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Abstract 
 
Five marine sediment cores distributed along the Norwegian, western Barents Sea, and Svalbard continental 
margins have been investigated in order to reconstruct late Holocene changes in the poleward flow of the 
Norwegian Atlantic Current (NwAC) and West Spitsbergen Current (WSC) and the nature of the upper surface 
water masses within the eastern Nordic Seas. This research project is based on the use of dinocyst and coccolith 
assemblages for qualitative and quantitative  reconstructions of surface water conditions from high resolution 
sediment cores, and involve upstream investigations on proxy reliabilities.  
The investigated area (66 to 77°N) was affected by an overall increase in the strength of the AW flow from 3000 
cal. yrs BP to the Present. The long-term modulation of westerlies strength and location which are essentially 
driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed 
dynamics of the AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the 
location of the Arctic Front between the area off western Norway and the western Barents Sea-eastern Fram 
Strait region. Submillenial changes in AW flow are organised according to known pre-Anthropocene warm 
(RWP, MCA and the Modern period: strong poleward flow) and cold (LIA, DA: weak poleward flow) climatic 
spells. A sudden short pulse of resumed high WSC flow interrupted the LIA in the eastern Nordic Seas from 330 
to 410 cal. yrs BP. Our results are indicative of a major impact of AW flow dynamics on the Arctic sea ice 
distribution during the last millenium, when changes in reconstructed sea-ice extent are negatively correlated 
with the strength of the WSC flow off western Barents Sea and western Svalbard. The extensive decrease in sea 
ice extent during the last century is synchronous with an exceptional increase in AW flow. The previously 
reconstructed high amplitude warming of surface waters in eastern Fram Strait at the turn of the 19th century 
was therefore primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 
years.  
 
Keywords: Eastern Nordic Seas, late Holocene, Atlantic water flow, surface waters, coccoliths, dinocysts.  
 
 
 
Résumé  
 
La variabilité de l’intensité du flux d’eaux atlantiques et de la nature des masses d’eau de surface le long des 
marges occidentales de la Norvège, de la mer de Barents et du Svalbard a été reconstituée sur la base des 
assemblages de coccolithes et dinokystes présents dans cinq carottes sédimentaires marines représentatives de 
l’Holocène terminal. Les résultats sont présentés sous la forme de reconstructions qualitatives et quantitatives 
(fonctions de transfert MAT)  à haute résolution temporelle (échelle décennale à sub-séculaire). Un travail visant 
à valider les traceurs micropaléontologiques utilisés a été réalisé en parallèle à l’objectif principal, et s’est en 
particulier nourri de la collecte et de l’examen de populations vivantes distribuées le long de plusieurs transects 
zonaux en mer de Norvège, mer d’Islande et à travers le détroit de Fram.  
Nos résultats indiquent que la partie orientale des mers Nordiques (66 à 77°N) a été sujette à une tendance 
globale à l’augmentation du flux d’eaux atlantiques (AW) au cours des derniers 3000 ans. La dynamique récente 
de ce flux méridien est supposée répondre à la modulation long-terme de la force et de la localisation de la 
ceinture des vents d’ouest qui est essentiellement pilotée par l’Oscillation Nord Atlantique.  Ce même 
mécanisme atmosphérique réconcilie le déplacement zonal et contradictoire du front arctique entre le domaine 
ouest-norvégien, et les façades occidentales de la mer de Barents et du détroit de Fram. La variabilité rapide du 
flux d’AW reproduit la succession des phases climatiques historiques classiques chaudes (Période Chaude 
Romaine, Période Chaude Médiévale, Période Moderne : flux accentué d’AW) et froides (Période Sombre, Petit 
Age Glaciaire : flux réduit d’AW) des derniers 2500 ans. Un événènement rapide de renforcement du flux d’AW 
en mers Nordiques a été identifié pendant le Petit Age Glaciaire entre 330 et 410 ans BP (cal.). Nos résultats 
indiquent que les variations d’intensité du flux d’AW vers l’Océan Arctique ont eu un impact majeur sur la 
distribution de la glace de mer arctique au cours du dernier millier d’années, les variations reconstruites de 
l’extension du couvert de glace à l’echelle de l’océan arctique étant parfaitement corrélées (échelle sub-
séculaire) avec nos reconstructions qualitatives de la dynamique de l’AW au large du Svalbard et de la mer de 
Barents. La diminution importante de l’extension de la banquise durant le 20ème siècle est synchrone d’un flux 
record d’AW à travers le détroit de Fram, flux qui, d’après nos données, est sans précédent pour les derniers 
3000 ans. 
Mots clés : Mers Nordiques, Holocène terminal, flux d’eaux atlantiques, eaux de surface, coccolithes, 
dinokystes.  
 
 



 

 
 

 
 
 
 
 
 
 
 
 



Résumé étendu 

Christian V. Dylmer, 2013 

 

iii 
 

Résumé étendu 

 Les Mers Nordiques (mers d’Islande, de Norvège et du Groenland) et domaines marins 

adjacents (Mer de Barents et Détroit de Fram), constituent, avec l’Océan Arctique, un des 

domaines océaniques les plus sensibles aux changements climatiques actuelles et passés. 

Cette région est caractérisée par de forts contrastes de flux méridionaux entrants et sortants de 

masses d’eaux de surface et intermédiaires sous la forme de transfert de chaleur vers le pole 

sur sa façade orientale, et d’export vers les basses latitudes d’eaux polaires et de glace de mer 

sur sa façade occidentale. Site majeur de formation d’eaux profondes (Mers du Groenland et 

de Norvège), et de formation de glace de mer (plateforme Est-Groenlandaise, Détroit de 

Fram, Mer de Barents), ce domaine est considéré comme un acteur clé de la variabilité de la 

circulation thermohaline et du climat global globale aux échelles orbitales et sub-orbitales. La 

formation (phénomènes de brines, albédo) et la fonte de glace de mer (dessalure) constituent 

d’importants mécanismes de rétroaction aux changements climatiques globaux. Les 

changements dans le mode de circulation atmosphérique  (Oscillation Nord Atlantique –

NAO-) ainsi que la variabilité du flux méridien d’eaux atlantiques vers l’Océan Arctique par 

le Courant de Norvège (NwAC) sont fortement impliqués dans l’extension présente et passée 

de la banquise aux très hautes latitudes de l’Atlantique Nord.  

L’amplification polaire du changement climatique actuel motive aujourd’hui une série 

d’initiatives visant à étudier, sur la base d’analogues passés, le déroulement de ce processus et 

les mécanismes associés, et ce afin de nourrir le plus correctement possible les modèles 

prédictifs d’évolution du climat futur. L’Holocène terminal, soit les derniers 3000 ans, 

gouverné par un refroidissement général (Néoglaciation), a été ponctué par une série 

d’épisodes de réchauffement (Période Chaude Romaine –RWP-, Période Chaude Médiévale –

MCA-) et de refroidissement (Petit Age Glaciaire –LIA-) du climat à l’échelle du bassin 

Atlantique voire de l’hémisphère Nord. Les archives terrestres et marines indiquent que la fin 

du LIA a été marqué par un renversement des températures selon une amplitude sans 

précédant pour le dernier millier d’années.  

L’objectif général de la présente étude est de contraindre, pour le tardi-Holocène, la variabilité 

des conditions hydrologiques et de la structure des masses d’eaux de surface des Mers 

Nordiques dans les régions proches ou actuellement affectées par la formation saisonnière de 

glace de mer. Cet objectif repose sur des reconstructions qualitatives et quantitatives à très 

haute résolution temporelle (décennale à séculaire) des conditions des eaux de surface à partir 

des assemblages de coccolithes (squelettes de phytoplancton calcaire) et dinokystes (restes 
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fossilisés de phytoplancton organique) contenus dans des carottes marines. Un point 

particulier de ce travail concerne la reconstruction de la variabilité tardi-holocène du flux 

d’eaux atlantiques à l’Océan Arctique à travers les seuils de Fram et de la Mer de Barents. 

Cette étude repose sur l’analyse de 5 carottes sédimentaires réparti le long des marges de la 

Norvège, de la Mer de Barents et du Svalbard, et sous l’influence du flot principal d’eaux 

atlantiques vers l’Océan Arctique. Les traceurs micropaléontologiques retenus (coccolithes et 

dinokystes) ainsi que des traceurs annexes dont les constituants élémentaires du sédiment 

(basés sur analyses XRF), les assemblages de foraminifères planctoniques et l’abondance des 

grains lithiques, ont été analysés afin d’identifier les changements tardi-holocènes des 

circulation de surface et de sub-surface de la NwAC et de son extension, le West Spitsbergen 

Current (WSC). Un travail de validation des traceurs micropaléontologiques a été mené en 

parallèle au travail de reconstructions paléocéanographiques. 

Ce travail a permis de dégager plusieurs messages importants : 

  

- Distribution des populations de coccolithophores à travers les Mers de Norvège et d’Islande 

et le détroit de Fram : 

La distribution géographique des populations de coccolithophores collectées le long de 2 

transects zonaux (Norvège-Groenland ; Spitsberg-Groenland), et ce à deux périodes distinctes 

(été et automne), a été discutée en fonction de la distribution des masses d’eaux et fronts 

hydrologiques déduits de cartes satellites synoptiques et de profils CTD et Argo. Les 

changements saisonniers observés en terme de distribution et de stratification des masses 

d’eaux de surface, se traduisent par un déplacement vers l’Ouest de la zone de production 

maximale du phytoplancton calcaire dominé par l’espèce Emiliania huxleyi, de juillet à 

octobre. Les eaux de surface proches de l’île de Jan Mayen, fortement influencées par une 

augmentation de la stratification de la zone photique en automne, en relation avec la fonte de 

la glace de mer, sont sujettes à un changement drastique dans la composition des assemblages 

de coccolithophores entre l’été (Coccolithus pelagicus) et l’automne (E. huxleyi). La 

température seuil (maximale) de 6°C semble limiter la production de l’espèce C. pelagicus en 

Mers de Norvège et d’Islande, ce seuil chutant à 4°C pour les eaux de surface du Détroit de 

Fram. Contrairement aux eaux de surface des Mers de Norvège et d’Islande, les eaux du 

Détroit de Fram portent une population de coccolithophores essentiellement contrôlée (stocks 

et composition) par la présence de glace de mer et l’irradiance solaire.  
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- Les traceurs de la localisation du Front Arctique, et de l’intensité du flux d’eaux atlantiques : 

La distribution spatiale des espèces de coccolithes E. huxleyi et C. pelagicus, d’une part, et 

des dinokystes O. centrocarpum et N. labyrinthus d’autre part suggère que leur rapport 

d’abondance dans les sédiments de surface des Mers Nordiques  définit relativement bien la 

localisation du front Arctique (AF). L’application de ces rapports aux sédiments de nos 5 

carottes marines a fourni des résultats contradictoires. Trois facteurs, pris séparément ou 

ensemble, permettent d’expliquer ces apparentes contradictions : (1) le choix de la valeur 

seuil du rapport définissant la position de l’AF ; (2) l’homogénéité de la  distribution des 

échantillons de surface ayant été utilisés pour définir ces traceurs ; (3) une connaissance 

encore limitée de l’écologie des espèces concernées. Il est ainsi possible d’affirmer que le 

rapport E. huxleyi/C. pelagicus  est fiable en tant que traceur de la localisation de l’AF à 

l’exception des domaines affectés par le Courant Côtier de Norvège, et que conformément à 

sa distribution dans les carottes étudiées, il traduit au cours des derniers 3000 ans une 

augmentation progressive dans le temps de l’influence de la NwAC et du WSC vers les très 

hautes latitudes. Nos données suggèrent également que le rapport O. centrocarpum/N. 

labyrinthus est peu fiable dans les régions affectées par la glace de mer saisonnière, ainsi que 

sur les domaines de plateforme et bordure de talus. 

  

L’abondance de l’espèce de coccolithe allochtone Gephyrocapsa muellerae a été discutée en 

terme de variation relative de l’intensité du flux méridien d’eaux atlantiques en relation avec 

l’intensité et la localisation de la ceinture des vents d’ouest (modulé par l’Oscillation Nord 

Atlantique –NAO-). Les tendances générales pour un mode NAO globalement positif durant 

le MCA et la période moderne, et un mode globalement négatif durant le LIA, sont 

exceptionnellement bien exprimées par le renforcement ou de réduction de l’intensité de la 

NwAC (tels que défini par les variations d’abondance de G. muellerae). Ceci répond aux 

processus actuels influant sur la circulation de surface et de subsurface en Mers Nordiques.  

La variabilité du flux d’eaux atlantiques sur la bordure orientale des Mers Nordiques, telle 

que reconstruite par notre traceur G. muellerae, est remarquablement synchrone des 

changements ayant affecté la distribution de la banquise arctique au cours des derniers 1500 

ans. En particulier, la diminution exceptionnelle de la banquise au cours du dernier siècle 

correspond à un flux reconstruit record du WSC à travers le détroit de Fram, sans précédant 

pour les derniers 1500 ans. 
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- Évolution de la circulation de surface au cours des derniers 3000 ans : 

L’examen des enregistrements obtenus sur les 5 carottes sédimentaires de notre transect 

latitudinal nous a permis de reconstruire l’évolution de la distribution des masses d’eaux de 

surface et du flux de la NwAC et du WSC au cours des derniers 3000 ans. Tous les 

enregistrements sont représentatifs d’un renforcement de la circulation méridienne des eaux 

atlantiques tout au long des derniers 3000 ans.  Cette modulation long-terme du transfert de 

chaleur vers les hautes latitudes Nord répond à la dynamique long-terme de la NAO. Ce 

mécanisme atmosphérique explique également les déplacements reconstruits de la localisation 

du Front Arctique, déplacements zonaux qui présentent une histoire opposée entre la mer de 

Barents-Détroit de Fram, et la mer de Norvège.  La variabilité sub-millénaire de l’intensité de 

la NwAC et du WSC est synchrone des évènements climatiques pré-Anthropocène (RWP, 

DA, MCA and LIA). L’initiation du LIA vers 650 ans cal. BP s’est manifestée par la 

détérioration du flux méridien d’eaux atlantiques, et une plus forte contribution des eaux 

arctiques et polaires dans la région du Svalbard et de l’ouest de la mer de Barents. La 

réduction maximale de l’intensité du WSC n’intervient qu’à partir de 300 ans cal. BP et est 

couplée avec une extension maximale d la glace de mer à l’ouest de la Mer de Barents. Une 

courte période d’amélioration hydrologique et climatique caractérise l'intervalle 410-330 ans 

cal. BP. 

  

Au terme de ce travail, il apparait essentiel de concentrer nos futurs investigations sur les 

quelques points suivants : 

- contribuer à l’amélioration des connaissances sur l’écologie des populations vivantes de 

coccolithophores et dinoflagellés dans des environnements aussi extrêmes que ceux des 

hautes latitudes Nord, ainsi que sur la distribution géographique de leurs restes squelettiques.  

Outre les paramètres températures et salinités, le rôle de la stratification saisonnière de la zone 

photique sous l’influence de la fonte de la banquise, doit faire l’objet d’un examen spécifique.  

- améliorer la qualité des enregistrements obtenus sur nos 5 sites de travail. 

Outre une amélioration du contexte stratigraphique, en partie via la prise en compte de téphras 

caractéristiques d’éruptions islandaises du dernier millénaire (coll. E. Ducassou, EPOC), le 

cadre collaboratif du projet CASE permettra très rapidement de coupler nos données avec 

celles en cours de valorisation sur les mêmes séries sédimentaires (assemblages de 

foraminifères planctoniques et benthiques, biomarqueurs IP25, parmi les plus importantes).



Acknowledgement 

Christian V. Dylmer, 2013 

 

vii 
 

Acknowledgement 
 
This thesis would not have been possible without the help and support of a large variety of 
people during the past 3 years.  
First of all I want to sincerely thank my supervisor Jacques Giraudeau, who gave me this 
great opportunity and in spite of other duties always managed to find the time for  
constructive critique, discussions and scientific advice. Who strongly aided me in keeping the 
focus on the main objective of my thesis when my focus went too broad and of course thanks 
for being patient beyond a limit which even I could have mastered. I have learnt a lot from 
our discussions.  
In addition I want to send both Jacques and Isabelle Deme a huge thanks for taking the time to 
assist in getting settled in France and for going even further than the call of duty, when 
needed.  
 
A huge thanks to F. Eynaud (EPOC) for her strong help in the micropaleontological 
investigations, interpretation and for her massive aid in running the Modern Analogue 
Technique.   
Thanks to Katrine Husum (University of Tromsø) and Jochen Knies (NGU, Trondheim) for 
their contribution to my work and for sharing samples.  
Obviously massive thanks also go to my colleagues within the CASE ITN for good 
discussions, many great experiences and enlighting opportunities! 
Following this, I would like to thank my paper co-authors for their help and insightful 
comments on this work. They are Katrine Husum, Jochen Knies, Vincent Hanquiez (EPOC) 
and Anne de Vernal (GEOTOP UQAM).  
For additional academic and laboratory support I thank the academic and technical staff and 
PhD students in our research group at EPOC L. Rossignol, M. Georget, I. Billy,  J.-M. 
Escalier, S. Schmidt, M. Sanchez-Goni, L. Londeix, X. Crosta, Aurelie, Marie-Louise, 
Melanie, Loïc, Dunia, Phillipine and many others. 
Thank you to Marit-Solveig for encouraging me to stay in science, for her continuous help 
and support, and for having accepted to participate to the thesis committee! 
On the more personal level, I would like to thank everybody who accompanied and supported 
me throughout the last three years in Bordeaux. Thanks for being there when needed and for 
helping me to make these three last years such a great experience! My deepest thanks goes to 
Weiwei, Bin & Peipei, Wiljam, Hanna and Xin for your friendship, support, great game & 
dinner evenings and all the nice moments we have spend together here in Bordeaux. Thanks 
to Gesa for being a nice co-PhD and all the many experiences and fun times during the last 3 
years. A thanks also go to Florent, Benjamin, Ana, Floriant & Jinwin for their fantastic 
friendship during good and bad times.  
 
Et stort tak gaar ogsaa til mine venner i Danmark: Lasse, Anja, Anne-Sophie, Daniel, Anders 
& Camilla, Aargaard og Martin for altid at vaere dér! Tusind Tak!!! 
 
Til sidst har jeg ingen ord for min tak til min Familie. Tak fordi i altid er der og altid har 
vaeret der for mig, paa trods af at jeg de sidste tre aar har boet 1000 km. fra jer, saa er i der 
altid for mig i medgang og i modgang! 
 
I dedicate this work to my entire family! 
 
 
Thanks!!! 



 

 
 

 
 
 



Table of Content 

Christian V. Dylmer, 2013 

 

ix 
 

Table of Content 
 
1. General Introduction         1 

1.1 Introduction and Thesis Overview............................................................................. 1 

1.2 State of the Art: The Holocene................................................................................... 4 

1.3 Physical Oceanography ............................................................................................. 6 

1.3.1 Bathymetry ................................................................................................ 6 

1.3.2 Oceanographic Setting............................................................................... 7 

1.3.3 Sea Ice Distribution in the Northern North Atlantic.................................. 11 

1.4 The North Atlantic Oscillation (NAO)....................................................................... 13 

 

2. The Micropaleontological Proxies: Distribution, Export and Alteration of Fossilizable 
Phytoplankton within the Northern North Atlantic an d Adjacent Seas   17 

2.1  Chapter Overview............................................................................................. 17 

2.2  A General Introduction to Phytoplankton Within the Northern North Atlantic 18 

2.2.1 The Norwegian Sea.................................................................................. 19 

2.2.2 The Greenland Sea................................................................................... 20 

2.2.3 The Iceland Sea........................................................................................ 20 

2.2.4 Fram Strait............................................................................................... 21 

2.2.5 The Barents Sea........................................................................................ 21 

2.3 The Export of Phytoplankton Remains from Surface Waters to Surface Sed-          
iments of the Nordic Seas: Dissolution Processes and Lateral Transport........ 23 

2.3.1 Dissolution Processes within the Nordic Seas......................................... 24 

2.3.2 The Importance of Transport Processes on the Spatial Distribution of 
Microfossils....................................................................................................... 26 

2.4 Generalities on Coccolithophore Morphology, Biology, Ecology, and Sedi-           
ment Distribution within the North Atlantic Region........................................ 28 

2.4.1 The Morphology of Coccolithophores..................................................... 28 

2.4.2 A short Introduction to Coccolithophore Biology................................... 29 

2.4.3 Ecology of the Major and Subordinate Fossilizable Coccolithophores                 
of the Nordic Seas............................................................................................. 31 



Table of Content 

Christian V. Dylmer, 2013 

 

x 
 

Manuscript: The coccolithophores Emiliania huxleyi and Coccolithus pela-  
gicus: extant populations from the Norwegian-Iceland Sea and Fram Strait.. 39 

 
2.5 Generalities on Dinocyst Morphology, Biology, Ecology and Sediment Dis-

 tribution within the North Atlantic Region...................................................... 65 

2.5.1 The Morphology of Dinoflagellates........................................................ 65 

2.5.2 A short Introduction to Dinoflagellate Biology...................................... 67 

2.5.3 Ecology of the Dominant Dinocysts Species within the Nordic Seas.... 69 

 

3. Material and Methods         81 

3.1  Chapter Overview........................................................................................... 81 

3.2  Core Locations and Descriptions.................................................................... 84 

3.2.1 WOO/SC-3............................................................................................. 84 

3.2.2 R248MC010........................................................................................... 84 

3.2.3 R406MC032........................................................................................... 86 

3.2.4 JM09-KA11-GC..................................................................................... 87 

3.2.5 HH11-134-BC........................................................................................ 89 

3.3 Core Chronologies.......................................................................................... 89 

3.3.1 WOO/SC-3............................................................................................. 93 

3.3.2 R248MC010........................................................................................... 94 

3.3.3 R406MC032........................................................................................... 95 

3.3.4 JM09-KA11-GC..................................................................................... 97 

3.3.5 HH11-134-BC........................................................................................ 99 

3.4 Geochemical Preparation and Micropaleontological Approach..................... 100 

3.4.1 Surface Water Sampling........................................................................ 100 

3.4.2 Coccolith Preparation from Sediment Samples.................................... 100 

3.4.3 Dinocyst Preparation from Sediment Samples..................................... 101 

3.4.4 Modern Analogue Technique (Transfer Function - TF)....................... 102 

3.4.5 Sample Preparation for the Investigations of Planktic Foraminiferal  
Assemblages and Large Lithic Grains (or IRD)............................................. 103 



Table of Content 

Christian V. Dylmer, 2013 

 

xi 
 

3.4.6 XRF Core Scanner Preparation and Measurements.............................. 104 

4. A Late Holocene View on Surface Water changes in the Eastern Nordic Seas  107 

4.1 Chapter Overview.......................................................................................... 107 

4.2 Introduction.................................................................................................... 108 

4.3  R248MC010 (West of Lofoten Island).......................................................... 110 

4.3.1 Coccolith Record ................................................................................. 110 

4.3.2 Dinocyst Record.................................................................................... 113 

4.3.3 Quantitative Reconstructions of Sea-Surface Conditions..................... 116 

4.3.4 Inferring the Paleoceanographic changes in Atlantic Water Flow and                
the Distribution of Surface Waters during the Last ~500 years (R248MC010) 117 

4.4  WOO/SC-3 (Northeast of Vøring Plateau).................................................... 123 

4.4.1 Coccolith Record................................................................................... 123 

4.4.2 Dinocyst Record.................................................................................... 126 

4.4.3 Quantitative Reconstructions of Sea-Surface Conditions..................... 128 

4.4.4 Inferring the Paleoceanographic changes in Atlantic Water Flow and                
the Distribution of Surface Waters during the Last ~300-3000 Cal. years BP 
(WOO/SC-3) ................................................................................................. 130 
 

4.5  R406MC032 (Southwestern Barents Sea)...................................................... 134 

4.5.1 Coccolith Record ................................................................................. 134 

4.5.2 Dinocyst Record.................................................................................... 136 

4.5.3 Quantitative Reconstructions of Sea-Surface Conditions..................... 139 

4.5.4 Inferring the Paleoceanographic changes in AW Flow and the Distri- 
bution of Surface Waters during the Last ~550 years (R406MC032)........... 141 
 

4.6 HH11-134-BC (Fram Strait, West Spitsbergen Slope).................................. 145 

4.6.1 Coccolith Record................................................................................... 145 

4.6.2 Dinocyst Record.................................................................................... 147 

4.6.3 Quantitative Reconstructions of Sea-Surface Conditions..................... 150 

4.6.4 Inferring the Paleoceanographic changes in Atlantic Water Flow and                
the Distribution of Surface Waters During the Last ~3000 cal. years BP  
(HH11-134-BC)  ............................................................................................ 152 
 



Table of Content 

Christian V. Dylmer, 2013 

 

xii 
 

4.7  Coccolith and Dinocyst-based NwAC Flow Strength and Water-Mass Pro-              
xies................................................................................................................... 159 
 
Manuscript: Northward Advection of Atlantic water in the eastern Nordic  

 Seas over the last 3000 years.......................................................................... 161 
 

4.7.1 Coccolith vs. Dinocyst Ratios as AW/ArW Indicators......................... 193 

4.7.2 Comparing G. muellerae Abundances with Other Flow Sensitive Pro-               
xies.................................................................................................................. 198 

4.7.3 Reconciling the Observed Trends in AW Flow (HH11-134-BC, Fram  
Strait) with the Historical Distribution of Arctic Sea Ice.............................. 200 
 

4.8 Late Holocene Paleoceanographic Variability within Surface and Subsurface  
Layers of the Eastern Nordic Seas: A General Discussion............................ 201 

 

Chapter 5 : General Conclusions and Perspectives      213 

5.1  The Extant Coccolithophore Populations across the Norwegian-Iceland   
 Seas and Fram Strait...................................................................................... 213 
 
5.2  Significance of AW/ArW Indicators and of the AW Flow Strength Proxy  

G. muellerae.................................................................................................. 214 
 

5.3  A Late Holocene History of Surface Circulation changes in the Eastern   
  Nordic Seas ............................................................................................. 216 

5.4  Perspectives................................................................................................... 217 

5.4.1 Improving our Paleo- Reconstructions................................................ 217 

5.4.2 Extending the Present Study to Paleoceanographical Reconstructions  
over the entire Holocene............................................................................... 219 

 

References 

Appendices 

 

 
 
 
 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xiii 
 

Figure and Table List  
 
Chapter 1. 
Figure 1.1 : Bathymetric map of the Nordic Seas showing the most important topographic 

features (top). Bottom map shows major surface currents according to Jakobsen et al. 
(2003), Olsson et al. (2005) and Andersson et al. (2011). Red arrows show the flow 
direction of warm saline Atlantic Water; NwAC: Norwegian Atlantic Current, WB: 
Western Branch, EB: Eastern Branch, NCaC: North Cape Current, WSC: West 
Spitsbergen Current. Blue arrows show the flow direction of cold low saline 
Arctic/Polar surface waters; EGC: East Greenland Current, JMC: Jan Mayen Current, 
EIC: East Icelandic Current, BIC: Bear Island Current, ESC: East Spitsbergen Current, 
PC : Percey Current. Green arrow shows the flow direction of coastal waters; NCC: 
Norwegian Coastal Current. Orange dashed line shows the relative location of the 
Arctic Front. Other abbreviations: NB: Norwegian Basin, LB: Lofoten Basin, GB: 
Greenland Basin, IP: Icelandic Plateau, Sba: Svalbard Bank, Gba: Great Bank, Cba: 
Central Bank, BIT: Bear Island Trench ............................................................................8 

 
Figure 1.2 : Schematic of the Thermohaline Circulation within the northern North Atlantic 

(i.e. Nordic Seas and the Labrador Sea). Red arrows: direction of surface flow, blue 
arrows: direction of deep flow ........................................................................................11 

 
Figure 1.3 : Average Arctic ice cover and ice drift patterns in winter (left) and summer (right), 

as influenced by  the distribution of high and low pressure systems over the Arctic 
region. Note the considerable difference in the southward extent of sea ice East of 
Greenland, as well as the winter-summer distribution of sea ice in the Barents Sea, 
adapted from Wassmann et al. (2006).............................................................................12 

 
Figure 1.4 : A schematic view of NAO modes and the overall effects on precipitation and AW 

flow..................................................................................................................................14 
 
Figure 1.5 : Time series of the station-based NAO index from 1864 to 2009 (instrumental 

period) for the season DJFM (December, January, February, March). In red unfiltered 
data from year to year. In black a 31-year filter illustrating the low-frequency behavior. 
Adapted from Pinto and Raible (2012)............................................................................15 

 
Chapter 2. 
Figure 2.1 : Seasonal variation index of net primary production the world’s net primary 

productivity (grams per m2 per year), zooming in on the northern North Atlantic 
(highest variation is shown in the high latitudes) (Lutz et al., 2007)..............................18  

  
Figure 2.2 : Schematic of a typical Arctic food web, from Svendsen et al. (2007)..................19 
 
Figure 2.3 : Schematic representation of the seasonal development of phytoplankton and the 

main physical factors affecting it. White dots represent phytoplankton biomass. From 
Loeng and Drinkwater (2007) and references therein ....................................................20 

 
Figure 2.4 : Location and timing of coccolithophore blooms in the southern Barents Sea, 

determined using composite reflectance imagery between 1987 and 2002. Maximum 
bloom extents are shaded in grey. From Smyth et al. (2004). ........................................22 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xiv 
 

Figure 2.5 : MODIS satellite images of coccolithophore blooms in the Barents Sea. Left 
image: August 2011, north of Norway; right image: September 2005, west of Novaya 
Zemlya http://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2011-08-17..........22 

 
Figure 2.6 : Absolute abundances (ind/g dry sediment) of a) coccolithophores, b) dino-

flagellate cysts, c) diatoms, and d) radiolarians in surface sediments of the Nordic Seas. 
The distribution of species assemblages in plots b, c and d, are based on factor analyses 
of species weight %. From Matthiessen et al. (2001), and references therein................24 

 
Figure 2.7 : Mean daily fluxes (expressed as ind. m-2d-1) of coccolithophores, foraminifers, 

diatoms and radiolarians at 300/500 meters from sediment traps deployed in three 
different areas of the Nordic Seas. From Schröder-Ritzrau et al. (2001)........................25 

 
Figure 2.8 : Diagrammatic cross-section of a coccolithophore cell and cell wall coverings 

(From Bown, 1998). The defining feature of the haptophytes is the flagella-like 
haptonema which is generally coiled. It differs from the other flagella in its internal 
structure and its basal attachment. The algal cell contains a nucleus and two chloroplasts 
which may move around to optimize collection of available light. Mitochondria 
contains enzymes to produce energy for the different cell functions, vacuoles deals with 
waste products and the Golgi body is the site of coccolith secretion. In many species 
overlapping oval organic scales coat the outer cell membrane. These have concentric 
ridges on their distal faces and radiating ridges on their proximal faces. The organic 
scales might act as bases for precipitation of calcite coccoliths. The function of 
coccoliths is not known but may be used as: a protection from bacteria, protection from 
physical damage and predators, easiness of flotation and buoyancy, light reflection. ...30 

 
Figure 2.9 : Absolute (left) and relative abundances (right) of E. huxleyi in surface sediments 

of the Nordic Seas. From Baumann et al. (2000)............................................................33 
 
Figure 2.10 : Absolute (left) and relative abundances (right) of Coccolithus pelagicus in 

surface sediments of the Nordic Seas. From Baumann et al. (2000)...............................34 
 
Figure 2.11 : Seasonal distribution of Gephyrocapsa muellerae standing stocks in North 

Atlantic surface waters across ~45 °N. A) Satellite-derived SST field in April 2000 with 
locations of surface water samples. B) Cell concentrations across the studied transect 
during fall 1999, winter 2000, spring 2000 and summer 2000; the horizontal arrow 
points to the longitudinal range of peak production (30 °W- 10°W). C) Surface sediment 
distribution of G. muellerae (wt%) in the mid- to high latitudes of the North Atlantic. 
From Giraudeau et al. (2010) and references therein......................................................35 

 
Figure 2.12 : Schematic view of the theca of a peridinialean dinoflagellate. From Edwards et 

al. (1993) and references therein ....................................................................................66  
 
Figure 2.13 : (A) A central view of theca showing tabulation; (B) Cyst forming inside theca; 

(C) Cyst paratabulation reflects thecal tabulation. From Edwards et al. (1993) and 
references therein. ...........................................................................................................66 

 
Figure 2.14 :  Diagram of the life cycle of a dinoflagellate showing the alternation of the 

motile stage (cannot be fossilized) and the cyst stage (yielding fossil remains). De 
Vernal and Marret, 2007. Schematic life-cycle of a cyst producing dinoflagellate. 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xv 
 

Asexual reproduction predominates and involves a division of the cell into two halves. 
Sexual reproduction is known in very few dinoflagellates. Cysts form in the autumn 
with decreasing temperatures, remaining dormant on the sea floor through the winter. 
With the amelioration of conditions in spring, the motile stage excysts through the 
archaeopyle. Before developing any armour, however, the new dinoflagellate must pass 
through a naked gymnodinioid stage. Adapted from de Vernal and Marret 
(2007)...............................................................................................................................68 

 
Figure 2.15 : Geographic surface sediment distribution of BSPP and IPAL in the Nordic Seas, 

based on the 1189 surface sediment database for the North Atlantic and North-Eastern 
Pacific..............................................................................................................................70 

 
Figure 2.16 : Geographic surface sediment distribution of IMIN and NLAB in the Nordic 

Seas, based on the 1189 surface sediment database for the North Atlantic and North-
Eastern Pacific.................................................................................................................72 

 
Figure 2.17 : Geographic surface sediment distribution of OCEN and PDAL in the Nordic 

Seas, based on the 1189 surface sediment database for the North Atlantic and North-
Eastern Pacific.................................................................................................................74 

 
Figure 2.18 : Geographic surface sediment distribution of SQUA and SELO in the Nordic 

Seas, based on the 1189 surface sediment database for the North Atlantic and North-
Eastern Pacific.................................................................................................................76 

 
Figure 2.19 : Geographic surface sediment distribution of SMIR and SRAM in the Nordic 

Seas, based on the 1189 surface sediment database for the North Atlantic and North-
Eastern Pacific.................................................................................................................78 

 
Figure 2.20 : Geographic surface sediment distribution of HALO in the Nordic Seas. 

Modified after Matthiessen et al. (1995). .......................................................................79 
 
Chapter 3. 
Figure 3.1 : Sea surface temperature and salinity maps for modern summer (Jul.-Sep.) and 

winter (Jan.-Mar.) conditions within the northern North Atlantic (World Ocean 
Database,  Boyer et al. (2009)); plots constructed using Ocean Data View 4), and 
locations of studied cores (1: HH11-134-BC, 2: JM09-KA11-GC, 3: R406MC032, 4: 
R248MC010 and 5: WOO/SC-3)....................................................................................83 

 
Figure 3.2 : Lithology of core WOO/SC-3 and 14C years BP versus depth (cm) (from Laberg 

et al., 2002)......................................................................................................................84 
 
Figure 3.3 : A) SCOPIX image versus depth of core R248MC010, showing bioturbation. B) 

Grain size analysis (wt %). Clay: <2 µm, Silt: 2-63 µm, Sand: >63µm, based on 
analyses from Jensen et al. (2009). In addition 14C ages are marked at their respective 
depths...............................................................................................................................85 

 
Figure 3.4 : Grain size analysis (wt %) and Total Organic Carbon (TOC %) versus core depth 

(cm) for multicore R406MC032. Clay/Silt: <63 µm, Sand: 63-250 µm, Gravel: >250 
µm, based on analyses from Jensen et al. (2010). In addition 14C ages are marked at 
their respective depths.....................................................................................................86 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xvi 
 

Figure 3.5 : Analytical results for gravity core JM09-KA11-GC, incl. the division of 
lithofacies. Calibrated radiocarbon ages are indicated in the clast-column. Water content 
and undrained shear strength values are given in numbers when out of the range of the 
X axis scale. Modified after Rüther et al. (2012)............................................................88 

 
Figure 3.6 : SCOPIX radiography of core HH11-134-BC, showing a high abundance of clasts 

in the top 10 cm, with an apparent progressive decrease down core...............................89 
 
Figure 3.7 : Age-depth model (cal. years BP) and sedimentation rates of WOO/SC-3, based 

on data from table 3.3 (linear interpolation, between each dated level). Horizontal lines: 
2 sigma range of highest probability of calibrated AMS C14 dates.................................93 

 
Figure 3.8 : Age-depth model, sedimentation rates and 137Cs measurements in core 

R248MC010, based on data from Table 3.3 and Leinebø (2011) (second order 
polynomial fit, between each 210Pb dated level and the bottom 14C dates). Horizontal 
lines: 2 sigma interval of highest probability of the calibrated AMS 14C dates..............95 

 
Figure 3.9 : Age-depth model (cal. years BP) and sedimentation rates of R406MC032, based 

on data from Table 3.3  and Jensen et al. (2010).............................................................96 
 
Figure 3.10 : Age-depth model (cal. years BP) and sedimentation rates of JM09-KA11-GC, 

based on data from Table 3.3 (linear interpolation, between each dated level). 
Horizontal lines: Error range of the AMS C14 dating......................................................98 

 
Figure 3.11 : Age-depth model (cal. years BP)  and sedimentation rates of HH11-134-BC, 

based on data from Table 3.3 (second order polynomial fit, betweeen each dated level). 
Horizontale lines: Error range of the AMS C14 datings...................................................99 

 
Table 3.1 : Core locations and modern winter and summer sea surface temperatures and 

salinities (from World Ocean Database; Boyer et al., 2009). Only the three northern 
most cores have been affected by sea ice within the last two centuries (Vinje, 2001; 
Divine and Dick, 2006)...................................................................................................81 

 
Table 3.2 : Sampling resolution (in cm) according to the investigated cores and the 

investigated proxies. Investigated core length and bottom age are provided for 
information  LLG: Large Lithic Grains, Bulk CaCO3: Bulk carbonate contents. 
Planktonic foraminifera sensus counts were performed by Linda Rossignol and Jacques 
Giraudeau.........................................................................................................................82 

 
Table 3.3 : List of 210Pb and 14C  datings in the studied cores. Calibration of 14C dates was 

done by applying the software Calib 6.1.1 (Stuiver and Reimer, 1993) and the marine 
calibration curve marine09, using  a standard reservoir correction of ∆R = 0, if not 
otherwise stated. (*) excl. from age model......................................................................90 

 
Chapter 4. 
Figure 4.1 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and 

relative abundances (%) of major (mid) and minor (bottom) coccolith species within 
R248MC010..................................................................................................................110 

 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xvii 
 

Figure 4.2 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. 
pelagicus (C). The bar charts below each E/C plot highlight the dominating surface 
water masses of R248MC010 according to the “1” threshold: Blue = ArW (E/C<1); Red 
= AW (E/C >1). Bottom: Relative abundances (black line) and absolute concentrations 
(grey line) of the AW inflow species G. muellerae. The light red shaded areas indicate 
the marked inflow increases inferred from absolute concentrations of G. 
muellerae....................................................................................................................112 

 
Figure 4.3 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (dinocysts * 

10^3/g dry sed.) (top), relative abundances (%) of major and minor dinocysts (mid) and 
dinocyst concentration records (dinocysts * 10^3/g dry sed.) (bottom) of R248MC010.  
(See chapter II for species names - abrevations)...........................................................114 

 
Figure 4.4 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. 

Mid: OCEN/NLAB ratio between the AW thriving O. centrocarpum (OCEN) and the 
sea ice related (ArW) I. minutum (IMIN). Bottom : OCEN/NLAB ratio of the dominant 
dinocyst species OCEN and N. labyrinthus (NLAB). The bar charts below the 
OCEN/NLAB plot highlight the dominating surface water masses of R248MC010 
according to the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW 
(OCEN/NLAB>4).......................................................................................................115 

 
Figure 4.5 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) 

from dinocyst assemblages of core R248MC010, based on the modern analogue 
technique (MAT). The surface sediment database (n=1189) of the North Atlantic and 
North-Eastern Pacific was applied for MAT. Minimum and maximum errors on the 
estimated parameter are shown by the dashed black lines flollowing the curves. The 
modern average values are represented by the horisontal dashed 
lines............................................................................................................................116 

 
Figure 4.6 : Summary plot of surface and subsurface circulation changes west of Lofoten 

Island (R248MC010) over the past ~500 years. a) : Ti/Ca ratio (XRF) as an index of 
terrigenous vs. marine (carbonate) biogenic sedimentation, black line represents a 7-
running mean. b) : Relative abundances of subpolar foraminifera (fraction > 100 µm) as 
an index of subsurface AW masses. c) : Absolute concentrations of the G. muellerae 
coccolith species as proxy of the AW flow strength, violet line represents a 5-running 
mean. d) : relative abundances of SRAM as a proxy for relative variations in primary 
productivity and width of the NCC. e) : Bulk coccolith concentrations (no.*10^8/g dry 
sed.) as an index of carbonate productivity. f) : Combined instrumental (Jones et al., 
1997; Osborn, 2006) and reconstructed (Lutherbacher et al., 2002) NAO index; Red and 
blue areas represent long term positive and negative NAO conditions, respectively. g) : 
OCEN/NLAB ratio as an index of the relative position of the AF (AW/ArW); increased 
and decreased ratios indicates westward and eastward migrations of the AF, 
respectively. h) : E/C ratio as a proxy for the zonal expression of the NCC in the 
Norwegian Sea, violet line represents a 5-running mean. i) : Reconstructed bottom 
temperatures (November) from the Malangen fjord, Northern Norway (Hald et al., 
2011), red line represents a 5-running mean. j + k) : Dinocyst-based MAT reconstructed 
winter surface water temperatures and salinities, with the grey shaded area representing 
the error range of the reconstructions. The summary inferred zones and subzones are 
highlighted in the top, with boundaries indicated by solid (zones) and dashed (subzones) 
vertical black lines. The vertical red dashed line represents the younger boundary of a 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xviii 
 

warm pulse identified by Dylmer et al. (2013) in sediments of Fram Strait. Shaded light 
red and light blue represents inferred relative variations between increased and 
decreased AW flow periods, respectively.....................................................................120 

 
Figure 4.7 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and 

relative abundances (%) of major (mid) and minor (bottom) coccolith species within 
WOO/SC-3....................................................................................................................124 

 
Figure 4.8 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. 

pelagicus (C). The bar charts below each E/C plot highlight the dominating surface 
water masses of WOO/SC-3 according to the “1” threshold: Blue = ArW (E/C<1); Red 
= AW (E/C >1). Bottom: Relative abundances (black line) and absolute concentrations 
(grey line) of the AW inflow species G. muellerae. The light red shaded areas indicate 
the marked inflow increases inferred from absolute concentrations of G. 
muellerae....................................................................................................................125 

 
Figure 4.9 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (dinocysts * 

10^3/g dry sed.) (top), relative abundances (%) of major and minor dinocysts (mid) and 
dinocyst concentration records (dinocysts * 10^3/g dry sed.) (bottom) of WOO/SC-3.  
(See chapter II for species names - abrevations)...........................................................127 

 
Figure 4.10 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. 

Mid: OCEN/NLAB ratio between the AW thriving O. centrocarpum (OCEN) and the 
sea ice related (ArW) I. minutum (IMIN). Bottom : OCEN/NLAB ratio of the dominant 
dinocyst species OCEN and N. labyrinthus (NLAB). The bar charts below the 
OCEN/NLAB plot highlight the dominating surface water masses of WOO/SC-3 
according to the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW 
(OCEN/NLAB>4).......................................................................................................128 

 
Figure 4.11 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) 

from dinocyst assemblages of core WOO/SC-3, based on MAT. The surface sediment 
database (n=1189) of the North Atlantic and North-Eastern Pacific was applied for 
MAT. Minimum and maximum errors on the estimated parameter are shown by the 
dashed black lines following the curves. The modern average values are represented by 
the horisontal dashed lines.............................................................................................129 

 
Figure 4.12 : Summary plot of surface and subsurface circulation changes northeast of the 

Vøring Plateau (WOO/SC-3) over the past 3000 years. a) : A/H ratio as an index of 
trophic level. b) : Relative abundances of SRAM as a proxy for relative variations in 
primary productivity and salinity changes. c) : Bulk coccolith concentrations 
(no.*10^8/g dry sed.) as an index of carbonate productivity. d) : Absolute 
concentrations of G. muellerae as a proxy of the AW flow strength, violet line 
represents a 5-running mean. e) : Combined NAO index reconstructions based on 
Trouet et al. (2009) and Olsen et al. (2012); Red and blue areas represent long term 
positive and negative NAO conditions, respectively. f) : OCEN/NLAB ratio as an index 
of the relative position of the AF (AW/ArW). g) E/C ratio as a proxy for the relative 
position of the AF (AW/ArW). h + i): Dinocyst-based MAT reconstructed winter 
surface water temperatures and salinities, with the grey shaded area representing the 
error range of the reconstructions. The Summary inferred zones and subzones are 
highlighted in the top, with the zonations indicated by solid (zones) and dashed 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xix 
 

(subzones) vertical black lines. Shaded light red and light blue represents inferred 
relative variations between increased and decreased AW flow periods west of Norway, 
respectively................................................................................................................131 

 
Figure 4.13 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and 

relative abundances (%) of major (mid) and minor (bottom) coccolith species within 
R406MC032..................................................................................................................134 

 
Figure 4.14 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. 

pelagicus (C). The bar charts below each E/C plot highlight the dominating surface 
water masses at R406MC032 according to the “1” threshold: Blue = ArW (E/C<1); Red 
= AW (E/C >1). Bottom: Relative abundances (black line) and absolute concentrations 
(grey line) of the AW inflow species G. muellerae. The light red shaded areas indicate 
the marked inflow increases inferred from relative abundances (see text for details) of 
G. muellerae................................................................................................................136 

Figure 4.15 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (sensus 
counts * 10^3/g dry sed.) (top), relative abundances (%) of major and minor dinocysts 
(mid) and dinocyst concentration records (dinocysts * 10^3/g dry sed.) (bottom) of 
R406MC032.  (See chapter II for species names - abrevations)...................................138 

 
Figure 4.16 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. 

Mid: OCEN/NLAB ratio between the AW thriving O. centrocarpum (OCEN) and the 
sea ice related (ArW) I. minutum (IMIN). Bottom : OCEN/NLAB ratio of the dominant 
dinocyst species OCEN and N. labyrinthus (NLAB). The bar charts below the 
OCEN/NLAB plot highlight the dominating surface water masses of R406MC032 
according to the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW 
(OCEN/NLAB >4)......................................................................................................139 

 
Figure 4.17 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) 

from dinocyst assemblages of core R406MC032, based on MAT. The surface sediment 
database (n=1189) of the North Atlantic and North-Eastern Pacific was applied for 
MAT. Minimum and maximum errors on the estimated parameter are shown by the 
dashed black lines following the curves. The modern average values are represented by 
the horisontal dashed lines..........................................................................................140 

 
Figure 4.18 : Summary plot of surface and subsurface circulation changes of the southwestern 

Barents Sea (R406MC032) over the past ~550 years. a) : Reworked dinocysts as an 
index of input from land (NCC) and/or sediment redistribution b) : Total lithic grains as 
proxies for IRD (Ice rafted detritus) and/or downslope transport of finer material. c) : 
Reconstructed bottom water temperatures from southeast of Bear Island (Wilson et al., 
2011). d) :  Absolute concentrations of G. muellerae as a proxy of the AW flow 
strength. e) : OCEN/NLAB ratio as an index of the width of the WSC. f) : Relative 
abundances of SRAM as a proxy for relative variations in primary productivity and 
salinity changes. g) : E/C ratio as an index of the relative position of the AF (AW vs. 
ArW). h) : Combined modern (Jones et al., 1997; Osborn, 2006) and reconstructed 
(Lutherbacher et al., 2002) NAO index; Red and blue areas represent long term positive 
and negative NAO conditions, respectively. i + j + k): Dinocyst-based MAT 
reconstructed winter surface water temperatures and salinities and sea ice cover 
(months/year), with the grey shaded area representing the error ranges of the 
reconstructions. The summary inferred zones and subzones are highlighted in the top, 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xx 
 

with the zonations indicated by solid (zones) and dashed (subzones) vertical black lines. 
Shaded light red and light blue represents inferred relative variations between increased 
and decreased AW flow periods in the southwestern Barents Sea, respectively..........143 

 
Figure 4.19 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and 

relative abundances (%) of major (mid) and minor (bottom) coccolith species within 
HH11-134-BC...............................................................................................................146 

 
Figure 4.20 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. 

pelagicus (C). The bar charts below each E/C plot highlight the dominating surface 
water masses at HH11-134-BC according to the “1” threshold: Blue = ArW (E/C<1); 
Red = AW (E/C>1). Bottom: Relative abundances (black line) and absolute 
concentrations (grey line) of the AW inflow species G. muellerae. The light red shaded 
areas indicate the marked inflow increases inferred from absolute concentrations of G. 
muellerae....................................................................................................................147 

Figure 4.21 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (sensus 
counts * 10^3/g dry sed.) (top), relative abundances (%) of major and minor dinocysts 
(mid) and dinocyst concentration records (dinocysts * 10^3/g dry sed.) (bottom) of 
HH11-134-BC.  (See chapter II for species names - abrevations)..............................148 

 
Figure 4.22 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. 

Mid: OCEN/NLAB ratio between the AW thriving O. centrocarpum (OCEN) and the 
sea ice related (ArW) I. minutum (IMIN). Bottom : OCEN/NLAB ratio of the dominant 
dinocyst species OCEN and N. labyrinthus (NLAB). The bar charts below the 
OCEN/NLAB plot highlight the dominating surface water masses of HH11-134-BC 
according to the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW 
(OCEN/NLAB >4).....................................................................................................149 

 
Figure 4.23 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) 

from dinocyst assemblages of core HH11-134-BC, based on MAT. The surface 
sediment database (n=1189) of the North Atlantic and North-Eastern Pacific was 
applied for MAT. Minimum and maximum errors on the estimated parameter are shown 
by the dashed black lines following the curves. The modern average values are 
represented by the horisontal dashed lines.................................................................151 

 
Figure 4.24 : Summary plot of surface and subsurface circulation changes west of Svalbard 

(HH11-134-BC) over the past ~3000 years. a) : Bulk coccolith concentrations as an 
index of carbonate productivity. b) : Relative abundances of subpolar foraminifera 
(fraction > 100 µm) as an index of subsurface AW masses. c) : Absolute concentrations 
of G. muellerae as a proxy of the AW flow strength. d) : Combined NAO index 
reconstruction based on Trouet et al. (2009) and Olsen et al. (2012); Red area represents 
positive and blue area negative NAO conditions. e) : OCEN/IMIN ratio as an index of 
surface water changes (AW/ArW). f) : E/C ratio as an index of the relative position of 
the AF (AW/ArW). g) : Arctic summer temperatures based on Kaufmann et al. (2009). 
h + i) : Dinocyst-based MAT reconstructed winter surface water temperatures and 
salinities, with the grey shaded area representing the error ranges of the reconstructions. 
The summary inferred zones and subzones are highlighted in the top, with the zonations 
indicated by solid (zones) and dashed (subzones) vertical black lines. The vertical red 
dashed line represents the warm pulse at ca. 400 cal. Years BP identified by Dylmer et 
al., 2013. Shaded light red and light blue represents inferred relative variations between 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xxi 
 

increased and decreased AW flow periods in the eastern Fram Strait, 
respectively....................................................................................................................155 

 
Figure 4.25 : Summary plot of lithology and sea ice variability west of Svalbard (HH11-134-

BC) over the past ~3000 years. a) : Dinocyst-based MAT reconstructed sea ice cover 
(months/year), with the grey shaded area representing the error ranges of the 
reconstructions. b) : Zr/Rb ratio (XRF) as a grain size indicator and/or sea ice influence 
indicator; higher values = coarser material (IRD), lower values =  fine material (clay), 
black line indicate a 7-running mean. c) : PBIP25  sea ice index, higher values inferring 
closer proximity to the MIZ and lower values tracing more open water conditions. d) : 
Combined NAO index reconstruction based on Trouet et al. (2009) and Olsen et al. 
(2012); Red area represents positive NAO and blue area negative NAO conditions. e) : 
Ca/Ti as a tentative index of marine biogenic carbonate vs. terrigenous sedimentation 
(see text), black line indicate a 7-running mean. f) : IRD (>500 µm) as a relative Iceberg 
index. g +h) : IRD (>150 µm, incl. carbonate grains) as a proxy for sea ice variability. i) 
: HALO represents melt water from sea ice and/or land. The summary inferred zones 
and subzones are highlighted in the top, with the zonations indicated by solid (zones) 
and dashed (subzones) vertical black lines. The vertical red dashed line represents the 
warm pulse at ca. 400 cal. years BP identified by Dylmer et al., 2013. Shaded light red 
and light blue represents inferred relative variations between warmer and cooler periods 
in the eastern Fram Strait, respectively.......................................................................156 

 
Figure 4.26 : Modern (surface sed.) distribution of key coccolith and dinocyst species in the 

Nordic Seas e.g. Emiliania huxleyi (E), Coccolithus pelagicus (C), Nematosphaeropsis 
labyrinthus (NLAB) and Operculodinium centrocarpum (OCEN), as well as the ratios 
E/C and OCEN/NLAB (maps modified from Baumann et al. (2000) and Matthiessen et 
al. (1995, 2001))............................................................................................................194 

 
Figure 4.27 : Temporal changes in the nature of surface water masses at the five studied core 

locations according to the key coccolith and dinocyst ratios (and their threshold values). 
The dinocyst and coccolith ratios are suggested to reflect the approximate location of 
the Arctic Front (AF) using various threshold ratios (red bars representing AW, E/C>1 
and OCEN/NLAB>4; blue bars representing ArW, E/C<1 and OCEN/NLAB<4).....195 

 
Figure 4.28 : April and August ice edge positions for the period 1850-1899 AD (100-51 cal. 

years BP), modified from Divine and Dick (2006).......................................................196 
 
Figure 4.29 : Comparison of G. muellerae with other AW flow proxy records during the last 

millenium. a) : Combined NAO index reconstruction based on Trouet et al. (2009) and 
Olsen et al. (2012). b) : SST record in Fram Strait off western Svalbard in core 
MSM5/5-712, due slightly north of HH11-134-BC, after Spielhagen et al. (2011). 
c+d+e) : AW flow strength inferred from absolute concentrations of the AW inflow 
species G. muellerae (this study). f) : Shell-based ∆R values over northern Iceland after 
Wannamaker et al. (2012); positive values are representative of Arctic-derived water 
masses, negative values are indicative of Atlantic-derived surface water masses. g) : 
Gulf Stream transport estimates in the Florida Strait after Lund et al. (2006). The grey 
shaded area represents the zone of transition from the MCA to the LIA......................199 

Figure 4.30 : Comparison of G. muellerae absolute abundance in the Fram Strait core HH11-
134-BC with a 1500 years sea ice reconstruction. Modified after Kinnard et al. 
(2011)............................................................................................................................201 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xxii 
 

Figure 4.31 : Summary plot of surface and subsurface circulation changes in the eastern 
Nordic Seas over the past ~3000 years. a) : Combined NAO index reconstruction based 
on Trouet et al. (2009) and Olsen et al. (2012); Red area represents positive and blue 
area negative NAO conditions. b) : Relative abundances of subpolar foraminifera 
(fraction > 100 µm) as an index of subsurface AW masses. c + d) : Absolute 
concentrations of G. muellerae as a proxy of AW flow strength. e) : E/C ratio as an 
index of the relative position of the AF (AW/ArW). f) : OCEN/NLAB ratio as an index 
of the relative position of the AF (AW/ArW). g) : Glaciation curve for Jostedalsbreen 
area western Norway, from Nesje et al. (2001). Also included are watermass 
distribution bars (red=AW, blue=ArW) from the two most northern records based on the 
E/C threshold of 1. The summary inferred zones and subzones are highlighted in the 
top, with the zonations indicated by solid (zones) and dashed (subzones) vertical black 
lines. Shaded light red and light blue inferred relative variations between increased and 
decreased AW flow periods in the eastern Nordic Seas, respectively. Shaded base and 
yellow squares represents the inferred warm pulses and the Modern period flow 
increases.....................................................................................................................203 

 
Figure 4.32 : Summary plot of surface and subsurface circulation changes in the eastern 

Nordic Seas over the past ~800 years. a) : Combined modern (Jones et al., 1997; 
Osborn, 2006), reconstructed (Lutherbacher et al., 2002; Trouet et al. (2009), dashed 
black line) NAO index; Red and blue areas represent long term positive and negative 
NAO conditions, respectively. b) : Arctic summer temperatures based on Kaufmann et 
al. (2009). c - f) : Absolute concentrations of G. muellerae as a proxy of the AW flow 
strength. g) : E/C ratio as an index of the relative position of the AF (AW/ArW). h) : 
OCEN/NLAB ratio as an index of the relative position of the AF (AW/ArW). i) : 
Reconstructed bottom water temperatures from southeast of Bear Island (Wilson et al., 
2011). j) : Reconstructed bottom temperatures (November) from the Malangen fjord, 
Northern Norway (Hald et al., 2011), red line represents a 5-running mean. The 
summary inferred zones and subzones are highlighted in the top, with the zonations 
indicated by solid (zones) and dashed (subzones) vertical black lines. Shaded light red 
and light blue represents inferred relative variations between increased and decreased 
AW flow periods in the eastern Nordic Seas, respectively. Shaded base and yellow 
squares represents the inferred warm pulses and the Modern period flow 
increases...................................................................................................................207 

 
Chapter 5. 
Figure 5.1 : Summary plot of surface and subsurface circulation changes in the western 

Barents Sea (JM09-KA11-GC) over the past ~12000 years. a) : Bulk coccolith 
concentrations as an index of carbonate productivity. b) : Absolute concentrations of G. 
muellerae as a proxy of the AW flow strength. c) : relative abundances (%) of the major 
coccolith species E. huxleyi and C. pelagicus as proxies for AW and ArW, respectively, 
within JM09-KA11-GC. d-g) : relative abundances (%) of the dinocyst species OCEN 
(AW), IMIN (ArW), BSPP (productivity) and SRAM (productivity, salinity) within 
JM09-KA11-GC. h) : HALO concentrations as a proxy for meltwater. i - k) : Dinocyst-
based MAT reconstructed winter surface water temperatures, salinities and sea ice 
concentrations (months/year), with the grey shaded area representing the error ranges of 
the reconstructions. Shaded light red represents increased AW flow periods in the 
western Barents Sea during the Holocene.....................................................................221 

 
  



Figure and Table List 

Christian V. Dylmer, 2013 

 

xxiii 
 

Figure and Table List (Articles) 
 
Article: “The coccolithophores Emiliania huxleyi and Coccolithus pelagicus: extant 
populations from the Norwegian-Iceland Sea and Fram Strait”.  
 
Figure 1 : Bathymetric map of the Nordic Seas showing major surface currents after Jakobsen 

et al. (2003), Olsson et al. (2005) and Andersson et al. (2011). Red arrows show the the 
flow direction of warm saline Atlantic water. NwAC: Norwegian Atlantic Current, WB: 
Western Branch (NwAC), EB: Eastern Branch (NwAC), NCaC: North Cape Current, 
WSC: West Spitsbergen Current). Blue arrows show the flow direction of cold low 
saline Arctic/Polar waters. EGC: East Greenland Current, JMC: Jan Mayen Current, 
EIC: East Icelandic Current, BIC: Bear Island Current. Green arrow shows the flow 
direction of coastal waters. NCC: Norwegian Coastal Current. Other abbrevations; NB: 
Norwegian Basin, LB: Lofoten Basin, GB: Greenland Basin, IP: Icelandic Plateau......42 

 
Figure 2 : Monthly Sea Surface Temperature (SST) composite maps of the studied area based 

on satellite grid images (Aqua MODIS 32), extracted from 
http://oceancolor.gsfc.nasa.gov/ for September 29 - October 14 in 2007 and 15-27 of 
July 2011. White squares: samples locations; black squares: CTD and ARGO locations; 
dashed light blue line: sea-ice margin as the 50% sea-ice concentration isoline extracted 
from AVHRR Pathfinder 5.2 images (http://data.nodc.noaa.gov) from October 5, 2007, 
and July 20, 2011. Shaded area (October 2007): no data................................................47 

 
Figure 3 : Longitudinal plots of coccolithophore cell densities (coccolithophore standing 

stock) and SSTs across the Fram Strait transects during July 2011 and 
October/September 2007. Red bars: Emiliania huxleyi coccolithophore standing stocks; 
blue bars: Coccolithus pelagicus coccolithophore standing stocks; black dashed line: 
maximum temperature of Coccolithus pelagicus occurrence observed along the transect; 
orange boxes: sample locations; black boxes: locations of CTD 1-5; shaded white 
boxes: sea-ice margin (50% sea-ice concentration); light red bars: surface AW masses; 
light blue bars: surface ArW masses; purple bars: surface PW masses; dashed arrows: 
overall transect direction.................................................................................................52 

 
Figure 4 : Longitudinal plots of coccolithophore cell densities (coccolithophore standing 

stocks) and SSTs across the Norwegian-Iceland Seas transects during July 2011 (top) 
and October/September 2007 (bottom). Red bars: Emiliania huxleyi coccolithophore 
standing stocks; blue bars: Coccolithus pelagicus coccolithophore standing stocks; 
black dashed line: maximum temperature of Coccolithus pelagicus occurence observed 
along the transect; orange boxes: sample locations; shaded white boxes: sea-ice margin 
(50% sea-ice concentration) ; light red bars: surface AW masses; light blue bars: surface 
ArW masses; purple bars: surface PW masses; dashed arrows: overall transect direction 
.........................................................................................................................................54 

 
Table 1 : List of surface water samples for Oct.-Sep. 2007, with collection dates, locations 

and coccolithophore cell densities...................................................................................48 
 
Table 2 : List of surface water samples for July 2011, with collection dates, locations, and 

coccolithophore cell densities..........................................................................................48 
 



Figure and Table List 

Christian V. Dylmer, 2013 

 

xxiv 
 

Article: “Northward Advection of Atlantic water in the eastern Nordic Seas over the last 3000 
years”. 
Figure 1 : Bathymetric map of the Nordic Seas showing the major oceanic features and site 

locations. Red arrows: flow direction of warm saline Atlantic water (NAC: North 
Atlantic Current, NCaC: North Cape Current, WSC: West Spitsbergen Current), blue 
arrows: flow direction of cold low saline Arctic/Polar waters (EGC: East Greenland 
Current, ESC: East Spitsbergen Current, PC: Persey Current), purple arrow: flow 
direction of coastal surface current (NCC: Norwegian Coastal Current). Dashed yellow 
line: modern distribution of Arctic Front (AF). Core locations A: HH11-134-BC (West 
of Spitsbergen), B: JM09-KA11-GC (western Barents Sea) and C: MD95-2011(Vøring 
Plateau). ........................................................................................................................166 

 
Figure 2 : Calendar age-depth model and sedimentation rates of JM09-KA11-GC (linear 

interpolation between each dated level) and HH11-134-BC (second order polynomia), 
based on data from table 2. Filled circles: incl. AMS C14 datings, hollow circle: excl. 
AMS C14 datings. The stratigraphic framework of core MD95-2011 was developed by 
Birks and Koç (2002), Risebrobakken et al. (2003) and Andersson et al. (2003) 
.......................................................................................................................................169 

 
Figure 3 : Bulk coccolith concentrations records (coccoliths * 10^8/g dry sed)....................173 
 
Figure 4 : Relative abundances (%) of major (left axes) and minor (right axes) coccolith 

species throughout the three studied cores....................................................................175 
 
Figure 5 : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. pelagicus 

(C). The bar charts below each E/C plot highlight the dominating surface water masses 
at the core locations according to the “1” threshold: Blue = ArW (E/C<1); Red = AW 
(E/C >1).........................................................................................................................176 

 
Figure 6 : Relative abundances (grey line) and absolute concentrations (black line) of the AW 

inflow species G. muellerae, throughout the three studied cores. The MD95-2011record 
is a late Holocene zoom of previously published data by Giraudeau et al., (2010) 
.......................................................................................................................................177 

 
Figure 7 : Summary plot of surface and subsurface circulation changes across the eastern 

Nordic Seas over the past 3000 years. (A) : combined NAO index reconstruction based 
on Trouet et al. (2009) and Olsen et al. (2012); Red area represents positive NAO and 
blue area negative NAO conditions. (B) : relative abundance of subpolar foraminifera 
(fraction > 100 µm) at site HH11-134-BC as an index of subsurface AW masses. (C) : 
dominating surface water masses at site HH11-134-BC (Fram Strait) inferred from E/C 
ratios. (D) and (E) : Dynamics of AW flow off western Svalbard (top) and off western 
Norway (bottom) inferred from  absolute concentrations of the AW inflow species G. 
muellerae. The grey shaded areas indicate the marked inflow increases during the 
Modern period and the intra-LIA event centered at 330-410 cal. years BP. The dashed 
thick line refers to the initiation of the LIA according to Miller et al. (2012) .............180 

 
Table 1 : Core location, water depth, length and geographical area.......................................167 
 
Table 2 : Core, sample depth, dated material, 14C AMS age years BP, calibrated years BP, 

Laboratory ID and Reference........................................................................................168



Abbrevations List 

Christian V. Dylmer, 2013 

 

xxv 
 

Abbreviation List 
 
AF  Arctic Front 
AO  Arctic Oscillation 
ArW  Arctic Water 
AW  Atlantic Water 
BIC  Bear Island Current 
BIT   Bear Island Trench 
DA  (the) Dark Ages 
EB  Eastern Branch (NwAC) 
EGC  East Greenland Current 
EIC  East Icelandic Current 
ESC  East Spitsbergen Current 
Gba  (the) Great Bank 
HTM  Holocene Thermal Maximum 
IRD   Ice Rafted Detritus 
JMC  Jan Mayern Current 
LF   Lithofacies 
LIA   (the) Little Ice Age 
MAT   Modern Analogue Technique 
MCA   Medieval Climate Anomaly 
MIZ  Marginal Ice Zone 
M   Modern period 
NAC  North Atlantic Current 
NAO  North Atlanic Oscillation 
NwAC  Norwegian Atlantic Current 
NCC  Norwegian Coastal Current 
NCaC  North Cape Current 
NH  Northern Hemisphere 
PC  Percey Current 
PW  Polar Water 
PF  Polar Front 
RAC  Return Atlantic Current 
RWP  Roman Warm Period 
Sba  Spitsbergen Bank 
THC  Thermohaline circulation 
WB  Western Branch (NwAC) 
WSC  West Spitsbergen Current 

 
 
 
 



 

 
 

 
 



Chapter 1. 

Christian V. Dylmer, 2013 

 

1 
 

Chapter 1 : General Introduction  

1.1 Introduction and Thesis Overview  

Getting a better knowledge on the dynamics of natural climate changes during the present 

Interglacial (the Holocene) is of outmost importance to distinguish the anthropogenic vs. 

natural impacts and feedbacks at play in present times of global warming, and to assess the 

evolution of the global climate in the coming decades and centuries. The northern North 

Atlantic (Iceland, Greenland, Norwegian, Barents Seas and Fram Strait) is, together with the 

Arctic Ocean, one of the most sensitive climatic regions of the modern oceans. As the main 

connection to the Arctic Ocean, this region is characterized by strong contrasting meridional 

inflow and outflow of surface and intermediate waters in the form of heat import to the 

northernmost latitudes on the eastern side of the Nordic Seas, and polar water and sea ice 

export through Denmark Strait in the western part, respectively. As a major site of deep water 

convection in the Greenland and Norwegian Sea, and sea-ice formation off western 

Greenland, Fram Strait and Barents Sea, this area has long been considered as a key player in 

the variability of the Atlantic Meridional Overturning Circulation, hence in global climate 

changes at orbital (glacial/interglacial) to shorter time-scales.  

A dramatic decline over the last 30 years has been observed in the summer distribution and 

thickness of Arctic sea ice through satellite imagery, a phenomenom which is now also 

observed during winter months (Serreze et al., 2003; Comiso et al., 2008). Sea ice formation 

and melting constitute some of the most important feedback mechanisms to the global climate 

system (Aargaard and Carmack, 1994). Sea ice effectively insulates the atmosphere from the 

ocean, restricting the exchanges of heat, mass, momentum and chemical components (Divine 

and Dick, 2006). Also, together with snow-covered continental areas, sea-ice from its high 

albedo (higher than that of open ocean surface waters) contributes to a high extent to the 

radiative balance of the Earth. Changing modes of atmospheric circulation (North Atlantic 

Oscillation, NAO) as well as variability in poleward flow of the Norwegian Atlantic Current 

(NwAC) waters are strongly involved into present and past sea ice extent in the northern 

North Atlantic (Blindheim et al., 2000; Vinje, 2001; Visbeck et al., 2003). Hence, as changes 

in the global climate necessarily involve changes in sea-ice cover (Divine and Dick, 2006), 

which again is strongly linked to the northward meridional flow of warm saline waters to the 

Arctic Oceans, a strong need has arisen to improve our understanding of the effects of the past 

decades’ strengthened heat advection to the Arctic on the decreased sea ice extent (Vinje, 

2001; Dick and Divine, 2006) .    
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An often asked question concerning the last decades’ climatic and oceanographic changes is 

whether or not our present interglacial contains analogues for the present and future climate 

development. Although the amount of literature on Holocene (last ~11.600 years) climate 

changes is large and steadily increasing (Wanner et al., 2008), there is still limited 

information on the geographic patterns and the mechanisms behind this variability. Past 

naturally-driven Holocene climate shifts had strong social impacts: civilizations’ 

developments and collapses occurring synchronously with abrupt shifts to drier and/or colder 

climate regimes (Wanner et al., 2008, and references therein). Naturally-driven rapid climate 

changes will therefore contribute extensively, together with the anthropogenic forcing, to the 

future climate changes (Sejrup et al., 2011). Despite the role oceans play in the climate 

system, they are often excluded from general data compilations of Holocene climate archives 

due to lower time resolutions of marine sediment cores compared to ice cores and tree rings 

(Overpeck et al., 1997; Kaufman et al., 2009). In addition, the chronology of most ocean 

sediment cores is primarily based on radiocarbon dates on marine carbonate fossils, which are 

often hampered by uncertainties in the estimation of reservoir effects, and which, therefore, 

often limit their reliability to the investigation of low resolution centennial to millennial scale 

variability (Sejrup et al., 2011). 

 

Reconstructions of sea surface temperature in the North Atlantic generally show a decreasing 

trend throughout the Holocene which has been attributed to insolation changes (e.g. Marshall 

et al., 2001). Nevertheless, previous studies (e.g. Dahl-Jensen et al., 1998; Calvo et al., 2002; 

Sarnthein et al., 2003; Solignac, 2008) showed that hydrographical changes in the mid- and 

high latitudes of the northern North Atlantic were not uniform in terms of amplitude and 

spatial extent. As an example, the Late Holocene was governed by a cooling trend known as 

the Neoglaciation (Porter and Denton, 1967), which was punctuated by several warm and cold 

spells such as the Roman Warm Period (RWP) and Medieval Climate Anomaly ( MCA) and 

the Little Ice Age (LIA). Over the last century, the LIA was reversed by an overall increase in 

temperature, as depicted from terrestrial high resolution proxy records of the Arctic region 

(Overpeck et al., 1997; Kaufman et al., 2009) and proxy records from marine sediment cores 

of the northern North Atlantic (Spielhagen et al., 2011; Hald et al., 2011; Wilson et al., 2011). 

Marine proxy-based reconstructions suggest that this recent temperature increase in the 

subsurface layer west of Spitsbergen (Spielhagen et al., 2011) and in shallow settings of 

Northwest Norway (Hald et al., 2011) was unprecedented over the past two millenniums. 
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Both studies implied that this warming was probably caused by enhanced advection of 

Atlantic Water (AW) to the Arctic Ocean during modern times, although neither (of them) 

were able to strictly infer the dynamical history of AW, i.e. the history of the strength of the 

North Atlantic Current (NAC). The hypothesis of an increased AW inflow during the modern 

period was further supported by Wanamaker et al. (2012) based on living and fossil 

molluscan remains found north of Iceland. These authors additionally related known pre-

Anthropocene warm (MCA) and cold (LIA) climatic spells of the last ~1500 years to 

modulations of the surface Atlantic-derived water dynamics within the North Atlantic. This 

modulation was further evidenced off Florida, at the inception of the Gulf Stream, by Lund et 

al. (2006) who estimated a 10 percent decrease in the flow of this current at the transition 

from the MCA to the LIA. Similarly, in the close Chesapeake Bay, such modulations were 

also evidenced by Cronin et al. (2005) who linked them to North Atlantic Oscillation (NAO) 

forcing of sea-surface temperatures in the western North Atlantic. 

The overarching objective of the present research project is to obtain a more complete 

knowledge on Late Holocene (last ~3000 years) natural variability of physical parameters 

affecting ecosystem processes and structure in the northern North Atlantic within, or close to 

areas presently affected by seasonal sea-ice, and based on the investigations of skeleton 

remains of two marine phytoplankton groups: dinocysts and coccoliths. This goal involves 

qualitative and quantitative reconstructions of surface water conditions (temperature, salinity, 

stratification and sea ice distribution) from high resolution (decadal to centennial scales) 

Holocene sediment cores, and comparisons with other terrestrial and marine datasets. 

Reconstructing the Late Holocene changes within surface water masses in the eastern Nordic 

Seas as well as the variability in the Atlantic water inflow to the Arctic Ocean through the 

Fram Strait and Barents Sea gateways is of particular interest to this research project.  

 

To achieve these objectives, a selection of five records (3 short cores and 2 long cores) were 

selected along the continental margin of the Northeast Atlantic within the main pathway of 

Atlantic Water to the Arctic Ocean (i.e. NwAC and the West Spitsbergen Current, WSC) (Fig. 

1.1). The main micropaleontological tracers (coccoliths and dinoflagellate cysts) as well as a 

few additional proxies (XRF-derived elemental contents, planktonic foraminiferal 

assemblages and lithic grains) were analyzed to identify Holocene changes in the surface (and 

subsurface) circulation of the NwAC and its extensions into the Arctic Ocean with a focus on 

the WSC.  
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The distributions of dinoflagellate and coccolithophore species in surface waters are strongly 

driven by the physical-chemical state of the upper photic layer, in particular sea-surface 

temperatures, sea-surface salinities as well as stratification within the water column. A 

prerequisite for the application of fossilizable phytoplankton to paleoceanographical 

reconstructions therefore implies a fair understanding of the regional and local oceanography, 

the governing atmospheric wind systems (CHAPTER 1) and the ecological preferences of 

the investigated species groups, as well as evidence that the distributions of dinocyst and 

coccolith assemblages in surface sediments are related to the spatial distribution of the surface 

water masses (CHAPTER 2) (Baumann et al., 2000; de Vernal and Marret, 2007). Coccoliths 

and dinocysts may suffer from specific drawbacks, such as calcite dissolution in coccoliths 

(Samtleben and Schröder, 1992) or species-specific sensitivity to oxidation of dinocysts 

(Zonneveld et al., 2001). Applying both proxies and additional minor proxies therefore allows 

us to discriminate somewhat between true ecological signals and biased information linked to 

variable preservation and transport processes, and thus to obtain a more accurate picture of the 

recent paleoceanographic and paleoclimatic variability in the northeastern Atlantic. The 

rational for the selection of the sediment cores, their chronology and the applied methods are 

dealt with in CHAPTER 3. The location of the five core sites, within the main pathway of the 

meridional northward flow of AW (Fig. 1.1) provides the perfect conditions for a compilation 

of datasets covering the Late Holocene with the aim of investigating paleoceanographic 

changes in the physical parameters and their effect on the ecosystem as well as the inflow 

variability of the WSC. This will be the focus of CHAPTER 4. Finally CHAPTER  5 

provides the conclusions and perspectives of this study.  

1.2 State of the Art: The Holocene  

The present interglacial climate is considered to be fairly stable on centennial and longer time 

scales compared to glacial climates which underwent extreme temperature changes within 

decades along with the 1500-year Dansgaard Oeschger cycles (Dansgaard et al., 1993; 

Grootes and Stuiver, 1997). During recent decades, a debate has been going on concerning the 

continuation of earlier glacial cyclicities into the Holocene. Increasing evidence indicates a 

persistency of these millennial scale cycles during our interglacial, although with generally 

weaker amplitudes than during glacial times. These dominant periods are under continuous 

discussion (Bond et al., 1997, 2001). Earlier studies by Bond et al. (1997, 2001) suggested 

that cycles of ice-rafting and SST changes averaged 1000–2000 years over the entire 

Holocene, but only 600–1000 years in the early Holocene, and proposed this cycle to 
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represent the Holocene expression of Dansgaard-Oeschger cycles. Other recorded pacings of 

Holocene hydrological/climatological changes include 1500 year Dansgaard-Oeschger cycles 

in Atlantic deep water circulation changes (Bianchi and McCave, 1999) as well as a 890-year 

periodicity from the Holocene GISP2 18O (temperature) signal, a period which Schulz and 

Paul (2002) ascribe to an internal oscillation of the North Atlantic thermohaline circulation 

(THC). Similar frequencies have been deduced for 10Be variations as measured in GISP2 

(Bond et al., 2001). According to O’Brien et al. (1995), the Summit ice core displays several 

periods of colder conditions between 0-600, 2400-3100, 5000-6100, 7800-8800 years BP and 

more than 11300 years BP ago, which were not strictly referred to cyclical patterns. Shuman 

et al. (2005) argued against Holocene cyclicity in climate variability based on results showing 

that there is not much evidence in Holocene vegetation and lake-level changes  of this cyclic 

behavior.  

Whether or not glacial cyclicity has persisted during the Holocene, this period experienced 

significant climatic variations (Sarnthein et al., 2003). In the northern North Atlantic realm, 

these climate shifts have been recorded by glacier advances and tree-line changes in 

Scandinavia (e.g. Dahl and Nesje, 1996; Svendsen and Mangerud, 1997; Nesje et al., 2001; 

Davis et al., 2003), isotopic, physical and chemical anomalies in the Greenland ice core 

(O’brien et al., 1995; Dahl-Jensen et al., 1998), fluctuations in sea ice and iceberg-derived 

lithic grains in the northern North Atlantic (Bond et al., 1997, 2001; Jennings et al., 2002; 

Moros et al., 2004), subsurface and surface temperatures (Koç et al., 1993; Voronina et al., 

2001; Calvo et al., 2002; Sarnthein et al., 2003; Risebrobakken et al., 2003; Hald et al., 2007; 

Solignac et al., 2008; Risebrobakken et al., 2010; Spielhagen et al., 2011), North Atlantic 

atmospheric circulation changes (Trouet et al., 2009; Olsen et al., 2012), variability in 

Atlantic Water heat advection to the Arctic Oceans (Duplessy et al., 2001; Giraudeau et al., 

2010) and compilations of Arctic terrestrial datasets (Kaufmann et al., 2009). Hence, although 

an in-depth assessment of Holocene millennial scale cyclical patterns in climate changes is 

not part of the main goal of the research presented here, the topic is an inherent feature of 

paleoclimate proxy record studies. 

In general, the climate of the NH was governed by a long-term cooling during the Holocene 

due to orbital variations that produced declining summer insolation in the higher northern 

latitudes (Wright et al., 1993). The Holocene followed the Younger Dryas, a period 

characterized by a significant and extended cooling across higher latitude regions of the 

northern hemisphere (Cabedo-Sanz et al., 2012). This interglacial can roughly be divided into 
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three phases. The first phase, from 11.600 to roughly ~9000 cal. years BP (Wanner et al., 

2008), was governed by a maximum in NH summer insolation, peaking at 11000 cal. years 

BP, and downstream cooling effects of the remnant ice sheets (Laurentide, Fennoscandia) on 

the climate of the North Atlantic and Eurasia (Kaufmann et al., 2004). The second phase 

covers the period from ~9000 to ~6000-5000 cal. years BP, also known as the Holocene 

Thermal Maximum (HTM). This phase corresponds to a period of sustained high summer 

insolation on the NH, and the disapperance of the North American ice sheet. Wanner et al. 

