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Résumé 

L’objectif de cette thèse est de démontrer que l’Émission Acoustique (AE) est une technique 
appropriée pour devenir un outil de diagnostic de l’état de charge, de santé et de sécurité pour 

les batteries lithium-ion. Ces questions sont actuellement des points clés important pour 

l’amélioration des performances et des durées de vie de la technologie. La structure de ce 
document est organisée en deux principaux chapitres expérimentaux, l’un consacré à des 

éléments lithium-ion constitués de composés d’intercalation et l’autre d’alliages de lithium. 
Dans le premier cas, les résultats présentés concernent le suivi par AE de la formation de la 

SEI et de la première intercalation des ions lithium dans la structure du graphite pour des 

éléments C/LiFePO4. Les événements AE provenant de plusieurs sources ont été identifiés et 
correspondent à la formation de gaz (bulles) et à des phénomènes de craquelures (ouvertures 

du bord des plans de graphène quand la SEI est formée et l’écartement quand les stades 
d’insertion du graphite-lithium sont finis). De plus, une étude par spectroscopie d’impédance 

a été menée durant un vieillissement calendaire en température sur des éléments formés à 

différents régimes de courant.  
Dans le second cas, le mécanisme d’insertion/extraction du lithium dans des éléments 

LiAl/MnO2 a été étudié en associant plusieurs techniques incluant des techniques 
électrochimiques et acoustiques ainsi que des analyses post-mortem pour évaluer les 

mécanismes de dégradation. Lors du cyclage, les événements acoustiques sont plus intenses 

lors du processus de décharge et ils peuvent être attribués principalement à la formation de 
l’alliage avec la transformation de phase de -LiAl en -LiAl accompagnée d’une expansion 

volumique importante.  

L’émission acoustique peut ainsi offrir une nouvelle approche pour gérer le fonctionnement 

des technologies lithium-ion basées non plus seulement sur des paramètres électrochimiques 
classiques mais aussi sur des paramètres acoustiques. Des nouveaux d’états de santé et de 

sécurité peuvent ainsi être envisagés. 
 

 

 

 

 

 

Mots clé : Li-ion batterie, Еmission Acoustique, Film de passivation, Lithium Intercalation, 

Vieillissement, BMS, Etat du Santé, Etat de Formation.  
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Abstract 

 
The aim of this thesis is to demonstrate that the Acoustic Emission (AE) is an appropriate 
technique for diagnostics of for state of charge, state of health and state of safety for lithium-

ion batteries. The availability and optimization of the latter issues are key points for both 
performance and durability improvements of this technology.  

The frame of this document is organized in two main result chapters focused on AE study of 

two different Li-ion technologies. The beginning of the thesis is focused on the monitoring of 
the SEI formation by AE and the first lithium ion intercalation inside the graphite structure for 

C/LiFePO4 cells. AE events coming from different sources have been analyzed and identified. 
It was found that they correspond to gas emission (bubbles) and cracking phenomena 

(opening on the edge of the graphene plane when the SEI is formed and spacing when lithium 

graphite insertion stages are completed). Further, a study of the calendar aging process 
supported by electrochemical impedance spectroscopy linked the aging rate with the 

mechanism of the SEI formation characterized by AE monitoring.  
The second part of the thesis studied of lithium ion insertion/extraction in LiAl/MnO2 cells 

combining a variety of techniques including electrochemical characterization, AE monitoring 

and post-mortem analysis in order to evaluate the degradation mechanisms. It was found that 
during the cycling, the acoustic events are much more intensive during the discharge process 

and they can be attributed mainly to the alloy were the phase transformation from -LiAl to 

-LiAl and a huge volume expansion occurs. 

It was found that battery operation under abusive conditions (overcharge, overdischarge) can 

be detected by AE providing new rates for battery safety management. 
 

 

 

 

 

 

 

Key words: Li-ion battery, Acoustic Emission, Solid Electrolyte Interface, SEI formation, 

Lithium Intercalation, Aging, BMS, State of Health, State of Formation. 
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Introduction 

Today, it has become increasingly important to have ready access to energy in different forms 

and for various applications. Rechargeable batteries are therefore becoming immensely 

important by virtue of their ability to store electricity and make energy portable. One of the 

most promising rechargeable systems is the Li-ion technology because it can fulfill many of 

the demands made within the areas of portable electronics and EV/HEV’s. It is superior in 

many aspects to the more traditional nickel-cadmium (NiCd) and nickel-metal hydride 

(NiMH) batteries. The first chapter of this manuscript will discuss the reasons of this 

superiority, related principally to its high specific energy and power. However, these batteries 

still have serious drawbacks. Effects of prolonged cycling (repeated charge and discharge) or 

prolonged storage push them away from their theoretical and initially excellent performance. 

These effects are typically capacity loss, poor cyclability, during the cycling and the open 

circuit stays as well as a power fade due to increase of the battery resistance. Many of the 

problems can be related for one part to surface phenomena occurring on the negative and 

positive electrodes and for another part to structural modifications (expansion-contraction, 

crystal disorder). Moreover, its high specific energies force to improve the safety level in 

operating. Consequently reliable indicators have to be developed and improved to inform 

properly the users about the states of charge and health of the battery. A lot of studies are 

oriented towards these objectives and this works is made in the same framework.  

Our approach is original by comparing to the other studies in the sense that a non-

conventional technique has been used. We propose to couple an acoustic sensor to Li-ion cells 

in order to detect in a passive way the sounds emitted by the cell during the electrochemical 

formation process and further during the operating processes. The main goal of this thesis is 

hence to demonstrate that the acoustic emission technique could contribute to the Li-ion cells 

all along its life.  

Considering this objective, we have characterized two different technologies of lithium-ion 

cells: firstly a technology including LiFePO4 as positive electrode and Graphite as negative 

electrode which was home-made to be able to study the formation process, secondly a 

commercial technology including a lithium-alloy (LiAl) as negative electrode.  
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The manuscript is organized in four chapters: 

Chapter I: Lithium-ion Technologies and applications. 

Chapter II: Experimental. 

Chapter III: Contribution of the Acoustic Emission to the study of the behavior of 

Graphite/LiFePO4 cells 

Chapter IV: Evolution of Acoustic Emission as a tool for aging characterization of 

LiAl/MnO2 cells. 

Chapter I propose a short overview of the lithium-ion technologies and the 

applications where they are already present (portable applications), shortly present 

(transportation application) or more distantly present (storage for renewable energies). We 

have also defined the main electrochemical parameters used to define an accumulator. 

Chapter II describes the acoustic emission activity monitoring technique which is well 

adapted to characterize the structural and electrochemical phenomena occurring within the 

cells when formed cycled in a suitable voltage range or out of this voltage range. The other 

techniques used are also presented in this chapter. 

The chapters III and IV give the main results obtained during the period of the thesis. 

Both chapters are organized similarly with a first part dedicated to a bibliography study on the 

active materials. This bibliography study would facilitate the explanation and correlate 

between electrochemical and mechanical phenomena occurring within these materials and 

detected acoustic activity.  Further the results obtained under normal and abusive conditions 

are presented.  

The AE techniques can bring new insights to the Li-ion technology in similar way 

which has been done on NiMH batteries and fuel cells. It can further clarify the understanding 

of the electrochemical phenomena taking place from the cell manufacturing till the end of its 

operating. Hence we hope to be able to find new solutions to the problems that remain to 

solve or prevent. 
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Chapter I – Lithium-ion Technologies and Applications 

I.1. Introduction 

The challenge of the modern society is jointly to search new suitable sources of energy 

and to reduce our energy needs. Indeed the present energy economy based on fossil fuels 

brings several serious problems. The first and most important is the depletion of the fossil 

resources by consequence of the continuous and increasing demands for oil, gas and coal. The 

second general problem is the production of CO2 emissions, dramatically increasing during 

the last 30 years. The need for clean renewable and efficient energy production grows as a 

consequence. Wind, solar and tidal powers are examples for renewable but irregular energy 

sources that require storage media to supply energy at the peak of demand and to consume it 

when necessary. Electrochemical systems such as batteries can efficiently store and deliver 

energy on demand in stand-alone power plants, as well as provide power quality and load 

leveling of electrical grid. The efficiency of batteries is essentially related to their content in 

energy efficiency and lifetime [1, 2]. The main types of rechargeable batteries system 

currently available in the market are presented in Figure 1.  Although the sealed Lead Acid 

technology has a low cost, security advantage and high availability but has limited cycle life 

and a low specific energy. This type of batteries is mainly used to store energy produced by 

stand-alone systems and to provide emergency power to a load when the input power source, 

typically mains power, fails (Uninterruptible Power Source (UPS) or battery backup). 

Because these both applications are not constrained by footprint, specific energies are not 

major selection criteria, allowing the use of Lead-acid batteries. The Nickel-Metal Hydride 

batteries (NiMH) are the other group of electrochemical energy storage technology, used 

mainly for portable applications (wireless tools) and hybrid electric vehicles. This technology 

belongs to the group the alkaline nickel batteries. They share the same positive electrode 

(nickel oxyhydroxide, NiOOH in charged state) but can have different negative electrodes: 

cadmium, zinc, hydrogen, metal hydride or iron. Nickel-Cadmium batteries (NiCd) have fair 

specific energy and high discharge rate capability but they are not environmentally friendly 

(cadmium is high toxic). The NiMH technology provides higher specific energy and absence 

of toxic components, but the high cost of  the rare earth elements which are the important 

components for negative electrode (for example LaNi5) and high self-discharge rate are 

important drawback.  
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Chapter I – Lithium-ion Technologies and Applications 

required for safety and long cycle life. Most applications use “smart charger” chips to control 

the operation of the battery and to predict remaining capacity [4, 5]. 

I.2.2. Stationary applications 

Li-ion batteries recently attract the interest such as power sources for stationary 

storage systems: solar, wind storage systems, telecommunication satellites etc… They are 

very promising energy sources with their high specific energy and long cycle life compared 

with other battery technologies (Lead-Acid, NiCd, and NiMH). The operation of the Li-ion 

batteries in high power applications can be limited by the heat generated during the charge 

and the discharge, due to the Joule effect.  This heat has to be dissipated efficiently to prevent 

thermal runaway. This problem can be solved by thermal management, depending on the 

power/energy ratio required by the application. The heat generation rate due to the internal 

resistance can be also minimised by choosing appropriate electrodes and cell design [6].  

Electrode materials with low charge transfer resistance of the lithium intercalation and 

extraction class result in Li-ion cells with lower heat generation during the cycling. For 

example, combination of LiFePO4 positive electrode material and Li4Ti5O12 negative 

electrode materials leads to lower internal heat generation because both electrode materials 

bear minimum structural change during Li insertion/extraction.  

I.2.3. Electrical Transport Applications 

A storage system for transport applications requires high energy density, long cycle 

life, safety, reliability; the cost and weight are also very important. Figure 3 illustrates the 

performance requirements for vehicle applications against the specific energy and specific 

power of the previously described storage technologies. It is obvious that the Li-ion batteries 

have suitable performances (high energy density, high power density, high discharge rate) for 

all three applications: HEV (Hybrid Electrical Vehicle), PHEV (Plug-In Electrical Vehicle) 

and EV (Electric Vehicle) [7].  
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Chapter I – Lithium-ion Technologies and Applications 

Table 2: Comparison of different technologies of batteries used for EV [5]. 

Technology Pb acid Ni-Cd Ni-MH Li-ion 

Vehicle curb weight 1200 kg 

Battery volume 200 L 

Battery weight 250 kg 

Energy density 33 Wh/kg 45 Wh/kg 70 Wh/kg 120 Wh/kg 

Onbroad energy 6,4 kWh 8,8 kWh 13,0 kWh 23,4 kW 

Calculated range  120 Wh/ton/kg 53 km 73 km 114 km 195 km 

Volumetric energy (module) 75 Wh/L 80 Wh/L 160 Wh/L 190 Wh/L 

Power density (module) 75 W/kg 120 W/kg 170 W/kg 370 W/kg 

Battery Power 15 kWh 24 kW 33 kW 72 kW 

 

Today the cost of Li-ion batteries it is one of the most important issues for vehicle 

application. The high cost is mainly attributed to the materials; positive electrode material 

represents 40-50% of the overall battery cost, and negative about 20-30%.  To reduce the 

price it is necessary to use cost-effective electrode materials: new cheaper materials are 

developed in that sense. The other technical challenge is to maintain good power 

performances even in extremely low temperature conditions (during winter). The main 

limiting factors are the low mobility of Li+ in the organic electrolytes and low diffusion rate 

inside the active materials. These problems can be solved by specific cell construction (by 

increasing electrode surface, by making the electrodes thinner, by reducing the ionic pathway 

in the electrolyte) and by choice of selected solvents and electrolytes. The last main issue of 

the Li-ion batteries for transport applications is the safety. The overcharge/overdischarge 

protection requires hardware for monitoring of the voltage of each group of cells in parallel to 

avoid any overcharge/overdischarge situation.  
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high temperature, releasing oxygen. The released oxygen reacts with the electrolytic organic 

solvents with important risks of inflammation or explosion. 

