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Résumé

Le but de cette these est d’étudier le spectre du sous-laplacien sur les variétés CR strictement
peusdoconvexes. Nous prouvons que le spectre du sous-laplacien A, est discret sur un domaine
borné QQ ¢ M d’une variété CR strictement pseudoconvexe qui satisfait I’inégalité de Poincaré,
sous les conditions de Dirichlet au bord. Nous étudions le comportement des valeurs propres du
sous-laplacien A, sur une variété CR strictement pseudoconvexe compacte M, en tant que fonc-
tionnelle sur I’espace P, de formes de contact positivement orientées sur M en dotant £, d’une
topologie métrique naturelle. Nous établissons des inégalités pour les valeurs propres de Ap sur
des variétés CR strictement pseudoconvexes ( éventuellement a bord non vide). Nos estimations
prolongent les résultats obtenus par P-C. Niu & H. Zhang [81] pour les valeurs propres du sous-
laplacien avec conditions de Dirichlet au bord sur un domaine borné du groupe de Heisenberg, et
sont dans I’esprit des inégalités de Payne-Pbélya-Weinberger et Yang. Nous obtenons une nouvelle
borne inférieure sur la premiere valeur propre non nulle 1;(6) du sous-laplacien A, sur une variété
CR strictement pseudoconvexe compacte M munie d’une forme de contact 6 dont la connexion de
Tanaka-Webster est a courbure de Ricci minorée.

Mots clés :  Sous-laplacien, valeur propre, Structure pseudohermitienne, Forme de contact,
Métrique de Webster, Métrique de Fefferman, Variété CR, Groupe de Heisenberg, Espace de
type Sobolev sur les variétés CR, Application harmonique sous- elliptique, Application semi-
isométrique, Tension de Levi, Formule de Bochner-Lichnerowicz, Inégalité universelle, Inégalité
de Reilly.
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Abstract

The purpose of this thesis is to study the spectrum of sublaplacians on compact strictly pseu-
doconvex CR manifolds. We prove the discreteness of the Dirichlet spectrum of the sublaplacian
Ap on a smoothly bounded domain Q@ C M in a strictly pseudoconvex CR manifold M satis-
fying Poincaré inequality. We study the behavior of the eigenvalues of a sublaplacian A, on a
compact strictly pseudoconvex CR manifold M, as functions on the set . of positively oriented
contact forms on M by endowing #, with a natural metric topology. We establish inequalities for
the eigenvalues of A, on compact strictly pseudoconvex CR manifolds (possibly with nonempty
boundary) Our estimates extend those obtained by P-C. Niu & H. Zhang [81] for the Dirichlet
eigenvalues of the sublaplacian on a bounded domain in the Heisenberg group, in the spirit of
Payne-Pdlya -Weinberger and Yang inequalities. We establish a new lower bound on the first
nonzero eigenvalue 4;(60) of the sublaplacian A, on a compact strictly pseudoconvex CR manifold
M carrying a contact form 8 whose Tanaka-Webster connection has Ricci curvature bounded from
below.

Keywords :  Sublaplacian, Spectrum, pseudohermitian structure, contact form, Webster met-
ric, Fefferman metric, CR manifold, Heisenberg group, Sobolev type space, subeliptic harmonic
map, semi-isometric map, Levi tension field, Bochner-Lichnerowicz formula, universal inequality,
Reilly inequality.
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Introduction

The study of spectrae of compact orientable Riemannian manifolds is by now a well defined branch
of differential geometry, where differential geometric methods meet with methods from topology
and partial differential equations, including aspects of the theory of harmonic maps. The state of
the art, at the level of 1971, is described in the monograph by M. Berger & P. Gauduchon & E.
Mazet, [71], which is our main model in developing a similar theory within the CR category. The
relationship among spectral theory on Riemannian manifolds and harmonic maps starts with the
work by R.T. Smith, [86]-[87], and a description of that is already captured in monograph form,
cf. H. Urakawa, [52], an exposition of the main facts in the theory of harmonic maps, followed
closely by other people (cf. e.g. E. Barletta & S. Dragomir & H. Urakawa, [30]) in building an
analogous theory for maps from CR manifolds, as well as by us in the present thesis (cf. Chapter
3). Given a Riemannian manifold (M, g) there is a natural formally self-adjoint, positive, second
order differential operator Ag, the Laplace-Beltrami operator associated to the metric g. Let o7(Ag)
be the spectrum of A, i.e. the set of all 4 € R such that Agu = Au for some u € C*(M,R). When
M is compact and orientable o"(A,) is discrete

T(Ag) ={A4(8) : v 20}, 0=210(8) <A1(g) <--- <A(g) <--- T oo, (1

essentially as a consequence of ellipticity of A,. An array of results, too long to be fully mentioned
here, regards properties of the spectrum o(Ag) as implied by the local geometric features of the
given Riemannian manifold (M, g), or the way o (A,) might characterize the Riemannian metric g
itself e.g. whether isospectral Riemannian manifolds are isometric. Let us quote the famous result
by A. Lichnerowicz, [12], and M. Obata, [72], according to which the first nonzero eigenvalue
A1(g) may be estimated by below as

m
A1(g) 2 k (@3]
m—1
provided the Ricci curvature of (M, g) obeys to
Rice(X, X) > kg(X,X), X € X(M). 3)

Here m is the dimension of M. While (2) is due to A. Lichnerowicz, [12], there is a rather spec-
tacular contribution by M. Obata, [72], proving that equality in (2) may only occur when (M, g)
is isometric to the sphere S”* with the standard Riemannian metric. The quoted result exerted a
great influence on the mathematical community, prompting a series of generalizations in various
directions (mentioned later on in this Introduction), including the realm of CR, or rather pseudo-
hermitian, geometry, an issue discussed at some length in Chapter 4 of this thesis. Another result,

13



INTRODUCTION

nowadays famous, intertwining differential geometry and PDEs methods, is the existence of an
asymptotic development

E ~ @rty™2 7100 (uo syt 4+ uyt +--2), £ — 0", @)

of the fundamental solution E(x, y, f) to the heat equation on (M, g), here r = d(x, y). Development
(4) is due to S. Minakshisundaram & A. Pleijel, [99] (cf. also [71], 204-205) and the remarkable
fact is that u, € C*(M x M) are Riemannian invariants. More precisely if

Z(M,g;t) = Z m,,e_/l“t
v=0

where m, is the multiplicity of the eigenvalue A,, then
Z(M,g;0) ~ Anty ™2 (ag + ayt + -+ a,t’ +---), t— 0, 6))

and the coeflicients a, = fM u,(x, x) dvy(x) may be computed in terms of the curvature of (M, g).
For instance

ag = Vol(M, g), ©)
1
ay = Efpg dvg, 0
M
1 .
“=35 (IR - 2IRic,|I* + 503) v, . ®)

Here R, Ric, and p, are respectively the curvature tensor field, the Ricci curvature, and the scalar
curvature of the metric g. Finally let us recall that the stability of the identity mapping 1, : M —
M, thought of as a harmonic map of (M, g) into itself, is related to the properties of o(A,) by a
result of R.T. Smith, [87]. Precisely if (M, g) is a compact Einstein manifold i.e.

Ricy(X,Y) =cg(X,Y), X,Y € X(M),

for some ¢ € R, then the identity mapping 15, : M — M is weakly stable if and only if the first
nonzero eigenvalue of A, satisfies 41(g) > 2c. Also nullity of 1, is given by

null(1y7) = dimIso(M, g) + dim{u € C*(M,R) : Aju = 2cu} )

where Iso(M, g) is the isometry group of (M, g). To close, a particular importance for the themes
treated in this thesis present results such as S. Bando & H. Urakawa’s (cf. [90]) on the dependence
of individual eigenvalues A, (g) on the metric g (i.e. on the behavior of 1,(g) as g varies in the space
of all Riemannian metrics on M, endowed with an appropriate topology) and the results by A. El
Soufi & S. Ilias (cf. [5]-[6]) on variational properties of eigenvalues A,(f) = 4,(g;) under a smooth
1-parameter deformation of the metric. All the mentioned results admit meaningful reformulations
on a compact strictly pseudoconvex CR manifold, in the presence of a given positively oriented
contact form, and reformulations are either treated in this thesis or indicated as potential research
work, to which the author of this thesis will devote further investigations.

The subject of this thesis is, as mentioned above, to start with a compact strictly pseudoconvex
CR manifold (M, T, o(M)), of CR dimension n, fix a contact form 8 € #, such that the corre-
sponding Levi form Gy is positively definite, and study the spectrum o(A;) of a natural formally
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INTRODUCTION

self adjoint, positive, second order differential operator A, appearing on a pseudohermitian man-
ifold (M, 6) very much like the Laplacian of a Riemannian manifold. This is the sublaplacian of
(M, 6)

Apu = —div(Vw), ue C*(M). (10)

Here div : ¥(M) — C* (M) is the divergence operator associated to the volume form Wy = OA(d6)"
and V#u is the horizontal gradient. Strict pseudoconvexity (actually orientability and nondegener-
acy suffice) implies the existence of a unique globally defined nowhere zero, everywhere transverse
to the Levi distribution H(M) = Re{T| o(M) & Ty,1(M)}, tangent vector field T € X(M) (the Reeb
vector of (M, 6)) determined by 6(T) = 1 and T | d6 = 0. The vector field T may then be used to
extend the Levi form

Gy X,Y)=doO(X,JY), X YeHM),

to a Riemmannian metric gg on M (the Webster metric of (M, 8)) given by
go(X,Y) =Gy(X,Y), go(X,T)=0, goT,T)=1,

for any X, Y € H(M). The horizontal gradient is then VAy = Iy Vu where Iy : T(M) — H(M)
is the projection associated to the direct sum decomposition T(M) = H(M) & RT and Vu is given
by go(Vu, X) = X(u) for any X € X(M). So indeed forming VAy is taking directional derivatives
of u only in the horizontal directions lying in H(M). Dropping T is then responsible for the
degeneration of ellipticity of Ay, precisely in the T direction. The sublaplacian A, will be therefore
seen to be a degenerate elliptic operator in the sense of M. Bony, [58], this being recognized as
the main difficulty in building a theory similar to that for the Laplacian of a Riemannian manifold.
Although V”u rises from omitting a direction in Vu, the ordinary gradient with respect to the
Webster metric, studying the Riemannian geometry of (M, gg) doesn’t lie within our purposes, for
reasons we wish to briefly explain. The CR structure 7'; (M) is but a recast, in the language of
complex vector bundles, of the tangential Cauchy-Riemann equations

af=0, feC'(M,OC), (11)

and it is our philosophy, following the line of thought by S. Dragomir & G. Tomassini, [94], that
studying various geometric objects associated to 6 on M will ultimately unveil local and global
properties of solutions to (11). These are related (cf. e.f. A. Boggess, [2]) to the pseudoconvexity
properties of M, as understood in complex analysis of functions of several complex variables.
On the other hand pseudoconvexity properties aren’t captured by the geometry of gy but rather
are described by (the curvature of) the Tanaka-Webster connection V of (M, #). The Tanaka-
Webster connection V and its curvature RY are among the geometric objects associated to (M, 6),
as mentioned above, and are made a preferrenial use with respect to the Levi-Civita connection
of (M, gg) and its curvature. The source of basic results on CR and pseudohermitian geometry
that we closely follow through this thesis is the monograph by S. Dragomir & G. Tomassini, [94].
As recalled previously in this Introduction, the sublaplacian A is but degenerate elliptic, yet it
is subelliptic of order ¢ = 1/2 (cf. e.g. G.B. Folland, [42]). Consequently, by a result of L.
Hormander, [68], Ap is hypoelliptic i.e. if u is a distribution solution to Apu = f with f € C* then
u € C™ as well. A pseudodifferential calculus adapted to hypoelliptic operators, such as developed
by A. Menikoff & J. Sjostrand, [13], shows that A, has a discrete spectrum

T(Ap) = {,(0) 1 v >0}, 0=2(0) <A1(0) << A6 < T +oo, (12)
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INTRODUCTION

as the Laplacian of a compact Riemannian manifold, to which A, formally resembles, except for
the degeneration of ellipticity, as explained above. The crucial property enjoyed by A, as well as
Ay, is therefore its hypoellipticity, springing from subellipticity, and the author of this thesis joins
the opinion in [94] that subelliptic theory should play within CR geometry the strong, and more
consolidated, role played by elliptic theory in Riemannian geometry. Discreteness of o-(A) also
follows easily from the subelliptic estimates

s o < € ((Aptes Wpzany + Wl 72gyy,) s 4 € C¥(MD), (13)

(where || -||5 is the Sobolev norm of order s) together with a Kondrakov type lemma due essentially
to L.P. Rothschild & E.M. Stein, [69] (and a general functional analysis description of spectrae of
compact operators). Another proof of discreteness of o-(A), relying on the Poincaré lemma

f P, < C f IVIGP W), e CQR), (14)
Q Q

is given in Chapter 1 of this thesis for the Dirichlet spectrum of A, on a bounded (with respect to
the Carnot-Carathéodory distance function dy of the semi-Riemannian manifold (M, H(M), Gy))
domain QQ C M in a complete (again with respect to dy) pseudohermitian manifold (M, 6).