(2008) suggested that the third phase extended from ~5000 cal. years BP to the pre-industrial 

period and referred to it as a period of glacier advances, the “Neoglaciation”, governed by 

declining summer insolation on the NH. The phase which I particularly investigated during 

this PhD project includes several warm and cold spells known as the Roman Warm Period 

(RWP, until 300 BC - ~600 AD or ~2250-1350 cal. years BP; Wang et al., 2012), the Dark 

Ages (DA, ~600-900 AD or ~1350-1050 cal. years BP), the Medieval Climate Anomaly 

(MCA, ~900-1500 AD or ~1050-450 years BP), the Little Ice Age (LIA, ~1500-1900 AD or 

~450-50 cal. years BP) and the Modern (Industrial) period (M, ~1900 AD -present) 

(Spielhagen et al., 2011, and references therein). 

1.3 Physical Oceanography  

The following includes a short introduction to the physical oceanography of the northern 

North Atlantic (Iceland, Greenland, Norwegian, Barents Seas and Fram Strait) in the form of 

a summary of the bathymetry, oceanography and sea ice distribution within this ocean realm. 

1.3.1 Bathymetry 

The Nordic Seas are comprised by the Norwegian Sea, the Greenland Sea and the Iceland Sea, 

separated from the rest of the North Atlantic in the south by the Greenland-Scotland Ridge 

and connected to the Arctic Ocean by two major gateways: the Fram Strait and the Barents 

Sea. The bathymetry of the Nordic Seas is characterized by a complex ridge system dividing 

the ocean into four major basins (Schäfer et al., 2001). The Norwegian and Lofoten Basins are 

located in the eastern part of the Nordic Seas below the Norwegian Sea which is separated 

from the Greenland Sea (Greenland Basin) by the Mohn Ridge in the north and from the 

shallower Iceland Sea (Icelandic Plateau) by the Jan Mayen Ridge in the south (Loeng and 

Drinkwater, 2007; Koszalka et al., 2011) (Fig. 1.1).  

The shallow shelf area of the Barents Sea is limited by the shelf break on its western 

boundary towards the Norwegian Sea, by Novaya Zemlya on its eastern boundary, in the 
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south by Norway and Russia and finally by the continental shelf break in the north towards 

the deep Arctic Ocean (Loeng and Drinkwater, 2007). The Barents Sea has a complex 

bathymetry and is the deepest of the Arctic Oceans shelf areas with a mean depth of 230 

meters (Carmack et al., 2006) and a maximum depth situated in the western part of the Bear 

Island Trench (BIT, ~500 m) (Loeng and Drinkwater, 2007). Extensive shallow areas as well 

as large isolated banks, e.g. the Central Bank (Cba), the Great Bank (Gba) and the Svalbard 

Bank (Sba), separated by deeper troughs and depressions can be found west and southwest of 

Novaya Zemly and around Svalbard. (Wassmann et al., 2006) (Fig. 1.1).  

1.3.2 Oceanographic Setting 

The overall surface circulation in the northern North Atlantic is in general steered 

(Johannessen, 1986) and governed by two meridional boundary currents. The eastern 

boundary current is represented by the northward flowing warm and saline Norwegian 

Atlantic Current (NwAC) (<500-600 m) (Furevik et al., 2007), a topographically steered two 

branch extension of the North Atlantic Current (NAC) (7-13 °C, ~≥35) entering the Nordic 

Seas through the Iceland-Scotland ridge (ca. 7 Sv, Hansen and Østerhus, 2000; Orvik and 

Niller, 2002; Andersson et al., 2011) (Fig. 1.1).  

The Eastern Branch (EB, 4 Sv) of the NwAC dominates the upper water masses on its 

northward path along the Norwegian margin, except on the shelf where its traveling 

companion the Norwegian Coastal Current (NCC) rules the conditions with low salinity 

coastal waters (~34.4), driven by freshwater discharge from the Baltic and the Norwegian 

fjords (Hansen and Østerhus, 2000; Orvik et al., 2001). The NwAC and the NCC are 

separated by a salinity front (Loeng and Drinkwater, 2007). North of the Lofoten Islands, the 

EB splits into two additional branches: a meridional branch, the West Spitsbergen Current 

(WSC) (T>3 °C, >35), and a zonal component, the North Cape Current (NCaC) (Loeng, 

1991; Wassmann et al., 2006; Koszalka et al., 2011) (Fig. 1.1). 

 

Figure 1.1 : Bathymetric map of the Nordic Seas showing the most important topographic features (top), as well 
as the core locations (red stars). Bottom map shows major surface currents, according to Jakobsen et al. (2003), 
Olsson et al. (2005) and Andersson et al. (2011). Red arrows show the flow direction of warm saline Atlantic 
Water; NwAC: Norwegian Atlantic Current, WB: Western Branch, EB: Eastern Branch, NCaC: North Cape 
Current, WSC: West Spitsbergen Current. Blue arrows show the flow direction of cold low saline Arctic/Polar 
surface waters; EGC: East Greenland Current, JMC: Jan Mayen Current, EIC: East Icelandic Current, BIC: Bear 
Island Current, ESC: East Spitsbergen Current, PC : Percey Current. Green arrow shows the flow direction of 
coastal waters; NCC: Norwegian Coastal Current. Orange dashed line shows the relative location of the Arctic 
Front. Other abbreviations: NB: Norwegian Basin, LB: Lofoten Basin, GB: Greenland Basin, IP: Icelandic 
Plateau, Sba: Svalbard Bank, Gba: Great Bank, Cba: Central Bank, BIT: Bear Island Trench. 
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The WSC flows along the continental margin of the western Barents Sea and western 

Spitsbergen and enters the Arctic Ocean as a subsurface current insulated from the 

atmosphere by fresh PW in the upper mixed layer (3-5 Sv; Blindheim and Østerhus, 2005). 

The current carries along two Polar Water (PW) companions on the shelf i.e. the Bear Island 

Current (BIC) (1-3 °C, <34.4) and the Sørkapp Current (extension of the East Spitsbergen 

Current, <0 °C, 34.3-34.8) towards the north (Loeng, 1991; Saloranta and Svendsen, 2001; 

Wassmann et al., 2006). The BIC origins from the Percey Current, a current which crosses the 

Barents Sea along the southern “border” of the Spitsbergen as well as the Cba and Sba, turns 

around Bear Island and travels north as the BIC (Loeng, 1991; Wassmann et al., 2006) (Fig. 

1.1). The Western Branch of the NwAC (WB, 3 Sv, >34.9) rounds the southern rim of the 

Lofoten Basin and flows north as a baroclinic jet along the Mohn Ridge, contributing with 

Atlantic Water (AW) to the development of the Nordic Sea Frontal Zone (Hansen and 

Østerhus, 2000; Orvik et al., 2001; Orvik and Niller, 2002; Jakobsen et al., 2003; Koszalka et 

al., 2011). The western boundary current is represented by the southward flowing East 

Greenland Current (EGC; <0°C, <34.5), which is considered as the largest and most 

concentrated meridional ice flow in the World Oceans (Blindheim and Østerhus, 2005). Its 

two zonal components, the Jan Mayen Current (JMC) at the Jan Mayen Fracture Zone and the 

East Icelandic Current (EIC) flowing over the Icelandic Plateau, supply fresh PW to the gyre 

systems and hence contribute to the Frontal Zone (Johannessen, 1986; Olsson et al., 2005) 

(Fig. 1.1). The mixing of PW and AW creates Arctic Water (ArW) (0-4°C, 34.6-34.9) 

(Johannessen, 1986). The northeast-southwest trending boundary between PW and ArW is 

termed the Polar Front (PF) and characterizes the maximum summer sea-ice extent, whereas 

the boundary between ArW and AW is referred to as the Arctic Front (AF) and characterizes 

the maximum winter sea ice extent (Swift, 1986; van Aken et al., 1995; Saloranta and 

Svendsen, 2001). Generally, the positions of the fronts in the Nordic Seas are well correlated 

with the bathymetry due to topographic steering of the currents (Johannessen, 1986). This is 

seen north of Jan Mayen along the mid-ocean ridge, where the AF only exhibits small 

fluctuations in contrast to the zone between Iceland and Jan Mayen, where large shifts within 

the position of the AF occur due to variations in the inflow of PW/ArW from the EIC 

(Blindheim et al., 2000). Hence the supply of PW/ArW carried by the EGC  (especially the 

EIC) and its mixing with North Atlantic water may be an important, but not the only, 

mechanism to create fluctuations in the atlantic inflow to the Nordic Seas (Blindheim et al., 

2000). The Frontal Zone term is used for the area where horizontal gradients in temperature, 
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salinity and density are high in comparison with the mean parent water types (i.e. AW and 

PW) (van Aken et al., 1995). A series of cyclonic gyres are present over the Greenland, 

Lofoten and Norwegian Basins as well as the Icelandic Plateau. These four gyres are strongly 

linked to the local bottom topography and are areas of strong mixing and transformation of 

water masses (Poulain et al., 1996; Jakobson et al., 2003; Koszalka et al., 2011) (Fig. 1.1). 

 

The Barents Sea is not just a shelf area but also a major passageway of AW entering the 

Arctic Ocean, i.e. a flow through shelf (Carmack et al., 2006). The wide but relatively shallow 

Barents Sea allows for a much stronger transformation of the entering waters than its deeper 

sister gateway to the west through the Fram Strait. In contrast to Fram Strait, which is 

characterized by extensive recirculation of the Return Atlantic Current (RAC), the Barents 

Sea is, generally speaking, a one-way passage only permitting waters to enter the Arctic 

Ocean (Wassmann et al., 2006). The inflow does not, however, flood the entire shelf as the 

current is not strong enough, hence the AW of the NCaC is mainly confined to the southern 

part (Wassmann et al., 2006). The relatively warm Atlantic Waters (T>3 °C, >35) enter 

between Bear Island and northern Norway together with the coastal waters of the NCC (T>2 

°C, <34.7) (Loeng, 1991) (Fig. 1.1). The inflow of AW increases during winter conditions, 

where the current system is deep and narrow, while it decreases and becomes wide and 

shallow during summer conditions (Loeng and Drinkwater, 2007); a feature which has been 

observed along the entire coast of Norway as a result of monsoon-like seasonal shifts of 

surface winds in the region (Olsen et al., 2003). Southwesterly winds prevail in winter, 

pushing the NCC onshore, whereas northerly winds dominate the summer conditions and a 

low salinity wedge is deflected away from the coast (over 100-150 km) (Sætre et al., 1988; 

Helland, 1963).  

The northern North Atlantic is also of special importance as it contains, together with the 

Wedell and Ross Seas, some of the few key areas of deep water formation; hence it 

contributes to the functioning of the global THC. This gigantic system slowly turns over the 

water masses of the entire ocean as a result of density contrasts (Schmittner et al., 2007) (Fig. 

1.2). The flow of the Gulf current is primarily wind-driven, where the Atlantic THC 

contributes with as much as 20% (Rahmstorf, 2006).   

 

Figure 1.2 : Schematic of the Thermohaline Circulation (THC) within the northern North Atlantic (i.e. Nordic 
Seas and the Labrador Sea). Red arrows: direction of surface flow, blue arrows: direction of deep flow. 
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1.3.3 Sea Ice Distribution in the Northern North Atlantic 

Sea ice and fresh water from the Arctic Ocean are essentially transmitted to the Nordic Seas 

via Fram Strait and the southward flowing cold and fresh EGC (Buch, 1990) with a yearly 

export of roughly 10% of the total Arctic sea ice mass (Kwok et al., 2004) (Fig. 1.1, 1.3). 

Hence the general distribution of sea ice in Fram Strait and the Greenland Sea is strongly 

influenced by the prevailing conditions within the Arctic Ocean (Ramseier et al., 2001; Kwok 

et al., 2004) and the AW in Fram Strait. Sea ice along the eastern coast of Greenland drifts 

southward between the coast and the continental shelf slope and includes both new ice and 

Multi Year Ice, with highest flow speeds occurring in Fram Strait and decreasing toward the 

south (Ramseier et al., 2001).  

The drift is weakest in summer time and increases again when surface wind fields increase, 

resulting in a winter ice-drift speed nearly twice as high as summer values (Ramseier et al., 

2001, and references therein) (Fig. 1.3). The onset of enhanced seasonal melt in the Greenland 

Sea varies with latitude, initiating as early as March/April south of 70 °N and as late as July at 

86 °N (Ramseier et al., 2001), with an annual minimum sea-ice extent in the northern North 

Atlantic occurring in September (Dickson et al., 2007). As the ice flows through the 

Greenland Sea, it encounters warm water mainly from the Return Atlantic Current (RAC), 

which leads to a strong temperature gradient and, hence, a continuous melting along the ice 

edge (Ramseier et al., 2001). In contrast, low air temperatures and high wind velocities cause 

a strong upward heat flux, which again leads to new ice production. Therefore the spatial and 
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temporal distribution of sea ice within the Greenland Sea is a result of the advection of ice 

through Fram Strait but also of local new production (Ramseier et al., 2001). 

As in the Greenland Sea, most of the sea ice that reaches the Iceland Sea originates from the 

Arctic Ocean and is transported there by the EGC (Wadhams, 1986). In most years, however, 

sea ice is only a temporary wind-dependent feature on the Icelandic plateau (Astthorsson et 

al., 2007, and references therein). It is initially observed in the northwest and then transported 

along the north coast as part of the general clockwise circulation around Iceland. During so-

called “normal” inflow of AW over the northern shelf, the ice usually melts quickly, but if the 

flow of AW is blocked and PW persists over the shelf, sea ice can drift to the eastern coast of 

Iceland and in extreme cases even as far as the south coast (Astthorsson et al., 2007). 

 

 
Figure 1.3 : Average Arctic ice cover and ice drift patterns in winter (left) and summer (right), as influenced by  
the distribution of high and low pressure systems over the Arctic region. Note the considerable difference in the 
southward extent of sea ice East of Greenland, as well as the winter-summer distribution of sea ice in the Barents 
Sea. Adapted from Wassmann et al. (2006).  
 
The sea ice extent within this area has a large variability, but appears to have an average 

seasonal cycle represented by a maximum ice extent towards the end of February and a 

minimum in mid-September (1978-1996) (Ramseier et al., 2001) (Fig. 1.3). Unusual outflows 

of sea ice contribute significantly to the freshening of the surface waters of the Greenland and 

Labrador Seas (Kwok et al., 2004), which, in turn, influences the primary productivity as well 

as the strength of the global ocean thermohaline circulation through the impact on convective 

overturning of water masses (Dickson et al., 1988).  
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Strong seasonal variations in sea ice extent can be observed in the Barents Sea (incl. the ice 

stream on the western coast of Spitsbergen) especially toward the East (Vinje, 2001; 

Wassmann et al., 2006) (Fig. 1.3). As the formation of sea-ice in the north closes of the 

possibility of drift ice entering the Barents Sea, sea-ice within the Barents Sea area is 

generally locally formed, and therefore the ice export from the Arctic Ocean over the Barents 

Sea is only a small fraction of that passing through Fram Strait (Wassmann et al., 2006). An 

annual average of 40% of the region is being ice covered, although with strong seasonal 

variability (0-60%) (Loeng, 1979; Loeng and Drinkwater, 2007). Minimum ice extent occurs 

in August/September with a peak usually occurring in March or April, although it might be 

occasionally postponed until early June (Loeng and Drinkwater, 2007).  

 

The area along the eastern coast of Greenland and the Fram Strait has experienced a 46% 

reduction in sea ice distribution in the period 1864-1998, compared with a 24% reduction 

around Svalbard and in the Barents Sea (Vinje, 2001). 

1.4 The North Atlantic Oscillation (NAO) 

The atmospheric variability over the middle and high latitudes of the Northern Hemisphere is 

strongly governed by the North Atlantic Oscillation (NAO), a part of the Northern 

Hemisphere annular mode (Marshall et al., 2001), especially during the cold season months 

(November-April) (Hurrell et al., 2003). The NAO is often defined as the difference in 

atmospheric pressure at sea level between the Icelandic low and the Azores high (Jones et al., 

2003; Olsen et al., 2012). The NAO pattern essentially refers to a redistribution of 

atmospheric mass between the Arctic and the subtropical Atlantic, as the NAO swings 

between its positive and negative phases (Fig. 1.4). Changes in NAO modes influence the 

mean wind speed and direction over the Atlantic, the heat and moisture transport between the 

Atlantic and nearby continents, the intensity and number of storms, the oceanic meridional 

overturning circulation (Hurrell et al., 2003) and the strength and width of the NwAC, NCC 

and equatorward ice export through the EGC (Blindheim et al., 2000; Kwok et al., 2004; 

Skagseth et al., 2004). A low NAO index results in a more zonal path of low pressure systems 

across the Atlantic (a southward storm track), a generally reduced and wider flow of the 

NwAC and less precipitation in Northern Europe (Hurrell et al., 2003). In contrast, a high 

index results in a passage of low pressure systems toward Northern Europe from the North 

Atlantic, favoring stronger precipitation, a strengthened NwAC flow and an eastward shift of 

the Arctic Front toward the slope of Norway (Blindheim et al., 2000; Pinto and Raible, 2012). 
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In addition, modern observations have indicated a significant correlation between the NAO 

indexes and the Greenland and Barents Sea ice extent, with less sea ice and warmer SST 

during the positive NAO phases and conversely more ice during negative NAO (cold) phases 

(Vinje, 2001; Visbeck et al., 2003; Ingvaldsen, 2005; Sorteberg and Kvingedal, 2006). A 

result which is most likely related to variations in southwestern wind patterns and intensity of 

the AW flow (Blindheim et al., 2000).  

 

 
Figure 1.4: A schematic view of NAO modes and the overall effects on precipitation and AW flow. 
 

Considering the impact of NAO on the heat advection to the Arctic Ocean, on the amount of 

sea ice export, on precipitations on land, and on ocean circulation, with implications on 

human, plant (incl. phytoplankton) and animal life (Drinkwater et al., 2003; Mysterud et al., 

2003), a great deal of effort has been spent on observing and modeling its present and past 

dynamics, in order to develop a predictive model of its behavior. 

NAO records spanning the past 130 years show a decadal scale variability (Ribergaard, 2005; 

Pinto and Raible, 2012), indicated by a predominantly negative mode before 1900 AD 

followed by an overall positive phase during the last century only pertubated by a clear 

negative shift during the 1950’s and 1960’s (Fig. 1.5).  

The origin of the NAO variability over time is currently under debate and various 

anthropogenic and natural forcing agents have been proposed (i.e. volcanic eruptions, solar 

activity, tropospheric aerosols, greenhouse gases and links to tropical oceans), although none 
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Figure 1.5 : Time series of the station-based NAO index from 1864 to 2009 (instrumental period) for the season 
DJFM (December, January, February, March). In red unfiltered data from year to year. In black a 31-year filter 
illustrating the low-frequency behavior. Adapted from Pinto and Raible (2012). 
 
seem to be able to explain the annual to decadal variability on its own. Hence distinguishing 

between natural and human induced changes still seems difficult (Gillet et al., 2003; Pinto and 

Raible, 2012). There is, therefore, a “pressing” need to develop longer records of the NAO to 

place recent variability in a long-term, naturally-driven context in order to fully understand 

the impact of the anthropogenic rise in greenhouse gases upon NAO (Jones et al., 2003). 

Assessing the importance of the NAO on the modern hydrography and climate of the Nordic 

Seas and its significance for paleoceanographic changes in the northern North Atlantic has 

long been hampered by the lack of instrumental records prior to the 19th century. In addition, 

prior to 2012, proxy- and model-based NAO reconstructions based on single proxy archives 

(e.g. ice cores), historical data or multiproxies from different archives (e.g. tree rings, 

speleotherms) only reached back up to one millennia (i.e. Luterbacher et al., 2002; Jones et 

al., 2003; Cook et al., 2003; Trouet et al., 2009). These reconstructions usually relied on 

different statistical methods, assuming a stationary relationship between the proxy and the 

climate data through time and estimating a statistical relationship between the proxy and 

climate data in the overlapping calibration period (instrumental period) (Cook et al., 2003; 

Pinto and Raible, 2012). A recent high resolution reconstruction of NAO variability from a 

lake record in southwestern Greenland (Olsen et al., 2012) extended these previous NAO 

records back to 5200 cal. years (BP), and thereby offered a new way to investigate links 

between atmospheric processes and ocean circulation changes in the northern North Atlantic 

over the mid to late Holocene.  

Although these paleo-studies might under- or over-estimate the strength of the NAO 

variability during the past (Pinto and Raible, 2012), they still provide us with a strong 
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guideline-tool to understand the general paleo-climatic changes in the region at the time of 

interest. 
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Chapter 2 : The Micropaleontological Proxies: Distri-
bution, Export and Alteration of Fossilizable 
Phytoplankton within the Northern North Atlantic 
and Adjacent Seas  

2.1 Chapter Overview  

This chapter provides a general introduction to the two major micropaleontologic proxies 

applied within this study. It begins with a brief overview of the net primary phytoplankton 

production within the northern North Atlantic and the physiochemical processes affecting it, 

with a particular attention given to the timing and order of spring blooms within the 

fossilizable phytoplankton community. A review of the export and alteration processes, which 

affect the sediment assemblages in the Nordic Seas related to dissolution and transport 

processes, is given. This is followed by a full description of the two major 

micropaleontological proxies (coccolithophores and dinocysts) in terms of morphology, 

biology, ecology and sediment distribution. In addition, a submitted paper on the hydrological 

and ecological factors controlling the species distribution of the extant coccolithophores 

across Fram Strait and the Norwegian-Iceland Sea is included at the end of the 

coccolithophore description. 
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2.2  A General Introduction to Phytoplankton within the Northern North Atlantic 

The influence of light and nutrient availability on primary productivity within the world 

oceans is enormous. As light only penetrates the upper water masses of the oceans, it strongly 

limits the depth of the photosynthetic zone, and is even further limited by the availability of 

nutrients. In the world oceans the primary productivity is generally increased within higher 

latitudes, nutrient rich coastal areas, and the warm nutrient-rich NAC waters (Fig. 2.1). 

 
Figure 2.1: Seasonal variation index of net primary production the world’s net primary productivity (grams per 
m2 per year), zooming in on the northern North Atlantic (highest variation is shown in the high latitudes). 
Modified after Lutz et al. (2007).   
 

Together with these two forcing factors, physical and biological conditions, which are directly 

affected by climatic changes , also condition the composition and distribution of modern 

phytoplankton communities in the world oceans (Fig. 2.2). This is especially of major 

importance in the North Atlantic region due to the complex relation between cryospheric (ice 

sheets and sea-ice), atmospheric (winds related to strong gradients in sea-level pressures) and 

oceanic (opposition of northward flowing AW and southward flowing PW) processes, which 

together determine the nature and rate of new production transferred to the higher trophic 

level through the marine food web (Hunt et al., 2002).  

 

The phytoplankton community within the northern North Atlantic is especially influenced by 

major differences in hydrography and seasonal irradiance, resulting in large variability in the 

onset of the biological spring as well as the seasonal development and composition of the 

fossilizable microplankton community within the upper water masses (e.g. diatoms, 

coccolithophores, dinoflagellates, radiolarians and foraminifera) (Samtleben et al., 1995a; 
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Schröder-Ritzrau et al., 2001; Wassmann et al., 1990, 1991, 2006), which lie as the base of 

the Arctic food web (Fig. 2.2). The annual onset of the enhanced biological activity may be as 

early as March in the southeastern Norwegian Sea and as late as August/September in the 

Greenland Sea, with a progressive NNW transition in between (Samtleben et al., 1995a; 

Schröder-Ritzrau et al., 2001; Loeng and Drinkwater, 2007, and references therein) and an 

overall low production during winter (Baumann et al., 2000; Schröder-Ritzrau et al., 2001; 

Loeng and Drinkwater, 2007, and references therein). In general, the spring (phytoplankton) 

bloom develops as soon as the shallow surface layer is stratified. However, previous 

observations have shown that high primary production might also occur in poorly stratified 

well mixed waters within high latitudes (Fig. 2.2, 2.3) (Eilertsen, 1993; Dylmer et al., 2013, 

this study). 

 

 

Figure 2.2: Schematic of a typical Arctic food web. Adapted from Svendsen et al. (2007). 

2.2.1 The Norwegian Sea 

In the Norwegian Sea, winter convection extends to a water depth of ~300 m with spring-

summer stratification being almost entirely dependent on solar radiation (thermal 

stratification) (Wassmann et al., 1991). The spring bloom initiates as early as March in this 

region with the production of diatoms followed by coccolithophores and dinoflagellates 

(Wassmann et al., 1990; Loeng and Drinkwater, 2007). Previous investigations on the annual 

phytoplankton abundances at weather station Mike within the NwAC has generally shown 

that the spring period from April to June is followed by high phytoplankton concentrations 
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from July to September which is followed by decreasing populations from September to 

December. Finally, diatom, coccolithophore and dinoflagellate populations were found to be 

scarce during winter months from December to March. In addition, the investigations showed 

that peak cell concentrations of diatoms and coccolithophores reached the same order of 

magnitude (105 to 106 ind./l) while dinoflagellates never exceeded 104 ind./l (Schröder-Ritzrau 

et al., 2001, and references therein).  

 

 
Figure 2.3 : Schematic representation of the seasonal development of phytoplankton and the main physical 
factors affecting it. White dots represent phytoplankton biomass. Adapted from Loeng and Drinkwater (2007), 
and references therein. 

2.2.2 The Greenland Sea 

In this area, the initial surface spring stratification is mainly induced by melt water from sea-

ice (Bauerfeind et al., 1994), although in years when the sea ice is poorly developed, thermal 

warming may initiate spring stratification within most of the region (Schröder-Ritzrau et al., 

2001). The most important contributors to the phytoplankton production within the Greenland 

Sea are diatoms and flagellates, which show maximum abundances in the vicinity of the sea-

ice edge (Smith et al., 1991).  

2.2.3 The Iceland Sea 

The stratification in the Icelandic Sea varies between the socalled “cold” (stronger) and 

“warm” (weaker) years with the influence of AW (Gudmundsson, 1998). Given favorable 

conditions, the spring bloom may start to develop in early April and usually peaks in the 



Chapter 2 

Christian V. Dylmer, 2013 

 

21 
 

beginning of May (Gudmundsson, 1998). Diatoms typically dominate the phytoplankton 

spring bloom over the Icelandic shelf, followed by an increase in the abundance of 

dinoflagellates after the spring bloom, while diatoms continue to be relatively abundant 

(Thordardottir and Gudmundsson, 1998). Coccolithophores seem to peak in August 

(Samtleben and Bickert, 1990). 

2.2.4 Fram Strait 

In Fram Strait the primary productivity is strongly influenced by the large hydrological 

gradients between the dominating water masses (AW, ArW, PW) and sea-ice cover. The 

maximum primary production was found along the ice-edge and, therefore, naturally varies 

with the movement of the Marginal Ice Zone (MIZ) (Smith et al., 1987; Birgel and Ruediger, 

2004). Phytoplankton production, although generally numerically dominated by small 

flagellates, initiates with a spring bloom of diatoms (Hirche et al., 1991), followed by 

summer-early autumn production of coccolithophores (Dylmer et al., 2013, this study). Below 

the ice, flagellates may be very abundant and comprise up to 98% of the phytoplankton 

biomass (Wassmann et al., 2006). 

2.2.5 The Barents Sea 

The Barents Sea primary production rapidly increases in spring, when the mixed layer depth 

decreases above a critical depth (from 300 to <50m) (Olsen et al., 2003). However, this might 

occur earlier in the northern Barents Sea along the MIZ, where ice-melt induces an early 

stratification which supports an earlier initiation of phytoplankton blooms (especially during 

years where the sea-ice cover exhibits a large southern extent, and sea-ice can drift across the 

frontal systems and into AW) (Olsen et al., 2003; Wassmann et al., 2006; Loeng and 

Drinkwater, 2007). At the southwestern entrance to the Barents Sea, the bloom starts when 

the low-salinity waters from the NCC spread northward, while it is triggered by thermal 

stratification in the central region (Loeng and Drinkwater, 2007). The abundance of diatoms 

is low in March, but increases steadily throughout the season along with the dominating 

flagellates and later the summer-blooming coccolithophores (Wassmann et al., 2006).  

 

The shallow area of the Barents Sea is known for its high primary productivity and is one of 

the places in the world where the influence of the present global warming on the distribution 

and composition of phytoplankton communities is most clearly reflected. Recent compilations 

of satellite observations (AVHRR, SeaWiFS and MODIS-Aqua) are indicative of an 
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Figure 2.4: Location and timing of coccolithophore blooms in the southern Barents Sea, determined using 
composite reflectance imagery between 1987 and 2002. Maximum bloom extents are shaded in grey. Adapted 
from Smyth et al. (2004). 
 

 

Figure 2.5: MODIS satellite images of coccolithophore blooms in the Barents Sea. Left image: August 2011, 
north of Norway; right image: September 2005, west of Novaya Zemlya 
http://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2011-08-17.  
 
increased occurrence of summer blooms of coccolithophores in the Barents and Nordic Seas 

since the late 80s (Fig. 2.4, 2.5) (Smyth et al., 2004; Burenkov et al., 2011), a phenomenom 

which has been linked with extensive sea-ice melting (Parkinson et al., 1999; Guan and Gao, 
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2010) and increased inflow of AW to the northern North Atlantic (Hatun et al., 2005; Hegseth 

and Sundfjord, 2008; Dimitrenko et al., 2010). 

2.3 The Export of Phytoplankton Remains from Surface Waters to Surface Sedi-

ments of the Nordic Seas: Dissolution Processes and Lateral Transport 

In the Nordic Seas, all microfossil assemblages, irrespective of the faunal or floral plankton 

group they belong to, display similar regional differences in species richness with a 

corresponding decrease from the Norwegian Sea to the Greenland Sea (Fig. 2.6), a decrease 

also observed in the living extant populations (Schröder-Ritzrau et al., 2001).  

 
Therefore, changes in species richness of the different microplankton groups are naturally 

suitable for defining biogeographic provinces in the Nordic Seas. However, since the tests of 

the main fossilizable microplankton groups - diatoms, coccolithophores, dinoflagellate cysts, 

radiolarians and foraminifera – are made of variable skeletal material (calcareous, siliceous 

and organic tests), they are subject to differences in their resistance to dissolution and, hence, 

fossilization potential (Schröder-Ritzrau et al., 2001). The geological record of biogenic 

production might, therefore, be strongly biased by dissolution processes both within the water 

column during sinking of the skeletal remains (as a function of the residence time in the water 

column) and within the top centimeters of the sediment layer (Schlüter et al., 2001). These 

processes not only alter the total fluxes of biogenic particles but also the composition of 

assemblages, according to the species-specific resistance to degradation of microfossils within 

each biotic group (Matthiessen et al., 2001). 

The mode by which phytoplankton remains leave the permanent thermocline and are 

transported to the sediment controls their residence time in the water column and thus their 

rate of  degradation, which in turn determines the ultimate fate of the sinking biogenic 

material (Peinert et al., 2001). Thus the composition of the phytoplankton communities and 

their bloom phases, grazing and dissolution processes, and their mode of transport throughout 

the water column (autotrophic or heterotrophic export, i.e. aggregates or fecal pellets, marine 

snow; Samtleben and Schröder, 1992; Mudie, 1996; Andruleit, 1997; Zonneveld and 

Brummer, 2000), can be expected to influence the transfer of surface signals to deeper water 

layers and ultimately the surface sediment. From which valuable information about the origin, 

composition and modification of exported particles can be derived from microscopic 

examination of their skeletal remains (Peinert et al., 2001).  
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Figure 2.6 : Absolute abundances (ind./g dry sediment) of a) coccolithophores, b) dinoflagellate cysts, c) diatoms 
and d) radiolarians in surface sediments of the Nordic Seas. The distribution of species assemblages in plots b, c 
and d are based on factor analyses of species weight %. Modified after Matthiessen et al. (2001). 

2.3.1 Dissolution Processes within the Nordic Seas  

The dissolution of biogenic opal in the water column and in the sediment is a major alteration 

process worldwide and is particularly important in the Nordic Seas, resulting in generally less 

than 1% of the original opal production preserved in the sediment (Schröder-Ritzrau et al., 

2001, and references therein). This opal dissolution is especially pronounced within diatom 

assemblages (Samtleben et al., 1995a), where the most abundant species have already been 

dissolved within the top 500 meters of the water column and are even further destroyed 

Coccoliths Dinocysts 

Diatoms Radiolarian
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through grazing, which enhances dissolution by destroying the fecal pellets. Grazing is a 

strong process especially in the Norwegian Sea, leading to stronger diatom alterations in the 

upper surface waters compared to the Greenland Sea (Schröder-Ritzrau et al., 2001). 

Consequently, surface sediments are the relict assemblages of the most resistant diatom 

species. Similar low preservation seems to influence the radiolarians in the Nordic Seas, 

except for the Icelandic Plateau (Fig. 2.6, 2.7) (Samtleben et al., 1995a; Schröder-Ritzrau et 

al., 2001).  

 
Figure 2.7: Mean daily fluxes (expressed as ind. m-2d-1) of coccolithophores, foraminifers, diatoms and 
radiolarians at 300/500 meters from sediment traps deployed in three different areas of the Nordic Seas. Adapted 
from Schröder-Ritzrau et al. (2001). 
 

The dominant microplankton producers of biogenic carbonate within the Nordic Seas are 

coccolithophores and foraminifers (Fig. 2.7) (Matthiessen et al., 2001; Hass et al., 2001). The 

relatively shallow bathymetry of the Nordic Seas, above the carbonate compensation depth, 

limits the dissolution of carbonate tests in the deep waters and sediments (Matthiessen et al. 

2001). Sediment trap investigations, however, showed that the pattern of carbonate 

dissolution displays some regional discrepancies with reduced impact in the Norwegian Sea 
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and the JMC areas, where, in contrast to the Greenland Sea (Andruleit, 2000), grazing is 

suggested to be the major alteration mechanism (Andruleit, 1997).  

The Holocene sediments within the Greenland Sea, in fact, confirm the above mentioned 

dissolution patterns, showing strongly reduced amounts of diatoms and radiolarians where 

samples still contain calcareous and organic-walled microfossils (Hass et al., 2001). The test 

of the organic-walled dinocysts are made of a very complex organic compound (dinosporin), 

making this species group highly resistant to degradation processes in the water column and 

the sediment, compared with carbonate and siliceous microfossils. Still, they might degrade 

under certain environmental conditions (i.e oxidation, Zonneveld et al., 1997). In sediments, 

the degradation pathway of organic matter is related to aerobic respiration, which depends on 

the amount of oxygen and the organic carbon content. When the rate of carbon deposition 

exceeds that of oxygen supply, suboxic or anoxic conditions prevail and, thus, yield well-

preserved organic matter (dinocyst) records (e.g. Marret and Zonneveld, 2003). Dinocysts 

have a sedimentary behavior comparable to fine silt and can, therefore, be subject to transport 

on their way to the sea floor. Previous experiments, however, showed that dinocysts sink 

relatively rapidly in the water column (e.g. Zonneveld and Brummer, 2000). As a result, the 

environmental conditions of the overlying surface water are reasonably well reflected by the 

assemblages in the bottom sediments (Marret and Zonneveld, 2003), although only ~10-15 % 

of the world’s dinoflagellates are able to produce a fossilizable cyst record (e.g. Dale, 1976; 

Head, 1996). Nevertheless, the strong preservation potential of dinocysts and their high 

diversity in a wide range of environments explain their potential for paleoceanographic 

investigations.  

2.3.2 The Importance of Transport Processes on the Spatial Distribution of Microfossils  

Although fossil assemblages of phytoplankton are distributed in sediment surface according 

to major oceanographic domains, the pelagic realm is a highly dynamic environment in which 

plankton drifting along with major surface (and deep currents) is a common mechanism 

(Matthiessen et al., 2001). The transport of extant and fossil plankton organisms, which occur 

in all oceanic regions, can be divided in to three main types (Schröder-Ritzrau et al., 2001). 

 

The first type is transport by major geostrophic currents (e.g. the NwAC and the EGC), a 

mechanism which can cause large biogeographic displacements, resulting in the occurrence of 

subtropical species in Arctic environments and vice versa (e.g. Samtleben and Schröder, 

1992; Samtleben et al., 1995b; Matthiessen, 1995). 
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The second type describes the lateral transport of material in the upper water column from 

shelf areas to deep ocean basins (Dale and Dale, 1992; Matthiessen, 1995; Schröder-Ritzrau 

et al., 2001; Fohrmann et al., 2001; Rumohr et al., 2001). 

 

The third type is lateral transport of resuspended material within bottom nepheloid layers. A 

process responsible for the recorded higher accumulation rates of material in deep (more than 

300 meters above the sea floor) than in shallow sediment traps, of the Nordic Seas (Schröder-

Ritzrau et al., 2001). 

 

Sediment trap investigations within the Nordic Seas revealed that transport mechanisms, 

including all types described above, affect the sinking plankton microfossils in both the 

eastern and western parts of the northern North Atlantic to a high extent (Samtleben and 

Schröder, 1992; Matthiessen, 1995; Samtleben et al., 1995a; Schröder-Ritzrau et al., 2001). 

Particle fluxes in the central Greenland Sea revealed similar seasonal patterns at shallow and 

deep water column layers. Sediment traps in the JMC indicated a slightly increased flux in the 

deeper traps, especially during the low export period between late autumn and spring, 

although a seasonal flux pattern was still recorded in all planktonic groups of the deep traps. 

There, lateral advection of resuspended material into deeper traps has been suggested to origin 

from the Jan Mayen Fracture Zone, while surface to deep particle fluxes partly originated 

from transport by surface to intermediate ocean currents (e.g. the RAC and JMC) (Schröder-

Ritzrau et al., 2001).  

In the Norwegian Sea, the total fluxes of all groups are up to 10 fold higher in deep than in 

shallow sediment traps (Schröder-Ritzrau et al., 2001); the lateral advection of resuspended 

material within bottom nepheloid layers being strong enough to erase seasonal differences in 

export between calcareous and siliceous planktonic groups (Andruleit, 1997; Schröder-

Ritzrau et al., 2001, and references therein). Investigations of sediment material from deeper 

basins of the Norwegian Sea must therefore take potential biaises in paleoceanographical 

reconstructions induced by the presence of a high amount of reworked and exotic material in 

the sediment, in to account. The majority of the allochtonous material collected in deep 

sediment traps of the Norwegian Sea has been suggested to originate from the shelf of the 

Barents Sea (related to brine formation during winter), the shelf and slope of the Norwegian 

continental margin, and the Jan Mayen Fracture Zone (Dale and Dale, 1992; Matthiessen, 
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1995; Schröder-Ritzrau et al., 2001; Fohrmann et al., 2001; Rumohr et al., 2001). The present 

material only rely on upper slope and depression area along the Norwegian-western Barents 

Sea-Svalbard margin. 

2.4 Generalities on Coccolithophore Morphology, Biology, Ecology, and Sediment 

Distribution within the North Atlantic Region.  

Coccoliths are the skeletal remains of the calcareous primary producers, coccolithophores, 

which are strictly marine and autotrophic, and are considered as one of the three main marine 

eukaryotic phytoplankton groups in terms of abundance along with diatoms and 

dinoflagellates.  

Coccolithophores are unicellular eukaryotes (division of haptophytes) and thrive in all oceans 

of the world, although they show the highest biodiversity in temperate and subtropical zones 

(Okada and McIntyre, 1979). They are considered the largest producers of calcareous skeletal 

remains on Earth and play a major role on the marine carbon cycle, as the formation of calcite 

skeletons in the surface layer and their following sinking to the ocean floor modify the upper-

ocean alkalinity (Rost and Riebesell, 2004). Furthermore, massive blooms of 

coccolithophores, commonly depicted from satellite remote sensing images, are likely to 

affect the oceanic surface albedo (Smyth et al., 2004). This combined influence on the 

biological and carbonate pumps and the following potential climate feedback mechanisms 

seem immense (albedo – masses of detached coccoliths reflect incoming light; 

dimethylsulfide – acting as a source molecule for cloud nucleation) (Westbroek et al., 1993), 

which makes the understanding of this group of marine algae of crucial importance to further 

comprehend the mechanisms of past, present and future climate changes. 

2.4.1 The Morphology of Coccolithophores 

Earlier studies on the morphology of coccolithophores indicated that these unicellular 

phytoplankton organisms are characterized by a motile phase (free swimming) and a non-

motile phase (floating) during their life cycle. In the motile phase, a coccolithophore cell 

carries two smooth, whip-like flagella, rising from one end of an oval to elongate body, 

between which a third, so called, haptonema is attached (generally coiled, although it can also 

be straight) (Fig. 2.8) (Billard and Inouye, 2004, and references therein). During the non-

motile stage, the flagella disappear but the haptonema may remain (Bown, 1998; Billard and 

Inouye, 2004). Living coccolithophores are covered by a layer of organic scales on which 
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small calcite platelets are resting: the coccoliths (~1 to 50 µm, with a common size range 

between 2 and 25 µm) (Siesser, 1993; Young et al., 1997). 

Coccolithophores have earlier been divided into two general groups: heterococcolithophores 

and holococcolithophores. This division is based on the size and shape of the calcite cristals, 

which compose the  coccoliths (hetero-coccoliths, made of a limited amount of cristals of 

different shape and size; holo-coccoliths, made of hundreds to thousands of cristals of similar 

size and shape) (Young et al., 1997, and references therein). Heterococcoliths are formed of 

rhombohedral crystals (although a few species are built of hexagonal prisms), whose simplest 

arrangement is shaped as a single disk with a raised wall of rhombohedral crystals at the 

circumference. A more complex arrangement of heterococcoliths consist of two circular or 

elliptical shields (a proximal shield on the inner “concave” side of the coccolith and a distal 

shield on the outer “convex” side of the coccolith), joined by a central cylindrical column but 

without a raised wall (Fig. 2.8) (Siesser, 1993). In this setup, the central column is either a 

solid pillar or hollow tube with its wall composed of rhombohedral crystals, either joined like 

staves in a barrel or spiraling down the wall of the tube. A distinctive closed or open central 

area from which crystal elements of the radiate shield radiate outward has been found on most 

heterococcoliths, where shield elements taper near the central area in order to fit better around 

a circular center. Contrary to heterococcoliths, holococcoliths are hardly preserved in marine 

sediments, their structure being prone to rapid disaggregation in the water column at the 

sediment-water interface (Siesser, 1993).  

The calcite crystals in the coccolith plates have different arranged optical axes, resulting in a 

strong variability of optic extinction patterns as observed through crossed nicols of polarizing 

microscopes. These varying structural arrangements produce the species-specific recognizable 

optic extinction patterns used for routine identification (Siesser, 1993). 

2.4.2 A short Introduction to Coccolithophore Biology 

Internally, the coccolithophore cells contain a nucleus, two chloroplasts, mitochondria, 

vacuoles and the golgi body (Fig. 2.8).  The mitochondrial bodies produce the energy needed 

for the cellular systems to function and are enclosed in membranes, which have tubular 

extensions into the cell interior (Bown, 1998). The vacuoles store waste product before it gets 

“thrown out”, and the golgi body consists of closely packed, swollen, sac-like structures 

called “cisterne”, which are used for secreting organic scales to cover the cell and later the 

coccoliths (Bown, 1998; Billard and Inouye, 2004). The cell’s protoplasm is enclosed within a  
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Figure 2.8: Diagrammatic cross-section of a coccolithophore cell and cell wall coverings. The defining feature of 
the haptophytes is the flagella-like haptonema, which is generally coiled. It differs from the other flagella in its 
internal structure and its basal attachment. The algal cell contains a nucleus and two chloroplasts, which may 
move around to optimize collection of available light. Mitochondria contains enzymes to produce energy for the 
different cell functions, vacuoles deal with waste products and the Golgi body is the site of coccolith secretion. 
In many species, overlapping oval organic scales coat the outer cell membrane. These have concentric ridges on 
their distal faces and radiating ridges on their proximal faces. The organic scales might act as bases for calcite 
coccolith precipitation. The function of coccoliths is not known but they may be used as: a protection from 
bacteria, protection from physical damage and predators, easiness of flotation and buoyancy, light reflection. 
Adapted from Bown, (1998). 
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double membrane that in turn is covered by an organic skin, the pellicle. These organic scales 

cover the outer cell membrane and act as organic bases for the calcite precipitation that forms 

the coccoliths. They are oval and have concentric ridges on their distal surfaces as well as 

radiating ridges on their proximal surfaces (Fig. 2.8) (Siesser, 1993). A variety of coccolith 

secretion strategies has been observed in different species, yet the most common cause of the 

production of coccoliths is probably light (Bown, 1998). The function of coccoliths is not 

known, but may be a protection from bacteria or a barrier against physical damages and 

predators.  

The reproduction of coccolithophores occurs by single or double fission sometimes 

accompanied by a swarm-spore stage. The information on coccolithophore reproduction is 

however only based on a few species making it dangerous to generalize. Nevertheless the 

general consensus is that the coccolith-bearing phase is diploid (produces daughter cells 

which are exact replicas of the former cell, 2N) and capable of asexual reproduction (Fig. 2.8) 

(Bown, 1998; Billard and Inouye, 2004). This allows rapid population growth during periods 

of optimum conditions and is the base of coccolithophore "blooms".  

Although coccolithophores have been classified according to coccolith plate morphology 

(hetero- and holo-coccolithophores), recent studies have shown that these differences are 

more likely related to stages in the life cycle of coccolithophores rather than different species 

(Billard and Inouye, 2004). This results in a continuous reevaluation of the taxonomy of this 

phytoplankton group and calls for additional studies on its ecology and life cycle.  

improvement of buoyancy and/or light reflection (Bown, 1998).  

2.4.3 Ecology of the Major and Subordinate Fossilizable Coccolithophores of the Nordic 

Seas. 

As other phytoplankton organisms, the biomass and diversity of coccolithophores are 

constrained by environmental conditions of which salinity, temperature, stratification and 

light have earlier been found to be of particular importance. The depth range occupied by 

coccolithophores in the mixed layer is strictly constrained by the thickness of the photic layer, 

maximum bulk concentrations of these organisms occuring within the top 20 to 10 meters in 

mesotrophic to eutrophic areas of the high latitudes (Siesser, 1993). 

Coccolithophores rival dinoflagellates and diatoms as the most abundant phytoplankton group 

within the world oceans and are without doubt dominant in the low to mid-latitudes. While 

outnumbered by organic and opal-walled phytoplankton in sub-polar to polar areas and 

characterized by a low diversity, coccolithophores, however, display higher concentrations 
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(cells/liters) in higher than in lower latitudes (Siesser, 1993), a phenomenon which tends to 

amplify toward the northernmost part of the Atlantic as a result of global warming (Smyth et 

al., 2004). Numerous investigations over the last two decades  have strongly contributed to 

our knowledge on the distribution and ecology of extant coccolithophore populations and 

their fossil remains (coccoliths) within the North Atlantic region by using surface water 

samples, remote sensing, sediment traps and surface sediment sampling, (e.g. Samtleben and 

Bickert, 1990; Samtleben and Schröder, 1990, 1992; Samtleben et al., 1995a, 1995b; 

Andruleit, 1997, 2000; Andruleit and Baumann, 1998; Baumann et al., 2000; Cachão and 

Moita, 2000; Matthiessen et al., 2001; Schröder-Ritzrau et al., 2001; Beaufort and Heussner, 

2001; Balestra et al., 2004; Smyth et al., 2004; Hegseth and Sundfjord, 2008; Solignac et al., 

2008; Giraudeau et al., 2000, 2004, 2010; Dylmer et al., 2013, this study). These studies 

identified a total of ~20-25 extant coccolithophore species within the Nordic Seas using 

Scanning Electron Microscopy, of which the majority thrive along the path of the NwAC 

resulting in a generally north/northwest decrease in species numbers (Samtleben and 

Schröder, 1992; Baumann et al., 2000) (Fig. 2.6).  

In the higher latitudes  the coccolithophore production is generally dependent on seasonal 

factors, such as temperature, light regime, stratification and nutrients, as reflected in previous 

observations of extant coccolithophore numbers within the northern North Atlantic, which are 

consistently higher during high-production period (summer) conditions compared to low 

production period (late summer-spring) conditions (Baumann et al., 2000; Dylmer et al., 

2013, this study).  

Due to the naturally varying stability of different coccoliths a strong shift is seen between the 

extant coccolithophore diversity and the coccolith sediment assemblages (Samtleben and 

Bickert, 1990), with generally only the two dominating species (Emiliania huxleyi and 

Coccolithus pelagicus) and three minor species (Gephyrocapsa muellerae, Calcidiscus 

leptoporus and Syracosphaer sp.) left for paleoceanographic and paleoclimatic investigations 

(Samtleben and Schröder, 1992; Baumann et al., 2000).   

 

Emiliania huxleyi 

This cosmopolitan opportunistic euryhaline species blossoms during the summer and is 

frequently involved into massive blooms observed through remote sensing (satellite imagery) 

(Baumann et al., 2000, and references therein; Tyrrell and Merico, 2004). The Arctic Ocean is 

one of the only areas where this species is either absent from surface waters or occurs in very 
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low cell densities in stratified conditions after sea-ice melting (Tyrrell and Merico, 2004, and 

references therein; Balestra et al., 2004; Hegseth and Sundfjord, 2008; Dylmer et al., 2013, 

this study).  

 
Figure 2.9: Absolute (left) and relative (right) abundances of E. huxleyi in surface sediments of the Nordic Seas. 
Adapted from Baumann et al. (2000). 
 

In the northern North Atlantic, it has a strong affinity for warm, saline, Atlantic-derived 

surface waters and dominates both the extant population and fossil assemblages in sediment 

surface samples of the eastern Nordic Seas (Fig. 2.9) (Baumann et al., 2000; Dylmer et al., 

2013, this study). In addition to a shallow mixed layer, increased irradiance, high carbonate 

saturation state and a limited silicate level (restricting the competitive growth of diatoms) in 

the photic layer within a wide range of sea-surface temperature (0-22°C) have all been 

suggested as essential parameters, favoring the success of E. huxleyi, which, in combination 

with a high growth rate, explains its frequent occurrence in massive blooms (Samtleben and 

Schröder, 1990, 1992; Samtleben et al., 1995a; Baumann et al., 2000; Beaufort and Heussner, 

2001; Schröder-Ritzrau et al., 2001, and references therein; Tyrrell and Merico, 2004).  

 

Coccolithus pelagicus 

C. pelagicus has been subdivided into two sub-species on the grounds of morphological, 

genetical and ecological preference aspects (Baumann et al., 2000; Geisen et al., 2004; Zivery 
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et al., 2004): a sub-Arctic sub-species C. pelagicus pelagius (<10µm) and a larger temperate 

sub-species C. pelagicus braarudii (>10µm) (Zivery et al., 2004). While no differentiation is 

made between the two sub-species in the present thesis, we believe that most of the specimens 

we identified within our surface water or sediment samples belong to the sub-arctic form. 

Earlier work has shown that C. pelagicus preferentially grows during summer in surface 

waters of temperatures ranging between 1 and 14 °C, with an optimum at 8 °C (Samtleben 

and Schröder, 1992: Samtleben et al., 1995a; Beaufort and Heussner, 2001). Our own 

observations (Dylmer et al., 2013, this study) indicate an apparent maximum boundary 

temperature of 6 °C within the northern North Atlantic for this species, which explains its 

overwhelming dominance, albeit with low standing stocks, in the extant sub-polar to polar 

coccolithophore community along the East Greenland Current and below the thermocline in 

the eastern Norwegian Sea (Fig. 2.10) (Samtleben and Schröder, 1992; Samtleben et al,  

 
Figure 2.10: Absolute (left) and relative (right) abundances of Coccolithus pelagicus in surface sediments of the 
Nordic Seas. Adapted from Baumann et al. (2000). 
 
1995a). This species constitutes the main component of the coccolith assemblages in surface 

sediments of the Greenland, Iceland, Irminger and Labrador Seas (Solignac et al., 2008).  

C. pelagicus has no known salinity preferences suggesting an ecology controlled by other 

factors e.g. turbulence, temperature, nutrients and irradiance (Baumann et al., 2000; Schröder-

Ritzrau et al., 2001; Balestra et al., 2004; Giraudeau et al., 2004). Indeed, this species has 

been suggested to occupy a particular ecological niche associated with moderate frontal 
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boundaries of different origins (thermal, upwelling and haline) (Cachao and Moita, 2000). 

Therefore, C. pelagicus appears to be associated with moderately turbulent conditions and 

might be a reliable proxy for meso- to eutrophic waters (Samtleben et al., 1995a; Andruleit, 

1997; Baumann et al., 2000).  

 

Gephyrocapsa muellerae  

The coccolithophore species Gephyrocapsa muellerae has not yet been found thriving in the 

surface waters of the Nordic Seas (Andruleit, 1997; Dylmer et al., 2013, this study). 

A previous work on extant populations across an E-W transect located at ~45°N restricted the 

ecological niche of this species to the mid-latitudes south of the Iceland-Scotland Ridge (10- 

 

A) B)

C)

 
Figure 2.11: Seasonal distribution of Gephyrocapsa muellerae standing stocks in North Atlantic surface waters 
across ~45 °N. A) Satellite-derived SST field in April 2000 with locations of surface water samples. B) Cell 
concentrations across the studied transect during fall 1999, winter 2000, spring 2000 and summer 2000; the 
horizontal arrow points to the longitudinal range of peak production (30 °W- 10°W). C) Surface sediment 
distribution of G. muellerae (wt%) in the mid- to high latitudes of the North Atlantic. Modified after Giraudeau 
et al. (2010), and references therein. 
 
30 °W) (Fig. 2.11) (Giraudeau et al., 2010), with peak production occurring during summer 

with surface water temperatures ranging from 12 to 18 °C. The optimum temperature of 

growth was estimated at ca. 14 °C, because G. muellerae is seldom found below the 

thermocline (Samtleben and Schröder, 1992; Giraudeau et al., 2010). Though, in low 

abundances, skeletal remains of G. muellerae are found in surface sediment samples of the 

Norwegian Sea and as far north as off western Svalbard (Baumann et al., 2000; Giraudeau et 
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al., 2010; Dylmer et al., 2013), an occurrence explained by meridional transport and drifting 

of its coccoliths within the NAC (Samtleben and Schröder, 1992; Andruleit, 1997, 2000; 

Giraudeau et al., 2010; Dylmer et al., 2013). Eventhough the mechanism of poleward 

transport, as described here for G. muellerae, is supposed to affect all species thriving in 

southern latitudes within the path of the NwAC, it is not expected to hamper the paleorecords 

of the high in situ production of the dominating species (e.g. E. huxleyi and C. pelagicus) in 

the Nordic Seas which is transferred to the sediment surface within weeks by fecal pellets 

(Samtleben and Schröder, 1992; Andruleit et al., 1997). Given this ecological background, 

abundance changes of G. muellerae in the studied sediment cores will therefore be discussed 

in terms of relative abundance variations of the depth integrated flow strength of the NwAC 

to the Nordic Seas up to its northernmost extension off western Svalbard (WSC). 

 

Calcidiscus leptoporus  

C. leptoporus is a robust cosmopolitan species, which consists of three sub-taxa described as 

large, intermediate and small morphotypes or separate sub-species (not distinguished in the 

present study) (Zivery et al., 2004; Quinn et al., 2004, and references therein). The 

intermediate form has a wide distribution with an affinity for cool, nutrient poor waters. The 

large form primarily occurs in higher productivity and mesotrophic environments whereas the 

distribution of the small form is unclear (Zivery et al., 2004, and reference therein). In the 

Nordic Seas, C. leptoporus is often found associated with E. huxleyi and C. pelagicus in 

surface sediments below cold temperate waters in the vicinity of the subarctic front 

(Giraudeau et al., 2000). The observed abundances restrict the species to surface water masses 

with a mean annual temperature below ~20 °C and possibly high nutrient content (Zivery et 

al., 2004).  

 

Syracosphaera spp. 

This species group includes all Syracosphaera species and has been included into the 

”Atlantic coccolithophore assemblage” by Samtleben et al. (1995a). Syracosphaera is found 

in extant populations in the Greenland-Norwegian Seas off the Vøring Plateau at temperatures 

above 9-10°C and is hence restricted to relatively warm AWs (Samtleben and Schröder, 

1992). Syracosphaera spp. is mainly distributed in surface sediments along the path of the 

Atlantic water masses (Samtleben and Schröder, 1992; Samtleben et al., 1995a; Baumann et 

al., 2000).  
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Significance of the E. huxleyi/C. pelagicus ratio  

The differing regional dominance of the two major species is clearly reflected in the surface 

sediments of the Nordic Seas (Samtleben et al., 1995a). The abundance ratio between E. 

huxleyi and C. pelagicus (E/C ratio) in fossil assemblages of the Nordic Seas was, therefore, 

proposed by Baumann et al. (2000) to define the location of the AF, which separates the 

seasonally ice-covered waters of the Polar and Arctic domains (E/C<1) from warmer and 

saltier Atlantic-derived waters (E/C>1). According to Baumann et al. (2000), the E/C ratio is 

based on a conversion of coccolith to coccosphere units, where the applied average number of 

coccoliths per coccosphere for each species was adapted from Samtleben and Schröder 

(1992).  

Allthough the original work by Baumann et al. (2000) were confined to the central areas of 

the Nordic Seas, we believe the application of this method to be valid in the wider Nordic 

Seas including its eastern part. The published surface sediment sample dataset by Baumann et 

al. (2000) only included a few sites far west of the continental margin with coccolith 

assemblages dominated by C. pelagicus (E/C <1). This excess C. pelagicus abundance stands 

as a contrast to our own results from surface sediment assemblages in the northern cores 

HH11-134-BC and JM09-KA11-GC, as well as to the composition of extant populations 

northwest of Bjørnøya (Baumann et al., 2000) and across Fram Strait (Dylmer et al., 2013, 

this study), indicating an expected dominance of E. huxleyi below and within AW dominated 

areas. Based on these evidences we use the definition of the AF (a frontal salinity and 

temperature gradient separating surface AW masses from mixed ArW) to infer that the E/C 

ratio (ie. deviations from the treshold of 1) characterizes surface sediments deposited below 

Atlantic or Arctic surface water masses, when considering pluriannual conditions. 
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Abstract 
Extant coccolithophores and their relation to the governing oceanographic features in the 

northern North Atlantic were investigated along two zonal transects of surface water 

sampling, both conducted during summer 2011 and fall 2007. The northern transects crossed 

Fram Strait and its two opposing boundary currents (West Spitsbergen Current and East 

Greenland Current), while the southern transects sampled the Norwegian and Iceland Seas 

(passing the island Jan Mayen) from the Lofoten Islands to the continental margin off Eastern 

Greenland. The distribution of the dominant coccolithophore species Emiliania huxleyi and 

Coccolithus pelagicus is discussed in view of both the surface hydrology at the time of 

sampling and the structure of the surface mixed layer. Remote-sensing images as well as CTD 

and ARGO profiles are used to contrain the physico-chemical state of the surface water at the 

time of sampling. Both transects were characterized by strong seasonal differences in bulk 

coccolithophore standing stocks with maximum values of 53 ×103 cells/l for the northern 

transect and 72 × 103 cells/l for the southern transect in fall and summer, respectively. The 

highest recorded bulk cell densities are essentially explained by E. huxleyi. This species  

shows a zonal shift in peak abundance in the Norwegian-Iceland Seas from a summer 

maximum in the Lofoten gyre to peak cell densities  around the island Jan Mayen in fall. 

Vertical mixing of Atlantic waters west of Lofoten Island, a phenomenom related to pervasive 

summer large scale atmospheric changes in the eastern Nordic Seas, on one hand, and 

strengthened influence of melt-water and related surface water stratification around the island 

Jan Mayen during fall, on the other hand, explains the observed seasonal migration of the E. 

huxleyi peak production area, as well as the seasonal change in dominating species within the 

Iceland Sea. In addition our datasets are indicative of a well-defined maximum boundary 

temperature of 6°C for the production of C. pelagicus in the northern North Atlantic. 

The Fram Strait transects provides, to our knowledge, a first view of the zonal distribution of 

extant coccolithophores in this remote setting during summer and fall. Our datasets are 

indicative of a seasonal change in the species community from an E. huxleyi-dominated 

assemblage during summer to a C. pelagicus-rich population during fall. Here, higher 

irradiance and increased Atlantic water influence during summer favored the production of 

the opportunistic species E. huxleyi close to the Arctic Front, whereas the peak production 

area during fall, with high concentrations of C. pelagicus, lays in true Arctic/Polar waters.  
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1.  INTRODUCTION 

The northern North Atlantic is experiencing unprecedented changes in physical and chemical 

conditions, which directly influence the ecosystem structure and processes (Hunt and 

Drinkwater, 2005). The impact of the last decades’ increased temperatures linked to the recent 

“global warming” is particularly felt in those high latitude areas close to the boundary of 

maximum winter sea-ice extent, defined as the Arctic Front (AF) (IPCC, 2007). There, strong 

gradients in cryospheric, atmospheric and oceanic processes are prone to enhanced new 

production (Hunt et al., 2002).  

The water mass exchanges between the North Atlantic and Arctic Ocean taking place in the 

Nordic Seas and Fram Strait have been extensively studied throughout the last decades in 

order to investigate the manifestations and impacts of the recent global climate change in 

terms of poleward heat transfer and changes in ecosystem structure. Recent compilations of 

satellite observations (AVHRR, SeaWiFS and MODIS-Aqua) suggest an increased 

occurrence of blooms of marine calcifying phytoplankton – coccolithophores – in the Barents 

Sea and Nordic Seas since the late 80s (Smyth et al., 2004; Burenkov et al., 2011). These 

blooms are thought to be triggered by modifications in the stratification and temperature of 

the upper mixed layer linked with extensive sea-ice melting (Parkinson et al., 1999) and 

increased inflow of Atlantic Water (AW) into the Nordic Seas and adjacent areas (Hatun et 

al., 2005; Hegseth and Sundfjord, 2008; Dmitrenko et al., 2010). This group of unicellular 

marine phytoplankton, the most abundant calcifying species on Earth, plays an important role 

in many biogeochemical cycles, and hence likely contributes to important internal feedbacks 

to climate changes (e.g. Westbroek et al., 1993). 

Recent studies on the biogeography of extant epipelagic coccolithophores in the Northern 

North Atlantic, and on the distribution of their fossil remains –coccoliths- in surface 

sediments of the Nordic Seas highlighted the close relationship between the distribution of 

this species group and major surface water masses of the northern North Atlantic (Samtleben 

and Schröder, 1990, 1992; Samtleben et al., 1995a, 1995b; Andruleit, 1997; Baumann et al., 

2000; Schröder-Ritzrau et al., 2001; Matthiessen et al., 2001; Balestra et al., 2004; Smyth et 

al., 2004; Dmitrenko et al., 2006; Hegseth and Sundfjord, 2008; Giraudeau et al., 2004, 2010; 

Burenkov et al., 2011; Charalampopoulou et al., 2011).  

The overall surface circulation in the Nordic Seas is governed by two meridional boundary 

currents. The eastern boundary current is represented by the northward flowing warm and 

saline Norwegian Atlantic Current (NwAC) (<500-600 m) (Furevik et al., 2007) (Fig. 1), a 
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topographically steered two branch extension of the North Atlantic Current (NAC) (7-13 °C, 

≥35), entering the Nordic Seas through the Iceland-Scotland ridge (ca. 7 Sv, Hansen and 

Østerhus, 2000; Orvik and Niller, 2002; Andersson et al., 2011). The eastern branch of the 

NwAC, is accompanied north by the baroclinic shallow Norwegian Coastal Current (NCC) 

(~34.4) along the continental slope of Norway, and splits into two branches North of Lofoten 

Island: A meridional branch, the West Spitsbergen Current (WSC), and a zonal component, 

the North Cape Current (NCaC) (Wassmann et al., 2006; Koszalka et al., 2011).  

 
Figure 1: Bathymetric map of the Nordic Seas showing major surface currents after Jakobsen et al. (2003), 
Olsson et al. (2005) and Andersson et al. (2011). Red arrows show the the flow direction of warm saline Atlantic 
water. NwAC: Norwegian Atlantic Current, WB: Western Branch (NwAC), EB: Eastern Branch (NwAC), 
NCaC: North Cape Current, WSC: West Spitsbergen Current). Blue arrows show the flow direction of cold low 
saline Arctic/Polar waters. EGC: East Greenland Current, JMC: Jan Mayen Current, EIC: East Icelandic Current, 
BIC: Bear Island Current. Green arrow shows the flow direction of coastal waters. NCC: Norwegian Coastal 
Current. Other abbrevations; NB: Norwegian Basin, LB: Lofoten Basin, GB: Greenland Basin, IP: Icelandic 
Plateau.  
 

The WSC flows along the continental margin of the western Barents Sea and western 

Spitsbergen and is further accompanied on its northern path by shallower Polar Waters (PW) 

on the shelf (e.g. the Bear Island Current (BIC) and the Sørkapp Current) (Saloranta and 

Svendsen, 2001; Wassmann et al., 2006) (Fig. 1). It enters the Arctic Ocean as a subsurface 

current insulated from the atmosphere by fresh PW in the upper mixed layer (3-5 Sv; 

Blindheim and Østerhus, 2005). The western branch of the NwAC (>34.9) rounds the 
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southern rim of the Lofoten Basin and flows north as a baroclinic jet along the Mohn Ridge 

contributing with Atlantic Water (AW) to the development of the Nordic Sea Frontal Zone 

(Orvik and Niller, 2002; Jakobsen et al., 2003; Koszalka et al., 2011). The western boundary 

current is represented by the southward flowing East Greenland Current (EGC; <0°C, <34.5), 

considered as the largest and most concentrated meridional ice flow in the World Oceans 

(Blindheim and Østerhus, 2005). Its two zonal components, the Jan Mayen Current (JMC) at 

the Jan Mayen Fracture Zone and the East Icelandic Current (EIC) in the Iceland Sea, supply 

fresh PW to the gyre systems and hence contribute to the Frontal Zone (Johannessen, 1986; 

Olsson et al., 2005) (Fig. 1).  

The mixing of PW and AW creates Arctic Water (ArW) (0-4°C, 34.6-34.9) (Johannessen, 

1986). The northeast-southwest trending boundary between PW and ArW is termed the Polar 

Front (PF) and characterizes the maximum summer sea-ice extent, whereas the boundary 

between ArW and AW is referred to as the Arctic Front (AF) and characterizes the maximum 

winter sea ice extent (Swift, 1986; Van Aken et al., 1995; Saloranta and Svendsen, 2001). 

Generally, the positions of the fronts in the Nordic Seas are well correlated with bathymetry 

due to topographic steering of the currents (Johannessen, 1986). This is seen north of the 

island Jan Mayen along the mid-ocean ridge where the AF only exhibits small fluctuations in 

contrast to the zone between Iceland and the island Jan Mayen where large shifts within the 

position of the AF occur due to variations in the inflow of PW/ArW from the EIC (Blindheim 

et al., 2000). The Frontal Zone term is generally used for the area where horizontal gradients 

in temperature, salinity and density are high in comparison with the mean parent water types 

(Van Aken et al., 1995).  

A series of cyclonic gyres are present over the Greenland, Lofoten, and Norwegian Basins 

and the Icelandic Plateau, in-between the two main meridional boundary currents. These four 

gyres are strongly linked to the local bottom topography and are areas of strong mixing and 

transformation of water masses (Poulain et al., 1996; Jakobson et al., 2003; Koszalka et al., 

2011) (Fig. 1). 

Coccolithophores are generally confined to surface waters above or close to the thermocline 

and only a few species are known to thrive in subsurface waters below this boundary 

(Schröder-Ritzrau et al., 2001). In addition, coccolithophore production in the Northern 

Atlantic is strongly related to the seasonal cycle of insolation, nutrient content, grazing 

pressure and weather conditions, and is usually delayed by diatom production until silica is 

depleted (Samtleben and Schröder, 1992; Baumann et al., 2000; Charalampopoulou et al., 
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2011). The Norwegian Sea is characterized by Atlantic surface waters with a seasonally 

established thermocline. The uppermost water mass stratification of the Greenland and 

Iceland Seas are essentially governed by highly variable sea-ice melting, although in years 

where sea-ice melt waters may be restricted to the margins, thermal warming might initiate 

the spring stratification. This regional difference obviously lead to important variations in the 

seasonal development and composition of the fossilizable planktonic community (Wassmann 

et al., 1991; Samtleben et al., 1995a; Baumann et al., 2000; Schröder-Ritzrau et al., 2001). 

The coccolithophore production in the southeastern Norwegian Sea may be enhanced as early 

as May, with a progressive transition towards the Greenland Sea peaking in August 

(Samtleben and Bickert, 1990; Samtleben et al., 1995a; Baumann et al., 2000; Schröder-

Ritzrau et al., 2001). Hence the living coccolithophore community shows a broad seasonal 

maximum in the Nordic Seas as blooms occur throughout the summer season (Schröder-

Ritzrau et al., 2001), with consistently higher cell numbers of living coccolithophores during 

the high-production periods (summer) than during the low-production periods (fall to early 

summer) (Samtleben et al., 1995a; Baumann et al., 2000).  

As evidenced earlier by Andruleit (1997) and Baumann et al. (2000), the coccolithophore 

communities in the surface waters across Fram Strait and the Norwegian-Iceland Seas are 

strongly dominated by the summer blooming species Emiliania huxleyi and Coccolithus 

pelagicus, which shows markedly different ecological preferences. An ubiquitous species in 

the world ocean, E. huxleyi exhibits a high growth rate compared to other coccolithophore 

species which makes it one of the most successful coccolithophores thriving in the world 

oceans (Baumann et al., 2000; Tyrrell and Merico, 2004). In the Nordic Seas it has been 

shown to have a strong affinity for the warm and saline Atlantic-derived surface waters and 

has only occasionally been reported in areas strongly influenced by sea-ice (Baumann et al., 

2000; Balestra et al., 2004; Hegseth and Sundfjord, 2008). Additional ecological studies has 

shown this species to be euryhaline and mainly influenced by variations in stratification, 

irradiance and to a lesser extent temperature (0-22 °C) of the photic layer (Samtleben and 

Schröder, 1990, 1992; Samtleben et al., 1995b; Baumann et al., 2000; Beaufort and Heussner, 

2001; Schröder-Ritzrau et al., 2001). C. pelagicus represents the coldest species of the 

coccolithophore community, occurring at temperatures between -1 and 14 °C with an 

optimum at 8 °C (Samtleben et al., 1995a; Baumann et al., 2000). Such a temperature range 

might explain its very strong dominance, albeit with low standing stocks, in the polar 

community of the EGC (Samtleben and Schröder, 1992). It might also explain that this 
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species constitutes the main component of the coccolith assemblages in surface sediments of 

the Greenland, Iceland, Irminger and Labrador Seas (Solignac et al., 2008). The species has 

no known salinity preferences, but it has previously been associated with the position of the 

AF, suggesting an ecology controlled by factors other than temperatures e.g. nutrients and 

irradiance (Baumann et al., 2000; Schröder-Ritzrau et al., 2001; Balestra et al., 2004; 

Giraudeau et al., 2004). Furthermore, some studies have suggested turbulence as a possibly 

important factor preventing the sinking of this heavily calcified species from the photic zone 

(Cacha and Moita, 2000) hence favoring its production in the highly mixed upper ArW. In 

these upper water masses the low temperatures probably also further limit the occurrence of 

other species (Baumann et al., 2000). In addition C. pelagicus has been suggested as a reliable 

proxy of mesostrophic to eutrophic waters in phytoplankton biomass-rich frontal systems of 

the Nordic Seas (Andruleit, 1997; Samtleben et al., 1995a).  

The extant coccolithophore communities compare relatively well with the spatial distribution 

of their fossil remains in the surface sediments of the Nordic Seas (Samtleben et al., 1995a). 

Indeed, contrary to siliceous microfossils, dissolution in the water column and in the surface 

sediments does not alter the general composition of coccolith assemblages and their fluxes 

remarkably (Andruleit, 1997; Schröder-Ritzrau et al., 2001; Matthiessen et al., 2001). This is 

consistent with sediment trap studies indicating a dominance of calcareous organisms in the 

export flux of plankton organisms within the Norwegian Sea. Furthermore, the 

coccolithophores are the most dominant fossilizable plankton group in terms of mean annual 

daily flux rates in this region (Schröder-Ritzrau et al., 2001). Previous investigations have 

demonstrated that coccoliths of E. huxleyi and C. pelagicus are distributed in surface 

sediments of the Nordic Seas according to their distribution in extant populations, and 

accordingly dominate the fossil assemblages below AW and ArW (Baumann et al., 2000).  

 

Remote sensing offers the opportunity to discuss the distribution patterns of phytoplankton 

communities collected in the upper photic layer, according to geographically and temporally 

well-constrained large- to meso-scale surface circulation features, and, as in the case of the 

Nordic Seas, sea-ice occurence. The present investigation, which relies on this analytical 

strategy to comprehend the seasonal surface hydrology, aims at improving our understanding 

of the modern distribution of the two dominant coccolithophore species in the Northern North 

Atlantic: E. huxleyi and C. pelagicus. It is based on two transects of surface water sampling 

across Fram Strait and the Norwegian-Iceland Seas (passing Jan Mayen Island), perpendicular 
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to the flow direction of the primary surface currents, and both carried out during the autumn 

of 2007 (September-October) and the mid-summer of 2011 (July). Annual and seasonal 

differences in coccolithophore abundances along both transects will be discussed in view of 

the surface hydrology at the time of sampling as deduced from Aqua MODIS and AVHRR 

Pathfinder images.  

2. MATERIAL AND METHODS 

The present study reports on extant coccolithophore populations collected along two zonal 

surface water transects across Fram Strait (ca. 73-78°N) and the Norwegian – Iceland Seas 

(ca. 70°N) during the autumn of 2007 (September 29 - October 14) and summer of 2011 (July 

15-27), as part of the cruises SciencePub UiT/WARMPAST and GEO-8144/3144, 

respectively, of the R/V Helmer Hanssen (former ‘R/V Jan Mayen’) (Fig. 2, Tables 1 and 2). 

2.1 Coccolithophore Analyses 

Sampling was conducted en-route using the ship’s deckwash pump (limiting the sampling to 

the near surface water masses <5 m), and involved onboard membrane filtration of sea water 

(2-3 litres). Air-dried filter were subsequently mounted between slide and coverslip, and 

examined under a light microscope at x1000 magnification as described by Giraudeau et al. 

(1993). A total of 57 samples (31 samples, September/October 2007; 26 samples, July 2011) 

were investigated for living assemblages (Tables 1 and 2) and the results expressed as 

coccolithophore standing stocks per litre (number of cells/l). In the present work, C. pelagicus 

includes both the motile holococcolith-bearing phase (C. pelagicus f. hyalinus) and the non-

motile heterococcolith-bearing phase (C. pelagicus f. pelagicus) (Cachão and Moita, 2000; 

Balestra et al., 2004) 

While the use of a light microscope (compared with Scanning Electron Microscope – SEM - 

examination) limits a precise taxonomical investigation of the extant coccolithophore 

population, this approach was found sufficient to identify and to conduct reliable census 

counts of the dominant fossilizable species in the recovered samples, i.e. E.huxleyi and C. 

pelagicus. 

Figure 2 : Monthly Sea Surface Temperature (SST) composite maps of the studied area based on satellite grid 
images (Aqua MODIS 32), extracted from http://oceancolor.gsfc.nasa.gov/ for September 29 - October 14 in 
2007 and 15-27 of July 2011. White squares: samples locations; black squares: CTD and ARGO locations; 
dashed light blue line: sea-ice margin as the 50% sea-ice concentration isoline extracted from AVHRR 
Pathfinder 5.2 images (http://data.nodc.noaa.gov) from October 5, 2007, and July 20, 2011. Shaded area 
(October 2007): no data. 
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Table 1: List of surface water samples for Oct.-Sep. 2007, with collection dates, locations and 
coccolithophore cell densities. 
 

Sample Longitude Latitude Date 

Total 

Coccolithophores 

(× 1000/l) 

Coccolithus 

pelagicus  

(× 1000/l) 

Emiliania 

huxleyI  

(×1000/l) 

Algirospheara 

robusta  

(× 1000/l) 

1 13.85 69.82 29/09/2007 12.1 0.0 12.1 0.0 

2 12.43 69.90 30/09/2007 4.8 0.0 2.4 2.4 

3 10.83 69.98 30/09/2007 2.2 0.0 2.2 0.0 

4 9.58 70.05 30/09/2007 5.2 0.0 3.9 1.3 

5 9.58 70.05 30/09/2007 0.0 0.0 0.0 0.0 

6 8.17 70.13 30/09/2007 1.5 0.0 1.5 0.0 

7 6.67 70.20 30/09/2007 0.0 0.0 0.0 0.0 

8 5.23 70.28 30/09/2007 0.0 0.0 0.0 0.0 

9 3.50 70.37 30/09/2007 0.0 0.0 0.0 0.0 

10 2.17 70.43 30/09/2007 0.0 0.0 0.0 0.0 

11 -1.92 70.65 01/10/2007 0.0 0.0 0.0 0.0 

12 -3.57 70.73 01/10/2007 1.3 1.3 0.0 0.0 

13 -4.85 70.80 01/10/2007 2.2 0.0 2.2 0.0 

14 -6.45 70.88 01/10/2007 11.8 0.0 11.8 0.0 

15 -7.78 70.97 01/10/2007 23.5 0.0 23.5 0.0 

16 -8.87 70.77 01/10/2007 23.5 2.6 20.9 0.0 

17 -10.45 70.62 01/10/2007 66.4 0.0 66.4 0.0 

18 -13.60 70.25 02/10/2007 20.7 0.0 20.7 0.0 

19 -14.83 70.12 02/10/2007 13.1 0.0 13.1 0.0 

20 -17.23 70.18 02/10/2007 2.5 2.5 0.0 0.0 

21 -18.68 70.20 02/10/2007 1.9 0.5 1.4 0.0 

22 -20.38 70.23 02/10/2007 6.1 3.1 3.1 0.0 

24 -15.67 73.23 07/10/2007 6.5 3.3 3.3 0.0 

25 -13.65 73.77 08/10/2007 16.3 10.5 5.9 0.0 

26 1.25 77.50 11/10/2007 48.3 25.6 22.6 0.0 

27 4.32 77.82 12/10/2007 11.5 1.6 9.9 0.0 

28 7.23 78.13 12/10/2007 6.1 1.2 3.7 1.2 

29 9.03 78.15 12/10/2007 12.7 2.3 9.2 1.2 

30 9.48 78.22 12/10/2007 9.1 2.6 3.9 2.6 

CTD 1 -13.15 73.78 08/10/2007 9.1 3.9 5.2 0.0 

CTD 2 -2.03 77.47 11/10/2007 52.9 29.4 23.5 0.0 

CTD 3 10.98 78.22 12/10/2007 7.0 0.0 5.6 1.4 

                
Table 2: List of surface water samples for July 2011, with collection dates, locations, and coccolithophore 
cell densities. 