The general electrochemical reaction for these electrodes is:  

Li(1-x)MO2 + xLi+ + xe-  ↔ LixMO2 

(M = Co, Ni, Mn) 

More recently partial, Co substitution in LiCoO2 by Ni, Mn, and Al allowed to compensate 

the high cost of Co (nickel is another expensive material but less what the cobalt) and the 

relatively weak thermal stability of LiCoO2 [25]. Materials like Li(NixCoyMnz)O2, named 

Nickel-Manganese-Cobalt (NMC for the compound LiNi1/3Mn1/3Co1/3O2) or Li(NixCoyAlz)O2, 

named Nickel-Cobalt-Aluminium (NCA for the compound LiNi0,8Co0,15Al0,05O2) were thus 

developed, with a moderate cost, high specific capacity and a good thermal tolerance. For 

example, SAFT uses often LiNi0,8Co0,15Al0,05O2 for its industrial batteries [22, 26]. 

In parallel, spinels of the manganese oxide Li(1-x)Mn2O4 was developed, where lithium 

can be de-inserted in a range of voltages between 3 and 4.2V vs. Li+/Li for a theoretical 

capacity of 148 mAh/g, comparable to that of LiCoO2. Li(1-x)Mn2O4 offers the advantage of a 

moderate cost and a "low toxicity". Moreover recycling methods are well known because the 

manganese oxide is also used in the alkaline cells. Nevertheless it was not used for a long 

time because of its inferior performances in cycling at high temperature (55°C), because of 

the phenomenon of manganese dissolution. Research allowed solving these inconveniences by 

a double partial substitution of manganese by aluminium and oxygen by fluorine, coupled 

with a passivation of the surface. The temperature behaviour of this compound was 

considerably improved but the manufacturing is more complicated, penalizing the cost [27, 

28]. 

The general electrochemical reaction for this electrode is:  

Li(1-x)Mn2O4 + xLi+ + xe-   ↔ LiMn2O4  

Recently a new alternative of the lithiated metal oxides was introduced commercially. The 

new positive electrode is constituted by phosphates of transition metals, and more particularly 

lithiated iron phosphate Li(1-x)FePO4. Its crystalline structure is isomorphic of that of olivine 

LiMgFeSiO4 and allows the reversible insertion of lithium. For this type of compounds, the 
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As already explained, these materials present a minimum variation of volume of the 

crystalline structure when lithiated: the variation of volume can be calculated by taking into 

account the variation of the crystal lattice parameters: 6.5 % in the case of LixFePO4, 3.8 % in 

the case of LixNi1/3Co1/3Mn1/3O2 (Table 4) [32]. That guaranties a long cycling life time 

because the mechanical stress is low.  

Table 4: Volume variation of crystal (a) NMC, (b) LFP. 

(a) LixNi1/3Co1/3Mn1/3O2 (NMC) 

 a (Å) c (Å) volume (Å3) Volume variation (%) 

No Lithiated (x=0) 2.832 13.938 96.8 
3.779 

Lithiated (x=1) 2.858 14.223 100.6 

(b) LixFePO4 (LFP) 

  a (Å) b (Å) c (Å) volume (Å3) Volume variation (%) 

No Lithiated (x=0) 5.792 9.821 4.788 272.4 
6.5 

Lithiated (x=1) 6.008 10.334 4.683 291.3 

 

I.5. Negative electrode materials for Li-ion batteries 

I.5.1. Lithium metal 

The electrochemical couple Li+/Li has a standard potential of - 3.04 V vs. SHE what 

makes it the most negative anode in the nature.  

Li+ + e- ↔ Li 

This potential allows reaching in association with a judiciously chosen cathode voltages of 

cell superior to 3.5 V. However, an important problem appears on the lithium electrode during 

the recharge process: the electrode deposition of the lithium doesn’t result in the formation of 

a uniform and compact layer, but in the growth of dendrites (Figure 6).  
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The general electrochemical reaction for this electrode is:  

x Li+ + xe- + Li4Ti5O12 ↔ Li4+xTi5O12 

LTO, with a spinel crystalline structure, appears to be a performing material for negative 

electrode (high chemical and thermal stability, not toxicity, high electrochemical efficiency). 

Due to its high potential of lithium insertion and its three-dimensional structure, it gives good 

results in term of cycling (life time), safety and fast charge acceptance. Besides, the chemistry 

of titanium allows the realization of a whole range of morphologies (texture, size) of 

Li4Ti5O12, in particular within a nanometre size, often mentioned in the literature [42]. Such 

modifications can allow a fast insertion / de-insertion, thus a use for power applications. The 

theoretical mass capacity of Li4Ti5O12 is comparable to the positive materials (175 mAh/g) 

but in practice is lower (67 mAh/g). This compound is however promising for the HEV due to 

its capability to be quickly charged. A lot of studies are dedicated to the validation of its 

performances on the long term. The table below gives the theoretical and practical mass 

capacities of the most current negative insertion materials. 

Table 6 Negative insertion materials [43] 

Material 

Theoretical 

mass capacity 

(mAh/g) 

Practical mass 

capacity 

(mAh/g) 

Cost 

Graphites 372 350 Intermediate 

Cokes 372 300 Weak 

Li4Ti5O12 175 67 High 

 

I.5.4. Metallic alloys – direct reaction 

The utilization of metals and alloys as negative electrode materials is based on 

reversible reaction with lithium in the metal/alloy which acts as a host for the lithium in the 

alloy. Examples of binary alloys for rechargeable lithium batteries are: LiAl, Li4.4Si, Li4.4Sn, 

Li4Sb, Li4Bi, Li3Cd. Chemical corrosion of these electrodes is less pronounced, though not 

completely avoided. This is partly because the alloys are less reactive and partly because a 

protective surface film is formed on the electrode [44, 45]. The electrochemical reaction at 

these electrodes can be expressed as: 

x Li+ +x e- +M  ↔ Li x M 
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Ones the voltage reaches its upper limit (the cell is fully charged); the positive 

electrode is depleted of Li+. If the cell is charged further the lack of Li+ in the positive 

electrode results in an increase of its potential and a start of processes of oxidation of the 

electrolyte or active materials components. The oxidation products are usually highly reactive 

and cause the appearance of exothermic reactions in the cell. As the cell internal temperature 

rises, the electrolyte starts to decompose and generate more heat. When temperature reaches 

approximately 135°C the separator pores start closing and this inhibits the movement of the 

ions between electrodes. The pores can be closed completely terminating the charge current, 

and causing the cell shut-down. However if the exothermic reaction continues the cell 

eventually goes to thermal runway looped between the electrolyte, positive and negative 

electrode. Reactions causing thermal runway are: SEI decomposition, reactions between 

positive and negative electrode material and the electrolyte. The positive electrode structure 

may further collapse in consequence of the complete delithiation [55, 56]. 

If the cell voltage drops below the lower voltage limits the negative electrodes are 

depleted of Li+. If the cell continues to be discharged, the oxidation of the copper current 

collector starts. This process leads to the dissolution of the copper into electrolyte. As the 

over-discharged cell is recharged, the dissolved copper redeposit in regions of the cell capable 

of reducing it back to copper metal. This process can reduce the cell performance, blocking 

the access to the electrode material or blocking the pores of the separator. The overcharge of 

the negative electrode beyond the interaction limit of the graphite (for example) results in the 

start of the electrodeposition of metallic Li in the form of dendrites. If the Li–ion cell is 

overcharged frequently, dendrite growing formation may start to occur between positive and 

negative electrode, leading eventually to internal short circuits, or full exfoliation of the 

graphite negative electrode [57, 58]. Safety cannot be determined or evaluated by only one 

criterion or parameter at least several approaches should be applied. 

Batteries and battery materials can be safety characterized and optimized by various 

techniques as an electrochemical characterization, thermal characterization, physical damage 

etc… These techniques evaluate the response of materials, electrode formulation, cell 

constructions and battery assembly under a variety of “of-normal” conditions that simulate 

abusive events such as mechanical, electrical and thermal stress. Characterization of cells 

provides an information on safety and abuse tolerance of a given cell chemistry. Further  the 

battery pack have other failure mechanisms such as inter-cell shorting, inter-cell charging, and 

cell imbalance that can lead to overcharge or overdicharge of one cell or a group of cells [59]. 



40 
 

 

Chapter I – Lithium-ion Technologies and Applications 

I.10.1.1. Electric Abuse Tests 

The electric abuse characterization can be provided by controlled overcharge, 

overdischarge and short circuit of rechargeable batteries. The ability of the battery to tolerate 

overcharge depends on several parameters: battery resistance, current rate, maximum voltage 

and chemistry of the active materials and the electrolyte. 

I.10.1.2. Thermal Abuse Tests 

Thermal characterization of the batteries and batteries material as materials for positive 

and negative electrodes, electrolytes, separators etc…are one of the important aspects of 

safety. During normal operation of the Li-ion batteries, chemical, electrochemical and 

reaction of mass transfer take place; it is known that many of these reactions are affected by 

the temperature, according to the scheme presented previously in Figure 13.  

- The Differential Scanning Calorimetry (DSC) and Thermal-Gravimetric Analysis 

(TGA) are analytical techniques used to study the thermal abuse on battery materials. 

These techniques allow evaluating the thermal response of cell components 

(electrolytes, active materials, etc…) over a wide temperature range while scanning at 

a fixed temperature rate. The obtained information permits the identification of the 

components participating in the thermal activity. The DSC and TGA methods allow 

the quantitative measurement of the effect of the temperature at a fixed state of charge 

of the electrodes. DSC and TGA technique are limited to small sample size, but results 

about the chemical reactive studies can be effectively applied in the evolution of the 

temperature stability of the cell [60]. 

- Calorimetric technique used to study the thermal behavior of batteries is the 

Accelerating Rate Calorimetry (ARC). The tests in this method are run under adiabatic 

conditions (those conditions allows the precise control of the heat exchange between 

the cell and its environment). Under adiabatic condition the cell heating rate is a 

function of the heat generating reaction rat and the thermal heat capacity of the cell 

components. The cell heating starts very slowly and increases through a series of 

accelerating stages until a final high-over thermal runaway. Because of the adiabatic 

environment, the beginning of the self-heating due to the chemical reactions in the 

interior of the cell can be detected with high sensitivity [61]. 
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The thermal stability can be studied by Thermal Ramp Test. In this test cell is heated with 

linear increase of the T° ≈ 5°C/min from room temperature up to 250°C or until the cell fails 

by thermal runaway [59, 62]. 

I.10.1.3. Mechanical Abuse Tests 

The Mechanical Abuse Tests include penetration tests, drip tests, controlled crushing 

and shocks. All these tests cause physical damage of the cell or pack accompaniments of the 

deformation, force of displacement, of the voltage before, during and after the test, internal 

and external temperature monitoring and chemical analysis of vented gas and smoke [59, 62, 

63]. 

I.11. Battery Management System 

The basic task of Battery Management System is to ensure that optimum use is made 

of the energy inside the battery powering the portable product and that the risk of damage 

inflicted upon the battery is minimized. This is achieved by monitoring and controlling the 

battery’s charging and discharging process. Li-ion battery has become the most widely used 

chargeable battery because of its advantages, such as higher voltage level, higher energy 

density, no memory effects and no pollution to the environment  

Li-ion battery packs of multi cells in series or parallel provide a high-voltage power supply; 

have become more and more useful in many applications an example hybrid electric vehicle, 

electrical vehicle electro motors, photovoltaic systems etc. For more powerful voltage, the cell 

number is increased and the voltage rises as well. Battery management for battery packs 

composed of multi cells is quite different from single cell applications, and thus challenges 

arise. The information of each battery must be acquired and processed to ensure the safety 

operation of every single cell and improve performance of the whole battery pack. Estimation 

on state of charge (SOC) and monitoring the battery characteristics have always been 

important parts in battery management research. High performance battery management 

system (BMS) is able to allow the cell work in the best performance. BMS can improve the 

battery’s performance and extent its working life through the real-time battery state 

monitoring and battery SOC estimation [64]. 

The BMS system has a function to monitor the batteries, to protect, estimate the 

battery state, to maximize their performance. BMS system should do the following task: 

prevent the voltage of any cell from exceeding a limit, by stopping the charging current for 
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example. This is the safety issue for all Li-ion cells. Prevent the cell for increasing 

temperature by stop the current directly and requesting cooling. The exceeding temperature 

can bring the batteries to the thermal runaway process. 

Keep from drooping of cell voltage below the limit. Limited the charging and 

discharging current. BMS can balance the battery to maximize its capacity [65] 

The BMS may provide different functions in order to control a cell, module or a complete 

pack. 

  Charge and Discharge Voltage control; 

  Control of the Charge and the Discharge Current; 

 Monitoring of the SOC;  

 Monitoring of the SOH; 

 Monitoring of State of Function (SOF); 

 Monitoring and Control of the Temperature. 

I.11.1. Voltage control 

The BMS monitors the cell voltage and controls the charge and discharge current in 

such a manner that this voltage remains in the recommended limits. In this way the battery 

overcharge or over-discharge are prevented [66].  

I.11.2. Current control 

The charge and discharge of Li-ion cells with currents higher than the recommended 

ones leads to rapid degradation in terms of energy storage capacity and power delivery. The 

higher currents increase the cell internal temperature from one hand and exert an additional 

stress on the active materials from the other. A main function of the BMS is to control the 

magnitude of the charge and discharge (if possible) current and thus providing longest 

possible time of battery exploitation [67]. 

