals with computational systems biology.
I addressed a number of diverse problems, ranging from modelvalidation, hypothesis testing, robust-
ness assessment, system design, optimization and control.My contributions include the development
of novel mathematical methods, their implementation in publicly-available tools, the application of
advanced modeling techniques, developed by myself or others, and the joint development of experi-
mental plans and computational procedures to obtain a good integration of wet lab and dry lab data.
Even if the overall objective of my work is to better understand the functioning of cellular processes,
there is a marked trend towards problems that allow for a tight integration between experiment and
modeling. In a sense my research has followed over the years the global trend of systems biology
of being more and more quantitative. But more speci�cally, Ifocused on problems that enabled a
good match between modeling predictions and experimental data. If modeling is expected to play an
important role, the experimental setup and the computational framework should be jointly selected
by the wet lab and dry lab biologists.

A second evolution of my research is to gradually evolve frommethod-driven research to problem-
driven research. In the �rst case, the object of the researchis a methodological tool, such as a
theorem that applies to a particular class of dynamical systems, that is then applied to the most
promising problems. In the second case, the object of the research is a particular biological process
that one wants to understand, hijack for application purposes or control. This problem is solved
using any methods that are appropriate. Naturally, both type of research are of value and both
directions should be pursued. In my experiment, the second direction is superior on a critical aspect:
it guarantees biological relevance of the work. Its potential drawback is that it does not guarantee
the generality of the solution. On a personal level, I found that the �rst aspect is more important
than the second. Both aspects can of course be combined and itcould be argued that the main task
of the person in charge of directing research is to select themost interesting problems, namely those
that originate from a genuine biological question and whoseresolution can be generalized to other
related problems. Those problems are probably the most challenging to solve, but also will guarantee
that the research will be original and innovative. They alsorequire broad expertise to appreciate the
speci�c di�culties on all aspects. On the biological side, the most critical domains of expertise are
molecular and cellular biology. A good knowledge of existing experimental methods is required as
well. On the methodological side, the important domains of expertise are dynamical systems and
control, and computer science. One of the main objective of my research work was to gain some
expertise in these various domains, that strengthen and complement my initial background in biology
and computer science.

In the remainder of this manuscript, I will present and discuss a selection of my works that I
consider representative of my contribution to the domain ofcomputational systems biology and of
my research path. As it will appear I started by considering rather abstract models of gene networks,
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adapted to the level of information that is generally available in systems biology (Chapter 2), then
considered better characterized systems such as syntheticgene networks and extended the previous
framework to a more quantitative setting (Chapter 3). When one assumes that an even more
complete knowledge is available, one can work with distributions of parameters and investigate the
robustness of various properties (Chapter 4). In all the previous works, the work was done in tight
collaboration with biologists, but the biological relevance of the work was assessed based on existing
biological data. The application of modeling to practical control problems o�ered me the opportunity
to co-supervise, in collaboration with Pascal Hersen (MSC lab CNRS/Paris 7) interdisciplinary work
combining wet and dry lab biology (Chapter 5). I am now importantly involved in the continuation of
this work in several directions and in two other collaborative projects with the Weiss lab for synthetic
biology (MIT) and with the Drasdo group on multicellular system modeling (Bang, INRIA). In the
near future, I plan to continue the development of these research directions that combine modeling
and experiment in an intricate manner (Chapter 6).
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2 Testing the consistency of regulatory interactions in med ium-
scale gene networks

"All models are wrong but some are useful"
George Edward Pelham Box

2.1 Qualitative models of large gene networks

During my PhD I worked on a method developed for the modeling of relatively large genetic reg-
ulatory networks (up to 10-15 genes). These networks are made of genes coding for proteins, mostly
transcription factors, and of regulatory in�uences of the proteins on gene expression. This framework
is appropriate to describe a number of processes that mostlyrely on intricate gene regulations. A
number of developmental processes falls into this realm. Oncan notably mention the responses to
environmental changes, like the sporulation decision inB. subtilis [26] or the adaptation to nutri-
tional stress inE. coli [78] (Figure 1(a)), developmental processes, like �ower morphogenesis [61] or
drosophila development [79], and oscillatory behaviors, like cell cycle [35, 25].

For such complex cell processes, the information needed to develop quantitative models is seldom
available. This seriously challenges the biological relevance of the standard quantitative framework
used to model such networks: Hill-type models. These modelsare di�erential equation models where
sigmoidal functions (Hill functions) are used to describe regulatory in�uences of proteins on gene
expression, and more precisely on promoter activity. In particular, when genes are regulated by several
transcription factors, obtaining a quantitative description of the regulation function is particularly
challenging [80]. In most cases however, qualitative information is available on the "logic" of gene
regulation.
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Figure 1: Gene regulatory networks and PADE models . Network of key genes, proteins, and
regulatory interactions involved in the nutritional stress network inE. coli [78]. (b) Piecewise a�ne
di�erential equation and parameter inequality constraints for one protein in the network, the topoi-
somerase TopA. This model uses step functionss+ .

2.2 Reasoning with qualitative constraints on parameters

Several modeling frameworks have been proposed to deal withthis problem, most notably logical
regulatory models [91] and qualitative piecewise-a�ne di�erential equations (PADE) systems [28]
(Figure 1(b)). The key idea of PADE system modeling is to abstract Hill functions appearing in
Hill-type models by step functions. Step functions do capture the non-linearity and the saturating
aspects of Hill functions, which are two critical features of Hill functions for biological relevance.
However, the speci�c shape of the regulatory function, which is generally not known, is abstracted
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away. This framework leads to switched a�ne systems. In eachregion of the switched system the
dynamics can be described and solved very easily. More precisely, transitions from one region to
another region can be inferred from qualitative information on parameters. Stated di�erently, the
globally complex problem is recast in a set of locally simpleproblems. The analysis of such systems
relies on the computation of a state transition graph that represents the dynamics of the system in
the state space. States represent a partition of the state space into a set of hyperrectangular regions
and transitions represent local reachability between regions.

One of the main issues with this and related formalisms arises from the simpli�cations that are
employed. The dynamics of the system changes when protein concentrations cross threshold con-
centrations. Within threshold hyperplanes the dynamics isnot de�ned. Even if the set of all regions
that are in one or more threshold hyperplanes, called singular regions, is of measure zero in the whole
state space, these regions cannot be neglected because theyoften contain attractors of the dynam-
ics. Several attempts to de�ne the dynamics in these regionshave been made in PADE and related
formalisms [62, 73]. A mathematically satisfying solutionhas been proposed by Gouzé and Sari us-
ing Filippov regularizations [42]. In short, the dynamics is de�ned in singular regions as the convex
combination of the dynamics in neighboring regular regions. This extension leads to di�erential in-
clusions, de�ned everywhere, instead of di�erential equations, de�ned only almost everywhere [42].
Unfortunately, the analysis of this class of systems necessitated quantitative information on param-
eters. Gouzé and de Jong found that using rectangular combinations in place of Filippov's convex
combinations makes it possible to compute the state transition graph representing in an abstract
manner the dynamics solely by reasoning with the relative order of the model parameters [28]. This
is critical to solve the original problem in a mathematically well grounded manner with qualitative
reasoning only.

2.3 Model validation

This qualitative framework is ideally suited to test the consistency of our understanding of the
functioning of complex biological processes and on the often heterogeneous and qualitative available
experimental information. Indeed, because one reasons forlarge sets of parameter values, simply
de�ned in terms of ordering relations, the predictions obtained by this method are by essence very
robust. Therefore, if an observed behavior is not accountedfor by a qualitative model, it seriously
calls for model revision. Developing an approach for testing the validity of qualitative models of
genetic regulatory networks was precisely the topic of my PhD work. The objective is to encode
the observed property in some formal framework and test whether the model satis�es this property
in an automated and e�cient manner. This is precisely the objective of model checking [23]. Over
the years, the formal veri�cation community has developed extremely e�cient methods for testing
whether discrete transition systems are satisfying dynamical properties, often encoded in temporal
logic [22, 17]. Temporal logics are �exible languages able to express a broad range of dynamical
properties [72]. Therefore this framework is well suited for our problem. However, because the
available information is almost exclusively available in arbitrary units, it is important to be able to
exploit the information on the direction of the variations. Stated di�erently, although the exact
value of the measures we have is generally meaningless, the information on their change in time
contains valuable information. Unfortunately, the level of abstraction of the classical analysis made
on PADE models, and the one used by similar formalisms, are too coarse to develop discriminant
model validation approaches: often, the sign of the derivative of the variables is unknown, and so
could be matched with any observation. The main technical contribution of my thesis is therefore to
show that with the existing information on parameters, one can make a �ner-grained analysis that
leads to a more detailed representation of the dynamics in which derivative signs are known. This lead
me to reimplement the core of the qualitative simulatorGenetic Network Analyzer1 (GNA) developed
by the Helix (now Ibis) group at INRIA [27, 8]. This approach has been applied to the validation of
two models of bacterial stress adaptation responses: sporulation in B. subtilis [26] and nutritional
stress response inE. coli [78]. In the �rst case, the comparison with experimental data [71] revealed

1. GNA is freely available for academic research at the address: http://ibis.inrialpes.fr/article122.html
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that the observed expression pattern of a protein, Hpr, is incompatible with the model. Further
analysis showed that this observation is also in contradiction with the role generally assumed for
Hpr [89], calling for the experimental validation of Hpr expression pattern. In the second case, we
obtained di�erent discrepancies between model and observations during the entry ofE. coli cells into
stationary phase [73]. This motivated the group to initiatean ambitious research program that lead
to the �nding that the global regulation of gene expression,neglected in our model as in the vast
majority of the experimental studies, has a major role in theadaptation to nutritional stress [15].
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Figure 2: Model validation. Temporal evolution of the concentration of proteins in the nutritional
stress response network during the transition to stationary phase. (a) Predictions for Fis and CRP
in a path in the state transition graph generated by qualitative simulation. (b) Observation of Fis
concentration (open circles) during the growth-phase transition, as indicated by cell density (closed
circles) [4].

2.4 Scaling up

The proposed approach is based on the automated analysis of aclass of di�erential inclusion
systems obtained by regularizing the dynamics of di�erential equation systems with discontinuities.
Recently, we found that huge computational gains are possible by using extended step functions [11].
Stated simply, the idea is to de�ne the system directly usingdi�erential inclusions, instead of de�ning
the dynamics with di�erential equations and regularizing it afterwards. Although, this comes at the
price of a second (modest) over-approximation, it greatly simpli�es the presentation of the approach
and, most importantly, the computations to be done. This step has been critical to propose a fully
symbolic representation of the dynamics that enabled the use of highly-e�cient symbolic analysis
tools [21]. The computational gains have been obtained thisway signi�cantly extended the class of
problems that are solvable via this approach [11]. As often with theory, it takes a lot of e�orts to
�nd a simple solution to a complex problem. But then, thanks to its simplicity, or more precisely to
its high regularity, this solution then o�ers key advantagefor the resolution of the problem.

To illustrate the e�ectiveness of the approach, we considered the problem of parameter search for
qualitative models (Figure 3(a)-(b)). By considering all possible parameter orderings, it is possible
to explore exhaustively the parameter space. The challengenaturally comes from the combinatorial
explosion of the number of parameter orderings -that is of models to analyze- with the increase of
the size of the system, that is with the number of genes. The e�ciency of the approach has been
demonstrated on the redesign of one of the largest syntheticgenetic regulatory network constructed
so far [18] (Figure 3(c)-(d)). We have been able to �nd among thousands of possible qualitative
parametrizations a handful of parameter orderings that guarantee (in theory!) the robust control of
the behavior of the synthetic system.