Sample Longitude Latitude Date 

Total 

Coccolithophores  

(× 1000/l) 

Coccolithus 

pelagicus 

(× 1000/l) 

Emiliania 

huxleyi  

(× 1000/l) 

Algirospheara 

robusta  

(× 1000/l) 

1 10.77 77.88 15/07/2011 1.3 0.0 1.3 0.0 

2 9.88 77.58 15/07/2011 1.1 0.0 1.1 0.0 

3 5.77 77.90 16/07/2011 27.3 0.0 27.3 0.0 
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4 2.55 78.15 16/07/2011 46.0 14.7 31.4 0.0 

5 1.22 78.42 16/07/2011 29.3 2.0 27.3 0.0 

6 0.50 78.60 19/07/2011 10.3 4.8 5.5 0.0 

7 -2.17 78.08 19/07/2011 4.0 0.0 4.0 0.0 

8 -3.27 77.42 19/07/2011 1.5 0.0 1.5 0.0 

15 -15.72 70.13 25/07/2011 5.3 0.0 5.3 0.0 

16 -13.10 70.40 25/07/2011 2.6 0.0 2.6 0.0 

17 -10.25 70.68 25/07/2011 21.7 12.5 9.3 0.0 

18 -7.78 71.15 25/07/2011 3.8 1.0 2.9 0.0 

19 -6.03 71.05 25/07/2011 12.2 9.8 2.4 0.0 

20 -4.17 70.95 26/07/2011 5.2 3.1 2.1 0.0 

21 -3.03 70.88 26/07/2011 9.7 0.0 9.7 0.0 

22 -1.65 70.80 26/07/2011 1.0 0.0 1.0 0.0 

23 0.05 70.73 26/07/2011 3.6 0.0 3.6 0.0 

24 0.47 70.68 26/07/2011 3.5 0.0 3.5 0.0 

25 2.15 70.58 26/07/2011 17.9 0.0 17.9 0.0 

26 4.05 70.47 26/07/2011 71.3 3.1 68.2 0.0 

27 7.28 70.28 26/07/2011 12.6 0.8 11.8 0.0 

28 8.60 70.20 27/07/2011 65.4 0.4 65.0 0.0 

29 10.10 70.12 27/07/2011 35.8 0.4 35.4 0.0 

30 11.67 70.02 27/07/2011 0.0 0.0 0.0 0.0 

31 13.17 69.93 27/07/2011 8.9 0.0 8.9 0.0 

32 14.70 69.83 27/07/2011 6.1 0.4 5.7 0.0 

                

        

2.2 Synoptic Views of Sea-Surface Temperatures and Sea-Ice Extents 

The presented Sea Surface Temperature (SST) maps (Fig. 2) are based on Aqua MODIS 32 

days composite, 0.08° resolution satellite grid images, extracted from 

http://oceancolor.gsfc.nasa.gov/ for fall 2007 (September 22 – October 23, 2007) and summer 

2011 (July 4 – August 4, 2011). In order to convert grid raw values to STTs and to extract 

SST values along the studied transects, spatial analysis and geoprocessing were performed 

using ArcGIS (Esri Company). SSTs were calculated from the following equation, derived 

from information stored in Aqua MODIS grids: 

 

SST = (V × 0.0007178) – 2, (where V represents grid raw values) 

 

Information on sea-ice fraction in the form of 50% sea-ice concentration were taken from 

daily AVHRR Pathfinder 5.2  satellite images extracted from http://data.nodc.noaa.gov for 



Chapter 2 

Christian V. Dylmer, 2013 

 

50 
 

October 5, 2007 (night), and July 20, 2011 (day). They are reported as isolines on the SST 

maps.  

Six Conductivity-Temperature-Depth (CTD) profiles, 5 of them collected as part of the 2007 

and 2011 cruises using a Seabird 911 Plus CTD and one extracted together with 3 Argo-floats 

from the Coriolis database (http://www.coriolis.eu.org/), were all included into the present 

study (Fig. 2; Appendices A and B), as a mean to validate the satellite extracted monthly 

average SST profiles as well as to provide additional information on the vertical distribution 

of watermasses and stratification within the top 500 meters of the water column. 

3. RESULTS AND DISCUSSION 

The remote sensing-derived maps of surface water conditions during the sampling periods 

highlight strong differences in temperatures between October 2007 and July 2011 across the 

northern North Atlantic in terms of both mean average values and horizontal gradients (Fig. 

2). The observed differences between the two investigated seasons clearly appear in the 

temporal and spatial distribution of AW masses between July 2011 and October 2007, 

showing a generally stronger longitudinal dominance of warmer waters towards the west 

during summer conditions, which can also be identified by a weaker surface expression of the 

northern North Atlantic cold currents (EGC, JMC, BIC and EIC), compared to the autumn 

distribution, where surface ArW masses (0-4°C) contribute to an inverse situation (Fig. 1 and 

2). Previous findings of a topographical steering of the AF north of the island Jan Mayen 

(Blindheim et al., 2000), is hence not obvious based on these observations, in fact the zonal 

maximum distribution of the AF, with the exception of Fram Strait, show a strong seasonal 

migration towards the east from summer until autumn, a result which might however be an 

artifact of the stronger influence of solar irradiance during summer conditions on the upper 

surface layer, directly influencing the satellite imagery. Sea-ice extent, represented here as the 

50% sea-ice concentration limit, do not show any obvious geographical shift between the two 

periods, with the exception of the area around Svalbard where sea-ice occupied most of the 

western and southern shelf in July 2011 but is virtually absent in fall 2007. 

Sea-ice melting, initiated in summer and completed by fall, might, in addition to seasonal 

changes in solar irradiance (Cokelet et al., 2008), dominating windpatterns and AW flow 

(Blindheim et al., 2000), to a high extent explain the observed shift from a dominance in July 

2011 of warmer AW carried by the NwAC and WSC in the eastern part of the Nordic Seas to 

prevailing colder surface waters during the fall of 2007. These changes are particularly 

indicated by a narrowing of the poleward AW tongue west of Svalbard, as well as by a 
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strengthened influence of the colder water masses carried by the EGC, JMC, BIC and EIC 

coupled to an increased temperature gradient across the AF and PF between summer and 

autumn conditions. 

3.1 NORTHERN TRANSECTS  

The Fram Strait transects display prominent SST and coccolithophore standing stock 

gradients over a rather narrow  area, as well as noticeable differences in SST ranges and 

coccolithophore assemblages between summer 2011 (SST~1.5-7 °C, E. huxleyi dominated 

peak coccolithophore standing stocks) and autumn 2007 (SST~ -0.5-5 °C, C. pelagicus 

dominated peak coccolithophore standing stocks) (Fig. 3). 

3.1.1 Hydrological Setting During the Sampling Periods 

Both SST (sea surface temperature) profiles across Fram Strait show an abrupt temperature 

increase of ca. 2°C around ~10°E, which relates to the location of the AF off western 

Svalbard (Fig. 3). Saloranta and Svendsen (2001) investigated the AF position immediately 

west of Svalbard and identified it as a clear topographically steered temperature-salinity front 

at the shelf break, separating ArW carried by the Sørkapp Current over the shelf from AW 

(WSC) over the slope. Our fall 2007 CTD profile recovered east of this frontal boundary 

(Appendix B, CTD 1), also shows AW-type waters with temperatures and salinities in the 

range of ~4-5°C and ~35, respectively, submerged under a 50m thick surface mixed layer of 

ArW (~2-3 °C; <34.8). Both transects reach their highest surface temperatures west of ~10°E, 

as they cross the main path of the WSC-carried AW. The geographic distribution of WSC 

varies from ~1.5° E in the summer 2011 to ~5° E in the fall 2007 showing the widest 

extension during summer. The western boundary of surface AW is marked by a ca. 2°C SST 

decrease, however the boundary is less pronounced than its eastern counterpart over the 

Svalbard shelf break, representing the AF and the entrance into the EGC-influenced domain 

(ArW/PW) (Fig. 3). Temperature differences between the two sampling periods in terms of 

mean values and width of the surface AW, are most probably related to the seasonal changes 

in solar irradiance (higher in July) and in distribution of meltwater (higher in October), as 

well as potential changes in the strength of the meridional currents. ArW located west of the 

AF is characterized by very homogeneous upper surface temperatures of ca. 1-2°C, as well as 

a deep mixed layer down to 100 m waterdepth (Fig. 3; Appendix B, CTD 2). PW 

characterized by a highly stratified upper mixed layer (Appendix B, CTD 3) is found  during 

the fall 2007 close to the sea-ice edge within surface waters with SST around 0°C (Fig. 2). 



Chapter 2 

Christian V. Dylmer, 2013 

 

52 
 

 

Figure 3: Longitudinal plots of coccolithophore cell densities (coccolithophore standing stock) and SSTs across 
the Fram Strait transects during July 2011 and October/September 2007. Red bars: Emiliania huxleyi 
coccolithophore standing stocks; blue bars: Coccolithus pelagicus coccolithophore standing stocks; black dashed 
line: maximum temperature of Coccolithus pelagicus occurrence observed along the transect; orange boxes: 
sample locations; black boxes: locations of CTD 1-5; shaded white boxes: sea-ice margin (50% sea-ice 
concentration); light red bars: surface AW masses; light blue bars: surface ArW masses; purple bars: surface PW 
masses; dashed arrows: overall transect direction. 
 

3.1.2 Geographic Distribution of Coccolithophores  

The coccolithophore standing stocks recorded in the present study across Fram Strait ranges 

from 1 to 53 ×103 cells/l (Fig. 3). The maximum values fall within the range of cell densities 

from previous observations south of Svalbard, within the influence of the WSC, for the 

summer and fall-winter seasons (10 to 100 ×103 cells/l; Samtleben et al., 1995a).  

Peak coccolithophore cell densities occurred on the western edge of the poleward flow of 

surface AW (Fig. 3), either associated with the AF (July 2011) or within ArW (October 

2007). These peak productions are also characterized by a change in dominating species from 

E. huxleyi during the summer period, to C. pelagicus during the fall situation. Reduced 

irradiance from summer until autumn may have had a negative effect on the production of the 

blooming E. huxleyi species (Baumann et al., 2000). Additionally, the differences in the 

spatial development of the turbulent Frontal Zone between the summer and fall periods, as 

seen by a reduced distribution of AW in October 2007 compared with July 2011 (Fig. 2 and 

3), may also explain this change in coccolithophore assemblage.  

C. pelagicus has previously been found to be abundant, if not dominant in ArW (Baumann et 

al., 2000), hence the onset of the Frontal Zone seems to be surprisingly underrepresented by 

this species during July 2011. This discrepancy is better explained by the combined 
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influences, during summer, of enhanced sea-ice melting close to the sea-ice edge, increased 

importance of AW and higher irradiance, causing strong stratification of the upper photic 

layer (Appendix B, CTD 4 and 5). This scheme, linked with higher SSTs and a weaker 

temperature gradient across the Frontal Zone, resulted in E. huxleyi dominated 

coccolithophore assemblages in July 2011 (Fig. 3), in agreement with previous observations 

(though in more southern latitudes west of the island Jan Mayen) which showed this species 

as highly successful in ArW close to the PF during summer high production periods 

(Samtleben and Schröder, 1992; Baumann et al., 2000). The opposite situation, i.e. enhanced 

mixing of the photic layer and cooler SST within the Frontal Zone area during fall 2007 

(Appendix B, CTD 2), a situation associated with a reduced westward influence of surface 

AW across Fram Strait (Fig. 3), favored the production of the well-mixed and cold water -

adapted C. pelagicus.  

3.2 SOUTHERN TRANSECTS 

The Norwegian-Iceland Seas transects display, as expected, markedly higher SSTs (up to 

11°C, summer 2011) and coccolithophore standing stocks (up to 72 × 103 cells/l, summer 

2011) than the Fram Strait transects. Seasonal differences between July 2011 and October 

2007 are limited to an overall SST difference of ca. 1°C, and, more prominently, by a zonal 

shift in peak E. huxleyi-dominated coccolithophore densities (Fig. 4). 

3.2.1  Hydrological Setting during the Sampling Periods 

Both SST profiles display a pattern of stepwise decrease of SSTs from the NwAC-bathed area 

off western Norway (~7-11 °C, ~35.1; Fig. 4; Appendix A, Argo 2 and 3) to the EGC-

influenced margin off eastern Greenland. The temperature is reduced ca. 2.5 °C twice around  

3°W and 17°W, respectively. This show the average locations of the AF and PF. The PF has 

only been only sampled during fall 2007, when favourable sea-ice conditions allowed the 

transect to be extended to the eastern Greenland shelf off Scoresby Sund (Fig. 2 and 4). 

According to van Aken et al. (1995), the AF and PF bounded Frontal Zone (ArW) is here 

defined as an area of mixed PW and AW fed by the JMC and EIC branches of the EGC and 

the poleward NwAC (>34.9) (Appendix B, Argo 1 and CTD 6). Surface waters of the Frontal 

Zone show an AW signature as well as a deep mixed layer during July 2011 (Appendix B, 

CTD 6), whereas a buoyant, low salinity (<34.8) and highly stratified upper photic layer of 

PW origin has been found during fall 2007 as a result of mild weather conditions during the 
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period of sampling (Husum, 2007), as well as eastward spreading of melt waters from the 

nearby eastern Greenland shelf (Appendix B, Argo 1).  

 
Figure 4: Longitudinal plots of coccolithophore cell densities (coccolithophore standing stocks) and SSTs across 
the Norwegian-Iceland Seas transects during July 2011 (top) and October/September 2007 (bottom). Red bars: 
Emiliania huxleyi coccolithophore standing stocks; blue bars: Coccolithus pelagicus coccolithophore standing 
stocks; black dashed line: maximum temperature of Coccolithus pelagicus occurence observed along the 
transect; orange boxes: sample locations; shaded white boxes: sea-ice margin (50% sea-ice concentration) ; light 
red bars: surface AW masses; light blue bars: surface ArW masses; purple bars: surface PW masses; dashed 
arrows: overall transect direction. 
 
While both transects are characterized by an overall ~2°C SST decrease from east to west 

across the AW-influenced Norwegian Sea, the July 2011 SST profile displays a low 

temperature anomaly between ca. 2°E and 8°E with values occasionally as low as 4°C. This is 

up to ~4°C lower than the surrounding water masses (Fig. 4). The Aqua MODIS image 

extracted for this period (Fig. 2) suggests that this anomaly is part of the Lofoten Gyre, a 

semi-permanent feature which is forced by large-scale atmospheric rotational variations 

effecting the governing wind patterns and the strength of the surface circulations (Jakobsen et 

al., 2003). The 32 days composite SST Aqua MODIS images representative of spring and fall 

situations (see database in http://oceancolor.gsfc.nasa.gov/) indicate that the surface water 

expression of the Lofoton Gyre was observable during 2007 and 2011, but was limited in both 
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cases to July and August. The Argo record for July 2011 (Appendix B, Argo 3) suggests deep 

mixing of AW-type waters within this gyre.  

3.2.2  Geographic Distribution of Coccolithophores  

Our profiles of coccolithophore standing stock values across the Norwegian-Iceland Seas are 

within the lower range of previously published extant coccolithophore datasets within the 

Nordic Seas during the summer production period (~3 to 300 ×103 cells/l) (Samtleben and 

Schröder, 1992; Baumann et al., 2000). In addition, the current dataset show and highlight a 

migration of the peak production (dominated by E. huxleyi) toward the west from summer to 

autumn (Fig. 4).  

The coccolithophore peak production area during July 2011 occurs within the Lofoton Gyre 

system and might be explained by vertical mixing, and hence nutrient enrichment of the upper 

photic layer. Despite the low abundance the presence of C. pelagicus (Fig. 4, sample 26)  

seems to confirm the particular trophic conditions indicated in the Lofoten Basin during the 

summer season of 2011 C. pelagicus has previously been related to other similar gyre systems 

south of the Iceland-Scotland Ridge (Tarran et al., 2001). 

The Frontal Zone production area is marked by an overall change in species dominance from 

C. pelagicus during summer 2011, when surface waters were affected by deep mixing, to E. 

huxleyi during fall 2007, a period characterized by a highly stratified photic layer.  

Both southern transects suggest a maximum boundary temperature of 6°C for the occurence 

of C. pelagicus (Fig. 4), a value which strictly corresponds with earlier suggestions based on 

the analysis of extant coccolithophore populations across the Norwegian-Greenland Sea 

(Samtleben and Schröder, 1990). However, our observations in the Fram Strait area also 

indicate that this upper SST limit becomes somewhat lower (ca. 4°C) in the northermost 

latitudes (Fig. 3).   

4.  SUMMARY AND PERSPECTIVES 

Although an increased amount of investigations during the recent decades on the distribution 

of extant coccolithophore populations (e.g. Matthiessen et al., 2001, and references herein) 

has strongly added to our knowledge of the ecology of this major calcifying species group 

within the Nordic Seas, our understanding is still hampered by the lack of surface water 

samples. Phytoplankton samples investigated in the present study were collected en-route 

using a simple, cost- and time effective method, along two zonal transects perpendicular to 

the major meridional boundary current systems and hydrological fronts. The combined use of 
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easily accessible remote sensing images, CTD casts and Argo floats from existing databases, 

although not sufficient to investigate small-scale physical and biological processes, was found 

highly relevant for significantly improving our knowledge on the biogeography of the 

dominant fossilizable coccolithophore species within the northern North Atlantic i.e. E. 

huxleyi and C. pelagicus. 

 

Seasonal changes in the distribution and stratification of the main water masses related to sea-

ice melts and changes in the drift of Atlantic surface water masses results in an overall 

westward shift of the peak cocolithophore production areas dominated by the opportunistic E. 

huxleyi. Our datasets across the Norwegian-Iceland Seas confirm previous studies indicating 

high cell densities in the Vøring Plateau area in July and west of the island Jan Mayen in 

September-October (Samtleben et al., 1995a). Peak coccolithophore production within the 

Lofoten gyre in July 2011 was related to increased vertical mixing and nutrient enrichment of 

the photic layer due to large scale atmospheric changes. In contrast, the change in the 

dominating species around the island Jan Mayen from C. pelagicus in summer to E. huxleyi in 

fall, resulted from a change in stratification from well mixed (summer) to stratified (fall) 

surface waters. In addition our data are indicative of a strong temperature limitation of C. 

pelagicus production, the maximum boundary value being estimated at 6°C, with a somewhat 

lower (ca. 4°C) limit in along the northern transects (Fram Strait). 

Our dataset obtained in Fram Strait represent to our knowledge a first view of the zonal 

distribution of extant coccolithophores within this climatically sensitive area during summer 

and fall. There, seasonal changes in dominance from E. huxleyi (summer) to C. pelagicus 

(fall), are related to the combined influence, during summer, of enhanced sea-ice melting 

close to the sea-ice edge, as well as increased influence of AW and higher irradiance leading 

to the high production of the opportunitic species E. huxleyi within an area usually 

characterized by C. pelagicus-dominated low density populations.   

 

The ongoing intensification of sea-ice melting and sea-ice thinning within the Arctic Ocean, 

and the associated naturally increased export of ice and melt water to the Nordic Seas (Kwok, 

2009), directly results in an overall increased surface water stratification in the western 

northern North Atlantic (Furevik et al., 2002), a condition which is likely to favor the 

production of E. huxleyi. Remote-sensing investigations already point to the occurence of 

pervasive blooms of E. huxleyi in Arctic to Polar environments such as the Barents Sea 
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(Smyth et al., 2004) under the influence of increased sea-ice melts and increased inflow of 

AW, conditions which are equally supposed to characterize the Greenland-Iceland Seas. 

While the impact of the anthropogenically-forced ocean acidification upon calcifying 

plankton in polar environments is still debated (Charalampopoulou et al., 2011), ongoing 

changes in the physico-chemical structure of the surface mixed layer of the northern North 

Atlantic (stratification, temperature, salinity) might induce regional changes in the structure of 

the phytoplankton communities with major effects on the carbon cycle as well as the entire 

food web of the Nordic Seas. Continuing surveys on the distribution of extant 

coccolithophores, a presumably highly successful group in the presently changing high 

latitude oceans are therefore of tremendous importance. 
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Appendix A 
List of CTD casts and Argo Stations used in the present study, with collection dates, locations 
and water depths  

 
 
  

.   

Station Nr. Location Station Date Latitude Longitude Water Depth (m) 

CTD 1 Fram Strait # 424  12/10/2007 78 13.84 N 11 00.57 E 340 

CTD 2 Fram Strait # 421 11/10/2007 77 28.61 N 02 02.54 W 3029 

CTD 3 Fram Strait # 417 08/10/2007 73 46.14 N 13 00.60 W 2570 

CTD 4 Fram Strait # 306 16/07/2011 77 36.05 N 09 53.30 E 1381 

CTD 5 Fram Strait # 309 18/07/2011 78 13.98 N 01 36.07 E 1707 

CTD 6 Norwegian-Iceland Sea # 249 (ship 10) 15/07/2011 69 92.98 N 08 70.63 W 717.4 

Argo 1 Norwegian-Iceland Sea # 134  26/09/2007 69 34.90 N 11 51.00 W 1273.9 

Argo 2 Norwegian-Iceland Sea # 6  02/10/2007 71 16.40 N 05 88.00 E > 1963.4 

Argo 3 Norwegian-Iceland Sea # 39  26/07/2011 70 58.30 N 02 72.60 E >1976.3 
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Appendix B 

CTD and ARGO profiles (see Fig. 2 and Appendix A for locations) showing temperatures 
(°C) and salinities within the top 500 meters of the water column. NT, Northern transect; ST, 
Southern Transect. 
 

 





 

 





Chapter 2 

Christian V. Dylmer, 2013 

 

65 
 

2.5  Generalities on Dinocyst Morphology, Biology, Ecology and Sediment Distribu-

tion within the North Atlantic Region.  

Dinocysts, the fossil remains of cyst-forming dinoflagellates, are the second major proxy 

applied in the present study. Dinoflagellates are eukaryotic, unicellular organisms and 

considered as an important primary producer in the world oceans (Marret and Zonneveld, 

2003). In contrast to the strictly marine autotrophic coccolithophores, dinoflagellates include 

a large variety of feeding strategies (photosyntheses, grazers, predators, parasites and 

symbionts) and are found within the surface waters of almost all aquatic environments, from 

strictly marine to fresh water lakes and even within sea ice (Edwards, 1993; Marret and 

Zonneveld, 2003; Matthiessen et al., 2005).  

Dinocysts’ large resistance to dissolution and their high diversity within polar regions 

together with their potential for quantitative estimates of key sea-surface parameters, such as 

temperature, salinity and sea-ice cover duration through transfer functions, motivated their 

use for paleoclimate reconstructions in the present research thesis. 

2.5.1  The Morphology of Dinoflagellates 

Dinoflagellates are found in the size range between 7 and 2000 µm, although most forms are 

less than 200 µm (20-150 µm). They take their name from the Greek word ‘dinos’ meaning 

“whirling”, based on their characteristic flagella, which propel them around in a spiral motion. 

This movement results from the motion of two flagella: a transverse flagellum, which 

encircles the body in the depression of the cingulum, and a longitudinal flagellum, which 

extends in the opposite direction of movement, from the mid ventral area (sulcus), towards the 

apex (Fig. 2.12) (Edwards, 1993). The cell is divided by the cingulum into the anterior 

epitheca and the posterior hypotheca. The anterior end is called the apex and the posterior is 

called the antapex. The roughly perpendicular second depression to the cingulum is the 

sulcus, dividing the cell into left and right halves (Fig. 2.12).  

Many dinoflagellates have a theca that is constructed of thin cellulosic pieces called plates 

that fit together along linear sutures (Fig. 2.12). This arrangement of the plates is commonly 

known as tabulation and is a valuable tool for identification (Edwards, 1993). Another 

distinctive and very important identification feature in fossil dinocysts is the archeopyle, the 

opening in the cyst wall through which the cytoplasm emerges during excystment. The 

position and nature of the archeopyle is genetically determined and covered by the 

“operculum” (consisting of either a single plate piece or several plates) (Edwards, 1993). The 
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processes appear between the theca and the main body of the cyst and can have varying 

shapes and forms, i.e. spikes or spines (Fig. 2.13). Processes that occur at the intersection of 

three (or more) paraplates are gonal. The ones that occur along paraplate boundaries away 

from the triple junctions are named intergonal (Edwards, 1993). The presence of a tabulation 

pattern is the determining feature separating dinocysts from other palynomorphs, such as 

acritarchs, and can be expressed in various ways through different types of ornamentation 

(ridges along plate boundaries, position of spines or processes, etc.) or the shape of the 

archeopyle (Evitt, 1985). 

 
Figure 2.12: Schematic view of the theca of a peridinialean dinoflagellate. Adapted from Edwards et al. (1993), 
and references therein. 

 

 
Figure 2.13: (A) A central view of theca showing tabulation; (B) Cyst forming inside theca; (C) Cyst 
paratabulation reflecting thecal tabulation. Adapted from Edwards et al. (1993), and references therein. 
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2.5.2  A short Introduction to Dinoflagellate Biology  

Dinoflagellates contain typical eukaryotic organelles in the cytoplasm: smooth and rough 

endoplasmic reticulum, golgi apparatus, mitochondria, lipid and starch grains, and various 

accumulation bodies such as vacuoles. In addition, they may also contain any of several 

cytoplasmic inclusions or organelles (Edwards, 1993). The peduncle is a retractable 

protoplasmic extension, which may play a role in the attachment of the organism to a 

substrate or a host. The pusule consists of a series of membrane-bound tubules of uncertain 

function among which nutrition, waste, flotation, and/or osmoregulation have been suggested. 

The cytoplasm of photosynthetic dinoflagellates contains chloroplasts, and the nucleus is 

bounded by a nuclear membrane. The dinoflagellate nucleus is rather large in proportion to 

the cytoplasm (Edwards, 1993). 

About half of the known dinoflagellate species are autotrophic and produce organic 

compounds by photosynthesis. The rest are  non-photosynthetic  with a heterotrophic, 

mixotrophic, parasitic, or other more complex nutritional and survival strategy (e.g. 

Gainesand and Elbrächter, 1987; Schnepf and Elbrächter, 1992; Smayda and Reynolds, 

2003).  

The vegetative, motile stage of dinoflagellates is often haploid. The life-cycle has many 

variations between the members of this group, but the following describes a basic pattern: 

haploid vegetative cells become or produce gametes, gametes fuse and a zygote forms (the 

zygote often has two long longitudinal flagella). While the zygote enlarges, its walls may 

thicken and it loses its motility; this stage is called the hypnozygote (Fig. 2.14), which, in 

palaeontological studies, is usually referred to as a “dinoflagellate cyst” or “dinocyst” 

embedded in a very resistant, sporopollenine-like organic compounds (Fensome et al., 1993; 

Head, 1996; Versteegh and Blokker, 2004). As the cyst becomes part of the sediment, the 

thecal plates break apart or are destroyed. After a period of dormancy (from hours to years), 

during which the first and sometimes the second meiotic cell divisions occur, the cell or cells 

emerge(s) through an opening determined by predeveloped structural weakness, the 

archeopyle. The new cells rapidly form new thecae, and the cycle continues (Fig. 2.14) 

(Edwards, 1993).  

In culture, sexual reproduction can be induced by nutrient depletion, temperature reduction or 

light reduction. In nature, the triggers are likely to be far more complex. Depending on the 

species, germination usually occurs between late winter and spring, presumably triggered by 

extreme environmental conditions. The formation of a hypnozygote (i.e. dinocyst) appears to 
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be a survival strategy to get through winter and can act as a quick response to environmental 

stress or as a seed bank for new dinoflagellate populations (Dale, 1983).  

 

 

 
 
 
Figure 2.14 :  Diagram of the life cycle of a dinoflagellate showing the alternation of the motile stage (cannot be 
fossilized) and the cyst stage (yielding fossil remains). Schematic life-cycle of a cyst producing dinoflagellate. 
Asexual reproduction predominates and involves a division of the cell into two halves. Sexual reproduction is 
known in very few dinoflagellates. Cysts form in the autumn with decreasing temperatures, remaining dormant 
on the sea floor through the winter. With the amelioration of conditions in spring, the motile stage excysts 
through the archaeopyle. Before developing any armour, however, the new dinoflagellate must pass through a 
naked gymnodinioid stage. Adapted from de Vernal and Marret (2007). 
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The dinocysts, as most of the other known micropaleontological proxies, do not represent the 

initial living assemblages but only a snapshot (10-15 %) of the initial community, increasing 

the need to fully understand the ecology of the main dinocyst producing species.  

2.5.3  Ecology of the Dominant Dinocysts Species within the Nordic Seas. 

The distribution of dinocyst species in modern sediments is strongly related to the biological, 

physical, and chemical conditions prevailing in the surface water masses and in the sediment. 

The distributional pattern of fossil dinocysts in sediment samples is, therefore, commonly 

used to reconstruct past changes in the upper water mass conditions, e.g. eutrophication, 

salinity, temperature, turbulence, sea-ice extent and nutrients (Dale, 1996; Zonneveld et al., 

2013). Such a strategy necessitates detailed information on the relationships between modern 

oceanic dynamics, environmental conditions and the geographic distribution of cysts in 

sediments (Zonneveld et al., 2013).  

 

The first worldwide data-set of organic-walled dinoflagellate cyst distribution was published 

in 2003 in the modern dinocyst atlas by Marret and Zonneveld (2003) and has since been 

extensively updated with additional data from all over the world (Zonneveld et al., 2013). 

This new database, together with earlier dinocyst surface sediment studies conducted within 

the Nordic Seas and adjacent areas, creates a strong basis for the understanding of 

dinoflagellate ecology and cyst distribution within the present study areas (e.g., Wall et al., 

1977; Mudie, 1992; Matthiessen, 1995; Matthiessen et al., 2001, 2005; Dale, 1996; de Vernal 

et al., 1997, 2001, 2005; Rochon et al., 1999; Harland and Pudsey, 1999; Zonneveld and 

Brummer, 2000; Devillers and de Vernal, 2000; Head, 1996; Head et al., 2001; Marret and 

Zonneveld, 2003; Marret et al., 2004; Radi and de Vernal, 2008; Grøsfjeld et al., 2009; 

Solignac et al., 2009; Zonneveld et al., 2013).   

The following is an overview of the ecology and distribution of the most common dinocysts 

(including one acritarch) species within our studied area (maps of surface sediment 

distribution follows the species descriptions). Species are listed in alphabetic order, with 

species names followed by the abbrevations applied within the following chapter figures. All 

identified species are listed in Appendix 3.  

 

Brigantedinium spp. (BSPP) 

Brigantedinium spp. includes the species B. simplex and B. cariacoense and all spineless, 

round brown cysts that cannot be determined on species level because of bad preservation or 
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unfavorable orientation. Since made of a large number of species, this group is distributed 

within a wide range of sea-surface temperatures (from -2,1 °C during winter to 29,6 °C during 

summer) and salinities (17 during spring to 36,8 during summer) (Marret and Zonneveld,  

 
Figure 2.15 : Geographic surface sediment distribution of BSPP and IPAL in the Nordic Seas, based on the 1189 
surface sediment database for the North Atlantic and North-Eastern Pacific 
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2003). Representatives of this cosmopolitan dinocyst group are produced by heterotrophic 

dinoflagellates. Their occurrence is, therefore, largely dependent on the availability of food, 

such as diatoms (Marret and Zonneveld, 2003; Zonneveld et al., 2013). They can effectively 

cope with prolonged periods of sea ice cover (up to 12 months) and are particularly abundant 

in regions of high productivity, such as upwelling areas and sea-ice margins, and can 

dominate from coastal to oceanic conditions (e.g. Wall et al., 1977; de Vernal et al., 1997, 

2001; Harland and Pudsey, 1999; Zonneveld and Brummer, 2000; Radi and de Vernal, 2008; 

Zonneveld et al., 2013). Brigantedinium spp. is rare to common in surface sediments from the 

Norwegian Sea, the central Iceland and Greenland Seas and and the Barents Sea (Matthiessen, 

1995, and references therein), although its low abundance in surface sediments of the 

Norwegian Sea has been assumed as due to enhanced degradation in sediments (Matthiessen, 

1995).  

 

Impagidinium pallidum (IPAL)  

I. pallidum is autotrophic and has a bipolar distribution, which in the NH is restricted to 

regions north of 45°N. In the North Atlantic, it shows the highest occurrences in surface 

sediments at the center of the Iceland and Greenland Seas (Matthiessen, 1995; Rochon et al., 

1999; Marret and Zonneveld, 2003; Marret et al., 2004; Grøsfjeld et al., 2009). This species 

rarely contributes more than 1.5% of the total dinocyst assemblages in sediments of the 

Norwegian Sea, the eastern Fram Strait and the east Greenland shelf (Matthiessen, 1995), 

corresponding well with a suggested sea-surface temperature optimum for this species of less 

than ~5 °C (Marret and Zonneveld, 2003). The reported salinity range is rather broad (21.3-

36.4) but shows an optimum at 34 (Marret and Zonneveld, 2003; Zonneveld et al., 2013). I. 

pallidum has been reported in regions with sea-ice cover up to 12 months and is generally 

regarded as a polar oceanic species (de Vernal et al., 2001; Zonneveld et al., 2013).  

 

Islandinium minutum (IMIN) 

I. minutum has a bipolar distribution and has been recognized north of 30 °N in the NH, 

below surface waters with rather broad temperature (-2,1 – 27 °C) and salinity (21,3 - 35,3 ) 

ranges. This species, however preferentially thrives in surface water masses with temperatures 

below 5-7 °C (Head et al., 2001; Marret and Zonneveld, 2003; Zonneveld et al., 2013). 

Usually, the species is associated with polar to sub-polar environments and it has been 

suggested that the species is related to ArW masses (Rochon et al., 1999; de Vernal et al., 
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2001; Marret and Zonneveld, 2003; Grøsfjeld et al., 2009). I. minutum is produced by 

heterotrophic dinoflagellates, is commonly found in shelf and slope sediments at the eastern 

margin of Canada, west of Svalbard and close to Greenland  (Fig. 2.15), and has its largest  

 
Figure 2.16 : Geographic surface sediment distribution of IMIN and NLAB in the Nordic Seas, based on the 
1189 surface sediment database for the North Atlantic and North-Eastern Pacific 
 
abundances (estimated to more than 35%) in areas with sea-ice cover (positive correlation 

with sea ice duration) during 8-12 months of the year (Matthiessen, 1995; de Vernal et al., 
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1997; Rochon et al., 1999; Head et al., 2001; Radi and de Vernal, 2008; Grøsfjeld et al., 2009; 

Zonneveld et al., 2013).  

 

Nematosphaeropsis labyrinthus (NLAB) 

This autotrophic opportunistic cosmopolitan species has been well recorded on the NH within 

a broad range of surface water conditions (-2.1 to 29.6°C, 16.1 to 26.8) and has been found to 

occur in high relative abundances in both coastal and oceanic sites (Matthiessen, 1995; Marret 

and Zonneveld, 2003), with a preference for deep ocean basins (Wall et al., 1977; 

Matthiessen, 1995, and references therein; Zonneveld et al., 2013). In the North Atlantic, N. 

labyrinthus is found in the highest abundances in the central Greenland and Iceland Seas with 

decreased abundances in the Norwegian and Barents Sea (Fig. 2.15) (Matthiessen, 1995, and 

references therein). N. labyrinthus has been shown to anti-correlate with the duration of sea-

ice cover and show a positive relation with February nutrient content and productivity in the 

northern North Atlantic (de Vernal et al., 1997; Devillers and de Vernal, 2000; Radi and de 

Vernal, 2008). The species has been related to oligotrophic environments within the northern 

North Atlantic (Devillers and de Vernal, 2000).  

 
 
Operculodinium centrocarpum (OCEN) 

O. centrocarpum is autotrophic and is considered as a cosmopolitan opportunistic species. Its 

ability to adapt quickly to changing or unstable environments explains its overall wide 

distribution and its tolerance to a wide range of sea-surface temperatures (-2.1 °C-29.6 °C) 

and salinities (16.1-36.8) (Dale, 1996, 1999; Rochon et al., 1999; de Vernal et al., 2001; 

Marret and Zonneveld, 2003; Grøsfjeld et al., 2009). The highest relative abundances of this 

species are found in regions with cold/temperate and nutrient rich surface water masses, e.g. 

the North Atlantic Drift in the North Atlantic Oceans (up to 91%) (Fig. 2.15) (Matthiessen, 

1995; Rochon et al., 1999; Marret and Zonneveld, 2003; Zonneveld et al., 2013). O. 

centrocarpum dominates dinocyst assemblages in surface sediment of the Norwegian Sea 

(abundances up to 87%) and the Barents Sea, and shows an overall abundance decrease 

towards the Greenland-Iceland Seas (Matthiessen, 1995). This species is found from coastal 

to fully oceanic domains but with markedly lower abundances in coastal areas (Wall et al., 

1977; Zonneveld et al., 2013). A negative relationship was found between the relative 

abundances of O. centrocarpum and sea-ice cover (Radi and de Vernal, 2008). O. 
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centrocarpum might occur in high abundances in areas affected by reduced surface salinity 

during the summer season due to either melt water or river discharge (Zonneveld et al., 2013).  

 

 

 

Figure 2.17 : Geographic surface sediment distribution of  OCEN and PDAL in the Nordic Seas, based on the 
1189 surface sediment database for the North Atlantic and North-Eastern Pacific 
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Pentapharsodinium dalei (PDAL) 

P. dalei is autotrophic and occurs within coastal to oceanic environments north of 62 °S with 

a wide range of surface temperatures (-2,1°C - 29,6 °C) and salinities (21,3 - 36,7). It may 

contribute up to 94% of the dinocyst assemblages in coastal surface sediment but less than 

~5% in marine environments (Harland and Pudsey, 1999; de Vernal et al., 1997, 2001; Marret 

and Zonneveld, 2003; Zonneveld et al., 2013). The largest abundances of P. dalei cysts have 

been recorded in sediment samples from the northeast Atlantic (where SSTs > 4°C), 

especially from along the coast of Norway, within the Barents Sea and around Iceland (Fig. 

2.15) (Matthiessen, 1995; Dale, 1996; Rochon et al., 1999; Marret et al., 2004; Grøsfjeld et 

al., 2009). It is absent from sediments of the east Greenland shelf (Matthiessen, 1995; 

Zonneveld et al., 2013). Previous studies indicated a strong relation of P. dalei to early spring 

stratification and productivity (Solignac et al., 2009). While showing a preference for coastal 

environments, this species also occurs in fully marine domains with fall to spring 

temperatures <1°C and generally reduced upper water salinities due to melt water or river 

inputs (Zonneveld et al., 2013).  

In addition, studies have shown a slight negative relationship between this species and sea-ice 

cover, although P. dalei has been observed below waters with sea-ice cover of up to 9-12 

months in the Arctic (de Vernal et al., 1997; Radi and de Vernal, 2008; Zonneveld et al., 

2013). 

 

Selenopemphix quanta (SQUA)  

S. quanta is a cosmopolitan species found in sediments north of 45°S, below surface waters 

with a broad temperature (-2,1°C - 29,6 °C) and salinity (16,9 -36,7) range (Marret and 

Zonneveld, 2003). Maximum abundances of the species were recorded in shallow sediments 

off Svalbard, the Iceland Sea and over the Barents Sea (Grøsfjeld et al., 2009; Zonneveld et 

al., 2013, and references therein). Earlier studies suggested that S. quanta is heterotrophic, its 

presence being largely dependent  upon the availability of preys, e.g. diatoms (positive 

correlation to silica/opal and primary productivity) (Devillers and de Vernal, 2000; Marret 

and Zonneveld, 2003; Radi and de Vernal, 2008; Zonneveld et al., 2013).This species is 

generally found in high relative abundances in dinocyst assemblages from coastal areas and 

regions characterized by meso- to eutrophic conditions, e.g. in upwelling areas, close to 

hydrological fronts and within regions affected by seasonal or permanent river discharge as 
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well as in areas with sea-ice cover duration of up to 11 months (de Vernal et al., 2001; Marret 

and Zonneveld, 2003; Zonneveld et al., 2013).  

 

 
Figure 2.18 : Geographic surface sediment distribution of SQUA and SELO in the Nordic Seas, based on the 
1189 surface sediment database for the North Atlantic and North-Eastern Pacific 
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Spiniferites elongatus (SELO) 

S. elongatus is autotrophic and restricted to surface waters of polar to subtropical areas north 

of 30 °N, within a broad temperature (-2°C – 26,7,6 °C; optimum: -1 to 16°C) and salinity 

(21,3 -35,9) range (Marret and Zonneveld, 2003). It shows maximum abundances in surface 

sediments of the central/northern part of the Atlantic Ocean, the Labrador Sea, the Hudson 

Bay, the Barents Sea and the Nordic Seas (Fig. 2.15) (Marret and Zonneveld, 2003; Grøsfjeld 

et al., 2009; Zonneveld et al., 2013). This species can be found in areas with ice cover up to 

10 months per year, and is particularly successful in meso- to eutrophic environments, which 

are related to frontal systems (de Vernal et al., 1997; Marret and Zonneveld, 2003; Zonneveld 

et al., 2013). S. elongatus is specifically abundant in coastal surface sediments (Zonneveld et 

al., 2013).  

 

Spiniferites mirabilis (SMIR) 

The autotrophic species S. mirabilis includes here both S. mirabilis and Spiniferites 

hypercanthus, as determination at species level is difficult and dependent on the orientation of 

the specimen. S. mirabilis has exclusively been observed in fully marine environments with 

salinities above 28.5 and summer temperatures above 12 °C (Marret and Zonneveld, 2003). 

The optimum sea-surface temperature preferences were estimated between 10 and 15°C and 

above 15°C for the winter and summer seasons respectively (de Vernal et al., 1997; 

Zonneveld et al., 2013). Based on these temperature preferences, S. mirabilis is 

characteristically absent from areas seasonally covered by sea-ice (de Vernal et al., 1994, 

1997). In the North Atlantic, abundances of S. mirabilis are negatively correlated with the 

nutrient content of the surface waters (Devillers and de Vernal, 2000).  

 

Spiniferites ramosus (SRAM) 

The autotrophic S. ramosus cysts are found  in a broad range of environments north of 45 °S 

with surface water temperature and salinity ranges of -1,7 to 29,1°C and 21,3 to 

36,7,respectively (Marret and Zonneveld, 2003). The highest relative abundances of S. 

ramosus are recorded in sediments below surface waters with annual salinities above 30. This 

species can dominate dinocyst assemblages in meso- to eutrophic environments, which are 

characterized by upwelling or a well-mixed surface layer (Marret and Zonneveld, 2003; 

Zonneveld et al., 2013), as well as temperate to tropical neritic environments (Wall et al., 

1977; Mudie, 1992; Harland et al., 1998; Marret and Zonneveld, 2003, and references  
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Figure 2.19 : Geographic surface sediment distribution of SMIR and SRAM in the Nordic Seas, based on the 
1189 surface sediment database for the North Atlantic and North-Eastern Pacific 
 
therein). S. ramosus can be found in areas affected by sea-ice cover up to 8 months a year, 

although it shows a negative correlation with seasonal ice duration (de Vernal et al., 1997; 

Radi and de Vernal, 1998). This species occurs in low abundances within the Nordic seas 
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(Zonneveld et al., 2013) and has been suggested to be related to spring/summer productivity 

and surface water stratification (Solignac et al., 2009; Grøsfjeld et al., 2009). 

 

Halodinium spp. (Acritarch, HALO) 

The acritarch Halodinium spp. includes two morphotypes, e.g.  Halodinium minor (related to 

colder environments and seasonal sea ice) and Halodinium major (restricted to temperate 

environments) (Matthiessen, 1995). It has been reported from polar to warm-temperate 

environments within Australian estuaries and Arctic delta environments (Bujak, 1984; 

McMinn, 1991; Mudie, 1992; Head, 1996), and it has, therefore, been suggested to be related 

to gradational zones between fresh and marine environments e.g. glacier-meltwater outflow 

and the MIZ (Mudie, 1992; Head, 1996; Grøsfjeld et al., 2009). Halodinium spp. is common 

in sediments from the east Greenland continental shelf, the western Iceland Sea and the 

central Greenland Sea and has been reported in high abundances from a surface sediment 

sample northwest of Bjørnøye (Solignac et al., 2009), whereas only very rare specimens have 

been found in the southern Norwegian Sea (Matthiessen, 1995).   

 

Figure 2.20 : Geographic surface sediment distribution of HALO in the Nordic Seas. Modified after Matthiessen 
et al. (1995). 
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Significance of the dinocyst ratios OCEN/NLAB and OCEN/IMIN 

The different regional dominance of the two species O. centrocarpum and N. labyrinthus is 

clearly reflected in the surface sediments of the Nordic Seas (Matthiessen et al., 2001; 

Zonneveld et al., 2013) as seen above. Matthiessen et al. (2001) found a somewhat inverse 

relationship between the relative abundances of the two species with a dominance of O. 

centrocarpum below relatively warm Atlantic-derived water masses of the Norwegian Seas 

and a dominance of N. labyrinthus below Arctic waters. The authors proposed an abundance 

ratio between the two species (OCEN/NLAB) to define the location of the AF, which 

separates the Polar and Arctic domains (OCEN/NLAB<4) from warmer and saltier Atlantic-

derived waters (OCEN/NLAB>4). 

In addition recent investigations of surface sediment samples within the western Barents Sea 

suggests that the relative abundance of O. centrocarpum versus I. minutum may be used to 

indicate whether warm AW flows at the surface or as a subsurface water mass below ArW or 

sea ice (Grøsfeld et al., 2009), as I. minutum has often been associated with Arctic surface 

water and sea ice (de Vernal et al., 2001; Head et al., 2001; Marret and Zonneveld, 2003). 

Based on these evidences we use the definition of the AF (a frontal salinity and temperature 

gradient separating surface AW masses from mixed ArW) to infer that the OCEN/NLAB ratio 

(ie. deviations from the treshold of 4) characterizes surface sediments deposited below 

Atlantic or Arctic surface water masses, when considering pluriannual conditions. In a similar 

fashion we use the ratio OCEN/IMIN to characterise the surface water masses. 
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Chapter 3 : Material and Methods  

3.1 Chapter Overview  

North-western Europe is, today, characterized by a climate 5-10 °C higher than the zonal 

mean (Hald et al., 2007). This difference is to a large extent attributed to the northward 

advection of warm AW by the NwAC and its meridional extension the WSC. The 

contribution of the present study to the understanding of recent climate variability in this 

region is two-fold. On one hand, we aim at obtaining a more complete knowledge on the 

Holocene variability of physical parameters (sea-surface temperatures, salinities and sea-ice 

extent/duration), which affect ecosystem processes within the Nordic Seas (Norwegian-

Iceland-Greenland Sea) and Fram Strait in areas presently affected by seasonal sea-ice. On the 

other hand, we aim at reconstructing the Holocene changes in Atlantic water inflow to the 

Arctic through the Fram Strait gateway.  

 

Core ID Latitude  Longitude 
Water 
depth 
(m) 

Core 
length 

(m) 

SST 
(winter, 

°C) 

SST 
(summer, 

°C) 

SSS       
(winter, 

PSU) 

SSS      
(summer, 

PSU) 
Location 

WOO/SC-3 
67° 
24.08’N 

08°31.25’E 1184 3.85 6.44 11.06 34.96 34.61 
Northeast of 
Vøring 
Plateau 

R248MC010 
69° 
78.30 N 

12,52.98 E 1254 0.49 5.73 10.8 34.6 34.3 
West of 
Lofoten 
Island 

R406MC032 
72° 
18.97’N 

14°82.68’E 1035 0.33 4.85 8.2 35.02 34.09 
Southwestern 
Barents Sea 

JM09-
KA11-GC 

74° 
52.48'N 

17° 
12.21'E 

345 3.6  3.03 5.84 34.95 34.7 

Midwest 
Barents Sea 
(Kveithola 
Trough) 

HH11-134-
BC 

77° 
35.96'N 

09° 
53.25'E 

1383 0.41 2.01 5.4 34.6 34.3 
West 
spitsbergen 
slope 

 
Table 3.1: Core locations and modern winter (Jan.-Mar.) and summer (Jul.-Sep.) sea surface temperatures and 
salinities (from World Ocean Database; Boyer et al., 2009). Only the three northern most cores have been 
affected by sea ice within the last two centuries (Vinje, 2001; Divine and Dick, 2006). 
 
 
A selection of five records (3 short cores and 2 long cores) were chosen along the continental 

margin of the eastern North Atlantic, based mainly on their location within the pathway of 

Atlantic Water to the Arctic Ocean (i.e. NwAC and WSC), between ~67° N and 78° N (Fig. 

1.1, 3.1, Table 3.1). The investigation of Holocene climate changes from deep-sea cores has 

often been hampered by low sedimentation rates or poor preservation. We, therefore, carefully 

selected sediment materials from depocenter areas on the shelf (troughs or depressions) or 

along the continental slope, which are characterized by high Holocene accumulation rates 
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enabling the study of multi-annual to centennial scale climate and hydrological changes. In 

the present work, qualitative (species assemblages) and quantitative (paleoecological transfer 

functions) reconstructions of surface water conditions along the meridional flow of AW are 

essentially derived from two micropaleontological tracers: coccoliths and dinoflagellate cysts. 

Few additional proxies (XRF-derived elemental concentrations, planktonic foraminiferal 

assemblages and abundances of large lithic grains) were also investigated in order to get a 

more comprehensive understanding of the surface and subsurface paleoceanographic changes 

inferred from coccoliths and dinocysts assemblages. In addition, most cores are investigated 

by partner institutions (Univ. Plymouth and Univ.Tromsø) within the framework of the ITN 

project CASE, with a strong focus on the two cores WOO/SC-3 and JM09-KA11-GC. 

 

An additional investigation on extant coccolithophore populations across the Nordic Seas and 

Fram Strait was conducted with the purpose of improving our understanding of the 

biogeographical distribution of dominant species in view of the physical and/or chemical 

conditions of the photic layer at the time of surface water sampling. These results are 

presented in Chapter 2. 

                  

Core ID 
  

Investigated 
core length 

(cm) 
  

  
  

Sampling resolution in (cm) 
  
  
  

Bottom age 
(cal. years 

BP) 
  

Coccoliths Dinocysts LLG XRF  Forams 
Bulk 

CaCO3 
WOO/SC-3 275 5 5         3172 

R248MC010 49 0.5 1 1 0.2 1 1-2 490 

R406MC032 34 1 1 1     1 532 

JM09-KA11-
GC 

125 0.5-4 2-4         11769 

HH11-134-BC 41 0.5 0.5 0.5 0.1 0.5-1 1-2 6508 

 
Table 3.2: Sampling resolution (in cm) according to the investigated cores and the investigated proxies. 
Investigated core length and bottom age are provided for information. LLG: Large Lithic Grains, Bulk 
CaCO3: Bulk carbonate contents. Planktonic foraminifera sensus counts were performed by Linda Rossignol 
and Jacques Giraudeau. 
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Figure 3.1 :Sea surface temperature and salinity maps for modern summer (Jul.-Sep.) and winter (Jan.-Mar.) 
conditions within the northern North Atlantic (World Ocean Database; Boyer et al., 2009); plots constructed 
using Ocean Data View 4. Black filled circles locations of studied cores; 1: HH11-134-BC, 2: JM09-KA11-GC, 
3: R406MC032, 4: R248MC010 and 5: WOO/SC-3. 
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3.2 Core Locations and Descriptions 

 The present research study was carried out on 5 sediment cores distributed along a latitudinal 

gradient within the path of the NwAC and its northermost extension the WSC (Fig. 1.1, 3.1). 

The following paragraph gives an overview of the investigated cores in terms of site location, 

modern surface water characteristics (currents, temperatures and salinities), lithology and 

sampling procedure.  

3.2.1 WOO/SC-3 

This 3.85 m long gravity core was retrieved from the Norwegian continental margin, 

northeast of the Vøring Plateau (at the entrance to Trænadjupet) within the path of the NwAC 

(Fig. 1.1, 3.1; Table 3.1; Appendix 1, CTD 1) (Laberg et al., 2002). WOO/SC-3 consists of 

two lithological units: a deeper diamicton overlayed by a ~270 cm long yellow-brown mud 

(Fig. 3.2) (Laberg et al., 2002). Sampling for coccolith and dinocyst investigations was 

conducted every 5 cm at EPOC from 19 cm down to 275 cm (the top 19 cm was missing from 

our set of sediment samples) (Table 3.2).  

 

 
Figure 3.2 : Lithology of core WOO/SC-3 and 14C years BP versus depth (cm). Modified after Laberg et al. 
(2002). 

3.2.2 R248MC010 

The site is located in an area influenced both by the NAC and the NCC (Appendix 1, CTD 2), 

as indicated by CTD 2 showing that the NCC influence the location down to ~35 meters 

(<34.7, Loeng, 1991) (at least seasonally), followed by a dominance of AW. 
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The 0.49 m long multi-core R248MC010 consists of gray clayey silt and was retrieved in 

2008 west of the Lofoten Islands within the framework of the Norwegian MAREANO 

program (onboard F/F G.O. Sars) (Fig. 1.1, 3.1, 3.3; Table 3.1) (Jensen et al., 2009). XRF 

analyses (~0.2 cm) and SCOPIX radiography were conducted at EPOC (Fig. 3.3). The X-ray 

image provides evidence of bioturbation down the whole section, but does not show any sharp 

lithological changes and/or erosional surfaces, suggesting that sedimentation was most 

probably continuous and not affected by gravitational processes. Grain size analyses were 

conducted every 2 cm at NGU and adapted from Jensen et al. (2009) (Fig. 3.3). They only 

show minor variability of ~6 % between, mainly, silt and sand. Core sampling for 

micropaleontological (dinocysts and planktonic foraminifera) and sedimentological (lithic 

grains and bulk carboinate contents) investigations were carried out at 1 cm resolution with 

the exception of the coccolith investigation, which was realized at 0.5 cm resolution (Table 

3.2).  

 
Figure 3.3 : A) SCOPIX image versus depth of core R248MC010 showing bioturbation. B) Grain size analysis 
(wt %). Clay: <2 µm, Silt: 2-63 µm, Sand: >63µm, based on analyses from Jensen et al. (2009). In addition, 14C 
ages are marked at their respective depths.  
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Visual inspection of the core halves after opening indicated that the core top accurately 

sampled the sediment-water interface, as it contained a very clear ca. 5 cm thick brown 

reduced layer above a gray oxydated sediment column. 

Previous 210Pb dating by Jensen et al. (2009) suggested that core R248MC010, assuming a 

constant sedimentation rate, represents the last 150 years.  

Therefore, this core material was initially intended to be used for high resolution proxy 

validation. 

3.2.3 R406MC032 

This 0.34 m long multi-core was retrieved in 2009, within the framework of the Norwegian 

MAREANO program (onboard F/F G.O. Sars). The site is located along the continental 

margin of the southwestern Barents Sea, roughly halfway between northern Norway and Bear 

Island at the entrance to the BIT. The location is overlaid by the WSC meridional branch of 

the NwAC and is influenced by the NCC during summer (Fig. 1.1, 3.1; Table 3.1; Appendix 

1, CTD 3) (Olsen et al., 2003; Jensen et al., 2010).  

 
Figure 3.4: Grain size analysis (wt %) and Total Organic Carbon (TOC %) versus core depth (cm) for multicore 
R406MC032. Clay/Silt: <63 µm, Sand: 63-250 µm, Gravel: >250 µm, based on analyses from Jensen et al. 
(2010). In addition, 14C ages are marked at their respective depths. 
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While the core was emptied onboard, subsampling at 1 cm resolution was conducted at EPOC 

according to the same strategy applied to core R248MC010, i.e. micropaleontological 

investigations of coccolith and dinocyst assemblages, description and counts of lithic grains, 

and measurement of bulk carbonate contents (Table 3.2). A previous grain size analysis 

conducted by the MAREANO research group (Jensen et al., 2010) shows that core 

R406MC032 is affected by large downcore changes in sand and silt/clay contributions of up 

to ~20% as well as a strong decrease in the Total Organic Carbon (TOC) content below 5-10 

cm (Fig. 3.4). Detailed studies of surface sediments (Steinsund and Hald, 1994) and sediment 

cores (Jensen et al., 2007) have shown that the formation of metabolic CO2 together with 

dense, salty water masses is the main cause of the uneven CaCO3 concentrations in large parts 

of the Barents Sea. Salty bottom waters with high densities are often found in depressions and 

troughs along the continental margin where CO2 enriched water masses accumulate. 

Carbonate microfossils might, therefore, be stronger effected by dissolution in such 

environments compared to “higher ground” areas (i.e. along the coast or the continental 

shelf). The lower carbonate values below ~10 cm in R406MC032 are, thus, not a result of 

natural variations in the carbonat production but are more likely related to disolution of 

carbonate foraminifera (Jensen et al., 2010).  

Initial 210Pb dating conducted within the framework of the MAREANO program (Jensen et 

al., 2010) suggested that, assuming a constant sedimentation rate down to the bottom of the 

core, R406MC032 provides a continuous record of sedimentation throughout the last 300-400 

years.  

3.2.4 JM09-KA11-GC 

The 3.83 meter gravity core was retrieved from the Kveithola Trough northwest of Bear 

Island  onboard R/V Helmer Hansen (former R/V ‘Jan Mayen’) (Fig. 1.1, 3.1; Table 3.1) 

(Rüther et al., 2012). The site is located within the influence of the poleward flowing WSC in 

close vicinity to the clockwise flow of ArW on the shelf from the BIC (extension around Bear 

Island of the PC) and the Sørkapp Current (extension around southern Svalbard of the ESC) 

(Appendix 1, CTD 4) (Saloranta and Svendsen, 2001; Wassman et al., 2006).  

JM09-KA11-GC is situated in a glacial trough, which acts as a natural sediment trap 

containing relatively thick Holocene sediments (Rüther et al., 2012). Rüther et al. (2012) 

described the lithofacies in the gravity core JM09-KA11-GC and found an erosive base at the 

bottom of Lithofacies 1 (LF1), a sharp boundary change from LF2 (crudely laminated, 

bioturbated mud) to LF4 (layer diamict with muddy matrix) and a sudden increase in the Ice 
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Rafted Detritus (IRD) content at the boundary between the latter two facies (Fig. 3.5). The 

core shows a strong downcore variability in sand, silt and clay contents with sandy sediments 

(~40-60 %) in the top ~0.90-1 m and a dominance of silt and clay (~80-90%) in the deeper 

parts (Fig. 3.5). The core material was initially sampled in Tromsø and re-sampled at EPOC 

for the micropaleontological investigations of coccoliths (0.5 cm, <40 cm; 2-4 cm, >40 cm) 

and dinocysts (~2-4 cm) down to a core depth of ~125 cm (Table 3.2). The chronological 

framework is based on 14C dates provided by Rüther et al. (2012), Berben et al. (2013) and 

Groot et al. (2013). 

 

 
Figure 3.5: Analytical results for gravity core JM09-KA11-GC, incl. the division of lithofacies. Calibrated 
radiocarbon ages are indicated in the clast-column. Water content and undrained shear strength values are given 
in numbers when out of the range of the X axis scale. Modified after Rüther et al. (2012). 
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3.2.5 HH11-134-BC 

The 0,41 m long box-core HH11-134-BC was retrieved on the continental slope west of 

Svalbard at the entrance of Isfjorden and Belsund (Fig 1.1, 3.1; Table 3.1) as part of the GEO-

8144/3144 cruise of the RV Helmer Hansen (Husum et al., 2011). This core is located within 

the influence of the WSC (Fig. 3.1; Appendix 1, CTD 5). 

 

The core was cut open at EPOC where XRF core scanning (~0.1 cm resolution) and SCOPIX 

radiography were conducted (Fig. 3.6). The core consists of homogenous gray clay, although 

X-Ray images showed a higher abundance of clasts in the upper part of the sediment section. 

Sampling was achieved at resolutions close to 0.5 cm for micropaleontological (coccoliths, 

~0.5 cm; dinocysts, ~0.5 cm; planktonic foraminifera, ~0.5-1 cm in top ~30 cm), 

sedimentological (lithic grains, ~0.5 cm) and bulk carbonate contents (~2 cm) (Table 3.2). 

During sampling, a small dropstone of ~2 cm in diameter was identified at a depth of 16-17 

cm. In addition, several boulders were found in the left-over sediments of the boxcore when 

the shipdeck was cleaned. 

 

 
Figure 3.6: SCOPIX radiography of core HH11-134-BC showing a high abundance of clasts in the top 10 cm 
with an apparent progressive decrease down core. 

3.3 Core Chronologies 

The chronological framework of the investigated sediment cores is based on 210Pb and 14C 

datings, their method principles are given in Appendix 2.  

 

The stratigraphic framework of the investigated sediment cores is based on 31 Accelerator 

mass spectrometry (AMS) 14C- and 16 210Pb-dates of which 21 have previously been 

published (Laberg et al., 2002; Rüther et al., 2012; Dylmer et al., 2013; Berben et al., 2013; 

Groot et al., 2013) (Table 3.3). The dates were calibrated to calendar years before present 

(Cal. years BP, 1950 AD = 0 BP) by applying the software Calib 6.1.0 (Stuiver and Reimer, 

1993) and the marine calibration curve marine09, using  a standard reservoir correction of 

~400 years (∆R = 0), if not elsewise stated in Table 3.3.  
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Table 3.3: Core, sample depth, dated material, 14C age years BP, calibrated years BP, Laboratory ID and reference. 

((*) excl. from age model) 

Core 

Core 

depth 

(cm) 

Dated 

material 

14C AMS 

Age years 

BP 

Calibrated 

Age, cal. 

years BP 

Calibrated 

ages, 2σ 

range 

ΔR Lab ID References  

WOO/SC-3 39-41 
N. 

pachyderma 
920 ± 65 536.5 435-638 0 

TUa-

2931 

Laberg et al., 

2002 

WOO/SC-3 
119-

121 

N. 

pachyderma 
1865 ± 55 1410 1291-1529 0 

TUa-

2930 

Laberg et al., 

2002 

WOO/SC-3 
262-

264 

N. 

pachyderma 
3220 ± 95 3041 2793-3289 0 

TUa-

2929 

Laberg et al., 

2002 

         

R248MC010 1 
  

-58 
   

Pb210, from 

Leinebø (2011) 

R248MC010 3.5 
  

-51 
   

Pb210, from 

Leinebø (2011) 

R248MC010 5.2 
  

-42 
   

Pb210, from 

Leinebø (2011) 

R248MC010 7.1 
  

-32 
   

Pb210, from 

Leinebø (2011) 

R248MC010 9.2 
  

-22 
   

Pb210, from 

Leinebø (2011) 

R248MC010 11.2 
  

-11 
   

Pb210, from 

Leinebø (2011) 

R248MC010 13.2 
  

2 
   

Pb210, from 

Leinebø (2011) 

R248MC010 15.2 
  

17 
   

Pb210, from 

Leinebø (2011) 

R248MC010 17.2 
  

36 
   

Pb210, from 

Leinebø (2011) 

R248MC010 19.2 
  

63 
   

Pb210, from 

Leinebø (2011) 

R248MC010* 7-8 
Bulk planktic 

foraminifera 
1340 ± 30 871 791-951 0 

SacA 

29434  

R248MC010* 15-16 
Bulk planktic 

foraminifera 
790  ± 30 421.5 350-493 0 

SacA 

29430  

R248MC010* 24-25 
Bulk planktic 

foraminifera 
1050  ± 30 608.5 548-669 0 

Beta-

30712

5 
 

R248MC010* 24-25 Mollusc 745  ± 30 381 303-459 0 
SacA 

24481  

R248MC010* 30-32 
Bulk planktic 

foraminifera 
1045  ± 30 606 546-666 0 

SacA 

29431  

R248MC010 47-48 
Bulk planktic 

foraminifera 
802  ± 25 439 378-500 0 

UBA-

20059  

R248MC010 48-49 
Bulk planktic 

foraminifera 
805 ± 30 434 364-504 0 

SacA 

24482  

         

R406MC032 0.5 
  

-56 
   

NGU cruise 
Report 2010.016 
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R406MC032 1.5 
  

-49 
   

NGU cruise 
Report 2010.017 

R406MC032 3.5 
  

-29 
   

NGU cruise 
Report 2010.018 

R406MC032 5.5 
  

-7 
   

NGU cruise 
Report 2010.019 

R406MC032 7.5 
  

16 
   

NGU cruise 
Report 2010.020 

R406MC032 9.5 
  

42 
   

NGU cruise 
Report 2010.021 

R406MC032* 12-14 
Bulk planktic 

foraminifera 
2830 ± 30 2583.5 2468-2699 0 

Beta - 

30712

3 

This study 

R406MC032* 20-21 
Bulk planktic 

foraminifera 
3610 ± 30 3506.5 3411-3602 0 

Beta - 

30712

4 

This study 

R406MC032* 33-34 
Bulk planktic 

foraminifera 
10370 ± 40 11432.5 

11232-

11633 
0 

SacA 

42448

3 

This study 

         

JM09-KA11-

GC 
3-6 

Mollusc 

dextral part 

of B. 

Glacialis 

925 ± 30 475.5 396-555 
67 ± 

34 

Tra-

1063 

Rüther et al.,  

(2012) 

JM09-KA11-

GC 
3-6 

Mollusc 

dextral part 

of B. 

Glacialis 

900 ± 35* 444 352-536 
67 ± 

34 

Tra-

1064 

Rüther et al.,  

(2012) 

JM09-KA11-

GC 
15-17 

Mollusc 

sinistralpart 

of B. 

Glacialis 

1880 ± 35 1375 1268-1482 
67 ± 

34 

Tra-

1065 

Rüther et al.,  

(2012) 

JM09-KA11-

GC 
27-28 

Benthic 

foraminifera 

I. 

Norcrossi/he

lenae 

4430 ± 30 4518 4383-4653 
67 ± 

34 

Beta-

32404

9 

Berben et al. 

(2013) and Groot 

et al. (2013) 

JM09-KA11-

GC* 

32.5-

33.5 

Mollusc 

dextral part 

of A. Elliptica 

1990 ± 35 1469 1345-1593 
67 ± 

34 

Tra-

1066 

Rüther et al.,  

(2012) 

JM09-KA11-

GC 

39.5-

40.5 

Benthic 

foraminifera 

I. 

Norcrossi/he

lenae 

5480 ± 30 5779 5665-5893 
67 ± 

34 

Beta-

31519

2 

Berben et al. 

(2013) and Groot 

et al. (2013) 

JM09-KA11-

GC 
44-45 

Benthic 

foraminifera 

I. 

Norcrossi/he

lenae 

6510 ± 40 6943 6783-7103 
67 ± 

34 

Beta-

31519

3 

Berben et al. 

(2013) and Groot 

et al. (2013) 

JM09-KA11-

GC 
53-57 

Mollusc 

sinistral part 

of A. Sulcata 

7630 ± 45 8037.5 7920-8155 
67 ± 

34 

Tra-

1067 

Rüther et al.,  

(2012) 



Chapter 3. 

Christian V. Dylmer, 2013 

 

92 
 

JM09-KA11-

GC* 
80-81 

Benthic 

foraminifera 

I. 

Norcrossi/he

lenae 

8770 ± 40* 9367 9249-9485 
67 ± 

34 

Beta-

31519

4 

Berben et al. 

(2013) and Groot 

et al. (2013) 

JM09-KA11-

GC 

81-

83.5 

Mollusc 

paired shell 

of A. Elliptica 

8140 ± 50 8545 8389-8701 
67 ± 

34 

Tra-

1068 

Rüther et al.,  

(2012) 

JM09-KA11-

GC 

81-

83.5 

Mollusc 

sinistral part 

of N. minuta 

8315 ± 50 8782.5 8597-8968 
67 ± 

34 

Tra-

1069 

Rüther et al.,  

(2012) 

JM09-KA11-

GC 

110.5

-

111.5 

Benthic 

foraminifera 

E. 

Excavatum 

10540 ± 50 11611.5 
11324-

11899 

67 ± 

34 

Beta-

31519

5 

Berben et al. 

(2013) and Groot 

et al. (2013) 

JM09-KA11-

GC 

133-

136 

Mollusc 

paired shell 

of Y. 

Intermedia 

10705 ± 55 11964 
11676-

12252 

67 ± 

34 

Tra-

1070 

Rüther et al.,  

(2012) 

         

HH11-134-BC 
9.5-

10 

Bulk planktic 

foraminifera 
826  ± 23 462.5 420-505 0 

UBA-

20062 

This study and 

Dylmer et al., 

2013 

HH11-134-BC* 15-16 
Bulk planktic 

foraminifera 
2030  ± 30 1601.5 1515-1688 0 

SacA 

29428 

This study and 

Dylmer et al., 

2013 

HH11-134-BC 19-20 
Bulk planktic 

foraminifera 
1995  ± 28 1571 1473-1669 0 

UBA-

20061 

This study and 

Dylmer et al., 

2013 

HH11-134-BC 
30-

30.5 

Bulk planktic 

foraminifera 
3825  ± 30 3774.5 3676-3873 0 

SacA 

29432 

This study and 

Dylmer et al., 

2013 

HH11-134-BC 
39.5-

40 

Bulk planktic 

foraminifera 
6045  ± 30 6470.5 6378-6563 0 

SacA 

29433 

This study and 

Dylmer et al., 

2013 

                  

 
Table 3.3 : List of 210Pb and 14C  datings in the studied cores. Calibration of 14C dates was done by applying the 
software Calib 6.1.1 (Stuiver and Reimer, 1993) and the marine calibration curve marine09, using  a standard 
reservoir correction of ∆R = 0, if not otherwise stated. (*) excl. from age model. 
 
A standard reservoir correction ∆R = 0 was chosen for all cores (except JM09-KA11-GC) as a 

further finetuning of the signals would result in age models differing from published 

paleoclimate data sets using this standard correction. Nevertheless we are aware of possible 

errors in our age models due to ∆R-variations along the core transect, especially in areas with 

‘old’ Arctic/Polar waters (Mangerud and Gulliksen, 1975; Mangerud et al., 2006). Indeed, 

Bondevik and Gulliksen found that the reservoir age is latitude dependent along the 

Norwegian coast, with ∆R-values increasing from -3 ± 22 years in the south to 105 ± 24 years 

at Spitsbergen (discussed in Mangerud et al., 2006).  
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3.3.1 WOO/SC-3 

The chronology is based on 3 AMS 14C dates obtained by Laberg et al. (2002) on 

monospecific samples of planktonic foraminifera (Neogloboquadrina pachyderma) (Table 

3.3). The final chronology assumes a constant sedimentation rate between each radiocarbon 

dated level in WOO/SC-3 (linear interpolation) (Fig. 3.7).  

 
Figure 3.7 : Age-depth model (cal. years BP) and sedimentation rates of WOO/SC-3 based on data from Table 
3.3 (linear interpolation between each dated level). Horizontal lines: 2 sigma range of highest probability of 
calibrated AMS C14 dates.  
 

The gravity core (WOO/SC-3) over penetrated the water-sediment interface (explaining the 

disturbance within the top 19 cm). We, therefore, chose to apply the sedimentation rate 

estimated from the two AMS dates obtained in the upper levels to the top part of this core. 

This choice is supported by the homogenous lithology throughout the core as well as rather 

constant sedimentation rates calculated from the three available AMS dates (Fig. 3.7).  

The resulting age model suggests that the core covers the interval ~312 - 3172 Cal. years BP 

with an apparent sedimentation rate of 82-85 cm/kyr (Fig. 3.7).  
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3.3.2 R248MC010  

As earlier mentioned, this core was initially chosen according to a 210Pb chronology 

conducted by Jensen et al. (2009) on the top part, suggesting a bottom age of ~150 years. This 

chronology was later-on revised by Leinebø (2011) based on new 210Pb and 137Cs 

measurements. This new 210Pb record was found highly coinsistent with the one obtained by 

Jensen et al. (2009). In addition, the 137Cs dataset obtained in core R248MC010 highlighted 

the 1986 Chenobyl accident within a core depth corresponding to a 210Pb-based date of 1982, 

therefore confirming the reliability of the 210Pb-inferred chronology. 

 
Figure 3.8: Age-depth model, sedimentation rates and 137Cs measurements in core R248MC010, based on data 
from Table 3.3 and Leinebø (2011) (second order polynomial fit, between each 210Pb dated level and the bottom 
14C dates). Horizontal lines: 2 sigma interval of highest probability of the calibrated AMS 14C dates.  
 

A total of six bulk planktonic foraminiferal samples and 1 mollusc sample were submitted to 

various institutions for AMS 14C dating (Fig. 3.8; Table 3.3). With the exception of two 

consistent dates obtained at the bottom of core R248MC010, the other five revealed large and 

variable deviations from the 210Pb -inferred chronology, being older by an average of 500 

years (with a maximum of 800 years for the shallower sample in the sediment column) (Fig. 

3.8). Reworking and downslope transport of sand-sized material (such as foraminifera shells) 
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from outer shelf to slope environments are common sedimentary process along the Norwegian 

continental margin (Fohrman et al., 2001; Schröder-Ritzrau et al., 2001) and is likely to 

explain the recorded old ages inferred from the mixed planktonic foraminiferal samples. 

Although bioturbation, as evidenced from the SCOPIX X-Ray image (Fig. 3.3), might act as 

an additional cause of age excess in core R248MC010, the 210Pb-inferred high sedimentation 

rate is likely to limit its effect. We must also stress that the foraminiferal samples which were 

dry-picked for 14C dating contained a significant amount of neanic forms (within the 63 to 90 

um size range) as a way to reach the required minimum carbonate weight for measurements. 

These neanic forms, which are supposed to make up the bulk of planktonic foraminiferal 

assemblages from shelf environment, are likely to represent an important component of the 

fossil material which is laterally advected to the core site from shallower environment. This 

was shown earlier at Gamlembanken southwest of R248MC010 (Rumohr et al., 2001), and 

hence contribute to the recorded inconsistent measured ages.   

 

According to the final age model (excluding the 5 inconsistent dates), core R248MC010 

covers the interval ~2009-1490 AD (-59-460 cal. years BP) with an apparent sedimentation 

rate of 77 (bottom) -357 (top) cm/kyr (Fig. 3.8). This result is obviously different from the 

initially expected young age of the sediment core, but still enables us to proceed with a 

validation of our proxies by comparing with instrumental and historical datasets. 

3.3.3 R406MC032 

As mentioned earlier, this core was initially chosen according to a 210Pb chronology 

conducted by Jensen et al. (2010) on the top part, suggesting a bottom age of ~300-400 Cal. 

years BP. A total of six 210Pb (initial) and three additionel 14C dates were obtained from this 

core (Table 3.3).  

The donwcore grain size analyses show a stronger variability of up to ~20% within the fine 

fraction of the top 10 cm (Fig. 3.4) compared to the more southern R248MC010 (<6%), a 

change which might affect the reliability of 210Pb dates, as this element mainly sticks to the 

finer fraction of the sediments. Nevertheless, as 210Pb dating and the resulting sedimentation 

rate at R406MC032 (1.4 mm/year; Jensen et al., 2010) fall well within the range of both 

nearby core sites (Jensen et al., 2010) and the general sedimentation rates recorded within the 

Barents Sea region (Zaborska et al., 2008; Maiti et al., 2010), we do believe the results to be 

valid for our age model. The remaining three 14C ages revealed large deviations from the 
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210Pb -inferred chronology, being older by an average of 5735.5 years, with a maximum of 

11290 years for the bottom age (Table 3.3).  

 
Figure 3.9 : Age-depth model (cal. years BP) and sedimentation rates of R406MC032, based on data from Table 
3.3  and Jensen et al. (2010).   
 

A number of studies carried out along the Norwegian (Schröder-Ritzrau et al., 2001) and 

western Barents Sea (Fohrman et al., 2001; Sarnthein et al., 2003) continental margins 

(Rumohr et al., 2001), have demonstrated that, in addition to the vertical flux of particles, 

reworking and downslope transport of sand-sized material (such as foraminiferal shells) from 

outer shelf to slope environments are a common sedimentary process especially in deep 

basins and troughs (Fohrman et al., 2001). The location of R406MC032 at the western 

entrance to the Bear Island Trench, which represents the maximum depth of the Barents Sea 

(Loeng and Drinkwater, 2007), would therefore most likely be affected by these dense bottom 

water masses, which flow cross-slope from the shelf edges and down banks such as the Sba 

and the Gba into the BIT (Navarro-Rodriguez et al., 2012). Hence, lateral advection is likely 

to explain the recorded old ages inferred from the mixed planktonic foraminiferal samples. 

Furthermore, the application of a bottom age of 11290 cal. years BP would imply an 

excessively reduced sedimentation rate within the mid- and early Holocene, a period when, 
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according to numerous evidences (Bond et al., 2001; Moros et al., 2004; Slubowska et al., 

2005; Skirbekk et al., 2010), sediment delivery by the melting of the remnant ice sheets, ice 

shelves and sea ice was relatively high in the northern North Atlantic region. This sediment 

input is not shown within the grain size distribution.  

These reasonings, therefore, motivated the exclusion of the three 14C ages from the age 

model, and the construction of the chronology of core R406MC032 was done by applying a 

second order polynomial fit between the 210Pb dates, extending it to the bottom of the core 

(Fig. 3.9).  

Accordingly, R406MC032 covers the interval ~-57 - 532 cal. years BP with an apparent 

sedimentation rate of ~49-167 cm/kyr (Fig. 3.9).  

3.3.4 JM09-KA11-GC 

A total of thirteen 14C dates were measured by Rüther et al. (2012), Berben et al. (2013) and 

Groot et al. (2013). The 14C dates were calibrated by applying a local reservoir age of ∆R = 

67 ± 34 from south of Bear Island (Mangerud and Gulliksen, 1975), although we did use a 

standard reservoir correction in an earlier publication (Dylmer et al., 2013). This change has 

been done according to two recently submitted manuscripts by Berben et al. (2013) and Groot 

et al. (2013), who applied these reservoir corrections on JM09-K11-GC through the entire 

Holocene. Two 14C dates were excluded from the age model (Table 3.3), as they showed too 

young or too old ages when plotted against the chronological framework obtained from the 

other dates. The age at 32.5-33.5 cm has been excluded because it seems too young and the 

age at 80-81 cm appears to be to old. Furthermore, based on the lithofacies description by 

Rüther et al. (2012) (see section 3.2 on JM09-KA11-GC and Fig. 3.5), a boundary was 

included around 90 cm, to take a possible change in sedimentation rates (Fig. 3.10) into 

account. Rüther et al. (2012) described an erosive base at the bottom of LF1 (~85 cm), a sharp 

boundary change from LF2 (crudely laminated, bioturbated mud) to LF4 (layer diamict with 

muddy matrix) at ~97 cm, a massive shift in the grain size distribution from dominating sand 

in the top to dominating silt/clay below 85 cm and a sudden increase in the IRD content at the 

boundary between the latter two facies (Fig. 3.5). In addition, a marked shift can be observed 

in the interval from ~85-97 cm in most coccolith and dinocyst species, from being fairly 

stable to a very sudden shift. It is a reasonable assumption that a sedimentation rate shift 

occurs in relation to strong shifts in the fauna.  
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Figure 3.10: Age-depth model (cal. years BP) and sedimentation rates of JM09-KA11-GC, based on data from 
Table 3.3 (linear interpolation, between each dated level). Horizontal lines: Error range of the AMS C14 dating.  
 

The boundary depth has been placed a bit deeper to avoid a sudden change. The chronology 

was established using the calibrated mean ages for the 2σ interval of highest probability and 

assuming a constant sedimentation rate between each included radiocarbon dated level of 

JM09-KA11-GC (linear interpolation) (Fig. 3.10). This was not done at the Boundary. There 

the equations between the two 14C ages directly above the boundary (53-57 cm and 81-83.5 

cm) and directly below (110.5-111.5 cm and 133-136 cm) were applied all the way to the 

inferred boundary zone at 85 cm and 97 cm, respectively. A liniar interpolation was, then, 

applied between the following (calculated) boundary top and bottom ages. As with WOO/SC-

3, we chose to apply the equation between the first two 14C ages (e.g. 3-6 cm and 15-17 cm) 

all the way to the top, because of the likelihood of gravity core over penetration.The presented 

choice of age model differs somewhat from the ones published by Berben et al. (2013) and 

Groot et al. (2013), as these authors chose to keep the age at 80-81 cm, deleted the two ages at 

82.5 cm and did not include an age boundary. Based on these modifications of the age model, 
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our dataset will most likely differ within the interval ~8000 cal. years BP to 11600 cal. years 

BP when compared to our Holocene records. 

According to the final age model, core JM09-KA11-GC covers the interval ~300-11769 Cal. 

years BP with sedimentation rates in the range of 4-44 cm/kyr (Fig. 3.10). 

