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CHAPTER 1

Introduction

Contents
1.1 More and more multimediadata . . . . ... ... ............

1
1.2 Theneedtoorganize . . . . . . .. . . . . .. 2
1.3 Examplesofapplications. . . .. .. ... .. ... ... ........ 3
1.4 Context, goals and contributions of thisthesis . . . . . . ... ... .. 5

1.1 More and more multimedia data

In the last decade, our society has experienced significant adviarelestronics and digi-

tal technology, with prices for consumer electronics and gadgets going sigwificantly.

In the year 2000, digital cameras were rare, and those that exi§erddalimited perfor-
mance in terms of resolution and maximum number of images that one could acquire. As
for video cameras, recording was still done generally on magnetic tapis$ albo served

for storage of the video content. Camera phones were something compldtebrdrof at

that time among most consumers. And of course, if someone had a “databaseiges

or videos, it simply consisted of many albums of photos on paper, negatidgesiide film,

or boxes full of video tapes recorded on various occasions.

As the years passed, technology improved to the level that digital cantetasam-
corders of higher and higher quality have becorfferdable in all developed countries.
It is in fact becoming dficult now (year 2013) to buy a mobile phone tliaesn’thave
an integrated camera, because the costs of including one have ddcseasech. Even
phone cameras have progressed a lot, to the point that their quality is almcstrite as
that of compact digital cameras, and because most people carry their @bhenygvhere
they go, they can take photos (or record videos) anytime and anyvétehe, simple push
of a button.

This increase in the ease of acquiring images, videos or audio recotirsgalso
been accompanied by an increase in resolution of image sensors. As ofc2di@act
digital cameras have resolutions of around 10-15 Megapixels, enthystasill relatively
affordable cameras can go up to 24 Megapixels, while professional camihakrge
sensors can have resolutions in excess of 40 Megapixels. The line batiggahcameras
and camcorders is also becoming more and more blurred, as most digital caolérias s
2013 can also acquire high-definition video (1080 lines progressiveifiteriaced) at 30
or even 60 frames per second). Phone cameras too are getting bettettendtcapturing
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images and videos, with a 2013 high-end smartphone being able to take ikidga
photos and capture HD video.

At the same time, storage has also become much cheaper. If in the year 20@B a
hard-disk was considered of large capacity, as of 2013, one céy bag a 1TB hard-
disk for a very #ordable price. Such a hard-disk would allow storing in the order of
200000 high-quality still images (15 Megapixels with a low JPEG compression ration
give 5MB/image), or hundreds of hours of video (depending on the resolutiongefrate,
compression algorithm and compression ratio used). Moreover, online stnaggtime-
dia is now possible on websites such as Facebook, Instagram, Youtulendtasers are
in fact encouraged to upload, share and tag their content. Therefod, 2013, digital
archiving has almost completely replaced analog archiving of still imagesosidr audio
recordings (multimedia), and many people have very large collections of multimedia file
on their computers or on web servers.

1.2 The need to organize

With so many files, in order to be able to find a certain element later on, the aser h
to be extremely well-organized when adding new files to the database. Hgvmeany
ordinary users’ skills at organizing their personal collection of multimedia oalgafar

as to having &Various styf” folder on their computer, in which subfolders with “very
suggestive” names with respect to their content are created, sutteasfolder (1)”,
“New folder (2)” or “100NCD40". Afterwards, when the user wants to retrieve a particular
photo or video, the strategy for many people consists in more-or-lessmiyndticking on
subfolders, hoping to find the desired element, which isn’t particuldiilgient.

This has led to the development of dedicated software which helps useztido dr-
ganize their multimedia collections. In the case of photo organizing softwarex&mnple
Picasa), it usually allows the user to assign lalj&dgs or even captions to pictures, to add
star ratings, to group pictures into albums and to easily move them to and fronusvario
folders, and to easily share photos on social networking websites. Bigpwe database
or searching for a particular picture can be done by entering desiredaiagpecifying the
album, angbr the date when the picture was taken etc. Geotagging is also increasing in
popularity, as more and more cameras are equipped with GPS modules that tas getd
ographical location where the picture was taken to the picture’s metadatanfoinimation
can also be used to filter only a subset of photos.

Such software can greatly help people to organize their multimedia collections, how
ever one problem still remains: if the user wants to be able to search insidathizase
according to criteria more complex than just the date and time when the picture was tak
andor the geographical location, tags (indexing terms) of a higher semanticdeveé-
quired. For example, searching for photos of “mother baking a cake” weuwjdire se-
mantic tags such as “mother”, “bgkaking"”, “cake”, “kitchen” etc. to be used as search
terms. In general, such tags need tafenually-specifiethy the user, but this is a tedious
task when there are many files to annotate.

thttp://picasa.google.com/
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On-line databases experience similar problems, but to an even higher Hegeerse of
the numerous users that submit content. For example, on the Yduwide® website, 100
new hours of video are uploaded every minute by its dséfshese videos would not be
properly annotated by the uploaders (with an adequate title and apprdg@yaterds), they
would be impossible to find by others. Currently, this annotation must be doneaithyaloy
the uploader. If we also demand the possibility of retrieving just a shoueseginsidea
video, the annotation needs to be even more detailed, at the sequence lakeleghires
even more ffort from the part of the uploader.

It would be very helpful if these semantic tags could be assigned automatiehith
brings us to the problem of automasemantic indexingf multimedia content, which is
the topic of this thesis. Usingomputer visiortechniques, a computer could examine the
image or video automatically and determine the semantic content: what the multimedia
element is about, where the action takes place, who are the main charactevhairdo
they do, what objects are present in the scene, if there are any uewsnés etc. and the
computer would then annotate the multimedia element with the corresponding keyword
Such an automatic annotation could be done in much more detail: for a long videnaa hu
user might only be able to annotate the basic ideas, whereas a computencmiktathe
different scenes of the video individually, so that not only the video couttbeched, but
specific scenes within the video (such as finding the moment when “Mother putsiie
in the oven”).

Such a database management system, able to retrieve multimedia elements based on
their semanticcontent and not just low-level tags (such as date, time and geographical
location) is called £ontent-Based Multimedia Retrievalstem.

1.3 Examples of applications

A content-based multimedia retrieval system that can automatically assign semiagitc la
to database elements (performiggmantic indexing and later use these labels to help
users search for specific elements, would find applications in many areas.

For example, users of the Flickor Picasa on-line picture sharing websites, or of the
Vimed® or Youtubé€ video sharing websites would no longer need to manually set labels
for the content they upload, in order to allow others to search for andvetthis content.
The same would also be true for multimedia collections stored on a personal corpaite
organized using such software.

In the case of stock photography websites (such as Getty Images anudiiraa),
which help uploaders to sell their photos (usually to advertisers), ¢dedeels are even
more important, as they maximize the sales of photos; again, computer vision teshnique
could aid in analyzing the content and tagging the photo automatically or dirggesw

2www . youtube . com
Shttp://www.youtube.com/yt/press/statistics.html
“www. flickr.com

picasa.google.com

vimeo.com

5
6
"www . youtube. com
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tags to the user. Advertisers searching for photos would also bermefitthris annotation
via a “smart browser”: this would allow them to view semantically-relevant ghessier,
to view more images similar to a certain query image, to request images with the same
keywords but in dferent contexts (in order to have a more diverse retrieval respomse fro
the system), to quickly navigate between semantically-related terms (and viegiedsd
images) and so on.

Television networks would also benefit from such video database ianggrools, as
it can help them to archive their broadcasts automatically. At a later time, whertaan
part of old material becomes relevant for current events, that olccparbe searched and
easily retrieved from the database thanks to annotations that were madetaéttyr(such
as who was the person being interviewed, whdsime was saying etc.), accompanied by
ordinary metadata (the name of the show, the date and time etc.).

Regarding already-implemented applications of content-based multimedia indexing
and retrieval, we can name a few popular examples.

The social networking website Faceb8aitlows users to tag their friends in uploaded
photos, to facilitate searching for photos of certain people later on. Hawgagging a
friend in many photos is a tedious task. Facebook facilitates this by makingehenas-
ually tag higher friend in just a few photos, and then employing automatic face detection
and recognition software to suggest tags of the same person in other photis consti-
tutes a partially-automatic indexing system (the user needs to validate the pfdpgse
for annotating pictures with the persons present in them, while retrieval eaoie by
requesting annotated pictures of that person later on.

Youtube does not yet (as of 2013) implement a system with automatic semasette ind
ing, however it implementsontent-based copy detectiamhich is a content-based video
retrieval system used to combat piracy. Copyright holders (such as musiowie pub-
lishing agencies) can send to Youtube a copy of the content that theyt deanbpirated.
When a regular user uploads a video, its content is automatically analydezbarpared
to the database of copyrighted works. If the video is found to be (a Paatappyrighted
work such as a music video, a fragment of a commercial movie etc., Youtulectethe
copyright holder and lets it decide what to do: either block the video or usepitomote
the original content (e.g. by overlaying links to where the viewer can bugrigaal DVD
or music CD)!°,

For Youtube videos, there are third-party providers of automatic richnggervices.
For example, the company Video Semaritidsas enabled a video segmentation and tag-
ging engine thatallows content producers automatic insertion of the rich metadata into
YouTube hosted videos. Keywords created by the Video Semanticgesctiwinclude the
topics in the video, related concepts, relevant categories or other intomaf interest to
the viewer” Content producers can thus benefit from a higher viewability andsexpo

8www . facebook . com

*https://www.facebook.com/notes/facebook/making-photo-tagging-easier/467145887130
retrieved on 392013

%http: //www.youtube.com/t/contentid

Uhttp://www.videosemantics.com/site.php/, retrieved on 3092013
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leading to higher ranks in search restitsTherefore, in this example, semantic indexing is
assured by the company’s tagging engine, while retrieval is managed lybédsisearch
engine (which matches a user’s search terms with the tags of a video).

Google Image Search allows users to search the web for images. Searids @an
be formulated with keywords, but also by giving an example image, which makegl&
search for visually-similar images. As of June 2013, their system is alsleapbse-
mantic concept recognitioim images that have not been labeled by a human, being able
to recognize more than 1000 image cladde$hanks to the addition of semantic concept
recognition, this system is now capable of both indexing (images on the webecam
dexed with the recognized image classes) and retrieval (the classesiefaimage are
determined and used as search terms in the database).

These examples support the idea that automatic semantic indexing (semantig)taggin
in the context of content-based multimedia retrieval is a very hot reseairictindpe com-
puter vision community, as it has great potential for commercial applications. nidti-
vates the work undertaken in this thesis, which consisexploring automatic semantic
indexing algorithms on very large video databases

1.4 Context, goals and contributions of this thesis

Semantic indexing of video datasets, which is the focus of this thesis, isarechgepic at
the boundary of several fields, as shown in Figli® It requires knowledge of computer
vision, image (or video) processing and analysis, machine learning awchiation fusion.
The lines between these domains are not clearly defined, but we couldesajidlving:

e Imagévideo processing and analysis tools are needed for extracting desaipfion
a very low semantic level from the video (such as the dominant colors, thanedot
contour orientations, the dominant motion directions etc.); these characterize the
aspect of the video in a machine-understandable and compact form. Theraémpo
segmentation of videos according to their temporal structure could also beedclud
in this category, although it can also be considered a computer vision tool.

e Computer vision tools are used to aggregate the previous descriptors iredeae{a-
tions (such as the Bag of Words descriptor which will be seen later in SetBof.

e Machine learning tools are used to train supervised classification algorithntas-A c
sifier has the role of predicting whether or not a video belongs to a clast{cs a
certain semantic concept), based on the representation of a video frometieug
point. The classifier is trained by giving it a set of annotated example vidégush
enables it to automatically learn the rules for classifying other videos as well.

e At the end, information fusion strategies are needed to take advantagenpfeco
mentary information coming from fierent sources.

http://wuw.prweb.com/releases/2013/7/prueb10968938.htm
Bnttp://googleresearch.blogspot.fr/2013/06/improving-photo-search-step-across.html
retrieved on 3092013
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Computer vision

Figure 1.1: Concerned scientific areas of this thesis: semantic indexindeafs/requires
tools from computer vision, image or video processing and analysis, machiménig and
information fusion.

As opposed to specific sub-domains of video analysis, such as evectide in surveil-
lance videos, our goal is to devise an automatic semantic indexing systemisvtodse as
generic as possible, able to deal with many semantic conceptferfedit types (not only
eventgactions, but also objects, characters, scene types etc.) and in vesedioatexts. A
large number of target concepts means that concept detection algorithmscapigaitin-
ceived for each concept are impractical, thereby motivating researchengrig concept
detection methods.

To this end, most of our work is done on the TRECVid Semantic Indexing dafase
which are very generic datasets for semantic concept detection in videosyér we also
perform a few experiments on the KTH dataset for action recognition.

Within an automatic semantic indexing framework, the contributions of this thesis are
in the imaggvideo description and representation and in the information fusion domains.
We do not construct an automatic semantic indexing system from scratcrs @hificult
task, that needs much more time than the duration of a thesis), instead we stag from
state-of-the-art systenBpllas 2012b (described in Sectio.2) used by our partners in
the IRIM™* French research consortium. We improve certain aspects of this system in a
three-fold contribution consisting of the following elements:

e Qur first contribution is in the image@deo processing and analysis domain. We
propose a method @ugmentic standard gradient-based image descriptors, such as
SIFT [Lowe 2004&40r SURF [Bay 2008, in order to improve their genericity and
precision at concept recognition. This method is basegreprocessing the video
frames with a model of the biological human retinam [Benoit 201(. SIFT/SURF
descriptors are based on histograms of oriented spatial gradients otitiat@nsity,
therefore, they are puregpatialdescriptors. The retinal preprocessing improves the

Yhttp://mrim.imag. fr/en/
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overall results for concept detection, while also extending the descripgyaadding
spatio-temporabehaviours. We discuss this method and its performances in detail
in Chapter3.

e Our second contribution is also in the domain of video processing and andlysis
consists in dattery of trajectory descriptors, dedicated to representing the motion
contentof videos. These trajectory descriptors are inspired from the existing state
of-the-art, with a few modifications, and are discussed in Chapt&tarting from
standard SIFT descriptors, going through SIFT with retinal preprotgasd ending
with trajectories, we progress from purely spatial, to spatio-temporal and enthe
to purely temporal descriptors. This brings us to our third contribution.

e Our third contribution is in the domain of information fusion. Because we now have
descriptors with various properties, on top of which we applied supefelsssifiers,
we exploit the complementarityetween descriptors by performindae fusionof
their supervised classifier ouputs. We compare several late fusionaaeand
discuss their working principles and performances in Chdpter

The rest of the thesis is structured as follows: Chapfesents the state of the art con-
cerning the domains of our contributions, while Chap8w#sand5 describe our three-fold
contribution. Chapte concludes the thesis and opens the path for future developments.
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2.1 Generalities about Content-Based Video Retrieval

The ultimate goal of a Content-Based Video Retrieval (CBVR) system isdseato enter
a query in human-understandable words, such as find the movie scergcim ‘Wlice
falls down the rabbit hole” (as a text query) and the system will be abletti@eve this
scene from the “Alice in Wonderland” movie. Optionally, the user might spexfjitional
constraints, such as whether the desired movie is with human actors or if ikigraation
film, or from which year the desired movie is etc. The query model can evextbeded
to permit queries by multimedia samples (such as the Google Image search fdlyvisua
similar images). The part of the CBVR system that insures the interaction oséneuith
the video database is called thewsing and searchingart. This part would interpret the
user’s query, transform it into a machine-understandable formalséamms) and conduct
the search on thimdexedvideo database.

In order for the database to be searchable by content, it musdegedby content.
This is the job of the Content-Based Video Indexing (CBVI) part of the GB3ystem.
When a new video is added to the database, the CBVI component would dultvérig:
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1. determine the temporal structure of the video: the acts, scenes andfshetsovie;
for example, it would identify the part when Alice falls into the rabbit hole as a
separate scene or shot;

2. annotate the temporal elements of the video (such as the scenes or sthovgrw
ious keywords that illustrate the content of the scene or shot; for examsipfe
keywords for our scene would be “Alice” or “girl” (if the system is unatwedentify
the character), “falling”, “tunnghole” and whatever magical items Alice sees doing
her fall.

3. Ifthe indexing system is very intelligent, it might even assemble the wordactiear
izing the video into a short sentence such as “a girl falls down a tunnel wigficala
items flying by”, constructing an automatic summary of the movie. This would con-
stitute a very high-level semantic understanding of the video by the computer, bu
the state-of-the-art is not yet capable of such performances (@sttiet on generic
videos).

This thesis focuses on the second point above, the automatic assignrkeptvofds
to video shots. Most of the work is performed on the TRECVid Semantic Inde=isk,
introduced in Sectio2.6.3 The videos from this database are already divided into tem-
poral elements (calledhotg by an dficial TRECVid automatic shot segmentation tool
[Smeaton 2010 giving shots with lengths between a few seconds to several tens-of sec
onds. The index terms (the semantic concepts to detect) are also fixedisthareficial
list of 346 various semantic concepts (examples in se@i6rd. Therefore, what remains
to be done (and the subject of our work) is to return, for each shoeaald concept, the
likelihood of the shot to contain the concept (expressed by a number betweed 1,
where 0 means absence of the concept from the shot).

In more recent editions of TRECVid, an optior@ncept pairdetection task was in-
troduced, but we did not work on it. Also, new to the 2013 edition, an optiooatept
localization task was introduced, in which the moments in the shot when the cascept
present and its spatial location in the video frames must also be speCified2012. We
did not experiment with localization in our work.

In the following, Sectior2.2 will describe a general framework of how semantic in-
dexing on video datasets can be achieved. Even if we will give some pariii@s for
the TRECVid Semantic Indexing dataset, the framework can be easily adapttier
datasets and fierent tasks. Because part of the contribution of this thesis is the devel-
opment of spatio-temporal video descriptors, SecB@will give an insight into existing
video descriptors, with an accent on spatio-temporal ones, some of thdimUddRECVid.
Afterwards, Sectior2.4 will show how information from multiple sources can be fused to
augment concept recognition performances, which represents aaotiaenf contribution
of this thesis. Base on this state of the art, Sec8dnwill point out the needs that we
identified in the context of TRECVid and how we address them. Se2tconcludes this
chapter with a description of a few popular video datasets for evaluatingtalgsr with
an accent on the TRECVid Semantic Indexing datasets on which we perfosnof our
experiments.
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2.2 General framework for semantic indexing

There can be many solutions for the task of identifying semantic concepts iosvi@mne
of the best-performing strategies at the moment consists in the following steps:

1. extracting descriptorérom the video shots; descriptors characterize various aspects
(and modalities) of the video, such as the dominant colors, dominant oriemstation
motion patterns, sounds, overlaid text etc.; more details will be given in Set8pn

2. training and applyingupervised classifie the video shots, for each target seman-
tic concept; during the training phase, based on a set of examples, isepecias-
sifiers can automatically learn rules that allow them to distinguish between classes
(whether or not a video element contains a target concept). After traiciagsifiers
will be able to predict, based on the descriptor on which they were trairfeether
or not anewshot contains the targer concept (alternatively, the classifier caragive
score between 0 and 1, if a strict decision is not demanded);

3. late fusionof classification results (classification scores in the case of TRECVid),
whereby the predictions from classifiers based on various descrip&aggregated
to improve reliability; this way, dferent “points of view” are taken into considera-
tion, which generally leads to more reliable results; fusion strategies are skstins
more detail in SectioR.4;

4. optionally, further post-processing of results can be done, sucbresdering the
temporal neighborhood of shots in the video, or the semantic relations betaeen ¢
cepts;

5. evaluation of results: for the case of the TRECVid SIN task, as seerciin62.6.3
average precision is computed for each concept;

Particularities for TRECVid:  Our participation at the TRECVid Semantic Indexing
(SIN) task was done as part of the IRtgroup. The IRIM processing chain for semantic
indexing is detailed below, and summarized in Figu It follows the general framework
stated previously.

The first step iglescriptor extraction The members of the group shared the descrip-
tors that they computed on video shots, constituting a battery of several teasimis/
descriptors (and étierent parameter versions of them), such as color histograms, texture
descriptors, SIF/SURF Bag-of-Words descriptors, facial tracks, trajectories, audio d
scriptors, overlaid text in the videos, presence of various lower-sslantic concepts
etc. Ballas 2012h This ensured that the video shots were described in a very diverse
way, so as to capture various aspects of the content. For most of th@ttasconly one
(or several) keyframe(s) were analyzed instead of the entire videotehretjuce compu-
tation time, using thefticial selection of keyframes from TRECVi@8allas 2012h

IMultimedia Information Modeling and Retrievalftp: //mrim. imag. fr/en/
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Figure 2.1: Processing chain for semantic indexing of the IRIM gr@atigs 2012h The
figure illustrates the processign chain for a single concept, other coringgtgene only
in the conceptual feedback step. First, multidimensional descriptors aretextfeom the
video shots, followed by descriptor optimization. On each (optimized) desGrgptoNN

and a MSVM classifier are applied. We cakpert” the combination of a descriptor with a

supervised classification algorithm. Afterwards, all the experts are fusdayrathe fusion

result, temporal re-scoring and conceptual feedback are applied.o@uibcition consists
in a set of retina-enhanced SIFT BoW descriptors, a set of trajectdfy @scriptors and

an automatic late fusion method.
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Optionally, IRIM partner LIG could optimisethe resulting descriptors so that the su-
pervised chassifiers would work better with them. This optimisation consistegbiyirag
apower transformatiorito normalize the values of the descriptor dimensions, followed by
Principal Component Analysis (PCAQ make the descriptor more compact, and at the
same time, more robusffadi 2013

The next step was to train and applypervised classificatioalgorithms on each of
the descriptors. To this end, IRIM partner LIG used an implementation of thie&test
Neighbours (KNN) classifie? to generate, for each target concept and each video shot,
a classification score (between 0 and 1) indicating the likelihood of the shot tailcon
the concept. An alternative to KNN was a multiple learner approach basedppoi$u
vector Machines (SVM), called MSVMSafadi 201 MSVM gives better performance
than KNN, but is more computationally expensiBa[las 2012h

At this point, for each video shot, for each concept and for eactrigés; we have the
KNN and MSVM classification scores. The next steplista fusionof classification scores
for the current concept and shot, taking into consideration the scaresdl possible
combinations of descriptors and supervised classifiers. The late fusionftedh Emilar
to taking an “average opinion” from all the combinations of descriptors apérsised
classifiers for the current shot and concept. Several fusion®agipes are used, they will
be discussed in more detail in Sect®d and in Chapteb.

After the late fusion step, we dispose, for each concept, of the classificativas on
all video shots. Because a concept that is present in a shot of a V&tedeads to be
present in the neighboring shots of the same video due to temporal correietéomporal
re-scoringof shots can be performed in order to take advantage of the temporal tontex
The approach is described i8dfadi 2011and leads to an increase in average precision.

The last step undertaken in the IRIM group is applyaunceptual feedbactn the
classification scores{amadi 201R This exploits the semantic relations between concepts
by constructing a new descriptor with 346 dimensions (exactly the number cég)cthe
it dimension of this descriptor being the classification score of the shot witt? tencept.
Supervised classification is applied on this descriptor as if it were a norsalipir, and
the resulting classification scores are re-fused with the previous resultabi@ad with
temporal re-scoring, on TRECVid 2012, the authors report a 15% irenea&sean average
precision.

This approach, although illustrated on the TRECVid SIN dataset, can in fazadbe
ily adapted to index other multimedia datasets as well. The main change requirkd wou
consist in computing descriptors adapted to the type of multimedia content beingethaly
(e.g. we will not compute motion descriptors on datasets of static images). Adaptations
would also be required for the last two stages, the temporal and semantigtconteder
to exploit a type of context that makes sense for the dataset in question.

2Laboratoire d’Informatique de Grenoble;tp://www.liglab. fr/?lang=fr
Shttp://mrim.imag. fr/georges.quenot/freesoft/knnlsb/index.html
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2.3 Descriptors for video content

Semantic concepts cannot be recognized directly from the video streanta@met train
supervised classification algorithms directly on the video frames, for the foldprgimsons:
first, the possible variability of how the voxels (pixels in each frame) look gsrapus. For
example, considering small videos of only 320x240 pixels and 100 franids3veolor
channels (RGB) and encoded on 8 bits (256 levels for each color ehatirere would be
almost 6 10° (5898240000 to be exact) possible videos. Of course, only a smailbinauf
these would actually make sense to a human, the rest being just noise. Sembnalvideo
would be represented on 23 MB (23040000 bytes to be exact), whicldwearwhelm
supervised classifiers. And we didn’t even consider the sound fremideo.

The solution is to extraalescriptorsfrom the video stream. Descriptors are represen-
tations of the video that are more meaningful (they try to encode only usefuhiation)
and much more compact (the small video above can be represented on a fewrla/few
thousands of bytes, depending on the descriptor, instead of the orZfindB) than the
raw video data.

Additionally, descriptors are usually conceived in such a manner as tobost to
various transformations (such as image translations, rotations, scale changgsations
(of brightness, slight color fierences), to small amounts of image noise or compression
artifacts, to the exact spatial locations of elements in the image, to the sound weticime
Robustness of descriptors is what allows supervised classifiers trairegp of these de-
scriptors to generalize: from just a limited set of training examples, the classifide
able to recognize semantic concepts in new videos, that can even beedaguiter dier-
ent circumstances than the training examples.

In practice, a compromise is always made between the robustness ofiptdeserd its
discriminative power generally, the more robust a descriptor is, the less discriminative it
is, and the less able to distinguish betwedfedent concepts. Ideally, the descriptor would
be robust to uninteresting changes of the video (such as slight camera rotatioera
shake, lighting conditions etc.) but discriminative with respect to semantically-mdahing
changes (such as how a person moves to execute an action).

Descriptors can representidirent types of information from the video, such as colors,
textures, shapgsontours, motion or audio. Some semantic concepts can be captured more
efficiently by certain descriptors, for example, the color “green” can indicagetation,
while certain motion patterns can indicate “dancing”. Because the conceptsEGVIR
are very numerous and varied, we therefore have interest in extrastmgray descriptors
and descriptor types as possible, and we will determine later which of thenrésappro-
priate for which concept. In the following, we will give some examples of comynoesed
descriptors for video indexing.

2.3.1 Color descriptors

A very common way of representing color is witlolor histograms When applied to a
video, either the colors in all frames are examined, or, to speed-up des@xyraction,
only a few frames (or even a single frame, calledkegframé are analyzed. IRIM partner
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ETIS has contributed color histogram descriptors in the L*a*b* color spguantized on
256, 512 and 1024 colors, computed on the keyframe of each video stotlxg, 1x3,
3x1 and 2x2 spatial divisions of the keyfrantgédsselin 200B

2.3.2 Texture descriptors

The texture on a surface gives information about the object that theceunlongs to.

For example, a foliage texture indicates vegetatioffetgnt species of trees have barks

textures in diferent ways, fish or snakes have scales on their skin, a leopard haggpo
Some examples of texture descriptors are:

¢ (histograms of) local binary pattern®jala 1996 Delezoide 2011Zhu 2011,
e Gabor filter banksTurner 198§,

e quaternionic waveletsjosselin 200B

2.3.3 Audio descriptors

Mel-frequency cepstral céigcients (MFCC) represent the short-term power spectrum of
a sound. IRIM partner LIRIS submitted a Bag-of-Words descriptoettazn MFCCs
[Ballas 2012h

2.3.4 Bag of Words descriptors based on local features

There is a class of descriptors that characterize small, local parts of the ifimagge
patcheslocal feature$}, as opposed to descriptors that try to characterize the entire image.
After characterizing the local features, an aggregation strategy is emptogbdracterize
the entire image based on the local features.

Most commonly, the local features are aggregated using a simple, ordenbeke,
called theBag of Words (BoWinodel (orBag of Visual Words[Csurka 200% The princi-
ple is illustrated in Figur@.2

In order to construct a BoW descriptor based on local features, libe/fiog steps need
to be done:

1. choose a set of local features to characterize (choose the imaggetsithat we want
to describe);

2. describe the image patches around the local features using a locaptieqa de-
scriptor for small image patches);

3. extract many local features from some *“training” images, and clusterd@scrip-
tions into adictionary of “visual words”, for example by using k-means clustering
[Arthur 2007;

4. for an image that we want to represent, we extract and describdéatates; then,
we approximate each local description with its closest-matching dictionary werd; th
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Bag of ‘words’ |

Figure 2.2: Basic principle of the Bow model: an image is represented as ariessi
collection (a “bag”) of subparts. The face is composed of two eyes, g aaseuth etc.
The relative positions of these subparts are not taken into consideratioge bredit:Li
Fei-Fei, Rob Fergus, and Antonio Torralba. Recognizing and learnlrjgai categories -
short course. 2009

| Human annotations
Training
datasety| . P -] — > High Level Features
L / learning
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Figure 2.3: The state-of-the-art Bag-of-Words processing tooldieaisemantic concept
(High-Level Feature) detection

entire image is represented aBistogram of visual wordghat says how often each
type of local feature appears in the image;

The resulting histograms of visual words constitute the BoW descriptor. @epdrclas-
sification algorithms are applied afterwards, to find the link betweé&erdint BoW his-
tograms and dierent semantic concepts. The entire process is illustrated in F2gire

Compared to global representations, BoW have the advantage that th@paseé to
partial occlusion: the absence of a few elements out of many does reoatgeat impact
upon the descriptor. Additionally, because the relative positions of the lea#lires is
not considered, invariance to viewpoint changes and global defomsasomore easily
obtained (as long as the method of describing each local feature is alsonhvatthese
changes). The BoW model has proven itself successful for image dasisifi and object
recognitionCsurka 2004

Among derivatives of the Bag of Words model, we can nameBhg of regions
model Vieux 2013: instead of working with highly-localized image features (small im-
age patches), a segmentation algorithm is employed to divide the image into regichs. E
region is described independently and the region descriptions are fedénB®iR model,
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the other steps being similar to the Bag of Words framework. To facilitate stahefing,
it could be said that Bag of Regions is just like Bag of Words, howeverdsamt uséocal
features butegional(larger) features.

There exist other methods of aggregating local features into a représemtathe en-
tire imagévideo, such as correlogram featur&ayarese 20Qavhich capture spatial co-
occurrences of features, relative positions of local featusesidlerth 200p spatial pyra-
mid matching Lazebnik 200§ or, for encoding the temporal structure of actions, actom
sequence model&gidon 2011 However, in the case of the TRECVid Semantic Indexing
task, where annotations are only available for the entire video shot (wetdmow where
and when exactly the concept appears in the shot), we prefer to use\ttie®del because
of its simplicity and adaptability.

Next, we will discuss strategies of choosing and describing local featar¢he Bow
model.

2.3.4.1 Choice of local features

Generally, there are two ways of choosing local features in images:

e with afeature detectowhich detects image patches with certain properties, such as
high curvature (corners);

e by sampling the image regularly (such as every 5 pixels along the horizontal and
vertical), along what is called@ense grid

Either way, we end up with a selection of points from the image. Around theséspoin
small image patches will be considered, and these patches will be desardo&der step.
Both the detection of features and the description of patches can be dommas &patial
scales if desired, in order to account for the possible variation in the Soaltgemts angbr
to capture information about both a more general shape and about minute details

The work of [Tuytelaars 200Bgives a detailed review of the most common feature
detectors. We mention here some of the most popular and some more recent stetector

e the Harris corner detector, which chooses points that maximize a cossenaasure
based on the second-moment matrix; it detects points with high spatial curvtisire
rotation-invariant (a point is still detected even if the image was rotated); thnessHa
Laplace extension also detects the scale at which this high curvature is nuesttev
while the Harris-Afine extension can also deal witliae deformations (the object
is deformed more along an axis than along another);

e the Hessian blob detector chooses points that maximize the determinant and the
trace of the Hessian matrix; they tend to detect features that resemble mors or les
“spots”(“blobs”), hence the name “blob detector”; it is rotation-invaridrajso has
extensions that deal with scale dfiae deformations;

¢ the Difference of Gaussians (DoG) is afigent implementation of a blob detector
that finds extrema of the Laplacian of Gaussian (LoG);
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e the SIFT Lowe 20044 (Scale-invariant Feature Transform) detector is based on the
DoG detector, with additional constraints to discard low contrast points aintspo
along edges; it is invariant to scale and rotation changes;

e the SURF Bay 2008 (Speeded Up Robust Features) feature detector is also based on
the Hessian matrix, but it approximates the Gaussian second-order garhiative
filters by box filters; integral images are used to compute the responsesludxhe
filters, which make the SURF feature detector a fastimplementation; it is alsstrobu
to scale and rotation changes;

e FAST [Rosten 201P(Features from Accelerated Segment Test) is a corner detector
based on comparing the value of a central pixel with those of pixels on a diczlad
the center pixel; it is veryfécient, it is rotation-invariant and it also has an extension
for scale-invariance;

e BRISK [Leutenegger 2011Binary Robust Invariant Scalable Keypoints) is a corner
detector based on FAST, with an added capability to determine the accutdatefsca
a keypoint; it is reported to be even an order of magnitude faster than SUs®imia
cases;

e Good Features to Track (GFTT) employs the Harris corner detector, with ad
tional constraints related to corner strength and distance between néighbor-
ners Bhi 1994% it is useful in videos, for motion tracking applications;

Properties which are often desired for feature detectors are invar{anat least good
robustness) to various image transformations: scale variations, rotatiine, deforma-
tions (such as from perspective changes).

For object category recognition, it has been showrNawak 2006 that using dense
features outperforms features from detectors, because many more$szdn be obtained
from a dense grid than from detectors. Bag of Words models work betten wHarge
quantity of features is available, as the BoW histogram of visual words is pupelated
and better represents the image content from a statistic point of view. Arnetimon for
the improved performance of dense grids is that they insure a uniforerage of the im-
age, whereas a feature detector may focus only on certain zonestivb@etector gives a
strong response. On the other hand, there is a possibility that feattuaseckby feature
detectors are more representative, as they are localized on spatialtidigiti@s; this is
linked with the featurelescriptionmechanisms from the next step of the BoW processign
chain, which usually deal with intensity gradients (the spatial appeardscelo disconti-
nuities).

Feature detectors can be impacted by degradations such as motion blur, compres-
sion artifacts or high noise levels, but in any case, they have a highezedefjrepeata-
bility than dense grids. However, the precise localization and repeatabilitglected
points plays only a secondary role in Bow performance. Nevertheleagsitshown in
[Everingham 201(0kthat combining interest points and dense grids yields an even better
performance. From this remark, a hybrid approach has spawneelémnting features,
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called dense interest pointsthe starting point is a regular grid of points, but the posi-
tions of the points are slightly shifted in the grid so as to maximize a cornerness mea-
sure [Tuytelaars 201 This approach exploits the benefits of both feature selection meth-
ods: the image is densely and uniformly covered as with dense grids, bigatiuees are
more localized on spatial discontinuities as with feature detectors, wheredekserip-

tors based on intensity changes are more relevant.

2.3.4.2 Descriptors for local image patches

After choosing the image features to describe, an image patch is takeml @acmfeature
point. For each image patch, a descriptor is computed, and it is these desanipich we
discuss here. Like in the case of feature detectors, it is often desitebofiptors to be in-
variant (or robust, if true invariance is not possible) to image deformatrotegipns, scale
changes, fine transformations). If the descriptor itself is not invariant or robust teghe
transformations, but the feature detector was able to determine the scaldeantdtion,

the image patch around the feature can be transformed so as to normalizeseata-

tion andor afine deformation. Here are a few of the most popular image patch (feature)
descriptors and some more recent ones:

The SIFT descriptor: It is based on histograms of oriented gradients (HOG) (note that
SIFT is both a feature detector and a descriptor). A 16x16 pixel nergbbd (image
patch) is considered around the feature; in the case of approacaesnexg multiple
scales, larger or smaller patches can be taken (but these patches witaed to the de-
fault value of 16x16 to allow computing the descriptor). Afterwards, the iitiegeadients
along x and y directions are computed, giving information about the module andaarie
tion of the gradient vector in each pixel. The 16x16 patch is divided into #&elgpsmaller
patches. On each smaller patch, a histogram of gradient orientations isteahfyith ori-
entation quantized on multiples of95as in Figure2.4, by summing the gradient modules
that fall on each of the 8 orientations. An additional Gaussian weighting functappiged
to give more weight to gradients closer to the feature point (the centre o6& patch).
The 16 histograms of gradient orientations from the 4x4 subpatches acatenated to
form the SIFT descriptor of the patch (which has 16x828 dimensions)owe 2004k.

The SIFT descriptor is conceived for describing grayscale image gmtélihen deal-
ing with color, OpponentSIFT can be used, which consists in transforméB@B image
into an opponent color space, then computing the grayscale 128-dim. S$Efiipder on
each of the three color planes of the opponent color space, and indhea@itatenating
the three descriptors into a 384-dimensional OpponentSIFT descriptor.

The SURF descriptor: SURF, too, is not only a detector, but also a descriptor. It is
based on computing Haar wavelet responses on 4x4 square sub-redgiomsadige patch.
The horizontal and vertical haar wavelet responggsinddy, are computed at 5x5 pix-
els regularly sampled points, for each square sub-region. Each gigo-ie represented
by a vectorv = (3 dy, > dy, 3 |dyl, 2. Idy|) formed of the sums ofly anddy and their ab-
solute values inside the sub-region, weighed by a Gaussian centereel fetiire point.
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128-element SIFT feature vector

Figure 2.4. Computing the SIFT descriptor. For simplicity, only an 8x8 image patch
is represented instead of 16x16. The module and orientation of the intensitiy gra
ent in each pixel are computed (left). 4x4 pixels subpatches are coedidksft),

and histograms of gradient orientations are computed on each subpatd) ithh

8 bins for orientation, with the gradient modules weighted by a gaussian function
(represented by the blue circle). In the end, the histograms from theatshigs

are concatenated to produce the 128-dimensional SIFT descriptor. e ls@gce:
https://picasaweb.google.com/lh/photo/vyaYFzPsGz6Rz1ldInvEaDQ adapted
from [Lowe 2004b.
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Thev vectors from all sub-regions are concatenated to produce the 64sionahSURF
descriptor Bay 2008.

There is also a 128-dimensional version of SURF, in which the sumdyfand|dy|
are computed separately fdy < 0 and fordy > O; similarly, the sums fod, and|d,| are
computed separately fat, < 0 and fordy > 0. The authors report that this version is

more discriminative and not much slower to compute, but slower to match becailse of
increased lengttday 2008.

BRIEF, Binary Robust Independent Elementary Features, is a feature desagm-
posed as a binary string computed using intensiffjetBnce tests. It is reported to give
similar recognition performance as SURF, but with much shorter computation times. The
descriptor is very compact because the bits are independent (a dimdihsicathiction
step as in PCA-SIFT is not needed), and combined with the use of the Hammingcdista
for descriptor comparisons (instead of the slowgnorm for SIFT-like descriptors), this
gives very low descriptor matching times. The BRIEF descriptor itself is natriant to
scale and rotation changes, but this can be compensated for by the fegeat®d(which
can detect the scale and orientation of the feature and choose the local patafeto
describe accordingly); however, adding invariance to rotation rechecegnition perfor-
mance, because the descriptor becomes less discrimibalat{der 201

ORB, Oriented FAST and Rotated BRIEF, improves the FAST keypoint detector by
adding a method for determining orientation, and also improves the BRIEFHutesdry
making it rotation-awareRublee 201]L

BRISK, Binary Robust Invariant Scalable Keypoints, is a feature detectocriges
and matcher. The detector is FAST-based, while the descriptor, fronathe family as
BRIEF, is composed as a binary string, formed by concatenating the resuitigbf-
ness comparison tests. Only a limited number of points is used for brigtness camnpar
but in a specific sampling pattern, which can also give information about thetatign
of the keypoint. Orientation information is then used to achieve rotation invarialtce.
is significantly faster than SIFT and SURF, while giving similar matching peréorce
[Leutenegger 2011

FREAK, Fast Retina Keypoint, is also a binary string descriptor based on comparing
pairs of points around the feature point, similar to BRISK. Points for compasisoe
taken on a circular pattern, with a higher density of points towards the ce@aassian
smoothing is done for robustness to noise, with larger kernels farther asayttie centre.

This resembles the behaviour of the human retina, which has a higher resotdliercan-

tre and whose output action potentials resemble the intensity comparisons of FREBAK
pairs of points whose comparisons form the descriptor are chosen sodhdirthg the
most amount of information and have minimal correlation, and they are orderentiane

to their information contribution. This ordering has resulted in a pair comparistberpa
which resembles a coarse-to-fine analysis, similar to the human retina. Thiggrdé
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pairs results in an ordering of bits in the resulting descriptor, from most imgdddess
important, which can be used to accelerate the descriptor matching step, dingeiey-
points whose first 16 bytes are todtdrent. Again, this is in tone with the coarse-to-fine
idea, as the first bytes represent coarse spatial information. In feaatahing tests, it
outperformed SIFT, SURF and BRISK in terms of descriptor extraction time, ingtch
time and number of correct matche3rfiz 2013.

2.3.5 Descriptors for action recognition

When it comes to action recognition, descriptors based purely on spatiarappe are
no longer informative enough. It becomes necessary to use dessgripadrcapture mo-
tion information, or that blend spatial and motion information togetspafio-temporal
descriptors).

