B. J. Bailey and W. Day, THE USE OF MODELS IN GREENHOUSE ENVIRONMENTAL CONTROL, Acta Horticulturae, vol.491, issue.491, pp.93-100, 1999.
DOI : 10.17660/ActaHortic.1999.491.12

M. Baille, A. Baille, and D. Delmon, Microclimate and transpiration of greenhouse rose crops, Agricultural and Forest Meteorology, vol.71, issue.1-2, pp.83-97, 1994.
DOI : 10.1016/0168-1923(94)90101-5

M. Baille, A. Baille, and J. C. Laury, A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area, Scientia Horticulturae, vol.59, issue.3-4, 1994.
DOI : 10.1016/0304-4238(94)90015-9

M. Baille, A. Baille, and M. Tchamitchian, A SIMPLE MODEL FOR THE ESTIMATION OF GREENHOUSE TRANSMISSION : INFLUENCE OF STRUCTURES AND INTERNAL EQUIPMENT, Acta Horticulturae, vol.281, issue.281, pp.35-46, 1990.
DOI : 10.17660/ActaHortic.1990.281.3

F. J. Baptista, B. J. Bailey, and J. F. Meneses, COMPARISON OF HUMIDITY CONDITIONS IN UNHEATED TOMATO GREENHOUSES WITH DIFFERENT NATURAL VENTILATION MANAGEMENT AND IMPLICATIONS FOR CLIMATE AND BOTRYTIS CINEREA CONTROL, Acta Horticulturae, vol.801, issue.801, pp.1013-1020, 2008.
DOI : 10.17660/ActaHortic.2008.801.120

F. J. Baptista, B. J. Bailey, J. M. Randall, and J. F. Meneses, Greenhouse Ventilation Rate: Theory and Measurement with Tracer Gas Techniques, Journal of Agricultural Engineering Research, vol.72, issue.4, pp.363-374, 1999.
DOI : 10.1006/jaer.1998.0381

T. Bartzanas, T. Boulard, and C. Kittas, Effect of Vent Arrangement on Windward Ventilation of a Tunnel Greenhouse, Biosystems Engineering, vol.88, issue.4, pp.479-490, 2004.
DOI : 10.1016/j.biosystemseng.2003.10.006

S. Bezari, A. Bouhdjar, and N. Aït-messaoudène, Etude du microclimat d'une serre tunnel équipée d'un dispositif de stockage thermique dans l'eau. Energies renouvelables 07, pp.307-313, 2007.

B. Triki, N. Benyarou, F. Benyoucef, B. Sayed, and M. A. , Bilan thermique et méthode d'estimation des besoins énergetiques de la serre agricole tunnel à double paroi constrituée dans sa face Nord d'un mur en panneau sandwich, pp.77-82, 1999.

T. Boulard, Etude du gisement de chaleur récupérable sur l'air d'une serre : comparaison avec les besoins en chauffage, 1985.

T. Boulard, A. Baille, M. Mermier, and F. Villette, Mesures et mod??lisation de la r??sistance stomatique foliaire et de la transpiration d'un couvert de tomates de serre, Agronomie, vol.11, issue.4, pp.259-274, 1991.
DOI : 10.1051/agro:19910403

URL : http://prodinra.inra.fr/ft/812E7326-3881-4321-AA29-C5EDA9468405

T. Boulard, H. Fatnassi, J. C. Roy, J. Lagier, J. Fargues et al., Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer, Agricultural and Forest Meteorology, vol.125, issue.3-4, pp.225-239, 2004.
DOI : 10.1016/j.agrformet.2004.04.005

T. Boulard and S. Wang, Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel, Computers and Electronics in Agriculture, vol.34, issue.1-3, pp.173-190, 2002.
DOI : 10.1016/S0168-1699(01)00186-7

P. E. Bournet, S. A. Ould-khaoua, and T. Boulard, Numerical prediction of the effect of vent arrangements on the ventilation and energy transfer in a multi-span glasshouse using a bi-band radiation model, Biosystems Engineering, vol.98, issue.2, pp.224-234, 2007.
DOI : 10.1016/j.biosystemseng.2007.06.007

J. Boussinesq, Théorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, 1903.

C. M. Britton and J. D. Dodd, Relationships of photosynthetically active radiation and shortwave irradiance, Agricultural Meteorology, vol.17, issue.1, pp.1-7, 1976.
DOI : 10.1016/0002-1571(76)90080-7

R. H. Brown and R. E. Blaser, Leaf area index ipi pasture growth, Herb. Abstr, vol.38, pp.1-9, 1968.

P. Chassaing, Turbulence en mécanique des Fluides Analyse du phénomène en vue de sa modélisation à l'usage de l'ingénieur, In: Cépaudès-éditions, 2000.