3.3.5 HH11-134-BC 

Five 14C dates were obtained from this box-core (Table 3.3). The chronology was established 

by using the calibrated mean ages for the 2σ interval of highest probability and applying a 

second order polynomial fit between all ages, with the exception of the date obtained at 15.5 

cm, which has been excluded because it appeared to be too old (Fig. 3.11; Table 3.3).   

 

 

Figure 3.11: Age-depth model (cal. years BP) and sedimentation rates of HH11-134-BC, based on data from 
Table 3.3 (second order polynomial fit betweeen each dated level). Horizontale lines: Error range of the AMS 
C14 datings. 
 

According to the final age model, core HH11-134-BC covers the interval ~39-6508 Cal. years 

BP with a sedimentation rate in the range of ~4-19 cm/kyr (Fig. 3.11). 
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3.4 Geochemical Preparation and Micropaleontological Approach 

The following is a short introduction to the different methods applied within this research 

study, starting with those related to the main proxies used here (e.g. coccolithophores, 

coccoliths, dinocysts and transfer functions) and then shortly describing those concerning the 

“minor” proxies (foraminifera, large lithic grains and XRF)  

3.4.1 Surface Water Sampling  

Surface water sampling was conducted with the purpose of investigating the geographical 

distribution of the major extant coccolithophore species in the northern North Atlantic (see 

Chapter 2), hoping that such information might contribute to the understanding of past 

abundance changes of their fossil remains in the investigated sediment cores. Water sampling 

was conducted en-route on board the RV Helmer Hanssen, using the ship’s deck wash pump, 

which limits the sampling to the near surface water masses (<5 m) and involves on board 

membrane filtration of 2-3 liter of sea water and air-drying within petri-dishes. Back in the 

laboratory, a ca 15 mm² of the filter was cut out and mounted in 2-3 drops of immersion oil 

between slide and cover-slip for examination under a light microscope at ×1000 

magnification, as described by Giraudeau et al. (1993). A total of 57 surface water samples 

(31 samples, September/October 2007, Husum (2007); 26 samples, July 2011, Husum et al. 

(2011)) were investigated for living assemblages and the results were expressed as 

coccolithophore standing stocks (number of cells/l). The extant population was dominated by 

the two major species e.g. E. huxleyi and C. pelagicus (Appendix 3). C. pelagicus includes 

both the motile holococcolith-bearing phase (C. pelagicus f. hyalinus) and the non-motile 

heterococcolith-bearing phase (C. pelagicus f. pelagicus) (Cachão and Moita, 2000; Balestra 

et al., 2004).  

While the use of a light microscope (compared with Scanning Electron Microscope – SEM - 

examination) limits a precise taxonomical investigation of the extant coccolithophore 

population, this approach was found sufficient to identify and to conduct reliable census 

counts of the dominant fossilizable species in the recovered samples (i.e. E.huxleyi and C. 

pelagicus).  

3.4.2 Coccolith Preparation from Sediment Samples 

The sediment samples for coccolith analysis were prepared according to the « Funnel » 

method as described by Andruleit (1996). It involves dilution by 10ml of tap water and a few 

drops of H2O2 + Na4P2O7, of a preweight amount (0.080 g ± 0.002 g) of dry sediment for 
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nightcap. These twelve hours is followed by ten seconds ultrasonication of the suspension. 

The residue is then poured into a larger container and diluted with ~500 ml of tap water, of 

which 30ml is taken out with a pipette and filtered through a 47 mm diameter and 0.8 µm 

mesh size membrane filter. A small piece of the air dried filter is then cut out and mounted in 

2-3 drops of oil between slide and cover-slip for examination under a light microscope at 

×1000 magnification. On average, a total of more than 300 specimens per slide were counted 

in order to guarantee the statistical reliability of our results (Andruleit, 1996). Census counts 

were ultimately expressed in terms of relative abundances (species percentage) and absolute 

concentrations (specimens/gram of dry bulk sediment). The assemblages were found to be 

dominated by five species (E. huxleyi, C. pelagicus, G. muellerae, C. leptoporus and 

Syracosphaera sp.; Appendix 3). This is in accordance with previous investigations in the 

area (Samtleben et al., 1995a; Baumann et al., 2000).  

Previously repeated analyses of fine fraction sediment samples using the “Funnel” method, 

have revealed that the method can cause ~15% deviation in the bulk coccolith absolute 

concentrations (Herlle and Bollmann, 2004). Hence, we will only address species relative 

abundances as well as “major” (>>15% deviation) absolute concentration changes in the 

present study.  

3.4.3 Dinocyst Preparation from Sediment Samples 

The selected samples for dinoflagellate cyst analysis were all processed (<150 µm fraction) 

using a standard sample preparation procedure (e.g. Stockmarr, 1971; de Vernal et al., 1996), 

which was slightly modified at EPOC/Université Bordeaux1 (Penaud et al., 2010). A known 

number of lycopodium clavatum (1-2 tablets) was added prior to the sample treatment in 

order to calculate absolute concentrations following the method of Stockmarr (1971). The 

samples were  

treated with cold 10, 25 and 50% hydrochloric acid (HCL) in order to get rid of carbonate 

(depending on the amount of sediment and the carbonate content) and with cold 40 and 70% 

hydrogen fluoride (HF) for removal of silici-clastic components. Finally the samples was 

treated again with 25% HCL. The residue was then sieved through 10mm nylon mesh screens. 

In cases where high amounts of organic material concealed the cysts (spines and processes) 

organic material was carefully removed by centrifugation and swirling in a large glass, based 

on the density differences between the cysts and the organic material. The residue containing 

the dinocysts was hereafter mounted on microscopic slides in a glycerin jelly using a pipette 

and, finally, covered with a coverslip.  
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On average, more than 300 specimens per slide were counted using a Zeiss axioscope light 

microscope at ×40 and ×100 (oil immersion) magnification. A total of 31 species (29 

dinocysts and one acritarch; Appendix 3) were identified using the nomenclature of Mudie 

(1992), Rochon et al. (1999), Head et al. (2001) and Marret and Zonneveld (2003) , which 

also stands as a base for the following groupings: Operculodinium centrocarpum s.l. 

comprises long-process and short-process forms of O. centrocarpum sensu;  Spiniferites 

membranaceus includes Spiniferites belerius; Spiniferites mirabilis contains Spiniferites 

hyperacanthus; Islandinium minutum includes Islandinium cezare; Brigantedinium spp. 

includes Brigantedinium simplex, Brigantedinium caracoense and all spherical brown cysts 

with smooth walls; Impagidinium spp. includes the species Impagidinium patulum, 

Impagidinium aceulatum and Impagidinium sphaericum; the acritarch Halodinium spp. 

contains the species Halodinium minor and Halodinium major. The term “spp.” refers to cysts 

which has not been identified beyond the genus level. The relative abundances of the species 

are calculated based on the total sum of species, excluding reworked cysts, acritarchs and 

unidentified taxa. The absolute abundances include all unidentified cysts and acritarchs, hence 

Halodinium spp. will only be shown as absolute concentrations.  

3.4.4 Modern Analogue Technique (Transfer Function - TF) 

Recent studies have shown that dinocyst assemblages in surface sediments of Arctic and sub-

Arctic seas have shown a close relationship with sea surface parameters such as temperature, 

salinity, and seasonal extent of sea ice cover (Mudie, 1992; Voronina et al., 2001; de Vernal 

et al., 2001, 2005; Zonneveld et al., 2013). On these grounds, and assuming that fossil 

assemblages developed in environmental conditions similar to the modern analogues, transfer 

functions using the modern analogue technique (MAT) have been developed. The background 

of the technique was reported by Overpeck et al. (1985) and Guiot (1990) and originally 

developed for pollen assemblage. It was later-on adapted for dinocysts by de Vernal et al. 

(2001, 2005). The MAT technique is the preferred transfer function technique applied to 

dinocyst assemblages for quantitative reconstruction of sea surface parameters (e.g. 

temperature, salinity and sea ice cover) as it provides the most reliable and realistic estimates 

(de Vernal et al., 2001). The technique uses a logarithmic transformation of the relative 

abundances (per mill) of all taxa in order to increase the importance of the rare species, which 

are expected to have more specific ecological requirements. Here after follows a search for 

the best (and closest) 5 analogues amongst the modern spectra on the basis of an even 

weighting of the taxa by applying the “R” software package (“R” version 2.7.0, R 
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Development Core Team, 2008). In the present study, we used the modern database 

containing 1189 surface sediment samples from the Arctic, North Atlantic and North Pacific 

basins (de Vernal et al., 2008; Radi and de Vernal, 2008; Penaud et al., 2011, and references 

therein).The hydrological parameters were estimated by calculating an average of the 5 

closest analogues (see Appendix 4 - for analogue locations), which are inversely weighted by 

their respective distance (Radi and de Vernal, 2008; de Vernal et al., 2001, 2005). The 

technique includes a threshold of a certain distance between the fossil assemblage and a 

modern analogue, above which the analogue will be rejected. The resulting confidence 

intervals are calculated from the variances in the closest analogues. Sea ice cover is expressed 

in terms of months per year with sea ice concentration greater than 50%, a parameter which 

correlates with the mean annual sea ice concentration but is slightly more sensitive to small 

ice cover values (de Vernal et al., 2005) 

One way to  test the approach’s degree of accuracy is by comparing modern values (World 

Ocean Database, 2009, Boyer et al. 2009) with the estimated values reconstructed by MAT 

within the core-top sample, keeping in mind that the geographical domain of the analogue 

data set may introduce a bias in the reconstructions (e.g. oceanic site included in fjord areas). 

3.4.5 Sample Preparation for the Investigations of Planktic Foraminiferal Assemblages and 

Large Lithic Grains (or IRD)  

All samples of cores R248MC010, R406MC032 and HH11-134-BC were wet sieved through 

a 63 µm mesh for combined investigations of large lithic grains and foraminiferal 

assemblages (as well as picking of 14C dates). Foraminiferal and lithic grain identification and 

counting were done through a light microscope, applying representative splits when 

necessary. 

Investigations on planktonic foraminiferal assemblages were conducted on multi-cores 

R248MC010 and HH11-134-BC. Species counting was performed on the >100 µm fraction 

(according to Husum and Hald (2012)) by Linda Rossignol – EPOC - (R248MC010) and 

Jacques Giraudeau – EPOC - (HH11-134-BC) in order to include small sized species which 

are frequent in assemblages of the northern North Atlantic. A total of nine planktonic 

foraminiferal species were recognized and counted (Appendix 3). In addition, counts of bulk 

benthic foraminiferal shells were done. A taxonomical grouping of sub-polar foraminifera, 

expressed as the sum of Globigerinata species and Turborotalia quinqueloba, was applied to 

the original species counts.   
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Investigations of large lithic grains have been conducted on cores R248MC010, R406MC032 

and HH11-134-BC on the size fraction >150 µm and >500 µm. Descriptive criteria and 

identification were taken from and follow Wright (1974), Bischof (1994) and Bond et al. 

(2001). Ice Rafted Detritus (IRD) is sediment that was entrained in floating ice, either 

icebergs or sea ice, and hat settled to the seafloor when the enclosing ice melted (Hemming, 

2004). In the open ocean it is necessary to use a coarse size fraction that has , almost by 

certainty, not been transported by means other than ice rafting. Here, the size fraction >63 µm 

are most likely derived by ice rafting and grains >150 µm almost definetely are, if sediment 

redistribution has not effected the site (Hemming, 2004). Hence when applying IRD in the 

following chapters we chose to apply the >150 µm size fraction. In addition the size fraction 

>500 µm will be adapted as a relative iceberg indicator. 

3.4.6 XRF Core Scanner Preparation and Measurements   

The computer controlled Avaatech X-ray fluorescence (XRF) core scanner is used for 

scanning and analyzing the chemical composition of sediments directly at the surface of a 

slab, collected from the sediment core split. XRF core scanners provide a qualitative, non 

destructive and rapid assessment of major to minor elements from Aluminum (Al, atomic 

number 13) through to Uranium (U, atomic number 92) (Richter et al., 2006). 

 The slab surface was covered with a 4 mm thin foil to avoid contamination of the XRF 

measurement unit and to make sure that the sediment did not dry out. The basic principal is 

that an X-ray source ionizes the elements in the sediment, which in turn emit an element 

specific radiation registered by the detector. The XRF radiation passes through three foils 

between the sediment and the detector: the first covers the sediment surface, the second and 

the third foil cover the He-flush prism (Tjallingii et al., 2007). To optimize the quality of the 

XRF measurements, one has to make sure that the sediment surface has first been smoothed 

and that neither air bubbles nor wrinkles exist under or in the foil. The XRF scanner 

measurements were carried out with a setting of 10 kV to obtain the element intensities from 

Al to Fe (on R248MC010 and HH11-134-BC). 

  

Tjallingii et al. (2007) found that the Al and Si counts strongly decrease when the water 

content of the sediment or between the foil and the sediment surface is elevated. Hence, the 

XRF core-scanner measured changes in concentration of lighter elements need special 

attention, i.e. should be compared with Cl profiles, which fluctuate according to seawater 

content (Tjallingii et al., 2007). In general, elemental records obtained from semi-quantitative 
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(core scanner) or quantitative XRF measurements should not be interpreted on their own, as 

elements often originate from different sources: Fe can be lithogenic but can also be produced 

within the sediment; Sr can be related to in-situ production of biogenic carbonates but may 

also originate from detrital carbonate sediments of the Barents Sea (Jochen Knies, personal 

comment). 
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Chapter 4 : A Late Holocene View on Surface Water 
changes in the Eastern Nordic Seas  

 4.1 Chapter Overview 

Previous water column and surface sediment investigations of extant and fossil remains 

(coccoliths) of coccolithophorids and dinocysts suggested that these species groups could be 

used as qualitative and quantitative proxies of both water mass distribution, sea-surface 

parameters (temperature, salinity and sea ice) and NAC flow strength in the northern North 

Atlantic (Samtleben and Schröder, 1992; Samtleben et al., 1995; Matthiessen, 1995; Baumann 

et al., 2000; Schröder-Ritzrau et al., 2001; de Vernal et al., 2001, 2005; Giraudeau et al., 

2010; Zonneveld et al., 2013). The present chapter lies on these exploratory works in applying 

selected coccolith and dinocyst proxies on a set of marine sedimentary cores distributed along 

the continental margins off western Norway, western Barents Sea and western Spitsbergen. 

Our aim is to investigate late Holocene changes in the AW flow and associated surface 

hydrological frontal variations along the main axis of heat and salt transfer to the Arctic 

Ocean, which is carried by the Norwegian Atlantic Current (NwAC) and its northernmost 

extension the West Spitsbergen Current (WSC). Given the major influence of NAO related 

atmospheric processes on the modern NwAC dynamics and climate of the Nordic Seas region, 

we will thoroughly discuss our proxy results in view of available NAO paleoreconstructions 

over the last 3000 years, as well as nearby terrestrial and marine records.  
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4.2 Introduction  

The Late Holocene was governed by a cooling trend known as the Neoglaciation (Porter and 

Denton, 1967). Compared with the preceding Early to Mid-HTM, the Neoglaciation has been 

widely recorded in both terrestrial and marine archives in the North Atlantic Region (Jennings 

et al., 2002; Seidenkrantz et al., 2008; Kaufmann et al., 2009, and references therein; 

Andresen et al., 2011; Müller et al., 2012) as a time of expansion of Scandinavian glaciers 

(Nesje et al., 1991; Nesje et al., 2001), increased sea-ice cover and colder surface waters in 

the Barents Sea and part of Fram Strait (Duplessy et al., 2001; Risebrobakken et al., 2010; 

Kinnard et al., 2011; Müller et al., 2012), colder surface and subsurface waters off western 

Norway (Calvo et al., 2002; Moros et al., 2004; Hald et al., 2007; Sejrup et al., 2011) and 

overall colder conditions over Northern Europe (Bjune et al., 2009). This cooling trend was 

punctuated by several warm and cold spells such as the Roman Warm Period and Medieval 

Climate Anomaly (RWP, MCA), and the Little Ice Age (LIA). Over the last century, the LIA 

was reversed by an overall increase in temperature, as seen in, terrestrial high resolution 

proxy records of the Arctic region (Overpeck et al., 1997; Kaufman et al., 2009) and proxy 

records from marine sediment cores of the northern North Atlantic (Spielhagen et al., 2011; 

Hald et al., 2011; Wilson et al., 2011). Marine proxy-based reconstructions suggest that this 

recent temperature increase in the subsurface layer west of Spitsbergen (Spielhagen et al., 

2011) and in shallow settings off northwest Norway (Hald et al., 2011) were unprecedented 

over the past two millennia. Both studies implied that this warming was probably caused by 

enhanced advection of AW to the Arctic Ocean during modern times, although none were 

able to strictly infer the dynamical history of AW, i.e. the history of the strength of the 

NwAC. 

The hypothesis of an increased AW inflow during the modern period was further supported 

by Wanamaker et al. (2012) based on living and fossil molluscan remains north of Iceland; 

these authors additionally related known pre-Anthropocene warm (MCA) and cold (LIA) 

climatic spells of the last ~1500 years to modulations of the surface Atlantic-derived water 

dynamics within the North Atlantic. This modulation was further evidenced off Florida, at the 

inception of the Gulf Stream, by Lund et al. (2006) who estimated a 10 percent decrease in 

the flow of this current at the transition from the MCA to the LIA. Similarly, in the close 

Chesapeake Bay, such a modulation was also evidenced by Cronin et al. (2005) who linked 

this to NAO forcing of sea-surface temperature in the western North Atlantic. 
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The processes controlling variations in the meridional flow of the NAC to the Nordic Seas 

and ultimately to the Arctic Ocean are either associated with anomalies in the location and 

strength of the westerlies, and/or changes in the thermohaline circulation (Müller et al., 2012; 

Chapter 1). At present the most prominent pattern of atmospheric variability in the North 

Atlantic Region is known as the NAO, itself depending on the Northern Hemisphere annular 

mode, the Arctic Oscillation (e.g. Marshall et al., 2001). The NAO is defined as the 

wintertime difference in atmospheric pressure (sea level) between the Icelandic low and the 

Azores high, controlling the strength and direction of westerly winds, storm tracks across the 

North Atlantic, temperature and precipitation over western Europe, and the strength of the 

poleward NAC and equatorward EGC (Blindheim et al., 2000; Hurrell et al., 2003). A low 

NAO index (reduced westerly flow across the Atlantic) induces a reduced flow of the NAC, 

less precipitation in Northern Europe and a more southern direction of the storm tracks 

(Hurrell et al., 2003). Whereas a high index favors a strengthened NAC flow, stronger 

precipitation and an eastward shift of the Arctic Front (AF) which separates AW from ArW, 

toward the slope off Norway (Blindheim et al., 2000). Furthermore modern observations 

indicate a significant correlation between the NAO indexes and the Barents Sea ice extent, 

with less sea ice during the positive NAO (warm) phases and conversely more ice during 

negative NAO (cold) phases (Vinje, 2001; Sorteberg and Kvingedal, 2006), possibly related 

to variations in southwesterlies, air masses and Atlantic inflow (Blindheim et al., 2000). 

Paleorecords from Arctic Canada and Iceland suggest that a series of explosive volcanism 

centered at the MCA/LIA transition might have triggered an extensive sea ice expansion 

during the LIA (Miller et al., 2012). A combined switch in NAO patterns from a long-term 

positive phase during the MCA to negative NAO conditions during the LIA (Trouet et al., 

2009; Dylmer et al., 2013) possibly further enhanced the severe increase in sea-ice extent, as 

decadal and long-term variations in large scale ice concentrations have shown to be 

significantly correlated with long-term NAO variations (Visbeck et al., 2003). 

However, although the importance of the NAO on the modern hydrography and climate of the 

Nordic Seas is now well established, assessing its significance on paleoceanographical 

changes of this ocean realm has long been hampered by the lack of instrumental records prior 

to the 19th century, and by proxy- and model-based reconstructions reaching back only up to 

one millennia (Lutherbacher et al., 2002; Trouet et al., 2009). A high resolution reconstruction 

of NAO variability from a lake record in Southwestern Greenland (Olsen et al., 2012), 

recently extended the NAO record back to 5200 years Before Present (BP), offering a way to 
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investigate links between atmospheric processes and ocean circulation changes over the mid 

to late Holocene in the Northern North Atlantic. 

The NAC impact on the hydrological and climatic changes in the Nordic Seas and the Arctic 

Ocean is tremendous, hence motivating investigations aiming at a better understanding of 

inflow variations, forcing mechanisms and their consequences on the regional and global 

climate system.  

In the following, we discuss late Holocene changes in dinocyst and coccolith assemblages 

from four sediment cores distributed along the eastern Nordic Seas in terms of qualitative and 

quantitative (dinocyst-based reconstructions) changes in the surface hydrography of the 

northern North Atlantic. Details on the core locations, chronologies and species groupings are 

given in Chapter 3, whereas the species ecology is given in Chapter 2. 

4.3 R248MC010 (West of Lofoten Island) 

4.3.1  Coccolith Record 

The overall preservation of coccolith remains was found to be good within R248MC010, 

hereby confirming the overall relatively good preservation of calcareous microfossils in recent 

sediments of the eastern Nordic Seas (Hebbeln et al., 1998; Matthiessen et al., 2001).  

Bulk coccolith concentrations throughout the investigated time interval range from ~9 to 32 x 

108 sp/g. dry sed., a range which falls within typical values of bulk coccolith concentrations in 

surface sediments of the eastern Nordic Seas below the NwAC and WSC (Baumann et al., 

2000). The bulk coccolith concentration record is characterized by overall increasing values 

towards the core top, punctuated by several lows and highs, with the latter located at 424, 292, 

227, 162, 90, 48, 13 and -41 cal. years BP (Fig. 4.1). Relative changes in the amount and 

temperature of Atlantic-derived surface waters, which sustain most of the calcareous plankton 

production in the Nordic seas (Schröder-Ritzrau et al., 2001, and references therein), explain 

to a high extent these observed changes in bulk coccolith accumulation (Andruleit and 

Baumann, 1998).  

Core R248MC010 is only expected to be influenced by terrigeneous inputs from the nearby 

continental shelf and/or rivers, as sea ice has not been present at the core site during the last 

centuries including the coldest period of the LIA (Vinje et al., 2001; Divine and Dick, 2006). 

Dilution of the biogenic component of R248MC010 sediments by terrigenous material carried 

by the NCC might therefore bias the significance of bulk coccolith concentration records in 

terms of paleo-productivity patterns.  
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Figure 4.1 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and relative abundances (%) 
of major (mid) and minor (bottom) coccolith species within R248MC010. 
 

The coccolith species diversity in core R248MC010 is typically low as expected for this 

arctic/subarctic setting (e.g. Baumann et al., 2000; Matthiessen et al., 2001) and shows a 

dominance of C. pelagicus (19-51%) and E. huxleyi (44-75%), with the latter species 

contributing on average with more than 50% of the total assemblages (Fig. 4.1). 

The core show an overall increased contribution of E. huxleyi with relatively high abundances 

toward the beginning and the end of the record and marked low values between ~220 and 190 

cal. years BP. C. pelagicus displays opposite patterns of relative abundances in R248MC010 

as expected given its overall shared dominance with E. huxleyi. The resultant E/C ratio shows 

values ranging from ~0.5 to 2.7, the ratios decreasing from the base of the record until ~220 - 

190 cal. years BP (minimum values), followed by an overall increase toward the Present (Fig. 

4.2).  
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Figure 4.2 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. pelagicus (C). The 
bar charts below each E/C plot highlight the dominating surface water masses of R248MC010 according to the 
“1” threshold: Blue = ArW (E/C<1); Red = AW (E/C >1). Bottom: Relative abundances (black line) and 
absolute concentrations (grey line) of the AW inflow species G. muellerae. The light red shaded areas indicate 
the marked inflow increases inferred from absolute concentrations of G. muellerae.  

 

The species G. muellerae (1-8%) and C. leptoporus (0-4.5%) account for an average of ~3.5% 

and 1.5% respectively of the total assemblage, the latter will not be discussed further for this 

core. The relative abundances of G. muellerae increase up to ca. 250 cal. years BP and show a 

succession of fluctuating abundances with higher values roughly centered at ~370-310, 270-

210, 160-130,  60- -35 and -50 cal. years BP to the top (Fig. 4.1). The trends in absolute and 

relative abundances of this drifted species are nearly identical in this core (Fig. 4.2). Short 

and/or long term changes in sedimentation of terrigenous material, which most probably 

affect patterns of microfossil concentration records, including coccoliths, had therefore no 

obvious influence on G. muellerae absolute abundance trends along the studied transect. 
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Hence G. muellerae absolute concentration records can be confidently considered as a proxy 

for relative changes in the NwAC strength within this record (Fig. 4.2).  

4.3.2  Dinocyst Record 

The preservation of dinocysts was generally found to be good within R248MC010. This is in 

accordance with the general high resistance of this species group to degradation processes in 

the water column and the sediment when compared to other microfossils (Zonneveld et al., 

1997). The bulk dinocyst concentrations (sp×10^3/g. dry sed.) fluctuate within the range of 9 

to 56 ×10^3 sp/g. dry sed (Fig. 4.3), which is in the range of earlier studies of dinocyst 

concentrations within surface sediments of the eastern Nordic Seas (Samtleben et al., 1995a; 

Matthiessen, 1995). The dinocyst concentrations are characterized by an overall decreasing 

trend toward the top of the record, punctuated by increasing values from the base of the core 

until ~340 cal. years BP, between 280 and 266 cal. years BP and during the last decades (Fig. 

4.3). 

The dinocyst diversity is rather high in core R248MC010 and includes a total of up to 25 

species (incl. 1 acritarch). The three species O. centrocarpum (~43-70%, OCEN), P. daleii 

(~10-35%, PDAL) and N. labyrinthus (~5-19%, NLAB) dominate the dinocyst assemblages 

over the last ~450 years, followed by the two subordinate species Brigantedinium spp. (0-

12%, BSPP) and S. ramosus (0-6%, SRAM) (mean relative abundances of 3.1% and 2.4%, 

respectively) (Fig. 4.3). All other species contribute with less than 2% of the total  

assemblages. The reworked dinocysts are expected to origin from river runoff and/or 

sediment reworking from shallower settings and show a mean absolute concentration of 0.094 

sp/g. dry sed.(Fig. 4.3). The average composition of the dinocyst assemblages in core 

R248MC010 is similar to the ones found in surface sediments along the shelf and slope off 

northern Norway and of the southwestern Barents Sea (Solignac et al., 2009). 

The core show an overall increasing abundance toward the Present of the species OCEN, 

NLAB, SRAM, S. elongatus (SELO) and reworked dinocysts, at the expense of PDAL and 

BSPP (Fig. 4.3). The OCEN record initiate at the base with an increase until 184 cal. years 

BP, followed by lower abundances until -42 cal. years BP and a final step of increased 

abundances during the last decades. PDAL and NLAB show an almost opposite trend with the 

exception of decreasing abundances initiating at 46 (PDAL) and -28 (NLAB) cal. years BP. 

BSPP shows two peak relative abundances at 343 and 411 cal. years BP. Finally SRAM 

shows a trend of increasing abundances from 250 cal.years BP to the Present. Minimum  
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Figure 4.3 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (dinocysts * 10^3/g dry sed.) 
(top), relative abundances (%) of major and minor dinocysts (mid) and dinocyst concentration records (dinocysts 
* 10^3/g dry sed.) (bottom) of R248MC010.  (See chapter II for species names - abrevations). 
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contributions of SRAM to the dinocyst assemblages encompass the time intervals 350-250, 

185-100 and 10-(-)20 cal. years BP (Fig. 4.3). 

The resulting ratios OCEN/NLAB (Matthiessen et al., 2001), OCEN/I. minutum (IMIN) 

(Grøsfeld et al., 2009; Solignac et al., 2009) as well as the ratio Autotroph/Heterotroph (A/H) 

dinocysts, show mean values of 5.8, 116.5 and 31, respectively (Fig. 4.4). OCEN/NLAB and 

OCEN/IMIN show an overall decrease toward the Present which initiated after a short 

increase until ~330 cal. years BP. This overall continuous decrease in these dinocyst ratio 

values is interrupted by a strong low at roughly ~250-225 cal. years BP. The A/H ratio is 

governed by an overall increasing trend toward Present with maximum values located in the 

intervals ~330-270 and 100- -20 cal. years BP (Fig. 4.4). 

 

 
Figure 4.4 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. Mid: OCEN/NLAB 
ratio between the AW thriving O. centrocarpum (OCEN) and the sea ice related (ArW) I. minutum (IMIN). 
Bottom : OCEN/NLAB ratio of the dominant dinocyst species OCEN and N. labyrinthus (NLAB). The bar 
charts below the OCEN/NLAB plot highlight the dominating surface water masses of R248MC010 according to 
the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW (OCEN/NLAB >4).  
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4.3.3  Quantitative Reconstructions of Sea-Surface Conditions 

The reconstruction of sea-surface conditions (MAT) resulted in mean winter and summer 

temperatures of 1.1 °C and 12.3 °C, respectively, for the last ~450 years. The winter and 

summer temperatures (3.5-12.3 °C) and salinities (33.4-32.3) reconstructed from the 

uppermost dinocyst assemblages of core R248MC010 lay within the range of modern 

temperature (5.73-10.8 °C) and salinity (34.3-34.6) values from the World Ocean Database 

(Chapter 3), salinities being though generally under-estimated by MAT (Fig. 4.5). 

 
Figure 4.5 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) from dinocyst 
assemblages of core R248MC010, based on the modern analogue technique (MAT). The surface sediment 
database (n=1189) of the North Atlantic and North-Eastern Pacific was applied for MAT. Minimum and 
maximum errors on the estimated parameter are shown by the dashed black lines flollowing the curves. The 
modern average values are represented by the horisontal dashed lines. 
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MAT reconstructions display recurring episodes of increased winter temperatures (TWIN, -

0.4-4.5 °C) and salinities (summer salinities, SSUM, 30.6-34; winter salinities, SWIN, 31.8-

34.4), with an opposing decrease in summer temperatures (TSUM, 8-13.7) (Fig. 4.5). High 

stable TWIN, SSUM and SWIN, and low TSUM define two intervals centered between 360 

and 250 cal. years BP and within the last 30 years. A relatively unstable period is observed in 

the interval from ~250-150 cal. years BP in all reconstructions. Minimum SSUM and SWIN 

and TWIN (but higher TSUM) occur continuously from ca. 150 to -25 cal. years BP.  

 

The MAT sea-ice reconstructions are indicative of sea-ice at the core site during 0.4 to 2.2 

months/year over the last 450 years (Fig. 4.5). According to the reconstructions, maximum 

duration of sea-ice characterize the last two centuries including the industrial period and the 

present global warming period. These results are at odd with historical records of maximum 

distribution of the Marginal Ice Zone (MIZ) during the last centuries (Vinje et al., 2001; 

Divine and Dick, 2006) which do not suggest the presence of sea-ice in the vicinity of site 

R248MC010 during the last ~450 years. The MAT sea-ice reconstructions are also at odd 

with the location of the studied core below the northward flow of NwAC at a site which is 

known to be the strongest along the Norwegian coast (Jakobsen et al., 2003) and therefore 

makes sea ice formation and southward flow of sea ice unlikely.  

4.3.4  Inferring the Paleoceanographic changes in Atlantic Water Flow and the Distribution 

of Surface Waters during the Last ~500 years (R248MC010) 

The different proxy data are indicative of paleoceanographic changes in the form of surface 

temperatures and salinities, distribution of surface water masses, paleoproductivity and 

strength of the AW flow (Fig. 4.6). The proxies are plotted together with reconstructed 

bottom water temperatures from the nearby Malangen fjord (Hald et al., 2011) and a 

combination of instrumental (Dec-Mar; Jones et al., 1997; Osborn, 2006) and reconstructed 

NAO index (Lutherbacher et al., 2002; 11-year running mean on winter months DJFM) (Fig. 

4.6f). Three time zones (and two subzones) have been identified through comparison of all 

proxy data. ZONE III represents the interval from the core base to 240 cal. years BP (1490-

1710 AD) a period which encompasses the main part of the Little Ice Age (LIA). ZONE IV 

covers the interval 240-60 cal. years BP (1710-1890 AD), i.e. the LIA/Modern transition, and 

can be subdivided into two subzones IV-a (1710-1800 AD) and IV-b (1800-1890 AD). ZONE 

V is roughly equal to the last century from 60 to -59 cal. years BP (1890-2009 AD, Modern 

period) (Fig. 4.6).  
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In general the proxies shows higher amplitudes during the last two centuries compared to the 

previous time period. This change in amplitude is attributed to the overall decreasing time 

resolution down-core and hence increased smoothing of the signals.  

ZONE III: 460-240 cal. years BP (1490-1710 AD, Little Ice Age, LIA) 

The zone is characterized by a slightly increasing although relatively weak flow of AW (G. 

muellerae no.*10^8/g, compared to the present level). A minor maximum in flow strength 

from 370 to 310 cal. years BP occurs synchronously with minimum abundances of subpolar 

foraminifera (Fig. 4.6b+c). Previous observations identified a clear correspondence between 

G. muellerae absolute abundance datasets and foraminiferal records in Fram Strait sediments 

(Dylmer et al., 2013). There, subpolar foraminifera are assumed to represent subsurface 

Atlantic-derived waters (Carsten et al., 1997), hereby confirming the reliability of this 

coccolith proxy as an indicator of Atlantic water flow strength. Hence assuming that this 

coccolith proxy is valid west of Norway, the slight inflow of AW during most part of the 15th 

century seems to be restricted to the upper surface waters, and is supported by high stable 

surface water salinities (SWIN) and temperatures (TWIN), colder conditions prevailing in the 

subsurface water masses (Fig. 4.6b+j+k).  

The relatively stable relationship throughout this zone, of the two major coccolith proxies 

(E.huxleyi and C. pelagicus, E/C) and the strongly decreasing abundance with age of NLAB 

(together with a slight increase in OCEN), results in a E/C ratio fluctuating around 1 and a 

strongly increasing OCEN/NLAB ratio toward the top of Zone III  (Fig. 4.6g+h). According 

to earlier studies on the biogeography of the major coccolith and dinocyst species within 

surface sediments of the Nordic Seas (Samtleben et al., 1995; Matthiessen et al., 2001) (see 

Chapter 2), the abundance ratios E/C (Baumann et al., 2000) and OCEN/NLAB (Matthiessen, 

1995; Matthiessen et al., 2001) have been proposed as proxies for the location of the Arctic 

Front (AF), which separates the seasonally ice-covered waters of the Polar and Arctic 

domains (E/C<1; OCEN/NLAB<4) from warmer and saltier Atlantic-derived waters (E/C>1; 

OCEN//NLAB>4).  

Since an overview discussion of the two ratios and of their interpretations as 

paleoceanographic tracers of the surface expression of ArW and AW is included in a later part 

of this chapter, the presented ratio interpretations will only be discussed in the light of the 

relative changes within the zones and subzones currently discussed, and of their relation to the 

other proxies. Modern observations on the influence of NAO upon the surface hydrology of 

the eastern Nordic Seas shed light on the understanding of the two ratios. Instrumental records 
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are indicative of a correlation between changes in the NAO index and surface temperature 

variations (Blindheim et al., 2000; Miettinen et al., 2011) in the Norwegian Sea. A low NAO 

index results in a more zonal path of low pressure systems across the Atlantic (a southward 

storm track), in a generally reduced and wider flow of the NwAC (wider NCC) and in 

reduced precipitation over Northern Europe (Hurrell et al., 2003). Whereas a high index  

favors stronger precipitation over Northern Europe, a strengthened NwAC flow and an 

eastward shift of the Arctic Front toward the slope off Norway (narrower NCC) (Blindheim et 

al., 2000; Pinto and Raible, 2012). According to these NAO-driven changes in hydrology over 

the Norwegian continental margin, and comparing our micropaleontological ratios with the 

NAO index and the temperature reconstruction from the Malangen fjord (Fig. 4.6f-j) we 

propose  that our proxies are related to different controlling factors within sediment core 

R248MC010. Maximum in OCEN/NLAB ratio occurs during sustained low NAO phases, 

conditions which induce a westward shift of the AF as expressed by the decreased abundance 

of the ArW preferring NLAB (Chapter 2). The E/C ratios covary with the bottom water 

temperatures in the Malangen fjord suggesting a common controlling process e.g. the 

distribution of the NCC and of the NwAC over the Norwegian margin, and the temperature of 

the NwAC. C. pelagicus has earlier been suggested as a reliable proxy of mesostrophic to 

eutrophic waters in phytoplankton-rich frontal systems of the Nordic Seas (Samtleben et al., 

1995a; Andruleit, 1997), which might indicate that the contribution of C. pelagicus in this 

record is related to the frontal zone between the two site specific currents (NwAC and the 

NCC; Loeng and Drinkwater, 2007). A narrowing of the NCC during positive NAO 

conditions would induce a higher contribution of the AW dwelling E. huxleyi (Baumann et 

al., 2000; Dylmer et al., 2013, this study), as well as ventilation of the bottom water in the 

Malangen fjord by warmer NwAC water. Hence the E/C ratio at site R248MC010 is believed 

to reflect the varying zonal distribution of NCC waters over the northern Norwegian shelf and 

slope.   

The slight decreasing trend in the Ti/Ca ratio from the base to the top of Zone III suggests 

decreased terrigenous inputs from from mainland Norway (Ti) and increased carbonate 

(biogenic) production within the surface and subsurface water masses (Fig. 4.6a), an 

interpretation which is backed-up by slightly increasing bulk coccolith concentrations. The 

latter is expected to derive from the increasing influence of Atlantic water as relative changes 

in the amount and temperature of Atlantic-derived surface waters, as seen from the generally 

good comparison downcore with the NAO index and the AW flow, are supposed to explain to  
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Figure 4.6 : Summary plot of surface and subsurface circulation changes west of Lofoten Island (R248MC010) 
over the past ~500 years. a) : Ti/Ca ratio (XRF) as an index of terrigenous vs. marine (carbonate) biogenic 
sedimentation, black line represents a 7-running mean. b) : Relative abundances of subpolar foraminifera 
(fraction > 100 µm) as an index of subsurface AW masses. c) : Absolute concentrations of the G. muellerae 
coccolith species as proxy of the AW flow strength, violet line represents a 5-running mean. d) : relative 
abundances of SRAM as a proxy for relative variations in primary productivity and width of the NCC. e) : Bulk 
coccolith concentrations (no.*10^8/g dry sed.) as an index of carbonate productivity. f) : Combined instrumental 
(Jones et al., 1997; Osborn, 2006) and reconstructed (Lutherbacher et al., 2002) NAO index; Red and blue areas 
represent long term positive and negative NAO conditions, respectively. g) : OCEN/NLAB ratio as an index of 
the relative position of the AF (AW/ArW); increased and decreased ratios indicates westward and eastward 
migrations of the AF, respectively. h) : E/C ratio as a proxy for the zonal expression of the NCC in the 
Norwegian Sea, violet line represents a 5-running mean. i) : Reconstructed bottom temperatures (November) 
from the Malangen fjord, Northern Norway (Hald et al., 2011) , red line represents a 5-running mean. j + k) : 
Dinocyst-based MAT reconstructed winter surface water temperatures and salinities, with the grey shaded area 
representing the error range of the reconstructions. The summary inferred zones and subzones are highlighted in 
the top, with boundaries indicated by solid (zones) and dashed (subzones) vertical black lines. The vertical red 
dashed line represents the younger boundary of a warm pulse identified by Dylmer et al. (2013) in sediments of 
Fram Strait. Shaded light red and light blue represents inferred relative variations between increased and 
decreased AW flow periods, respectively. 
 

a high extent the observed changes in bulk coccolith accumulation (Andruleit and Baumann, 

1998). Finally the abundance of SRAM, a species which favors Atlantic-like high salinity 

surface waters with spring/summer productivity and surface water stratification (Solignac et 

al., 2009; Grøsfjeld et al., 2009; Zonneveld et al., 2013), is governed by an overall decrease 

across Zone III, as a response to the assumed  presence of low saline NCC at the R248MC010 

core site (Fig. 4.6d).  

ZONE III: Weak but slightly increasing AW flow toward the top of the zone, AW mainly 

present at the surface, cold subsurface conditions, westward shift of the AF, strong seasonal 

presence of NCC at the surface, low primary productivity but slightly improving toward the 

top of the zone.  

ZONE IV: 240-60 cal. years BP (1710-1890 AD, LIA/M transition) 
Zone IV is governed by unstable and changing surface and subsurface conditions compared to 

the previous zone, with an overall decrease in AW flow, a cooling of the subsurface waters, 

an increased proximity to the AF and an apparent decreased influence of the NCC (Fig. 4.6). 

  

Subzone IV-a: 240- 150 cal. years BP (1710-1800 AD) 

The marked minimum values observed in the E/C (~215 cal. years BP) and OCEN/NLAB 

ratios (~230 cal. years BP), and in the Malangen fjord bottom temperatures (~230 cal. years 

BP),  indicate generally cold surface conditions (Fig. 4.6h+j) over the core site. The observed 

minima are remarkable and seem to correspond to a level of strongly increased AW flow and 

higher subsurface temperatures (subpolar foraminifera). This episode takes place during a 
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short interval of change in NAO mode toward positive values, which translates into an 

eastward migration of both the AF and the NCC and a strong AW flow (Fig. 4.6f). This 

interpretation seems to be supported by the increased abundances of the high salinity index 

species SRAM, and the reconstructed SWIN and TWIN.  

The recorded E/C ratio is at odd with its suggested relation to the NCC: here, C. pelagicus 

reaches its maximum abundances within subzone II-a (~215 cal. years BP), a period when the 

winter NAO mode implies an eastward shift of NCC waters (Fig. 4.6f+h). As earlier 

mentioned, the E/C ratio is based on summer blooming coccolithophores species (E. huxleyi 

and C. pelagicus), whereas the NAO index represents the governing wind systems from 

December until March. Hence it is likely that the E/C ratio expresses summer conditions 

marked by a westward distribution of the NCC, and the presence at the core site of the 

turbulent frontal zone separating the NwAC and the NCC. Such a summer situation would 

explain the marked contribution of SELO in this interval, a species which has earlier been 

associated to frontal systems (Fig. 4.3) (Chapter 2). This interpretation is further supported by 

a maximum in the Ti/Ca ratio, suggesting the presence (at least seasonally) of terrigenous rich 

NCC water (Fig. 4.6a).  

Subzone IV-a: Increased AW flow compared with previous period, eastward migration of the 

AF, strong seasonal shift in the AW-NCC front,  

 

Subzone IV-b: 150- 60 cal. years BP (1800-1890 AD) 

This interval marks the initiation of the modern period and the termination of the LIA. It is 

characterized by strong changes in the general circulation of the studied area, represented by a 

massive decrease in the OCEN/NLAB ratio and a strong increase in bottom water 

temperatures within the Malangen Fjord (Fig. 4.6g+i). The eastward migration of the AF 

(decreased OCEN/NLAB) agrees well with the increased NAO index and colder and fresher 

surface (TWIN and SWIN) and sub-surface temperatures (lower abundance of subpolar 

foraminifera). The associated narrowing of the NCC is confirmed by the pattern of Ti/Ca, 

SRAM, E/C and A/H proxies (Fig. 4.6a+d+h, 4.4). 

Subzone IV-b: Decreased AW flow, cooler conditions in the surface and subsurface waters, 

eastward migration of the AF and NCC. 
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Zone V: 60- (-59) cal. years BP (1890-2009 AD, ~Moden period, M) 

The Modern period, which is characterized by a sustained positive NAO mode, is 

unprecedented in terms of AW flow strength (highest), eastward shift of the NwAC and NCC, 

highest subsurface temperatures, and highest bulk productivity (Fig. 4.6).  

The above observations of the Moden period translates in to a closer location of the AF, as 

indicated by highest productivity and therefore favorable conditions for heterotroph dinocysts 

as well as lower winter surface temperature and salinity.  

ZONE V: Unprecedented increase in AW flow, high subsurface water temperatures, low 

winter surface water salinities and temperatures, eastern position of the AF, and narrower 

NCC, increased productivity. 

4.4  WOO/SC-3 (Northeast of Vøring Plateau) 

4.4.1  Coccolith Record 

The preservation of coccolith remains was found to be good to very good within gravity core 

WOO/SC-3. Bulk coccolith concentrations throughout the investigated time interval ranged 

between ~7 and ~32 x 108 sp/g. dry sed and hence within the range of typical bulk coccolith 

concentrations in the eastern Nordic Seas (Fig. 4.7) (Baumann et al., 2000). The core is 

characterized by an overall increase in the bulk coccolith concentration towards the top of the 

record, with relatively stable concentrations until ~2250 cal. years BP followed by a steady 

increase only punctuated by a marked low at ~960-910 cal. years BP. As the sedimentation is 

rather constant (Chapter 3) changes in dilution of the biogenic component of WOO/SC-3 

sediments by terrigenous material, which might bias the significance of bulk concentration 

records in terms of paleo-productivity patterns, is not expected to have had a large influence 

in this record.  

The coccolith species diversity in core WOO/SC-3 is low and shows a dominance of C. 

pelagicus (20-38%) and E. huxleyi (48-72%) (Fig. 4.7). The latter species shows an overall 

decreasing abundance from the base to the top of the core, though minimum values are 

centered at 1500 cal. years BP. On the contrary C. pelagicus shows an overall increase with 

only minor variability. The resultant E/C ratio show values within the range of ~1 to 2.4, 

characterized by a continuous decrease until ~1500 cal. years BP followed by a relatively 

steady level towards the top of the record (Fig. 4.8).  
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Figure 4.7 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and relative abundances (%) 
of major (mid) and minor (bottom) coccolith species within WOO/SC-3. 
 

The subordinate species G. muellerae (2-11%) and C. leptoporus (1-14%) together 

account for an average of 10.8% of the total assemblage throughout the studied core. A 

fifth species, Syracosphaera sp., only contributes with an average of 0.2%, and will not be 

discussed further. Contrary to E. huxleyi and C. pelagicus, the relative abundance changes 

of the drifted species G. muellerae and C. leptoporus are characterized by similar general 

trends (Fig. 4.7).  

WOO/SC-3 show an overall increase of G. muellerae abundances during the last 3000 years, 

highest values defining an interval from ca. ~1900 to 640 cal. years BP (Fig. 4.7). Trends in 

absolute concentrations and relative abundances of both drifted species are nearly identical 

(Fig. 4.8). Hence, according to the suggestions made for core R248MC010, and given the 

allochtonous origin of G. muellerae and C. leptoporus as well as the transport mechanisms 

explaining their presence in Holocene sediments of the eastern Nordic Seas, absolute 
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concentration records of both species can be considered as significant proxies for relative 

changes in the NwAC strength within this record.  

 

 
Figure 4.8 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. pelagicus (C). The 
bar charts below each E/C plot highlight the dominating surface water masses of WOO/SC-3 according to the 
“1” threshold: Blue = ArW (E/C<1); Red = AW (E/C >1). Bottom: Relative abundances (black line) and 
absolute concentrations (grey line) of the AW inflow species G. muellerae. The light red shaded areas indicate 
the marked inflow increases inferred from absolute concentrations of G. muellerae. 
 
C. leptoporus shows a peak in relative abundance within the studied core centered at ~2000-

1400 cal. years BP (2-10%) (Fig. 4.7). This abundance pattern, different from the other drifted 

species G. muellerae, is enigmatic given the common processes (i.e. poleward transport to the 

Nordic Seas) affecting both species. One explanation might lay in the less restricted 

ecological niche of C. leptoporus which presently colonizes a wider geographic domain in the 

North Atlantic from warm to cool temperate areas (i.e. Ziveri et al., 2001) than G. muellerae 
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(Giraudeau et al., 2010), although it has been associated with colder conditions <20 °C and 

frontal systems (Chapter 2). 

 

4.4.2  Dinocyst Record 

The preservation of dinocyst remains within WOO/SC-3 was found to be generally good. The 

bulk dinocyst concentrations range from 4 to 34 ×10^3 sp/g. dry sed. (Fig. 4.9), within the 

range of earlier surface sediment studies of dinocyst concentrations in the Nordic Seas 

(Samtleben et al., 1995a; Matthiessen, 1995). The bulk concentrations are governed by an 

overall increase toward the core-top punctuated by minimum values in the ~2200-1030 cal. 

years BP interval (Fig. 4.9).  

The dinocyst diversity is high with a maximum of 26 different species identified (incl. one 

acritarch). The three species OCEN (~55-85%), PDAL (~2-19%) and NLAB (~3-16%) 

dominate the assemblages with a total mean relative abundance of ~88.4 %, followed by the 

subordinate species BSPP (~1-12%), SRAM (~0-3%), SELO (~0-5%)  and B. tepikiense (~0-

5%, BTEP) (Fig. 4.9). All other species contribute less than 2% to the total assemblages. The 

reworked dinocysts show a mean absolute concentration of 0.065 sp/g. dry sed. The overall 

composition of the WOO/SC-3 dinocyst record is comparable to surface sediment 

assemblages along the shelf and slope of northern Norway and in the southwestern Barents 

Sea (Solignac et al., 2009). 

 
The record show an overall increase within the species PDAL, NLAB, SRAM, SELO and the 

reworked dinocysts, at the expense of OCEN and BSPP. OCEN shows an overall smooth 

interchanging pattern of relatively high and low abundances with maximum values in the 

intervals ~3000-2200 and ~1250-925 cal. years BP, followed by an increase from ~425 cal. 

years BP towards the top of the record (~300 cal. years BP) (Fig. 4.9). NLAB and PDAL 

show an almost opposite trend to OCEN. BSPP is characterized by relatively high abundances 

toward the beginning and the end of the record with a marked low between ~1900 and 750 

cal. years BP. The temperate to sub-polar species BTEP, which is presently observed in 

regions covered by sea-ice for less than 4 months/year and has been related to frontal systems 

(Chapter 2), shows highest relative abundances at 2100-1800 cal. years BP within core 

WOO/SC-3.  
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Figure 4.9 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (dinocysts * 10^3/g dry sed.) 
(top), relative abundances (%) of major and minor dinocysts (mid) and dinocyst concentration records (dinocysts 
* 10^3/g dry sed.) (bottom) of WOO/SC-3.  (See chapter 2 for species names - abrevations). 
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Figure 4.10 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. Mid: 
OCEN/NLAB ratio between the AW thriving O. centrocarpum (OCEN) and the sea ice related (ArW) I. 
minutum (IMIN). Bottom : OCEN/NLAB ratio of the dominant dinocyst species OCEN and N. labyrinthus 
(NLAB). The bar charts below the OCEN/NLAB plot highlight the dominating surface water masses of 
WOO/SC-3 according to the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW (OCEN/NLAB >4). 
 
The resulting three ratios OCEN/NLAB, OCEN/IMIN and A/H, show average values of 8.9, 

141.6 and 20.3, respectively, with the former governed by an overall decreasing trend and the 

latter two governed by increasing values toward the top of the record (Fig. 4.10). 

OCEN/NLAB shows the highest values in the earliest part of the record until 2200 cal. years 

BP, followed by a generally steady state throughout the rest of the core, except for a short 

interval of higher values from 1300 to 850 cal. years BP. The final increased ratios of 

OCEN/NLAB occurs almost synchronously with a maximum value in the ratio of 

OCEN/IMIN. The A/H ratio is marked by higher values from ~1900 to 750 cal. years BP 

punctuated by two maximum values at ~1650 and 1090 cal. years BP (Fig. 4.10). 

4.4.3  Quantitative Reconstructions of Sea-Surface Conditions 

The reconstructed sea-surface conditions fluctuates  around mean TWIN and TSUM of 4 °C 

and 12 °C, and mean SWIN and SSUM of 34 and 33.5. These values fall within the range of 
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the measured temperatures (6-11 °C) and salinities (34.61-34.96) at the core location (World 

Ocean Database) (Fig. 4.11).  

 

 
Figure 4.11 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) from dinocyst 
assemblages of core WOO/SC-3, based on MAT. The surface sediment database (n=1189) of the North Atlantic 
and North-Eastern Pacific was applied for MAT. Minimum and maximum errors on the estimated parameter are 
shown by the dashed black lines following the curves. The modern average values are represented by the 
horisontal dashed lines. 
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The record display overall decreasing TWIN (0.8-6.3), SSUM (31.3-35) and SWIN (32.4-35), 

with a general increase in TSUM (7-17.6 °C). The three former records show roughly 

identical variations throughout the core length. The salinity record initiates with fairly high 

and stable values until ~2200 cal. years BP, followed by an interval of lower SSUM until 

1050 cal. years BP, and finally decreasing towards the core-top (Fig. 4.11). SSUM and SWIN 

are generally more variable during the interval ~2200 to ~1050 cal. years BP compared to 

TWIN, which only shows peak values at ~1850 cal. years BP. TSUM is strongly variable and 

trends are rather difficult to infer with the exception of a single interval of peak values 

centered at ~1900 cal. years BP. 

As in the case of the slightly northern core R248MC010, the MAT sea-ice reconstructions are 

indicative of sea ice presence at site WOO/SC-3, in line with recent late Holocene dinocyst 

reconstructions from this area (de Vernal et al., 2013). Nevertheless the reconstructed values 

are very low and fluctuate around 0.6 months/year, which is toolow a value to be reliable 

(Fig. 4.11). In addition, according to the same arguments given for R248MC010 (location 

below northward flowing NwAC, absence of sea-ice at the core location from historical 

surveys), sea ice formation and/or southward flow of sea ice to the core location was unlikely. 

Hence sea ice was probably not present at this site during the last ~300-3000 years.  

4.4.4  Inferring the Paleoceanographic changes in Atlantic Water Flow and the Distribution 

of Surface Waters during the Last ~300-3000 Cal. years BP (WOO/SC-3) 

The proxy records obtained at core WOO/SC-3 are plotted together with a reconstructed NAO 

index (Trouet et al., 2009; Olsen et al., 2012). Three zones (and three subzones) have been 

identified through comparison of all proxy data. ZONE I represents the interval from the base 

of the core (ca. 3000 cal. years BP) to 2200 cal. years BP (1050 -250 BC). ZONE II, covers 

the interval 2200-640 cal. years BP (250 BC-1310 AD) and is subdivided into three subzones 

II-a (2200-1250 cal. years BP, 250 BC-700 AD), II-b (1250-850 cal. years BP, 700-1100 AD) 

and II-c (850-640 cal. years BP, 1100-1310 AD). ZONE III encompasses the time interval 

from 640 cal. years BP to the top of WOO/SC-3 record (300 cal. years BP) (Fig. 4.12).  

The inferred paleoceanographic changes in WOO/SC-3 are partly based on the results from 

R248MC010 (located further to the north), as both sites are located west of mainland Norway,  

under the main flow of AW, and within the main area of influence of NAO-like atmospheric 

processes. Contrary to core R248MC010, we however do not expect a strong influence of 

NCC waters at the WOO/SC-3 site given its location. 
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Figure 4.12 : Summary plot of surface and subsurface circulation changes northeast of the Vøring Plateau 
(WOO/SC-3) over the past 3000 years. a) : A/H ratio as an index of trophic level . b) : Relative abundances of 
SRAM as a proxy for relative variations in primary productivity and salinity changes. c) : Bulk coccolith 
concentrations (no.*10^8/g dry sed.) as an index of carbonate productivity. d) : Absolute concentrations of G. 
muellerae as a proxy of the AW flow strength, violet line represents a 5-running mean. e) : Combined NAO 
index reconstructions based on Trouet et al. (2009) and Olsen et al. (2012); Red and blue areas represent long 
term positive and negative NAO conditions, respectively. f) : OCEN/NLAB ratio as an index of the relative 
position of the AF (AW/ArW). g) E/C ratio as a proxy for the relative position of the AF (AW/ArW). h + i): 
Dinocyst-based MAT reconstructed winter surface water temperatures and salinities, with the grey shaded area 
representing the error range of the reconstructions. The Summary inferred zones and subzones are highlighted in 
the top, with the zonations indicated by solid (zones) and dashed (subzones) vertical black lines. Shaded light red 
and light blue represents inferred relative variations between increased and decreased AW flow periods west of 
Norway, respectively. 

Zone I: ~3000-2200 cal. years BP (1050 -250 BC) 

Zone I is characterized by weak AW flow, and a westward extension of the NwAC (western 

position of the AF), both conditions being triggered by sustained negative NAO conditions 

(Fig. 4.12d-g). Here as a result of the lack of NCC influence at the location of WOO/SC-3, of 

the general correspondance between E/C and OCEN/NLAB, and of an overall agreement 

between NAO modes and changes in E/C ratio, we believe that the earlier suggested 

application of the E/C ratio as a proxy for the location of the AF is valid at this site. Surface 

waters are relatively warm and saline (high TWIN and SWIN) thoughout the Zone I interval, 

with low surface carbonate productivity (bulk coccolith concentrations) (Fig. 4.12h+i). 

Zone I: low AW flow, western location of AF, relatively low carbonate productivity. 

Zone II: 2200-640 cal. years BP (250 BC-1310 AD) 

This zone is governed by a strong overall increase in the strength of the AW flow suggesting 

improved (warmer) conditions west of Norway as a result of the change to a positive NAO 

mode (Fig. 4.12d+e). The decreasing surface TWIN and SWIN are interpreted as a direct 

response to an eastward migration of the AF as indicated by the OCEN/NLAB and E/C ratios 

and more favorable conditions for autotroph phytoplankton (increased bulk coccolith 

concentration and A/H ratio). As at site R248MC010, the change in the NAO mode agrees 

well with the general variability in the bulk coccolith concentrations and SRAM, possibly as a 

result of the increase in AW flow (Fig. 4.12b+c). 

 

Subzone II-a: 2200-1250 cal. years BP (250 BC-700 AD) 

A strongly enhanced AW flow can be inferred throughout this subzone, which together with 

an eastern migration of the AF seems to be related to the major change in the NAO index 

from a previous negative pattern to a mainly positive one (Fig. 4.12d-g). The decrease in sea 

surface temperatures and salinities are probably indicative of a subsurface flow of AW below  
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stratified waters (increased PDAL, Fig. 4.9), as a direct result of an increased influence of 

ArW in the surface (eastward migration of AF) (Fig. 4.12f-i).  

Subzone II-a: strongly increased AW flow, eastern position of AF, ArW present in the surface 

waters, increasing carbonate productivity. 

 

Subzone II-b: 1250-850 cal. years BP (700-1100 AD) 

This subzone has been identified based on an apparent decrease in AW flow, and a western 

migration of the AF as a response to a slight weakening of the NAO index (Fig. 4.12d-g). The 

warmer and more saline surface waters together with a strong decrease in the carbonate bulk 

productivity, suggests that colder conditions prevailed during this interval. 

Subzone II-b: weakened AW flow, slight western migration of AF, more AW in the surface 

and decrease in carbonate productivity. 

 

Subzone II-c: 850-640 cal. years BP (1100-1310 AD) 

This subzone represents the termination of Zone II. It is characterized by a marked increase in 

AW flow, an eastward migration of the AF and peak carbonate productivity, resulting from 

the most positive NAO conditions of the entire record (Fig. 4.12). The general 

correspondance of the reconstructed NAO index with our inflow proxy, the bulk coccolith 

record and SRAM (as also found in R248MC010) seems to confirm this governing positive 

NAO like index in most of Zone II.  

Subzone II-b: strong AW flow, eastern position of AF, ArW in the surface, highly increased 

productivity. 

 

Zone III: ~640 cal. years BP to the core-top (300 cal. years BP) 

The interpretation of the final zone is difficult as it only represents a limited amount of 

samples which, in addition, might have been mixed during the collection of the core. The 

transition into Zone III is however marked by detoriating conditions, shown by a strong 

decrease at 640 cal. years BP in AW and the initiation of a weakened NAO (Fig. 4.12).  

The poor age constraint of this core interval (see Chapter 3) limits  additional interpretation of 

the proxy records.  

Zone III: decreased AW flow, western location of AF, AW present in the surface waters, 

relatively high carbonate productivity. 
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4.5  R406MC032 (Southwestern Barents Sea) 

4.5.1  Coccolith Record  

The preservation of the coccolith remains was found to be moderate to good within 

R248MC032, with no obvious temporal pattern in dissolution changes. Bulk coccolith 

concentrations throughout the investigated time interval ranged between ~0.7 and 17 x 108 

sp/g. dry sed and hence fall well within the range of typical coccolith concentrations in the 

eastern Nordic Seas (Fig. 4.13) (Baumann et al., 2000). The bulk coccolith concentration 

record is characterized by overall, low values fluctuating around 1.5 x 108 sp/g. dry sed. from 

the base of the core (ca. 500 cal. years BP) until ca. 125 cal. years BP from when values 

continously increase up to Present. 

 

Figure 4.13 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and relative abundances 
(%) of major (mid) and minor (bottom) coccolith species within R406MC032. 
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The peculiar concentration record with sharp increase from ~168 cal. years BP until Present 

might be a result of changes in carbonate preservation (Chapter 3), variable dilution by lateral 

transport and/or sea ice inputs of terrigenous material, or a true signature of changes in 

coccolith production in the surface waters. As discussed in Chapter 3 (Material and Methods) 

the grain size analysis showed variability within the fine fractions of up to ~20%, which 

might be in part induced by reworking and/or downslope or lateral transfer of sand sized 

material from the nearby Barents shelf, as a consequence of brine water formation or storm-

events. Downslope sediment transport would be reflected in synchronous variability of 

species abundances and sediment grain size. This is however not the case. One way to 

investigate these possible  downslope and lateral transfer of shallow Barents Sea shelf 

material would be to investigate the down core concentrations of benthic foraminifera as their 

concentrations in slope sediments off the western Barents Sea is assumed to be related to 

sediment transfer from shelf sediments (e.g. Sarnthein et al., 2003). In the absence of such a 

dataset, and considering the other evidences listed above, we cannot definitively apply the 

coccolith bulk concentration record as a productivity indicator. 

 

The coccolith species diversity is low with a dominance of C. pelagicus (1-43%) and E. 

huxleyi (51-98%) (Fig. 4.13). The coccolith record shows an overall decreased contribution of 

E. huxleyi toward Present punctuated by several low and high abundance periods. Two 

intervals with low E. huxleyi abundances are apparent at 309-187 and 100-4 cal. years BP. As 

expected given its overall shared dominance with E. huxleyi, C. pelagicus displays similar 

however opposite patterns of relative abundances in R406MC032 (Fig. 4.13). The resultant 

E/C ratio shows elevated ratios from the base of the core to 309 cal. years BP and in the 

interval 187-100 cal. years BP (Fig. 4.14). 

 

The subordinate species G. muellerae and C. leptoporus together account for an average of 

4.2% of the total assemblage (Fig. 4.13). R406MC032 displays an overall increase of G. 

muellerae abundances during the last ~550 years punctuated by maximum values in the 

intervals ~450-200 and 90-(-56) cal. years BP. G. muellerae reaches highest abundances 

during the last 100-150 years. The trends in absolute concentrations and relative abundances 

of this drifted species are very similar throughout the core, although some short term 

variabilities in relative abundances prior to 200 cal. years BP are barely reflected in the 

absolute abundance record (Fig. 4.14). Considering the potential biases on coccolith 
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concentration records as discussed above, we rather chose to apply the relative abundance of 

drifted species as a proxy for AW inflow at the location of R406MC032. C. leptoporus shows 

higher abundances at 452, 355, 287, 206 and 85 cal. years BP (Fig. 4.13).   

 

 
Figure 4.14 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. pelagicus (C). The 
bar charts below each E/C plot highlight the dominating surface water masses at R406MC032 according to the 
“1” threshold: Blue = ArW (E/C<1); Red = AW (E/C >1). Bottom: Relative abundances (black line) and 
absolute concentrations (grey line) of the AW inflow species G. muellerae. The light red shaded areas indicate 
the marked inflow increases inferred from relative abundances (see text for details) of G. muellerae. 
 

4.5.2  Dinocyst Record  

The dinocyst preservation within R406MC032 was found to be generally good, with a rather 

variable bulk dinocyst concentration ranging from 1 to 47 ×10^3 sp/g. dry sed. (Fig. 4.15), 

although still within the range of values obtained from surface sediment in this area 

(Matthiessen, 1995). The dinocyst bulk concentration record is peculiar and characterized by 

an overall increase toward the top of the core. In a similar pattern to the coccolith 

concentration record, dinocyst concentrations show a massive increase from ca. 100 cal. years 

BP following relatively steady state low values around 3×10^3 sp/g. dry sed until ca. 170 cal. 
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years BP (Fig. 4.13, 4.15). The peak bulk dinocyst concentration at ~0 cal. years BP is 

followed by a decrease towards the top of the record.   

A total of up to 23 species (incl. 1 acritarch) has been identified within R406MC032. The 

three species OCEN (~33-84%), PDAL (~4-22%) and NLAB (~2-13%) dominate the 

assemblages throughout the last ~500 years, together with the subordinate species SRAM (~1-

9%,), SELO (~0-10%) and BSPP (~0-22%) (Fig. 4.15). All other species contribute with less 

than 2% of the total assemblages. The reworked dinocysts show a mean absolute 

concentration of 0.065 sp/g. dry sed. The overall composition of the R406MC032 dinocyst 

record is generally comparable to previous studies of surface sediment assemblages along the 

shelf and slope of northern Norway and the western Barents Sea shelf (Solignac et al., 2009; 

Grøsfeld et al., 2009). 

R406MC032 shows overall increased abundances toward the Present of the species OCEN, 

NLAB, SMIR, IPAL and the reworked dinocysts, whereas PDAL, SELO and SRAM shows a 

general decreasing trend in contribution to the bulk dinocyst assemblages (Fig. 4.15). The 

relative abundances of OCEN slightly increases from the base of the core until 309 cal. years 

BP, before a long term plateau, and a slight abundance decrease from ca. 0 cal. years BP. 

PDAL abundance changes are generally opposite to OCEN, whereas NLAB is characterized 

by increasing abundances from the core-base to ~187 cal. years BP followed by lower values 

toward the top of the record. SELO initiates at a high relative abundance at the core base, then 

shows drastically lower values (minimum at 187 cal. years BP) throughout most of the core 

with the exception of an all site recovery around 0 cal. years BP (Fig. 4.15). The subordinate 

species SRAM shows an overall decreased contribution punctuated by several low and high 

abundance periods. Especially two intervals with low abundances are apparent at 309-245 and 

100-4 cal. years BP. The colder dwelling heterotroph species IMIN shows highest relative 

abundances (~4%) toward the oldest part of the record, peaking at 245 cal. years BP, from 

which an overall decreasing abundance trend is dominating. The minor species SMIR and 

IPAL and the reworked dinocysts appear in higher relative abundances from roughly 245-187 

cal. years BP to the top of the record (Fig. 4.15). 

The resulting ratios OCEN/NLAB, OCEN/IMIN and A/H show average mean values of 12.4, 

111.4 and 84.2, respectively (Fig. 4.16). The OCEN/NLAB record is characterized by two 

intervals of higher values from the oldest part to 225 cal. years BP and from ~100 cal. years 

BP to the top of the record, only interrupted by a period of lower values at ~225-100 cal. 

years BP. The OCEN/IMIN record within R406MC032 is governed by higher values at 309-4  
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Figure 4.15 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (sensus counts * 10^3/g dry 
sed.) (top), relative abundances (%) of major and minor dinocysts (mid) and dinocyst concentration records 
(dinocysts * 10^3/g dry sed.) (bottom) of R406MC032.  (See Chapter 2 for species names - abrevations). 
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cal years BP with specifically two periods of very high values at 287-206 and 85-4 cal. years 

BP. The latter period is not surprising as the bulk coccolith concentration is markedly 

increased at this level and OCEN accounts for the major relative abundance changes. The A/H 

ratio roughly follows the trend displayed by OCEN/IMIN, although this record only shows for 

a single period of maximum values at 85-4 cal. years BP (Fig. 4.16). 

 

 
Figure 4.16 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. Mid: 
OCEN/NLAB ratio between the AW thriving O. centrocarpum (OCEN) and the sea ice related (ArW) I. 
minutum (IMIN). Bottom : OCEN/NLAB ratio of the dominant dinocyst species OCEN and N. labyrinthus 
(NLAB). The bar charts below the OCEN/NLAB plot highlight the dominating surface water masses of 
R406MC032 according to the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW (OCEN/NLAB >4). 

4.5.3  Quantitative Reconstructions of Sea-Surface Conditions 

The reconstruction of sea-surface conditions indicate cooler and fresher conditions, compared 

to the southern core R248MC010 which roughly spans a similar time interval, with mean 

TWIN and TSUM of 2.5 °C and 11.2 °C, and mean SWIN and SSUM of 33.5 and 32.7 during 

the last ~500 years (Fig. 4.17). The reconstructed Modern core-top temperatures and salinities 

of 4.12-11.3 °C and  33.1-34 lay mostly within the range of the measured temperatures (4.9-

8.2 °C) and salinities (34.1-35) at the core location (based on the World Ocean Database; 

Chapter 3). Here again, modern reconstructed salinities appear slightly lower than the 

measured values.  
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Figure 4.17 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) from dinocyst 
assemblages of core R406MC032, based on MAT. The surface sediment database (n=1189) of the North 
Atlantic and North-Eastern Pacific was applied for MAT. Minimum and maximum errors on the estimated 
parameter are shown by the dashed black lines following the curves. The modern average values are represented 
by the horisontal dashed lines. 
 

The TWIN, SWIN and SSUM records all display an overall increased tendency, with an 

opposing decreasing trend from TSUM (Fig. 4.17). The governing increase of the TWIN 

record toward Recent is punctuated by two intervals of elevated temperatures around 220 cal. 

years BP and throughout the interval 117 to -18 cal. years BP. On the contrary the TSUM 
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trend shows a longer interval of decreasing temperatures from the core-base within minimum 

values describing the interval from ca. 245 to 20 cal. years BP. The reconstructed salinities 

(SWIN and SSUM) show an overall increasing trend toward Present interrupted at 245 to 168 

cal. years BP and 117 to -18 cal. years BP by strongly elevated salinities (Fig. 4.17).  

 

The reconstructed sea ice record (0-2 months/year of sea ice concentrations greater than 

50%), is in line with recent late Holocene dinocyst reconstructions from this area (de Vernal 

et al., 2013),  and governed by an overall decreasing trend with minimum values occurring 

from ca. 120  to -20 cal. years BP (Fig. 4.17). Previous studies on historical records of the 

maximum distribution of the MIZ (Vinje et al., 2001; Divine and Dick, 2006) shows that it 

has been located south of the present core site during the last centuries, indicating that the 

reconstructed sea ice record covering the last ~500 years should not be disregarded.  

4.5.4  Inferring the Paleoceanographic changes in AW Flow and the Distribution of Surface 

Waters during the Last ~550 years (R406MC032) 

The proxies obtained at core R406MC032 are plotted against bottom water temperature 

reconstructions from southeast of Bear Island (Wilson et al., 2011) and the combination of an 

instrumental (Dec-Mar; Jones et al., 1997; Osborn, 2006) and a reconstructed (Lutherbacher 

et al., 2002, including a 11 year-running mean) NAO index (Fig. 4.18). Three time zones have 

been identified through comparison of all proxy data. ZONE III represents the interval from 

the core-base (530 cal. years BP) to 240 cal. years BP (1420-1710 AD, LIA). ZONE IV, 

covers the interval ~240 to 100 cal. years BP (1710-1850 AD, LIA/M transition). Finally, 

ZONE V roughly encompasses the last century from 100 to -58 cal. years BP (1850-2008 AD, 

Modern period) (Fig. 4.18).  

In general the proxy records show higher amplitude of variations during the last two centuries 

compared to the older part. We attribute this pattern to the overall decreasing time resolution 

down-core and therefore increased smoothing of the signals.  

The core is hampered by the lack of age constrain on the deeper part of the record. 

Nevertheless, the general trends expressed by the proxies  follow the variability of the 

inferred NAO index in both the upper and the deeper parts of core R406MC032, which to 

some extent  confirm the reliability of the age model. 
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ZONE III: ~530-240 cal. years BP (LIA) 

This zone is characterized by a relatively weak and slightly decreasing flow of AW, and a 

corresponding decrease of bottom water temperatures (Wilson et al., 2011), as a response to 

negative NAO conditions (Fig. 4.18c+d+h). The decrease in AW and the low NAO index 

seems to favor generally colder conditions, which fit well with the MAT reconstruction of sea 

ice presence and low although slightly increasing TWIN and SWIN conditions (Fig. 4.18h-k). 

In contrast to the southern R248MC010, earlier publications have shown that the MIZ was at 

least seasonally present at R406MC032 during the last two centuries (section 4.5.1.3), as also 

indicated by an elevated level of lithic grains (> 150 µm), and the lack of reworked dinocysts 

(Fig. 4.18a+b). The latter is supposed to originate either from sediment redistribution or 

freshwater input from land, hence minimum values indicate that neither process was at work 

in this interval. We therefore interpret the lithic grains as ice-rafter detritus (IRD). In addition 

minimum values in both the OCEN/IMIN and A/H ratios during this interval are most likely a 

result of the high content of heterotrophic dinocysts in Arctic-water assemblages in the 

vicinity of sea ice, linked with the abundance of diatoms (competing with autotroph 

dinocysts), a feeding source for heterotrophic organisms (Voronina et al., 2001, and 

references therein).  

High values of the E/C record is observed during this interval (Fig. 4.18g). As indicated from 

our study of extant coccolithophores across the Norwegian-Iceland Sea (Dylmer et al., 2013, 

this study), maximum abundances of E. huxlei often occur in stratified waters related to sea 

ice melts during summer, a situation much alike the one identified within the western Barents 

Sea during this interval. The elevated relative abundances of PDAL confirm this 

interpretation as this species has earlier been associated with spring/summer productivity and 

stratification (Fig. 4.15) (Chapter 2).  

The application of OCEN/NLAB at this location as a proxy for the AF over the Barents Sea is 

questionable as NLAB is mainly an oceanic species with maximum distribution in the middle 

of the Nordic seas along the AF. Hence the ratio is more likely related to the width of the 

WSC and therefore the distribution of ArW from the west and northwest (AF), which explains 

the opposite relation at this location to the NAO index (Fig. 4.18e+h). On the contrary the 

preference of IMIN for ArW and sea ice conditions makes the OCEN/IMIN abundance ratio a 

more likely proxy for the location of the AF within the southwestern Barents Sea.  
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Figure 4.18 : Summary plot of surface and subsurface circulation changes of the southwestern Barents Sea 
(R406MC032) over the past ~550 years. a) : Reworked dinocysts as an index of input from land (NCC) and/or 
sediment redistribution b) : Total lithic grains as proxies for IRD (Ice rafted detritus) and/or downslope transport 
of finer material. c) : Reconstructed bottom water temperatures from southeast of Bear Island (Wilson et al., 
2011). d) :  Absolute concentrations of G. muellerae as a proxy of the AW flow strength. e) : OCEN/NLAB ratio 
as an index of the width of the WSC. f) : Relative abundances of SRAM as a proxy for relative variations in 
primary productivity and salinity changes. g) : E/C ratio as an index of the relative position of the AF (AW vs. 
ArW). h) : Combined modern (Jones et al., 1997; Osborn, 2006) and reconstructed (Lutherbacher et al., 2002) 
NAO index; Red and blue areas represent long term positive and negative NAO conditions, respectively. i + j + 
k): Dinocyst-based MAT reconstructed winter surface water temperatures and salinities and sea ice cover 
(months/year), with the grey shaded area representing the error ranges of the reconstructions. The summary 
inferred zones and subzones are highlighted in the top, with the zonations indicated by solid (zones) and dashed 
(subzones) vertical black lines. Shaded light red and light blue represents inferred relative variations between 
increased and decreased AW flow periods in the southwestern Barents Sea, respectively. 
 
 
A strong IRD peak is observed in R406MC032 at 430-380 cal. years BP, corresponding to an 

elevated NAO index (Fig. 4.18b). 

ZONE III: Decrease in AW inflow, relatively warm subsurface conditions, extended sea ice 

cover, AF south-southwest of the core location, wide WSC.  

Zone IV: 240- 100 cal. years BP (LIA/M transition) 

Zone IV is governed by a major decrease in AW flow, the drifted species G. muellerae being 

almost absent from the coccolith assemblages. This marked minimum AW flow correlates 

with long-term negative NAO conditions and overall low bottom temperatures over the 

Barents Sea (Wilson et al., 2011). The recorded low OCEN/NLAB ratio translates into a 

narrowing of the WSC. Relatively low IRD contents confirm the overall cold surface water 

conditions and probably indicate a strengthened sea ice cover during this period. The increase 

in SRAM and E/C suggest mild stratified summer/spring conditions (at least during the end of 

the interval) within the southwestern Barents sea, with an increased seasonal presence of the 

NCC (increased reworked dinocysts) (Fig. 4.18a+f+g).  

ZONE IV: strongly decreased AW flow, cold subsurface and surface conditions (ArW), strong 

duration of sea ice, narrow WSC, seasonal presence of NCC at the surface (summer).  

 

Zone V: 100- (-58) cal. years BP (~Modern period, M) 

The zone is characterized by a warming indicated by an unprecedented (over the last ~500 

years) increase in AW flow and a widening of the WSC, with implications on reconstructed 

maximum temperatures of both the bottom waters southeast of Bear Island and the surface 

temperatures (TWIN) at the core location (Fig. 4.18). The strengthened AW flow naturally 

coincides with prevailing positive NAO conditions within ZONE V and a decrease in the sea 

ice extent (increase in IRD). The increase in the reworked dinocysts seems to reflect a 
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stronger presence of the NCC and seasonally fresher surface waters, confirmed by the marked 

low within the SRAM and the low E/C ratio. 

ZONE V: unprecedented (for the last 500 years) increase in the AW inflow, warm subsurface 

and surface conditions, strong decrease in sea ice extent, wide WSC, increased seasonal 

presence of NCC (summer).  

4.6 HH11-134-BC (Fram Strait, West Spitsbergen Slope) 

4.6.1  Coccolith Record 

Preservation of coccolith remains was moderate to good within HH11-134-BC. Bulk 

coccolith concentrations range from 2.4 to 7 x108 specimens/g and are characterized by 

increased values towards Present. Peak bulk concentrations is observed at 1400, 500-330, 45 

cal. years BP as well as during the last century, with minimum abundances at 990 and 300-

160 cal. years BP (Fig. 4.19). As historical and proxy (IRD) based records have shown this 

core site to have been under the influence of sea ice and icebergs (Chapter 3), and since it is 

located in the vicinity of Svalbard, it is expected to be influenced by terrigenous inputs from 

the nearby continental shelfs, sea ice, icebergs coastal areas (Vinje et al., 2001; Divine and 

Dick, 2006). Changes in dilution of the biogenic component of HH11-134-BC sediments by 

terrigenous material might therefore bias the significance of bulk concentration records in 

terms of paleo-productivity patterns.  

Coccolith species diversity is low and shows a shared dominance between C. pelagicus (~33-

63%) and E. huxleyi (26-56%) (Fig. 4.19). An overall increased E. huxleyi contribution 

interrupted by several millennial-scale low amplitude changes characterizes the west-

Spitsbergen core over the studied time-interval. A short shift in dominance between the major 

species is apparent in the interval ~1200-800 cal. years BP and more clearly in modern times. 

As expected given its overall shared dominance with E. huxleyi, C. pelagicus displays an 

opposite pattern of relative abundances (Fig. 4.19). 

The resultant E/C ratios lay within the range of 1.1 to 0.3. This ratio displays overall 

increasing values from the base to the top of the core, with higher ratios characterizing the 

intervals from ca. 3000 to 2100 cal. years BP, from 1200 to 700 cal. years BP, and over the 

last century (Fig. 4.20).  

The subordinate species G. muellerae and C. leptoporus together account for an average of 

8.9% of the total assemblage throughout the studied core. A fifth species, Syracosphaera sp., 

only contributes on average 0.6%, and will not be discussed further. 
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Figure 4.19 : Bulk coccolith concentration record (coccoliths * 10^8/g dry sed.) (top) and relative abundances 
(%) of major (mid) and minor (bottom) coccolith species within HH11-134-BC. 
 