I.11.3. State of Charge (SOC) estimation and monitoring 

The SOC (state of charge) is the percentage ratio between residual discharge capacity 

(Cres) and discharge capacity obtained after complete recharge (CF, full capacity): 
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When a completely discharged the battery is recharged SOC is expressed by the ratio between 

the injected charge (Qch) and CF: 
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Often, instead of SOC, the remaining charge in the cell is expressed by the Depth of 

Discharge (DOD), i.e. how much of the total available battery capacity is used during the 

discharge: 

DOD = 100 – SOC 

 

Using the above definitions, the State of Charge can be estimated and monitored by the so-

called Ah integration or Ah balancing. In this method the current trough the cell I(t), positive 

during the charge and negative during the discharge, is continuously integrated and the SOC 

is calculated by the following formula: 
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In order to have precise SOC estimation in time, the BMS should be provided by an initial 

value SOCinitial. Typically such a value is available after complete recharge (SOCinitial = 

100%), complete discharge (SOCinitial = 0%) or by some complementary method of SOC 

estimation. 

 Another way to estimate the State of Charge of a Li-ion cell is to use the relationship 

between the cell electromotive force (EMF) and the State of Charge. Usually instead of EMF 

one uses the cell open circuit voltage after sufficiently long period of relaxation. In the case of 

the Li-ion cells the different SOC values are associated with different Li intercalation 

compounds and corresponding phase equilibriums. The latter define different electrode 

potentials and corresponding EMF values. In some cases like Co-based positive materials 

combined with hard carbon negative materials this approach provides very accurate SOC 

estimation due to close to linear relationship between EMF and SOC within 1500-2000mV 

range. In other cases like graphite / lithium iron phosphate cells this approach in not efficient 

due to the very “flat” OCV vs. SOC dependence in the SOC range from 10-15 to 85-90%. 
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 More sophisticated SOC monitoring can done using voltage/current/temperature/SOC 

look-up tables where SOC is derived by comparison of the actual battery voltage and current 

values with corresponding values of voltage, current and SOC stored in the memory of the 

BMS.  

I.11.4. State of Health (SOH) 

In applications relying on the energy delivery the State of Health typically is defined 

as the percentage ratio between the actual battery discharge capacity obtained after complete 

recharge (CF) and the battery nominal capacity (Cn): 

100.
n

F

C

C
SOH   

In this case the best and the most simple way to estimate SOH is to subject the battery to the 

so-called “check-up” cycle where the battery is charged and discharged one or several times 

at standard conditions (temperature, charge and discharge current values, open circuit stay 

duration etc…) using the corresponding equipment (battery or pack cycling test bench).  

In applications using the battery for power delivery like engine cranking, SOH is defined 

using the battery internal resistance in a similar way: 

100.
max

max

R

RR
SOH f

  

Where RF is the battery internal resistance after a complete recharge and Rmax is the 

maximally tolerated internal resistance of the battery. This type of SOH diagnostics is much 

faster and cheaper but it is relevant only on the power delivery of the battery. 

The State of Health depends on many factors – number of cycles (or number of 

equivalent cycles), the temperature, the current of charge and discharge as well as the time 

and average SOC range of operation [1, 68] 

I.11.5. Thermal management 

During the battery charge and discharge certain amount of electric energy is 

transformed into Joule heat throughout the battery internal and charge transfer resistance. The 

result is an increase of the battery temperature. Additionally the battery can be subjected to 

heating from the nearby power electronics (chargers, invertors, convertors etc…) or to cooling 

in the case of outdoor applications. For most of the available Li-ion technologies the longest 
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cycle life is achieved in the temperature range 15-35°C. The aim of the thermal management 

is to keep the battery temperature as close as possible to this recommended temperature range. 

The battery cooling is achieved in different ways depending on the severity of the application: 

passive cooling using specifically engineered pack, casing design for low power applications, 

air fan cooling for moderate power applications or liquid cooling circuits for high power 

applications. 

Most of the Li-ion systems exhibits relatively low temperature stability point – 

typically between 75 and 90°C depending on the particular technology. A main function of 

the thermal management (and the battery management too) is to prevent reaching this 

threshold. Else way in the pack the thermal runaway starts and it may lead to fire, explosion 

and toxic gas hazards. 

I.11.6. Integration of Acoustic emission detection in the Battery Management System 

The acoustic emission detection is carried out typically by piezo-electric sensors which 

can be very compact, thus suitable for integration into a Li-ion battery modules and packs. 

The signal provided by the acoustic emission sensors can be used by the Batter Management 

System in several ways: 

- An acoustic emission resulting from phase transitions in the active materials during 

the battery cycling can be associated with changes in the battery State of Charge; 

- Battery degradation phenomena like corrosion or growth of the SEI can be detected 

also by acoustic emission providing new ways for State of Health monitoring; 

- Abnormal battery operation like overcharge and the corresponding electrolyte 

decomposition to gaseous products can be detected too by AE thus extending this 

method towards the battery State of Security monitoring.     
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I.12. Conclusion 

This chapter presents the working principal of the Li-ion batteries. Li-ion batteries are 

promising energy storage systems for Hybrid and Electric Vehicles. They have high energy 

density and long cycle life; however their safe operation is still an issue. Moreover, during the 

cycling, most of the materials degrade resulting in capacity fade. The reason for the capacity 

loss can be the active materials volume expansion during the intercalation process, the 

modification of the composition of the passivation film on the negative electrode, the 

electrochemical instability of the materials or the degradation of the positive electrode. Under 

some extreme conditions as overcharge or exposure to high temperature, the battery 

degradation can be very fast and the process is usually denoted as “thermal runaway”. Since 

the last phenomenon is a substantial hazard to the electric and hybrid vehicle users and the 

environment, it is important to develop methods and strategies for its prevention. These 

normal or abusive internal phenomena should be identified and detected as early as possible 

in order to evaluate the state of health and the state of security of the battery. The aim of this 

chapter is to propose innovating battery management systems (BMS).  
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The values of electrical circuit elements could give a significant contribution to the 

physical understanding of the investigated systems. Impedance elements can be divided it two 

basic groups: the first group are named (lumped elements): resistances RE, RP, capacitance 

CD, and induction L usually describing homogeneous systems. Phenomena related with 

inhomogeneity in the system can be described with frequency-depending elements. For 

example the Warburg element (W) represents the impedance of linear semi-infinitive 

diffusion of ionic species [5, 6].  

For this work, the impedance spectra are obtained at open circuit in frequency range 

fmax = 65000Hz and fmin= 10Hz with amplitude 5 mV and spectral density of five points per 

decade. ZView 2 is the program used for equivalent circuit fitting. We are going to present the 

results in Nyquist plan. 

II.3.4. Electrochemical equipment 

The electrochemical measurements were done by using 8 channel potentiostat/galvanostat 

SOLARTRON 1470 connected with SOLARTRON 1250 FRA (Frequency response 

Analyser). The equipment is controlled by Corrware 2 software for DC experiments and Zplot 

2 software for AC impedance measurements. 

II.4. Post mortem analyses 

II.4.1. X-ray diffraction technique 

X-ray diffraction (XRD) is used to characterize the structure of crystalline materials. It 

can be also used to determinate strain and phase composition in electrode materials, but 

cannot give directly information about macroscopic processes such a fracturing. 

In an X-ray diffraction measurement, a crystal or a powder is mounted on a 

goniometer and gradually rotated while being bombarded with X-rays, producing a diffraction 

pattern of regularly spaced spots known as reflections. The two-dimensional images taken at 

different rotations are converted into a three-dimensional model of the density of electrons 

within the crystal using the mathematical method of Fourier transforms, combined with 

chemical data known for the sample. 

Crystals are regular arrays of atoms, and X-rays can be considered waves of 

electromagnetic radiation. Atoms scatter X-ray waves, primarily through the atoms' electrons. 
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Just as an ocean wave striking a lighthouse produces secondary circular waves emanating 

from the lighthouse, so an X-ray striking an electron produces secondary spherical waves 

emanating from the electron. This phenomenon is known as elastic scattering, and the electron 

(or lighthouse) is known as the scattered. A regular array of scatters produces a regular array 

of spherical waves. Although these waves cancel one another out in most directions through 

destructive interference, they add constructively in a few specific directions, determined by 

Bragg's law: 

Equation 4:      ndnd  sin2sin2   

Here (d) is the spacing between diffracting planes θ, is the incident angle, n is any integer, and 

(λ) is the wavelength of the beam. These specific directions appear as spots on the diffraction 

pattern called reflections. Thus, X-ray diffraction results from an electromagnetic wave (the 

X-ray) impinging on a regular array of scatters (the repeating arrangement of atoms within the 

crystal). X-rays are used to produce the diffraction pattern because their wavelength λ is 

typically the same order of magnitude (1–100 angstroms) as the spacing d between planes in 

the crystal. In principle, any wave impinging on a regular array of scatters produces 

diffraction. To produce significant diffraction, the spacing between the scatters and the 

wavelength of the impinging wave should be similar in size.  

In this work XRD is applied to characterize the positive and negative electrodes of Li-

ion (LiAl/MnO2) coin cells. The XRD tests were done with BRÜKER D8 Advance (Bragg 

Brentano geometry) equipped with a Cu anticathode (Cu K radiation). 

II.4.2. Scanning Electron microscopy 

A scanning electron microscope (SEM) is a type of electron microscope observing a 

sample by scanning it with a beam of electrons in a raster scan pattern. The electrons interact 

with the atoms that make up the sample producing signals that contain information about the 

sample's surface topography, composition, and other properties such as electrical 

conductivity. The types of signals produced by a SEM include secondary electrons, back-

scattered electrons (BSE), characteristic X-rays, light (cathodoluminescence), specimen 

current and transmitted electrons. Secondary electron detectors are common in all SEMs, but 

it is rare that a single machine would have detectors for all possible signals. The signals result 

from interactions of the electron beam with atoms at or near the surface of the sample. In the 

most common or standard detection mode, secondary electron imaging or SEI, SEM can 
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produce very high-resolution images of a sample surface, revealing details less than 1 nm in 

size. Due to the very narrow electron beam, SEM micrographs have a large depth of field 

yielding a characteristic three-dimensional appearance useful for understanding the surface 

structure of a sample. A wide range of magnifications is possible, from about 10 times (about 

equivalent to that of a powerful hand-lens) to more than 500,000 times, about 250 times the 

magnification limit of the best light microscopes.  

The SEM observations in this work were done using an electronic microscope Philips 

XL’30 connected with EDX analyzer (INCA, oxford instrument). 

II.5. Acoustic emission technique 

II.5.2. Principle and history of acoustic emission 

Acoustic emission (AE) refers to “the class of phenomena where transient elastic 

waves are generated due to the rapid release of energy from localized source or sources within 

a material”. Each AE event is result from the elastic waves which propagate into the material 

yielding detectable AE signals. The latter allows the detection of active defects within 

materials in real time and continuous basis during the test. Thus method can be used in the 

industry either for process monitoring, material characterization or damage assessment. AET 

has become a recognized and commonly used nondestructive testing test (NDT). 

The origin of the method is attributed to J. Kaiser in the 1950 years. He studied the 

acoustic emission phenomena during tensile tests of different metallic materials. He 

discovered the irreversible character of the acoustic emission during a tensile test, which now 

is called Kaiser’s effect. In the recent years, the interest for this method grows in different 

scientific domains: seismology, electrochemistry, medicine etc... [7, 8, 9]. 

The frequency range of the acoustic emission phenomena varies from infrasonic 

frequencies to ultrasonic frequencies (Figure 8). However, the usual frequency range for AE 

study, defined by Kaiser and used today, is from 50 kHz to 1.5 MHz. At higher frequency, the 

acoustic emission is not intense enough in most cases and the material also absorbs a large 

part of the signal. The low frequency limit is primarily set by the background noise. 
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Chapter II – Experimental part 

parameters like, PDT, HDT, HLT and pre-trigger. Precise definitions of the value of those 

parameters give us the possibility to attribute the onset and end of the acoustic emission event. 

- The “Sample Rate” is the rate at which data acquisition card samples waveforms on a 

per second basis. A sample rate of 1 MSPS (Mega Samples per Second) means that 

one waveform sample is taken in every sec. 

- The “Peak Definition Time” (PDT) allows defining the peak of the maximum 

amplitude of the signal. It corresponds to the maximal authorized period of time in 

[µs] between the detection of the first threshold and the moment of the peak signal is 

detected. A well-defined PDT range allows avoiding the acquisition of signals with 

small amplitudes and fast propagation preceding the main event. 

- The function “Hit Definition Time” (HDT) enables the system to determine the end of 

the event (denoted as a hit), to close the measurement process and store the measured 

data. The HDT must be long enough in order to record the signal fade. 

- The function of the “Hit Lockout Time” (HLT) is to avoid the measurement of 

reflected waves and late-arriving parts of the AE signal (echo). The HTL is the 

duration of the period after the “event” when no data are recorded.  

- The “Pre-trigger” time is the duration of the waiting period before the start of the 

recording of the signal corresponding to the main event. 

The adjustment of these parameters is made using the “Hsu-Nielsen” test. A set of acquisition 

parameters for our adjustment test is shown in Table 5. 

Table 5 : Principal acquisition parameters chosen to follow test of the Li-ion batteries. 