The exposition is organized as follows. Chapter 1 gathers the preparatory material on tan-
gential Cauchy-Riemann equations (11) and geometric objects naturally associated to them once
a positively oriented contact form 8 € P, is fixed, such as the Levi form Gy, the Webster metric
8o, the Tanaka-Webster connection V, and the Fefferman metric Fy on I, the total space of the
canonical circle bundle S' — C(M) — M over M. Especially Fy, a Lorentzian metric on 9, plays
a fundamental role in the derivation of an L? Bochner-Lichnerowicz type formula that we derive
in Chapter 4. The sublaplacian A, of (M, 6) is then introduced and, following its description, a
weak L? calculus in appropriate Sobolev type spaces WIL’Z(Q) and WEZ(Q) is presented in some
detail, by following essentially E. Barletta & S. Dragomir, [28]. To prove discreetness of Dirichlet
spectrum of A, on Q one needs to solve first the generalized Dirichlet problem

Apu=f in Q u=0 on 0Q, (15)

by giving an appropriate L? interpretation of the boundary condition in (15) i.e. by looking for
a solution u € VVIEZ(Q). When M = H" i.e. Q C H" is a bounded domain in the Heisenberg
group, the Poincaré lemma (14) readily holds as a consequence of a Sobolev type lemma, while it
is our present level of understanding of the theory that for domains in arbitrary complete strictly
pseudoconvex manifolds M inequality (14) should be a basic assumption. While the solution to
(15) is known when M = H" (by work in subelliptic theory, cf. e.g. A. Bonfiglioli & E. Lanconelli
& F. Uguzzoni, [3], or by folklore surrounding it), it appears nowhere (in the literature on CR
geometry) for domains 2 C M in an arbitrary complete strictly pseudoconvex CR manifold. We
therefore give two solutions to the generalized Dirichlet problem, both leading to the variational
solution to (15), one as a minimum of the functional

1 .
F =5 [ 9P Vo= Gy we W),
Q

and another exploiting the Friedrichs extension of the Lagrange sublaplacian Ay = Ap| -« @
0
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The last two sections in Chapter 1 are devoted to giving a proof to a pseudohermitian analog to
Bochner-Lichnerowicz formula due to A. Greenleaf, [9], (and with respect to which our Bochner-
Lichnerowicz type formula in Chapter 4 is an alternative) and its use in the proof of the non-
negativity of the CR Paneitz operator Py, due to S-C. Chang & H-L. Chiu, [92]. We repeat the
calculations in [92] both because we operate with different quantitative conventions (as to exterior
differential calculus in the de Rham algebra of M) and because non-negativity of Py is a crucial
ingredient in the lower bound on A;(6) that we obtain in Chapter 4, very much as the bound got in
[92].

Chapter 2 exposes our results on the behavior of 0(A) as functions of the given positively
oriented contact form. The main results are an extension to the pseudohermitian category of a
result by A. El Soufi & S. Ilias, [6]-[7], on the behavior of A,(f) = A4,(6;) under a smooth 1-
parameter deformation {6;}<s of the contact form 6, followed by an extension of a result by S.
Bando & H. Urakawa, [90]. The result in [90] was that eigenvalues 4,(g) of the Laplace-Beltrami
operator A, are continuous functions of g € M, with respect to the natural topology on the space
M of all Riemannian metrics on the given manifold M. We prove a pseudohermitian analog to
that, by organizing the space of contact forms ¥ as a topological space, whose topology is the
metric topology of an appropriate distance function on £, and by proving a max-min principle.

Chapter 3 aims to find bounds on the eigenvalues similar Payne-Pdlya-Weinberger universal
inequalities [66]. These are (as established for the eigenvalues of the Dirichlet Laplacian on a

bounded domain in R")
k

4 (1
Aot — A < Z{EZJ’}’ k>1. (16)

Inequalities (16) were improved by several authors (cf. [73], [45], [46]). For instance the following
inequality due to H.C. Yang, [46], implies (16)

k k
4
D et = A < = 3 At = ). (17)
i=1 i=1

Extensions of universal inequalities to bounded domains in Riemannian manifolds other than the
Euclidean space have also been obtained. Let us mention, for example, the following Yang’s type
inequality obtained by M.S. Ashbaugh, [73], for domains in the unit sphere S” c R"*! (cf also
[831)

k k 2
4 n

Dt = ) < = (et = WD + =), (18)
i=1 n i=1 4

Equality holds for every & in (18) when A; are the eigenvalues of the Laplace-Beltrami operator on
the whole sphere, as observed by A. El Soufi & E.M. Harrell & S. Ilias, [8]. There inequality (18) is
recovered as a particular case of an inequality satisfied by the eigenvalues of the Laplace-Beltrami
operator of any n-dimensional compact Riemannian manifold M (with Dirichlet boundary condi-

tions if OM +# 0)
k k

4 1
D Wt = A < = 3 (et = )i + ZIIHIZ) (19)
i=1 =
where H is the mean curvature vector field of an arbitrary isometric immersion of M into Euclidean
space R™P, P-C. Niu & H. Zhang, [81], were the first to address the same issue for subelliptic op-
erators. They obtained Payne-P6lya-Weinberger and Hile-Protter type inequalities for the Dirichlet
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eigenvalues of the sublaplacian on a bounded domain in the Heisenberg group H". The following
Yang type inequality was obtained in [8] as an improvement of the results in [81]

k ) k
2 (W10) = 4O < = 3 (O A1 (6) = 4,(0). (20)
i=1 i=1

Among our results (reported on in Chapter 3, cf. Corollary 3.8), we show that inequality (20)
remains valid for any compact strictly pseudoconvex CR manifold M, of CR dimension #n, provided
it admits a Riemannian submersion over an open set of R?” which is constant on the characteristic
curves of M i.e. on the integral curves of the Reeb vector. The standard projection H” — R
satisfies these assumptions. For domains in § ?**! we obtain the following inequality (cf. Corollary
34)

k 2 k
2 Wt (®) = () < = > (L (6) = 4:(6)) (4i(6) + ) 1)
i=1 i=1

which is sharp for k = 1. These results are particular cases of our more general Theorem 3.3.
We prove that the eigenvalues of the sublaplacian A, in a bounded domain  C M, with Dirichlet
boundary conditions if Q # M, satisfy inequalities of the following form (cf. Theorem 3.3 for a
complete statement). For every integer k£ > 1 and every p € R,

k 2. k ) |
D a® - 40) < EEPLS G0) - 40 )+ JIEPIR). 22
i=1 i=1

21 < 1
A (8) < (14 2)2 Z; A4(6) + Sy (23)
and
2 1 1 2.1 2
A (6) < (1+ Dhn i(6) + 5 ((1 + ko - 1) IH (I (24)

where f is any C? semi-isometric map from (M, 6) to a Euclidean space R and H,(f) is a vector
field similar to the tension field of f in Riemannian geometry. Moreover we show the inequalities
(22), (23) and (24) remain true when f is a semi-isometric map from (M, 6) to the Heisenberg group
H™ which maps the Levi distribution of M into that of H”. For M compact without boundary we
establish Reilly type inequalities

1 2 _
O < s fM WHy (P, VoI(M, 6) = fM ¥, 25)

and show that equality holds in (25) if and only if f(M) is contained in a sphere S m=1(r) of radius
r=2n/@)and f: M — S m=1(r) is pseudoharmonic (in the sense of E. Barletta & S. Dragomir
& H. Urakawa, [31]). Reilly type results are also obtained for maps f from (M, 6) to H" which
map the Levi distribution of M into that of H” (cf. our Theorem 3.16).

The main ingredient in the proof of (2) is the Bochner-Lichnerowicz formula (cf. e.g. (G.IV.5)
in [71], p. 131)
1 .
5 A (Ildull®) = | Hess)I* - g (Du , DAgu) + Ricy(Du, Du) (26)
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for any u € C*(M,R). The great fascination exerted by the Lichnerowicz-Obata theorem on the
mathematical community in the last fifty years prompted the many attempts to extend (26) and
(2) to other geometric contexts e.g. to Riemannian foliation theory (cf. S-D. Jung & K-R. Lee
& K. Richardson, [93], J. Lee & K. Richardson, [56], H-K. Pak & J-H. Park, [47]), to CR and
pseudohermitian geometry (cf. E. Barletta & S. Dragomir, [28], E. Barletta, [32], S-C. Chang
& H-L. Chiu, [92], H-L. Chiu, [48], A. Greenleaf, [9], S-Y. Li & H-S. Luk, [101]) and to sub-
Riemannian geometry (cf. F. Baudoin & N. Garofalo, [38]). Chapter 4 is devoted to a version of
the estimate (2) occurring in CR geometry. Given a compact strictly pseudoconvex CR manifold
(M, T o(M)) endowed with a positively oriented contact form 6, the pseudohermitian manifold
(M, 0) carries (by a result of N.Tanaka, [79], and S.M. Webster, [100]) (M, 0) carries a natural linear
connection V (the Tanaka-Webster connection of (M, 0), cf. also [94], p. 25) whose Ricci tensor
field is formally similar to Ricci curvature in Riemannian geometry. It is then a natural problem
to look for a lower bound on 4;(6) whenever Ricy is bounded from below. As the sublaplacian
may be written in divergence form as Ayu = —div(V?u), the horizontal gradient V' appears to be
the pseudohermitian analog to the gradient Du in Riemannian geometry. The first step is then to
produce a pseudohermitian version of (26) i.e. compute Ap([IVH u||?) (for an arbitrary eigenfunction
u of Ap) in terms of the pseudohermitian Hessian V2u and the Ricci curvature Ricy of the Tanaka-
Webster connection. The first to realize the difficulties in producing a pseudohermitian analog to
(26) was A. Greenleaf, [9]. Indeed his Bochner-Lichnerowicz type formula

Ay (IVY0ulP) =23 (u gutzp + tapitg) +4i D (iztion = tatios) + 27)
a3 a

+2 Z Raﬁuguﬁ + 2in Z (Aaguauﬁ - Aaﬁuaug) +
aB aB

) g (Ap)y + g (Ap)g)

involves the torsion terms A, (possessing no Riemannian counterpart). Here ViOu = 3, uzT,
(notations and conventions as used in (27) are explained in § 2 of Chapter 4). However the attempt
to confine oneself to the class of Sasakian manifolds (M, gg¢) (as in [32], since Sasakian metrics gg
have vanishing pseudohermitian torsion i.e. A,g = 0) isn’t successful either: while torsion terms
may be controlled (when exploiting (27) integrated over M) by the L?> norm of V7u, the main
technical difficulties actually arise from the occurrence of terms ), (ugitoq, — UalUog) cONtaining
covariant derivatives of V¥ u in the "bad" real direction T transverse to H(M) (the Reeb vector of
(M, 9)).