2.5 Signi�cance and perspectives

Proposed in 2003, the formal veri�cation approach I developed during my PhD was one of the very
�rst work proposing the application of model checking to systems biology problems [9, 10]. Since
then model checking approaches for systems biology problems became quite popular (for reviews,
see e.g. [30, 46, 36]). To the best of my knowledge, the approach I developed during my PhD
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(a) (b)

(c) (d)

Figure 3: Network optimization. (a) Representation of the dynamics of a simple gene network,
represented in the state space, for di�erent parameter orderings. (b) Abstract representation of the
dynamics of the system, represented by a state transition graph, for di�erent parameter orderings.
(c) The IRMA network in yeast: a network for in vivo assessment of reverse-engineering and modeling
approaches [18]. (d) Representation in temporal logic formulas of the experimentally-observed gene
expression pro�les in IRMA.

for the validation of genetic regulatory network models is still the sole approach able to generate a
�ne grained representation of the dynamics adapted to modelvalidation against real-life experimental
data. In retrospect, I explain this by the fact that the approach aiming at de�ning the problem
at the continuous level, solving the various issues that arise at this level, and then abstracting is
more e�ective for solving the issues raised by the discretization of the dynamics than those aiming
at de�ning the dynamics directly at the abstract level. Thisapproach is still lacking the capability
to reason in a compositional manner, so as to exploit the modularity in biological systems, as done
in [60].

Even if the proposed approach is still one of the most attractive approach to make value of
the (essentially qualitative) data that has been produced so far on biological networks, it is not in
phase with a strong global trend in molecular and cellular biology: being more and more quantitative.
Even if the biological relevance of quantitative precisiono�ered by the novel experimental methods
is still often largely questionable (lack of reproductibility, imperfect experimental designs, . . . ), in
terms of perspective it is of high interest to develop approaches that can account for all the available
information. In this respect, synthetic biology can be considered as a niche for developing model-
ing approaches for quantitative systems biology since systems are constructed to be manipulated,
observed and optimized. Therefore, during my postdoctoralstay at Boston University I worked on
adapting the idea of PADE system analysis to the quantitative problems found in synthetic biology.
This line of research is described in the following chapter.

Validation of qualitative models of genetic regulatory net works by model checking: Analysis
of the nutritional stress response in E. coli (2005)
G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M.Page and D. Schneider
Bioinformatics, 21(Suppl 1):i19-i28

13



The modeling and simulation of genetic regulatory networkshave created the need for tools for
model validation. The main challenges of model validation are the achievement of a match between
the precision of model predictions and experimental data, as well as the e�cient and reliable
comparison of the predictions and observations. We presentan approach towards the validation of
models of genetic regulatory networks addressing the abovechallenges. It combines a method for
qualitative modeling and simulation with techniques for model checking, and is supported by a new
version of the computer tool Genetic Network Analyzer (GNA). The model-validation approach has
been applied to the analysis of the network controlling the nutritional stress response in Escherichia
coli.

E�cient parameter search for qualitative models of regulat ory networks using symbolic model
checking (2010)
G. Batt, M. Page, I. Cantone, G. Goessler, P. Monteiro and H. de Jong
Bioinformatics, 26(18):i603-i610

Investigating the relation between the structure and behavior of complex biological networks often
involves posing the question if the hypothesized structureof a regulatory network is consistent
with the observed behavior, or if a proposed structure can generate a desired behavior. The
above questions can be cast into a parameter search problem for qualitative models of regulatory
networks. We develop a method based on symbolic model checking that avoids enumerating all
possible parametrizations, and show that this method performs well on real biological problems,
using the IRMA synthetic network and benchmark datasets. Wetest the consistency between
IRMA and time-series expression pro�les, and search for parameter modi�cations that would make
the external control of the system behavior more robust.
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3 Optimization of simple synthetic genetic circuits

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are.
If it doesn't agree with experiment, it's wrong."

Richard P. Feynman

3.1 Quantitative yet robust analysis of synthetic genetic c ircuits

The number of biological processes that have been quantitatively studied with an accuracy that
enables the development of biologically relevant quantitative models is still limited. Nevertheless
their number is steadily increasing and it is likely that this trend will become a major direction in
systems biology in the coming years. This is particularly true in the �eld of synthetic biology. The
objective of synthetic biology is to develop methods that facilitates the engineering of biological
systems implementing useful functions [3, 84]. Important potential application domains include the
production or biofuels or of other types of biomolecules of technological or medical interest [69], or
the development of novel therapeutic strategies like cell or tissue based therapies [38].

The correct functioning of such systems often involves quantitative aspects, constraining for
example the minimal output amplitude or the maximal response time of synthetic systems. Therefore
the qualitative approaches presented in the previous chapter are not appropriate for such applications.
However, because of the intrinsic noisiness of the functioning of biological systems and the fact
that they should accomplish their functions despite �uctuating environments, traditional quantitative
engineering methods, based on numerical simulation of ordinary di�erential equation systems, are
not appropriate either. One should design systems that behave robustly for sets of parameters or
perturbations.

3.2 Reasoning with quantitative constraints on parameters

This objective can be met by using an extension of the previously-presented PADE method. In
PADE systems the nonlinear responses of promoter activity,often represented via Hill functions, is
abstracted by step functions. The idea here is to use a less drastic abstraction and use instead so-
called ramp functions, a class of piecewise a�ne function. By using many segments, Hill functions
can be approximated to any degree of accuracy. As previously, regulation functions describing the
promoter activity as a function of the concentrations of itsregulators are constructed by combining
these elementary functions. This leads to a class of piecewise multia�ne (PWMA) models [6, 13].
This class of models has a nice mathematical property: in entire regions of the state and parameter
space, the �ow of the system is a convex combination of the �owat extreme points (vertices) of
the region [14, 44]. Therefore, it is easy to identify that the �ow is monotonic in some regions: the
�ow at all vertices point in the same direction. A more quantitative version of this intuition states
that, given an appropriate partition of the state and parameter spaces, the derivative everywhere
in each region is included in the convex hull of the derivatives at the vertices of this region. It is
then possible to use the same idea as with qualitative PADE models: de�ning the state transition
graph in which states represent regions of the partition andtransitions represent the possibility for
the system to go from one region to another. This graph can again be e�ciently analyzed by model
checking. This allows to identify parameter sets for which one can guarantee that a given behavior
is necessarily present or impossible. Because of the approximations that are made, the approach is
conservative. When parameter sets are identi�ed as valid, one has the guarantee that this holds. But
valid parameters might be missed. This happens when becauseof the approximations, the approach
cannot prove their validity.

To improve the e�ciency of the (exhaustive) exploration of the parameter space, one can extend
the approach previously sketched as follows. Instead of fully partitioning the parameter space and
testing each parameter region, one can partition the parameter space in a dynamic manner. Parameter
constraints are added only when needed, leading to a hierarchical approach in which parameter space
partitioning and model veri�cation alternate. This approach has been shown to be much more
e�cient [6]. However, it necessitated to work with parameter sets that are not equivalence classes
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(but are unions of equivalent classes) and non-trivial theoretical extensions have been needed [12].
This approach has been implemented in the tool RoVerGeNe (standing for robust veri�cation of gene
newtorks)2.
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Figure 4: (a) Synthetic transcriptional cascade constructed and characterized in the Weiss lab [48].
(b) Piecewise-multia�ne model of the cascade in (a). This model uses so-called ramp functionsr .

3.3 Optimization of synthetic circuits: in silico studies

This approach has been applied to the analysis of a genetic circuit made of a cascade of repressing
transcriptional factors [48] (Figure 4). We �rst generatedconstraints on protein synthesis parameters
so as to optimize the input/output response of the circuit. We found a set of constraints on protein
production parameters (Figure 5(a)), suggesting biological modi�cations of the network, such as
tuning ribosome binding sites. Then, we tested the robustness of the newly parametrized system
with respect to variations of all its parameters. We found that the systems is guaranteed to satisfy
the desired behavior for a relatively large set of parameters: the expected property is satis�ed by the
system for any parameter �uctuations in� 10% ranges around their nominal values.

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

[aTc]

[E
Y

F
P

]

(a) (b)

Figure 5: (a) Valid parameters in the parameter space as identi�ed by RoVerGeNe (rectangular
regions) or by brute-force sampling (dots).� lacI , � cI , and � eyfp are production rate parameters for
three proteins of the transcriptional cascade. (b) Steady-state input/output behavior of the cascade
for extreme parameter values in the valid parameter sets represented (a) showing that relevant
parameter constraints have been identi�ed by the approach.The output is expected to remain
between the bounds represented by dotted lines.

2. RoVerGeNe is freely available for academic research. It can be downloaded from the address:
http://iasi.bu.edu/ � batt/rovergene/rovergene.htm
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The property of interest stated that at steady state the output of the system should remain
between given bounds, these bounds depending on the input (Figure 5(b)). Therefore, to express
this property in temporal logic, one typically states that eventually some constraints hold and that
they will then remain always true. To test whether a propertyeventually hold, one should consider
trajectories of the system where the time diverges (ie is unbounded). Because time is abstracted
away in the state transition graph that is analyzed by model checking, a speci�c analysis of the
divergence of time in the regions where the attractors lie need to be done before model checking [7].
An extension to capture more quantitative constraints on the time spent in regions of the state
space has been carried out subsequently using timed automata and timed logics instead of discrete
transitions systems and temporal logics [59].

3.4 Signi�cance and perspectives

One should insist here on the computational di�culty of the problem. Indeed one tries to prove
that a global dynamical property holds for a 4 dimensional nonlinear system and for all parameters
in an 11 dimensional parameter space. We have demonstrated that the approach is computationally
feasible for systems of reasonable complexity as typicallyencountered in the �eld (the typical size of
synthetic gene network is 2 to 6 genes). Yet, scalability to larger systems would be an issue, since
the complexity of the approach scales exponentially with the dimensionality of the system.

However, the main drawback of this and the previous approachon PADE models is that the
discrete abstractions su�er from the well-known transitivity problem. In short, the problem is en-
countered when solutions can go from a region A to a region B, and from a region B to a region C,
but no solution traverses the A, B, and C regions. Such information will be lost in the abstractions in
which transitions from A to B and from B to C will exists. Thereis no information to infer that the
sequence of transition A! B ! C is not valid. As a consequence, one might not be able to provethat
some property hold based on the state transition graph. For large classes of properties of interest
the conservativeness of the approach might prevent from performing informative analyses. This is
an intrinsic limitation of any approaches using discrete abstractions. A second limitation comes from
the treatment of parameter uncertainties. In our models, parameters are assumed to lie in sets,
however, they can in principle vary in a unbounded manner in these sets across time. While it is true
that parameters are likely to �uctuate in time, assuming that all temporal variations are admissible
within the given bounds leads to overly conservative results. An alternative approach is to work
with parameter distributions. That is, instead of set-valued uncertainties we consider probabilistic
uncertainties. This second approach is employed in the nextchapter.

Robustness analysis and tuning of synthetic gene networks (2007)
G. Batt, B. Yordanov, C. Belta and R. Weiss
Bioinformatics, 3(18):2415-2422

The goal of synthetic biology is to design and construct biological systems that present a desired
behavior. The construction of synthetic gene networks implementing simple functions has demon-
strated the feasibility of this approach. However, the design of these networks is di�cult, notably
because existing techniques and tools are not adapted to deal with uncertainties on molecular con-
centrations and parameter values. We propose an approach for the analysis of a class of uncertain
piecewise-multia�ne di�erential equation models. This mo deling framework is well adapted to the
experimental data currently available. Moreover, these models present interesting mathematical
properties that allow the development of e�cient algorithm s for solving robustness analyses and
tuning problems. These algorithms are implemented in the tool RoVerGeNe, and their practical
applicability and biological relevance are demonstrated on the analysis of the tuning of a synthetic
transcriptional cascade built in Escherichia coli.
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4 Investigating dynamical properties of complex networks

"Un état dangereux : croire comprendre"
Paul Valéry

4.1 Quantitative analysis of large biological networks

In my previous works, I considered methods that enabled to reason for sets of parameters. The
preeminent advantage of these approaches is that they provide robust predictions of the possible
behaviors of the biomolecular system under study. Given theusually high level of uncertainty on
precise mechanisms of biomolecular reactions, initial conditions and parameter values, this aspect is
of utmost importance for systems and synthetic biology applications. By using highly e�cient tools
from formal methods, one can exhaustively test dynamical properties of interest in the whole state
and parameter spaces. The exhaustiveness of the search is important for model (in)validation. We
have been able to identify that a previously-proposed qualitative model of nutritional stress response in
E. coli cannot account for the observed protein variations during and after the transition to stationary
phase or to propose robust network modi�cations to improve the all-or-none response of a synthetic
transcriptional cascade inE. coli.