Acquisition   parameters 

AE equipment 

HDT 

s 

PDT 

s 

HLT 

s 

Pre-trigger 

s 

Sample-Rate 

MS.s-1 

Threshold 

dB 

PCI-2 200 100 200 25 5 26 

USB 200 100 200 50 5 26 

 

II.5.5. Characteristic parameters of the acoustic emission wave form  

The activity of an Acoustic Emission source is typically denoted as an event. Each 

acoustic event (hit) could be classified regarding different components of its wave-form: 

maximal Amplitude (dB), Duration (s), Rise time(s), Absolute Energy (aJ), Ring down 

count (RDC), Peak Amplitude (kHz), Energy and Signal level (RMS voltage). The AE wave 

form schema is presented in Figure 14. 
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Chapter II – Experimental part 

- “Average frequency” (kHz) is calculated as the ratio “counts”/”duration”. It is used to 

evaluate the events with the same frequency but from different sources. 

- “Peak frequency” (kHz) is defined as the point in the power spectrum at which the 

peak magnitude is observed. 

 II.5.6. Acoustic emission data treatment 

The final goal of the AE monitoring is to correlate the acoustic activity to the real 

phenomena happening within the material. Detectable signal from AE experiment can be 

defined as a detectable transmitted energy which carries information. It can be a time- 

dependent variation of some characteristic of the physical phenomenon used to convey 

information. The signal contains information not only for frequency domain but for sources 

nature. This information can be extracted with few different methods of data treatment. In 

generally there are three basic methods: spectral analysis, multi-parametric analysis, and 

advanced data mining (pattern recognition, unsupervised and supervised cluster analysis and 

neural networks). 

II.5.6.1. Spectral analysis 

The data treatment of the Acoustic Emission signal can be done using a spectral 

analysis based on numerical Fourier transformation. The Fourier transformation is used to 

characterize a signal by its frequency spectrum that represents the signal of an acoustic 

emission and the calculated Fourier transform (Figure 15) 
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II.6. Conclusion 

The experimental methods described above were used to study more precisely two 

types of batteries: Graphite /LiFePO4 and LiAl/MnO2. In particular the behaviour of Graphite 

/LiFePO4 cells during formation process and aging test was studied by coupling AE technique 

and electrochemical methods (CC/CV, CVA and EIS measurements). Further, the aging of 

LiAl/MnO2 cells was evaluated by using AE technique, electrochemical methods and post 

mortem analysis. 
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Summary 

The Li-ion batteries with LiFePO4 material are important class of rechargeable batteries with 

high specific power and good energy density constituted by inexpensive and nontoxic material. 

During the first formation cycle of the battery MCMB/LiFePO4 and during ageing, several 

important phenomena appear. Considering the battery cycle life, the most important 

phenomenon is the formation of the passivation film on the surface of the graphite particles of 

the negative active material and the subsequent lithium intercalation between the graphene 

layers. The second phenomenon is the lithium intercalation/deintercalation and phase change 

inside lithium iron phosphate and the third is to the study of the degradation of the positive and 

the negative materials during the calendar ageing. The objective of this chapter is to evaluate 

the potential of the Acoustic Emission (AE) technique as a non-destructive method for 

monitoring and study of the electrochemical phenomena during the formation and the ageing of 

the Li-ion cells with the above-mentioned chemistry. The origins of the Acoustic Emission 

activity in the studied Li-ion cells are in the appearance of spontaneously generated transient 

elastic waves due to the stress in the active materials accumulated during the electrochemical 

processes taking place there. This method is able to detect such phenomena even at very fine 

level.  

Résumé 

Les batteries Li-ion à base de LiFePO4 (matériaux peu coûteux et non toxique) représente une 

classe importante de batteries rechargeables avec une puissance spécifique et une densité 

énergétique élevées. Au cours de la formation et du vieillissement des batteries MCMB/LFP 

plusieurs phénomènes importants apparaissent. Le phénomène le plus important est la 

formation de la couche de passivation sur la surface des particules de graphite et la première 

intercalation du lithium à l'intérieur des plans de carbone lors du premier cycle dit de 

formation. Le deuxième phénomène est constitué par l’intercalation et la désintercalation du 

lithium ainsi que le changement de phase de l’électrode LFP lors des phases de cyclage. Le 

troisième est la dégradation de la matière active positive et/ou négative durant la vie de la 

batterie. L'objectif de ce chapitre est d'évaluer le potentiel de la technique de l'émission 

acoustique (AE) comme méthode non destructive pour le suivi et l'étude des phénomènes 

électrochimiques au cours de la formation et du vieillissement des batteries Li-ion. L'activité 

acoustique dans les cellules Li-ion est due à l’apparition d’ondes élastiques transitoires 
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spontanément générées par les contraintes accumulées dans les matériaux actifs au cours de 

son utilisation. Cette méthode est capable de détecter ces phénomènes, même à un niveau très 

faible. En particulier, il a été montré que l’émission acoustique apparait lors de la formation 

du film de passivation lors du premier cycle d’utilisation de la batterie. 

III.1. Introduction 

The aim of this chapter is to present Acoustic Emission (AE) results obtained during the 

electrochemical formation process of cell comprised of graphite and lithium iron phosphate 

electrodes.  For that, we have progressed step by step by studying individually each electrode 

faced to lithium metal electrode counter/reference before assembling them inside complete 

cells. AE events coming from different sources could be thus more clearly identified. We 

expect to detect a large number of acoustic emission events during the film formation at the 

graphite surface due to the gas emission and particle cracking phenomena which are known to 

occur (lithium insertion and co-solvent reduction before intercalation). In parallel, the own AE 

signature of LiFePO4 electrode will be determined in order to detect when lithium is extracted 

and inserted back in structure. We hope to demonstrate that AE can become a method for 

survey and management of the formation process.  

III.2. Choice of positive and negative materials 

III.2.1. Lithium iron phosphate 

III.2.1.1. Structure 

The olivine structure of LiFePO4 belongs to the family of super ionic conductors called 

Nasicon, known as fast ionic conductors and used as solid electrolytes in electrochemical cells. 

The inventors of those electrodes materials are Padhi and Goodenough, who are discovering 

electrochemical properties of the olivine phase [1, 2]. The crystal structure of LiFePO4 is 

constituted by hexagonal close-packed lattice of oxygen with one dimensional channel (Figure 

1). The structure is drawn by binding atoms to form plans, allowing visualizing polyhedrons 

and the available spaces between them. The cavities are the spaces in which the lithium ions 

(the smallest spheres) are placed. The red tetrahedra represent [PO4], and the blue octahedra are 

[FeO6] (Fe or P is in the center of the polyhedron). The atypical feature of this structure is the 

presence of common edge between each PO4 tetrahedron and each FeO6 octahedron, by sharing 
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The lithium intercalation into graphite, firstly observed about fifty years ago, is made in 

stepwise mode to form several intercalation phases. The stage during which the corresponding 

phase is formed, is denoted with Roman numerals: 

Stage I: each graphene plane is separated by an intercalated layer: 
 

 

A maximum lithium content of one Li guest atom per six carbon host atoms can be reached 

for highly crystalline graphitic carbons (n = 6 in LiCn or x = 1 in LixC6 or Stage I). The 

intercalation reaction occurs only at prismatic surfaces (arm-chair and zigzag faces). The 

intercalation through the basal planes is possible only at defect sites. 

Stage II: two graphene planes are separated by an intercalated layer: 
 

 

The stage II corresponds to intercalation compound Li0.5C6. It is commonly accepted that 

stage II is presented between the compositions of x = 0.25 and 1. 

Stage III: three graphene planes are separated by an intercalated layer: 
 

 

On the basis of XRD measurements, stage III Li0.222C6 and stage IV  Li0.166C6 compounds 

can be observed between about x = 0.1 and 0.25 depending on the degree of graphitization. 

Higher intercalation stages with lithium are difficult for crystallographic identification. 

In the latter case less x  0.1, the lithium is positioned randomly in between every graphene 

layer, with an interlayer spacing very close to the one of graphite. 

Staging phenomena as well as the degree of intercalation can be easily observed during 

electrochemical reduction of carbons in Li+ containing electrolytes at low current rate. Figure 9 

shows a schematic potential/composition curve for the constant current reduction of graphite to 

LiC6 corresponding to a lithium storage capacity of 372 mAh/g with respect to the graphite 

mass in correlation with the above discussed processes. 
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interphase is a mosaic-type polyhetero microphases media. This micro-heterogeneous surface 

film leads to dissimilar current distribution and heterogeneous electrochemical properties [27]. 

Hence when metal is deposited selectively at a certain site, it is exposed to solution species that 

react immediately, consuming continuously the solvent and the salt.  Due to the non-

homogenous structure of SEI, dendritic deposition is possible to appear on the metal surface 

(Figure 12), with the associated safety risks already discussed in §I.10. 

III.3.2. Formation of the SEI on Graphite  

In the same way as for lithium metal,  SEI film is mainly formed on the graphite during 

the first charge (formation step). The choice of the solvent and the mixture of them have crucial 

role to guarantee the good performances of cells. At a commercial level, liquid electrolytes are 

essentially composed by a mixture of alkyl carbonates: EC (ethylene carbonate), PC (propylene 

carbonate), DMC (dimethyl carbonate), DEC (diethyl carbonate), EMC (ethyl methyl 

carbonate) at different volume ratio depending the manufacturers. But a variety of electrolyte 

solutions, including ethers (THF and glyme), esters (butyrolactone and methyl formate) are also 

possible and tested at a laboratory level. Alkyl carbonates and particularly ethylene carbonate 

(EC) have been chosen because of their ability to form stable carbonaceous compounds during 

their first electrochemical reduction on carbon electrodes [19, 28, 29, 30]. Moreover, 

electrolyte aditives as vinylene carbonate (VC) is used in order to stabilize the SEI and to allow 

the decrease of the irreversible capacity lost during first initial charge [47]. These solid 

decomposition products create a protective film preventing the later intercalation of solvated 

lithium ions. It protects also the lithiated graphite from further reaction with the electrolyte. 

Thanks to this film, electronically insulating and ionically conducting, a reversible 

insertion/extraction of dissolves lithium ions is possible, with a low increase of the graphene 

interlayer distance, leading to preserve the graphitic structure on time. The latter is thus 

dimensionally enough stable to not damage the SEI. The Figure 13 gives a schematic model of 

the SEI formation [26, 31]. 
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- Chemical decompositions, and dissolution of the positive active material. 

The process of insertion and extraction of the lithium ions leads to a cyclic change of the 

molar volume of the materials, which induce mechanical stress, strain and cause the appearance 

of micro-crackings.  The degradation phenomena can be slowed down or accelerated by the 

profile of the battery cycling and sizing. The latter defines the applied voltage and current 

density limits, operating temperature and open circuit duration periods. 

The quality of the materials (especially the impurities level) and cell design (Amp-hour 

equivalent ratio negative / positive active material) can also contribute to the degradation rate.  

The temperature is a major factor of degradation and change (morphology and 

composition) of electrodes and their interfaces. The elevated temperature facilitates the kinetics 

of the lithium insertion/deinsertion process into/from host lattice [39]. However the increasing 

of the ambient temperature leads to acceleration of electrolyte degradation and corresponding 

growth of SEI of the negative electrode. The SEI itself can degrade faster at higher 

temperatures. It has been proposed that at elevated temperature metastable organic SEI 

compound’s like lithium alkyl carbonate are converted into more stable inorganic products 

(lithium salt like lithium carbonate, lithium fluoride etc.) [40]. Low temperatures leads to 

slower lithium ion diffusion in the host structures and reduced lithium ion mobility in the 

electrolyte.  

III.3.4.1. Overview 

The Table 3 provides an overview of the causes and effects of the ageing and mentions 

which parameters enhance or reduce these effects [19]. 
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Table 3: Lithium-ion negative materials, aging-causes, effects and influence [36, 41, 42]. 

Cause Effect Leads to Reduced by 
 

Enhanced by 

Electrolyte 
decomposition 

Loss of lithium 
Impedance rise 

Capacity fade 
Power fade 

Stable SEI 
(additives) 

Cycling rate 
decreasing with time 

High temperature 
High SOC (low 

potential) 

Solvent co-
intercalation, gas 

evolution and 
subsequent 

cracking formation 
in particles 

Loss of active 
material 
(graphite 

exfoliation) 
Loss of lithium 

Capacity fade 

Stable SEI 
(additives) 

Carbon pre-
treatment 

Overcharge 

Decrease of 
accessible surface 

area due to 
continuous SEI 

growth 

Impedance rise Power fade 
Stable SEI 
(additives) 

 

High temperature 
High SOC (low 

potential) 

Change in porosity 
due to volume 
changes, SEI 
formation and 

growth 

Impedance rise 
Overpotentials 

Capacity fade External pressure 
High cycling rate 

High DoD 

Decomposition of 
the binder 

Loss of lithium 
Loss of 

mechanical 
stability 

Capacity fade Proper binder choice 
High SOC (low 

potential) 
High temperature 

Current collector 
corrosion 

 
 

Overpotential 
impedance rise 
Inhomogeneous 
distribution of 

current and 
potential 

Power fade 
Enhances other 

ageing 
mechanisms 

Current collector pre 
treatment 

Overcharge 
Low SOC (high 
potential of the 
negative plate) 

Metallic lithium 
plating and 
subsequent 
electrolyte 

decomposition by 
metallic Li 

Loss of lithium 
(loss of 

electrolyte) 
Short-circuit 

Capacity fade 
(power fade) 

Fast Self-
discharge 

Narrow potential 
window 

Low temperature 
High cycling rates 
Poor cell balance 
Geometric misfits 

Degradation of 
positive 

compounds 

Dissolution of 
metallic cations 

Loss of 
mechanical 

stability 
Loss of lithium 

Capacity fade 
(power fade) 

Narrow potential 
window 

High temperature 
High cycling rates 
Poor cell balance 
Geometric misfits 
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- Weight of the components and mixing, 

- Mechanical stirring, 

- Coating of the active material on current collector (copper foil, thickness 18 µm) with a 

scraper knife with dimension 300 µm (I type electrodes) and 100 µm (II type 

electrodes), 

- Compression of the electrode with an equivalent force of 2T, 

- Curing of the active materials at 55°C for 24 h, 

- Pellet cuttings using a steel punch with diameter 14 mm, 

- Heating at 80°C in vacuum overnight (Büchi oven), to remove traces of solvent and 

water before entering into the glove box. 

