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Abstract

Medical images have been widely used in modern medicine to depict the anatomy or

function for both clinical purposes and for studying normal anatomy. Analyzing medical

images efficiently and with high accuracy is a crucial step. The high-dimensionality

and the non-linear nature of medical imaging data makes their analysis a difficult and

challenging problem. In this thesis, we address the medical image analysis from the

viewpoint of statistical learning theory and we concentrate especially on the use of

regularization methods and graph representation and comparison.

First, we approach the problem of graph representation and comparison for analyzing

medical images. Graphs are a commonly used technique to represent data with inherited

structure. Exploiting these data, requires the ability to efficiently compare and represent

graphs. Unfortunately, standard solutions to these problems are either NP-hard, hard to

parametrize and adapt to the problem at hand or not expressive enough. Graph kernels,

which have been introduced in the machine learning community the last decade, are a

promising solution to the aforementioned problems.

Despite the significant progress in the design and improvement of graph kernels in the

past few years, existing graph kernels focus on either unlabeled or discretely labeled

graphs, while efficient and expressive representation and comparison of graphs with com-

plex labels, such as real numbers and high-dimensional vectors, remains an open research

problem. We introduce a novel method, the pyramid quantized Weisfeiler-Lehman graph

representation to tackle the graph comparison and representation problem for continu-

ous vector labeled graphs. Our algorithm considers statistics of subtree patterns based

on the Weisfeiler-Lehman algorithm and uses a pyramid quantization strategy to deter-

mine a logarithmic number of discrete labellings. As a result, we approximate a graph

representation with continuous or vector valued labels as a sequence of graphs discrete

labels with increasing granularity. We evaluate our proposed algorithm on two different

tasks with real datasets, on a fMRI analysis task and on the generic problem of 3D shape

classification.
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Second, we examine different regularization methods for analyzing medical images, and

more specifically MRI data. Regularization methods are a powerful tool for improving

the predicted performance and avoid overfitting by introducing additional information

to an ill-posed problem, such as the analysis of medical images. Towards this direction,

we introduce a novel regularization method, the k-support regularized Support Vector

Machine. This algorithm extends the ℓ1 regularized SVM to a mixed norm of both ℓ1

and ℓ2 norms. This enables the use of a correlated sparsity regularization with the power

of the SVM framework. We evaluate our novel algorithm in a neuromuscular disease

classification task using MRI-based markers. We furthermore explore the importance of

diffusion tensor imaging for the discrimination between neuromuscular conditions.

Overall, as graphs are fundamental mathematical objects and regularization methods are

widely used to control ill-pose problems, both the pyramid quantized Weisfeiler-Lehman

graph representation and the k-support regularized SVM are potentially applicable to a

wide range of applications domains in computer vision, analysis of medical images and

data mining.

Keywords: Weisfeiler-Lehman algorithm, graph kernels, regularization, k-support norm,

MRI, DTI, 3D shape classification



Résumé

Les images médicales ont largement utilisées en médicine moderne afin de représenter

l’anatomie ou les fonctions, à la fois dans un objectif cliniques ou d’étude de l’anato-

mie normale. L’analyse efficace et précise d’ images médicales est une étape critique.

La dimensionnalité élévée et le caractère non-linéaire des données d’imagerie médicale

rendent leur analyse difficile. Dans cette thèse, nous nous intéressons à l’analyse d’images

médicales du point de vue de la théorie statistique de l’appretissage et nous concentrons

spécialement sur l’utilisation de méthodes de régularisation et de la représentation et

comparaison des graphes.

Tout d’abord, nous nous intéressons un problème de représentation et comparaison des

graphes pour l’analyse des images médicales et de façon plus générale. Les graphes sont

une technique largement utilisée pour la représentation des données ayant une structure

héritée. L’exploitation des ces données nécessite la capacité de comparer et représenter

efficacement des graphes. Malheureusement, les solutions usuelles à ces problèmes sont

soit NP-complets, difficiles à paramétrer et à adapter au problème donnée, soit insuffi-

samment expressives. Les noyaux sur graphes, introduits à la communauté de l’appren-

tissage statistique au cours de la dernière décennie, offrent une solution promettante aux

problèmes mentionnés ci-dessus.

Malgré le progrès significatif dans le domaine de la conception et amélioration des noyaux

sur graphes au cours des dernières années, les noyaux sur graphes existants se concentrent

à des graphes non-labellisés ou labellisés de façon dicrète, tandis que la représentation

et comparaison efficaces et expressives de graphes avec des labels complexe, comme des

nombres réels ou des vecteurs à grande dimension, demeure une problème de recherch

ouvert. Nous introduisons une nouvelle méthode, l’algorithme de Weisfeiler-Lehman py-

ramidal et quantifié (pyramid quantized Weisfeiler-Lehman algorithm), afin d’aborder

le problème de la représentation et comparaison des graphes labellisés pqr des vecteurs

continus. Notre algorithme considère les statistiques de motifs sous arbre, basé sur l’al-

gorithme Weisfeiler-Lehman ; il utilise une stratégie de quantification pyramidale pour

11
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déterminer un nombre logarithmique de labels discrets. Par conséquent, nous approxi-

mons une représentation de graphe avec des labels continus ou vecteur, comme une

séquence de graphes avec des labels discrèts de plus en plus granulaires. Nous évaluons

notre algorithme proposé sur deux tâches différentes et des bases des données réelles :

un tâché d’une analyse IRMf et une tâche de problème générique de la classification de

formes en trois dimensions.

Ensuite, nous examinons différentes méthodes de régularisation pour analyser les images

médicales, et plus spécifiquement des données d’IRM. Les méthodes de régularisation

sont un outil puissant pour l’amélioration de la performance prédite et pour éviter le

sur-apprentissage via l’introduction d’informations additionelles à un problème mal-posé

tel que l’analyse d’images médicales. Dans cette direction, nous introduisons une nou-

velle méthode de régularisation, la k-support regularized Support Vector Machine (les

machines à vecteurs de support régularisées k-support). Cet algorithme étend la SVM

régularisée ℓ1 à une norme mixte de toutes les deux normes ℓ1 et ℓ2. Ceci permet l’utilisa-

tion d’une régularisation parcimonieuse corrélée à la puissance des SVM. Nous évaluons

notre original algorithme sur une tâche de classification de maladies neuromusculaires,

en utilisant des marqueurs à base de IRM. Par la suite, nous explorons l’importance de

l’imagerie du tenseur de diffusion pour la discrimination entre les conditions neuromus-

culaires.

Globalement, les graphes étqnt des objets mathématiques fondamentaux et les méthodes

de régularisation étant largement utilisées pour contrôler des problèmes mal-posés, l’ al-

gorithme de Weisfeiler-Lehman pyramidal et quantifié (pyramid quantized Weisfeiler-

Lehman algorithm) et la SVM régularisées k-support (k-support regularized SVM),

pourraient bien être appliqués sur un grand éventail d’applications dans les domaines

de vision artificielle, l’analyse d’images médicales et l’exploration de données.

Mots-clefs : algorithme Weisfeiler-Lehman, noyaux de graphes, régularisation, norme

k-support, IRM, IDT, classification de la forme en trois dimensions.
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Chapter 1

Introduction

1.1 Motivation

Medical imaging consists of a number of different techniques that create images of the

human body showing anatomy or function and are used for clinical purposes, such as

diagnosing or monitoring the progression of a disease, or for studying normal anatomy

and physiology. Over the years, different modalities of medical imaging have been de-

veloped, including (a) x-ray based methods - such as conventional x-rays, computed

tomography and mammography - (b) magnetic resonance imaging (MRI) - such as T1-

weighted images and diffusion tensor imaging - (c) molecular imaging - such as positron

emission tomography (PET) - and (d) ultrasound, each with their own advantages and

disadvantages. They are widely used in daily clinical routines, due to the fact that are

generally non-invasive, relatively fast, allowing to image the human body and providing

relevant anatomical or function information to the doctor, while minimizing the patient’s

discomfort.

The medical imaging field continuously improves as technology evolves providing more

accurate and rich information. In order to extract the relevant information and provide

it to the physician, analyzing medical images is an essential step in modern medicine.

The high dimensionality and the non-linearity of the data makes medical image analysis

a difficult and challenging problem. In this thesis, we approach medical image analysis

from the perspective of statistical learning theory [Vapnik, 1995, Hastie et al., 2009] and

more specifically we focus on the use of graph representation and different regularization

methods.

Graphs are a general, powerful, flexible and natural way to mathematically represent

complex data with integrated structure. A graph consists of a set of nodes – which

23
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represents the objects of interest – and a set of edges – which represents the relations

between them [Diestel, 2010, Gibbons, 1985]. For example, a molecule can be represented

as graph by taking the atoms as nodes, while when a pair of atoms is connected with a

bond this relationship can be represented with an edge. Extra information, such as the

type of the chemical bond in the previous example, can be incorporated into the graph

as labels in the edges. Applications involving graph representation are numerous and

they occur in a number of different fields. We list below examples from a number of

representative fields.

Computer vision and biomedical imaging Graphs have been widely used in com-

puter vision problems over the past decades. There are often used for representing

images – either as grid of pixels or as a graph of adjacency regions or segmented parts –

and for solving problems, such as segmentation [Greig et al., 1989] or finding correspon-

dences between two images [Torresani et al., 2008]. Graphs are also used in biomedical

image analysis to represent and model organs, such as the brain [Ng et al., 2012a, Rao

et al., 2010], which can potentially be used in diagnosis or studying the human body.

Bioinformatics Advances in technology in the last 15 years allow the generation of

vast amount of genome sequences and gene expression levels, as well as the detection

of biomolecular interactions. These various data produce various types of graph rep-

resentations, such as protein-protein interactions [Canutescu et al., 2003], metabolic

pathways [Wagner and Fell, 2001], transcriptional pathways and evolutionary relation-

ships [Goldstein, 1979]. A number of interesting questions raise from the analysis of these

graphs such as which genes regulate others, how the phenotype is influenced, whether

we can we predict the interaction between a pair of proteins based on their structure,

etc. These graph representations can contain complex labels and incomplete information

making their analysis a challenging task.

Social networks The wide spread use of internet in more and more domains with

more and more people, the augmentation of email exchange, the expand of new means

of communications such as blogs, social networks or instant messages, create a vast

amount of data that can be represented as graphs. The analysis of these networks is

both of scientific and commercial interest. On the one hand, psychologists want to

study the complex social dynamics among humans and biologists want to explore the

social rules in a group of animals. On the other hand, industries want to analyze these

networks for marketing purposes. Detecting influential individuals in a group of people

is relevant for marketing, as companies could then focus their advertising efforts on these

individuals, which can influence the behavior of the whole group.

Chemoinformatics Chemistry is another domain where graph representation and

graph comparison is applied [Hapke, 2005]. Finding chemical compounds with a specific
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property is a common problem in chemistry and pharmacology. A common assumption

is that molecules with similar structure share also similar functional properties and as

chemical molecules have been widely represented as graph – where atoms represent ver-

tices and bonds represent the edges – so being able to compare graphs and find similarity

among them is a crucial problem in chemoinformatics.

On the other hand, regularization, in the fields of machine learning and statistics, refers

to the process of introducing additional information in order to solve an ill-posed prob-

lem or to prevent overfitting [Hastie et al., 2009]. This information usually has the

form of a penalty on the complexity of the learned model or restrictions for smoothness.

Regularizers have been extensively used in various problems, among them the recon-

struction of PET images [Kaufman and Neumaier, 1996], image segmentation [Woolrich

et al., 2005] and classification or regression problems.

In this thesis, we focus on the following tasks: (a) the analysis of fMRI data through the

representation as labeled graphs and (b) the analysis of MRI data using regularization

methods. Towards this direction, we also introduce two novel learning algorithms, the

pyramid quantized Weisfeiler-Lehman graph representation and the k-support regularized

SVM.

1.2 Statistical learning

Given a set of n paired observations {(xi, yi)}1≤i≤n ∈ R
d × R that is assumed to be

independent and identically drawn from the joint distribution pXY, the goal of statistical

learning is to learn a function f(x) ∈ F for predicting the output y given the input x.

This prediction function f(x) is built via the evaluation of a loss function L(f(x), y)
that penalizes errors in prediction. This leads us to a criterion for choosing f , the risk

or generalization error of the prediction function which is defined as:

R(f) =
∫

L(f(x), y)dpXY(x, y), (1.1)

where L is a loss function and pXY is the joint distribution, covering the probability of

a label and an input being uncover together. Ideally, we would like to learn a prediction

function f that will minimize the risk. However, since the joint probability pXY is

unknown, the risk is also unknown. Nonetheless we can approximate the risk R(f) and
empirically calculate it through the given set of paired observation {(xi, yi)}1≤i≤n ∈
R
d × R, that is called the training set. Assuming that the training set is sampled

independently and from the same joint distribution pXY (i.e. the i.i.d assumption holds)
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then the risk can be approximated as follows:

R(f) ≈ R̂(f) = 1

n

n∑

i=1

L(f(xi), yi) (1.2)

Equation 1.2 is called the empirical risk and as n→∞, the empirical risk will approach

the true risk, R̂(f) → R(f) and we have statistical consistency for an estimator that

returns argminf∈F R̂(f).

In real datasets we always have finite sample sizes, so choosing a prediction function

f ∈ F that minimizes the empirical risk (see Equation 1.2), often leads to overfitting.

This means that the empirical risk R̂ is much lower that the real risk R. One way to

avoid overfitting on the training dataset and being able to generalize well on new data

is by adding a regularization term λΩ(f), where f ∈ F is the prediction function we

would like to learn, λ is a scalar parameter that controls the degree of regularization and

Ω : F → R is a scalar valued function that penalizes the “complexity” of the prediction

function. A number of regularizers have been proposed in the literature, among them

the Tikhonov regularization [Tikhonov, 1943], the LASSO [Tibshirani, 1996] and Elastic

Net [Zou and Hastie, 2005]. By adding the regularization term to the empirical risk

from Equation 1.2 the problem is formulated as follows:

argmin
f∈F

λΩ(f) +
1

n

n∑

i=1

L(f(xi), yi) (1.3)

For the problem defined in Equation 1.3 in this thesis we examine novel combinations

of regularizers and prediction functions for the analysis of medical images. We justify

those choices both theoretically and empirically in the following chapters.

1.3 Thesis outline

The thesis is organized as follows: we first concentrate on the graph comparison prob-

lem and on our proposed method that efficiently compares graphs with continuous or

vector labels, the pyramid quantized Weisfeiler-Lehman algorithm. To the best of our

knowledge, this is the first method for efficiently comparing graphs with continuous

vector labels. In Chapter 2 we start by introducing basic notations and background

from graph theory (see Section 2.1) and we then explore the graph comparison problem

in detail (see Section 2.2 and Section 2.3). In Chapter 3 we introduce our novel algo-

rithm, the pyramid quantized Weisfeiler-Lehman algorithm. Our algorithm is based on

the Weisfeiler-Lehman test of isomorphism, described in Section 3.1, which was recently

employed as a graph kernel to compare graphs with discrete labels (see Section 3.2). In
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order to make use of the efficiency of the Weisfeler-Lehman algorithm and apply it to

continuous or vector labeled graphs, in Section 3.3 we present a pyramid quantization

strategy and transform the graph representation with continuous or vector valued labels

as a sequence of graphs with increasingly granular discrete labels. Finally, we explore

different tactics for combining information from the various pyramid quantization levels

in Section 3.4.

In Chapter 4 we evaluate our proposed algorithm on two different tasks. The first

one, described in Section 4.1, is from the area of fMRI analysis and its objective is to

discriminate between cocaine abusers and healthy control subjects. The second one,

described in Section 4.2, is from the area of 3D shape classification. In this task, we use

two datasets with 3D meshes, one that comes from the medical area, whose objective is

to discriminate between healthy and patient subjects that suffer from a neuromuscular

dystrophy, while in the second dataset we tackle a multiclass problem of generic object

classification.

Apart from the graph comparison problem, in Chapter 5 we explore different regular-

ization methods for analyzing medical images, and more specifically MRI data. In Sec-

tion 5.1 we present the regularizers under investigation and we also introduce our novel

learning algorithm the k-support regularized SVM (see Section 5.1.3.2). In our first ex-

periment in Section 5.2, we investigate the use of regularization methods, the well-known

LASSO and Elastic Net and the newly introduced k-support norm with squared loss,

in the analysis of fMRI images. In the following Section 5.3, we evaluate our newly

introduced learning algorithm, the k-support regularized SVM in the discriminative task

of neuromuscular disease classification using features extracted from T1-weighted, T2-

weighted and diffusion tensor imaging. Although DTI imaging is widely used in neu-

roimaging studies, it has been recently introduced in the clinical analysis of the calf

muscle and we also investigate its significance for neuromuscular classification. Finally,

in Chapter 6, we conclude the thesis by summarizing the contributions (Section 6.1) and

by offering some future perspectives (Section 6.2).

1.4 Published work appearing in this thesis

This thesis contains material, modified or in extended form, from several published

articles. We list these publications below, indicating the corresponding sections of this

manuscript.

• Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, and Matthew B.

Blaschko. MRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics. In 4th
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International Workhop on Machine Learning in Medical Imaging, Nagoya, Japan,

September 2013a

Parts from Section 3.3.1 and 3.4.2 from Chapter 3 and Section 4.1 is based on the

work presented in this paper.

• Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, and Matthew B.

Blaschko. FMRI analysis of cocaine addiction using k-support sparsity. In Inter-

national Symposium on Biomedical Imaging, San Francisco, USA, January 2013b

Section 5.2 of Chapter 5 is based on the work presented in this paper.

• Katerina Gkirtzou, Jean-François Deux, Guillaume Bassez, Aristeidis Sotiras, Alain

Rahmouni, Thibault Varacca, Nikos Paragios, and Matthew B. Blaschko. Sparse

classification with MRI based markers for neuromuscular disease categorization.

In 4th International Workhop on Machine Learning in Medical Imaging, Nagoya,

Japan, September 2013c

Section 5.1.3.2 and Section 5.3 of Chapter 5 is based on the work presented in this

paper.

Certain parts of this thesis are based on unpublished work done in collaboration with

other researchers. “Data-guided binning” from Section 3.3.1, Section 3.3.2, Section 3.3.3

and Section 3.4.1 are based on unpublished research with Matthew B. Blaschko. Mate-

rial in Section 4.2 is based on unpublished research with Nikos Paragios and Matthew

B. Blaschko.



Chapter 2

Related work on graph

comparison

Graphs are commonly used to represent objects and the relationships among them in

a general, powerful and flexible way. Graphs consist of a set of nodes, which typically

represents the objects of interest, and a set of edges, which expresses the relationships

among the objects. Graph representations are widely employed in a number of areas,

such as bioinfomatics, social network analysis, etc. (for more details see Section 1.1).

In this chapter we explore the graph comparison problem in detail. We first introduce

key concepts and notation from graph theory in Section 2.1 and we then review the most

related work on the graph comparison problem, which can be classified in the following

categories, (a) graph comparison methods (Section 2.2) and (b) graph kernel methods

(Section 2.3).

2.1 Graph theory basics and notation

In order to understand the importance of graphs and especially the problem of graph

comparison, we will need some basic background of graph theory. In this section we will

define the terminology and the basic notation that will be used for the rest of the thesis.

Most of the graph-theoretic terminology follows the monograph of Diestel [Diestel, 2010]

or the monograph of Gibbons [Gibbons, 1985].

29
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2.1.1 Directed, undirected and labeled graphs and subgraphs

Definition 2.1 (Graph). A graph G is a pair of sets (V,E), where V is the vertex set

and its elements are called vertices (also known as nodes or points) and E ⊆ V × V is

the edge set which represents a binary relation on V and its elements are called edges

(also known as arcs or lines).

The order or size of a graph G is defined as the number of vertices |V |. Graphs are

finite, infinite, countable and so on according to their order.

Definition 2.2 (Directed and Undirected graph). A graph G = (V,E) is called

directed when the edge set E consists of ordered pairs of vertices, that is (u, v) ∈ E is

considered to be directed from u to v and u, v ∈ V . When the edge set E contains

unordered pairs , that is (u, v) ∈ E and (v, u) ∈ E are considered to be the same edge

∀u, v ∈ V , it is called undirected.

1

2

4

3

6

5

7

(a) Directed Graph

1

2

4

3

6

5

7

(b) Undirected Graph

1

2

4 5

7

(c) Induced Subgraph

Figure 2.1: Figure 2.1(a) shows an example of a di-
rected graph with V = {1, 2, 3, 4, 5, 6, 7} and E =
{(1, 2), (1, 4), (2, 3), (2, 6), (3, 6), (4, 1), (4, 2), (4, 3), (5, 5), (5, 7)}. Figure 2.1(b) shows
an undirected graph similar to the direct graph of Figure 2.1(a). Figure 2.1(c) shows
the induced subgraph of the graph from Figure 2.1(a) when V ′ = {1, 2, 4, 5, 7}.