However, these approaches su�er from discrete abstractionproblems. In both cases, the idea is
to partition the state space, compute local reachability properties (ie reachability between regions of
the partition), and de�ne a state transition graph where nodes are regions and transitions represent
the possibility to go from one region to another. Therefore this state transition graph is an abstract
representation of the dynamics: to each trajectory of the original system corresponds a path in the
graph. The problem comes from the fact that the converse doesnot necessarily hold: some paths in
the graphs correspond to no real trajectory. The fact that one trajectory can reach region B from A
and that another con reach region C from B will result in the presence of a path reaching C from A
in the graph irrespectively of the existence of trajectories of the original system reaching C from A:
discrete abstraction creates spurious trajectories. Theyoften severely limit the prediction capabilities
of discrete-abstraction-based approaches.

A well-known alternative to model parameter uncertainty isto work with the set of trajectories
that one obtains by considering dynamical systems with parameter distributions. The behavior of such
systems can then be seen as an (in�nite) number of trajectories forming "tubes" of various densities in
the state space. Like discrete abstraction methods, scalability is an issue. When the size of the system
increases, the volume of the space to analyze or to sample increases exponentially. Moreover, because
biologically-relevant distributions for parameters and initial conditions have generally an unbounded
support (e.g., normal and log-normal distributions), a very broad diversity of behaviors are possible
with low probability. Therefore one is then confronted to the analysis of a large number of trajectories
to systematically investigate and visual inspection rapidly becomes impractical. The strategy we
developed is to use temporal logic to de�ne the properties ofinterest and (a quantitative version of)
model checking to test whether (or more precisely how well) the trajectories satisfy the expected
properties.

4.2 Reasoning with large sets of trajectories

Typical properties that interest systems and synthetic biologists include verifying that the output
of a three-stage transcriptional cascade inE. coli has reached the desired value in at most 7 hours, or
that caspase-3 is never activated before caspase-8 during apoptosis in certain mammalian cell lines.
Then, how can one relate these biological properties with the (in�nite) set of trajectories generated
by the corresponding models? Because parameter distributions are generally unbounded, asking that
such properties always hold does not make much sense. In fact, one would like to get a score on
how well trajectories satisfy the properties of interest sothat statistics or optimization can be made,
typically for robustness evaluation or optimization purposes.

The solution that we proposed is to use temporal logic to encode the desired dynamical properties
and a quantitative interpretation of their satisfaction orviolation. The notion of satisfaction degree
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of a temporal logic property captures whether a speci�c behavior satis�es (or violates) robustly the
property. With this tool, one can then represent graphically in the space of parameters or of initial
conditions the satisfaction degree of various properties,use them to perform statistics or optimization,
or even apply global sensitivity analysis methods to identify the parameters that are most in�uential
for the property [76, 88].

In what follows, this idea is applied to two problems. In the �rst case, we propose to use temporal
logic as a property speci�cation language and present a computational framework that enables the
computation of the robustness of many properties in a uniquesetting. In the second case, we show
that temporal logics can be used to encode precisely observed system behaviors and that this enable
to systematically challenge model predictions for variousexperimental observations and cell types.

4.3 Application to robust timing of a synthetic transcripti onal cascade

In a seminal paper Kitano de�ned the robustness of a propertya of a systems with respect to a set
of perturbationsP as the average of an evaluation functionD s

a of the system over all perturbations
p 2 P, weighted by the perturbation probabilitiesprob(p) [53]: Rs

a;P =
R

p2 P prob(p) D s
a dp

Unfortunately, Kitano does not provide much information onhow to de�ne the so-calledevaluation
function D s

a of the system. This function should determine if the system still maintains its function
under a perturbation and to what degree. The evaluation function needs to be de�ned for each
speci�c problem in an ad-hoc manner. In [74, 75] we introducethe notion of satisfaction degree
sd(Tp; � ) of a trajectory Tp of the system under perturbationp with respect to the temporal logic
property � and show that one can then provide a generic computational for the robustess simply by
usingsd(Tp; � ) in place ofD s

a in Kitano's de�nition.
In [75] we investigate whether the transcriptional cascadeconstructed in [48] and presented in

the previous chapter can robustly be used as a biological timer. The response of the cascade to the
addition of an inducer is characterized by a rapid increase of the �uorescence preceded by a signi�cant
lag-phase. This system could therefore be used as a timer forsynthetic biology applications, for
example for developmental programs. Unfortunately, the heterogeneity of the cell responses may
prevent its robust use as a timer. Indeed, having even a low proportion of cells sending a signal too
early or too late might compromise the correct functioning of the whole system.

To investigate the robustness of the "well-timed" behaviorof the cascade, we developed a Hill-
type model and searched for parameter distributions that �tted the observed mean and variance.
Then simulation and model checking showed that the propertywas not fully robustly satis�ed and
global optimization was used to optimize the robustness of the behavior of the cascade. Interestingly,
with the proposed parameter modi�cations, the variabilityis reduced at moments that are important
for the speci�cation as expected, but increased at less constrained times, suggesting the existence of
a robustness/fragility trade-o�.

Finally, we used global sensitivity analysis to study how parameter changes a�ect the robustness
of the property. Our analysis suggested that heterogeneities in growth rates have a strong in�uence
on the robustness of the property and that the performance ofthe cascade is limited by the fact that
one repressor is not fully able to robustly repress its target gene.

4.4 Application to the comparison of di�erent apoptotic res ponses in di�erent
cell types

In higher eukaryotic cells, a given environmental signal isprocessed in di�erent manners in di�erent
cell types. Although the identi�cation of the exact originsof such di�erences is still an open problem
of major importance, experimental evidence indicates thatsubtle di�erences in the concentrations
of signal transduction proteins may have an important impact. In [1], Sorger and colleagues provide
detailed experimental data on extrinsic apoptosis in threecell types and propose a model of this
pathway for these three di�erent cell types. In agreement with the current understanding, cell
type models have the same set of reactions but di�erent initial protein concentration distributions.
However, in [1] model predictions have not been systematically compared with the produced data.
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In [88], we encode in temporal logic a set of observation dealing with the relative order of caspases
activation, the necessity of mitochondria outer membrane permeabilization (MOMP) for e�ector
caspase activation, and the survival of cell lines overexpressing Bcl2. All these properties deal with
the role of mitochondria in cell death and are interchangeably used to classify cell lines in two types:
type I (mitochondria independent death) and type II (mitochondria dependent death). Then, using
simulation and model checking, we systematically tested the consistency of all observed behaviors
with respect to all cell lines. This systematic procedure illustrated that these three properties are not
equivalent and therefore result in inconsistent type I/II cell line classi�cations.

Figure 6: Property-based model analysis framework. Heterogeneous observations on the system are
formalized as STL properties. Consistency between model and experimental observations is tested
via STL diagrams and population data. Inconsistencies can be resolved via property-guided model
revision. In contrast to the DLE-based approach proposed byAldridge and colleagues [1], STL
properties explicitly encode speci�c aspects of cell's response, in our case, of the role of mitochondria
in type I/II apoptosis.

4.5 Signi�cance and perspectives

The analysis of large ODE models is challenging. To obtain a reasonable picture of the dynamics,
one needs to simulate many trajectories for many di�erent initial conditions and parameter values.
Visual inspection of the resulting set of trajectory then becomes impractical.

Temporal logics are property speci�cation languages. Theyallow to express a broad class of
observed or expected behaviors in a precise manner. Moreover recent theoretical developments
introduced the notions of satisfaction degree for temporallogic formula evaluated on numerical traces.
This is a signi�cant contribution since the usual tools for the analysis of high dimensional systems
(global sensitivity analysis, global optimization, etc) operate on real-valued quantities. Using the
natural Boolean interpretation of temporal logic formulaswould be inappropriate. A last advantage
of temporal logics is their simplicity. A number of interesting properties can be expressed in an intuitive
manner. On the negative side, the apparent simplicity to express properties can be misleading. It is
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sometimes di�cult to identify that what one has written is not exactly what one intended to write.
Still, one should hope that these formal methods will be widely adopted by computational biologists
working in systems and synthetic biology communities.

In comparison to the set-based approached presented in the previous chapters, deterministic
models with parameter distributions adopt an other extremeview on parameter values. As seen
previously, in set-based approaches, parameters can vary in an arbitrary manner across time within
given bounds. That is, the model does not exclude behaviors in which parameters would jump at
each time instant between two extreme values. This is obviously not realistic. In the probabilistic
models that we presented here, parameters are initially sampled according to distributions, but then
keep their values in time. Given that the physiology of the cell necessarily changes in time, let alone
because it ages, this assumption is certainly not valid either. Therefore e�orts should be made to
develop a modeling framework in which parameters could slowly change in time. Experimental e�orts
should accompany these modeling developments to provide data to constrain the novel parameter
�uctuation models. This will be all the more important that the duration of the experimentation
increases.

A general computational method for robustness analysis wit h applications to synthetic gene
networks (2009)
A. Rizk, G. Batt, F. Fages and S. Soliman
Bioinformatics, 25(12):i169-i178

Robustness is the capacity of a system to maintain a functionin the face of perturbations. It is
essential for the correct functioning of natural and engineered biological systems. Robustness is
generally de�ned in an ad-hoc, problem-dependent manner, thus hampering the fruitful develop-
ment of a theory of biological robustness, advocated by Kitano [Mol Syst Biol, 3:137, 2007]. In
this paper, we propose a general de�nition of robustness that applies to any biological function
expressible in temporal logic LTL, and to broad model classes and perturbation types. Moreover,
we propose a computational approach and an implementation in BIOCHAM 2.8 for the automated
estimation of the robustness of a given behavior with respect to a given set of perturbations. The
applicability and biological relevance of our approach is demonstrated by testing and improving the
robustness of the timed behavior of a synthetic transcriptional cascade that could be used as a
biological timer for synthetic biology applications.

STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell
line classi�cation (2013)
S. Stoma, A. Donzé, F. Bertaux, O. Maler, G. Batt
PLoS Computational Biology, 9(5):e1003056

Extrinsic apoptosis is a programmed cell death triggered byexternal ligands, such as the TNF-
related apoptosis inducing ligand (TRAIL). Depending on the cell line, the speci�c molecular
mechanisms leading to cell death may signi�cantly di�er. Precise characterization of these di�er-
ences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors
on several aspects of apoptosis, including (i) the relativeorder of caspases activation, (ii) the
necessity of mitochondria outer membrane permeabilization (MOMP) for e�ector caspase acti-
vation, and (iii) the survival of cell lines overexpressingBcl2. These di�erences are attributed to
the activation of one of two pathways, leading to classi�cation of cell lines into two groups: type
I and type II. In this work we challenge this type I/type II cell line classi�cation. We encode the
three aforementioned distinguishing behaviors in a formallanguage, called signal temporal logic
(STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced
apoptosis with respect to experimental observations made on di�erent cell lines. After having
solved a few inconsistencies using STL-guided parameter search, we show that these three criteria
do not de�ne consistent cell line classi�cations in type I or type II, and suggest mutants that are
predicted to exhibit ambivalent behaviors. In particular,this �nding sheds light on the role of a
feedback loop between caspases, and reconciliates two apparently-con�icting views regarding the
importance of either upstream or downstream processes for cell-type determination.
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More generally, our work suggests that these three distinguishing behaviors should be merely
considered as type I/II features rather than cell-type de�ning criteria. On the methodological
side, this work illustrates the biological relevance of STL-diagrams, STL population data, and
STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the
ever-increasing availability of heterogeneous knowledgeon complex signal transduction pathways.
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5 Computer-assisted control of biocellular processes

"What I cannot control, I do not understand."
Freely adapted from Richard P. Feynman

5.1 Real-time control in systems and synthetic biology

How predictive can models be? This question is critical for quantitative systems biology. The
objective of this �eld is to propose explanation to observedphenomena in terms of well de�ned
biological processes. Adaptation to an hyper-osmotic stress in yeast results from the activation of
enzymes via a signal transduction pathway and subsequent synthesis of glycerol. To test whether our
understanding can quantitatively explain observations, models are proposed that should at the very
least account for the observations, and in the best cases, should predict new situations.