III.4.2. Fabrication of the positive electrode 

The composite electrodes used in this study were made from aluminum foil coated with 

the active material. The latter was composed of 90wt. % of LiFePO4, 2wt. % of super P, 2 wt.% 

of additive vapor grown carbon fiber (VGCF), 6 wt.% polyvinylidene fluoride (PVDF 6020) 

dissolved at 1 methyl- 2 pyrrolidone (NMP). The total thickness of the electrode was 300µm. 

Their nominal capacity C is calculated by multiplying the global specific capacity 

(170mAh/g) by the mass of LiFePO4.The various home-made cells are denominated by the 

code “NKLH_number” for cell Li/LiFePO4 and  “NKMLC_” for the cells MCMB/LiFePO4.  

The manufacturing process for LiFePO4 electrode can be divided roughly into the seven major 

processes: 

- Weigh of the components and mixing, 

- Mechanical stirring, 

- Coating of the active material on current collector (aluminum foil, thickness 18 µm) 

using a scraper knife with dimension 400 µm, 

- Compression of the electrode with the force 10 T, 

- Curing of the active materials at 55°C for 24 h, 

- Pellet cuttings using a steel punch with diameter 14 mm, 

- Heating at 80°C in vacuum overnight (Büchi oven), to remove traces of solvent and 

water before entering into the glove box. 
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III.5. Experimental study and analysis of the formation process 

All electrochemical and acoustic testing equipment and methods were described in §II.3 

and §II.5. 

III.5.1. Tests of Li/Li cells 

Firstly Li/Li cell was tested in order to estimate the possible AE activity during charge 

and discharge process of Li-metal electrodes which are further used in some cells as counter 

and reference electrodes. 

The electrochemical cells Li/Li are cycled in CC conditions with the current rate I = 

0.02A (13mA/cm2). No substantial activity was detected during these experiments. Thus the 

dissolution of Li from the Li foil or the plating of Li on the foil can be excluded as sources of 

AE for these conditions. This observation permits the study of acoustic events coming from 

MCMB/Li and LFP/Li without any interaction due to phenomena appearing in lithium foil. 

III.5.2. Formation of Li/MCMB  

III.5.2.1. Introduction 

The formation of Li/MCMB cells was performed galvanostatically with constant current 

C/20h, and with cycling voltammetry at 50°C. All conditions are presented in Table 4 .  
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Table 4: Characteristic of the Li/MCMB cells, subjected to Acoustic Emission study. 

N° cells 
Nominal 
Capacity 

[mAh] 

Specific 
Capacity 

[mAh/cm2] 

Formation 
conditions 

Acoustic 
conditions 

Irreversible
Capacity 

loss 
[%] 

NKMH_1 19.38 

12.4 

 
CC/CV 

Ich/dsch =C/20h 
 

Charge termination 
U = 1 V vs. Li+/Li 
until Ich < C/50h 

T = 50°C 

Discharge 
termination 

U < 0.1V vs. Li+/Li 
 
 Threshold = 25 dB 

Band Pass Filters 
from 100kHz to 

1Mhz 
Preamplifiers gain 

60dB 
R15 sensor 

18 

NKMH_2 17.68 6 

NKMH_5 19.72 27 

NKMH_6 18.36 22 

NKMH_8 19.38 24 

NKMH_14 17.34 19 

NKMH_15 17.34 22 

NKMH_13 18.36 

CC/CV 
Ich/dsch =C/100h 

 
Charge termination 
U = 1 V vs. Li+/Li 
until Ich < C/50h 

T = 50°C 

Discharge 
termination 

U < 0.1V vs. Li+/Li 

 

24 

NKMH_12 18.36 Potentiodynamic  
ramp 

From 1V  to 0.1V vs. 
Li+/Li 

With 4µV/s 
T = 50°C 

- 

NKMH_16 18.36 - 

 

III.5.2.2. Results presentation and preliminary analysis 

The acoustic activity measured during electrochemical tests could be represented in 

different ways. For example the Figure 21 shows the acoustic activity in terms of Amplitude or 

Absolute Energy versus time (Figure 21a and Figure 21b). It is also possible to represented AE 

in cumulative form (Figure 21c and Figure 21d). 
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Chapter III- Contribution of the Acoustic Emission to the study of the behaviour of Graphite/LiFePO4 cells. 

 

The Li+ intercalation in graphite proceeds according to the following reactions: 

region I:  Li0.166C6 (IV-stage) +0.056 e- + 0.056 Li+ → Li0.222C6 (III-stage) 

region II: Li0.222C6 (III-stage) +0.278 e- + 0.278 Li+ → Li0.5C6 (II-stage) 

region III: Li0.5C6 (III-stage) +0.5 e- + 0.5 Li+ → LiC6 (I-stage) 

Below 0.21V vs. Li+/Li (region I), the lithium ions are intercalated between the graphene planes 

forming the phase Li0.222 C6. The second-stage takes place between 0.130V and 0.065V vs. 

Li+/Li (region II) leading to the formation of Li0.5C6. Finally the complete intercalation is 

achieved from 0.065V to 0.01V vs. Li+/Li (region III) forming LiC6 [16]. The lithium 

intercalation corresponds to the opening of graphene planes (moderate and not simultaneous). 

The increase of the interlayer distance between the graphene layers is small and an insertion 

plane is completed before the filling of another one leading to a stepwise formation, or so 

called stage formation, which is energetically favoured over a more random distribution. The 

diluted lithium stage above (0.130V vs. Li+/Li) is hardly detectable by acoustic emission 

(Li0.083C6 down to Li0.166 C6). Table 6 shows the overall AE energy change for the three stages 

of intercalation mentioned above. The AE energy measured between 0.130 and 0.01V vs. 

Li+/Li can be attributed to the opening of the graphene planes during the lithium intercalation. 

Only the formations of the two richest lithium stages cause the appearance of enough intensive 

AE activity.  

Table 6: Energy change during the intercalation stages in graphite host matrix. 

Cell number Stage of intercalation III 
(region I) AE(aJ) 

Stage of intercalation II 
(region II)  AE(aJ) 

Stage of intercalation I 
(region III)  AE(aJ) 

NKMH_6 346 522 563 

NKMH_14 166 98 85 

NKMH_13 67 407 3102 

NKMH_5 30 42 1348 

NKMH_15 13 23 94 

NKMH_8 7 166 171 

NKMH_2 3 202 237 

 

The average value for the different stages are respectively 100, 240 and 920aJ.  The formation 

of the graphite phases formation [49] requires a supply of energy to : 
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Chapter III- Contribution of the Acoustic Emission to the study of the behaviour of Graphite/LiFePO4 cells. 

 

III.5.3 Formation Li/LiFePO4 

The formation of the cells Li // electrolyte // LiFePO4 was performed at constant current 

equal to C/20h between 2V and 4V vs. Li+/Li at 50°C. The conditions of the formation process 

are presented in Table 7. 

Table 7: Characteristics of the Li/LiFePO4 cells. 

N° cells 
Nominal 
Capacity 
[mAh] 

Specific 
Capacity 

[mAh/cm2] 

Formation 
conditions 

Acoustic 
conditions 

Active 
material 

utilization 
[%] 

NKLH_1 4.11 

2.7 

CC/CV 
Ich/dsch =C/20h 

 
Charge termination 
U = 4 V vs. Li+/Li 
until Ich < C/50h 

T = 50°C 

Discharge 
termination 

U < 2V vs. Li+/Li 
 
 

Threshold = 25 dB 
Band Pass Filters 
100kHz -1Mhz 

Preamplifiers gain 
60dB 

 

89 

NKLH_2 4.12 89 

NKLH_3 4.11 87 

NKLH_4 4.04 88 

NKLH_5 4.07 89 

NKLH_6 4.04 89 

NKLH_7 4.15 86 

NKLH_8 4.18 88 

NKLH_9 4.11 93 

NKLH_10 3.92 88 

NKLH_11 4.08 93 

NKLH_12 4.06 87 

 

The cells were equipped with a pair of AE sensors coupled with silicon grease on the 

both sides of the coin-cells. The acoustic emission sensors are the same as the ones used during 

the experiments on Li/ MCMB cells. 

Figure 34 represents the AE activity in terms of cumulated hits (CH) recorded by both 

sensors: one connected to LiFePO4 side and the second attached to Li side during the cell 

formation. 
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Chapter III- Contribution of the Acoustic Emission to the study of the behaviour of Graphite/LiFePO4 cells. 

 

According to the results from acoustic emission monitoring and considering the models for 

lithiation and delithiation [6, 10], AE technique could offer a possibility to evaluate more 

accurately this phenomena. 

Table 8 shows the overall AE energy increase during the first charge and discharge. Again, it 

can be seen that the intercalation of lithium ion is more energetic then the deintercalation 

(Figure 34). 

Table 8:  Energy gap corresponding to the lithium insertion/deinsertion for Li/LiFePO4 cell. 

Cell N° AE (aJ) charge AE (aJ) discharge 

NKLH_4 53 86 

NKLH_16 12 30 

NKLH_13 6 13 

NKLH_11 5 26 

NKLH_10 2 16 

 

III.5.4. Formation MCMB/ LiFePO4  cells 

The AE study the formation of “complete” MCMB/LiFePO4 energy storage system was 

carried out on two types of cells with different [Ah] ratios between the positive and negative 

active materials. Typically the negative active material is in ≈10% excess in order to avoid 

lithium plating in the end of the charge [50]. This case was implemented in the type II cells, 

where the ration CPAM /CNAM  is equal to 0.7. The case of enormous graphite excess in the cell 

was implemented in the type I cells where the [Ah] ratio CPAM /CNAM is equal to 0.2. 

III.5.4.1. Formation MCMB/ LiFePO4 type I 

The freshly prepared MCMB//Electrolyte//LiFePO4 cells with capacity balance of 0.2 

were formed using a charge/discharge cycling at constant current C/20h at 50°C. The cells 

specifications and test conditions are presented in Table 9.   
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Chapter III- Contribution of the Acoustic Emission to the study of the behaviour of Graphite/LiFePO4 cells. 

 

In order to compare the acoustic data collected for complete cells with those obtained on 

Li/MCMB and on Li/LiFePO4, the insertion rate (x) of lithium was calculated by taking into 

account the initial capacity of each electrode: 

Equation 3:                                             
the

t

0t

.Cm

Idt

tx

  

where I is the  current (mA), me is the active mass of the electrode (g) and , Cth is the specific 

capacity (mAh/g) obtained by the formula: 

Equation 4 :                                            
M3.6

zF
Cth   

Where F is the Faraday constant = 96500C, z is the number of participating in the 

electrochemical reaction electron and M is the molar mass of the electrode material (g/mol). 

The electrochemical reactions at the positive electrode and the negative electrode during charge 

and specific capacity values are listed in Table 10. 

Table 10: Electrochemical reactions and specific capacity of the electrode materials in 
MCMB/LiFePO4 cells. 

LiFePO4 Graphite 
LiFePO4 → FePO4 + Li+ + e- 6C + Li+ + e- → LiC6 

Cth = 170 mAh/g Cth = 372 mAh/g 
90 weight % 91 weight % 

CPAM = 154mAh/g CNAM = 340 mAh/g 

In our case we have a capacity balance (CPAM /CNAM) equal to 0.2. Before formation, the 

balance is strongly moved towards the negative electrode. During the first charge the insertion 

ratio x is equal to 1: the extraction of lithium ions from LiFePO4 is close to 99%, but only about 

60 % of lithium is recovered (x ≈ 0.60) in the following discharge (Figure 37). This 

corresponds to irreversible loss of about 40 % of the cell capacity. This phenomenon is due to 

the low positive to negative active material ratio and the huge surface area of the passivated 

graphite electrode. 
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Table 11: Characteristics of the MCMB/LiFePO4 - type II cells and formation conditions. 

N° cells 

Nominal 
Capacity 
LiFePO4 
[mAh] 

Nominal 
Capacity 
MCMB 
[mAh] 

Specific 
Capacity 

[mAh/cm2] 

Formation 
conditions 

Acoustic 
conditions 

Irreversible 
Capacity 

loss 
[%] 

NKMLC_9 3.69 8.97 

Specific 
Capacity 
LiFePO4 

2.8 
 
 

Specific 
Capacity 
MCMB 

3.7 

CC/CV 
Ich =C/100h 

U = 3.7V until 
Ich<C/50h 
T = 50°C 

 

Threshold 25 dB 
Band Pass 

Filters 
100kHz -1Mhz 
Preamplifiers 

gain 60dB 
Sensor R15 

 

19.03 

NKMLC_11 3.88 7.82 

CC/CV 
Ich =C/50h 3.7V 
U = 3.7V until 

Ich<C/50h 
T = 50°C 

 

20.44 

NKMLC_13 4.06 6.91 

CC/CV 
Ich =C/20h 

U = 3.7V until 
Ich< C/50h 
T = 50°C 

 

18.33 

NKMLC_12 3.78 6.80 

CC/CV 
Ich/dsch =C/10h 
U = 3.7V until 

Ich<C/50h 
T = 50°C 

 

15.45 

NKMLC_15 4.06 6.30 

CC/CV 
Ich/dsch =C/5h 

U = 3.7V until 
Ich<C/50h 
T = 50°C 

 

13.82 

The acoustic emission activity was monitored using the same protocols applied during 

the experiments on Li/Graphite and Li/LiFePO4 cells. The aim of this study is to associate the 

acoustic activity and the current rate as well as the connection between SEI electric properties 

formed at different currents and the calendar aging process.  