H. Demrati, T. Boulard, H. Fatnassi, A. Bekkaoui, H. Majdoubi et al., Microclimate and transpiration of a greenhouse banana crop, Biosystems Engineering, vol.98, issue.1, pp.66-78, 2007.
DOI : 10.1016/j.biosystemseng.2007.03.016

H. Fatnassi, T. Boulard, C. Poncet, and M. Chave, Optimisation of Greenhouse Insect Screening with Computational Fluid Dynamics, Biosystems Engineering, vol.93, issue.3, pp.301-312, 2006.
DOI : 10.1016/j.biosystemseng.2005.11.014

B. Fleury, Contribution à la modélisation d'un couvert végétal associatif. Modèle dynamique d'un couvert de trèfle violet (Trifolium pratense L.) en culture pure, 1982.

. Fluent, Fluent5 User's Guide. Fluent Incorporated, 1998.

. Fluent, Fluent13.1 User's Guide. Fluent Incorporated, 2012.

G. Guyot, Climatologie de l'environnement. De la plante aux écosystèmes, 1999.

H. Ha-minh, Physique et modélisation de la turbulence en écoulement de fluides, 1991.

R. Haxaire, Caractérisation et modélisation des écoulements d'air dans une serre, pp.1-148, 1999.

O. Jolliet, Modélisation du comportement thermique d'une serre horticole, 1988.

P. J. Jones and G. E. Whittle, Computational fluid dynamics for building air flow prediction???current status and capabilities, Building and Environment, vol.27, issue.3, pp.321-338, 1992.
DOI : 10.1016/0360-1323(92)90033-L

A. Kichah, P. E. Bournet, C. Migeon, and T. Boulard, Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse, Biosystems Engineering, vol.112, issue.1, pp.22-34, 2012.
DOI : 10.1016/j.biosystemseng.2012.01.012

URL : https://hal.archives-ouvertes.fr/hal-00841037

C. Kittas, D??termination du coefficient global de transmission de chaleur ?? travers la paroi d'une serreOverall heat transfer coefficient of a greenhouse cover, Agricultural and Forest Meteorology, vol.69, issue.3-4, pp.205-221, 1994.
DOI : 10.1016/0168-1923(94)90026-4

C. Kittas, B. Draoui, and T. Boulard, Quantification du taux d'a???ration d'une serre ??? ouvrant continu en toiture, Agricultural and Forest Meteorology, vol.77, issue.1-2, pp.95-111, 1995.
DOI : 10.1016/0168-1923(95)02232-M

M. A. Lamrani, T. Boulard, J. C. Roy, and A. Jaffrin, SE???Structures and Environment, Journal of Agricultural Engineering Research, vol.78, issue.1, pp.75-88, 2001.
DOI : 10.1006/jaer.2000.0568

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Comput Method. Appl. M, pp.269-289, 1974.

M. Lesieur, P. Compte, E. Lamballais, O. Métais, and J. Silvestrini, Large-Eddy Simulations of shear flows, Journal of Engineering Mathematics, vol.32, issue.2/3, pp.195-215, 1997.
DOI : 10.1023/A:1004228831518

S. Makhlouf, Expérimentation et modélisation d'une serre solaire à air avec stockage par chaleur latente assisté par pompe à chaleur de déshumidification, 1988.

L. M. Mercado, C. Huntingford, J. H. Gash, P. M. Cox, and V. Jogireddy, Improving the representation of radiation interception and photosynthesis for climate model applications, Tellus B: Chemical and Physical Meteorology, vol.130, issue.3, pp.553-565, 2006.
DOI : 10.1080/01431168508948283

K. Mesmoudi, A. Soudani, and L. Serir, Modèle de bilan énergétique d'une serre sans couvert végétal, Energies Renouvelables, vol.11, pp.51-64, 2008.