One of the first descriptors applied for action recognition was the Motion Histary
age (MHI) [Bobick 2001, which labels each pixel as havimgt having motion (or as in
how many frames did it experience motion recently); template matching is then used to
recognize the action. However, the method cannot be applied in situations witlhacame
motion or with cluttered scenes, being sensitive to parasitic movement and to oeclusio
Other methods to recognize actions are based on detecting and representivagidimeof
human body parts, such &Brendel 201Dand [Tran 2012.

Although not specifically dedicated to action recognition, we can also mention tle wor
of [Tanase 2013which extends the Bag of Words model by separating local features into
two categories: features belonging to the (static) background anddsainmresponding to
foreground objects in motion. Two histograms of visual words are thus cmett, one for
static features and one for moving features, thereby separating informati@sgonding
to the static and to the moving parts of a video. The authors then choose @teate
the two histograms to form the video descriptor, but other strategies ofiemglthese
two types of information could be envisaged. For example, the BoW histogramovahg
features can be used to detect objects that are usually in motion, while the aiér B
histogram can be used for objects that are normally static. The result#fedmstogram of
static features can then be considered as context information, and caad®ueinforce
the results from the moving features histogram.

An interesting approach for action recognition is presente®Rosples 1999 Objects
of interest (persons) are segmented using a continuously-updategitacé model. The
object bounding boxes are then tracked across frames using Exti€atiedn Filters, with
adaptations that allow predicting and detecting occlusions (in order not to iptténaaking
when a short-time occlusion occurs). Tracking allows to align each objest@aframes
and to construct object-centric representations using Motion History Imageswhich
the action can be recognized. The system is interesting because it empldyacietmbps
that improve processing on lower stages based on results from highes stegating in
a unified manner the problems of tracking, trajectory estimation and action igoogn
However, although the approach is well-suited for video surveillance xisnigth a fixed
camera and uncluttered scenes, unfortunately it would not work in TREEN, because
the setting is too diverse and uncontrolled.
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In general, methods that try to characterize video volumes as a wholgfacted
by occlusion and clutter (something passing in front of the action of intehestges its
appearance). Local approaches, on the other hand, describenwaillybits of videos (video
features that are local in space and time) instead of large video volumesthEmeuse an
aggregation strategy, such as the Bag of Words model, to construct th@tiesoof a
larger video volume based on its small parts. As in the case of purely spesiaiigtors,
the BoW model ignores spatial and temporal relations. There exist models thahatste
spatial and temporal relations, such as spatio-temporal pyramidal representaticinese
impose a rigid definition of the space-time divisiobjpptev 2008 or Actom Sequence
Models that encode the temporal succession of action elements (action aitiome3
[Gaidon 2011

There is a high diversity of spatio-temporal descriptors, but it can be nlo&anany
of them describe the spatial appearance component with the aid of descbps®ed on
Histograms of Oriented Gradients (HOG), SIFT being a good example of a b#3€&d
descriptor. As for the motion component, the optical flow is often used, indicating the
direction of motion in every pixel, which can be used to construct descriptorsagiHis-
tograms of Optical Flow (HOF). Motion can also be represented on longer tiewedts
by tracking the motion of points across many frames and constructing trajectSpes.
tial appearance and motion can also be described at the same time, such as Gi8CHO
descriptors based on gradient orientations in 3D (space-tikia3¢r 2012 We will give
some examples of spatio-temporal descriptors below, concentrating on loczderia-
tions, as these are more appropriate for the diverse, unconstrainedvidR&Ditext.

2.3.5.1 Spatio-temporal interest points

Some approaches detect local features that are distinctive not onlyde, dpat also in
time, spatio-temporal interest pointand then describe the spatio-temporal neighborhoods
of these featured pptev 2003Ke 2005 Dollar 2005 Niebles 2008

For example, inl[aptev 2003 spatio-temporal interest points are detected using an
extension of the Harris corner detector to 3 dimensions (2D spati@e). This gives
features that are at the same time spatial corners, and experiencecansbant motion
such as an abrupt change in motion direction. A spatio-temporal cuboid, as thénone
Figure 2.5, is then described with one or more descriptors, and the results are fed into a
Bag of Words model for action recognition.

The approach is extended ibgptev 2007 to make it invariant to the local constant-
velocity component of motion; a spatio-temporal cuboid lookkedent when it undergoes
acceleration around a zero local motion, or when the acceleration takes placehehile
spatial corner was undergoing uniform translation (the uniform translatitbrskew the
spatio-temporal neighborhood). This brings robustness to camera motionannunibject
translation, at the cost of losing discriminative power in simpler scenarios wtittaomera
motion.

For describing spatio-temporal cuboids, the following types of descripters yro-
posed in Laptev 200T:

e N-jets and multi-scale N-jets, which are spatio-temporal Gaussian derivagivies u
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Figure 2.5: Examples of spatio-temporal video features detected by an ertem8iD of
the Harris corner detector, with the spatio-temporal cuboids that will beidedcrimage
credit: [Laptev 2007

order N of the cuboid;

¢ histograms of first-order partial derivatives (intensity gradients in tagspemporal
domain);

¢ histograms of optical flow;

Histogram descriptors were explored in both a position-independent avaingle his-
togram for the entire cuboid) or in position-dependent ways (the cubosddivaded ac-
cording to a spatio-temporal grid and histograms were computed on the elemengs of th
grid and then concatenated). Principal Component Analysis was alsmpsedally for
dimensionality reduction. Upon testing on the KTH dataset, the ranking of theiptess
varied depending on whether or not position dependent or indepehiddograms were
used, and whether or not PCA was used, but it can be said that §gnleistograms of
spatio-temporal gradients and of optical flow performed better than N-jets, pdsition-
dependent histograms performed better than position-independentbecasise they de-
scribed the cuboids in more detail and were thus more discriminatagé¢v 2007T.
Histograms of Oriented Gradients (HOG) and Histograms of Optical Flow (H@®e
used to describe cuboids extracted from Hollywood movied apfev 200§ HOF per-
formed better than HOG, but a combination of the two was shown to outperfdim bo

2.3.5.2 MoSIFT

The Motion Scale Invariant Feature Transform (MoSIFT) is a detectoidasdriptor for
local video features that combines spatial appearance and motion informatmuolabhki-
cal 2D SIFT detector is used to detect spatial features in he video fréfiesvards, only
spatial features that also experience significant optical flow are kigggrding features
that do not have enough motion.
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For the description step, spatial appearance is described using theat|&Bit de-
scriptor. But SIFT is made from histograms of oriented gradients, andotieabflow in a
pixel also has a magnitude and an orientation, just like the intensity gradienefdlera
SIFT-like descriptor can be constructed from the optical flow field in theesaanner as it
is constructed from the image intensity gradient field. The static appegvartde adapted
for rotation invariance, but the motion appearance part is not, because it istamiptm
keep the motion direction unaltered as it constitutes an important cue for action irecogn
tion. The spatial appearance SIFT vector and the motion SIFT-like vector Bcatenated
to produce the 256-dimensional MoSIFT feature descriptor. A BoW gyatan then be
used to aggregate the local features.

The descriptor was shown to outperform approaches based on spagiortd interest
points on the KTH dataset, and it also outperformed 3D Histograms of OriG@raadtients
on the TRECVid 2008 Surveillance Event Detection taSkgn 200

2.3.5.3 Trajectories of tracked points

Trajectories contain important information about motion in the video. Object cestroid
can be tracked and their motion described, although this does not give a |&rohation

for action recognition. Tracking body parts can give more information, as mamah
actions are characterized by a succession of body parts positions. Or eitiserat sparse
trajectories, not necessarily from body parts, can be constructedesudibed. Tracking
local features (either from a dense grid or sparse) presents antagean unconstrained
scenarios, because they are less sensitive to occlusion, viewpaattorss, variability of

the objectgpersons performing the actions and variability of context.

In [Vrigkas 2013, dense optical flow is computed on every frame of the video, from
which motion curvegtrajectories) are extracted. Motion curves belonging to the back-
ground are eliminated, based on whether or not the total optical flow alangutve
is large enough (ingticient motion characterizes a background feature). Trajectories of
varying lengths are allowed, and the Longest Common Sub-Sequenadisousompare
two trajectories. The approach worked very well on the KTH dataset, widteanracy of
96,71%.

Computing dense optical flow fields is computationally expensive, but computing opti-
cal flow for a small set of keypoints is much faster. Therefdvigtikainen 2009proposes
to detect features with the Good Features To Track deteStarl[994, and track them
across frames using a classical Kanade-Lucas-Tomasi (KLT) trg8kechfield 2007.
These trajectory elements, calladjectons are described using concatenated vectors of
spatial derivatives (displacementsdandy from one frame to the next), to which affiae
model of the local deformation along the trajectory can be added. The modabivasmde
robust to scale variations, neither spatial nor temporal, and the fact that a matidre ca
captured starting from ffierent moments was dealt with by considering the same trajectory
several times, but with shifted starting and ending moments. The trajectoriesdargd
a BoW model, and Support Vector Machines with linear kernels are usethisiftcation
(LIBSVM, [Chang 200]).

Trajectons were again used iW{1 2011, where dense trajectories of points are ex-
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tracted. This time, camera motion is dealt with by decomposing trajectories into their
camera-induced component and object (person) induced component, twithaweed to
perform an alignment of video frames. The approach gave 95,7% pneoisthe KTH
dataset.

In [Wang 201}, dense trajectories are constructed by tracking points from a dense
grid via dense optical flow fields. A fixed length of 15 frames is used fotrajéctories
(calledtracklet9 because the authors noted that representing trajectories at multiple tem-
poral scales does not improve their results. The shape of a trajectongasied with a
normalized vector of displacements. Additionally, trajectory-aligned descsipt@ also
computed: the local spatial appearance around a tracked point is mrejeeseth a His-
togram of Oriented Gradients (HOG) averaged across the 15 frames, ladalemotion
around the tracked point is represented with a Histogram of Optical FI@FJHA third
trajectory-aligned descriptor is the Motion Boundary Histogram (MBH): spdgava-
tives of the horizontal and vertical components of the optical flow are ctedpand then
histograms of orientations are constructed for these derivatives, gigado the MBH.
Because MBH do not characterize the optical flow itself, but the relativiiombetween
adjacent pixels, they are robust to camera motion. Dense trajectories hadeariage
over tracking sparse points, because many more features are fed into teg mibidh
is one of the reasons why the approach performs well on a variety oha@amgnition
datasets (94,2% on KTHWang 2011

Similar dense trajectories and trajectory descriptors asMang 201] are used in
[Jiang 2012, with the following differences: camera motion compensation is done by clus-
tering motion patterns and describing trajectoriativeto the three most important mo-
tion patterns, and relations between trajectories are encoded by constdgeotpry pairs
and describing the relative positions and relative motions of the members of theitair w
respect to each other.

Instead of using dense trajectorieBa[las 201] employs a Diference of Gaussians
detector to detect sparse points in frames, tracking being performed bhinta8IFT
descriptors of keypoints from consecutive frames. Trajectories eseritbed using his-
tograms of motion directions (first-order statistics), Markov Stationary Featseesr{d-
order statistics) and histograms of acceleration directions (for robustnéiss tmiform
translation component of motion). Replacing displacement vectors with histogratiss of
placements gives robustness to the exact moment of the beginning of an &spatial
appearance along the trajectory is also represented using the avifagieScriptor along
the tracked point.

In TRECVid, trajectories are employed mainly for the Surveillance Event Bletec
task. For example u 2017 use particle trajectories extracted directly from the MPEG
stream, andlittle 2012 use a KLT tracker on Harris corners to construct 15-frame tra-
jectories with HOG-HOF and MBH descriptors (as iWdng 201]) which are fed into a
BoW model and classified with a SVM with a RBF (Radial Basis Function) kerriedr&
are few contributions employing trajectories in the Semantic Indexing task, $e&caost
of the concepts are not necessarily related to motiBallds 2012hhave contributed BoW
descriptors based on extracting dense trajectories and characterizimgvittedisplace-
ment vectors and histograms of displacement directions, &sitaf 201}, as part of their
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participation in the TRECVid SIN task.

2.4 Information fusion strategies

Most often, combining information from several descriptors improves thecorecogni-
tion rates of semantic conceptsarly fusionscombine descriptors before the classification
step, whilelate fusionscombine the outputs of supervised classifiers.

Early fusionscan be as simple as concatenating two or more multidimensional descrip-
tors. However, there are some issues with such a method: descriptor ginseemay have
values in diferent ranges (causing certain dimensions to dominate the others) and they ma
also have varying numbers of dimensions (the descriptor with more dimensionsates
the others); additionally, descriptors may have varying importances fatarceoncept,
all of this requiring a careful weighting of the inputs. ldhang 201}, early fusion is
performed by computing the distance between two videos as a weighted avédige o
tances between filerent descriptors. Inflang 201], a multi-channel approach is used to
combine a trajectory descriptor (shifts from one frame to the next) and trajeatigned
descriptors (histograms of oriented gradients, histograms of opticalfiotipn boundary
histograms) as input for a SVM withy& kernel, by measuring the distance between videos
as the average of distances between channels (input descriptors).

Late fusiongcan be as simple as averaging the output scores from classifiers lmased o
different descriptors, or can be more complex, taking into account the intendepcies of
classification scores fromftierent sources like it is done with Choquet’s integ@i\ille 2004].
An additional level of supervised classification can also be trained on thef settput
scores from the previous classifiers, however this can lead to ovegtittinch degrades
results, and averaging output scores generally gives results jusbdga better) with less
computational cost. Infhang 201}, late fusion is done by averaging output scores from
classifiers applied on flerent descriptors, but in their approach, early fusion performs
better than late fusion. They also experiment with a combination of early and &oa fu
(double fusion) which was shown to generally outperform both the eadylate fusion.

In general, late fusions perform best when the descriptors being &usembmplementary,
as it was shown byNg 200Q.

There can also be intermediates between early fusions and late fusiongeyétt to
SVM classifiers, Multiple Kernel Learning (MKL) can be considered a ebihtermedi-
ate fusion. Instead of using a single kernel function for the SVM, sekeraels can be
combined (either working on the same data or diedent data) to improve classification
results [36nen 201l For example, the multi-channel approach Wgng 201] can be
regarded as a MKL problem.

Fusion strategies for detecting a concept can also concern themselveswith teal
with data imbalance problems (such as in TRECVid SIN, where most of the dsritae
many more negative labeled examples than positives) or which featurescoipties are
more relevant for that concepZliang 201]luse a Sequential Boosting SVM inspired from
bagging and boosting approaches. BaggiBeiman 1998 means splitting the training
database into several subparts (when there are many more training egtjadin positives,
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the positives may be kept common to all subparts) and training a classifieclos@apart;
at recognition, the outputs from those classifiers are combined (averaged)rtave the
result. Boosting strategies such/AdaBoos{Freund 1997Schapire 199Btrain a strong
classifier by combining (through weighted average) results from many olassifiers.

More specificallyAdaBoosis an iterative algorithm that works in the following man-
ner: it starts by choosing the best weak classifier from the set of wesdiftdas and apply-
ing it on a validation dataset, and including this weak classifier in the strong aas§tiie
misclassified examples by the weak classifier from this step are given more ‘gt
next iteration. At the next iteration, the weak classifier that minimizes the glotmal (¢ne
weighted sum of the errors for each example) is selected and added totige dtssifier.
Again, weights of misclassified examples are increased and the procgssdtec: Updat-
ing weights in this manner makes the next weak classifier focus on the exangilestle
incorrectly classified in the previous step. A very successful applicatigdaBoost is
in face detection, where weak classifiers based on simple Haar-like feat@reombined
into a powerful (and fast) face detectafigla 2004. In TRECVid, late fusions based on
AdaBoost have been used i@4i 2007 Wu 2003 Tang 2008 among others.

In [Cao 2012, sets of classification scores are generated from a large number of video
descriptors on which éierent classification algorithms are applied, and the classifier that
yields the best result for each descriptor is retained and the resultingeape combined
in a late fusion approach.

A similar fusion context is described irSfrat 2012 where three late fusion ap-
proaches for TRECVid SIN are compared. The fusion inputs are claggificscores
from two types of supervised classifieBdllas 2012bapplied on a battery of various de-
scriptors (color, texture, BoW of local features, audio etc.). Since nfdkealescriptors
are present in several versions (such dgeognt vocabulary sizes for BoW descriptors),
some of the descriptors are highly correlated. Because of this, all thpeeaahes share
a common idea: first, a descriptolustering stageyroups score sets into families based
on similarity (such as grouping all scores from BoW descriptors); sicamintra-cluster
fusionstage fuses the descriptors in each family; thirdirder-cluster fusiorstage fuses
the results from all families; score normalization steps may be included optionalgde
stages. One of the fusion methods uses a manual hierarchical grodgimaubscores
based on the type of descriptor and supervised classifier employed, whitevahother
approaches determine similarities automatically. The automatic approach ctautriiyu
us will be discussed in more detail in Chapger

2.5 Proposed improvements

As stated previously, our semantic indexing experiments of video datad@sesnducted
mostly as part of the IRIM group, which has put in place a well-performinmémaork
[Ballas 2012bfor semantic concept detection in videos (see Sedi@rfor details). We
therefore adopt this same framework in our experiments, because yahaa put into
place various tools dedicated to large-scale video indexing, that would dtéerwise
taken much too long to develop ourselves within the time span of a thesis, and would
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have also demanded high computational resources that are not so eatilyleaccess
to the GRID5000 computing cluster). The supervised classification stageigee 1)
is the most essential tool that we use from IRIM to be able to perform semaaixing on
the TRECVid dataset, because training and applying supervised classiiisuch a large
dataset requires significant computational power. We also take advaritdgeaptional
descriptor optimizations, temporal re-scoring and conceptual feedbalsk sdace they
can improve concept detection results. The availability of tools for determiniagage
precisions for a set of classification scores also comes in very handg, esn quickly get
feedback related to the performance of our methods and adjust paramaterdingly.

Regarding our proposed contribution within this framework, based on theddtéte-
art that we have just done, we have identified the following needs forrtiegm of index-
ing generic videos with generic semantic tags:

e a need for improvedpatio-temporal descriptorsf video content, that would give
better concept detection performance without excessive computational deraadd
that would work not only with static concepts, neither just with motion-related con-
cepts, but withvery genericsemantic concepts; this would allow indexing video
databases with rich sets of semantic tags, that would in turn allow a user tddemu
complex and diverse search queries and still obtain good results;

e itis unlikely that a single descriptor can fulfil the requirements above, fihrera set
of complementary descriptors, some focusing on spatial aspects, some omaiempo
(motion) aspects, and even some that try to blend spatial and temporal information
would be more suited; this brings us to the second identified need, that in order
to benefit from the joint descriptor setformation fusion strategieadapted to the
application framework and to the available descriptors have to be implemented,;

The way we address these needs constitutes the three-fold contributiontbegiss

e For generating improved, genergpatio-temporal descriptoysve build our work
upon the classical Bag of Words framework utilizing SIFT or SURF locaffees.
This framework already gives good results on databases of static imeugsts
application to video databses also performs good for concepts associtiquhw
ticular spatial local features. Our contribution is to improve the concept titetec
performance of this framework and at the same time make it more generic, capable
of encoding spatio-temporal information, all of this without a significant computa-
tional overhead. We do this hyreprocessing videos with a model of the human
retina [Benoit 201( before extracting SIFFBURF local features, as it will be seen
in Chapter3.

¢ Also with the goal of enriching spatio-temporal descriptions, we go one steyefur
towards even more temporally-oriented descriptors, in the forfBagfs of Words
of trajectories of tracked pointsWe remain in the same Bag of Words framework
(we just work with a diferent type of features, trajectories instead of local spatial
SIFT/SURF signatures), because BoW has also been shown to work with motion
features. The BoW model is simple to manage and does not require complicated
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annotations for training (such as moments when an action starts and stops inside a
video), which are unavailable on the datasets with which we experiment. @in ad
tional reason for keeping the BowW model is that we can reuse the same BoW tools
developed for Chapteédand the same supervised classification stage from the IRIM
group, therefore speeding up the development phase; this goes wetlwigoal of
generic tools for video indexing, as it does not require yet another moteldevel-

oped and optimized. Additionally, this fulfils a dataset-specific need, beodtise
TRECVid SIN, there are very few contributions utilizing motion descriptors, as the
require vast computational resources on such a large database. Wevaktage of

our access to the MUST computing center of the University of Savoie to compute a
rich set of trajectory BoW descriptors, which are detailed in Chapter

Retina-enhanced SIFSURF BoW descriptors and trajectory BoW descriptors con-
stitute a set of complementary descriptors. In addition to these, for the TRECVid
dataset, the IRIM group has made available to its members classification scones fr
a rich battery of additional diverse descriptors (color, texture, BoWad#Hllteatures,
audio etc.), creating opportunities for late fusion experiments. Because dher
several tens of descriptors (therefore several tens of score@@tgontributed by
various teams and because each semantic concept hfisrarttioptimal combina-
tion of descriptors for the late fusion, we expl@eatomatic late fusion strategies
Chapterb.

Now that we have stated the lines of research of this thesis, we will give inekte n

section a short presentation of some popular video datasets used by thetreseamunity
for comparing semantic concept detection methods. We will use such datagpetsiédly
the TRECVid SIN datasets of various editions of the challenge) to show hoproposed
methods can bring improvements compared to the state of the art.

2.6 Standard datasets for concept detection

In order to evaluate the detection of semantic concepts (objects, actionstygms)enovie
genres, characters etc.) in images or videos, and to give a basis for raugngiter-

ent approaches, standard datasets have been created and madedypaNditable. For

static images, some examples are the Caltech 101 and Caltech 256 dé&isEts P007

Griffin 2007 for object recognition, and the Pascal VOC Challengedringham 2010a

for object detection and recognition. For videos, some examples are the KfeKetla
[Schuldt 200%for action recognition in simple scenarios, the Hollywood 2 datadat$zalek 200p
for detecting and recognizing actions in movies, and the annual TRECVid cgafie

[Over 2012 that deal with very diverse semantic concepts (not just actions) in uncon
strained videos.

2.6.1 The KTH human action dataset

This dataset consists of 6 actions (boxing, handclapping, handwavi@ing running,
walking) performed by 25 people in 4 types of situations (outdoors, outdeitiisscale
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Figure 2.6: Example frames from the KTH datas8chiuldt 2004 Image source:
http://www.nada.kth.se/cvap/actions/

variation, outdoors with diierent clothes and indoors), as in Fig@®. Each video file
contains exactly one action, done by one person, in one situation, with the acitign be
performed repetitively in video. The goal is to determine, for each viddicwof the 6
actions is performed.

Because the actions and the situations are relatively simple, and because the action
do not need to be detecyémtalized (we already know that each video contains one of the
actions, we just need to determine which one), it is easy with the curreniodtdte-art to
obtain good results, with precisions above 908Mahg 2011 Laptev 200T.

2.6.2 The Hollywood 2 human actions and scenes dataset

This dataset contains short fragments from commercial movies. There igashof the
database dedicated to human actions and a second part dedicated to peen€ligre are
12 classes of human actions and 10 classes of scenes distributed oveid&@68ips and
approximately 20.1 hours of video in totdMarszalek 200p

Concerning the action part, each video sample contains at least one actiomiirses
contains more actions), and the action(s) do not necessarily occupy the enparaedu-
ration of the video sample. Also, there might be movie cuts during the video sample.
Because of the much less constrained experimental conditions, this datasee ishalor
lenging than the KTH dataset.

Concerning the scene types, there are 2 exterior scenes (Housh, &8 interior
scenes (Bedroom, Car, Hotel, Kitchen, Living roomffi€e, Restaurant, Shop). Scene
types allow improving the detection of actions by associating actions with their plauzible
contexts Marszalek 200P

“http://wuw.di.ens.fr/~laptev/actions/hollywood2/
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Figure 2.7: Example frames from the Hollywood 2 action datddet$zalek 200Pdepict-

ing the 12 action categories: Answering a phone, Driving a car, EatingtifiglGetting

out of a car, Handshake, Hugging, Kissing, Running, Sitting down,d8tgrup. Image
sourcehttp://www.di.ens.fr/~laptev/actions/hollywood2/
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2.6.3 The TRECVid challenge: Semantic Indexing task

TRECVid [Over 2012 is an annual challenge sponsored by NtSWith the goal of en-
couraging research in information retrieval by providing a large test ¢miecuniform
scoring procedures, and a forum for organizations interested in corgghim result8.

TRECVid proposes several tasks to participants, of which our team wexes$ted by
theSemantic Indexing (SIN) taskhe dataset associated with this task, in the 2013 edition,
is composed of 800000 short video fragments (callskotg of lengths varying between
a few seconds to a few tens of seconds. Associated to these shots isfa34€t vari-
ous semantic concepts, which can be objects (Bus, Tree, Car, Tetepbbair), actions
(Singing, Eating, Handshaking), situatigstsene types (Waterscape, Indoor, Kitchen, Con-
struction site), abstract concepts (Scigtexhnology), types of people (Corporate leader,
Female person, Asian people, Government leader) or even specifiefela Jintao, Don-
ald Rumsfeld). These concepts may or may not be present in a shot. fEsetda split
in half, the first part for developing and fine-tuning concept detectioorikgns, and the
second part for testing and evaluating the performances of the task panticipa

The goal of the challenge is that, from the testing half of the dataset, forseacaintic
concept, participants should return a ranked list of max. 2000 shotséhthieamost likely
to contain the semantic concept in question (just like when using a searclegengime
quality of the returned lists for each concept is evaluated (how well theartishots for
that concept are concentrated towards the beginning of the list) by Ni@participants
are then communicated their performances.

The evaluation measure used in TRECVid SIN isnfean inferred average precision
(infAP)[Yilmaz 2006 Yilmaz 2008. Basically, for a particular concept, the “average pre-
cision” is the average of the precisions obtained for various recall, rategasure of how
well the true positives of this concept are concentrated towards theniegiof the list
of 2000 shots. The “mean average precision” is the mean of the prevdsuk over all
concepts.

The TRECVid SIN dataset is very challenging, for the following reasons:

e The videos come from a wide array of sources, of varying quality anteod. They
can range from professional news studio or news footage, spatdésefiimed by
professionals or TV shows, to amateur videos recorded with a camen pimal a
lot of camera motion. They can be from various environments, such as frae &s
kitchen, from outside in the street, from the beach or from an exotic locafioay
can be acquired in various lighting conditions, ranging from a sunny day orgdo
a dark interior of a night club.

e The large amount of concepts to detect means that it is not practical to develo
special algorithm for each concept. Instead, a generic approachdgarsal con-
cepts, but it is not easy to develop a generic system that works welgbanwith
every concept.

SNational Institute of Standards and Technology
Shttpy/trecvid.nist.goy
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e Many concepts are quite rare in the dataset, they may only appear in a few ten
of shots out of the totak 800000, which poses a problem when training concept
detection algorithms (when training supervised classifiers).

e For a shot to be considered as an occurrence of a concept, it is eti@ighe con-
cept is present in at least one frame of the shot. However, the annotatioaays
if a shot contains or does not contain a concept, but it does natlsag and where
that concept appears. This poses a challenge because we do nowkiah in-
formation extracted from the shot is useful and which is irrelevant for dneept in
guestion, which makes both training the detectors (training the superviseiliela$
and evaluating the test shots (applying the classifiers) mdéieudi.

Because of the large size of the database, many participants do noteatredyentire
video shot. Instead, they analyze only one (sometimes sekeydiame(sper shot, greatly
speeding-up the analysis (of course, with the risk that the concept naghén the chosen
keyframe). To this end, TRECVid also provides dhadal selection of keyframes for each
shot [Over 2012.

Most of our experiments are performed on various editions of the TRECWd&3k,
because the large diversity of target semantic concepts and contextisimtixdse concepts
can appear constitutes an ideal test for generic semantic indexing algorithiob,isvthe
goal of this work. In ChapteB we experiment on the TRECVid SIN 2010, 2011 and
2012 editions, showing that our retinal preprocessing approach gwesdtetible results
across datasets. In Chaptemwe experiment with trajectory Bag-of-Words descriptors on
the 2012 edition, but we also reuse part of these descriptors for thenafion fusion
approaches from Chaptértested on the 2013 edition. As for Chapterwe perform
experiments both on the 2012 and the 2013 editions of the dataset.

While most of the studies are done on the complex TRECVid SIN dataset, we also us
the KTH dataset to validate the motion dedicated descriptors. Further studiesjéar tr
tory descriptors should be performed on other motion-dedicated datasetsrafediate
complexity such as Hollywood 2, but already these two datasets, illustrating twaonextre
scenarii of action detectigrecognition (highly-restrained versus completely unrestrained
context) show the potential of our methods.
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As we have seen in Sectidh3.4 SIFT/SURF BoW descriptors generally perform
well in object or scene detection and recognition applications, and they aakiyubie best
performing individual descriptors in TRECVid SINDjer 2012. They also scale well to
large databases, which is an additional reason why the are used so ld&erver, they
can be negatively impacted by image disturbances such as noise and compaetfacts.
Moreover, they are lacking when it comes to encoding spatigporalinformation, which
makes them less relevant for concepts related to motion.

The Human Visual System, on the other hand, exhibits certain spatio-temperal be
haviours which are useful in image processing applications. For exampleyrien retina
not only contains photosensitive cells, but also applies a series of I@hvgmcessing steps
on the signals coming from these cells. These processing steps regulateahéocal lu-
minance coming from the photoreceptors, reduce high frequency spatpmital noise, en-
force local contrasts without increasing noise and detect moving elent&tsult 2010

The goal of this chapter is to take advantage of certain properties of tmaRi\isual
System to augment SIFSURF BoW descriptors, by making them more robust to image
degradations, more sensitive to spatial details, and also by making them setiosi{patio-
temporalinformation instead of only spatial information.

Bio-inspired models become more and more involved in computer vision. For exam-
ple, in the domain of local spatial feature description, the recent FREAKiredescriptor
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[Alahi 2013, or the approach fromAli 2011], propose to replace the classical SIFT fea-
tures with bio-inspired features for image representation. They allow Vecjeat image
description, however they are not designed to be robust against alassage artifacts
(noise, compression, luminance range, etc.). Compared to these apgroseh@opose

to enhance visual information prior to the image description step. In our agprimaage
description consists in extracting SIFSURF features on a dense grid, but any other local
feature could be involved (such as FREAK).

Other, more global human visual system models have also been proposkdassu
[Itti 1998, Le Meur 2006h Redi 20114 They include parts of the retina and of the first
visual cortex areas. These models are mostly dedicated to visual salierggisuaad
can be involved in applications of visual quality perception assessment. Howlese
do not all support luminance range adaptation nor do they manage temporahation.
In addition, their significant computational cost compromises their use in frameimefr
image analysis in large video databases.

Finally, other bio-inspired models, such &ejnhard 2005Mantiuk 2005 Benoit 2010,
focus more on the properties of the human retina. They are mainly targeted &t finag
tering applications, such as image compression and detail enhancement. |Skhbg\a
a lower computational cost. This corresponds more to our requirements, émwealy
[Benoit 201 takes into account the temporal filtering properties and ffects of the pe-
ripheral vision occurring in the human retina. Regarding peripheral vigismpresumed
that it plays a role in reflex eye movemen®&pfague 1965 therefore it can be useful for
focusing the analysis on low-level salient areas of the visual scene.

Therefore, considering our image enhancement and salient areetiextreeeds, plus
the low computational cost requirement, we choBgeoit et al's model Benoit 2010 as
our video preprocessing step before extracting FHIRF features. This retinal model
presents interesting properties for filtering out undesired image artifactgpfession arti-
facts, noise etc.) and gaining robustness to luminance variations. Moregbyeoiee of the
retinal outputs (called the parvocellular channel) allows the enhancemeudtailsietails
and artifact reduction. Additionally, another output of the model (called the owadjnlar
channel) can be used to manage temporal information by selecting only regioterest
associated with transient information. Such transient signals consist bloth-tével spa-
tial saliency which occurs when discovering a new visual scene, aodais in a greater
degree) of motion saliency areas.

In the next section, we will explain the behaviour of the human retina model from
[Benoit 201(; the interested reader may also refer to Aniefor the inner workings of
the model. Sectio.2 will show how we exploit the retina model behaviour to augment
SIFT/SURF BoW descriptors.

3.1 Behaviour of the human retina model

3.1.1 The parvocellular channel

The human retina has two well-known data channels (also called pathwangshirst is the
parvocellularchannel, which processes spatial details and colors. It has a highti@so
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in the center of the visual field, where it constitutes the foveal vision. tnatizes colors,
enhances local contrast, responds well to temporally-sustained signdks,swioothing
out fast temporal variations.

An interesting property is that at the onset of a spatio-temporal event (stopening
the eyes” to discover a new visual scene, or when an object appeaoves in the image),
the retina exhibits &ansient stateDuring this transient state, only low spatial frequencies
are transmitted (a blurry image, but with high signal-to-noise ratio); this is lsedhe ap-
pearance of a new object or scene is a high temporal frequency enéniheaparvocellular
channel attenuates spatial details at high temporal frequencies. But ibjiaet ¢or the
new scene) remains stationary, the parvocellular response stabilizes aatirth@nters a
stable state During the stable state, the parvocellular channel will start to transmit (and
enforce) spatial details.

This coarse-to-fingorocessing model is not unlike what happens in the Human Visual
System: when examining a new scene, the retina supplies the brain with a, doarse
resolution image, to get a general idea of the scene content; only afterd@ed it supply
more spatially-detailed information.

In the retinal model that we use, the parvocellular channel is implemented assmseq
of color images with enhanced spatial details, corrected colors (with rtefgptee color
temperature), enhanced details in the shadows and also reduced norsela@ret video
compression artifacts.

An example of the #ect of the parvocellular channel on a video can be seen irBFig.
in which a TV presenter is talking. We present the input and parvocellubanret at re-
spectively 5 (Fig3.1a3.19 and 40 frames (Fig8.1h3.10 after the beginning of the visual
scene processing (the initialization of the retina). Depending on the temposthots
chosen for the retinal filters, the transient state usually lasts between 120dnames.
The coarse-to-fineffect can be observed on the slowly moving journalist and background
clouds, where details are better enhanced later, while the global mean lamieaargy
decreases. The clouds are barely visible in Bidaand 3.1k but they are more clearly
visible in Fig.3.1d as the parvocellular channel enhances details, and the mean luminance
energy has also decreased compared toJFig:

Regarding model limitations, following human behaviours, the parvocellular ehann
cannot perfectly remove all data corruption. It properly cleans the inttiseluced by low
quality image sensors, by filtering-out high-frequency spatio-temporahisigRegarding
compression artifacts, they cannot all be eliminated when the compression é&vére.dn
extreme cases, blocifects are not completely cleaned, they are only smoothed. Therefore,
some corrupted data is still transmitted to the next processing stage. Howeatgut
signals still benefit from the other properties of the retina.

Another limitation is that the retina also introduces a certain degree of motion blur,
therefore the spatial representation of moving features from the parvocehaanel will
be degraded more or less, depending on their speed. ffaw ean be diminished by using
smaller values for the temporal constants of the retinal spatio-temporal filters, @ghe
of lower noise removal.
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(e) Magnocellular channel output after 5 frartfeMagnocellular channel output after 40 frames
from start from start

(g9) Segmented salient blobs after 5 frames fflonSegmented salient blobs after 40 frames from
start start

Figure 3.1: Retinal preprocessing example, after respectively 5 anca@$rsince the
start of the preprocessing (the initialization of the retina). After 5 frames gtivearis still
in its transient phase: the parvocellular channel passes a large amountradmee and de-
tails are not yet enhanced too much, while the magnocellular channel firegyerstzatial
structures. After 40 frames, the retina is in its stable state: the parvocellularallEasses
less luminance and enhances spatial details, while the magnocellular chesseldinly
on moving areas (the presenter’s face). The segmented interest bdafistained by pro-
cessing the magnocellular output: after 5 frames, we select potential spatiatgsting
areas, while after 40 frames, we select mainly moving areas
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i, ek

(a) Input video frame (b) Parvocellular output frame

(c) Magnocellular output frame (d) Segmentation mask

Figure 3.2: Retinal outputs and area-of-interest detection on a TRECVid.vide

3.1.2 The magnocellular channel

The other well-known channel is theagnocellularpathway. It does not distinguish be-
tween colors, but it is sensitive to spatio-temporal events. It deals mainly wittetiygh-
eral vision, giving strong responses to transient signals (quick spatipetal changes of
light intensity, motion) and weak responses to slow-varying signals.

This channel has two interestingfects: the low spatial frequencies (from the lumi-
nance information) are briefly transmitted and a strong response is geheratpatial
boundaries until the end of the retindimnsient phase This allows it to be used as a
detector of potentiatpatial areas of interest. After the retina reaches its stable state, the
response stabilizes, only firing on moving parts, therefore the chantseds@ transient
area detector and more generally an@tiondetector.

We also implement the magnocellular pathway in our model, as a sequence of gray-
level images, and we use it as a low-level spatio-temporal regions of intietestor during
the first seconds of a visual scene observation.

An example of the magnocellular channel response is given is Fi§ureand3.1f. In
Figure3.1e the retina is in its transient phase and the magnocellular channel passes a lot
of luminance information and low spatial frequency components. In Figlifethe retina
is in its stable state and the magnocellular channel only responds to moving elétinents
presenter’'s head and her lips), which are related to motion saliency.

Regarding model limitations, severe blodkegts can impact transient area detection.
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In such a case, using this channel as a salient area detector can |ledsktddtections.
This drawback has to be compared with classical interest point and c@sed betectors,
which would also respond to such artifacts. Here, at least the temporal snpeftiect of
the retina would lower the quantity of wrong interest point detections. As dtresme
irrelevant image features are still transmitted, but in a lower amount that witkicdhs
approaches.

A second example of retinal outputs is given in Fig8r this time only for the sta-
ble state. Here, the camera is almost static and the skater is moving. Theghataoc
channel increases local contrast, generating halos visible especiallydattee trees, and
also introduces slight motion blur, because of the spatio-temporal filtering. The nekgnoc
lular image and the associated segmentation mask highlight the skater’'s motion. We will
describe such segmentation masks in the next section.

3.1.3 Area of interest segmentation

Not all the areas in a video are interesting for describing semantic coneapit#, a Bag

of Words representation would take into account local features frontaerasting areas,
the BoW descriptor would be “polluted” by irrelevant features. This motivasetex-

periment with focusing the feature extraction step onlysatient (and hopefully more
relevant) areas, so that the BoW descriptors would perform better. Wetwisonsider
both spatially-salient and temporally-salient areas.

3.1.3.1 Choice of saliency model

When talking about human visual saliency models, one usually refers todmgtational
cost algorithms such akti 1998, Le Meur 2006k Such models aim at precisely modeling
the retinal and visual cortex processing for identifying areas of interéke involved
retinal models are generally focused on the parvocellular channel. Sucleh@saliency
has been proposed iRgdi 2011aUsman Niaz 201land is used to adjust the importance
of features extracted from keyframes, by weighting each feature@ingaio its saliency.
In [de Carvalho Soares 20112 fuzzy saliency model is used to weigh local features in a
Bag of Words framework, infonzalez Diaz 20]3alient regions are used to extend object
detection in egocentric visioniMoosmann 200proposes saliency maps built on-line by
the image classifier for object categorization, whNgg[2012 experiment with various
saliency models including recorded human eye movements for weighting lotaidea

In our context however, we want to investigate the use of an area oé#ttdetector
dealing with a lower-level saliency and withnauch lower computational caosiAs seen
previously, the retinal properties are such thatritegnocellular channetan be used as a
detector of low-level spatial and temporal salierfitydetects spatio-temporal events), with
low computing requirements. This leads us to design a new strategy for lowskheht
blob segmentation from the magnocellular channel. This approdfgdrsdfrom classical
human visual saliency model#t[ 1998] [Le Meur 2006, but proposes an interesting
balance between computational cost and detection performance. From ddaibjmint
of view, low-level visual processing occurring before the visualeolevels has long been
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presumed to play a role in reflex eye movements. This type of saliency issegpmbe
processed mainly at the superior colliculus le\&gbfague 1965

Therefore, following this idea, but in a much simplified version, we use the atagn
lular channel as a detector of low-level spatial and temporal potentiad aféaterest, in a
low-cost bottom-up approach. We call this “saliency” for readability, evengh it is of a
lower level than classical saliency models. This will enable us to gather leatires only
from potentially more interesting areas of the videos, as we will see later in S&cidh
Compared toRedi 2011aUsman Niaz 201}l our algorithm simply selects features from
salient areas, each of them being considered with equal importancedmdtaccurately
weighting each feature by its saliency value.

3.1.3.2 Segmentation algorithm

The aim of the proposed segmentation algorithm is to select areas of high ktsietrt
energy at the magnocellular output. This can either be done by simple thregholdire
magnocellular output, or through a center-surround analysis, a$eaetice of spatially
isotropic Gaussians. However, we want our segmented areas to beistitle, avoiding
fast variations of size and shape. Also, we want to avoid accidental segoas due to
residual noise left after the previous retinal processing. Therefogegpropose to use a
cascade of non-separable spatio-temporal low-pass filters with the foll@gungfion:

1

F(fs, ft) = .
(fs. 1) 1+ 215(1 - coq2rfy)) + j2nrf;

(3.1)

wherefs andf; are respectively the spatial and temporal frequencies (expressadtioifis
of the sampling frequencies) and andr; are respectively the spatial and temporal con-
stants (expressed in pixels and number of frames respectively). TheseWiill smooth
the transient energy map in space and time, allowing the extraction of stabledridbs
eliminating residual noise. Their computation does not demand high resounoeseach
filter requires only 4 products per pixel whatever the constajésidr; are.