Figure 40 presents the AE activity in terms of cumulated hits (CH) from both sensor 

(sensor 1 attached to the LiFePO4 terminal and sensor 2 to the MCMB side) during the battery 

formation with constant current. 
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of the electrolyte [53]. The fact that they are observed for all four types of cells leads to the 

suggestion that the electrolyte degradation is related : 

- to the gases produced during the SEI formation in the case of grahite/Li 

- to gassing phenomena of unindentifed origin in the case of Li/LiFePO4. If we 

consider that each acoustic activity enent appears in the frequency domain 

around 150 kHz, the latter could systematically be attributed to gassing 

phenomena. Such gassing phenomena can be related to impurities in the 

electrolyte or in the material. 

The second class of events is characterized by short duration and rise time and with a 

main peak frequency of 290 kHz. The frequency domain between 250 kHz to 400 kHz is 

related to mechanical cracking phenomena [54, 55]. The absence of such events in this 

frequency domain for Li/LiFePO4 cell (Figure 42b) can be related to the almost zero change of 

the FePO4 lattice during the charge / discharge cycling. For the cells type II the AE events 

corresponding to mechanical cracking appear in the AE spectra (Figure 42d). However when 

the Ah-ratio LFP/MCMB is 0.2 (type I) these AE events are absent (Figure 42c). This can be 

explained with the fact that only a small portion of the graphite is lithiated hence the specific 

volume of the electrode material changes very slightly during the charge / discharge cycling. 

This small volume change is not sufficient to induce enough mechanical stress which can cause 

a cracking.   

The Table 12 summaries the main values like duration, rise time, energy, peak 

frequency, average frequency and amplitude for both classes of events during the formation 

process of the different cells.  
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Table 12: Main characteristic parameters recorded for AE population of cells subjected to 

formation.  

N° battery 
 

AE parameters 
(value for the first 
formation cycle) 

Class1 Class 2 

Li/MCMB 

Duration (s) 570 319 
Rise Time (s) 304 48 

Energy (aJ) 50 18 
Average Frequency (kHz) 400 222 

Peak Frequency (kHz) 139 327 
Amplitude (dB) 47 41 

Li/ LiFePO4 

Duration (s) 790 

- 

Rise Time (s) 202 
Energy (aJ) 30 

Average Frequency (kHz) 800 
Peak Frequency (kHz) 170 

Amplitude (dB) 52 

MCMB/ LiFePO4 –type I 

Duration (s) 720 

- 

Rise Time (s) 221 
Energy (aJ) 94 

Average Frequency (kHz) 467 
Peak Frequency (kHz) 185 

Amplitude (dB) 52 

MCMB/ LiFePO4 –type II 
 

Duration (s) 489 156 
Rise Time (s) 296 30 

Energy (aJ) 20 1 
Average Frequency (kHz) 810 400 

Peak Frequency (kHz) 160 290 
Amplitude (dB) 45 26 

 

III.6. Calendar aging of the MCMB/LiFePO4 –type II 

After their formation, the cells were stored in thermostatic chamber at temperature 40°C 

for calendar aging. Periodic check-ups of the battery performance were carried out each two 

weeks. The check-up test includes CC/CV cycling at current rate I = Cn/10h for 5 cycles and 

impedance spectroscopy measurements from 65 kHz to10mHz with amplitude of 5mV 

measured at open circuit after completed charge (SOC = 100%) and after completed discharge 

(SOC = 0%). 

Figure 43 represents the evolution of the capacity (measured at the fifth discharge) as a 

function of the calendar time for the five cells formed at different current rates. 
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SOC = 100 % SOC = 0 % 
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Figure 44: Evolution of the Impedance spectra during the calendar aging test at 100% SOC 

and 0% SOC: (a) NKMLC_9, (b) NKMLC_11, (c) NKMLC_13, (d) NKMLC_12, 

(e)NKMLC_15. 

 

The shape of Nyquitst spectra resembles to the typical data for Li-ion Batteries [56, 57]. 

According to Barsoukov (Figure 45) the high frequency part of the spectrum contains the 

internal resistance of the cell (separator, electrolyte, electrode and wires), one or several semi-

circuits correspond to the interface and charge transfer resistance, and at low frequencies the 

straight line typical is related to diffusion phenomena [57]. The model schema of the Li-ion 

electrode and corresponding equivalent circuit representation are shown in Figure 45. This 

model is related only to one electrode and electrolyte/electrolyte interface. In the case of 

complete cell, the both electrodes and their interfaces contribute to the impedance of the cell. 
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III.8. Conclusions 

This chapter has shown that the acoustic emission technique is suitable to characterize the first 

discharge of graphite//electrolyte//lithium cells, SEI formation and the reaction happening 

during abusive conditions. It was demonstrated that the acoustic emission activity can be 

correlated with the electrochemical phenomena like formation of the Solid Electrolyte 

Interface, process of lithium intercalation and deintercalation in the structure of the positive 

LiFePO4 electrode and negative graphite electrode. The acoustic activity can be attributed to 

mechanical phenomena as a gas formation and cracking of the active materials.  

Even if the recorded “number of hits” or “absolute energy” ranks are not identical between the 

various cells, their evolution follows the same trend and the each phenomena can be detected. 

One can obtain information on the quality of the passivation film, the electrode and the 

electrolyte degradation considering their type.  

The results from the overcharge tests demonstrate that the acoustic activity can be attributed to 

the electrolyte oxidation process taking place with gas evolution. The latter was confirmed by 

the frequency spectral analysis of the acoustic data. 

 

 

 

 

 

 

 

 

 

 

 



142 
 

 
Chapter III- Contribution of the Acoustic Emission to the study of the behaviour of Graphite/LiFePO4 cells. 

 

References 

1. Padhi A.K., Nonjundaswamy K.S., Masquelier C., “Journal of Electrochem. Soc.”, Vol.144, 

N°5, (1997), 1609-1613. 

2. Padhi A.K., Nonjundaswamy K.S., Goodnenough J.B., “Journal of Electrochem. Soc.”, 

Vol.144, N°4, (1997), 1188-1194. 

3. Molenda J., Molenda M., in “Metal, Ceramic and Polymeric Composites for Various 

Uses”,(Cuppoleti J., Eds.), Chapter N°30, INTECH open access publisher, (2011), 621-636. 

4. Delmans C., Maccario M., Croguennec, “Nature Materials”, Vol.7, (2008), 665-671. 

5. Ramana C.V., Mauger A., “Journal of Power Sources”, 187, (2009), 555-564. 

6. Laffont L., Delacourt C., Gibot P., “Chem. Mater.”, 18, (2006), 5520-5529. 

7. Chen G., Song X., “Electroch. Solid-State Let.”, Vol.9, N°6, (2006), A295 – A298. 

8. Yamada A., Koizumi H., “Electroch. Solid-State Let.” , Vol.8, N°8, (2005), A409 – A413. 

9. Ellis B.L., Lee K.T., Nazar L., “Chemistry of Materials Review”, 22, (2010), 691-714. 

10. Shrinivasan V., Newman J., “Journal of Electrochem. Soc.”, Vol.151, N°10, (2004), 

A1517-1529. 

11. Andersson A.S., Thomas J.O., “Journal of Power Sources”, 97, (2001), 498-502. 

12. Sides C., Croce F., “Electroch. Solid-State Let.”, Vol.8, N°9, (2005), A484 – A487. 

13. Gao M., Lin Y., “Electrochimica Acta”, 55, (2010), 8043-8050. 

14. Chen Z., Dahn J.R., “Journal of Electrochem. Soc.”, Vol.149, N°9, (2002), A1184-1189. 

15. http://www.pulead.com.cn manufacturer 

16. Aurbach D., Markovsky B., “Electrochimica Acta”, 45, (1999), 67 – 86. 

17. Aurbach D. in “Advance in Lithium-Ion Batteries”, (Schalkwijk W.A., Scrosati B. Eds.), 

Chapter 1, KLUMER ACADEMIC PUBLISHERS, (2002), 6-77. 

18. Aurbach D., Zinigrad E., Cohen Y., “Solid State Ionics”, 148, (2002), 405-416. 

19. Vetter J., Novak P., Wagner M.R., “Journal of Power Sources”, 147, (2005), 269-281. 

20. Besenhard M.W., Spahr E., Novak P., “Advance material”, Vol.10, N°10, (1998), 725-763. 

21. Winter M., Moeller K.-C., Besenhard in “Lithium Batteries Science and Technology”, 

(Nazri G.-A., Pistoia G. Eds.), Chapter 5, Springer, (2009), 143-194. 

22. Funabiki A., Inaba M., Abe T., Ogumi Z. “Electrochimica Acta”, 45, (1999), 865 –871. 

23. Funabiki A., Inaba M., Abe T., Ogumi Z. “Carbon”, 37, (1999), 1591 –1598. 

24. Dahn J.R., “Physics. Rev. B”, 44, (1991), 9170. 

25. Inaba M., Yoshida H., Ogumi Z., “Journal of Electroch. Soc.”, 142, (1995), 20-26. 



143 
 

 
Chapter III- Contribution of the Acoustic Emission to the study of the behaviour of Graphite/LiFePO4 cells. 

 

26. Peled E., Golodnisky D., in “Lithium ion batteries Solid-Electrolytes Interphase”, 

(Balbuena P., Wang Y., Eds.), Chapter 1, Imperial College Press, (2004), 1-59. 

27. Aurbach D., “Journal of Power Sources”, 89, (2000), 206-218. 

28. Ein-Eli Y., Thomas R., Aurbach D., Markovsky B., “Journal of Electrochem.Soc.”, 143, 

(1996), L273-L277. 

29. Ein-Eli Y., Stephen F., “Journal of Electrochem.Soc.”, Vol.145, N°1, (1998), L1-L3. 

30. Aurbach D., Ein-Eli Y., Markovsky B., “Journal of Electrochem. Soc.”, Vol.142, N°9, 

(1995), 2882-2890. 

31. Yan J., Su Y.-C., Xia B.-J., “Electrochimica Acta”,54 , (2009), 3538 – 3542. 

32. Aurbach D., Cohen Y., in “Lithium ion batteries Solid-Electrolytes Interphase”, (Balbuena 

P., Wang Y., Eds.), Chapter 2, Imperial College Press, (2004), 70-139. 

33. Nazri M., Yebka B., Nazri G.-A., in “Lithium Batteries Science and Technology”, (Nazri 

G.-A., Pistoia G., Eds.), Chapter 6, Springer, (2009), 195-218. 

34. Funabiki A., Yuasa S.-I., “Journal of Electrochem. Soc.”, Vol.145, N°1, (1998), 172-178. 

35. Piao T., Park S.-M., “Journal of Electrochem. Soc.”, Vol.146, N°8, (1999), 2794-2798. 

36. Naji A., Ghanbaja J., Willmann P., “Journal of Power Sources”, 81 – 82, (1999), 207 -211. 

37. Dollé M., Grugeon S., Beaudoin B., “Journal of Power Sources”, 97-98, (2001), 104-106. 

38. Groot J., “PhD.Thesis”, from “Chalmers University of Technology”, (2012), 5-18. 

39. Andersson A.M., Edstrom K., “Journal of Power Sources”, 81-82, (1999), 8-12. 

40. Richard M.N., Dahn J.R., “Journal of Electrochemical Society”, 146, N°6, (1999), 2068-

2077. 

41. Broussely M., Biensan Ph., “Journal of Power Sources”, 146, (2005), 90-96. 

42. Whittingham M.S., “Chemical Reviews”, Vol.104, N°10, (2004), 4271-4301. 

43. Verama P., Maire P., Novak P., “Electrochimica Acta”, 55, (2010), 6332-6341. 

44. Zhong C., Bin-Feng W., Ke-Min W., “Sensors and Actuators B”, 50, (1998), 27-37. 

45. Holzapfel M., Martiner A., “Journal of Electroanal. Chem.”, 546, (2003), 41-50. 

46. Aurbach D., Levi M.D., “Journal Phis. Chem. B”, 101, (1997), 4641-4647. 

47. Xu K., “Chem. Rev.”, 104, (2004), 4303-4417. 

48. Imanishi N., Takeda Y., in “Lithium Ion Batteries: Fundamentals and Performance”, 

(Wakihara M., Yamamoto O.,Eds.), Chapter 5,Kodasha Ltd., Tokyo, (1998), 98-126. 

49. Sawai K., Tomura H., Ohzuku T., “Denki Kogako”, Vol.66, N°3, (1998), 301-307. 

50. Zhang S.S., Xu K., Jow T.R., “Journal of Power Sources”, 160, (2006), 1349-1354. 

51. Xu M., Zhou L., “Journal of Electrochemical Society”, 158, N°11, (2011), A1202-A1206. 



144 
 

 
Chapter III- Contribution of the Acoustic Emission to the study of the behaviour of Graphite/LiFePO4 cells. 