A. Mistriotis, C. Arcidiacono, P. Picuno, G. P. Bot, and G. Scarascia-mugnozza, Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds, Agricultural and Forest Meteorology, vol.88, issue.1-4, pp.121-135, 1997.
DOI : 10.1016/S0168-1923(97)00045-2

A. Mistriotis, G. P. Bot, P. Picuno, and G. Scarascia-mugnozza, Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics, Agricultural and Forest Meteorology, vol.85, issue.3-4, 1997.
DOI : 10.1016/S0168-1923(96)02400-8

F. D. Molina-aiz, D. L. Valera, J. A. Gil, and A. A. Pena, Optimisation of Almeria-type greenhouse ventilation performance with computational fluid dynamics. International sysposium on greenhouse cooling : methods technologies and plant response, 2006.

C. Monteil and M. Amouroux, Analyse du comportement thermique du sol d'une serre agricole par simulation dynamique, Journal de Physique III, vol.7, issue.2, 1997.
DOI : 10.1051/jp3:1997130

URL : https://hal.archives-ouvertes.fr/jpa-00249586

C. Monteil, G. Issanchou, and M. Amouroux, Mod??le ??nerg??tique de la serre agricole, Journal de Physique III, vol.1, issue.3, pp.429-455, 1991.
DOI : 10.1051/jp3:1991130

J. L. Monteith, Using tube solarimeters to measure radiation intercepted by the crop canopies ans to analyse stand groth, 1993.

J. I. Montero, P. Munoz, A. Anton, and N. Iglesias, COMPUTATIONAL FLUID DYNAMIC MODELLING OF NIGHT-TIME ENERGY FLUXES IN UNHEATED GREENHOUSES, Proceedings of the International Conference on Sustainable Greenhouse Systems, Vols 1 and 2, pp.403-409, 2005.
DOI : 10.17660/ActaHortic.2005.691.48

B. Morille, C. Migeon, and P. E. Bournet, EFFECT OF THE HETEROGENEITY OF THE RADIATION DISTRIBUTION ON THE CROP ACTIVITY, Acta Horticulturae, vol.952, issue.952, pp.755-762, 2012.
DOI : 10.17660/ActaHortic.2012.952.95

URL : https://hal.archives-ouvertes.fr/hal-00729275

R. Nebbali, Modélisation de la dynamique du climat interne distribué dans une serre de culture, Thèse de doctorat de l'Université de Franche-Comté, 2008.

T. Norton, D. W. Sun, J. Grant, R. Fallon, and V. Dodd, Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review, Bioresource Technology, vol.98, issue.12, pp.2386-2414, 2007.
DOI : 10.1016/j.biortech.2006.11.025

G. Papadakis, A. Frangoudakis, and S. Kyristis, Mixed, forced and free convection heat transfer at the greenhouse cover, Journal of Agricultural Engineering Research, vol.51, pp.191-205, 1992.
DOI : 10.1016/0021-8634(92)80037-S

D. Piscia, J. I. Montero, E. Baeza, and B. J. Bailey, A CFD greenhouse night-time condensation model, Biosystems Engineering, vol.111, issue.2, pp.141-154, 2012.
DOI : 10.1016/j.biosystemseng.2011.11.006

S. Reichrath and T. W. Davies, Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse, Journal of Wind Engineering and Industrial Aerodynamics, vol.90, issue.3, pp.139-149, 2002.
DOI : 10.1016/S0167-6105(01)00184-2

J. C. Roy, T. Boulard, C. Kittas, and S. Wang, PA???Precision Agriculture, Biosystems Engineering, vol.83, issue.1, pp.1-20, 2002.
DOI : 10.1006/bioe.2002.0107

M. Ruther, NATURAL VENTILATION RATES OF CLOSED GREENHOUSES, Acta Horticulturae, vol.170, issue.170, pp.185-191, 1985.
DOI : 10.17660/ActaHortic.1985.170.20

I. Seginer, On the night transpiration of greenhouse roses under glass or plastic cover, Agricultural Meteorology, vol.30, issue.4, pp.203-216, 1984.
DOI : 10.1016/0002-1571(84)90002-5

R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 2002.