HH11-134-BC display an overall increase of G. muellerae abundances during the last 3000 

years punctuated by a low steady level in the 3000-2200 cal. years BP interval, a period of 

highest abundances from ca. 2200 to ~650 cal. years BP, followed by marked lower values 

until peak abundances at the beginning of the last century (Fig. 4.19). In addition a peak 

abundance is observed 450-330 cal. years BP. The trends in absolute concentrations and 

relative abundances of this drifted species are nearly identical (Fig. 4.20). Short and/or long 

term changes in sedimentation of sea-ice or continental-margin-derived lithic material, which 

most probably affect patterns of micro fossil concentration records, including coccoliths, had 

therefore no obvious influence on G. muellerae absolute abundance trends along the studied 

transect. C. leptoporus shows a peak in relative abundance centered at ~1700-2000 cal. years 

BP (Fig. 4.19).  
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Figure 4.20 : Top : E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. pelagicus (C). The 
bar charts below each E/C plot highlight the dominating surface water masses at HH11-134-BC according to the 
“1” threshold: Blue = ArW (E/C<1); Red = AW (E/C>1). Bottom: Relative abundances (black line) and absolute 
concentrations (grey line) of the AW inflow species G. muellerae. The light red shaded areas indicate the marked 
inflow increases inferred from absolute concentrations of G. muellerae. 

4.6.2  Dinocyst Record 

The dinocyst preservation within HH11-134-BC was found to be good. The rather variable 

bulk dinocyst concentration range from 12 to 43 ×10^3 sp/g. dry sed. (Fig. 4.21)  and, hence, 

fall well within the range of dinocyst concentration within surface sediment assemblages of 

the studied area (Matthiessen, 1995). The bulk dinocyst concentration record is characterized 

by increasing values from the core-base until ~2250 cal. years BP followed by a plateau from 

~2250 until ~450 cal. years BP and finally decreasing values towards the Present (Fig. 4.21).  

A total of up to 24 species (incl. 1 acritarch) was identified within HH11-134-BC. The four 

species OCEN (~62-87%), PDAL (~1-13%), IMIN (~2-10%) and NLAB (~4-9%) dominated 

the assemblages throughout the last ~3000 years, together with the subordinate species SELO 

(~0-6%) (Fig. 4.21). All other species contribute with less than 2% of the total assemblages.  
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Figure 4.21 : Reworked dinocysts and Halodinium spp. (HALO) concentrations (sensus counts * 10^3/g dry 
sed.) (top), relative abundances (%) of major and minor dinocysts (mid) and dinocyst concentration records 
(dinocysts * 10^3/g dry sed.) (bottom) of HH11-134-BC.  (See chapter 2 for species names - abrevations). 
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The reworked dinocysts and the palynomorph Halodinium spp (HALO) show mean absolute 

concentrations of 20.79 sp/g. dry sed. and 0.137 sp/g. dry sed., respectively. The overall 

composition of the HH11-134-BC dinocyst record is generally comparable to previous studies 

of surface sediment assemblages along the shelf and slope off Svalbard (Grøsfeld et al., 

2009). 

 
Figure 4.22 : Top: Trophic level ratio between autotrophic (A) and heterotrophic (H) species. Mid: 
OCEN/NLAB ratio between the AW thriving O. centrocarpum (OCEN) and the sea ice related (ArW) I. 
minutum (IMIN). Bottom : OCEN/NLAB ratio of the dominant dinocyst species OCEN and N. labyrinthus 
(NLAB). The bar charts below the OCEN/NLAB plot highlight the dominating surface water masses of HH11-
134-BC according to the “4” threshold: Blue = ArW (OCEN/NLAB<4); Red = AW (OCEN/NLAB >4). 

 

Core HH11-134-BC shows overall increased abundances from the core-base of all species 

including the reworked dinocyst species and HALO, at the expense of OCEN. The OCEN 

downcore distribution pattern is characterized by high abundance intervals from ~3000-1900 

and ~1150-650 cal. years BP slight, followed by a marked decrease during the last 650 years 

(Fig. 4.21). IMIN shows a roughly inverse relation to OCEN. The most recognizable PDAL 

abundance features are an interval of high values at ~1260-1200 cal. years BP as well as 

increasing values from ~650 cal. years BP onward. The species NLAB is characterized by an 
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interval of higher relative abundances between ~2200 and ~1300 cal. years BP as well as 

increasing contributions to the dinoccyst assemblages from ~650 cal. years BP onward. The 

latter period of increased abundances can also be observed in both SELO and SRAM (Fig. 

4.21).  

The acritarch HALO appears with higher concentrations in the intervals ~2600-2000 and 

1300-750 cal. years BP. In the upper part of the record HALO show marked abundance peaks 

at ~550 and 300 cal. years BP. 

The resulting ratios OCEN/NLAB, OCEN/IMIN and A/H show average mean values of 12.3, 

17.4 and 15.6, respectively (Fig. 4.22). The OCEN/NLAB record is characterized by two 

intervals of high values from the bottom of the core to ~2200 cal. years BP and from ~1300 to 

~650 cal. years BP. The ratios OCEN/IMIN and A/H are basically identical, which is 

expected as the major contributors to the autotroph species and the heterotroph species are 

OCEN and IMIN, respectively. The ratios show elevated values until ~2100 followed by a 

period of lower values terminating at ~1150-1200 cal. years BP, a period of increased ratios 

until ~650 cal. years BP and finally a decrease towards the top. Both OCEN/IMIN and A/H 

show two peak values in the top part of the record at ~400 and 260 cal. years BP (Fig. 4.22).  

4.6.3  Quantitative Reconstructions of Sea-Surface Conditions 

The reconstruction of sea-surface conditions indicate generally cool conditions, with a 

reconstructed mean winter and summer temperature of 1.5 °C and 6.2 °C, during the last 

~3000 years.  

The reconstructed core-top temperatures and salinities of 0.8-3.4 °C and 33.8- 34.3 fall 

roughly within the range of the temperature (2-5.4 °C) (World Ocean Database), although 

with generally low reconstructed salinities (34.3-34.6) (Fig. 4.23). 

All reconstructed temperatures and salinities are governed by an overall decreasing trend 

throughout the last 3000 years. The reconstructed TWIN, SWIN and SSUM initiates at the 

oldest part of the record with high values until ~2200 cal. years BP followed by a stable (to 

slightly decreasing) pattern until ~700 cal. years BP and finally strongly decreasing values 

until the top of the record (Fig. 4.23). The former trends are less clear in the SSUM, which 

seems to show stable to slight decreased values until ~700 cal. years BP followed by 

enhanced freshening until the top of the record. 

The reconstructed sea ice conditions (0-4 months/year) are generally in line with recent (late 

Holocene) dinocyst reconstructions from this area (de Vernal et al., 2013) and governed by an 

overall increase during the last 3000 years. The record shows a decrease in sea-ice duration 
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until ~2200 cal. years BP, followed by a slight increase until ~700 cal. years BP, and 

terminating in a strong increase during the last 700 years (Fig. 4.23). Previous studies on 

historical records of the maximum distribution of the MIZ (Vinje et al., 2001; Divine and 

Dick, 2006) has shown that the MIZ has been located south of the core site during the last two 

centuries, indicating that our sea ice reconstructions during the last ~3000 years should not be 

disregarded.  

 
Figure 4.23 : Reconstruction of sea-surface conditions (temperature, salinity, sea ice cover) from dinocyst 
assemblages of core HH11-134-BC, based on MAT. The surface sediment database (n=1189) of the North 
Atlantic and North-Eastern Pacific was applied for MAT. Minimum and maximum errors on the estimated 
parameter are shown by the dashed black lines following the curves. The modern average values are represented 
by the horisontal dashed lines. 
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4.6.4  Inferring the Paleoceanographic changes in Atlantic Water Flow and the Distribution 

of Surface Waters during the Last ~3000 cal. years BP (HH11-134-BC) 

The proxies are plotted together with reconstructed Arctic temperatures based on terrestrial 

records (Kaufmann et al., 2009), a reconstructed NAO index (Trouet et al., 2009; Olsen et al., 

2012) and the PBIP25 proxy (A sea ice index provided by Alba Navarro Rodrigez, Univ. 

Plymouth) (Fig. 4.24, 4.25). Three zones (and three subzones) have been identified through 

comparison of all proxy data. ZONE I represents the interval from ~the core-base (3000 cal. 

years BP) to 2200 cal. years BP (1050 – 250 BC). ZONE II, covers the interval 2200-730 cal. 

years BP (250 BC-1220 AD) and contains the two identified subzones II-a (2200-1250 cal. 

years BP, 250 BC-700 AD) and II-b+c (1250-730 cal. years BP, 700-1220 AD). ZONE III 

spans from 730 cal. years BP to ~60 cal. years BP (1220-1890 AD). Finally Zone V 

encompasses the last ca. 120 years (1890-2011 AD).  

Zone I: ~3000-2200 cal. years BP (1050 -250 BC) 

The zone appears to be generally governed by cold conditions as shown by the overall low, 

although slightly improving AW flow and NAO index (Fig. 4.24c+d). The slight increase in 

TWIN, SWIN and subpolar foraminifera (relative abundances) toward the top of this zone 

indicate cold however slighly improving conditions, especially in the subsurface waters (Fig. 

4.24b+h+i). The slight increase in the AW flow strength possibly results in a low although 

slightly enhancing summer carbonate productivity possibly induced by sea ice melting 

(slightly increased IRD > 150 µm, Fig. 4.25g) causing stronger surface water stratification 

(slightly increased E/C ratio) (Fig. 4.24f). The increase in HALO abundance confirm the 

presence at the core site of fresh water from sea ice melt related to the MIZ (Fig. 4.25i), this 

species being related to gradational zones between fresh water and marine environments e.g. 

glacier-meltwater outflow and the MIZ (Chapter 2). The sea ice reconstructions (MAT) 

however reveal relatively low duration and slightly decreasing sea-ice cover (month/year) 

(Fig. 4.25a).  

The PBIP25 sea ice index represents a combination of the IP25 and brassicasterol 

concentrations (Fig. 4.25c) (see Navarro-Rodriguez et al., 2012). The former is an organic 

geochemical biomarker (IP25), which is thought to be biosynthesized by a limited number of 

sea ice diatoms during the spring blooms and is thus considered to be highly specific as a sea 

ice proxy (Navarro-Rodriguez et al., 2012, and references therein). The latter (brassicasterol) 

is considered to be a more general biomarker indicator of phytoplankton since derived from a 

wide array of algal groups (Navarro-Rodriguez et al., 2012, and references therein). Despite 
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this lower specificity, the use of brassicasterol alongside IP25 has been suggested to provide a 

potential mean of improving the interpretation of IP25 in marine sediments through the 

calculation of the so-called PIP25 index (Müller et al., 2011). Indeed, the absence of IP25 in 

Arctic sediments has previously been interpreted as representing either ice-free or permanent 

sea ice conditions (Belt et al., 2007; Müller et al., 2009), hence the relative abundance of 

brassicasterol provides a way to distinguish between these two extreme scenarios. The PBIP25 

index record in core HH11-134BC indicates a relatively strong presence of sea ice.  

Of the two XRF ratios e.g. Ca/Ti and Zr/Rb, the former has been interpreted from earlier 

results, as  a ratio between marinebiogenic carbonate production and the lithogenic input from 

land (Fig. 4.25b+e). Such an interpretation might be biased at the core location by the 

presence over Svalbard of sedimentary limestones (Vogt and Knies, 2009) (Ti is expected to 

origine mainly from mainland Norway). We however assume, based on the mear absence of 

coarse detrital carbonates (>150 µm, strong reaction to 5% HCL) before 1250 cal. years BP 

(Fig. 4.25h), that a similar pattern is expected to influence the finer fraction, hence the earlier 

part of the Ca record is expected to represent the biogenic carbonate production fairly well.  

The Zr/Rb ratio has been implemented as a proxy of grain size variability within this core. Zr 

is tracing the coarser fraction  (heavier minerals, IRD), whereas Rb is rather associated to the 

clay fraction (more open water or strong sea ice cover) (Fig. 4.25b).  

The overall strong variability of the system is clearly reflected in the grain size record (Zr/Rb) 

which fluctuates in phase with the IRD abundance. The overall cold conditions are reflected 

in the low Ca/Ti ratio throughout this zone (low biogenic carbonate production), with the 

overall conditions slightly improving throughout in relation with increased periods of open 

water conditions (decreasing Zr/Rb) and decreased sea ice duration (Fig. 4.25). The IRD size 

fraction >500µm is expected to have a stronger relation to icebergs or locally formed sea ice 

than the smaller size fration (Fig. 4.25f). The iceberg proxy is similarly low confirming the 

dominating cold conditions and a decreased supply of icebergs from land. 

ZONE I: low but slightly increasing AW flow strength, presence of AW in subsurface waters, 

ArW at the surface, low  but slightly increasing carbonate productivity, strong seasonal 

presence of sea ice, low presence of icebergs.  

Zone II: 2200-730 cal. years BP (250 BC-1220 AD) 

This zone is governed by a strong overall increase in the AW flow in relation with a shift 

toward positive NAO conditions, slightly decreasing TWIN, stable SWIN, a warming of 

subsurface waters, increased productivity, increase in sea ice duration and increased sea ice 
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melt, increased presence of icebergs, an increase in carbonate productivity and apparently 

decreasing Arctic air temperatures (Fig. 4.24, 4.25). 

 

Subzone II-a: 2200-1250 cal. years BP (250 BC-700 AD) 

This subzone marks the initiation of an interval of an overall strengthened AW flow, possibly 

related to a change from a governing negative NAO index to a dominating positive NAO 

pattern (Fig. 4.24c+d). The increased inflow seems to be confirmed by generally warmer 

subsurface waters (marked by higher subpolar foraminifera abundances), and favors a 

strengthened carbonate productivity in the near surface water masses (increased bulk 

coccolith concentration and Ca/Ti ratio) (Fig. 4.24a+b, 4.25e). On the contrary to the 

ameliorating subsurface conditions, the reconstructed winter surface temperatures (TWIN) 

seems to follow the generally decreasing trend of Arctic temperatures (Fig. 4.24g+h).  

The cold surface temperatures are further confirmed by low values in most of the species 

ratios, which are likely indicative of an increased presence of ArW in the surface at this 

location (Fig. 4.24e+f). The reconstructed temperatures and salinities fall well within modern 

ArW values (0-4°C, 34.6-34.9; Johannessen, 1986), hence confirming the interpretation of 

ArW in the surface.  

The low although slightly increasing IRD (>150 µm) content and the increase in PBIP25 and 

reconstructed sea ice duration all seems to reflect a strengthening in the sea ice cover during 

this interval, as also confirmed by the increase in the coarser fraction of the sediments (Zr/Rb) 

(Fig. 4.25a-c+g).  

The increased AW flow might be part of the explanation behind the sudden increase in the 

coarse IRD size fraction (>500 µm) (Fig. 4.24c, 4.25f). Hence, increased inflow is expected to 

result in increased evaporation and precipitation which directly affects glacier budgets along  

 

Figure 4.24 : Summary plot of surface and subsurface circulation changes west of Svalbard (HH11-134-BC) 
over the past ~3000 years. a) : Bulk coccolith concentrations as an index of carbonate productivity. b) : Relative 
abundances of subpolar foraminifera (fraction > 100 µm) as an index of subsurface AW masses. c) : Absolute 
concentrations of G. muellerae as a proxy of the AW flow strength. d) : Combined NAO index reconstruction 
based on Trouet et al. (2009) and Olsen et al. (2012); Red area represents positive and blue area negative NAO 
conditions. e) : OCEN/IMIN ratio as an index of surface water changes (AW/ArW). f) : E/C ratio as an index of 
the relative position of the AF (AW/ArW). g) : Arctic summer temperatures based on Kaufmann et al. (2009). h 
+ i) : Dinocyst-based MAT reconstructed winter surface water temperatures and salinities, with the grey shaded 
area representing the error ranges of the reconstructions. The summary inferred zones and subzones are 
highlighted in the top, with the zonations indicated by solid (zones) and dashed (subzones) vertical black lines. 
The vertical red dashed line represents the warm pulse at ca. 400 cal. Years BP identified by Dylmer et al., 2013. 
Shaded light red and light blue represents inferred relative variations between increased and decreased AW flow 
periods in the eastern Fram Strait, respectively. 
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Figure 4.25 : Summary plot of lithology and sea ice variability west of Svalbard (HH11-134-BC) over the past 
~3000 years. a) : Dinocyst-based MAT reconstructed sea ice cover (months/year), with the grey shaded area 
representing the error ranges of the reconstructions. b) : Zr/Rb ratio (XRF) as a grain size indicator and/or sea ice 
influence indicator; higher values = coarser material (IRD), lower values =  fine material (clay), black line 
indicate a 7-running mean. c) : PBIP25  sea ice index, higher values inferring closer proximity to the MIZ and 
lower values tracing more open water conditions. d) : Combined NAO index reconstruction based on Trouet et 
al. (2009) and Olsen et al. (2012); Red area represents positive NAO and blue area negative NAO conditions. e) : 
Ca/Ti as a tentative index of marine biogenic carbonate vs. terrigenous sedimentation (see text), black line 
indicate a 7-running mean. f) : IRD (>500 µm) as a relative Iceberg index. g +h) : IRD (>150 µm, incl. carbonate 
grains) as a proxy for sea ice variability. i) : HALO represents melt water from sea ice and/or land. The summary 
inferred zones and subzones are highlighted in the top, with the zonations indicated by solid (zones) and dashed 
(subzones) vertical black lines. The vertical red dashed line represents the warm pulse at ca. 400 cal. years BP 
identified by Dylmer et al., 2013. Shaded light red and light blue represents inferred relative variations between 
warmer and cooler periods in the eastern Fram Strait, respectively. 
 
the path of the AW (Nesje et al., 2001) and causes increased iceberg calving following the 

general governing glacial expansion during the late holocene culminating later during the LIA 

(Svendsen and Mangerud, 1997). 

Subzone II-a: strengthened AW flow, presence of AW in subsurface, ArW at the surface, 

increased carbonate productivity, increased presence of sea ice, higher contribution from 

icebergs.  

 

Subzone II-b+c: 1250-730 cal. years BP (700-1220 AD) 

This subzone is governed by a further strengthening of the AW flow, warmer subsurface 

waters and a peak in Arctic temperatures at ~1000 cal. years BP (Fig. 4.24b+c+g). The high 

E/C ratio values express a marked change in dominance between the two major coccolith 

species in favor of the AW thrieving E. huxleyi. This increase most likely suggests a seasonal 

influence of AW in the surface waters and  a retreating MIZ, which is confirmed by the 

increases in the dinocyst ratios, as well as the increases in ice melt (HALO) (Fig. 4.24e, 

4.25i).  

The bulk coccolith concentrations indicate a relatively high carbonate production during this 

interval. (Fig. 4.24a). An observed minimum in the bulk coccolith production at 990-1050 cal. 

years BP seems to be related to a minimum in Arctic temperatures at 1045 cal. years BP, a  

cooling event formerly identified during subzone II-b in WOO/SC-3. However except for a 

minimum in Zr/Rb and PBIP25, this short cooling is not clearly reflected (Fig. 4.24a, 4.25b+c). 

The maximum extent of the MIZ reached during this interval (PBIP25 sea ice index), which in 

combination with an enhanced AW also explain the strong increase in the IRD fraction >150 

µm, resulting from the possibly increased sea ice melt, as confirmed by HALO. Which in 

combination with the elevated E/C ratio are indicative of a strong seasonality of the MIZ 

during this interval.  
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The decrease in icebergs (>500 µm) might be a result of increased Arctic temperatures 

causing a glacier retreat and/or a direct result of the strengthend sea ice cover, as a limited 

amount of icebergs would be able to reach the site (Fig. 4.24g, 4.25b+c+g+f). The change in 

the IRD origine (>500 µm, increased carbonate) might be indicative of a general change 

within the climatic system from ~1000 cal. years BP and onwards. 

Subzone II-b+c: strong AW flow, seasonal presence of AW in subsurface and surface, 

relatively high carbonate primary productivity, highly fluctuating MIZ, decreased IRD 

contribution from icebergs.  

Zone III: ~730-60 cal. years BP (1220-1890 AD) 

Zone III is characterized by generally cold conditions under long-term negative NAO 

conditions, as expressed by a strongly decreased AW flow, low TWIN and SWIN, generally 

low Arctic temperatures, a lower influence of AW in the subsurface and predominantlt ArW 

at the surface (Fig. 4.24). A strong decrease in HALO further suggests a decrease in ice 

melting as a result of an increase in sea ice cover (Fig. 4.25).  

A decrease in the carbonate productivity seems to occur throughout this interval, although this 

is inverse to the one observed in the Ca/Ti ratio (Fig. 4.25). The increase in the Ca/Ti ratio is 

however most likely a response to an increasing delivery of lithogenic carbonate, and is 

therefore not reliable as a paleoproductivity indicator here. 

The first evidences of changes in the sea ice distribution does not occur until before ~550-450 

cal. years BP, when a strong decrease is recognized in the IRD >150 µm and the sea ice 

biomarker PBIP25 (Fig. 4.25), suggesting an increase in sea ice cover, which fit well with 

earlier findings of glacier advance during the 13th and 14th centuries over Svalbard (Svendsen 

and Mangerud, 1997).  

The sea ice reconstructions by MAT does not correspond to these variations and seems to 

indicate a continuous increase in duration of the sea ice (Fig. 4.25). This is surprising 

especially in light of the changes during the later modern period, indicating that the 

reconstruction of MAT within the top of the record might be biased.  

The Zone III is punctuated by a warm pulse between 330 and 450 cal. years BP as expressed 

by a sudden increase in the AW flow. This warm pulse is supported by warmer temperatures 

in the subsurface waters, a higher E/C ratio, slightly warmer Arctic temperatures, increased 

bulk coccolith concentrations, and coincides with the timing of the major decrease in PBIP25 

(Fig. 4.24, 4.25). In addition the pulse correlates with a marked increase in IRD in 

R406MC032 (Fig. 4.18). 
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ZONE III: decreased in AW flow, cold conditions in subsurface waters, ArW at the surface, 

low carbonate productivity, strengthened sea ice cover, high contribution from icebergs, 

warm puls at 330-450 cal. years BP.  

Zone V: ~60-(-)61 cal. years BP (1890-2011 AD) 

Zone V show a strong increase in the AW inflow during the modern period causing an 

unprecedented presence of AW in both surface and subsurface waters (increased E/C and 

subpolar foraminifera) (Fig. 4.24). This general trend compares well with the reconstruction 

of Arctic temperatures, showing a strong increase during the last century. The increases are 

followed by enhanced bulk coccolith concentrations indicative of stronger carbonate 

productivity, a stronger meltwater contribution (HALO), a retreat of the MIZ (PBIP25 and 

low IRD) and finally a high unprecedented production of icebergs (~3000 years) (Fig. 4.24, 

4.25). 

Zone V: warm conditions, unprecedented increase in AW flow, AW present in surface and 

subsurface waters, strengthened carbonate productivity, high increase in meltwater, MIZ 

retreated, high production of icebergs. 

4.7  Coccolith and Dinocyst-based NwAC Flow Strength and Water-Mass Proxies  

The following section contains a manuscript recently published in  Climate of the Past (2013) 

on coccolith evidences for paleoceanographic changes within the eastern North Atlantic 

during the last 3000 years. This paper especially focus on the use of G. muellerae abundances 

as a proxy for the relative variations in the strength of the NwAC, as well as the application of 

the E/C ratio to infer changes in the nature of surface water masses (AW vs. ArW) and in the 

position of the AF. 

An additional discussion on the application of coccolith and dinocyst ratios along a north-

south transect during the late Holocene will follow this section. 
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ABSTRACT 
Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea 

(JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated 

in order to reconstruct changes in the poleward flow of Atlantic Waters (AW) and in the 

nature of upper surface water masses within the eastern Nordic Seas over the last 3000 years. 

These reconstructions are based on a limited set of coccolith proxies: the abundance ratio 

between Emiliania huxleyi and Coccolithus pelagicus, an index of Atlantic vs. Polar-Arctic 

surface water masses; and Gephyrocapsa muellerae, a drifted coccolith species from the 

temperate North Atlantic, whose abundance changes are related to variations in the strength of 

the North Atlantic Current. 

The entire investigated area, from 66 to 77°N, was affected by an overall increase in AW flow 

from 3000 cal. years BP to the Present. The long-term modulation of westerlies strength and 

location which are essentially driven by the dominant mode of the North Atlantic Oscillation 

(NAO), is thought to explain the observed dynamics of poleward AW flow. The same 

mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic 

Front between the area off western Norway and the western Barents Sea-eastern Fram Strait 

region.  

The Little Ice Age was governed by deteriorating conditions, with Arctic/Polar waters 

dominating in the surface off western Svalbard and western Barents Sea, possibly associated 

with both severe sea-ice conditions and a strongly reduced AW strength. A sudden short pulse 

of resumed high WSC flow interrupted this cold spell in eastern Fram Strait from 330 to 410 

cal. years BP. Our dataset not only confirms the high amplitude warming of surface waters at 

the turn of the 19th century off western Svalbard, it also shows that such a warming was 

primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 

years.  
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1.  INTRODUCTION 

The Late Holocene was governed by a cooling trend known as the Neoglaciation (Porter and 

Denton, 1967). Compared with the preceding Early to Mid-Holocene Climate Optimum, the 

Neoglaciation has been widely recorded in both terrestrial and marine archives in the North 

Atlantic Region (Jennings et al., 2002; Seidenkrantz et al., 2008; Kaufman et al., 2009, and 

references therein; Andresen et al., 2011; Müller et al., 2012) as a time of expansion of 

Scandinavian glaciers (Nesje et al., 1991; Nesje et al., 2001), increased sea-ice cover and 

colder surface waters in the Barents Sea and part of Fram Strait (Duplessy et al., 2001; 

Risebrobakken et al., 2010; Kinnard et al., 2011; Müller et al., 2012), colder surface and 

subsurface waters off western Norway (Calvo et al., 2002; Moros et al., 2004; Hald et al., 

2007; Sejrup et al., 2011) and overall colder conditions over Northern Europe (Bjune et al., 

2009). This cooling trend was punctuated by several warm and cold spells such as the Roman 

Warm Period and Medieval Climate Anomaly (RWP, MCA), and the Little Ice Age (LIA). 

Over the last century, the LIA was reversed by an overall increase in temperature, as seen in, 

terrestrial high resolution proxy records of the Arctic region (Overpeck et al., 1997; Kaufman 

et al., 2009) and proxy records from marine sediment cores of the northern North Atlantic 

(Spielhagen et al., 2011; Hald et al., 2011; Wilson et al., 2011). Marine proxy-based 

reconstructions suggest that this recent temperature increase in the subsurface layer west of 

Spitsbergen (Spielhagen et al., 2011) and in shallow settings off Northwest Norway (Hald et 

al., 2011) were unprecedented over the past two millennia. Both studies implied that this 

warming was probably caused by enhanced advection of Atlantic Water (AW) to the Arctic 

Ocean during modern times, although none were able to strictly infer the dynamical history of 

AW, i.e. the history of the strength of the North Atlantic Current (NAC). 

The hypothesis of an increased AW inflow during the modern period was further supported 

by Wanamaker et al. (2012) based on living and fossil molluscan remains north of Iceland; 

these authors additionally related known pre-Anthropocene warm (MCA) and cold (LIA) 

climatic spells of the last ~1500 years to modulations of the surface Atlantic-derived water 

dynamics within the North Atlantic. This modulation was further evidenced off Florida, at the 

inception of the Gulf Stream, by Lund et al. (2006) who estimated a 10 percent decrease in 

the flow of this current at the transition from the MCA to the LIA. Similarly, in the close 

Chesapeake Bay, such modulations was also evidenced by Cronin et al. (2005) who linked 

this to North Atlantic Oscillation (NAO) forcing of sea-surface temperature in the western 

North Atlantic. 
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The processes controlling variations in the meridional flow of the NAC to the Nordic Seas 

and ultimately to the Arctic Ocean are either associated with anomalies in the location and 

strength of the westerlies, and/or changes in the thermohaline circulation (Müller et al., 2012). 

At present the most prominent pattern of atmospheric variability in the North Atlantic Region 

is known as the NAO, itself depending on the Northern Hemisphere annular mode, the Arctic 

Oscillation (e.g. Marshall et al., 2001). The NAO is defined as the wintertime difference in 

atmospheric pressure (sea level) between the Icelandic low and the Azores high, controlling 

the strength and direction of westerly winds, storm tracks across the North Atlantic, 

temperature and precipitation over western Europe, and the strength of the poleward NAC and 

equatorward EGC (Blindheim et al., 2000; Hurrell et al., 2003). A low NAO index (reduced 

westerly flow across the Atlantic) induces a reduced flow of the NAC, less precipitation in 

Northern Europe and a more southern direction of the storm tracks (Hurrell et al., 2003). 

Whereas a high index favors a strengthened NAC flow, stronger precipitation and an eastward 

shift of the Arctic Front (AF) which separates Atlantic from Arctic waters (ArW), toward the 

slope off Norway (Blindheim et al., 2000). Furthermore modern observations indicate a 

significant correlation between the NAO indexes and the Barents Sea ice extent, with less sea 

ice during the positive NAO (warm) phases and conversely more ice during negative NAO 

(cold) phases (Vinje, 2001; Sorteberg and Kvingedal, 2006), possibly related to variations in 

southwesterlies, air masses and Atlantic inflow (Blindheim et al., 2000). 

Paleorecords from Arctic Canada and Iceland suggest that a series of explosive volcanism 

centered at the MCA/LIA transition might have triggered an extensive sea ice expansion 

during the LIA (Miller et al., 2012). A combined switch in NAO patterns from a long-term 

positive phase during the MCA to negative NAO conditions during the LIA (Trouet et al., 

2009) possibly further enhanced the severe increase in sea-ice extent, as decadal and long-

term variations in large scale ice concentrations have shown to be significantly correlated 

with long-term NAO variations (Visbeck et al., 2003). 

However, although the importance of the NAO on the modern hydrography and climate of the 

Nordic Seas is now well established, assessing its significance on paleoceanographical 

changes of this ocean realm has long been hampered by the lack of instrumental records prior 

to the 19th century, and by proxy- and model-based reconstructions reaching back only one 

millennia (Trouet et al., 2009). A high resolution reconstruction of NAO variability from a 

lake record in Southwestern Greenland (Olsen et al., 2012), recently extended the NAO 

record back to 5200 years Before Present (BP), offering a way to investigate links between 
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atmospheric processes and ocean circulation changes over the mid to late Holocene in the 

Northern North Atlantic. 

The NAC impact on the hydrological and climatic changes in the Nordic Seas and the Arctic 

Ocean is enormous, hence the need for an increased understanding of inflow variations, 

forcing mechanismes and the consequences on the global climate system is crucial in order to 

fully understand the changes in our present and future climate.  

Previous water column and surface sediment investigations of extant and fossil remains 

(coccoliths) of coccolithophorids suggested that this species group could be used as proxies, 

though mostly qualitative, of both water mass distribution and flow strength of the NAC in 

the northern North Atlantic (Samtleben and Schröder, 1992; Baumann et al., 2000; Schröder-

Ritzrau et al., 2001). Andrews and Giraudeau (2003) and Giraudeau et al. (2010) thereafter 

tested these coccolith proxies to infer the Holocene history of AW flow within the Denmark 

Strait and across the Iceland-Scotland Ridge. The present manuscript lies on these exploratory 

works in applying selected coccolith proxies on a set of marine sedimentary cores distributed 

along the continental margins off western Norway, western Barents Sea and western 

Spitsbergen. Our aim is to investigate late Holocene changes in AW flow and associated 

surface hydrological fronts along the main axis of heat and salt transfer to the Arctic Ocean, 

which is carried by the NAC and its northernmost extension (West Spitsbergen Current -

WSC-). Given the major influence of NAO related atmospheric processes on the modern 

NAC dynamics and climate of the Nordic Seas region, we will thoroughly discuss our proxy 

results in view of available NAO paleoreconstructions over the last 3000 years, as well as to 

nearby terrestrial and marine records. 

2. OCEANOGRAPHY 

The study area lies as a South-North transect along the continental slope off western Norway, 

the western Barents Sea and West of Svalbard (Fig. 1). This area is mainly influenced by 

three water masses; AW, Polar Water (PW) and Coastal Water. Warm (7-13 °C) and saline 

(≥35 PSU) AW is advected north by the NAC (Hopkins, 1991), originating from the Iceland-

Scotland Ridge, the main passageway of oceanic salt and heat transfer to the Nordic Seas (ca. 

7 Sv; Hansen and Østerhus, 2000). This topographically steered poleward flow of AW splits 

off northern Norway into a meridional branch, the WSC and a zonal component, the North 

Cape Current (NCaC). The WSC flows along the slope of the western Barents Sea and off 

western Svalbard, joined on its northern path byArW on the shelf from the Bear Island 

Current (extension around Bjørnøya of the Persey Current, PC) and the Sørkapp Current 
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(extension around southern Svalbard of the East Spitsbergen Current, ESC) (Saloranta and 

Svendsen, 2001; Wassman et al., 2006) (Fig. 1), and transmits a volume of roughly 3-5 Sv of 

AW to the Arctic Ocean, part of it being recirculated at intermediate depth below the 

southward flowing East Greenland Current (EGC). North of Svalbard, AW enters the Arctic 

Ocean as a subsurface current insulated from the atmosphere by fresh PW in the upper mixed 

layer (Blindheim and Østerhus, 2005). The NCaC transmits 1.8 Sv of AW to the Barents Sea 

round northern Norway (Skagseth et al., 2008), preventing winter sea-ice to develop in the 

southern region of the Barents shelf. The Norwegian Coastal Current (NCC), flowing along 

the Norwegian coast is influenced by freshwater runoff from the Norwegian mainland and 

from the Baltic Sea, and is therefore characterised by reduced salinities (34.4~PSU) 

(Wassman et al., 2006). 

 

 
 
Figure 1: Bathymetric map of the Nordic Seas showing the major oceanic features and site locations. Red 
arrows: flow direction of warm saline Atlantic water (NAC: North Atlantic Current, NCaC: North Cape Current, 
WSC: West Spitsbergen Current), blue arrows: flow direction of cold low saline Arctic/Polar waters (EGC: East 
Greenland Current, ESC: East Spitsbergen Current, PC: Persey Current), purple arrow: flow direction of coastal 
surface current (NCC: Norwegian Coastal Current). Dashed yellow line: modern distribution of Arctic Front 
(AF). Core locations A: HH11-134-BC (West of Spitsbergen), B: JM09-KA11-GC (western Barents Sea) and C: 
MD95-2011(Vøring Plateau).  
 
Sea-ice and fresh water from the Arctic Ocean are essentially transmitted to the Nordic Seas 

via Fram Strait and the southward flowing cold and fresh EGC (<0°C, <34.5 PSU) (Buch, 
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2000), the largest and most concentrated meridional ice flow in the World Oceans (Blindheim 

and Østerhus, 2005) (Fig. 1). The Northeast-Southwest trending boundary between PW and 

ArW is termed the Polar Front indicating the minimum drift ice extent (summer), whereas the 

boundary between ArW and AW is known as the AF and represents the maximum drift ice 

extent (winter) (Baumann et al., 2000; Wassman et al., 2006). Though showing some complex 

local peculiarities, the interannual changes in sea-ice extent are closely controlled by 

atmospheric processes acting over the Nordic Seas and surrounding areas. A link with NAO 

was proposed by Hurrell (1995) and is consistent with anomalies of sea-ice extent in the 

Barents Sea (Vinje, 2001). Further north in the Greenland Sea, maximum ice export from the 

Arctic ocean through Fram Strait characterizes positive NAO periods (Kwok et al., 2004). 

      

Table 1: Core location, water depth, length and geographical area   
      
Core ID Latitude Longitude Water 

depth 
(m) 

Core 
length 
(m) 

Location 

MD95-2011 66°58.19'N 7° 38.36'E 1048 7,45 Mid Norwegian 
Margin (Vøring 
Plateau) 

JM97_948/2A 
BC 

66°58.19'N 7° 38.36'E 1048 0,30   

JM09-KA11-
GC 

74°52.489' 17° 
12.210'E 

345 3,6  Midwest Barents 
Sea (Kveithola 
Trough) 

HH11-134-BC 77° 35.96 9°53.25'E 1383 0,41 West spitsbergen 
slope 

            

3.  MATERIAL AND METHODS  

Three marine sediment cores distributed along the Norwegian, Barents Sea, and Svalbard 

continental margins were specifically selected for the present work (Fig. 1, Table 1). 

The southernmost site (hereafter refered to MD95-2011), representing a splice between a box-

core (30 cm) covering the top 560 years (JM97-948/2A) and the MD95-2011 piston core 

(Giraudeau et al., 2010), was retrieved on the Vøring Plateau off western Norway, located 

below the main path of the poleward flowing NAC. The present investigation was conducted 

on the top 220 cm of the composite MD95-2011. The 383 cm long gravity core JM09-KA11-

GC, of which the top 25 cm is presented here, was retrieved from the Kveithola trough, 

representing the western Barents Sea component of the transect, influenced both by the WSC 
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and Arctic/Polar waters circulating clockwise round Svalbard (Sørkapp Current) and 

Bjørnøya (Bear Island Current). The 41 cm long box-core HH11-134-BC was retrieved on the 

West Spitsbergen Margin under the axis of the WSC inflow to the Arctic Ocean. The present 

study was carried on the top 27 cm of this core. 

        

Table 2: Core, sample depth, dated material, 14C AMS age years BP, calibrated years BP, 
Laboratory ID and Reference. 

Core Core 

depth 

(cm) 

Dated 

material 

14C AMS 

Age years 

BP 

Calibrate

d Age, 

cal. 

Years BP 

Calibrate

d ages, 

2σ range 

Lab ID Reference 

HH11-134-BC 9.75 Bulk planktic 

foraminifera 

826  +/- 23 462.5 420-505 UBA-

20062 

 

HH11-134-BC 15.5* Bulk planktic 

foraminifera 

2030  +/- 30 1602 1515-1688 SacA 

29428 

 

HH11-134-BC 19.5 Bulk planktic 

foraminifera 

1995  +/- 28 1571 1473-1669 UBA-

20061 

 

HH11-134-BC 30.25 Bulk planktic 

foraminifera 

3825  +/- 30 3774.5 3676-3873 SacA 

29432 

 

        
JM09-KA11-GC 4.50  Bathyarca 

glacialis 

925  +/- 30 543 482-604 TRa-

1063 

Rüther et al., 

(2012) 

JM09-KA11-GC 16.00  Bathyarca 

glacialis 

1880  +/- 35 1424.5 1332-1517 TRa-

1065 

Rüther et al., 

(2012) 

JM09-KA11-GC 27.50  I. Norcrossi/ 

helenae 

4430 +/- 30 4758 4745-4771 Beta-

324049 

Berben et al. 

(2013) and Groot 

et al. (2013) 

JM09-KA11-GC 33*  A. elliptica 1990  +/- 35 1556 1441-1671 Tra-

1066 

Rüther et al., 

(2012) 

JM09-KA11-GC 40.00  I. Norcrossi/ 

helenae 

5480  +/- 30 5838.5 5749-5928 Beta - 

315192 

Berben et al. 

(2013) and Groot 

et al. (2013) 

        

JM97_948/2A 

BC 

4.75   -1  210Pb 

Dated 

Risebrobakken et 

al., (2003) 

JM97_948/2A 

BC 

7.75   18  210Pb 

Dated 

Risebrobakken et 

al., (2003) 

JM97_948/2A 

BC 

10.25   29  210Pb 

Dated 

Risebrobakken et 

al., (2003) 

JM97_948/2A 

BC 

21.75 N. pachyderma 

(dex) 

735  +/- 40 375.5 290-461 KIA 

6285 

Risebrobakken et 

al., (2003) 

JM97_948/2A 

BC 

30.75 N. pachyderma 

(dex) 

940  +/- 40 553.5 485-622 KIA 

4800 

Risebrobakken et 

al., (2003) 

        

MD95-2011 10.5 N. pachyderma 

(dex) 

980  +/- 60 573 489-657 Gif 

96471 

Risebrobakken et 

al., (2003) 

MD95-2011 30.5 N. pachyderma 

(dex) 

1040  +/- 40 602.5 534-671 KIA 

3925 

Risebrobakken et 

al., (2003) 

MD95-2011 47.5 N. pachyderma 

(dex) 

1160  +/- 30 709.5 650-769 KIA 

5601 

Risebrobakken et 

al., (2003) 

MD95-2011 70.5 N. pachyderma 

(dex) 

1460  +/- 50 1021 907-1135 KIA 

3926 

Risebrobakken et 

al., (2003) 

MD95-2011 89.5 N. pachyderma 1590  +/- 30 1148.5 1060-1237 KIA Risebrobakken et 
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3.1  Core Chronology 

The chronologies of the studied sediment core intervals are based on 22 AMS 14C- and 210Pb-

dates of which 13 have previously been published for core JM09-KA11-GC (Rüther et al., 

2012), and MD95-2011 (Risebrobakken et al., 2003) (Table 2). The dates were calibrated to 

calendar years BP (present = 1950 AD) applying the software Calib 6.1.0 (Stuiver and 

Reimer, 1993) and the marine calibration curve marine09 (Reimer et al., 2009) using a 

reservoir correction of ~400 years (∆R = 0). This reservoir correction was chosen as a further 

finetuning of the signals would result in age models differing from published paleoclimate 

data sets using the standard variations. Nevertheless we are aware of a possible shift of our 

age models due to the ∆R effect, especially in areas with ‘old’ Arctic/Polar waters.  

 

(dex) 6286 al., (2003) 

MD95-2011 154 N. pachyderma 

(dex) 

2335  +/- 25 1953 1868-2038 KIA 

6287 

Risebrobakken et 

al., (2003) 

MD95-2011 170.5 N. pachyderma 

(dex) 

2620  +/- 60 2298 2128-2468 Gif 

96472 

Risebrobakken et 

al., (2003) 

MD95-2011 269.5 N. pachyderma 

(dex) 

3820  +/- 35 3768.5 3659-3878 KIA 

10011 

Risebrobakken et 

al., (2003) 
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Figure 2: Calendar age-depth model and sedimentation rates of JM09-KA11-GC (linear interpolation 
between each dated level) and HH11-134-BC (second order polynomia), based on data from table 2. Filled 
circles: incl. AMS C14 datings, hollow circle: excl. AMS C14 datings. The stratigraphic framework of core 
MD95-2011 was developed by Birks and Koç (2002), Risebrobakken et al. (2003) and Andersson et al. 
(2003). 
 

3.2  Micropaleontological Analyses 

The chronologies was established using the calibrated mean ages for the 2σ interval of highest 

probability and assuming a constant sedimentation rate between each radiocarbon dated level 

of JM09-KA11-GC (linear interpolation) and a second order polynomial fit for core HH11-

134-BC (Fig. 2). The sedimentation rates of the three studied cores range from 5 to 146 

cm/kyr, which according to the sampling resolution, lead to a temporal resolution of our 

micropaleontological dataset of 10 to 105 years. A decadal to multi-decadal resolution has 

been found sufficient in the present study to identify major centennial scale changes in 

paleocirculation along our transect. 

 

The sample preparation for the coccolith study was conducted according to the “Funnel” 

method described by Andruleit (1996). It involves dilution and filtration of a preweight 

amount of dry bulk sediment on membrane filters, mounting between slide and coverslip, and 

examination under a light microscope, at x1000 magnification. A total of more than 300 

specimens were counted in order to insure the statistical reliability of our results (Andruleit , 

1996) and were ultimately expressed in terms of relative abundances (species percentage) and 

absolute concentrations (specimens/gram of dry bulk sediment). Previous repeated analyses of 

fine fraction sediment samples using the “Funnel” method revealed that the method can cause 

~15% deviation in the bulk coccolith absolute concentrations (Herlle and Bollmann, 2004) 

and consequently species-specific absolute concentrations. Hence only relative abundances 

and “major” (>>15% deviation) absolute concentration changes will be adressed in the 

following. 

An additional investigation on planktonic foraminiferal assemblages was conducted on the 

northernmost sediment core (HH11-134-BC). Samples were wet sieved through a 63 µm 

mesh. Counting was performed on the >100 µm fraction according to Husum and Hald (2012) 

in order to include small sized species which are frequent in assemblages of the northern 

North Atlantic. We will only present here the relative abundance of subpolar planktic 

foraminifera, expressed as the sum of Globigerinata species and Turborotalia quinqueloba. 
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3.3.  Rationale for the Selection of Species-Specific Coccolith Proxies. 

While an overall presentation of the coccolith assemblages in the sediment cores is provided 

in the present paper, a focus is made on species-specific coccolith proxies of surface water 

mass distribution and AW flow dynamics in the studied geographical domain. 

Extant populations of coccolithophorids thriving in the Nordic Seas are overwhelmingly 

dominated by Emiliania huxleyi (high to very high cell densities) and Coccolithus pelagicus 

(medium-high cell densities) (Baumann et al., 2000), with rare occurrences of a few 

representatives of Syracosphaera spp. and of the deep-thriving species Algirosphaera robusta 

(Samtleben and Schröder, 1992; Samtleben et al., 1995). Both E. huxleyi and C. pelagicus 

dominate settling assemblages and assemblages in the sediment (Schröder-Ritzrau et al., 2001 

and reference therein). E. huxleyi is a summer blooming ubiquitous species with a strong 

affinity for Atlantic-derived surface waters in the eastern part of the Nordic Seas. Beside its 

preferential distribution within areas bathed by the NAC, this species is suggested to be 

influenced mainly by variations in stratification, irradiance and to a lesser extent temperature 

of the photic layer (Samtleben and Schröder, 1992; Samtleben et al., 1995; Baumann et al., 

2000; Beaufort and Heussner, 2001). 

Coccolithus pelagicus, the cold end-member of the extant coccolithophorid populations in the 

Nordic Seas, thrives preferentially in the vicinity of the Arctic Front and in the Greenland Sea 

(Samtleben et al., 1995). Turbulence might be an important factor to prevent sinking of this 

heavily calcified species from the photic zone and therefore favors its dominance in areas 

with moderate gradients in salinity and temperature (Cachão and Moita, 2000) and/or Arctic 

to Polar waters. 

 

The different regional dominance of these two species is also reflected in surface sediments 

(Samtleben et al., 1995). The abundance ratio between E. huxleyi and C. pelagicus (E/C ratio) 

in fossil assemblages in the Nordic Seas has therefore been proposed by Baumann et al. 

(2000) to define the location of the AF, which separates the seasonally ice-covered waters of 

the Polar and Arctic domains (E/C<1) from warmer and saltier Atlantic-derived waters 

(E/C>1). According to Baumann et al. (2000), the E/C ratio is based on a conversion of 

coccolith to coccosphere units; the average number of coccoliths per coccosphere for each 

species is taken from Samtleben and Schröder (1992).  

Allthough the original work by Baumann et al. (2000) were confined to the central areas of 

the Nordic Seas, we believe the application of this method to be valid in the wider Nordic 
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Seas including its eastern part. The published surface sediment sample dataset by Baumann et 

al. (2000) only included a few sites far west of the continental margin with coccolith 

assemblages dominated by C. pelagicus (E/C <1). This excess C. pelagicus abundance stands 

as a contrast to our own results from surface sediment assemblages in the northern cores 

HH11-134-BC and JM09-KA11-GC, as well as to the composition of extant populations 

northwest of Bjørnøya (Baumann et al., 2000) and across Fram Strait (Dylmer et al., 2013, 

this study), which both indicate an expected clear dominance of E. huxleyi below and within 

AW dominated areas. Based on these evidences we use the definition of the AF (a frontal 

salinity and temperature gradient separating surface AW masses from mixed ArW) to infer 

that the E/C ratio (ie. deviations from the treshold of 1) characterizes surface sediments 

deposited below Atlantic or Arctic surface water masses, when considering pluriannual 

conditions.   

 

Though barely found in modern plankton communities of the Nordic Seas (Andruleit, 1997; 

Dylmer et al., 2013, this study), coccoliths of Gephyrocapsa muellerae and Calcidiscus 

leptoporus commonly contribute together up to ~20% of the fossil assemblages in surface 

sediments of the eastern Nordic Seas. Drifting with the poleward flow of surface to 

intermediate NAC waters from the temperate North Atlantic, where these species are 

preferentially thriving, was proposed as a possible explanation for this discrepancy by 

Samtleben and Schröder (1992). Based on new datasets on living and fossil communities, 

Giraudeau et al. (2010) revisited the distributional pattern of G. muellerae in the North 

Atlantic and restricted the ecological niche of this species to the eastern North Atlantic, south 

of the Iceland-Scotland ridge. Given this ecological background, abundance changes of G. 

muellerae in the studied sediment cores will be discussed in terms of relative variations of the 

depth integrated flow strength of the NAC to the Nordic Seas up to its northernmost extension 

off western Svalbard (WSC).  

Eventhough the mechanism of poleward transport, as described here for G. muellerae, is 

supposed to affect all species thriving in southern latitudes within the path of the NAC, it is 

not expected to hamper the paleorecords of the high in situ production of the dominating 

species (e.g. E. huxleyi and C. pelagicus) in the Nordic Seas which is transferred to the 

sediment surface within weeks by fecal pellets (Samtleben and Schröder, 1992; Andruleit et 

al., 1997). 
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4.  RESULTS AND INTERPRETATION 

4.1  Bulk Coccolith Concentrations 

Preservation of coccolith remains was good to moderate throughout the three studied cores, 

hereby confirming the overall relatively good preservation of calcareous microfossils in recent 

sediments of the eastern Nordic Seas (Hebbeln et al., 1998; Matthiessen et al., 2001). Bulk 

coccolith concentrations throughout the investigated time interval range from 25±10 x108 

specimens/g. of dry sediment (sp/g. dry sed) in the Vøring Plateau area, to a minimum of 

1±0.5 x108 sp/g. dry sed in the Kveithola through region (Fig. 3). These values fall within the 

range of typical coccolith concentrations in surface sediments of the eastern Nordic Seas and 

accurately reproduce the decreasing poleward trend of coccolith absolute concentrations in 

sediments presently accumulating along the path of the NAC and WSC (Baumann et al., 

2000).  

 
Figure 3: Bulk coccolith concentrations records (coccoliths * 10^8/g dry sed). 

 

While downcore bulk coccolith concentrations are rather stable over the last 3000 years (with 

the exception of a short low centered at 2500 cal. years BP) at the Vøring Plateau site, the two 

northernmost locations off western Barents Sea and Svalbard are characterized by increased 
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values towards the present. Relative changes in the amount and temperature of Atlantic-

derived surface waters which sustain most of the calcareous plankton production in the 

Nordic seas (Schröder-Ritzrau et al., 2001, and references therein) are supposed to explain to 

a high extent the observed latitudinal and temporal changes in bulk coccolith accumulation 

(Andruleit and Baumann, 1998). The inferred sedimentation rates in the three studied cores 

falls within the range of previous investigations carried out in western Barents sea (Sarnthein 

et al., 2003), off western Spitsbergen (Werner et al., 2011), and at the Vøring Plateau (Sejrup 

et al., 2011). The late Holocene sedimentation rates show large variations in-between the 

studied locations which can only be explained by geographical differences in terrigeneous 

inputs from nearby continental shelfs and/or distribution of sediment-laden sea-ice (Vinje et 

al, 2001; Divine and Dick, 2006). Spatial and temporal changes in dilution of the biogenic 

component of Nordic Seas sediments by terrigeneous material are consequently likely to bias 

the significance of bulk coccolith concentration records in terms of paleoproductivity patterns. 

4.2  Species assemblages 

Coccolith species diversity is typically low as expected for this arctic/subarctic setting (e.g. 

Baumann et al., 2000; Matthiessen et al., 2001). The dominance is shared between C. 

pelagicus and E. huxleyi in sediments of the two northernmost cores HH11-134-BC and 

JM09-KA11-GC whereas the latter species always contributes to >50% of the total 

assemblages over the last 3000 years off Norway (MD95-2011) (Fig. 4). The clear latitudinal 

shift in dominance from E. huxleyi to C. pelagicus, which is related to the specific water 

masses dominating at the core sites (AW/ArW), shows distinct local/regional patterns along 

the transect with relative abundance changes in the range of  26-56% (E. huxleyi) and 33-63% 

(C. pelagicus) West of Spitsbergen, 30-67% and 20-54% in the western Barents Sea, and 46-

82% and 8-28% West of Norway. An overall increased E. huxleyi contribution interrupted by 

several millennial-scale low amplitude changes characterizes the west-Spitsbergen core over 

the studied time-interval, with a short shift in dominance weakly apparent in the interval 

~1200-800 cal. years. BP and more clearly in modern times. The western Barents Sea core 

show an intermediate signal with relatively high E. huxleyi abundances toward the beginning 

and the end of the records and a sustained low between ~1200 and 2300 cal. years BP. West 

of Norway, although always dominating the coccolith assemblages, E. huxleyi displays a 

steady decreasing abundance from 3000 cal. years BP to the Present. 

As expected given its overall shared dominance with E. huxleyi, C. pelagicus displays 

opposite patterns of relative abundance in all cores. 



Chapter 4 

Christian V. Dylmer, 2013 

 

175 
 

 
Figure 4: Relative abundances (%) of major (left axes) and minor (right axes) coccolith species throughout the 
three studied cores.  
 

The resultant E/C ratios show lower values with higher latitudes, ranging from 6.6 to 0.2 (Fig. 

5). This ratio displays overall increasing values West of Svalbard and in the western Barents 

Sea from 3000 years onward, with a contrasting decreasing trend West of Norway. Increased 

ratios characterize the early part of the three records from ca. 3000 to 2100 cal. years BP, 

followed by a period of decreased values between 2100 and 1200 cal. years BP. Thereafter, 

both HH11-134-BC and JM09-KA11-GC share common patterns with higher species ratios 

until ~700 cal. years BP, followed by a 600 years long interval of lower E/C values, and 

ending with high ratios over the last century. Contrary to the pattern displayed at the two 

northermost sites, the species ratios at MD95-2011 shows a marked steady decreasing trend 

from 1200 cal. years BP to the Present. 
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Figure 5: E/C ratios of the dominant coccolithophore species E. huxleyi (E) and C. pelagicus (C). The bar charts 
below each E/C plot highlight the dominating surface water masses at the core locations according to the “1” 
threshold: Blue = ArW (E/C<1); Red = AW (E/C >1).  

 

The subordinate species G. muellerae and C. leptoporus together account for an average 7.5% 

of the total assemblage throughout the studied cores (Fig. 4). A fifth species, Syracosphaera 

sp., only contributes on average 1.8%, and will not be discussed further. 

Contrary to E. huxleyi and C. pelagicus, the relative abundance changes of the drifted species 

G. muellerae and C. leptoporus are characterized by similar general trends along the whole 

latitudinal transect (Fig. 4). 

All sites display an overall increase of G. muellerae abundances during the last 3000 years 

punctuated by a low steady level in the 3000-2200 cal. years BP interval, a period of highest 

abundances from ca. 2200 to ~650 cal. years BP, followed by marked lower values until the 
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beginning of the last century. With the exception of the southernmost core MD95-2011, G. 

muellerae reaches high abundances in the top-most samples (ca. last 100 years) off western 

Svalbard and western Barents Sea. The trends in absolute concentrations and relative 

abundances of this drifted species are nearly identical at all studied sites (Fig. 6). Short and/or 

long term changes in sedimentation of sea-ice or continental-margin-derived lithic material, 

which most probably affect patterns of microfossil concentration records, including 

coccoliths, had therefore no obvious influence on G. muellerae absolute abundance trends 

along the studied transect. Hence G. muellerae absolute concentration records can be 

considered as significant proxies for relative changes in the NAC strength. 

 
Figure 6: Relative abundances (grey line) and absolute concentrations (black line) of the AW inflow species G. 
muellerae, throughout the three studied cores. The MD95-2011record is a late Holocene zoom of previously 
published data by Giraudeau et al., (2010). 
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C. leptoporus shows a peak in relative abundance within all studied cores (though more than 

twice lower than the maximum values of G. muellerae) centered at ~1800-2000 cal. years BP 

(2-10%) (Fig. 4). This abundance pattern, different from the other drifted species G. 

muellerae, is enigmatic given the common processes (i.e. poleward transport to the Nordic 

Seas) affecting both species. One explanation might lay in the less restricted ecological niche 

of C. leptoporus which presently colonizes a wider geographic domain in the North Atlantic 

from warm to cool temperate areas (i.e. Ziveri et al., 2001) than G. muellerae (Giraudeau et 

al., 2010). 

4.3  Variability in the Strength of the North Atlantic Current and Fluctuations of the Arctic 

Front. 

Our coccolith records are indicative of important changes in the strength of the NAC and in 

the dominating surface waters (Arctic vs. Atlantic) within the eastern Nordic Seas over the 

last 3000 years. Figure 7 summarizes the main paleoceanographic information inferred from 

our coccolith proxies, together with the abundance record of subpolar planktonic foraminifera 

in the northernmost studied core. Both the HH11-134-BC foraminiferal abundance record 

(this study, Fig. 7) and planktonic foraminiferal stable isotopes and species abundances 

measured in core MD95-2011 (Risebrobakken et al., 2003; Andersson et al., 2003) suggest an 

increased influence of AW in the Eastern Nordic seas throughout the last 3000 years. The 

correspondence between our G. muellerae abundance datasets and foraminiferal records is 

particularly obvious in core HH11-134-BC off western Svalbard, where foraminifera are 

assumed to represent subsurface waters within the main core of Atlantic-derived waters 

(Carstens et al., 1997), thus confirming the reliability of this coccolith index as a proxy of 

Atlantic water flow.  

The following discussion compares our data with previous marine and terrestrial proxy 

records of sea-ice distribution, atmospheric circulation (NAO index), and sea-surface and 

subsurface temperatures in the northern North Atlantic region in order to provide a thorough 

insight into the paleoceanographical and paleoclimatological development of this climatic 

sensitive area during the Late Holocene. In the final part we will zoom in on the major 

climatic changes during the last 700 years covering the interval from the MCA/LIA transition 

to the Modern Period. 
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4.3.1 Reconciling the Observed Long-Term Trends in AW Flow and Distribution of Surface 
Waters with the so-called “Neoglacial Cooling”. 

The manifestation of the Late Holocene (last ~3000 years) trend toward positive NAO 

conditions can be inferred from various marine proxy records around Greenland showing 

colder conditions associated with decreased AW influence in Discobay (western Greenland) 

related to the so-called “seesaw” pattern (Seidenkrantz et al., 2008; Andresen et al., 2011 and 

2012), and an increased flux of sea-ice/icebergs east of Greenland (Jennings et al., 2002). 

Accordingly, Moros et al. (2004) interpreted the patterns of increased abundance of ice-rafted 

detritus (IRD) in the western parts of the Nordic Seas (Jennings et al., 2002) and decreased 

IRD in the Norwegian Sea (their work) to a strengthening of both the NAC and the EGC from 

the Mid-Holocene to Present. This coupled strengthened circulation affecting the eastern and 

western parts of the Nordic Seas is consistent with modern observations (Blindheim et al., 

2000; Furevik and Nilsen, 2005) and modelling experiments (Nilsen et al., 2003) which relate 

it to atmospheric processes akin to the present positive phase of the NAO. Finally, a 

strengthening of the NAC and its WSC extension has earlier been suggested by Sarnthein et 

al. (2003) based on a general increase in reconstructed subsurface temperatures in the western 

Barents Sea, which the authors related to a slight increase of the thermohaline circulation 

(THC). Concurrent glacier expansions on west Spitsbergen (Svendsen and Mangerud, 1997) 

and increased winter precipitation over mid-western Norway (Nesje et al., 2001) throughout 

the last 3000 years additionally argue for strengthened southwesterlies and associated increase 

in NAC and WSC flows, related to the increasingly positive NAO trend, which together 

constitute the main source of moisture for these high latitude regions. 

The surface water expression of the inferred strengthened AW flow toward the northern 

Nordic Seas is marked by an overall trend of increased influence of surface AW masses in the 

western Barents Sea and off western Svalbard (Fig. 5). Sustained surface AW conditions 

occurred earlier at site JM09-KA11-GC from ca. 1000 cal. years BP, than at the northernmost 

Fram Strait site HH11-134-BC where poleward AW due to the overall dominating sea ice 

conditions (last 3000 years; Müller et al., 2012) did not affect the surface until the last 

century. The increased flow of the WSC branch of the NAC throughout the late Holocene has 

previously been suggested from planktonic foraminiferal-based SST reconstructions off 

western Barents Sea (Sarnthein et al., 2003) as well as from phytoplankton biomarkers and 

CaCO3 contents in sediments off western Svalbard (Müller et al., 2012), to which our 

coccolith proxy (E/C ratio) of surface water masses might further add some constrains and  
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improve the understanding of changes in the water column distribution of AW in the northern 

North Atlantic. 

 



Chapter 4 

Christian V. Dylmer, 2013 

 

181 
 

Figure 7: Summary plot of surface and subsurface circulation changes across the eastern Nordic Seas over the 
past 3000 years. (A) : combined NAO index reconstruction based on Trouet et al. (2009) and Olsen et al. (2012); 
Red area represents positive NAO and blue area negative NAO conditions. (B) : relative abundance of subpolar 
foraminifera (fraction > 100 µm) at site HH11-134-BC as an index of subsurface AW masses. (C) : dominating 
surface water masses at site HH11-134-BC (Fram Strait) inferred from E/C ratios. (D) and (E) : Dynamics of 
AW flow off western Svalbard (top) and off western Norway (bottom) inferred from  absolute concentrations of 
the AW inflow species G. muellerae. The grey shaded areas indicate the marked inflow increases during the 
Modern period and the intra-LIA event centered at 330-410 cal. years BP. The dashed thick line refers to the 
initiation of the LIA according to Miller et al. (2012). 

 

The studied site off western Norway shows an opposite surface signature to the northernmost 

locations (Fig. 5): here, though always overlaid by surface AW mass over the last 3000 years, 

core MD95-2011 displays a decreasing E/C ratio, most prominent during the last 1200 years 

(increase in C. pelagicus) which translates into an increasing proximity to ArW. Once again, 

modern observations on the influence of NAO upon the surface hydrology of the eastern 

Nordic Seas might shed light on this apparent paradox. Instrumental records are indeed 

indicative of a correlation between changes in the NAO index and surface temperature 

variations (Blindheim et al., 2000; Miettinen et al., 2011), which is stronger west of Svalbard 

than off western Norway (Blindheim et al., 2000). Strengthened westerlies (positive NAO 

index) (Fig. 7), whose track of maximum wind stress in the Eastern Nordic Seas affects the 

oceanic area off south and mid-Norway, force both an increased flow of AW and a narrowing 

of the surface expression of the NAC toward the Norwegian slope (Blindheim and Østerhus, 

2005, and references therein). An obvious implication at MD95-2011 is an increased 

proximity of arctic-derived surface water (eastward shift of the AF), throughout the last 3000 

years, as suggested by the trend of coccolith E/C ratio (Fig. 5), and confirmed by Norwegian 

Sea diatom (Andersen et al., 2004; Birks and Koc, 2002) and alkenone-derived SST 

reconstructions (Calvo et al., 2002). 

4.3.2  Zooming in on the Little Ice Age and the Modern Period. Time Interval ~700-0 cal. 
years BP  

The late Holocene trend of increased poleward flow of AW was interrupted by a sudden shift 

to a period of deteriorating conditions that we assume corresponds to the MCA/LIA transition 

(Fig. 7). The slight offset in the timing of the observed LIA initiation between the 

stratigraphically best resolved core MD95-2011 (ie. ca. 660 cal. years BP) and the two 

northernmost locations can to a large extent be explained by the use in the present study of a 

standard reservoir correction (R=0) for constraining the stratigraphical framework of all three 

studied sediment cores, a simplification which does not take into account possible varying 

contribution of “old” carbon from Arctic/Polar water masses off western Svalbard and 
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western Barents Sea . The MCA/LIA climatic shift is thought to have been triggered by a 

combination of a reduction in solar irradiance, explosive volcanism and changes in the 

internal modes of variability of the ocean-atmosphere system, as one single process cannot 

usually explain this cold period alone (Wanner et al., 2011). The suggested 660 cal. years BP 

MCA/LIA age lies within the range of previously proposed ages for the initiation of this 

climate deterioration in the studied region (Hald et al., 2011; Sejrup et al., 2011), and closely 

corresponds to recent evidences from Arctic Canada and Iceland (Miller et al., 2012) for a 50 

year long explosive volcanism centered at 650 cal. years BP. According to these latter 

authors, the onset of the LIA was directly linked to such volcanic events which triggered an 

extensive sea ice expansion causing a self-sustaining sea-ice/ocean feedback until Modern 

times. As volcanic eruptions seems to modify on short time scales a naturally occurring 

variability mode similar to the NAO toward its positive phase (Graf et al., 1994), the 

reconstructed major change to a negative NAO index across the MCA/LIA transition (Fig. 7; 

Olsen et al., 2012), is most likely related to other forcings i.e. greenhouse gasses, stratospheric 

ozone and solar irradiance (Gillett et al., 2003). Nevertheless such a concomitant change in 

NAO pattern from a long-term positive phase to highly fluctuating negative NAO conditions 

around 640 cal. years BP (Fig. 7A) possibly additionally contributed to an increase in sea-ice 

extent, as decadal and longterm variations in large scale ice concentrations has shown to be 

significantly correlated with long-term NAO variations (Visbeck et al., 2003). This major 

change in turn impacted on the efficiency of the NAC flow to the northern North Atlantic 

(Fig. 7D), therefore further maintaining, if not strengthening, the sea-ice expansion across the 

northern Nordic seas (Werner et al., 2011; Müller et al., 2012).  

The harsh LIA conditions favored colder surface and subsurface waters in the eastern Fram 

Strait as also reflected by the E/C ratio and planktonic foraminiferal abundance patterns in 

core HH11-134BC (Fig. 7B+C). The prevailing Arctic-Polar surface watermasses in eastern 

Fram Strait stands however as a strong contrast to the dominating surface signature of AW at 

the western Barents Sea core site (Fig. 5). The specific location of core JM09-KA11-GC 

within the influence of both AW (WSC) and ArW (Sørkapp Current, Bear Island Current) 

suggests that although sea ice cover was probably enhanced over the western Barents Sea 

during this climate deterioration, this local area was affected by a highly fluctuating sea-ice 

boundary with strong seasonal gradients characterized by an early spring break up of the 

winter sea ice, and a strong spring/early summer stratification and AW dominance during 

summer (favoring E. huxleyi). The specific surface expression at this site is further confirmed 
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by the overall similarities between our E/C proxy (JM09-KA11-GC) and reconstructed 

atmospheric temperatures from a lake record in western Svalbard (D’andrea et al., 2012), an 

area influenced by similar hydrological features (e.g. sea ice, the Sørkapp Current and the 

WSC). D’andrea et al., (2012) identified a temperature increase starting at ~1600 AD over 

western Svalbard as well as mild LIA summer conditions which they explained by a 

strengthened WSC (NAC), a strengthening only inferred in the present study from our JM09-

KA11-GC coccolith record. We therefore suggest the identified warming on Svalbard to be 

rather due to a decreased flow of polar waters over the shelf via the Sørkapp Current and the 

Bear Island Current, rather than changes in the strength of the NAC, possibly resulting in a 

seasonally stronger AW influence on atmospheric temperatures and sea ice extent. 

The above described Arctic/Polar LIA conditions in eastern Fram Strait was interrupted by a 

sudden short pulse of increased WSC flow between ~330 and 410 cal. years BP as depicted in 

HH11-134-BC by our G. muellerae proxy records (Fig. 7B+D) as well as a maximum in 

subpolar foraminiferal abundance. This strengthened, short-lived AW flow to the northern 

Nordic Seas was synchronous with a short term increase in the Atlantic Multi-decadal 

Oscillation (Gray et al., 2004, Winter et al., 2011) and a change towards positive NAO 

phases. Both processes are likely to explain the minimum sea-ice anomaly in the Nordic Seas 

during the fifteenth century, compared with the previous and later centuries, as evidenced by 

Macias Fauria et al. (2009) and Kinnard et al. (2011). The magnitude of this warm pulse, as 

evidenced by our coccolith proxy record, falls within the range of the AW flow strengthening 

during the MCA, and is only surpassed by the maximum in AW flow during the Modern 

period (Fig. 7D).  

The reconstructions on Arctic sea-ice by Kinnard et al. (2011) are particularly coherent with 

the message given by the G. muellerae concentrations at core HH11-134-BC with a phasing 

of the WSC flow pulse and the following deteriorating conditions in both AW flow (our 

work) and sea-ice extent until the early 20th century (Kinnard et al., 2011), suggesting a 

generally strong impact of AW flow dynamics on the Arctic sea-ice extent.  

The LIA cool climatic period was reversed during the 19th century by an overall increase in 

atmospheric and sea temperatures, as reconstructed from marine and terrestrial high resolution 

proxy records from the Arctic region (Overpeck et al., 1997; Kaufman et al., 2009). Recent 

studies on sea-surface temperature reconstructions over the last 2000 years in Malangen fjord, 

northwestern Norway (Hald et al., 2011), and West of Spitsbergen (Spielhagen et al., 2011), 

and evidences herein of high amplitude, rapid temperature increases during the last century, 



Chapter 4 

Christian V. Dylmer, 2013 

 

184 
 

has intensified the ongoing debate on temperature changes in the Arctic. Spielhagen et al. 

(2011) used foraminiferal assemblages and geochemical measurements to reconstruct a ~2 °C 

temperature increase in the subsurface waters of eastern Fram Strait at the transition from the 

LIA to the Modern period. Our dataset obtained from core HH11-134-BC, not only confirms 

the high amplitude warming of subsurface waters at the turn of the 19th- century (Fig. 7), it 

also shows that such a warming was primarily induced by an excess flow of AW along 

western Svalbard as depicted by our G. muellerae proxy record (Fig. 7D). Our coccolith 

results also indicates that this Modern strengthening of AW flow across Fram Strait was 

unprecedented over the last 3000 years, and was associated by an exceptional AW shoaling 

(Fig. 7C), in agreement with reported historical lows in sea ice extent in the Nordic Seas since 

the second half of the 19th century (Divine and Dick, 2006). 

5.  CONCLUSIONS 

Late Holocene changes in the flow of AW and in the nature of surface waters along the 

eastern border of the Nordic Seas are reconstructed from coccolith proxy records distributed 

from the mid-western Norwegian margin to eastern Fram Strait. Our floral records show a 

general strengthened NAC flow from 3000 cal. years BP to the Present which affected the 

whole investigated latitudinal range from 66 to 77 °N. This long term modulation in the AW 

flow appeared linked to atmospheric processes driven by dominant modes of NAO. This 

mechanism also explains the observed zonal shifts in the location of the AF off western 

Norway, with increased influence of ArW during strengthened westerlies (positive NAO 

mode), whereas the western Barents Sea and eastern Fram Strait experienced an overall 

shoaling of AW which is proportional to its integratedflow to this northernmost settings.  

The Little Ice Age, which according to our best-dated records, initiated at ~660 cal. years BP, 

is seen as an episode of deteriorating conditions, with Arctic/Polar surface waters off western 

Svalbard and western Barents Sea, possibly associated with severe sea-ice conditions, and a 

strongly reduced AW flow. This strong cooling was interrupted in eastern Fram Strait by a 

short resumed high flow of WSC from ca. 330 to 410 cal. years BP, whose magnitude was 

only surpassed by the one which characterizes the Modern period. 

Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 

19th century off western Svalbard, it also shows that such a warming was primarily induced by 

an excess flow of AW which stands as unprecedented over the last 3000 years. 
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4.7.1  Coccolith vs. Dinocyst Ratios as AW/ArW Indicators  

Previous studies of surface sediment assemblages within the Nordic Seas have shown that the 

regional dominance of the coccolithophore species E. huxleyi (E) and C. pelagicus (C), on 

one hand, and of the dinocyst species O. centrocarpum (OCEN) and N. labyrinthus (NLAB), 

on the other hand, are clearly reflected in surface sediments of the Nordic Seas (Samtleben et 

al., 1995; Baumann et al., 2000; Matthiessen et al., 2001; Zonneveld et al., 2013) (Fig. 4.26, 

Chapter 2). Species distribution patterns indicate that E. huxleyi and O. centrocarpum 

dominate their fossil group assemblages within areas bathed by Atlantic-derived water 

masses, wheras C. pelagicus and N. labyrinthus show highest contributions below Arctic 

waters (Fig. 4.26). These species distribution patterns in modern sediments led to the 

definition of two relative abundance ratios (OCEN/NLAB and E/C) (Baumann et al., 2000; 

Matthiessen et al., 2001), as proxies for the location of the AF which separates the seasonally 

ice-covered Polar and Arctic waters (E/C<1; OCEN/NLAB<4) from warmer and saltier 

Atlantic-derived waters (E/C>1; OCEN/NLAB>4). 

Allthough Baumann et al. (2000) originally defined the E/C ratio, from surface sediments 

located in the central areas of the Nordic Seas, we believe that this proxy ratio is valid for the 

wider Nordic Seas including its eastern part. Baumann et al., (2000)’s dataset only included a 

few sites far west of the Norwegian continental margin with coccolith assemblages dominated 

by C. pelagicus (E/C <1) (Fig. 4.26). This excess C. pelagicus abundance is contradictory to 

our own observations in recent surface sediment assemblages from the northern cores HH11-

134-BC and JM09-KA11-GC, as well as to the composition of extant populations northwest 

of Bear Island (Baumann et al., 2000) and across Fram Strait (Dylmer et al., 2013, this study; 

Chapter 2), which both indicate a dominance of E. huxleyi below and within AW-dominated 

surface layers. Based on these evidences we use the definition of the AF (a frontal salinity and 

temperature gradient separating surface AW masses from mixed ArW) to infer that the E/C 

ratio (ie. deviations from the threshold of 1) characterizes surface sediments deposited below 

Atlantic or Arctic surface water masses, when considering pluriannual conditions. 

 

 

Figure 4.26 : Modern (surface sed.) distribution of key coccolith and dinocyst species in the Nordic Seas e.g. 
Emiliania huxleyi (E), Coccolithus pelagicus (C), Nematosphaeropsis labyrinthus (NLAB) and Operculodinium 
centrocarpum (OCEN), as well as the ratios E/C and OCEN/NLAB. Modified after Baumann et al. (2000) and 
Matthiessen et al. (1995, 2001). 
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Figure 4.27 : Temporal changes in the nature of surface water masses at the five studied core locations according 
to the key coccolith and dinocyst ratios (and their threshold values). The dinocyst and coccolith ratios are 
suggested to reflect the approximate location of the Arctic Front (AF) using various threshold ratios (red bars 
representing AW, E/C>1 and OCEN/NLAB>4; blue bars representing ArW, E/C<1 and OCEN/NLAB<4). 
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The original OCEN and NLAB relative abundance datasets used by Matthiessen et al. (2001) 

to define the OCEN/NLAB ratio was evenly distributed over the Nordic Seas (particularly 

over its northern part). As suggested in Fig. 4.26, this dinocyst ratio appears as valid for the 

entire Nordic Seas area. 

The resulting temporal changes in the late Holocene surface watermasses along our latitudinal 

transect of studied cores show strongly contradicting results between the two applied ratios 

(Fig. 4.27). While the E/C ratio is indicative of an overall time-transgressive increasing 

influence of AW towards Fram Strait, the downcore distribution of the OCEN/NLAB ratio 

suggests that AW generally occupied the photic layer over the whole studied latitudinal range 

throughout the last 3000 years. The latter is peculiar as earlier historical datasets on sea ice 

extent showed that Fram Strait and the central western Barents Sea are or have been 

influenced by sea ice (and therefore ArW) during the latter phase of the LIA (~100-51 cal. 

years BP) (Divine and Dick, 2006) (Fig. 4.28).  

 

 
Figure 4.28 : April and August ice edge positions for the period 1850-1899 AD (100-51 cal. years BP), modified 
from Divine and Dick (2006). 
 
The recent (late LIA) presence of sea-ice is fairly well depicted by the distribution of the E/C 

ratio in both HH11-134-BC and R406MC032, whereas the record at JM09-KA11-GC 
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(Kveithola) are indicative of surface AW throughout the last ca. 800 years. The latter, 

relatively low sedimentation rate, core might however be partly influenced by sediment 

mixing toward the top of the sediment column as a result of gravity coring. In contrast to the 

E/C ratio, this LIA interval of extensive sea ice is not reflected by the OCEN/NLAB ratio in 

the northernmost studied cores. Hence the E/C ratio appears as more reliable than the 

OCEN/NLAB ratio as a surface water mass proxy along our transect, although several factors 

might be influencing their interpretation.  

One of the key factors affecting the interpretation of these ratios are the threshold values set 

by Baumann et al. (2000) and Matthiessen et al. (2001) to distinguish between the dominating 

watermasses.  While a threshold of 1 for the E/C ratio looks reasonable in terms of modern 

and late Holocene approximate location of the AF, the value of 4 for OCEN/NLAB seems too 

high in the Nordic Seas for describing the rapid, low amplitude changes in surface water 

masses within the last 3000 years. The latter threshold value howewer might properly 

describe surface water changes on glacial/interglacial timescale where stronger contrasts are 

at work in the high latitudes of the North Atlantic. 

A second factor which needs to be considered is the spatial distribution of the surface 

sediment samples used for defining the signatures of the species ratios (Baumann et al., 2000; 

Matthiessen et al., 2001).  Those  samples are mainly located in deep ocean settings of the 

Norwegian-Iceland-Greenland Seas, where hydrological conditions (upper water column 

mixing, continental impact) are different from those prevailing on slopes and/or continental 

shelves where our studied cores are located. Hence the OCEN/NLAB threshold might still be 

valid in the more central part of the Nordic Seas. 

Finally a third factor lays in the generally poor knowledge on the ecology of the various 

species considered in the proxy ratios and the environmental parameters influencing their 

distribution (Chapter 2).  

Taken separately or together these three factors explains most of the contradicting ratio trends 

measured at each of the studied core location (Fig. 4.27). Accordingly, the significance of the 

E/C ratio in terms of location of the AF is not conclusive in areas affected by the NCC; here, 

the strength and zonal extension of this later type of coastal water mass is assumed to drive to 

a high extent the coccolith ratio. In a similar way, the OCEN/NLAB ratio showed a stronger 

relation to the AF in cores located in deeper parts of the Nordic Seas.  

The preference for strictly oceanic conditions of N. labyrinthus (NLAB) is shown by its 

highest abundances in the central part of the Nordic Seas along the AF. In addition, this 



Chapter 4 

Christian V. Dylmer, 2013 

 

198 
 

species shows a negative relation to sea ice distribution (Chapter 2) which might hamper any 

clear interpretations of the OCEN/NLAB ratio as a proxy for the AF in areas strongly affected 

by sea ice. The application of this ratio should therefore generally be avoided in areas affected 

by seasonal sea ice and in shelf to upper slope settings, nevertheless the present study west of 

Norway indicate that the OCEN/NLAB ratio is a strong proxy of relative changes in the zonal 

extent of the AF within this area. 

4.7.2  Comparing G. muellerae Abundances with other Flow Sensitive Proxies 

The Neoglaciation (Porter and Denton, 1967) that governed the Late Holocene was 

punctuated by several warm and cold spells such as the RWP, the MCA, the LIA and the 

Modern period. Recent terrestrial (Overpeck et al., 1997; Kaufman et al., 2009) and marine 

proxy records (Spielhagen et al., 2011; Hald et al., 2011; Wilson et al., 2011) from the Arctic 

and northern North Atlantic, respectively, has shown that the LIA ended with a strong 

temperature increase during the last century.  

The marine proxy-based reconstructions suggested that this recent temperature increase in the 

subsurface layer west of Spitsbergen (Spielhagen et al., 2011) and in the shallow settings off 

Northwest Norway (Hald et al., 2011) were unprecedented over the past two millennia. Both 

studies implied that this warming was probably caused by enhanced advection of Atlantic 

Water (AW) to the Arctic Ocean during modern times, although none were able to strictly 

infer the dynamical history of AW, i.e. the history of the strength of the North Atlantic 

Current (NAC). 