The novelty brought by Chapter 4 is to establish first a version of Bochner-Lichnerowicz for-
mula for a natural Lorentzian metric Fy (the Fefferman metric of (M, 6), cf. [59], [18]) on the total
space of the canonical circle bundle S ' cm) ", M. Fefferman metric F ¢ was discovered by
C. Fefferman, [17], in connection with the study of boundary behavior of the Bergman kernel of a
strictly pseudoconvex domain in C*. An array of problems of major interest in CR geometry e.g.
the CR Yamabe problem, [24], the study of subelliptic harmonic maps, [54], and Yang-Mills fields
on CR manifolds, [31], are closely tied to the geometry of the Lorentzian manifold (C(M), Fy). In-
deed the aforementioned problems are projections on M viax : C(M) — M of Lorentzian analogs
to the corresponding Riemannian problems, as prompted by J.M. Lee’s discovery (cf. [59]) that
m.0 = Ap, where O is the Laplace-Beltrami operator of Fy (the wave operator on (C(M), Fy)).
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For instance any S !_invariant harmonic map © : (C(M), Fy) — N into a Riemannian manifold N
projects on a subelliptic harmonic map ¢ : M — N (in the sense of [54] and [30]). The arguments
in [71] carry over in a straightforward manner (cf. our § 3 in Chapter 4) to Lorenzian geometry
and give (cf. (4.21) in Chapter 4)

1
5 0(F(Df.Df)) = Fy (D*f . D*f) = (DF)BS) + Riep(Df . Df) (28)

and the corresponding integral formula (4.22) there. The projection on M of (28) then leads to
another analog (similar to A. Greenleaf’s formula (27)) to Bochner-Lichnerowicz formula and
then to a new lower bound on A;(8). Precisely we may state

Theorem 0.1. Let M be a compact, strictly pseudoconvex, CR manifold of CR dimension n. Let
0 € P, be a positively oriented contact form on M and Ay, the corresponding sublaplacian. Let
Ricy be the Ricci tensor of the Tanaka-Webster connection V of (M, 68) and 11(0) € o(Ap) the first
nonzero eigenvalue of Ap. If

Ricy(X, X) > kGy(X, X) (29)

for some constant k > 0 and any X € H(M) then

{(n+3)k—(lln+ 19)7p — —22 } (30)

n
41(0) 2 (n+2)(n +3) 2n+1)

where 19 = sup,c ITllx and po = sup,cy, p(x) = nk , where T and p are respectively the pseudo-
hermitian torsion and scalar curvature of (M, 0).

The lower bound (30) is nontrivial only for k sufficiently large (i.e. k must satisfy (4.101) in
§ 5 of Chapter 4). Let (M, gg) be a Sasakian manifold (equivalently 7 = 0, cf. e.g. [94]). Then
under the same assumption (i.e. (29) in Theorem 0.1) A. Greenleaf established the estimate (cf.

(9D

nk
> . 1
41(0) = P (31
Lower bound (30) is sharper that (31) when
£0
k . 32
g n(n +3) (32)

If for instance M = § 2n+1 s the standard sphere in C**!, endowed with the canonical contact form
6= (i/2) (a - 6) |z]?, then po = 2n(n+ 1) and k = 2(n + 1) hence (32) holds (and (30) is sharper
than (31)).

The projection of (28) on M gives

1 2
—EA;,(HVHMHZ):”HHVZM“ — (VA u)(Apu)+ (33)
3n+1
4TV ) () — (”: Z)A(VH w, JVH )+
n+3 . P
Ricy (V7u, V¥u) - ————||v7y?
e R (Ve V) = ey 17
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(the pseudohermitian Bochner-Lichnerowicz formula, cf. (4.91)) and the corresponding integral
formula (4.92). The main technical difficulty in the derivation of (33) is to compute the Ricci
curvature Ricp of the Lorentzian manifold (C(M), Fg). This is performed by relating the Levi-
Civita connection D of (C(M), Fy) to the Tanaka-Webster connection V of (M, ) (cf. (4.23)-(4.27),
a result got in [31]) and adapting to S! — C(M) — M a technique originating in the theory of
Riemannian submersions (cf. [14]) and shown to work in spite of the fact that n : (C(M), Fg) —
(M, gy) isn’t a semi-Riemannian submersion (fibres of 7 are degenerate). The relationship among
D and V may then be exploited to compute the full curvature tensor R”. Only its trace Ricp is
evaluated in [59] and the formula there appears as too involved to be of practical use. Our result
(cf. (4.54)-(4.59) in Lemma 4.3 below) is simple, elegant and local frame free. This springs from
the decomposition

T(C(M)) = Ker(c) ®RS, Ker(o) = HM)! @ RTT,

itself relying on the discovery (due to C.R. Graham, [18]) that o € Q'(C(M)) (given by (4.17)
below) is a connection 1-form in the principal circle bundle S' — C(M) — M. As a byproduct
of Lemma 4.3 one reobtains the result by J.M. Lee, [59], that none of the Fefferman metrics
{Fy € Lor(C(M)) : 6 € P.} is Einstein. Integration of (33) over M produces (by (4.88) in Lemma
4.5) terms ||lug|l;2 where up = T(u) and u is an arbitrary eigenfunction of A, corresponding to
a fixed eigenvalue 1 € o(Ap). The L? norm of the (restriction to the Levi distribution H(M)
) pseudohermitian Hessian [y VZu is estimated by using (4.94) (a result got in [32]). Torsion
terms and Ricci curvature terms are respectively estimated by (4.99) and as a consequence of the
assumption (29) in Theorem 0.1 (together with (4.98)). Finally to control |[ug||;> one exploits a
fundamental result got in [92], and referred hereafter as the Chang-Chiu inequality (cf. (4.118) in
§ 4.7 of Chapter 4).

The last part contains a work taht is independent from the rest of the thesis. It deals with a new
proof of the CR PohoZaev Identity.
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Chapter 1

CR and Pseudohermitian Geometry

1.1 Tangential Cauchy-Riemann equations

Let M be a connected C* differentiable manifold, of real dimension 2n + 1. Let TIM)®@ C —» M
denote the complexified tangent bundle over M. A CR structure on M is a complex subbundle
T o(M) c T(M) ® C, of complex rank n, such that

T1o(M)x N To (M), =1{0s}, x€M, (1.1)

Z,WeC®(UTio(M) = [Z,W] € C™(U, T o(M)), (1.2)

for any open set U ¢ M. A pair (M, T0(M)) is a CR manifold and the integer n is its CR
dimension. Here T (M) = T1o(M) and overbars denote complex conjugation. Cf. [94], p. 3-4.
Also if E — M is a vector bundle over M then C* (U, E) denotes the space of all C* sections in
E, defined on the open set U ¢ M. When U = M one writes simply C*(E) = C*(M,E). If xe M
then E, is the fibre in E over x. The axiom (1.2) is often referred to as the (Frobenius) formal
integrability property (of the CR structure T o(M)). Standard examples of CR manifolds are real
hypersurfaces M ¢ C™*! with the CR structure (induced by the complex structure of the ambient
space)
T1o(M), = [T«(M) @ CINTO(C*),, xeM.

Here 719(C"!) — C"*! denotes the holomorphic tangent bundle over C"*! (the span of {9/dz/ :
1 <j<n+1})where (!, - ,7"") are the Cartesian complex coordinates on crhy,

Let (M, T19(M)) be a CR manifold, of CR dimension n. The tangential Cauchy-Riemann
operator is the first order differential operator

dp : C¥(U,C) = C=(U, Ty 1(M)"),

Obf)Z = Z(f), fe€C™(U,C), ZeCU,TioM)),

with U € M open. Next 3
af=0 (1.3)

are the tangential Cauchy-Riemann equations. Clearly dp may be defined on C' functions, to
start with (and then 0, f is but a continuous section in T ;(M)*). A C ! solution to the tangential
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Cauchy-Riemann equations (1.3) is a CR function on U. The space of CR functions f : U — C s
denoted by CR'(U, C).

CR structures on manifolds appear therefore as a bundle theoretic recast, within the realm of
differential geometry, of the tangential Cauchy-Riemann equations, discovered by H. Lewy, [49],
in his study of the boundary behavior of holomorphic functions on the Siegel domain. We recall
a few details on Lewy’s construction, leading to our main example of an open CR manifold, the
Heisenberg group.

Let Q = {(z,w) € C" X C : Im(w) > |z]*} be the Siegel domain in C"*'. Here |z|* = 3"_, 2°Z"
forany z = (z!,--- ,7") € C". Also 7" = z2. Let us consider the Dirichlet problem for the ordinary
Cauchy-Riemann system

OF =0 in Q, (1.4)

F=f on 0Q. (1.5)

Here f € C*(0Q, C) and one is interested in the C* regularity up to the boundary of the solution
to (1.4)-(1.5) (ratEer then the existence problem). Let us assume that a C* up to the boundary
solution F € C*(Q, C) does exist. Let us consider

p:C™ SR, plaw)=Imw) -, @w)eC™,
(the defining function of the Siegel domain). For every a € R we set
M, = {(zw) €C"" 2 p(z,w) = a)
so that C"*! appears as carrying the foliation 7 by level sets of p i.e. the leaf space of F is
M/F ={M, : a € R}.

For every € > 0 the leaf M, is contained in the Siegel domain while My is its boundary. Each leaf
M, (€ > 0) is a real hyperusrface in C**! and hence a CR manifold with the induced CR structure

Tio(Me) = [T(M.) ® Cln THO(Cm .

A complex vector field Z of type (1,0) on C"*! is tangent to M, if and only if Z(p.) = 0, where
pe = p — €. Hence T o(M,) is (globally) the span of

For My = 0 a more precise statement is that {L, : 1 < a < n} is a (global) frame of T’ n(0€2),
where L, € C*(T(0Q) ® C) is the unique complex vector field tangent to JC2 determined by

(dxj>La,x=(a%—2iza (91) . xedn,
z w).

and j : 0Q — C™*! is the inclusion. Let x € Q be an arbitrary point. As F is holomorphic in Q

OoF OF
2i7% — =0. 1.
( a?,+ iz aw)(x) 0 (1.6)
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1.2. PSEUDOHERMITIAN STRUCTURES

As F is smooth up to the boundary we may take x — 0Q i.e. approach the boundary with x in
(1.6) so that to obtain for any x € 0Q2

0 OF la
oz ow

+ 2iz“—) (x) =

= ((dx))Ly) (F) = Ly(F © j) = Ly(f) = @pf)sLs

so that the boundary data is a solution to the tangential Cauchy-Riemann equations A f =00n0Q
i.e. f € CR”(0Q,C).

For further use, we summarize Lewy’s construction above, as follows. Let H" = C" X R be the
Heisenberg group i.e. the Lie group with the group law

0 -w,8)=(@E+w,t+s+Im(z-w)), (z,0,w,s)eH",
where z-w = 3" _, z*w®. Let us consider the left invariant complex vector fields 7,, € C*(T(H")®

C) given by
0 0

Tazﬁﬂiaa—t, l<a<n.
Ty = T, are referred to as the Lewy operators. Then [Ta , Tﬁ] = 0 hence
Tio(H"), = Spang{To,: 1 <a<n}, xeH",
is a (left invariant) CR structure, of CR dimension n, on H". Let us consider the map
[ H" - 0Q,
f@n =@ t+i), (@neH",

where Q ¢ C™*! is the Siegel domain. Then f is a CR isomorphism that is a C* diffeomorphism
and a CR map i.e. (d,f)T1,0(H"), C T1,0(0Q) s for any x € H" (and actually equality occurs, as
d.f is a R-linear isomorphism). This follows from

dif)Tox =Ly, x€H', 1<a<n.