Yet, it is apparent that models have a very limited predictive power. It is rarely the case that a
model developed to account for observation made in one speci�c context extends easily to obser-
vations made in a slightly di�erent context. Does it indicate that our understanding is inaccurate
or is it something that is to be expected given the importanceof the cellular context for biological
processes? This is a very fundamental question at the core ofsystems biology research.

To address this problem, I proposed to consider real-time model predictive control (MPC) prob-
lems. Given a target temporal pro�le for the output and a model of the system, the problem is to
�nd how to play with the input so that the desired output behavior is obtained. In close collaboration
with Pascal Hersen, we developed an automated experimentalplatform that in real time observes the
current state of a biological process (outputs) and acts on it (inputs) based on algorithms for state
estimation, parameter inference and active control.

With this platform, one can investigate model predictive power from di�erent perspectives. How
performance degrades when observation times are more distant in time? Answering this question will
give us valuable information on the predictive horizon of our models. Can we get better performance
with more detailed models? Answering this question enablesus to compare the predictive power of
di�erent models.

5.2 Proof of principle: controlling gene expression in yeas t

To demonstrate the potential of the approach, we consideredthe problem of controlling gene
expression in yeast cells by using a osmoresponsive promoter and applying osmotic stresses to cells.
The platform integrates microscopy for monitoring gene expression at the cell level, micro�uidics to
manipulate the cells environment, and original software for automated imaging, quanti�cation, and
online learning or control (Figure 7). The challenges reside in the tight integration of all the platform
components and the real time constraint. In particular, theimage processing step should be robust
enough to be able to track single cells over the full course ofthe experiment (15hrs) without human
assistance. Yet the image analysis process should not last longer than 2 to 3 minutes. All other
elements of the platform should comply with the same robustness and e�ciency criteria.

An extremely simple model of the osmostress response pathway has been used. We showed that
this model alone is not able to propose temporal input pro�les that lead to accurate results (Fig-
ure 8(E)-(F); open loop framework). However, when one uses observations on the current state of
the cell to adapt the control policy, good control performances are obtained (Figure 8(A)-(D)) [95].
To appreciate the di�culty of the control problems that we addressed, one should keep in mind that
the controlled system, a yeast cell, is an extremely complexand partially known dynamical system
and that the controlled process, gene expression, is intrinsically stochastic. We are currently investi-
gating the e�ects on control performance of decreasing the sampling rate (in the current framework,
observations are made every 6 minutes) or of using more complex models in the controller [97]. This
should provide valuable information on the current state ofour understanding of the hyperosmotic
stress response pathway in yeast.
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Figure 7: A platform for real-time control of gene expression in yeast. Yeast cells grow as a monolayer in a
micro�uidic device which enables to rapidly change the cells' osmotic environment (valve, blue frame) and to
image their response. After image processing (orange frame) the measured yECitrine �uorescence, either of
a single cell or of the mean of all cells, is sent to a state estimator connected to a MPC controller. A model
(center, black frame) of pSTL1 induction is used to �nd the best possible series of osmotic pulses to apply
in the future so that the predicted yECitrine level follows atarget pro�le. At the present time point (orange
disk), the system state is estimated (green) and the MPC searches for the best input pro�le for the next 2
hours (blue curve). The selected hyperosmotic pro�le is sent to the micro�uidic command. This control loop
is iterated every 6 minutes.

5.3 Signi�cance and perspectives

In addition to be a valuable tool to investigate the importance of various factors on the predictivity
of models, our real-time control platform is a unique tool for systems biologists to realize well-
controlled physiological modi�cations of the level of proteins in live cells. Stated di�erently, this
enables biologists to perturb cellular processes with an unprecedented accuracy. This can be a very
important contribution to dissect the functionning of manybiological processes, since identi�cation
theory clearly indicates, that the possibilities to understand (ie identify) a process is limited by the
possibilities to perturb it (notion of practical identi�ability) [96]. This platform also o�er perspectives
for synthetic biology applications. Indeed, one could separate the actual biological processes that are
of interest for the biotechnology or medical application from its control. Indeed, so far, the goal of
biologists is to engineer cells that implement a desired function in a fully automated way, meaning
that process and control were implemented within cells. However, in many cases it turned out that
implementing complex control functions in cells was challenging. Therefore, by o�ering the possibility
to externalize part of the problem, we might o�er important solutions to synthetic biology.

Despite the fact that the importance of control theory for systems and synthetic biology has
been widely recognized for more than a decade [24, 50], the actual use ofin silico feedback loops to
control intracellular processes has only been proposed recently. In 2011, we were the �rst to show
that the signaling activity in live yeast cells can be controlled by an in silico feedback loop [94]. Using
a proportional-integral (PI) controller we controlled theoutput of a signal transduction pathway by
modulating the osmotic environment of cells in real time. More recently, Toettcher et al. used
elaborate microscopy techniques and opto-genetics to control in real time and at the single cell level
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Figure 8: Real-time control of gene expression can be achieved at the population level. (A) and (B) Set-
point control experiments with di�erent target values (red dashed line). The timeline of osmotic events is
shown at the bottom of each graph (see color code for shock durations, bottom). Shock starting times
and durations are computed in real-time. The measured mean cell �uorescence is shown as solid blue lines.
The enveloppes indicate standard deviation of the �uorescence distribution across the yeast population. (C)
and (D) Tracking control experiments. In both cases, the mean level of �uorescence successfully follows the
time-varying target pro�le. (E) and (F) Open-loop control e xperiments. Two examples of open-loop control
(the osmotic inputs were computed using our model, before starting the experiments) showing poor control
quality. Errors accumulate over time. The simulated behavior of the system is represented in violet.

the localization and activity of a signal transduction protein (PI3K) in eukaryotic cells [92]. Also using
optogenetic techniques, Milias-Argeitis et al. managed tocontrol the expression of a yeast gene to
a constant target value over several hours [63]. Their approach is based on a chemostat culture and
is therefore better adapted to biotechnological applications than to probing biological processes for
single-cell quantitative biology applications. These works have been reviewed in Chen et al. [20].

Long-term model predictive control of gene expression at th e population and single-cell levels
(2012)
J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt and P. Hersen
PNAS, 109(35):14271-14276
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Gene expression plays a central role in the orchestration ofcellular processes. The use of inducible
promoters to change the expression level of a gene from its physiological level has signi�cantly
contributed to the understanding of the functioning of regulatory networks. However, from a
quantitative point of view, their use is limited to short-term, population-scale studies to average
out cell-to-cell variability and gene expression noise andlimit the nonpredictable e�ects of internal
feedback loops that may antagonize the inducer action. Here,we showthat, by implementing an
external feedback loop, one can tightly control the expression of a gene over many cell generations
with quantitative accuracy. To reach this goal, we developed a platform for real-time, closed-loop
control of gene expression in yeast that integrates microscopy for monitoring gene expression at
the cell level, micro�uidics to manipulate the cells? environment, and original software for auto-
mated imaging, quanti�cation, and model predictive control. By using an endogenous osmostress
responsive promoter and playing with the osmolarity of the cells environment, we show that long-
term control can, indeed, be achieved for both time-constant and time-varying target pro�les at
the population and even the single-cell levels. Importantly, we provide evidence that real-time
control can dynamically limit the e�ects of gene expressionstochasticity. We anticipate that our
method will be useful to quantitatively probe the dynamic properties of cellular processes and drive
complex, synthetically engineered networks.
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6 Conclusion and future directions of research

"For success, attitude is equally as important as ability."
Walter Scott

6.1 Cells as members of a population

The investigation of the functioning of cells at the molecular level has so far mostly been addressed
at the cell population level. Standard molecular biology techniques provide population-averaged
measurements of cellular compounds and activities. Yet, recently, great progress has been been
made in single-cell measurements, revealing a signi�cant cell-to-cell variability [66, 87]. Although
cell-to-cell variability at the molecular level does not always generate physiological di�erences [2],
it has been shown in a few cases at least that variability mustbe accounted for to explain certain
cellular processes [68, 34].

One can distinguish two di�erent causes of "noisy" cell behaviors. The �rst and most obvious
cause is the stochasticity of biological processes [66, 87]. Indeed at the molecular level, biological
reactions rely on the stochastic encountering of individual molecules. The second cause is unobserved
deterministic factors. Di�erences in initial molecular content, in cell size, in cell age, or in local cell
density can cause heterogeneous cell responses to an homogeneous stimulation, and therefore an
apparently noisy behavior [85, 99, 49]. In any observed biological process, biological variability
originates from both sources, with one possibly dominatingthe other. It is important to be able
to distinguish these two types of variability, since a lot ofbiological knowledge can be learned by
identifying unknown deterministic causes. Modeling can help to disentangle those two types of noise.

However, from a modeling and system identi�cation point of view distinguishing these noises
is challenging [41, 93]. Not only it necessitates appropriate high quality data but also e�ective
parameter estimation methods. Indeed the stochastic nature of reactions is generally captured by a
class of stochastic models based on the chemical master equation, and the unknown deterministic
in�uences are generally captured by models with parameter distributions. The problem of parameter
estimation of stochastic models with multidimensional parameter distributions is open. Actually,
approximate methods have been recently developed for the �rst extreme case, where all the variability
is assumed to exclusively originate from molecular noise, with good performances [67, 97]. However,
no e�cient method has been proposed so far for the estimationof deterministic models with parameter
distribution, the other extreme case, based on single cell data. One should note that the method
used by Zechner and colleagues does support the identi�cation of models mixing the two sources of
variability mentioned above [97]. However, no analysis hasbeen made to evaluate the capability of
the proposed approach to appropriately proportionate the two in�uences on the overall variability.

The naive approach for the identi�cation of deterministic models with parameter distributions
would be to �t a model to the mean behavior and from this �t, re�t the model to single cell data.
This way, one would obtain a set of "individual-cell" parameters. One could then identify the multi-
dimensional distributions that describe the identi�ed setof parameters. The major drawback of such
an approach is that one has no guaranty that this gives an acceptable model of the population. Indeed
if one resamples parameters in the identi�ed distributions, and computes the simulated population
behaviors, large deviations are encountered. With the Ferari-Trecate group (Pavia Univ.), we inves-
tigate the use of mixed e�ect parameter identi�cation methods to identify parameter distributions
from single cell videomicroscopy data generated in the Hersen lab (CNRS/Paris 7). Importantly mixed
e�ect methods capture parameter multidimensional correlations and search for distributions that �t
the behaviors of the entire population [29]. This will be critical for the identi�cation of biologically
meaningful models.

This framework then enables to assign speci�c parameter values to speci�c cells. Therefore
this directly addresses questions related to cell individuality. How e�ective are single cell models
in predicting the cell behavior? For how long is the predictive power of the model better than the
one of the mean model, or stated di�erently how long is this individuality preserved? What are
the connections with protein mixing times as introduced by Sigal et al [83]? We investigate these
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questions in the context of long-term prediction of a cell population subjected to repeated TRAIL
applications as described in more details in the following section.