Figure 2.1(a) and Figure 2.1(b) show examples of directed and undirected graphs respec-

tively. The vertices are represented with circles, while edges are represented as arrows

for the directed graph and as lines for the undirected one. When a graph does not

contain multiple edges between the same pair of nodes (and of the same direction in a

directed graph) as well as self-loops – edges from a vertex to itself – then it is called

simple graph. In this thesis, we mainly focus on simple graphs.

A graph can have labels on its nodes and/or on its edges and in this case the graph is

called labeled.

Definition 2.3 (Labeled Graph). A labeled graph is defined as a triplet G = (V,E,L),
where V is the vertex set, E is the edge set and L : X → Σ is a function assigning a

label from an alphabet Σ to each element of the set X, which can be either V , E or

V ∪ E depending on whether only nodes, only edges or both are labeled.
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Graph

Figure 2.2: Figure 2.2(a) shows a molecule of acetaminophen as an example of node-
labeled graph, Figure 2.2(b) shows a flow network as example of edge-labeled graph,
while Figure 2.2(c) shows an abstract map, where nodes represent different cities, edges
represent connections between cities and the distance between them is used as edge
label, as an example of graph with labels in both nodes and edges.

A graph with labels on its nodes is called node-labeled, a graph with labels on its edges

is called edge-labeled. The most common cases of labeled graphs are the weighted graphs

where each edge is associated with a continuous value, also known as weight. Exam-

ples of node-labeled, edge-labeled and both node and edge labeled graphs can be seen

in Figure 2.2.

Definition 2.4 (Induced subgraph). A graph G′ = (V ′, E′) is a subgraph of G =

(V,E) if V ′ ⊆ V and E′ ⊆ E and is denoted as G′ ⊆ G. Given a set V ′ ⊆ V the subgraph

ofG that is induced by V ′ is the graphG′ = (V ′, E′) where E′ = {(u, v) ∈ E : u, v ∈ V ′}.

An example of an induced subgraph can be seen in Figure 2.1(c)

2.1.2 Neighborhood in graphs

Given an edge e = (u, v) ∈ E, we say that e is incident with u or v when u or v is an

end-point of the edge e and nodes u, v are said to be adjacent or neighbors. Similarly,

when two edges ei 6= ej share a common node then they are also adjacent.
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Definition 2.5 (Neighborhood and Degree of node). The neighborhood of a vertex

v in a graph G, denoted as N(v), is the induced subgraph of G consisting of all vertices

adjacent to v and all edges connecting two such vertices. The degree of a vertex u,

denoted as d(u), is the number of edges incident with u.

a i

b

h

c

g

f

d

e

j

Figure 2.3: The neighborhood of node f (in red color) is the set of nodes {c, d, e, g}
depicted with green color. The degree of this node f is four.

An example of the neighborhood of a node and its degree can be seen in Figure 2.3. The

neighborhood information of a graph is commonly represented as an adjacency matrix,

which is defined as follows:

Definition 2.6 (Adjacency matrix). The adjacency matrix A = (Aij)n×n of a graph

G = (V,E) is defined as :

Aij =

{

1 if (ui, uj) ∈ E,

0 otherwise
(2.1)

where ui and uj are nodes from G.

2.1.3 Walks, paths, cycles, trees, subtrees and subtree patterns

Definition 2.7 (Walk, path and cycle). A walk w of length l in a graph G = (V,E)

is a sequence of nodes and adjacent edges (v1, e1, v2, e2, . . . , el−1, vl) such that ei =

(vi, vi+1) ∀i 1 ≤ i ≤ (l − 1). A path is a walk that contains only distinct nodes, while a

cycle is a closed walk, where v1 = vl.

Sometimes in the literature the walk is also called a path, in that case the path is then

called a simple path. Illustrations of a walk, a path and a cycle on a graph can be found

in Figure 2.4.

Definition 2.8 (Connected and disconnected graph). A graph G = (V,E) is said

to be connected if for every pair of distinct vertices u, v ∈ V there is a path joining them.

A graph that is not connected is referred to as disconnected. The distance between two

vertices u, v ∈ V in graph G = (V,E) is length of the shortest path from u to v in G, or

∞ if such path does not exist.
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(c) Graph Cycle

Figure 2.4: On the undirected graphs G shown above we represent with red arrows
examples of a walk from node a to node f in Figure 2.4(a), a path from node a to node
f in Figure 2.4(b) and a cycle from node a in Figure 2.4(c).

Definition 2.9 (Forest, tree and subtree). A graph G when it has no cycles is called

acyclic or forest. A connected forest is called tree. A rooted tree is a tree with a specified

root vertex v0. A subtree is a subgraph of a graph that contains no cycles. When it has

also a designated root node is called rooted subtree.

The height of a rooted tree or subtree is the maximum distance between the designated

root vertex and any other node in the tree or subtree respectively. Similarly to the way

of the notion of walk is extending the notion of path by allowing nodes [Bach, 2008]

extended the notion of subtrees to subtree patterns, also known as tree-walks, which can

have nodes that are equal.
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Figure 2.5: On the right is the initial graph and on the left a subtree pattern of height
2 rooted at vertex g, depicted with red color. It should be noted that the repetitions
of vertices on the subtree pattern allows the pattern to be cycle-free.

Definition 2.10 (Subtree patterns). Subtree patterns are labeled trees extracted from

a labeled graph G for a given depth h and a given vertex v. The vertices in the subtree

pattern are labeled in accordance of the labels of the initial vertices in G, so the labels

of neighbors in the subtree pattern are also neighbors in the G. The subtree pattern

is represented by a tree structure T over the vertex set {1, . . . , |T |} and a sequence of

consistent but possibly non distinct labels L ∈ V |T |.

An example of subtree pattern is shown in Figure 2.5.

2.1.4 Graph and subgraph Isomorphism

The first step towards graph comparison is the ability to check whether two graphs are

identical or not. The problem of deciding that is called graph isomorphism and is defined

as follows:

Definition 2.11 (Graph Isomorphism). Let G = (V,E) and G′ = (V ′, E′) be two

graphs. We call G and G′ isomorphic and write G ≃ G′, if there exists a bijection

φ : V → V ′ with (u, v) ∈ E ⇔ (φ(u), φ(v)) ∈ E′ ∀u, v ∈ V .
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Figure 2.6: Two isomorphic representations of the K3,3 graph.

Such a map φ is called isomorphism and if G = G′ it is called automorphism. Figure 2.6

shows two graphs which are isomorphic, each being a representation of the well known

K3,3 graph.1 Apart from deciding whether two graphs are identical or not, one could

determine whether the graph G contains a subgraph that is isomorphic to G′, a problem

know as subgraph isomorphism.

Definition 2.12 (Subgraph Isomorphism). Let G = (V,E) and G′ = (V ′, E′) be

two graphs. We call G′ subgraph isomorphic to G, if there is a subgraph G0 = (V0, E0) ⊆
G : V0 ⊆ V,E0 = E ∩ (V0 × V0) such that exists a bijection φ : V0 → V ′ with (u, v) ∈
E0 ⇔ (φ(u), φ(v)) ∈ E′ ∀u, v ∈ V0.

2.2 Graph comparison methods

As graphs are rich representations of data with inherited structure, they are consequently

a promising tool in many domains, as we have already seen in Section 1.1. A common

and challenging problem when dealing with graphs is to be able to compare them and

provide a similarity measurement, a problem well-known as graph comparison.

Definition 2.13 (Graph Comparison). Given a set G of graphs, the problem of graph

comparison is defined as a function

k : G × G → R

such that k(G,G′) for G,G′ ∈ G quantifies the similarity of G and G′.

In this section we review classical approaches to this problem.

2.2.1 Isomorphism-based methods

A first approach towards this problem is to quantify whether two graphs are identical,

i.e. isomorphic (see Definition 2.11). This produce a binary similarity measure, which

1The Ki,j is a special family of graphs, known as bipartite graphs, that it is possible to partition the
vertices of the graph G into two subsets V1 and V2 such that every edge of G connects a vertex in V1 to
a vertex in V2 and i, j is the degree of every vertex in the V1 and V2 respectively.
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equals to 1 when the two graphs are isomorphic, otherwise equals to 0. Despite the

fact that this idea of graph isomorphic is intuitive, no efficient algorithm is known for

it. The graph isomorphism problem is known to be within NP, but neither a proof of

NP-completeness nor a polynomial time algorithm are known [Garey and Johnson, 1979,

Chapter 7]. Other similarity measures are based on concepts related to isomorphism,

such as subgraph isomorphism or the largest common subgraph. Subgraph isomorphism

(see Definition 2.12) is analogous to graph isomorphism but it could be used also when

two graphs have different sizes. Unlike, the graph isomorphism problem, the subgraph

isomorphism problem has been proven to be NP-complete [Garey and Johnson, 1979,

Section 3.2.1]. A similarity measure can also be defined based on the size of the largest

common subgraph in two graphs. Unfortunately, also the problem of finding the max-

imum common subgraph is known to be NP-hard [Garey and Johnson, 1979, Section

3.3].

2.2.2 Graph edit distances

Apart from being computationally expensive, similarity measures based on concepts of

isomorphism have another disadvantage. They are too restrictive in the sense that the

graphs have to be exactly identical or they should share large identical subgraphs, in

order to be consider similar. This is an important problem when we produce graphs

from noisy data. More flexible similarity measures that have been proposed in the

literature as part of the inexact graph matching problem are similarity measures based

on graph edit distances (GED) [Gao et al., 2010]. These GED algorithms are based

on the concept of transformation a graph to another one by a finite sequence of graph

edit operations, such as node addition or deletion, edge addition or deletion and node

or edge relabeling. These operations can have different costs and the similarity measure

is defined by the least-cost edit operation sequence. Figure 2.7 illustrates an example

of graph edit distance methodology for a pair of node labeled graphs. Unfortunately,

finding the optimal cost for a particular application is a hard problem, since it requires

solving NP-complete problems as intermediate steps.

2.3 Graph kernel methods

As we have seen in Section 2.2 the first approaches proposed to solve the graph compar-

ison problem suffer from intractable computational time, since in the worst case they

require exponential runtime, or are hard to parametrize. Another family of approaches,

that have been introduced the past few years, come from the statistical learning per-

spective. This family of approaches, known as Graph Kernels, tackles both the problem
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Figure 2.7: Example of the graph edit distances methods. Given two labeled graphs
G,G

′

a sequence of graph edit operations are applied to transform G to G
′

. More
specifically, the first operation is node deletion with its adjacency edges, the second
operation is node addition, then edge addition, followed by an edge deletion and a node
relabeling.

of graph representation and graph comparison through the exploitation of the graph

topology by decomposing the graph into substructures and aggregating statistics over

these substructures. This strategy considers a measure of similarity between the graphs

as a form of inner product.

Graph kernels are instances of the family of the R-convolution kernels by [Haussler,

1999]. R-convolution kernels are a generic way of constructing kernels on a set whose

elements are discrete structures such as strings, trees and graphs. The idea is based

of decomposing the complex object into discrete structures and compare the respective

objects by comparing all pairs of decompositions. Every new decomposition in the

graphs would yield a new graph kernel. A first approach would be to decompose the

graphs into all possible subgraphs. However, calculating all subgraphs is at least as hard
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Table 2.1: An overview of the graph kernel methods. From left to right we show the
type of subgraphs used, the algorithm, its complexity when that is known and whether
the kernel works on unlabeled, discretely, continuous or vector labeled graphs. Note
that n is the number of graphs under comparison, v is the maximal number of nodes, e
is the maximal number of edges, h is the height of subtree patterns, d is the maximum
degree and k is the size of graphlets.
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[Bach, 2008] X X

[Mahé and Vert, 2009] X X
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as deciding whether two graphs are isomorphic [Gärtner et al., 2003]. As a result, it is

necessary to limit the decomposition of the graphs only into specific types of subgraphs

that are computable in polynomial time [Vishwanathan et al., 2010, Shervashidze et al.,

2011].

There are three main categories of graph kernels, graph kernels based on (a) walks [Gärt-

ner et al., 2003] and paths [Borgwardt and Kriegel, 2005], (b) small size subgraphs [Sher-

vashidze et al., 2009] and (c) subtree patterns [Shervashidze et al., 2011]. Table 2.1 shows

a summary of the state of the art of graph kernels grouped per category, while we review

extensively each of these categories in the following Sections 2.3.1, 2.3.2 and 2.3.3.

2.3.1 Graph kernels based on walks and paths

Graph kernels based on walks and paths (see Definition 2.7) count the number of match-

ing pairs of walks and paths in two graphs respectively. Different proposed kernels

use different methods to compute similarities between walks and paths. For example,

Gärtner et al. propose a random walk kernel that counts the number of nodes in the

walk which have the same label, which requires O(v6) computational time for a pair of

graphs [Gärtner et al., 2003], where v is the number of vertices in the graphs. Vish-

wanathan in [Vishwanathan et al., 2010] reduced the runtime complexity of the random

walk kernel for a pair of graphs to O(v3) by restating the problem in terms of Kronecker

products. Although, this is an important gain in efficiency, allowing to compute kernel

on random walks faster by an order of magnitude, the complexity O(v3) is still too high
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for many applications. Apart from the computation time, kernels based on random walks

have to deal with two extra problems, the tottering problem and the halting problem.

The tottering problem [Mahé et al., 2004] raises from the fact that walks allow the rep-

etitions of nodes and edges, which means that the same node or edge can contribute

repeatedly in the similarity measure. The same can be said for shared cycles or paths

as well. Therefore, the similarity score between two graphs can drastically increase,

although they two graphs do not share many structural elements. The halting prob-

lem [Borgwardt, 2007] also arises from the fact that walks allow the repetitions of nodes.

As the repetition of nodes is allowed, the number of walks within a graph is infinitely

large. In order to halt the problem, a decaying factor is commonly used to downweight

longer walks. The effect of this decaying factor is that longer walks are completely

neglected compared to shorter walks.

The marginalized graph kernel [Mahé et al., 2004] proposed two extensions on the ran-

dom walk kernels to overcome both the tottering problem and reduce their computation

time. They modify the label of each vertex with the use of the Morgan index [Morgan,

1965], which is defined as

Definition 2.14 (Morgan Index). Given a graph G = (V,E), the Morgan index of

order k for node v ∈ V is defined as

Mk(G, v) =

{

1 if k = 0
∑

v′∈N(v)Mk−1(v
′) otherwise.

(2.2)

Note that the Morgan index of order k for a node v is the number of walks of length

k starting at v in that graph G. So incorporating the Morgan index into the label of

each vertex, it increases the specificity of labels by adding information with the number

of walks staring at that vertex. In addition, they proposed a modification to prevent

the walk from coming back to a vertex that was just visited. Another approach based

on dynamic programming to speed up the computations of the random walk kernel was

proposed in [Harchaoui and Bach, 2007], at the cost of considering only walks of fixed

size.

[Borgwardt and Kriegel, 2005] proposed a graph kernel that compares the length of

shortest path between pairs of nodes with matching source and sink labels in two graphs,

which requires O(v4) complexity time. Ralaivola in [Ralaivola et al., 2005] proposed a

specialized graph kernel for chemoinformatics. Their approach is based on molecular

fingerprinting techniques and counts labeled paths of length p that can be retrieved by

depth-first search from each vertex. This can be an efficient approach for graphs with

an average node degree of 2 or 3.
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2.3.2 Graph kernels on small size subgraphs

A number of graph kernels have been proposed in the literature that are based on lim-

ited size subgraph structures called graphlets. A naive computation of all graphlets of

a graph, without considering labels, requires O(vk) computations, where v is the num-

ber of nodes and k is the size of subgraphs, usually k ∈ {3, 4, 5}. Since enumerating

all graphlets is prohibitively expensive, even for small k values, [Shervashidze et al.,

2009] showed that sampling a fixed number of graphlets suffices to bound the deviation

of the empirical estimates of the graphlet distribution from the true distribution and

for graphs of degree bounded by d, the exact number of all graphlets of size k can be

determined in time O(vdk−1). Another kernel is the cyclic pattern kernels [Horváth

et al., 2004], which counts pairs of matching cyclic and tree patterns in two graphs. In

the general case, the cyclic pattern kernel is NP-hard, but in specific cases the kernel

can be computed efficiently. Finally [Costa and De Grave, 2010] proposed the neigh-

borhood subgraph pairwise distance kernel, which decomposes a graph into all pairs of

neighborhood subgraphs of small radius r at increasing distances d.

2.3.3 Graph kernels on subtree patterns

In 2003, Ramon and Gärtner were the first to introduce a graph kernel based on subtree

patterns [Ramon and Gaertner, 2003]. The Ramon-Gärtner subtree kernel with subtree

height h compares all pairs of nodes from two labeled graphs by iteratively comparing

their neighborhoods. Although the subtree kernel is more expressive than kernels based

on walks, unfortunately it is computationally expensive. For a set of n graphs it re-

quires O(n2v2h4d), where v is the number of nodes, h is the height of subtree patterns

considered and d is the maximum node degree in the graph set. Both subtree kernels by

Mahé and Vert [Mahé and Vert, 2009] and Bach [Bach, 2008] refine the Ramon-Gärtner

subtree kernel for application in chemoinformatics and hand-written digit recognition

respectively. In [Mahé and Vert, 2009], Mahé and Vert proposed a new kernel with a

parameter to control the complexity of the subtrees used as features to represent the

graphs. This parameter allows to smoothly combine graph kernels based on walks and

kernels based on subtrees. In [Bach, 2008], Bach proposed a graph kernel that considers

α-ary subtrees with most α children per node. Unfortunately, the complexity of both

kernels are still exponential in the smoothing and a parameter respectively, and both

kernels are feasible on small size graphs only. Recently a new kernel with subtree pat-

terns was introduced by Shervashidze [Shervashidze et al., 2011]. The Weisfeiler-Lehman

subtree kernel uses the Weisfeiler-Lehman test of isomorphism [Weisfeiler and Lehman,

1968] to efficiently compute subtree patterns up to height h for discretely labeled graphs.
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For n pairs of discretely labeled graphs, the Weisfeiler-Lehman subtree kernel requires

O(nhe + n2hv), where e is the maximal number of edges, v is the maximal number of

vertices and considers subtree patterns up to height h.





Chapter 3

The pyramid quantized

Weisfeiler-Lehman graph

representation

Chapter 2 presented the problem of graph comparison in detail. The majority of the

methods focus on either unlabeled or discretely labeled graphs, while an efficient and

expressive representation and comparison of graphs with complex labels, such as real

numbers and high-dimensional vectors, remains an open research problem.

In this chapter we introduce a novel method, the pyramid quantized Weisfeiler-Lehman

graph representation that compares labeled graphs with complex labels. Our method

makes use of the efficiency of the Weisfeiler-Lehman kernel [Shervashidze et al., 2011]

for discrete labels by considering a pyramid quantization strategy that approximates the

continuous or vector labeled graphs with a sequence of discretely labeled graphs.

Firstly, we introduce the Weisfeiler-Lehman test of isomorphism, and then we explore

how key concepts of the test is used in the framework of the Weisfeiler-Lehman kernel

for comparing discrete labeled graphs in Section 3.1 and in Section 3.2, respectively.

Then in Section 3.3 we present our pyramid quantization scheme and we conclude by

exploring different strategies for combing the pyramid levels in Section 3.4.

3.1 The Weisfeiler-Lehman test of isomorphism

Our proposed algorithm uses the statistics introduced by the Weisfeiler-Lehman kernel,

which exploits the key concepts from the Weisfeiler-Lehman test of isomorphism [We-

isfeiler and Lehman, 1968] and more specifically its one dimensional variant. Given

43
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Algorithm 3.1 The one dimensional Weisfeiler-Lehman test of graph isomorphism

Require: Two graphs, G = (V,E,L), G′ = (V ′, E′,L′), with discrete labelings L : V 7→
Σ and L′ : V ′ 7→ Σ over vertices, where Σ is a vertex label set and the maximum
number of iterations h.

1: i← 0
2: repeat
3: if i = 0 then

{ Multiset-label initialization }
4: Mi(v) := l0(v) = L(v).
5: else if i ≥ 1 then

{ Multiset-label determination }
6: Assign a multiset-label Mi(v) to each node v in G and G′ which consists of the

multiset {li−1(u)|u ∈ N (v)}, where N (v) denotes the neighbor set of v.
{ Sorting each multiset }

7: Sort the elements in Mi(v) in ascending order.
8: Concatenate the elements in Mi(v) into a string si(v).
9: Add li−1(v) as a prefix to si(v).

{ Sorting the set of multisets }
10: Sort all of the strings si(v) for all v from G and G′ in ascending order.

{ Label compression via hashing }
11: Map each string si(v) to a new compressed label using a function f : Σ∗ 7→ Σ

such that f(si(v)) = f(si(w)) ⇐⇒ si(v) = si(w).
{ Relabeling }

12: Set li(v) := f(si(v)) for all nodes in G and G′.
13: end if
14: i← i+ 1
15: until {li(v)|v ∈ V } 6= {li(v′)|v′ ∈ V ′} or i > h

two graphs G and G′ the Weisfeiler-Lehman test of isomorphism determines whether

they are isomorphic or not. Algorithm 3.1 provides pseudocode for the one dimensional

Weisfeiler-Lehman test of graph isomorphism.