1.2 Pseudohermitian structures

The Levi distribution of the CR manifold (M, Ty o(M)) is
H(M) = Re(Ty o(M) ® To, (M)).
It carries the complex structure J : H(M) — H(M) given by
JZ+Z)=iZ-Z), ZeTioM),

(with i = V-1). A pseudohermitian structure is a globally defined, nowhere zero, section 6 €
C®(H(M)*) in the conormal bundle H(M)* — M defined by

HM)* = {w e T*(M) : Ker(w) > HM),}, x€ M.
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1.2. PSEUDOHERMITIAN STRUCTURES

Under the mere assumption that M is orientable, pseudohermitian structures always exist. Cf.
S.M. Webster, [100]. The Levi form is

Lo(Z,W) = —i(dO)(Z, W), Z,W € T o(M).

The given CR manifold M is nondegenerate (respectively strictly pseudoconvex) if Lg is nonde-
generate i.e. Lyg(Z, W) = 0 for any W € T10(M) yields Z = 0 (respectively positive definite i.e.
Lo(Z,Z) > 0 for any Z # 0) for some 6. Let P be the set of all pseudohermitian structures. Given
a pseudohermitian structure 6 € P, any other pseudohermitian structure § € P is given by § = 10
for some C* function A : M — R\ {0}. Thus

dd=(d)NO+2db
hence (as 8(Z) = 0 for any Z € T o(M))
Ly(Z, W) = —i(dO)(Z, W) = —iA(d6)(Z, W)
hence
Ly=2Ly. 1.7)

Consequently, if Lg is nondegenerate then so does L i.e. nondegeneracy is a CR invariant property.
A property will be termed CR invariant if it is invariant under a transformation = A6 of the pseu-
dohermitian structure (i.e. that property depends on the CR structure alone, rather than depending
on the choice of pseudohermitian structure). The following terminology is also in use. A CR man-
ifold on which a pseudohermitian structure has been fixed is commonly called a pseudohermitian
manifold. A given pseudohermitian manifold (M, 0) is termed nondegenerate (respectively strictly
pseudoconvex) if Ly is nondegenerate (respectively positive definite).

If Ly is positive definite for some 6§ € P then L_y is negative definite, so that strict pseudo-
convexity is not a CR invariant property. However the comment shows that # admits the natural
orientation P, consisting of all § € P such that Ly is positive definite.

We assume from now on that (M, T o(M)) is a nondegenerate CR manifold, of CR dimension
n. If this is the case then each pseudohermitian structure 6 is a contact form i.e. 6 A (d6)" is a
volume form on M. For any contact form 6 € P there is (cf. e.g. [94]) a unique globally defined
tangent vector field T € X(M), transverse to the Levi distribution, determined by

or)=1, @oxT,X)=0, XeXM).

T is referred to as the Reeb vector field of (M, 6). Correspondingly M carries a natural semi-
Riemannian metric gg (the Webster metric) which we proceed to recall. Let 6§ € P be a contact
form and let T € X(M) be the Reeb vector field of (M, 8). Then gy is given by

go(X,Y) = (dO)(X,JY), go(X.T)=0, goT,T)=1,
for any X, Y € H(M). For each u € C'(M,R) let Vu be the gradient of u with respect to gy i.e.
go(X, Vu) = X(w), X € X(M).

The horizontal gradient is Vu = T1yVu where Il : T(M) — H(M) is the projection associated
to the direct sum decomposition T(M) = H(M) & RT. Let Gy be given by

Go(X,Y) = (dO)(X,JY), X,Y e C(H(M)),
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1.2. PSEUDOHERMITIAN STRUCTURES

(the real Levi form). Clearly Ly and the C-linear extension of Gy to H(M)®C coincide on T’ o(M)®
To1(M). If the given contact form 6 is positively oriented i.e. 6 € P, then the Webster metric gy is
a Riemannian metric. Also the pair (H(M), Gy) is a sub-Riemannian structure on M (in the sense
of [89]) and the Webster metric gy is a contraction of Gy. Precisely, let dy(x,y) be the Carnot-
Carathéodory distance function (cf. [57], [89]) defined as the infimum of lengths (with respect to
Gy) of piecewise C! curves tangent to H(M) joining two points x,y € M. If dy is the distance
function associated to the Riemannian metric gy then dy(x,y) < dy(x,y) for any x,y € M.

For any fixed contact form 6 € $ on M there is (cf. e.g. [94]) a unique linear connection V (the
Tanaka-Webster connection) on M such that 1) the Levi distribution H(M) is parallel with respect
to V,1ii) VJ =0, Vgg = 0, iii) if Ty is the torsion tensor field of V then

Tv(Z,W) =0, Tv(Z, W) =2iGy(Z, W)T, Z,W € T1o(M),

ToJ+Jor=0.

Here 7 (the pseudohermitian torsion) is the vector valued 1-form on M given by 7(X) = Ty(T, X)
for any X € X(M). When M is strictly pseudoconvex and 6 € #, it may be shown (cf. e.g. [94])
that 7 = 0 if and only if the Webster metric gy is Sasakian (in the sense of [22]). By a result of
S. Webster, [100], T is symmetric i.e. Gy(7X, Y) = Gy(X, 7Y) for any X, Y € H(M), and traceless
i.e. trace(tr) = 0. By a result in [94] (cf. Lemma 1.3, p. 37) the Levi-Civita connection V8¢ of the
semi-Riemannian manifold (M, gy) and the Tanaka-Webter connection V of (M, 0) are related by

V¥ =V+(Q-A)RT+7®60+200J (1.8)

Here Q = —d6 and © denotes the symmetric tensor product e.g. @ © 8 = %(af ® B — B ® ) for any
a,B e Q' (M). In particular (as a consequence of (1.8))

V?Y =VxY +(QX,Y) - AX, )T, (1.9)

VYT =JX, V¥X=VX+JX, V3T =0 (1.10)

for any X, Y € C*¥(H(M)).

Traces of holomorphic functions on real hypersurfaces M c C"*! (carrying the induced CR
structure) are CR functions (of class C*) and indeed CR functions enjoy properties similar to
those of holomorphic functions. Limitations may occur. For instance any Levi flat (i.e. Gy = 0)
CR manifold admits non trivial real valued CR functions (the local defining submersions of the
Levi foliation ¥ of M such that T(F) = H(M), cf. [29]) whilst, as well known, real valued
holomorphic functions are constants. Nevertheless

Lemma 1.1. If M is a connected nondegenerate CR manifold then any real valued CR function is
a constant.

Proof. The proof relies on the existence of the Tanaka-Webster connection. Let {T, : 1 < a <
n} be a local frame of 71 o(M), defined on the open set U ¢ M. We set

ga,E:G9<Ta’TB)’ VTATB:rgBTC’ Tg=Ta,
apB,---€{l,---,n}, AB,---€{l,---,n1,---,n,0}, To=T,
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for some C* functions Fgc € C*(U,C) (the Christoffel symbols of the Tanaka-Webster connec-
tion). Axiom (iii) in the description of V yields (for Z = T, and W = Tp)

FZBT7 T2 Ty = [T, Tg] = 2ig 5T (1.11)

Let f be a real valued (f = f) CR function on M i.e. T5(f) = O on U. By complex conjugation
T,(f) = 0 too. Thus (by applying (1.11) to f and exploiting the nondegeneracy of the matrix

[gaB(x)] atany x € U) T(f) = 0 on U. Therefore f is locally constant. Q.e.d.

Let M be a strictly pseudoconvex CR manifold and 6 € #.. a positively oriented contact form.
Let d vol(gg) be the volume form of the (oriented) Riemannian manifold (M, gy) i.e. for any local
coordinate neighborhood (U, x') on M

dvol(gg) = VG dx' A -+ A dx*™!,

G = det[(g0);)] . (g0)ij = 80(0/0x', 3/0x7),

on U. By aresult in [51] there is a constant C,, > 0 depending only' on the CR dimension  such
that
dvol(gg) =C, ¥y. (1.12)

The precise form of the constant C,, is given in [31]. Let div : ¥X(M) — C*(M, R) be the divergence
operator with respect to the volume form Wy i.e.

LxPy = div(X) Wy, X € X(M),

where Ly denotes the Lie derivative. By (1.12) div is precisely the divergence operator of the
Riemannian manifold (M, gg) i.e. locally

1 0 , . ,
div(X) = —— (VGX'), X=X'0/ox".
iv(X) Gﬁx’( ) /0x

1.3 The Fefferman metric

Let M be a strictly pseudoconvex CR manifold and 6 € P, a positively oriented contact form. A
p-form w € C(APT*(M)®C) is a (p, 0)-form (or a form of type (p,0)) if Tp1 (M) | w = 0. Here |
denotes interior producti.e. X |w = ixw for any X € X(M). Unlike the case of complex geometry,
top degree (p, 0)-forms aren’t (n, 0)-forms but rather (n + 1,0)-forms, where n denotes the CR
dimension. Indeed given a local frame {7, : | < @ < n} Cc C*(U, T1o(M)) let {6* : 1 < a < n}be
the complex valued 1-forms on U determined by

0% (Tp) = 5"3’, QQ(TE) =0, 6%T)=0.

{6% : 1 < a < n}is referred to as an adapted local coframe (local frame of 71 o(M)*). Then any
(p,0)-form w on M may be locally represented as sums of exterior monomials of the form

O A NG, GANOTY A NG

'Depending on the CR dimension and the signature of the Levi form Ly, in the nondegenerate case (cf. [31]).
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with C* (U, C)-coefficients. A top degree (p, 0)-form w is therefore locally represented as
w=A0N0" A NG

for some A € C*(U, C). We denote by K(M) — M the complex line bundle whose sections are the
(n + 1,0)-forms on M (the canonical line bundle). The multiplicative group GL*(1,R) = (0, +0)
of the positive reals acts on Ko(M) = K(M) \ {zero section} in a natural manner. Let C(M) =
Ko(M)/GL*(1,R) and 7 : C(M) — M be the quotient space and projection. The synthetic object
(C(M),m,M,S")is a principal bundle (the canonical circle bundle over M, cf. e.g. Definition 2.9
in [94], p. 119). We set M = C(M) for simplicity. By a remarkable finding of C. Fefferman, [17],
the total space M of the canonical circle bundle carries a natural Lorentzian metric (the Feffer-
man metric) associated to a choice of 8 € P,. The original construction in [17] is related to the
investigations in [16] (on the boundary behavior of the Bergman kernel of a domain Q c C**1)
and produces a Lorentzian metric on 9Q x ' for each smoothly bounded strictly pseudoconvex
domain Q c C™*!. Here we recall the successive construction due to J.M. Lee, [59], producing
the Fefferman metric on M for an arbitrary strictly pseudoconvex manifold (abstract i.e. not nec-
essarily embedded as a real hypersurface in C"*!). When M is the boundary of a domain in C"*!,
or merely a real hypersurface in C"*!, the canonical circle bundle is trivial (C(M) ~ M x S!)
and the Lorentzian metrics on Mt (as in [59]) and M x S! (as in [17]) are related by a conformal
diffeomorphism.

Let 6 € P, be a positively oriented contact form on M. The Fefferman metric is the Lorentzian
metric Fy on M given by
Fg =Gy + 2(1*6) © 0, (1.13)

1 i .3 P
d Niw,® - = gPdg - — 9l . 1.14
n+2{y+7r (la)(x 28 gaﬁ 4n+1) )} ( )

Cf. Definition 2.15 and Theorem 2.4 in [94], p. 128-129. As to the notations in (1.13)-(1.14) we
define Gy by Gy = Gy on H(M) ® H(M) and Gy¢(T, W) = 0 for any W € X(M). Moreover v is a
local fibre coordinate on 9. Precisely if {T, : 1 < @ < n} € C*(U, T19(M)) is a local frame of
T1o(M) and {#* : 1 < a < n} is the corresponding adapted coframe then each class z € Mt admits
a representative w € Ko(M)y i.e.

g =

z=[w] e C(M)y, xe€M, w:/l(H/\Gl/\---/\H”)x,

and the fibre coordinate in (1.14) is defined by

¥(z) = arg m

where arg : S ' - [0, 27). Moreover wg® are the (local) connection 1-forms of the Tanaka-Webster
connection, relative to the local frame {7, : 1 < @ < n}i.e.