6.2 Cells within their environment

Environment matters. It is clear that growth conditions a�ect the cell physiology and hence all
biomolecular processes. However, how and to which degree isa speci�c biological process a�ected
by environmental changes? This question is too often neglected. In bacterial systems it has been
shown that the probability of switching from growth on glucose to growth on lactose depends on
cellular growth rate and is not purely stochastic as postulated earlier [77]. At a much larger level, it
has been shown that gene expression is globally a�ected by growth conditions, and that this global
in�uence plays a major regulatory role in the orchestrationof the adaptation response [15]. This has
consequences in systems and synthetic biology applications since biological systems are often analyzed
or developed in conditions that are di�erent from the standard, natural or operating, conditions. In
eukaryotic cells, and most notably in mammalian cells, endogenous and ectopic genes are subject to
epigenetic modi�cations and silencing [51]. Growth conditions, such as possible oxidative stresses,
are known factors that in�uence the epigenetic status of genes. But the main determinants are still
unknown. This is a major issue for the development of predictive functional systems in mammalian
synthetic biology. Similarly, the contribution of environmental changes to the orchestration of cell
responses in the human body is de facto neglected in most of the in vitro studies. This may severely
hamper our capacity to understand and interfere with cell functioning for systems or pharmaceutical
biology.

To detect the in�uence of environmental factors and assess their impact, quantitative approaches
are needed. To obtain a quantitative understanding of the system in its changing environment, one
needs to model the systemand its environments, and to obtain the corresponding data. In what
follows, I will describe two problems and for each of those, envision the approaches that can be
developed.

The �rst problem that we considered is the creation of a patterning system. More precisely,
we consider engineered yeast cells derived from [19] whose growth depends on a small di�usible
molecule, IP, in a band pass manner. That is, growth is possible only when the IP concentration is
within given bounds. In e�ect, two "killing modules", a low threshold and a high threshold, have
been implemented to trigger cell death outside the desired IP range. Moreover, these cells have been
engineered to produce IP in an inducible manner. Therefore,in principle this system could exhibit
patterning capabilities on solid media, typically agar plates. Indeed di�erent initial seedings will result
in di�erent non trivial con�gurations of the system in time. In this project, our objective is to develop
models of the intracellular synthetic network and of cell growth in solid environments, tune these
models based on data collected independently, and test the accuracy of our predictions for the full
system. Deviations from model predictions will indicate di�erences in the functioning of the system.

The development of such systems is di�cult. Indeed, one typically considers a dynamical system
with a dynamical structure. Indeed, unlike standard problems, the structure of the system itself (ie
cell number and cell locations) is changing with time. This cannot be neglected. Moreover, the scale
of the phenomena spans several orders of magnitude, from thecell size to the Petri dish. Therefore
one should employ multiscale methods. This work is done in collaboration with the groups of Ron
Weiss (MIT) for the synthetic biology constructions and of Dirk Drado (INRIA) for the cell-based
spatial simulations.

A second problem of interest is understand how the geometry of the cell population a�ects tissue
response. In most studies the cell response is characterized in monolayer conditions. This notably
gives access to single cell behaviors. However, in vivo, cells adopt more complex 3D organizations.
For example, cancer cells form spheroids at the early tumor stages. Such spheroids can be recreated
in vitro but cell observations is more di�cult. This explains at least partly why drug testing and drug
treatment optimization is mostly made in vitro on monolayer[55]. However, it is unclear how those
results will transpose to spheroids or even to in vivo tumors. Indeed, the 3D structuration of the
tissue a�ects the physical accessibility of cells in the tissue (molecular di�usion) and possibly the cell
physiology as well (contact inhibition). Following the strategy employed in the previous project, the
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idea here is to combine a model of cell death following anti-cancerous treatment calibrated based on
monolayer cell cultures with a 3D model of spheroid growth and molecule di�usion and compare model
predictions with experimental data. Deviations from predictions will indicate important di�erences
between cell responses in di�erent conditions. These �ndings will likely guide the development of
novel therapeutic strategies.

Existing 3D models of tumors growth have already been developed by collaborators in the Bang
research group (Dirk Drasdo Multi-cellular Systems group)[39, 32, 47]. A challenging missing piece
is a model of long term cell response to drug treatments. For example, even if TRAIL is one of the
most studied and best characterized death-inducing molecule [31], the quantitative understanding of
the e�ect of repeated TRAIL additions on (monolayer) cells is still missing [37]. It has been shown
that accounting for cell-to-cell variability was essential for explaining the observed variable delay in
the times of death following Trail treatment [86]. However,the solution proposed to implement
cell-to-cell variability does not allow for long term predictions: cell heterogeneity is modeled using
distributions on protein concentrations, serving as initial conditions of the simulation. Clearly, this
heterogeneity is cast into stone at the beginning and cannotbe regenerated with time in the surviving
population. Therefore, we extended this model with stochastic gene expression processes generating
the same steady state distributions but able to dynamicallycapture protein �uctuations. Preliminary
results suggest that our extended model is able to capture the observed reversible resistance of the
population of surviving cells. Equipped with these two models one can test consistency between model
predictions and recently published data on spheroids TRAILtreatments [57]. The development and
validation of such tools will hopefully prove valuable for many therapeutic studies.

6.3 A platform for well-controlled physiological perturba tions

To provide means to better control intracellular processes, we have developed a platform for real-
time control of gene expression. As described in the previous chapter this platform enables to control
the concentration of a protein in a time-varying manner at the single-cell level with unprecedented
accuracy. At the same time a few other works have been published on this problem using di�erent
approaches and di�erent focuses but with comparable accuracy. Collectively, these works have at-
tracted quite some attention from the community and press3. Possible extensions can be classi�ed
in two groups: further methodological developments and novel applications. In what follows, I brie�y
present perspectives for each research direction.

Methodological developments are needed to produce data of even higher quality and develop
models that make even better use of the available data. Getting quantitative readout, devoid of
biological or optical artifacts, for each cell along the entire experiment in an automated manner
necessitates in fact non-trivial image processing techniques and tools. Excellent image segmentation,
tracking, and whenever possible, lineage reconstruction are needed is one wants to get biologically
relevant conclusions. We are working with the BioComputinggroup in Lille in this direction. The
use of the novel optogenetics methods in place of osmotic stresses to trigger gene expression would
also be bene�cial since it would limit the in�uence of the input on the cell under investigation (better
orthogonality) [5].

To make better use of available data during control experiments one needs to have e�cient state
reconstruction methods and control algorithms. In collaboration with Eugenio Cinquemani (IBIS
group, INRIA) and Alessandro Abate (Oxford Univ.) we develop methods for stochastic systems.
We expect that these methods will outperform their deterministic counterparts in conditions of single
cell control. This would be the �rst experimental demonstration that stochastic models and methods
improve our prediction capabilities at the single cell level. A second direction for improving single
cell control is to tune the parameters of deterministic models to the individual cell that is controlled
based on either mixed e�ect model parameter distributions or online learning methods.

The second main research direction deals with novel applications. Our publication in PNAS was a
proof of concept for real-time control in yeast. It simply showed that closed loop control was possible

3. 'Cyborg' yeast genes run by computer appeared in BBC news and Une étape de plus vers la pleine maîtrise du
vivant appeared in l'Humanité Dimanche describing the works of Lygeros, Khammash, El Samad and colleagues, and
Hersen, Batt and colleagues, respectively
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with good accuracy in a simple eukaryotic cell. Going beyondthe proof of concept and demonstrating
that real-time control can be developed for higher eukaryotic cells are two natural extensions of our
previous results.

In the context of the INRIA/INSERM "action d'envergure" project that notably aims at under-
standing the connection between the availability of the transcription machinery and the cell physiology
and growth, we will "clamp" the level of key transcriptionalfactors for extended duration and observe
the cellular e�ects. Closed loop control is motivated by thepresence of endogenous feedback loops
(at the very least, the transcription machinery componentsneed to be transcribed). Without our
control platform, the quantitative analysis of the long term e�ects of transcription de�ciency can
hardly be investigated. This project is done in collaboration with the group of Hidde de Jong and
Hans Geiselman (INRIA Grenoble � Rhône-Alpes and CNRS/Grenoble University) who have been
working for several years on the global regulation of gene expression inE. coli.

In the context of the ANR Investissement d'Avenir project Iceberg, we investigate real-time control
of gene expression in mammalian cells. In close collaboration with the group of Pascal Hersen
(CNRS/Paris7), and with four other partners, we are developing cell lines that enable us to observe
and control gene expression in a reliable manner. One critical issue is to design and construct an
induction system that is responsive enough to get interesting dynamics at the time scale of a cell
cycle and for many cell generations. To develop this system,we will base our work on a "landing
pad" technology developed with the Weiss lab (MIT). This platform uses recombinases and enables
the e�cient integration of a complex genetic construct at a unique and targeted position in the
genome [33]. All the other elements of the platform (micro�uidic device and microscopy for long
term experiments, image analysis; modeling and control algorithms)need to be adapted to this new
system. Being able to control in live cells protein concentrations in mammalian cells would open a
number of interesting research directions for the pharmaceutical industry.
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"The idea is to try to give all the information to help others to judge the value of your contribution;
not just the information that leads to judgment in one particular direction or another."

Richard P. Feynman
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ABSTRACT
Motivation: The modeling and simulation of genetic regu-
latory networks have created the need for tools for model
validation. The main challenges of model validation are the
achievement of a match between the precision of model pre-
dictions and experimental data, as well as the efÞcient and
reliable comparison of the predictions and observations.
Results: We present an approach towards the validation of
models of genetic regulatory networks addressing the above
challenges. It combines a method for qualitative modeling and
simulation with techniques for model checking, and is suppor-
ted by a new version of the computer tool Genetic Network
Analyzer (GNA). The model-validation approach has been
applied to the analysis of the network controlling the nutritional
stress response in Escherichia coli.
Availability: GNA and the model of the stress response
network are available at http://www-helix.inrialpes.fr/gna
Contact: Hidde.de-Jong@inrialpes.fr

1 INTRODUCTION
The functioning and development of living organisms is con-
trolled by large and complex networks of genes, proteins,
small molecules and their mutual interactions, the so-called
genetic regulatory networks. In order to gain an understanding
of how the behavior of an organism, e.g. the response of a bac-
terial cell to a physiological or genetic perturbation, emerges
from such a network of interactions, we need mathematical
and computational tools for modeling and simulation (de Jong,
2002). The predictions obtained through the application of
these tools have to be confronted with experimental data.
This gives rise to the problem ofmodel validation, the assess-
ment of the adequacy of a model by comparing its predictions

� To whom correspondence should be addressed.

with observations, either already available in the literature or
obtained through novel experiments suggested by the model.

The main challenges of model validation are twofold. First
of all, the precision of the model predictions and the exper-
imental data need to be brought in agreement. At present,
quantitative information on kinetic parameters is usually
absent, thus making traditional numerical models and ana-
lysis techniques difÞcult to apply. In addition, numerical
predictions on the dynamics of the system are difÞcult to
verify, because available data are mostly qualitative in nature.
A second challenge is to ensure that the comparison of
model predictions with experimental data is efÞcient and reli-
able. Models of genetic regulatory networks of biological
interest may become quite large, as they include many genes
and proteins, thus making manual veriÞcation of dynamical
properties error-prone or even practically infeasible.

In this paper, we propose an approach towards model val-
idation addressing the above two challenges. The approach
extends our previous work on a method for thequalitative
modeling and simulationof genetic regulatory networks, sup-
ported by the computer toolGenetic Network Analyzer(GNA)
(de Jonget al., 2003, 2004). This method is based on a class
of piecewise-linear(PL) differential equationsthat permits a
coarse-grained, qualitative analysis of the network dynamics
to be carried out. Instead of numerical values for the paramet-
ers, the method uses inequality constraints that can be inferred
from the experimental literature. It yields predictions on the
possible ways in which the sign pattern of the derivatives of
the protein concentrations can evolve, a level of precision
that is well-adapted to currently-available data. The novelty
of the model-validation approach is that it integrates qualitat-
ive modeling and simulation withmodel-checkingtechniques
(Clarke et al., 1999) to verify whether the predictions of
the system behavior are consistent with experimental data.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org i19
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In particular, the measured evolution of the derivative sign
pattern or other experimental observations can be formal-
ized as properties in temporal logic, while model-checking
techniques verify whether the predictions account for these
properties. If they do not, then the model is inconsistent with
the experimental data and may need to be revised or exten-
ded. The combination of qualitative modeling and simulation
and model-checking allows large and complex networks to be
veriÞed, with the guarantee that no model is falsely ruled out.