The key idea of the Weisfeiler-Lehman test of graph isomorphism is the construction of

augmented node labels from all the neighbor nodes and the compression into new short

labels. This process is repeated until either the label sets of the two graphs under com-

parison differ or the maximum number of iterations has been reached. If the two label

sets differ, then the two graphs are non-isomorphic, while if the maximum number of

iterations is reached and the two label sets don’t differ, then the test was not able to de-

termine that they are not isomorphic. [Cai et al., 1989] provide examples of graphs that

cannot be distinguished by this algorithm or its higher-dimensional variants. Figure 3.1

shows all steps of the Weisfeiler-Lehman test of graph isomorphism for iteration i = 1

given the two labeled graphs G and G′ shown in Figure 3.1(a). Note that in this figure

the nodes in the two graphs have been initially labeled by their corresponding degree

of node d(v) (see Definition 2.5). Moreover the two graphs G and G′ would directly
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be identified as non-isomorphic by the Weisfeiler-Lehman test, as their label sets differ

from the beginning.

G G'

2 3

3 3 1

1 1

3 3

3 2 2

1 1

(a) Given labeled graphs G and G′.

G G'

2,33 3,12 

3,123 3,133  1,3 

 1,3  1,3 

2,33 3,223

3,123 2,33 2,13 

 1,3  1,2 

(b) Iteration i = 1 - Multi-label determination and sorting. Lines 6 to 9 in Algorithm 3.1

 1,2   4  

 1,3 

 3,12

  5  

 2,13

3,123

  6  

 2,33

3,133

  7  3,223

  8  

  9  

  10 

  11 
(c) Iteration i = 1 - Label compression via
hashing. Line 11 in Algorithm 3.1

G G'

7 8 

9 10 5 

5 5 

7 11

9 7 6 

5 4 

(d) Iteration i = 1 - Relabeling graphs G and G′. Line 12
in Algorithm 3.1

Figure 3.1: An illustration of the computation of the Weisfeiler-Lehman test of graph
isomorphism for the iteration i = 1. Note that the label of each node v is its degree of
node d(v).

A straightforward definition and implementation of the mapping function f : Σ∗ → Σ,

in order to be an injective function, is to sort all the strings si(v) ∀v ∈ {V ∪ V ′}
and to keep a counter variable that records the number of unique strings that f has

already compressed. So f assigns the current value of the aforementioned counter to a

string when the string has already been compressed, while when a new string occurs, we

increment the counter by one and assign the new value as a compressed label. The sorting

of the elements with each multiset Mi(v) (Line 7 in Algorithm 3.1) allows us to define

the same string si(v) for two nodes that share the same connectivity and label pattern

independent of the order of accessing their respective neighbor nodes in the construction

of the multiset, while the sorting of the strings si(v) (Line 10 in Algorithm 3.1) guarantees
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Algorithm 3.2 Sorting each multiset at iteration i

1: for all graphs G = (V,E) do
2: for all nodes u ∈ V do
3: for all nodes v ∈ N(u) do
4: append the pair (G, u) to bucket li−1(v).

1

5: end for
6: si(u)← li−1(u)
7: end for
8: end for
9: for k = 1→ |Σ∗| do

10: for all (G, u) in bucket k do
11: append k to si(u) in G
12: end for
13: end for

that all identical strings will be mapped to the same compressed labels, as they occur

in blocks. This implementation requires that the alphabet Σ has to be sufficiently large

in order for f to be injective. For two graphs G = (V,E) and G′ = (V ′, E′) of order

|V | = |V ′| = v, |Σ| = 2v is sufficient. Of course any other injective mapping could be

used and will give an equivalent result. Finally, it should be noted that in Algorithm 3.1

the same node labeling function l0, . . . , lh has been used form both G and G′ in order not

to overlap the notation. The same simplified notation will be used through the chapter

assuming without loss of generality that the domain of these functions l0, . . . , lh is the

set of all nodes in the input graphs. In the case of Algorithm 3.1 the domain is defined

in V ∪ V ′

Complexity The efficiency of the compression of the labels via the hashing scheme

described above depends on the complexity of the sorting method. Given the fact that

the labels of the graphs are discrete and their cardinality is upper-bounded by |Σ| = 2v,

the counting sort algorithm is appropriate for sorting the multisets. The counting sort

algorithm has a complexity of O(n+ k), where n is the number of elements to be sorted

and k the number of buckets. In our case the number of elements to be sorted for the

multisets Mi(v) (Line 7 in Algorithm 3.1) is in the worst case linear to the maximal

number of edges e and if we select a k = O(e), we end up with a complexity of O(e).

Analytical pseudocode for the counting algorithm is provided in Algorithm 3.2. Sorting

the resulting strings si(v) (Line 10 in Algorithm 3.1) is also of time complexity O(e) via

the radix sort algorithm. As the Weisfeiler-Lehman test runs in h iterations the total

runtime is O(he).

1Note that in the pair (G, u) by G we declare the identifier of the graph G in the graph dataset.
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Link with subtree patterns There is a strong link between the compressed labels

and subtree patterns (see Definition 2.10). More specifically a compressed label li(v)

corresponds to a subtree pattern rooted at node v of height i. For example, in Figure 3.1

if a node has a new compressed label, 9, this means that there is a subtree pattern of

height 1 rooted at this node, where this root node has label 3 and its neighbor nodes

have labels 1, 2 and 3 respectively.

3.2 The linear Weisfeiler-Lehman subtree kernel

As mentioned above in Section 3.1 the Weisfeiler-Lehman test of graph isomorphism is

iterative. For each iteration i, we obtain new compressed labels li(v) for all nodes v as

we have seen in Line 12 in Algorithm 3.1. We emphasize that the labeling is concordant

between the graphs under comparison, that means if and only if the nodes in G and G′

have identical string si(v), they will get identical new labels li(v). These compressed

labels, i.e. the subtree patterns, have been recently employed in a kernel for graph

comparison, the Weisfeiler-Lehman subtree kernel [Shervashidze et al., 2011, Definition

4] which is defined as follows:

Definition 3.1 (The linear Weisfeiler-Lehman subtree kernel). Let G and G′ be

graphs. Define Σi ⊆ Σ as the set of symbols that occur as node labels at least once in G

or G′ at the end of the i-th iteration of the Weisfeiler-Lehman algorithm. Let Σ0 be the

set of original node labels of G and G′. Assume all Σi are pairwise disjoint. Without

loss of generality, assume that every Σi = {σi1, . . . , σi|Σi|} is ordered. Define a map

ηi : {G,G′} ×Σi → N such that ηi(G, σij) is the number of occurrences of the letter σij

in the graph G.

The linear Weisfeiler-Lehman subtree kernel on two graphs G and G′ with h iterations

is defined as

k
(h)
l−WLsubtree(G,G′) =

〈
φ(h)(G), φ(h)(G

′)
〉

(3.1)

where

φ(h)(G) =
(
η0(G, σ01), . . . , η0(G, σ0|Σ0|), . . . , ηh(G, σh1), . . . , ηh(G, σh|Σh|)

)
(3.2)

and

φ(h)(G
′) =

(
η0(G

′, σ01), . . . , η0(G
′, σ0|Σ0|), . . . , ηh(G

′, σh1), . . . , ηh(G
′, σh|Σh|)

)
(3.3)
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Table 3.1: An example of the linear Weifeiler-Lehman subtree kernel between the two
graphs shown in Figure 3.1(a) for subtree patterns up to depth h = 1. The first row
shows the labels encountered up to depth h = 1, which contains the original node labels
Σ0 as well as the compressed node labels Σ1 for the iteration i = 1. The second and
the third row contains the histogram over the labels for graph G and G′ respectively,
while the fourth row shows the final kernel value between the given graphs.

Original node
labels Σ0
︷ ︸︸ ︷

Compressed node labels Σ1
︷ ︸︸ ︷

Labels {Σ0,Σ1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
φ(1)(G) = (3, 1, 3, 0, 3, 0, 1, 1, 1, 1, 0)

φ(1)(G
′) = (2, 2, 3, 1, 1, 1, 2, 0, 1, 0, 1)

k
(1)
l−WLsubtree(G,G′) =

〈
φ(h)(G), φ(h)(G

′)
〉
= 23

Note that the features φ(h) are histograms of the original and compressed labels, i.e. his-

tograms of subtree patterns of depths 0, . . . , h. Table 3.1 shows an example of the linear

Weisfeiler-Lehman subtree kernel k
(1)
l−WLsubtree(G,G′) and their respective features φ(1)

between the two graph G,G′ shown in Figure 3.1(a) for subtree patterns up to depth

h = 1.

Complexity A key advantage of these statistics φ(h)(G) is that they are computable in

linear time in the number of edges in the graphs and in the depth of the subtree patterns.

More specifically, for n graphs and subtree patterns of depth up to h, the complexity of a

joint computation of all statistics over all graphs isO(nhe+n2hv), where e is the maximal

number of edges, and v the maximal number of vertices [Shervashidze et al., 2011,

Theorem 7]. This complexity can be achieved by processing all n graphs simultaneously,

meaning conducting the steps of multiset label determination, sorting each multiset,

label compression and relabeling of Algorithm 3.1 for all n graphs simultaneously. After

we have calculate the φ(h) feature explicitly on each graph G, we can calculate the

pairwise inner products efficiently. Moreover the use of an efficient hashing scheme allows

the algorithm to enumerate relevant (non-zero) dimensions of an exponentially sized

feature space efficiently. In this way, the matching can be done in constant time, and

the hash needs only to store patterns present in the graph instances, thereby maintaining

constant complexity across iterations. As before, in order for the mapping scheme f to

be injective, a sufficiently large label set Σ is required. In the case of n graphs and h

iterations, |Σ| = nv(h+ 1) suffices.

Memory requirements in practice The memory requirements of these statistics

φ(h)(G) in practice depends on the used learning setting. In the case of an inductive

learning setting, where initially a kernel is computed over only the training set of graphs,

in order to classify any test graph the explicit mapping scheme f occurred in the training
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set is required. That means that one needs to maintain record of all the mappings

li(v) = f(si(v)) for each iteration i and for each distinct si(v), ending with a O(neh)

memory in the worst case. In contrast, if a trasductive setting is used, where the

test set is already known, the kernel matrix of the whole date set (both training and

testing) can be computed without having to keep the mapping f , minimizing the memory

requirements.

In addition to these computational benefits, linear Weisfeiler-Lehman graph kernels have

been shown to perform comparably to or better than a number of more computationally

complex kernels [Shervashidze et al., 2011]. Finally, we note that the linear Weisfeiler-

Lehman algorithm at depth 0 computes exactly the bag of words representation com-

monly used in natural language processing [Harris, 1954, Ko, 2012] and computer vi-

sion [Qiu, Fei-fei, 2005].

3.3 The pyramid quantization strategy for continuous la-

bels

The Weisfeiler-Lehman algorithm is efficient precisely because it makes use of a dis-

crete labeling over nodes, which enables an efficient hashing scheme in order to scale

linearly in the number of edges and in the height of subtree patterns. A problem occurs

when extending this method to continuous vector labeled graphs. To overcome this,

we propose a pyramid quantization strategy similar to the one used by [Grauman and

Darrell, 2007a,b] to determine a logarithmic number of discrete labelings with increasing

granularity for which we run the Weisfeiler-Lehman algorithm. In other words, we ap-

proximate a graph representation with continuous valued labels as a sequence of graphs

with discrete labels of increasing granularity.

3.3.1 The pyramid quantization strategy

Given a vector labeled graph G = (V,E,L), where L : V → R
d is the function assigning a

d-dimensional vector label to each vertex, we want to derive a hierarchical decomposition

of Rd as multi-resolution quantizations. The multi-resolution quantizations will then be

used to determine the discrete labeling of increasing granularity. This can be expressed

as a two step process, first we construct a quantization function Q(l) : Rd → Σ
(l)
0 that

will encode the Rd into a quantization of a given resolution |Σ(l)
0 | = 2l. The quantization

function Q(l) is repeated for l ∈ {0, . . . , L} to determine multi-resolutions of increasing

granularity, where L = ⌈log2D⌉, D ≤ |V | = v is the number of unique values in the



50 Chapter 3 The pyramid quantized Weisfeiler-Lehman graph representation

image2 of the set V under L. Note that the single quantization bin for Q(0) is big enough

so that all data points from the image of the set V under L receive the same discrete

label, while as quantization resolution moves from coarser to finer, we end up with Q(L)

that contains quantization bins that are small enough so each unique data point from

the image of the set V under L falls into its own quantization bin.

The second step is to compose the quantization function Q(l) with the labeling function

L, ∀l ∈ {0, . . . , L}, so we can approximate our initial vector labeled graph G as a

sequence of graphs with discrete labels of increasing granularity:

G = (V,E,L) Q(l) ◦L≈
(

G(0), . . . , G(L)
)

=
(

(V,E,L(0)), . . . , (V,E,L(L))
)

, (3.4)

where L(l) : V → Σ
(l)
0 is defined to be Q(l) ◦ L, and Σ

(l)
0 is the discrete label alpha-

bet for a given level l of quantization. Note that the topology of the graph does not

change in the sequence of graphs, only the continuous labels are discretized. To achieve

the discretization of the labels, we explore two different strategies for the quantization

function: (a) a fixed binning scheme and (b) a data guided one in the following sections.

3.3.1.1 Fixed Binning

In the fixed binning scheme the quantization function recursively decomposed into quan-

tization resolution, where in each quantization level the bins that partition the space

are half the size in all d dimensions of the input space compared to the previous one.

The number of bin of each Q(l)) is given by r(l) =
(

D
2l
√
d

)d
, where D is the number of

unique values in the image of the vertex set V under label function L. The fixed binning

scheme can be performed efficiently in high dimensions using, e.g. k-d trees [Bentley,

1975]. The complexity of the resulting quantization is bounded by O(dmax(v, k)L),

where d is the dimension of the input space, v is the number of vertices to be quantized,

k is the maximum histogram index value in a single dimension and L is the number of

pyramid levels [Grauman and Darrell, 2007a]. With constraining k ≤ v and ensuring

that L is logarithmic in v, we end up with a simplified complexity of O(dv log v).

3.3.1.2 Data guided binning

The idea of data guided binning is to derive a hierarchical but data-dependent decom-

position of the feature space that will encode the multi-dimensional features as multi-

resolution histograms with non-uniformly shaped bins. The first step in this scheme

2Note that when we are interested in the quantization of the R
d given a set of vector labeled graphs

G = {Gi = (Vi, Ei,Li)}1≤i≤n, where Li : Vi → R
d, then D is number of unique values in the union of

the images of the label functions Li ∀i ∈ {1, . . . , n}.
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is to generate the structure of the data guided pyramid hierarchy that will define the

bin placements. To achieve this we perform an agglomerative hierarchical clustering on

image of the vertex set V under the labeling function L using the Ward’s minimum

variance method [Ward, 1963].3 Ward’s methods minimizes the total within-cluster sum

of squares criterion which is defined as follow for two clusters i, j:

d(i, j) =

√

2ninj

(ni + nj)
‖xi − xj‖2 (3.5)

where ni and nj are the number of elements in clusters i and j, xi and xj are the

centroids of clusters i and j and ‖ · ‖2 denotes the Euclidean distance. At the initial

step, all clusters are singletons (i.e. clusters containing a single unique point). Then

we apply the algorithm recursively and at each step the pair of clusters with minimum

between-cluster distance given from Equation 3.5 are merged.

Once the data guided bins have been constructed (i.e. the centroid of each cluster in all

L levels has been determined), we can embed each d-dimensional data point ci ∈ R
d ∀i

to the multi-resolution quantization bins of L levels, where in each level l there are

2l bins. In order for a point ci to be mapped at the correct bins at the quantization

pyramid, we need to compare it to the two appropriate centroids at each l pyramid

level using the Euclidean distance and pushed down the hierarchical tree along that

branch that is rooted with the closest centroid at each level. At each comparison with

the centroids, we also keep a record of a binary bin index p with its path along the

quantization pyramid. As the quantization pyramid has L level, in total 2L distances

must be computed between a point and the pyramid’s bin centroids. Concerning the

space requirements, this approach requires O(2L) = O(v) d-dimensional feature vectors

to store for all the bin centroids of the hierarchical pyramid, since L is logarithmic in

v, and O(L) = O(log2 v) binary indexes for a set of v feature vectors. Note that the

bin centroids are calculated only once using the Ward’s method during the training.

Finally, any other hierarchical clustering technique, could also be used without changing

the main idea.

In Figure 3.2, we illustrate the difference between the two pyramid quantization strate-

gies defined above for the same 2D space. In Figure 3.2(a) we see that the space is

partitioned into uniform-shaped bins, while in Figure 3.2(b) the data themselves deter-

mine the partitioning, as a result the bins better decompose the space into clusters.

3In practice when the input space is very large, we can randomly select a subset of representative
data to perform the agglomerative hierarchical clustering.
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(a) Fixed binning
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(b) Data guided binning

Figure 3.2: An illustration of the two different strategies of quantization of a complex
space. Both Figures 3.2(a) and 3.2(b) depict the space partition boundaries for two
resolution levels for the same 2D space. In both figures, the left plot contains the
coarser resolution level, while the right plot contains the finer one. In Figure 3.2(a) the
complex space is carved into uniformly-shaped partitions, while in Figure 3.2(b), the
data guide the resulting partition of the complex space. As a result, the bins on the
right are better positioned to decompose the space based on the data clusters.

3.3.2 The intersection Weisfeiler-Lehman subtree kernel

Independent of the binning strategy we follow, each graph with vector valued labels after

the pyramid quantization step described in Section 3.3.1 is represented as a sequence of

graphs with nested quantizations of increasing granularity of discrete labels as described

in Equation 3.4. We run the Weifeiler-Lehman algorithm on each graph G(l) of the

sequence in order to produce the features φ
(l)
(h) of subtree patterns up to a given height

h.

Definition 3.2 (The intersection Weisfeiler-Lehman subtree kernel).

Let G(l) = (V,E,L(l)) and G′(l) = (V ′, E′,L′(l)) be two graphs of the same quantization

level l, where L(l) : V → Σ
(l)
0 and L′(l) : V ′ → Σ

(l)
0 , of two vector labeled graphs

G = (V,E,L) and G′ = (V ′, E′,L′), where L : V → R
d and L′ : V ′ → R

d. Define

Σ
(l)
i ⊆ Σ(l) as the set of symbols that occur as node labels at least once in G(l) or G′(l)
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at the end of the i-th iteration of the Weisfeiler-Lehman algorithm. Let Σ
(l)
0 be the set

of original node labels of G(l) and G′(l). Assume all Σ
(l)
i are pairwise disjoint. Without

loss of generality, assume that every Σ
(l)
i = {σ(l)

i1 , . . . , σ
(l)

i|Σ(l)
i |
} is ordered. Define a map

ηi : {G(l), G′(l)} × Σ
(l)
i → N such that ηi(G

(l), σ
(l)
ij ) is the number of occurrences of the

letter σ
(l)
ij in the graph G(l).

The intersection Weisfeiler-Lehman subtree kernel on two graphs G and G′ with h iter-

ations is defined as

k
(h)
i−WLsubtree(G

(l), G′(l)) = I
(

φ
(l)
(h)(G

(l)), φ
(l)
(h)(G

′(l))
)

(3.6)

where

φ
(l)
(h)(G

(l)) =

(

η0(G
(l), σ

(l)
01 ), . . . , η0(G

(l), σ
(l)

0|Σ(l)
0 |

), . . . , ηh(G
(l), σ

(l)
h1), . . . , ηh(G

(l), σ
(l)

h|Σ(l)
h

|
)

)

φ
(l)
(h)(G

′(l)) =

(

η0(G
′(l), σ(l)

01 ), . . . , η0(G
′(l), σ(l)

0|Σ(l)
0 |

), . . . , ηh(G
′(l), σ(l)

h1), . . . , ηh(G
′(l), σ(l)

h|Σ(l)
h

|
)

)

and

I
(

φ
(l)
(h)(G

(l)), φ
(l)
(h)(G

′(l))
)

=
h∑

i=0

|Σ(l)
i |
∑

j=1

min
(

ηi(G
(l), σ

(l)
ij ), ηi(G

′(l), σ(l)
ij )
)

(3.7)

Note that the features φ
(l)
(h) are histograms of the original and compressed labels, i.e. his-

tograms of subtree patterns of depths 0, . . . , h for a given quantization level l, while the

intersection Weisfeiler-Lehman subtree kernel counts the overlap of features φ
(l)
(h) between

two graphs G(l) = (V,E,L(l)) and G′(l) = (V ′, E′,L′(l)) which match at the given quan-

tization level l. Note that the intersection Weisfeiler-Lehman kernel for a given binning

resolution l is a positive-definite similarity function [Odone et al., 2005].4

An example of the quantization step of the pyramid quantized Weisfeiler-Lehman graph

representation is illustrated in Figure 3.3. Given the graphs G = (V,E,L), G′ =

(V ′, E′,L′) with continuous vector labels in their nodes, i.e. L : V → R
d and L′ :

V ′ → R
d, shown in Figure 3.3(a), the first step is to determine the hierarchical decom-

position of the labeled space given, for example, by the data guided binning strategy.