C. Stanghellini, Transpiration of greenhouse crops. An aid to climate management, 1987.

J. Taine and J. P. Petit, Transferts thermiques: introduction aux sciences des transferts, 2003.

H. Tennekes and J. L. Lumley, A First Course in Turbulence, 1972.

G. Tong, D. M. Christopher, and B. Li, Numerical modelling of temperature variations in a Chinese solar greenhouse, Computers and Electronics in Agriculture, vol.68, issue.1, pp.129-139, 2009.
DOI : 10.1016/j.compag.2009.05.004

V. Elsner, B. Briassoulis, D. Waaijenberg, D. Mistriotis, A. et al., Review of Structural and Functional Characteristics of Greenhouses in European Union Countries: Part I, Design Requirements, Journal of Agricultural Engineering Research, vol.75, issue.1, pp.1-16, 2000.
DOI : 10.1006/jaer.1999.0502

K. Wang, (Thysanoptera: Thripidae) on Greenhouse Cucumber, Environmental Entomology, vol.30, issue.6, pp.1073-1081, 2001.
DOI : 10.1603/0046-225X-30.6.1073

S. Wang, T. Boulard, and R. Haxaire, Air speed profiles in a naturally ventilated greenhouse with a tomato crop, Agricultural and Forest Meteorology, vol.96, issue.4, pp.181-188, 1999.
DOI : 10.1016/S0168-1923(99)00063-5

S. Wang, T. Boulard, and R. Haxaire, Experimental and numerical studies of airflow, temperature and humidity distributions in a greenhouse Tunnel, Proceedings of the 99th International Conference on Agricultural Engineering, III, pp.34-38, 1999.

S. Wang and J. Deltour, Lee-side Ventilation-induced Air Movement in a Large-scale Multi-span Greenhouse, Journal of Agricultural Engineering Research, vol.74, issue.1, pp.103-110, 1999.
DOI : 10.1006/jaer.1999.0441

X. Wang, Y. Zhang, G. L. Riskowski, and M. Ellis, SE???Structures and Environment, Biosystems Engineering, vol.81, issue.2, pp.225-236, 2002.
DOI : 10.1006/bioe.2001.0014

J. A. Wiebelt and J. B. Henderson, Theoretical thermal modeling of a leaf with experimental verification, Agricultural Meteorology, vol.19, issue.2-3, pp.101-111, 1978.
DOI : 10.1016/0002-1571(78)90002-X

X. Yang, Comments on ?Thermal and aerodynamic conditions in greenhouses in relation to estimation of heat flux and evapotranspiration?, Agricultural and Forest Meteorology, vol.77, issue.1-2, pp.131-136, 1995.
DOI : 10.1016/0168-1923(95)02243-Q

M. Baille, A. Baille, and J. C. Laury, A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area, Scientia Horticulturae, vol.59, issue.3-4, pp.217-232, 1994.
DOI : 10.1016/0304-4238(94)90015-9

T. Bartzanas, T. Boulard, and C. Kittas, Effect of Vent Arrangement on Windward Ventilation of a Tunnel Greenhouse, Biosystems Engineering, vol.88, issue.4, pp.479-490, 2004.
DOI : 10.1016/j.biosystemseng.2003.10.006

T. Bartzanas, C. Kittas, A. Sapounas, and C. Nikita-martzopoulou, Analysis of airflow through experimental rural buildings: Sensitivity to turbulence models, Biosystems Engineering, vol.97, issue.2, pp.229-239, 2007.
DOI : 10.1016/j.biosystemseng.2007.02.009

C. Baxevanou, T. Bartzanas, D. Fidaros, and C. Kittas, SOLAR RADIATION DISTRIBUTION IN A TUNNEL GREENHOUSE, Acta Horticulturae, vol.801, issue.801, pp.855-862, 2008.
DOI : 10.17660/ActaHortic.2008.801.100

T. Boulard and S. Wang, Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel, Computers and Electronics in Agriculture, vol.34, issue.1-3, pp.173-190, 2002.
DOI : 10.1016/S0168-1699(01)00186-7