In the proposed segmentation stage, 3 filters are applied on the transiegy ere®
(squared retinal magnocellular output) and combined as described in Bigure

A first filter, Fiocar, is applied for residual noise elimination and smoothing of textured
transient areas. Its spatial constant sets the minimum size of the areastpriEnged (we
use a value ofgjocal = 5 pixels). A second filter=neighnos COMputes the transient energy
in the neighborhood of each pixel. Its spatial constant is typically 3 timesrlérga that
of Fiocal (Tsneighbor = 15 pixels). The dierence between these two filters allows the local
motion energy front,cq to be compared with the energy in its immediate neighborhood,
in a center-surround approach. Therefore, a pixgy)(is considered as part of a strong
transient area (a local maximuloy,ax part of the segmented blob) using Equatin

1, |f F|ocal(x, y) - Fneight(xv y) > (5max

. (3.2)
0, otherwise

Lmax(X,y) = {

wheredmaxis a threshold. Its exact value is not critical, because most of the noise has
been eliminated by the retina, bifax should remain above 1% of the maximum allowed
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Input transient energy map (squared magnocellular output)

Spatio-temporal filter Spatio-temporal filter Spatio-temporal filter
Flocal Fneighborhood Fcontext

+ restriction w.r.t.
transient context
Center-surround
transient energy
comparison

transient blobs

Figure 3.3: Proposed transient area segmentation method: two spatio-tempepaist®
filters allow high local energy areas to be segmentated in a center-sdrappnoach. A
third filter finalizes selection by eliminating non significant local transient energie

magnocellular energy, irrespective of the video frame size and frameThis.way, we
ensure that we select pixels with a local energffisiently different from the surrounding,
and that we are also robust to any remaining noise (we&gse= 1500 > %, with 255
being the maximum allowed magnocellular energy).

However, we want to segment points that stand out not only with respéugitoim-
mediate neighborhood, but also with respect to the larger local contekt,amumoving
objects on a static background, or objects moving infeedént direction than the back-
ground (angbr with a diferent speed). To this end we add a last constraint, with the use of
a third filter, Fcontexs Whose output indicates in which “motion context” local maximums
should be identified. The spatial constant of this filter is set experimentally tionks the
value of Fiocqr (75 pixels). Then, a strong transient area is considered only if its neigh-
borhood energy is stronger than the context (i.e. WRgSyhbo(X,Y) > Fcontex{X.¥)), in
addition to the condition from Equatidh2 Consequently, we can select strong transient
areas inside a weaker-amplitude transient context, and also isolated tramegnof dif-
ferent sizes and strenghts (this wouldn’t have been possible when sisiptyan universal
threshold).

Note that all these filters use the same temporal constaat,1 frame period (0.04s
for 25Hz videos). It introduces a temporal smoothitiget which makes the segmented
blobs more stable in time.

Figures3.1gand3.1hshow the result of the segmentation stage. In this example, 5
frames after the start of the visual scene processing (the initialization oétine), when
the retina is still in its transient phase, the presenter and top left logo pitagdiht en-
ergetic spatial boundaries that are automatically segmented. Afterwandsg, thve retina
stabilizes, only the presenter is moving her head, thereby generating motiorohneas
terest, which is evident in the magnocellular output (a very strong respspseially for
the mouth), from which we extract the interesting blobs. Therefore, ouriigodoes not
focus on just one type of saliency: during the transient phase of therepatial saliency
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(a) Current input frame (b) Blobs in current frame  (c) Average blobs over last 6 frames

Figure 3.4: The segmented blobs of low-level saliency are binary maskslnfesame.
However, averaged over several frames, blob fluctuations can beaksou to “soft” mask-

ing.

dominates, while after the retinal response stabilizes, areas of motion salien®cav-
ered. This way, we hope to capture local features typical of both sgatigntic concepts
and of motion-related concepts. Additionally, context information is also included, both
during the transient phase, and later on if there is background motion.

Unlike other approaches such &6d 2012 which employ fuzzy saliency models, our
blob segmentation algorithm results in “hard” masks for each frame: either aféatate
is taken into account with a weight equal to 1, or it is completely excluded frenBtdwW
model, with a weight equal to 0. However, because the segmented blolist asantly the
same from one frame to the next, their moving borders will lead, on averageseveral
frames, to soft masking, as it is illustrated in FigGtd.

3.2 Proposed SIFJTSURF retina-enhanced descriptors

We have seen that the retina has some interesting properties: the parvocbbulael re-
duces noise and enhances spatial details, and since SIFT and SUWiRbalksal gradient
vectors, they can be more reliable if extracted on the parvocellular chanaéipadlly,
the magnocellular channel has shown itself as a good basis for detectintjaiiytémer-
esting areas in the video frames, therefore the transient salient blob detettoe used to
focus visual word extraction on potentially more meaningful local featurai$owing this
idea, we propose to augment SJSURF BoW descriptors by employing the human retina
model, as it is described in the following.

The BoW descriptors that we create are all based on OpponentSIHIponentSURF
(SIFT/SURF vectors extracted from the 3 color channels of an Opponentsydoe) local
features extracted on a dense grid, but we modify the local featurectextratep by
preprocessing videos with the model of the human retina, as in Fjbire

We employ the retinal parvocellular and magnocellular channels in several ezays,
structing two classes of descriptors:

e Keyframe based descriptors, which are similar to the classical approéehn {n
TRECVid, only keyframes from video shots are analyzed, to reduce atatipnal
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Figure 3.5: Modified BoW extraction toolchain for High-Level-Feature (H{$emantic
concept) detection: retinal preprocessing is added before the feattaetn step.

cost, at the risk of missing the frame in which the concept appears), tekeefact
that we collect local features from retinal preprocessed frames. Wenaedesyframe
per shot, from the fiicial keyframe selection of TRECVid.

e Temporal window based descriptors with salient area masking, that acdanudal
features from segmented areas of interest (approach from S&clicdh? inside a
temporal window of frames (between 20-40 frames) around the keyframe.

3.2.1 Keyframe based descriptors

Keyframe based descriptors only collect local features from the videbkeyframe, but
unlike the classical approach, we pre-process the keyframe with tha.retin

From an implementation point of view, in order to avoid the transient respohidw
appears when initializing the retina, we actually start the retinal processi2@ fi@mes
before the keyframe (after this interval, the response reaches its dizielp but we only
collect features at the time of the keyframe. Recall the coarse-to-fipepycdescribed in
Section3.1.1 immediately after the initialization of the retina, the parvocellular channel
still attenuates mid spatial frequencies (spatial details). However, with tisdsred retina
setup, after waiting 10-20 frames (depending on the temporal constanis teedtable
state is already reached and enhanced spatial details can be extractadyadith signal-
to-noise ratio.

We propose the following keyframe based descriptors (example for ldE&d de-
scriptors, but SURF or any other type of local features can be used):

3.2.1.1 SIFT

We collect OpponentSIFT (we call the descriptor just “SIFT” for simplicityatures on
a dense grid on the original (unprocessed) keyframe (as shown ineRdgkg, and we

feed these features into the BoW processing chain. This serves asfenanice descriptor.
We recall that there is one keyframe per video shot, chofigriadly by the organizers of
TRECVid SIN.

3.2.1.2 SIFT retina

Instead of collecting the OpponentSIFT features from the original keydrave collect
them from the parvocellular-processed keyframe (see Figuitd. As stated previously,
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we actually start retinal processing 10-20 frames before the keyfranggyadhe retina
time to reach its stable state, but only collect features at the time of the keyframe.

The idea behind this descriptor is that the parvocellular channel “cle@hsrdrances”
the image, by reducing spatio-temporal noise, reducing transient compressfants,
boosting local contrast and normalizing colors. Because image degradat®meduced
and local contrast (on which SIFT is based) is improved, the SIFT igésis of local
features should be cleaner, resulting in a better BoW description.

3.2.1.3 SIFT multichannel

The OpponentSIFT signature of a local feature from the parvocellulameh@nly gives
spatial appearance information. But we know that the other retinal chaheehagnocel-
lular channel, responds well to contours in motion (and especially contorpermuicular
to the motion direction). Therefore, if we would extract the SIFT signature ofdnee
local feature, but from the magnocellular channel, it would encode infimmabout local
motion.

We propose to describe a local feature by the concatenation of its OpptFfEREStor
(384 dimensions) from the parvocellulapgatialinformation) channel and its SIFT vector
(128 dimensions) from the magnocellular chanmab{joninformation), thereby obtain-
ing a spatio-temporaldescription of the feature (with 512 dimensions), as illustrated in
Figure3.6¢ In this way, we increase the genericity of SIFT local feature descsaipr
incorporating motion information.

Again, retinal processing is started 10-20 frames before the keyfranaotd the
retinal transient state.

SIFT multichannels similar in this respect to thloSIFT descriptor Chen 2009 in
which local features were described as the concatenation of a SIFT wectioe intensity
image (spatial description) and a SIFT-like vector on the dense optical #dav(fnotion
description). The magnocellular channel does not give such detailedotiain informa-
tion as the optical flow field, but it is quicker to compute and it is very easy to iatedgn
our collection of descriptors.

It can also be argued that because the magnocellular channel givdewtitequency
spatial information, SIFT is not the best choice as a local feature desciygimause it is
meant for higher-frequency information. Nevertheless we use SIFT irs¢hisf experi-
ments because it is easier to integrate in our SIFT-based processign Ebaire experi-
ments will address this issue by extracting SIFT at larger scales or by irepB&lE=T with
Histograms of Oriented Gradients at a spatial scale in accordance with thmooadiglar
output.

3.2.2 Temporal window based descriptors with salient area asking

The previous methods only described the video shots at the moments of thenkesf thus
omitting saliency information and, except for the multichannel descriptor, all terigoada
motion information. Now, we propose to extract descriptors not only at the moofient
the keyframe, but on salient blob areas from an interval of framesl(lysaetween 20-40
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Figure 3.6: Proposed keyframe based descriptors: all of them colledtfeatures only
at the time of the keyframe, chosen on a dense rectangular 8tk collects features
from the original keyframe and serves as a basel®HE-T retinacollects features from
the parvocellular preprocessed keyfransFT multichannel maskingpllects compound
parvo-magno features: for a certain position on the dense grid, the Op&IRT de-
scriptor from the parvocellular channel is concatenated with the SIFTigescfrom the

magnocellular channel to produce the local feature descriptor.
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frames) centered on the keyframe, using the area of interest detestoS&ctior3.1.3.2
We can then extract local features either from the original frames, frenpahvocellular
channel, or multichannel features. The aim behind focusing the featireean process
only on salient areas is to obtain descriptors that are less polluted by imtlievage
regions.

This “salient transient blob approach” functions in the following mannemtrajter
we begin processing the temporal window around the keyframe, the traphizse takes
place (lasting for less than half of the temporal window duration), during whiehrihg-
nocellular channel will give strong responses on large spatial strectlireerefore, at this
point, we will collect features fronspatially-salient areasas illustrated by the mask in
Figure3.1le After a certain time, the retina stabilizes, and only moving areas will excite
the magnocellular channel significantly. Therefore, from this point on,xtract features
from areas of motion salieng¢ys in the masks from Figur@leand3.2d This way, we
integrate in a single descriptor both spatially-interesting and motion-interesting fgature
constructing a spatio-temporal descriptor. Collected features reprebent spatial infor-
mation (contextual information), and, if they exist, moving objects features.

The balance between spatially and temporally interesting features is achieasd by
justing the length of time that we take around a keyframe, in relation to the duratioa of th
transient phase determined by the retina parameters. A shorter time interved meee
weight for the transient phase, therefore favouring spatial salievitle longer intervals
favour motion saliency. We found experimentally that a window of 20 to 40 frghes
pending on the retinal parameters) is a good compromise between the tratetiesins
the stable state of the retina (the spatial and temporal information respectively).

We employ the temporal window around keyframes with transient blob (areaeof in
est) selection to construct the following temporal window based descriptors:

3.2.2.1 SIFT simple masking

This descriptor relies on collecting OpponentSIFT features from the otigitheo frames
inside the temporal window around the keyframe, but only from potentiallyastigrg
areas, as illustrated in FiguBera

The expected benefit over the baselB1ET descriptor is that the BoW representation
will be based on more representative local features thanks to the trabkibrgelection.
Also, because more frames are taken into account (instead of just tharkeyfrthis both
increases the chances of finding the target concept in the analyzedframiefeeds more
local features into the BoW model, enriching the histogram of visual words.

3.2.2.2 SIFT retina masking

This descriptor is similar to the previous one, except the fact that the gahviar pro-
cessed frames are used instead of the original ones, as illustrated in Figuréhe same
benefits as foSIFT simple maskingre expected, with the following additional properties:

e a reduction in high-frequency noise and compression artifacts, accompanied b
cal contrast boosting, thanks to the parvocellular preprocessing; dbertgansient
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state of the retina, thigkect will be less pronounced,

¢ the parvocellular channel may increase motion blur on motion-salient blobs, reduc-
ing the quality of these features somewhat (visible on the skater’'s handureBigb
and Figure3.7h).

3.2.2.3 SIFT multichannel masking

In SIFT simple maskingndSIFT retina maskingspatiotemporalinformation is only in-
cluded in the form of selecting features from interesting areas (often in motiwIQLFT
multichannel maskingmotion information is included explicitly through the addition of
the SIFT signature from the magnocellular channel.

Local features are 512-dimensional vectors, the concatenation ofaheds Oppo-
nentSIFT vector from the parvocellular channel and its SIFT vector fhenmagnocellular
channel, similar t&IFT multichannelHowever, forSIFT multichannelthe magnocellular
SIFT signature from static areas (such as the sky in FigL8¢ is irrelevant. We there-
fore add the temporal window and salient blob detectiorSiéiT multichannel masking
to focus the analysis on interesting (usually moving) features.

In the methods that we described, we exemplified with (Opponent) SIFT Meoweese
methods can be applied to other local feature descriptors such as SBRH-,BORB,
BRISK, FREAK etc. (see Sectioh.3.4.2for details about local feature descriptors). To
prove this, we performed two studies on the impact of retinal preproceS3uedirst study
uses OpponentSURF features, with results publishe®ira{ 2012hand [Strat 2013
(this study does not include thaultichanneland multichannel maskinglescriptors, as
they were not yet developed at that time). The second study replagesn@uSURF
with OpponentSIFT and adds the two multichannel descriptors, with resultsiped in
[Strat 2013h Even though the experimental setups of the two studies &erelit, as well
as the local features used (SURF and SIFT), the observations regéndidtects of the
retina remain valid for both studies, as it will be shown in the next sections.

3.3 Experiments

Since our goal is to devise general-purpose descriptors, able tonizeogrious seman-
tic concepts in various (and uncontrolled) situations, we perform our iEmests on the
TRECVid Semantic Indexing Task datase®vgr 201]. These datasets contain a large
number of video shots of short length (between a few seconds up to tsesaids), on
which the presence or absence of various semantic concepts (Sasheaspeople”, “veg-
etation”, “cityscape", “harbor", “ambulance", “airplane flying", “thowing", “cheering"
etc.) has been annotated. Not only the semantic concepts, but also theftypésos
are very diverse in these datasets, ranging from amateur videosledcaith a phone
camera, to professional news footage. This makes the TRECVid datasalt$adtesting
algorithms which aim for a high degree of genericity.

The goal of the TRECVid SIN task is to return, for each of the target sémeon-
cepts, a ranked list of video shots containing the concept. The quality ofathiked list
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Figure 3.7: Proposed temporal window based descriptors (see texdtéoisil
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is evaluated using thefficial TrecVid measure of performance, timean inferred average
precision (infAP)[Yilmaz 2006 Yilmaz 200§, which basically corresponds to the preci-
sion averaged for various recall rates.

3.3.1 Preliminary experiments with OpponentSURF

The first study that we performed is concerned with showing ffexts of retinal prepro-
cessing on a classical OpponentSURF (den8tgRFin the following for simplicity) Bow
descriptor extracted on a dense grid. We chose to use SURF-baseigties in these pre-
liminary experiments because of the lower computational complexity of the SURFdeatu
descriptor (thanks to its use of integral images).

3.3.1.1 Experimental setup

Dataset: We perform this study mainly on the TRECVid 2010 development dataset, con-
taining 130 semantic conceptsA#n120000 video shots, but we will also show a few results
from the 2011 development dataset. For the 2010 edition, we split the dewehbplataset

in half: ~ 60000 shots are used for extracting the BoW vocabularies and trainingathie c
sifiers, while the other half is used for evaluating the performances witméaa inferred
average precision (infAP)

Retina and temporal window setup: Regarding the retina parameters, we use the de-
fault configuration with mean luminance information cancelling (yith= 0, the parame-
ter of the horizontal cells low-pass filter, sé&&ehoit 2010 for details regarding the retinal
model and all of its parameters).

For the temporal window based descriptors, the length of the temporal windewtis
40 frames, centered on the keyframe of the video shot.

Dense grid setup: The dense grid setup consists of OpponentSUBREy [200§ (OpenCV
implementation) features extracted from a dense grid with a 9 pixels sampling rate on th
video frames. We use a multi-scale grid with 3 scales, with a scaling factor of dl@veé

Vocabulary generation: The feature vocabulary is constructed using the OpenCV im-
plementation of Kmeans clustering, in 3 passes on the training set, using the $i#mean
initialisation method Arthur 2007. As a technical detail, because each concept in the
TrecVid database is only present in a very small fraction of the total numbshais,

for the vocabulary construction, we select a subset of 1008 video Bbaishe training
database, such that at least 25% of the selected training shots contaist are positive
example of any one of the target concepts. This is in the hope that the Vagabill be
more related to the types of features common with semantic concepts. Fomkeyfesed
descriptors, this allows vocabulary extraction=i.2 million SURF features, while tem-
poral window based descriptors are traineck06.6 million features. The same subset of
video shots is used to generate the vocabularies for each of our ptbBo%V descriptors.
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Figure 3.8: Mean inferred average precisions (infAR)haz 2009 obtained by the com-
pared methods (plus a random classification), on the TrecVid 2010 dataset
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Assigning features to vocabulary words: Fixed-length descriptors in the form of his-
tograms of visual words, corresponding to the methods in Se8t@rare generated for
each video shot, in two versions: either with 1024 or with 4096 visual wawes\(ersions
of dictionary size). Local features are assigned to their corresponvdicepulary words
using the FLANN library Muja 2009 (fast approximatenearest-neighbour matching) for
increased speed.

Supervised classification: Afterwards, the supervised classification stage on the Bag of
Words histograms is performed using a K-Nearest Neighbors classifiedescribed in
[Gorisse 201D

All methods use the same BoW extraction toolchain shown in Figusewith the
same keyframes (or temporal windows around keyframes), the same sanapdiranrthe
dense grid, the same scales for the multi-scale grid, the same parametergébintnehe
same parameters for the K-means vocabulary generation and the sametperdonghe
supervised classifier.

3.3.1.2 Global results

General remarks: Figure3.8 presents the mean inferred average precisions of the pro-
posed BoW descriptors, averaged over the 130 semantic concepts bfettdédd 2010
dataset part that we used for testing. First of all, the results might appeanlthe range
of 0.01-0.023, but they are in fact of the same order of magnitude as athépproaches
for these datasets, and well above the noise level. For exarqadaske 201Pobtain mean
inferred average precisions in the range of 0.048-0.054 for desaripaged on dense SIFT.
However, our results are not directly comparable wisofisse 201]) because SIFT tends
to generally give better results than SURF for concept detecliosn| 2009 although at a
higher computational cost.

Such low values for the average precisions have several causssthiérsemantic level
of the features that we extract is very low, while the one of the conceptstéatds much
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higher; this is the so-callesemantic gagproblem, and TRECVid participants deal with it
by fusing multiple sources of information, but this is not the purpose of this chaphte
second reason for the low average precision values is related to thewepyoportion of
true positives contained by the TrecVid datasets: there are many comgdepkshave just
a few tens of positives, sometimes even less, for several tens of tlisustnegatives;
this causes the average precisions to be inherently low, not to mention that ficass
problems when training supervised classifiers. A third reason iagpeoximatenearest-
neighbour matching used to assign local features to vocabulary wohétsh) even though
is faster than brute-force matching, can sometimes assign the incorrebtilaygavord.

In any case, our main goal in this preliminary, unoptimized study is to showethe
ative improvement obtained on low-level descriptors when applying a fast, bjred
preprocessing method. For this, we generate our own basiliRe- 1024ndSURF 4096
keyframe based descriptors, which use exactly the same parametersratnadased
methods, but do not employ retinal preprocessing.

In the following, we analyze the results in more detail, identifying trends related to
which descriptor is better, and in which circumstances.

Keyframe based descriptors: The striking point is that all the methods using the retina
outperform the baselifeBURFdescriptors. The parvocellular preprocessed keyframe based
descriptor SURF reting increases global performance by 76% for 1024 visual words and
by 73% for 4096 visual words), which constitutes a significant relativeease. This
increase can be explained through the image enhancement brought jbgriioeellular
channel: by filtering out image artifacts ranging from noise and compresfiiects to
under or overexposure problems, spatial details are more accuratelgtegtrimproving
performances for concepts related to specific objects or textures.

It can also be observed that a vocabulary size of 1024 is better th&) B68ause
4096 fragments the feature space too much and the system becomes tovestnsitiall
variations of image appearance. Therefore, in the following, we focuaralysis only on
the 1024-dimensional versions of our descriptors.

Temporal window based descriptors: Moving on to temporal window based descrip-
tors with salient area masking, f&URF simple masking 102gerformances increase by
60% compared to the baseli®®JRF 1024 Therefore, the proposed blob detector from
Section3.1.3.2also has a large beneficidtect. This proves that the detected blobs bring
relevant information even with the low-level saliency we suggested. Tdverehe choice

of such a low-level but ficient blob selector makes sense especially in the context of
very large video datasets requiring fast processing.Usnjan Niaz 201}l another form

of saliency evaluation called “Saliency Moments” is used, but the relativienpeance
increase is not as great in their case (less than 10%) as it is in ours.

For the other temporal-window based descrip&WRF retina masking 1024he gain
compared tSURF simple masking 102¢not spectacular, we only increase performance
by 3%. Most of the performance boost in this case is given by the blomesgtgtion
step, and in these conditions, the additional parvocellular preprocessiagndbienprove
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results much further. This is explained by the retina’s coarse-to-fine gyogdts parvo-

cellular channel is designed to enhance stable features but smooth traiggiatg. Thus,
within the detected transient blobs, we have transient signals, which aréhsddry the
parvocellular channel, causing a certain loss of detail which preventshefincrease of
average precision.

3.3.1.3 Concept per concept results

Keyframe based descriptors: When comparing the mosttective keyframe-based de-
scriptor, SURF retina 1024with the baseline§URF 1024, 35 out of the 130 concepts
obtain an infAP increase greater than 0.005 thanks to the retinal prepirgges$-or the
remaining concepts, performancdfdiences are not that significant, while average preci-
sions remain low (less than 0.005). For these remaining concepts, the StéRifptbr,

with or without preprocessing, is less adapted. This follows the idea thagke slascrip-

tor cannot be ficient for all the concepts, justifying the use of fusion strategies between
various kinds of descriptor&jorisse 201D

Table 3.1 shows infAP for some of the concepts that best illustrate the performance
differences between the two keyframe-based approaches. We noticdéreverSURF
retina 1024is better tharSURF 1024the diference is, on average, 3.3 times greater than
in cases when the simpler method is better. This supports the idea that orgcgiEsing
greatly improves results most of the time, and when it doesn't, at least penige loss is
limited.

More specificallySURF retina 1024enerally reacts better to concepts related to spa-
tial structures or textures and to situations where light changes must not beinéken
account, but can disturb the baseline a lot. For example, contigpaeh’, "Computer or
TV screen’or "Crowd" can be acquired in various lighting conditions so that the retina
light cleaning &ect improves the detection. On the other hand, some concepts do not ben-
efit from the retinal preprocessing, but this can be explained by the manjeties. For
example,'Actor" and"Highway" are much better detected without the retina, because they
are related to motion (of actors, of cars on the highway). Indeed, the rpanacellular
channel cancels the mid-spatial frequencies of fast moving objects @itites motion
blur), and in the case of such concepts, it eliminates an important part @lévant infor-
mation.

A noticeable diference betweeBURF 1024and SURF retina 1024s the good per-
formance of the latter approach for tidightime" concept, but its lowerf&cacy for the
"Daytime outdoor“concept. This can be explained by the fact that the proposed retina
parametersd, = 0) cancel the mean luminance of the input images, thereby eliminating
the high mean luminance criterion that can identiaytime outdoor’ For "Nightime",
the retina still eliminates the mean luminance, but it also significantly increases tia sig
to noise ratio, which would otherwise be low because of physical limitations of isemge
sors. Moreover, the SURF signatures of halos generated by the ratimaddight sources
(e.g. streetlights, car headlights) can hint towards'ightime" concept.
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Table 3.1: Inferred average precisions obtainedBb)RF 1024andSURF retina 1024n
the TrecVid 2010 dataset, for some particular concepts.

concept SURF 1024| SURF retina 1024
Anchorperson 0.0834 0.2328
Beach 0.0127 0.1028
Cheering 0.0140 0.0555
ComputefTV screens| 0.0795 0.1536
Crowd 0.0008 0.0189
Female person 0.0029 0.0170
Instrumental musician  0.0081 0.0283
Maps 0.0163 0.0475
News studio 0.0706 0.1590
Nighttime 0.0023 0.0271
Reporters 0.0759 0.1892
Road 0.0137 0.0574
Actor 0.0134 0.0066
Bridges 0.0166 0.0088
Buildings 0.0237 0.0158
Daytime outdoor 0.0447 0.0341
Highway 0.0133 0.0000
Landscape 0.0371 0.0108
Sky 0.0768 0.0195
Vegetation 0.0588 0.0488
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Table 3.2: Inferred average precisions obtainedShRF retina 1024and SURF retina-
Masking 1024n the TrecVid 2010 dataset, for some particular concepts.

SURF type | retina 1024| retina Masking 1024
Beach 0.1028 0.0132
Birds 0.0037 0.0172
Charts 0.0734 0.0157
Maps 0.0475 0.0097
Mountain 0.0110 0.0007
News studio| 0.1590 0.0124
Vehicle 0.0067 0.0166
Walking 0.0021 0.0101
Sports 0.0009 0.0072
Athlete 0.0122 0.0015
Building 0.0158 0.0346
Sky 0.0195 0.0445
Snow 0.0341 0.1109

Temporal window based descriptors: When comparing keyframe based descriptors
with temporal window based descriptors, intuitivelyRF retina 1024vould be expected
to give better results thaBURF retina masking 102br static concepts. As an exam-
ple, the former respond best to concef@each”, “Charts”, “Maps”, “Mountain” and
““News studio”(see Table.2). SURF retina masking 102¢an intuitively be expected to
do better with concepts related to motion, and examples supporting this idea arethe con
cepts“Birds” , “Sports” and“Walking”. However, there are also exceptions, such as the
concept‘Athlete” (better detected witBURF retina 1024 and the concept8Building” ,
“Sky” and“Snow” (better detected witBURF retina masking 1024

Some of these exceptions are caused by particularities of the concept witbatdiset,
and the interaction of these particularities with the functional properties of therigde
tor. For example, we noticed th&dnow” (a static concept) is detected better WHRF
retina masking 1024a transientmotion oriented descriptor). This is because the salient
blob detector triggers on the fir trees and rocks often associated witwg $aakground.
Therefore,"Snow” is an example of a concept detected through its association with other
concepts, thereby illustrating that contextual relations between conceptd bleatudied
for enhanced detection.

As a general rule, we must not forget that the TRECVid datasets arearatasd-
ised. Video content can illustrate various situations and recording can benditnany
equipment and by any person, which can lead to exceptions from the inuixegected
behavior of the descriptors. Already there was no single descriptor wiashsystemati-
cally the best for every concept, and when also considering that weteawen predict by
intuition which descriptor will be the best for which concepdmplementary descriptors
therefore become a necessity. Information fusion strategies will then hetpéovath the
various contexts encountered in practice and combine information from compukeaye
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Table 3.3: Mean inferred average precisions (infAA)haz 200§ obtained by the com-
pared methods, on the evaluation set of TrecVid 2011. The first desckigéps the old
2010 configuration for the retina, the temporal window and the dense grid, thbitghers
are computed using the new 2011 configuration.

Descriptor | infAP 346 concept
SUREF retina Masking 1024 (cfg. 2010) 0.0110
SURF 1024 0.0123
SUREF retina 1024 0.0162
SURF simple Masking 1024 0.0116
SURF retina Masking 1024 0.0132

descriptors.

3.3.1.4 Experiments on TRECVid 2011 and#ect of parameters

Experimental setup: We performed an additional experiment on the TRECvid 2011
development dataset, which extends the 2010 development datasetibyg addther~
146000 shots for a total ef 266000, and another 216 semantic concepts for a total of 346.
In this experiment, we use the whetel20000 shots from 2010 for training, and the newer
shots for testing. The goal of the experiment is to check if the tendenciestfre 2010
dataset are also found on the newer 2011 dataset.

The dense grid is now single-scale, at the original image resolution. This ist toea
reduce computational requirements, compensating for the increase in dataset siz

The retina parameters remain the same, apart from the mean luminance attgparation
rametepy, from the horizontal cells low-pass filter (see the retina model fildempit 2010
for details). It is now set t@y, = 0.3 in order to allow some luminance to be processed by
the next stages. The maiffect is that halos normally present around high local contrasts
are now reduced.

The length of the temporal window around keyframes for salient blob dxiras
shortened from 40 frames to 30, also compensating for the increase inskatiba

Since the retina parameters were changed, the feature vocabulariessateacted for
the new configuration, following a similar protocol as for the 2010 experiments

Results: Table3.3reports the inferred average precisions over the whole 346 concepts
of TRECVid 2011.

A first thing to notice is that one of the best performing descriptors on thé gataset
(SURF retina masking 1024 config 2Q1@ept in its previous configuration, is outper-
formed by all the descriptors in the new configuration, even by the SigRFbaseline.
Because for th&SURF baseline, the only thing that changed is the dense grid setup, it
means that the main performancé&elience comes from the new, single-scale dense grid.

In the new configurationSURF retina 1024still gives the best global performance,
although the relative increase compared to the bas8lisieF 1024s of only 32% (com-
pared to 76% for the 2010 dataset). The lower relative increase is due tewgs, = 0.3
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parameter: because some luminance is transmitted, the color energy (wie\anrppo-
nent color space) is occluded by the luminance energy and loses figrtiefcriminative
power at the retinal parvocellular output. As a consequence, the follonppgra@ntSURF
local feature descriptor also loses some discriminative power.

Regarding temporal window based approaches with salient blob selestiit; sim-
ple masking 1024ails to give an improvement compared to the baseline, WAIKRF
retina masking 1024nly gives a 7% improvement. Because the temporal window length
has been reduced from 40 frames to 30 frames, the retinal transient2idtarfes long)
weighs more than the stable state. But the pgw= 0.3 parameter, which allows some
luminance information to pass, has thieet that during the transient phase, not just
spatially-detailed areas are segmented, but also highlight areas (becaeys®whhave
a higher energy in the magnocellular channel). However, these aremhdfiminance do
not bring relevant information. Consequently, the blobs extracted duragdibminant)
transient phase select non-relevant features and the final Bowdosesof its discrimi-
native power. Shortening the temporal window therefore demands simgrtie transient
phase of the retina too, and this can be accomplished by lowering the temptalrdsrof
the photoreceptor low-pass filters, however it will reduce the noisectieudtect of the
parvocellular channel.

3.3.1.5 Computational cost

From a computational cost point of view, calculating the retinal outputs adds 3&6qtsod
per pixel (parvocellular and magnocellular total), while the salient blobs segtioeraads
another 12 products per pixel. The traffidmetween the added computational cost and the
descriptor enhancement obtained has to be considered from a glpbehtipn level point

of view, especially in the case of fusion-based approaches, wherge®gae to compute
several descriptors.

Finally, regarding computational optimizations, all the filtering steps can be easily pe
formed in parallel. Indeed, since revision “5a6114e2” of the Opehimage processing
library (August 2012), the retina implementation has been parallelized. We alkiee
filtering steps to be performed in parallel taking into account multi-core psoc@schitec-
tures. Using the IntelTBBlibrary supported by OpenCV, our experiments showed that the
retinal preprocessing runs 3 times faster on a 4 physical core archédbitel i7 975XE)
and 1.8 times faster on dual-core systems (tested on Intel T2600 and iVl 3B80essors).

3.3.1.6 Preliminary conclusions

This preliminary study has given promising results, showing that the peafoces of
(Opponent)SURF-based BoW descriptors can be improved throughsthefuthe hu-
man retina model. The descriptors using local features collected from thecpiar-
processed keyframeS(URF retind have shown improvements in both configurations, but
the temporal window based descriptor with salient blob selecB&RF retina maskings

thttp://www.code.opencv.org
“http://threadingbuildingblocks.org/
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more sensitive to experimental parameters (retina luminance transmission, temperal co
stants of retinal filters, length of temporal window around keyframe).

The results could be improved further by searching for an even betiiguoation
of the retina and of the dense grid, however the number of configurationsvéhatn
experiment with is limited by computational resources: extracting a new set ofdeatu
vocabularies requires approximately 1-2 weeks on an Intel i7 975XEepsor, due to
the k-means clustering step which is very demanding for a high number of éeatiur
cluster (in the order of a few million features) and a high vocabulary siz24(4096).
Afterwards, extracting BoW histograms based on these vocabularies)avgeadataset
such as TRECVid SIN, requires in the order of 1000 hours of computatiom¢oe),
depending on which year’s dataset is used and the retinal and densetgycifortunately,
we can parallellize this step and compute BoW histograms on the Mo&Tputing center
in 2-3 days.

This preliminary study encourages us to investigate retinal preprocessinigss fur-
ther: in the next section, we extend the study to BoW descriptors basedmm@uSIFT
features, which generally perform better than their (Opponent)SURRtemparts, and we
work with a more optimized configuration of the retina and dense grid. We also examin
the performances of the more recent multichannel descriptors.

3.3.2 Experiments with OpponentSIFT

We push further the approach to design augmented, general-puietsetemporal de-
scriptors. We build upon the previous work with OpponentSURF and we shat the
retinal preprocessing still improves the BoW video description, even whangohg the
type of local features (SIFT instead of SURF) and the retina filtering belsavAfter-
wards, we examine thefect of the newer, multichannel descriptors, which were not yet
developed at the time when we conducted the SURF experiments.

3.3.2.1 Experimental setup

Dataset: We conduct experiments on the TRECVid SIN 2012 development dataset. It
consists in detecting 346 concepts (the same as in 2011) wittdO0000 video shots.
Note that 40% of the shots contain at least one concept. The developatasétis split
in two parts, called 2022and 201%. We train our algorithms on 20%2and evaluate
semantic concept detection results on 3012

This time, the methods are more optimized than in the previous study with SURF, as it
will be described in the following.

Vocabulary generation: We randomly choose 4700 video shots from the training dataset
(2012x), such that each shot contains at least one concept. Fosleatchve collect local
features on a dense grid, after applying our retinal preprocessingrdar not to have
too many features to cluster (limit imposed by available memory and available time), we
retain only 25% of the local features of a video shot for keyframe bdssdriptors and

Shttps://lapp.in2p3.fr/spip.php?rubrique8®&lang=en
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only 8% for temporal window based descriptors. This allows clustering tcebfenmed
on 25- 1P features for keyframe descriptors and HY features for temporal window
descriptors. Visual word clustering is performed using kmeans on 102ty using 3
passes on the training set. The Kmegnsnitialisation method Arthur 2007 is used for
more dficient clustering, as it was done in the previous section.

Assigning features to vocabulary words: In our previous experiments with SURF, we
have used hard assignment of a local feature to its closest matching wisichbnd the
FLANN [Muja 2009 approximate matcher. Now, for our SIFT experiments, we replace
FLANN matching withbrute force matchingwhich is exact and avoids assignment er-
rors) and hard assignment wisemi-soft assignmenthich was shown to perform better
[Strat 2013h For semi-soft assignmernitiy 2011], for each featurexto match, thé&k = 10
closest visual words (via an Euclidian distance) are detected. A wejghtattributed to
thei" matching visual word\y) with respect to its Euclidian distandg(x, v;) according
to the following equation:

g Bdi, (Vi)

W= ——
! le(:l g P dip(xv)

(3.3)
The semi-sofB parameter has been set to 10 following recommendations ftan2D11].

Retina configuration: First, we modulate the retina’s sensitivity to high frequency tem-
poral changes such as noise and compression artifacts. We have fo[Bidair2013b
that increasing the temporal constant of the the photoreceptor low pasofilté frames
instead of 0.5 frames gives better results, therefore we use the value dhe.8igher the
value, the higher the robustness to temporal changes (motion) and to noisecastlof
omitting some salient details.

Second, we balance the system’s ability to describe very contrasted extheeretina
naturally enhancdscal contrasts thanks to its luminance compression stdgggdit 2010,
which is interesting for detail enhancement and description in any lighting condivéns.
keep this property, but at the same time, we want very contrasted objectgpotlkeir
“contrasted” behavior. This is interesting for concepts likghts” , “sunlight”, etc. for
which halo é€fects can generate specific SIFT signatures that can be recognizedheadte
We therefore seB, = 0.01 (the parameter from the horizontal cells low-pass filter, see
[Benoit 2010 for details) so that mean luminance energy is reduced by -40dB, allowing
halo efects to appear.

Local features and dense grid: We extract OpponentSIFT features on a dense grid with
a 6 pixels step, at the original image scale. Each SIFT local featuramtémtis computed

on 16*16 pixel patches, as this was shown &trat 2013bto work better than smaller,
10*10 patches.

Supervised classification: We use the same KNN algorithm fror@frisse 201]) as it
was done for our previous experiments with SURF.
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Table 3.4: Mean inferred average precisions of SIFT BoW descrigtogdoying retinal
preprocessing, over all 346 concepts, with classifier training on TRESW 201 and
evaluation on 2012 The gain is relative to the baseliG&¢FT.

Descriptor infAP gain
SIFT 0.0830| baseline
SIFT retina 0.0904 9%
SIFT multichannel 0.0878| 5.7%
SIFT retina masking 0.0843 2%
SIFT multichannel masking 0.0857| 3.2%

3.3.2.2 Global results

As seen in Table.4, SIFT retinais the overall best descriptor, outperforming BT
baseline by 9%. Similarly to our previous study fro8tijat 2013awhere SURF descrip-
tors were used, this shows that keyframe based retinal preprocesgschigher-quality
local features, thanks to the luminance correction, detail enhancemespainattemporal
noise filtering of the parvocellular channel. The relative gains (in pergesjare not as
high as they were for the SURF experiments, because the baseline is aireelyigher,
but the general ranking tendencies are the same.

Multichannel descriptors: The keyframe-base8IFT multichannetflescriptor ranks over-
all second-best, with a gain of 5.7% compared to the baseline. It is not asag&HBET
retina, because the added SIFT signature from the magnocellular channel iisftessa-
tive at the moment of the keyframe: since salient area masking is not usedfesitures
(for which the magnocellular response is zero in the retina’s stable statéatalen into
account, negatively impacting the shot’'s BoW histogram. $HeT multichannetiescrip-
tor is also highly correlated in classification results Wil T reting therefore making it
less interesting for further analysis.

However, the other multichannel descript® kT multichannel maskingemploying
salient feature selection inside a temporal window, performs slightly better thaanits n
multichannel equivalentSIFT retina masking showing an increase of 1.6%. This is be-
cause when we apply salient blob selection, the contribution from static fegfarevhich
the magnocellular SIFT signature has no meaning) is reduced, leading toea figility
BoW histogram.

3.3.2.3 Concept per concept results

Looking at the global results, we would be tempted to say $i&fT retinais the best
descriptor. However, we now compare, on a concept-per-conceglt v descriptors
SIFT, SIFT reting SIFT retina maskingndSIFT multichannel maskin@ve excludeSIFT
multichanneks it is less interesting):

e SIFTis the best for 48 out of the 346 concepts;
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SIFT retinais the best for 50 concepts;

SIFT retina maskings the best for 15 concepts;

SIFT multichannel maskinig the best for 41 concepts;

for the other concepts, theftBrence in infAP is less than 0.005, therefore not very
significant.

This means that even thou@iFT retinais on averagehe best, it is not always the best,
therefore justifying the continued use of the other descriptors as well. iphet tomposed
of SIFT, SIFT retinaand SIFT multichannel maskingppears to be especially interesting,
since these descriptors are each the best for many concepts.

Table3.5 gives some examples of concepts for which certain descriptors work,better
grouped according to the descriptor that gives the best perform#egérame based de-
scriptors SIFT andSIFT reting are intuitively expected to work better for static concepts,
while temporal window based descriptoSIET retina maskingand SIFT multichannel
masking especially the latter) are expected to better detect concepts related to motion.