The hypothesis of an increased AW flow during the modern period was further supported by 

Wanamaker et al. (2012) based on living and fossil molluscan remains north of Iceland; these 

authors additionally related known pre-Anthropocene warm (MCA) and cold (LIA) climatic 

spells of the last ~1500 years to modulations of the surface Atlantic-derived water dynamics 

within the North Atlantic. This was further evidenced off Florida, at the inception of the Gulf 

Stream, by Lund et al. (2006) who estimated a 10 percent decrease in the flow of this current 

at the transition from the MCA to the LIA and showed a systematically lower current strength 

during the LIA (~750-100 cal. years BP; AD ~1200-1850) (Fig. 4.29). The North-Icelandic 

proxy record by Wanamaker et al. (2012) indicates an overall decrease in the flow of AW 

during the last millenia until 70 cal. years BP (1880 AD), followed by unstable conditions and 

a marked increase in flow strength from 10 cal. years BP (1940 AD) until present (Fig. 4.29). 

Both results by Lund et al. (2006) and Wanamaker et al. (2012) are generally consistent with  
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Figure 4.29 : Comparison of G. muellerae with other AW flow proxy records during the last millenium. a) : 
Combined NAO index reconstruction based on Trouet et al. (2009) and Olsen et al. (2012). b) : SST record in 
Fram Strait off western Svalbard in core MSM5/5-712, due slightly north of HH11-134-BC, after Spielhagen et 
al. (2011). c+d+e) : AW flow strength inferred from absolute concentrations of the AW inflow species G. 
muellerae (this study). f) : Shell-based ∆R values over northern Iceland after Wannamaker et al. (2012); positive 
values are representative of Arctic-derived water masses, negative values are indicative of Atlantic-derived 
surface water masses. g) : Gulf Stream transport estimates in the Florida Strait after Lund et al. (2006). The grey 
shaded area represents the zone of transition from the MCA to the LIA. 
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our coccolith (G. muellerae) flow proxy records off western Norway and western Svalbard,  

hence further confirming the reliability of G. muellerae abundance as a proxy of poleward 

AW flow strength within the eastern Nordic Seas (Fig. 4.29). 

Wanamaker et al. (2012) connected AW inflow variability over the shelf of Northern Iceland 

to the Gulf Stream/NwAC flow and the wind-driven (surface) component of AMOC and 

hypothesized that the variability in surface AMOC and ∆R values north of Iceland were in 

part driven by the mean state of the NAO system during the last 1,000 years. Such an 

assumption was also proposed by Cronin et al. (2005) who suggested a modulation of the sea-

surface temperature changes in the western North Atlantic (Chesapeake Bay) by a North 

Atlantic Oscillation (NAO) like atmospheric process. Although short term variability of the 

reconstructed NAO index (Trouet et al., 2009; Olsen et al., 2012) are not strictly and always 

connected with rapid changes in the flow proxies shown in Fig. 4.29, the general trends of an 

overall positive NAO phase during the MCA and the Modern period and a prevaling negative 

or unstable NAO mode during the LIA fit well with our general understanding of the NAO 

influence on the northward advection of Atlantic water, according to modern observations 

(Blindheim et al., 2000). 

4.7.3  Reconciling the Observed Trends in AW Flow (HH11-134-BC, Fram Strait) with the 

Historical Distribution of Arctic Sea Ice  

A reconstruction of late summer Arctic sea ice distribution over the last ~1500 years was 

recently proposed by Kinnard et al. (2011) based mainly on terrestrial records (ice cores, tree 

rings, lake sediments) and two historical series of sea ice observations from circum Arctic 

sites. The record indicate a generally increasing sea ice distribution until roughly ~500 cal. 

years BP, followed by a decrease (Fig. 4.30), a pattern which is fairly similiar to the IRD and 

PBIP25 records obtained at our northern Fram Strait core site (HH11-134-BC) (Fig. 4.25) as 

well as to records of ice advances on Svalbard (Svendsen and Mangerud, 1997). Figure 4.30 

compares Kinnard et al. (2011) inferred Arctic sea ice distribution with our coccolith flow 

proxy record obtained in this sediment core over the last 1500 years. The comparison clearly 

show that recent changes in Arctic sea ice distributions are strongly tied to variations in the 

advection of warm Atlantic water to Fram Strait, the main gateway to the Arctic. This 

correlation hold true despite inherent biases linked with differences in time-resolution and age 

control between the two datasets. In particular, the unprecedented decrease in sea ice extent 

during the last century is synchronous with a exceptional increase in AW flow strength off 

western Svalbard, which stands as unprecedented over the last ~1500 year. 
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Figure 4.30 : Comparison of G. muellerae absolute abundance in the Fram Strait core HH11-134-BC with a 
1500 years sea ice reconstruction. Modified after Kinnard et al. (2011). 
 

4.8  Late Holocene Paleoceanographic Variability within Surface and Subsurface 

Layers of the Eastern Nordic Seas: A General Discussion   

The manifestation of the Late Holocene (last ~3000 years) trend toward positive NAO 

conditions can be inferred from various marine proxy records around Greenland showing 

colder conditions associated with decreased AW influence in Diskobay (western Greenland) 

related to the so-called “seesaw” pattern (Seidenkrantz et al., 2008; Andresen et al., 2011, 

2012), and an increased flux of sea-ice/icebergs east of Greenland (Jennings et al., 2002). 

Accordingly, Moros et al. (2004) interpreted the patterns of increased abundance of ice-rafted 

detritus (IRD) in the western parts of the Nordic Seas (Jennings et al., 2002) and decreased 

IRD in the Norwegian Sea (their work) to a strengthening of both the NAC and the EGC from 

the Mid-Holocene to Present. This coupled strengthened circulation affecting the eastern and 

western parts of the Nordic Seas is consistent with modern observations (Blindheim et al., 

2000; Furevik and Nilsen, 2005) and modelling experiments (Nilsen et al., 2003) which relate 

it to atmospheric processes akin to the present positive phase of the NAO. Finally, a 

strengthening of the NAC and its WSC extension over the last 3000 years has earlier been 
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suggested by Sarnthein et al. (2003) based on a general increase in reconstructed subsurface 

temperatures in the western Barents Sea, which the authors related to a slight increase of the 

thermohaline circulation. Concurrent glacier expansions over western Spitsbergen (Svendsen 

and Mangerud, 1997) and increased winter precipitation over mid-western Norway (Nesje et 

al., 2001) throughout the last 3000 years additionally argue for strengthened southwesterlies 

and associated increase in NAC and WSC flows, related to the increasingly positive NAO 

trend (Fig. 4.31a). 

Comparing the Observed Late Holocene Circulation and Climate changes with other North 

Atlantic Terrestrial and Marine Records. 

The above core summaries are indicative of the dominating paleoceanographic and 

paleoclimatic changes which occurred within the surface and subsurface water masses 

throughout the late Holocene. These changes are discussed in the following section according 

to the five time Zones identified from the analysis of proxy data within the studied cores. 

Zone I represents the period ~3000-2200 cal. years BP (1050-250 BC). Zone II covers the 

interval ~2200-650 cal. years BP and includes the three subzones II-a (2200-1250 cal. years 

BP), II-b (1250-850 cal. years BP) and II-c (~850-650 cal. years BP). Zone III encompasses 

the interval from ~650 to ~60 cal. years BP and hence includes ZONE IV (240-60 cal. years 

BP) with its two subzones IV-a (1710-1800 AD) and IV-b (1800-1890 AD). ZONE V is 

roughly equal to the last century (1890-present, Modern period) (Fig. 4.31). 

ZONE I: ~3000-2200 cal. years BP 

The Zone was identified in three (WOO/SC-3, JM09-KA11-GC, HH11-134-BC) out of five 

cores and was characterized by a generally low AW flow along the entire eastern continental 

margin of the Nordic Seas (Fig. 4.31b+c+d). The colder and drier conditions prevailing during 

Zone I which was characterized by  persistent negative NAO like atmospheric mode, seemed 

to be a general phenomenon in the northern North Atlantic region. Evidences from GISP2, 

indicate an increased transfer of sea-salt aerosols over Greenland from 3150 to 2450 years BP 

which the authors related to an expansion of the northern polar vortex or a generally 

intensified meridional air flow (O’Brien et al., 1995). This, together with an observed low in 

wind strength over Iceland (Jackson et al., 2005) and a possibly increased zonal storm track 

over central Europe (Sorrel et al., 2012), confirm the generally weak westerlies wind stress 
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Figure 4.31 : Summary plot of surface and subsurface circulation changes in the eastern Nordic Seas over the 
past ~3000 years. a) : Combined NAO index reconstruction based on Trouet et al. (2009) and Olsen et al. (2012); 
Red area represents positive and blue area negative NAO conditions. b) : Relative abundances of subpolar 
foraminifera (fraction > 100 µm) as an index of subsurface AW masses. c + d) : Absolute concentrations of G. 
muellerae as a proxy of AW flow strength. e) : E/C ratio as an index of the relative position of the AF 
(AW/ArW). f) : OCEN/NLAB ratio as an index of the relative position of the AF (AW/ArW). g) : Glaciation 
curve for Jostedalsbreen area western Norway, modified from Nesje et al. (2001). Also included are watermass 
distribution bars (red=AW, blue=ArW) from the two most northern records based on the E/C threshold of 1. The 
summary inferred zones and subzones are highlighted in the top, with the zonations indicated by solid (zones) 
and dashed (subzones) vertical black lines. Shaded light red and light blue inferred relative variations between 
increased and decreased AW flow periods in the eastern Nordic Seas, respectively. Shaded base and yellow 
squares represents the inferred warm pulses and the Modern period flow increases. 
 
over the eastern North Atlantic (negative NAO). This dominating atmospheric pattern resulted 

in the observed weakened flow of AW and a widening of the surface expression of the NAC 

and the NCC west of Norway (this study) (Fig. 4.31b+c+f), as indicated by increased sea 

surface temperatures North of Iceland (and a strengthened Irminger Current) (Solignac et al., 

2006). The shallow surface expression of AW is however not expressed in subsurface waters 

west of Norway at ca. 3000 cal years BP (Anderson et al., 2003; Risebrobakken et al., 2003), 

but resume in this subsurface layer together with increasing AW flow towards the end of 

Zone I (Fig. 4.31d). A concurrent increase in the subsurface expression of AW is observed 

west of Spitsbergen where increasing CaCO3 (wt%), IRD and IP25 contents witness a 

strengthened influence of AW masses and a strong presence of the MIZ (Müller et al., 2012), 

in agrement with our Fram Strait record (HH11-134-BC) (Fig. 4.31b+c).  

Glacier retreats observed in southern Norway (Nesje et al., 2001) (Fig. 4.31g) and on Franz 

Josef Land in the northeastern Barents Sea (Lubinski et al., 1999), together with an 

interruption of a prolonged glacier advance on Svalbard (Svendsen and Mangerud, 1997), 

seem further in line with the prevailing negative NAO conditions which characterized Zone I 

(Fig. 4.31a). This suggestion agrees with modern observations of winter and snow 

accumulation on glaciers in maritime southwestern Norway which show that glacier advances 

and retreats are often related to NAO variability; accordingly, glacier advances are favored by 

mild and wet winter conditions (positive NAO) whereas retreats are mostly synchronous with 

cold and dry winters (negative NAO) (Blindheim et al., 2000; Nesje et al., 2001; Pinto and 

Raible, 2012) 

ZONE II: ~2200-650 cal. years BP 

The identified Zone II is based on observations from cores WOO/SC-3 (2200-640 cal. years 

BP), JM09-KA11-GC (2200-650 cal. years BP; Dylmer et al., 2013) and HH11-134-BC 

(1250-730 cal. years BP). The slight offset in the timing of the upper zone boundary can to a 

large extent be explained by the use in the present study of a standard reservoir correction 
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(R=0) for constraining the stratigraphical framework of all studied sediment cores; this 

simplification does not take into account possible varying contribution of “old” carbon from 

Arctic/Polar water masses off western Svalbard and western Barents Sea. Hence the upper 

boundary of  Zone II (650 cal. years BP) has been aligned with earlier results by Dylmer et al. 

(2013) and Miller et al. (2012). 

The surface water expression of strengthened AW flow toward the Arctic throughout Zone II 

is marked by an overall increased influence of surface AW masses in the western Barents Sea 

and off western Svalbard (Fig. 4.31). Sustained surface AW conditions occurred earlier at site 

JM09-KA11-GC from ca. 1000 cal. years BP, than at the northernmost Fram Strait site 

HH11-134-BC due to the sea ice conditions prevailing within this latter area throughout most 

of the last 3000 years until the last century (Müller et al., 2012). The increased WSC flow 

throughout the late Holocene was also suggested from planktonic foraminiferal-based SST 

reconstructions off western Barents Sea (Sarnthein et al., 2003) as well as from phytoplankton 

biomarkers and CaCO3 contents in sediments off western Svalbard (Müller et al., 2012). In 

this regard, our coccolith and dinocyst proxy ratio (E/C and OCEN/NLAB) of surface water 

masses might add further constraints and improve the understanding of changes in the water 

column distribution of AW in the northern North Atlantic. 

The studied sites off western Norway shows an opposite surface signature to the northernmost 

locations. Here, though always overlaid by surface AW, the studied cores (WOO/SC-3, 

MD95-2011) display decreasing OCEN/NLAB and E/C ratios, which translates into an 

increasing proximity of ArW (Fig. 4.31e+f). Modern observations on the influence of the 

NAO upon the surface hydrology of the eastern Nordic Seas might shed light on this apparent 

paradox. Instrumental records are indeed indicative of a correlation between changes in the 

NAO index and surface temperature variations (Blindheim et al., 2000; Miettinen et al., 

2011), a correlation which is stronger west of Svalbard than off western Norway (Blindheim 

et al., 2000). Strengthened westerlies (positive NAO index), whose track of maximum wind 

stress in the Eastern Nordic Seas affects the oceanic area off south and mid-Norway, force 

both an increased flow of AW and a narrowing of the surface expression of the NAC and the 

NCC toward the Norwegian slope (Blindheim and Østerhus, 2005, and references therein). 

An obvious implication at MD95-2011 and WOO SC/3 is an increased proximity of arctic-

derived surface water (eastward shift of the AF), throughout the last 3000 years, as suggested 

by the trend of our surface water mass proxies (OCEN/NLAB and E/C ratios) (Fig. 4.27), and 
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as confirmed by Norwegian Sea diatom (Andersen et al., 2004; Birks and Koc, 2002) and 

alkenone-derived SST reconstructions (Calvo et al., 2002).  

In addition, intensified glacier advance in southwestern Norway and Svalbard (Svendsen and 

Mangerud, 1997; Nesje et al., 2001) (Fig. 4.31g) as well as increased ice rafting from icebergs 

(and/or sea ice) off western Svalbard (Fig. 4.25) during the period encompassed by Zone II, 

seem to confirm the governing atmospheric changes and the strengthened meridional flow of 

the NwAC, a pipeline for precipitation over the northeastern North Atlantic. A short 

stabilisation or decrease of glacier advances centered around 1000 cal. years BP is observed in 

Svalbard and southwestern Norway (Svendsen and Mangerud, 1997; Nesje et al., 2001), a 

short term change which appears to correlate with a weakening of the AW flow as observed 

during subzone II-b west of Norway (WOO/SC-3) (Fig. 4.31d). 

Our observations of increased AW flow throughout Zone II is in line with previous 

indications of a relation between modulations of the surface Atlantic-derived water dynamics 

within the North Atlantic and pre-Anthropocene warm and cold climatic spells, as this period 

covers both the Roman Warm Period (RWP) and the Medieval Climate Anomaly (MCA). The 

DA is however not clearly reflected in our records although it might correspond to the short 

circulation and climate change identified during subzone II-b.  

ZONE III + IV: ~650-60 cal. years BP (LIA) 

The Zone III was observed in all studied cores WOO/SC-3 (~640-300 cal. years BP), 

R248MC010 (460-240 cal. years BP), R406MC032 (~530-240 cal. years BP), JM09-KA11-

GC (650-modern; Dylmer et al., 2013) and HH11-134-BC (~730-60 cal. years BP), although 

a clear age definition of both the upper or lower boundary was hampered by a limited length 

of the core or missing/mixed materiel. Hence, as Zone IV was only resolved in two out of 5 

investigated cores (R248MC010, 240-60 cal. years BP; R406MC032; 240-100 cal. years BP), 

and in order to avoid a snapshot discussion of Zone III, we preferred to simplify the 

discussion of this historically important interval (LIA) by combining both Zones III and IV 

(Fig. 4.32). The upper boundary of this Zone III + IV was set in accordance to the Pb210 dated 

R248MC010, whose chronology during the last century is expected to be extremely well 

constrained . 

The late Holocene trend of increased poleward flow of AW was interrupted by a sudden shift 

to a period of deteriorating conditions that we assume corresponds to the MCA/LIA transition 
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Figure 4.32 : Summary plot of surface and subsurface circulation changes in the eastern Nordic Seas over the 
past ~800 years. a) : Combined modern (Jones et al., 1997; Osborn, 2006), reconstructed (Lutherbacher et al., 
2002; Trouet et al. (2009), dashed black line) NAO index; Red and blue areas represent long term positive and 
negative NAO conditions, respectively. b) : Arctic summer temperatures based on Kaufmann et al. (2009). c - f) 
: Absolute concentrations of G. muellerae as a proxy of the AW flow strength. g) : E/C ratio as an index of the 
relative position of the AF (AW/ArW). h) : OCEN/NLAB ratio as an index of the relative position of the AF 
(AW/ArW). i) : Reconstructed bottom water temperatures from southeast of Bear Island (Wilson et al., 2011). j) 
: Reconstructed bottom temperatures (November) from the Malangen fjord, Northern Norway (Hald et al., 
2011), red line represents a 5-running mean. The summary inferred zones and subzones are highlighted in the 
top, with the zonations indicated by solid (zones) and dashed (subzones) vertical black lines. Shaded light red 
and light blue represents inferred relative variations between increased and decreased AW flow periods in the 
eastern Nordic Seas, respectively. Shaded base and yellow squares represents the inferred warm pulses and the 
Modern period flow increases. 
 
 (Fig. 4.32). The MCA/LIA climatic shift is thought to have been triggered by a combination 

of a reduction in solar irradiance, explosive volcanism and changes in the internal modes of 

variability of the ocean-atmosphere system, as one single process cannot usually explain this 

cold period alone (Wanner et al., 2011). The suggested ~650 cal. years BP MCA/LIA age lies 

within the range of previously proposed ages for the initiation of this climate deterioration in 

the studied region (Hald et al., 2011; Sejrup et al., 2011), and closely corresponds to recent 

evidences from Arctic Canada and Iceland (Miller et al., 2012) for a 50 year long explosive 

volcanism centered at 650 cal. years BP. According to these latter authors, the onset of the 

LIA was directly linked to such volcanic events which triggered an extensive sea ice 

expansion causing a self-sustaining sea-ice/ocean feedback until Modern times. As volcanic 

eruptions seem to modify on short time scales a naturally occurring variability mode similar 

to the NAO toward its positive phase (Graf et al., 1994), the reconstructed major change to a 

negative NAO index across the MCA/LIA transition (Olsen et al., 2012) is most likely related 

to other forcings i.e. greenhouse gasses, stratospheric ozone and solar irradiance (Gillett et al., 

2003). Nevertheless such a concomitant change in NAO pattern from a long-term positive 

phase to highly fluctuating negative NAO conditions around 640 cal. years BP possibly 

additionally contributed to an increase in sea-ice extent (Fig. 4.32a). Indeed, decadal and 

longterm variations in large scale ice concentrations have shown to be significantly correlated 

with long-term NAO variations (Visbeck et al., 2003). This major change in turn impacted on 

the efficiency of the NAC flow to the northern North Atlantic, therefore further maintaining, 

if not strengthening, the sea-ice expansion across the northern Nordic seas (Werner et al., 

2011; Müller et al., 2012). This created cold and favorable conditions for glaciers on Svalbard 

from the 13th -14th century and onwards (Svendsen and Mangerud, 1997).  

The harsh LIA conditions favored colder surface and subsurface waters, sea ice expansion and 

an increased presence of icebergs in the eastern Fram Strait (Fig. 4.25), which stands as a 

strong contrast to the dominating surface signature of AW at the western Barents Sea core site 
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JM09-KA11-GC (Fig. 4.31). The specific location of this site within the influence of both 

AW (WSC) and ArW (Sørkapp Current, Bear Island Current) implies that although sea ice 

cover was probably enhanced over the western Barents Sea during this climate deterioration, 

this local area was affected by a highly fluctuating sea-ice boundary with strong seasonal 

gradients characterized by an early spring break-up of the winter sea ice, as inferred from a 

higher level of IP25 (Berben et al., 2013), and a strong spring/early summer stratification and 

AW dominance during summer (favoring E. huxleyi). The specific surface expression at this 

site is further confirmed by the overall similarities between our E/C proxy (JM09-KA11-GC) 

and reconstructed atmospheric temperatures from a lake record in western Svalbard (D’andrea 

et al., 2012), an area influenced by similar hydrological features (e.g. sea ice, the Sørkapp 

Current and the WSC). D’andrea et al. (2012) identified a temperature increase starting at 

~1600 AD (350 cal. years BP) over western Svalbard as well as mild LIA summer conditions 

which they explained by a strengthened WSC (NAC), a strengthening only inferred in the 

present study from our JM09-KA11-GC coccolith record. We therefore suggest the identified 

warming on Svalbard to be due to a decreased flow of polar waters over the shelf via the 

Sørkapp Current and the Bear Island Current, rather than to changes in the strength of the 

NAC, possibly resulting in a seasonally stronger AW influence on atmospheric temperatures 

and sea ice extent. Indeed, paleo-reconstructions from southeast of Bear Island are indicative 

of an Atlantic-derived bottom water over the continental shelf during the earlier part of the 

LIA (Wilson et al., 2011) (Fig. 4.32i). Such conditions in a shallow shelf area possibly 

induced a generally decreased stability of the sea ice cover, earlier spring break-up and 

increased ice melt in the southwestern Barents Sea.   

The surface expression of the LIA west of Norway confirms the overall deteriorating 

conditions as indicated by a relatively weak AW flow and cool subsurface waters overlaid by 

AW masses (Fig. 4.6, 4.32). This pattern agrees well with our general understanding of the 

oceanic circulation in this area, a westward shift of the AF being expected to result in a 

widening and shallowing of the AW surface layer and hence a cooling in subsurface layers 

west of Norway. Which is confirmed by a LIA increase in surface temperatures north of 

Iceland as reconstructed from diatoms (Andersen et al., 2004) and a subsurface cooling west 

of Norway according to stable isotopes on planktic foraminifera (Sejrup et al., 2011). This 

comes as a result of the prevailing negative NAO pattern, a pattern that controlled and limited 

the northern flow of AW and instead caused an increased presence of this water mass off 

southeastern Greenland (Andresen et al., 2012). 
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The interval of Arctic/Polar LIA conditions in eastern Fram Strait was interrupted by a sudden 

short pulse of increased WSC flow between ~330 and 410 cal. years BP as depicted in several 

proxies within HH11-134-BC (Fig. 4.24,  4.25) and further confirmed in our IRD record from 

the southwestern Barents Sea (R406MC032) (Fig. 4.18). This short-lived AW flow to the 

northern Nordic Seas is synchronous with an increase in Arctic temperatures (Kaufmann et 

al., 2009) (Fig. 4.32b), a short term increase in the Atlantic Multi-decadal Oscillation (Gray et 

al., 2004; Winter et al., 2011) and a change towards positive NAO mode (Fig. 4.32a). All 

these rapid, short-term oceanic and atmospheric circulation changes are likely to explain the 

minimum sea-ice anomaly recorded in the Nordic Seas during the fifteenth century, compared 

with the previous and later centuries, as evidenced by Macias Fauria et al. (2009) and Kinnard 

et al. (2011). The magnitude of this warm pulse, as shown by our coccolith proxy record, falls 

within the range of the AW flow strengthening during the MCA and is only surpassed by a 

maximum in AW flow during the Modern period.  

The sea-ice reconstructions by Kinnard et al. (2011) are particularly coherent with the 

changes in G. muellerae concentrations at core HH11-134-BC, indicating a phasing of 

increasing (decreasing) WSC flow and decreasing (increasing) sea-ice extent (Kinnard et al., 

2011) throughout Zone III (including the ca. 400 cal. years BP warm pulse) up to Present 

(Fig. 4.30), suggesting as earlier observed a generally strong impact of AW flow dynamics on 

the Arctic sea-ice extent.  

The deterioating conditions that followed the warm pulse was observed along the entire 

transect and was governed by a decreased AW flow and a dominance of ArW in the surface 

waters off western Svalbard and in the southwestern Barents Sea (Fig. 4.32c+d). The 

strengthened dominance of ArW in the surface of the southwestern Barents Sea appeared at a 

time when both the AW flow and the bottom water temperatures (Wilson et al., 2011) in this 

region reached a minimum (Fig. 4.32d+i). These processes are indicative of a southwestern 

migration of the AF over the Barents Sea, which amplified the governing sea ice expansion in 

the eastern and northern parts of the Barents Sea (Vinje, 2001; Vare et al., 2010).  

A significant event identified by our proxy records west of Norway, and dated at ~215-230 

cal. years BP, translate into a short-term eastward migration of the frontal systems (e.g. AF 

and NwAC/NCC) and a short strengthening of the AW flow (Fig. 4.32f+h). The latter 

represents a second smaller warm pulse within the LIA, and with synchronous with massive 

advance of glaciers in western Norway, between 1710 and 1735 AD (240-215 cal. years BP) 

(Nesje and Dahl, 2003; Nesje et al., 2008, and references therein). This glacier advance is 
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probably a direct result of enhanced precipitations following the slightly strengthened AW 

flow and positive NAO mode during this short interval (Lutherbacher et al., 2002; Nesje et 

al., 2008), and is confirmed by higher than normal winter precipitations reconstruction for 

european land areas showing a higher general winter precipitation during the earlier part of 

the 18th century (Pauling et al., 2005). In addition this final LIA warm pulse corresponds to a 

decreased extent of sea ice in the Barents Sea (Vinje, 1998).  

ZONE V: 60-present cal. years BP 

The LIA cool climatic period was reversed during the 19th century by an overall increase in 

atmospheric and oceanic temperatures, as reconstructed from marine and terrestrial high 

resolution proxy records from the Arctic region (Overpeck et al., 1997; Kaufman et al., 2009) 

(Fig. 4.32a-d, f-j). Recent studies on sea-surface temperature reconstructions over the last 

2000 years in Malangen fjord, northwestern Norway (Hald et al., 2011), south of Bear Island 

(Wilson et al., 2011) and West of Spitsbergen (Spielhagen et al., 2011), and evidences herein 

of high amplitude, rapid temperature increases during the last century, has intensified the 

ongoing debate on temperature changes in the Arctic. Spielhagen et al. (2011) used 

foraminiferal assemblages and geochemical measurements to reconstruct a ~2 °C temperature 

increase in the subsurface waters of eastern Fram Strait at the transition from the LIA to the 

Modern period. Our dataset confirms the high amplitude warming of subsurface waters at the 

turn of the 19th- century; more importantly, it also shows that such a warming was primarily 

induced by an excess flow of AW along the continental margins of the Eastern Nordic Seas as 

depicted by our G. muellerae proxy records i.e. off western Norway, in the western Barents 

Sea and off western Svalbard (Fig. 4.32c+d+f). Our results hence indicate that this Modern 

strengthening of AW flow was unprecedented over the last 3000 years, and was associated 

with an exceptional AW shoaling (summer, Fram Strait) (Fig. 4.31, 4.32), in agreement with 

reported historical lows in sea ice extent in the Nordic Seas since the second half of the 19th 

century (Divine and Dick, 2006) and recent Arctic sea ice reconstructions (Kinnard et al., 

2011).
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Chapter 5 : General Conclusions and Perspectives 
 

The main objective of this research project was to obtain a more complete knowledge on Late 

Holocene natural variability of physical parameters affecting ecosystem processes and 

structure in the eastern Nordic Seas within, or close to areas presently affected by seasonal 

sea-ice, by applying mainly dinocysts and coccoliths. The goal involved qualitative and 

quantitative reconstructions of surface water conditions (temperature, salinity, stratification 

and sea ice distribution) based on dinocyst and coccolith assemblages recovered from high 

resolution (decadal to centennial scale) Holocene sediment cores, and comparison with other 

terrestrial and marine datasets. Of particular interest is the reconstruction of late Holocene 

surface water mass distributions within the eastern Nordic Seas and the dynamics of the 

Atlantic water flow on its way to the Arctic Ocean via the Fram Strait gateway.  

Several take-home messages can be highlighted from this investigation, both concerning the 

significance of the micropaleontological proxies used in the present study, and the paleo-

reconstructions over the last ca. 3000 years.  

5.1  The Extant Coccolithophore Populations across the Norwegian-Iceland Seas and 

Fram Strait.  

Phytoplankton samples investigated in the present study (Chapter 2) were collected en-route 

using a simple, cost- and time effective method, along two zonal transects perpendicular to 

the major meridional boundary current systems and hydrological fronts. The regional and 

local oceanography during the sampling periods was derived from the combined use of easily 

accessible remote sensing images, CTD casts and Argo floats from existing databases. 

Although not sufficient to investigate small-scale physical and biological processes, this 

approach was found highly relevant for defining key oceanographic processes and water 

masses explaining the observed distribution of the dominant fossilizable coccolithophore 

species within the northern North Atlantic i.e. E. huxleyi and C. pelagicus. 

Observed seasonal changes in the distribution and stratification of the main water masses 

related to sea-ice melts and changes in the drift of Atlantic surface water masses resulted in an 

overall westward shift between the observed seasons (July-October) of the peak 

cocolithophore production areas dominated by the opportunistic E. huxleyi. The presented 

datasets across the Norwegian-Iceland Seas confirm previous studies indicating high cell 

densities over the Vøring Plateau in July, and west of the Jan Mayen island in September-

October (Samtleben et al., 1995a). An observed peak coccolithophore production within the 
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Lofoten gyre in July 2011 was related to increased vertical mixing and nutrient enrichment of 

the photic layer due to large scale atmospheric changes. In contrast, the change in dominating 

species around Jan Mayen from C. pelagicus in summer to E. huxleyi in fall, resulted from a 

change in stratification from well mixed (summer) to stratified (fall) surface waters as a result 

of changing influence of melt water from sea ice. In addition, our data are indicative of a 

strong temperature limitation of C. pelagicus production, which is expressed by a maximum 

boundary value of 6°C, with a somewhat lower (ca. 4°C) limit across Fram Strait. 

 

To our knowledge, our dataset from Fram Strait represents a first view of the zonal 

distribution of extant coccolithophores within this climatically sensitive area during summer 

and fall. The results show a clear seasonal change in dominance from E. huxleyi (summer) to 

C. pelagicus (fall) related to the combined influence, during summer, of enhanced sea-ice 

melting close to the sea-ice edge. This shift in species dominance is also related to the 

summer increased influence of AW and higher irradiance leading to the high production of 

the opportunitic species E. huxleyi within an area usually characterized by C. pelagicus-

dominated low density populations.   

5.2  Significance of AW/ArW Indicators and of the AW Flow Strength Proxy G. 

muellerae 

Surface water mass changes from AW/ArW indicators 

The regional dominance of the coccolithophore species E. huxleyi (E) and C. pelagicus (C), 

on one hand, and of the dinocyst species O. centrocarpum (OCEN) and N. labyrinthus 

(NLAB), on the other hand, has earlier been shown to be strongly reflected in surface 

sediments of the Nordic Seas (Samtleben et al., 1995; Baumann et al., 2000; Matthiessen et 

al., 2001; Zonneveld et al., 2013). This led to the definitions of two relative abundance ratios 

OCEN/NLAB and E/C, for investigating the location of the AF that separates the seasonally 

ice-covered Polar and Arctic waters (E/C<1; OCEN/NLAB<4) from warmer and saltier 

Atlantic-derived waters (E/C>1; OCEN/NLAB>4). 

The present study lied on these exploratory works in applying these dinocyst and coccolith 

ratios on a set of five marine sedimentary cores. We identified three key factors, which 

separately or together, explained contradicting results obtained from this set of cores: 

1. The choice of the threshold value. 

2. The distribution of the original surface sediment samples used in the species ratio 

definition. 
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3. A limited knowledge of the species ecology 

Based on these factors and a comparison with other paleo-proxies and historical sea ice 

observations, the E/C ratio was found to be a reliable proxy for surface water changes (AW 

vs. ArW, threshold of 1), and is indicative of an overall time-transgressive increasing 

influence of AW towards Fram Strait throughout the last 3000 years. The significance of the 

E/C ratio was however not conclusive in areas affected by the NCC. A similar comparison 

with OCEN/NLAB showed that the initially defined ratio threshold of 4 was to high in our 

study area for describing rapid, low amplitude changes in surface water masses within the last 

3000 years. Furthermore our study indicated that the use of the OCEN/NLAB ratio should be 

avoided in areas affected by seasonal sea ice as well as in shallow shelf to upper slope 

settings. Nevertheless, this dinocyst proxy is considered as a valuable proxy for relative 

changes in the dominating water masses and the position of the AF off western Norway. 

 

The AW drift species G. muellerae 

Drifting with the poleward flow of surface to intermediate NAC waters from the temperate 

North Atlantic, was proposed by Samtleben and Schröder (1992) and later clarified by 

Giraudeau et al. (2010) for explaining the presence of G. muellerae in Holocene sediments of 

the eastern Nordic Seas. Given the species ecological background and distribution, abundance 

changes of G. muellerae in the studied sediment cores was discussed in terms of relative 

variations of the depth integrated poleward flow strength of the NAC in relation to the 

dominating NAO like mode. 

Our results showed that short term variability of instrumental and reconstructed NAO index 

(Jones et al., 1997; Osborn, 2006) and rapid changes in G. muellerae did not always strictly 

correlate during the last ~500 years. This unconformity can be explained by the fact that the 

meridional flow of the NAC to the Nordic Seas and the Arctic Ocean relates both to 

anomalies in the location and strength of the westerlies and changes in the thermohaline 

circulation (Müller et al., 2012). The general trends of an overall positive NAO phase during 

the MCA and the Modern period and a prevaling negative and/or unstable NAO mode during 

the LIA (Trouet et al., 2009; Olsen et al., 2012) however translates exceptionnaly well into 

strengthened and reduced NAC flow strength, respectively, as depicted by our coccolith proxy 

records, and according the modern processes at play in the Nordci seas (Blindheim et al., 

2000). In addition the close correspondence of our G. muellerae abundance datasets with 

foraminiferal records off Norway and western Svalbard, where foraminiferal abundance 
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changes are assumed to trace subsurface water temperatures, confirms the reliability of this 

coccolith index as a proxy of Atlantic water flow.  

Our coccolith flow proxy variations show a remarkable phasing with changes in Arctic Sea 

ice distribution over the last ~1500 years, In particular, the reconstructed extensive decrease 

in sea ice extent during the last century, confirmed by historical reports, is synchronous with 

an exceptional increase in the AW flow across Frams Strait which stands as unprecedented 

over the last ~1500 year.  

The paleoceanographic potential of G. muellerae as a proxy for the strength of AW flow was 

strongly illustrated within this study and provides a valuable tool to improve our general 

understanding on past dynamics of the NwAC and its two extensions : the WSC and NCaC. 

5.3  A Late Holocene History of Surface Circulation Changes in the Eastern Nordic 

Seas 

A high-resolution study of coccolith and dinocyst assemblages from five sediment cores in 

the eastern Nordic Seas provided a wealth of information on the surface water dynamics along 

the path of the AW flow toward Fram Strait throughout the last 3000 years. In particular, a 

high resolution study of the last ~500 years showed that recent historical climate shifts  are 

expressed by the micropaleontological proxies according to local hydrological and 

climatological processes which characterize each studied locations. Hence a multi-proxy 

approach is very much needed to infer paleoceanographic changes in such complex 

hydrological settings.  

 The Late Holocene changes in AW flow and in the nature of surface waters in the eastern 

Nordic Seas along a 66-77°N latitudinal gradient, show a generally strengthened NAC flow 

from 3000 cal. years BP to the Present. This long term modulation in the AW flow is linked to 

atmospheric processes driven by dominant modes of NAO. This mechanism also explain the 

observed zonal shifts in the location of the AF off western Norway, with increased influence 

of ArW during strengthened westerlies (positive NAO mode), whereas the western Barents 

Sea and eastern Fram Strait experienced an overall shoaling of AW which is proportional to 

the integrated flow to this northernmost settings. In general, the late Holocene shifts in AW 

flow strength relate fairly well with earlier identified pre-Anthropocene warm (RWP, MCA 

and the Modern period) and cold (LIA, DA) climatic spells. Periods of strong flow (2200-650 

cal. years BP; ~60 cal. years BP to Present) were in general characterized by an eastward 

(west of Norway) and northward (western Fram Strait) migration of the AF, whereas periods 

of low AW flow (3000-2200 cal. years BP; 650-60 cal. years BP) were related to a reversed 
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situation of westward (west of Norway) and southward (western Fram Strait) migration of the 

AF. 

The Little Ice Age initiation at ~650 cal. years BP was followed by an episode of deteriorating 

conditions, with Arctic/Polar surface waters off western Svalbard and in the western Barents 

Sea, possibly associated with severe sea-ice conditions, and a strongly reduced AW flow. 

During the earlier stages of this period, the western and southwestern Barents Sea bottom 

waters were bathed by AW until roughly 300 cal. years BP, causing an unstable fluctuating 

MIZ. The following period appears exceptional in our record as the AW flow decreased to a 

minimum over the southwestern Barents Sea shelf and was followed by an extensive sea ice 

expansion.  

The strong LIA cooling was interrupted in the eastern Fram Strait by a short resumed high 

flow of WSC from ca. 330 to 410 cal. yrs BP, whose magnitude was only surpassed by the 

excess AW flow who characterized the Modern period and which stands as unprecedented in 

Fram Strait over the last 3000 years .  

5.4  Perspectives 

5.4.1  Improving our Paleo-Reconstructions  

Improving our knowledge on the ecology of the surface dwelling dinoflagellates and coccoli-

thophores and on the surface distribution of their skeletal remains : 

Dinoflagellates and coccolithophores and their fossilizable remains are among some of the 

most widely used proxies in paleoceanographic and paleoclimatic reconstruction of the 

northern North Atlantic. An increased amount of investigations during recent decades on the 

distribution of extant and fossil populations (e.g. Samtleben et al., 1995; Andruleit et al., 

1997; Matthiessen et al., 2001) has strongly improved our knowledge of the environmental 

factors explaining the surface water and surface sediment distribution of these two species 

groups.  

Our study of extant coccolithophores is indicative of the ongoing intensification of sea-ice 

melts and sea-ice thinning within the Arctic Ocean, the associated naturally increased export 

of ice and melt water to the Nordic Seas (Kwok, 2009), and the overall increased surface 

water stratification in the western northern North Atlantic (Furevik et al., 2002). This setting 

favors the production of E. huxleyi. Remote-sensing investigations already point to the 

occurrence of pervasive blooms of E. huxleyi in Arctic to Polar environments such as the 

Barents Sea (Smyth et al., 2004) under the influence of increased sea-ice melts and increased 
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inflow of AW, conditions which are equally supposed to characterize the Greenland-Iceland 

Seas. Ongoing changes in the physico-chemical structure of the surface mixed layer of the 

northern North Atlantic (stratification, temperature, salinity) might induce regional changes in 

the structure of the phytoplankton communities with major effects on the carbon cycle as well 

as the entire food web of the Nordic Seas. Continuing surveys (yearly/monthly) of the 

distribution of phytoplankton in the presently changing high latitude oceans are therefore of 

tremendous importance, and could be implemented through an en-route simple, cost- and time 

effective sampling method such as the one applied in the present study. 

Beside living cells, surface water investigations of coccolithophore populations should further 

include census counts  of coccoliths. Understanding the distribution within the water column 

of the fossil remains of G. muellerae would further constrain the use of this species as a proxy 

for the strength of AW flow. A combination of water sampling and CTD measurements of 

temperature and salinities along a south to north transect within the main path of the NwAC 

would indeed be of prime importance in this regard.  

 

The present study of micropaleontological AW/ArW indicators is hampered by the uneven 

distribution of surface sediment samples used for the definition of these proxy ratios. 

Zonneveld et al. (2013) recently published an impressive extended version of the 2003 

dinocyst surface sediment database by Marret and Zonneveld (2003). This database strongly 

add to the understanding of dinocysts and their ecology. Unfortunately this improvement only 

concerns dinocysts. An interdisciplinary work involving several micropaleontolological 

groups (diatoms, foraminifera, coccoliths, dinocysts and radiolarians) and based on such an 

extensive surface sediment dataset is of urgent need for the paleoclimatology community. 

 

Improving the records obtained from the five studied cores : 

Given its estimated sedimentation rates, WOO/SC-3 is highly relevant for high resolution (up 

to 10 years resolution) paleoceanographic reconstructions off western Norway. Future work 

on this core should imply a strong collaboration with our fellow institution in Tromsø in order 

to combine our phytoplankton-related dataset with plaktic and benthic foraminiferal census 

counts. 

The multicore R248MC010, a very high resolution core encompassing the last 500 years, was 

the subject within the present study of an extended multi-proxy investigations including a 

whole range of biotic and abiotic proxies.  The modern ages of the core-top offers the 
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possibilities to constrain the top part of our proxy records with instrumental time-series of 

environmental datasets. The records of large S, Mg and Fe-coated lithic grains obtained 

within this core should be thoroughly investigated in combination with XRF-based elemental 

concentrations, as a proxy record of diagenetic processes. We also intend to implement 

statistical analyses such as PCA and spectral analyses on this unique set of data, as a way to 

unravel the recent paleoclimatic history off western Norway. 

  

As mentioned earlier, the problematic location of core R406MC032 at the entrance to the 

Bear Island Trench might result in downslope transport from upper shelf areas. Hence to 

clarify the importance of such sedimentary processes, a benthic foraminiferal study is clerly 

needed (see Chapter 3; Sarnthein et al., 2003).  

Future work on core JM09-KA11-GC should include a comparison with published planktic 

and benthic foraminifera data from Berben et al. (2013) and Groot et al. (2013) and  IP25 

from the Plymouth group (Cabedo-Sanz, pers. Comm.) and a further investigation of the 

MAT reconstructions. The latter is motivated by the deviations between reconstructed surface 

water temperatures and salinities and modern values, as well as sea-ice extent estimates that 

appears much higher than recent Holocene dinocyst reconstructions from this area (de Vernal 

et al., 2013).  

A higher resolution of the planktic foraminifera record at the base of core HH11-134-BC 

might strengthen and/or clarify the relation between the G. muellerae proxy of AW flow 

strength and planktic foraminiferal assemblages, tracers of temperature changes in subsurface 

waters.  

5.4.2  Extending the Present Study to Paleoceanographical Reconstructions over the entire 

Holocene. 

An obvious next step for future work will be to extend the investigated timeframe to the entire 

Holocene, via the implementation of the proxies identified and validated by the present late 

Holocene study. Some preliminary results obtained from gravity core JM09-KA11-GC are 

displayed in figure 5.1. The light red boxes represents zones of apparent strengthened AW 

flow strength (8800-5500 cal. years BP, 2000 cal. years BP- the top) and the dark red box 

indicate a zone which need to be further stratigraphically constrained. The resulting datasets 

will be thoroughly discussed and compared with foraminiferal results of Berben et al. (2013), 

Groot et al. (2013) and sedimentological data by Rüther et al. (2012). 

 



Chapter 5. 

Christian V. Dylmer, 2013 

 

220 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 : Summary plot of surface and subsurface circulation changes in the western Barents Sea (JM09-
KA11-GC) over the past ~12000 years. a) : Bulk coccolith concentrations as an index of carbonate productivity. 
b) : Absolute concentrations of G. muellerae as a proxy of the AW flow strength. c) : relative abundances (%) of 
the major coccolith species E. huxleyi and C. pelagicus as proxies for AW and ArW, respectively, within JM09-
KA11-GC. d-g) : relative abundances (%) of the dinocyst species OCEN (AW), IMIN (ArW), BSPP 
(productivity) and SRAM (productivity, salinity) within JM09-KA11-GC. h) : HALO concentrations as a proxy 
for meltwater. i - k) : Dinocyst-based MAT reconstructed winter surface water temperatures, salinities and sea 
ice concentrations (months/year), with the grey shaded area representing the error ranges of the reconstructions. 
Shaded light red represents increased AW flow periods in the western Barents Sea during the Holocene. 
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Appendices 
 
Appendix 1:  Site Specific CTD’s 
All figures show depth (m) profiles of temperature (°C) and salinities at (or close to) the site location. Only the 

CTDs associated with  JM09-KA11-GC and HH11-134-BC are from  the actual sites, the others are from nearby 

locations (from http://www.imr.no/forskning/forskningsdata/operasjonelledata) 

 

 
CTD 1: From a location in the viscinity of WOO/SC-3, during fall 2012, showing a clear dominance of AW.  
 

 
CTD 2: From a location in the vicinity of R248MC010, during fall 2012. The salinity data show a surface layer 
of low salinity (NCC) at this site, with a dominance in depth of AW.  
 

 
CTD 3: From a site in the viscinity of R406MC032, during summer 2012. The salinity data show the presence of 
a surface lower salinity layer (NCC) at this site, with a clear dominance in depth of AW.  
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CTD 4: From site JM09-KA11-GC. The salinity data show the dominance of AW with depth (CTD data 
provided from Denise Rüther). 
 

 
CTD 5: From site HH11-134-BC. The salinity data show the dominance of AW with depth (CTD data collected 
as part of the 2011 coring cruise, Husum et al. (2011)). 
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Appendix 2:  Introduction to C14 and Pb210 Dating Methods 
 
The C14-dating method  
Carbon (mainly 12C and 13C) is used by plants and animal life forms on Earth to build their 

hard shells and soft tissues, of which a small part is 14C. The death of the life form closes this 

addition of 14C and starts the decay clock ticking, with a half life of ~5730 years for 14C 

(Stuiver and Braziunas, 1993), a “clock” used when applying 14C dating. 

The cosmogenic radionuclide 14C isotope is produced in nuclear reactions with nitrogen, as 

cascades of high-energy galactic cosmic rays (GCR) hits our Earth’s atmosphere (Masarik 

and Beer, 1999; Muscheler et al., 2007). Therefore variability within the production of 14C are 

indirectly caused by the modulations within the solar wind (and partly the Earths geomagnetic 

field) produced by the sun, as these winds hampers the access of GCR’s to the interior of our 

solar system (and Earth), causing an inverse relationship between the production of 14C and 

the strength of the solar wind (Muscheler et al., 2007). The produced 14C oxidizes to CO2 and 

stays well mixed within the atmosphere in a gaseous phase for approximately 5 years, as it is 

finally distributed among the other carbon reservoirs. Changes in atmospheric radiocarbon 

concentrations can hence naturally be attributed to variations in the 14C production rate and 

changes in the global carbon cycle (Muscheler et al., 2007).  

During the industrial period the human usage of 14C free fossil fuel has lead to an unnatural 

increase in the atmospheric content of “old” CO2 causing a reduction in the natural level of 
14C, known as the Suess effect (Suess, 1953). The 14C system changed even further as the 14C 

level increased dramatically with nuclear-bomb testing producing a massive amount of 

artificial 14C, which, although counteracting the Suess effect, resulted in a uncertain amount 

of 14C within the atmosphere and hence the term “Before Present - BP” has today been chosen 

to relate to the year 1950 (Muscheler et al., 2007). 

Generally the ocean carbon reservoir is depleted in 14C compared to the atmosphere resulting 

in an apparent 14C age difference, known as the marine reservoir age R (Stuiver and 

Braziunas, 1993; Hughen et al., 2004). The marine calibration curve marine09 (Reimer et al., 

2004) was constructed to account for this difference, using the terrestrial radiocarbon 

calibration curve as an input to a global ocean-atmosphere model (Reimer et al., 2004; 

Hughen et al., 2004; Mangerud et al., 2006; Olsen et al., 2009). Based on this model a 

globally mean marine reservoir age R was suggested between samples of terrestrial and 

marine origine of 400 14C years (Stuiver and Braziunas, 1993), which is obviously a strong 

simplification as it can vary both spatially and temporally (350-1500 years) (Mangerud and 
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Gulliksen 1975; Reimer and Reimer, 2001; Mangerud et al., 2006; Olsen et al., 2009), making 

it necessary to apply an additional offset reservoir age expressed as ∆R. The variations from 

the global mean reservoir age can possibly be caused by the input of terrestrial organic 

carbon, dissolved 14C free fossil carbonates (Olsen et al., 2009, and references therein) and 

old carbon trapped in glaciers and sea-ice.  

 

The 210Pb and 137Cs methods 
Lead-210 is one of the daughter isotopes in a naturally existing radioactive decay-series 

(starting at Uranium-238 with a half life considered near infinite) and because of its short half 

life of ~22 years, this nuclide is frequently used in dating younger marine sediments (Fig. 

3.7). 

 
Figure 3.7 : Top; the Uranium-238 decay series showing the major differences in half-lifes of the elements from 
seconds to near “infinite”, http://geoinfo.nmt.edu/resources/uranium/what.html. Bottom; Lead-210 (210Pb) 
circulation. The noble gas radon-222 (222Rn),  escapes from sediments by diffusion. 222Rn decays to the 
polonium-218 (218Po), which over a period of hours/days fall to the earth with dust and rain. A number of 
subsequent radioactive decays occur over a period of minutes, and 210Pb is finally produced. 
 

A separate equilibrium is established between the decays in the uranium-series, which means 

the activity of the different decays will be equal and constant throughout the sediment core. 

Therefore it does not matter which decay one measures, they will all be the same, provided no 

disturbances (Leinebø, 2011, and references therein). Measuring the decay of the gamma-

emitting 226Ra is therefore done, in order to determine “excess 210Pb”.  
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The measured concentration of 210Pb is the sum of the 210Pb supplied, due to 222Rn-escape 

(210Pb-unsupported or excess 210Pb) escaping from the earth crust into the atmosphere close 

to the soil-air interface, and the amount descending from the original 238U (210Pb supported) 

(Fig. 3.7). The age estimation of the sediment layers is then done by identifying excess 210Pb 

in each sediment slice, and calculating the age of the layer based on the amount of excess 
210Pb, decayed from one layer to the next (Leinebø, 2011 and references therein).  

In addition to 210Pb, measurements of 137Cs were conducted on core R248MC010 by Leinebø 

(2011). The application of 137Cs (half-life of ~30 years) is based on the fact that the element 

did not exist in nature before the 1940’s when the first nuclear weapons were tested (Leinebø, 

2011, and references therein). Two peaks are generally important: In 1963 Great Brittani, the 

Sovjet Union (USSR), and USA signed a partial test-ban treaty, leading to a significant 

decrease in the global content of 137Cs, a change which today can be observed as a peak on 

Cs-curves (Leinebø, 2011, and references therein); and the major accident happened at 

Chernobyl in the USSR in 1986 lead to a release of a huge amount of radioactivity seen as a 

second peak. 137Cs is a valuable tool to validate recent sediments age models based on 210Pb. 
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Appendix 3: Taxonomic List 
 
Taxonomic list including all identified taxa of coccoliths, dinocysts, and planktonic foraminifera. 
COCCOLITHOPHORES               
Calcidiscus leptoporus (Murray and Blackman, 1898) Loeblich and Tappan, 1978 
Coccolithus pelagicus (Wallich, 1877) Schiller, 1930 

Emiliania huxleyi (Lohmann, 1902) Hay and Mohler, 1967 

Gephyrocapsa muellerae Bréhéret, 1978 

Syracosphaera spp. 

                  
DINOFLAGELLATES (dinocysts) & ACRITARCH 

Ataxiodinium choane Reid, 1974 

Alexandrium tamarense (Lebour 1925) Balech, 1985 

Bitectatodinium tepikiense Wilson, 1973 

Brigantedinium spp. Reid, 1977 

Echinidinium karaense Head et al., 2001 

Echinidinium spp. 

Impagidinium aculeatum (Wall 1967) Lentin et Williams, 1981 

Impagidinium pallidum Bujak, 1984 

Impagidinium patulum (Wall 1967) Stover et Evitt, 1978 

Impagidinium sphaericum (Wall 1967) Lentin et Williams, 1981 

Impagidinium strialatum (Wall 1967) Stover et Evitt, 1978 

Impagdinium spp. 

Islandinium? cezare (de Vernal et al. 1989 ex de Vernal in Rochon et al. 1999) Head et al., 2001 

Islandinium minutum (Harland et Reid in Harland et al. 1980) Head et al., 2001 

Lingulodinium machaerophorum (Deflandre et Cookson 1955) Wall, 1967 

Nematosphaeropsis labyrinthus (Ostenfeld 1903) Reid, 1974 

Operculodinium centrocarpum sensu Wall et Dale, 1966 

Operculodinium centrocarpum sensu Wall et Dale, 1966 - short processes 

Pentapharsodinium dalei Indelicato et Loeblich III, 1986 

Polykrikos schwartzii Bütschli, 1873 

Selenopemphix quanta (Bradford 1975) Matsuoka, 1985  

Spiniferites belerius Reid, 1974 

Spiniferites bentorii (Rossignol 1964) Wall et Dale, 1970 

Spiniferites elongatus Reid, 1974 

Spiniferites hyperacanthus (Deflandre et Cookson 1955) Cookson et Eisenack, 1974 

Spiniferites membranaceus (Rossignol 1964) Sarjeant, 1970  

Spiniferites mirabilis (Rossignol 1967) Sarjeant, 1970  

Spiniferites ramosus (Ehrenberg 1838) Mantell, 1854 

Spiniferites spp. 

Halodinium spp. Bujak, 1984 
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PLANKTONIC 
FORAMINIFERA 

Globigerina bulloides (d'Orbigny, 1826) 

Globigerina falconensis (Blow, 1959) 

Globigerinita glutinata (Egger, 1893) 

Globigerinita uvula (Ehrenberg, 1861) 

Globorotalia inflata (d'Orbigny, 1839) 

Globorotalia scitula (Brady, 1882) 

Neogloboquadrina pachyderma (Ehrenberg, 1861) sinistral 

Neogloboquadrina pachyderma (Ehrenberg, 1861) dextral 

Turborotalita quinqueloba (Natland 1838)           
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Appendix 4:  Analogues for MAT (Modern Analogue Technique) 
 

WOO/SC-3 
 

 
Table A1 : Analogue list, showing the analogues used by the Modern Analogue Technique for the reconstruction 
of summer and winter temperatures and salinities as well as sea-ice duration (months/year), within WOO/SC-3.  
 

WOO/SC-3
Depth (cm) [ANALOG 1] LONG LATI [ANALOG 2] LONG LATI [ANALOG 3] LONG LATI [ANALOG 4] LONG LATI [ANALOG 5] LONG LATI

20.5 N216 2.66 66.61 G057 -59.78 49.33 A945 -20.83 67.76 N186 3.73 60.63 N214 1.55 66.61

25.5 N186 3.73 60.63 N216 2.66 66.61 G054 -60.17 49.22 N214 1.55 66.61 Z550 30.42 71.42

30.5 G057 -59.78 49.33 N216 2.66 66.61 G052 -60.64 48.51 G061 -58.73 50.12 Z550 30.42 71.42

35.5 N186 3.73 60.63 G057 -59.78 49.33 N216 2.66 66.61 G054 -60.17 49.22 G052 -60.64 48.51

40.5 A945 -20.83 67.76 N216 2.66 66.61 G057 -59.78 49.33 N400 2.07 62.42 N214 1.55 66.61

45.5 N186 3.73 60.63 Z550 30.42 71.42 J311 7.49 71.99 N216 2.66 66.61 G057 -59.78 49.33

50.5 G057 -59.78 49.33 N216 2.66 66.61 N186 3.73 60.63 N214 1.55 66.61 J306 9.27 72.04

55.5 A945 -20.83 67.76 N214 1.55 66.61 G057 -59.78 49.33 N216 2.66 66.61 A983 -17.07 67.58

60.5 N216 2.66 66.61 N214 1.55 66.61 N186 3.73 60.63 G057 -59.78 49.33 G054 -60.17 49.22

70.5 N216 2.66 66.61 A983 -17.07 67.58 N193 -9.31 67 A947 -19.35 67.91 N214 1.55 66.61

65.5 N214 1.55 66.61 N216 2.66 66.61 J311 7.49 71.99 G057 -59.78 49.33 Z550 30.42 71.42

75.5 N216 2.66 66.61 G057 -59.78 49.33 N214 1.55 66.61 L153 -48.38 59.15 N215 2.18 66.61

80.5 N216 2.66 66.61 N214 1.55 66.61 N186 3.73 60.63 G057 -59.78 49.33 J326 5.87 67.69

85.5 N216 2.66 66.61 N214 1.55 66.61 N197 -6.21 67 N186 3.73 60.63 N209 0.02 63.44

90.5 N186 3.73 60.63 Z550 30.42 71.42 G057 -59.78 49.33 G054 -60.17 49.22 G056 -60.8 49.52

95.5 N216 2.66 66.61 N186 3.73 60.63 Z550 30.42 71.42 G057 -59.78 49.33 G052 -60.64 48.51

100.5 N216 2.66 66.61 Z550 30.42 71.42 N185 3.72 60.64 N214 1.55 66.61 G057 -59.78 49.33

105.5 N216 2.66 66.61 J326 5.87 67.69 N214 1.55 66.61 G057 -59.78 49.33 N210 -4.74 65.42

110.5 G052 -60.64 48.51 Z550 30.42 71.42 G057 -59.78 49.33 N216 2.66 66.61 J306 9.27 72.04

115.5 A947 -19.35 67.91 J304 11.14 74.88 N210 -4.74 65.42 N197 -6.21 67 J326 5.87 67.69

120.5 Z550 30.42 71.42 G054 -60.17 49.22 G056 -60.8 49.52 G057 -59.78 49.33 G052 -60.64 48.51

125.5 N186 3.73 60.63 N216 2.66 66.61 G065 -60.03 47.35 G057 -59.78 49.33 G052 -60.64 48.51

130.5 L153 -48.38 59.15 N234 -7.65 65.45 N214 1.55 66.61 N197 -6.21 67 N210 -4.74 65.42

135.5 G057 -59.78 49.33 Z550 30.42 71.42 J285 8.72 78.01 G065 -60.03 47.35 J306 9.27 72.04

140.5 N216 2.66 66.61 N186 3.73 60.63 N209 0.02 63.44 G057 -59.78 49.33 G054 -60.17 49.22

145.5 G057 -59.78 49.33 Z550 30.42 71.42 G054 -60.17 49.22 N216 2.66 66.61 G056 -60.8 49.52

150.5 N216 2.66 66.61 A945 -20.83 67.76 G057 -59.78 49.33 N214 1.55 66.61 N222 3.95 62.75

155.5 N216 2.66 66.61 J326 5.87 67.69 N214 1.55 66.61 N215 2.18 66.61 J311 7.49 71.99

160.5 N186 3.73 60.63 G065 -60.03 47.35 G052 -60.64 48.51 N216 2.66 66.61 G064 -62.54 48.64

165.5 N186 3.73 60.63 G057 -59.78 49.33 A420 -67.92 42.56 C909 -72.69 38.87 C908 -72.72 38.79

170.5 G073 -59.08 46.99 G065 -60.03 47.35 G057 -59.78 49.33 N216 2.66 66.61 G066 -59.88 47.52

175.5 N216 2.66 66.61 G052 -60.64 48.51 G057 -59.78 49.33 J306 9.27 72.04 J326 5.87 67.69

180.5 N216 2.66 66.61 G052 -60.64 48.51 G057 -59.78 49.33 N186 3.73 60.63 J326 5.87 67.69

185.5 N216 2.66 66.61 N186 3.73 60.63 Z550 30.42 71.42 G054 -60.17 49.22 G061 -58.73 50.12

190.5 J286 6.69 78 J326 5.87 67.69 J313 0.66 71.44 J304 11.14 74.88 J285 8.72 78.01

195.5 N216 2.66 66.61 N214 1.55 66.61 J307 11.45 72.14 J326 5.87 67.69 J301 2.91 67.09

200.5 G057 -59.78 49.33 G052 -60.64 48.51 Z550 30.42 71.42 A421 -69.66 42.67 N216 2.66 66.61

205.5 N216 2.66 66.61 N214 1.55 66.61 N215 2.18 66.61 N248 4.23 58.69 N213 1.48 66.67

210.5 N216 2.66 66.61 J326 5.87 67.69 N215 2.18 66.61 N214 1.55 66.61 J306 9.27 72.04

215.5 N216 2.66 66.61 N186 3.73 60.63 N214 1.55 66.61 J326 5.87 67.69 N248 4.23 58.69

220.5 N186 3.73 60.63 N216 2.66 66.61 N215 2.18 66.61 J306 9.27 72.04 G057 -59.78 49.33

225.5 N216 2.66 66.61 N196 -6.59 67.04 Z550 30.42 71.42 J326 5.87 67.69 G057 -59.78 49.33

230.5 N216 2.66 66.61 N214 1.55 66.61 N215 2.18 66.61 J300 3 69.5 N209 0.02 63.44

235.5 G057 -59.78 49.33 N216 2.66 66.61 G052 -60.64 48.51 J306 9.27 72.04 Z550 30.42 71.42

240.5 G052 -60.64 48.51 Z550 30.42 71.42 J306 9.27 72.04 J304 11.14 74.88 J313 0.66 71.44

245.5 N216 2.66 66.61 Z550 30.42 71.42 J326 5.87 67.69 N214 1.55 66.61 N186 3.73 60.63
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MAP A1: Geographical distribution of all analogues (red dots)  applied within the present investigation of core 
WOO/SC-3 (green dot). 
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R248MC010 
 

 
Table A2: Analogue list, showing the analogues used by the Modern Analogue Technique for the reconstruction 
of summer and winter temperatures and salinities as well as sea-ice duration (months/year), within R248MC010.  
 

R248MC010
Depth (cm) [ANALOG 1] LONG LATI [ANALOG 2] LONG LATI [ANALOG 3] LONG LATI [ANALOG 4] LONG LATI [ANALOG 5] LONG LATI

0.5 N236 -6.79 65.57 J326 5.87 67.69 N195 -7.31 67.08 J298 -3.01 65.5 A699 -10.05 57.03

1.5 G054 -60.17 49.22 G051 -60.64 48.51 G056 -60.8 49.52 Z550 30.42 71.42 G057 -59.78 49.33

2.5 G057 -59.78 49.33 G054 -60.17 49.22 G056 -60.8 49.52 G061 -58.73 50.12 G052 -60.64 48.51

3.5 G1367 -61.5 48.33 G051 -60.64 48.51 A943 -20.31 67.63 A945 -20.83 67.76 A944 -20.5 67.25

4.5 G054 -60.17 49.22 G051 -60.64 48.51 G056 -60.8 49.52 G061 -58.73 50.12 G1367 -61.5 48.33

5.5 G057 -59.78 49.33 A945 -20.83 67.76 N214 1.55 66.61 N216 2.66 66.61 G065 -60.03 47.35

6.5 G1367 -61.5 48.33 G054 -60.17 49.22 G057 -59.78 49.33 A945 -20.83 67.76 A943 -20.31 67.63

7.5 G057 -59.78 49.33 L153 -48.38 59.15 A945 -20.83 67.76 A955 -18.18 67.46 A168 -39.31 59.49

8.5 G056 -60.8 49.52 G061 -58.73 50.12 G054 -60.17 49.22 G052 -60.64 48.51 G065 -60.03 47.35

9.5 G054 -60.17 49.22 G051 -60.64 48.51 G056 -60.8 49.52 G061 -58.73 50.12 G1367 -61.5 48.33

10.5 G1367 -61.5 48.33 G051 -60.64 48.51 G054 -60.17 49.22 G056 -60.8 49.52 G064 -62.54 48.64

11.5 G056 -60.8 49.52 G054 -60.17 49.22 G057 -59.78 49.33 G061 -58.73 50.12 G052 -60.64 48.51

12.5 G054 -60.17 49.22 G056 -60.8 49.52 G052 -60.64 48.51 G061 -58.73 50.12 G051 -60.64 48.51

13.5 G057 -59.78 49.33 Z550 30.42 71.42 G061 -58.73 50.12 G054 -60.17 49.22 G056 -60.8 49.52

14.5 G057 -59.78 49.33 G054 -60.17 49.22 G056 -60.8 49.52 G052 -60.64 48.51 G061 -58.73 50.12

15.5 G054 -60.17 49.22 G056 -60.8 49.52 G061 -58.73 50.12 G051 -60.64 48.51 G052 -60.64 48.51

16.5 G054 -60.17 49.22 G056 -60.8 49.52 N186 3.73 60.63 G051 -60.64 48.51 G057 -59.78 49.33

17.5 G057 -59.78 49.33 G054 -60.17 49.22 G056 -60.8 49.52 G061 -58.73 50.12 G060 -59.46 49.8

18.5 G054 -60.17 49.22 G056 -60.8 49.52 G051 -60.64 48.51 G1367 -61.5 48.33 G061 -58.73 50.12

19.5 G054 -60.17 49.22 G056 -60.8 49.52 G057 -59.78 49.33 G052 -60.64 48.51 G061 -58.73 50.12

20.5 N186 3.73 60.63 G054 -60.17 49.22 G056 -60.8 49.52 Z550 30.42 71.42 N185 3.72 60.64

21.5 G056 -60.8 49.52 G054 -60.17 49.22 G061 -58.73 50.12 G1367 -61.5 48.33 G057 -59.78 49.33

22.5 G054 -60.17 49.22 G056 -60.8 49.52 G057 -59.78 49.33 G052 -60.64 48.51 G061 -58.73 50.12

23.5 G054 -60.17 49.22 G056 -60.8 49.52 G061 -58.73 50.12 Z550 30.42 71.42 G051 -60.64 48.51

24.5 G054 -60.17 49.22 G057 -59.78 49.33 G051 -60.64 48.51 G056 -60.8 49.52 G060 -59.46 49.8

25.5 G1367 -61.5 48.33 G054 -60.17 49.22 G051 -60.64 48.51 G057 -59.78 49.33 G056 -60.8 49.52

26.5 G057 -59.78 49.33 G054 -60.17 49.22 G052 -60.64 48.51 G056 -60.8 49.52 G1367 -61.5 48.33

27.5 G057 -59.78 49.33 G054 -60.17 49.22 G064 -62.54 48.64 G056 -60.8 49.52 G061 -58.73 50.12

28.5 G051 -60.64 48.51 G054 -60.17 49.22 N186 3.73 60.63 N216 2.66 66.61 N209 0.02 63.44

29.5 G052 -60.64 48.51 G054 -60.17 49.22 G056 -60.8 49.52 G057 -59.78 49.33 G061 -58.73 50.12

30.5 G051 -60.64 48.51 G054 -60.17 49.22 G1367 -61.5 48.33 Z539 33.83 69.49 Z550 30.42 71.42

31.5 G054 -60.17 49.22 Z550 30.42 71.42 N186 3.73 60.63 G057 -59.78 49.33 N216 2.66 66.61

32.5 G061 -58.73 50.12 G054 -60.17 49.22 G056 -60.8 49.52 G052 -60.64 48.51 G057 -59.78 49.33

33.5 N216 2.66 66.61 N214 1.55 66.61 A945 -20.83 67.76 G057 -59.78 49.33 N209 0.02 63.44

34.5 G054 -60.17 49.22 G057 -59.78 49.33 G056 -60.8 49.52 G061 -58.73 50.12 N186 3.73 60.63

35.5 G052 -60.64 48.51 G065 -60.03 47.35 G056 -60.8 49.52 G066 -59.88 47.52 G061 -58.73 50.12

36.5 J312 4.99 72.01 J311 7.49 71.99 Z550 30.42 71.42 G051 -60.64 48.51 J308 13.1 72.18

37.5 G052 -60.64 48.51 G066 -59.88 47.52 G057 -59.78 49.33 G065 -60.03 47.35 G054 -60.17 49.22

38.5 G052 -60.64 48.51 G057 -59.78 49.33 N216 2.66 66.61 G054 -60.17 49.22 G056 -60.8 49.52

39.5 N193 -9.31 67 Z550 30.42 71.42 G051 -60.64 48.51 J285 8.72 78.01 N192 -11.66 67.5

40.5 G052 -60.64 48.51 G051 -60.64 48.51 J306 9.27 72.04 G054 -60.17 49.22 J307 11.45 72.14

41.5 N216 2.66 66.61 A945 -20.83 67.76 G057 -59.78 49.33 G052 -60.64 48.51 N214 1.55 66.61

42.5 N216 2.66 66.61 J306 9.27 72.04 G057 -59.78 49.33 N197 -6.21 67 J313 0.66 71.44

43.5 A945 -20.83 67.76 N216 2.66 66.61 A943 -20.31 67.63 G057 -59.78 49.33 L153 -48.38 59.15

44.5 G051 -60.64 48.51 G054 -60.17 49.22 G1367 -61.5 48.33 G056 -60.8 49.52 G057 -59.78 49.33

45.5 G057 -59.78 49.33 G052 -60.64 48.51 G060 -59.46 49.8 A983 -17.07 67.58 G033 -60.72 48.17

46.5 N216 2.66 66.61 A945 -20.83 67.76 G057 -59.78 49.33 G066 -59.88 47.52 C662 -61.69 42.63

47.5 N216 2.66 66.61 N214 1.55 66.61 N186 3.73 60.63 G051 -60.64 48.51 G054 -60.17 49.22

48.5 G052 -60.64 48.51 G061 -58.73 50.12 G057 -59.78 49.33 G056 -60.8 49.52 G054 -60.17 49.22
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MAP A1: Geographical distribution of all analogues (red dots)  applied within the present investigation of core 
R248MC010 (green dot). 
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R406MC032 
 

 
Table A3: Analogue list, showing the analogues used by the Modern Analogue Technique for the reconstruction 
of summer and winter temperatures and salinities as well as sea-ice duration (months/year), within R406MC032.  
 
 

R406MC032
Depth (cm) [ANALOG 1] LONG LATI [ANALOG 2] LONG LATI [ANALOG 3] LONG LATI [ANALOG 4] LONG LATI [ANALOG 5] LONG LATI

0.5 G057 -59.78 49.33 Z550 30.42 71.42 J307 11.45 72.14 N185 3.72 60.64 N186 3.73 60.63

1.5 Z550 30.42 71.42 G054 -60.17 49.22 G057 -59.78 49.33 G056 -60.8 49.52 N211 -3.23 65.75

2.5 G057 -59.78 49.33 C666 -61.82 42.92 N185 3.72 60.64 N186 3.73 60.63 C662 -61.69 42.63

3.5 G054 -60.17 49.22 N185 3.72 60.64 G056 -60.8 49.52 Z550 30.42 71.42 N211 -3.23 65.75

4.5 G051 -60.64 48.51 Z550 30.42 71.42 G054 -60.17 49.22 Z539 33.83 69.49 G1367 -61.5 48.33

5.5 N211 -3.23 65.75 N185 3.72 60.64 N212 1.13 66.61 N186 3.73 60.63 Z551 31.97 71.39

6.5 N186 3.73 60.63 N214 1.55 66.61 N185 3.72 60.64 N212 1.13 66.61 N213 1.48 66.67

7.5 N210 -4.74 65.42 Z551 31.97 71.39 A949 -17.75 67.9 A977 -21.78 67.98 A937 -15.38 68.08

8.5 A168 -39.31 59.49 N185 3.72 60.64 N210 -4.74 65.42 N216 2.66 66.61 N214 1.55 66.61

9.5 Z550 30.42 71.42 N210 -4.74 65.42 Z551 31.97 71.39 A936 -15.45 67.91 N216 2.66 66.61

10.5 Z550 30.42 71.42 N185 3.72 60.64 N186 3.73 60.63 N216 2.66 66.61 A936 -15.45 67.91

11.5 Z550 30.42 71.42 N211 -3.23 65.75 N185 3.72 60.64 N186 3.73 60.63 N212 1.13 66.61

12.5 N237 -4.63 65.62 N211 -3.23 65.75 N185 3.72 60.64 N212 1.13 66.61 N214 1.55 66.61

13.5 A977 -21.78 67.98 N211 -3.23 65.75 N185 3.72 60.64 A168 -39.31 59.49 N210 -4.74 65.42

14.5 G057 -59.78 49.33 Z550 30.42 71.42 C666 -61.82 42.92 N237 -4.63 65.62 C660 -59.99 43.12

15.5 Z550 30.42 71.42 A977 -21.78 67.98 N216 2.66 66.61 A983 -17.07 67.58 G057 -59.78 49.33

16.5 Z550 30.42 71.42 G054 -60.17 49.22 G057 -59.78 49.33 G1367 -61.5 48.33 A955 -18.18 67.46

17.5 Z550 30.42 71.42 G054 -60.17 49.22 G057 -59.78 49.33 G056 -60.8 49.52 N186 3.73 60.63

18.5 N193 -9.31 67 A947 -19.35 67.91 N231 -8.81 65.27 A946 -20.68 68.03 N234 -7.65 65.45

19.5 N210 -4.74 65.42 A949 -17.75 67.9 A977 -21.78 67.98 N185 3.72 60.64 A984 -18.47 71.19

20.5 N216 2.66 66.61 N214 1.55 66.61 L153 -48.38 59.15 N248 4.23 58.69 A945 -20.83 67.76

21.5 G1366 -60.01 47.67 G052 -60.64 48.51 N216 2.66 66.61 G063 -62.54 48.64 G033 -60.72 48.17

22.5 G054 -60.17 49.22 Z550 30.42 71.42 N186 3.73 60.63 G051 -60.64 48.51 G056 -60.8 49.52

23.5 Z550 30.42 71.42 N216 2.66 66.61 G052 -60.64 48.51 G057 -59.78 49.33 G054 -60.17 49.22

24.5 G052 -60.64 48.51 G061 -58.73 50.12 G056 -60.8 49.52 Z550 30.42 71.42 G066 -59.88 47.52

25.5 G073 -59.08 46.99 G061 -58.73 50.12 G057 -59.78 49.33 G065 -60.03 47.35 Z550 30.42 71.42

26.5 G057 -59.78 49.33 G061 -58.73 50.12 G052 -60.64 48.51 G056 -60.8 49.52 G054 -60.17 49.22

27.5 G057 -59.78 49.33 Z550 30.42 71.42 N186 3.73 60.63 G054 -60.17 49.22 G061 -58.73 50.12

28.5 G052 -60.64 48.51 G061 -58.73 50.12 G056 -60.8 49.52 G066 -59.88 47.52 Z560 50.72 73.62

29.5 G057 -59.78 49.33 Z550 30.42 71.42 G073 -59.08 46.99 G061 -58.73 50.12 G056 -60.8 49.52

30.5 G065 -60.03 47.35 A813 -57.31 47.69 A423 -69.96 42.82 G073 -59.08 46.99 A419 -65.46 41.92

31.5 A683 -51.8 48.91 G073 -59.08 46.99 G065 -60.03 47.35 Z550 30.42 71.42 A423 -69.96 42.82

32.5 G073 -59.08 46.99 G065 -60.03 47.35 A423 -69.96 42.82 G057 -59.78 49.33 G061 -58.73 50.12



Appendices 

Christian V. Dylmer, 2013 

 

 
 

 
MAP A2: Geographical distribution of all analogues (red dots)  applied within the present investigation of core 
R406MC032 (green dot). 
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JM09-KA11-GC 
 

 
Table A4: Analogue list, showing the analogues used by the Modern Analogue Technique for the reconstruction 
of summer and winter temperatures and salinities as well as sea-ice duration (months/year), within JM09-KA11-
GC.  
 