P. E. Bournet, O. Khaoua, S. A. Boulard, and T. , Numerical prediction of the effect of vent arrangements on the ventilation and energy transfer in a multi-span glasshouse using a bi-band radiation model, Biosystems Engineering, vol.98, issue.2, pp.224-234, 2007.
DOI : 10.1016/j.biosystemseng.2007.06.007

P. E. Bournet, A. Kichah, C. , and G. , ANALYSIS OF RADIATION AND TRANSPIRATION HETEROGENEITY INSIDE A GREENHOUSE IMPATIENS CROP USING COMPUTATIONAL FLUID DYNAMICS, Acta Horticulturae, issue.893, 2009.
DOI : 10.17660/ActaHortic.2011.893.72

D. Fidaros, C. Baxevanou, T. Bartzanas, and C. Kittas, THERMAL BEHAVIOUR OF A TUNNEL ARC GREENHOUSE DURING A SOLAR DAY, Acta Horticulturae, vol.801, issue.801, pp.893-900, 2007.
DOI : 10.17660/ActaHortic.2008.801.105

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol.3, issue.2, pp.269-289, 1974.
DOI : 10.1016/0045-7825(74)90029-2

H. Majdoubi, T. Boulard, H. Fatnassi, and L. Bouirden, Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study, Agricultural and Forest Meteorology, vol.149, issue.6-7, pp.6-7, 2009.
DOI : 10.1016/j.agrformet.2009.01.002

A. Mistriotis, G. P. Bot, P. Picuno, and G. Scarascia-mugnozza, Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics, Agricultural and Forest Meteorology, vol.85, issue.3-4, pp.217-228, 1997.
DOI : 10.1016/S0168-1923(96)02400-8

T. Norton, D. Sun, J. Grant, R. Fallon, and V. Dodd, Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review, Bioresource Technology, vol.98, issue.12, pp.2386-2414, 2007.
DOI : 10.1016/j.biortech.2006.11.025

P. J. Richards and R. P. Hoxey, Appropriate boundary conditions for computational wind engineering models using the k-?? turbulence model, Journal of Wind Engineering and Industrial Aerodynamics, pp.46-47145, 1993.
DOI : 10.1016/B978-0-444-81688-7.50018-8

J. Wilson, Numerical studies of flow through a windbreak, Journal of Wind Engineering and Industrial Aerodynamics, vol.21, issue.2, pp.119-154893, 1985.
DOI : 10.1016/0167-6105(85)90001-7

M. Kindellan, Dynamic Modeling of Greenhouse Environment, Transactions of the ASAE, vol.23, issue.5, pp.1232-1239, 1980.
DOI : 10.13031/2013.34752

K. Mesmoudi, A. Soudani, and P. E. Bournet, The determination of the inside air temperature of greenhouse with tomato crop, under hot and aride climates, J. Applied Sci. Envir. Sanita, vol.5, issue.2, pp.117-129, 2010.

C. Monteil, G. Issanchou, and M. Amouroux, Mod??le ??nerg??tique de la serre agricole, Journal de Physique III, vol.1, issue.3, pp.429-454, 1991.
DOI : 10.1051/jp3:1991130

G. Papadakis, D. Manolakos, and S. Kyritsis, Solar Radiation Transmissivity of a Single-Span Greenhouse through Measurements on Scale Models, Journal of Agricultural Engineering Research, vol.71, issue.4, pp.331-338, 1998.
DOI : 10.1006/jaer.1998.0331

J. C. Roy, T. Boulard, C. Kittas, and S. Wang, PA???Precision Agriculture, Biosystems Engineering, vol.83, issue.1, pp.1-20, 2002.
DOI : 10.1006/bioe.2002.0107

T. Soriano, J. Montero, M. C. Sánchez-guerrero, E. Medrano, A. Antón et al., A Study of Direct Solar Radiation Transmission in Asymmetrical Multi-span Greenhouses using Scale Models and Simulation Models, Biosystems Engineering, vol.88, issue.2, pp.243-253, 2004.
DOI : 10.1016/j.biosystemseng.2004.03.006