This holds true for concepts such as “Beach”, “Fields”, “Forest”udlim”, which are
better detected witBIFT andor SIFT reting or for “Eaters”, “Sports”, “Throwing”, which
are better detected witBIFT retina maskin@ndor SIFT multichannel maskingdt is also
interesting to note how many sports-related concepts such as some in thegi@unhin
Table 3.5 are better detected B$IFT multichannel maskingherefore proving that the
added information from the magnocellular channel can improve recognitioarpefice
for some motion-related concepts.

There are, however, exceptions from what the intuition would suggestexzonple,
“Skating” is better detected witBIFT reting “Indian person” withSIFT retina masking
and “Bridges” and “Mosques” witlsIFT multichannel masking

Therefore, the remark from our SURF experiments remains valid: due tadtiteersly
varied context in TRECVid, it is dicult to predict which descriptor will perform the best
for a certain concept, and information fusion strategies are needed tatequiplemen-
tary information coming from the fferent descriptors.

3.3.2.4 Exploiting complementarity: simple late fusion

The previous remark motivates us to experiment with a late fusion betweenfiifwee i
SIFT-based BoW descriptors, with or withoufférent retinal enhancements, to find out if
an additional concept detection improvement can be obtained.

We performed a simple late fusion of all 5 descriptors from T&beby computing the
arithmetic mean of the classification scores obtained at the outputs of the k-Ni¥iefas
from each of the 5 descriptors. The gains were impressive: the glotzal everage pre-
cision of the fusion i9.122Q a 47% increase compared to baSIET (0.0830) and 35%
compared to the overall best-performing individual descrigBdET retina(0.0904). A
simpler combination, of onlBIFT, SIFT retinaandSIFT multichannel maskingrovides
a close result of 0.1210; this reconfirms the remark from Se@&i8r2.3that especially
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Table 3.5: Results of the proposed retina-enhanced SIFT descriptassrfee particular
concepts on TRECVid 2012y, both the average precisions and how miiehtbe descrip-
tor is compared to chance. Note: these values are for optimized versioresefdbscrip-
tors, as done by the IRIM grouBgllas 2012band discussed in Sectiéh2 (power trans-
formation+ PCA); however, the rankings among descriptors remain largely unctiange

Concept | basic | retina | ret. mask.| multich. mask.| chance|
Beach 0.2882| 0.2606| 0.1389 0.1447 0.0423
Beards 0.1210| 0.0947| 0.0656 0.0753 0.0314
Reporters 0.3159| 0.2898| 0.1473 0.1472 0.0326
Teenagers 0.1295| 0.1062| 0.0676 0.0549 0.0198
Clouds 0.3165| 0.2986| 0.2230 0.1989 0.0359
Fields 0.2630| 0.2034| 0.1355 0.1199 0.0377
Golf Player 0.3318| 0.2303| 0.1446 0.1535 0.0011
John Kerry 0.0732| 0.0592| 0.0184 0.0120 0.0016
Processing Plant 0.1111] 0.0653| 0.0591 0.0560 0.0010
Birds 0.1386| 0.1911| 0.0921 0.1142 0.0048
People Marching 0.0407| 0.0623| 0.0297 0.0382 0.0186
Swimming 0.3681| 0.5441| 0.4767 0.4541 0.0062
Waterscape, Waterfront 0.3399| 0.3465| 0.2489 0.2723 0.0860
Baseball 0.2888| 0.3010| 0.1815 0.1885 0.0015
Commentator Or Studio Expeft0.3242| 0.3982| 0.1723 0.1461 0.0095
Forest 0.0979| 0.1145| 0.0925 0.0743 0.0164
Muslims 0.2983| 0.4290| 0.0858 0.0913 0.0046
Skating 0.1348| 0.1525| 0.1170 0.0969 0.0240
Eaters 0.0682| 0.0428| 0.1117 0.0986 0.0028
Motorcycle 0.0305| 0.0248| 0.0981 0.0902 0.0030
Indian Person 0.2505| 0.2804| 0.4327 0.4227 0.0048
Taxi Cab 0.1049| 0.0777| 0.1559 0.1340 0.0004
Basketball 0.1941| 0.2353| 0.3323 0.4067 0.0011
Bridges 0.1280| 0.1447| 0.1530 0.1809 0.0112
Greeting 0.0546| 0.0809| 0.0172 0.1210 0.0070
Indoor Sports Venue 0.2304| 0.1802| 0.3086 0.3685 0.0163
Sports 0.2453| 0.2315| 0.2576 0.3061 0.0425
Throwing 0.2677| 0.1984| 0.1965 0.3569 0.0037
Mosques 0.0022| 0.0625| 0.0008 0.0833 0.0005
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this triplet of descriptors is interesting. The complementarity between these #segd
tors was also evidenced by a Wilcoxon paireffedence test applied on their classification
scores.

3.4 Conclusions

In these studies, we presented derivations of BIEIRF local image descriptors that rely
on a human retina model preprocessing. In the context of visual semanteptaietection
with BoW approaches, applied on the realistic arfidilt case of the TRECVid challenge,
such descriptors provide more accurate and edsoplementarynformation.

On the one hand, the detection of concepts from video keyframes cannifecaigfly
enhanced by preprocessing such keyframes with low-level human vikémg (the par-
vocellular retina channel). The involved spatio-temporal properties help thetBdétter
describe the static visual scene by reducing sensitivity to noise and to lueichanges,
which was confirmed for both SURF and SIFT local features.

On the other hand, we have shown that taking local features from spatjmtel
salient blobs within the video sequence also enhances performancesghékpiBoW
to describe the areas that provide more relevant information. Even thoudldwet use
a true, high-level saliency model, the performance increase can beighrgdmpared to
the baseline (with a good retinal setup), proving that our simple segmentation nietnod
good compromise between the quality of results and the computational cost.

Multichannel descriptors also provide an interesting lead, as they integrttdds
cal appearance information and local motion information, especially in combination with
salient blobs on temporal windowS&IFT multichannel maskinig even more interesting
when considering its high degree of complementarity \BItRT retina

The retinal preprocessing approach is flexible and generic, and ieséy ke extended
to other local feature descriptors. The next steps will consist in fudptmizing descrip-
tor parameters, trying other multiscale configurations, experimenting with othero$tate
the art descriptors such as FREAKI§hi 2017 to further test the extendability of the
method, and also testing more sophisticated fusion methods. We expect desdhipto
have a sensitivity to luminance changes, incorrect colors, image noisgression ar-
tifacts or other image defects, to be particularly helped by the parvocellwaegsing,
while Bag of Words approaches have been shown to also benefit frersetection of
salient spatio-temporal information. Additionally, we will also explore more elabortge la
fusion methods in Chaptes, in order to exploit the complementarity betweelffelient
descriptors better than with a simple arithmetic mean.
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Trajectory-based BoW descriptors
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In the previous chapter, we have described the spatial appeararide@&hots through
the use of th&IFT andSIFT retinaBoW descriptors, and we have also started delving into
the spatiokemporalrepresentation. First, we have focused the BoW local feature selection
on areas of low-level saliency, often associated with motion, through thef desariptors
employing masking $IFT simple maskingSIFT retina maskingand SIFT multichannel
masking, which, even though they do not include motion explicitly, they at least give a
higher importance to areas in motion. Second, we have enriched the descrigticalo
features by describing each point on the dense grid not only by its @ppSitT spatial
descriptor, but also by a SIFT signature of the magnocellular channelhwhiepresen-
tative of motion; this way, descripto®&FT multichanneandSIFT multichannel masking
use spatio-temporal descriptions of local features, thereby including tehipforanation
explicitly in the form of contours perpendicular to the motion direction. Theretbeeset
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of SIFT BoW descriptors employing the human retina model constitutes a generiortool
a spatio-temporal description of video content.

However, when it comes to extracting a more motion-oriented description, the descrip
tors above have their limitations: the non-multichannel descriptors still refirestispa-
tial information (although with the possibility to focus on moving areas), while the multi-
channel descriptors, through the SIFT signatures extracted on theoosdigitar channel,
only describdocal andmomentarymotion: local because it is just the motion in the vicin-
ity of a local feature, andnomentarybecause only the motion direction at the instant of
the local feature is encoded. The local aspect in both space and time admdrgageous
in cluttered scenes where objects occlude one another often, but tammpmesent the
evolutionof motion across frames.

To counter this problem, we propose to complement the spatial and spatio-temporal
description from the previous chapter by adding an even more temporally-oreztted
descriptors, in the form of trajectories of points tracked across frarPeént trajecto-
ries, as opposed to our multichannel descriptors or to other approasttess MoSIFT
[Chen 2009or spatio-temporal interest pointisgptev 2003 describe motion as it evolves
with time, and for this reason, trajectories can be potentially more discriminativacfo
tion recognition tasks than the other methods. They have been shown in watkas
[Ballas 2011 Wang 201] to match or outperform spatio-temporal interest points.

The trajectory descriptors that we propose in this work are inspiredtfierstate of the
art [Ballas 2011 Wang 201}; they are based on tracking a set of points across frames in
order to construct trajectories, afterwards describing these trajecton@rious manners,
and in the end, feeding the trajectory descriptions onto a Bag-of-Wordslmbkle exact
functioning is detailed in the next section.

4.1 Functioning

Our goal is to construct a Bow model based on trajectories of tracked pdmtkis end,
the approach that we use is based on the following steps, also illustrated e &itju

e Choose a set of points to trackbviously, if we want to track points across frames,
we first have to choose these points. Ideally, these points should cevieathe in a
dense enough manner and should be distinctive features, so they cackeeltmore
precisely. The algorithm for choosing points should not demand high compuhtion
resources.

e Track each point across framamtil tracking is lost, the trajectory becomes too long
or motion stops: this way, we construcajectoriesof tracked points, which are the
elements that we feed into the Bag of Words model.

e During tracking, get aestimate of the camera-induced motiufrthe trajectory and
store it. This will allow, if desired, to distinguish between an object’s real motion
(which is generally more meaningful for action recognition) and the camera motion
(which is in most cases meaningless).
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e Add new tracked points from time to tirttereplace those whose tracking has ended:
in videos longer than a few dozen frames, tracking can be lost for vargasons
and new trajectories need to be created to continue describing motion. Alsaf even
there are enough trajectories active at a certain time, we may wish to adchesw o
whose characteristics will befiierent because they start later; this enriches the Bow
representation.

e At the end of the video shofjlter out trajectories that are too short or that do
not have enough motipbecause these usually come from static background points,
therefore they are meaningless. Also, retained trajectories cpodigrocessetb
make their descriptions more robust to various unwanted phenomena.

e Compute descriptionfor each retained, post-processed trajectory: these provide a
more compact description of the trajectory (compared to the tracked position in each
frame), which can be robust to certain variations, depending on the déstriplak-
ing an analogy with SIFT BoW descriptors, a trajectory’s description is thevaq
lent of the SIFT signature of a local feature. A trajectory can also beritbes! with
a concatenation of two or more signatures, such as a histogram of motion directions
and a histogram of acceleration directions (analogous witlStR& multichannel
descriptor, whose local feature signature was a concatenation of tren@uIFT
vector from the parvocellular channel and the SIFT vector from the neadjiotar
channel).

e For each type of trajectory descriptor (or combinatia@opstruct a BoW descriptor
using the classical BoW framework: k-means clustering, describingwedeb shot
using a BoW histogram, followed by supervised classification. Pursuingitdegy
with SIFT BoW descriptors, the “local features” are now trajectories, \aa feed
trajectories into the BoW model (one BoW model per type of trajectory description)

We describe these steps in more detail in the following subsections.

4.1.1 Choice of points to track

There are two possible strategies to choose points to track: either fronsa gled, as it is
done in Wang 2011, or by detecting interest points.

Choosing points from a dense grid has the advantage of giving a vge/namber of
trajectories, which is useful in BowW approaches; however, this regjammputing dense
optical flow, which is computationally expensive. Additionally, because poigsat
necessarily chosen on specific, distinctive features, the drifting problgwiflch a tra-
jectory gradually drifts away from the real position as tracking progeeaseoss frames,
because of small errors in the optical flow computation), can be more severi tieay
distinctive features were tracked. This is due to the equation of gradieet-basical flow
[Fleet 200%:

ol ol ol

E(VX + a—yVy + a =0 (41)
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( START )

Choose some more
points to track

Need to add
more points?

Keep tracking points across frames
(also estimate camera motion)

End of NO

video shot?

YES

Throw away too short
or static trajectories

Post-process trajectories

Describe trajectories

Description 1

Descrigtion 2 Description 3

BoW 1 BoW 2 Bow3 | """ttt

Figure 4.1: Processign chain for constructing BoW descriptors with trajestas features
(see text for details).
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wherel is the image intensity and, andVy are the horizontal and vertical speeds. In places
whereg—L or % are close to zero, the corresponding speed components are ill-defined.

The drifting problem can be reduced by limiting the maximum length of trajectories,
as it is done for example inNang 201}, where the length of trajectories is limited to 15
frames, during which substantial drifting does not have time to occur.

Alternatively, an interest point detector can select distinctive featurestt, tas in
[Matikainen 2009 where the Good Features To Track (GFTT) detec&iri [L994h has
proven itself as a good choice for this application. The advantage is thaaldjmie needs
to be computed only for a sparse set of features, which is computationally lesssaxe
than dense optical flonMatikainen 2009 Also, because the tracked points stand out very
well, the optical flow is more accurately computed and the drifting problem is reddte
GFTT detector is in fact an extension of the Harris corner detettarr|s 1988, which
ensures that the detected points have high enough valugi;, fmd%, so that the speeds
can be estimated more precisely.

We opted to use this latter approach in our experiments, of tracking disaretes p
given by an interest point detector, because of the large size of th€VidEataset which
forces us to compute the less computationally-expensive discrete optical flam iAter-
est point detector, we choose GFTT, for the reasons stated in theysgaocagraph.

4.1.2 Tracking strategy

Now that we have chosen the points to track, we need a method to track tietsegeross
frames. We considered three possible strategies for tracking:

1. Aclassical KLT (Kanade-Lucas-Tomasi) trackBirchfield 2007: we compute the
optical flow at each tracked point’s location using the Pyramidal Lucas-daah
gorithm from OpenCVBouguet 200D The positions in the next frame given by the
optical flow become the new positions of tracked points, and the proceseseel.
This approach has the advantage that it is very fast, however as timegsog,
tracked points can drift farther and farther away from their real postaue to the
accumulation of small tracking errors.

2. By matching SIF/BURF descriptorgor other local spatial descriptors) of tracked
points from one frame to the next: we detect keypoints in the next frame,demp
their descriptors and match them with points in the previous frame according to th
similarity of descriptors. Matches that are todtelient are disregarded (traking is
ended for those trajectories), as well as ambiguous matches (for whicinsthend
the second best matching keypoints are not dissimilar enough). Comparesl to th
KLT tracker, this approach reduces the drifting problem, because tlot gasition
of a keypoint is redetected in the next frame; it is also immune tapesture prob-
lemthat optical flow approaches experience. However, this method requiseh
greater computational resources, for computing (and matchingySURF descrip-
tors. There is also a risk that not exactly the same keypoints will be detectiee in
next frame, leading to loss of tracking, or that more than one good matchrid,fou
leading to ambiguity and again loss of tracking.
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3. A hybrid approachbetween the previous two: optical flow is used to estimate the
approximate position of the keypoint in the next frame. Keypoints are radetet
the next frame and their descriptors computed. For a keypoint in the psdvaoue,
its match is searched only among the new keypoints in the vicinity of the location
predicted by optical flow, and the match is chosen based on descriptor &ymilar
Compared to the previous approach, this reduces the risk for ambiguous sjatche
because matches are searched in a smaller area instead of the entirdHfioaraeer,
the computational cost is even greater, because it requires computing both optical
flow and SIFFSURF local feature descriptors.

For all methods, if a match was found at a too large distance, it is consideredor and
that trajectory is ended.

The first approach, th&LT tracker, was by far the fastest (faster than real-time on
videos of the KTH dataset). Tracking was quite precise, although aftdy— 60 frames
(depending on video quality, frame rate and type and speed of motion) thetdragec
started to drift away from the good positions. The amount of drifting was notneous
(in the order of 2-3% of the frame width, depending on the video resolutidmaation),
and because the Pyramidal Lucas-Kanade algorithm worked at multiple stalas still
capable of recovering the motion of the tracked point. Nevertheless, weeddoitimit the
length of trajectories ter 40— 60 frames maximum to work with more reliable trajectories.

The second approach, basedmatching SIF/SURF descriptorgor their Opponent
color space versions), was found to be unusable in our tests: it was novedr,sand
especially on textured surfaces, many ambiguous matches were foundeaeibith dis-
carded. Because of this, the method ha@idilties constructing trajectories longer than
5-10 frames, because tracking was lost too easily.

The third, hybrid approach had a similar computation time as the second approach.
However, because optical flow restricted the search area for poteatielhes, it was able to
construct some long trajectories, of lengths up:t80 frames And thanks to the matching
of keypoint descriptors, the drifting problem is greatly reduced, becaos the match
falls exactly on the interest point’s position. Unfortunately, because froerfame to the
next, the interest point detector did not always return the same keypiiistsjethod, too,
lost tracking quite quickly, as certain keypoints no longer “existed” in the fname: only
10-20 trajectories longer than 15 frames were active at any time, compahechdoeds
from the KLT tracker.

For the second and third approaches, we experimented with severasigeint detec-
tors (SIFT, SURF, GFTT, FAST, ORB) and several interest pointrig®srs (SIFT, SURF,
BRIEF and their Opponent versions) but found the same unsatisfysudtse

Therefore we chose to use in our experiments the KLT trackef TT keypoints de-
tected in a frame constitute the starting points of trajectories, and the rest ofjgutarias
is constructed just by computing optical flow from one frame to the next. Whejegtory
reaches a maximum predetermined length (of 2-3 seconds, correspoadid-75 frames
for 25fps videos), or when it “jumps” too much from one frame to the next (ntoae
10% of the frame width), or when it reaches the frame border (the objextiting the
scene), or when there isn’t enough motion (less than 1.5% of the frame wid#nlasti0.5
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seconds), this trajectory is ended (parameters related to time are eggresseonds, be-
cause seconds are more relevant for the duration of an action, as the &tasymay vary).

0.5 seconds is enough to not interrupt an action with just a momentary stoppinglqud

at the same time stop trajectories whose motion has ended. These parametetsowere ¢
sen empirically so that tracking would function correctly, however the exdutsare not
critical. Examples of trajectories are given in Figdr@

4.1.3 Camera motion estimation

In many video datasets, especially those in which amateurs also contributs Viuet
as TRECVid), camera motion is an ever-present problem, and it can mask tresstimig
motion of persons or objects in the scene. We therefore propose to estimata-tadueed
motion at each tracked point and in each frame, and store the camera-indoted
component of the tracked point in its trajectory. Based on this, we will latestooet
trajectory descriptors both from the “apparent” motion (the total motion, gpgson+

camera), and from the “real” motion (only of the objgetrson).

The problem of camera motion estimation is nhot new and there are many previceus pub
lications addressing it. Some authors estimate camera motion directly in the MPEG domain
[Ewerth 2004Wang 1999, while others compute it on the original videdtjang 1999 In
[Nistér 200%, RANSAC is used to determine ego-motion in videos.lkigler-Cinbis 2010,
Harris corners are detected and matched between consecutive fraonésrito determine
the homography that transforms one frame into the other; RANSAC is agairsases not
to be influenced by outlier matches situated on moving objects.

Other ideas to determine camera motion exist, such as the median of optical flow from
the grid points, or, as it is done idiang 2012 clustering of optical flow vectors to de-
termine dominant motion. These methods work well for translation motions, but do not
function for rotation angbr zooming, because in the latter case, camera-induced motion
varies greatly with position.

In our experiments, we opt for a simple camera motion estimation algorithm, that also
works for zooming and rotation motions thanks to the uskarhographiegor modeling
image deformations. The algorithm is described in the following:

First, we choose points on a rectangular grid (the grid stepdigof the frame width),
but not too close to the border (at leagll 3" of the frame width away). We compute the
optical flow of these points with the same algorithm as for the keypoints. As Isrigea
background occupies a large enough part of the frame, the motion of mostsef ploints
will be only camera-induced. The grid setup is chosen such that it willayleege enough
number of points£ 1000), while avoiding points close to the border, for which motion
cannot be correctly calculated.

Suppose for a moment that there are no moving objects, there is only camera.motion
The camera can pan, tilt, zoom and rotate, and all of these, including combinations o
them, constitutdlomographiegperspective transformations between a source plane and a
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(b) TRECVid video

Figure 4.2: Examples of trajectories on the KTH and TRECVid datasets. Thadgéenage

in each set depicts the current active trajectories from their starting time untutinent
frame, while the third image shows the estimated camera motion component between con-
secutive frames. For the KTH video, the camera is zooming in, with zooming illadtra

by the trajectories of some background points and correctly detected bgitiera motion
estimation method. For the TRECVid skater video, the camera shake is corretettyedt],
because the skater does not occupy a large enough part of the frame.
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destination plane), described by the following equation:

X Xi
Yi|=Hlyi (4.2)
1 1

where (;, y;) are the coordinates of a point in the source plane, ahg] are the coordi-
nates of the corresponding point in the destination plane.

The homography matri¥ that transforms one frame into another can be estimated
from a set of point correspondences (as the ones given by optied| #ind this constitutes
the camera-induced frame transformation (the camera-induced motion).

In reality, the points that fall on moving objects (not on the background) heille
different motions and they will be outliers with respect to the transformation. We use
RANSAC (Random Sample ConsensuB)sghler 1981 to deal with these outliers and
recover the true image transformation. RANSAC is a state-of-the-art methdetermin-
ing perspective transformations between images, and it has also beein tsedontext
of camera motion estimatiomNjstér 200%. We use the implementation from OpenCV to
find the homography using RANSAC.

After determining the homography using the points from the grid, this transfamma
is applied to the tracked trajectory points, thereby obtaining the cameraeididuotion
component for each of these points, as illustrated in Figuze

The method that we use is able to correctly estimate camera motion as long as the
background occupies a large part of the image (more than 50%, the moregttbs,b
but fails when this condition is not met. Unfortunately, it is veryfidult to determine
automatically what is the background in such an unconstrained scendarRESEVid, in
order to use only points from that area for camera motion estimation, but we dedhisith
by considering two versions of trajectory descriptors, both with and witbexmera motion
compensation.

4.1.4 Replenishing the set of tracked points

As tracking progresses, some trajectories end and they need to be degdfaibds is not
done, then starting from the beginning of the video, after the maximum lengthjetir
tories is reached (between 2-3 seconds, depending on the setupthseellare no more
trajectories left to track; other trajectories are lost because their tratiisgor various
reasons (exiting the frame, errors in optical flow computation, occlusion etwe)rafe of
loss due to tracking problems isfiicult to quantify, as it depends greatly on the content of
the video: it can be zero when the tracked points stand out well, the videorda have
severe compression artifacts and the motion is smooth; or all tracked points can be los
from one frame to the next when there is an abrupt transition.

Additionally, in order to insure a temporally dense representation of the video, ne
trajectories should be started at regular intervals (in the order of 0.hdgcmtuitively
corresponding to the length of a short action fragment). These trajectamespatially
overlap those that started earlier, but because the starting moment is notrthetsa
motion content in each trajectory isiirent, ensuring a richer representation of the video.
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Following these ideas, new trajectories are added to the tracker (new &iures
are detected) when the number of current active trajectories is very Eam{b0), which
usually occurs when most of the trajectories are lost, usually due to a cbhagenes in
the video (a “cut”). Also, to maintain a generally high number of active trajextat all
times, new trajectories are added if no trajectories were added in the lash8drand if
the current number of active trajectories is below a threshold (betweear&D8000), the
last condition for limiting computational demand. With parameters in these intervals, at
any given time, the frame is covered densely enough by tracked points.

Minimum 500 current active trajectories is a good compromise between computation
speed and richness of representation, achieving more or less real-tinresgngcon a
standard PC (Intel Core i7 running on a single thread), depending ondée resolution
and frame rate (videos from the KTH dataset (160x120 @ 25 fps) r8rides faster
than real-time). The minimum number of current active trajectories can beaseniego
improve concept recognition accuracy (the more feattregectories for the Bow model,
the better), at the cost of reduced computation speed.

4.1.5 Trajectory selection and trimming

After the analysis of a video shot has ended, a large set of trajectagdselen accumulated,
from all over the video shot. An important part of these trajectories calitiee useful
information: some of them are too short, others have too little motion, while there are als
trajectories whose entire motion is only camera-induced.

We choose to throw away trajectories shorter than 0.5 seconds, behasseare all
trajectories that were ended on purpose by the tracker due to the fattta@xperienced
insuficient motion during the last (and in this case only) 0.5 seconds. If we wereltolénc
these static trajectories into the Bow model, they would degrade performanmcastibn
recognition because they would clutter the BowW model with static, irrelevantirafioon.

The ratio between the initial number of trajectories and those after this selectiorasies
greatly from one video to another, but it is roughly equal to the averagtidn of surface
area occupied by moving elements in the video.

Additionally, trajectories can have “uninteresting” extremities that do not contain
tion, up to 0.5 seconds in length (determined by the minimum recent motion condition of
having at least 1.5% of the frame width motion in the last 0.5 seconds to continuagack
We found that trimming away these static ends, if they exist, improves globajnitiom
performances in TRECVid. The trimming algorithm is the following: we start froehea
extremity (start and end moments) of the trajectory, and if the motion between gensec
tive frames is less than 10% of the maximum along the trajectory, we cut awayatat
we stop trimming an extremity when we find a displacement between consecativesr
above the threshold. However, we keep at the extremities three displacgfreents) be-
low the threshold, on the assumption that they may encode acceleration frond-atilan
The process is illustrated in Figude3.

We have found that trimming away the static extremities of trajectories improves per-
formances by around 5-20%, depending on the trajectory descriptidnhseause robust-
ness to static, non-informative extremities is obtained. On the TRECVid 20Ekgenent
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V()

Sy

Keep a small
static part for
acceleration info

Trim ends with
little motion

Figure 4.3: Trajectory trimming principle: the speed along a trajectory is tracbhli@
The ends of trajectories before substantial motion starts (or after motion eadsjraned
away: only a small fraction of the ends is kept, to maintain the possibility of engodin
acceleration from a standstill (or to encode stopping).
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dataset, the normalized vectors of displacements, in their camera motion compeasated
sions, benefit greatly from this step, with improvements of around 20%. eBses in
performance were only seen for the histograms of motion and acceleratioticisawith
zero-bins, in their camera motion compensated versions (decreases af a68ah

To sum up, the main parameters of the tracker are the following:

e maximum length of a trajectoryempirically set to 2 seconds (number of frames
determined according to frame rate); very long trajectories lose sense ile sapp
resentations and alsofser from drifting;

e minimum length of a trajectoryempirically set to 0.5 seconds; very short trajectories
do not provide enough information on the evolution of motion, or may have simply
been ended due to lack of motion;

e maximum allowed displacement between consecutive fraamgsrically set to 10%
of the frame width; it should be set according to the usual speed enceditethe
video dataset; higher speeds impose higher values for this threshold;

e minimum allowed recent motiorempirically set to 1.5% of the frame width; if
within each consecutive 0.5 seconds (the same as the minimum length of a trajec-
tory), the total motion is less than the threshold, tracking is ended; the value of the
threshold should be set also according to the usual speed encountéredatabase;

e maximum number of active tracked poin&DO0 still allows close to real-time per-
formance on a standard PC (2012); increasing the value to 3000 impromespt
detection rates due to the better-populated BoW histogram, but also propdiytion
increases computation time and memory usage;

4.1.6 Trajectory descriptors

At this point, we have a set of selected and post-processed trajectorigm@lated along
the video shot. The next step is to describe these trajectories, which weatoriputing
the following descriptors:

1. Thekeypoint descriptor of the trajectory starting pairwhen we detect keypoints
to start new trajectories, we also compute their associated spatial desdripsoal-
lows us to encode the spatial appearance of the feature we track. Uvhkey[201],
where HOG descriptors are averaged along the trajectory, we onlyiltegbe
start. We chose this approach on the assumption that because of drifting-and ro
tatioryzooming of the tracked point, theveragespatial descriptor loses sense, es-
pecially for long trajectories as ours. We use BRIEF as the keypointidesg
because it is very compact (32-dimensional), which reduces memory neuite
when storing many trajectories, and it is also fast to compute.

2. A histogram of motion directionalong the trajectory; this is only for the tracked
point, not its neighborhood (the HOF descriptor frowiighg 201] described the
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motion in the neighborhood of the trajectory). We use 8 bins for direction (up,
down, left, right and the diagonals), and the magnitude of the point’s dispkte
between frames andn + 1 gives its weight in the histogram, as shown in Fig-
ure 4.4a The histogram is theh; normalized. This resembles partly what was
done in Ballas 201] where not only direction, but also magnitude was quantized,
resulting in a 25-dimensional histogram (8 bins for orientation with 3 bins for mag-
nitude, plus an extra bin for zero-magnitude). We chose the simpler histogram in
our work (without bins for magnitude, we simply accumulate the total motion in
each direction) because it does not require setting additional parametersa@hée
tude thresholds) and because it is more robust to small variations (smalleshiang
magnitude do not lead to changing bins in the histogram).

3. A histogram of motion directions with zero bithong the trajectory: 8 bins for di-
rection as in the previous histogram, and an additional zero-bin. If the dispkut
magnitude between two frames is lower than 20% of the maximum displacement
along the trajectory, the zero bin is incremented; otherwise, the bin corrés to
the motion direction is incremented, as in Figdtdh note that this time, the value
of the magnitude is not added to the bin as it was done for the previous histogra
instead the bin is simply incremented. The histogram is thenormalized. Be-
cause the histogram from the previous point did not have bins for magrasithe
approach ofBallas 201], we partly compensate with this second histogram, whose
goal is to encode whether or not there are any parts of the trajectorgxpetience
little motion (the zero bin). Otherwise, concerning the dominant motion directions,
the previous histogram gives more information.

4. Histogram of acceleration directionslong the trajectory: similar idea as the his-
togram of motion directions, but working with acceleration information.

5. Histogram of acceleration directions with zero bgimilar idea as for motion direc-
tions, but working with acceleration information.

6. Normalized vectors of displacemeintsx andy directions: the displacements (mo-
tions) in horizontal and vertical directions are resampled to only 8 samples (as if
the trajectory only advanced 8 frames) to give a coarse representatioa wéjec-
tory. They are then normalized with respect to the total 2D displacement madgnitu
along the trajectory. A second version of these vectors is generated@sdmiples,
offering a medium-resolution representation of the trajectory. Unlike histograms,
vectors of displacements are more discriminative, because the order in which mo-
tions are performed matters; they are also not robust to temporal shifts aftthe e
trajectory, but it is to be seen in the experimental phase which is better: mere dis
criminative power or more robustness. Vectors of displacements werebesae
by [Wang 201], however they fixed the lengths of trajectories to 15 frames. We, on
the other hand, allow variation in the trajectory length, but perform resampling to
achieve a fixed description length.

7. Normalized vectors of acceleratioins x andy directions: they are deduced from
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(a) Histogram without zero bin (b) Histogram with zero bin

Figure 4.4: Histograms of motion (or acceleration) directions along a trajectogyhish
togram without a zero-bin weights the speed (or acceleration) between tveeadive
frames by its magnitude. The histogram with a zero bin does not use weightiimgplys
counts the number of occurrences of each bin.

the normalized displacement vectors by temporal derivative and renorchalite
respect to the total 2D acceleration magnitude along the trajectory. Two resolution
versions are obtained, one with 7 samples and one with 15 samples. Onewan arg
that the acceleration information is already encoded in the displacement yéctors
this is a way to make it stand out, in case it is relevant. For example, the acceleration
vectors are invariant to constant-speed camera motion.

All of the motion descriptors are computed in two versions, with and without taking
into account the camera motion compensation, as stated previously in Sedti®n

Concerning the keypoint descriptor, we extract it from the parvoceljui@processed
frames, because we have seen previously that parvocellular pregirugegenerally im-
proves the quality of spatial descriptors by making them more robust to imagadde
tions. The parvocellular channel does introduce a certain degree of motipmisince
the BRIEF descriptor is more compact and encodes less information than thd €Xétip-
tor, the degradation due to motion blur is less important. In any case, spatiatappea
is handled better by the more specialized descriptors from Chapidrich are also com-
puted in our complete TRECVid processing chain.

If the choice of using or not the retina for the keypoint descriptor is rittal, keypoint
detection and optical flow tracking on the other hand are performed onitfiradvideo
frames, because the retina introduces motion blur and reduces the qualitykofgrac

We have shown the 7 types of trajectory representations that we use tidesach
trajectory of the video shot. One representation, the BRIEF descriptoe d&&typoint, de-
scribes in fact spatial appearance, while the other 6 representaticiogased strictly on
motion. Of the 6 focused on motion, the normalized vectors of displacements ateracce
ations are computed at two resolutions, therefore we have in fact 8 motion refjoteses.

We can generate these 8 motion representations in versions with or without camera motion
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BRIEF of starting point \

hist. motion directions ]
hist. acceleration dir. \
hist. motion dir. + hist. acceleration dir.

Trajectory 1 BoW (hist. of trajectory-words)

based on BRIEF

BoW (hist. of trajectory-words)
based on hist. motion dir.

BRIEF of starting point
hist. motion directions }
hist. acceleration dir.
hist. motion dir. + hist. acceleration dir.

Trajectory 2

BoW (hist. of trajectory-words)
based on hist. accel. dir.

BoW (hist. of trajectory-words)
based on {hist. m. dir. + hist. accel. dir.}

Trajectory 3

Figure 4.5: Each diierent type of trajectory representation generates its own BoW repre-
sentation. Therefore, each video shot will be represented by a seMiftisstograms (of
trajectory-words).

compensation, therefore increasing the total numberehentantrajectory representa-
tions to 17 (1 for spatial appearance and 16 for motion). We also proposeciiebined
representations, in which a trajectory is represented byaheatenatiorof two or more
elementary representations among those 17. These combinations are stated4nZTable

4.1.7 Integration into the BoW framework

After computing trajectory descriptors, the next step is to aggregateffbestit trajectories

into a model of the video shot. We have chosen the BoW model, because of thieigrmp

of this representation and the fact that it requires very little prior informatidntamakes

no assumptions about the spatial and temporal structure of events. It waddban

very difficult to use a more specialized model, such as the Actom Sequence Model of
[Gaidon 201}, because in TRECVid we do not have any annotation information about the
time span of events or about their spatial locations.

We can represent a trajectory through any one of the elementary desxspen pre-
viously, or through concatenations of some of these descriptors. Edbless diferent
representations will generate afdrent BoWw model, as shown in Figudes, and we can
perform supervised classification independently on each of these Badsentations.

We use the classical BoW framework from Fig@:.8, with the following details:

e Kmeans clustering is used to generate visual words, with 3 passesnpedfon the
training set, using the Kmeans initialisation method Arthur 2007.

e The Euclidian distance is used to compare two trajectory descriptors (employed at
Kmeans clustering and at visual word assignment).
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e We use hard assignment to assign a trajectory descriptor to a visual vemal se
we observed on TRECVid that semi-soft assignment for trajectories isanap-
propriate, due to the generally low number of visual words required fggctay
descriptors (see Tabl2for concrete examples).

e Supervised classification is done using the KNN tool from IRD&lezoide 201]L
for reasons of high computation speed (the nearest neighbours neefdtmtenly
once for all 346 concepts of TRECVid). Each type of BoW represematialergoes
supervised classification independently (we will use information frdfiedint rep-
resentations at a later stage, via late fusion of classification scaBadlag 2012

4.2 Preliminary experiments on the KTH dataset

The KTH dataset contains 6 actions, each performed by 25 persons a@ndifiierent
situations:

1. outdoor, camera held steady (only very slight camera motion);

2. outdoor; camera zoomed in and out repeatedly for boxing, handietpppd hand-
waving; camera steady but motion direction changed for jogging, runningingalk

3. outdoor, camera held steady, but the person performing the actioniffeemt
clothes;

4. indoor, camera held steady;

KTH is considered to be a simple action recognition dataset (as we have seeapier2,
state of the art performance is close to 100%). Our final goal is to includeotefripfor-
mation for concept detection on the TRECVid dataset, but KTH is a good stadingtp
check the validity of our trajectory descriptors.

4.2.1 Experimental setup

We use a similar experimental setup haptev 2003 we use the first 8 persons for train-
ing (trajectory vocabulary generation and training of supervised clas3ifiad the last 9
persons for evaluation. In.fptev 2003 the rest of the 8 persons were used for optimiz-
ing the parameters of the method, but since our final goal is TRECVid, wedperform
any optimization (we do not use these 8 persons) and simply test the defafigfuca-
tion. Most of the experiments used all 4 situations for classifier trainingpardcabulary
generation, while we also performed a few tests using only the first situation.véve e
performed some tests using vocabularies extracted on the TRECVid dabeset, if the
vocabularies from an extremely diverse dataset have any sense inla sontext.
Concerning trajectory parameters, we used trajectories of at least Oridseand max-
imum 3 seconds in duration, and motion was considered to have ended if in theblast O
seconds, the tracked point moved less than 1.5% of the frame width. Additiomathy
jectory was taken into consideration for the BoW model if at least 10% of itstidara
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experienced high-enough motion (at least 20% of the maximum velocity alonggpea-
tive trajectory), with the aim of rejecting less interesting trajectories. Trimming of static
ends of trajectories was not applied on the KTH dataset, because the enmotwas not
yet developed at this stage; however, because KTH contains perididios this should
not impact the results by much.

For classification, we used a simple KNN classifier (implementation from the Weka
software Hall 2009) with K=3 neighbours, which even though it is not the best, gives
results quickly and provides information about which trajectory descripi@r better.

4.2.2 Results

Table4.1 shows classification precisioisfor the various trajectory descriptors, with vo-
cabularies extracted on the first 8 persons of the KTH dataset and éliadians. The
best performances were obtained by the normalized vectors of displatsewidn8 and

16 samples, followed by the histograms of motion directions with a zero-bin, and yhen b
the normalized vectors of accelerations. Descriptors based on accelanfdiomation are
generally inferior to their equivalents based on speed, with the wolfsirpeances given by
the histograms of acceleration directions; this is somewhat to be expectedetesaiion

is more sensitive to noise than speed (displacement).

Also, the versions employing camera motion compensation do not perform as well
as the versions without. One reason is that sometimes the camera motion estimation is
erroneous, therefore altering the camera-motion compensated representatsersond
possible reason can be due to the dataset itself: the type of camera motion rmighy ac
be linked to the type of action (for example, situation 2 means zooming for the boxing,
handclapping and handwaving actions, and movement along the diagotie o6hme
instead of the horizontal for the jogging, running and walking actions).

We also noted that due to the higher possible variability, the normalized vetiis
placements or accelerations require larger vocabulary sizes to givegmadts, compared
to the histograms of motions or accelerations.

Usually, the highest confusion is between the boxing and handclappiiog@¢both
exhibit horizontal left-right hand movement), and between the joggingamamg actions
(some of the videos in these two classes are hard to distinguish even for a xamainer).

We also experimented with representing a trajectory by the concatenation of two o
more trajectory descriptors, but for the combinations that we tried, we founupove-
ment compared to the best of the individual descriptors. For example segyireg a tra-
jectory by the concatenation of the histograms of motion and acceleration directitims, w
and without zero-bins, in their versions without camera motion compensation (in total, a
concatenation of 4 histograms), with 64 vocabulary words, gives a pme@$only 72%

(the best of the components has 77,78%). Representing a trajectory bynttadartation
of the normalized vectors of displacements and accelerations, all without caro&om
compensation, using 192 vocabulary words, gives 77% precision (thedrapbnent has
81,94%). This lack of performance increase can be due to the combineseammtions
not being the best choice for this dataset,/anthe vocabulary size not being ideal for the
combination.
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Table 4.1: Action recognition precision on the KTH dataset (evaluated on tHepassons

and all 4 situations): vocabulary extraction and KNN training on first 8 pasraon all 4
actions, evaluation on last 9 persons and all situations. The vocabulary feretethe
number of visual words used in Kmeans clustering (and the size of the fstagrvisual
words). Classification precisiddis shown for trajectory descriptors in two versions: not
taking into account camera motion, and subtracting the estimated camera motion from the
total motion.

trajectory descriptor vocab. size| P (%) | P (%) with camera comp.
hist. motion dir. 32 67.13 62.04
64 71.30 67.59
128 69.44 70.83
hist. motion dir. with 0-bin 32 79.17 70.37
64 77.78 73.15
128 79.63 75.93
hist. accel. dir. 32 62.96 51.39
64 61.57 51.85
128 63.43 54.63
hist. accel. dir. with 0-bin 32 59.26 53.24
64 62.04 55.56
128 61.57 54.17
displace. vect. 8 samples 96 75.46 75.00
192 81.94 76.39
384 81.84 75.00
displace. vect. 16 samples 96 68.98 72.69
192 76.39 75.46
384 80.09 76.39
accel. vect. 7 samples 96 75.93 62.96
192 70.83 67.13
384 68.52 61.57
accel. vect. 15 samples 96 59.72 57.87
192 66.67 60.65
384 64.81 57.87
For reference: - P (%) -
STIP [Laptev 2008 - 91.8 -

tracklets Wang 2011 - 94.2 -
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A very small improvement can be obtained through early fusion, by reptieg a
video as a concatenatiarf different BoW histogrameach coming from a éierent trajec-
tory representation. An interesting combination that we found is the early fusiBo\of
descriptors based on the histogram of motion directions (64 visual wordd)isttogram
of motion directions with a zero bin (64 words), the histogram of accelerationtidinsc
with a zero bin (64 words), the normalized displacement vectors of 8 ardrhfles (each
192 visual words) and the normalized vector of accelerations with 7 sampl2svdrds),
all without camera motion compensation; compared to the best of these individually (at
81,94%), we increased precision to 83,80%.