JM09-KA11-GC
Depth (cm) [ANALOG 1] LONG LATI [ANALOG 2] LONG LATI [ANALOG 3] LONG LATI [ANALOG 4] LONG LATI [ANALOG 5] LONG LATI

2.5 Z558 70.01 77 Z808 57.17 75.48 Z559 70.03 78.32 J286 6.69 78 J366 -6.02 76.92

3.5 J363 -11.57 75.33 Z558 70.01 77 J368 -4.55 77.99 Z555 59.77 76.72 J284 -21.11 70

7.5 Z558 70.01 77 J366 -6.02 76.92 J368 -4.55 77.99 J286 6.69 78 Z559 70.03 78.32

8.5 Z558 70.01 77 J286 6.69 78 Z559 70.03 78.32 J368 -4.55 77.99 Z562 52.43 74.45

9.25 Z558 70.01 77 J368 -4.55 77.99 F1002 -138.38 69.92 J366 -6.02 76.92 Z562 52.43 74.45

11.5 Z558 70.01 77 Z562 52.43 74.45 J368 -4.55 77.99 J286 6.69 78 J366 -6.02 76.92

13.5 Z558 70.01 77 J368 -4.55 77.99 Z559 70.03 78.32 J286 6.69 78 Y697 -70.79 75.58

15.5 Z810 47.87 79.65 F1002 -138.38 69.92 Z558 70.01 77 F997 -133.52 71.15 Y696 -76.08 75.26

17.5 F1002 -138.38 69.92 Z558 70.01 77 Z810 47.87 79.65 Y697 -70.79 75.58 F997 -133.52 71.15

19 Y697 -70.79 75.58 Z558 70.01 77 F1002 -138.38 69.92 Z810 47.87 79.65 F999 -128.52 71.27

21.5 Z558 70.01 77 J368 -4.55 77.99 J366 -6.02 76.92 Y697 -70.79 75.58 J284 -21.11 70

23.5 Z558 70.01 77 Y697 -70.79 75.58 J284 -21.11 70 Z810 47.87 79.65 J363 -11.57 75.33

25.5 Z559 70.03 78.32 Z558 70.01 77 Z809 46.94 79.57 Z562 52.43 74.45 Z557 56.43 75.62

27.5 Z558 70.01 77 Z810 47.87 79.65 J284 -21.11 70 J363 -11.57 75.33 F995 -133.81 71.45

31.5 Z558 70.01 77 Z810 47.87 79.65 F1002 -138.38 69.92 Y696 -76.08 75.26 F997 -133.52 71.15

33.5 Z558 70.01 77 C675 -60.9 45.22 J366 -6.02 76.92 J368 -4.55 77.99 G072 -60.22 46.72

35.5 F1230 -85.6 74.28 Y372 -6.66 80.06 C674 -60.87 45.21 C675 -60.9 45.22 C676 -60.89 45.23

37.5 J368 -4.55 77.99 Z558 70.01 77 J366 -6.02 76.92 Y697 -70.79 75.58 J284 -21.11 70

41.5 Z558 70.01 77 J366 -6.02 76.92 J368 -4.55 77.99 F1002 -138.38 69.92 Z562 52.43 74.45

44.5 Z558 70.01 77 Z559 70.03 78.32 J366 -6.02 76.92 J368 -4.55 77.99 G1366 -60.01 47.67

48.5 Z810 47.87 79.65 J284 -21.11 70 J363 -11.57 75.33 J368 -4.55 77.99 Z558 70.01 77

51.5 Z558 70.01 77 J366 -6.02 76.92 J368 -4.55 77.99 G072 -60.22 46.72 G059 -59.47 49.8

55.5 Z558 70.01 77 J368 -4.55 77.99 J284 -21.11 70 J366 -6.02 76.92 J363 -11.57 75.33

57.5 J368 -4.55 77.99 Z558 70.01 77 J366 -6.02 76.92 J284 -21.11 70 J286 6.69 78

61.5 J284 -21.11 70 Z810 47.87 79.65 Z558 70.01 77 J366 -6.02 76.92 Y696 -76.08 75.26

63.5 Y697 -70.79 75.58 J368 -4.55 77.99 G059 -59.47 49.8 Z559 70.03 78.32 Z558 70.01 77

65.5 Z558 70.01 77 J368 -4.55 77.99 J366 -6.02 76.92 J284 -21.11 70 J286 6.69 78

67.5 J368 -4.55 77.99 Z558 70.01 77 J366 -6.02 76.92 Z559 70.03 78.32 J284 -21.11 70

69.5 H1331 -71.92 62.25 Y697 -70.79 75.58 Z810 47.87 79.65 J366 -6.02 76.92 C671 -60.83 45.16

71.5 J366 -6.02 76.92 Z558 70.01 77 J368 -4.55 77.99 F1230 -85.6 74.28 Z810 47.87 79.65

73.5 J284 -21.11 70 J363 -11.57 75.33 J289 -11.04 78.62 F1230 -85.6 74.28 J368 -4.55 77.99

75.5 J366 -6.02 76.92 J284 -21.11 70 J354 -18.02 69.03 J368 -4.55 77.99 Z558 70.01 77

77.5 J366 -6.02 76.92 J284 -21.11 70 J368 -4.55 77.99 Y697 -70.79 75.58 J363 -11.57 75.33

81.5 Z707 -74.66 76.22 F1230 -85.6 74.28 Y375 -11.32 80.62 Y693 -72.34 77.01 J289 -11.04 78.62

83.5 J289 -11.04 78.62 F1230 -85.6 74.28 J284 -21.11 70 Z707 -74.66 76.22 Y376 -13.66 80.45

85.5 J289 -11.04 78.62 Y376 -13.66 80.45 F1230 -85.6 74.28 J284 -21.11 70 Y693 -72.34 77.01

87.5 J284 -21.11 70 J289 -11.04 78.62 S158 -58.91 56.11 Z558 70.01 77 J368 -4.55 77.99

91.5 J284 -21.11 70 J368 -4.55 77.99 J354 -18.02 69.03 J366 -6.02 76.92 J363 -11.57 75.33

93.5 J284 -21.11 70 J368 -4.55 77.99 Y376 -13.66 80.45 S158 -58.91 56.11 J289 -11.04 78.62

95.5 A534 -31.88 67.14 J289 -11.04 78.62 S160 -55.58 54.72 S159 -56.45 54.71 S158 -58.91 56.11

97.5 J284 -21.11 70 S158 -58.91 56.11 J366 -6.02 76.92 J368 -4.55 77.99 Y376 -13.66 80.45

100.5 J289 -11.04 78.62 Y376 -13.66 80.45 Y378 -15.76 80.08 Y373 -10.71 80.15 Y690 -74.94 76.8

102.5 Y375 -11.32 80.62 J289 -11.04 78.62 H1331 -71.92 62.25 Z707 -74.66 76.22 J284 -21.11 70

103.5 H1331 -71.92 62.25 Y372 -6.66 80.06 J284 -21.11 70 S160 -55.58 54.72 S158 -58.91 56.11

106.5 Y378 -15.76 80.08 J289 -11.04 78.62 Y693 -72.34 77.01 Z707 -74.66 76.22 Y373 -10.71 80.15

108.5 S158 -58.91 56.11 J284 -21.11 70 Y376 -13.66 80.45 J289 -11.04 78.62 S159 -56.45 54.71

110.5 Z803 57.9 80.74 Y376 -13.66 80.45 J289 -11.04 78.62 Z708 -71.04 76.12 Z473 123.84 75.48

114.5 J284 -21.11 70 S158 -58.91 56.11 J366 -6.02 76.92 Z558 70.01 77 J368 -4.55 77.99

121.5 S158 -58.91 56.11 S159 -56.45 54.71 J366 -6.02 76.92 J368 -4.55 77.99 J363 -11.57 75.33
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MAP A3 : Geographical distribution of all analogues (red dots)  applied within the present investigation of core 
JM09-KA11-GC (green dot). 
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HH11-134-BC 
 

 

HH11-134-BC
Depth (cm) [ANALOG 1] LONG LATI [ANALOG 2] LONG LATI [ANALOG 3] LONG LATI [ANALOG 4] LONG LATI [ANALOG 5] LONG LATI

0.25 Z559 70.03 78.32 J285 8.72 78.01 Z550 30.42 71.42 J286 6.69 78 A946 -20.68 68.03

0.75 Z559 70.03 78.32 J285 8.72 78.01 Z558 70.01 77 A946 -20.68 68.03 A950 -17.5 68.08

1.25 J285 8.72 78.01 Z559 70.03 78.32 Z558 70.01 77 J286 6.69 78 J288 -1.05 78

1.75 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 Z558 70.01 77 A946 -20.68 68.03

2.25 Z559 70.03 78.32 A946 -20.68 68.03 A950 -17.5 68.08 G059 -59.47 49.8 G1366 -60.01 47.67

2.75 Z559 70.03 78.32 Z550 30.42 71.42 J285 8.72 78.01 G057 -59.78 49.33 J286 6.69 78

3.25 Z559 70.03 78.32 A946 -20.68 68.03 A947 -19.35 67.91 J285 8.72 78.01 N193 -9.31 67

3.75 Z559 70.03 78.32 Z550 30.42 71.42 J285 8.72 78.01 G057 -59.78 49.33 G061 -58.73 50.12

4.25 Z559 70.03 78.32 A946 -20.68 68.03 A947 -19.35 67.91 J286 6.69 78 Z550 30.42 71.42

4.75 Z559 70.03 78.32 Z550 30.42 71.42 J285 8.72 78.01 J286 6.69 78 G057 -59.78 49.33

6.25 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 G061 -58.73 50.12 G056 -60.8 49.52

6.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 G057 -59.78 49.33

7.25 J285 8.72 78.01 J286 6.69 78 Z559 70.03 78.32 Z550 30.42 71.42 J326 5.87 67.69

7.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 G057 -59.78 49.33 A946 -20.68 68.03

8.25 Z559 70.03 78.32 J285 8.72 78.01 Z550 30.42 71.42 J286 6.69 78 J300 3 69.5

8.75 A984 -18.47 71.19 A937 -15.38 68.08 Z559 70.03 78.32 J285 8.72 78.01 A953 -15.75 68.33

9.25 J285 8.72 78.01 J286 6.69 78 J300 3 69.5 Z559 70.03 78.32 Z550 30.42 71.42

9.75 A984 -18.47 71.19 A937 -15.38 68.08 A955 -18.18 67.46 N216 2.66 66.61 Z551 31.97 71.39

10.25 J286 6.69 78 J285 8.72 78.01 Z550 30.42 71.42 Z559 70.03 78.32 J300 3 69.5

10.75 Z559 70.03 78.32 Z550 30.42 71.42 J285 8.72 78.01 J286 6.69 78 Z560 50.72 73.62

11.25 Z559 70.03 78.32 N216 2.66 66.61 Z550 30.42 71.42 G052 -60.64 48.51 J286 6.69 78

11.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 G1366 -60.01 47.67 G061 -58.73 50.12

12.25 J326 5.87 67.69 N216 2.66 66.61 Z550 30.42 71.42 J300 3 69.5 N196 -6.59 67.04

12.75 J300 3 69.5 J286 6.69 78 J285 8.72 78.01 Z559 70.03 78.32 J326 5.87 67.69

13.25 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 G052 -60.64 48.51 J286 6.69 78

13.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 J300 3 69.5 J286 6.69 78

14.25 J286 6.69 78 J285 8.72 78.01 Z559 70.03 78.32 Z550 30.42 71.42 J300 3 69.5

14.75 Z559 70.03 78.32 J300 3 69.5 J286 6.69 78 J285 8.72 78.01 J326 5.87 67.69

15.25 J326 5.87 67.69 Z559 70.03 78.32 J286 6.69 78 J285 8.72 78.01 N216 2.66 66.61

15.75 J300 3 69.5 J285 8.72 78.01 J286 6.69 78 Z550 30.42 71.42 Z558 70.01 77

16.5 J300 3 69.5 J326 5.87 67.69 Z550 30.42 71.42 J286 6.69 78 J285 8.72 78.01

16.75 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 Z558 70.01 77 Z550 30.42 71.42

17.25 J285 8.72 78.01 J286 6.69 78 Z559 70.03 78.32 J300 3 69.5 J326 5.87 67.69

17.75 Z550 30.42 71.42 J286 6.69 78 J285 8.72 78.01 J300 3 69.5 Z559 70.03 78.32

18.25 Z550 30.42 71.42 J285 8.72 78.01 J286 6.69 78 Z559 70.03 78.32 G052 -60.64 48.51

18.75 J286 6.69 78 Z559 70.03 78.32 J285 8.72 78.01 A420 -67.92 42.56 J326 5.87 67.69

19.25 J286 6.69 78 J300 3 69.5 J285 8.72 78.01 J326 5.87 67.69 Z559 70.03 78.32

19.75 Z559 70.03 78.32 J286 6.69 78 J285 8.72 78.01 Z550 30.42 71.42 J300 3 69.5

20.25 Z559 70.03 78.32 J286 6.69 78 J285 8.72 78.01 J300 3 69.5 Z550 30.42 71.42

20.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 J326 5.87 67.69

21.25 J286 6.69 78 J300 3 69.5 J285 8.72 78.01 Z550 30.42 71.42 Y697 -70.79 75.58

21.75 N216 2.66 66.61 J326 5.87 67.69 Z550 30.42 71.42 G052 -60.64 48.51 G1366 -60.01 47.67

22.25 Z550 30.42 71.42 J286 6.69 78 Z559 70.03 78.32 J285 8.72 78.01 J300 3 69.5

22.75 J300 3 69.5 Z550 30.42 71.42 J285 8.72 78.01 J286 6.69 78 J281 -3.64 68.3

23.25 J300 3 69.5 J286 6.69 78 Y697 -70.79 75.58 Z559 70.03 78.32 J285 8.72 78.01

23.75 J300 3 69.5 N216 2.66 66.61 Z550 30.42 71.42 Z559 70.03 78.32 J326 5.87 67.69

24.25 J285 8.72 78.01 J286 6.69 78 J300 3 69.5 J326 5.87 67.69 Z550 30.42 71.42

24.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 J300 3 69.5

25.25 Z550 30.42 71.42 G054 -60.17 49.22 G056 -60.8 49.52 G061 -58.73 50.12 N216 2.66 66.61

25.75 J300 3 69.5 J286 6.69 78 J285 8.72 78.01 Y697 -70.79 75.58 J326 5.87 67.69

26.25 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 J300 3 69.5 Z555 59.77 76.72

26.75 Z550 30.42 71.42 J300 3 69.5 J286 6.69 78 J285 8.72 78.01 G1366 -60.01 47.67

27.25 Z550 30.42 71.42 J285 8.72 78.01 J300 3 69.5 Z558 70.01 77 G056 -60.8 49.52

27.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 N216 2.66 66.61

28.25 Y697 -70.79 75.58 J286 6.69 78 J300 3 69.5 Z559 70.03 78.32 Z550 30.42 71.42

28.75 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 A946 -20.68 68.03

29.25 Z559 70.03 78.32 Z550 30.42 71.42 G052 -60.64 48.51 G061 -58.73 50.12 N216 2.66 66.61

29.75 Z559 70.03 78.32 Z550 30.42 71.42 J286 6.69 78 J285 8.72 78.01 J300 3 69.5

30.25 Z550 30.42 71.42 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 G061 -58.73 50.12

30.75 J285 8.72 78.01 A947 -19.35 67.91 A953 -15.75 68.33 N193 -9.31 67 A946 -20.68 68.03

32.25 Z550 30.42 71.42 N216 2.66 66.61 J286 6.69 78 J300 3 69.5 J285 8.72 78.01

32.75 Z550 30.42 71.42 Z559 70.03 78.32 A984 -18.47 71.19 J285 8.72 78.01 J286 6.69 78

33.75 Z550 30.42 71.42 N216 2.66 66.61 G057 -59.78 49.33 Z559 70.03 78.32 G061 -58.73 50.12

34.25 Z550 30.42 71.42 J285 8.72 78.01 G061 -58.73 50.12 Z559 70.03 78.32 J286 6.69 78

34.75 Z550 30.42 71.42 G061 -58.73 50.12 G056 -60.8 49.52 G054 -60.17 49.22 G057 -59.78 49.33

35.25 Z550 30.42 71.42 A946 -20.68 68.03 G061 -58.73 50.12 G057 -59.78 49.33 N193 -9.31 67

35.75 Z550 30.42 71.42 J300 3 69.5 G061 -58.73 50.12 J286 6.69 78 A946 -20.68 68.03

36.25 G061 -58.73 50.12 Z550 30.42 71.42 G056 -60.8 49.52 G054 -60.17 49.22 N216 2.66 66.61

36.75 Z550 30.42 71.42 Z559 70.03 78.32 G057 -59.78 49.33 J285 8.72 78.01 G061 -58.73 50.12

37.25 Z550 30.42 71.42 J286 6.69 78 J285 8.72 78.01 Z559 70.03 78.32 J300 3 69.5

37.75 J285 8.72 78.01 J286 6.69 78 G061 -58.73 50.12 Z550 30.42 71.42 Z559 70.03 78.32

38.25 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 Z550 30.42 71.42 A951 -16.93 68.58

38.75 Z559 70.03 78.32 J285 8.72 78.01 J286 6.69 78 Z550 30.42 71.42 G061 -58.73 50.12

39.25 A947 -19.35 67.91 A946 -20.68 68.03 J285 8.72 78.01 A953 -15.75 68.33 J368 -4.55 77.99
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Table A5: Analogue list, showing the analogues used by the Modern Analogue Technique for the reconstruction 
of summer and winter temperatures and salinities as well as sea-ice duration (months/year), within HH11-134-
BC.  
 
 

 
MAP A4 : Geographical distribution of all analogues (red dots)  applied within the present investigation of core 
HH11-134-BC (green dot). 
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Appendix 5: R248MC010 relative abundances and absolute concentrations of 
microfossils, MAT reconstructions and XRF count datasets 

 
A5.1 Coccoliths  

Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

0.25 -57.3 58.5 36.9 2.0 2.7 11.6 

0.75 -55.9 72.7 24.4 2.6 0.3 7.5 

1.25 -54.4 70.3 27.8 1.2 0.7 10.6 

1.75 -52.8 60.6 35.4 2.9 1.2 16.8 

2.25 -51.2 68.2 24.4 6.1 1.3 17.7 

2.75 -49.4 71.2 23.6 4.2 1.0 16.4 

3.25 -47.6 56.5 40.3 1.3 1.9 25.6 

3.75 -45.7 69.4 25.0 4.2 1.5 20.0 

4.25 -43.7 73.6 23.9 1.9 0.6 24.2 

4.75 -41.7 62.7 33.7 2.9 0.7 31.7 

5.25 -39.5 58.9 35.8 3.9 1.4 16.8 

5.75 -37.3 67.7 28.6 3.1 0.6 14.1 

6.25 -35.0 63.5 34.3 1.7 0.4 13.9 

6.75 -32.6 64.0 32.4 2.5 1.0 15.9 

7.25 -30.2 63.4 29.9 4.1 2.6 18.0 

7.75 -27.6 64.0 31.9 3.1 1.0 17.8 

8.25 -25.0 58.6 35.6 4.8 1.0 11.0 

8.75 -22.3 68.0 25.9 4.5 1.6 17.8 

9.25 -19.6 72.0 23.2 3.1 1.7 17.3 

9.75 -16.7 60.0 32.1 6.9 1.0 14.4 

10.25 -13.8 69.4 27.7 1.7 1.3 16.5 

10.75 -10.8 67.8 25.5 4.9 1.8 18.3 

11.25 -7.7 70.7 23.9 4.3 1.1 10.3 

11.75 -4.5 60.5 34.6 3.1 1.7 9.8 

12.25 -1.2 69.3 24.2 5.0 1.4 9.8 

12.75 2.1 61.7 32.7 5.3 0.3 13.3 

13.25 5.5 55.2 40.4 2.9 1.6 15.9 

13.75 9.0 67.1 29.4 1.9 1.6 18.1 

14.25 12.6 74.3 19.0 4.5 2.1 23.3 

14.75 16.2 64.9 30.6 3.0 1.5 14.2 

15.25 20.0 61.6 34.0 2.1 2.3 15.4 

15.75 23.8 60.4 32.3 5.6 1.7 21.0 

16.25 27.7 65.2 30.6 3.3 0.9 18.9 

16.75 31.6 64.8 29.7 2.6 2.9 12.5 

17.25 35.7 57.4 37.9 2.8 1.9 15.4 

17.75 39.8 63.3 32.7 2.6 1.3 13.2 

18.25 44.0 52.9 42.5 3.9 0.7 14.8 
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Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

18.75 48.3 67.6 25.5 6.0 0.9 23.0 

19.25 52.7 60.6 35.4 3.1 0.9 15.0 

19.75 57.1 60.4 34.0 4.1 1.5 14.7 

20.25 61.6 59.3 33.3 4.5 3.0 14.3 

20.75 66.2 59.5 36.3 3.2 1.0 9.6 

21.25 70.9 57.5 38.4 2.6 1.5 13.8 

21.75 75.7 60.1 35.8 1.6 2.6 13.8 

22.25 80.5 62.1 33.1 3.6 1.1 12.6 

22.75 85.5 67.4 29.2 2.5 0.9 15.3 

23.25 90.5 59.7 34.9 3.6 1.8 15.7 

23.75 95.5 57.5 38.9 2.7 0.9 15.6 

24.25 100.7 61.8 33.8 2.4 2.0 16.0 

24.75 105.9 59.4 36.4 3.0 1.2 14.3 

25.25 111.3 56.9 39.0 1.9 2.2 13.0 

25.75 116.7 65.6 31.1 2.0 1.3 13.8 

26.25 122.1 64.5 31.0 3.8 0.8 14.1 

26.75 127.7 64.3 31.0 3.5 1.2 18.5 

27.25 133.3 63.2 30.7 4.1 2.0 15.3 

27.75 139.1 54.2 40.1 3.4 2.2 11.5 

28.25 144.9 62.3 32.4 3.5 1.7 14.5 

28.75 150.7 58.5 32.5 6.5 2.5 10.7 

29.25 156.7 60.8 35.4 2.9 0.9 12.4 

29.75 162.7 62.6 34.3 1.2 1.8 17.9 

30.25 168.9 60.6 35.3 2.8 1.4 12.9 

30.75 175.1 53.5 42.5 2.3 1.7 10.9 

31.25 181.3 67.1 27.8 3.3 1.8 9.3 

31.75 187.7 53.2 39.7 5.0 2.1 10.2 

32.25 194.1 59.2 35.2 2.8 2.8 11.7 

32.75 200.6 51.7 41.5 5.1 1.7 12.8 

33.25 207.2 45.9 47.8 3.8 2.5 11.3 

33.75 213.9 44.3 51.4 4.3 0.0 10.3 

34.25 220.7 49.2 43.5 6.0 1.3 13.4 

34.75 227.5 59.4 36.8 3.0 0.9 15.2 

35.25 234.4 48.6 43.8 6.2 1.4 13.2 

35.75 241.4 53.6 39.0 6.2 1.2 11.5 

36.25 248.5 54.0 40.5 4.2 1.4 15.5 

36.75 255.6 59.3 30.2 7.6 2.9 12.1 

37.25 262.9 54.6 41.7 3.2 0.6 12.1 

37.75 270.2 60.2 36.1 2.9 0.9 12.4 

38.25 277.6 73.2 22.8 3.8 0.3 13.3 

38.75 285.0 58.4 38.0 2.0 1.7 12.4 

39.25 292.6 57.3 38.4 2.8 1.4 15.2 
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Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

39.75 300.2 57.9 36.8 2.9 2.4 14.8 

40.25 307.9 57.9 37.8 4.0 0.3 11.7 

40.75 315.7 57.5 35.3 5.1 2.1 11.4 

41.25 323.6 55.2 38.4 4.6 1.8 13.7 

41.75 331.5 61.3 36.1 2.0 0.6 12.6 

42.25 339.6 59.1 35.4 3.7 1.8 11.4 

42.75 347.7 55.4 36.3 5.3 3.0 10.9 

43.25 355.9 64.6 28.7 5.0 1.8 12.2 

43.75 364.1 47.3 46.2 4.8 1.7 10.3 

44.25 372.5 61.8 32.9 3.3 2.0 10.6 

44.75 380.9 51.5 43.1 4.2 1.2 9.4 

45.25 389.4 58.3 36.6 3.6 1.5 11.9 

45.75 398.0 54.5 41.5 1.3 2.7 10.5 

46.25 406.7 60.9 31.3 3.6 4.3 10.7 

46.75 415.4 58.6 38.8 2.0 0.7 10.7 

47.25 424.2 61.1 33.8 4.2 0.9 15.9 

47.75 433.1 49.1 45.2 3.2 2.5 10.0 

48.25 442.1 52.4 44.5 2.1 1.0 10.3 

48.75 451.2 62.4 32.3 2.0 3.3 10.9 
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A5.2 Dinocysts  

Depth 

(cm) 

Age (cal. 

years BP) 

OCEN 

(wt. %) 

PDAL 

(wt. %) 

NLAB 

(wt. %) 

BSPP 

(wt. %) 

SRAM 

(wt. %) 

SELO 

(wt. %) 

BTEP 

(wt. %) 

IMIN 

(wt. %) 

SMIR 

(wt. %) 

0.5 -56.6 63.4 18.3 6.6 1.0 4.0 2.7 1.5 0.0 0.0 

1.5 -53.6 60.1 22.8 11.3 0.7 1.6 1.4 0.5 0.2 0.0 

2.5 -50.3 55.8 20.9 12.3 2.4 3.4 2.2 0.7 0.7 0.0 

3.5 -46.7 52.5 24.6 11.1 4.0 3.7 2.4 0.0 0.0 0.0 

4.5 -42.7 49.2 26.7 12.8 3.3 3.3 1.2 0.0 0.6 0.0 

5.5 -38.4 54.1 17.2 13.1 6.0 3.2 1.8 0.9 0.2 0.2 

6.5 -33.8 50.7 15.9 17.4 4.0 6.2 1.5 0.2 0.2 0.0 

7.5 -28.9 50.4 19.0 18.0 2.1 4.4 0.5 0.5 1.3 0.0 

8.5 -23.7 52.8 17.8 16.9 3.1 2.5 1.2 0.9 0.9 0.0 

9.5 -18.1 53.3 21.4 14.9 2.1 3.3 1.5 0.0 0.3 0.0 

10.5 -12.3 53.4 19.5 16.3 1.7 2.9 1.7 0.0 0.2 0.2 

11.5 -6.1 48.9 28.6 13.5 0.8 1.4 2.4 0.5 1.4 0.0 

12.5 0.4 47.4 26.3 19.3 1.3 1.8 0.5 0.8 0.5 0.0 

13.5 7.2 48.7 20.0 15.3 4.0 3.4 3.6 0.6 0.8 0.0 

14.5 14.4 47.7 27.7 17.1 0.9 2.0 1.1 0.6 0.9 0.0 

15.5 21.8 46.3 25.2 17.8 1.8 4.2 1.2 0.3 0.6 0.3 

16.5 29.6 53.5 28.0 10.5 0.6 1.9 1.4 0.3 0.8 0.3 

17.5 37.7 56.4 17.2 13.6 2.5 4.0 1.9 1.3 0.4 0.0 

18.5 46.1 43.3 35.2 12.3 0.3 3.1 2.0 0.3 0.7 0.3 

19.5 54.9 50.6 27.5 10.4 1.4 4.2 1.4 1.1 0.8 0.0 

20.5 63.9 51.4 24.1 13.9 1.4 2.7 1.0 0.7 0.3 0.7 

21.5 73.3 57.9 19.7 11.6 1.5 2.0 3.2 0.5 1.2 0.0 

22.5 83.0 55.9 23.2 13.3 1.3 2.9 1.3 1.0 0.3 0.0 

23.5 93.0 61.7 18.9 9.8 0.8 2.7 3.0 0.3 0.5 0.0 

24.5 103.3 53.8 27.9 10.4 1.2 1.8 1.6 1.4 0.0 0.0 

25.5 114.0 52.5 32.3 8.6 1.0 1.7 1.7 0.3 0.3 0.0 

26.5 124.9 63.1 21.5 7.4 2.6 1.3 1.5 0.5 0.5 0.0 

27.5 136.2 64.5 13.1 11.2 1.6 3.5 1.3 0.6 0.3 0.0 

28.5 147.8 63.6 22.2 5.8 3.2 1.7 0.6 0.3 0.0 0.3 

29.5 159.7 57.3 22.2 8.6 3.5 2.3 2.3 1.7 0.6 0.0 

30.5 172.0 61.3 23.6 9.2 1.4 1.4 1.7 0.0 0.3 0.0 

31.5 184.5 70.4 11.0 7.8 3.6 2.5 1.8 0.4 0.2 0.2 

32.5 197.4 63.0 15.8 7.5 6.2 2.2 1.9 0.3 0.9 0.0 

33.5 210.6 62.5 19.9 6.5 4.2 1.8 1.5 0.3 0.3 0.9 

34.5 224.1 54.1 19.7 12.1 3.5 3.5 2.9 0.9 0.6 0.6 

35.5 237.9 51.1 26.1 10.2 5.3 1.4 1.1 1.1 1.1 0.4 

36.5 252.1 65.9 16.8 8.7 4.3 0.8 1.5 0.3 0.0 0.3 

37.5 266.5 68.3 15.9 6.2 5.2 1.0 0.7 1.0 0.3 0.0 

38.5 281.3 61.7 22.8 8.2 1.6 1.4 1.1 1.1 0.5 0.3 

39.5 296.4 65.7 20.4 7.4 1.9 0.6 1.2 0.0 0.6 0.0 
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Depth 

(cm) 

Age (cal. 

years BP) 

SSPP 

(wt. %) 

IPAL 

(wt. %) 

SQUA 

(wt. %) 

HALO 

(no.*10^3/g) 

Reworked 

(no.*10^3/g) 

Dinocyst 

concentrations 

(no.*10^3/g) 

0.5 -56.6 0.8 0.1 0.0 0.1 0.3 22.4 

1.5 -53.6 0.7 0.0 0.0 0.0 0.3 23.0 

2.5 -50.3 0.2 0.0 0.0 0.0 0.3 14.9 

3.5 -46.7 0.3 0.0 0.7 0.0 0.1 8.5 

4.5 -42.7 1.8 0.0 0.0 0.0 0.1 9.4 

5.5 -38.4 0.2 0.2 0.7 0.0 0.1 11.7 

6.5 -33.8 0.7 0.0 0.7 0.0 0.1 12.6 

7.5 -28.9 0.0 0.0 0.0 0.0 0.0 11.5 

8.5 -23.7 1.8 0.0 0.0 0.0 0.3 17.5 

9.5 -18.1 2.1 0.0 0.0 0.1 0.2 17.0 

10.5 -12.3 1.4 0.0 0.2 0.0 0.1 13.5 

11.5 -6.1 0.8 0.0 0.0 0.0 0.0 17.3 

12.5 0.4 1.0 0.0 0.0 0.1 0.0 16.5 

13.5 7.2 0.9 0.4 0.0 0.0 0.1 13.9 

14.5 14.4 0.6 0.0 0.0 0.0 0.0 19.0 

15.5 21.8 1.8 0.0 0.0 0.0 0.0 12.8 

16.5 29.6 1.1 0.0 0.0 0.0 0.0 15.5 

17.5 37.7 1.3 0.0 0.2 0.0 0.1 9.9 

18.5 46.1 1.4 0.0 0.0 0.0 0.2 26.1 

19.5 54.9 1.1 0.0 0.0 0.0 0.0 13.8 

20.5 63.9 2.0 0.3 0.0 0.0 0.2 13.1 

21.5 73.3 1.7 0.0 0.2 0.1 0.2 21.0 

22.5 83.0 0.6 0.0 0.0 0.0 0.0 14.0 

23.5 93.0 1.9 0.0 0.0 0.0 0.1 12.9 

24.5 103.3 0.9 0.0 0.2 0.0 0.2 15.5 

25.5 114.0 0.7 0.0 0.3 0.0 0.1 27.2 

26.5 124.9 0.5 0.0 0.3 0.0 0.1 22.2 

27.5 136.2 1.3 0.0 0.3 0.0 0.0 14.2 

28.5 147.8 0.9 0.0 0.0 0.0 0.0 32.5 

29.5 159.7 0.9 0.0 0.0 0.0 0.2 14.6 

30.5 172.0 0.3 0.0 0.0 0.0 0.0 22.9 

31.5 184.5 0.4 0.0 0.0 0.0 0.0 36.1 

32.5 197.4 1.2 0.0 0.3 0.0 0.0 34.4 

33.5 210.6 0.0 0.0 0.0 0.0 0.1 31.4 

34.5 224.1 1.2 0.0 0.3 0.0 0.1 31.1 

35.5 237.9 0.7 0.0 0.0 0.0 0.0 48.5 

36.5 252.1 0.5 0.3 0.0 0.0 0.1 33.6 

37.5 266.5 0.3 0.0 0.0 0.0 0.1 55.4 

38.5 281.3 0.3 0.0 0.0 0.0 0.0 20.7 

39.5 296.4 0.9 0.9 0.0 0.0 0.0 24.7 
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Depth 

(cm) 

Age (cal. 

years BP) 

OCEN 

(wt. %) 

PDAL 

(wt. %) 

NLAB 

(wt. %) 

BSPP 

(wt. %) 

SRAM 

(wt. %) 

SELO 

(wt. %) 

BTEP 

(wt. %) 

IMIN 

(wt. %) 

SMIR 

(wt. %) 

40.5 311.8 61.9 26.3 5.4 1.6 0.8 0.5 0.5 0.3 0.0 

41.5 327.6 61.6 21.1 6.9 4.8 0.9 2.1 1.2 0.3 0.3 

42.5 343.6 59.6 17.3 6.4 12.9 0.4 0.6 1.0 0.2 0.2 

43.5 360.0 55.8 19.8 6.8 10.6 1.9 1.1 0.3 0.5 0.3 

44.5 376.7 61.2 25.6 6.7 1.1 1.9 0.8 0.0 0.3 0.0 

45.5 393.7 46.8 29.9 11.5 3.2 2.9 0.6 0.6 1.0 0.0 

46.5 411.0 55.3 21.4 7.4 8.4 1.3 1.6 2.3 0.3 0.6 

47.5 428.7 51.6 20.1 18.1 4.9 1.4 1.1 0.3 0.0 0.6 

48.5 446.6 44.5 32.5 10.6 3.8 3.8 1.4 1.0 1.7 0.0 

 
 

Depth 

(cm) 

Age (cal. 

years BP) 

SSPP 

(wt. %) 

IPAL 

(wt. %) 

SQUA 

(wt. %) 

HALO 

(no.*10^3/g) 

Reworked 

(no.*10^3/g) 

Dinocyst 

concentrations 

(no.*10^3/g) 

40.5 311.8 1.3 0.3 0.0 0.0 0.0 40.9 

41.5 327.6 0.0 0.0 0.0 0.0 0.1 40.3 

42.5 343.6 0.2 0.2 0.0 0.0 0.1 50.9 

43.5 360.0 0.0 0.0 0.3 0.0 0.0 40.0 

44.5 376.7 1.1 0.0 0.0 0.1 0.1 28.8 

45.5 393.7 0.3 0.3 0.0 0.0 0.2 29.8 

46.5 411.0 0.0 0.0 0.0 0.0 0.1 29.8 

47.5 428.7 0.6 0.0 0.3 0.0 0.1 23.9 

48.5 446.6 0.3 0.0 0.0 0.0 0.2 22.8 
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A5.3 Modern Analogue Technique Results (MAT)  
 
Reconstructed sea-surface temperatures and salinities during winter and summer, and sea ice 
durations (i and s � estimated lower and upper error ranges, respectively).  
 
 

Depth 

(cm) 

Age (cal. 

years BP) 
TWIN 

TWIN_

i 

TWIN_

s 

SWI

N 

SWIN_

i 

SWIN_

s 
TSUM 

TSUM_

i 

TSUM_

s 

0.5 -56.6 3.5 0.0 6.4 33.4 31.7 34.5 12.3 8.3 13.5 

1.5 -53.6 0.7 -0.4 3.5 32.3 31.7 34.5 12.5 8.3 14.9 

2.5 -50.3 0.0 -0.4 0.2 31.7 31.7 31.8 13.4 12.5 14.9 

3.5 -46.7 1.0 -0.5 2.6 33.3 31.6 34.8 9.3 4.4 14.9 

4.5 -42.7 -0.1 -0.5 0.1 31.7 31.6 31.8 13.6 12.5 14.9 

5.5 -38.4 3.3 0.2 7.4 34.2 31.8 35.2 9.1 4.4 13.3 

6.5 -33.8 1.6 -0.5 6.3 32.8 31.6 34.7 11.9 4.4 14.3 

7.5 -28.9 2.2 0.2 4.1 34.1 31.8 34.8 8.1 4.4 13.3 

8.5 -23.7 0.0 -0.4 0.2 31.7 31.7 31.8 13.4 12.5 14.9 

9.5 -18.1 -0.1 -0.5 0.1 31.7 31.6 31.8 13.7 12.5 14.9 

10.5 -12.3 -0.1 -0.5 0.2 31.7 31.6 31.8 13.8 12.8 14.9 

11.5 -6.1 0.0 -0.4 0.2 31.8 31.7 31.8 13.4 12.5 14.9 

12.5 0.4 0.0 -0.4 0.2 31.7 31.7 31.8 13.4 12.5 14.9 

13.5 7.2 0.7 -0.4 3.5 32.3 31.7 34.5 12.1 8.3 13.5 

14.5 14.4 0.0 -0.4 0.2 31.8 31.7 31.8 13.4 12.5 14.9 

15.5 21.8 -0.1 -0.4 0.1 31.7 31.7 31.8 13.5 12.5 14.9 

16.5 29.6 1.1 -0.4 6.3 32.2 31.7 34.3 13.5 12.8 14.9 

17.5 37.7 0.0 -0.4 0.2 31.8 31.7 31.8 13.0 12.5 13.5 

18.5 46.1 -0.2 -0.5 0.1 31.7 31.6 31.8 13.6 12.5 14.9 

19.5 54.9 0.0 -0.4 0.2 31.8 31.7 31.8 13.4 12.5 14.9 

20.5 63.9 1.9 -0.4 6.3 32.8 31.7 34.5 12.3 8.3 13.5 

21.5 73.3 -0.1 -0.5 0.2 31.7 31.6 31.8 13.3 12.5 14.3 

22.5 83.0 0.0 -0.4 0.2 31.7 31.7 31.8 13.4 12.5 14.9 

23.5 93.0 0.5 -0.4 3.5 32.2 31.7 34.5 12.6 8.3 14.9 

24.5 103.3 0.0 -0.4 0.2 31.8 31.7 31.8 13.4 12.5 14.9 

25.5 114.0 -0.1 -0.5 0.2 31.7 31.6 31.8 13.8 12.8 14.9 

26.5 124.9 -0.1 -0.5 0.2 31.7 31.6 31.8 13.8 12.8 14.9 

27.5 136.2 0.0 -0.4 0.2 31.8 31.7 31.8 13.0 12.5 13.5 

28.5 147.8 4.3 0.0 6.9 34.4 31.8 35.2 11.1 7.6 14.9 

29.5 159.7 0.0 -0.4 0.2 31.7 31.7 31.8 13.5 12.5 14.9 

30.5 172.0 0.8 -0.5 3.5 32.6 31.6 34.5 12.4 8.3 14.9 

31.5 184.5 3.3 0.0 6.5 33.5 31.7 35.2 11.8 8.3 13.5 

32.5 197.4 0.0 -0.4 0.2 31.7 31.7 31.8 13.4 12.5 14.9 

33.5 210.6 4.5 0.2 6.9 34.5 31.8 35.2 10.1 4.4 13.3 

34.5 224.1 1.1 -0.4 6.3 32.2 31.7 34.3 13.1 12.5 13.5 

35.5 237.9 0.0 -0.4 0.2 31.7 31.7 31.8 13.6 12.5 14.9 
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Depth 

(cm) 

Age (cal. 

years BP) 
SSUM SSUM_i SSUM_s 

Sea ice 

duration 

(months/yr) 

Sea ice_i Sea ice_s 

0.5 -56.6 32.3 30.5 34.3 0.7 0.0 1.8 

1.5 -53.6 31.3 30.4 34.3 1.3 0.0 1.8 

2.5 -50.3 30.5 30.4 30.7 1.7 1.5 1.8 

3.5 -46.7 32.1 30.0 33.7 1.9 0.2 4.0 

4.5 -42.7 30.4 30.0 30.7 2.0 1.5 4.0 

5.5 -38.4 33.3 30.5 35.1 0.9 0.0 1.7 

6.5 -33.8 31.5 30.0 33.5 1.8 0.0 4.0 

7.5 -28.9 33.5 30.5 34.7 0.7 0.0 1.7 

8.5 -23.7 30.5 30.4 30.7 1.7 1.5 1.8 

9.5 -18.1 30.4 30.0 30.7 2.0 1.5 4.0 

10.5 -12.3 30.4 30.0 30.6 2.1 1.5 4.0 

11.5 -6.1 30.5 30.4 30.7 1.7 1.5 1.8 

12.5 0.4 30.5 30.4 30.7 1.7 1.5 1.8 

13.5 7.2 31.3 30.5 34.3 1.4 0.0 1.8 

14.5 14.4 30.5 30.4 30.7 1.7 1.5 1.8 

15.5 21.8 30.5 30.4 30.7 1.6 1.5 1.8 

16.5 29.6 31.0 30.4 33.0 1.3 0.0 1.8 

17.5 37.7 30.6 30.5 30.7 1.7 1.5 1.8 

18.5 46.1 30.4 30.0 30.7 2.1 1.5 4.0 

19.5 54.9 30.5 30.4 30.7 1.7 1.5 1.8 

20.5 63.9 31.7 30.5 34.3 1.0 0.0 1.8 

21.5 73.3 30.5 30.0 30.7 2.1 1.5 4.0 

22.5 83.0 30.5 30.4 30.7 1.7 1.5 1.8 

23.5 93.0 31.1 30.4 34.3 1.4 0.0 1.8 

24.5 103.3 30.5 30.4 30.6 1.6 1.5 1.8 

25.5 114.0 30.4 30.0 30.6 2.2 1.5 4.0 

26.5 124.9 30.4 30.0 30.6 2.0 1.5 4.0 

27.5 136.2 30.6 30.5 30.7 1.7 1.5 1.8 

28.5 147.8 34.0 30.4 35.1 0.3 0.0 1.5 

29.5 159.7 30.5 30.4 30.7 1.7 1.5 1.8 

30.5 172.0 31.3 30.0 34.3 1.5 0.0 4.0 

31.5 184.5 32.7 30.5 35.1 0.7 0.0 1.8 

32.5 197.4 30.5 30.4 30.7 1.7 1.5 1.8 

33.5 210.6 34.0 30.5 35.1 0.6 0.0 1.7 

34.5 224.1 31.0 30.5 33.0 1.4 0.0 1.8 

35.5 237.9 30.5 30.4 30.7 1.7 1.5 1.8 
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Depth 

(cm) 

Age (cal. 

years BP) 
TWIN 

TWIN_

i 

TWIN_

s 

SWI

N 

SWIN_

i 

SWIN_

s 
TSUM 

TSUM_

i 

TSUM_

s 

36.5 252.1 3.3 0.0 5.2 34.3 31.8 35.1 9.5 7.8 14.9 

37.5 266.5 1.3 0.0 6.5 32.4 31.7 35.2 13.5 10.9 14.9 

38.5 281.3 3.3 0.0 6.9 33.6 31.8 35.2 11.8 8.3 14.9 

39.5 296.4 0.9 -0.2 3.5 34.2 31.8 34.9 8.1 5.0 14.9 

40.5 311.8 1.7 0.0 4.7 33.1 31.7 35.1 12.1 8.1 14.9 

41.5 327.6 3.0 0.0 6.5 33.8 31.8 35.2 10.8 4.4 14.9 

42.5 343.6 3.5 0.2 6.5 34.4 31.8 35.2 9.7 7.6 13.3 

43.5 360.0 2.5 0.2 6.5 34.3 31.8 35.2 7.9 4.4 13.3 

44.5 376.7 -0.1 -0.5 0.2 31.7 31.6 31.8 13.9 12.8 14.9 

45.5 393.7 0.3 0.0 1.1 32.3 31.7 34.7 12.4 6.1 14.9 

46.5 411.0 3.1 0.2 6.8 33.7 31.7 35.2 11.0 4.4 14.3 

47.5 428.7 4.1 0.0 6.5 33.7 31.7 35.2 12.6 10.9 14.9 

48.5 446.6 0.0 -0.4 0.2 31.7 31.7 31.8 13.5 12.5 14.9 

 

Depth 

(cm) 

Age (cal. 

years BP) 
SSUM SSUM_i SSUM_s 

Sea ice 

duration 

(months/yr) 

Sea ice_i Sea ice_s 

36.5 252.1 34.0 30.4 35.1 0.3 0.0 1.5 

37.5 266.5 31.3 30.4 35.1 1.4 0.0 1.8 

38.5 281.3 33.0 30.4 35.1 0.7 0.0 1.7 

39.5 296.4 33.8 30.4 34.7 0.4 0.0 1.5 

40.5 311.8 32.2 30.4 35.0 1.0 0.0 1.8 

41.5 327.6 33.0 30.4 35.1 0.9 0.0 1.7 

42.5 343.6 34.1 30.5 35.1 0.3 0.0 1.7 

43.5 360.0 33.4 30.5 35.1 0.9 0.0 1.7 

44.5 376.7 30.4 30.0 30.6 2.0 1.5 4.0 

45.5 393.7 31.1 30.2 34.3 1.5 0.6 1.8 

46.5 411.0 32.8 30.4 35.1 1.0 0.0 1.8 

47.5 428.7 33.0 30.4 35.1 0.6 0.0 1.8 

48.5 446.6 30.5 30.4 30.7 1.7 1.5 1.8 
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A5.4 Planktic foraminifera 

Depth (cm) 
Age (cal. 

years BP) 

G. bulloides 

(wt %) 

G. uvula 

(wt %) 

G. glutinata 

(wt %) 

G. quinqueloba 

(wt %) 

Planktonic 

Foram./g 

0.5 -56.6 6.0 4.6 1.1 30.5 184.2 

1.5 -53.6 5.0 3.9 2.1 33.9 269.1 

2.5 -50.3 6.8 4.5 1.6 38.3 538.7 

3.5 -46.7 6.5 7.0 1.3 47.4 759.1 

4.5 -42.7 4.5 8.1 2.4 47.4 770.4 

5.5 -38.4 4.1 9.1 1.8 45.1 658.4 

6.5 -33.8 4.1 8.9 0.5 47.8 557.8 

7.5 -28.9 5.4 9.4 2.4 51.6 752.1 

8.5 -23.7 4.7 8.1 1.1 45.0 456.1 

9.5 -18.1 5.8 11.4 1.1 41.3 387.3 

10.5 -12.3 8.8 10.1 0.8 37.1 313.6 

11.5 -6.1 6.1 14.5 2.8 41.8 257.6 

12.5 0.4 5.1 8.3 1.3 46.5 317.3 

13.5 7.2 4.5 14.9 1.8 42.7 466.1 

14.5 14.4 4.1 14.6 1.4 42.8 427.7 

15.5 21.8 6.6 16.7 1.1 37.3 629.1 

16.5 29.6 4.4 14.0 0.8 42.3 371.9 

17.5 37.7 3.6 15.6 1.0 44.9 423.1 

18.5 46.1 2.7 13.2 0.8 39.6 308.4 

19.5 54.9 2.0 17.1 1.7 42.4 411.6 

20.5 63.9 2.3 14.2 1.8 45.9 332.2 

21.5 73.3 4.3 14.0 2.2 42.0 327.6 

22.5 83.0 5.0 13.2 1.2 38.8 199.7 

23.5 93.0 4.2 16.2 1.7 32.0 153.4 

24.5 103.3 5.3 18.2 0.8 33.7 0.0 

25.5 114.0 3.3 17.8 1.3 40.5 282.9 

26.5 124.9 4.2 8.9 0.6 43.0 197.4 

27.5 136.2 5.7 13.4 1.6 42.3 237.0 

28.5 147.8 3.6 9.9 1.0 39.5 196.6 

29.5 159.7 4.8 10.5 0.9 42.7 283.8 

30.5 172.0 3.2 11.1 1.2 42.3 442.2 

31.5 184.5 4.6 13.1 1.0 41.3 568.6 

32.5 197.4 3.9 11.6 1.2 42.9 465.1 

33.5 210.6 5.9 12.4 1.1 39.3 392.3 

34.5 224.1 3.9 9.4 0.8 47.4 347.8 

35.5 237.9 5.0 9.1 2.1 38.9 313.6 

36.5 252.1 2.9 10.8 0.8 45.0 402.0 

37.5 266.5 2.4 11.9 1.1 37.7 373.1 

38.5 281.3 1.7 14.2 1.4 46.3 355.2 

39.5 296.4 2.9 7.9 1.0 47.5 358.0 

Depth (cm) Age (cal. G. bulloides G. uvula G. glutinata G. quinqueloba Planktonic 
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years BP) (wt %) (wt %) (wt %) (wt %) Foram./g 

40.5 311.8 4.4 8.9 1.4 45.7 286.3 

41.5 327.6 3.7 11.9 1.1 41.0 306.0 

42.5 343.6 3.3 10.7 2.3 46.2 326.9 

43.5 360.0 5.1 7.6 2.0 39.4 496.7 

44.5 376.7 3.1 8.5 3.4 45.6 276.6 

45.5 393.7 3.4 17.0 1.1 35.5 383.8 

46.5 411.0 4.6 15.8 1.4 39.4 542.5 
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A5.5 XRF core scanning (counts) 

Depth (cm) 
Age (cal. 

years BP) 
Ca Ti Depth (cm) 

Age (cal. 

years BP) 
Ca Ti 

0.2 -57.5 74369 4316 8.4 -24.222928 97696 5544 

0.4 -56.9 84701 4799 8.6 -23.144888 95968 5495 

0.6 -56.3 84811 5162 8.8 -22.054112 94572 5575 

0.8 -55.8 97120 5150 9 -20.9506 90515 5506 

1 -55.2 100947 5561 9.2 -19.834352 101181 5751 

1.2 -54.6 103175 5748 9.4 -18.705368 100239 6019 

1.4 -53.9 105274 5908 9.6 -17.563648 99282 5827 

1.6 -53.298368 107627 5950 9.8 -16.409192 103168 5977 

1.8 -52.653352 106998 5852 10 -15.242 102175 5649 

2 -51.9956 102337 6022 10.2 -14.062072 104251 6009 

2.2 -51.325112 109438 6035 10.4 -12.869408 106778 5894 

2.4 -50.641888 110025 5902 10.6 -11.664008 103405 5746 

2.6 -49.945928 114879 6184 10.8 -10.445872 105679 5950 

2.8 -49.237232 115578 6294 11 -9.215 106831 5563 

3 -48.5158 115855 6434 11.2 -7.971392 105072 5694 

3.2 -47.781632 116013 6744 11.4 -6.715048 106363 6142 

3.4 -47.034728 115626 6438 11.6 -5.445968 106678 5470 

3.6 -46.275088 115586 6072 11.8 -4.164152 108406 5534 

3.8 -45.502712 117610 6188 12 -2.8696 111455 5243 

4 -44.7176 113170 5820 12.2 -1.562312 106997 5418 

4.2 -43.919752 116986 6243 12.4 -0.242288 105382 5605 

4.4 -43.109168 118228 6082 12.6 1.090472 106485 5484 

4.6 -42.285848 119296 6016 12.8 2.435968 108439 5647 

4.8 -41.449792 116749 5846 13 3.7942 109855 5808 

5 -40.601 118091 6277 13.2 5.165168 111245 6086 

5.2 -39.739472 117536 5911 13.4 6.548872 109256 6079 

5.4 -38.865208 114281 5846 13.6 7.945312 111622 5788 

5.6 -37.978208 115929 6029 13.8 9.354488 108894 5730 

5.8 -37.078472 113708 6127 14 10.7764 102063 5859 

6 -36.166 110181 5670 14.2 12.211048 97985 5305 

6.2 -35.240792 112689 6193 14.4 13.658432 92203 4971 

6.4 -34.302848 110237 5915 14.6 15.118552 98725 5160 

6.6 -33.352168 105686 5738 14.8 16.591408 97464 5342 

6.8 -32.388752 108083 6051 15 18.077 96940 5172 

7 -31.4126 104606 5620 15.2 19.575328 94102 5620 

7.2 -30.423712 105349 5769 15.4 21.086392 91657 5091 

7.4 -29.422088 105682 5559 15.6 22.610192 96316 5540 

7.6 -28.407728 108010 5647 15.8 24.146728 96866 5289 

7.8 -27.380632 102304 5668 16 25.696 83002 5064 

8 -26.3408 102774 5626 16.2 27.258008 87493 5517 

8.2 -25.288232 93548 5342 16.4 28.832752 87796 5327 
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Depth (cm) 
Age (cal. 

years BP) 
Ca Ti Depth (cm) 

Age (cal. 

years BP) 
Ca Ti 

16.6 30.420232 85068 5349 25 108.595 114357 6001 

16.8 32.020448 90263 5600 25.2 110.730128 111280 5877 

17 33.6334 93323 5531 25.4 112.877992 113576 6020 

17.2 35.259088 98900 5467 25.6 115.038592 113514 6151 

17.4 36.897512 102513 5568 25.8 117.211928 113721 5805 

17.6 38.548672 105066 5187 26 119.398 110885 6154 

17.8 40.212568 102506 5525 26.2 121.596808 100248 5909 

18 41.8892 101464 5440 26.4 123.808352 81782 5657 

18.2 43.578568 100580 5569 26.6 126.032632 87373 5287 

18.4 45.280672 91856 5541 26.8 128.269648 102484 6286 

18.6 46.995512 97609 5611 27 130.5194 99628 5903 

18.8 48.723088 99718 5724 27.2 132.781888 90979 5593 

19 50.4634 100442 5258 27.4 135.057112 95036 5851 

19.2 52.216448 101761 5444 27.6 137.345072 102042 5511 

19.4 53.982232 100913 5731 27.8 139.645768 103341 5965 

19.6 55.760752 103005 5803 28 141.9592 107767 5704 

19.8 57.552008 106214 5561 28.2 144.285368 110618 5734 

20 59.356 107855 5885 28.4 146.624272 102631 5860 

20.2 61.172728 110226 5911 28.6 148.975912 101780 5711 

20.4 63.002192 105654 5561 28.8 151.340288 101379 6061 

20.6 64.844392 105815 5510 29 153.7174 105838 6313 

20.8 66.699328 109856 5969 29.2 156.107248 108169 6082 

21 68.567 108724 5734 29.4 158.509832 109165 6050 

21.2 70.447408 110906 5910 29.6 160.925152 112461 6308 

21.4 72.340552 112347 5671 29.8 163.353208 113003 5948 

21.6 74.246432 105775 5695 30 165.794 109492 6072 

21.8 76.165048 106819 5939 30.2 168.247528 108913 6073 

22 78.0964 111608 6366 30.4 170.713792 112244 6077 

22.2 80.040488 109859 6031 30.6 173.192792 101884 5826 

22.4 81.997312 107866 5898 30.8 175.684528 105610 5790 

22.6 83.966872 110037 6013 31 178.189 104769 6140 

22.8 85.949168 111487 5947 31.2 180.706208 102774 5588 

23 87.9442 109521 5933 31.4 183.236152 107646 5747 

23.2 89.951968 111411 5947 31.6 185.778832 105128 5738 

23.4 91.972472 114440 6120 31.8 188.334248 110398 6254 

23.6 94.005712 114663 6154 32 190.9024 106315 5826 

23.8 96.051688 114583 6035 32.2 193.483288 100783 5780 

24 98.1104 111381 5974 32.4 196.076912 104004 5918 

24.2 100.181848 107819 5785 32.6 198.683272 106690 5542 

24.4 102.266032 109506 5809 32.8 201.302368 104928 5759 

24.6 104.362952 112860 6159 33 203.9342 87591 5077 

24.8 106.472608 111721 5941 33.2 206.578768 92035 5184 



Appendices 

Christian V. Dylmer, 2013 

 

 
 

Depth (cm) 
Age (cal. 

years BP) 
Ca Ti Depth (cm) 

Age (cal. 

years BP) 
Ca Ti 

33.4 209.236072 88282 5351 41.8 332.343448 106433 5909 

33.6 211.906112 84912 5320 42 335.5484 110520 5802 

33.8 214.588888 93969 5788 42.2 338.766088 108306 5771 

34 217.2844 100029 5972 42.4 341.996512 109735 6064 

34.2 219.992648 100356 5501 42.6 345.239672 110202 5703 

34.4 222.713632 101750 5715 42.8 348.495568 112228 6364 

34.6 225.447352 104481 6091 43 351.7642 113969 6258 

34.8 228.193808 98491 5296 43.2 355.045568 116759 6431 

35 230.953 92146 5560 43.4 358.339672 116821 6375 

35.2 233.724928 95941 5291 43.6 361.646512 113802 6220 

35.4 236.509592 94701 5737 43.8 364.966088 112539 6426 

35.6 239.306992 94480 5620 44 368.2984 112627 6273 

35.8 242.117128 102116 5559 44.2 371.643448 116127 6611 

36 244.94 98073 5514 44.4 375.001232 114962 6402 

36.2 247.775608 99010 5609 44.6 378.371752 117521 6423 

36.4 250.623952 99351 5641 44.8 381.755008 116583 6230 

36.6 253.485032 98225 5614 45 385.151 119310 6802 

36.8 256.358848 98823 5544 45.2 388.559728 118702 6563 

37 259.2454 97161 5632 45.4 391.981192 122345 7090 

37.2 262.144688 97371 5292 45.6 395.415392 123066 6805 

37.4 265.056712 101043 5551 45.8 398.862328 123708 7235 

37.6 267.981472 103909 5870 46 402.322 119006 7009 

37.8 270.918968 104044 5387 46.2 405.794408 121524 6367 

38 273.8692 104898 5689 46.4 409.279552 118959 6498 

38.2 276.832168 101157 5388 46.6 412.777432 122551 7172 

38.4 279.807872 104557 5796 46.8 416.288048 122775 6926 

38.6 282.796312 103924 5333 47 419.8114 116061 6992 

38.8 285.797488 103671 5603 47.2 423.347488 125652 6789 

39 288.8114 104639 5768 47.4 426.896312 126272 6817 

39.2 291.838048 106498 5603 47.6 430.457872 128813 7016 

39.4 294.877432 105075 5761 47.8 434.032168 127748 6811 

39.6 297.929552 105268 5537 48 437.6192 124806 6859 

39.8 300.994408 106167 5885 48.2 441.218968 126343 7068 

40 304.072 104184 5704 48.4 444.831472 124401 7090 

40.2 307.162328 84398 4469 48.6 448.456712 120657 6810 

40.4 310.265392 99534 5406 48.8 452.094688 115590 6541 

40.6 313.381192 100299 5550 49 455.7454 111536 6674 

40.8 316.509728 104762 5871 49.2 459.408848 109021 6143 

41 319.651 103320 6318         

41.2 322.805008 98898 5703         

41.4 325.971752 102655 5838         

41.6 329.151232 99833 5334         
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Appendix 6:  WOO/SC-3 relative abundances and absolute concentrations of 
microfossils and MAT reconstructions. 

 
A6.1 Coccoliths  

Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

19.5 312.7 55.2 34.1 9.0 1.7 11.9 

24.5 367.3 58.1 32.8 7.6 1.0 11.3 

29.5 421.9 58.3 34.4 6.0 1.3 9.6 

34.5 476.5 64.1 29.3 5.3 1.3 11.2 

39.5 531.1 66.2 25.0 6.0 2.4 10.5 

44.5 585.6 58.6 35.1 4.9 1.2 8.4 

49.5 640.2 59.7 28.8 8.7 2.4 11.9 

54.5 694.8 52.9 37.1 6.9 3.1 9.0 

59.5 749.4 61.2 29.0 5.6 4.1 16.6 

64.5 804.0 62.3 26.1 6.7 4.7 9.7 

69.5 858.6 54.6 33.6 5.9 5.3 9.4 

74.5 913.2 57.8 29.4 7.6 4.8 7.7 

79.5 967.8 56.1 31.8 7.1 4.7 7.4 

84.5 1022.4 58.1 26.6 7.6 7.4 10.4 

89.5 1077.0 50.6 35.0 7.9 5.9 10.9 

94.5 1131.6 58.3 27.5 7.1 6.2 11.0 

99.5 1186.2 56.2 33.5 6.0 4.1 11.9 

104.5 1240.8 52.7 34.1 6.2 6.9 10.0 

109.5 1295.4 56.4 27.7 10.3 5.2 11.4 

114.5 1350.0 56.6 27.7 8.7 7.0 12.2 

119.5 1404.6 48.8 31.2 6.5 13.4 9.5 

124.5 1461.4 53.9 28.8 6.2 10.6 10.5 

129.5 1518.4 55.6 26.0 9.3 8.7 10.6 

134.5 1575.4 50.3 31.2 9.0 9.5 10.2 

139.5 1632.5 55.4 24.4 10.0 10.2 11.2 

144.5 1689.5 55.4 28.3 7.5 8.9 11.2 

149.5 1746.5 56.1 28.6 5.2 9.5 10.2 

154.5 1803.6 56.6 26.2 5.5 11.6 9.5 

159.5 1860.6 58.5 25.7 5.6 10.0 11.2 

164.5 1917.6 60.8 25.6 3.5 10.1 9.9 

169.5 1974.6 58.6 28.6 2.7 10.0 10.7 

174.5 2031.7 67.2 19.6 5.0 8.0 9.0 

179.5 2088.7 59.7 29.9 3.8 6.4 10.8 

184.5 2145.7 63.6 27.1 4.0 5.1 11.8 

189.5 2202.8 61.0 30.5 4.6 3.9 12.3 

194.5 2259.8 61.0 28.2 5.5 4.7 7.8 

199.5 2316.8 65.7 25.2 4.4 4.6 10.1 
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Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

204.5 2373.9 61.2 29.2 6.0 3.6 9.4 

209.5 2430.9 65.1 26.4 4.8 3.6 9.9 

214.5 2487.9 66.0 26.4 2.8 4.7 9.1 

219.5 2544.9 57.7 34.6 4.7 3.0 7.5 

224.5 2602.0 71.5 23.3 3.1 2.2 9.2 

229.5 2659.0 65.2 27.5 4.8 2.5 9.1 

234.5 2716.0 70.2 23.4 5.1 1.3 10.8 

239.5 2773.1 67.2 27.4 2.9 2.5 9.2 

244.5 2830.1 69.7 23.5 4.2 2.4 9.1 

249.5 2887.1 63.7 29.2 4.7 2.4 9.7 

254.5 2944.2 67.4 25.4 5.0 2.2 10.8 

259.5 3001.2 70.4 25.0 3.3 1.3 11.4 

264.5 3058.2 74.5 20.6 3.9 1.1 11.7 

269.5 3115.2 82.4 14.3 2.7 0.5 1.3 

274.5 3172.3 70.5 21.2 3.8 3.8 0.9 
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A6.2 Dinocysts  

Depth 

(cm) 

Age (cal. 

years BP) 

OCEN 

(wt. %) 

PDAL 

(wt. %) 

NLAB 

(wt. %) 

BSPP 

(wt. %) 

SRAM 

(wt. %) 

SELO 

(wt. %) 

BTEP 

(wt. %) 

IMIN 

(wt. %) 

SMIR 

(wt. %) 

20.5 323.6 71.7 13.5 5.8 3.1 0.7 2.1 1.3 0.1 0.3 

25.5 378.2 70.0 12.8 6.9 4.9 1.3 1.8 0.7 0.0 0.8 

30.5 432.8 60.0 15.8 12.5 4.8 1.8 1.5 0.7 1.1 0.7 

35.5 487.4 63.6 11.7 13.2 3.7 1.9 1.8 1.4 0.4 0.6 

40.5 542.0 55.6 13.3 14.8 9.6 2.3 1.4 1.8 0.4 0.4 

45.5 596.6 61.3 9.3 13.8 5.8 1.0 4.9 1.2 0.0 1.2 

50.5 651.2 61.1 10.5 14.6 6.0 1.2 1.7 1.2 0.5 0.5 

55.5 705.8 57.6 15.5 13.9 5.3 2.1 1.6 1.3 0.3 0.3 

60.5 760.3 69.5 9.2 10.7 5.1 0.9 1.7 0.6 0.0 0.2 

65.5 814.9 63.9 9.9 15.6 3.5 1.4 1.7 0.6 0.3 0.8 

70.5 869.5 68.9 16.1 7.7 2.4 1.8 0.4 0.2 1.1 0.4 

75.5 924.1 76.9 8.0 7.6 3.5 1.2 0.5 0.6 0.8 0.0 

80.5 978.7 74.8 5.7 11.1 3.4 1.2 0.8 0.5 0.5 0.7 

85.5 1033.3 74.7 5.6 9.9 4.0 1.3 0.5 1.3 0.2 1.3 

90.5 1087.9 76.5 4.0 8.1 1.8 1.8 3.5 2.3 0.3 0.3 

95.5 1142.5 76.7 4.2 7.2 4.5 2.5 1.5 1.2 0.5 0.5 

100.5 1197.1 73.1 5.7 10.9 2.3 2.3 2.3 1.3 0.3 0.8 

105.5 1251.7 69.1 6.0 15.2 3.1 1.0 1.3 1.0 0.5 0.8 

110.5 1306.3 68.7 14.0 6.6 4.3 1.1 1.1 1.4 1.1 0.6 

115.5 1360.9 64.1 18.6 9.3 2.3 0.3 0.3 1.0 1.7 0.0 

120.5 1415.8 68.2 10.3 12.6 3.2 1.2 1.5 0.6 0.3 0.0 

125.5 1472.8 66.4 9.8 11.5 4.4 1.6 1.4 0.8 0.8 1.1 

130.5 1529.8 71.1 8.1 13.0 2.2 1.9 0.3 1.2 0.6 0.0 

135.5 1586.8 62.9 14.2 9.9 3.6 1.3 3.0 1.0 1.3 0.0 

140.5 1643.9 62.5 19.0 12.1 1.3 1.3 1.3 0.3 0.3 1.0 

145.5 1700.9 63.7 11.6 16.2 2.1 1.2 1.5 0.3 0.6 0.3 

150.5 1757.9 59.6 15.8 12.2 3.0 2.1 1.9 1.7 0.9 1.1 

155.5 1815.0 72.7 3.0 12.3 3.9 0.3 1.8 1.5 0.3 1.8 

160.5 1872.0 61.2 11.3 14.3 3.9 1.5 0.3 3.6 0.6 0.6 

165.5 1929.0 67.3 3.4 11.1 5.8 1.8 2.4 2.1 0.5 1.6 

170.5 1986.1 62.8 6.7 7.6 11.6 1.2 2.1 3.4 0.9 0.9 

175.5 2043.1 64.1 9.9 10.5 6.4 0.6 1.2 4.7 0.6 0.9 

180.5 2100.1 71.1 6.6 11.8 4.1 1.2 0.6 1.7 0.6 0.6 

185.5 2157.1 71.7 7.8 10.3 4.3 1.8 0.9 0.4 0.5 0.9 

190.5 2214.2 71.4 3.6 7.5 7.8 0.3 1.7 1.1 1.9 1.4 

195.5 2271.2 80.6 4.3 5.3 1.9 0.2 1.7 0.5 0.5 2.2 

200.5 2328.2 74.3 7.0 6.2 6.6 1.5 1.4 0.8 0.4 0.0 

205.5 2385.3 81.6 3.0 5.2 4.8 1.3 1.6 0.5 0.0 0.7 

210.5 2442.3 81.2 4.5 3.3 6.8 0.4 0.8 0.2 0.6 0.2 

215.5 2499.3 84.3 2.0 3.3 5.9 1.3 0.5 0.5 0.5 0.5 
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Depth 

(cm) 

Age (cal. 

years BP) 

SSPP 

(wt. %) 

IPAL 

(wt. %) 

SQUA 

(wt. %) 

HALO 

(no.*10^3/g) 

Reworked 

(no.*10^3/g) 

Dinocyst 

concentrations 

(no.*10^3/g) 

20.5 323.6 0.1 0.0 0.1 0.0 0.1 30.2 

25.5 378.2 0.5 0.0 0.0 0.0 0.0 23.2 

30.5 432.8 0.7 0.2 0.2 0.0 0.0 16.9 

35.5 487.4 0.6 0.0 0.2 0.0 0.0 15.3 

40.5 542.0 0.0 0.2 0.4 0.0 0.2 18.9 

45.5 596.6 0.8 0.4 0.2 0.0 0.1 20.8 

50.5 651.2 0.5 0.2 1.1 0.0 0.1 16.6 

55.5 705.8 0.0 0.8 0.5 0.0 0.2 20.2 

60.5 760.3 0.6 0.0 0.4 0.1 0.2 25.3 

65.5 814.9 0.6 1.0 0.4 0.0 0.0 12.8 

70.5 869.5 0.0 0.4 0.0 0.0 0.1 33.8 

75.5 924.1 0.2 0.3 0.2 0.0 0.0 21.3 

80.5 978.7 0.3 0.2 0.2 0.0 0.0 20.2 

85.5 1033.3 0.4 0.5 0.0 0.0 0.1 15.7 

90.5 1087.9 1.0 0.0 0.0 0.0 0.1 9.3 

95.5 1142.5 0.5 0.0 0.2 0.0 0.0 3.9 

100.5 1197.1 0.0 0.3 0.0 0.0 0.0 10.9 

105.5 1251.7 0.0 0.3 0.0 0.0 0.0 15.4 

110.5 1306.3 0.6 0.6 0.0 0.0 0.3 24.5 

115.5 1360.9 0.0 1.7 0.3 0.0 0.1 8.2 

120.5 1415.8 1.2 0.3 0.0 0.0 0.0 13.7 

125.5 1472.8 1.1 0.0 0.5 0.0 0.1 6.9 

130.5 1529.8 0.3 0.9 0.3 0.0 0.0 17.7 

135.5 1586.8 1.0 1.0 0.3 0.0 0.0 7.5 

140.5 1643.9 0.3 0.0 0.0 0.0 0.0 10.9 

145.5 1700.9 0.6 0.3 0.0 0.0 0.0 5.3 

150.5 1757.9 0.0 0.2 0.4 0.0 0.1 11.7 

155.5 1815.0 0.3 0.6 0.6 0.0 0.0 9.6 

160.5 1872.0 1.2 0.0 0.6 0.0 0.0 18.5 

165.5 1929.0 1.6 0.3 0.3 0.0 0.1 10.3 

170.5 1986.1 0.3 0.3 0.3 0.1 0.1 30.8 

175.5 2043.1 0.3 0.6 0.0 0.0 0.0 12.5 

180.5 2100.1 0.8 0.2 0.0 0.0 0.0 8.9 

185.5 2157.1 0.9 0.2 0.0 0.0 0.0 26.3 

190.5 2214.2 0.8 0.8 0.0 0.0 0.0 5.2 

195.5 2271.2 1.2 0.5 0.7 0.0 0.1 28.3 

200.5 2328.2 0.6 0.0 0.4 0.0 0.0 18.0 

205.5 2385.3 0.0 0.2 0.4 0.0 0.0 21.4 

210.5 2442.3 0.4 0.2 0.4 0.0 0.0 27.5 

215.5 2499.3 0.5 0.0 0.2 0.0 0.0 17.5 
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Depth 

(cm) 

Age (cal. 

years BP) 

OCEN 

(wt. %) 

PDAL 

(wt. %) 

NLAB 

(wt. %) 

BSPP 

(wt. %) 

SRAM 

(wt. %) 

SELO 

(wt. %) 

BTEP 

(wt. %) 

IMIN 

(wt. %) 

SMIR 

(wt. %) 

220.5 2556.4 75.9 5.2 4.6 6.2 1.2 1.9 0.6 0.0 0.6 

225.5 2613.4 73.9 3.7 6.8 8.6 1.0 1.6 0.5 0.8 1.0 

230.5 2670.4 82.5 5.0 5.4 3.2 1.0 0.8 0.0 0.6 0.2 

235.5 2727.4 76.2 6.1 6.3 6.6 0.7 1.5 0.7 0.5 0.0 

240.5 2784.5 73.9 8.7 5.5 5.2 0.9 0.6 1.2 1.4 0.0 

245.5 2841.5 81.4 2.3 4.7 5.0 1.4 1.7 0.5 0.2 1.2 

 

Depth 

(cm) 

Age (cal. 

years BP) 

SSPP 

(wt. %) 

IPAL 

(wt. %) 

SQUA 

(wt. %) 

HALO 

(no.*10^3/g) 

Reworked 

(no.*10^3/g) 

Dinocyst 

concentrations 

(no.*10^3/g) 

220.5 2556.4 0.9 0.3 0.3 0.0 0.0 13.2 

225.5 2613.4 0.5 0.5 0.0 0.0 0.1 11.4 

230.5 2670.4 0.2 0.2 0.4 0.0 0.2 20.2 

235.5 2727.4 0.5 0.0 0.2 0.0 0.1 14.8 

240.5 2784.5 1.2 0.6 0.0 0.1 0.1 8.9 

245.5 2841.5 0.5 0.5 0.0 0.0 0.0 9.8 
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A6.3 Modern Analogue Technique Results (MAT)  
 
Reconstructed sea-surface temperatures and salinities during winter and summer, and sea ice 
durations (i and s � estimated lower and upper error ranges, respectively).  

Depth 

(cm) 

Age (cal. 

years BP) 
TWIN TWIN_i TWIN_s SWIN SWIN_i SWIN_s TSUM TSUM_i TSUM_s 

20.5 323.6 4.3 0.2 6.5 34.2 31.8 35.2 10.6 4.4 13.3 

25.5 378.2 4.9 0.0 6.5 34.2 31.7 35.2 11.6 8.3 13.5 

30.5 432.8 2.0 0.0 6.5 32.9 31.7 35.2 12.1 8.3 14.9 

35.5 487.4 2.8 0.0 6.5 33.0 31.7 35.2 13.1 10.9 14.9 

40.5 542.0 4.3 0.2 7.5 34.4 31.8 35.2 9.9 4.4 13.3 

45.5 596.6 4.3 0.2 6.5 34.2 31.8 35.2 10.8 7.9 13.3 

50.5 651.2 4.4 0.2 6.5 34.1 31.8 35.2 11.4 8.1 13.3 

55.5 705.8 3.2 0.2 6.5 34.3 31.8 35.2 9.2 4.4 13.3 

60.5 760.3 4.2 0.0 6.5 33.8 31.7 35.2 12.2 10.9 13.5 

65.5 814.9 4.3 0.2 6.5 34.4 31.8 35.2 10.3 7.9 13.3 

70.5 869.5 2.9 -0.2 6.5 34.9 34.7 35.2 7.7 3.9 10.9 

75.5 924.1 4.6 0.2 6.5 34.4 31.8 35.2 10.7 7.1 13.3 

80.5 978.7 5.5 0.2 6.5 34.5 31.8 35.2 11.6 10.6 13.3 

85.5 1033.3 5.8 2.5 6.9 35.0 34.3 35.2 10.8 8.0 13.1 

90.5 1087.9 2.2 -0.4 6.3 33.0 31.7 34.5 12.1 8.3 13.5 

95.5 1142.5 3.6 0.0 6.5 33.6 31.8 35.2 12.0 8.3 14.9 

100.5 1197.1 4.8 0.2 6.5 34.3 31.8 35.2 11.3 8.3 13.3 

105.5 1251.7 4.8 0.2 6.5 34.5 31.8 35.2 11.0 8.9 13.3 

110.5 1306.3 2.7 0.0 6.5 33.5 31.8 35.2 11.3 8.1 14.9 

115.5 1360.9 3.3 0.7 6.4 35.0 34.7 35.1 7.5 3.9 10.6 

120.5 1415.8 0.9 -0.4 3.5 32.5 31.7 34.5 12.3 8.3 14.9 

125.5 1472.8 2.9 0.0 6.5 33.0 31.6 35.2 13.3 10.9 14.9 

130.5 1529.8 3.6 2.1 6.4 35.0 34.8 35.2 8.5 7.1 10.9 

135.5 1586.8 1.8 0.0 4.1 33.5 31.6 35.1 9.9 5.0 14.5 

140.5 1643.9 4.2 0.0 6.9 33.8 31.7 35.2 12.3 10.9 13.5 

145.5 1700.9 2.0 -0.4 6.5 33.0 31.7 35.2 11.7 8.3 13.5 

150.5 1757.9 4.2 0.2 6.8 34.3 31.8 35.2 10.4 4.4 13.4 

155.5 1815.0 6.0 4.1 6.5 35.2 35.1 35.2 10.3 7.9 11.0 

160.5 1872.0 2.7 -0.3 6.5 32.9 31.6 35.2 13.4 10.9 14.9 

165.5 1929.0 5.8 0.2 9.2 33.4 31.8 34.3 17.6 13.1 23.5 

170.5 1986.1 1.4 0.0 6.5 32.3 31.6 35.2 13.6 10.9 14.6 

175.5 2043.1 3.5 0.0 6.5 33.8 31.8 35.2 11.6 8.1 14.9 

180.5 2100.1 4.0 0.0 6.5 33.7 31.8 35.2 12.5 10.6 14.9 

185.5 2157.1 3.6 0.0 6.5 33.6 31.7 35.2 11.6 8.3 13.5 

190.5 2214.2 3.4 1.4 6.4 35.0 34.9 35.1 7.0 5.0 10.6 

195.5 2271.2 6.1 4.7 6.5 35.2 35.1 35.2 10.4 8.7 10.9 

200.5 2328.2 2.7 0.0 6.5 33.1 31.8 35.2 13.1 8.3 17.6 
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Depth 

(cm) 

Age (cal. 

years BP) 
SSUM SSUM_i 

SSUM_

s 

Sea ice 

duration 

(months/yr) 

Sea ice_i Sea ice_s 

20.5 323.6 33.5 30.5 35.1 0.6 0.0 1.7 

25.5 378.2 33.6 30.5 35.1 0.3 0.0 1.8 

30.5 432.8 32.1 30.4 35.1 1.0 0.0 1.8 

35.5 487.4 32.0 30.4 35.1 1.0 0.0 1.8 

40.5 542.0 33.8 30.5 35.1 0.6 0.0 1.7 

45.5 596.6 33.6 30.5 35.1 0.3 0.0 1.7 

50.5 651.2 33.5 30.5 35.1 0.4 0.0 1.7 

55.5 705.8 33.7 30.5 35.1 0.7 0.0 1.7 

60.5 760.3 33.0 30.5 35.1 0.6 0.0 1.8 

65.5 814.9 34.1 30.5 35.1 0.3 0.0 1.7 

70.5 869.5 34.7 34.1 35.1 0.4 0.0 1.3 

75.5 924.1 34.1 30.5 35.1 0.4 0.0 1.7 

80.5 978.7 34.0 30.5 35.1 0.3 0.0 1.7 

85.5 1033.3 34.7 33.0 35.1 0.0 0.0 0.0 

90.5 1087.9 31.9 30.5 34.3 0.9 0.0 1.8 

95.5 1142.5 32.8 30.4 35.1 0.6 0.0 1.7 

100.5 1197.1 33.7 30.5 35.1 0.3 0.0 1.7 

105.5 1251.7 34.2 30.5 35.1 0.3 0.0 1.7 

110.5 1306.3 32.9 30.4 35.1 0.7 0.0 1.7 

115.5 1360.9 34.8 34.1 35.0 0.3 0.0 1.3 

120.5 1415.8 31.5 30.4 34.3 1.2 0.0 1.8 

125.5 1472.8 32.0 30.1 35.1 0.9 0.0 1.8 

130.5 1529.8 34.9 34.7 35.1 0.0 0.0 0.0 

135.5 1586.8 32.8 30.1 35.0 0.8 0.0 1.8 

140.5 1643.9 33.0 30.5 35.1 0.6 0.0 1.8 

145.5 1700.9 32.2 30.5 35.1 1.0 0.0 1.8 

150.5 1757.9 33.6 30.5 35.1 0.7 0.0 1.7 

155.5 1815.0 35.1 35.0 35.1 0.0 0.0 0.0 

160.5 1872.0 31.7 29.6 35.1 0.8 0.0 1.8 

165.5 1929.0 32.5 30.5 33.3 0.3 0.0 1.7 

170.5 1986.1 31.3 30.1 35.1 1.4 0.0 1.8 

175.5 2043.1 33.2 30.4 35.1 0.6 0.0 1.7 

180.5 2100.1 32.9 30.4 35.1 0.6 0.0 1.7 

185.5 2157.1 32.9 30.5 35.1 0.6 0.0 1.8 

190.5 2214.2 34.9 34.4 35.0 0.3 0.0 1.2 

195.5 2271.2 35.1 35.0 35.1 0.0 0.0 0.0 

200.5 2328.2 32.2 30.4 35.1 0.7 0.0 1.7 
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Depth 

(cm) 

Age (cal. 

years BP) 
TWIN TWIN_i TWIN_s SWIN SWIN_i SWIN_s TSUM TSUM_i TSUM_s 

205.5 2385.3 6.3 5.4 6.5 35.0 33.8 35.2 11.4 10.8 13.9 

210.5 2442.3 6.0 4.1 6.5 35.2 35.1 35.2 10.4 8.1 11.0 

215.5 2499.3 6.3 5.4 6.5 34.8 33.8 35.2 11.8 10.6 13.9 

220.5 2556.4 4.8 0.2 6.5 34.3 31.8 35.2 11.3 8.1 13.3 

225.5 2613.4 3.9 0.2 6.5 34.4 31.8 35.2 10.1 7.7 13.3 

230.5 2670.4 6.3 5.1 6.9 35.2 35.1 35.2 10.8 9.9 11.1 

235.5 2727.4 2.8 0.0 6.5 33.6 31.8 35.2 11.3 8.1 14.9 

240.5 2784.5 2.8 0.0 4.1 34.1 31.8 35.1 9.5 6.4 14.9 

245.5 2841.5 5.8 3.5 6.5 34.9 34.3 35.2 10.7 8.3 13.1 

 

Depth 

(cm) 

Age (cal. 

years BP) 
SSUM SSUM_i SSUM_s 

Sea ice 

duration 

(months/yr) 

Sea ice_i Sea ice_s 

205.5 2385.3 34.6 32.1 35.1 0.0 0.0 0.0 

210.5 2442.3 35.1 35.0 35.1 0.0 0.0 0.0 

215.5 2499.3 34.2 32.1 35.1 0.0 0.0 0.0 

220.5 2556.4 33.8 30.5 35.1 0.3 0.0 1.7 

225.5 2613.4 34.1 30.5 35.1 0.3 0.0 1.7 

230.5 2670.4 35.1 35.1 35.1 0.0 0.0 0.0 

235.5 2727.4 32.9 30.4 35.1 0.7 0.0 1.7 

240.5 2784.5 33.7 30.4 35.0 0.4 0.0 1.5 

245.5 2841.5 34.6 33.0 35.1 0.0 0.0 0.0 
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Appendix 7: R406MC032 relative abundances and absolute concentrations of 
microfossils and MAT reconstructions. 