Vi,To = wp" @T,.
Also [g“B] = [gaﬁ]‘1 ie. gaﬁgﬁy = 6} Finally if RV is the curvature tensor field of V and

R‘YE = RiC(Ta, , TB),
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Ric(X, Y) = trace {Z € ¥(M) — RV(Z. )X}, X.Y € X(M),

(RQB is the pseudohermitian Ricci curvature, cf. Definition 1.29 in [94], p. 50) then p = g"ﬁR B
(the pseudohermitian scalar curvature). The Fefferman metric Fy is a Lorentz metric on 9t (a
semi-Riemannian metric of signature (— + - - - +)) and its restricted conformal class {¢“”"Fy : u €
C*(M,R)} is a CR invariant (cf. e.g. [59]).

1.4 Sublaplacians

Let M be a strictly pseudoconvex CR manifold, of CR dimension n, and 6 € P... The sublaplacian
of (M, ) is the second order differential operator A, given by

Apu = —div (V7u), ue C*(M,R). (1.15)

Definitions together with Green’s identity yield the useful identity

qubu‘szf IV¥ull> o, ueCy(M,R).
M M

In particular A, is a positive operator. Let A,, be the Laplace-Beltrami operator (on functions) of
the Riemannian manifold (M, gg)

Agyu = —div(Vu), u € C*(M,R).

Then (Greenleaf’s formula, cf. [94])
Ap = Ag, + T? (1.16)

on functions, where T is the Reeb vector field of (M, ). As a consequence of (1.15) the sublapla-

cian is locally given by
2n

Aptt = = > {Xa(Xat) = (Vx, X))} (1.17)
a=1
where {X, : 1 < a < 2n} is a local Gg-orthonormal frame in H(M). Indeed the volume form
Yy = 6 A (d)" is parallel with respect to the Tanaka-Webster connection (VW¥y = 0) hence the
divergence of a tangent vector field X € X(M) may be computed as

div(X) = trace{Y € X(M) — VyX}

hence locally
2n

div(X) = ) go(Vx,X, Xa) + go(Vr X, T).
a=1
In the case of interest X = Vi € H(M) and H(M) is V-parallel hence go(V7V7u, T) = (V7 VHu) =
0.
Let (U, x') be a local coordinate system on M and {X, : 1 < a < 2n} a Gy-orthonormal frame
of H(M) defined on the same open set U C M. Moreover let us set
0

Xa=b;(§, 1 <a<2n,

30



1.4. SUBLAPLACIANS

0 ;0

1

Vorow ga = Uik g
by, T € C*(U,R), 1<i,jk<2n+1.

Then

2n+1 2n+1

0 ou . Ou

- _ - i

Apu = ‘jg_ - (a axf) + 2. a -, (1.18)

ij . igJ j da'’ ikpJ
a EZbaba, al = — +a"T”, .

It should be observed that the matrix [aij (x)] is but positive semi-definite for any x € U, which is

to say that A, is degenerate elliptic. Indeed [aij (x)] is not positive definite, for 6, is a characteristic
direction. Let X, be the formal adjoint of X, i.e.

Xif = ‘—, (bL.f) = BiTLf. f € CyU).

We shall make use of the Hormander operator Hy (associated to the system of vector fields X =
{X, : 1 < a < 2n}) given by

2n

Hyu = Z X Xqu. (1.19)

a=1
It is straightforward (cf. e.g. [94], p. 113) that locally A, = Hx. Through this thesis, by a
distribution on (M, 6) one means a continuous linear functional on C(7(M). This is not the ordinary
approach on an arbitrary C* manifold (cf. [67], p. 142-145) for in that case given u € Llloc(M ) and
¢ € C7°(M) there is no invariant manner of integrating ug (so that to identify f with a continuous
linear functional on C’(M)). In the case at hand however, one integrates with respect to the
volume form Wy i.e. T,(p) = fM upWy. Let L be a differential operator and 7" a distribution on
M. Then LT is the distribution given by (LT )¢ = T(L*¢) where L* is the formal adjoint of L. The
differential operator L is hypoelliptic if given f € C*(M) any distribution solution T to LT = f is
C™ i.e. there is u € C*(M) such that T = T,,. We recall that a formally selfadjoint second order
differential operator L : C*¥(M) — C*(M) is subelliptic of order € (with 0 < € < 1) at a point
x € M if there is an open neighborhood U c M of x such that

2 < C (Lt w)po] + Nli2,) . w € CU). (1.20)

Here || - || is the Sobolev norm of order s (cf. e.g. [104], p. 216-217). The Sobolev norms || - || are
recalled explicitly in § 1.5 where we also prove a version of (1.20) for a compact manifold. The
sublaplacian Ay is known (cf. Theorem 2.1 in [94], p. 114) to be subelliptic of order € = 1/2 at
any x e M

I, < € ((Apte, w2 + i}, w € C(U).

As such Ay is (by a result due to J.J. Kohn & L. Nirenberg, [55]) hypoelliptic and satisfies the a
priori estimates

lllZ,, < Cs (1Apll? +1lull2). uwe CPW), 520,
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Let Q c R be a domain and let L be a second order differential operator with real valued C*
coeflicients defined in Q

Y i u i i Ou
Lu(x) = = ) a0 = + ) dl(0) o +alou. (1.21)

ij=1 i=1

We adopt the following terminology (due to J.M. Bony, [58]). The differential operator L is de-
generate elliptic (in the sense of Bony) if 1) the matrix [aij (x)] is positive semi-definite, but not
positive definite, at each x € Q i.e.

N

D dIWEE 20, £= (&, ) ER,

i,j=1

ii) a(x) > 0 for any x € Q, and iii) L may be written as

Lu = ZXQ(Xau) + Y(u) + au

a=1

for some C* vector fields X,,Y € X(). The sublaplacian A, is a degenerate elliptic (in the
sense of J.M. Bony) second order differential operator on M (cf. the discussion above or [94],
p. 111-119). Degenerate elliptic operators satisfy a useful weak form of the maximum principle
(cf. Theorem 3.28 in [94], p. 209). Precisely if a C 2 function u achieves at xo a nonpositive local
maximum then (Lu)(xp) > 0. If additionally this maximum if < 0 and a(xp) > 0 then (Lu)(xo) > O.

This thesis is mostly concerned with the study of spectrae of sublaplacians on strictly pseudo-
convex manifolds, so we review the basic terminology (in general spectral theory, cf. e.g. [104], p.
365) for the specific case of A, : D(Ap) C L*(M) — L*(M). The resolvent set p(Ap) C C consists
of all complex numbers A € C such that Ay, — Al : D(Ap) — L*(M) is an invertible map such that
(Ap — AD™! € B(L2(M)). Here B(L*(M)) is the Banach algebra of all bounded linear operators
A : L>(M) — L*(M). The operator R(1; Ap) = (AI — Ap)~! is known as the resolvent of A;. The
spectrum of Ay is the set o(Ap) = C\ p(Ap).

1.5 Sobolev type spaces on CR manifolds

Let M be a strictly pseudoconvex CR manifold. Abstract CR manifolds with boundary were
considered in [95]. Through this section we only deal with bounded (with respect to the Carnot-
Carathéodory distance function dy) domains Q ¢ M with C? boundary. Let @ be a fixed contact
form on M and set ¥y = 6 A (d6)" for simplicity. Let 7 : E — M be a Riemannian vector
bundle with the Riemannian bundle metric . We denote by L?(Eq) the space of all L? sections in
Eq = 77 1(Q) (the portion of E over Q) that is s € L*(Eq) if h(s, s) € L'(Q) i.e. fg h(s, s) WPy < 0.
If Q X R is the trivial vector bundle over Q we write briefly L*(Q) = L>(Q x R). If u € C/(Q,R)
and X € C7 (€2, H(M)) then (by Green’s lemma)

fge(VHu,X)‘Pe=fX(u)‘I’e: (1.22)
Q Q

:f ugg(X,v)da—fudiv(X)‘sz—fudiv(X)‘Pg.
40 Q Q
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Here v is the outward unit normal on JQ2 and the divergence of X is computed with respect to the
volume form Wy i.e. LxW¥y = div(X) ¥y (Lx denotes the Lie derivative). The simple calcula-
tion (1.22) suggests a calculus with functions which are but weakly differentiable along the Levi
distribution, cf. [28].

A function u € LIIOC(Q) is weakly differentiable along the Levi distribution if there is a section
Y, in H(Q) such that [[Y, ]| = go(Y,, Y.)'/? € L] (©) and

fgg(Yu, X)¥y = —f udiv(X) ¥y, X e Cy(H(Q)).
Q Q

Such Y, is unique up to a set of measure zero and is denoted by ¥, = V¥u (the weak horizontal
gradient of u). Let D(VH) = W;I’Z(Q) be the space consisting of all u € L*(Q) such that u
is weakly differentiable along the Levi distribution and VZu € L*(H(Q)). Therefore the weak
horizontal gradient may be regarded as a linear operator V¥ : D(VH) c LX(Q) — L*(H(Q)) of
Hilbert spaces (densely defined, as C(Q2) C D(VH)). Moreover W;;z(Q) is a Hilbert space with
the inner product

(f,g)w;f=Lfg‘Pe+Lge(VHf,VHg)‘I’e

(cf. Proposition 3 in [28], p. 7). In particular W;I’Z(Q) is reflexive. For further use let VV;I’Z(Q) be
the closure of C7°(©2) in W}i’z(Q).

Lemma 1.2. Let Q C M be a domain satisfying the Poincaré inequality

fﬁ%SCIW%Wh (1.23)
Q Q

Jor some constant C > 0 and any ¢ € C7 (€, R). Then 1)

1

2
|wwmtfw%W%)
H Q

1
||90||sz < ||90||sz <(l1+0)2 HSOHVV;;Z

is a norm on C° (£, R). Also ii)

Jorany ¢ € CP(Q,R) ie. ||- ”W}f and || - ”W}f are equivalent norms on C°(€, R). In particular iii)

WFII’Z(Q) is a Hilbert space with the inner product
wf.0) = [ a9,
Q

Proof. 1) If ¢ € C3(Q) is a test function such that ||g||312 = O then IVHp|| = 0 ae. in Q.
H

Yet ||[VH¢]| is continuous and the measure associated to the volume form W, is Borelian, hence
IVH || = 0 everywhere in Q. Thus V7 = 0 so that ¢ is a real valued CR function, and then a
constant ¢ € R. Yet ¢ is zero at the boundary so ¢ = 0.

ii) For every ¢ € C7 (£, R)

2 2 H, 2 H, 2 2
||<P||W111,2 = llellz, + 1IV7ell, 2 V76l = IIsDIIW,
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1.5. SOBOLEV TYPE SPACES ON CR MANIFOLDS

Wi

lell?, > = llellZs + V¥ llZ, < (€ + DIVl = (€ + Dllglf 1.
H

so that
llellr < liellyra < (1+ 0P ligllyia . ¢ € CPEQR).