Model-checking or other formal veriÞcation techniques
have been used before in systems biology for analyzing
genetic, metabolic, signal-transduction and cell-cycle net-
works. Most approaches start from discrete models, such
as Petri nets (Kochet al., 2005), process algebras (Regev
et al., 2001), concurrent transition systems (Chabrier-Rivier
et al., 2004), rewriting logic (Ekeret al., 2002), and Boolean
networks and their generalizations (Bernotet al., 2004). In
this paper we show that model-checking techniques can also
be used for more conventional continuous models, in par-
ticular differential equation models, when using qualitative
abstractions to discretize the dynamics of the system. In com-
parison with ideas along the same line (Antoniottiet al., 2004;
Ghoshet al., 2003; Shults and Kuipers, 1997), our approach is
adapted to a particular class of PL differential equations with
favorable mathematical properties, allowing the development
of tailored algorithms that scale up well to models of large
and complex genetic regulatory networks.

The model validation approach proposed in this paper has
been applied to the analysis of the network controlling the
nutritional stress responsein Escherichia coli. In case of
nutritional stress, anE.coli population abandons exponential
growth and enters a non-growth state called stationary phase
(Huismanet al., 1996). At the molecular level, this growth
phase transition is controlled by a complex genetic regulat-
ory network (Hengge-Aronis, 2000). We have constructed a
model including key proteins and their interactions involved
in the carbon starvation response, and validated this model
by comparing the predicted temporal evolution of the protein
concentrations with available experimental data, both during
the transition from exponential to stationary phase, and dur-
ing the reentry into exponential phase after a nutrient upshift.
Although some of the predictions have thus been conÞrmed,
one prediction has been refuted, suggesting model revisions.
Another prediction concerns a surprising phenomenon that
has not been experimentally investigated yet.

In the next section of the paper, we brießy outline the
qualitative modeling and simulation method used to pre-
dict the behavior of genetic regulatory networks. Section 3
describes the model-checking approach towards model valid-
ation in some detail, as well as its computer implementation
in GNA. The initial results of the validation of our model
of the E.coli nutritional stress response are summarized in
Section 4, followed by a discussion of the achievements in
theÞnal section.

2 QUALITATIVE SIMULATION
The method for the qualitative modeling and simulation of
genetic regulatory networks that we use in this paper is a
reÞnement of the method that we previously presented (de
Jonget al., 2003, 2004). It is based on a qualitative abstraction
that preserves stronger properties of the network dynamics, in
particular the sign patterns of the derivatives of the concentra-
tion variables. This information is critical for the experimental
validation of models of genetic regulatory networks, since
experimental measurements of the system dynamics by means
of quantitative RT–PCR, reporter genes and DNA microar-
rays usually result in observations of changes in the sign of
the derivatives. We will provide an intuitive overview of the
method, using a simple example. For technical details, the
reader is referred to Battet al. (2005).

Figure 1a shows a network consisting of two genes. When a
gene (aorb) is expressed, the corresponding protein (A or B) is
synthesized. Proteins A and B regulate the expression of genes
a andb. More speciÞcally, protein B inhibits the expression
of genea above a certain threshold concentration, whereas
protein A inhibits the expression of geneb above a threshold
concentration, and the expression of its own gene above a
second, higher threshold concentration. The degradation of
the proteins is not regulated.

The dynamics of genetic regulatory networks can be
modeled by a class ofpiecewise-linear(PL)differential equa-
tion models originally introduced by Glass and Kauffman
(1973). The example network gives rise to the following
model:

�xa = � a sŠ (xa, � 2
a ) sŠ (xb, � b) Š � a xa, (1)

�xb = � b sŠ (xa, � 1
a) Š � b xb, (2)

wherexa andxb denote the concentrations of proteins A and
B, �xa and �xb their time derivatives,� 1

a , � 2
a and� b threshold

concentrations,� a and� b synthesis parameters, and� a and� b
degradation parameters. The step functionsŠ (x, � ) evaluates
to 1, if x < � , and to 0, ifx > � . Step functions are approx-
imations of the steep sigmoid functions often characterizing
gene regulation, preserving their non-linear, switch-like char-
acter. As a consequence, PL models are coarse-grained models
that abstract from theÞne aspects of gene regulation, such as
stochasticity, but have been shown adequate for a wide range
of applications (see de Jonget al., 2004, for references).

Equations (1) and (2) describe the rate of change of the
protein concentrations. Equation (2) states that protein B is
produced (at a rate� b), if and only if sŠ (xa, � 1

a) = 1, that is, if
and only ifxa < � 1

a . This captures the inhibition of the expres-
sion of geneb by protein A. Equation (1) states that protein
A is produced (at a rate� a), if and only if neitherxa > � 2

a nor
xb > � b. Both proteins are degraded at a rate proportional to
their own concentration.

Mathematical analysis of this model reveals that mere know-
ledge of the relative order of the threshold parameter(s) and
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(a) (b) (c)

Fig. 1. (a) Simple genetic regulatory network consisting of two genes. (b) Sketch of the dynamics in the phase space of the two-gene network.
The system has three equilibrium points, represented by dots. (c) Domain partition of the phase space.

the quotient of the synthesis and degradation parameter, for
each of the two variables, is sufÞcient to sketch theßow in
the phase space. This result has been shown to be generaliz-
able to the whole class of PL models considered here. More
particularly, assuming that

0< � 1
a < � 2

a <
� a

� a
< maxa, (3)

0< � b <
� b

� b
< maxb, (4)

the phase space can be partitioned into hyperrectangular
boxes, calleddomains, in which the ßow is qualitatively
identical, in the sense that either all solutions of the system
traverse a domain instantaneously (instantaneousdomain) or
they have the same derivative sign pattern while remaining in
the domain (persistentdomain). Figures 1b and c represent
the ßow in the phase space and the domain partition of the
phase space for the two-gene example.D2.2 is an instant-
aneous domain, whileD1.1, D4.2 and D4.1 are persistent.
Moreover, the latter domain coincides with an equilibrium
point of the system. The domain partition isÞner grained than
the one used in our earlier work, for which the property that
all solutions in a domain have the same derivative sign pattern
does not generally hold.1

Using the domain partition of the phase space, together
with the qualitative characterization of the dynamics in each
of the domains, we can discretize the continuous dynamics.
In the resulting abstract description, the state of the system is
represented by a domain and its associated dynamical prop-
erties. There exists a transition from a domainD to another
domainD�, if and only if there exists a solution reaching
D� from D, without leavingD � D �. This naturally leads to
the introduction of a so-calledqualitative transition system,
consisting of the set of all domains, the set of all transitions
between the domains and a labeling function that associates

1In this simple presentation of the method, we omit the problems raised by the
discontinuities in the right-hand side of the PL differential equations, whose
treatment goes beyond the scope of this article. See de Jonget al. (2004) and
Gouzé and Sari (2002) for a detailed description.

to every domain the sign of the derivatives of the concen-
tration variables and an indication of whether the domain is
persistent or instantaneous. The graph representation of the
qualitative transition system is called astate transition graph
and the domains are also calledqualitative states(or qualit-
ativeequilibriumstates, if the domains consist in equilibrium
points). Figure 2 shows the qualitative transition system of the
two-gene model.

A sequence of qualitative states in the state transition
graph is called apath. A path qualitatively describes a pos-
sible behavior of the system. In our two-gene example,
(D1.1,D2.2,D3.2,D4.2,D4.1) is a path leading to a qualitative
equilibrium state (Fig. 2c). The qualitative transition system
is deÞned such that it provides aconservative approximation
of the dynamics of the original PL system, in the sense that
to every solution of the model corresponds a path in the state
transition graph. Note that the converse is not true: some paths
may not correspond to any solution, and therefore represent
spurious behaviors. The state transition graph has been shown
to be invariant for all values of the parameters satisfying the
parameter inequality constraints.

Simple rules have been formulated for the symbolic com-
putation of the qualitative transition system from a PL model
of the network. These rules exploit the favorable analytical
properties of the class of PL models, thus allowing the qualit-
ative states, the transitions between qualitative states, and the
labeling function to be inferred from the parameter inequality
constraints. The implementation of these rules has resulted
in a new version of the computer tool GNA (de Jonget al.,
2003). The new version of GNA, available at http://www-
helix.inrialpes.fr/gna, has also been equipped with a strongly
improved graphical user interface.

The paths in the state transition graph correspond to
predicted qualitative behaviors of the system and can be
compared with experimental data. The resulting model-
validation problem is easy to solve for the simple two-gene
example. For instance, the observation shown in Figure 3
is consistent with predictions, since there exists a path,
(D 1.1,D2.2,D3.2,D4.2,D4.1), verifying the observed deriv-
ative sign pattern (Fig. 2c). However, the analysis of real-
istic models leads to large state transition graphs, which
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(a) (b) (c)

Fig. 2. Qualitative transition system of the two-gene model, with (a) the state transition graph and (b) the properties of some of the qualitative
states in the graph. The following abbreviations have been used:pers, persistent state;inst, instantaneous state;eq, equilibrium state;dsign,
derivative sign. The numbersŠ1, 0 and 1 denote the sign of the derivative of the protein concentrations. In instantaneous domains, the
derivatives are not deÞned (Battet al., 2005), indicated by a dash. The equilibrium states areD4.1, D7.1 andD11.3, while dots next to states
represent self-transitions. (c) Temporal evolution of the concentrations of proteins A and B in the path (D1.1,D2.2,D3.2,D4.2,D4.1). Arrows
indicate the sign of the derivatives for persistent states (up arrow for 1, down arrow forŠ1 and open circle for 0).

Fig. 3. Hypothetical experimental observation of the temporal
evolution of the concentrations of proteins A and B.

make manual veriÞcation of dynamical properties error-
prone or even practically infeasible. This has motivated the
development of an automated, efÞcient method for model
validation.

3 MODEL VALIDATION BY
MODEL-CHECKING

Our model-validation approach combines the qualitative
modeling and simulation method outlined above with tech-
niques for model checking(Clarke et al., 1999). These
techniques allow for the veriÞcation of properties of the beha-
vior of discrete transition systems, expressed as formulas
in some temporal logic. Using suitable model-checking
algorithms and tools, it is possible to automatically and
efÞciently test whether the system satisÞes the property.
Model checking has been successfully applied to the veri-
Þcation of software, telecommunication systems, elec-
tronic circuits and other complex systems (for examples,
see http://www.inrialpes.fr/vasy/cadp/case-studies/ and http://
nusmv.irst.itc.it/).

Various model-checking frameworks exist, differing by
their expressiveness, user-friendliness and computational
efÞciency. For the sake of simplicity, we focus here on

one particular framework, in which the discrete transition
system takes the form of aKripke structure, and the beha-
vioral properties are expressed inComputation Tree Logic
(CTL) (Clarkeet al., 1999). We describe the relation between
qualitative simulation and model checking at the conceptual
level, and brießy present an extension of GNA that connects
the qualitative simulator with the model checker NuSMV.
However, we emphasize that our approach is not restricted
to CTL model-checking, and allows other more expressive
temporal logics to be used as well (Section 3.3).

3.1 Translate qualitative transition system into
Kripke structure

As a preliminary step, we introduce a set ofatomic pro-
positionsto describe the state of the system. To be more
precise, the set of atomic propositions we use consists of
simple expressions describing the range of a protein concen-
tration (e.g.value_xa < � 1

a), the sign of the derivative of a
protein concentration (e.g.dsign_xa = 1) or the type of a state
(e.g.type= pers). That is, in the example of Figure 2, the set
of atomic propositionsAP is given by

AP= { value_xa = 0,value_xa > 0,value_xa < � 1
a , . . . ,

dsign_xa = Š 1,dsign_xa = 0,dsign_xa = 1,. . . ,

type= pers, type= inst, type= eq}.