We did not experiment with late fusion on the KTH dataset, because the KIsbifoda
simply gave, for each BoW representation, the action class, not a classifisatiom A
voting strategy would have had to be used, where each representationamdéedaction,
but the problem remained of how to choose the weights of each represemtationhat
happens when two or more classes get equal votes. In any case,ldeacthave extended
this strategy to the TRECVid dataset which is our main goal, because in TREE\Gdal
with classification scores, not discriminating betwedtedént actions.

As for using avocabulary extracted on the TRECVid datasetescribe the videos of
the KTH dataset, we tested a few of the trajectory descriptors (and theiatsorations).
For example, representing a trajectory by the concatenation of the histograntion
and acceleration directions, with and without zero-bins, in their versions wittaonera
motion compensation (in total, a concatenation of 4 histograms), with a dictionary of 64
vocabulary words extracted from TRECVid, gives a precision of 7R#presenting a tra-
jectory by the concatenation of the normalized vectors of displacements egldrations,
all without camera motion compensation, using 192 vocabulary words from TRECVid
gives 71% precision. These results are close to what we obtained with tHe/&Cabular-
ies, and the same was true for all descriptors that we tested. This meaasghdahough
the TRECVid dataset is extremely diverse and uncontrolled, the vocasutaeke sense
and can be used to describe simple actions such as those of the KTH datashtjsw
encouraging.

A final note on vocabularies is that the quality of the vocabulary can havena
negligible impact on the recognition performance. Depending on how the dumter
initialized in the Kmeans clustering algorithm, this can lead to more or |¢keint vo-
cabulary words, which impact the BoW description, which in turn impact theecbrecog-
nition rate. In our tests, we found recognition rate variations of up to 13% (&ondnmal-
ized vector of accelerations with 15 samples, without camera motion compensation, on 96
vocabulary words from KTH) between two runs using the same paramdtergo difer-
ent random initializations of the Kmeans clusters (but for most trajectory igess, the
difference is around 5%).

4.2.3 Conclusions

With these experiments on the KTH dataset, we have shown that the trajeesanpd
tors function properly and are ready for the extension to a larger dat@setmaximum
performance is lower than the state of the art on this dataset, but we useg geweric
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and unoptimized classifier, and in any case, our goal was not to be therbE3 H, but

to have generic tools allowing us to include motion information in TRECVid. We did not
attempt any parameter tuning to improve results in KTH, because these pasaweiét
most certainly not be the same for TRECVid.

In order to obtain very high performances on KTH, very discriminativede®rs are
needed (to distinguish, for example, between running and jogging), but @xteemely
uncontrolled and diverse context such as TRECVid, a descriptor that @iscriminative
also risks being too sensitive to perturbations, irrelevant information ané.nge will
see if our trajectories are general-purpose enough for TRECVid in Set8on

4.3 Experiments on TRECVid

We performed our tests on the TRECVid 2012 development dataset, whichphtinto

two parts, both o 200000 video shots: one part called 2012x for vocabulary extraction
and classifier training, and the other part called 2012y for evaluationt ddise 346 se-
mantic concepts are not necessarily directly related to motion, but there aresnoepts

for which motion is expected to be an important information, such as: Athlete, Badke
Bicycling, Dancing, Handshaking, Running, Throwing, Exiting a car, ®fedsopping an
object, Violent action etc. We evaluate performances usingftimad TRECVid measure,
the inferred average precisioviijmaz 2006 Yilmaz 200§.

Of course, we do not expect trajectory BoW descriptors to outperBoW descriptors
of the SIFT family, because most of the concepts are better describechtigl siescrip-
tors, but we do hope to add complementary information that can help boostdtegav
precision.

Additional problems in the way of trajectory descriptors are the following:

e Some video shots are extremely short (less than 1 second, even less thecodds),
in which case we cannot extract trajectories and we have to return an ergptyfB
Words (a BoW histogram full of zeros).

e Most of the TRECVid videos have been reencoded to have a standaldti@s
and frame rate: 320x240 pixels at 25 frames per second. This, asedacreases
compression artifacts, but for trajectory descriptors, the big issue is thatitfeo
originally had less than 25 frames per second, frames are duplicated ¢pumrin
the frame rate to 25. This creates unnatural motion patterns of moving between
two frames, standing still between the next few frames, moving again f@naefr
standing still again a few frames etc. This has a negative impact on most of the
trajectory descriptors (except the histograms of motion directions without zes) bin
and unfortunately, at the time of writing, we have not yet addressed thés igsthe
future, we plan to implement a frame duplication detector to try and eliminate this
effect.
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4.3.1 Experimental setup

For vocabulary generation, we selected only the shots from 2012x thtdiced at least
one semantic concept, in the hope that the extracted vocabulary wouldrbgtesent the
target concepts. From the selected shots, we kept only 12% (with amrsfompling step
on the shot list) in order to limit the number of analyzed videos and reducéulacy ex-
traction time, and we extracted trajectories on these shots. From the trajegemwérated
for each shot, we kept only 10%, in order to further limit the data amount tteclse that
the file can be loaded in the computer's memory. In the end, clustering wasmpedmn
6,8 million trajectories.

In this experiment, we allowed up to 3000 currently tracked points, whichesyahigh
value and has high computational demands. New trajectories were addedkiogi@ew
GFTT points detected) if the total number of currently active trajectories eksvt3000
and if no trajectories were added in the last 3 frames. Usually, for vide20x240 pixels
and 30 frames per second (as in TRECVid), we use only up to 500 adjeetries, for
which computational cost is reasonable, but using 3000 improved resultsloydal0%,
for some descriptors by up to 20%.

We used trajectory durations of minimum 0,5 seconds and maximum 2 secoadk- Tr
ing for a point was considered to be good if the displacement between tmgecative
frames was not greater than 8% of the frame width, and if the tracked pidimtod get
closer than 3% of the frame width to the border of the frame. Motion was coeside
have stopped (and the trajectory ended) if during the last 0,5 secoagmitit moved less
than 1,5% of the frame width. The condition for taking a trajectory into accaumthe
BoW model was quite relaxed: either its total motion, or its “real” (after subtractingr@ame
motion) total motion, must be greater than 1.5% of the frame width.

Each selected trajectory is then further processed by trimming away extremities if
contain too little motion, as described in Sectibri.5 because we have found that this
improves average precision for most descriptors.

Concerning trajectory representations, we concatenated at the enchadleantary
or combined representation (from Sectibri.g the length of the trajectory in seconds,
because we found that this increases performances by around @#386me descriptors
by up to 10-15%. The trajectory length is divided by 2, so as not to have laigh weight
compared to the other components (the division by 2 is also a normalization witlttrespe
to the maximum length of 2 seconds).

4.3.2 Dfferential descriptors

Using the BoW model with trajectories from the entire video shot means that ittlmna

of interest only occupies a small time interval in the shot, the trajectory-wbiatsrep-
resent this action will be in insignificant numbers compared to the rest: in the lastogr
of trajectory-words, the desired patterns will be “drowned” by trajéetocoming from
uninteresting elements. afod uninteresting moments. Unfortunately, we do not have an-
notations, not even approximate, for the spatial and temporal localization of anigide
TRECVid video shots, which means that we cannot even train a condeptaleon “clean”
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data.

We propose a workaround for this problem, based on the following idgaose that
a video shot is composed of motions that are executed throughout the enditielof the
shot, and of motions that are executed only when an interesting action takesfilese
motions (types of trajectories) are quantized onto the dictionary of visual Wiagsctory-
words), then that would mean that for the entire duration of the shot, sontswalt be
present always (and in about the same amounts as time progresseshendards will
only be present when the interesting action takes place (hopefully, the tirtigramtion
is characterized by fferent trajectory-words). If the words corresponding to the isolated
event could be given more weight in the BoW histogram, then the isolated woeeid be
easier to detect.

To this end, we use the following algorithm:

1. We examine which types of trajectory-words, and in what quantitied, aftaach
frame of the video shot. This can be represented as an image, as in &igdre

2. An intermediate step consisting of a MAX order-filter (dilation morphological op-
erator) along the time axis: a sliding window of 20 frames is used to replace the
number of visual words of type in framei with the maximum number of visual
words of typen in the temporal window of 20 frames centered on framikhis step
“bridges small gaps” along time, as seen in Figl@e

3. The derivative along the vertical (the temporal axis) of the previougdvimage”
is computed, and all the “pixels” that are negative are set to zero. Thissntlake
“word-image” respond t@ppearances of new trajectory-words to increases in
quantity of existing trajectory-words, and makes the “word-image” much less-se
tive to trajectory-words that are present in constant amounts over timegtheases
in quantities of trajectory words are ignored by setting to zero the negatieéspix
This is exactly the behaviour that we wanted, as we see that in Fg6feverti-
cal dotted lines are greatly reduced compared to Figusd We only choose the
positive part of the temporal derivative because we choose to focappearing
trajectory-words, associated to tbaset of new motion patterneot disappearing
ones. The dilation step was introduced to handle the fact that trajectorieslgre
introduced once in a few frames, which would have harmed the temporehtiesi
The fact that the dilated “word-image” is “brighter” than the original doeshrave
any impact on the temporal derivative, because the derivative onlydegliter-
ences, not absolute levels.

4. The “word-image” from the previous step is summed along the verticaldthporal
axis) to obtain a Bag of Words in which trajectory-words corresponding tatéesd
events have a much higher weight than normal. The BoW is themormalized
to turn it into a histogram. We call a BoW histogram obtained in this manner a
differential Bow descriptor

The length of 20 frames for the sliding window in step 2 above is not critical, itnjesds
to be wide enough to fill in the gaps between the moments when new trajectorsiac:
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(d) Original “word-image” (e) After dilation along time (f) After positive time derivative

Figure 4.6: Above: example frames from a TRECVid video of a dog runninglovi
trajectory-word images depicting which trajectory-words start in each fi@mtiee video
(the horizontal axis corresponds to the vocabulary word, the vertidgalta the frame
index); the trajectory descriptor used is a concatenation of histograms of naotilcaccel-
eration directions and of displacement and acceleration vectors, with and withroetra
motion compensation, clustered onto 192 visual words. The temporal structurg taéo
vertical) of the “word-images”can vaguely be associated to the threeplodshe video:
the dog chasing the car, the dog running back and the appearancepefoile. See text
for explanation about “word-image” processign steps. You can se@ntkiad final image
(after the positive derivative), vertical “lines” (actually dotted lines in the ihitizage)
corresponding to persisting motions are greatly attenuated.



88 Chapter 4. Trajectory-based BoW descriptors

Regarding the parameters of the feature trackeéfemintial BowW descriptors are an
additional reason to sacrifice some computation speed in order to have a high maximu
number of trajectories active at any given time (3000 instead of 500), bethae temporal
derivative reduces the number of visual words that make it into tfierdntial Bow his-
togram. In general, BoW histograms perform better when there are maalyféatures,
and an increase in the number of trajectory-words to start with (befffierefitial Bow)
is needed to compensate for the reduction due to the derivative. As a lloagsandard
(non-diterential) Bow descriptors will also benefit from the increased numberatdifes
and will give better recognition results.

4.3.3 Results
4.3.3.1 Global results

Table4.2shows the global (averaged over all 346 concepts) performances thjectory
descriptors evaluated on TRECVid 2012y. We would first like to remind thdeethat in
TRECVid, average precisions far from 0.8-0.9 are not out of the argligiven the dii-
culty of the task and the scarcity of true positives for most concepts. W tieaiaon ex-
actly the same dataset, the retina SIFT-based descriptors from CBajiined average
precisions around 0.08-0.09, while our purely motion-based descriptoins @if3-0.04
(almost 0.05 in combinations); it is interesting that our purely motion-based dessriior
tain performances that are of the same order of magnitude as SIFT-bagéddscriptors,
given the fact that most concepts are apparently not directly related to motion.
Examining the global results in Tabde2, we can make the following remarks:

e The camera motion compensation benefits the normalized vectors of displacements
significantly (e.g. +10% for (5) with 384 vocab. words), while penalizing most
of the histogram descriptors; the histograms with zero-bins are espe@aliped
(e.g. -22% for (2) with 128 vocab. words). However, the combination Cdlladhe
individual motion descriptors shows an increase in performance when eeingra
motion compensationH6% for 192 vocab. words).

e The diferential descriptors generally give a slight decrease in performarge-(e
2% for (1) without c.c., 128 vocab. words), with the exception of the histogra
of motion directions with a zero-bin and the histogram of acceleration directions
with a zero-bin (the latter has8% for 256 vocab. words). Combination C2 also
shows a non-negligible increase in performane49% for 192 vocab. words) in the
differential Bow version.

e The BRIEF descriptor of the first keypoint of each trajectory givesigbest perfor-
mance (0.0588 avg. precision), however this is mainly a spatial descriptmuld
be considered spatio-temporal in the sense that only spatial descriptamS ip
motion are considered, somewhat similar to the $BIRF descriptors employing
transient blob masking from Chaptér

e Putting BRIEF aside, the highest global performance for individual,lpunetion-
based trajectory descriptors is attained by the normalized vectors of latt®ie
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Table 4.2: Global results for semantic concept detection on TRECVid 2Qd#gifig on
2012x), expressed in inferred average precisions, average@bdd6 concepts. All tra-
jectory representations (or combinations) have the trajectory length conteamteatathe
end. “c.c.” refers to camera motion compensationft-direfers to diferential Bow de-
scriptors. Combinations refer to describing a trajectory by a concatenatidenoéetary
descriptors. Results in bold show when camera compensatigoratilerential Bow sig-
nificantly improve performance.

trajectory descriptor vocab. K| AP AP c.c.| AP diff. | AP c.c. dif.
BRIEF of start point 256 0.0588 - 0.0489 -
512 0.0564 - 0.0473 -
hist. motion dir. 64 0.0367| 0.0371| 0.0360 0.0364
Q) 128 0.0385| 0.0384| 0.0377 0.0378
256 0.0391| 0.0386| 0.0385 0.0373
hist. motion dir. with 0-bin 64 0.0346| 0.0281| 0.0341 0.0321
2 128 0.0366| 0.0285| 0.0368 0.0338
256 0.0367| 0.0282| 0.0379 0.0340
hist. accel. dir. 64 0.0396| 0.0358| 0.0378 0.0351
3 128 0.0403| 0.0375| 0.0391 0.0371
256 0.0408| 0.0386| 0.0392 0.0377
hist. accel. dir. with 0-bin 64 0.0281| 0.0242| 0.0303 0.0283
4 128 0.0304| 0.0247| 0.0328 0.0300

256 0.0311| 0.0254 | 0.0336 0.0311
displace. vect. 8 samples 192 0.0379| 0.0408| 0.0370 0.0413
(5) 384 0.0385| 0.0425| 0.0382 0.0421
768 0.0389| 0.0420| 0.0386 0.0411
displace. vect. 16 samples 192 0.0374| 0.0413| 0.0366 0.0411

(6) 384 0.0386| 0.0419| 0.0386 0.0420
768 0.0381| 0.0429| 0.0379 0.0418
accel. vect. 7 samples 192 0.0403| 0.0396| 0.0387 0.0372
) 384 0.0413| 0.0412| 0.0392 0.0376
768 0.0412| 0.0403| 0.0390 0.0380
accel. vect. 15 samples 192 0.0410| 0.0421| 0.0398 0.0388
(8) 384 0.0428| 0.0431| 0.0413 0.0411
768 0.0444| 0.0436| 0.0430 0.0418
combinations: vocab. K| AP AP c.c.| AP diff. | AP c.c. dif.
Cl=1+2+3+4+5+6+7+8 192 0.0423| 0.0443| 0.0416 0.0439
384 0.0438| 0.0451| 0.0436 0.0440
C2=Clnonc.c+ 192 0.0445| (same)| 0.0463 (same)
+ Clwith c.c. 384 0.0472| (same)| 0.0483 (same)
C3=BRIEF+ (1 nonc.c.) 1024 | 0.0551 - 0.0453 -
2048 | 0.0514 - 0.0420 -

C4=BRIEF+ (1 nonc.c.)+ 1024 | 0.0541| (same)| 0.0451 (same)
+ (1 with c.c.) 2048 | 0.0517| (same)| 0.0423 (same)
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with 15 samples (0.0444), followed by the displacement vectors (with camera mo-
tion compensation, 0.0429). Combined trajectory representations based purely on
motion, such as C1 (0.0451) and C2 (0.0483), can obtain an even betier resu

e When describing a trajectory by the concatenation of the BRIEF descriptbaa
motion descriptor (C3 and C4), no improvement is obtained, on the contrafgr-pe
mances decrease (-7% for C3). However, this is likely due to the numbecabu-
lary words being set too high, since performances seem to degradegoimg from
1024 to 2048 visual words for C3 and C4, and also when going from@5@&2 for
the single BRIEF descriptor. Also, no normalization of the BRIEF descrif@r (
values of 1 or 0) compared to the histograms of motion directions (vectors whose
sum is 1) is performed, which could also have a negative impact. Thess igsil
be addressed in the future by experimenting with smaller vocabulary sizessin the
cases.

4.3.3.2 Results for particular concepts

For the trajectory descriptors in Table3, we have performed a concept-per-concept anal-
ysis of the results. Out of the 346 concepts, 129 concepts had a retielt than chance
with all of these trajectory descriptors. This may not seem much, but we nmastber
that the TRECVid dataset is not dedicated to action recognition, and most ofrtbepts

do not have a direct link with motion. Out of these 129 concepts, 30 of them ve¢tes b
detected by one of the trajectory descriptors than by3iel retinadescriptor from the
previous chapter. This means that not only the trajectory descriptomnsfarmative even
with all the disturbances of the TRECVid dataset (uncontrolled contextdypes of cam-
era motion, frame duplication at video re-encoding etc.), but for some contejestories
are even more informative than descriptors from the SIFT BoW family.

Table4.3 shows some results which we consider interesting. For some of the concepts
related to motion, such as Athlete, Car racing, Eaters, Indoor sports Veighe - phys-
ical, Football, the trajectory descriptors outperform 81€T retinadescriptors, as it was
expected, and in some cases, such as for Eaters and Footbalffé¢nerdie is remarkable.

For some concepts that apparently are not directly related to motion, suchsas Fir
lady, Bridges, Chair, Snow and Female reporter SHeT retinadescriptor performs better,
although the trajectory descriptors also give good results (e.g. First El9.543 with
t3and 0.1559 witlSIFT reting.

For Pickup truck, Police, Gun, Rifles, Court and Press confereheedyajectory de-
scriptors actually perform better, even though intuitively there is no strelagion to mo-
tion. The explanation could be that the movement of vehicles might constitute a hint fo
the presence of Bridges, Van and Pickup truck, while the motion of someong sitimn
or standing up might indicate a Chair. Gun, Machine gun, Rifles and Armsdmpenight
respond to trajectories because of motions associated to combat, while FirstdbEyeas
conference could be detected thanks to waving motions or pointing at someoeeain-th
dience. A Female reporter is probably detected not because of the gahimcause of
typical motions of a reporter in the news, while Snow might be detected throtighies



4.3. Experiments on TRECVid

91

Table 4.3: Results for some particular concepts on TRECVid 2012y, bothvdrage

precisions and how much better the descriptor is compared to chance. Valuelslin b
indicate notable good performances for that concept (discussed inDed)riptors:

t1 = hist. motion dir., vocab. 256, non c.c., noiftdi

t1 diff. = t1 in differential BoW version
t2 = displace. vect. 8 samples, vocab. 384, with c.c., né di
t2 diff. = t2 in differential Bow version
t3 = C1 from Tabled.2, vocab. 384, with c.c., non i
t3 diff. = t3 in differential BoW version
SIFT r. = SIFT retinafrom previous chapter
chance= what classifying shots randomly would give

Concept t1 t1 diff. t2 t2 diff. t3 t3 diff. | SIFT r. | chance
Athlete 0.1084| 0.0903| 0.1423| 0.1273| 0.1430| 0.1405| 0.1367 | 0.0357
Car racing 0.0785| 0.0844| 0.1008| 0.0903| 0.1118| 0.1090| 0.0771| 0.0006
Eaters 0.1044| 0.1048| 0.0633| 0.0607| 0.0623| 0.0588| 0.0428| 0.0028
Indoor sports venue 0.0925| 0.0616| 0.2103| 0.2098| 0.1632| 0.2092| 0.1802| 0.0163
Fight - physical 0.0087| 0.0147| 0.0661| 0.0707| 0.0228| 0.0247| 0.0194 | 0.0046
Football 0.0982| 0.1014| 0.0715| 0.0635| 0.0638| 0.0519| 0.0519| 0.0021
Pickup truck 0.1340| 0.1422| 0.1255| 0.1281| 0.1302| 0.1220| 0.1286| 0.0019
Police 0.0290| 0.0262| 0.0280| 0.0305| 0.0268| 0.0174| 0.0002| 0.0039
Gun 0.0610| 0.0746| 0.0519| 0.0321| 0.0401| 0.0659| 0.0539| 0.0340
Rifles 0.0621| 0.0603| 0.0952| 0.0488| 0.0700| 0.0739| 0.0500| 0.0107
Court 0.0588| 0.0588| 0.0588| 0.0010| 0.0588| 0.0042| 0.0064 | 0.0004
Natural disaster 0.0396| 0.0398| 0.0277| 0.0230| 0.0311| 0.0253| 0.0320| 0.0075
Press conference | 0.0127| 0.0147| 0.0851| 0.0721| 0.0846| 0.0594| 0.0144| 0.0109
First lady 0.1409| 0.0866| 0.1369| 0.0976| 0.1543| 0.1097| 0.1559| 0.0008
Bridges 0.0918| 0.0943| 0.0898| 0.0853| 0.0843| 0.0865| 0.1447| 0.0112
Chair 0.1052| 0.0960| 0.1285| 0.1275| 0.1186| 0.1352| 0.1468| 0.0460
Snow 0.0859| 0.0828| 0.0879| 0.0875| 0.1069| 0.0956| 0.2308 | 0.0292
Female reporter 0.0581| 0.0406| 0.1357| 0.1380| 0.1571| 0.1623| 0.1976| 0.0076
Van 0.0928| 0.0946| 0.0713| 0.0646| 0.0880| 0.0789| 0.1391| 0.0026
Running 0.1224| 0.1205| 0.1257| 0.1218| 0.1156| 0.1072| 0.1509 | 0.0064
Soccer player 0.2310| 0.2346| 0.2303| 0.2274| 0.2453| 0.2503| 0.3096 | 0.0020
Throwing 0.1195| 0.1185| 0.1276| 0.1075| 0.1404| 0.1318| 0.1984 | 0.0037
Skating 0.0384| 0.0379| 0.1133| 0.1213| 0.1488| 0.1470| 0.1525| 0.0240
Swimming 0.0125| 0.0155| 0.0263| 0.0505| 0.0540| 0.0637| 0.5441| 0.0062
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usually related to snow, such as skiing.

In the end, there are also concepts that are intuitively highly related to motion, bu
in practice are better detected BYFT retina In the case of Running, Soccer player,
Throwing and Skating, trajectories still perform comparatively well, owing tontiegion
content. However, for Swimmin&IFT retinagives an astonishing performance, while the
best of the trajectory descriptors are around 10 times worse. This cewddithe motion
patterns of waves generated by a person swimming, which start to resembie chawera
motion, and the dficulty of correctly tracking the motion of body parts under the agitated
water surface; however, such wave patterns can be correctlyilugstry SIFT signatures,
justifying the good result oBIFT retina

4.3.3.3 Complementarity of descriptors

By examining Tablet.3, we can see that no single descriptor is the best for all concepts.
Some concepts are better detected with a certain trajectory descriptor, thieiteconcepts
are better detected by other descriptors. We can also see that even tfioogly, dif-
ferential BoW descriptors are not as good as their regular countgijsee Tabld.2), for
some concepts they do outperform the normal versions.

But descriptor complementarity can go beyond simply choosing the bestptestor
a particular concept. As we have shown 8trat 2012h(and detailed in the next chapter),
alate fusion of classification scoresming from various descriptors can also boost perfor-
mance when the descriptors are complementary. This late fusion can adgigfieantly
better results than simply taking the best descriptor for each of the semantepts,
thereby proving that the descriptors being fused cordamplementarynformation.

In the case of our trajectory descriptors, we test complementarity by penfgra set
of simple late fusions within dlierent sets of descriptors, each set designed to highlight the
complementarity between certain types of descriptors. Here, the late fustomethee is
just the arithmetic mean of classification scores coming frdfedint descriptors, because
we just want to illustrate that there is a gain when performing fusion. Howvtre next
chapter we will experiment with more complex fusion methods, in order to optiminéses
and exploit complementarity to the maximum. In this section, we will also presentla resu
of such an optimized fusion applied on our trajectory descriptors, but theooheiti be
presented in detail in the next chapter.

We conduct the following simple late fusions by arithmetic mean of classification
scores:

e Fusion basic descriptors (1) to (8) from Tabk.2, each with its middle vocabulary
size (128 for (1-4), 384 for (5-8)), all without camera motion compensation and in
their normal (non-dterential) versions; this will test if the fiierent types of how to
represent a trajectory are complementary;

e Fusion c.c. the same descriptors as usion basi¢ but in their camera motion
compensated versions; the goal is again to test complementarity betvikssardi
types of trajectory representations, but this time in the camera-compensatiehyer
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Table 4.4: Global results of simple late fusions of classification scores (ddertdetails),
along with two references: the motion descriptor among 1-8 (with or without c.c.rinaio
or diff. form) that achieved the best overall result (0.0431), and what wmilmbtained if
we were to take, for each concept, the best descriptor from the pedyimentioned set
for each concept (0.0565).

Descriptor or fusion AP

accel. vect. 15 samples, 384, ¢|{c0.0431
Best descriptor for each concept0.0565
Fusion basic 0.0599
Fusion c.c. 0.0579
Fusion dif. 0.0587
Fusion ccDff. 0.0563
Fusion basicr c.c. 0.0659
Fusion basic- diff. 0.0612
Fusion c.c+ ccDiff. 0.0590
Fusion dif. + ccDiff. 0.0648
Fusion all 0.0670

e Fusion dff.: the same descriptors as kusion basi¢ but in their diferential Bow
versions; the goal is also to test complementarity betwe@erdnt types of trajectory
representations, but this time infidirential Bow version;

e Fusion ccDjf.: the same descriptors as kusion basi¢ but with camera motion
compensation and in thefterential Bow versions; similar goal,

¢ Fusion basic+ c.c: the arithmetic mean dfusion basiandFusion c.c;, the goal is
to see if the descriptors with camera motion compensation are complementary to the
ones without camera compensation;

e Fusion basict+ diff.: the arithmetic mean dfusion basiandFusion dff.; the goal is
to see if diferential BoW descriptors are complementary to regular BoW descriptors;

e Fusion c.c.+ ccDiff.: the arithmetic mean dfusion c.c.andFusion ccDff.; again,
the goal is to see if dierential BoW descriptors are complementary to regular Bow
descriptors, but this time with camera motion compensation;

e Fusiondjf. + ccDiff.: the arithmetic mean dfusion djf. andFusion ccDjf.; the goal
is to check complementarity between descriptors with and without camera motion
compensation, but this time onfiéirential Bow descriptors;

e Fusion alt the arithmetic mean dfusion basi¢Fusion c.c, Fusion dff. andFusion
ccDiff.; the goal is to see if taking everything into account gives an additionakboos

By examining the results in Tabk.4, we can see that all types of descriptors are
complementary in some degree, because each of the fusions gives Iseiiisrtiean any of
the individual components being fused.
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e Fusion basicis 40% better than the best of its input components (the normalized
vector of accelerations with 15 samples (6) with384), and similar significant in-
creases are obtained also farsion c.c, Fusion dff. andFusion ccDjf. compared
to each one’s inputs, proving that the 8 trajectory descriptors form aleomeptary
set in any one of their versions.

e When combining regular descriptors with camera-compensated versionsias in
sion basict c.c, the gain is 10% compared Eusion basic For differential descrip-
tors with and without camera compensation, asusion djf. + ccDiff., the gain is
also 10% compared tBusion djf.. This shows that the complementarity between
non-camera compensated and camera compensated descriptors is less fitt@ortan
between descriptors that ardtdrent altogether, although the gain is still significant
and reproductible betwedrusion basic+ c.c. andFusion djf. + ccDiff., which
means that it is still useful to employ both versions with and without camera motion
compensation.

e \When combining normal BoW descriptors witHidrential BowW descriptorgusion
basic+ diff. obtained a gain of 2% comparedRFaoision basi¢while Fusion c.c.+
ccDiff. also gained 2% compared Eusion c.c. This means that complementarity
between normal and fiierential BoW is not as great as for previous cases. However,
we must not forget that this is a very simple fusion, through arithmetic mean, which
is not optimized in any way and does not fuse descriptor scores taking ichoiratc
which descriptor is more appropriate for a particular concept. Also, we $@a@n in
Table4.2that for some descriptors, ftkrential Bow descriptors are better globally
than normal BoW, and Tabk 3 has reconfirmed this observation for particular con-
cepts. This justifies the continued use dffeliential Bow descriptors, because for
some types of trajectory descriptors and for some concepts, theympdyéiter than
normal BoW, and a more adaptive fusion will be able to exploit this information.

e Fusing all of the (1)-(8) descriptors, with and without camera motion compensation
and with or without diferential BoW, as irusion all gives the highest performance
of 0.0670, which is 12% better than the best of the input “smaller” fusibnsifn
basig, and 55% than the best of the input trajectory descriptors (the normalized
acceleration vector). This shows that the more descriptors we add, the égtach
additional amount of complementarity, even if small, will still improve the results.

As a final note on these simple fusions, we can see than even if we wowdddien,
for each individual semantic concept, the trajectory descriptor amon@) 1 any ver-
sion) that performed the best for that concept, the result (0.0565)dvatill have been
inferior even to the late fusions that did not take into account all descsipfidne fusion
of all descriptorsFusion all performed 18% better than the best descriptor individually
for each concept, confirming that even a simple late fusion, through arithmetic ofe
classification scores, can improve results.

In the next chapter, we exploremaore complex late fusion methdlgat fuses classi-
fication scores coming from filerent descriptors based on how well they perform for a
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particular concept and on how correlateéfelient descriptors are for a particular concept.
We will see that this fusion method achieves even better results.

4.3.4 Conclusions

We have devised a set of trajectory descriptors that respond to mangViREoncepts,
even to concepts that are intuitively not very much related to motion. Of colgis®y imo-
tion descriptors, they cannot be expected to give results as good as q@éeofydescrip-
tors, such as those from the SIFT BoW family, but the results are nevesshateresting.
For some concepts, the results are in fact very good, as we have s8eation4.3.3.2
The results could be further improved by employing a mechanism that detgxtsatied
frames due to video file re-encoding, in order to avoid the unusual motionmathet this
can cause, but this will be the subject of a future study.

We have shown that camera motion compensation can improve general resutador s
descriptors, notably the normalized vectors of displacements, witikrehtial Bow can
boost performances for camera-compensated histograms of velocitiezceslérations
with zero-bins. On a concept-per-concept level, the ranking of gescs and descriptor
versions varies from one concept to another andfficdit to predict by intuition, however
a late fusion step (as will be seen in Chagecan help to always maximize performance.

Our different types of descriptors and their versions form a complementary sht, ea
responding better to some concepts/anih some particular situations. The complemen-
tarity is the greatest between trajectory descriptors fiedint types, and less between
different versions of similar descriptors, although both types of complementanitpeca
exploited to improve results through late fusion approaches.

Exploiting complementarity at its maximum is what motivates us to develop optimized
late fusion approaches, not only between trajectory descriptors, bunimch broader set
of diverse video shot descriptors, as it will be presented in the nexiteh

4.4 Global conclusion on trajectories

We have shown that trajectories have proven useful on multiple databesashifyhly-
specialized action recognition in highly controlled contexts such as KTH, to thpletely
uncontrolled TRECVid dataset, where trajectories have even sometimetedetencepts

not necessarily directly related to motion. This proves that our trajectories ge@eric

tool, applicable to videos of diverse types and diverse contexts. Gbwpth the SIFT
BoW-based descriptors employing the retinal model, this gives us a rich spatio-smpor
description of videos, with some descriptors being highly spatially-orieré@T(and
SIFT reting, other descriptors with a mixed spatio-temporal behavi&@lF{ multichan-

nel maskingand trajectory descriptors completing the package as highly motion-oriented
descriptors.

However, the descriptors that we have treated so far are not the onlyovesascribe
videos: for example, there can be other SIFT BoW descriptors for spagi@arance, color
histograms for color composition, audio descriptors etc. In the context qgfaticipation
at TRECVid as a member of the IRIM group, we have had access to many nsoréotiers
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than the ones treated in this thesis. We exploit such a broad description@$vidachieve
the highest genericity possible (our goal) for semantic concept detectidnsing diverse
multimodal descriptors, as it will be discussed in the next chapter.
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5.1 Introduction

As we have seen in Secti@2, a basic framework for semantic indexing on a multimedia
dataset consists in extracting content descriptors from the samples (e.g s ioragéeo
shots), then training supervised classifiers on each of these desgripiothe case of
videos, content descriptors can be, for example, color histograms, @afferds of lo-
cal features, BoW of trajectories, audio descriptors etc. and supdrelassifiers can be
K-Nearest Neighbours, Support Vector Machines etc. This proddicegach available
descriptor and for each associated classification method, a set of cgsifiscores that
describe the “likeliness” of each sample to contain a given target concegn YWissible,
such scores can be calibrated as probabilities for the samples to contain gtetacept.

We call anexpertany method able to produce a set of likeliness scores for multimedia
samples to contain a given target concept. Such scores can then be prisetlitte a ranked
list of the samples the most likely to contain this concept. A combination of a content
descriptor and a supervised classification method constituedeamentary expertThese
steps are represented by thHeescriptor computation” and “Supervised classification”
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blocks in Figure2.1 (this figure illustrates the entire processing chain that we use in our
experiments).

As several content descriptors and several supervised classificagthods can be
considered, many elementary experts can be built. So far, information coroimgdif-
ferent elementary experts is not jointly exploited, as experts are treategendently.
However, diterent types of elementary experts, each basedftereint aspects of the mul-
timedia samples (such as colors, textures, contour orientations, motion or stujhdg\e
complementarynformation.

Several aspects of complementarity can be discussed. The iiM&tri€oncept comple-
mentarity which means that a certain expert (based on a certain type of consenipder)
can give very good results for a particular semantic concept, yetrpedoorly for another
concept. For example, on the TRECVid SIN video dataset, the cotfesqtball” is better
detected by experts using trajectory descriptors than by those usindat-of-Words de-
scriptors, or vice-versa, the concéptidges” is better detected with SIFT Bag-of-Words
than with trajectories. As a general rule, there is no single expert whiglsieraatically
the best for all target concepts.

The second aspect of complementaritinisa-concept complementaritwhich means
that even if two (or more) experts have modest performances for a partomeept, their
combination can producehagher level experthat often performs better than any of its in-
put elementary experts. This is especially true when one of the elementmye”etects
the concept better in some situations (corresponding to some of the multimedia samples
where the concept is present), while the other expert works better ireshefrthe situ-
ations (the rest of the samples where the concept is present), which metatiethas
complementarity at the context level

Because of these observations, for the sake of universality and intorebeploit com-
plementary information, many systems rely on the combination of a large set otexper
(up to 10G+), each based onfiierent descriptors or descriptor versions, and using various
supervised classification algorithms.

As seen in Sectio.2, two broad classes of fusion methods distinguish themselves:
early fusionscombine descriptors before the supervised classification step, hateléu-
sionscombine the outputs of supervised classifiers (classification sapsrt3. In the
context of the TRECVid Semantic Indexing (SIN) task and as part of axiggpation with
the IRIM group, we opt for the use of late fusion approaches (in aequtAger-concept
manner), because an early fusion would mean training supervised elassifivery high-
dimensional descriptors, which is not trivial. Late fusions are easierdlydpecause they
fuse simple classification scores, not complex multidimensional descriptors, aectist
of TRECVid SIN, it was shown inBallas 2012bthat late fusions also give better results.

As inputs for the late fusion, we have a battery of{b6xpertswhich are classification
scores for each of the multidimensional descriptors (and their versionegatrvideo shot
and each concept.
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5.2 Choice of late fusion strategy

The goal of the late fusions presented in this chapter is to exploit complemebietritgen
experts as well as possible, for boosting the concept detection perforasfeneas possi-
ble. Therefore, when looking for afffective combination of experts, several interrogations
arise: should we use all experts in the fusion process, or just the hes? ®oes combin-

ing two experts always yield better results than the two of them taken sdpar&ieould

we weigh them dterently in case one is much better than the other? Tackling a similar
problem,Ng and KantoifNg 200Q proposed a method to predict thextiveness of their
fusion approach and concluded:

Schemes with dissimilar outputs but comparable performance are more likely
to give rise to fective naive data fusion.

where thesimilarity between two expertjutputscan be measured as the Spearman rank
correlation cofficient — andnaive data fusiorshould be understood as fusion by sum of
(normalized) classification scores.

We have seen inJtrat 2012pthat the diference between experts mostly comes from
the type of descriptors they rely on, and partly from the type of classtfieirsed on top
of these descriptors. Experts relying on similar descriptors generate soutjawts and
therefore strongly agree with each other.

In the context of our work on the TRECVid SIN task, the remarkNgf and Kan-
tor should be interpreted in the followign manner (as proven by a preliminamrempnt
described in $trat 2012P: when fusing two experts for a particular concept, each ex-
pert based on elierent descriptors, the maximum performance gain is obtained when the
average precisions for the two experts are similar, but the first exptttd half of the
true positives of the concept, while the other expert detects the otherbealafse of,
for example, each descriptor working better in a certain context or withtaiceype of
videos). Therefore, when two experts give approximately the samage/@recisions, a
simple fusion will give the maximum performance boost when the complementarlgpis a
maximum (when the two experts’ scores are not correlated, yet thesigiikar average
precisions because each works better ifedent conditions).

Based on this idea, the fusion approach that we propose has three agijjestrated
in Figure5.1:

e First, experts are grouped based on similarity into clusters of similar expetis.
grouping can either be done manually, using external knowledge abointéhneal
workings of each expert (e.g. grouping all experts that use colarigésrs), or
automatically, based on a similarity measure of the experts’ scores, as wetatiemp
do in this chapter.

e Then, intra-cluster fusions are performed, in which the experts frain elaster are
fused. This balances the quantity of experts of each type, avoiding seevdzen
numerous similar experts dominate the others (because some groups may be ver
numerous, while other groups may only have a few or even a single exqedtialso
helps to reduce classification “noise” within the group.
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Intra-cluster Inter-cluster

Clustering fusion fusion
K-dimensional — i —  » outputscores
input scores :

Figure 5.1: Basic principle of our fusion approach and of the other twoadstfrom our
collaborators with IRIM (described irSfrat 2012 K input experts are available, which
are clustered based on similarity into several groups, followed by andhister fusion
and an inter-cluster fusion. Figure froi@tfat 2012h

e Last, an inter-cluster fusion is performed, in which th&edient clusters (which are
complementary because they contain experts bémint types) are fused together.
This gives the main performance boost due to complementarity, based omiud re
of Ng and Kantoi{Ng 200q.

Our fusion approach combines information coming froifiedent sources (experts) in
a way close to the optimum, so that the gain from complementarity is maximized. Addi-
tionally, the approach is completely automatical, meaning that it determines by itself how
to group experts and what weight to give to each of them. Our method is tmepaced
with a manual hierarchical late fusion done by our partners in IRBuigt 2012k based
on the same idea as in Figusel

5.3 Proposed late fusion approach

The late fusion that we propose, in its original version frodtrft 2012bis based on
grouping and fusing experts progressively based on similarity, until a mmisimilarity
threshold is reached; it clusters experts into groups and performsgirug- fusion at
the same time. Because of this functioning, we call this fusion me#gogdomerative
clustering After this step, inter-group fusion is performed to obtain the fused result.

Compared to what was done iStfat 2012 we extend this agglomerative clustering
approach by also performing, in parallel, four additional fusions: twsigas of AdaBoost
fusions inspired fromCai 2007 Wu 2003 Tang 2008 one weighted arithmetic mean of
experts, and the best expert for each concept. At the end, the reftilesfive fusions are
combined by choosing, for each semantic concept, the fusion method amongettieafi
gave the best result for that concept on the training set, as illustrated ireBigu
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AdaBoost score-based
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Figure 5.2: Proposed fusion approach, on a concept-per-colexght corresponding to
block “Late fusions” from Figure2.1): five fusions are applied in parallel on the input
experts FUSEBexperts from Figur.1), and the fusion that worked best for a particular
concept on the training dataset is selected for that concept on the testida

We will first present the original approach, utilizing only agglomerativeteting, and
then we will detail the other fusions with which we compare and also extend tienag
erative clustering.