Q.e.d.
Let (VY : D[(VH)*] ¢ L>(H(Q)) — L*(Q) be the adjoint of V¥ i.e. i) D[(VH)*] consists of

all X € L*(H(Q)) such that
f go(Vu, X)Wy = f uX* ¥
Q Q

for some X* € L*(Q) and any u € D(VH), and ii) (V7)*X = X*. Then Cy(HY) c DIV
and the restriction of (V¥)* to C’(H(Q)) is —div. It is customary to set D(Ap) = {u € D(VH) :
VHy € D[(VH)*]} and refer to the linear operator (V)* o VI 1 D(A,) C LX(Q) — L*(Q) as the
sublaplacian of (M, 6), as well. Then

Aput = (V)" 0 VMY u, ue CH(Q. (1.24)

Let N = 2n + 1 and let i denote the Fourier transform of a function® u € cy (RM). For every s € R
we consider the Sobolev norm

lulls = (<2n>‘N/2 fR (1+lery

) 1/2
i()?| d§) :

and the inner product

(. v)s = 2™/ fR (1+16P) ae)p@ e,

for any u,v € C(‘;" RM). Let Hy(RN) be the Hilbert space got as the completion of Cg" (RN) with
respect to the norm || - ||;. Next let us consider a compact N-dimensional manifold M without
boundary (M = 0). Let U = {U,},ca be a finite open covering of M with domains of local
coordinate systems y, : Uy — R such that y;(U;) = RY. Moreover let {¢,}1ea be a C® partition
of unity subordinated to the open covering U

1€ C (M), Suppp) C U, 0<g@i<1, Y gi=1.
AEA

Let us consider the Sobolev norms

1/2
s = (Z ) ox;luf) :

AeA

and the inner products

@S = (e oxz', v oxy')
AeA

for every u,v € C®(M), where S = {(U,, xa, ¢1) : A4 € A}. Definitions clearly depend on the
choice of the system S (and this is captured in the notation). The map

ue C(M) — (wpp)oxy') ., € Co®RHN

2Unless otherwise specified functions are assumed to be complex valued.
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is a linear injective operator C*(M) — Cg (RM)AI. Here |A is the cardinality of the (finite) set
A. The composition of this operator with the inclusion C5*(RV)M — H(RM)A furnishes a linear
injective map
7S L C¥(M) - Hy(RV)A

Let us denote by Hf (M) the closure of the image of nf in the Hilbert space H (RV)A. Also let
us identity C*(M) with its canonical image in H;S (M). H;S (M) is a closed subspace of Hy(RY yAl
hence a Hilbert space itself. From now on, for fixed S we write merely || - ||s and Hy(M). Let M be
a compact strictly pseudoconvex CR manifold and 6 € P,. Let A; be the sublaplacian of (M, 6).
The estimates (1.20) imply

lll} )y < C{(Apts g + 2}, w e C(M), (1.25)

for some constant C > 0 depending only on M. Indeed (by (1.20))

2 _
(||u||‘lg/2) = Z [I(uepa) OX/l]”%/Z <

AeN

< Y Ca{ulugy) , up)pz + lugal?,
AEA

for some C,; > 0 and
Ap(up) = uAppr + aldpu +2Go(Vu, V),

Z (Ap(upy) , upr)2 = Z o1 (Ap(upy) , u)p2 <
A

AeN
(as (Ap(upa), upr)r2 = 0 and ¢, > 0 yield (Ap(up,), u);2 > 0 and then one may exploit ¢, < 1)

<3| {uBsr + @ Ay +2Go(V U, V) w0y =
/l M

= fM {u MY e+ (D @) At +2 Gy (v’*u, Vi sm)]} 0y =
A A A

= f(AbM)ﬁ‘I’a = (Apu, w2 ,
M

DNl = f lul*@3 Wo <
M

AeA A

< 01 P = |lull?
%), v

so that (1.25) holds with C = max{C, : 1 € A}.

We shall make use of the ordinary Sobolev spaces W*P(Q) with s € Rand 1 < p < oo and an
arbitrary domain Q c R¥, as built in [85], p. 204. Another method of constructing fractional order
spaces (in terms of Fourier transforms of tempered distributions) furnishes the spaces H*?(Q), cf.
[85], p. 219. The spaces W*P(Q) and H”*(€2) are known to coincide when s € Zand 1 < p < o

(aspa<1)
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or when s € R and p = 2. Our considerations so far (related to the subelliptic estimates (1.20))
only required the spaces Hy(RY) = H*2(RM). A general embedding result we shall make use of
is Theorem 7.58 in [85], p. 218-219. This is stated for Q = R" yet holds for domains Q ¢ RV
possessing the regularity properties requested in Theorem 7.41, [85], p. 207. These requirements
are satisfied by the unit ball Q = BY = {x e RV : |x| < 1} so that forany s > 0, 1 < p < g < oo and
1 £ K < N the following embedding holds

WSP(BY) — WIBK), y=s- N, 5, (1.26)

p q

provided that eitheri) y > 0 and p < g,orii) y >0and y e R\ Z,oriii)) y >0and 1 < p <2. We
wish to specialize (1.26) to the case

1
= =, :2, K=N,
N ) p

that is
WI/Z,Z(BN) N WN/q—(N—l)/Z,q(BN), 2<q< oo, (1.27)

holding when

N-1
7

On the other hand we need the Kondrakov lemma (cf. e.g. Theorem 2.33 in [102], p. 53). Let
keZ,k>0,and p,q € R such that

> (1.28)

<=

>

1> - = >0. (1.29)

< -
Q|-
2| =

Moreover let Q ¢ RY be a bounded open set whose boundary dQ is C' (Lipschitzian actually
suffices). Then the embedding

wha(Q) — L7(Q) (1.30)
is compact’. We wish to specialize (1.30) to
N N-1
Q=B", p=2, k:——T, 2<qg< oo, (1.31)
q

with the requirements (1.28)-(1.29). Solving for ¢ in (1.31) gives

N
9= —_71°
N-1
k+
2
It is straightforward that the numbers g € R given by (1.32) satisfy Kondrakov lemma’s require-
ment (1.29) with p = 2 hence for any k € Z, k > 0, the embedding

keZ, k=0. (1.32)

WhNIG+N-DI2) Ny __, 12BNy (1.33)
is compact. Let us set k£ = 1 in (1.33) so that the embedding

W1,2N/(N+l)(BN) — LZ(BN)

3The image by (1.30) of any bounded set in W*4(Q) is compact in L”(Q).
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is compact, as well. The composition with (1.27) then gives the compact embedding
wl/2:2@Ny — [2BV). (1.34)
Embedding (1.34) yields

Lemma 1.3. Let M be a compact strictly pseudoconvex CR manifold without boundary. Then
Hijp(M) = WY22(M) admits a compact embedding into LX(M).

Proof. We may cover M with a finite number of open sets which are domains of local co-
ordinate charts whose image is the unit ball B2**!. The proof of Lemma 1.3 is then a verbatim
repetition of the arguments in the proof of Theorem 2.34 in [102], p. 55 (replacing the use of
Theorem 2.33 in [102], p. 53, by that of (1.34) above).

Lemma 1.4. On any compact strictly pseudoconvex CR manifold the operator (A +1)~' : D((Ay+
DY c L2 (M) — L*(M) is compact.

Proof. The estimate (1.25) may be written
||u||%/2 <C((Ap+Du,w, ueCM), (1.35)
hence Ker(A;, + I) = (0). Consequently we may consider the inverse
Ap+1:C¥(M)— R(A, +1) Cc C¥(M)

is invertible, where R(A) denotes the range of the operator A. Therefore we may consider the
inverse
(D + D7 D((Ap + D7') = R + 1) € LAM) — Hyjo(M).

Letv e Z)((Ab + I)‘l) and let us apply (1.35) to the function u = (Ap + D~(v) followed by the
Cauchy-Schwartz inequality

1Ay + 7T, < C (v, Ay + D7), < CIMI A, + D72
Moreover, there is a continuous embedding Hy/2(M) — L*(M) so that
lull2 < C'llullijz, € Hijp(M),
for some constant C’ > 0 independent of u. Thus
1A, + D)7V 5 < C7IVIl2NAs + D7Vl

(with C” = CC’) or
Ay + D™ Wil < C7 W12

so that (A, + I)~! is a continuous operator. Finally (by Lemma 1.3) the embedding H| (M) —
L*(M) is compact hence (A, + D' DA, + DY € L2(M) = LA(M) is compact (as the
composition of a compact operator with a continuous operator). Q.e.d.

Corollary 1.5. The spectrum o(Ap) of the sublaplacian on any compact strictly pseudoconvex
pseudohermitian manifold is discrete.

Proof. Follows from Lemma 1.4 together with the general result in functional analysis that
completely continuous linear operators (here (A, + I)~!) have discrete spectrae.
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1.6 Dirichlet Spectrum of a Sublaplacian

Let M be a strictly pseudoconvex CR manifold and 2 ¢ M a smoothly bounded (with respect to
the Carnot-Carthéodory metric) domain. Let 6 be a contact form on M, such that the Levi form
Ly is positive definite, and let A, be the sublaplacian of the pseudohermitian manifold (M, 6). The
scope of this section is to study the Dirichlet problem

Apu=Au in Q, u=0 on 0Q, (1.36)

where A € R is a parameter. A number A € R is an eigenvalue of (1.36) if there is a function
ue VV}I’Z(Q) \ {0} satisfying the functional equation

ap(it, ) = A, @)z, ¢ € WHQ). (1.37)
‘We shall show that

Theorem 1.6. Let (M, 6) be a strictly pseudoconvex pseudohermitian manifold and Q@ C M a
bounded (with respect to the Carnot-Carathéodory metric dy) domain satisfying Poincaré inequal-
ity. If the metric space (M, dp) is complete then the Dirichlet problem (1.36) admits an infinite
sequence of eigenvalues 0 = g < 41 £ Ay < --- < A, < --- and an infinite sequence of eigenfunc-
tions {u,},>1 C WIIJZ(Q) corresponding to the eigenvalues {A,},>1 such that lim,_ A, = +co and
(ty, ty) 2 = Opye

"By Poincare’ inequality we mean
2 H, 2 00
f90 Wy < Cf IVZell" Wo, ¢ € Cy(ER). (1.38)
Q Q

Besides from (1.38) proof of Theorem 1.6 relies on the compactness of the inclusion W}f{ﬂ) -
L*(Q).

1.7 Generalized Dirichlet problem

Let Q c M be a bounded domain in a strictly pseudoconvex CR manifold and let 6 be a contact
form on M with Ly positive definite. Let A, be the sublaplacian of (M, 6). We shall solve the
homogeneous Dirichlet problem

Apu=f in Q, u=0 on 0Q. (1.39)

A function uy € W;*(Q) is a generalized solution to the Dirichlet problem (1.39) if ay(uo, ¢) =
(f. ¢) for any ¢ € W;;*(Q). Let

(V" DI(VH)*] € LHQ)) - LH(Q)

be the adjoint of V7 i.e. i) D[(V)*] consists of all X € L*(H(Q)) such that

f go(Vu, X)Wy = f uX* ¥y
Q Q

38



1.7. GENERALIZED DIRICHLET PROBLEM

for some X* € L*(Q) and any u € D(VH), and ii) (V¥)*X = X*. Then CJ(H(Q)) c D[(VH)*]
and the restriction of (V¥)* to C’(H(Q)) is —div. It is customary to set D(Ap) = {u € D(VH) :
VAu € D[(VH)*]} and refer to the linear operator (V)" o V1 : D(A,) ¢ [*(Q) — L*(Q) as
the sublaplacian of (M, ), as well. Then A, = (VZ)* o V/ on Cy (Q). Consequently, any strong

solution up € CX(Q)N C(ﬁ) to (1.39) is also a generalized solution and, viceversa, any generalized
solution ug € Wé’z(Q) NCXQ)isa strong solution to (1.39). We shall establish the following

Theorem 1.7. Let M be a strictly pseudoconvex CR manifold and 6 a contact form on M. Let Q) C
M be a bounded domain on which the Poincaré inequality (1.38) holds. Then for any f € L*(Q)
the Dirichlet problem (1.39) admits a unique generalized solution.