 

52. Gospodinova N., Terlemezyan L., “Progres Polymer Science”, 23, (1998), 1443-1484. 

53. Etiemble A., Idrissi H., “Proceeding of the EWGAE 2012” 

54. Didier-Laurent  S., Idrissi H., “Journal of Power Sources”, 179, (2008), 412-416. 

55. Etiemble A., Idrissi H., “Proceeding of the EWGAE 2010” 

56. Barsoukov E.  in “Impedance Spectroscopy Theory, Experiment, and Applications”, 

(Barsoukov E., Macdonald J.R., Eds.), Chapter 4, WILEY-INTERSCIENCE, (2005), 444-457. 

57. Aurbach D., Markovsky B., Levi M.D., “Journal of Power Sources”, 81-82, (1999), 95-

111. 

58. Tobishima S., Yamaki J., “Journal of Power Sources”, 81-82, (1999), 882-886. 

59. Spotnitz  R., Franklin  J., “Journal of Power Sources”, 113, (2003), 81-100. 

 

 

 



145 

 

Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

 

 

 

 

 

 

 

 

 

Chapter IV 

Evaluation of Acoustic Emission as a suitable tool for ageing 

characterization of LiAl/MnO2 cell. 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

Chapter IV ______________________________________________________________ 145 
 
Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 
cell. ____________________________________________________________________ 145 
 
Résumé _________________________________________________________________ 147 
 
Summary _______________________________________________________________ 147 
 
IV.1. Introduction ________________________________________________________ 148 
 
IV.2. Electrochemical reactions _____________________________________________ 148 

IV.2.1. Lithium alloys as negative electrode in Li-ion batteries ______________________ 148 
IV.2.2. Manganese oxides as positive electrode in Li-ion batteries ___________________ 153 
IV.2.3. Degradation phenomena ______________________________________________ 155 

IV.2.3.1. Degradation phenomena in lithium alloys used as negative electrodes ______ 155 
IV.2.3.2. Degradation phenomena in manganese oxide as positive electrode _________ 156 

IV.3. Acoustic emission dedicated to the study of these types of materials __________ 156 

IV.3.1.Study of the lithium intercalation in different metal alloys by Acoustic Emission 
monitoring _______________________________________________________________ 156 
IV.3.2. Acoustic Emission monitoring during the lithium intercalation in manganese oxides
 ________________________________________________________________________ 157 

IV.4. Evaluation of the Acoustic Emission Technique as a suitable tool for ageing 
characterization of commercial LiAl/MnO2 ___________________________________ 158 

IV.4.1. Details about cell construction _________________________________________ 159 
IV.4.2. Experimental set-up _________________________________________________ 160 
IV.4.3. Initial characterization ________________________________________________ 162 
IV.4.4. Cycling voltammetry _________________________________________________ 163 
IV.4.5. Ageing tests ________________________________________________________ 167 

IV.5. Study under abusive conditions. ________________________________________ 177 

IV.5.1. Overcharge Process __________________________________________________ 177 
IV.5.2. Overdischarge Process _______________________________________________ 179 

IV.6. Conclusions _________________________________________________________ 182 
 
References ______________________________________________________________ 183 

 
 
 
 
 
 
 
 
 



147 

 

Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

Résumé 

Dans ce chapitre, les mécanismes d’insertion des ions lithium dans l’alliage LiAl et 

dans LiMnO2, tous deux présents en tant qu’électrode négative et électrode positive dans un 

type d’éléments commerciaux, ont été étudiés, et cela en combinant une variété de techniques 

électrochimiques, la technique d’émission acoustique (EA) et des analyses structurales post-

mortem par DRX. Le but de cette étude était d'étudier la faisabilité des mesures EA pour la 

caractérisation du vieillissement des cellules Li-ion. Nous avons ainsi pu détecter et 

caractériser le processus électrochimique prédominant et qui concerne l’électrode négative 

lithium-aluminium  associé  à une transformation de phase intermétallique et une forte 

expansion volumique. En particulier, pendant le cyclage, nous avons observé que l’activité 

acoustique était concentrée lors du processus de décharge. Nous l’avons attribuée 

majoritairement à la transformation de phase α-LiAl à β-LiAl et dans une moindre mesure à 

l'intercalation du lithium de MnO2 à LiMnO2. L'émission acoustique a été ainsi utilisée 

comme procédé non destructif pour le suivi des processus se produisant à l'intérieur de la 

cellule.
 

Summary 

In this chapter the mechanism of lithium ion insertion in LiAl alloys used as negative 

electrode and LiMnO2 oxide into LiAl/MnO2 cell has been studied by combining 

electrochemical method, acoustic emission technique, XRD analyses and SEM observation. 

The aim of this study was to consider the feasibility of the AE analysis for ageing 

characterization of Li-ion cells, as well as to detect and characterize the electrochemical and 

structural processes which appear rather into the negative electrode (/ intermetallic phase 

transformation). The acoustic emission was used as a nondestructive method for monitoring 

of the processes occurring inside the cell. During cycling, the acoustic events were 

concentrated along the discharge process. The latter was attributed to the phase 

transformation of -LiAl to -LiAl and the intercalation of lithium in the MnO2 to form 

LiMnO2. 
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IV.1. Introduction  

The objective of this chapter is to show the capability of AE to be used as a method 

for characterization of the ageing of lithium batteries. Commercial LiAl/MnO2 coin cell were 

selected for this study.  The study was focused on the negative electrode material LiAl, but 

MnO2 positive electrode was also characterized.  

As discussed in the first chapter, lithium alloys could be suitable Li-ion negative 

electrode candidates thanks to their high specific energy. Unfortunately they are lacking cycle 

life (due to the detrimental effect of the large volume expansion–contraction accompanying 

electrochemical alloy formation) and specific power density (due to low diffusion coefficient 

of lithium inside the alloy structure). The cycle life could be improved by limiting the depth 

of discharge (DOD) and the current density of the cycling [1, 2]. The extent of volume 

breathe is not reduced by reducing the size of metal but does render the phase transitions that 

accompany alloy formation more easy, and reduces cracking within the electrode.  

Concerning the positive electrode, MnO2 materials exist in several crystalline 

structures, with different electrochemical activity. They are interesting for battery application 

due to their low cost, low toxicity and stability at overcharge. 

Three characterization techniques were used to study the electrode materials before 

and after the ageing: AE, XRD and SEM analyses. That combination of methods has been 

already used in several studies [3, 4 and 5]. The purpose of the combination of these three 

methods is to identify and to correlate the sources of the acoustic emission with the 

electrochemical phenomena in the battery. The final aim is to use of AE techniques as a 

possible indicator for battery ageing diagnostics. 

IV.2. Electrochemical reactions  

IV.2.1. Lithium alloys as negative electrode in Li-ion batteries    

The use of the alloy of LiAl as a negative electrode is based on the reversible insertion 

of lithium into the host material according to the following reaction: 

Equation 1:                           yLi+ + Al + ye- ↔ LiyAl 

The binary alloy phase diagram shown in Figure 1, suggests that aluminum can form three 

alloys with Li : LiAl, Li1,5Al (= Li3Al2) and Li2,25Al (=Li9Al4) [6, 7, 8]. 
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involves the complete reduction of Mn(+IV) to Mn(+III) and delivers the theoretical electrode 

capacity of 308 mAh/g as calculated in Table 3 [25].  

Table 3: Theoretical mass capacity of LiMnO2. 

Phase 

Calculation 
Cth = zF/M.3.6 

F = 96485C/mol = 26,8Ah/mol = 26800mAh/mol 

M (Mn) = 54.9g/mol 

M (O) =16g/mol 

Theoretical mass capacity 
Cth (mAh/g) 

LiMnO2 =1x26800/(54.9+16x2) 308 

The reversibility of the lithium intercalation into MnO2 depends on the degree of 

discharge (x<1 in Equation 4). 

Equation 4                                xLi+ + MnO2 + xe- ↔ LixMnO2      

This consideration limits consequently the mass capacity to a practical value of about 260 

mAh/g, or less, depending of the crystalline structure, the structural stability at low lithium 

insertion rate and the electrode conception. It is important to note that other forms of 

manganese oxide compounds exist as LiMn2O4 (spinel structure) which are able to intercalate 

lithium with a theoretical capacity of about 154 mAh/g [27, 28, 29]. 

IV.2.3. Degradation phenomena    

Ageing of the electrode materials can be defined as their modification of the 

properties, which is related to various degradation phenomena of the current collector, change 

of the crystal structure of the positive or the negative electrode material, or degradation of the 

electrolyte. This paragraph will present a brief discussion of the ageing phenomena in the 

LiAl and LiMnO2 electrodes in order to explain further the obtained experimental results for 

the selected battery technology.  

IV.2.3.1. Degradation phenomena in lithium alloys used as negative electrodes  

The capacity decay observed during the cycling of various Li alloys is connected with 

the mechanical degradation of the electrode due to the huge volume change during insertion 

/removal of Li into the electrode host matrix [30, 31].  Those variations lead to a fast 

disintegration and cracking of the alloys. For example [31], Figure 6 shows SEM images of 

LiAl electrodes before and after cycling. The SEM images correspond to LiAl electrode 
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chronoamperametric and acoustic emission technique [34]. It was concluded that the acoustic 

emission events detected during the formation of the -LiAl can be related to the release of 

the stress generated the electrochemical lithium incorporation in the aluminum.  

Several recent works evaluate the lithium insertion inside silicon by acoustic emission 

monitoring [4, 5, 35, 36].  These studies were focused on the acoustic emission monitoring 

during the cycling of silicon electrodes in standard coin cell with lithium foil as counter and 

reference electrode. The extracted parameters from the acoustic emission wave forms like 

amplitude, duration, frequency and energy, were used for: a) identification of the film 

formation on the surface of the silicon electrode [35] and b) correlation with the state of 

charge of the cell [4, 5, 36]. 

Study of Villevielle summarized the results obtained from AE monitoring of 

morphological changes during cycling in Li/NiSb2 cell [3].  The NiSb2 compound was cycled 

in a Swagelok cell versus Li foil while monitoring AE over a period of three cycles. The 

cumulated absolute energy was monitored and compared with cell potential. Sudden jumps of 

the energy were observed at voltage plateaus corresponding to the SEI formation and active 

material conversion [3]. 

IV.3.2. Acoustic Emission monitoring during the lithium intercalation in manganese 

oxides 

The first series of papers dealing with AE during battery operation are published by 

Ohzuku et al. in the end of nineties [37, 38]. They examined the Li/MnO2 cells: the positive 

electrode was heat treated electrolytic manganese dioxide (HEMD); the negative electrode 

was lithium foil. Intensive acoustic emission events were observed during the discharge. No 

events were detected in the beginning of the charge, but continuous acoustic emission activity 

was observed during the subsequent open circuit period (Figure 7).  
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Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

 

Figure 8: Electrochemical reactions and schematic model of lithium insertion and extraction 

in the positive and the negative active materials during the charge/discharge cycling. The 

volume change of the lithium-aluminium alloy is also represented on the bottom of the 

schema. 

The insertion/extraction of lithium inside the LiAl alloy comes along with a 

modification of the crystal lattice, from α-phase for low Li concentration compounds to β-

phase for Li rich alloys [12, 19]. In order to understand better the relation between the 

material strain, fracture and cell performance, LiAl/MnO2 cell were characterized during the 

cycling by acoustic emission (AE) technique and by post mortem analyses –XRD and SEM 

techniques. 

IV.4.1. Details about cell construction 

LiAl/MnO2 rechargeable coin cell type CR2032 produced by Maxell were used in this 

study [39]. The tear-down analyses show that the positive electrode material is pasted on Al 

mesh and the negative electrode material is welded directly onto the cell casing internal 

surface. The tests have been started shortly after their delivery. Cells have a nominal voltage 

of 3.3 V and a nominal capacity of 65mAh (325h autonomy). The dimension of the cells is a 

diameter of 20 mm and a height of 3.2 mm, and their weight is 3g (Figure 9).  
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Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

Table 4: Overview of the design of experiments 

Number of cells 
tested Experiment type 

4 Peukert capacities:   C/100h, C/50, C/20, C/5 

4 
Cyclic voltammetry cells LiAl/MnO2:  2V to 3.25V at scanning rate 0.015 
mV/s, 4 cycles 

2 
Cyclic voltammetry cells Li/MnO2: 2V to 3.25V at scanning rate 0.015 mV/s, 
2 cycles 

2 
Cyclic voltammetry cells Li/LiAl:  0.01V to 0.5V at scanning rate 0.015 
mV/s, 2 cycles 

4 Aging procedure - Galvanostatic cycling:  C/20h rate (30 cycles) 

 

The electrochemical experiments were performed by using a computer controlled 

potentiostat /galvanostat SOLARTRON MULTISTAT 1470. 

All the experiments were coupled with acoustic emission monitoring with two R15 

sensors connected on the both sides of the cell: the sensor 1 is coupled to the positive 

electrode and sensor 2 to the negative electrode. The AE events detected by the sensors at the 

corresponding electrode (side of the coin cell) should be more intensive than the signal 

detected by the other sensor on the opposite side due to the different interfaces to be crossed 

by the elastic waves. A preamp gain of 40dB and a sample rate of 5MSPS were applied. 