The red and green line in Figure 3.3(b) depict the thresholds for achieving two different

quantization resolutions with two and and four discrete labels, respectively. For these

two quantization resolutions we end up with a sequence of discretized labels for each

4We could also use the linear kernel over the subtree patterns, but the histogram intersection kernel
has been shown to give better results [Odone et al., 2005].
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(a) Initial graphs with multi-dimensional labels.
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(c) Relabeled graphs of the quantization level 1 with
21 = 2 number of discrete labels.
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(d) Relabeled graphs of the quantization level 2 with
22 = 4 number of discrete labels.

Figure 3.3: An illustration of the quantization step of the pyramid quantized
Weisfeiler-Lehman graph representation. Figure 3.3(a) shows the two given multi-
dimensional labeled graphs under comparison G = (V,E,L) and G′ = (V ′, E′,L′),
where L : V → R

2, L′ : V ′ → R
2 and the label of each node v is defined as its

degree of node d(v) and the summation of the degree of nodes of its neighborhoods
Nv, i.e. L(v) = [d(v),

∑

u∈Nv

d(u)]. Figure 3.2(b) shows the hierarchical decomposi-
tion of the multi-dimensional labeled space given by the data guided binning strategy
(see Section 3.3.1.2). With the green and red line are depicted the thresholds for achiev-
ing two different quantization resolutions with two and and four discrete labels respec-
tively. Figure 3.3(c) shows the two relabeled discretized graphs G(1) = (V,E,L(1))

and G′(1) = (V ′, E′,L′(1)), where L(1) : V → Σ
(1)
0 , L′(1) : V ′ → Σ

(1)
0 and |Σ(1)

0 | = 2
is the coarser resolution level l = 1 with two labels, while Figure 3.3(d) shows the

two relabeled discretized graphs G(2) = (V,E,L(2)) and G′(2) = (V ′, E′,L′(2)), where

L(2) : V → Σ
(2)
0 , L′(2) : V ′ → Σ

(2)
0 and |Σ(2)

0 | = 4 is the finer resolution level l = 2 with
four labels.
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graph

G = (V,E,L) Q(l) ◦L≈
l ∈ {1, 2}

(

G(1), G(2)
)

=
(

(V,E,L(1)), (V,E,L(2))
)

and

G′ = (V ′, E′,L′) Q(l)◦L′

≈
l ∈ {1, 2}

(

G′(1), G′(2)
)

=
(

(V ′, E′,L′(1)), (V ′, E′,L′(2))
)

also shown in Figure 3.3(c) and in Figure 3.3(d), where L(l) : V → Σ
(l)
0 and L′(l) : V ′ →

Σ
(l)
0 , while |Σ(1)

0 | = 2 is the coarser resolution with two labels and |Σ(2)
0 | = 4 is the finer

resolution with four labels. For each level l of the graph sequence the Weisfeiler-Lehman

algorithm is applied to produce the φ
(l)
(h)(G

(l)), while for each pair {G(l), G′(l)} for all

quantization levels l the intersection Weisfeiler-Lehman subtree kernel will determine

the similarity between the two graphs for that level of quantization.

3.3.3 The monotonicity property of the pyramid quantized Weisfeiler-

Lehman kernel

We may show the following monotonicity property of the pyramid quantized Weisfeiler-

Lehman kernel described in Section 3.3.2 :

Theorem 3.3. Monotonicity property of the pyramid quantized Weisfeiler-

Lehman kernel with the granularity of the node labeling

The Weisfeiler-Lehman algorithm for a given height h of subtree patterns produces his-

tograms whose intersection are monotonically decreasing in the granularity of the graph

node labeling:

∀l, G(l), G′(l)
[

I
(

φl
(h)(G

(l)), φl
(h)(G

′(l))
)

≥ I
(

φl+1
(h) (G

(l+1)), φl+1
(h) (G

′(l+1))
)

〉
]

, (3.8)

where φl
(h)(G

(l)) is the histogram of subtree patterns of height h computed at pyramid

level l, and level l + 1 is more granular.

Proof. We first note that the number of subtree patterns of a given depth, h, of the

Weisfeiler-Lehman algorithm is dependent only on the topology of the graph, and not

on the graph labeling:

‖φl
(h)(G

(l))‖1 = v · (h+ 1) ∀l (3.9)

where v is the number of vertices in the graphs. We next note that the number of vertex

labels is strictly monotonic in the pyramid level, |Σl| < |Σl+1|, and that for each label

σ ∈ Σl at level l, there exist a non-empty set of labels S ⊂ Σl+1 at level l + 1 such that
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Ll+1(u) ∈ S ⇐⇒ Ll(u) = σ. To complete the proof, we observe that

∀G(l) ∀l
[(

‖φl
(h)(G

(l))‖1 = ‖φl+1
(h) (G

(l+1))‖1
)

∧
(

‖φl
(h)(G

(l))‖0 < ‖φl+1
(h) (G

(l+1))‖0
)]

=⇒ ∀G(l), G′(l) ∀l
[

I
(

φl
(h)(G

(l)), φl
(h)(G

′(l))
)

≥ I
(

φl+1
(h) (G

(l+1)), φl+1
(h) (G

′(l+1))
)]

,

(3.10)

where ‖ · ‖0 is the ℓ0 pseudo norm.

As the Weisfeiler-Lehman algorithm with h = 0 specializes to the bag of words model,

we have as a result that our graph kernel for continuous vector valued node labels strictly

generalizes the pyramid match kernel [Grauman and Darrell, 2007a].

3.4 Exploring the pyramid quantized Weisfeiler-Lehman

features

Given a set of vector labeled graphs G = {Gi = (Vi, Ei,Li)}1≤i≤n where L : V → R
d and

a classification label Yi for each graph Gi, we want to classify them through the informa-

tion created by the Weisfeiler-Lehman algorithm after the quantization of each the vector

labeled graph into a sequence of discrete labeled graphs with increasing granularity as

described in Section 3.3. In order to maximize their classification performance and ex-

plore better the pyramid quantized Weisfeiler-Lehman features we examine two different

approaches, one through the combination of the intersection Weisfeiler-Lehman kernel

of the different pyramid levels in Section 3.4.1 and another through the evaluation of

each individual subtree pattern φ
(l)
(h) of the Weisfeiler-Lehman algorithm in Section 3.4.2.

3.4.1 The pyramid quantized Weisfeiler-Lehman kernel

Applying the intersection Weisfeiler-Lehman subtree kernel (see Definition 3.2) for each

pair of graphs G(l), G′(l) for all the pyramid levels from Equation 3.4, we end up with

a sequence of intersection Weisfeiler-Lehman kernels for a given height h of subtree

patterns :
(

K
(0)
(h)(G

(0), G′(0)), . . . ,K(L)
(h) (G

(l), G′(L))
)

(3.11)

whereK
(l)
(h)(G

(l), G′(l)) = I
(

φ
(l)
(h)(G

(l)), φ
(l)
(h)(G

′(l))
)

. Since we have a sequence of Weisfeiler-

Lehman kernels from the different quantization levels and taking also into consideration

the observation by [Lanckriet et al., 2004] that using multiple kernels instead of a single

one can enhance the interpretability of a decision function and improve its performance,
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we would like to combine this sequence of kernels into a single one. A convenient ap-

proach is to consider that the kernel K(G,G′) is actually a convex combination of basis

kernels:

K(h)(G,G′) =
L∑

l=0

dlK
(l)
(h)(G

(l), G′(l)), with dl ≥ 0,
L∑

l=0

dl = 1. (3.12)

For determining the weights dl we consider two different approaches a automatic way

through the framework of multiple kernel learning and another through a fixed weight

scheme. Remember that for a single kernel, where {xi, yi}ni=1 is the learning set with xi

belongs to some input space X and yi ∈ Y is the target value for pattern xi the solution

of the learning problem has the form :

f(x) =

n∑

i=1

αiK(x, xi) + β (3.13)

3.4.1.1 Multiple kernel learning

The automatic determination of the weights dl of the linear combination of our multiple

kernels K
(l)
(h)(G

(l), G′(l)) as well as the coefficients αi, β in a single optimization problem is

known as the multiple kernel learning (MKL) problem [Zien and Ong, 2007, Sonnenburg

et al., 2006, Lanckriet et al., 2004, Rakotomamonjy et al., 2008]. The multiple kernel

learning approach addresses the problem through a weighted ℓ2 norm regularization

formula. In addition, a ℓ1 norm is posed as a constraint on the kernel weights ai. This

additional constraint encourages sparse set of basis kernels as an inherited property from

the ℓ1 norm. The primal MKL problem is defined as

min
{fl},β,ξi,dl

1

2

L∑

l=0

1

dl
||fl||2Hl

+ C

n∑

i=1

ξi

s.t. yi

L∑

l=0

fl(G
(l)
i ) + yiβ ≥ 1− ξi∀i (3.14)

ξi ≥ 0 ∀i
L∑

l=0

dl = 1, dl ≥ 0 ∀l

where each function fl belongs to a different RKHS Hl associated with a kernel K
(l)
(k).

Note that the smaller the dl is, the smoother fl should be. When dl = 0, ||fl||Hl
is

also equal to zero to yield a finite objective value. MKL transforms the problem into a

smooth and convex optimization problem and uses a gradient descent approach to solve

it.
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3.4.1.2 Fixed weight kernel

Due to the constraint of the ℓ1 norm on the weight the multiple kernel learning leads

to sparse solutions, which sometimes could result in poor performances when all the

pyramid level contain approximately equal important information. In order to overcome

this problem we additionally consider a fixed weight scheme for combing the different

pyramid levels of the quantized Weisfeiler-Lehman kernel, and more specifically an equal

weight. That mean that the final kernel is defined as

K(h)(G,G′) =
L∑

l=0

dlK
(l)
(h)(G

(l), G′(l)), where dl =
1

L+ 1
. (3.15)

3.4.1.3 Visualization

As the pyramid quantized Weisfeiler-Lehman kernel is defined to be a linear combination

of the intersections of the histograms of subtree patterns up to a given height h and as

the intersection kernel can be considered as a “quasi-linear” kernel [Vedaldi et al., 2009],

we may use these properties to develop visualizations that approximate the learned

discriminant functions. We note that a discriminant function for class c has the form:

fc(G) = b+

L∑

l=0

dl
∑

j

αljI
(

φ
(l)
(h)(G

(l)
j ), φ

(l)
(h)(G

(l))
)

≈ b+

L∑

l=0

dl〈wl, φ
(l)
(h)(G

(l))〉 (3.16)

where l indexes the levels of the pyramid and j indexes over the samples in the training

set. At each pyramid level l there is exactly one subtree pattern of height h rooted

at each vertex of the graph. We may generate for each vertex v a visualization of

the function by coloring each vertex by the weight in wi corresponding to the subtree

pattern rooted at that node. We may additionally sum the weights over all levels of the

Weisfeiler-Lehman iterations. Due to the bias term, b, the visualizations show only the

relative contribution of a region of the graph to the discriminant function.

3.4.2 Elastic net on the pyramid quantized Weisfeiler-Lehman subtree

features

In order to explore the contribution of each quantized Weisfeiler-Lehman subtree feature

φ
(l)
(h)(G

(l)) for all the quantized pyramid levels l and for all depths up to depth h, we make

use of the statistical estimator Elastic Net, which is described in detail in Section 5.1.2.

We note that the Elastic Net combines ℓ1 with ℓ2 regularization in order to appropriately

trade off sparsity with a low variance estimator in the case of correlated signals. Formally,
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if φ
(l)
(h)(G

(l)
i ) is a feature vector of subtree pattern up to height h for a given quantization

level l for a graph Gi, the elastic net computes

β̂ = arg min
β∈Rd

λ2‖β‖22 + λ1‖β‖1 +
1

n

n∑

i=1

(

〈β, φ(l)
(h)(G

(l)
i )〉 − yi

)2
, (3.17)

where λ1, λ2 ≥ 0 are scalar regularization parameters. This objective includes the

lasso [Tibshirani, 1996] and ridge regression [Tikhonov, 1963] as special cases by setting

λ2 or λ1 to zero, respectively. We can see this as a tradeoff between the high degree

of sparsity achieved by the lasso, and the low variance estimates achieved by ridge

regression.

Visualization Visualizations of the learned discriminant functions is easy to obtain

when the Elastic Net is employed over the pyramid quantized Weisfeiler-Lehman subtree

patterns. Each voxel is associated with a L×h subtree patterns, where L is the number

of quantization levels of the label space and h is the height of subtree patterns created by

the Weisfeiler-Lehman algorithm, and we just need to sum up their respective weights

bi as provided by the Elastic Net.





Chapter 4

Applications of the pyramid

quantized Weisfeiler-Lehman

graph representation in

neuroimaging and shape

classification

As we have seen in Section 1.1, many problem domains can be naturally represented with

graphs. The widespread use of graphs requires the development of efficient methods for

representation and comparison. Although many algorithms have been developed the last

decades for graph comparison between either unlabeled or discrete labeled graphs, as

we have seen in Section 2, the efficient and expressive representation and comparison of

graphs with continuous and/or high-dimensional vectors labels remains an open research

problem. In Chapter 3 we tackled the graph comparison problem with continuous or

high-dimensional vector labels with the introduction of the pyramid quantized Weisfeiler-

Lehman graph representation. In this chapter, we evaluate this representation using

real data from two different domains. The first evaluation, described in Section 4.1,

comes from the fMRI analysis area and its objective is to discriminate between cocaine

abusers and healthy control subjects, while in Section 4.2, we use two datasets with 3D

shape meshes. For the first dataset the objective is to discriminate between healthy

and patients subjects that suffer from a neuromuscular dystrophy, while in the second

dataset we tackle the problem of multiclass object classification.
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Chapter 4 Applications of the pyramid quantized Weisfeiler-Lehman graph

representation in neuroimaging and shape classification

4.1 The pyramid quantized Weisfeiler-Lehman graph rep-

resentation in fMRI analysis

4.1.1 Introduction

In this section we evaluate the pyramid quantized Weisfeiler-Lehman graph represen-

tation in an fMRI data analysis problem. The functional magnetic resonance imaging

(fMRI) is a wide spread, non-invasive modality used in the field of neuroimaging that

measures brain activity by detecting associated changes in blood flow. The goal of fMRI

data analysis is to detect relationships between brain activation and the designed task

the subject performs during the scan. Depending on the specifics of the problem under

investigation this goal can be translated as different objectives, such as localizing regions

of the brain that participate in the specific task, or determining connectivity networks

that correspond to brain function or even making predictions about psychological or

disease states.

A number of discriminative learning approaches have been applied to fMRI analysis

including the wide spread generalized linear model [Bartels et al., 2007, Bartels and

Zeki, 2004a], support vector machines [Song et al., 2011, LaConte et al., 2005], inde-

pendent component analysis [Bartels and Zeki, 2004b, 2005] and kernel canonical cor-

relation [Hardoon et al., 2007, Blaschko et al., 2009, 2011]. All these methods have to

deal with (a) data that lie in a high-dimensional space, with ten of thousands of voxels,

(b) a small number of samples, due to the high cost and time consuming nature of the

fMRI acquisition procedure, and (c) high levels of noise that arise from different sources,

such as system noise and random neural activity. In order to overcome the problem of

curse of dimensionality, some approaches select features either by a predefined set of re-

gions of interest (ROIs) using either prior knowledge [Demirci et al., 2008, Wang et al.,

2003], or statistical methods [Mitchell et al., 2004, Tahmasebi et al., 2012] such as a

t-test [Mitchell et al., 2004], analysis of variance (ANOVA) [Cox and Savoy, 2003]. The

main disadvantages in the use of ROIs are (a) such regions are frequently defined within

a reference space, which raises the issue of misregistrations, (b) in practice people might

perform “double dipping” [Kriegeskorte et al., 2009] in the data in order to find the set

of ROIs and hence significantly skew the results and (c) in the case of absence of prior

knowledge they are undefined. Therefore, fully exploratory methods are preferred.

fMRI analysis is particularly suited to sparsity regularization due to the intrinsic high

dimensional nature of fMRI data and the expense of collecting large numbers of sam-

ples. Moreover, sparsity regularization methods do not require a predefined set of ROIs,
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are fully exploratory and are also mathematical appealing. Previous works that have

explored sparsity regularization in fMRI include [Carroll et al., 2009, Ng et al., 2012b].

Although the aforementioned methods perform well in analyzing fMRI data, they treat

the fMRI prediction as a linear combination of functions over individual voxels, ignoring

either the 3D structure of the brain and they cannot capture potentially complex inter-

actions between voxels. On the other hand, graph-theoretic methods can model such

information through the rich representations of networks of data, and are consequently

a promising representation for neural populations. The most common use in the fMRI

analysis is modeling the network of brain connectivity [Supekar et al., 2008, Liu et al.,

2008], under both healthy conditions (e.g. age-related changes [Fair et al., 2009, Supekar

et al., 2009]) and diseases (e.g. Alzheimer’s [Supekar et al., 2008] or Schizophrenia [Liu

et al., 2008]), and the network’s analysis, including modularity, small-worldness and the

existence of highly connected network hubs. Graph kernel methods have also been used

in fMRI connectivity graphs for brain decoding [Mokhtari and Hossein-Zadeh, 2013].

In this section, we approach the fMRI analysis by representing fMRI recordings as

graphs, and we use the pyramid quantized Weisfeiler-Lehman graph representation to

learn from the interconnections between voxels. Our approach has an enriched capacity

to model such dependencies by considering interconnections between voxels which may

be functionally important.

The remaining of the section is organized as follows: in Section 4.1.2 we present the data

that we use in this study, Section 4.1.3 is dedicated to the methodology, in Section 4.1.4

we show the experimental setting and the results, and we conclude in Section 4.1.5 with

a discussion over the obtained results and the perspectives of this work.

4.1.2 Cocaine Addiction Dataset

The cocaine addiction dataset consists of the contrast maps from 16 cocaine addicted

individuals and 17 control subjects performing a neuropsychological experiment, called

a drug Stroop experiment [Goldstein et al., 2009]. The drug Stroop experiment has a

block design, that included six sessions, with each of them having different conditions.

The two varying conditions are the monetary reward (50¢, 25¢ and 0¢) and the cue

shown (drug words, neutral words). The session consists of an initial screen displaying

the monetary reward and then presenting a sequence of forty words in four different

colors (yellow, blue, red or green). The subject was instructed to press one of four but-

tons matching the color of the word they had just read. The subjects were rewarded

for correct performance depending on the monetary condition. The fMRI data were ac-

quired a 4Tesla whole-body Varian/Siemens system. The blood-oxygen-level dependent
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(BOLD) responses were measured as a function of time using a T2*-weighted single-shot

gradient-echo EPI sequence (TE/TR=20/1600ms, 4mm slice thickness, 1mm gap, typi-

cally 33 coronal slices, 20cm FOV, 64× 64 matrix size, 3.1× 3.1mm in-plane resolution,

90◦ flip angle, 200kHz bandwidth with ramp sampling, 128 time points and 4 dummy

scans to be discarded to avoid non-equilibrium effects in the fMRI signal). Padding

was used to minimize subject motion, which was also monitored immediately after each

fMRI run [Honorio et al., 2012].

The subjects that complied to the following requirements: motion < 2mm translation,

< 2◦ rotation and at least 50% performance in an unrelated task [Goldstein et al., 2009],

where include in this study. The Statistical Parametric Mapping (SPM2) toolbox [Fris-

ton et al., 2007] was used to preprocess the imaging data and to produce the contrast

maps before the analysis with the regularization methods. The preprocessing included a

six-parameter rigid body transformation (3 rotations, 3 translations) for image realign-

ment and to correct for head motion, spatially registration to the standard Talairach

frame using a voxel size of 3 × 3 × 3mm3, an 8mm full-width half-maximum Gaussian

kernel to smooth the data in order to reduce the amount of spatial noise as well as the

impact of small inaccuracies in the spatial registration across subjects.

In order to compute contrast maps for each subject, experimental condition and session,

a general linear model (GLM) with box-car design convolved with a canonical hemo-

dynamic response function (HRF), low-pass filters (HRF) and high-pass filters (cut-off

frequency: 1/520s) was used. The GLM contained a single regressor for each of six

sessions corresponding to one of three monetary reward conditions (50¢, 25¢, 0¢) and

one of two cues (drug words, neutral words). In addition, six motion regressors (3 ro-

tations, 3 translations) were included for all event related tasks. In order to compute

a single contrast map for each subject and experimental condition, the contrast maps

that were produced by the GLMs (per subject, experimental condition and session) were

averaged. After computing these average contrast maps and before using them in our

pipeline, grand mean scaling [Friston et al., 2007] was applied independently per subject

and experimental condition, since scale between different subjects can significantly dif-

fer. Note that in our experiments, we use only one image per subject and experimental

condition. In this study, we focus on the monetary conditions only, and more specifi-

cally the session of 50¢ following [Honorio et al., 2012] and the discriminative task is to

classify the subject as cocaine addicted or control.
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Algorithm 4.1 The statistical learning pipeline for fMRI analysis with sparse subgraph
statistics.
Require: Training set D = {(vi, yi), i = 1, . . . , n}.
1: Compute β̂lin from the objective in Equation (5.4) with xlin ≡ vec v.
2: Construct k-nearest neighbor graphs for all training samples from the voxels associ-

ated with non-zero β̂lin
3: for each level in the quantization pyramid do
4: Label the nodes of all graphs according to the quantization of the voxel value.
5: Compute the Weisfeiler-Lehman statistics for the given quantization level over all

graphs and aggregate them into the feature vector φgraph(v).
6: end for
7: Compute β̂graph from the objective in Equation (5.4) with xgraph = φgraph(v).