To prove Theorem 1.7 we set
1 .
Epu) = S ap(uu),  F(u) = Epu) = (fu). u € Wy*(Q).
Lemma 1.8. i) For each u € V)VIIJ’Z(Q) the functional ¢ — ap(u, @) is continuous on VOV;I’Z(Q). ii)

For each f € L*(Q) the functional ¢ — (f,¢);2 is continuous on VV}I’Z(Q). iii) F is differentiable
atany u € WbZ(Q) and its Gateaux derivative is given by

F')p = ap(u, @) = (fr9)2s ¢ € WiP(Q). (1.40)
iv) F is strictly convex and
lim F(u) = +co. (1.41)
Ep(u)—00

Proof. i) For any u, ¢ € W,‘i’z(Q) (by Cauchy’s inequality, both pointwise on (H, g¢) and L?)
lap(u, )| < f IV ull V7 ]| ¥ <
Q

< IV?ull 2 V¥ ¢l 2 = 2E(u)' 2 Ep(p)'?

and E;/ 2 is a norm on W;Q(Q).

ii) By Poincaré’s inequality (1.38)
|(f 02| < 1Al Nl < V2CUI 2 En(e) 2. (1.42)

Besides from implying (ii) the simple estimate (1.42) is essential in establishing property (1.41) of
F.

iii) We start by recalling a few standard notions familiar within the variational treatment of
elliptic partial differential equations (cf. e.g. [23]). Most of the underlying methods are sufficiently
general to apply to A, or admit ad hoc adaptations to the case of interest, as shown below. Given
a real Hilbert space H a functional A : H — R is differentiable at the point u € H in the
direction v € H if the limit limy_oA~! [A(u + Av) — A(u)] exists and then the limit is denoted
by A’(u;v) € R. If the limit A’(u;v) exists for any v € H then A is differentiable at # and the
functional v € H +— A’(u;v) € R is the differential of A at u. If the differential of A at u is
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linear and continuous then A is commonly said to be Gateaux differentiable and the functional
v e H +— A’(u;v) € Ris denoted by A’(u) and referred to as the Gateaux derivative of A at u.

The bilinear form a, is symmetric, hence ¢ = 2E, is a quadratic4 form. Also (by (i) in Lemma
1.8) ap(u, ) is continuous for any fixed u, hence ¢ is differentiable and its Gateaux derivative at
ue W;I’Z(Q) is 2ap(u, -). Finally (by (ii) in Lemma 1.8) (f, -);2 is differentiable at # and coincides
with its Gateaux derivative at any u. Thus F is differentiable and (1.40) holds.

iv) A functional A : H — R is convex if A(du + (1 — A)v) < 1A(u) + (1 — DA(v) for any
u,v € H and any A € [0, 1]. If the above inequality is strict for any u # v then A is strictly convex.
A general result, that we are going to use in the sequel, is that any positive quadratic form is a
convex functional and any positive definite quadratic form is a strictly convex functional.

The quadratic form g(u) = ap(u, u) is positive definite. This situation should be compared to
that of an arbitrary uniformly elliptic operator in divergence form (where uniform ellipticity im-
plies coercivity of the associated quadratic form cf. e.g. [23]). In the case at hand, the sublaplacian
Ap isn’t elliptic yet already

Lemma 1.9. Eli/z is a norm on WII{’Z(Q).

This follows from Lemma 1.2 . Strict convexity of g then yields strict convexity of F. Finally
(by (1.42))
F(u) = Ep(w) = (f,u)2 = Ep(u) = V2CIIfll2Ep(w)'/?

for any u € WIIJZ(Q), and 12 — V2C||fll;2t — +o0 as t — +oco thus proving (1.41). Q.e.d.

To proceed we need to recall a few standard results from the calculus of variations. Let # be a
real Hilbert space and A : H — R an arbitrary functional. Then uy € H is a global minimum point
of A if A(up) < A(u) for any u € H. The number A(up) € R is the global minimum of A. Here we
shall only be interested in global minima of certain functionals. We remind however that uy € H is
a local minimum point if there is a neighborhood of ug such that the inequality A(ug) < A(u) holds
on that neighborhood. Let A : H — R be a Gateaux differentiable functional. By a standard result,
if ug € H is a local minimum point of A then A’(ip) = 0 (i.e. A’(ug)v = 0 for any v € H). Also if
the functional A : H — R is convex and Gateaux differentiable then A’(1p) = 0 is a necessary and
sufficient condition for uy € H to be a global minimum point of A. Finally, we shall make use of
the following results. If the convex and Gateaux differentiable functional A : H — R satisfies the
condition limy,,—c A(#) = +0co then A has at least a global minimum point. Alsoif A : H — R
is a strictly convex functional then A admits at most one global minimum point.

At this point we may end the proof of Theorem 1.6. Strict convexity together with (1.41)
imply the existence of a global minimum point ug € W}{’z(Q) for F. Consequently F’(ug)¢ = 0 for
any ¢ € V)VIIJ’Z(Q) or ap(ug, ) = (f, @) i.e. ug is a generalized solution to the Dirichlet problem
(1.39). Uniqueness of the solution is again a standard consequence of strict convexity. Indeed if
uj € VVIIJ’Z(Q) satisfies ap(uy, ) = (f, ¢);2 then F’(u;) = 0 on W}J’Z(Q) so that (as F is convex and
differentiable) u; is a global minimum point of F. Let us set d = F(up) = F(uy). Finally if ug # u;

“Let H be a Hilbert space and b : H x H — R a R-bilinear form. b is symmetric if b(u, v) = b(v, u) for any u,v € H.
A functional g : H — R is a quadratic form if g(u) = b(u, u) for some symmetric bilinear form b : H x H — R. The
quadratic form ¢ : H — R is positive if g(u) > 0 for any u € H. A quadratic form ¢ : H — R is positive definite if
q(u) > 0 for any u € H\{0}. A quadratic form g : H — R is coercive if there is a constant y > 0 such that g(u) > 7||u||§{
for any u € H.
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then (by strict convexity)
F((1 =tuy +tu)) < (1 —0F(up) + tF(uy) = d,

for any O < ¢ < 1, a contradiction.

1.8 Generalized Dirichlet eigenvalue problem

To start with, we need a brief preparation of functional analysis (cf. e.g. [104]). Let H be a
real Hilbert space and 7 : H{ — H a continuous linear map. A number A € R is an eigen-
value of T if there is u € H \ {0} such that Tu = Au (and then u is an eigenvector of T cor-
responding to the eigenvalue ). Standard functional analysis methods apply to the study of
eigenvalues and eigenvectors of selfadjoint completely continuous operators. 7T is selfadjoint if
(Tu,v)g = (u, Tv)g for any u,v € H. Also T is compact if it maps bounded sets in compact sets.
A continuous compact operator is completely continuous. Completely continuous operators map
weakly convergent sequences in strongly convergent sequences. By the norm of 7 one understands
T = SUPjy, =1 T ullyy = SUPjyp=1 = |(Tu, u)4| (the last equality is a consequence of the fact that
T is selfadjoint). A general result we rely on is that a selfadjoint completely continuous operator
T : H — H has at least one eigenvalue and one eigenvector. Moreover, if T : H — H is selfad-
joint then eigenvectors corresponding to distinct eigenvalues are orthogonal. Also if 7 : H — H
is selfadjoint and completely continuous then to any eigenvalue 4 € R \ {0} there corresponds
a finite number of linearly independent eigenvectors. Finally, the crucial results from functional
analysis that we shall use in the sequel, may be stated as follows. Let T : H — H be selfadjoint
and completely continuous. Then i) 7 admits at most an infinite sequence of eigenvalues and ii)
the only accumulation point of the sequence of eigenvalues is 0. Also iii) if {u,},>; is the orthonor-
mal system consisting of the eigenvectors of T corresponding to the eigenvalues of T then for any
u € Honehas Tu= 3" (Tu,u,)pit,.

Under the assumptions of Theorem 1.6, for each f € L*(Q) there is a unique u € WIIJZ(Q)

such that a,(u, ) = (f, ¢);2 for any ¢ € W;iz(Q). We may then consider the map Gp : L*(Q) —
L*(Q) given by Gp(f) = u, hence the tautology a,(Gpf,¢) = (f,¢);2. We shall show that Gp is
linear, continuous, self-adjoint and compact, so that the functional analysis result recalled above
applies to its spectrum o(Gp). The usefulness of G is due to the relationship among the spectrae
of Gp and the Dirichlet problem (1.36): if A is an eigenvalue of (1.36) and u an eigenfunction
corresponding to A then u = 1/1 € o(Gp) and u € Eigen(Gp; ), and conversely. For instance if
ap(u, ) = A(u, )2 then Gp(Au) = u hence, once linearity of Gp is proved, 1/1 € o(Gp).

Lemma 1.10. i) Gp is linear, ii) Gp is continuous, iii) Gp is self-adjoint, and iv) Gp is compact.
Proof. i) By the very definition of Gp
ap(Gplaf +Bg),¢) = (af +Bg. @2 =

= ap(aGp(f) +BGp(8), @)1z, ¢ € W(Q),

for any f,g € L*(Q), a,B € R, hence a,(Gp(af + Bg) — (aGp(f) + BGp(g)), ) = 0. Since Gp is
W,ljz(Q)-valued, one may use the previous identity for ¢ = Gp(af + Bg) — (aGp(f) + BGp(g)) so
that E,(¢) = 0 yielding ¢ = 0.
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i) For each f € L*(Q) (by the Poincaré inequality)
G fIE = f (GofP ¥y < C f IVHGip I Wy =
Q Q

=Cay(Gpf,Gpf) = C(f.Gpflrz < Cllifll2IGpfllr2
hence
IGpfllz < Clifllr (1.43)
i.e. Gp is bounded.

iii) If Gpf = 0 then (f,¢) 2 = ap(Gpf,¢) = 0 hence (as W;*(Q) is dense in L(Q)) f = 0 i.e.
G is injective. Let G; be the inverse of Gp : L*(Q) — R(Gp). Then

(Gplu, )2 = u,Gp' )2, u,¢ € R(Gp). (1.44)

Indeed
(Gp'u, )2 = ap(GpGp'u, ¢) = ap(u, ¢) = ap(p, u) =

= ap(GpGp'p,u) = (Gplp,u)p = (0, Gp )2
Finally for any f, g € LX(Q) (by (1.44) with u = Gpf and ¢ = Gpg)

(Gpf.8)2 = (Gpf.Gp'Gpg)2 = (Gp'Gpf.Gpg)r2 = (f.Gpg)z -

iv) Let B ¢ L*(Q) be a bounded subset i.e. || fll;2 < C; for any f € B and some constant
Ci > 0. Then (by (1.43))

1 1
Ey(Gpf) = Eab(GDfa Gpf) = 3 (f,Gpfrz <

2

1 C cC
< S IAIIGD e < 5 12, < Tl

so that Gp(B) is a bounded subset of VV}J’Z(Q). Finally, the inclusion W}J’Z(Q) — [X(Q)is compact,
hence Gp(B) is a compact subset of L*(Q). Qed.

At this point we may prove Theorem 1.6. By Lemma 1.10 the map Gp : L*(Q) — L*(Q)
admits at most an infinite sequence of eigenvalues and the only accumulation point of o(Gp) is 0.
If o(Gp) ={u, : v =1} weset 4, = 1/u,. Let {u, : v > 1} be eigenfunctions of Gp corresponding
to {u, : v = 1}. We assume the elements of o(Gp) are labeled such that |u| > || = -+ =
|ty| = - -+ and the system {u, : v > 1} is orthonormal. By the comment preceding Lemma 1.10 the
spectrum of the Dirichlet eigenvalue problem (1.36) is at most countable |[4;| < |Ap| < -+ < |4,] <

- and one may easily check that A, > O for any v > 1. Indeed Gpu, = u,u, yields

2uyEp(uty) = py ap(uty , uy) = ap(Gpuy , uy) = lluyll7

hence y, > 0. Once again one should observe that in the known case where A is replaced by an
uniformly elliptic operator, positivity of eigenvalues follows from the coercivity of the associated
quadratic form (while the failure of A, to be elliptic is immaterial due to the fact that E;/ 2 s

already a norm).
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To see that (1.36) admits an infinite sequence of eigenvalues, one starts by showing that the
range R(Gp) is infinite dimensional. Let u € C7(Q) and let us set f = Apu so that u is a strong

solution to the Dirichlet problem (1.39). In particular a,(u, ) = (f,¢);2 for any ¢ € Wlli’z(Q).
Thus Gpf = u, proving that R(Gp) > Cy(Q). Yet C7(€2) is infinite dimensional, hence so does
R(Gp). Let us assume now that Gp has but a finite number of eigenvalues o(Gp) = {uy, -+ , ux}.
Then Gpf = Zle(GDf, uy)r2 u, for any f € L*(Q), hence {uy,--- ,ux} is a linear basis of R(Gp)
i.e. dimg R(Gp) < o0, a contradiction.