Acoustic emission activity was registered as a hit by the system when the signal exceeded a 

threshold of 28dB.  

Several XRD analyses were performed on the negative active material in a completely 

charged and discharged state of fresh and aged cells. The material was extracted from the 

electrode in glove box and placed onto lamella. Before analysis the sample is protected with a 

thin film of Kapton. The XRD analyses were done on a BRÜKER D8 Advance diffractometer 

(Bragg Brentano geometry) equipped with a Cu anticathode (Cu K radiation). 

SEM observations were done using an electronic microscope Philips XL’30 connected 

with EDX analyzer (INCA, Oxford instrument). 
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Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

IV.4.4. Cycling voltammetry 

The cycling voltammograms obtained from tested LiAl/MnO2, Li/LiAl and Li/MnO2 

cells are shown in Figure 11. 

The results of the complete cell (Figure 11a) show that during the cathodic sweep a large 

reduction peak appears at  2.3V where the lithium de-inserted from -LiAl phase is inserted 

inside MnO2 [43]. The lithium insertion into MnO2 materials induces modification into the 

host structure with generally a volume expansion especially for higher insertion rates [44, 45]. 

Accumulation of stress and strain within the active material leads to micro-cracks [4, 45] and 

irreversible damages. This reduction peak is correlated with the large oxidation peak at 3.0V 

where the opposite reactions occur [11, 46]. The cyclic voltammetry of the complete cell can 

also be used to reveal reactions occurring during the electrochemical processes but the 

oxidation and reduction peaks are not well defined. This is the reason why the electrodes have 

been characterized individually. The (Figure 11b) represents the cycling voltammogram of 

Li/LiAl cell. It can be seen a reduction shoulder at 0.35V vs. Li+/Li and a peak at 0.27V vs. 

Li+/Li during the cathodic potential sweep. The peak at 0.27V vs. Li+/Li disappears at the 

second cycle.  During the oxidation process (the anodic potential sweep), a shoulder at 0.43V 

vs. Li+/Li is visible. The reduction and the oxidation peaks at 0.27-0.35V and 0.43V 

respectively could be attributed to the insertion/extraction of Li+ from the low lithium 

concentrated alloy (-LiAl phase) to the rich lithium concentrated alloy -LiAl phase [11].  

The cyclic voltammetry of Li/MnO2 (Figure 11c) showed a reduction peak at about 

2.7V vs. Li+/Li and an oxidation shoulder at 3.2V vs. Li+/Li which can be attributed to the 

insertion/deinsertion of Li from the MnO2 matrix [46, 47, 48]. 

 

 

 

 

 

 

 



164 

 

Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

 

Figure 11 : Cyclic voltammetry of (a) LiAl/MnO2, (b) Li/LiAl and (c) Li/MnO2 at scanning 

rate 0.015 mV/s. 
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Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

phase and the ratio / ≈ 1/3. In discharged state for the fresh cell  phase becomes higher 

than , with a ratio / ≈ 2. 

Table 6: Relative quantity of αLiAl and βLiAl phases at discharged and charged states for 

fresh and aged cells. 

%  mass α LiAl β LiAl 

LiAl charged (fresh) 23 % 77 % 

LiAl discharged (fresh) 64 % 36 % 

LiAl charged (aged) 25 % 75 % 

LiAl discharged (aged) 29 % 71 % 

 

For the aged cell in charged state the ratio /  is approximately the same as for the 

fresh one (≈ 1/3). 

However, in discharged state, conversely to the fresh one, this ratio does not change (/ ≈ 

1/3) indicating that the lithium cannot be extracted from the alloys.  

For the positive electrode due to its amorphous nature, the XRD analysis does not give 

exploitable information. 

Figure 19 presented SEM micrographs of fresh and aged LiAl electrode. The fresh 

negative active material consists of compact particles with a size of 60-70µm. After the aging 

the negative active material is converted into a porous mass constituted by particles with 

much smaller size in the range of 10µm. 
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Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 

IV.6. Conclusions 

The aim of this part of the thesis was to study the aging mechanisms in LiAl/MnO2 cells by 

in-situ AE monitoring and post-mortem analyses (XRD and SEM).  

It was demonstrated that acoustic emission technique is able to detect cracking in LiAl/MnO2 

cells. The main capacity fade phenomena are particle fracturing concerning the positive 

electrode MnO2 and irreversible / LiAl alloy phase transition which appears at the negative 

electrode. The capacity fading (state of health) correlates well with the fading of the Acoustic 

Emission activity suggesting that the latter can be used as a battery state of health (SOH) 

indicator. A specific signal treatment like spectral analysis can be used further as a component 

of the battery management system. 

During the normal operation all acoustic activity events are characterized only in the 

frequency domain between 250 kHz and 400 kHz corresponding to the mechanical stress 

through aging mechanism in both active materials. 

Under abuse conditions (overcharge/overdischarge) acoustic events remain with the same 

characteristic frequencies observed during normal cycling and related to the formation of 

fracture in the active materials. Any additional phenomena like gas formation or electrolyte 

degradation were detected. 

The acoustic emission signal detected during the discharge can be used to diagnose weak cells 

in the pack. If three or more sensors are installed in the pack, these weak cells can be 

identified precisely using triangulation of the signals. 
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Chapter IV-Evaluation of Acoustic Emission as a suitable tool for ageing characterization of LiAl/MnO2 cell. 
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General Conclusion 

The objective of this thesis was to bring prove(s) that the acoustic emission technique 

is a suitable to improve the knowledge about the electrochemical processes occurring inside 

the Li-ion cell under normal or abuse operating and, for a second part, to evaluate its 

capability to deliver new types of state of charge and state of health indicators.  

Considering the results presented in the chapters III and IV, we have given some proves 

which demonstrate that this is really possible.  

In the beginning of chapter III, the formation process of Graphite/LiFePO4 cells has 

been studied in details. It has been established, by separately characterization of each 

electrode that the acoustic emission during this first formation charge is principally generated 

by the graphite electrode. The acoustic activity is produced by the electrochemical reactions 

involved in the formation of the passivation film (gas emission, cracking of the edges of the 

graphite planes) and by the successive lithium insertion stages (opening of the graphene 

planes, sudden break of defects inside the structure with the increase of the insertion rate). 

The formation step, considered as crucial to guarantee the best performances of the cell in 

time regarding the self-discharge and the capacity fading, could be managed more precisely 

by adapting for example the profile of the current. We have observed that a film formed with 

currents higher then C/20h leads to better performances in comparison with cells formed with 

C/50h or C/100h. We proposed also a method to define the origin of the waves and to localize 

them within the cell thanks to the presence of the two acoustic sensors. Abuse tests have been 

also performed indicating that the acoustic emission can prevent dangerous events like 

overcharge and consequently it could contribute to secure the technology. 

In the chapter IV, we have studied the cycling behavior of commercial LiAl/MnO2 

cells. We have observed that the acoustic activity is stronger at the end of the discharge when 

the insertion of lithium from MnO2 and the decrease of the concentration of lithium of the 

alloy occur. The capacity loss can be correlated with a decrease of the acoustic activity. XRD 

analyses on fresh and aged LiAl materials showed that the -phase becomes predominant over 

the -phase during cycling. It appears that the most lithiated zones within the alloy are not 
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able to be delithiated certainly because of the volume expansion leading to disconnections 

within the electrode active material. 

The acoustic activity monitoring allowed the access to new types of parameters (hits, 

frequency, absolute energy…) which can lead to a innovate approach to identify and 

characterize the electrochemical mechanisms within the lithium-ion cells. The reported results 

opened new perspectives for management of the formation process especially for the cells 

integrating graphite negative electrodes. In parallel, we have demonstrated that the aging of 

cells with lithium alloy electrodes can be evaluated by AE and the analysis the evolution of 

the acoustic activity provide a new type of state of health indication. 

In perspective, it would be interesting to continue this study more deeply in the several 

following directions: 

 Exploring other types of battery technologies like LiCoO2, NMC, LTO, Zebra, lead-

acid, 

 Testing of batteries with higher capacity, and different designs (spirally-wound, 

prismatic) and packaging (aluminum casing, soft pouch) as well as complete packs 

including multiple cells in series and parallel, 

 Further evaluation of the safety aspects in order to prevent thermal runway, explosion, 

etc…, 

 To use advanced methods to identify the origin and the location of the different 

sources of events, 

 To study further the AE evolution during the formation of bigger cells of various Li-

ion technologies in order to implement this method in the industrial manufacturing of 

the Li-ion batteries. 
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Glossary 

AE Acoustic Emission 

AE Absolute Energy [aJ] 

AET Acoustic Emission Technique 

AFM Atomic Force Spectroscopy 

ARC Accelerated Rate Calorimetry 

BMS Battery Management System 

CC Constant Current 

CC/CV Constant Current/ Constant Voltage 

CVA Cyclic Voltammetry 

CE Counter Electrode 

Cf 
Full Discharge capacity [mAh] 

Cnom Nominal capacity [mAh] 

Cres 
Residual discharge capacity [mAh] 

Cth 
Theoretical capacity [mAh]  

CPAM Specific Capacity of Positive Active Material [mAh/g] 

CNAM Specific Capacity of Negative Active Material [mAh/g] 

CLi
* Concentration of lithium in the intercalation compound [mol/cm3] 

CLi 
Concentration of lithium in the alloy at the starting state [mol/cm3] 

CD Capacitance 

CMC Carboxy Methyl Cellulose  

CPEf 
Constant Phase Element of Passivation film capacitance 

CPEdl 
Constant Phase Element of Electric double layer capacitance  

D Diffusion coefficient of lithium [cm2 /s] 

DOD Depth of Discharge 

DSC Differential Scanning Calorimetry 

DMC Dimethyl carbonate 

EV Electrical Vehicle 

EMF Electromotive force 

EC  Ethylene Carbonate 



191 

 

 

 

EQCM Electrochemical Quartz Crystal Microscopy 

EIS Electrochemical Impedance Spectroscopy 

Eth 
Electrochemical thermodynamic potential of electrode 

 Electrode overpotential  

f max/min 
Frequency range 

FFT Fast Fourier Transformation 

FTIR Fourier Transformation Infra-Red Spectroscopy 

F Faraday constant (96485 C/mol) 

GIC Graphite Intercalation compounds 

HEV Hybrid Electrical Vehicle 

HDT Hit Definition Time 

HLT Hit Lockout Time 

NDT Non Destructive Technique 

NBR Nitrile Butadiene Rubber 

NMR 1-methyl 2-pyrolidone 

PHEV Plugin Hybrid Electrical Vehicle 

PDT Peak Definition Time 

PC Propylene Carbonate 

PVDF Polyvinylidene fluoride 

Qch 
Injected charge [mAh] 

Q Ongoing amount of electricity [mAh] 

Rf 
Resistance of the passivation film 

Rct 
Charge transfer resistance 

SOC State of Charge 

SOH State of Health 

SOS State of Security 

SOF State of Formation 

SEM Scanning electron Microscopy 

SEI Solid Electrolyte Interface 

SHE Standard Hydrogen Electrode 
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TEM Transmission Electron Microscopy 

TGA Thermo Gravimetric Analysis 

XRD X-ray Diffraction 

XPS X-ray Photoelectron Spectroscopy 

z Number of electrons 

WE Working electrode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



193 

 

 

 

Appendix 1: Valorization of results from the thesis 

Publications 

1. N. Kircheva, P-X.Thivel, S.Genies, D. Brun –Buisson and Y. Bultel, “ESC Trans.”, 35 

(14), (2011), 19-26. 

2. N. Kircheva, P-X.Thivel, S.Genies, D.Brun –Buisson, “Journal Electrochem. Soc.”, Vol. 

159, (2012),  A18-A25. 

3. N. Kircheva, S.Tant, B. Legros, S. Genies, S. Rosisni, P-X.Thivel “EWGAE-ICAE 

proceeding”, (2012). 

4.  N. Kircheva, S.Genies, C. Chabrol, P-X.Thivel, “Electrochimica Acta”, in press (2012). 

Patent applications 

1. S. Genies, D. Brun-Buisson, N. Kircheva, P.-X. Thivel,  “Procède de Surveillance d’une 

batterie Li-ion et dispositif de surveillance pour mise en ouvertures”, N° E.N.11 53663 

(29/04/2011). 

2. S. Genies, N. Kircheva, P.-X. Thivel, S. Hing , “Utilisation des signaux d’émission 

acoustique comme indicateur d’état de santé et de sécurité”, N° DD13766ST (01/07/2012). 

Presentation of the results 

1. N.Kircheva, P-X.Thivel, S.Genies, D.Brun –Buisson and Y.Bultel, “Study of SEI formation 

in Li-Ion batteries by Acoustic Emission technique”, lecture by N.Kircheva on the 219th ESC 

Meeting, Montréal May 1 – 6, 2011 

2.N.Kircheva, P-X.Thivel, S.Genies, “Contribution of the Acoustic Emission to study 

behavior of the MCMB / LiFePO4 batteries ”, lecture by N.Kircheva on the  GEFCI Meeting, 

Balaruc les Bains Mars 12 – 15, 2012. 

3. P-X.Thivel, N.Kircheva, S.Tant, B. Legros, S. Genies, S. Rosisni, “Acoustic Methods as a 

Tool for Management of Electrochemical Process of Energy”, lecture by P.-X. Thivel on the 

EWGAE-ICAE Meeting, Granada12 – 15 September, 2012. 
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