4.1.3 Methodology

Our approach for fMRI analysis enriches the capacity to model non-linear dependencies

between voxels, through the representation of an fMRI recording as a graph. The sta-

tistical learning pipeline of our approach can be seen in Algorithm 4.1. In order to make

use of a rich graph representation several design choices must be made: (i) the learning

algorithm, (ii) the graph construction, (iii) the node labeling and (iv) the graph statistics

employed as a feature representation, which we address in the following paragraphs.

Sparsity Regularization As our statistical estimator, we have made use of the Elas-

tic Net (for more details see Section 5.1.2). The Elastic Net combines ℓ1 with ℓ2 regu-

larization in order to appropriately trade off sparsity with a low variance estimator in

the case of correlated signals. This method is particularly appropriate in fMRI where

nearby voxels are likely to be correlated, and regions responsible for a given function or

behavior distributed across multiple voxels. Furthermore, it is typical that the majority

of voxels in the brain are not discriminative of a specific output. Note that one could

use the k-support norm as a regularizer as we consider in a later section of this thesis,

but we have used a more established statistical approach in this section. We make use of

the Elastic Net twice in our learning pipeline (see Algorithm 4.1). In the first instance,

we use the Elastic Net on the raw voxel values to determine a subset of voxels on which

we build a graph representation, specifically those with non-zero β̂lin. Our model selec-

tion step has typically chosen approximately 103 voxels for this stage. We subsequently

compute subgraph statistics over this graph to generate a feature vector, φgraph(v). Fi-

nally, we use the Elastic Net on these subgraph statistics in order to determine our final

prediction function, with a model selection step to determine appropriate values for λ1

and λ2.
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Graph Construction To construct the graph representation, we have made use of

k-nearest neighbor graphs on the voxels that were selected by an initial training of the

Elastic Net (see Line 1 in Algorithm 4.1). We symmetrize the k-nn relationship by

considering the edges to indicate an undirected graph structure. While other models

of connectivity are of interest [Sporns, 2010, Wee et al., 2011], we have found that the

use of k-nearest neighbors to determine the graph topology yields good performance

in general. Furthermore, the subtree statistics considered here implicitly account for

longer distance connections for sufficiently deep subtree patterns. We set k = 5 in all

experiments.

Continuous node labels To enrich our graph representations of the fMRI contrast

maps, we take advantage of the activation information. At each voxel selected by the

Elastic Net for the construction of the graph, we label it with its activation. Since the

activation has continuous values, our graph representation is transformed to a continuous

labeled graph.

Graph statistics Since the fMRI contrast maps are represented as graphs with contin-

uous labels on the vertices, we explore the pyramid quantized Weisfeiler-Lehman graph

representation introduced in Chapter 3. We quantized the continuous activation labels

with the fixed-binning strategy (see Section 3.3.1.1), ending with a sequence of discretely

labeled graphs with increasing granularity. Through the efficient Weisfeiler-Lehman al-

gorithm, we aggregate statistics of subtree patterns of different depth h for all the levels

of quantization. Finally, we control the complexity of our prediction while modeling

non-linear interactions between voxels by adding a sparsity regularizer (the Elastic Net)

over the statistics of subtree patterns (see Line 7 in Algorithm 4.1).

We are able to learn in a fully exploratory fashion without restricting our prediction,

e.g., to a pre-defined region of interest or a connected component. Overall, we represent

fMRI data as graphs over voxels, and compare the resulting graphs with a novel method

that combines elements of the Weisfieler-Lehman graph kernel [Shervashidze et al., 2011]

and the pyramid match kernel [Grauman and Darrell, 2007a], a method that achieves the

computational advantages of efficient graph kernels while extending the representation

to continuous node labels.
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Table 4.1: Mean accuracy over the hold-out data of 50 trials of the pyramid quantized
Weisfeiler-Lehman graph representation for four different subtree pattern depths, h ∈
{0, 1, 2, 3}. Maximum performance is achieved with subtree patterns up to depth two.

Pyramid Quantized Weifeiler-Lehman

h 0 1 2 3

Accuracy 54.00% 57.14% 64.28% 63.42%

4.1.4 Results

We use the same experimental setup, a random splitting scheme with 50 trials, to esti-

mate the classification performance of pyramid quantized Weisfeiler-Lehman graph rep-

resentation and the baseline method on the cocaine addiction dataset. In each trial, a

random selection of 80% of the data are used for training, while the remaining 20% are

used to estimate the performance.

In Table 4.1 we show the performance of the pyramid quantized Weisfeiler-Lehman

graph representation for four different depths of subtree patterns (see Chapter 3). Our

approach achieves a mean accuracy of 64.28% for subtree patterns up to depth two. We

also compare our proposed technique with three other methods on the same dataset:

(i) Gaussian kernel ridge regression, (ii) the Elastic Net with raw voxels as features, and

(iii) the Elastic Net with raw voxels and pyramid quantized Weisfeiler-Lehman subtree

features concatenated in a joint feature vector. In Figure 4.1 we show the mean accuracy

of the final system and the standard error. Pyramid quantized Weisfeiler-Lehman graph

representation outperforms the rest of the methods. With a Wilcoxon signed rank test

between the Elastic Net with raw voxels and the pyramid quantized Weisfeiler-Lehman

graph representation we determine that our proposed method is statistically significantly

better (p = 0.02). Additionally, a reduction of over 14% in classification error is recorded

between the Elastic Net on the raw voxels and our method.

Intermediate Accuracies In order to explore the behavior of the pyramid quantized

Weisfeiler-Lehman graph representation for different combinations of quantization and

depths of subtree patterns, we estimated the mean accuracies per quantized pyramid

level and per subtree pattern depth, as shown in Figure 4.2. Figure 4.2 gives insight

into the effect of the depth of the subtree patterns on the degree of quantization that

gives maximal performance. With subtree patterns of depth h = 0, the method reduces

to a simple pyramid bag of words model, and a relatively high granularity quantization

works best. With subtree patterns of depth two or greater, accuracies are highest with

a very coarse quantization and information appears to be represented primarily in the
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Figure 4.1: Mean accuracy and standard error on the cocaine addiction dataset.
The compared methods are (left to right) Gaussian kernel ridge regression (GKRR),
the Elastic Net on raw voxels, pyramid quantized Weisfeiler-Lehman (WLpyramid),
and the Elastic Net with a concatenation of the raw voxels and the pyramid quantized
Weisfeiler-Lehman features (Combined EN+WL). The horizontal red line indicates
chance performance. The pyramid quantized Weisfeiler-Lehman features perform better
than Gaussian kernel ridge regression and the Elastic Net on raw voxels with statistical
significance.
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Figure 4.2: A heat map representation of the intermediate mean accuracies over the
hold-out data of 50 trials for all the quantized pyramid levels and for four different
depths of the subtree patterns, h ∈ {0, 1, 2, 3}. This figure shows that in the bag of
words model, we need a large vocabulary, while as the depth of the Weisfeiler-Lehman
algorithm increases, accuracies are highest for low granularity quantization. The final
algorithm learns across all depths and quantization levels automatically. (Figure best
viewed in color.)

relationships between voxels. We note, however, that the results in Table 4.1 and in Fig-

ure 4.1 are computed with the concatenation of features computed from all quantization

levels, and an appropriate combination of subtree features across all quantization levels

and depths of subtree patterns was selected by the Elastic Net.
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Figure 4.3: A visualization of the areas of the brain selected by Elastic Net. The
selected regions correspond to areas previously implicated as being related to addic-
tion [Goldstein et al., 2009].

4.1.5 Discussion

Figure 4.3 shows the areas selected by the Elastic Net, while Figure 4.4 and Figure 4.5

show the visualizations of the learned functions for the Elastic Net on raw voxels and the

quantized Weisfeiler-Lehman graph representation respectively. Note that Elastic Net

on the raw voxels was able to select the rostral anterior cingulate cortex (rostral ACC),

an important region as our neuroscientist mentioned (for more details see Section 5.2.4).

Although our method works in an implicitly high dimensional space, we empirically

observe that Elastic Net regularization controls the complexity at each stage of the

pipeline. The first learning step selects approximately 1100 voxels. Using the pyramid

quantized Weifeiler-Lehman graph representation, we generate a feature vector of length

6 × 105, but with a sparsity of ∼ 2%. The second application of Elastic Net selects

only ∼ 2K dimensions. In each step, the method retains complexity much lower than

a “simple” linear function over tens of thousands of voxels as has been proposed in

previous works.
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(a) Elastic Net on raw voxels - Control

(b) Elastic Net on raw voxels - Cocaine

Figure 4.4: A visualization of the function learned by Elastic net for control and
cocaine subjects over the raw voxels. The visualization is illustrated over a graph,
whose construction is described in Section 4.1.3, just for comparison with Figure 4.5.
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(a) Weisfeiler-Lehman - Control

(b) Weisfeiler-Lehman - Cocaine

Figure 4.5: A visualization of the function learned by the pyramid quantized
Weisfeiler-Lehman graph representation applied to control and cocaine addicted sub-
jects.
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Several broad observations are apparent from our quantitative results. From Table 4.1,

we note that subtree patterns up to depth two seem to perform best, and that deeper

subtree patterns begin to reduce average performance. This indicates that the big-O
complexity of the graph representation is only slightly higher than using a simple linear

function. The proposed method performs significantly better than the Gaussian kernel

ridge regression and the Elastic Net baselines (see Table 4.1 and Figure 4.1). In our

final experiment of combining the raw voxel values with the subtree pattern features, we

found that performance decreased slightly from that of only considering subtree pattern

features.

In this work, we have presented a fully automated, statistically sound method for classifi-

cation of brain states with graph representations, using the pyramid quantized Weisfeiler-

Lehman graph representation. The method was evaluated on a real world dataset and

outperformed other machine learning techniques with statistical significance, including

kernel ridge regression and the Elastic Net. This validates the primary hypothesis of

this work: that the interconnections between voxels can contain additional information

about brain structure that is not apparent in a linear function on the raw voxel values.

4.2 3D shape classification

4.2.1 Introduction

Three-dimensional objects are extensively used in a numerous areas, such as computer

games, biomedical research studies, CAD models and cultural heritage. Examples with

applications that use 3D objects can been seen in Figure 4.6. Their widespread incorpo-

ration in many areas generates the need to store, classify and retrieve them automatically

and efficiently. 3D surface models, also known as 3D shapes, represent a 3D object by a

finite set of surface points in 3D space, connected by various geometric entities such as

triangles, curved surfaces, etc.

In previous proposed methods, the three-dimensional objects are commonly associated

with a 3D descriptor. There are three wide categories of 3D descriptors (a) feature-

based methods, (b) view-based methods, and (c) graph-based methods. Feature-based

methods represent objects as histograms of statistics of global features [Elad et al.,

2002, Mahmoudi and Sapiro, 2008, Kokkinos et al., 2012], such as volume, moments

and geodesic distance, or local features [Lee et al., 2005, Castellani et al., 2008], such

as curvature and normals. The advantage of feature-based methods is that they are

computationally efficient, as they represent a potentially complex 3D object by only a

few dimensions. On the other hand, view-based methods use multi-viewpoint projections
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to produce a number of rendered images, the combination of which forms a global object

descriptor [Ohbuchi and Furuya, 2010]. Finally, graph-based methods use only the

topological properties of the 3D object in its representation, such as Reeb graphs [Hilaga

et al., 2001] and skeleton graphs [Sundar et al., 2003]. The disadvantage of these methods

is that are computationally expensive and can be sensitive to small topological changes.

In our approach, we denote that the 3D surface models can be viewed as graphs G(V,E),

where the finite set of points in the 3D space will represent the vertices V and the

connection between two points in order to form triangles or curved surfaces will represent

the edges E. This perspective specifies the topology of a graph, but does not explicitly

encode relative vertex positions or other geometric properties. Therefore, we extend

the notion of the graph to incorporate node labels that encode properties, such as local

curvature of the surface. In order to incorporate this representation in a statistical

learning framework, we interpret 3D shapes as continuous vector labeled graphs and

use the pyramid quantized Weisfeiler-Lehman kernel, introduced in Chapter 3, to learn

the classification functions. We overcome the problem of computational inefficiency and

oversensitivity to topological changes by representing graphs using statistics of subtree

patterns.

The remainder of this section is structured as follows: In Section 4.2.2 we present the

two 3D shape datasets, a dataset from medical imaging and a dataset from the semantic

shape classification tasks, in Section 4.2.3 we introduce the local features of the 3D shapes

that are used as continuous vector labels in their graph representation, in Section 4.2.4

we present an overview of the pipeline strategy used in this problem, in Section 4.2.5 we

report the experimental results on two aforementioned datasets and we conclude with a

discussion in Section 4.2.6.

4.2.2 3D shapes datasets

We evaluate the pyramid quantized WeisfeThe obtained volumes had a size of 64 × 64 ×
20 voxels and a voxel resolution of 3.125mm × 3.125mm × 7mm. T1- and T2-weighted

MR images were acquired at the same time. As a consequence, the image volumes are

naturally co-registered. iler-Lehman kernel on two 3D surface shape categorization tasks.

In the first task, we address the problem of categorizing shapes extracted from segmented

medical images of calf muscle. The discriminative task is to determine the presence or

absence of neuromuscular dystrophy. In the second task, we address the problem of

semantic shape categorization based on the SHREC 2013 data set.
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(a) 3D game - CC 3.0 BY Canoe1967

(b) Chemoinformatics

(c) Cultural heritage

Figure 4.6: Examples of application that use 3D objects. Figure 4.6(a) show an screen-
shot from the video game Second life that stimulates a virtual 3D world. Figure 4.6(b)
show a screen-shot from the on-line puzzle video game Foldit that uses 3D protein
structure to understand how proteins fold for the use of drug development. Figure 4.6(c)
shows the Digital Michelangelo project from Standford that aims to digitize cultural
artifacts for cataloging, conservation and restoration.
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(a) Healthy subject

(b) Patient

Figure 4.7: T1-weighted MR images of the calf from a healthy and patient subject.
On the top, Figure 4.7(a) shows a slice of the MR image from a healthy subject, while
on the bottom, Figure 4.7(b) shows a slice of the MR image from a patient with a
neuromuscular disease.
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Figure 4.8: An example of an T1 weighted MR image with the seven segmented
muscles of the calf. Each color represents a single muscle. Yellow represents the anterior
tibialis, cyan the extensor digitorum longus, magenta the peroneous longus, white the
posterior tibialis, blue the soleus, green the lateral gastrocnemius, and red the edial
gastrocnemius. (Figure best viewed in color.)
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(a) Without decimation (b) With decimation

Figure 4.9: An example from the neuromuscular dystrophy dataset for soleus muscle
before and after the decimation pre-processing step. On the left, Figure 4.9(a) shows
the soleus muscle before the decimation procedure, while on the right Figure 4.9(b)
show the soleus muscle after the decimation procedure.

4.2.2.1 Neuromuscular Dystrophy Dataset

The neuromuscular dystrophy dataset consists of 41 subjects: 27 are affected by a

neuromuscular dystrophy (either facioscapulohumeral muscular dystrophy or myotonic

muscular dystrophy type 1), while the remaining 14 subjects are healthy. In a clinical

context, this a large sample size. The subjects were imaged in the calf using a 1.5 T

MRI scanner. The obtained volumes had a size of 64 × 64 × 20 voxels and a voxel

resolution of 3.125mm× 3.125mm× 7mm. An example of the T1-weighted MR images

of the calf from a healthy and patient subject can be seen in Figure 4.7. It is not

immediately apparent from these images whether zero, one, or both subjects have a

neuromuscular dystrophy even to experts; a confirmation is achieved by an invasive

muscle biopsy. The T1 weighted MR images were manually segmented by an expert

separating 7 important calf muscle groups: 1) soleus (SOL), 2) lateral gastrocnemius

(LG), 3) medial gastrocnemius (MG), 4) posterior tibialis (TP), 5) anterior tibialis (AT),

6) extensor digitorum longus (EDL), and 7) peroneous longus (PL). An example of the

segmented muscle can be seen in Figure 4.8. It is planned to automate this process

in future work. In the meantime, the overall approach provides a strategy to avoid an

invasive biopsy.

Each segmented muscle is then transformed into a 3D surface mesh using the itk-snp

program.1 Consequently, the exported 3D meshes consist of a huge number of vertices

and edges and require a decimation pre-processing step (for more details see in paragraph

“Decimation preprocessing” in Section 4.2.2.3 and Figure 4.9). Figure 4.11 shows an

example of the seven segmented muscles of the calf as 3D surfaces meshes from a healthy

1http://www.itksnap.org/pmwiki/pmwiki.php
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(a) Without decimation (b) With decimation

Figure 4.10: An example from the SHREC 2013 dataset for the biped class before
and after the decimation pre-processing step. On the left, Figure 4.10(a) shows the
biped 3D shape before the decimation procedure. while on the right 4.10(b) shows the
shape biped 3D shape after the decimation procedure.

subject, on the left, and a patient, on the right respectively, after the prepocessing

procedure of decimation is applied. Finally, we should note that the discriminative

task for this dataset is to distinguish between patients of neuromuscular dystrophy and

healthy subjects.

4.2.2.2 SHREC 2013 dataset

The SHREC 2013 dataset was selected from the SHREC 2013 Contest “Large-Scale Par-

tial Shape Retrieval Track Using Simulated Range Images” track.2 Although the initial

dataset consists of a target set and a query set, that contains full large-scale models and

partial views of the models respectively, we focus only on the target set where a ground-

truth was easily accessible. The dataset consists of 20 classes of generic objects, which

are in alphabetical order: 1) bed, 2) bicycle, 3) biped, 4) biplane, 5) bird, 6) bottle,

7) car, 8) cellphone, 9) chair, 10) cup, 11) desklamp, 12) fish, 13) floorlamp, 14) insect,

15) monoplane, 16) mug, 17) phone 18) quadruped, 19) sofa and 20) wheelchair. Each

class contains 18 different large-scale models, resulting in a total of 360 objects. Ex-

amples from each class of the SHREC 2013 dataset after the preprocessing decimation

step (for more details see paragraph “Decimation preprocessing” in Section 4.2.2.3) is

2http://dataset.dcc.uchile.cl/
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(a) Edial Gastrocnemius

(b) Lateral Gastrocnemius

(c) Soleus

Figure 4.11: An example of the seven segmented muscles of the calf as 3D surface
meshes from a healthy subject on the left and from a patient with neuromuscular disease
on the right (continued).
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(d) Anterior Tibialis (e) Extensor Digitorum Longus

(f) Peroneous Longus (g) Posterior Tibialis

Figure 4.11: An example of the seven segmented muscles of the calf as 3D surface
meshes from a healthy subject on the left and from a patient with neuromuscular disease
on the right.

illustrated in Figure 4.12. Finally, we should note that the task is to categorize each

object among the 20 different semantic classes using a one-vs-rest approach.

4.2.2.3 Decimation preprocessing

Both the neuromuscular dystrophy dataset and the SHREC 2013 dataset consist of 3D

meshes with a very big number of vertices and edges. For example for the neuromuscular

dystrophy dataset for soleus muscle the average number of vertices is 25430 and the

average number of edges is 76291, while for the SHREC2013 dataset the average number

of vertices is 10446 and the average number of edges is 29920. Since the Weisfeiler-

Lehman algorithm is quadratic to the number of edges and linear to number of vertices

(see paragraph “Complexity” in Section 3.1), a larger number of vertices and edges
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(a) Bed (b) Bicycle (c) Biped (d) Biplane

(e) Bird (f) Bottle (g) Car (h) Cellphone

(i) Chair (j) Cup (k) Desklamp (l) Fish

(m) Floorlamp (n) Insect (o) Monoplane (p) Mug

(q) Phone (r) Quadruped (s) Sofa (t) Wheelchair

Figure 4.12: Examples of each of the 20 classes of the SHREC 2013 dataset after the
decimation preprocessing step.

could make the computation infeasible. For these reasons a decimation preprocessing

was performed to simplify the 3D shapes in both datasets. Additionally, in the context

of the pyramid Weisfeiler-Lehman graph representation, decimation can be viewed as

an important source of regularization. For the neuromuscular dystrophy dataset the

3D meshes were simplified with the decimation algorithm incorporated in the itk-snap

program, keeping on average 4308 number of vertices and 13598 number of edges. For

the SHREC 2013 dataset the 3D meshes were simplified to 500 faces using the qslim

program [Garland and Heckbert, 1997, 1998], keeping on average 350 vertices and 819

edges. Examples of the 3D meshes before and after the decimation process are shown
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in Figure 4.9 and in Figure 4.10 for the neuromuscular dystrophy dataset and the SHREC

2013 dataset, respectively. Overall, this preprocessing step increases the speed of the

algorithm and works also a regularizer on the pyramid quantized Weisfeiler-Lehman

graph representation.