In general, a Kripke structure over a set of atomic propos-
itions AP is a triple �S,R,L � , whereS is a set of states,
R � S × S a total transition relation between the states,
and L :S� 2AP a labeling function that associates to each
state, the set of atomic propositions true in that state (Clarke
et al., 1999). The qualitative transition systems introduced in
Section 2 are Kripke structures. As an illustration, the qualit-
ative transition system of the two-gene network, graphically
represented in Figure 2, can be alternatively represented as
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the triple�S,R,L � , where,

S= { D1.1,D2.1,D2.2, . . . ,D15.1},

R = { (D 1.1,D2.2), (D 1.1,D6.2), . . . , (D 15.1,D14.1)},

L :

�
���������

���������

L(D 1.1) = { value_xa 	 0,value_xa < � 1
a , . . . ,

value_xb 	 0,value_xb < � b, . . . ,
dsign_xa = 1,dsign_xb = 1,
type= pers},

L(D 2.1) = { value_xa = � 1
a , . . . , type= inst},

. . .
L(D 15.1) = { value_xa > � 2

a , . . . , type= pers}.

3.2 Express dynamical properties in temporal
logic

A CTL formula is built upon atomic propositions. The usual
operators from propositional logic, such as negation (¬ ),
logical or (
 ), logical and (� ), and implication (� ), can also
be used. In addition, CTL provides two types of operators:
path quantiÞers, E andA, andtemporal operators, such asF
andG. Path quantiÞers are used to specify that a propertyp
is satisÞed by some (Ep) or every (Ap) path starting from a
given state. Temporal operators are used to specify that, given
a state and a path starting from that state, a propertyp holds
for some (Fp) or for every (Gp) state of the path. Each path
quantiÞer must be paired with a temporal operator.2

Informally speaking, path quantiÞers are used to quantify
over the possible behaviors of the system, sinceAp means
that p must hold for every behavior, andEp means thatp
must hold for at least one behavior. Temporal operators are
used to specify, given a behavior, temporal constraints on the
state of the system, sinceFp andGp can be interpreted as
meaning that for some future state and for every future state,
respectively,p must hold.

How can the properties of interest for model validation be
expressed as CTL formulas? This can be illustrated by means
of the hypothetical experimental observation in Figure 3. The
observation allows us to infer that the system reaches a state
in which the concentrations of proteins A and B are both
increasing, and from that state onwards, a second state in
which the concentration of protein A is increasing and that
of B decreasing. The property can be formalized by the CTL
formula

EF(dsign_xa = 1 � dsign_xb = 1�

EF(dsign_xa = 1 � dsign_xb = Š 1)). (5)

The expressionEFp means that there exists at least one
path (E) leading to a future state (F) wherep holds, thus
expressing thereachabilityof that state. More generally, any
time-series measurement of gene expression can be given as

2For the formal syntax and semantics of CTL, see Clarkeet al. (1999).

a combination ofEF operators with conjunctions of atomic
propositions describing the derivative sign patterns.

When understood in a broader sense, model validation does
not just amount to the comparison of model predictions with
time-series measurements of protein concentrations, but also
involves the testing of other biologically meaningful proper-
ties (Bernotet al., 2004; Chabrier-Rivieret al., 2004). Suppose
that we are interested in knowing whether every behavior of
the system will eventually satisfy some property, for example,
reach a speciÞc state. We can investigate this by means of for-
mulas usingAF operators, which express theinevitability of
a behavior. The following CTL formula expresses the con-
jecture that the two-gene network of Figure 1 will inevitably
reach the equilibrium stateD11.3:

AF(type= eq� value_xa = 0). (6)

As a second example, CTL can be used to express the suf-
Þciency of certain conditions to cause the system to behave
in a particular way. For example, one could ask, given that
protein B is the only regulator of genea, whether a high con-
centration of protein B guarantees the eventual disappearance
of protein A. Thisresponseproperty can be expressed by the
CTL formula

AG(value_xb > � b � AFvalue_xa = 0), (7)

whereAGp speciÞes that the propertyp must hold for every
state.

3.3 Check if model satisÞes dynamical properties
In order to test whether a discrete transition system satisÞes
a given temporal-logic formula, highly efÞcient algorithms
have been developed and implemented in a range of model
checkers. In addition to a yes/no answer, these tools return
a diagnostic, either a witness or a counterexample, depend-
ing on whether the property holds or not. The diagnostic
often provides valuable information for understanding why
the property is satisÞed or not.

In order to combine our qualitative simulator with model-
checking tools, we have integrated export functionalities
in the new version of GNA, allowing the user to generate
text Þles describing the qualitative transition system in the
format accepted by two widely used model checkers, NuSMV
(Cimatti et al., 2002) and Evaluator, a component of the
CADP toolbox (Mateescu and Sighireanu, 2003). NuSMV is
an efÞcient, state-of-the-art model checker for CTL, whereas
Evaluator is an on-the-ßy model checker for the alternation-
freeµ -calculus, a temporal logic based on regular expressions.
The textÞles generated by GNA can be imported in the model
checkers, after which the veriÞcation of the properties of
interest continues in the environment of the latter tools.

In this paper, we focus on the relation between GNA and
NuSMV. Given a description of the Kripke structure, an initial
state and a CTL formula, it is possible to check whether the
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(a)

(b)

Fig. 4. (a) Network of key genes, proteins and regulatory interactions involved in the nutritional stress network inE.coli. The contents of
the boxes labeled ‘Activation’ and ‘Supercoiling’ are detailed in Roperset al. (2004). (b) PL differential equation and parameter inequality
constraints for the topoisomerase TopA.

qualitative transition system in Figure 2 satisÞes the property
described by the formula. Provided thatD1.1 is the initial state,
property (5) holds, and the path (D1.1,D2.2,D3.2,D4.2,D4.1),
shown in Figure 2c, is returned as a witness. Also, NuSMV
shows that neither of the properties (6) and (7) hold.

Suppose that an experimentally-observed behavior does not
correspond to any path in the state transition graph. Does this
imply that the model must be rejected? Since the qualitat-
ive simulation method produces a conservative approximation
of the dynamics of the original PL system (Section 2), one
can be sure that a path corresponding to the experimentally-
observed behavior must be present in the state transition
graph, unless the model is invalid. As a consequence, the
model can be safely rejected in the above case. On the other
hand, if a path in the state transition graph corresponds to
an experimentally-observed behavior, then the model is not
necessarily corroborated by the observation, because the path
may be a spurious behavior.

4 ANALYSIS OF NUTRITIONAL STRESS
RESPONSE IN E.COLI

4.1 Model of nutritional stress response
In case of nutritional stress, anE.coli population abandons
exponential growth and enters a non-growth state calledsta-
tionary phase. This growth-phase transition is accompanied
by numerous physiological changes in the bacteria, concern-
ing among other things the morphology and the metabolism
of the cells, as well as gene expression (Huismanet al.,
1996). At the molecular level, the transition from exponen-
tial phase to stationary phase is controlled by a complex
genetic regulatory network integrating various environmental
signals.

Understanding the molecular basis of this essential devel-
opmental decision has been the focus of extensive studies for

decades (Hengge-Aronis, 2000). However, notwithstanding
the enormous amount of information accumulated on the
genes, proteins and other molecules known to be involved
in the stress adaptation process, there is currently no global
understanding of how the response of the cell emerges from
the network of molecular interactions. Moreover, with some
exceptions, numerical values for the parameters character-
izing the interactions and the molecular concentrations are
absent from the literature, which makes it difÞcult to apply
traditional methods for the dynamical modeling of genetic
regulatory networks.

The above circumstances have motivated the qualitative
analysis of the nutritional stress response network inE.coli
by means of the method presented in this paper (Roperset al.,
2004). On the basis of literature data, we have decided to
focus, as aÞrst step, on a network of six genes that are believed
to play a key role in the response of the cell to carbon starva-
tion (Figure 4). The network includes genes involved in the
transduction of the carbon starvation signal (the global reg-
ulator crp and the adenylate cyclasecya), metabolism (the
global regulatorÞs), cellular growth (therrn genes coding for
stable RNAs) and DNA supercoiling, an important modulator
of gene expression (the topoisomerasetopA and the gyrase
gyrAB).

Based on data in the experimental literature, a PL model
of seven variables has been constructed, one protein con-
centration variable for each of the six genes and one input
variable representing the presence or absence of the carbon
starvation signal (Roperset al., 2004). Seven differential
equations, one for each variable, and forty inequality con-
straints describe the dynamics of the system. As an illustration,
the differential equation and the parameter inequality con-
straints for the state variablextopA are given in Figure 4b.
For instance, the constraints 0< � 1

topA/� topA< � 1
topA express

that without stimulation of thetopA promoter, the TopA
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(a) (b)

Fig. 5. Temporal evolution of the concentration of the proteins in the nutritional stress response network during the transition from exponential
to stationary phase. (a) Predictions for Fis and CRP in a path in the state transition graph generated by qualitative simulation. (b) Observation
for Fis (open circles) during the growth-phase transition, as indicated by cell density (closed circles) (Ali Azamet al., 1999).

concentration decreases towards a background level, below
the threshold� 1

topA.
Using the new version of the computer tool GNA, described

in the previous sections, we have simulated two phenomena,
namely the transition from exponential to stationary phase,
and the reentry into exponential phase after a nutrient upshift.
In order to validate the model, the simulation results have
been compared with the available experimental data, using the
export functionalities of GNA and the model checker NuSMV.

4.2 Validation of nutritional stress response
model

In the absence of the carbon starvation signal, the system
reaches a single qualitative equilibrium state that corres-
ponds to the physiological conditions found in exponentially-
growingE.coli cells. Starting from this equilibrium state, we
perturb the system by switching on the carbon starvation sig-
nal and simulate the transition from exponential to stationary
phase. This gives rise to a state transition graph of 66 states
(27 of which are persistent), computed in less than one second
on a PC (800 MHz, 256 MB). The graph contains a single
equilibrium state corresponding to stationary-phase condi-
tions. Figure 5 represents the temporal evolution of two of
the protein concentrations in a path in the state transition
graph. It shows that the concentration of Fis monotonically
decreases to 0 and that of CRP monotonically increases to
(� 1

crp + � 2
crp + � 3

crp)/� crp.
Are the predictions obtained from the model veriÞed by the

experimental data? Figure 5b shows the measured evolution of
the Fis concentration (Ali Azamet al., 1999). Towards the end
of the exponential phase, the concentration of Fis decreases
and then becomes steady in stationary phase, which is charac-
terized by a low concentration of stable RNAsxrrn, that is, a
concentration below the threshold� rrn . This observation can
be translated into the following CTL formula:

EF(dsign_xÞs = Š 1�

EF(dsign_xÞs = 0 � value_xrrn < � rrn)). (8)

The qualitative transition system has been exported to the
model checker, in order to verify the property. VeriÞcation

takes a fraction of a second to complete and shows that
the observed temporal evolution of the Fis concentration is
reproduced by the model, i.e. there exists a path in the state
transition graph satisfying the property (8).

Figure 5b suggests that we could be even more precise
in our temporal-logic formulation of the experimental data.
Not only dsign_xÞs = 0 in stationary phase, but in addition it
would seem thatvalue_xÞs = 0. However, since the precision
of the measurements is limited, there may remain some small
amount of Fis in the cell in stationary phase. The description
value_xÞs = 0 is therefore too strong and might falsely rule
out the model. Also, in this and similar examples, we use
the temporal operatorF instead ofG, which would allow us
to express that a property holds all of the time. The use of
G is compromised by the fact that the usually low sampling
frequency may cause us to miss phenomena predicted by sim-
ulation (e.g. a transient increase in a protein concentration)
and thus, falsely rule out the model.