5.3.1 Agglomerative clustering of experts

The agglomerative clustering fusion method treats each semantic concepéigntly,
andfor each conceptapplies the following steps:

1. Relevance of experts estimatiorhe relevance of each of the input elementary ex-
perts is estimated on the training set, for the concept in question. The redeiganc
measured as the average precision of the expert normalized with réspbence
(the result of randomly choosing samples). An expert with a relevancen@ans
that it performs just as poorly as chance.

2. Selection of expert€Experts with a relevance less than 1 are thrown away, because
they are irrelevant to the concept in question. Experts with a relevance 8 times
smaller than that of the best are also thrown away, in order not to “pollutdiebe
expert with others that are much worse. This second selection is not critithkme
is its threshold, but using it tends to reduce performance degradatioridsiom for
the (very few) concepts that have an extremely good best expert.

3. lterative fusion Some of the retained experts are highly correlated, so we look for
the pair of expertwith the maximum correlatioand fuse it into a single expert
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(through arithmetic mean). The correlation between the resulting expert anglthe r
maining ones is updated, and the process is repeated. The iterativediagienvhen

a suficiently correlated pair of experts can no longer be found. The iteraisieri
corresponds to the first 2 steps in Figbté, as it groups and fuses similar experts at
the same time (progressively, as pairs of highly-correlated experteand)t

4. Selection of resulting fused experiBhe experts resulting after the iterative fusion
are again selected according to similar criteria as in step 2. This step is natlgcritic
as generally, the experts resulting after the iterative fusion respect tititioos

anyway.

5. Weighted arithmetic mearThe iterative fusion does not give a large gain, because
it only groups and fusesimilar experts. The main performance boost comes now,
when we fusdlifferentgroups via a weighted mean of experts. The weights are
given by the average precisions (for the current concept on théngaitataset) of
the experts from the previous step. A single expert is obtained, the césult ag-
glomerative clustering fusion approach. This weighted arithmetic mean pornéds
to the last step in Figurg. 1

The correlation measure used in the iterative fusion step is the Pearsocpnooiment
correlation cofficient p of the raw classification scoreg. € [-1; 1], with values in the
range of 0.6-1 corresponding to high correlation. In order to fuse apakperts, not only
does the correlation céigcient for the classification scoresaf samples need to be at least
0.75 (the two experts give similar information on a global scale), but also tielation
codficient for the scores afnly the positivesamples must be at least 0.65 (to ensure that the
two experts tend to detect more or less the same true positives of the semaceistdmaing
analyzed). The constraint related to positives was added again witldsdgahe remark of
Ng and Kantoras at this stage, we want to group similar (not very complementary) experts;
also, without this constraint, because of the imbalance between positivesgatives, the
scores for negatives would have dominated the correlation measure xdttevalues of
0.75 and 0.65 are not critical, but we obtained good results using this aoatfmn.

The goal of iterative fusion is to balance the contribution of each family oéegpas
we will see in Sectiorb.4.2.1that some families are very numerous, while other families
are small. This method is automatic and avoids needing to specify the families manually
making it practical for often-changing expert sets and for automaticatlyging experts
of similar types but from dferent contributors. The groups formed by the iterative fusion
correspond in a large degree to the expectations based on descriptor type

As a side note, because during the iterative fusion, several expertsecadded suc-
cessively to a group, and because at each iteration, an arithmetic mean xpéhnes én a
pair is done, it would mean that the last expert added in a group woulysheve a larger
weight than classifers added previously. We compensate for this by keeaahkgof how
many experts were already used to form an intermediate expert (at a ¢cengoturing the
iterative fusion), and adjust weights accordingly so that at the end afdtagive fusion,
all inputs that went into a resulting expert have the same weights.
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Alternatively, instead of using an arithmetic mean with equal weights for the Igit@fu
step, we can assign weights for the input experts based on their aygeajgons for the
current concept. However, the performandésiience of this setup compared to the simpler
one was minimal (because similar experts have similar performances anyhengfore
we retained the simpler setup. In this case, non-uniform weights will onlysed in the
final, weighted arighmetic mean step, when combining complementary experts.

In addition to the agglomerative clustering fusion, we also experiment with ather
sion approaches and with combining the results from thefereint fusion approaches, as
described in the following.

5.3.2 AdaBoost score-based fusion

AdaBoost Freund 1997, short for “adaptive boosting”, is an algorithm that constructs a
strong expert through a weighted average of a large number of weaktexgp\daBoost
functions properly when each of the weak experts is at least slightly betwerctiznce,
and when the dierent involved experts are complementary (they each correctly classify
different parts of the dataset). This is very much the case of TRECVid, wrerave a
large battery of experts, most of them not having spectacular indivicr&nmance (but
better than chance), organized into complementary families.

Unlike agglomerative clustering, AdaBoost does not first group éxpeto families
and then obtain complementarity between families; instead, AdaBoost tries tdt exphe
plementarity directly by choosing, at each step, the most complementary expert.

The AdaBoost algorithm that we use is inspired from the original onErieJnd 199Y
with adaptations for TRECVid. Itis very similar to that /[ 2003, however they applied
it in a different context of TRECVid. It is also very similar to that used Bgrig 2008in
the 2008 edition of TRECVid, but they did not use it on such a large batteeydrts as
we do in our experiments.

For a particular concept, given the training set, {1),. .., (Xm. Ym) Wherex; are the
multimedia samples, ang € {0, 1} is the groundtruth of the sampie (y; is O if x; does
not contain the concept, 1 if it does), the algorithm that we use to train thenfissie
following:

1. We initialize a set of weight®; whereD;(i) is the weight of sample;:

Pos . (5.1)
ANy if yi = 0 (a negative sample)

. ,Pp—‘rc’,s, if yi = 1 (a positive sample)
Da(i) =
wherenPosandnNegare the number of positive and negative samples respectively

in the training set.

2. Atiterationt (t = 1,...T), we choose the input expdrtthat minimizes the weighted
classification erroe; = Y1, Di(i)I(yi # hi(x)). | is called the indicator function,
and it gives the cost associated to the classification result of a sample b@amgrdi
than the groundtruth. In our cadéy; # hi(x)) = lyi — hi(x)|, the absolute value of
the diference between the classification score (between 0 and 1) and thetguttund
(Oor1).
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1-g .
&t !

3. Compute the weight updating factar= In

4. Update the weights of the samples according to:

Dt+1(i) = Dr(i)expatl (i # hi(x))) (5.2)

and normalize the weights for positive samples and for negative sampleatedpar
so thaty}; -1 = 0.5 and};; y,_o = 0.5 (always keep the total weight of positives and
the total weight of negatives equal).

5. Repeat steps 2-4 until all input experts have been considered €gpelt is only
considered once).

6. Atthe end, thetrong expert KixX) will be a weighted sum of the weak experts chosen
at each iteratio:

;
HO) = > an(¥) (5.3)
t=1

The functioning principle of the iterative AdaBoost algorithm is the followindfirat,
the chosen weak expert is the one with the lowest total classification error, all ndiime
samples being considered equal in importance. This expert will not cladbfamples
correctly, it will make errors for some. But if for the next iteration, we irsethe weights
of samples that were classified incorrectly by the weak expdsee Equatio.2), there-
fore increasing these samples’ importance, the next iteration will selsmnalementary
weak experh, 1, that focuses on the samples incorrectly classified at the previous iteration.
Because at each step, AdaBoost selects the expert that correctifietathe multimedia
samples for which the previous expert failed, it achianés-concept complementarity at
the context level

As for the weights of weak experts (inputs) in the final strong (fusegeex weak
experts that achieved low weighted errors at the iteration when they weserclare given
a larger weight in the final expert, while weak experts with larger ernergizen a lower
weight (it is assumed (and generally true) that the esyas lower than 0.5).

For datasets with severe class imbalance (as is the case of the TRECViddstN v
dataset, in which, for many concepts, there are only a few tens of posativebundreds
of thousands of negatives), we have added the additional constrdittiehtatal weight of
positives and the total weight of negatives should have fixed valuessoga@h, at every
iteration, as in YWu 2003, so that the classification result for true positives would still
matter in the fusion.

Also for the case of TRECVid, we performed a similar expert preselectionrabéd
agglomerative clustering fusion: we rejected experts with relevanceshiassl or less
than 8 times that of the best expert for that concept, for similar reasonstascase of the
agglomerative clustering.

When training is complete, the resulting strong expert will be a weighted arithmetic
mean of input experts, and this strong expert is applied on the evaluatieetata



5.3. Proposed late fusion approach 105

5.3.3 AdaBoost rank-based fusion

When quering a dataset for a particular concept, we receive a rdisked multimedia
samples, in descending order of their likelihood to contain the concept. Idemallyis
ranked list, all the true positives should be concentrated towards thenbegirand all
the negatives should follow until the end of the list. The previous AdaBoethod was
made to improve the classification scores, which would indirectly improve theddisk.
We now try to optimize directly the ranks of the true positives, by altering the aalic
function (the cost function when a classification error appears).

We therefore propose the following indicator function: for a positive sapkeas-
sociated cost is equal to the number of negatives that are in front of it iratfied list,
divided by the total number of negatives; for a negative sample, the castogwe don'’t
care about the negatives, we just want the positives in front):

3 % () = {%ﬁ;d'”,@’ ff yi=1(a posm\./e sample) (5.4)

0, if yi = 0 (a negative sample)
wherenegPreceedings the number of negatives preceeding the positive sample in ques-
tion in the ranked list, according to the weak exggrtandnNegis the total number of
negatives.

Of course, because the negatives do not matter any more as long as thepasdiin
front, the weight of the negative samples becomes meaningless, and weaskiyith the
weight of positives. All of the other aspects concerning AdaBoost rethaisame as for
the previous method.

As with the agglomerative clustering fusion and the adaboost fusion lmssscores,
we perform similar expert selections before starting the actual fusion.

5.3.4 Weighted average of experts

As a reference for comparing the performances of the fusion methosisneel so far, we
consider a simple weighted average of the input experts, with weights lgjvéire average
precisions of experts on the training set, for the concept in question (tightwean vary
from one concept to another, depending on how the experts reactd¢orhbepts). We can
say that in the end, the other methods are also weighted means of expewghbubre
elaborate ways of choosing the weights. We wish to compare the more elabothtelsne
with this simple baseline.

As with the other fusion methods presented so far, we perform similartesgdections
before starting the actual fusion.

5.3.5 Best expert per concept

We add a second reference for evaluating the performance of ounfungthods, namely
the best expert per concept. This method consists in simply choosing,cloisemantic
concept individually, the expert that gives the best average praaisiahe training set.
This is our most basic reference when examining other methods, as thef dasibas is
to obtain gains compared to simply considering the best expert for the dafdeferest.
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5.3.6 Combining fusions

After applying all of the previous approaches in parallel, we now dispbsebattery of
five fused experts: agglomerative clustering, score-based AdgBank-based AdaBoost,
weighted average and best expert per concept. Our preliminaryiegques have shown
that for some concepts, some (or all) of the fusion methods degradermarfoe on the
training set when compared to simply choosing that concept’s best expgatevent this,
we propose that for each concept, we see which of the fusion methatlsdfimy the best
expert per concept) performs best on the training setchndsethat fusion method as the
final result for that concept.

5.3.7 Improvements: higher-level fusions

So far, we have treated each concept independently, disregargimglationship that may
exist between concepts. However, the video shots from TRECVid ifesaltthe temporal
segmentation of longer videos, therefore there may also exist temporal relativveeh
shots.

We now propose to integrate these additional semantic and temporal relationsy-by c
sidering two additional types of information:

e temporal context informatignwhich we address using @mporal re-scoring of
shots

e semantic context informatipmhich we address usingpnceptual feedback

After the late fusion step, we dispose, for each concept, of the classificativas on
all video shots. Because a concept that is present in a shot of a videtealls to be
present in the neighboring shots of the same video due to temporal correietomporal
re-scoringof shots can be performed in order to take advantage of the temporal tontex
(block “Temporal re-scoring”in Figure2.1). The approach is described i8dfadi 2011
and was shown to give an increase in average precision.

After temporal re-scoring, we appbonceptual feedbaakn the classification scores
with the algorithm fromHamadi 2013 This exploits the semantic relations between con-
cepts by constructing a new descriptor with 346 dimensions (for the 346 sermantiepts
of TRECVid 2011-2013), thé" dimension of this descriptor being the classification score
of the shot with thé!" concept. Supervised classification is applied on this descriptor as
if it were a normal descriptor, and the resulting classification scores dused-with the
previous results (blockConceptual feedbackin Figure2.1).

5.4 Experiments

We apply our fusion approach in two sets of experiments:

e First, we test the gains from this optimized fusion on the SIFT-based BoWiges
tors employing retinal preprocessing, on the trajectory-based BoW dessratd
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on the combination of these two sets, in order to evaluate the gains from complemen-
tarity within and between these two groups of experts.

e Second, we apply the same fusion approach on an even larger and wersediet
of experts contributed by the entire IRIM group, providing an even ridescription
of the video shots and increasing performances even further.

5.4.1 Fusion of retina and trajectory experts

We have seen in Sectios3.2.4and4.3.3.3that even simple late fusions such as arithmetic
means of classification scores fronffdirent experts can improve concept detection on the
TRECVid dataset.

We recall that in the case of retina-enhanced SIFT descriptors, on thEVig 2012y
dataset, the arithmetic mean of expe$tsT, SIFT reting SIFT multichanneglSIFT retina
maskingand SIFT multichannel maskingave a mean infAP of 0.1220, a 35% increase
compared to the overall best-performing individual descrif@dF,T retina(0.0904).

For trajectory BoW descriptors, also on the TRECVid 2012y dataset, itienatic
mean of all the experts from Tabfe2 (but with a single version for the vocabulary sizes)
gave a mean infAP of 0.0670, which is 55% better than the best of the inpedtory
descriptors (see Secti@n3.3.3for details).

We now apply the more complex late fusion method described in SesiBio sets
of retina-enhanced SIFT BoW experts #rdirajectory Bow experts. We train the late
fusion on classification scores from the TRECVid 2012x dataset, and évahefusion
on classification scores from the 2012y dataset. All of the input expezthasame KNN
supervised classifier fronBgllas 2012k

5.4.1.1 Fusion of retina-enhanced SIFT BoW experts

We useSIFT, SIFT reting SIFT retina maskingnd SIFT multichannel maskings fu-
sion inputs. The descriptors are in an optimized form, having been subjectegower
transformation and Principal Component Analysis prior to supervised ctaggifi, as in
[Ballas 2012h

The results of fusing these 4 experts are shown in Table column“Ret”. The
Agglomerative clustering fusigmerformed the best, with a mean infAP of 0.1368, which
is 12% better than the simple arithmetic mean with equal weights. HoweveXdtisoost
score-based fusigitheWeighted average fusi@nd theSelected best fusialso give very
close results. Only thé&daboost rank-based fusidras inferior performances, because
ranks are very sensitive to small score variations, therefore the rankireéasnstable and
the good fusion weights cannot be correctly determined. In any cadesalh methods
outperform simply taking théest expert per concepa 33% increase foAgglomerative
clustering.

We can also conclude that in the case of only 4 input experts, the more comptex me
ods Agglomerative clusteringAdaboost score-based fusiandSelected best fusipgive
very close performances to tNéeighted average fusipwhich we recall to be a concept-
per-concept weighted average of experts, with weights given by #rage precisions of
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Table 5.1: Mean (over all concepts) inferred average precisionssadf approaches, for
different sets of inputs: retina-enhanced SIFT descriptors (coRet)) trajectory descrip-
tors with normal (non-dferential) BoW {raj. norm), trajectory descriptors with fferen-
tial BoW (traj. diff.), all trajectory descriptorstrgj. all) and the full set of retina and
trajectory descriptordijll sef).

Ret. | traj. norm. | traj. diff. | traj. all | full set
Adaboost score-based fusion | 0.1366| 0.0805 0.0783 | 0.0828| 0.1264
Adaboost rank-based fusion | 0.1147| 0.0614 0.0578 | 0.0623| 0.1249
Agglomerative clustering fusion 0.1368| 0.0769 0.0746 | 0.0776| 0.1274
Weighted average fusion 0.1363| 0.0771 0.0748 | 0.0775| 0.1013
Best expert per concept 0.1030| 0.0583 0.0540 | 0.0582| 0.1033
Selected best from 5 above 0.1346| 0.0799 0.0776 | 0.0824 | 0.1358

experts for that concept. Therefore, for just a few input expehisosing weights accord-
ing to performance is enough to give an increase in infAP compared to an ai¢hmean
with uniform weights.

5.4.1.2 Fusion of trajectory BoW experts

In this experiment, we fuse large sets of trajectory BoW experts. Descdptimnizations

in the form of power transformation and Principal Component Analysis prisupervised
classification, as inBallas 2012k are not performed in this case, due to the too large
number of descriptors to optimize.

We take all the experts from Tabdle2, including experts based on combined trajectory
descriptions (and a few more combined representations not listed in this tablejtiout w
lower performances than those listed). We take all available vocabul&yeigions and
all versions of descriptors: with or without camera motion compensation, in classical o
differential Bow form. We perform three sets of fusions: one with ndéiegtntial Bow
descriptors, one with éierential Bow and the last one with all trajectory experts as inputs.
In total, there are 144 experts, 72 for notiteliential Bow and 72 for dierential BoWw.

Table 5.1 shows the mean inferred average precisions obtained from thesesusion
(columnstraj. norm, traj. diff. andtraj. all). In all three cases, th&daboost score-
based fusiomperforms best, but thBelected best fusiaa not far behind (because for most
concepts, thédaboost score-based fusi@selected anyway).

Although not perfectly comparable with the results from Tah# which illustrate the
results of arithmetic mean fusions with uniform weights, but which only usecoombined
trajectory representations and only one version of vocabulary sizeegerigtor (see Ta-
ble 4.2 for details), we can still see the performance boost given byAteboost score-
based fusion(0.0828 infAP fortraj. all) compared to the arithmetic mean (0.0670 for
“Fusion all” from Table4.4).

When comparingddaboost score-based fusianth the simpleMeighted average fu-
sion this time on the same input experts for a fair comparison, we still have an sgcrea
of 7% (fortraj. all) in favor of the first method, showing that the more comphedaboost
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score-based fusiomakes sense when the number of input experts is very high, as it is for
our trajectories.

As in the previous fusion of retina-enhanced experts Attl@boost rank-based fusion
does not perform so well due to the sensitivity of shot ranks to smalés@orations.

The Agglomerative clusteringndWeighted averaggive close results, similar to the
retina fusions, because tAgglomerative clusteringesembles in behaviour to thiéeighted
averagewhen the input experts are correlated (and they are, because thay/tzased on
trajectories): the expert groups formed Agglomerative clusteringre very similar (but
fewer in number) to their members, and the groups are fused through a vaigbaa with
weights given by the performance of each group.

As with the retina fusions, all methods manage to outperform simply choosifiggtte
expert per concepta 30% for theAdaboost score-based fusiapplied ortraj. all.

As for normal BoW versus tlierential BoW, we see that the performances difedh
ential BoW fusions are slightly lower (-3% fdkdaBoost score-based fusjpmut when
fusing normal BoW experts with flerential Bow expert&traj. all” , we do have a small
performance boost of 3% compared to just fusing normal BoW. In pragtisesmall boost
should be considered from an application framework point of view, asrobggathis boost
requires doubling the amount of trajectory experts, which is not feasibevéoy system.

5.4.1.3 Fusion of retinaand trajectory BoW experts

Overall, retina experts (and fusions) perform better than trajectori¢sydwish to see
whether or not the addition of trajectories can bring an additional perforengtcease
compared to just using the retina-enhanced experts. To this end, we ugeiisfar our
fusions all 4 retina-enhanced experts and all 144 trajectory experigpsedously, for a
total of 148 experts.

The results of fusions applied on this set are shown in Taldlecolumn*“full set” . We
see that for most fusions, the results are inferior to their corresponftenmshe “Ret”
column. This time, theSelected best fusiois the best performer for this set of input
experts, managing to improve performances compared to the other 4 fusbtiseabest
expert per concept; however, this result is still inferior to the best oom the “Ret”
column, which means that our fusion methods have not managed to improvenpantes
by adding trajectories to the set of retina experts.

This lack of improvement is explained by the large imbalance between the reginaf
experts (only 4) and the set of trajectory experts (144), which cahsesontribution of
trajectories to outweigh that of retina-enhanced experts.

Based on this remark, we modify our fusion by manually introducingheermediate
hierarchical leve] based on our knowledge of the internal workings of each expert.rgte fi
fuse the set of retina experts using our previously-described apg®anid independently
the set of trajectory experts usign the same methods. Afterwards, vegrmexh arithmetic
mean (with equal weights) of the retina fusion and the trajectory fusion,iiheneiding
the imbalance problem between the two sets. We obtain the following results:

e Selected best fusioof retina + Selected best fusicof trajectories 0.1427infAP,
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which constitutes an improvement of 6% compared to the retina fusion. Compared
to the best of the input elementary experts per concept, the total increa&¥bjs

e AdaBoost score-based fusiofretina + AdaBoost score-based fusiof trajecto-
ries. 0.1445infAP, again an improvement of almost 6% compared to the retina fu-
sion;

Therefore, including our knowledge of the internal workings of etgpbkas helped us
to better fuse information from tremplementaryetina-enhanced SIFT BoW experts and
trajectory BoW experts. The result could be further improved by optimiziegateights
when combining the retina fusion and of the trajectory fusion, but in orderdml aver-
fitting, this would require splitting the dataset even more, complicating our experimental
setup.

5.4.1.4 Preliminary conclusion

Our proposed information fusion strategies can significantly improve semaniept de-
tection by taking advantage of complementary information coming frdfaréint experts.
Fusing complementary retina experts gives good results, and fusing trajexfmsts also
gives a significant improvement. Fusing retimad trajectory experts gives an additional
gain, but fusing normal BoW with ferential Bow gives only a small gain at the cost of
doubling the amount of data.

We have also seen that including human knowledge about experts toumrsiierar-
chical fusion framework can further improve results, as it will be confirmeections.4.2
by themanual hiearchical fusioof [Ballas 2012bon an even more diverse set of descrip-
tors. However, manually specifying expert groups is cumbersome fa a3 of experts,
and our automatic fusion approaches will be shown to still give good resulésdiverse,
large set of experts.

5.4.2 Fusion of diverse IRIM experts

We have seen the performance gains obtained when fusing SIFT-Ba¥édxperts us-
ing retinal preprocessing and trajectory-based BoW experts, now it is tirappy our
fusion method on an even more diverse set of experts. We perform fhesierent on the
TRECVid SIN 2013 dataset, for which the IRIM partners have providedge and diverse
set of descriptors and descriptor versions on which supervisedfidessiere trained, re-
sulting in a large battery of elementary experts. The TRECVid SIN dataselitignsmo
parts, the first one (dev or 2013d), for training the fusion paramedadsthe second one
(test or 2013t) on which we evaluate performances using filidiad TRECVid measure,
themean inferred average precisi¢iilmaz 2006 Yilmaz 2008.

5.4.2.1 Input data for fusions: elementary experts

Recalling the processing chain from Figitd, the first step for semantic indexing is to
extract descriptors from the video shots. For its participation in the TREChAtlenge,
the laboratories that form the IRIM group have all shared their descsiptceating a very
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rich and multimodal representation of the video shots. The IRIM partnersdeaegbuted
many descriptors and descriptor versions, and a full listing of them is ldey@nscope of
this work. Instead, we will just list some of the main descriptors, without goittgdatails.

Color descriptors: A large family of color descriptors was submitted by ETIS, with
color represented in the Lab color space, with an optional spatial divi§ithve keyframe
[Gosselin 200B A color histogram in the RGB color space was also submitted by LIG.

Contour and texture descriptors treating the keyframe globally: ETIS also contributed
guaternionic wavelets, which are a texture descriptor, also with an optioaisisdivision

of the keyframe GGosselin 200B A normalized Gabor transform of the keyframe was con-
tributed by LIG, as well as an early fusion of their RGB color histogramthischormalized
Gabor transform.

Descriptors constructed from local spatial features: There were many descriptors em-
ploying a BoW model of various local features. BoW of Opponent SIFatues were
contributed by LIG in versions with keypoints either from a Harris-Laplaoeer detector,
or from a dense gridvian de Sande 2010From the same family, CEALIST contributed
BoW of dense SIFT with spatial pyramidShabou 2012Ballas 2012a

We contributed BoW of dense SIFT employing retinal preprocessiita{2012a
Strat 2013aStrat 2013k SIFT, SIFT reting SIFT retina maskingnd a version oSIFT
multichannel masking

BoW descriptors based on Local Binary Patterns were contributed®islZhu 2013,
and texture local edge patterns enhanced by color histogamis2013 were contributed
by CEALIST. Multi-level histograms of multi-scale LBP with spatial pyramids wewa-
tributed by LSIS Paris 2010

Vectors of locally-aggregated tensors (VLANdgrel 2012, which also deal with lo-
cal SIFT features clustered on a visual vocabulary, but use a poolinganism diferent
than BoW to generate image signatures, were submitted by ETIS.

Saliency moments, a descriptor that exploits the shape and contours of szdients
[Redi 2011k was submitted by EURECOM.

Spatio-temporal descriptors: BoW of space-time interest points, described with his-
tograms of oriented gradients or with histograms of optical flow, asaptev 2005, were
submitted by LIG.

EURECOM submitted spatio-temporal edge histograms, based on temporal statistics
of the (2D) MPEG-7 edge histogram.

Descriptors based on tracking and describing faces in succesaiedr(face tracks)
were submitted by LABRI.

Some of our SIFT-based BoW descriptors employing the retinal model are spatio-
temporal, namelsIFT retina maskingnd the version o8IFT multichannel masking
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Trajectory descriptors:  We submitted 5 of the best-performing trajectory Bow descrip-
tors, using the following descriptions for trajectories (in nofiedential Bow version):

¢ the BRIEF descriptor of each trajectory’s starting point; k-means clustenrizb6
vocabulary words;

¢ the BRIEF descriptor concatenated with a histogram of displacement witlzeuba
bin (without null-speed); 1024 vocabulary words;

¢ the BRIEF descriptor concatenated with a histogram of displacement witlzeuba
bin and with histogram of displacement without a zero-bin but in camera motion
compensated version; 1024 vocabulary words;

e concatenation of (1)-(8) from Tabde1, with and without camera motion compensa-
tion; 384 vocabulary words;

e concatenation of the histogram representations ((1)-(4) from Tali)e with and
without camera motion compensation; 256 vocabulary words;

Audio descriptors: Audio descriptors in the form of a BoW of Mel-frequency cepstral
codficients (MFCC) were contributed by LIRIS.

Highly-semantic descriptors: Detection scores of various semantic concepts from the
ILSVC and ImageNet datase®¢ng 2009 (and with detectors trained on ImageNet) were
assembled to form descriptors by XEROXdnchez 2013 Individually, these gave the
best-performing experts.

From the same family of highly-semantic descriptors, LIF contributed a igésicr
based on detection scores for a set of 15 mid-level concepts calle@fpgiAyache 200T.

As we can see from the list above, we have a very rich and diverseiplesn of the
video shots, therefore encouraging fusion approaches.

Before supervised classification, most of the descriptors went throughtamisation
consisting in applying a power transformation to normalize the values of theptesci-
mensions, followed by Principal Component Analysis (PCA) to make eadhiges more
compact, and at the same time, more rob8sif@di 2013 corresponding to th&Descrip-
tor optimization” block in Figure2.1

The next step was to train and apply supervised classification algorithmsf{etasn
each of the (optimized) descriptot'SUpervised classificationin Figure2.1). A classifier
gives, for each concept and for each video shot, the estimated “likéliok#ise shot to
contain the concept (a classification score between 0 and 1).

Two classifiers were applied to each video shot descriptor. The fiesisdmased on a
K-Nearest Neighbours searéhThe second one, called MSVM, applies a multiple learner
approach based on Support Vector Machireafdi 2010 MSVM generally performs
better than KNN, but it is more computationally expensiBallas 2012h

tThttp://mrim.imag.fr/georges.quenot/freesoft/knnlsb/index.html
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KNN and MSVM classifiers applied to a given descriptor constitute tvik@idint ele-
mentary experts. These can be combined (or fused) into a first levelemm@tary expert.
The combination can be done in a number of ways. For this first level, we usiglhatacke
mean of classification scores, the weights between KNN and MSVM being thaiP in
performance estimated by cross-validation within the training (dev) set. Thespomd-
ing expert is calledUSER it is most often better than either KNN or MSVM. We later
use the FUSEB experts as elementary doeshe next steps in our proposed late fusion
approaches.

The most numerous family of FUSEB experts is that of ETIS color histogramsin th
Lab color space (12 experts), while their quaternionic wavelets family nurmhiSezgperts.
We ourselves contributed in total 11 SIFT-based BoW experts, some vditsoane without
retinal preprocessing, and 5 experts using trajectories. 6 Oppon@&B8\W experts from
LIG were also used, as well as two more dense SIFT experts from CHALII&re were
5 experts based on percepts, while the experts corresponding to theirgnsgacriptors
from the previous list were less numerous (only one or two).

5.4.2.2 Results on TRECVid 2013

All of the compared fusion methods are tested using the same input elemerparysex
the FUSEB experts for the descriptors listed in Secah2.1 The experts’ supervised
classifiers are trained on 2013d and applied on 2013t. The fusions aréraitsed on
experts from 2013d, and fusion results are evaluated on 2013t. In $keeofgparameter
optimizations for experts or fusions, they are done in cross-validation ord2013

We report mean infAP averaged over a subset of 38 concepts out wit#h&46, the
same concepts that are used for evaluatifigial TRECVid SIN 2013 submissions.

For comparison, we also include results frormanually-optimized hierarchical late
fusion [Strat 2012p of the same experts contributed by the LIG laboratory. In this ap-
proach, expert groups are chosen manually, but in a hierarchicaleanaon more lev-
els than the agglomerative clustering. The multi-level hierarchy starts bygfdgiierent
variants of the same descriptor (e.g. BoW of the same local descriptor budlifiighent
dictionary sizes). Afterwards, it fuses the experts correspondingtereint image spatial
decompositions (pyramid) if available. Finally, the last level concerns déssipf difer-
ent types within the same modality (e.g. color, texture, interest points, percefpises)
and descriptors from fierent modalities (audio and visual).

Global results: Table5.2 (column“basic”) shows the mean infAP obtained by the pro-
posed fusion methods. Thmanual hierarchical fusiomperforms the best, thanks to the
carefully-optimized weights of experts, the additional score normalization setp&én
fusion stages and the manual grouping of experts that ensures moredrmnag proper-
ties within a group.

Among the automatic methods, tielaboost score-based fusi@erforms the best,
with performances not far behind the manually-optimized hierarchical fusidre Ad-
aboost rank-based fusigrerforms less good, because the rank of a shot can vary greatly
with small variations in the classification score, which makes the method more sensitive to
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Table 5.2: Mean (over all concepts) inferred average precisionsiff approaches: basic
(without any post-processing}RS (with temporal re-scorindemporal contexintegra-
tion), +RS+CF (with RS followed by conceptual feedbagemantic contexntegration),
+RS+CHRS +RS+CF followed by a second RS).

basic +RS +RS+CF +RS+CF+RS
Manual hierarchical fusion 0.2576 | 0.2695 0.2758 0.2848
Adaboost score-based fusion | 0.2500 | 0.2630 - -
Adaboost rank-based fusion 0.2346 | 0.2534 - -
Agglomerative clustering fusion 0.2383 | 0.2516 - -
Weighted average fusion 0.2264 | 0.2409 - -

Best expert per concept 0.2162 | 0.2367 - -
Selected best from 5 above 0.2495 | 0.2631 - -

classification noise. Thagglomerative clustering fusida relatively close in global results
to the Adaboost rank-based fusiodmong the fusion methods, tiveeighted average fu-
sionis the least good, showing that a greater performance boost can lieedbtath more
careful expert weight choosing strategies; for example Ati@boost score-based fusion
performs 10% better than the weighted average.

In any case, it can be seen that whatever the fusion method, the glsb#lisecal-
ways better than what would have been obtained if we would have takezadh concept,
its best expert on the training datasBesét expert per concept The manual hierarchi-
cal fusionis 19% better, thédaboost score-based fusim16% better and the even the
weighted averagdas a 5% improvement, proving that late fusion schemes, even naive
ones, generally improve concept detection performances.

The selected best fusioselects, for each concept, the fusion approach (anfahg
aboost score-based fusiohdaboost rank-based fusigagglomerative clusteringveighted
averageand thebest expert for that conceypthat performed the best on the training set.
The Adaboost score-based fusiams by far chosen the most often, for 230 out of the 346
concepts, which is in agreement with it having the highest mean infAPA@Bboost rank-
based fusionvas chosen for 60 concepts, thgglomerative clusterinfpr 14 concepts and
the weighted averagéor only 8 concepts. For the rest of the 34 concepts,bibst ex-
pertwas chosen, because the fusions were found to degrade perf@smamthe training
dataset. Considering this, it was to be expected that the mean infAP séléted best fu-
sionwould be close but slightly above that of tAeaboost score-based fusioHowever,
no global gain is observed for tteelected best fusipiecause the choices made on the
training set are not always the best also for the test dataset, due toveribetween the
two datasets.

Concept-per-concept results: Moving on to a concept-per-concept analysis, Tdokk
shows the infAP gains for the 38 semantic concepts used infiieab TRECVid 2013
evaluation, when comparing the best of the automatic method#@\{taboost score-based
fusion) with the baselindest expert per concepfor the majority of concepts, the fusion
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gives a significant performance boost (such asAioplane, Bus, Hand, Running, Throw-
ing). For some concepts, the boost is not too high, especially for concegitalteady
have large infAP to start with (such 8gach, Government leader, Instrumental musician,
Skating; this happens when the other experts do not bring any pertinent and coerple
tary information compared to the best expert. There are only 6 conceptxfiatence
performance degradations from the fusion, nanfetymal, Computers, Explosion or fire,
Female face closeup, Girl and Kitchen

As a preliminary conclusion, we can say that fusing a large battery of comptamge
experts yields a significant performance increase. It is now time to examengaths of
higher-level fusions, at the temporal and semantic context levels.

5.4.2.3 Results for higher-level fusions

Table 5.2 column“RS” shows the mean IinfAP after applying the temporal re-scoring
algorithm made by our partners in IRINB&fadi 201}, briefly described in Sectiof.3.7.

The best-performing method, theanual hierarchical fusiomalso by our partners, has gain
of 4,6%, while our methods also experience gains in the range of 5-10& shbws that
the temporal context can also bring useful information, resulting in a perfaernanrease
for all methods.

After temporal re-scoring, we apply the conceptual feedback stepdtorpartners in-
side IRIM [Hamadi 2013 briefly described in Sectioh.3.7(+RS+CF in Table5.2). Be-
cause of the significant computational cost, we limit this experiment to the bdetmarg
method, thananual hierarchical fusionfor which an additional gain of 2,3% is obtained
compared to the previous result. Adding a second temporal re-scorindgtsteiha concep-
tual feedback{RS+CF+RS increases results by another 3,3%. In the end, the successive
temporal re-scoring and conceptual feedback steps give an inakei8&% compared to
the basic approach.

5.5 Conclusion

In this chapter, we proposed several methods of combining dozens dférperts into
better ones, and applied these methods in the context afREECVid Semantic Indexing
task.

On the TRECVid 2012 SIN task, we have shown that such fusion methodsetgen
exploit the complementarity between SIFT-based BoW descriptors utilizing Irgtiaa
processing and trajectory-based BoW descriptors, leading to a penfice improvement
greater than that of a simple arithmetic fusion with uniform weights, as it was hone
Chapters3 and4.

On the more diverse set of experts from the TRECVid 2013 dataset, eeshawn that
all of the fusion methods globally outperform taking the best expert foin eancept, and
that more elaborate fusions can perform better than a naive weighted drithme@n. Our
automatic late fusion approach based on AdaBoost performs almostédagaaanually-
optimized hierarchical fusion, without having a large computational cost. We &lzo
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Table 5.3: Comparison of inferred average precisions fob#st expert per concepind
the AdaBoost score-based fusidor particular concepts.

concept best expertt AdaBoost sc.| rel. gain (%)
Airplane 0.0573 0.0923 61
Anchorperson 0.4850 0.5988 23
Animal 0.0659 0.0078 -88
Beach 0.4658 0.4722 1
Boat or ship 0.2907 0.3083 6
Boy 0.0291 0.0316 9
Bridges 0.0372 0.0393 6
Bus 0.0273 0.0598 119
Chair 0.1621 0.2394 48
Computers 0.2647 0.1919 -28
Dancing 0.2990 0.4019 34
Explosion or fire 0.1780 0.1617 -9
Female face closeup 0.3741 0.3550 -5
Flowers 0.1752 0.1895 8
Girl 0.0462 0.0360 -22
Government leader 0.4387 0.4546 4
Hand 0.1532 0.2847 86
Instrumental musician 0.5141 0.5782 12
Kitchen 0.1072 0.0952 -11
Motorcycle 0.1778 0.2369 33
News studio 0.7213 0.8223 14
Old people 0.3719 0.4096 10
People marching 0.0388 0.0470 21
Running 0.0863 0.1405 63
Singing 0.1096 0.1459 33
Sitting down 0.0003 0.0023 667
Telephones 0.0063 0.0133 111
Throwing 0.1121 0.2506 124
Baby 0.1317 0.2234 70
Door opening 0.0369 0.0410 11
Fields 0.0753 0.1375 83
Flags 0.2607 0.2819 8
Forest 0.0911 0.1150 26
George Bush 0.6092 0.6624 9
Military airplane 0.0172 0.0381 122
Quadruped 0.0807 0.1133 40
Skating 0.4956 0.5328 8
Studio with anchorperson 0.6228 0.6871 10
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shown that additional fusions, at the temporal and semantic context levelgjivean
additional performance boost.

Even though we experimented on the TRECVid SIN video dataset, these $ade fu
approaches are generic and can be extended to other multimedia collectiorls as we






CHAPTER 6

Conclusions and perspectives

Contents
6.1 Aretrospective of contributions . . . . .. .. ... .. L. 119
6.1.1 Retina-enhanced SIFT BoW descriptors. . . . . ... ... .. 119
6.1.2 Trajectory BoWdescriptors . . . . .. ... ... ... .. ... 120
6.1.3 Latefusionofexperts. . . . ... ... ... ... ... 121
6.2 Perspectives for futureresearch . . . . .. .. .. ... ... .. .... 121

Our work explored the topic of automatic semantic indexing of highly-diveideo
datasets. We have taken a state of the art semantic indexing frameworne(&iuwhich
we have enriched with spatio-temporal descriptions and with information fusion dgetho

Our experiments have shown that the proposed retinal preprocessiogelpgs lead to
a set of better-performing, complementary spatio-temporal descriptors, atdch good
compromise between computational demands and semantic indexing performdmece. T
spatio-temporal diversity of the descriptor set was then pushed eveerftotiards mo-
tion description thanks to the inclusion of Bags of Words of trajectories of éxhpbints,
which have also proven themselves as valid methods not only on the motion-o@rtted
dataset, but also on the extremely diverse TRECVid SIN dataset.

In the end, the availability of such a set of diverse spatio-temporal desstigiong
with other various and complementary descriptors contributed by the IRIigrar has
motivated us to develop automatic late fusion methods. These late fusion metlveds ha
allowed us to benefit from the joint information brought by the various detecs and to
significantly improve the overall semantic concept detection performance.

6.1 A retrospective of contributions

6.1.1 Retina-enhanced SIFT BoW descriptors

We have shown that the two retinal outputs, the parvocellular and magnocehalanel,

can help us enhance classical SIEURF Bag of Words descriptors. The parvocellular
channel’s “cleaning” ffect, which reduces noise and compression artifacts, normalizes col-
ors and enhances local contrast, can lead to more accurate local fEghatires, which

in turn give a higher-quality Bag of Words histogra®IET reting. The magnocellular
channel on the other hand can be used as base for a low-cost detieateas of inter-

est, thereby guiding feature selection only to such potentially more relevaat, axgain
improving concept detection resulSIET retina masking
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While the approaches above remain mostly oriented towards spatial appesaséth
only the possibility to orienspatial feature collection on moving areas, we also employ
the magnocellular channel in a second way. This time, we truly integrate motion infor-
mation in the form of SIFT signatures collected on the magnocellular channeauBec
the magnocellular channel responds to contours perpendicular to the motictiodiréhis
gives us information about the local motion around a feature point. Concateadtingl
OpponentSIFT spatial appearance signature from the parvocellulanehaith the SIFT
signature from the same location on the magnocelular channel thus givestspaporal
multichannefeature descriptions. Coupled with area of interest maskhgT multichan-
nel masking this type of descriptor becomes very interesting, as it reacts especidlly we
to concepts related to motion in TRECVid (concepts often related to sports aclivities

Even if the parvocellular preprocessing of keyframes leads to the béxtlgsult, it
still makes sense to keep the other descriptors, because together thectmnplementary
set Complementarity is maximum expecially between the baseline SIFT BoW keyframe
descriptor SIFT), the parvocellular preprocessed keyframe BoW descrif@0¥T reting
and the multichannel descriptor employing area of interest maskHhgr(multichannel
masking.