4.2.3 Node Labels’ description

As we denoted above, we view the 3D surface meshes as labeled graphs G = (V,E,L),
where L : V → R

d is the label function and the label of each vertex is defined as a

concatenation of a number of local properties of the 3D surface mesh. In this section we

present the local properties used as labels on the vertices.

4.2.3.1 Curvature

The first attributes we select are the two principal curvatures k1 and k2 of each vertex

of the 3D surface mesh, which are attached as a 2D continuous vector features. The

normal curvature kn of a surface in some direction is defined as the reciprocal of the

radius of the circle that best approximates a normal slice of surface in that direction.

Specifically, the normal curvature is defined as

kn =
(

s t
)
(

k1 0

0 k2

)(

s

t

)

(4.1)

where k1 and k2 are the principal curvatures and
(

s t
)

is the unit-length vector in the

local tangent plane that express the principal directions, i.e. the directions in which the

normal curvature reaches its minimum and maximum. We estimate the value at each

vertex as a weighted average over the principal curvature features of the immediately

adjacent triangulated faces [Rusinkiewicz, 2004]. Examples of the two principal curva-

tures on each node are shown in Figure 4.13 for a bottle object from the SHREC2013

dataset, while Figure 4.14 shows the minimum curvature feature on the muscle soleus

of the calf from the neuromuscular dataset for a patient with a neuromuscular disease

and a healthy subject.

Apart from the principal curvatures that are used as node attributes in both datasets, in

the SHREC2013 dataset we also used as node attributes local multi-viewpoint rendering

features as defined in the following paragraph, but only for the 3D surface mesh structure

that is enclosed within a given radius of the current node.
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(a) Minimum Curvature (b) Maximum Curvature

Figure 4.13: An example of the two principal curvatures on a bottle object from
the SHREC2013 dataset in a logarithmic scale. On the left, Figure 4.13(a) shows
the minimum curvature, while the Figure 4.13(a) on the right shows the maximum
curvature. (Figure best viewed in color.)

(a) Disease (b) Healthy

Figure 4.14: An example of the minimum curvature on the muscle soleus of the
calf from the neuromusclar dystrophy dataset. On the left, Figure 4.14(a) shows the
minimum curvature for a patient with a neuromuscular disease, while on the right Fig-
ure 4.14(b) shows the minimum curvature for a healthy subject. (Figure best viewed
in color.)

4.2.3.2 Multi-viewpoint rendering descriptors

A successful method for 3D shape classification that has been previously proposed,

is based on rendering shapes from multiple viewpoints and developing kernels based

on these rendered images [Ohbuchi and Furuya, 2010]. We complement our continuous

vector labeled graph representation with multi-viewpoint rendering features for the more

complicated SHREC 2013 dataset. As we cannot assume a canonical basis for specifying



84
Chapter 4 Applications of the pyramid quantized Weisfeiler-Lehman graph

representation in neuroimaging and shape classification

Algorithm 4.2 The statistical learning pipeline for 3D shape with pyramid quantized
Weisfeiler-Lehman kernel.

Require: Training set of D = {(G′

i, yi), i = 1, . . . , n} where G
′

i = (V
′

i , E
′

i) is a graph.
1: Decimate the graphs G

′

i = (V
′

i , E
′

i) into Gi = (Vi, Ei) where |V ′

i | ≤ |Vi| and |E′

i | ≤
|Ei|.

2: Calculate the curvature and/or multi-viewpoint rendering descriptor for each vertex
and label the graphs Gi = (Vi, Ei,Li), where Li : Vi → R

d .
3: for each level in the quantization pyramid do
4: Label the nodes of all graphs according to the data guided quantization of the

vector label.
5: Compute the Weisfeiler-Lehman statistics for the given quantization level over all

graphs and calculate the intersection kernel k
(h)
i−WLsubtree.

6: end for
7: Combine the kernels k

(h)
i−WLsubtree across all levels given a predefine weighted scheme

or multiple kernel learning.

the 3D coordinates of the surface control points, we use a principal component analysis

step to determine one. The multi-viewpoint rendering descriptor for a given vertex on the

graph is calculated for a given percentage of the radius on the graph. For comparison,

we also develop a multi-viewpoint rendering baseline on the whole graph. Similarly,

we use a principal components analysis step to determine a basis. We then render

images in these canonical bases and compute (non-)linear kernels. We have explored

linear, polynomial of 2nd and 3rd degree and Gaussian kernels. As the third and the

second degree polynomial kernel performed best for the muscle and SHREC2013 dataset,

respectively, we use these rendering baselines in Section 4.2.5.

4.2.4 Method

As we already mentioned above, we view the 3D surface models as graphs G(V,E),

where V is the finite set of points in the 3D space and E is the set of connections be-

tween two points in order to form triangles or curved surfaces. We further annotate

each vertex using the local features, defined in Section 4.2.3, in order to take advantage

of shape’s information. Before we incorporate local features as labels on the vertices,

we simplify the mesh, as noted in Section 4.2.2.3, due to the large sizes of the graphs.

Since we end up with a continuous vector labeled graphs, we use the pyramid quantized

Weisfeiler-Lehman graph representation with a data guided binning scheme (see Sec-

tion 3.3.1.2) to create subtree statistics over the graphs for comparison. For all the

levels of quantization, we calculate the intersection kernel over the previous calculated

subtree statistics (see Section 3.3.2), resulting in a number of kernels, one per pyramid

level as in Equation 3.11. To combine the kernels from all pyramid levels into one, we
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WLpyramid pyramid BoW Rendering Combined

Accuracy 78.00% 73.00% 75.50% 82.93%

AUC 0.6410 0.6361 0.6300 0.6648

Table 4.2: The mean accuracy and the mean area under the ROC curve (AUC) on
the neuromuscular dystrophy dataset. The compared methods are (left to right) the
pyramid quantized Weisfeiler-Lehman kernel (WLpyramid), the pyramid bag of words
model (pyramid BoW), the multi-viewpoint rendering images procedure (Rendering)
and a combination of the multi-viewpoint rendering procedure with the pyramid quan-
tized Weisfeiler-Lehman kernel (Combined). Note that the chance is 65.5% accuracy.

follow two different approaches, one for each dataset in order to maximize their perfor-

mance. For the neuromuscular dystrophy dataset we use a equal fixed weight strategy

(see Section 3.4.1.2), while for the SHREC 2013 dataset we use a multiple kernel learning

approach (see Section 3.4.1.1). An overview of the pipeline for the 3D shape dataset

with the pyramid quantized Weisfeiler-Lehman kernel is shown in Algorithm 4.2.

4.2.5 Results

For both datasets we use the same experimental setup, a double cross-validation pro-

cedure. The inner 5 fold cross-validation procedure is used for parameter selection,

while the outer 10 fold cross-validation procedure is used for evaluating the perfor-

mance. We only report results from the outer 10 fold cross-validation procedure. We

also compare the pyramid quantized Weisfeiler-Lehman kernel with two other methods

on both datasets (a) a pyramid bag of words model, which is the pyramid quantized

Weisfeiler-Lehman kernel for depth h = 0, and (b) a multi-viewpoint rendering proce-

dure (see details in paragraph “Multi-viewpoint rendering descriptor” in Section 4.2.3.2)

following the same experimental setup. We also present the results obtained from the

combination of the best multi-viewpoint rendering representation with the best pyramid

quantized Weisfeiler-Lehman kernel.

The performance for the neuromuscular dystrophy dataset of the pyramid quantized

Weisfeiler-Lehman kernel, as well as the three other methods is shown in Table 4.2 and

in Figure 4.15. The performance is evaluated as the mean accuracy and the mean area

under the Receiver Operating Characteristic curve (AUC) in Table 4.2 over a 10 fold

cross validation procedure. The respective ROC curves can be seen in Figure 4.15. The

pyramid quantized Weisfeiler-Lehman kernel outperforms both the pyramid bag of words

method and the multi-viewpoint image rendering procedure. The overall best perfor-

mance is achieved when we combined the pyramid quantized Weisfeiler-Lehman kernel

with the multi-viewpoint rendering approach with a mean accuracy of approximately

83% and a mean AUC of 0.6648.
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Figure 4.15: The mean area under the ROC curve for the neuromuscular dystrophy
dataset over 10 fold cross-validation procedure. The compared methods are the pyramid
quantized Weisfeiler-Lehman kernel (WLpyramid) in blue, the pyramid bag of words
model (pyramid BoW) in magenta, the multi-viewpoint rendering images procedure
(Rendering) in red and a combination of the multi-viewpoint rendering procedure with
the quantized Weisfeiler-Lehman pyramid kernel (Combined) in green.

The performance for the SHREC 2013 dataset of the pyramid quantized Weisfeiler-

Lehman kernel, as well as for the other methods is shown in Table 4.3 and in Fig-

ure 4.16. The performance is evaluated as the mean area under the Receiver Operating

Characteristic curve (AUC of ROC curve) over a 10 fold cross-validation procedure.

The overall best performance is achieved when we combined the pyramid quantized

Weisfeiler-Lehman kernel with the multi-viewpoint rendering images with a mean AUC

of approximately 0.85 across all 20 classes. A Wilcoxon signed-rank test showed that

the combined method performed better than all other methods with high statistical

significance (p < 10−3).

We further show the learned weight of the pyramid quantized Weisfeiler-Lehman kernel

for the SHREC 2013 dataset in Figure 4.17 and in Figure 4.18. Figure 4.17 shows an

example of the learned weights on a 3D object of the bird class for three different subtree

depths (h ∈ {0, 1, 2}) of the Weisfeiler-Lehman algorithm, while Figure 4.18 shows the

learned weight over all levels of the pyramid quantized Weisfeiler-Lehman kernel for

depth h = 1 for all one-vs-rest classifiers. Note that the values of the learned weights

increase as the color changes from blue to red.
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(a) Bed
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(b) Bicycle
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(c) Biped
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(d) Biplane
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(e) Bird
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(f) Bottle

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-rest clas-
sifiers of the SHREC2013 dataset over a 10 fold cross-validation procedure. In blue is
the pyramid quantized Weisfeler-Lehman kernel (WL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of the pyramid quantized
Weisfeler-Lehman kernel with the Render Image descriptor (Combined WL+Render).
(Best viewed in color) (continued)
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(g) Car
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(h) Cellphone

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

 

 

WL pyramid Kernel
Pyramid BoW
Render Image Baseline
Combined WL+Render

(i) Chair
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(j) Cup
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(k) Desklamp
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(l) Fish

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-rest clas-
sifiers of the SHREC2013 dataset over a 10 fold cross-validation procedure. In blue is
the pyramid quantized Weisfeler-Lehman kernel (WL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of the pyramid quantized
Weisfeler-Lehman kernel with the Render Image descriptor (Combined WL+Render).
(Best viewed in color) (continued)
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(m) Floorlamp
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(n) Insect
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(o) Monoplane
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(p) Mug
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(q) Phone
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(r) Quadruped

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-rest clas-
sifiers of the SHREC2013 dataset over a 10 fold cross-validation procedure. In blue
is the pyramid quantized Weisfeler-Lehman kernel (WL pyramid Kernel), i magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of the pyramid quantized
Weisfeler-Lehman kernel with the Render Image descriptor (Combined WL+Render).
(Best viewed in color) (continued)
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Class WLpyramid pyramid BoW Rendering Combined

Bird 0.85 0.83 0.85 0.86
Bicycle 0.84 0.87 0.90 0.90
Biped 0.89 0.88 0.99 0.99
Biplane 0.60 0.63 0.68 0.69
Bird 0.73 0.73 0.80 0.80
Bottle 0.76 0.76 0.79 0.80
Car 0.78 0.79 0.80 0.80

CellPhone 0.74 0.80 0.88 0.89
Chair 0.69 0.68 0.70 0.72
Cup 0.85 0.84 0.88 0.88

Desklamp 0.80 0.80 0.88 0.89
Fish 1.00 1.00 1.00 1.00

Floorlamp 0.80 0.77 0.89 0.89
Insect 0.64 0.60 0.62 0.66

Monoplane 0.84 0.82 0.88 0.90
Mug 0.82 0.82 0.85 0.87
Phone 0.83 0.74 0.72 0.83

Quadruped 0.89 0.86 0.97 0.98
Sofa 0.76 0.75 0.74 0.75

Wheelchair 0.81 0.79 0.88 0.90

Average 0.80 0.79 0.84 0.85

Table 4.3: The mean area under the curve on the SHREC 2013 dataset over 10 fold
cross-validation procedure. The compared methods are (left to right) The pyramid
quantized Weisfeiler-Lehman kernel (WLpyramid), the pyramid bag of words model
(pyramid BoW), the multi-viewpoint rendering procedure (Rendering) and a combina-
tion of the multi-viewpoint rendering procedure with the pyramid quantizes Weisfeiler-
Lehman kernel (Combined). The Area under the curve is given for all one-vs-rest
classifiers as well as the average across all classifiers. In bold are the one-vs-rest classi-
fier where the combined classifier outperforms the multi-viewpoint rendering procedure.
A Wilcoxon signed-rank test showed that the combined method performed better than
all other methods with high statistical significance (p < 10−3).

4.2.6 Discussion

In the neuromuscular dystrophy dataset, the pyramid quantized Weisfeiler-Lehman ker-

nel performs substantially better than both the pyramid Bag of Words approach as well

as the multi-viewpoint rendering technique. These techniques clearly contain comple-

mentary information as the combined method performs best.

We have further confirmation from the SHREC 2013 dataset that the pyramid quantized

Weisfeiler-Lehman kernel contains complementary information to the multi-viewpoint

rendering baseline. The combined approach gives the best performance in 13 out of the

20 classes, while never performing worse than the baselines. A Wilcoxon signed-rank

test also showed that the combined method performed better than all other methods

with high statistical significance (p < 10−3).
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(s) Sofa
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(t) Wheelchair

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-rest clas-
sifiers of the SHREC2013 dataset over a 10 fold cross-validation procedure. In blue is
the pyramid quantized Weisfeler-Lehman kernel (WL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of the pyramid quantized
Weisfeler-Lehman kernel with the Render Image descriptor (Combined WL+Render).
(Best viewed in color)

As shapes are commonly represented by surface meshes, a natural approach is to use

these graphs for categorization and retrieval. In this section we have shown two such

applications, one on medical image analysis and one on generic 3D shape classification.

The pyramid quantized Weisfeiler-Lehman kernel is a flexible and efficient method for

learning from graphs with continuous, vector-valued node labels, such as annotations

of local curvature. Furthermore, visualizations of the learned discriminant function is

feasible, providing rich information about the discriminative power of each 3D shape.

In this work, we have not directly incorporated any features in our node labels captur-

ing surface reflectance, color, or texture. This is an interesting area for future research.

Learned shape retrieval by discriminative training of a Mahalanobis metric [Weinberger

and Saul, 2009] is another interesting possible future direction. Finally, in this work, we

have made three main contributions (a) we developed a novel framework for shape classi-

fication based on the interpretation of shape meshes as annotated graphs, (b) we applied

a generalization of the Weisfeiler-Lehman graph kernel to continuous node labels, the

pyramid quantized Weisfeiler-Lehman kernel, and (c) we performed experiments on med-

ical imaging and semantic shape classification tasks, showing that the pyramid quantized

Weisfeiler-Lehman kernel contains complementary information to baseline methods and

that the best results are achieved by a combination of information sources.
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(a) h = 0 - pyramid Bag of Words

(b) h = 1

(c) h = 2

Figure 4.17: An example of the learned weights of the pyramid quantized Weisfeiler-
Lehman Kernel on a 3D object of the class bird from the SHREC 2013 dataset for three
different subtree depths (h ∈ {0, 1, 2}). The values of the learned weights increase as
the color changes from blue to red. See Section 3.4.1.3 for details of the visualization.
(Figure best viewed in color).
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Figure 4.18: Visualization of the learned weights of the pyramid quantized Weisfeiler-
Lehman kernel of subtree patterns with depth h = 1 for each vertex on the 3D surface
mesh per Class-vs-Rest Classifier for the SHREC2013 dataset. The values of the learned
weights increase as the color changes from blue to red. The evaluation of the weight
per vertex is derived in Section 3.4.1.3.(Figure best viewed in color.) (continued)
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Figure 4.18: Visualization of the learned weights of the pyramid quantized Weisfeiler-
Lehman kernel of subtree patterns with depth h = 1 for each vertex on the 3D surface
mesh per Class-vs-Rest Classifier for the SHREC2013 dataset. The values of the learned
weights increase as the color changes from blue to red. The evaluation of the weight
per vertex is derived in Section 3.4.1.3.(Figure best viewed in color.) (continued)
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Figure 4.18: Visualization of the learned weights of the pyramid quantized Weisfeiler-
Lehman kernel of subtree patterns with depth h = 1 for each vertex on the 3D surface
mesh per Class-vs-Rest Classifier for the SHREC2013 dataset. The values of the learned
weights increase as the color changes from blue to red. The evaluation of the weight
per vertex is derived in Section 3.4.1.3.(Figure best viewed in color.) (continued)
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Figure 4.18: Visualization of the learned weights of the pyramid quantized Weisfeiler-
Lehman kernel of subtree patterns with depth h = 1 for each vertex on the 3D surface
mesh per Class-vs-Rest Classifier for the SHREC2013 dataset. The values of the learned
weights increase as the color changes from blue to red. The evaluation of the weight
per vertex is derived in Section 3.4.1.3.(Figure best viewed in color.)



Chapter 5

Regularization methods for

analyzing Magnetic Resonance

Imaging data

Magnetic resonance imaging (MRI) is a widespread medical imaging technique used

to visualize internal structures of the body in detail. MRI makes use of the nuclear

magnetic resonance (NMR) property to image nuclei of atoms inside the body. The NMR

property allows the atomic nuclei in the body to be aligned when powerful magnetic field

is applied. Applying different radio frequencies causes the nuclei to produce a rotating

magnetic field that is detected by the MRI scanner and this information is recorded

to construct the image of the scanned area of the body. Magnetic field gradients cause

nuclei at different locations to rotate at different speeds, which allows spatial information

to be recovered using Fourier analysis of the measured signal. MRI provides good

contrast between the different soft tissues of the body, which makes it especially useful

in imaging the brain, muscles, the heart, and cancers compared with other medical

imaging techniques such as computed tomography (CT) or X-rays. Unlike CT scans or

traditional X-rays, MRI does not use ionizing radiation [Berger, 2002].

In clinical practice, MRI is usually used to distinguish pathological tissue, such as a

brain tumor, from normal tissue. There are a number of different types of MRI scans

with different properties, but in this thesis we focus our analysis in the following MRI

scans (a) T1-weighted MRI (b) T2-weighted MRI (c) diffusion MRI and (d) functional

MRI. Detailed description for the functional MRI type is provided in Section 5.2.2, while

descriptions for the T1-weighted MRI, the T2-weighted MRI and the diffusion MRI are

provided in Section 5.3.2. Independent of the specific properties of each MRI type, when

one analyzes clinical data sets with MRI scans has to deal with the fact that the number

97
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of observations is substantially smaller that the dimensionality of the data. Under

these circumstances the use of sparsity regularizers is a powerful tool for improving the

predictive performance and avoiding overfitting. The main methods considered here are

the LASSO [Tibshirani, 1996], the Elastic Net [Zou and Hastie, 2005], and the k-support

norm [Argyriou et al., 2012]. The former two are frequently applied sparsity regularizers

developed in the statistics literature, while the latter is a recently introduced method that

is mathematically related to the Elastic Net. A detailed description of these methods

are presented in Section 5.1. We then evaluate the performance of these three different

regularization methods on a fMRI analysis task in Section 5.2, while in Section 5.3 we

evaluate the k-support norm method with the use of two different loss functions over a

disease classification problem.

5.1 The regularization methods

Regularization, in mathematics and statistics, refers to a process of introducing addi-

tional information in order to solve an ill-posed problem or to prevent overfitting. This

information is usually of the form of a penalty for complexity, such as restrictions for

smoothness or bounds on the vector space norm. For the rest of this chapter, we assume

that we have a sample of paired labeled training data (X,Y ) = {(x1, y1), . . . , (xn, yn)} ∈
(
R
d × R

)n
where xi is an independent variable and yi is a dependent variable that we

would like to be able to predict. All regularization methods can be expressed as follows:

arg min
w∈Rd

λΩ(w) + L(w,X, Y ) (5.1)

where L(·, ·, ·) is some loss function, λ > 0 is a scalar parameter controlling the degree

of regularization and Ω(·) is a scalar valued function monotonic in a norm of the learned

weights w ∈ R
d. Sparsity regularization is a key family of priors over linear functions

that prevents overfitting, and aids interpretability of the resulting models by retaining

a subset of the predictors and discarding the rest in a more continuous framework than

typical subset selection procedures. Key to the mathematical understanding of sparsity

regularizers is their interpretation as convex relaxations to quantities involving the ℓ0

norm, which simply counts the number of non-zero elements of a vector.