 
A7.1 Coccoliths  

Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

0.5 -56.7 78.2 17.0 3.6 1.2 16.2 

1.5 -48.0 71.5 23.8 3.0 1.7 14.6 

2.5 -38.8 76.0 19.6 3.5 0.9 16.3 

3.5 -28.9 67.8 28.1 2.8 1.4 13.1 

4.5 -18.5 60.8 33.3 4.2 1.6 11.0 

5.5 -7.5 57.1 35.9 3.7 3.4 11.1 

6.5 4.0 51.1 43.3 3.6 2.0 11.2 

7.5 16.1 64.4 29.1 4.2 2.3 11.1 

8.5 28.8 64.6 28.2 3.0 4.2 9.6 

9.5 42.1 55.5 37.9 4.3 2.3 8.5 

10.5 55.9 62.1 31.0 3.6 3.3 6.4 

11.5 70.3 57.9 32.7 5.4 4.0 7.3 

12.5 85.3 53.3 38.9 3.1 4.7 5.2 

13.5 100.8 64.4 31.7 2.9 1.0 3.3 

14.5 117.0 77.4 20.0 1.6 1.0 4.0 

15.5 133.6 88.1 11.9 0.0 0.0 1.4 

16.5 150.9 84.7 14.5 0.8 0.0 2.7 

17.5 168.7 81.7 18.3 0.0 0.0 1.2 

18.5 187.2 65.0 30.7 1.5 2.9 2.9 

19.5 206.1 74.7 20.2 0.0 5.1 1.8 

20.5 225.7 58.5 37.4 2.7 1.4 2.7 

21.5 245.8 75.7 22.6 1.7 0.0 2.4 

22.5 266.5 71.2 25.8 1.8 1.2 3.0 

23.5 287.8 72.1 23.4 1.3 3.2 2.5 

24.5 309.6 68.5 26.9 3.1 1.5 2.7 

25.5 332.0 98.2 1.8 0.0 0.0 1.4 

26.5 355.0 72.5 20.2 3.7 3.7 2.0 

27.5 378.5 81.8 15.6 2.6 0.0 1.6 

28.5 402.7 80.6 17.9 0.0 1.5 1.4 

29.5 427.3 89.7 7.4 1.5 1.5 1.3 

30.5 452.6 71.7 20.8 3.8 3.8 1.1 

31.5 478.4 76.6 20.3 0.0 3.1 1.3 

32.5 504.9 88.9 11.1 0.0 0.0 0.9 

33.5 531.8 79.1 16.3 0.0 4.7 0.8 
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A7.2 Dinocysts  

Depth 

(cm) 

Age (cal. 

years BP) 

OCEN 

(wt. %) 

PDAL 

(wt. %) 

NLAB 

(wt. %) 

SELO 

(wt. %) 

SRAM 

(wt. %) 

BSPP 

(wt. %) 

IMIN 

(wt. %) 

SSPP 

(wt. %) 

SMIR 

(wt. %) 

0.5 -56.7 65.2 15.2 8.4 1.8 2.3 0.5 1.1 1.8 0.7 

1.5 -48.0 61.2 19.6 8.4 1.8 4.6 0.5 0.8 1.5 0.3 

2.5 -38.8 71.3 6.2 7.8 3.8 4.0 1.6 1.1 0.2 1.1 

3.5 -28.9 63.1 17.2 6.2 5.5 3.2 0.2 0.9 1.6 0.5 

4.5 -18.5 79.3 9.5 4.4 2.1 2.2 0.5 0.9 0.6 0.3 

5.5 -7.5 76.2 9.0 6.3 4.3 2.1 0.0 0.0 0.4 0.7 

6.5 4.0 80.2 7.1 6.5 0.9 1.3 0.2 0.0 1.1 1.3 

7.5 16.1 82.2 6.8 5.7 2.2 1.7 0.0 0.2 0.2 0.2 

8.5 28.8 83.5 3.5 5.3 2.0 3.0 0.5 0.0 0.0 0.5 

9.5 42.1 84.0 4.3 5.3 2.4 1.4 0.8 0.2 0.2 0.3 

10.5 55.9 78.7 5.3 6.6 2.8 2.8 0.8 0.2 0.6 0.6 

11.5 70.3 81.6 5.3 4.2 2.7 2.5 0.2 0.3 0.8 0.6 

12.5 85.3 79.6 7.5 5.0 2.3 1.8 0.2 0.0 0.7 0.5 

13.5 100.8 77.3 8.1 6.5 2.3 3.6 0.0 0.3 0.0 0.6 

14.5 117.0 71.6 7.1 6.6 2.7 4.4 0.5 2.2 0.8 0.3 

15.5 133.6 72.6 6.9 8.6 2.5 5.0 1.7 0.8 0.0 0.6 

16.5 150.9 73.8 7.3 7.0 2.6 4.5 0.6 1.3 1.0 1.0 

17.5 168.7 71.6 7.4 10.9 2.7 2.4 0.6 0.6 1.8 0.6 

18.5 187.2 61.3 18.0 12.7 0.0 4.7 0.7 1.3 0.7 0.0 

19.5 206.1 75.8 6.2 10.8 1.5 1.5 0.0 1.0 0.0 0.5 

20.5 225.7 77.7 6.1 6.7 0.9 3.1 2.4 0.3 0.0 0.3 

21.5 245.8 75.0 8.5 4.7 0.9 0.9 3.8 5.3 0.0 0.0 

22.5 266.5 76.4 10.7 4.7 2.2 2.8 0.6 0.3 1.6 0.3 

23.5 287.8 83.1 5.3 3.2 1.8 2.4 2.1 0.8 0.3 0.3 

24.5 309.6 72.5 11.1 4.7 3.0 1.7 1.7 2.7 1.0 0.0 

25.5 332.0 57.7 13.1 7.9 4.5 2.6 7.1 2.2 2.2 0.4 

26.5 355.0 64.1 15.4 6.1 2.6 4.2 3.5 1.6 1.0 0.0 

27.5 378.5 62.3 13.4 4.5 4.5 8.9 1.5 0.6 0.9 0.3 

28.5 402.7 56.3 22.0 2.5 5.6 4.6 1.2 2.5 2.5 0.0 

29.5 427.3 52.7 16.3 6.3 8.4 5.1 3.9 1.5 2.1 0.0 

30.5 452.6 45.7 10.4 3.8 10.4 5.4 15.1 2.8 2.2 0.3 

31.5 478.4 49.7 14.7 3.8 7.4 5.0 10.9 3.8 1.5 0.0 

32.5 504.9 33.1 15.7 4.7 8.0 7.4 22.2 1.8 1.8 0.0 
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Depth 

(cm) 

Age (cal. 

years 

BP) 

IPAL 

(wt. %) 

SQUA 

(wt. %) 

HALO 

((no.*10^3/1000)/

g) 

Reworked 

(no.*10^3/g) 

Dinocyst 

concentrations 

(no.*10^3/g) 

0.5 -56.7 0.7 0.2 0.0 0.1 14.2 

1.5 -48.0 0.5 0.0 0.0 0.0 8.6 

2.5 -38.8 0.0 0.4 0.0 0.0 19.5 

3.5 -28.9 0.0 0.0 0.0 0.0 13.5 

4.5 -18.5 0.0 0.0 0.0 0.0 16.1 

5.5 -7.5 0.0 0.0 0.0 0.0 25.2 

6.5 4.0 0.4 0.2 0.0 0.1 47.3 

7.5 16.1 0.6 0.0 0.0 0.0 22.9 

8.5 28.8 0.3 0.0 0.0 0.0 25.4 

9.5 42.1 0.8 0.0 0.0 0.1 23.7 

10.5 55.9 0.8 0.0 0.0 0.0 18.6 

11.5 70.3 0.6 0.2 0.0 0.1 21.5 

12.5 85.3 0.5 0.2 0.0 0.0 16.4 

13.5 100.8 0.3 0.0 0.0 0.1 7.8 

14.5 117.0 0.5 0.3 0.0 0.0 6.3 

15.5 133.6 0.3 0.0 0.0 0.1 4.5 

16.5 150.9 0.3 0.0 0.0 0.0 3.7 

17.5 168.7 0.6 0.0 0.0 0.0 4.9 

18.5 187.2 0.7 0.0 0.0 0.0 1.0 

19.5 206.1 0.5 0.0 0.0 0.0 1.3 

20.5 225.7 0.3 0.3 0.0 0.0 2.3 

21.5 245.8 0.0 0.3 0.0 0.0 2.4 

22.5 266.5 0.0 0.0 0.0 0.0 3.3 

23.5 287.8 0.0 0.0 0.0 0.0 2.4 

24.5 309.6 0.0 0.0 0.0 0.0 2.6 

25.5 332.0 0.4 0.4 0.0 0.0 1.1 

26.5 355.0 0.0 0.3 0.0 0.0 1.9 

27.5 378.5 0.0 0.3 0.0 0.0 1.7 

28.5 402.7 0.0 0.0 0.0 0.0 1.5 

29.5 427.3 0.6 0.3 0.0 0.0 1.5 

30.5 452.6 0.0 0.3 0.0 0.0 3.5 

31.5 478.4 0.6 0.3 0.0 0.0 2.5 

32.5 504.9 0.3 0.6 0.1 0.0 3.1 
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A7.3 Modern Analogue Technique Results (MAT) + IRD 
 
Reconstructed sea-surface temperatures and salinities during winter and summer, and sea ice 
durations (i and s � estimated lower and upper error ranges, respectively) + IRD >150µm. 

Depth 

(cm) 

Age (cal. 

years BP) 
TWIN TWIN_i TWIN_s SWIN SWIN_i SWIN_s TSUM TSUM_i TSUM_s 

0.5 -56.7 4.1 0.2 6.4 34.0 31.8 35.1 11.3 8.3 13.3 

1.5 -48.0 1.5 -0.4 4.2 33.0 31.7 35.0 11.4 8.3 13.5 

2.5 -38.8 4.1 0.2 6.4 33.1 31.8 34.3 14.8 13.1 17.6 

3.5 -28.9 2.7 -0.4 6.4 33.4 31.7 35.0 11.5 8.3 13.5 

4.5 -18.5 1.0 -0.5 3.5 32.8 31.6 34.5 12.0 8.3 14.9 

5.5 -7.5 5.3 3.2 6.4 34.7 34.3 35.2 11.1 8.5 13.1 

6.5 4.0 6.4 6.3 6.4 34.8 34.3 35.2 11.9 10.8 13.1 

7.5 16.1 1.6 -0.2 3.5 34.7 34.3 34.9 6.2 3.6 8.9 

8.5 28.8 5.3 3.5 6.5 34.9 34.3 35.2 10.5 8.7 13.1 

9.5 42.1 3.3 0.0 6.5 34.8 34.5 35.2 8.4 5.8 10.9 

10.5 55.9 4.5 0.0 6.5 34.5 34.3 35.2 10.1 5.8 13.1 

11.5 70.3 5.3 3.5 6.4 34.6 34.3 35.2 10.9 8.3 13.1 

12.5 85.3 5.3 3.8 6.4 34.9 34.3 35.2 10.6 8.9 13.1 

13.5 100.8 3.7 0.6 6.4 34.7 34.3 35.0 8.7 3.6 13.1 

14.5 117.0 2.7 0.2 3.8 33.2 31.8 35.0 12.7 8.3 16.9 

15.5 133.6 2.4 0.2 6.5 34.1 31.8 35.2 8.4 3.6 13.3 

16.5 150.9 1.1 -0.5 3.5 33.0 31.6 34.8 11.0 6.3 14.3 

17.5 168.7 2.0 -0.4 6.3 32.9 31.7 34.5 11.9 8.3 13.5 

18.5 187.2 0.9 -0.2 2.1 34.7 34.7 34.8 5.9 3.6 7.8 

19.5 206.1 1.8 -1.8 6.4 34.4 33.5 34.9 6.2 1.1 13.1 

20.5 225.7 5.0 1.8 6.5 34.8 33.8 35.2 9.7 4.4 13.9 

21.5 245.8 1.2 -0.3 6.5 32.4 31.6 35.2 13.6 10.9 14.9 

22.5 266.5 1.9 -0.4 6.3 32.8 31.7 34.5 12.4 8.3 14.9 

23.5 287.8 2.3 0.0 6.5 33.2 31.7 35.2 11.9 8.3 14.9 

24.5 309.6 0.6 -0.4 3.5 32.2 31.7 34.5 12.8 8.3 14.9 

25.5 332.0 0.8 0.0 3.5 32.2 31.6 34.5 12.8 8.3 14.6 

26.5 355.0 0.0 -0.4 0.2 31.8 31.7 31.8 13.4 12.5 14.9 

27.5 378.5 2.0 0.0 6.3 32.8 31.7 34.5 12.1 8.3 13.5 

28.5 402.7 -0.2 -0.8 0.2 32.3 31.7 34.6 12.1 5.3 14.9 

29.5 427.3 0.8 -0.4 3.5 32.3 31.6 34.5 12.3 8.3 14.6 

30.5 452.6 1.5 0.0 4.0 31.9 31.6 32.7 15.2 13.5 17.2 

31.5 478.4 1.3 -1.0 4.0 32.6 31.6 34.5 12.8 8.3 17.2 

32.5 504.9 0.9 0.0 4.0 31.8 31.6 32.7 14.5 12.5 17.2 
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Depth 

(cm) 

Age (cal. 

years BP) 
SSUM SSUM_i SSUM_s 

Sea ice 

duration 

(months/yr) 

Sea ice_i Sea ice_s 

Total Lithic 

Grains (>150 

µm * 10^3/g) 

0.5 -56.7 33.1 30.5 35.0 0.4 0.0 1.7 2.1 

1.5 -48.0 32.2 30.5 35.0 1.0 0.0 1.8 3.2 

2.5 -38.8 32.1 30.5 33.0 0.4 0.0 1.7 1.8 

3.5 -28.9 32.6 30.5 35.0 0.7 0.0 1.8 1.4 

4.5 -18.5 31.6 30.0 34.3 1.4 0.0 4.0 0.7 

5.5 -7.5 34.1 33.0 35.1 0.0 0.0 0.0 2.2 

6.5 4.0 34.2 33.0 35.1 0.0 0.0 0.0 2.9 

7.5 16.1 34.2 33.2 35.0 0.8 0.0 3.5 2.5 

8.5 28.8 34.5 33.0 35.1 0.0 0.0 0.0 3.4 

9.5 42.1 34.6 34.3 35.1 0.1 0.0 0.3 2.1 

10.5 55.9 33.9 33.0 35.1 0.1 0.0 0.3 3.4 

11.5 70.3 34.1 33.0 35.1 0.0 0.0 0.0 4.7 

12.5 85.3 34.6 33.0 35.1 0.0 0.0 0.0 2.7 

13.5 100.8 34.1 33.0 35.0 0.8 0.0 3.5 2.4 

14.5 117.0 32.6 30.5 34.9 0.4 0.0 1.7 1.8 

15.5 133.6 33.5 30.5 35.1 1.1 0.0 3.5 1.8 

16.5 150.9 32.0 30.0 34.3 1.4 0.0 4.0 1.8 

17.5 168.7 32.0 30.5 34.3 0.9 0.0 1.8 3.1 

18.5 187.2 34.4 33.4 34.8 0.5 0.0 1.3 1.8 

19.5 206.1 33.5 31.9 35.0 1.8 0.0 5.6 2.8 

20.5 225.7 34.3 32.1 35.1 0.2 0.0 1.3 5.1 

21.5 245.8 31.2 29.6 35.1 1.7 0.0 4.0 2.6 

22.5 266.5 31.8 30.4 34.3 1.0 0.0 1.8 4.3 

23.5 287.8 32.4 30.4 35.1 0.9 0.0 1.8 2.9 

24.5 309.6 31.2 30.4 34.3 1.3 0.0 1.8 3.6 

25.5 332.0 31.2 30.1 34.3 1.4 0.0 1.8 3.3 

26.5 355.0 30.5 30.4 30.7 1.7 1.5 1.8 2.7 

27.5 378.5 31.8 30.5 34.3 1.1 0.0 1.8 8.5 

28.5 402.7 31.1 30.4 33.6 2.0 1.5 3.4 11.5 

29.5 427.3 31.4 30.5 34.3 1.3 0.0 1.8 4.5 

30.5 452.6 31.2 30.1 32.3 0.7 0.0 1.8 0.0 

31.5 478.4 31.6 30.1 34.3 0.9 0.0 1.8 0.0 

32.5 504.9 30.7 30.1 31.5 1.4 0.0 1.8 0.0 
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Appendix 8: HH11-134-BC relative abundances and absolute concentrations of 
microfossils and MAT reconstructions. 

 
A8.1 Coccoliths  

Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

0.25 -37.8 50.8 36.5 11.3 1.1 4.4 

0.75 -31.9 51.0 32.6 12.8 3.1 5.1 

1.25 -24.0 48.2 41.5 8.5 1.5 5.6 

1.75 -14.1 55.3 35.5 6.3 1.5 5.7 

2.25 -2.3 42.4 51.7 5.0 0.6 3.7 

2.75 11.5 47.9 40.5 8.6 2.3 3.0 

3.25 27.3 43.9 48.6 6.1 1.0 4.1 

3.75 45.0 39.2 54.5 4.5 1.3 5.3 

4.25 64.6 35.8 50.9 10.7 1.8 3.1 

4.75 86.2 38.5 51.8 5.4 2.3 3.7 

5.25 109.8 35.2 57.7 6.6 0.0 5.5 

5.75 135.3 52.2 40.8 5.7 0.5 5.7 

6.25 162.8 42.5 48.2 6.3 2.7 4.2 

6.75 192.2 35.7 55.8 6.1 1.4 4.2 

7.25 223.6 43.0 47.6 6.6 1.4 4.1 

7.75 257.0 35.5 55.4 4.7 2.9 3.8 

8.25 292.3 36.0 52.1 6.8 4.2 4.4 

8.75 329.5 32.5 58.9 4.0 4.0 6.4 

9.25 368.8 41.1 45.3 10.0 3.4 5.8 

9.75 409.9 36.8 53.3 7.1 2.8 6.0 

10.25 453.1 38.5 53.1 6.0 1.8 5.4 

10.75 498.2 38.1 55.5 3.8 2.3 5.5 

11.25 545.2 37.5 52.7 6.1 3.7 4.2 

11.75 594.2 40.3 50.8 6.4 2.2 4.5 

12.25 645.2 31.9 60.4 5.1 2.2 4.4 

12.75 698.1 33.3 60.1 2.6 3.7 4.2 

13.25 753.0 32.2 53.5 7.3 6.6 4.9 

13.75 809.8 46.6 39.8 9.1 3.6 3.8 

14.25 868.6 42.2 45.2 7.6 4.7 4.9 

14.75 929.3 44.4 42.2 9.7 3.5 5.2 

15.25 992.0 48.8 38.6 7.9 4.3 3.6 

15.75 1056.7 41.3 45.0 8.9 4.8 3.8 

16.25 1123.3 36.3 53.8 6.0 3.3 5.2 

16.75 1191.9 44.0 39.9 11.7 4.4 4.8 

17.25 1262.4 31.2 56.4 6.2 5.4 4.3 

17.75 1334.9 34.2 55.3 4.6 5.1 5.4 

18.25 1409.3 35.6 56.0 4.0 4.2 7.2 
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Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

18.75 1485.7 33.5 52.5 9.3 4.7 3.6 

19.25 1564.0 32.4 54.6 6.1 5.8 5.4 

19.75 1644.3 28.0 58.0 7.6 6.1 3.7 

20.25 1726.6 27.7 59.9 5.4 6.7 5.5 

20.75 1810.8 26.0 62.8 5.7 4.7 4.3 

21.25 1897.0 30.3 56.3 6.2 6.5 4.5 

21.75 1985.1 29.2 56.3 7.8 5.7 4.8 

22.25 2075.2 40.3 46.9 7.3 4.8 3.8 

22.75 2167.3 35.3 50.6 8.3 4.5 4.4 

23.25 2261.3 30.1 59.2 4.3 5.7 4.0 

23.75 2357.2 43.6 48.7 4.0 3.7 4.1 

24.25 2455.2 38.1 55.9 1.4 3.4 3.5 

24.75 2555.0 34.9 59.6 2.7 2.7 3.6 

25.25 2656.9 35.8 55.3 4.4 4.0 3.2 

25.75 2760.6 32.3 59.5 4.3 3.9 3.7 

26.25 2866.4 42.6 52.5 2.5 2.0 3.5 

26.75 2974.1 36.1 59.0 1.2 3.0 2.4 

27.25 3083.7 29.8 62.4 3.9 3.1 3.0 

27.75 3195.4 33.2 59.8 2.7 2.3 2.6 

28.25 3308.9 37.5 49.3 6.6 6.6 1.9 

28.75 3424.4 35.0 58.4 3.3 1.9 3.6 

29.25 3541.9 23.3 67.9 5.2 3.1 2.3 

29.75 3661.4 24.4 68.9 2.9 2.9 2.5 

30.25 3782.8 27.9 66.2 1.5 4.4 2.0 

30.75 3906.1 34.4 61.0 3.9 0.6 2.2 

31.25 4031.4 33.5 57.8 3.7 4.1 3.0 

31.75 4158.7 40.2 47.1 4.9 7.8 1.5 

32.25 4287.9 33.9 61.4 0.5 3.7 2.2 

32.75 4419.1 37.1 53.8 3.7 4.0 3.6 

33.25 4552.2 33.2 61.3 1.5 4.0 2.9 

33.75 4687.3 40.1 50.5 1.6 7.1 2.6 

34.25 4824.4 29.0 63.9 1.9 3.2 1.9 

34.75 4963.4 34.6 57.2 3.7 4.1 3.1 

35.25 5104.3 33.6 55.5 5.3 5.0 4.2 

35.75 5247.2 25.6 68.4 1.8 4.2 3.3 

36.25 5392.1 30.6 59.9 5.4 3.7 4.2 

36.75 5538.9 20.7 75.7 1.4 1.7 7.2 

37.25 5687.7 31.3 61.3 4.1 1.8 3.1 

37.75 5838.5 34.1 56.6 7.2 2.0 3.6 

38.25 5991.2 23.8 69.8 2.7 3.7 3.5 

38.75 6145.8 24.7 69.3 3.9 1.2 8.1 



Appendices 

Christian V. Dylmer, 2013 

 

 
 

Depth 

(cm) 

Age (cal. 

years BP) 

E. huxleyi 

(wt. %) 

C. pelagicus 

(wt. %) 

G. muellerae 

(wt. %) 

C. leptoporus 

(wt. %) 

Bulk 

coccoliths 

(no.*10^8/g) 

39.25 6302.4 34.2 59.1 3.0 2.3 4.2 

39.75 6461.0 33.3 57.9 6.9 1.2 5.6 

40.25 6621.5 40.1 50.5 6.4 3.1 4.7 

40.75 6784.0 35.9 55.8 4.8 2.9 4.4 
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A8.2 Dinocysts 

Depth 

(cm) 

Age (cal. 

years BP) 

OCEN 

(wt. %) 

PDAL 

(wt. %) 

IMIN 

(wt. %) 

NLAB 

(wt. %) 

SELO 

(wt. %) 

BSPP 

(wt. %) 

SRAM 

(wt. %) 

IPAL 

(wt. %) 

SMIR 

(wt. %) 

SQUA 

(wt. %) 

0.25 -37.8 67.9 4.8 8.6 7.6 1.9 4.1 2.2 1.6 0.0 0.0 

0.75 -31.9 64.9 7.2 12.8 6.7 2.6 2.0 2.0 1.2 0.0 0.0 

1.25 -24.0 62.0 13.1 7.0 7.6 3.0 5.2 0.0 0.9 0.0 0.0 

1.75 -14.1 69.5 6.6 8.5 5.9 3.0 2.0 1.3 2.0 0.3 0.0 

2.25 -2.3 64.6 8.1 8.4 6.7 2.3 4.6 2.6 0.9 0.3 0.3 

2.75 11.5 67.8 9.5 5.0 7.8 2.6 0.6 2.2 1.2 0.6 0.0 

3.25 27.3 66.1 12.6 6.6 7.1 1.6 2.4 1.6 1.6 0.0 0.0 

3.75 45.0 75.2 2.7 5.4 7.8 2.7 1.2 2.1 0.3 0.3 0.0 

4.25 64.6 75.0 4.1 8.7 4.8 2.3 1.2 2.3 0.8 0.2 0.0 

4.75 86.2 73.4 6.1 6.6 3.9 3.3 1.9 1.7 0.6 0.6 0.0 

6.25 162.8 69.3 8.5 6.3 7.0 2.8 2.2 1.7 0.4 0.0 0.0 

6.75 192.2 73.9 5.4 5.6 6.4 3.5 1.7 1.7 0.4 0.4 0.0 

7.25 223.6 72.7 2.2 9.7 7.3 3.0 0.9 0.6 0.4 0.6 0.0 

7.75 257.0 70.1 10.5 3.0 4.4 5.8 1.4 1.7 1.4 0.0 0.0 

8.25 292.3 80.3 2.7 4.1 4.3 3.6 1.4 0.9 0.7 0.4 0.0 

8.75 329.5 75.5 5.5 8.3 5.3 2.3 0.0 0.8 1.3 0.0 0.3 

9.25 368.8 80.8 2.9 5.2 5.4 2.5 1.0 0.8 0.8 0.0 0.0 

9.75 409.9 82.1 4.2 3.2 5.4 1.9 0.1 1.5 0.4 0.4 0.1 

10.25 453.1 75.2 3.6 4.1 9.1 1.8 2.5 1.1 0.7 0.2 0.0 

10.75 498.2 80.4 4.4 5.1 3.6 2.7 0.4 1.7 0.4 0.2 0.0 

11.25 545.2 77.5 5.3 5.5 6.2 0.5 1.4 1.8 0.2 0.5 0.0 

11.75 594.2 78.2 4.4 6.9 4.4 2.0 1.2 1.9 0.2 0.0 0.0 

12.25 645.2 84.5 2.3 1.5 5.5 1.5 1.5 0.5 0.3 0.3 0.0 

12.75 698.1 82.5 3.8 4.6 5.1 0.7 0.9 0.4 0.9 0.4 0.0 

13.25 753.0 81.1 3.9 4.2 3.9 1.9 1.9 1.4 0.4 0.2 0.0 

13.75 809.8 82.5 2.0 3.1 4.8 2.0 2.2 1.4 1.0 0.0 0.0 

14.25 868.6 81.8 1.7 5.9 4.6 1.3 1.3 1.1 0.4 0.2 0.0 

14.75 929.3 81.9 2.9 5.2 5.1 1.0 2.0 0.7 0.3 0.1 0.0 

15.25 992.0 83.4 2.8 3.4 4.9 0.9 1.3 0.4 0.9 0.6 0.0 

15.75 1056.7 84.1 3.0 3.9 5.2 1.3 0.9 0.6 0.4 0.0 0.0 

16.5 1157.3 86.3 0.6 2.1 5.3 1.4 1.1 1.0 0.5 0.2 0.0 

16.75 1191.9 76.1 5.4 7.5 5.0 1.3 1.9 1.1 0.6 0.0 0.0 

17.25 1262.4 77.8 5.9 5.2 4.4 1.0 1.5 0.5 0.8 0.5 0.3 

17.75 1334.9 77.5 2.0 4.3 8.2 2.4 2.0 1.4 0.4 0.4 0.0 

18.25 1409.3 78.9 3.5 3.6 7.7 1.0 1.5 1.5 0.4 0.3 0.0 

18.75 1485.7 75.1 2.5 6.3 6.2 1.7 3.6 0.8 0.4 0.8 0.1 

19.25 1564.0 80.0 2.4 5.2 7.0 1.1 1.5 0.7 0.2 0.6 0.0 

19.75 1644.3 72.9 2.6 9.2 6.8 1.2 3.1 1.2 0.9 0.5 0.0 

20.25 1726.6 75.1 2.8 6.4 8.1 1.7 2.0 1.1 1.2 0.2 0.0 

20.75 1810.8 78.8 2.3 3.8 8.1 1.5 2.0 1.3 0.5 0.3 0.0 
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Depth 

(cm) 

Age 

(cal. 

years 

BP) 

HALO 

((no.*10^3)/g) 

Reworked 

(no.*10^3/g) 

Dinocyst 

concentrations 

(no.*10^3/g) 

0.25 -37.8 0.2 0.1 7.4 

0.75 -31.9 0.2 0.0 8.2 

1.25 -24.0 0.2 0.0 6.7 

1.75 -14.1 0.1 0.0 12.8 

2.25 -2.3 0.4 0.1 11.0 

2.75 11.5 0.0 0.0 13.6 

3.25 27.3 0.1 0.0 16.2 

3.75 45.0 0.2 0.0 14.3 

4.25 64.6 0.4 0.0 17.0 

4.75 86.2 0.0 0.0 15.3 

6.25 162.8 0.0 0.0 19.0 

6.75 192.2 0.0 0.0 24.4 

7.25 223.6 0.2 0.0 11.0 

7.75 257.0 0.3 0.1 38.8 

8.25 292.3 0.3 0.0 19.5 

8.75 329.5 0.1 0.0 16.7 

9.25 368.8 0.1 0.0 11.6 

9.75 409.9 0.0 0.0 22.7 

10.25 453.1 0.0 0.1 32.9 

10.75 498.2 0.2 0.1 31.7 

11.25 545.2 0.3 0.0 28.2 

11.75 594.2 0.1 0.1 23.8 

12.25 645.2 0.1 0.0 23.3 

12.75 698.1 0.0 0.0 23.3 

13.25 753.0 0.2 0.1 34.2 

13.75 809.8 0.4 0.1 29.5 

14.25 868.6 0.1 0.0 27.8 

14.75 929.3 0.2 0.0 33.9 

15.25 992.0 0.2 0.0 32.7 

15.75 1056.7 0.3 0.1 30.0 

16.5 1157.3 0.1 0.0 22.9 

16.75 1191.9 0.3 0.0 8.0 

17.25 1262.4 0.0 0.1 28.6 

17.75 1334.9 0.1 0.0 19.1 

18.25 1409.3 0.1 0.2 29.4 

18.75 1485.7 0.2 0.0 32.5 

19.25 1564.0 0.1 0.0 23.2 

19.75 1644.3 0.3 0.0 18.0 

20.25 1726.6 0.2 0.1 30.1 

20.75 1810.8 0.1 0.1 26.3 
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Depth 

(cm) 

Age (cal. 

years 

BP) 

OCEN 

(wt. 

%) 

PDAL 

(wt. 

%) 

IMIN 

(wt. 

%) 

NLAB 

(wt. 

%) 

SELO 

(wt. 

%) 

BSPP 

(wt. 

%) 

SRAM 

(wt. 

%) 

IPAL 

(wt. 

%) 

SMIR 

(wt. 

%) 

SQUA 

(wt. 

%) 

21.25 1897.0 81.9 1.5 3.5 6.6 2.2 1.5 0.8 0.5 0.2 0.0 

21.75 1985.1 82.2 1.9 4.8 5.5 1.0 2.4 1.4 0.0 0.0 0.0 

22.25 2075.2 80.0 2.0 4.4 5.5 2.2 2.4 1.2 0.2 0.4 0.0 

22.75 2167.3 80.1 3.5 1.8 8.8 1.1 1.3 1.1 0.7 0.2 0.0 

23.25 2261.3 82.6 1.7 5.3 4.5 1.5 1.5 1.1 0.4 0.4 0.0 

23.75 2357.2 84.6 1.6 3.0 4.0 2.1 1.2 1.3 0.7 0.4 0.1 

24.25 2455.2 80.8 3.5 3.5 6.1 2.0 2.0 0.3 0.3 0.2 0.0 

24.75 2555.0 84.6 2.7 3.5 4.3 1.4 0.3 1.7 0.3 0.0 0.0 

25.25 2656.9 82.1 3.7 2.3 5.7 2.5 1.2 1.1 0.0 0.3 0.0 

25.75 2760.6 87.3 0.9 3.4 3.9 1.9 0.9 0.7 0.3 0.0 0.0 

26.25 2866.4 79.8 3.8 5.1 4.8 2.5 1.1 0.8 0.8 0.0 0.0 

26.75 2974.1 82.7 2.4 3.8 6.3 1.9 0.7 1.0 0.0 0.2 0.0 

27.25 3083.7 77.0 6.1 3.8 6.6 1.3 1.0 1.5 0.3 0.0 0.0 

27.75 3195.4 83.0 2.3 4.2 4.6 2.1 0.4 1.5 0.2 0.4 0.0 

28.25 3308.9 82.1 0.4 4.6 4.6 2.7 1.3 1.1 0.5 0.4 0.0 

28.75 3424.4 75.7 4.7 6.0 6.0 1.4 1.9 2.5 0.6 0.0 0.0 

29.25 3541.9 74.8 5.1 5.5 8.0 0.7 1.7 2.3 0.3 0.1 0.0 

29.75 3661.4 77.4 2.3 4.3 7.0 1.8 1.3 2.2 0.8 0.5 0.0 

30.25 3782.8 77.6 2.8 4.8 4.8 1.8 3.0 3.2 0.6 0.2 0.0 

30.75 3906.1 72.4 7.6 5.4 8.9 0.8 0.5 1.9 1.4 0.0 0.0 

32.25 4287.9 80.7 2.5 3.7 7.5 1.4 1.1 1.6 0.2 0.5 0.0 

32.75 4419.1 77.7 1.6 4.4 7.7 2.1 0.9 2.8 0.9 0.2 0.0 

33.75 4687.3 72.4 4.8 3.6 9.7 2.2 2.4 2.6 0.4 0.6 0.0 

34.25 4824.4 74.6 3.0 4.3 8.0 3.3 1.1 3.4 0.5 0.0 0.0 

34.75 4963.4 71.8 4.4 4.2 11.5 1.5 1.1 2.4 0.2 0.4 0.0 

35.25 5104.3 72.0 3.4 2.6 12.0 2.4 1.4 4.2 0.6 0.0 0.0 

35.75 5247.2 70.0 2.9 4.1 13.5 0.9 1.8 4.4 0.6 0.3 0.0 

36.25 5392.1 72.1 1.8 3.1 15.1 1.1 1.1 3.6 0.0 0.2 0.0 

36.75 5538.9 69.0 4.2 3.7 13.7 2.1 1.3 2.5 1.0 0.2 0.0 

37.25 5687.7 70.4 2.4 4.1 14.4 2.8 1.3 1.7 0.6 0.8 0.0 

37.75 5838.5 48.8 2.1 9.3 27.7 3.9 1.5 2.7 0.6 0.3 0.0 

38.25 5991.2 46.1 3.6 8.7 31.3 3.1 1.4 2.2 1.4 0.3 0.0 

38.75 6145.8 47.1 4.4 9.7 25.8 4.4 1.4 2.8 1.1 0.6 0.0 

39.25 6302.4 45.1 6.5 14.0 26.6 1.0 2.3 2.6 1.3 0.0 0.0 
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Depth 

(cm) 

Age (cal. 

years 

BP) 

HALO 

((no.*10^3)/g) 

Reworked 

(no.*10^3/g) 

Dinocyst 

concentrations 

(no.*10^3/g) 

21.25 1897.0 0.1 0.0 21.9 

21.75 1985.1 0.0 0.0 18.8 

22.25 2075.2 0.3 0.1 27.6 

22.75 2167.3 0.2 0.0 39.2 

23.25 2261.3 0.1 0.1 43.1 

23.75 2357.2 0.3 0.0 24.4 

24.25 2455.2 0.2 0.1 33.1 

24.75 2555.0 0.2 0.0 20.5 

25.25 2656.9 0.1 0.0 22.4 

25.75 2760.6 0.0 0.0 16.1 

26.25 2866.4 0.1 0.0 25.3 

26.75 2974.1 0.1 0.0 12.2 

27.25 3083.7 0.1 0.0 21.4 

27.75 3195.4 0.1 0.1 15.5 

28.25 3308.9 0.1 0.0 18.9 

28.75 3424.4 0.0 0.0 23.8 

29.25 3541.9 0.1 0.0 19.7 

29.75 3661.4 0.1 0.0 17.6 

30.25 3782.8 0.0 0.2 30.6 

30.75 3906.1 0.2 0.0 10.5 

32.25 4287.9 0.1 0.1 19.2 

32.75 4419.1 0.0 0.0 11.0 

33.75 4687.3 0.0 0.1 16.8 

34.25 4824.4 0.1 0.0 13.3 

34.75 4963.4 0.0 0.1 23.2 

35.25 5104.3 0.0 0.0 15.7 

35.75 5247.2 0.0 0.0 10.9 

36.25 5392.1 0.0 0.0 17.3 

36.75 5538.9 0.3 0.0 16.1 

37.25 5687.7 0.1 0.0 18.4 

37.75 5838.5 0.2 0.1 8.6 

38.25 5991.2 0.1 0.0 10.2 

38.75 6145.8 0.1 0.0 10.8 

39.25 6302.4 0.1 0.1 8.4 
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A8.3 Modern Analogue Technique Results (MAT)  
 
Reconstructed sea-surface temperatures and salinities during winter and summer, and sea ice 
durations (i and s � estimated lower and upper error ranges, respectively).  

 

Depth 

(cm) 

Age (cal. 

years BP) 
TWIN TWIN_i TWIN_s SWIN SWIN_i SWIN_s TSUM TSUM_i TSUM_s 

0.25 -37.8 0.8 -2.0 3.5 34.3 33.2 35.0 4.0 -0.3 8.3 

0.75 -31.9 -0.4 -2.0 1.6 34.0 32.6 34.9 2.5 -0.3 5.0 

1.25 -24.0 -0.2 -2.0 1.6 34.1 32.6 35.0 2.9 -0.3 5.2 

1.75 -14.1 -0.1 -2.0 1.6 34.1 32.6 35.0 2.9 -0.3 5.2 

2.25 -2.3 -0.3 -2.0 0.6 33.3 31.7 34.7 6.5 -0.3 13.9 

2.75 11.5 0.8 -2.0 3.5 33.9 31.8 35.0 5.9 -0.3 13.3 

3.25 27.3 0.1 -2.0 1.6 34.4 33.2 34.9 3.6 -0.3 6.5 

3.75 45.0 0.7 -2.0 3.5 33.3 31.7 34.9 7.5 -0.3 13.3 

4.25 64.6 0.7 -2.0 3.5 34.4 33.2 35.0 4.0 -0.3 8.3 

4.75 86.2 0.8 -2.0 3.5 33.8 31.8 35.0 5.8 -0.3 13.3 

6.25 162.8 0.6 -2.0 3.5 33.3 31.7 34.9 7.5 -0.3 12.8 

6.75 192.2 1.0 -2.0 3.5 33.9 31.8 35.0 6.2 -0.3 13.3 

7.25 223.6 1.9 -2.0 6.4 34.5 33.2 35.1 5.3 -0.3 10.6 

7.75 223.6 0.9 -2.0 3.5 33.9 31.8 34.9 5.9 -0.3 13.3 

8.25 257.0 1.7 -2.0 5.1 34.5 33.2 35.1 5.3 -0.3 9.9 

8.75 292.3 -0.7 -2.0 1.6 34.1 33.2 34.9 3.0 -0.3 5.2 

9.25 329.5 2.0 -2.0 5.1 34.6 33.2 35.1 5.6 -0.3 9.9 

9.75 368.8 1.8 -1.8 6.5 34.5 33.5 35.2 6.3 1.1 10.9 

10.25 409.9 1.9 -2.0 5.1 34.6 33.2 35.1 5.6 -0.3 9.9 

10.75 453.1 0.8 -2.0 3.5 34.4 33.2 35.0 4.6 -0.3 8.3 

11.25 498.2 1.9 -2.0 6.5 33.9 31.8 35.2 7.7 -0.3 14.9 

11.75 545.2 0.7 -2.0 3.5 33.3 31.7 34.9 7.7 -0.3 13.9 

12.25 594.2 4.8 2.1 6.5 35.0 34.5 35.2 9.5 7.7 10.9 

12.75 645.2 2.5 -2.0 6.4 34.7 33.2 35.1 6.1 -0.3 10.6 

13.25 698.1 0.9 -2.0 3.5 33.9 31.8 35.0 6.5 -0.3 14.9 

13.75 753.0 1.9 -2.0 5.1 34.5 33.2 35.1 5.5 -0.3 9.9 

14.25 809.8 1.9 -2.0 5.1 34.5 33.2 35.1 5.6 -0.3 9.9 

14.75 868.6 2.4 -2.0 6.4 34.6 33.2 35.1 6.0 -0.3 10.6 

15.25 929.3 2.8 -2.0 6.5 34.7 33.2 35.2 6.3 -0.3 10.9 

15.75 992.0 2.0 -2.0 5.1 34.5 32.6 35.1 6.0 1.0 9.9 

16.50 1056.7 3.7 1.4 6.4 34.9 34.5 35.1 7.9 5.0 10.6 

16.75 1157.3 0.4 -2.0 3.5 34.0 32.6 35.0 3.6 -0.3 8.3 

17.25 1191.9 2.4 -2.0 6.4 34.7 33.2 35.1 5.9 -0.3 10.6 

17.75 1262.4 2.0 -2.0 5.1 34.6 33.2 35.1 5.7 -0.3 9.9 

18.25 1334.9 1.0 -2.0 3.5 33.9 31.8 35.0 6.6 -0.3 14.9 

18.75 1409.3 2.3 -2.0 6.4 34.2 32.8 35.1 7.1 -0.3 16.1 
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Depth 

(cm) 

Age (cal. 

years BP) 
SSUM SSUM_i 

SSUM_

s 

Sea ice 

duration 

(months/yr) 

Sea ice_i Sea ice_s 

0.25 -37.8 33.8 32.5 34.8 3.2 0.0 10.1 

0.75 -31.9 32.7 29.3 34.4 4.7 0.4 10.1 

1.25 -24.0 33.1 29.3 34.8 4.5 0.4 10.1 

1.75 -14.1 32.9 29.3 34.8 4.5 0.4 10.1 

2.25 -2.3 32.3 30.5 34.1 3.6 0.6 10.1 

2.75 11.5 33.3 30.5 34.8 3.1 0.0 10.1 

3.25 27.3 33.8 32.5 34.7 2.9 0.0 10.1 

3.75 45.0 32.5 30.5 34.4 2.9 0.0 10.1 

4.25 64.6 33.8 32.5 34.8 3.1 0.0 10.1 

4.75 86.2 33.3 30.5 34.8 3.2 0.0 10.1 

6.25 162.8 32.6 30.6 34.4 2.8 0.0 10.1 

6.75 192.2 33.4 30.5 34.8 2.7 0.0 10.1 

7.25 223.6 34.2 32.5 35.0 2.5 0.0 10.1 

7.75 223.6 33.1 30.5 34.4 2.7 0.0 10.1 

8.25 257.0 34.1 32.5 35.1 2.6 0.0 10.1 

8.75 292.3 33.4 31.9 34.4 3.5 0.3 10.1 

9.25 329.5 34.2 32.5 35.1 2.2 0.0 10.1 

9.75 368.8 34.0 31.9 35.1 1.3 0.0 5.6 

10.25 409.9 34.2 32.5 35.1 2.2 0.0 10.1 

10.75 453.1 33.9 32.5 34.8 3.1 0.0 10.1 

11.25 498.2 33.4 30.4 35.1 2.7 0.0 10.1 

11.75 545.2 32.5 30.6 34.4 3.3 0.0 10.1 

12.25 594.2 34.9 34.3 35.1 0.0 0.0 0.0 

12.75 645.2 34.4 32.5 35.1 2.3 0.0 10.1 

13.25 698.1 33.3 30.4 34.8 2.7 0.0 10.1 

13.75 753.0 34.2 32.5 35.1 2.4 0.0 10.1 

14.25 809.8 34.2 32.5 35.1 2.3 0.0 10.1 

14.75 868.6 34.3 32.5 35.1 2.4 0.0 10.1 

15.25 929.3 34.3 32.5 35.1 2.3 0.0 10.1 

15.75 992.0 33.7 29.3 35.1 2.1 0.0 9.5 

16.50 1056.7 34.7 34.3 35.1 0.3 0.0 1.2 

16.75 1157.3 33.0 29.3 34.8 4.6 0.0 10.1 

17.25 1191.9 34.3 32.5 35.1 2.4 0.0 10.1 

17.75 1262.4 34.2 32.5 35.1 2.2 0.0 10.1 

18.25 1334.9 33.3 30.4 34.8 2.5 0.0 10.1 

18.75 1409.3 33.8 32.2 35.0 2.4 0.0 10.1 
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Depth 

(cm) 

Age (cal. 

years BP) 
TWIN TWIN_i TWIN_s SWIN SWIN_i SWIN_s TSUM TSUM_i TSUM_s 

19.25 1485.7 2.5 -2.0 6.4 34.7 33.2 35.1 6.1 -0.3 10.6 

19.75 1564.0 1.7 -2.0 5.1 34.5 33.2 35.1 5.2 -0.3 9.9 

20.25 1644.3 1.8 -2.0 5.1 34.5 33.2 35.1 5.4 -0.3 9.9 

20.75 1726.6 2.1 -2.0 6.4 34.5 33.2 35.1 5.7 -0.3 10.6 

21.25 1810.8 2.1 -1.7 5.1 34.8 34.5 35.1 6.1 1.7 9.9 

21.75 1897.0 3.3 -0.1 6.5 33.7 31.7 35.2 11.7 8.3 14.9 

22.25 1985.1 1.9 -2.0 5.1 34.5 33.2 35.1 5.6 -0.3 9.9 

22.75 2075.2 3.1 1.4 5.1 34.9 34.5 35.1 7.5 5.0 9.9 

23.25 2167.3 0.9 -2.0 5.1 34.6 33.2 35.1 4.4 -0.3 9.9 

23.75 2261.3 4.0 -2.0 6.5 34.6 33.2 35.2 7.9 -0.3 10.9 

24.25 2357.2 3.5 1.4 6.4 34.9 34.5 35.1 7.7 5.0 10.6 

24.75 2455.2 1.9 -2.0 5.1 34.5 33.2 35.1 5.6 -0.3 9.9 

25.25 2555.0 1.9 -0.4 6.5 33.0 31.7 35.2 11.5 8.3 13.5 

25.75 2656.9 2.6 -1.7 6.4 35.0 34.6 35.1 6.5 1.7 10.6 

26.25 2760.6 0.7 -2.0 5.1 34.5 33.2 35.1 4.3 -0.3 9.9 

26.75 2866.4 2.3 -0.1 5.1 34.3 31.7 35.1 8.4 5.0 13.9 

27.25 2974.1 1.6 -2.0 5.1 33.8 31.8 35.1 7.4 1.0 12.8 

27.75 3083.7 2.2 -2.0 6.5 34.5 33.2 35.2 5.8 -0.3 10.9 

28.25 3195.4 1.2 -2.0 5.1 34.5 33.2 35.1 4.9 -0.3 9.9 

28.75 3308.9 1.0 -2.0 3.5 34.4 33.2 35.0 4.4 -0.3 8.3 

29.25 3424.4 1.6 -2.0 6.5 33.3 31.7 35.2 9.1 -0.3 14.9 

29.75 3541.9 1.8 -2.0 5.1 34.5 33.2 35.1 5.5 -0.3 9.9 

30.25 3661.4 1.0 -2.0 3.5 33.9 31.7 35.0 6.1 -0.3 12.5 

30.75 3782.8 0.4 -0.6 1.6 34.7 34.7 34.9 4.7 3.6 6.5 

32.25 3906.1 3.7 1.4 6.5 34.9 34.5 35.2 7.9 5.0 10.9 

32.75 4287.9 0.6 -2.0 3.5 34.2 33.2 35.0 3.9 -0.3 8.3 

33.75 4419.1 1.7 -2.0 6.5 33.3 31.7 35.2 8.9 -0.3 13.3 

34.25 4687.3 1.0 -2.0 3.5 33.9 31.7 35.0 6.2 -0.3 12.5 

34.75 4824.4 0.7 -0.4 3.5 32.3 31.7 34.5 12.0 8.3 13.5 

35.25 4963.4 0.9 -0.2 3.5 33.5 31.7 34.8 8.8 3.6 13.3 

35.75 5104.3 2.2 0.0 5.1 34.2 31.7 35.1 8.0 3.6 12.5 

36.25 5247.2 1.9 -0.4 6.5 33.0 31.7 35.2 11.6 8.3 13.5 

36.75 5392.1 0.7 -2.0 3.5 33.3 31.7 34.9 7.6 -0.3 13.3 

37.25 5538.9 1.9 -2.0 5.1 34.5 33.2 35.1 5.6 -0.3 9.9 

37.75 5687.7 0.9 -2.0 3.5 33.9 31.7 35.0 6.1 -0.3 12.5 

38.25 5838.5 0.7 -2.0 3.5 34.4 33.2 35.0 4.3 -0.3 8.3 

38.75 5991.2 0.9 -2.0 3.5 33.9 31.7 35.0 6.0 -0.3 12.5 

39.25 6145.8 0.2 -1.2 1.6 34.7 34.5 34.9 3.4 -0.1 5.0 
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Depth 

(cm) 

Age (cal. 

years BP) 
SSUM SSUM_i SSUM_s 

Sea ice 

duration 

(months/yr) 

Sea ice_i Sea ice_s 

19.25 1485.7 34.4 32.5 35.1 2.3 0.0 10.1 

19.75 1564.0 34.1 32.5 35.1 2.7 0.0 10.1 

20.25 1644.3 34.2 32.5 35.1 2.5 0.0 10.1 

20.75 1726.6 34.2 32.5 35.0 2.4 0.0 10.1 

21.25 1810.8 34.2 32.2 35.1 1.8 0.0 8.3 

21.75 1897.0 33.1 30.4 35.1 1.1 0.0 4.0 

22.25 1985.1 34.2 32.5 35.1 2.3 0.0 10.1 

22.75 2075.2 34.7 34.3 35.1 0.3 0.0 1.2 

23.25 2167.3 33.8 32.2 35.1 3.9 0.0 10.1 

23.75 2261.3 34.4 32.5 35.1 1.9 0.0 10.1 

24.25 2357.2 34.7 34.3 35.1 0.3 0.0 1.2 

24.75 2455.2 34.2 32.5 35.1 2.3 0.0 10.1 

25.25 2555.0 32.3 30.5 35.1 1.0 0.0 1.8 

25.75 2656.9 34.3 32.2 35.1 1.9 0.0 8.3 

26.25 2760.6 34.0 32.5 35.1 4.0 0.0 10.1 

26.75 2866.4 33.9 30.6 35.1 1.1 0.0 4.0 

27.25 2974.1 32.8 29.3 35.1 2.2 0.0 9.5 

27.75 3083.7 34.2 32.5 35.1 2.4 0.0 10.1 

28.25 3195.4 33.8 32.2 35.1 4.0 0.0 10.1 

28.75 3308.9 33.9 32.5 34.8 2.7 0.0 10.1 

29.25 3424.4 32.6 30.4 35.1 2.8 0.0 10.1 

29.75 3541.9 34.2 32.5 35.1 2.4 0.0 10.1 

30.25 3661.4 33.4 30.7 34.8 2.7 0.0 10.1 

30.75 3782.8 34.2 33.4 34.7 0.7 0.0 1.3 

32.25 3906.1 34.7 34.3 35.1 0.3 0.0 1.2 

32.75 4287.9 33.6 31.9 34.8 3.5 0.0 10.1 

33.75 4419.1 32.7 30.5 35.1 2.6 0.0 10.1 

34.25 4687.3 33.4 30.7 34.8 2.5 0.0 10.1 

34.75 4824.4 31.4 30.5 34.3 1.3 0.0 1.8 

35.25 4963.4 32.8 30.5 34.7 0.9 0.0 1.8 

35.75 5104.3 33.7 30.7 35.1 0.9 0.0 1.8 

36.25 5247.2 32.2 30.5 35.1 1.0 0.0 1.8 

36.75 5392.1 32.5 30.5 34.4 2.8 0.0 10.1 

37.25 5538.9 34.2 32.5 35.1 2.3 0.0 10.1 

37.75 5687.7 33.3 30.7 34.8 2.7 0.0 10.1 

38.25 5838.5 34.0 32.5 34.8 2.7 0.0 10.1 

38.75 5991.2 33.3 30.7 34.8 2.8 0.0 10.1 

39.25 6145.8 33.7 32.4 34.4 2.8 0.3 10.8 
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A8.4 Planktic foraminifera 

 

Depth (cm) 
Age (cal. 

years BP) 

G. bulloides 

(wt %) 

G. uvula 

(wt %) 

G. glutinata 

(wt %) 

G. 

quinqueloba 

(wt %) 

Planktonic 

Foram./g 

0.25 -37.8 1.0 10.1 6.1 35.4 1041.7 

0.75 -31.9 1.1 6.7 2.2 36.0 572.4 

1.25 -24.0 4.5 5.4 2.7 18.8 428.9 

2.25 -2.3 1.0 4.8 1.9 21.9 157.8 

3.25 27.3 0.8 2.4 0.0 15.9 101.1 

4.25 64.6 1.5 3.1 1.5 20.0 135.9 

5.25 109.8 0.0 0.0 0.0 14.5 82.8 

6.25 162.8 1.6 2.4 0.8 15.9 282.9 

7.25 223.6 1.7 0.0 0.0 12.7 129.8 

8.25 292.3 2.6 0.9 0.9 16.4 314.5 

8.75 329.5 0.0 4.5 1.8 36.9 717.2 

9.25 368.8 2.1 4.3 1.4 35.5 760.2 

9.75 409.9 3.6 0.0 0.0 19.3 199.3 

10.25 453.1 2.0 0.0 0.0 13.0 290.7 

10.75 498.2 0.0 6.0 0.0 11.2 1053.1 

11.25 545.2 0.7 3.0 0.7 28.9 874.1 

11.75 594.2 0.0 6.3 0.9 12.5 1033.4 

12.25 645.2 0.9 2.8 0.9 16.5 445.0 

12.75 698.1 0.9 4.4 1.8 10.6 649.8 

13.25 753.0 0.0 2.2 1.1 15.2 390.6 

13.75 809.8 2.8 6.5 0.0 10.2 619.3 

14.25 868.6 0.9 4.5 0.9 20.7 566.0 

14.75 929.3 0.0 2.7 0.0 20.5 884.8 

15.25 992.0 0.0 5.0 0.8 15.7 535.3 

16.5 1157.3 0.0 3.1 2.1 18.6 482.9 

17.25 1262.4 0.8 1.7 0.8 23.3 472.6 

18.25 1409.3 1.6 0.8 0.8 29.6 528.4 

19.25 1564.0 2.4 0.0 0.0 19.4 425.5 

19.75 1644.3 1.6 0.8 0.0 11.6 743.7 

21.25 1897.0 2.9 0.0 1.0 12.5 849.6 

22.25 2075.2 0.0 1.8 0.0 19.3 483.4 

23.25 2261.3 0.9 9.3 1.9 21.3 705.4 

24.25 2455.2 1.1 2.1 0.0 26.6 382.5 

25.25 2656.9 0.0 0.9 0.9 16.7 603.6 

25.75 2760.6 1.0 0.0 1.0 9.9 544.0 

26.25 2866.4 0.9 0.0 0.0 12.1 604.9 

27.25 3083.7 0.8 0.0 0.8 7.6 1175.5 

28.25 3308.9 0.0 0.9 0.0 6.0 1201.1 
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Depth (cm) 

Age (cal. 

years BP) 

G. bulloides 

(wt %) 

G. uvula 

(wt %) 

G. glutinata 

(wt %) 

G. quinqueloba 

(wt %) 

Planktonic 

Foram./g 

29.25 3541.9 0.0 0.8 0.0 6.1 1096.9 

31.25 4031.4 1.0 0.0 0.0 9.0 669.4 

32.25 4287.9 1.9 0.9 0.0 4.6 1003.8 

39.75 6461.0 0.0 0.0 0.9 11.3 701.6 
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A8.4 XRF core scanning (counts) 

Depth 

(cm) 

Age (cal. 

years BP) 
Ca Ti Zr Rb 

Depth 

(cm) 

Age (cal. 

years 

BP) 

Ca Ti Zr Rb 

0.1 -39.2 11621 1299 1628 539 4.1 58.5 13022 1112 1631 507 

0.2 -38.3 11250 1143 1456 575 4.2 62.6 13826 1376 1802 536 

0.3 -37.3 10994 974 1354 466 4.3 66.7 14824 1337 1528 604 

0.4 -36.3 9573 1053 1374 419 4.4 70.9 14815 1275 1704 644 

0.5 -35.1 10746 1119 1610 635 4.5 75.2 14681 1226 1762 641 

0.6 -33.9 11372 1099 1895 729 4.6 79.5 14790 1263 1488 570 

0.7 -32.6 10198 1194 2082 808 4.7 84.0 14783 1305 1430 615 

0.8 -31.2 10320 1152 2234 832 4.8 88.5 14707 1324 1736 577 

0.9 -29.7 9871 986 2299 848 4.9 93.1 14816 1772 1928 603 

1 -28.2 10126 1093 2519 980 5 97.8 14923 1976 1515 596 

1.1 -26.5 7830 1193 2439 1076 5.1 102.5 15330 1295 1432 584 

1.2 -24.8 7164 1452 2240 995 5.2 107.3 14536 1289 1451 569 

1.3 -23.1 10758 1205 1806 817 5.3 112.3 14669 1304 1707 572 

1.4 -21.2 12565 1197 1572 610 5.4 117.2 15482 1349 1584 583 

1.5 -19.3 13928 1184 1573 583 5.5 122.3 14998 1211 1641 597 

1.6 -17.3 13993 1168 1586 594 5.6 127.5 14557 1266 1513 648 

1.7 -15.2 13416 1223 1465 586 5.7 132.7 14511 1371 1553 588 

1.8 -13.0 13401 1397 1712 569 5.8 138.0 15078 1506 1952 635 

1.9 -10.7 13531 1199 1609 606 5.9 143.4 14818 1234 1648 612 

2 -8.4 13443 1222 1539 457 6 148.8 15789 1386 1606 591 

2.1 -6.0 13326 1353 1596 571 6.1 154.3 14038 1324 1682 575 

2.2 -3.5 13249 1345 1669 591 6.2 160.0 12885 1218 1687 573 

2.3 -1.0 12596 1310 1588 598 6.3 165.7 11925 1259 1539 508 

2.4 1.7 12839 1262 1614 560 6.4 171.4 13665 1251 1493 529 

2.5 4.4 13661 1298 1678 590 6.5 177.3 14287 1509 1576 596 

2.6 7.2 13639 1311 1538 560 6.6 183.2 14171 1359 1664 580 

2.7 10.1 13826 1340 1550 610 6.7 189.2 14341 1385 1585 582 

2.8 13.0 13488 1184 1449 579 6.8 195.3 14610 1380 1569 631 

2.9 16.0 12929 1255 1469 577 6.9 201.4 14784 1414 1520 629 

3 19.1 11969 1109 1390 483 7 207.7 14950 1418 1645 593 

3.1 22.3 11373 1062 1539 566 7.1 214.0 14601 1282 1607 579 

3.2 25.6 11754 1310 1468 533 7.2 220.4 14000 1427 1513 577 

3.3 28.9 12057 1264 1391 566 7.3 226.9 13534 1317 1538 594 

3.4 32.4 12707 1302 1457 580 7.4 233.4 13641 1616 1725 616 

3.5 35.9 13190 1393 1494 659 7.5 240.1 13086 1480 1672 642 

3.6 39.4 13421 1320 1552 610 7.6 246.8 12982 1381 1692 562 

3.7 43.1 13078 1232 1289 567 7.7 253.6 13137 1400 1698 579 

3.8 46.8 11410 1090 1377 466 7.8 260.4 12690 1357 1846 625 

3.9 50.7 10691 1039 1469 534 7.9 267.4 12641 1368 1628 576 

4 54.5 12472 1324 1428 505 8 274.4 12848 1558 1664 622 
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Depth 

(cm) 

Age (cal. 

years BP) 
Ca Ti Zr Rb 

Depth 

(cm) 

Age (cal. 

years 

BP) 

Ca Ti Zr Rb 

8.1 281.5 13109 1319 2052 630 12.2 639.9912 14018 1388 2098 663 

8.2 288.7 12571 1328 1917 649 12.3 650.4 13378 1354 2107 584 

8.3 295.9 12297 1325 1699 603 12.4 660.8 12188 1435 1949 650 

8.4 303.3 12738 1451 1854 603 12.5 671.4 12801 1307 1782 567 

8.5 310.7 13580 1377 1813 625 12.6 682.0 13521 1321 1589 562 

8.6 318.2 13652 1254 1818 629 12.7 692.7 12852 1520 1749 584 

8.7 325.7 15411 1365 1618 638 12.8 703.5 12123 1310 1524 621 

8.8 333.4 15831 1333 1416 555 12.9 714.3 11793 1524 1466 611 

8.9 341.1 16290 1302 1463 552 13 725.3 10876 1343 1737 675 

9 348.9 15600 1343 1674 609 13.1 736.3 12175 1559 1764 636 

9.1 356.8 16537 1176 1633 634 13.2 747.4 12224 1471 1707 627 

9.2 364.8 15989 1292 1429 572 13.3 758.6 12405 1517 1779 620 

9.3 372.8 15463 1366 1593 547 13.4 769.8 11424 1304 1831 662 

9.4 380.9 15816 1351 1633 563 13.5 781.1 9864 1498 1791 611 

9.5 389.1 16315 1332 1645 559 13.6 792.5 8698 1396 2018 660 

9.6 397.4 15571 1234 1767 625 13.7 804.0 9543 1364 1635 646 

9.7 405.7 14690 1259 1767 586 13.8 815.6 10637 1545 1669 635 

9.8 414.2 14327 1242 1841 598 13.9 827.2 11888 1321 1921 628 

9.9 422.7 12943 1437 1669 576 14 838.9 11889 1310 1976 591 

10 431.3 13232 1194 1689 632 14.1 850.7 11936 1340 2240 588 

10.1 439.9 12935 1263 1652 559 14.2 862.6 10469 1533 2182 661 

10.2 448.7 12801 1338 1694 561 14.3 874.6 11609 1404 1733 649 

10.3 457.5 12956 1411 1686 561 14.4 886.6 12580 1281 1827 674 

10.4 466.4 13947 1404 1552 596 14.5 898.7 11692 1300 1749 577 

10.5 475.4 13547 1486 1687 634 14.6 910.9 10202 1319 1867 588 

10.6 484.4 13949 1288 1621 604 14.7 923.2 12228 1527 1440 523 

10.7 493.6 14483 1400 1432 588 14.8 935.5 12699 1428 1578 576 

10.8 502.8 14384 1398 1631 678 14.9 947.9 13853 1330 1689 583 

10.9 512.1 13859 1286 1580 638 15 960.4 14325 1364 1570 654 

11 521.4 14168 1355 1497 645 15.1 973.0 13589 1357 1756 668 

11.1 530.9 14633 1275 1425 689 15.2 985.7 13365 1344 1674 646 

11.2 540.4 15522 1328 1696 571 15.3 998.4 13234 1557 1685 588 

11.3 550.0 14916 1335 1651 624 15.4 1011.2 13403 1378 1473 649 

11.4 559.7 15276 1367 1514 571 15.5 1024.1 14025 1428 1475 631 

11.5 569.5 14382 1287 1408 637 15.6 1037.1 13874 1459 1557 616 

11.6 579.3 15305 1324 1625 568 15.7 1050.1 13491 1512 1807 639 

11.7 589.2 14649 1372 1703 606 15.8 1063.2 13735 1329 1590 620 

11.8 599.2 14477 1246 1660 575 15.9 1076.5 14520 1345 1841 657 

11.9 609.3 14239 1470 1546 682 16 1089.7 15093 1316 1627 570 

12 619.5 14989 1375 1871 602 16.1 1103.1 15805 1399 1533 647 

12.1 629.7 15452 1434 1664 549 16.2 1116.5 16386 1274 1550 584 
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Depth 

(cm) 

Age (cal. 

years BP) 
Ca Ti Zr Rb 

Depth 

(cm) 

Age (cal. 

years 

BP) 

Ca Ti Zr Rb 

16.3 1130.1 14732 1264 1742 567 20.4 1751.672 13054 1419 1929 635 

16.4 1143.6 14831 1186 1680 579 20.5 1768.5 13500 1489 1908 698 

16.5 1157.3 14134 1258 1390 529 20.6 1785.4 13639 1462 1681 665 

16.6 1171.1 13903 1350 1793 601 20.7 1802.3 12033 1397 1760 673 

16.7 1184.9 14039 1287 1493 557 20.8 1819.4 12456 1405 1790 651 

16.8 1198.8 13617 1281 1885 562 20.9 1836.5 12489 1525 1987 576 

16.9 1212.8 12550 1252 1784 645 21 1853.7 13734 1344 1791 662 

17 1226.9 11685 1307 1713 697 21.1 1871.0 13859 1489 1744 628 

17.1 1241.0 11690 1454 1945 585 21.2 1888.3 13056 1454 1729 590 

17.2 1255.2 11533 1359 1809 652 21.3 1905.7 13332 1488 1815 586 

17.3 1269.5 11474 1541 1966 584 21.4 1923.2 13453 1501 1748 571 

17.4 1283.9 12356 1367 1833 624 21.5 1940.8 12637 1513 1883 567 

17.5 1298.4 12916 1383 1988 626 21.6 1958.5 11684 1561 1470 601 

17.6 1312.9 12272 1427 1906 596 21.7 1976.2 10930 1365 1558 616 

17.7 1327.5 13303 1438 1797 615 21.8 1994.1 10376 1431 1769 623 

17.8 1342.2 13572 1448 1803 616 21.9 2012.0 10589 1389 1757 710 

17.9 1357.0 13983 1438 2062 625 22 2029.9 9854 1571 1901 706 

18 1371.8 13078 1356 1821 649 22.1 2048.0 9097 1451 1736 621 

18.1 1386.8 14295 1425 1928 646 22.2 2066.1 9739 1438 1798 693 

18.2 1401.8 14691 1446 1769 664 22.3 2084.3 9488 1568 1739 691 

18.3 1416.8 14827 1414 1941 617 22.4 2102.6 8499 1383 1893 655 

18.4 1432.0 14922 1497 1912 621 22.5 2121.0 8474 1361 1895 707 

18.5 1447.2 15333 1514 1592 621 22.6 2139.5 8903 1449 1948 646 

18.6 1462.6 14836 1541 1644 666 22.7 2158.0 9353 1411 1930 686 

18.7 1478.0 14688 1446 1755 600 22.8 2176.6 8706 1377 1716 759 

18.8 1493.4 14529 1376 1745 647 22.9 2195.3 9265 1435 1654 690 

18.9 1509.0 15228 1419 1520 647 23 2214.0 9255 1530 1901 677 

19 1524.6 15550 1479 1556 664 23.1 2232.9 9726 1410 1705 706 

19.1 1540.3 15148 1414 1612 694 23.2 2251.8 10634 1490 1724 685 

19.2 1556.1 15141 1421 1737 606 23.3 2270.8 10807 1445 1841 683 

19.3 1572.0 14927 1440 1574 557 23.4 2289.9 11134 1468 1760 632 

19.4 1587.9 15073 1452 1602 598 23.5 2309.0 11609 1392 1926 663 

19.5 1603.9 14559 1457 1900 602 23.6 2328.2 12025 1509 1666 643 

19.6 1620.0 14667 1372 1576 664 23.7 2347.6 11869 1429 1795 662 

19.7 1636.2 14766 1423 1557 595 23.8 2366.9 11329 1470 1856 616 

19.8 1652.5 14818 1558 1477 637 23.9 2386.4 11537 1400 1697 678 

19.9 1668.8 15781 1501 1496 682 24 2406.0 12412 1539 1903 683 

20 1685.2 15007 1363 1415 669 24.1 2425.6 11930 1593 1627 658 

20.1 1701.7 14584 1475 1617 680 24.2 2445.3 12957 1417 1761 630 

20.2 1718.3 14087 1333 1899 581 24.3 2465.1 13662 1448 1380 647 

20.3 1734.9 13369 1457 1919 642 24.4 2484.9 13016 1499 1496 690 
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Depth 

(cm) 

Age (cal. 

years BP) 
Ca Ti Zr Rb 

Depth 

(cm) 

Age (cal. 

years 

BP) 

Ca Ti Zr Rb 

24.5 2504.9 12887 1309 1733 697 28.6 3389.587 10421 1397 1852 653 

24.6 2524.9 11218 1381 1683 695 28.7 3412.8 10779 1365 2082 605 

24.7 2545.0 11180 1531 1868 636 28.8 3436.1 10950 1334 1973 625 

24.8 2565.1 11389 1590 2181 653 28.9 3459.5 10792 1485 1721 632 

24.9 2585.4 10360 1419 1972 707 29 3482.9 10791 1435 1916 672 

25 2605.7 10427 1482 1749 661 29.1 3506.5 11540 1427 1831 627 

25.1 2626.1 9525 1385 1851 656 29.2 3530.1 11442 1414 1931 631 

25.2 2646.6 9254 1398 1966 650 29.3 3553.8 11178 1441 1709 601 

25.3 2667.2 9889 1403 1918 634 29.4 3577.6 10709 1405 1865 658 

25.4 2687.8 10296 1337 1799 672 29.5 3601.4 10339 1309 1711 617 

25.5 2708.5 11338 1390 1843 711 29.6 3625.3 10327 1369 1857 713 

25.6 2729.3 10785 1558 1949 673 29.7 3649.3 10392 1597 1915 670 

25.7 2750.2 10165 1547 1709 698 29.8 3673.4 8903 1442 1669 670 

25.8 2771.1 9456 1445 1891 639 29.9 3697.6 8209 1465 1931 692 

25.9 2792.2 8011 1591 2116 611 30 3721.8 9091 1549 1973 711 

26 2813.3 8075 1475 2031 656 30.1 3746.1 8587 1540 1800 695 

26.1 2834.5 10043 1476 2140 637 30.2 3770.5 8497 1477 1811 677 

26.2 2855.7 9865 1459 1793 692 30.3 3795.0 8716 1557 1784 685 

26.3 2877.1 8622 1454 1834 644 30.4 3819.6 8562 1530 1786 629 

26.4 2898.5 8909 1403 1993 689 30.5 3844.2 9429 1419 1788 731 

26.5 2920.0 8851 1402 2081 642 30.6 3868.9 8684 1462 1681 700 

26.6 2941.6 9102 1299 2136 650 30.7 3893.7 7956 1536 1791 634 

26.7 2963.2 8083 1353 1870 644 30.8 3918.6 7997 1379 1879 719 

26.8 2985.0 7870 1350 2184 591 30.9 3943.5 8251 1608 1727 648 

26.9 3006.8 7383 1378 1919 589 31 3968.5 8640 1546 1818 754 

27 3028.7 7359 1353 1888 678 31.1 3993.6 8382 1707 1716 653 

27.1 3050.6 7218 1382 2083 732 31.2 4018.8 8276 1557 1671 730 

27.2 3072.7 7008 1406 2162 677 31.3 4044.1 8519 1641 1648 689 

27.3 3094.8 8121 1453 1967 620 31.4 4069.4 8575 1524 1747 743 

27.4 3117.0 6863 1467 2085 617 31.5 4094.8 9125 1592 1790 688 

27.5 3139.3 6737 1416 1848 611 31.6 4120.3 8555 1462 1945 750 

27.6 3161.7 6996 1324 1681 700 31.7 4145.9 8318 1365 1746 731 

27.7 3184.1 8771 1647 1757 632 31.8 4171.5 7727 1559 2089 631 

27.8 3206.6 8914 1416 1712 636 31.9 4197.2 7948 1517 1877 695 

27.9 3229.2 9300 1423 1938 627 32 4223.1 7805 1270 1686 656 

28 3251.9 9466 1438 1828 616 32.1 4248.9 7869 1397 2000 710 

28.1 3274.6 9596 1424 1894 692 32.2 4274.9 8607 1548 1783 721 

28.2 3297.5 9365 1408 1847 672 32.3 4300.9 8741 1451 1733 634 

28.3 3320.4 9766 1405 1862 712 32.4 4327.1 8462 1664 1779 710 

28.4 3343.4 10294 1562 1914 640 32.5 4353.3 8564 1562 2220 713 

28.5 3366.4 9912 1428 1834 662 32.6 4379.5 8699 1558 2089 686 
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Depth 

(cm) 

Age (cal. 

years BP) 
Ca Ti Zr Rb 

Depth 

(cm) 

Age (cal. 

years 

BP) 

Ca Ti Zr Rb 

32.7 4405.9 8216 1269 1932 683 36.8 5553.735 7324 1312 2069 632 

32.8 4432.3 7771 1264 2190 647 36.9 5583.4 7370 1057 2032 726 

32.9 4458.8 7215 1341 1668 613 37 5613.1 7066 1189 1847 617 

33 4485.4 7222 1185 1881 657 37.1 5642.9 7324 1228 1794 656 

33.1 4512.1 8155 1559 2084 704 37.2 5672.8 7102 1151 1784 686 

33.2 4538.8 7394 1412 1552 702 37.3 5702.7 7881 1211 2106 733 

33.3 4565.6 6932 1365 2023 681 37.4 5732.7 7923 1428 1793 711 

33.4 4592.5 6750 1358 2064 634 37.5 5762.9 8003 1283 1659 688 

33.5 4619.5 6712 1288 2096 719 37.6 5793.0 8132 1201 1714 735 

33.6 4646.6 7132 1354 2011 762 37.7 5823.3 7986 1356 1747 664 

33.7 4673.7 8335 1464 1770 718 37.8 5853.7 7514 1218 1870 709 

33.8 4700.9 8583 1496 1827 653 37.9 5884.1 8071 1261 1686 744 

33.9 4728.2 7649 1404 1999 703 38 5914.6 8565 1222 1645 601 

34 4755.6 7433 1475 2047 631 38.1 5945.2 8906 1306 1487 667 

34.1 4783.0 7530 1310 1780 701 38.2 5975.8 8511 1381 1647 755 

34.2 4810.6 7665 1412 1768 702 38.3 6006.6 9625 1533 1560 682 

34.3 4838.2 7692 1344 1887 607 38.4 6037.4 9015 1449 1973 737 

34.4 4865.9 8325 1469 1830 706 38.5 6068.3 8652 1265 1723 639 

34.5 4893.6 8867 1429 1853 705 38.6 6099.2 9591 1390 1544 728 

34.6 4921.5 8402 1457 2062 701 38.7 6130.3 10500 1348 1719 782 

34.7 4949.4 9555 1354 1922 693 38.8 6161.4 11211 1449 1714 710 

34.8 4977.4 9339 1411 1842 653 38.9 6192.6 10520 1381 1495 705 

34.9 5005.4 8779 1474 1892 730 39 6223.9 10268 1237 1531 709 

35 5033.6 8087 1476 1874 626 39.1 6255.3 9999 1272 1806 654 

35.1 5061.8 7598 1489 1705 645 39.2 6286.7 10098 1296 1595 662 

35.2 5090.1 7748 1423 1663 684 39.3 6318.2 9788 1263 1783 734 

35.3 5118.5 7278 1192 1746 652 39.4 6349.8 10417 1389 1941 680 

35.4 5147.0 7184 1177 1903 715 39.5 6381.5 10149 1262 1874 679 

35.5 5175.5 7777 1460 2136 603 39.6 6413.2 8850 1100 1703 686 

35.6 5204.2 7941 1253 1925 677 39.7 6445.1 8064 1193 1676 748 

35.7 5232.9 7561 1232 2067 666 39.8 6477.0 8707 1349 1819 690 

35.8 5261.6 7895 1322 2232 688 39.9 6509.0 10053 1388 1716 733 

35.9 5290.5 7886 1462 2433 661             

36 5319.4 7634 1331 2151 708             

36.1 5348.4 8711 1505 1780 699             

36.2 5377.5 8417 1538 1895 704             

36.3 5406.7 7751 1322 1650 716             

36.4 5436.0 7525 1141 1864 681             

36.5 5465.3 7719 1382 2116 667             

36.6 5494.7 8137 1301 1990 623             

36.7 5524.2 8212 1367 2202 682             
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A8.5 Ice Rafted Debris (number/gram dry sed.) 

Depth 

(cm) 

Age (cal. 

years BP) 

Carbonate 

rocks 

(>150µm) 

Total 

(>150µm) 

Total 

(>500µm) 

0.25 -37.8 26.8 1369.7 19.8 

0.75 -31.9 11.0 1020.7 15.5 

1.25 -24.0 15.1 1190.7 9.5 

1.75 -14.1 11.4 1281.1 10.0 

2.25 -2.3 3.1 729.1 10.4 

2.75 11.5 11.2 770.7 8.8 

3.25 27.3 0.6 982.8 8.8 

3.75 45.0 10.6 1501.7 11.7 

4.25 64.6 40.8 1342.1 10.6 

4.75 86.2 10.2 1147.6 11.9 

5.25 109.8 10.4 1025.4 15.3 

5.75 135.3 0.5 1174.5 12.4 

6.25 162.8 4.1 965.0 11.1 

6.75 192.2 13.9 777.2 11.1 

7.25 223.6 17.8 1086.8 5.3 

7.75 257.0 12.8 1226.9 6.4 

8.25 292.3 41.6 1368.2 7.2 

8.75 329.5 4.4 776.9 10.4 

9.25 368.8 12.8 864.4 5.5 

9.75 409.9 5.0 1214.4 4.4 

10.25 453.1 0.1 1543.0 8.6 

10.75 498.2 0.4 1219.8 5.9 

11.25 545.2 8.0 2159.3 7.6 

11.75 594.2 18.5 2042.7 7.7 

12.25 645.2 10.0 1517.5 7.3 

12.75 698.1 9.2 1632.5 11.7 

13.25 753.0 11.2 1441.3 7.3 

13.75 809.8 0.0 2396.3 5.6 

14.25 868.6 0.0 824.5 7.2 

14.75 929.3 0.2 1415.0 5.0 

15.25 992.0 0.1 1262.5 8.6 

15.75 1056.7 12.2 1267.2 6.9 

16.5 1157.3 4.5 1245.0 11.0 

17.25 1262.4 6.3 1082.7 8.6 

17.75 1334.9 0.3 886.0 7.2 

18.25 1409.3 0.6 931.0 7.3 

18.75 1485.7 0.2 915.3 8.4 

19.25 1564.0 0.2 728.4 9.7 

19.75 1644.3 0.2 515.4 5.5 
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Depth 

(cm) 

Age (cal. 

years BP) 

Carbonate 

rocks 

(>150µm) 

Total 

(>150µm) 

Total 

(>500µm) 

20.25 1726.6 0.0 969.5 5.6 

20.75 1810.8 0.0 778.8 3.8 

21.25 1897.009 0.0 2678.3 10.2 

21.75 1985.143 0.0 963.6 9.1 

22.25 2075.233 2.4 828.5 9.7 

22.75 2167.279 3.6 822.9 5.8 

23.25 2261.282 0.0 760.8 3.6 

23.75 2357.242 0.0 1145.5 3.6 

24.25 2455.159 0.0 710.2 5.2 

24.75 2555.031 0.0 826.4 7.2 

25.25 2656.861 0.0 724.8 4.6 

25.75 2760.647 0.0 746.5 4.3 

26.25 2866.389 0.4 511.3 6.7 

26.75 2974.088 0.0 405.8 5.6 

27.25 3083.744 2.1 877.2 7.1 

27.75 3195.356 0.0 883.8 5.2 

28.25 3308.925 0.0 706.9 6.4 

28.75 3424.45 0.0 810.6 6.6 

29.25 3541.932 0.0 777.5 3.9 

29.75 3661.37 0.0 757.0 4.9 

30.25 3782.765 0.1 339.1 5.1 

30.75 3906.116 0.0 565.5 5.0 

31.25 4031.424 0.0 414.4 2.7 

31.75 4158.689 0.0 586.8 5.7 

32.25 4287.91 0.0 457.4 3.4 

32.75 4419.088 0.0 502.5 3.3 

33.25 4552.222 0.0 733.4 4.4 

33.75 4687.313 0.0 551.6 4.4 

34.25 4824.36 0.0 552.2 5.3 

34.75 4963.364 0.0 269.9 2.8 

35.25 5104.324 0.7 336.6 1.8 

35.75 5247.241 0.2 177.2 2.1 

36.25 5392.115 0.0 106.4 0.3 

36.75 5538.945 2.1 40.9 1.5 

37.25 5687.731 0.0 27.3 0.3 

37.75 5838.475 0.0 99.3 1.8 

38.25 5991.174 0.0 73.2 0.9 

38.75 6145.83 0.0 74.9 0.9 

39.25 6302.443 0.2 125.9 1.0 
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Depth 

(cm) 

Age (cal. 

years BP) 

Carbonate 

rocks 

(>150µm) 

Total 

(>150µm) 

Total 

(>500µm) 

39.75 6461.013 0.7 118.5 2.0 

40.25 6621.539 0.0 147.9 3.0 

40.75 6784.021 3.1 231.5 4.4 

 