The two keyframe-based descriptors are complementary be&ESeretinaworks
better when there is no significant motion (the parvocellular channel introdnogsn
blur) and the retina can nicely clean the image, wWiSIIET works better when there is
motion, because it is much lesfected by motion blur. The keyframe-based descriptors
on the other hand are complementary Wil T multichannel maskingecause the former
focus only on spatial information, while the latter is spatio-temporal.

We have then shown that we can exploit such complementarity through a liate éds
classification scores coming from these complementary descriptors, therebicaigly
increasing performance.

6.1.2 Trajectory BoW descriptors

Regarding motion representation, we have proposed a large battery of tnajeased
BoW descriptors, based on various trajectory descriptions. Our prelimiaaty on the
KTH dataset showed that even though we do not obtain performanteghaas the state
of the art, we are still well above the chance level, thereby validating the fuimagiohout
method. We must also not forget the fact that we did not perform anyredea optimisa-
tion whatsoever, following the idea that optimising for the very restricted KTtds# is
not our goal anyway, since we are interested in semantic indexing ofigelatabases.

On the very dificult TRECVid dataset, despite again making only limited optimisations
(due to the high computational cost of running each experiment) and despheing in
an action recognition context (most of the concepts are only distantly, if atlaledeto
motion), the trajectories performed better than chance for 129 out of theodd@jats.

As with the retina-enhanced SIFT BoW descriptors, we have shown th&tagestory
descriptors form a complementary set, on which information fusion can be dppbdtain
a significant average precision gain.
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6.1.3 Late fusion of experts

Different descriptors, especially if they are fronffelient families, generate complemen-
tary experts. Remaining in the same semantic indexing framework, this motivates us
contribute (and compare) several late fusion strategies, by which clasisificesults from
several experts are combined, improving concept recognition.

We have shown that in this context, a version of AdaBoost adapted to thénalaal-
ance problem (too many negative samples compared to positive ones) oVIdRg&her-
ally leads to the highest performance increase, without having a high compatatast.
This tendency has been confirmed when fusing retina experts, trajegpmst® retina and
trajectory experts together, as well as even more experts contributeddsynadimbers of
the IRIM group. The advantage of our approaches is that they areletslypautomatical,
not requiring the user to specify expert groups or weights manually.

Our fusion methods have been shown to perform almost as well as a maoptthyzed
hierarchical fusion when there is no severe imbalance between eapelies. When such
severe imbalance exists, as was the case when fusing the 4 retina experts oty
of 144 trajectory experts, family imbalance tends to shift the mean infAP t@thode of
the dominant family. However, we have shown that manually introducing arctsical
level that forces the fusion algorithm to first fuse family members inside familiesoaly
afterwards to fuse flierent families, brings the fusion back on track so that a performance
boost is obtained.

6.2 Perspectives for future research

The retina-enhanced SIFT descriptors that we tested on the TRECVidd2@aget em-
ployed local features only at the original image scale, since the prelimibatyu6opti-
mized) experiments with SURF performed better in a single-scale configurbitovever,

we think that information at multiple scales can bring added value to the descriiftors,
properly configured. We are in the process of extending our desifaollect features
at multiple scales and the first results are encouraging, but we have yetinozepthe
parameters of the dense grid, of the retina and of the temporal window.

A second direction of study for retinal preprocessing is to experiment wittr types
of local features such as FREAKIghi 2017, in order to verify if the similar behaviours
as for SURF and SIFT are observed. FREAK would be especially iniegds try, since
it is also a bio-inspired model, and its interactions with our bio-inspired retina migtht lea
to even better results.

We also know that the retinal outputs affeated by camera motion. The parvocellular
channel sffers from motion blur, thereby degrading the quality of local spatial feature
descriptors. The magnocellular channel on the other hand will give stesmgpnses on
all contours perpendicular to the motion direction. For the multichannel descrighas
means that the local features from the magnocellular channel no longet te@leeal local
motion, instead being polluted by camera motion. As for salient blob selection, camera
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motion resulting in a moving background means that a lot of background featilrbg
selected, which are generally not so meaningful.

This motivates us to pursue a version of the retina model that is robust to camera mo-
tion. We plan to do this by feeding camera motion estimation data (from our trajectory
tools) into the retina at each frame, changing the functioning of retinal filtersasahéy
combine other pixels than normal, in such a way as to eliminatefteets of camera mo-
tion both in the parvocellular and in the magnocellular channel. Only the real movemen
of the objects in the scene will still cause motion blur or magnocellular respongamth
camera motion. Based on a dense optical flow map, we could even go a step &nth
construct a retina model in which the parvocellular channel is immune to all motion, both
foreground and background.

This motion compensation is in fact similar to what the human visual system can
achieve with eye movements, whereby we as humans are capable of staliiesiimg-
age in our eyes by compensating for head motion, and we are also capablevaifiglibe
motion of an object of interest. This helps the retina to work in its most favourabtextpn
enhancing details on objects of interest and blurring only uninteresting itehish(we do
not follow with our eyes).

In the long run, we also plan to further extend our biologically-inspired @ggr by
including higher levels of processing, such as those occurring in the pyricoatex V1,
that could serve for object or face recognition and trackBeoit 2010. It would be very
interesting if we could also model even higher cortical areas, which wouldctmiaan
to simulate an important part of the visual brain. However the functioning oéthigher
areas is not yet well understoadérault 201(.

Regarding trajectory BoW descriptors, there is still room to optimize their gorei
tion as well, such as the tracker parameters or the bins used for histograms of amation
acceleration directions. Other trajectory descriptions such as Fourieramnanssbr wavelet
representations of motion vectors should also be experimented with. Fouridotrass
can describe a trajectory in a manner that is robust to the exact startindingenoment,
while wavelet analysis can give better multiresolution information than just resampling the
motion vectors to either 8 or 16 samples.

The temporal granularity of trajectories is also a matter which should be further
vestigated. Currently, we use trajectories of durations varying betweean@.3 seconds,
including the length of a trajectory explicitly in the trajectory descriptions (whietother-
wise invariant to trajectory length and duration). Alternatively, trajectordeste grouped
into separate Bags of Words corresponding téedént duration intervals, such as a Bow
for short movements and one for long movements. Even long trajectoridsecaut into
smaller pieces and used to populate the short-duration BoW. These BoW pdfuily
be complementary and after a fusion step, will hopefully give better perfwenthan a
single, mixed-duration BoW.

Further advances can be made in the interaction between the retinal pesjmgand
the extraction of trajectories. Not only can the estimation of camera motion from tra-
jectories help improve the retinal response, but vice-versa, the segmeantsigiit blobs
described in Chapte3 can potentially help isolate more interesting trajectories. This is
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especially true if the segmented blobs are robust to camera motion, meaning tteat we
select trajectories only from interesting moving foreground objects.

The Difterential Bag of Words descriptors, for highlighting less common visual words
corresponding to short-duration actions, also have room for improvememtould be
interesting to experiment with the tiny activity analysis algorithm frazhgng 201Bto
select areas where small actions occur, and to eventually combine it with fiarebtial
BoW to emphasize the moments when less common trajectory-words appear.

Later on, it would also be interesting to experiment with more complex models than
the Bag of Words for trajectories, such as the Actom Sequence Mod€&lailon 201},
which is capable of encoding the temporal succession of types of trajectédtreadded
benefit that can be obtained with the Actom Sequence Model would be Hsibpity to
localize actions in longer videos, not just to say whether or not a pre-segceideo shot
contains an action or not.

All of these experiments should also be carried out on other more action ariente
datasets, such as Hollywood érszalek 200p in order to get a better idea of the perfor-
mance in a wider range of applications and contexts.

Finally, our late fusion methods can be easily applied to other multimedia (not just
video) databases, because they are independent of the type of theamkiegs of experts.
For example, it would be interesting to try these information fusion methods on an image
dataset such as ImageCLEF

As a conclusion, the topics explored within this thesis open many directions, from
spatial and temporal description of video content to the fusion of thoseipkessr in
order to improve the semantic level of automatic indexing systems.

The proposed approaches have interesting properties that preseat generalisation
potential, and after optimisations in the short run, they can be generalizezhanbed in
the long run.

From an application point of view, this work can be useful in many area$, as au-
tomatic semantic annotation of videos uploaded to on-line databases, indexicioéd
video transmissions from television networks, video-on-demand applicatiomkich a
user searches for videos that are visually-similar to a query sample, ovielnsurveil-
lance applications, in which suspicious objects, persons or events codétdied.

‘http://www.imageclef.org/
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7.1 Introduction

7.1.1 Lexplosion multimédia

Durant ces dix derniéres années, notre société a connu des avanpéetantes dans les
domaines de I'électronique et des technologies numérigues. Ces avemicéesmme tou-
jours, accompagnées d’une baisse constante du prix des appareilsnideesoEn 2013,
guasiment tous les téléphones portables sont dotés d'un capteur optigiecd’enreg-
istrer des photos ou des vidéos d’une qualité toujours croissante. kssappareils photo
ou cameéras vidéo numériques dédiés sont accessibles a presquertsies gays dévelop-
pées.

Cette augmentation du nombre de dispositifs capables d’acquérir du contenu multi-
média a qualité croissante est aussi corrélée a I'augmentation de I'espateckiage
disponible, sous la forme de disques durs, cartes mémoire, disques DVWDR&R Ainsi,
aujourd’hui, beaucoup de gens disposent de collections multimédia peltesrimgres-
sionnantes.

A ces collections stockées sur les ordinateurs personnels, s’ajoutsndesisites web
(comme Facebook, Instagram, YouTube etc.) qui permettent aux utilisatewdéposer
et partager leurs créations avec d’autres, et permet aussi de spécifier des étiguettes
contenus (des labels comme le nom des personnes présentes danstonike fiea ou la
photo a été prise, 'événement etc.).

7.1.2 Lanécessité d’organiser

Avec autant de fichiers multimédia, il devienffitiile pour les utilisateurs de retrouver
rapidement un certain élément déposé quelques temps auparavant. La catfedtiore-
dia doit étre trés bien organisée (par exemple par date d’acquisition de ghtamjioe par
évenement représenté, par lieu d’acquisition etc.). Une telle organisatioripétre faite
en ajoutant & chaque photo des informations complémentaires sous la f@tigeettes
sémantiques

Déja, les appareils photo ou vidéo sont capables d’ajouter certainesatfons au-
tomatiquement, par exemple la date et I'heure d’acquisition, et certains modélesnpeuv
aussi intégrer les coordonnées géographiques du lieu d’acquisitianil{gant un module
GPS intégré), mais cette information n’est pas toujoufssuinte pour retrouver un certain
élément multimédia. L'utilisateur doit alors introduire lui-méme des informations supplé-
mentaires. Par exemple, une photo avec la description “maman prépare wi gatgaait
avoir les étiquettes suivantes : “maman”, “cuisiner”, “cuisine”, “gateau’pgpurraient étre
utilisées comme mots-clés pour une recherche automatique dans la collection multimédia.
Le fait d’'introduire manuellement de telles descriptions et mots-clés demandenps te
important et certainement ennuyeux a l'utilisateur.

Les collections multimédia en ligne ont des problemes similaires, mais a une échelle
encore plus grande. Par exemple, sur le site YouT,ub@0 nouvelles heures de contenu

Ywww . youtube. com
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sont mises en ligne chaque minute par la totalité des utilisgteSrses vidéos ne sont
pas proprement labélisées par les utilisateurs (avec un titre et des motspeésentatifs),
elles ne pourront pas étre trouvées par les autres, et le fait de lesrasan ligne perd
son sens. Actuellement, cette labélisation doit étre faite manuellement par les utiisateu
De plus, si la fonctionnalité "pouvoir retrouver une certaine sous-pdrieed/idéo” est
demandée, la vidéo doit étre annotée non seulement a un niveau global, maissaude

ces sous-parties (sous-séquences vidéo, “shots”), ce qui @nende du temps.

Par conséquent, un systéme capable de fairéngiexation sémantique automatioghe
contenu multimédia prend du sens, et évitera a l'utilisateur de passer des Beamnoter
sa collection manuellement. Un tel systéme, appgiiéme d’indexation multimédia par
le contenu utilise des techniques de vision par ordinateur pour analyser le contdtiu mu
média et détecter automatiquement des divers concepts sémantiques (typteda,dieu
ou se passe l'action, qui sont les participants, quels objets sont présestta scéne, s'il
y a des éléments inhabituels etc.).

7.1.3 Contexte des travaux et contribution

Le but de cette thése est I'indexation sémantique automatique de collections vidéestCe
un sujet a la frontiére de plusieurs domaines, comme illustré dans la Figuhlenécessite
des compétences dans les domaines de la vision par ordinateur, le traitemaenalgsé
d’'images, I'apprentissage automatique et la fusion d’informations :

e Les techniques de traitement et analyse d’images et de vidéos sont upliséex-
traire d'une vidéo des descripteurs d’'un niveau sémantique trés bdsyimdom-
inantes, orientations des contours, directions du mouvement etc.); cellasci ca
térisent une vidéo dans une forme compacte et compréhensible par I'oodinate

e La vision par ordinateur sert a agréger les descripteurs ci-desssisléameprésen-
tations (comme la représentations par Sac-de-Mots vue dans la s&8tidn

e L'apprentissage automatique sert a déterminer automatiqguement les liaisons entre
les descripteurs (ou descripteurs agréges) et les concepts sémantépsegspdans
la vidéo. Par exemple, une couleur dominante verte peut indiquer la peédenc
végétation.

¢ A la fin, les techniques de fusion d’'informations peuvent combiner les derigée
sues de plusieurs sources (couleurs, contours, mouvement etc.)rpéliorar la
détection de concepts sémantiques.

Notre but est de concevoir un systeme d’indexation s€émantique automatiquéentéeis|ge,
capable de travailler avec n'importe quel type de vidéo et d’annoter aadatige gamme
de concepts sémantiques (objets divers, actions, personnes, situatiorSedtcsignifie
gu'il n'est pas possible d'utiliser des détecteurs spécialement corauuschaque con-
cept sémantique, mais d'utiliser des détecteurs génériques, ce qui augandifiieulté
d’obtenir de bons résultats.

“http://www.youtube.com/yt/press/statistics.html
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Computer vision

Ficure 7.1 — Domaines scientifiques concernées par cette thése : I'indexation sémantiqu
des vidéos nécessite des techniques de vision par ordinateur, traiteaneaise d’'images
et vidéos, apprentissage automatique et fusion d’information.

La conceptiorintégraled’un systéme d’indexation automatique est une tache tres dif-
ficile qui ne peut pas étre achevée pendant la durée d’'une thésecdmuraison, nous
nous basons sur le systéme d’indexation développé au sein du consoengaisrIRIN
(décrit dans la SectioB.2). Nous améliorons plusieurs aspects de ce systeme, ce qui con-
stitue notre contribution dans cette thése :

e La premiere contribution est dans le domaine du traitement et de I'analyse d'im-
ages et vidéos. Nous proposons une méthode @oédtiorer les descripteurs d'im-
age standard basés sur la représentation des gradients d'intensité, e@hrT
[Lowe 2004h0u SURF Bay 2008, dans le but d’améliorer leur généricité et leurs
résultats pour la détection de concepts. Cette méthode est basé@gtHtraite ment
des trames vidéo en utilisant le modele d'une rétine biologideigBenoit 201(.
Les descripteurs SIFBURF sont basés sur des histogrammes des orientations des
gradients spatiaux de I'intensité lumineuse, donc ils sont des descripteeragnt
spatiaux. Le pré-traitement rétinien améliore les résultats globaux de détection de
concepts, mais il étend aussi les descripteurs de type/SURF en intégrant des
comportementspatio-temporelsCette méthode est présentée dans le Chapitre

e La deuxiéme contribution est aussi dans le domaine du traitement et de lanalys
de vidéos. Elle consiste en umhatterie de descripteurs de trajectoires, dédiés a
la représentation du mouvemei@es descripteurs, inspirés de I'état de l'art, sont
présentés dans le Chapi#eDe cette facon, nous avons pour commencer une de-
scription purement spatiale, suivie d’une description spatio-temporelle, finalemen
complétée avec une description temporelle du contenu vidéo. Ce qui nous amene a
notre derniére contribution.

3http ://mrim.imag. fr/en/
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e La troisieme contribution est dans le domaine de la fusion d’information. Comme
nous avons maintenant une description trés riche du contenu vidéo, xphoiscas
lacomplémentariténtre les diérents descripteurs en faisant flesions tardivesles
scores de classification supervisée obtenus avec chaque descNpte&icomparons
plusieurs approches de fusion tardive dans le Chabpitre

7.2 Etatde l'art

Quand un utilisateur cherche certains éléments dans une collection multimédiayuildor
une requéte textuelle, par exemple “discours de Barack Obama apréstesslequi peut
étre convertie dans des mots-clés a rechercher dans la collection : “OBpréaident” (si
le systeme sait aussi que Obama est le président), “discours”, “éleftidrg§ollection
doit étre annotée avec des tels mots-clés si on veut qu’une requéte deeadotyne un
résultat.

7.2.1 Labase vidéo TRECVid

Nos travaux sont centrés sur la base TRECVid, car elle correspoma bietre objectif de
concevoir un systeme d'indexation trés générique. Cette base vidéo compertsamble
trés riche de concepts de haut niveau sémantique a détecter (et adansdes vidéos. Les
346 concepts proposés peuvent étre des objets (Bus, Arbre, Voitlémhbne, Chaise),
des actions (Chanter, Manger, Poignée de main), des situations ou des ¢ypesnds
(Paysage au bord de I'eau, Scéne d'intérieur, Cuisine, Chantieeptmabstraits (Sci-
encéTechnologie), des types de personnes (Chef d’entreprise, FemreenRe asiatique,
Membre de gouvernement) ou méme des personnes spécifiques (Hu Joriall Rums-
feld). La collection TRECVid est organisée hots” vidéo d’une longueur de I'ordre de
guelques secondes ou quelques dizaines de secondes maximum, ettsemisient étre
annotés avec la présence ou I'absence des 346 concepts. Lesoshidtesdivers aussi,
pouvant étre acquis par n'importe qui, avec n'importe quel dispositits ddmporte quel
contexte.

La base vidéo associée a la campagne TRECVid est divisée en deux paigsrtie
de développement et une partie de test. Pour la partie de développemerttdtam est
fournie, dans le but de pouvoir entrainer des classifieurs supefgisgsourront déduire la
relation entre les descripteurs et la présence ou I'absence d’'un ceéceattique). Aprés
avoir extrait des descripteurs et entrainé des classifieurs supelesparticipants au con-
cours appliquent leurs algorithmes sur la partie test, et ils déduisent, pauechhot et
pour chacun des 346 concepts, un score de classification qui indigpelzabilité” pour
un shot, de contenir un concept. Sur la base de test, pour chaque tcdes@articipants
construisent ensuite une liste de maximum 2000 shots, en ordre décrdissenr “prob-
abilité” de contenir le concept (de la méme facon qu’une liste de pages wahd@ar un
moteur de recherche Internet). Finalement, la qualité de ces listes poueat@pept (il
faut que les shots qui contiennent vraiment le concept soient coéserrs le début de la
liste) est évaluée par les organisateurs du challenge, en utilisaréidsion moyenne par
inférence Yilmaz 2006 Yilmaz 2008.
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7.2.2 Lachaine de traitement

Nous présentons ensuite la chaine de traitement que nous utilisons au seimsdctium
IRIM. Méme si la chaine est appliquée sur la base TRECVid, elle peut étrdusteavec
des adaptations minimales a n'importe quelle autre collection vidéo. Les étapdessont
suivantes, présentées aussi dans la Figize

1.

Extraction de descripteura partir des shots vidéo; les descripteurs caractérisent
différents aspects (et modalités) de la vidéo, par exemple les couleurs dominantes,
les orientations spatiales dominantes, les principales directions de mouvement, les
sons, le texte superposé etc.

. Facultatif : uneoptimisation des descripteynsour améliorer les résultats de classi-

fication supervisée. L'optimisation consiste en une transformation suivatbiugte
puissance suivie par une Analyse en Composantes Principales (8ef@j[ 2013

. Classification superviséeles exemples annotés de la base de développement sont

utilisés pour entrainer des classifieurs supervisés (KNN - K plus psoatisins ;
MSVM - une approche multi-apprentissage basée sur des machines as«sttpport
(SVM) [Safadi 201]). Les classifieurs sont ensuite utilisés pour obtenir des scores
de classification sur la base de test. Un classifieur est entrainé et appligwhpaque
descripteur et pour chaque concept. La combinaison d’'un descriptéumeclassi-
fieur supervisé est appelésxpert”.

. Fusion des résultats KNN-MSVMiour un méme descripteur et un méme concept,

une moyenne pondérée est faite entre les scores en sortie du clagdifiéet ceux
en sortie du classifieur MSVM. On obtient ce qu’on appelle des expedSEB”.

. Fusion tardive: Comme les experts basés sur des descripteurs de tyfi@enis

encodent des informationsffirentes, les experts associés smmplémentairesOn
fait alors une fusion tardive pour combiner l'information venant de cégréntes
sources, pour améliorer les résultats d’'indexation.

. Facultatif : Les shots de la base TRECVid sont obtenus en décowgsavitiéos plus

longues selon les changements de plan. Il y a alors une corrélation ertoaiesus
présents dans des shots consécutifs d'une méme vidéo. On ajoute under@p
scoring tempore[Safadi 201] pour prendre en compte ce contexte temporel des
concepts dans les shots, afin d’'améliorer I'indexation.

. Facultatif : jusqu’a maintenant, nous avons traité les concepts indéperedd, sans

prendre en compte les éventuelles relations entre concepts. Une étape aeltktionn
defeedback conceptuffHamadi 201Bsert a prendre en compte le contexte séman-
tigue et améliore encore les résultats.

Nos contributions sont au niveau des étapes de description du contemuetidé
niveau de la fusion tardive. Nous allons en faire une trés courte désorigte I'état de

I'art.
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Ficure 7.2 — La chaine de traitement pour I'indexation sémantique, que nous utilisons pou

la collection TRECVid, au sein du consortium IRIM. Voir texte pour détails.
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7.2.3 Descripteurs pour le contenu vidéo

Les descripteurs ont le rdle de fournir des descriptions compactes des\agéc lesquelles
les classifieurs supervisés vont travailler. Idéalement, les descrigiecosient I'informa-
tion utile des vidéos et sont robustes aux variations ou perturbations qyiontapt pas
d’information (comme par exemple une caméra non stabilisée, variations d’éelaarag
gle de prise de vue etc.).

Les descripteurs peuvent représentéiédentes informations, par exemple les couleurs,
les textures, les formes et contours, le mouvement ou l'audio. Certainsmisreéman-
tiques sont mieux détectés par certains descripteurs (la couleur vertedgiquer la présence
de la végétation) et d’autres concepts sont mieux détectés avec d'&it@sdept “Dancer”
est mieux détecté avec un descripteur de mouvement). Les concepts de TeRESVid
étant tres nombreux et hétérogenes, on aura besoin d’une batterigctipteeirs complé-
mentaires pour capturer cette grande diversité d’informations.

Parmi les types de descripteurs, nous pouvons mentionner :
e descripteurs de couleur composés d’histogrammes de couleoss¢lin 2008

e descripteurs de texture : histogrammes de “local binary patte@jald 1996 Delezoide 2011
Zhu 20113, bancs de filtres Gaborirner 1986, wavelets quaternionique&psselin 2008

e descripteurs audio : le spectre audio a court terme sous la forme flcieots
MFCC [Ballas 2012b;

e descripteurs spatiaux et spatio-temporels basés sur des caractéristigless (iot-
isant souvent le modéle Sac-de-Mots (Bag of Words, Bo@¥¢ufka 2008

Nos travaux étant focalisés sur la derniére catégorie, nous la détaillossadsuite.

7.2.3.1 Généralités concernant le modele Sac-de-Mots

Sion veut caractériser une image, au lieu d’essayer de caractérisagd’ dans son entier,
nous pouvons sélectionner de petites sous-parties (des caractéristicples)let carac-
tériser celles-ci, puis ensuite d'agréger ces caractéristiques. Dans |éerSadede-Mots
(Bag of Words, BoW), dont le principe est illustré dans la Figu:I'image est représen-
tée comme une collection non-ordonnée de caractéristiques locales.

En pratique, pour créer un descripteur BoW, les étapes sont les sgiyalotErées en
Figure7.3) :

1. choisir un jeu de caractéristiques locales, habituellement positionnéesrapes u
régulier dans I'image (une grille dense), ou en utilisant un détecteur desmbin-
térét;

2. décrire chaque caractéristique locale par un descripteur local (crgdesr de petits
fragments d’'image) ;
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Bag of ‘words’

Ficure 7.3 — Principe de base du modéle Sac-de-Mots : une image est représenide c
une collection non-ordonnée de petites sous-parties (deux yeux, uaneekouche etc.).
La position de ces éléments n’est pas prise en compte dans ce modele. Imagaprde :
Li Fei-Fei, Rob Fergus, and Antonio Torralba. Recognizing and leaymibject categories
- short course. 2009

3. sur une collection d’'images (ou de vidéos) d’entrainement, extraireceirelén
grand nombre de caractéristiques locales, et déduivecabulairepar classification
(clustering, par exemple-meangArthur 2007) ;

4. pour une imageidéo a représenter, on sélectionne un jeu de caractéristiques locales,
on calcule leurs descripteurs locaux, on approxime le descripteur au naotaleu-
laire le plus proche, et on fait umistogramme de mots du vocabuladyei apparais-
sent dans I'imageidéo. Cet histogramme constitue le descripteur Sac-de-Mots de
l'image ou vidéo.

L'avantage du modeéle BoW par rapport a une représentation globale de I'iretige e
robustesse aux occlusions partielles ; de plus, parce que les positidivesalas éléments
sont ignorées, le modeéle est robuste aux changements de point de wed@i@mations.

7.2.3.2 Caractéristiques locales pour BowW

Les approches qui décrivent les caractéristiques locales spatialessgasthgrammes des
orientations des gradients d’intensité (SIEDfe 2004b, SURF Bay 2008) ou par des
comparaisons entre les intensités des pixels d’'un petit voisinage (BRI&&Hder 201])
ORB [Rublee 201], BRISK [Leutenegger 20J1FREAK [Ortiz 20173) donnent de bons
résultats pour la classification d'images et la reconnaissance d’oBgatsi{a 2004

Malgré leurs bonnes performances sur des images statiques, les camquésritbo-
cales mentionnées ci-dessus n’exploitent pas 'information additionnelle cerdens des
vidéos : les changements se faisant dans le temps, le plus important étant lenantve
Si I'on veut détecter dans une vidéo un concept sémantique qui n'apatation avec le
mouvement, les caractéristiques statiqgues marchent relativement bien. Ellparstotitre
peu dficaces en termes de reconnaissance d’'actions.
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| Human annotations |’N

Training
datasety | .. —p —> High Level Features
/ learning
Local Bag of
features Vcl)catt>u[ary words
extraction clustering extraction

Test
Ir_nages or dataset HLF
videoframes N _ | | >~ | Detection

Ficure 7.4 — Chaine de traitement pour le modéle Sac-de-Mots (BoW)

Pour cela, le modéle BoW a été étendu a d’autres classes de caractéristigles lo
dans le but d’inclure non seulement de l'information spatiale, rspetio-temporelle
Parmi les caractéristiques spatio-temporelles, nous pouvons évoquer :

e lespoints d'intérét spatio-temporeltaptev 2003Ke 2005 Dollar 2005 Niebles 2008:
des points “intéressants” non seulement d’'un point de vue spatial (comroeinu
proéminent) mais aussi temporel (accélération, changement de direction du-mouve
ment) ; le voisinage spatio-temporel de chaque point peut étre ensuite déadp
dérivées spatiales/eu temporelles, par des histogrammes d’orientation du gradient
d’intensité ou par des orientations du flot optiquagtev 2007;

e MoSIFT[Chen 2009est une extension du descripteur de caractéristique locale spa-
tiale SIFT (SIFT est basé sur des histogrammes des orientations du grHititmt-
sité). MoSIFT concatéene au vecteur SIFT un vecteur obtenu a partrigéesations
du flot optique, pour avoir une description non seulement de 'aspectioas aussi
du mouvement local ;

e trajectoires de points suivisdes points peuvent étre suivis le long des trames vidéo,
pour construire des trajectoires. Ces trajectoires capturent une irfonda mouve-
ment trés riche, qui peut servir a la reconnaissance d’actibasg 2011Ballas 201].

7.2.4 Stratégies de fusion tardive

Apreés avoir extrait des descripteurs pour les shots vidéo, des classifigpervisés sont
appliqués pour obtenir des scores d’appartenance a un concepth@mue shot vidéo.
Jusqu’a maintenant, lesftérents descripteurs n'ont pas été exploités conjointement, et
pour une collection vidéo flicile (comme TRECVid), cela ne fit pas pour obtenir des
bons résultats. Il faut alors fusionner les informations venant de igemas diférents,
pour profiter de leur complémentarité afin d’améliorer les résultats.

Nos travaux se focalisent sur léssions tardivesqui fusionnent les scores de clas-
sification supervisée donnés par les “experts” de la FiguzeD’autres types de fusions
existent, notamment les fusions précoces, qui combinent les descriptantdaclassi-
fication supervisée. Cependant, comme |'entrainement d’'un classifiearvié sur un
descripteur de grande dimension edfidie, et la pondération entre chaque partie de ce
grand descripteur n’est pas triviale non plus, nous préférons $emfitardives.
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Les fusions tardives peuvent étre aussi simples qu’'une moyenne arithm@oqaérée
ou non) des scores de classification venant d@rints experts, ou peuvent prendre en
compte les interdépendances entre les experts, comme dans l'intégralegde (tville 2004].
Un algorithme de fusion tardive par moyenne pondérée qui donne galeehbons résul-
tats est AdaBoostHreund 1997Schapire 1999 qui combine les experts d’un telle fagon
gue la complémentarité est bien exploitée.

7.2.5 Améliorations proposées

Partant de cette analyse de I'état de I'art (voir Cha@tpeur plus de détails), nous avons
identifié les besoins suivants pour la problématique de l'indexation multimédia :

e un besoin dealescripteurs spatio-temporet®our le contenu vidéo, qui profitent de
I'information temporelle additionnelle et améliorent les résultats d’indexation, sans
trop augmenter la complexité de calcul ; ces descripteurs sgéoériquescapables
de détecter non seulement des concepts statiques, mais aussi dynanvigiee a
bonnes performances;

e des stratégies diusion d’informationadaptées a notre contexte de travail, capa-
bles de gérer une grande diversité d’experts et d’exploiter leur compténité afin
d’améliorer les résultats ;

La facon dont nous adressons ces deux besoins constitue la contriteitiette thése :

e Un ensemble de descripteurs spatiaux et spatio-temporels basés sur desisarac
tiques locales SIFBURF dans un modéle Sac-de-Mots (BoW) est proposé dans le
Chapitre3. Ces descripteurs, basés sumplé-traitement des vidéos avec le mod-
ele de rétine humainde [Benoit 201(), ont des taux de reconnaissance de concepts
améliorés et ils sont plus génériques, capables de fonctionner avecuiemeset
des concepts spatiaux, mais aussi spatio-temporels.

e Dans TRECVid, il y a trés peu de descripteurs dédiés au mouvement, admause
la grande complexité de calcul nécessaire pour analyser des vidé@ppartraux
images statiques. Nous proposons dans le Chapitree batterie de descripteurs de
mouvement qui sont deSacs-de-Mots de trajectoireke points suivis, qui donnent
une description fortement temporelle du contenu vidéo.

e Nous avons a notre disposition non seulement les descripteurgSEIRF BoW
utilisant un modele de rétine et les descripteurs BoW de trajectoires, mais aussi
d'autres descripteurs trés divers fournis par le groupe IRIM. Nogworons dans
le Chapitreb des stratégies desion tardive automatiqupour exploiter cette diver-
sité d'experts.

7.3 Pré-traitementrétinien pour descripteurs SIFT/SURF BowW

Comme nous avons vu précédemment, les descripteurs Sac-de-Mots $B6WNgu SURF
donnent de bons résultats dans la détection ou la reconnaissance doljetsceénes, et
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/ g Bag of learning
Retinal Local Vocabulary agdo
preprocessing features clustering words
Images or HLF
Detection

extraction
video frames Test S \L [
Ficure 7.5 — Chaine de traitement modifiée pour I'extraction de descripteury SURIF
BoW : un prétraitement rétinien des vidéos est ajouté avant I'étape d'Batrate carac-
téristiques locales SIFT ou SURF.

dataset

ils sont classiquement les meilleurs descripteurs dans TRE@idr[2012. Cependant,
malgré ces bonnes performances, ces descripteurs peuvent &irbgmepar les dégrada-
tions d’'image (bruit, artéfacts de compression). De plus, ils ne peuverntaedBaforma-
tion spatiotemporelle ce qui les rend moins appropriés pour la reconnaissance de concepts
liés au mouvement.

Nous proposons de rendre les descripteurs SBRF BoW plus robustes aux dégra-
dations d'imaggridéo et également de les rendre sensibles au contenu $paipmrel
Pour cela, nous utilisons le modéle de rétine humaind3degit 2010 pour prétraiter les
vidéos avant d’extraire les Sacs-de-Mots, comme illustré dans la Fighire

Dans la suite, nous décrivons le comportement du modele de rétine utilisé, puis com-
ment nous utilisons ce comportement pour construire des descripteur’sSBIRF BoW
améliorés.

7.3.1 Le modéle rétinien

Le modele rétinien deBenoit 2010 que nous utilisons traite les vidéos d’entrée et génére
deux canaux de sortie, appelés le canal (ou la ymaeyocellulaireet le canal (voiejnag-
nocellulaire

Le canalparvocellulairetraite les détails spatiaux et les couleurs. Il normalise les
couleurs, augmente le contraste local, répond bien aux signaux temporélEnestants
et il lisse les variations temporelles rapides. Une propriété intéressanteeckt ganal
parvocellulaire transmet d’abord une information spatiale a faible résolutiom gnsuite
transmettre I'information de plus haute résolutiofffge“coarse to fine”) : quand la ré-
tine est initialisée (quand on “ouvre les yeux”) ou quand un événemetibgpmporel
se produit (apparition ou mouvement d’un objet), la rétine transmet uniquemeiaisiessb
fréquences spatiales (une image lisse, mais avec un bon rapporflsigitgl plus tard,
guand la réponse du canal se stabilise, des fréquences spatialeayiksdont transmises
pour une analyse plus détaillée du contenu.

D’un point de vue d'implémentation, le canal parvocellulaire consiste en wuesée
d'images avec des détails spatiaux mieux mis en évidence, des couleugeesrides
détails plus visibles dans les zones sombres, un bruit réduit et des @rtfammpression
vidéo réduits également. Un exemple ddtké du canal parvocellulaire sur une vidéo est
donné dans la Figuré.6. L'effet “coarse to fine” peut étre observé sur le visage de la
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personne et sur les nuages de I'arriere-plan, pour lesquels les détailaméliorés et la
luminance globale atténuée apres un certain temps (Flg8le Les nuages sont & peine
visibles dans les Figures6aet 7.6k mais ils sont plus visibles dans la Figut&d

Concernant les limitations du modeéle, le canal parvocellulaire ne peut pas totalemen
éliminer toutes les perturbations : il diminue le bruit introduit par les capteurs@hégues,
mais pour lesfets de compression, sile taux compression est trop grandié¢s e blocs
ne peuvent pas étre complétement éliminés, ils sont justes lissés.

L'autre sortie du modeéle rétinien est le canahgnocellulaire Il ne distingue pas les
couleurs, mais il est sensible aux événements spatio-temporels, réponuefuraax sig-
naux transitoires (mouvement, apparition ou disparition d’'un objet etc.) et faibleaurn
signaux ayant des variations lentes. Concernant I'évolution de la régoagaocellulaire,
nous pouvons aussi parler d’'une phase transitoire et d’'une phatemtar ce canal. Juste
apreés l'initialisation de la rétine, les fréquences spatiales basses sont tessimisourt
moment, donnant une réponse forte sur les grandes frontiéres spatsajesjla fin de
la phase transitoire (Figuré66. Ceci permet d'utiliser le canal magnocellulaire comme
un détecteur de zones spatiales potentiellement intéressantes. Quane larrgdrdans la
phase stable, ce canal répond uniquement aux zones en mouvemerg {Fed ce qui
fait que dans cette phase, le canal magnocellulaire peut étre utilisé commiectedéde
zones temporellement transitoires (ce qui correspond d’habitude au mouvement)

Concernant les limitations du modéle, l¢kets de blocs séveres peuvent provoquer de
fausses alarmes sur le canal magnocellulaire, mais les détecteurs de potététclas-
siques ont aussi ce probléme. Cependant, le filtrage spatio-temporel tiedaidinue les
perturbations, ce qui conduit tout de méme a un nombre plus faible de faléteesons.

Segmentation de blobs d’'intérét : En se basant sur la sortie du canal magnocellulaire,
nous utilisons un algorithme qui nous permet de sélectionner des zoneséat'{btébs) a
partir des vidéos. L'algorithme, plus complexe qu’un simple seuillage du campaloual-
lulaire, est décrit en détail dans la Sect®h.3.2 Il permet de sélectionner des blobs sta-
bles dans le temps et avec moins de sélections accidentelles dues au bruit.régigles,
cet algorithme sélectionne des zones non seulement intéressantes pér aappseulil
fixe prédéfini, mais intéressantes par rapport a leur voisinage et aoletaixte (voisinage
encore plus grand). Des exemples de blobs segmentés sont donnéssdégsares’.6g
et7.6h: 5 trames apres le début du traitement, les contours de grande taille sotibséle
nés, ce qui correspond a la “saillance” (ce n'est pas une saillaacssi’haut niveau que
celle décrite dans I'état de I'art, mais un modéle plus basique et moins coutetialesp
40 trames apres le début, uniquement les blobs qui correspondentras«eromouvement
sont sélectionnés.

7.3.2 Descripteurs SIFJSURF BoW améliorés proposés

Comme mentionné précédemment, les Sacs-de-Mots utilisant des caractéristigless lo
purement spatiales (comme SIFT ou SURF) ne sont pas bien adaptés alwmissance de
concepts liés au mouvement. En plus, ils sont sensibles aux dégradationsediiomage
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(c) Sortie parvocellulaire, 5 trames apres le d&dutSortie parvocellulaire, 40 trames apres le
début

(e) Sortie magnocellulaire, 5 trames apréff)lSortie magnocellulaire, 40 trames aprés le

début début

(g) Blobs d'intérét segmentés, 5 trames apré)IBlobs d'intérét segmentés, 40 trames apres le
début début

Ficure 7.6 — Exemple de pré-traitement rétinien, 5 et 40 trames aprés l'initialisation de la
rétine. Aprés 5 trames, la rétine est encore dans sa phase transitoire : |anvaieefiu-

laire transmet beaucoup de luminance et les détails ne sont pas encoregsmélioméme
temps, la voie magnocellulaire répond aux grandes structures spatiales.48pirames,

la rétine est dans la phase stable : la voie parvocellulaire transmet moins de lusndéthanc
augmente les détails spatiaux ; en méme temps, la voie magnocellulaire répondegénéra
ment aux zones en mouvement (le visage de la personne qui parle). Lesdhtabrét
segmentés sont obtenus en traitant la sortie de la voie magnocellulaire : aEnéeS§, on
sélectionne des zones potentiellement intéressantes d’un point de vué spapaes 40
trames, on sélectionne plut6t les zones en mouvement.
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le bruit ou les artefacts de compression. Pour améliorer ces aspects, opasgms de
prétraiter les vidéos avec le modéle de rétine avant d’extraire des catapiésdocales,
comme vu dans la Figuré5et nous construisons les descripteurs suivants.