In the following sections, we examine the well known LASSO and Elastic Net in Sec-

tion 5.1.1 and in Section 5.1.2 respectively and the newly introduced k-support norm

in Section 5.1.3.
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5.1.1 LASSO

LASSO [Tibshirani, 1996] stands for the Least Absolute Shrinkage and Selection Operator

and is a regularized version of the ordinary least squared method (OLS). The LASSO

is defined by setting as loss function the squared error of the scalar output and as

regularization term Ω(·) the ℓ1 norm of w, so Equation 5.1 is transformed as follows:

arg min
w∈Rd

λ‖w‖1 +
1

n

n∑

i=1

(〈w, xi〉 − yi)
2 (5.2)

where the ℓ1 norm is defined as the sum of the absolute values of the vector

‖w‖1 =
d∑

j=1

‖wj‖ (5.3)

and has an important interpretation as convex relaxation of the ℓ0 norm, meaning it is the

tightest sparsity norm that retains convexity. Note that as λ increases in Equation 5.2

that will cause more coefficients wj to be exactly zero, providing a more sparse solution.

The LASSO constraint makes the solutions nonlinear in the yi and there is no closed

form expression as in least squares. Computing the LASSO solution is a quadratic pro-

gramming problem and an efficient algorithm for computing the entire path of solutions

as λ varies exist - it is a variation of the Least Angle Regression (LAR) called LAR-

LASSO - making the LASSO computationally attractive. The LAR can be viewed as

a forward stepwise regression where instead of adding one variable at a time, the algo-

rithm adds “as much” of a predictor as it deserves. The idea of LAR is that it identifies

variables, called the active set, that are most correlated with the response and moves

their coefficients continuously toward the least-squared value. It increases the active set

by one variable at the time, but controlling its influence by its coefficient. This process

is continued until all variables are in the model, ending at the full least-squares fit. The

LAR algorithm has at most min(n − 1, d) steps, the same order of computations as a

single OLS fit. The LAR-LASSO variation allows a variable to be dropped from the

active set of variables if its coefficient hits zero.

5.1.2 Elastic Net

The Elastic Net [Zou and Hastie, 2005] is a regularization and variable selection method

that was introduced by Zou and Hastie in 2005. Elastic Net is defined by setting as

loss function the squared error of the scalar output and as regularization term Ω(·) a

linear combination of the ℓ1 and squared ℓ2 norms of w, so Equation 5.1 is transformed
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as follows:

arg min
w∈Rd

λ1‖w‖1 + λ2‖w‖22 +
1

n

n∑

i=1

(〈w, xi〉 − yi)
2 (5.4)

where the ℓ1 norm is defined in Equation 5.3 and the squared ℓ2 norm is defined as

‖w‖22 =
d∑

j=1

w2
j . (5.5)

This objective is a regularized version of the ordinary least squares and includes both

ridge regression [Tikhonov, 1963] and LASSO [Tibshirani, 1996] as special cases by

setting λ1 or λ2 to zero, respectively.

It should be noted that the Elastic Net is looser than the convex hull of a norm that

combines ℓ2 regularization with sparsity. Moreover, if there is a group of variables

among which the pairwise correlations are very high, the LASSO (see Section 5.1.1)

tends to select only one variable from the group and does not care which one is selected,

ending with a higher variance predictor. Elastic Net on the contrary may overcome

this disadvantage by selecting multiple variables from a group of correlated ones if that

improves the prediction accuracy, assigning approximately equal coefficients to highly

correlated variables.

Finally, the Elastic Net retains the computational advantage of the LASSO with the

use of a variation of the LAR algorithm, the LAR-EN. The Elastic Net problem can be

solved as a LASSO-type one considering the augmented paired data (X∗, Y ∗) where

X∗
(n+d)×d = (1 + λ2)

−1/2

(
X√
λ2I

)

, Y ∗
(n×d) =

(
Y

0

)

,

so Equation 5.4 can be written as:

ŵ∗ = arg min
ŵ∗∈Rd

λ1
√

(1 + λ2)
‖ŵ∗‖1 +

1

n

n+d∑

i=1

(〈ŵ∗, x∗i 〉 − y∗i )
2 (5.6)

and the Elastic Net solution [Zou and Hastie, 2005] is defined as:

ŵ =
√

(1 + λ2)ŵ
∗. (5.7)

The LAR-EN algorithm takes advantage of the sparse structure of the augmented data

when updating the Cholesky factorization of the active set in each iteration. Moreover,

an explicit use of the X∗ to compute all the quantities of the LAR algorithm can be

avoided, by keeping record only the non-zero coefficients and the active set at each LAR-

EN step. In the case where d >> n, it is not necessary to run the algorithm to the end.

If the algorithm is stopped after m steps, it requires O(m3 + dm2) operations.
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5.1.3 k-support norm

The k-support norm [Argyriou et al., 2012] is a newly introduced regularization penalty

that corresponds to the tightest convex relaxation of sparsity combined with the ℓ2 norm.

The k-support norm given an integer k ∈ {1, . . . , d} can be computed as

‖w‖spk =





k−r−1∑

i=1

(|w|↓i )2 +
1

r + 1

(
d∑

i=k−r

|w|↓i

)2




1
2

(5.8)

where |w|↓i is the ith largest element of the vector and r is the unique integer in {0, . . . , k−
1} satisfying

|w|↓k−r−1 >
1

r + 1

d∑

i=k−r

|w|↓i ≥ |w|
↓
k−r. (5.9)

One can see from Equation 5.8 that the norm trades off a squared ℓ2 penalty for the

largest components with an ℓ1 penalty for the smallest components. Note that means

that k-support norm is exactly equivalent to the ℓ1 norm when k = 1, while when k = d

k-support norm is equivalent to the ℓ2 norm. The k-support norm is exactly the convex

hull of that hybrid norm and is closely related to the Elastic Net penalty in that it can

be bounded to within a constant factor of the Elastic Net, as Argyriou et al. have shown

in [Argyriou et al., 2012].

In this thesis we employ the k-support norm with two different loss functions, the squared

loss and Huber-Hinge approximation loss. If we use the Nesterov’s accelerated method,

which is a first-order proximal algorithm, for optimization as suggested by [Argyriou

et al., 2012], an implementation of the k-support penalty requires apart from the def-

inition of the loss function L, also its gradient ∂L
∂w and the Lipschitz constant L for

∂L
∂w .

5.1.3.1 Squared Loss

The k-support norm was first introduced by Argyriou et al. in [Argyriou et al., 2012]

using a squared loss function, which is described as follows:

arg min
w∈Rd

λ‖w‖spk + ‖Xw − Y ‖2. (5.10)

The gradient of the squared loss function is defined as

∂L
∂w

= 2XTXw − 2XTY (5.11)
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and the Lipschitz constant for ∂L
∂w

L = 2γ (5.12)

where γ is the largest eigenvalue of XTX. In this case, Equation 5.10 has as special

cases the LASSO when k = 1 and the ridge regression when k = d respectively.

5.1.3.2 Hinge Loss

Since Hinge loss is not differentiable, we apply a Huber approximation to Hinge loss as

in [Chapelle, 2007]. The Huber approximation of the Hinge loss is defined as follows:

L(w,X, Y ) =

n∑

i=1







0 if yi〈w, xi〉 > 1 + h
(1+h−yi〈w,xi〉)2

4h if |1− yi〈w, xi〉| ≤ h

1− yi〈w, xi〉 if yi〈w, xi〉 < 1− h

(5.13)

where h is a parameter to choose, typically between 0.01 and 0.5 The gradient of the

Huber-Hinge approximation loss is defined as :

∂L
∂w

=

n∑

i=1







0 if yi〈w, xi〉 > 1 + h
〈w,xi〉xi−(1+h)yixi

2h if |1− yi〈w, xi〉| ≤ h

yixi if yi〈w, xi〉 < 1− h

(5.14)

and the Lipschitz constant for ∂L
∂w

L =
γ

2h
(5.15)

where γ is the largest eigenvalue of XTX, as before. The use of the Huber-Hinge

approximation loss with the k-support norm can be described as a close approximation

to the following optimization problem:

min
w∈Rd,b∈R,ξ∈Rn

λ‖w‖spk +

n∑

i=1

ξi (5.16)

s.t. yi (〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0, ∀i, (5.17)

which is a modification of the classical Support Vector Machine [Cortes and Vapnik,

1995]. This learning algorithm uses the Huber approximation to the Hinge loss, which

arbitrarily closely approximates the Hinge loss as h→ 0 while retaining differentiability.

Moreover, it employs the k-support norm as a structured sparsity regularizer and we call

it the k-support regularized SVM (ksup-SVM) [Gkirtzou et al., 2013c]. This approach

enables the learning algorithm to select a sparse but correlated subset of discriminative

variables. ksup-SVM has two input parameters, the λ > 0 regularization parameter

and k ∈ {1, . . . , d}, where d is the dimension of the feature space, the parameter that
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Figure 5.1: Loss functions for two class classification, where the response is y = ±1,
the prediction function is f with class prediction sign(f). The loss function are zero-one
loss with black, the squared error loss with red and the hinge loss function with green.

negatively correlates with the sparsity. The limit cases are the support vector machine

(SVM) [Cortes and Vapnik, 1995] when k = d and the ℓ1 regularized SVM [Zhu et al.,

2004] when k = 1. The ksup-SVM can be seen as an alternative to the Elastic Net

regularized SVM [Wang et al., 2006], but with a tighter convex relaxation to correlated

sparsity.

Figure 5.1 shows both the squared and the hinge loss as a function of the margin y ·f(x)
for a two class classification problem in which y ∈ {−1,+1}. It also shows the zero-one

misclassification loss, which gives unit penalty for negative margin values and no penalty

for all positive ones. The classification rule used here is sign(f(x)), which implies that

observations with positive margin yi ·f(xi) > 0 are classified correctly, where those with

negative margin yi ·f(xi) < 0 are misclassified. Both the hinge loss and the squared loss

can be viewed as continuous and convex upper bounds to the zero-one misclassification

loss. The hinge loss penalizes increasingly negative margin values, while it gives no

penalty for all positive ones. Squared loss also penalizes increasingly the negative margin

values, but for margin values yi · f(xi) > 1 it increases quadratically, therefore placing

increasing influence on observations that are correclty classified with increasing certainty.

Squared loss consequently has two undesirable properties compared with hinge loss (a) it
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penalizes heavily confident correct classifications and (b) the quadratic penalty is not as

robust to label noise as the linear penalty. Note, however, that both loss functions lead

to a statistically consistent binary classifier [Bartlett et al., 2006].

5.2 fMRI data analysis with the use of regularization meth-

ods

5.2.1 Introduction

In this section we evaluate the three regularization methods presented in Section 5.1, the

well-known LASSO and Elastic Net and the newly introduced k-support with squared

loss, in analyzing fMRI data. Functional magnetic resonance imaging (fMRI) is a non-

invasive modality used for studying brain activity by detecting changes in blood oxy-

genation and flow, that occur as a response to neural activity. The typically small

sample size, which is a result of both the high cost and time consuming nature of the

fMRI acquisition procedure, and as well as the high dimensional nature of the data,

which consists of tens of thousands of voxels, makes the statistical analysis of fMRI data

a challenging task.

A number of approaches have been proposed in the literature for analyzing fMRI data,

as we have already seen in Section 4.1.1, including machine learning techniques such as

support vector machines, independent component analysis, as well as the use of regions

of interest (ROIs). Due to the intrinsic high dimensional nature of fMRI data and

the cost of collecting large numbers of samples, fMRI analysis is particularly suited

for the sparsity regularization framework. Sparsity regularization methods, apart from

being mathematical appealing, they are also fully exploratory and they do not require

a predefined set of ROIs. Previous works that have explored sparsity regularization in

fMRI include [Carroll et al., 2009, Ng et al., 2012b]. To the best of our knowledge, this

study is the first to apply the k-support norm to fMRI analysis.

The remaining of the section is organized as follows: in Section 5.2.2 we present the

data that we use in this study, in Section 5.2.3 is dedicated to the experimental setting

and results and in Section 5.2.4 concludes the overall section with a discussion over the

obtained results and the perspectives of this work.
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5.2.2 fMRI data description

In order to evaluate the three regularization methods we use two fMRI datasets. The

first one, which consists of a healthy subject in a free-viewing framework, is employed

for the quantitative evaluation due to its larger sample size, while the second one, which

consists of the contrast maps of 16 cocaine addicted subjects and 17 controls, is employed

for qualitative evaluation.

5.2.2.1 Free-viewing dataset

The free-viewing dataset consists of fMRI data of a single session from one human

volunteer [Bartels and Zeki, 2004b, Bartels et al., 2007]. The session has 350 time

slices of 3-dimensional fMRI brain volumes, that was acquired using a Siemens 3T TIM

scanner. The time-slices were separated by 3.2 seconds (TR) and each one has a spatial

resolution of 46 slices with 64× 64 pixels of 3× 3mm, resulting in a spatial resolution of

3×3×3mm. The subject watched one movie, which had labels indicating the continuous

content of the movie (i.e. degree of visual contrast, or the degree to which a face was

present, etc.). The imaging data were preprocessed using standard procedures using the

Statistical Parametric Mapping (SPM5) toolbox before analysis [Friston et al., 2007].

This included slice-time correction to compensate for acquisition delays between slices, a

spatial realignment to correct for small head-movements, a spatial normalization to the

SPM standard brain space (near MNI), and spatial smoothing using a Gaussian filter of

6 mm full width at half maximum (FWHM). Subsequently, images were skull-and-eye

stripped and the mean of each time-slice was set to the same value (global scaling). A

temporal high-pass filter with a cut-off of 512 seconds was applied, as well as a low-pass

filter with the temporal properties of the hemodynamic response function, in order to

reduce temporal acquisition noise[Blaschko et al., 2009, Shelton, 2010].

The label time-series were obtained using two separate methods, using computer frame-

by-frame analysis of the movie [Bartels et al., 2007], and using subjective ratings av-

eraged across an independent set of five human observers [Bartels and Zeki, 2004b].

The computer-derived labels indicated luminance change over time (temporal contrast),

visual motion energy (i.e. the fraction of temporal contrast that can be explained by

motion in the movie). The human-derived labels indicated the intensity of subjectively

experienced color, and the degree to which faces and human bodies were present in the

movie. In prior studies, each of these labels had been shown to correlate with brain

activity in particular and distinct sets of areas specialized to process the particular label

in question [Bartels and Zeki, 2004b, Bartels et al., 2007]. The discriminative task is
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the prediction of a “Temporal Contrast” variable computed from the content of a movie

presented to the subject [Blaschko et al., 2011].

5.2.2.2 Cocaine Addiction Dataset

Our dataset [Goldstein et al., 2009] contains an approximately equal number of cocaine

addicted individuals and control subjects performing a neuropsychological experiment

of block design, called drug Stroop experiment. The experiment consists of an initial

screen displaying the monetary reward and then presenting a sequence of forty words in

four different colors. The subject was instructed to press one of four buttons matching

the color of the word and was rewarded for correct performance. Each subject performs

six sessions with two varying conditions, a monetary reward (50¢, 25¢ and 0¢) and the

cue shown (drug-related or a neutral word). We focus here on the 50¢ condition based

on previous analysis of the data [Honorio et al., 2012]. The data were preprocessed using

statistical parametric mapping SPM2 [Friston et al., 1994] and a contrast map for each

subject is produced. A detailed description of the preprocessing procedure is presented

in Section 4.1.2. Only the subjects that complied to motion < 2mm translation, < 2◦

rotation and at least 50% performance of the subject in an unrelated task [Goldstein

et al., 2009] were kept. Finally, the task of interest is the classification of a subject as

cocaine addicted or control.

5.2.3 Results

The qualitive evaluatation of the different sparse regularization techniques is performed

on the free viewing dataset (see Section 5.2.2.1) and their performance is shown in Fig-

ure 5.2. The performance is evaluated as the mean correlation over 100 trials of ran-

dom permutations, where in each trial, 80% of the data are used to train the method,

while the remaining 20% are used to evaluate the performance. We evaluate both

the Elastic Net and k-support norm for same λ2 and λ values respectively, where

λ, λ2 ∈ {102, 103, 104, 105, 106}. For the parameter selection a similar inner scheme

of random permutations is used. In this inner scheme the 90% of the training data are

used to train the method and rest 10% of the training to select the model’s parameter

over 20 trials of random permutations.

In Figure 5.2 the performance of the regularization methods is plotted as a function of

sparsity. More specifically, Figure 5.2(a) shows the mean correlation between LASSO

and Elastic Net against the number of non-zero variables (i.e. voxels) that is correlated

with the λ parameter in Equation 5.2 and with the λ1 in Equation 5.4, while Figure 5.2(b)

shows the mean correlation for the k-support norm against different k values –which
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(b) k-support norm

Figure 5.2: Mean Pearson correlations between the label and prediction on the hold-
out data over 100 trials for the free-viewing dataset (higher values indicate better
performance). Error bars show the standard error of the mean. The LASSO achieves
its best performance with a sparsity level substantially lower than the Elastic Net, as it
suppresses correlated voxels (Figure 5.2(a)). The k-support norm performs better than
the LASSO, Elastic Net, or Laplacian regularization reported in [Blaschko et al., 2011],
and is a promising candidate for sparsity in fMRI analysis (Figure 5.2(b)). (Figure best
viewed in color.)
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are negative correlated with the number of non-zero coefficients. LASSO achieves a

maximum mean correlation of 0.12 for 45 non-zero variables, Elastic Net a maximum

mean correlation of 0.1313 for 1950 non-zero variables, while k-support norm a maximum

of 0.1398 for k = 200. This is substantially higher than was previously reported result

in [Blaschko et al., 2011]. According to a Wilcoxon signed rank test, the performance of

k-support norm is statistically significantly better than the performance of both LASSO

and Elastic Net (p-value was ≪ 0.05).

We have additionally visualized the brain regions predicted when applying the LASSO

and the k-support norm to the cocaine addiction dataset (see Section 5.2.2.2). For

each, we have selected slices through the brain that maximize the sum of the absolute

values of the weights predicted by the respective methods. These results are presented

in Figure 5.3 and discussed in the following section.

5.2.4 Discussion

The main area of activity shown in Figure 5.3(b) is the rostral anterior cingulate cortex

(rostral ACC). It has been shown to be deactivated during the drug Stroop as compared

to baseline in cocaine users versus controls even when performance, task interest and

engagement are matched between the groups [Goldstein et al., 2009] and that its activity

is normalized by oral methylphenidate [Goldstein et al., 2010]–which similarly to cocaine

blocks the dopamine transporters increasing extracellular dopamine–an increase that was

associated with lower task-related impulsivity (errors of commission). This region was

responsive (showed reduction in drug cue reactivity) to pharmacotherapeutic interven-

tions in cigarette smokers [Culbertson et al., 2011, Franklin et al., 2011], and may be a

marker of treatment response in other psychopathology (e.g., depression). The LASSO,

on the other hand, does not show a meaningful sparsity pattern (see Figure 5.3(a)).

In this section, we have investigated the applicability of sparsity regularizers in fMRI

analysis. We have shown that the k-support norm can give better predictive perfor-

mance than the LASSO and Elastic Net, while having favorable mathematical and

computational properties. Furthermore, the brain regions implicated in addiction by

the k-support norm coincide with previous results on addiction, indicating that the k-

support norm is additionally useful for generating sparse, but correlated, regions suitable

for interpretation in a medical-research setting. In the specific task of cocaine addiction,

the k-support norm has implicated the involvement of the rostral ACC, in line with

previous studies, while the LASSO did not lead to an interpretable result. We therefore

consider the k-support norm as a promising tool for sparsity in fMRI analysis and believe

it merits future study. While initial experiments have shown promising results with the



Chapter 5 Regularization methods for analyzing Magnetic Resonance Imaging data109

(a) LASSO

(b) k-support norm

Figure 5.3: A visualization of the areas of the brain selected by the LASSO and by the
k-support norm applied to the cocaine addiction dataset. The LASSO leads to overly
sparse solutions that do not lend themselves to easy interpretation (Figure 5.3(a)),
while the k-support norm does not suppress correlated voxels, leading to interpretable
and robust solutions (Figure 5.3(b)). A medical interpretation of the result presented
in Figure 5.3(b) is given in Section 5.2.4. (Figure best viewed in color.)
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k-support norm for a range of machine learning problems [Argyriou et al., 2012], to the

best of our knowledge this study is the first to apply the approach to fMRI.