It would be interesting to put the predictions of the nutri-
tional stress response model to more severe experimental
tests. Unfortunately, time-series measurements of the evol-
ution of the concentration of the other proteins in the network
in Figure 4 during the transition from exponential to station-
ary phase are currently not available. However, even from the
weak data that are available today, some interesting conclu-
sions for model validation can be drawn. For instance, from
the data in Balke and Gralla (1987) it can be inferred that the
level of DNA supercoiling decreases during and after the trans-
ition to stationary phase. Since the level of DNA supercoiling
is determined by the ratio of the concentration of GyrAB
(which introduces supercoils into the DNA molecule) and
the concentration of TopA (which removes supercoils from
the DNA molecule) (Drlica, 1990), we require the following
property to be satisÞed by our model:

EF((dsign_xgyrAB= Š 1 
 dsign_xtopA= 1)

� value_xrrn < � rrn ). (9)

That is, during stationary phase, the concentration of GyrAB
must decrease or the concentration of TopA must increase.
Interestingly, the model does not satisfy the property (9),
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as revealed by model checking: in all paths in the state
transition graph, the TopA concentration remains constant,
while the GyrAB concentration increases! The inconsistency
between the model and the observed level of DNA supercoil-
ing indicates aßaw in the model. It demonstrates that our
picture of the nutritional stress response is incomplete, in the
sense that the network of Figure 4 may need to be extended
with interactions not yet identiÞed or with regulators not yet
considered. In Roperset al. (2004) we propose experiments
and model extensions to further investigate these possibilities.

In addition to simulating the transition from exponential
to stationary phase, we have also studied the reentry into
exponential phase after a nutrient upshift, i.e. when cells in
stationary phase have been put into fresh medium. Using the
same model as above, but starting the simulation from the
qualitative state characterizing stationary-phase conditions
and with the carbon starvation signal switched off, qualitative
simulation results in a state transition graph of 1143 states (202
of which are persistent), generated in 1.7 s. The graph is more
complex than that generated for the transition from exponen-
tial to stationary phase, in the sense that it contains several
cyclic paths. From all states in the graph, one of these cyclic
paths can be reached, which we have shown to be attractive.
To be more precise, the qualitative transition system satisÞes
the property

AG(statesInCycle� AGstatesInCycle), (10)

where the predicatestatesInCycleis satisÞed by all and only
states in the cyclic path. That is, if the system has reached this
path, it always remains in the path (testing this property takes
NuSMV 9.1 s). Further mathematical analysis has revealed
that the cyclic path arises from solutions spiraling inwards to
an equilibrium point (Roperset al., 2004). In other words,
during the reentry into stationary phase, the concentrations
of some of the proteins oscillate towards a new equilibrium
level. This is a surprising result, which has not been sub-
ject to investigation so far. We are currently carrying out
experiments in our laboratory to measure the temporal evol-
ution of the protein concentrations in the nutritional stress
response network, directly after a nutrient upshift, in order
to verify this prediction and continue the validation of our
model.

5 DISCUSSION
We have presented an approach for the validation of mod-
els of genetic regulatory networks, which combines a method
for qualitative modeling and simulation with techniques for
model checking. The qualitative modeling and simulation
method, exploiting favorable mathematical properties of a
class of coarse-grained models of genetic regulations, is a
reÞnement of our previous work (de Jonget al., 2003). The
method yields predictions on the derivative sign patterns of

the concentration variables that are particularly well adapted
to the currently available experimental methods. The method-
ological novelty of this paper is that we use model-checking
techniques to deal with the problem that the state transition
graphs generated by qualitative simulation may become
prohibitively large for biologically-interesting networks. They
permit observed dynamical properties of the system to be reli-
ably and efÞciently veriÞed. Moreover, due the fact that the
state transition graphs are conservative approximations of the
dynamics of the underlying PL models, the latter are guaran-
teed not to be ruled out falsely. The model-validation approach
is supported by a new version of the computer tool GNA.

The applicability of our model-validation approach has been
illustrated by the analysis of the complex regulatory network
underlying the nutritional stress response ofE.coli. We have
constructed a model of a part of this network, consisting of
key proteins and their interactions involved in the carbon star-
vation response, and validated this model by the available
experimental data in the literature. Although most predictions
on the entry into stationary phase are consistent with the obser-
vations, in one case they contradict the experimental data, i.e.
the observed decrease of the DNA supercoiling level, and
necessitate revisions of the model. In addition, we have used
model checking to further analyze the surprising prediction
of the model that some of the protein concentrations oscillate
after a nutrient upshift. This involves veriÞcations that would
be difÞcult to achieve by visual inspection.

Several applications of model checking and other formal
veriÞcation techniques for the analysis and validation of bio-
chemical network models have been proposed recently. Most
approaches apply to discrete models, such as Petri nets (Koch
et al., 2005), process algebras (Regevet al., 2001), concurrent
transition systems (Chabrier-Rivieret al., 2004), rewriting
logic (Ekeret al., 2002) and Boolean networks and their gen-
eralizations (Bernotet al., 2004). For instance, in Bernot
et al. (2004), a logical modeling approach is used in combin-
ation with CTL model checking to analyze models of mucus
production inPseudomonas aeruginosa, while the valida-
tion of a Petri net model of the sucrose breakdown pathway
is investigated in Kochet al. (2005). The work presented
in this paper shows that model checking can also be used
for more conventional continuous models, like differential
equation models. However, this requires a preliminary dis-
cretization of the dynamics of the system using abstractions.
Several other approaches taking this direction can be men-
tioned (Antoniottiet al., 2004; Ghoshet al., 2003; Shults and
Kuipers, 1997), based on qualitative differential equations
(Shults and Kuipers, 1997) or hybrid automata (Antoniotti
et al., 2004; Ghoshet al., 2003). However, contrary to our
approach, these methods either do not result in a conservative
approximation of the dynamics of the underlying continu-
ous models (Antoniottiet al., 2004) or they are based on
general purpose analysis techniques (Ghoshet al., 2003;
Shults and Kuipers, 1997). The conservative approximation
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that we obtain is critical for preventing that models are unne-
cessarily rejected. The particular mathematical form of the
PL models allows simple, tailor-made algorithms to be used,
which promote the upscalability of our approach to large and
complex networks, but at the same time limits its generality.

The model-validation approach of this paper has been illus-
trated in the context of CTL model checking. While CTL
allows a variety of biologically meaningful properties to be
expressed, some properties fall outside its scope. For instance,
in Section 4.2 we would have liked to express the occur-
rence of oscillations in some of the protein concentrations
after a nutrient upshift. That is, we would have liked to state
that there exists a path in the qualitative transition system,
such that from a state satisfyingp it is always possible to
reach a state satisfying¬p, and from a state satisfying¬p,
it is always possible to reach a state satisfyingp, wherep
might express that the concentration of some protein is above
a threshold and¬p that it is below this threshold. The for-
mulaEG(p � F¬p �¬ p � Fp) expresses this property, but
unfortunately it is not a CTL formula (becauseF is not paired
with a path quantiÞer) and it does not admit any CTL equi-
valent (Clarke and Draghicescu, 1988). However, the above
property can be expressed in theµ -calculus and evaluated
using XTL, a component of the CADP toolbox (Mateescu
and Garavel, 1998). The capability of GNA to generate export
Þles for different model checkers, allows one to take advantage
from the speciÞc strengths of each of them.

A problem encountered in the validation of our model is
that time-series measurements of the concentrations of the
proteins in the model are currently rare and usually have a
low sampling frequency. In addition, the measurements for
different proteins are difÞcult to combine, because they have
been carried out under different conditions (using different
strains, different culture media, etc.). This has the prac-
tical consequence that many interesting predictions obtained
through qualitative simulation cannot currently be tested. In
order to validate the model more rigorously, we are cur-
rently working onÞne-grained measurements of gene expres-
sion in wild-type and mutant strains during growth-phase
transitions. More generally, as systems biology takes hold,
we expect such model-driven experiments to become more
prominent.
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ABSTRACT

Motivation: Investigating the relation between the structure and
behavior of complex biological networks often involves posing the
question if the hypothesized structure of a regulatory network is
consistent with the observed behavior, or if a proposed structure
can generate a desired behavior.
Results: The above questions can be cast into a parameter search
problem for qualitative models of regulatory networks. We develop a
method based on symbolic model checking that avoids enumerating
all possible parametrizations, and show that this method performs
well on real biological problems, using the IRMA synthetic network
and benchmark datasets. We test the consistency between IRMA
and time-series expression pro“les, and search for parameter
modi“cations that would make the external control of the system
behavior more robust.
Availability: GNA and the IRMA model are available at
http://ibis.inrialpes.fr/
Contact: gregory.batt@inria.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A central problem in the analysis of biological regulatory networks
concerns the relation between their structure and dynamics. This
problem can be narrowed down to the following two questions:
(a) Is a hypothesized structure of the network consistent with the
observed behavior? (b) Can a proposed structure generate a desired
behavior?

Qualitative models of regulatory networks, such as (synchronous
or asynchronous) Boolean models and piecewise-af“ne differential
equation (PADE) models, have been proven useful for addressing
the above questions. The models are coarse-grained, in the sense
that they do not explicitly specify the biochemical mechanisms.
However, they include the logic of gene regulation and allow
different expression levels of the genes to be distinguished. They are
interesting in their own right, as a way to capture in a simple manner
the complex dynamics of a large regulatory network (Chaveset al.,
2009; Fauréet al., 2006; Monteiroet al., 2008; Saez-Rodriguez
et al., 2009). They can also be used as a “rst step to orient the
development of more detailed quantitative ODE models.

Qualitative models bring speci“c advantages when studying
the relation between structure and dynamics. In order to answer

� To whom correspondence should be addressed.

questions (a) and (b), one has to search the parameter space to check
if for some parameter values the network is consistent with the data
or can attain a desired control objective. In qualitative models, the
number of different parametrizations is “nite and the number of
possible values for each parameter is usually rather low. This makes
parameter search easier to handle than in quantitative models, where
exhaustive search of the continuous parameter space is in general
not feasible. Moreover, qualitative models are concerned with trends
rather than with precise quantitative values, which corresponds to
the nature of much of the available biological data (Cantoneet al.,
2009).

Nevertheless, the parametrization of qualitative models remains
a complex problem. For most models of networks of biological
interest the state and parameter spaces are too large to exhaustively
test all combinations of parameter values. The aim of this article is
to address this search problem for PADE models by treating it in the
context of formal veri“cation and symbolic model checking (Clarke
et al., 1999; Fisher and Henzinger, 2007).

Our contributions are twofold. On the methodological side, we
develop a method that in comparison with our previous work
(Batt et al., 2005) makes it possible to ef“ciently analyze large
and possibly incompletely parametrized PADE models. This is
achieved by asymbolic encodingof the model structure, constraints
on parameter values and transition rules describing the qualitative
dynamics of the system. We can thus take full advantage of symbolic
model checkers for testing the consistency of the network structure
with dynamic properties expressed in temporal logics. The computer
tool GNA has been extended to export the symbolic encoding of
PADE models in the NuSMV language (Cimattiet al., 2002). In
comparison with related work (Barnatet al., 2009; Bernotet al.,
2004; Corblinet al., 2009; Fromentinet al., 2007), our method
applies to incompletely instead of fully parametrized models,
provides more precise results and the encoding is ef“cient without
(strongly) simplifying the PADE dynamics.

On the application side, we show that themethod performs
well on real problems, by means of the IRMA synthetic network
and benchmark experimental datasets (Cantoneet al., 2009). More
precisely, we are able to “nd parameter values for which the network
satis“es temporal-logic properties describing observed expression
pro“les, both on the level of individual and averaged time series.
The method is selective in the sense that only a small part of the
parameter space is found to be compatible with the observations.
Analysis of these parameter values reveals that biologically relevant
constraints have been identi“ed. Moreover, we make suggestions to
improve the robustness of the external control of the IRMA behavior
by proposing a rewiring of the network.
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