7.3.2.1 Descripteurs d'image-clé

Une premiére classe est celle des descripteurs Sac-de-Mots avearae®ristiques lo-
cales collectées a partir d’'une seule image clé du shot vidéo. Nousaléches images
avec des caractéristiques locales de type OpponentSIFT :

e SIFT : caractéristiques OpponentSIFT collectées sur une grille dense appliguée s
l'image clé (Figure7.79 ; c’est le descripteur de référence (sans prétraitement ré-
tinien) ;

e SIFT retina: au lieu de collecter les caractéristiques OpponentSIFT sur I'image
originale, on les extrait sur la sortie parvocellulaire au moment de I'image clé (Fig-
ure7.7b ; 'avantage est de bénéficier des propriétés de réduction des @it
sur la voie parvocellulaire, et de 'augmentation du contraste local ;

e SIFT multichannel le canal magnocellulaire encode des informations liés au mou-
vement, donc une signature SIFT collectée sur ce canal donne dertfigion sur
le mouvement local ; nous concaténons la signature locale OpponentSi¢andLl
parvocellulaire avec la signature locale SIFT, au méme endroit, du canal cgkgno
lulaire, pour construire des caractéristiques locales spatio-temporelles (Figore

7.3.2.2 Descripteurs a fenétres temporelles et masquage de blobs

Par rapport a la classe précédente, nous ne prenons plus une sedernmagune série
d'images (entre 20 et 40, en fonction du paramétrage) autour de I'image pkitia
desquelles nous collectons des caractéristiques locales. En plus, noasaititifyorithme
de segmentation de blobs présenté précédemment pour ne collecter quadesistiques
qui sont potentiellement plus intéressantes. Nous obtenons les dessripizants :

e SIFT simple maskingcaractéristiques OpponentSIFT collectées sur les images orig-
inales, mais dans une fenétre temporelle et avec une sélection de zonesamnté&es
(Figure7.89;

e SIFT retina masking similaire au précédent, mais les caractéristiques locales sont
collectées sur la voie parvocellulaire (Figut8&b) ;

e SIFT multichannel maskingtilise des caractéristiques composées spatio-temporelles
(parvo-magno) (Figuré.89 ;
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Original keyframe
(@) SIFT

SIFT retina
Parvocellular keyframe
(b) SIFT retina
Compound
features
SIFT multichannel

Magnocellular keyframe

(c) SIFT multichannel

Ficure 7.7 — Descripteurs d'image-clé utilisant le pré-traitement rétinien
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Original video frames \

ﬁ\ SIFT simple masking

Areas of interest mask

(a) SIFT simple masking

Parvocellular frames

-\ o

Areas of interest mask

(b) SIFT retina masking
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Parvocellular frames

Areas of interest mask

3

Magnocellular frames Magnocellular masked frames

(c) SIFT multichannel masking

Ficure 7.8 — Descripteurs a fenétres temporelles avec masquage de blobs
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TasLe 7.1 — Précision moyenne par inférence (infAP) des descripteurs 94otdeitilisant
la rétine, sur tous les 346 concepts de la base. On observe le gain agpadport a la
référenceSIFT qui n'utilise pas de prétraitement rétinien.

Descripteur infAP gain
SIFT 0.0830| baseline
SIFT retina 0.0904 9%
SIFT multichannel 0.0878| 5.7%
SIFT retina masking 0.0843 2%
SIFT multichannel masking 0.0857| 3.2%

7.3.3 Validation sur la base TRECVid 2012

Nous testons nos améliorations proposées sur la partie de développemdrasieTRECVid
SIN 2012, avec des descripteurs Sac-de-Mots basés sur OpplbrieSir Chapitre3
pour les résultats avec OpponentSURF sur TRECVid 2010 et 2011). sarende perfor-
mance utilisée est la précision moyenne par inférence (inf&iRhpaz 2006 Yilmaz 2009.

La Table7.1 montre les résultats globaux (infAP moyennes sur tous les concepts de la
base). On peut voir que tous les descripteurs utilisant notre prétraitemiedes perfor-
mances globales supérieures a celles de I'approche basique.

Concernant les résultats concept par concept, méigd=3i retinaest globalement le
meilleur, il n’est pas le meilleur pour tous les concepts. Par exer8pd, est le meilleur
pour 48 conceptsSIFT retinapour 50 conceptsSIFT retina maskingour 15 etSIFT mul-
tichannel maskingour 41. Ceci justifie I'extraction de I'ensemble du jeu de descripteurs
et I'exploitation de leurcomplémentarité travers une fusion. Par exemple, une fusion
par moyenne arithmétique des scores de classification (chaque “expertigatey’infAP
jusqu’'a 0.1220.

7.3.4 Conclusions

Les descripteurs proposeés, basés sur des Sacs-de-Mots déristiques visuelles SIFT
ou SURF, peuvent profiter du prétraitement rétinien pour améliorer leufsrpamnces
et pour obtenir une meilleure sensibilité au contenu sgatigeorel(surtout avecSIFT
multichannel masking

Le chapitre4 enrichit la description spatio-temporelle des shots vidéo en ajoutant des
descripteurs Sac-de-Mots de trajectoires, ce qui augmente encora glessibilité aux
événements (concepts) spatio-temporels.

7.4 Descripteurs Sac-de-Mots de trajectoires

Les trajectoires sont des indices importants pour identifier les types de maugenh@nc
les types d’actions présentes dans les vidéos. Par rapport a une ristiqae spatio-
temporelle locale vue dans la section précédesife { multichanng| une trajectoire donne
une information moins locale sur le mouvement. Une trajectoire peut suivre uroobjet



7.4. Descripteurs Sac-de-Mots de trajectoires 143

point d’intérét pendant une durée plus grande (allant jusqu’a geglsecondes), par rap-
port & une caractéristiguglFT multichannebjui décrit le mouvement local autour d’'un
point dans une seule trame vidéo.

7.4.1 Principe

Nous proposons donc d’extraire des trajectoires en faisant dudwiipoints d’intérét le
long des trames vidéo. Nous considérons chaque trajectoire d’unigliéot @omme une
caractéristique locale, et nous regroupons ces trajectoires dans un fBadéle Mots. La
chaine de traitement pour extraire les trajectoires est la suivante :

1.

choisir un jeu de points d’'intérgour les suivre au long du shot vidéo ; nous util-
isons le détecteur de points d'intérét Good Features to Track (GFSM)1P94b

pour détecter de temps en temps de nouveaux points pour initialiser de nouvelles
trajectoires;

. suivre chaque point d’intéré&tu long du shot vidéo en utilisant le flot optiqugnjuguet 2000

jusqu’a ce que la trajectoire associée devienne trop longue et entraregrenr de
suivi ou jusqu’a ce que le point quitte I'image ;

. pendant le suiviestimer le mouvement de la caméma chaque point des trames

vidéo, pour pouvoir le prendre en compte plus tard quand les trajectoirest se
décrites ;

. ajouter de nouveaux points a suivde temps en temps ou lorsque le nombre courant

de points actifs devient trop petit;

. alafin du shot vidésélectionneuniquement les trajectoires qui ont du mouvement

et lespost-traiterpour éliminer les zones statiques au début et a la fin;

. pour chaqgue trajectoirealculer des descripteurs de trajectaifgar exemple un his-

togramme d’orientations du mouvement le long de la trajectoire (d’un point de vue
du modele BoW, soit I'équivalent de calculer la signature SIFT d'unectéia-
tique locale spatiale) ; plusieurs descripteurs de trajectoire sont profsaseSec-

tion 7.4.2 chacun donnant lieu & un modéle BoW distinct ;

. pour chaque facon de décrire une trajectoire (voir point prétgdgmérer un mod-

éle BoW pour lequel les trajectoires sont les “caractéristiques localedéceite le
shot vidéo par un histogramme de “mots-trajectoires”.

7.4.2 Descripteurs de trajectoire

Pour caractériser une trajectoire, nous calculons les descriptevasitsujdétails dans la
Sectiord4.1.9 :

e le descripteur spatial BRIEFCalonder 201pdu premier point de la trajectoire ;

e deuxhistogrammes des directions de mouventefdng de la trajectoire ;
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e deuxhistogrammes des directions d’accélératleriong de la trajectoire ;

e vecteurs normalisés de déplacemleribng de la trajectoire : les vecteurs de déplace-
ment d’'une image a I'autre sont re-échantillonnés en temps pour avoir cissdat
déplacements totaux constants;

e vecteurs normalisés d’acceélératioleslong de la trajectoire (idée similaire) ;

pour chaque approche, les informations fournies par ces descripteuiffnalement présen-
tées selon une représentation en Sac de Mots spécifique.

7.4.3 Validation sur la base KTH

Nous avons fait une premiere série d’expérimentations sur la base KTeésuspécialisée
sur la reconnaissance d’actions. Cette base comporte 6 actions (boxaudapm@giter
les mains, trotter, courir, marcher) réalisées péfiédentes personnes dans des contextes
simples. Les résultats sont donnés dans la Tal2e

Les meilleurs résultats sont obtenus pour les vecteurs normalisés deenéptacet
ceux d’accélération, ainsi que pour I'histogramme de directions de mouvenmanuav
bin zéro. Méme si ces résultats ne sont pas au méme niveau que leshaspex plus
performances de I'état de I'art sur cette base (qui peuvent dé@Eede précision), nos
rappelons que nous n'avons fait aucune optimisation, car notre buteibhdindexation
sémantique sur une base beaucoup plus générique, comme TRECVidneappioche
non-optimisée, nos résultats sont bons etils valident I'approche, epasasns maintenant
aux expérimentations sur la base TRECVid.

7.4.4 Expérimentations sur la base TRECVid SIN 2012

Pour cette série de tests, nous avons fait certaines optimisations de pasgatraotre
méthode (détails dans le Chapitteet nous avons introduit une extension du modéle Sac
de Mots.

Dans le modele Sac de Mots classique, toutes les trajectoires ont le méme pajds lors
I'on génére I'histogramme des mots visuels (mots-trajectoires dans notre egshdleme
sur la base TRECVid est qu’elle est tres générique et que les shotgpadéent étre assez
longs par rapport & la durée d’une action isolée. La conséquenceiediequcoup de
trajectoires ne sont pas pertinentes pour une action qui ne dure qutileciaetion de la
durée du shot. Nous proposons donanwdele de Sac de Motgfdrentiel qui redonne du
poids aux types de mouvements qui n’apparaissent qu’a certains momergsdisaiot
vidéo, dans le but de renforcer leur importance, méme dans les shotsGatigsapproche
est détaillée dans la SectidtB3.2

La Table 7.3 montre les résultats globaux (moyenne sur tous les concepts) évalués
sur la base TRECVid 2012y, avec entrainement sur 2012x. Méme silegvaemblent
basses, elles sont bien au-dessus des performances obtenues tiksge aléatoire. Cela
est encourageant surtout en sachant que beaucoup de coreéptzade TRECVid n'ont
pas nécessairement un lien direct avec le mouvement. Malgré le nombre edoitabpts
pouvant étre associés au mouvement, 129 concepts (sur un total den8d6)des résultats
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TasLe 7.2 — Résultats de reconnaissance d’actions sur la base KTH avec thpBac de
Mots de trajectoires, en utilisantfirents descripteurs de trajectoire. La taille de vocabu-
laire est le nombre de “mots-trajectoires” utilisés dans le modéle Sac de Mots.disiqué

de classification est donnée pour les descripteurs sans prendre@njgte e mouvement
de la caméra, ainsi qu’avec une compensation du mouvement de la caméra.

descripteur de trajectoire taille vocab.| P (%) | P (%) comp. mouv. caméra
hist. dir. mouv. 32 67.13 62.04
64 71.30 67.59
128 69.44 70.83
hist. dir. mouv. avec bin 0 32 79.17 70.37
64 77.78 73.15
128 79.63 75.93
hist. dir. accel. 32 62.96 51.39
64 61.57 51.85
128 63.43 54.63
hist. dir. accel. avec bin 0 32 59.26 53.24
64 62.04 55.56
128 61.57 54.17
vect. déplacement 8 échantillons 96 75.46 75.00
192 81.94 76.39
384 81.84 75.00
vect. déplacement 16 échantillons 96 68.98 72.69
192 76.39 75.46
384 80.09 76.39
vect. accél 7 échantillons 96 75.93 62.96
192 70.83 67.13
384 68.52 61.57
vect. accél 15 échantillons 96 59.72 57.87
192 66.67 60.65
384 64.81 57.87
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TasLe 7.3 — Résultats globaux (infAP moyennés sur tous les 346 concepts) BICVIR
2012y (entrainement sur 2012x), pour lefdtientes descriptions possibles d’'une trajec-
toire, ainsi que quelques descriptions concaténées. “c.c.” signifie I'édgla compensa-
tion du mouvement de la caméra, fidisignifie des Sacs de Motsftirentiels. Les résul-
tats en gras mettent en évidence les améliorations significatives grace a la satigquedu

mouvement de la camérg@at aux sacs de motsftirentiels.

descripteur de trajectoire vocab. K| AP | APc.c.| AP diff. | AP c.c. dif.
BRIEF du début traject. 256 0.0588 - 0.0489 -
512 0.0564 - 0.0473 -
hist. dir. mouv. 64 0.0367| 0.0371| 0.0360 0.0364
Q) 128 0.0385| 0.0384 | 0.0377 0.0378
256 0.0391| 0.0386 | 0.0385 0.0373
hist. dir. mouv. avec bin 0 64 0.0346| 0.0281| 0.0341 0.0321
2 128 0.0366| 0.0285| 0.0368 0.0338
256 0.0367| 0.0282| 0.0379 0.0340
hist. dir.accel. 64 0.0396| 0.0358| 0.0378 0.0351
3 128 0.0403| 0.0375| 0.0391 0.0371
256 0.0408| 0.0386 | 0.0392 0.0377
hist. dir. accel. avec bin 0 64 0.0281| 0.0242| 0.0303 0.0283
4 128 0.0304| 0.0247 | 0.0328 0.0300
256 0.0311| 0.0254 | 0.0336 0.0311
vect. dépl. 8 échantillons 192 0.0379| 0.0408| 0.0370 0.0413
(5) 384 0.0385| 0.0425| 0.0382 0.0421
768 0.0389| 0.0420| 0.0386 0.0411
vect. dépl. 16 éch. 192 0.0374| 0.0413| 0.0366 0.0411
(6) 384 0.0386| 0.0419| 0.0386 0.0420
768 0.0381| 0.0429| 0.0379 0.0418
vect. accél. 7 éch. 192 0.0403| 0.0396| 0.0387 0.0372
@) 384 0.0413| 0.0412| 0.0392 0.0376
768 0.0412| 0.0403| 0.0390 0.0380
vect. accél. 15 éch. 192 0.0410| 0.0421| 0.0398 0.0388
(8) 384 0.0428| 0.0431| 0.0413 0.0411
768 0.0444| 0.0436| 0.0430 0.0418
combinaisons : vocab. K| AP | APc.c.| AP diff. | AP c.c. dif.
Cl=1+2+3+4+5+6+7+8 192 0.0423| 0.0443| 0.0416 0.0439
384 0.0438| 0.0451| 0.0436 0.0440
C2=Clnonc.c+ 192 0.0445| (same)| 0.0463 (same)
+ Cl avec c.c. 384 0.0472| (same)| 0.0483 (same)
C3=BRIEF+ (1 nonc.c.) 1024 | 0.0551 - 0.0453 -
2048 | 0.0514 - 0.0420 -
C4=BRIEF+ (1 nonc.c.+ 1024 | 0.0541| (same)| 0.0451 (same)
+ (Lavecc.c.) 2048 | 0.0517| (same)| 0.0423 (same)
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supérieurs a I'aléatoire. Parmi eux, 30 concepts ont été mieux déteetégradescripteur
basé sur des trajectoires qu’avec un descripteur plus spatial c&ifigetinavu dans la
section précédente.

Nous avons montré aussi que leffélients descripteurs basés sur des trajectoires sont
complémentaires, et méme une fusion tardive simple, par moyenne arithmétique des dif-
férents “experts” que nous obtenons, arrive a exploiter cette complént&etcaugmente
I'infAP jusqu’a 0,0670.

7.4.5 Conclusion

Nous avons montré que notre approche avec des Sacs de Mots de tiegefttoationne
pour la reconnaissance non seulement d’'actions sur une base simpl¢, (daid aussi
pour la reconnaissance de concepts sémantiques plus génériques ase [BRECVid,
méme si intuitivement, ces concepts ne semblent pas liés au mouvement. Levaeckes
pourront étre encore améliorées en faisant des optimisations additionneliast Dette
thése, le colt de calcul élevé exigé pour chaque expérimentation nous a limiééem-
bre de configurations testées. Dans tous les cas, I'approche est vahdées et’ons montré
gu’'un gain d'infAP peut étre obtenu en faisant des fusions tardidass la section suiv-
ante, nous explorons plus en détail les approches de fusion pour maximigoitation
de la complémentarité entrefifirents descripteurs.

7.5 Fusion tardive de scores de classification

Comme nous I'avons vu précédemment, un seul “expert” (descriptetnode slassifieur
supervisé) ne peut pas étre le meilleur pour chaque concept ; ndoisspalors d’une com-
plémentarité au niveau des concepts. En plus, méme pour un seul caectihs experts
peuvent mieux le détecter dans certaines conditions que dans d'autusspartons alors
d’'une complémentarité au niveau du contexte. Pour ces raisons, etlgeniraine chaine
de traitement universelle, beaucoup de systéimasnnentun grand ensemble d’experts,
chacun basé surfiiérents descripteurs et éventuellement aussi avireints classifieurs
Supervisés.

Dans la chaine de traitement que nous utilisons, nous combinondi@esmies infor-
mations en faisant defsisions tardivesapres I'étape de classification supervisée, comme
illustré dans la Figur&.2

7.5.1 Principes

Nos approches de fusion tardive partent de la remarque suivahtg eeKantor:

Les [experts] qui donnent des sorties dissimilaires mais avec desrparfoes
similaires vont plus probablement pouvoir constituer des fusions tardives s
ples et éicaces.



148 Chapitre 7. Résumé

Agglomerative clustering
fusion

AdaBoost score-based
fusion

AdaBoost rank-based Select the one that's best Fused
fusion on the training set scores

Weighted average
fusion

FUSEB “experts”

FUSEB scores
SIFT Bow

FUSEB scores
color histogram

> Best expert per concept

Ficure 7.9 — Approche de fusion tardive proposée, appliquée indépendammerntaque
concept a détecter : cing fusions sont appliquées en parallele sur Ertsestigntrée, et la
fusion qui a donné les meilleurs résultats sur la base d’entrainementessiositée afin
d’ étre utilisée pour la base de test.

C’estadire que les experts qui donnent des infAP similaires, mais quitditées concepts-
cibles dans des contextesidrents, ont plus de chance de donner une augmentation de per-
formance en faisant une fusion tardive par moyenne arithmétique (pohdésescores.

En se basant sur cette idée, dans le contexte de TRECVid, notre apptedhsion
tardive comporte les étapes suivantes :

1. regroupement d’experts élémentaires qui sont similaires;

2. fusion intra-groupe, qui donne un seul expert pour chaquepgrpces deux étapes
ont le rle d’équilibrer les diérentes classes d’experts;;

3. fusion finale inter-groupe, qui donne le gain principal de perfooaam fusionnant
les groupes (qui sont complémentaires a cause de la dissimilarité entre [pegrou

Nous appelons notre approche de fusi@groupement agglomératifet nous étudions sa
performance en fusionnant un grand ensemble d’experts fournis pansertium IRIM.
De plus, nous testons aussi deux fusions AdaBdesiind 199F, une moyenne pondérée
simple et une sélection du meilleur expert par concept. A la fin, nous ajoutensouiche
de fusion supplémentaire, qui combine les résultats de toutes ces appooche illustré
dans la Figur&'.9.

7.5.2 Résultats sur la base TRECVid 2013

Nous avons fait une premiére série d’expérimentations, qui nous a peemnmetire en
évidence la complémentarité entre les descripteurs spatio-temporels basésSacslde



7.5. Fusion tardive de scores de classification 149

TasLe 7.4 — InfAP (moyenne sur tous les concepts) pour l&gdintes méthodes de fusion
tardive : basique (sans aucun post-traitemeriRS (avec re-scoring temporel)RS+CF
(avec RS suivi par feedback conceptuel), #F+RS +RS+CF suivi par un deuxiéme
re-scoring temporel).

basique +RS +RS+CF | +RS+CF+RS

Fusion hiérarchique manuelle 0.2576 0.2695 0.2758 0.2848
AdaBoost basé sur scores 0.2500 0.2630 - -
AdaBoost basé sur rangs 0.2346 0.2534 - -
Regroupement agglomératiff  0.2383 0.2516 - -
Moyenne pondérée 0.2264 0.2409 - -

Meilleur expert par concept 0.2162 0.2367 - -
Selected best from 5 above 0.2495 0.2631 - -

Mots SIFT utilisant la rétine, et les Sacs de Mots de trajectoires. Sur la b&S8VIR SIN
2012, I'algorithme de fusion mentionné précédemment nous a permis d’augtiafaer
de 31% par rapport au meilleur “expert” par concept. Ces résultatsiétaitlés dans la
Section5.4.1

Aprés ces premiéres expérimentations, nous avons appliqué notre apgrochen-
semble encore plus grand d’experts, fournis par le consortium IRIMekgpsrts d’entrée
étaient trés divers : histogrammes couleur, ondelettes quaternionidtres, de Gabor,
Sacs de Mots de caractéristiques locales, trajectoires, descripteursppédance de con-
cepts sémantiques de niveau intermédiaire etc.

Nous avons ensuite amélioré les résultats en utilisant I'algorithme de re-scaring te
porel de Bafadi 201] pour prendre en compte la corrélation temporelle entre les shots
consécutifs d’'un méme vidéo, et I'algorithme de feedback conceptudiamddi 2013
pour prendre en compte les relations entre les concepts. Nous comparduasions au-
tomatiques avec une fusion hiérarchique manuelle présentéeRklzs[2012h

La Table7.4montre les résultats obtenus par le§éentes fusions tardives. La fusion
hiérarchigue manuellement optimisée est la meilleure, mais les méthodes automatiques ne
sont pas loin. Parmi ces derniéres, la méthode AdaBoost basée suooles de classi-
fication et la Sélection de la meilleure approche sur la base d’entrainemergnddes
meilleurs résultats. Par rapport au meilleur expert par concept, cesagensaches aug-
mentent les performances d’environ 16%. Plus de détails sont donrgkedaimapitres, y
compris une analyse concept par concept.

7.5.3 Conclusion concernant la fusion

Les approches de fusion tardive que nous avons testées montrelfésgaant capables
d’exploiter la complémentarité entre lestérents experts et de donner des gains de perfor-
mance substantiels. Ces gains sont importants surtout quand les expensdés sont de
types diférents, donc sensibles auxffdrents aspects de la vidéo. En plus, les fusions d'un
niveau supérieur (contexte temporel et sémantique) peuvent donnainisugplémentaire
d’infAP.
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7.6 Conclusions et perspectives

Dans ces travaux, nous avons exploré le sujet de I'indexation sémantigoatdau vidéo
divers. Nous avons pris une chaine de traitement classique (Fig®rgue nous avons
enrichie avec des descriptions spatio-temporelles et avec des méthodewlelingor-
mation.

Nos expérimentations ont montré que la stratégie proposée de pré-traitetimeain ré
des vidéos peut servir a donner un ensemble de descripteurs vidéoeplogrants et
complémentaires, qui sont un bon compromis entre la complexité de calcul et la qualité
des résultats d’indexation sémantique. La diversité spatio-temporelle a été &ecdue
vers le mouvement en incluant un ensemble de descripteurs basés sucslde Sts de
trajectoires, qui ont été validés sur les bases KTH et TRECVid.

Enfin, cet ensemble déja complémentaire d"experts” ajouté a celui founnie pan-
sortium IRIM, nous a encouragé a développer des algorithmes automatiquesctetér-
dive. Ces algorithmes de fusion nous ont permis de bénéficier de I'infornwatioplémen-
taire donnée par lesfiiérents experts et d'améliorer les résultats d’indexation sémantique.

Parmi les futures directions d’étude, nous pouvons énoncer une éuidteghct d’'un
traitement multi-échelle pour les Sacs de Mots $GURF utilisant la rétine. Ce travail
est en cours et nous sommes en train de chercher un bon paramétiaggritle dense
multi-échelle, de la rétine et de la fenétre temporelle.

Une deuxieme direction d’étude a court terme est I'extension du pré-traiteétienen
aux autres types de caractéristiques locales comme FRE/KI[2012, pour vérifier si
on obtient un comportement similaire a celui obtenu avec les descripteureS8JIRF.

Comme la réponse de la rétine est influencée par le mouvement de la camérdreine au
direction d’étude serait une rétine avec compensation du mouvement de la caeféea. L
principal de cette amélioration sera une réponse plus faible de la voie magnaeeuta
les zones d’arriere-plan en mouvement a cause de la caméra mobile.

Along terme, il serait intéressant d’inclure dans notre traitement bio-gnsjes niveaux
supérieurs du systéme visuel humain, par exemple le cortex V1, qui peirtesk recon-
naissance d’objets ou de visages et au s@enoit 2010. Il serait encore plus intéressant
d’inclure des couches supérieures au cortex V1 afin de simuler undegpartie du sys-
teme visuel, mais le fonctionnement de toutes ces zones corticales n’est pas @MU
en détail Hérault 201(Q.

Concernant les descripteurs Sacs de Mots de trajectoires, leur pamgenpaut étre
encore optimisé. En plus, nous pouvons tester d’autres facons deedée trajectoire,
chacune sensible a un certain aspect du mouvement mais robuste a uafsudiayoir des
représentations encore plus complémentaires. |l serait intéressantauester d'autres
modeles pour agréger ledidirentes trajectoires, pas seulement le modéle Sac de Mots. Le
modéle Actom Sequence Mod&didon 2011 donne des performances améliorées, mais
dans notre contexte TRECVid, il pose des problémes pour I'étape dierimant, a cause
du manque d’annotations détaillées.

Finalement, les approches de fusion tardive pourront étre étendyesutias types
de données multimédia, car elles sont indépendantes de la nature exactpetes Par
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exemple, il seraitintéressant de tester ces approches sur une baged'staiques comme
ImageCLER.

En conclusion, les sujets traités dans cette thése ouvrent plusieurs [BgfEridhen-
tation et d’applications liées a I'indexation sémantique de bases vidéo. D’'un gointed
applicatif, ce travail peut étre utilisé dans plusieurs domaines, comme I'iticiexsgman-
tique de vidéos téléchargées dans les collections en-ligne, I'indexation deeanddéo
des chaines de télévision, les application de vidéo a la demande dans lesquatiésa-
teur cherche des vidéos similaires a une requéte, ou méme dans la vidétbesow, dans
laguelle les objets ou personnes suspectes pourront étre détectéstigutemeant.

“http://www.imageclef.org/
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The eyes are the first component of the visual system. An optical systens fn
image of the world around us onto a layer inside the eye callecethiea (see Figured.1).
Photoreceptor cells are located on the retina, which convert photons iatal sggnals.
These retinal signals undergo several processing steps right insidaittee before being
sent down the optic nerve to the next components of the visual system (vizatéeal
Geniculate Nucleus to the Primary Visual Cortex (V1), and also to the Sugaslbiculus)
[Hérault 2010.

There are many models of parts of the human visual system for various atpi:
the Retinex filter for enhancing digital imagekpson 199[7 [ Senane 20(%or informa-
tion coding, ManRullen 2002that models neural impulses (spikes) at the retinal ganglion
and visual cortex levels\Walther] that models top-down interactions but does not include
complete low-level retinal processing, dddly 1994 Le Meur 2006a Marat 2008 that
deal mainly with what happens beyond the V1 cortex.

For our application of extending SIFSURF descriptors, we decided upon the retinal
model from Benoit 2010, as it includes the low-level spatio-temporal retinal processing
that we need. We describe this model in the following.

The retina is composed of the Outer Plexiform Layer (OPL) and the Inneifétex
Layer (IPL) (FigureA.2). Biologically, the OPL contains photoreceptors (cells sensitive to
light) and horizontal cells that interconnect the photoreceptors. The dRtams bipolar
cells, ganglion cells and amacrine cells. The two retinal outputs that we use [ne€Ba
the parvocellular and magnocellular channel, are obtained at the output flth@&he
implementation of the OPL and IPL is detailed in the following section.

A.1 The Outer Plexiform Layer

The photoreceptors are the first “cells" in the processing chain. Theyadpist their
sensitivity according to the local luminance of their neighborhood, peiifay luminance
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Figure A.l: Internal  structure of the human eye. Image
http://upload.wikimedia.org/wikipedia/commons/8/8a/Three_Internal
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Figure A.2: The retina model fronBenoit 201( contains two layers: the Outer Plexiform
Layer (OPL) and the Inner Plexiform Layer (IPL). Two output chdsiaee generated at the
IPL: the parvocellular channel dealing with spatial details, and the magnoceihdanel

dealing with motion. Figure creditBenoit 2010
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Figure A.3: Photoreceptor adaptation to local luminance: (a) illustrates corigpressves
for different values oRy (lower values give stronger amplification in dark areas); (b) illus-

trates the fiect of an image with a very dark area; (c) is the symbol for local adaptation
that will be used in other figures. Figure credsghoit 2010

compression, as in Equatiénl [Benoit 201(:

___Rp
C(p) = R(p) + Ro(p) Vmax+ Ro(p)
Ro(p) = Vo - L(P) + Vmax(1 - Vo) (A1)

wherep is a photoreceptorR(p) is the current luminance at the photorecep@(p) is
the corrected luminanc®&y(p) is the compression parameter which is determined by the
local luminancd.(p) (more about the local luminance late¥)yaxis the maximum allowed
pixel value (255 for 8-bit images) ang, is a parameter in the range; 1] for adjusting
the strength of the local adaptatiofiext (a value of 0.90 is generally good). Examples of
compression curves forflierent levels of local luminance are given in Figé& a. The
effect of the photoreceptor adaptation to local luminance is a greater amplificatiorkin da
areas of an image, making details more visible (see Fig8g

After luminance adaptation, the photoreceptors and the horizontal cells©Oftheach
perform a spatio-temporal filtering of the signal, representelddayandFy in FigureA.4a,
modeled by the following equations:

Fopu(fs, f) = th(fs’ f)) - [1 = Fn(fs, f1)] (A.2)
where
1
Fon(fs, ft) = . A.
pr(fs, o) 1+ Bph+ 2aph - (1 — cos(Zfs)) + j2npnf (A-3)
1
Fn(fs, ft) = (A.4)

1+ Bh+ 2an- (1 - cos(Zfs)) + j2rrh
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FopL(fs, ft) is the transfer function of the OPIfs and f; are spatial and temporal frequen-
cies (we are dealing with discrete time and space signals, therigfane f; are in the range
[-0.5;0.5], where 1 corresponds to the sampling frequené&y, andFy, are the transfer
functions of the photoreceptors and of the horizontal cells, which depefigh, aph, Tpn
andph, an, Th respectively.

Foh and Fy, attenuate high spatial frequencies and high temporal frequencie&nl
has an oppositefkect, attenuating low spatial and temporal frequencies. When combined
in FopL, this creates a spatio-temporal band-pdgece(the spatial and temporal constants
of Fpn andFy, are not the same), illustrated in Figukedb.

For low temporal frequencies (static or almost static imadesg, has a spatial band-
pass behaviour, while for higher temporal frequencies, it has a spatigddss &ect; for
low spatial frequencies, it has a temporal band-p&&zxie(of wide band), and for higher
spatial frequencies, it has a temporal low-pa$sat. This has thefect of enforcing local
contrasts (mid spatial frequencies) that do not move a lot, while reduciisg fwhich
occupies the high spatial and temporal frequencigsnpit 2010.

Concerning the filter parameters, it can be said ghatf F, regulates the transmission
of the (local) continuous component of the videogif= 0, thenFy(0,0) = 1, therefore
FopL(0,0) = 0 from EquatiorA.2. If it is desired to let some of the continuous component
pass througlropy, then a higher value fgg, can be set.

Also, becausé& n andF, reject high spatial and temporal frequencies, the outpi at
contains very low spatial frequencidS andFy, are cascaded in Figute4a). Therefore,
the output ofF, can be used as the local luminaridg) in EquationA.1.

Regarding the bipolar cells performing the subtractiofrgp, from EquationA.2, it
is to note that biological neurons cannot encode negative valuesfdiera Bipolar ON
signal encodes the positive part of théelience, while a Bipolar OFF signal encodes the
negative part (see Figuhe4a).

A.2 The Inner Plexiform Layer

After the OPL, the Bipolar ON and OFF signals, which are the positive agaltive parts of
the Fop filter response, are passed on to the IPL. The IPL further procéissee signals
and generates the two retinal outputs: gavocellular channel and thenagnocellular
channel.

A.2.1 The parvocellular channel

To construct thgparvocellular channel, the ganglion cells from the IPL perform a loga-
rithmic compression (which resembles the one done by the photoreceptors)Bp@i
and BipOFF signals, as shown in Figukeésa, amplifying contrast in these signals. After-
wards, the two signals are recombined to form the parvocellular channetfdhe two
main outputs of the human retina.

The images coming out of the parvocellular channel will have attenuatedémmdncy
components, attenuated moving details (motion blur) and reduced high-frequeisey
thanks to thé=op, filtering, and stronger contours (medium spatial frequencies which are
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Figure A.4: The OPL model. IM.4a bipolar cells subtract the signals coming from
the photoreceptors and from the horizontal ceflstb shows the spatio-temporal transfer
function of the OPLA.4c gives an example of the output FOPL froxda only contour
information is kept (gray corresponds to 0, white to positive values and bdaegative

values). Figure creditenoit 2010
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Figure A.5: Ganglion cells boost contrast in the BipON and BipOFF signals and
these signals are then recombined to form the output parvocellular channglire F
credit:Benoit 2010
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Figure A.6: Impulse response of amacrine cells; amacrine cell symbol Bemofit 201(

passed byFopi) in regions that do not move a lot (at low temporal frequencieSdp,)
thanks to the contrast-boosting ganglion cells.

A.2.2 The magnocellular channel

The other retinal output, the magnocellular channel, is also obtained from tNBipd
BipOFF signals, but in a fierent manner. The BipON and BipOFF signals first undergo
a temporally high-pass filtering by amacrine cells in the IPL, followed by spatio-texhpo
filtering and contrast boosting in ganglion cells. Fight& illustrates the processing chain
for the magnocellular channel.

The amacrine cells have a transfer function of the following foBar{oit 201(:

1-71
with
b — e—At/TA

whereAt = 1 is the discrete time step, anrg is the temporal constant of the filter. This
gives an impulse response similar to the one in Figu6a, which constitutes a high-pass
temporal filter.

After filtering by the amacrine cells, the signals are sent to other ganglion catliseh
form a spatio-temporal filtering stefpgM (similar to Fpp, or Fr) and then contrast boost-
ing through logarithmic compressi@gM similar to what was done for the parvocellular
channel. At the end, the filtered and contrast-boosted signals are rieeuhib produce
themagnocellularchannel, as in Figura.7.

The amacrine cells compensate for the attenuation of high temporal frequencies by
the Fpn, Fh andFgM filters to give sensitivity to temporal events (motion) and attenuate
low temporal frequencies. This retains only moving contours in the videe¢edly con-
tours perpendicular to the motion direction), and the visibility of these moving cant®ur
increased by the compression s@&pM.
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Figure A.7: To form the magnocellular channel, amacrine cells filter the Bipaiamd Qf
signals, followed by spatio-temporal filtering and contrast boosting by gangits(a.7).

In A.7Db, the upper-right element is moving and is highlighted by the magnocellular channe
while the stationary bottom-left element gives no response. Figure crBditojt 2010
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The magnocellular channel can therefore act as a detector of moving ¢gimening
contours), while at the same time attenuating high-frequency spatio-tempom®| a®isan
be see in Figuréd.7b[Benoit 201(: only the moving element appears in the output, while
noise is reduced.

A.3 Behaviour of the retina model

A synthesis of all that has been said so far about the retinal model is that:

e The parvocellularchannel processes spatial details; it enhances local contrast, in-
tensifies contours, removes high-frequency noise and respondsowethporally-
sustained signals, while smoothing out fast temporal variations. Even compressio
artifacts are reduced, as long as they are not identical from one frathe toext.

This channel is also concerned with color information processing and riaamnal-
ize colors thanks to the photoreceptor adaptation process.

e The magnocellularchannel deals with spatii@mporalevents, such as contours in
motion or objects appearing or disappearing from the frame. It does no¢gzo
color information, giving a grayscale output.

An effect that has not been stated before is that the retina exhibits a transient state
during a certain number of frames after processing has started. Thefspadcessing
is the equivalent of “opening the eyes” (an abrupt transition from a bicoke to the
image sequence of interest), but transient phases can also occur oa #igieng abrupt
transitions such as cuts, or when an object suddenly appears is the Jtengansient
phase is characterized by the following phenomena:

e The parvocellular channel outputs information in a “coarse-to-fine” way. At the
onset of the spatio-temporal event (such as “opening the eyes”), onlgpatal
frequencies are transmitted; this is because the appearance of a neiooEane
is a high temporal frequency element, and according toRbg_ response from
Figure A.4b, spatial details at high temporal frequencies are smoothed-out. But if
after its appearance, the object (or the new scene) remains stationgugtoeel-
lular channel will start to transmit (and enforce) spatial details. Thissest-fine
processing model is not unlike what happens in the Human Visual Systerm whe
examining a new scene, the retina supplies the brain with a coarse, lowti@solu
image, to get a general idea of the scene content; only afterwards dapply more
spatially-detailed information.

e At the onset of a new visual scene, timagnocellularchannel briefly transmits low
spatial frequencies, and a strong response is generated on largé lspatidaries
until the end of the transient phase. During the transient phase, the osdigier
channel can therefore be used as a detector of potential spatiabbinet@sest. After
the retina reaches its stable state, the magnocellular channel only fires on moving
parts, therefore the channel now acts as a transient area detectopendenerally
as a motion detector.
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In the retinal model that we use, the parvocellular channel is implemented as a se-
guence of color images with enhanced spatial details, corrected colorgésjitbct to the
color temperature), enhanced details in the shadows and also reducedmbissiuced
video compression artifacts. The magnocellular channel is implemented as aseqglie
gray-level images, and we use it as a low-level spatio-temporal region oéshigetector,
responding to spatial features during the transient state and to movingicoatterwards.

An example of parvocellular and magnocellular responses is given in Fig8ran
which a TV presenter is talking. Depending on the temporal constants cfurgka retinal
filters, the transient state usually lasts between 10 and 20 frames. Aftamgdrsince
“opening the eyes", the retina is still in the transient state, while after 40 frame its
stable state. In the transient state, the parvocellular channel has ntaryed $o regulate
the mean luminance and to boost spatial details (Figu8z, while the magnocellular
channel passes low spatial frequencies (FiguBz).

In the stable state, spatial detail enhancement in the parvocellular frame e
around the facial features, around the logo and in the details in the clthal@crease
in local contrast can even produce hafteets, such as those around the presenter’s hair
in Figure A.8d. In the stable state, the magnocellular channel responds only to moving
elements such as the presenter’s head and lips in Fig8fe
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(c) Parvocellular output after 5 frames from stdjtPa

(e) Magnocellular channel output after 5 frartfgMagnocellular channel output after 40 frames
from start from start

Figure A.8: Retinal processing example, after respectively 5 and 40 freimesthe start

of the processing (the initialization of the retina). After 5 frames, the retina is still in its
transient phase: the parvocellular channel passes a large amount ofloenarad details
are not yet enhanced too much, while the magnocellular channel fires erstzatial struc-
tures. After 40 frames, the retina is in its stable state: the parvocellular chazaseas less
luminance and enhances spatial details, while the magnocellular channehdiirdg on
moving areas (the presenter’s face).
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Analysis and interpretation of visual scenes through collaorative approaches

During the last years, we have witnessed a great increaseisize of digital video collections.
Efficient searching and browsing through such collectionsiregjan indexing according to various
meaningful terms, bringing us to the focus of this thesisatitomatic semantic indexing of videos

Within this topic, the Bag of Words (BoW) model, often empluyiSIFT or SURF features,
has shown good performance especially on static imagesuAsrst contribution, we propose to
improve the results of SIFBURF BoW descriptors on videos Ipye-processing the videos with a
model of the human retinghereby making these descriptors more robust to videcadegjons and
sensitivite to spatio-temporal information.

Our second contribution is a setB6W descriptors based on trajectoriéchese give additional
motion information, leading to a richer description of thdeo.

Our third contribution, motivated by the availability of mplementary descriptors, islate
fusionapproach that automatically determines how to combinege laet of descriptors, giving a
high increase in the average precision of detected concepts

All the proposed approaches are validated on the TRECVillestge datasets which focus on
visual concept detection in very large and uncontrolledtimeldia content.

Keywords: semantic indexing, video, Bag of Words, SIFT, SURF, retspatio-temporal,
trajectories, late fusion

Analyse et interprétation de scenes visuelles par approckBeollaboratives

Résumé :Les derniéres années, la taille des collections vidéo awcane forte augmentation.
La recherche et la navigatiofficaces dans des telles collections demande une indexatordas
termes pertinents, ce qui nous améne au sujet de cette it ation sémantique des vidéos

Dans ce contexte, le modéle Sac de Mots (BoW), utilisant stwdes caractéristiques SIFT ou
SURF, donne de bons résultats sur les images statique. pemiére contribution est d’améliorer
les résultats des descripteurs SIEURF BoW sur les vidéos gmé-traitant les vidéos avec un mod-
ele de rétine humainee qui rend les descripteurs SYSURF BoW plus robustes aux dégradations
vidéo et qui leurs donne une sensitivité a I'informationtepgemporelle.

Notre deuxieme contribution est un ensembleddscripteurs BoW basés sur les trajectoires
Ceux-ci apportent une information de mouvement et corgribuers une description plus riche des
vidéos.

Notre troisieme contribution, motivée par la disponiBilite descripteurs complémentaires, est
unefusion tardivequi détermine automatiquement comment combiner un grasenelple de de-
scripteurs et améliore significativement la précision nmoyedes concepts détectés.

Toutes ces approches sont validées sur les bases vidéoltlkngbalRECVid, dont le but est
la détection de concepts sémantiques visuels dans un camigtimédia tres riche et non contrélé.

Mots-clés :indexation sémantique, vidéo, Sac de Mots, SIFT, SURReagsipatio-temporel,
trajectoires, fusion tardive