5.3 MRI based markers for neuromuscular disease catego-

rization with k-support norm

5.3.1 Introduction

In this section, we evaluate the k-support norm regularization method with the use of

two different loss functions, with the squared loss function and with the Huber-Hinge

approximation loss function known as the k-support regularized SVM both described

in detail in Section 5.1.3, over the problem of disease classification. More specifically,

we are interested in discriminating between two different neuromuscular diseases, the

facioscapulohumeral muscular dystrophy (FSH) and the myotonic muscular dystrophy

type 1 (DM1). Myopathies are neuromuscular diseases that affect the muscles resulting

in functional anomalies including fat infiltration, weakness, atrophy, paralysis, loss in

muscle strength, etc. There are a number of procedures available for disease identifica-

tion, such as electromyogram (EMG) measurement that measure the muscle weakness

through its electrical activity, blood tests that can be carried out for a molecular study

of the DNA for inherited myopathies with known genes and mutations and of course

muscle tissue biopsy. The problem with all these methods is that are invasive or they re-

quire prior knowledge of genes and mutation. Overall the area of non-invasive diagnosis

could be explored and evolved. Toward this direction, we pursue here a comparatively

non-invasive approach based on MR imaging, such as T1 and T2 weighted images and

with particular emphasis on Diffusion Tensor Imaging, which has been successfully used

in neuroimaging for myopathy categorization.

T1 and T2 weighted images are wide used MR images that depict the structure of the

human body through the difference in the spin-lattice or T1 relaxation time of various

tissues within the body in the former or through the difference in the spin-spin or T2

relaxation time of various tissues in the latter. Both techniques can differentiate fat from

water — with water appearing darker and fat brighter on T1 weighted images, while

fat shows darker and water lighter in T2 weighed images. Finally, Diffusion Tensor

Imaging is an imaging modality that captures the diffusion of water in tissues, and

along with it, important structural information. It has been widely used in the study

of the connectivity of the human brain [Le Bihan et al., 2001]. Nonetheless, it has also

been used in different clinical scenarios. Among them, one may cite the study of the

human tongue [Gilbert and Napadow, 2005], the heart muscle [Gilbert and Napadow,
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2005] and the human calf muscle [Galban et al., 2004]. DTI can capture important

structural information in the case of the muscle. This is due to the fact that muscles are

highly organized structures that present an architecture of elongated myofibers. Because

myopathies affect the muscles, one may expect that the diffusion properties in diseased

subjects are also altered [Qi et al., 2008].

We are interested in verifying that different myopathies alter muscle in distinct ways.

Moreover, we investigate the discriminative power of diffusion and structural MR fea-

tures in distinguishing between diseases. Figure 5.4 shows the T1-weighted MR images

of the two myopathies under investigation. The two images are very similar, making

the distinction between them a very challenging task. In order to achieve this goal, we

develop a strategy that exploits the rich information that is captured by both structural

data (T1- and T2-weighted MR images) and DTI data to fuel state-of-the-art machine

learning techniques. The use of high dimensional pattern classification in conjunction

with DTI information has been previously investigated [Caan et al., 2006, Wang and

Verma, 2008, Ingalhalikar et al., 2011]. Nonetheless, it has been mainly applied to dis-

tinguish patients from controls in neuroimaging studies. Discriminating between patients

poses additional challenges.

The remainder of the section is organized as follows: in Section 5.3.2 we present the data

that we use in this study, in Section 5.3.3 is dedicated to the experimental setting and

results and in Section 5.3.4 concludes the section with a discussion over the obtained

results and the perspectives of this work.

5.3.2 MRI data description

In this study, we use a dataset consisting of twenty five subjects, 10 subjects were af-

fected by FSH and 15 subjects were affected by DM1 [Neji, 2010, Section 4.3.2]. In a

clinical context, this is a large sample size. The subjects were imaged in the calf using

a 1.5 T MRI scanner. The obtained volumes had a size of 64 × 64 × 20 voxels and

a voxel resolution of 3.125mm × 3.125mm × 7mm. T1- and T2-weighted MR images

were acquired at the same time. As a consequence, the image volumes are naturally co-

registered. Diffusion weighted images were acquired using the following parameters: rep-

etition time (TR)=3600ms, echo time (TE)=70ms, slice thickness of 7mm and b value

of 700s/mm2 with 12 gradient directions and 13 repetitions. Considering anisotropic

diffusion, diffusion tensors D were estimated with the use of medInria software.1

1http://med.inria.fr/
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(a) FSH patient

(b) DM1 patient

Figure 5.4: T1-weighted MR images of the calf from the two neuromuscular diseases.
On the top, Figure 5.4(a), a slice of the MR image from a patient with facioscapulo-
humeral muscular dystrophy (FSH) and on the bottom, Figure 5.4(b), a slice of the MR
image from a patient with myotonic muscular dystrophy type 1 (DM1). These diseases
are not readily distinguishable by eye.
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The images were segmented by an expert in the following 7 classes/muscle groups:

1) soleus (SOL), 2) lateral gastrocnemius (LG), 3) medial gastrocnemius (MG), 4) pos-

terior tibialis (TP), 5) anterior tibialis (AT), 6) extensor digitorum longus (EDL), and

7) peroneous longus (PL). An example of the segmented muscle can be seen in Fig-

ure 4.8. It is planned to automate the segmentation process in future work. In the

meantime, the approach provides a strategy to avoid an invasive biopsy. Note that a

superset that also contained this dataset were also used in Section 4.2, where 3D shapes

of the muscles where extracted by the T1 weighted MR images for a shape classification

problem between healthy and patient subjects.

For every anatomical region, we extracted features from both the structural and the

diffusion data. From the structural data, we extracted for every muscle: 1) the absolute

volume, 2) the mean T1 signal, 3) the mean T2 signal, and 4) the Signal to Noise Ration

(SNR). For the diffusion data, we calculated for every muscle the mean values of the

following scalar measures:

1. the eigenvalues λ1, λ2, λ3 of the diffusion tensor D,

2. the trace of the diffusion tensor D

Tr(D) = λ1 + λ2 + λ3 (5.18)

which is a rotationally independent value and it indicates the average amount of

diffusion,

3. the Fractional Anisotropy

FA =

√
3√
2

√
(

λ1 − Tr(D)
3

)2
+
(

λ2 − Tr(D)
3

)2
+
(

λ3 − Tr(D)
3

)2

√

λ2
1 + λ2

2 + λ2
3

(5.19)

which is also rotationally invariant, as the trace, takes values between 0 and 1 and

measures the anisotropy of the tensor. When FA is close to 0 then the tensor is

close in shape to a sphere and there are no privileged directions of diffusion, while

when FA is close to 1 the tensor is close to the shape of a “cigar”, where the long

axis of the ellipsoid is likely to correspond to the local fiber orientation,

4. the volume of the tensor D

det(D) = λ1λ2λ3 (5.20)

which is also rotationally invariant,

5. the linear coefficient

Cl =
λ1 − λ2

λ1 + λ2 + λ3
(5.21)
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and

6. the planar coefficient

Pl =
2(λ2 − λ3)

λ1 + λ2 + λ3
. (5.22)

Both the linear coefficient and the planar coefficient lie between 0 and 1 and

indicate the shape of the diffusion. For example a high value of the linear coefficient

indicates a “cigar” shape diffusion, while a high value in the planar coefficient

indicates a “flying saucer” diffusion shape.

These scalar measures were estimated with the use of medInria software. The resulted

84 variables were whitened and centered prior to applying the learning algorithms.

5.3.3 Results

In order to better explore the power of k-support norm regularization method with the

two different loss functions, we also train a number of supervised learning methods using

the same features. More specifically, we examine the k nearest neighbor algorithm [Wang

et al., 2008], the support vector machine (SVM) [Cortes and Vapnik, 1995] for a num-

ber of different kernels. The k nearest neighbor method (knn) is a simple, non-linear

classification algorithm that classifies each new subject according to the majority of the

labels of the k nearest neighbors, given a specific distance function. We examine the

knn algorithm with Euclidean distance and k ∈ {1, 3, 5, 7, 10}. The support vector ma-

chine constructs a hyperplane in a high or infinite-dimensional space by maximizing the

margin of the different classes, while minimizing the classification error. For the SVM,

we examine the following kernel functions, i) linear, ii) polynomial of third degree, and

iii) radial basis function (RBF) with a soft-margin parameter C ∈ {10−3, 100, 103}. For
the k-support regularized squared loss and for the ksup-SVM we examine the following

combinations of parameters λ ∈ {1, 10, 1000} and k ∈ {1, 10, 20, 40, 80}.

To approximate the generalization accuracy of the classification methods using the struc-

tural and DTI tensor features, we use a random splitting scheme with 1000 trials. In

each trial, a random selection of 80% of the data are used to train the methods, while

the remaining 20% are used to evaluate their performance.

Figure 5.5 shows the mean ROC curve across all trials, while Table 5.1 gives the mean

classification accuracy and area under the curve over 1000 trials. ksup-SVM outperforms

the rest of the methods by achieving a mean area under the curve (AUC) of 0.7141

and mean accuracy 77% ± 0.013. The k-support norm regularized squared loss also

performs well with a mean AUC of 0.694 and mean accuracy 72% ± 0.006, while knn
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Figure 5.5: Mean ROC curves for each classifier over 1000 trials. ksup-SVM, shown
in red, outperforms the rest of the methods k-support norm regularized squared error
(blue), knn (green) and SVM (magenta). To the best of our knowledge, these are the
first results presenting a significant discrimination between FSH and DM1 using MRI
based markers. (Figure best viewed in color.)

Table 5.1: Classification mean accuracy (in % ± standard error) and the mean area
under the curve of all methods over 1000 trials. Chance is 60%.

Method Accuracy Area Under the Curve

ksup-SVM 77 ± 0.013 0.756

k-support norm 74 ± 0.006 0.726

knn 61 ± 0.015 0.537

SVM 59 ± 0.015 0.494

and SVM performances are near chance, which is 60%. Moreover, with a Wilcoxon

signed rank test we show that the ksup-SVM is statistically significantly better than

all other methods (all p-values were ≪ 10−9). Figure 5.7 shows the boxplots of the

weights of the structural and DTI tensor features selected by the ksup-SVM over 1000

bootstrap trials. On each box, the central mark is the median, the edges of the box

are the 25th and 75th percentiles, while the whiskers extend to the most extreme data

points that are not considered outliers. Since the MRI features are evaluated for each

of the seven muscles of interest, we plot them per muscle. A number of features are

systematically assigned zero weight across multiple trials (green line), indicating that
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Figure 5.6: Mean ROC curves over 1000 trials. In red is the k-support regularized
SVM using features both structured and DTI features, while in blue the k-support
regularized SVM using only structured features. Using T1 and T2 weighted features,
with the combination of DTI features gives the best performance in discriminating the
two neuromuscular diseases (Figure best viewed in color).

Table 5.2: Classification mean accuracy (in %± standard error) and the mean area
under the curve of the best classifier (ksup-SVM) using both structured and DTI fea-
tures and the best classifier (ksup-SVM) using only structured features over 1000 trials.
Chance is 60%.

Features Used Accuracy Area Under the Curve

Combined T1, T2 and DTI features 77 ± 0.013 0.756

T1 and T2 features 73 ± 0.006 0.697

they do not provide useful information for the distinction of the two diseases, while the

ones with non-zero weight are considered more informative.

Toward demonstrating the added value of the DTI features, we compared the perfor-

mance of the ksup-SVM when trained only on structural data against the ksup-SVM

with both structural and DTI features, as presented in the previous paragraph. The

same experimental setting as before was used. The results of the comparison are shown

in Figure 5.6 and Table 5.2. In this case the ksup-SVM with the structural features

achieved a mean AUC of 0.697 and mean accuracy 73%±0.006 a drop of 4% in accuracy.

According to a Wilcoxon signed rank test, this performance is statistically significantly
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worse than its previous performance using both structured and DTI features (p-value

was ≪ 0.05).

5.3.4 Discussion

An analysis of variables selected by the sparsity regularizer (Figure 5.7) gives an indi-

cation that discrimination varies across muscles as well as features. Increased muscle

volume in AT, EDL, MG, and TP was associated with DM1, while increased volume in

PL and SOL was associated with FSH. T1 and T2 signal was consistently positively asso-

ciated with FSH in the EDL muscle. A broad range of statistics were discriminative for

the MG muscle, while discriminative features for most other muscles were comparatively

sparse.

While MRI markers, and DTI tensor features in particular, have previously been shown

to differ between disease and control subjects [Qi et al., 2008, Table 2], we are unaware

of previous studies that have shown significant ability to discriminate between disease

conditions. Indeed, a high-dimensional analysis of MRI based markers was required to

achieve non-random performance in this more challenging task. Sparsity regularization

appears to be a more important property of the learning algorithm than non-linearity,

as evidenced by the comparatively stronger performance of k-support norm regularized

SVM or squared error, as compared to a SVM with non-linear kernels or k nearest

neighbors (both non-sparse, non-linear algorithms).

In this section, we have presented several novel methodological and clinical developments

related to the use of pattern recognition methods in neuromuscular disease classification.

While previous studies have focused on the comparatively easy task of separating dis-

ease from healthy subjects, we have approached the more difficult and clinically relevant

task of discriminating between diseases. We have shown that a combination of T1- and

T2-weighted MR images and Diffusion Tensor Imaging data are discriminative for sep-

arating patients with facioscapulohumeral muscular dystrophy and myotonic muscular

dystrophy type 1. Our novel machine learning algorithm, the ksup-SVM, is an essential

machine learning approach for achieving the best performance, with a mean accuracy of

77%± 0.013.
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Figure 5.7: Boxplot of the weights given to the structural and DTI features of the 7
muscles by the ksup-SVM over 1000 trials. Positive values indicate positive association
with FSH, while negative values indicate positive association with DM1. Values close
to zero are indicative of a lack of discriminative information between the two disease
conditions (continue).
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Figure 5.7: Boxplot of the weights given to the structural and DTI features of the 7
muscles by the ksup-SVM over 1000 trials (continue).
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Figure 5.7: Boxplot of the weights given to the structural and DTI features of the 7
muscles by the ksup-SVM over 1000 trials (continue).
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Figure 5.7: Boxplot of the weights given to the structural and DTI features of the 7
muscles by the ksup-SVM over 1000 trials.





Chapter 6

Conclusions

6.1 Contributions

Through this thesis, we investigated the use of novel combinations of regularizers and

prediction functions for analyzing medical images. We introduced two novel learning

algorithms: a) the pyramid quantized Weisfeiler-Lehman graph representation - an algo-

rithm for comparing graphs with continuous or vector labeled nodes and/or edges - and

b) the k-support regularized SVM - a sparse regularized version of the Support Vector

Machine.

6.1.1 The pyramid quantized Weisfeiler-Lehman graph representation

In Chapter 3 we introduced a novel algorithm, the pyramid quantized Weisfeiler-Lehman

graph representation that tackles the problem of graph comparison for continuous or

vector labeled graphs. To the best of our knowledge this novel algorithm is the first at-

tempt to approach the graph comparison problem with continuous or vector labels. The

pyramid quantized Weisfeiler-Lehman graph representation considers statistics of sub-

tree patterns based on the Weisfeiler-Lehman algorithm [Weisfeiler and Lehman, 1968],

which has recently been employed in the construction of a graph kernel [Shervashidze

et al., 2011] for discrete labeled graphs. The key advantage of these subtree statistics,

which are tree structures constructed recursively from each node in the graph up to a

predefined depth h, is that they are linear-time in the number of edges in the graph.

Moreover, they make use of an efficient hashing scheme in order to only enumerate

the relevant (non-zero) dimensions of an exponentially sized feature space. In addi-

tion to these computational benefits, Weisfeiler-Lehman graph kernels have been shown

123
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to perform comparably to or better than a number of more computationally complex

kernels [Shervashidze et al., 2011].

In order to take advantage of this efficient scheme when extending to the problem of

graph comparison with continuous or vector labels, we propose a pyramid quantization

strategy inspired by [Grauman and Darrell, 2007a] to determine a logarithmic number

of discrete labelings. This approximates a graph representation with continuous or

vector valued labels as a sequence of graphs with increasingly granular discrete labels.

For each level of quantization, we run the Weisfeiler-Lehman algorithm and get the

respective subtree statistics. To construct our pyramid quantization, we recursively

partition the label space as seen in Section 3.3.1. In this manner, we have a series of

nested vector quantizations of increasing granularity. This can be performed efficiently in

high dimensions using, e.g. k-d trees, for the fixed-binning scheme or with a hierarchical

clustering algorithm for data-guided binning scheme. The complexity of the resulting

quantization is bounded by O(dmax(|V |, k)L), where d is the dimension of the label

space, |V | is the number of vertices to be quantized, k is the maximum histogram index

value in a single dimension, and L is the number of pyramid levels [Grauman and Darrell,

2007a]. With an appropriate implementation we may constrain k ≤ |V |, and we may

ensure that L is logarithmic in |V |, resulting in a simplified complexity of O(d|V | log |V |).

We evaluate the pyramid quantized Weisfeiler-Lehman graph representation in two dif-

ferent tasks with real datasets, on a fMRI analysis task and on a 3D shape classification

one in Chapter 4. In the fMRI analysis task (for more details see Section 4.1), we

approach the problem by representing fMRI contrast maps from a cocaine addiction

dataset as graphs with continuous labels and we use our quantized Weisfeiler-Lehman

pyramid graph representation to compare the respective graphs. Our primary hypothe-

sis is that the interconnections between voxels can contain additional information about

the brain structure and the problem under investigation, that could not explored un-

der a linear consideration of the data. Our proposed method validated this hypothesis

and outperforms other machine learning techniques that are used in fMRI analysis with

statistical significance.

In the evaluation of the pyramid quantized Weisfeiler-Lehman graph representation on

the task of 3D shape classification we used two real datasets, one from the medical

imaging and one from the semantic shape domain (for more details see Section 4.2).

We view the 3D shape models as graphs, but because the topology would not explicitly

encode sufficient geometric properties of the respective shapes, we enrich the graphs

with continuous labels on the nodes with local features, such the local curvature of the

surface. From both datasets, we conclude that the pyramid quantized Weisfeiler-Lehman
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graph representation performs substantially better that the pyramid Bag of Words ap-

proach, showing that the spatial structure is important for improving the classification

performance. Moreover, the results show that our approach contains complementary

information to the multi-viewpoint rendering technique, since the combination of both

approaches performs better with statistical significance than each method individually.

Overall, as graphs are fundamental mathematical objects, the pyramid quantized Weisfeiler-

Lehman kernel is potentially applicable to a wide range of application domains in com-

puter vision, analysis of medical images or data mining. Finally, source code for the

pyramid quantized Weisfeiler-Lehman kernel is publicly available at http://gitorious.

org/wlpyramid.

6.1.2 The k-support regularized SVM

In Section 5.1.3.2 we introduced a novel regularized SVM algorithm, the ksup-SVM. This

algorithm extends the ℓ1 regularized SVM and the classical SVM algorithms to a mixed

norm case. This enables the use of a correlated sparsity regularizer in the classification

setting. We showed that using this technique we substantial improved the performance

on a neuromuscular dystrophy classification task (see Section 5.3). Moreover, we showed

that features extracted from DTI images provide significant information in the discrim-

ination between neuromuscular conditions, extending the use of DTI beyond its usual

application in neuroimaging. Finally, code for the new k-support regularized SVM is

publicly available at http://gitorious.org/ksp-svm.

6.2 Future perspectives

Despite the big breakthrough in the graph comparison problem with the introduction

of graph kernels, it still remains an open problem in the graph community. Especially

the design of efficient algorithms for labeled graphs with complex labels, such as contin-

uous, strings or even discrete but non categorical labels. In this thesis, we introduced

the pyramid quantized Weisfeiler-Lehman graph representation for comparing graphs

with continuous or vector labels, through the discretization of the labeled space and

the aggregation of subtree pattern statistics calculated by the Weisfeiler-Lehman algo-

rithm [Weisfeiler and Lehman, 1968] on the described graphs. Although we were able to

compare graphs with continuous or vector labels with linear-time to the number of edges

and the depth of subtree patterns, we are discarding information concerning the relation

between two labels. For example, consider a graph with discrete labels corresponding

to ratings on some scale. Then a label 10 and 12 resemble each other more that label 2
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and 10. Many applications, such as document classification in data mining or biological

network analysis, could benefit more if efficient algorithm that incorporates information

concerning the similarity between labels is designed. An other perspective that derives

from the previous problem when considering subtree patterns is the graph comparison

through inexact matching of the subtree patterns. Solving this problem would benefit

applications where graphs tend to be noisy or incomplete or the neighborhood of a node

is to big for an exact match.
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Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels for predic-

tive graph mining. In Proceedings of the tenth ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’04, pages 158–167, 2004.

N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Ef-

ficient graphlet kernels for large graph comparison. In Proceedings of the International

Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence

and Statistics, 2009.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance

kernel. In Proceedings of the 26th International Conference on Machine Learning,

pages 255–262, 2010.

Jan Ramon and Thomas Gaertner. Expressivity versus efficiency of graph kernels. In

Proceedings of the First International Workshop on Mining Graphs, Trees and Se-

quences, pages 65–74, 2003.



Bibliography BIBLIOGRAPHY
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