R. Suay, S. López, R. Granell, E. Moltó, H. Fatnassi et al., PRELIMINARY ANALYSIS OF GREENHOUSE MICROCLIMATE HETEROGENEITY FOR DIFFERENT WEATHER CONDITIONS, Acta Horticulturae, vol.797, issue.797, pp.103-109, 2008.
DOI : 10.17660/ActaHortic.2008.797.12

P. E. Bournet, S. A. Ould-khaoua, and T. Boulard, Numerical prediction of the effect of vent arrangements on the ventilation and energy transfer in a multi-span glasshouse using a bi-band radiation model, Biosystems Engineering, vol.98, issue.2, pp.224-234, 2007.
DOI : 10.1016/j.biosystemseng.2007.06.007

J. Campen, F. Kempkes, and G. Bot, Mechanically controlled moisture removal from greenhouses, Biosystems Engineering, vol.102, issue.4, pp.424-432, 2009.
DOI : 10.1016/j.biosystemseng.2009.01.001

J. Campen, Dehumidification of Greenhouses, p.117, 2009.

N. Katsoulas, C. Manoloaraki, C. Kittas, and T. Bartzanas, EFFECTS OF ANTI-DRIP COVER MATERIALS ON MICROCLIMATE AND PRODUCTION OF A HYDROPONIC CUCUMBER CROP, Acta Horticulturae, vol.801, issue.801, pp.267-274, 2007.
DOI : 10.17660/ActaHortic.2008.801.26

A. Kichah, P. E. Bournet, and C. Migeon, Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse, Biosystems Engineering, vol.112, issue.1, pp.22-34, 2012.
DOI : 10.1016/j.biosystemseng.2012.01.012

URL : https://hal.archives-ouvertes.fr/hal-00841037

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol.3, issue.2, pp.269-289, 1974.
DOI : 10.1016/0045-7825(74)90029-2

J. I. Montero, P. Munoz, A. Anton, and N. Iglesias, COMPUTATIONAL FLUID DYNAMIC MODELLING OF NIGHT-TIME ENERGY FLUXES IN UNHEATED GREENHOUSES, Acta Horticulturae, vol.691, issue.691, pp.403-410, 2005.
DOI : 10.17660/ActaHortic.2005.691.48

B. Morille, R. Genez, C. Migeon, P. E. Bournet, B. Ali et al., CFD Simulations of the Distributed Climate Time-Evolution inside a Glasshouse at Night, International conference of agricultural engineering CIGR-Ageng, p.6, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00918013

D. Piscia, J. I. Montero, E. Baeza, and B. J. Bailey, A CFD greenhouse night-time condensation model, Biosystems Engineering, vol.111, issue.2, pp.141-154, 2012.
DOI : 10.1016/j.biosystemseng.2011.11.006

/. *. Define_source, Source de température végétation (Flux chaleur sensible) cell, thread, dS, eqn) { real source]; int i; int nb; real RayAbs, ND_ND, pp.0-1

R. and *. Visc, if (Re*Re<0.1*Gr) {Nusselt=0.40*pow(Gr,0.25);} if ((Re*Re>0.1*Gr)&&(Re*Re<10*Gr)) {Nusselt=0.40*pow(Gr+6.92*Re*Re,0.25);} if

/. *. Define_source, cell, thread, dS, eqn) { real source,x[ND_ND]; int i,nb; real RayAbs, p.2

/. User, upon the very first time a mesh file is loaded should enter the following Scheme command, including parentheses, at the Fluent TUI: (rp-var-define 'wallcond/underrelax 0.01 'real #f) (rp-var-define

/. Function, double psat_h2o(double); /* computes sat. pressure of h2o */ double steam_hfg(double); /* computes latent heat of h2o */ double t_c(double t_sat)

/. Global, static double sr_ur_alpha = 0.01; /* allows under-relaxation factor in */ /* surface reaction calculation

/. *. Function, init_function" initializes the array store_rate* which stores condensation rate at each */ /* face on the condensing surface */ /* function "saturated_wall" sets the h2o mass fraction at the con-*/ /* densing surface to the saturation value */ /* function "read_ur_file" reads in a new under-relaxation factor */ /* from an input file */ /* function "latent_heat" writes latent heat transfer rate at con-*/ /* densing surface to an output file */ /* function "user_rate_4" computes condensation rate at each face */ /* on the condensing surface, pcell static pressure (absolute)