Finally as uy > pup > -+ > w, > --- and u, > 0 it follows that {u,},>; is convergent to
some y € R. Thus u is an accumulation point of 0(Gp) hence u = 0 and we may conclude that
lim,_, A, = +00. Q.e.d.

1.9 An energy space approach

Let (M, 0) be a strictly pseudoconvex pseudohermitian manifold and Q@ ¢ M a smoothly bounded
domain. Let us consider the sublaplacian A, = (VH)* o VH : D(A,) = (u € D(VH) : Vi ¢
D(VHu)*)} ¢ L2(Q) — L*(Q) of (M, 6). Unlike previous sections we work with complex valued
functions u : Q@ — C. In this section we consider the problem of the existence of solutions to

Apu=f, felL*Q), (1.45)
by making use of the Freidrichs extension of A, where

Ao = Ab|cgﬂ(9)

i.e. Ap is the Lagrange sublaplacian. Precisely we prove

Theorem 1.11. Let QO C M be a smoothly bounded domain satisfying the Poincaré inequality
f|u|2\119 < cf IVHul> ¥, ueCyQ).
Q Q

Then for any f € L*(Q) the Poisson equation for the sublaplacian (1.45) admits a weak solution
ur € L*(Q). The weak solution u ¢ is weakly differentiable along the Levi distribution H(Y) and

ur = 0 on 0Q in the variational sense i.e. uy € W;I’Z(Q). In particular uy is a solution to the
generalized Dirichlet problem (1.39). If f € C*(Q) then uy € C*(Q).

We start by noticing that for every u € C’(Q2)
Apou, u)p2 = IV7ullf, = Cllull7, (1.46)

by Apou = (V7u)* VHu and the Poincaré inequality. Hence the Lagrange sublaplacian is positive
definite as an operator App @ D(Apo) = C3(Q) C L*(Q) — L*(Q). Therefore we may apply
Friedrichs’ extension theorem for positive definite linear operators, which we proceed to recall.
Let H be a Hilbert space and A : D(A) ¢ H — H a linear operator A : D(A) ¢ H — H,
assumed to be positive definite i.e.

(Au, )y > YVllullz,, u € DA,
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with 72 = const. > 0. Friedrichs’ theorem (cf. e.g. Theorem 1.32 in [15], p. 97) is that, under
these assumptions, there is a linear operator A : D(A) ¢ H — H such that 1) A is an extension of
Aie.

D(A) c D(A), =A,

A|D(A)

2) A is selfadjoint® and surjective i.e. R(A) = H. Here R(A) is the range of A. Finally 3) A is
positive definite with the same constant as A i.e.

(Au. u),, = lully . ue DA.
By Friedrichs’ theorem (with A = A ) there is a linear operator
Ao D(App) € LX(Q) — LX(Q)
such that 1) Ab’o C Ab’o 1.e.
D(Ap0) € D(Ap), Ab,O|D(Ah’0) =App,
and 2) A; | = Ay and R(Ap0) = L*(Q), and 3) A, is positive definite i.e.
(Apou, u),, > Cliully,, ue D(Apyp).

A crucial point in the so called energy space approach is to consider on D(Ay ), besides from the
inner product ( , );2 induced from L?(Q), a new inner product given by

(I/l, v)(]‘{(Ab,O) = (Ab,Ou ’ V)LZ , U,VE D(Ab,0)~

The properties of the operator A; ¢ and of the L? inner product ( , );> allow one to show that
(5 )#H(a) 18 indeed an inner product on D(A, ). For instance let us check that

(U, VIH(A0) = Vs WH() s UV € D(App),

(u, u)(H(Ab,O) > 0, (u, M)(H(Ah,o) =0=u=0.

The operator Ay is symmetric® (as a consequence of (1.46) and Proposition’ 1.12 in [15], p. 54).
Hence

(U VIH(Ayg) = (Dbou, V)12 = (U, Ap V)2 = (Apov, )2 = (Vs W)

for any u,v € D(Ap). Next for any u € D(Ap )
(U, Wptap) = Do, )2 > C llull?, > 0, (1.47)

(U, Wr(r,e) = 0= llull;2 =0=u=0.

That is A coincides with its adjoint (A* = A).

Let H be a Hilbert space and A : D(A) € H — H a linear operator. A is symmetric if D(A) is a dense subspace
of H and A c A*. As well known (cf. e.g. [15], p. 54) this is equivalent to D(A) being a dense subspace together with
(Au,v)qr = (u, Av)g for any u, v € D(A).

7If H is a complex Hilbert space and A : D(A) ¢ H — H is a densely defined linear operator then A is symmetric
if and only if (Au, u)s; € R for any u € H.
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Let us consider the norm associated to the inner product (, )g(a,) 1-€.

ltllgtape) = W Wri(a,g)» U € D(App).

As a consequence of (1.47)
1
leellz2 < —= llellapg)»  u € D(Ap o) (1.48)
L \/E (Ap0)
In general D(A ) is not complete with respect to the norm || - [l¢a, ). The energy space H(App)

of Ay is by definition the completion of D(Ap ) with respect to || - [l¢a,,)- Then

Lemma 1.12. The energy space H(Apo) admits a continuous linear injection into L*(Q). Pre-
cisely there is a continuous, injective, linear map ¢ : H(Apo) — L*(Q) such that

o) =u, uecDApp), (1.49)
1
lle(ll2 < % lullpapgy » 4 € H(Apo). (1.50)

This is again a general result (holding for any positive definite linear operator A : D(A) C
H — H, cf. e.g. Theorem 1.33 in [15], p. 98) and we only indicate the construction of ¢. Let
u € H(App). As H(App) is the completion of D(Ap) in the norm || - [lg(a,), there is a Cauchy
sequence {u,},>1 C D(Ap) representing u i.e. for any € > 0 there is v > 1 such that

ety — upllpa,g) < € Y Vit = ve.

Then (by (1.48))
€
||uy—1/l||2<_, Vvaﬂzvfa
Ve

i.e. {uy},»>1 is a Cauchy sequence in L*(Q) as well. Yet L>(Q) is complete hence there is ugy € L*(Q)
such that u, — ug in L*(Q) as v — co. One then sets by definition ¢(u) = ug. It may be easily
checked (cf. e.g. [15], p. 99) that ¢(u) is well defined (i.e. the definition doesn’t depend upon the
choice of the representative {u,},>1 of u), linear, injective and continuous. Moreover, an inspection
of the proof of Friedrichs’ theorem (cf. e.g. [15], p. 102) shows that the domain of the yielded
selfadjoint extension Ay is

D(Ap0) = DA ) N @(H(Ab0)) € LA(Q) (1.51)

while Ay itself is given by

Ao = Ab,0|z><A;0>nw(w<Ab,o)) ‘ (1.52)

Since R(Ab,o) = L*(Q) there is u 1€ Z)(Ab,o) such that Ab,ou r = f. As a positive definite operator
Ab,o is already injective, so such uy € Z)(Ab,o) is unique. Finally (by (1.51)-(1.52))

f=Apoup = Ay qus

so that for any ¢ € C7(€2)
(Anov . Mf)L2 = (v, AZ‘,,OMf)L2 =W, N2
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i.e. uy is a weak solution to Ayu = f. Let us look at the boundary conditions satisfied by u . Since
ur € D(Apyp) it follows that u r € H(App), the energy space of the Lagrange sublaplacian A .
Hence for any u,v € C§(Q)

(U, VIH(Ay) = (Dbott, V)2 = f (Apu)y o =
Q
=— f div(Vou)v¥, = f Go(V'u, Vi) ¥,
Q Q
by Green’s lemma. So
(s V(A ) = f Go(Vu, V) Wy, u,veCT(Q), (1.53)
Q
and the norm associated to the inner product (1.53) on C7(€2) is
M&ww=jﬂwwW%=2&wy (1.54)
* Q

The norm || - [l4(a,,) and the norm induced by || - [|;12 on C7°(€2) are equivalent. This is actually a
’ H
consequence of the Poincaré inequality

f|u|2\119 < Cf IVHul> o, ueCyQ), (1.55)
Q Q

as follows. First for every u € C7(€2)

w@y=m@+wﬂﬁﬁﬂww@=w@ww
w@yﬂwﬁﬂww@s@+mww@=w+mwgmy
so that
ez < Mallyrz < (1+ O llullgya, g € CF(). (1.56)

Since the norms || - [l#a,,) and || - ||W132 are equivalent on C’(Q), the spaces H(Ap ) and WIL’Z(Q)
may be identified, algebraically and topologically. Under this identification ¢ is the natural imbed-
ding of W;;%(Q) so that

1y € DA, o) N WiH(Q).
Consequently uy is weakly differentiable along H(L2) and u; = 0 on 62 in the sense of variational
calculus.

1.10 Bochner-Lichnerowicz formula after A. Greenleaf

Let M be a compact strictly pseudoconvex CR manifold, of CR dimension n. Let 6 € .. and let
V be the Tanaka-Webster connection of (M, ). Let xo € M be an arbitrary point. As H(M) and
gy are parallel with respect to V we may build a local gg-orthonormal frame {E, : 1 < a < 2n} of
H(M), defined on an open neighborhood U C M of xp, such that

(Ve Ep)(x0) =0, 1<a,b<2n (1.57)
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Indeed E, is got by parallel displacement (with respect to V) of a given gy ,- orthonormal frame
{vi, -+ ,van} C€ H(M)y,, along the geodesics of V issuing at xp. As VJ = 0 we may also assume
that E,.q = JE, for any 1 < @ < n. Then (by Apu = — 32" {E2(u) = (Vi, Eq)(u)} and Vgy = 0)

Ay (I9"2?) (x0) = = > E2 (19" ulP?) (x0) =

X0

=2 Z Eq(80(VE,Y"u, V!0
a

= -2 {20 (Ve Ve, V"4, VHu) + g9 (Vi,VHu, Vi, V1))
a

X0

As{E, : 1 < a < 2n} is gg-orthonormal, the first term in the above sum is

> 20(VEVE,Y"u, Ey) Ep(w).
a,b

Moreover (by (1.57))

80 (VEVEY"u, Xp) = {Ea(80(VE,V"u, Ep)) = 80(VE, V"4, Vi, Ep))

= Eq(Ea(20(V"u, Ep)) = 80(V"'u, Vi, Ep)) =

X0

= Eq(EaEpu— (Vi,Ep)W),, = Eq (Vu)(Eq, Ep))

X0

where V2u is the Hessian of u with respect to the Tanaka-Webster connection i.e.

(V2u)(X,Y) = (Vxdu)Y = X(Y(u)) — (Vx¥)(u), X,Y € X(M).

We emphasize that, unlike the Hessian in Riemannian geometry, VZu is never symmetric

(Vi)(X. Y) = (Vi)(Y, x) = Ty(X, V)(w).
On the other hand Ty is pure hence

Te(X,Y) = —2QX, V)T, X,Y e H(M).
Here Q = —d6. Then (by (1.58)-(1.59))

20(Vie, Ve, V1, Xp)sy = X (V2u)(Ea, En))

X0 =
= Ea((Vu)(Ep, Eq) + 2Q(Eq, Ep)Tu) =
= 20(VE, Ve, VU, Eo)ry + 2Q(Ea, Ep) gy Ea(Tu)s,
so that |
5 8 (IV"lP) (x0) = D Ie, V"0l + ) {s0(VE, Ve, VVu, Ea)+
a a,b
+ 2Q(Ea’ Eb)Ea(Tu)}xo Eb(u)xo .
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For each bilinear form B on T(M) we indicate as customary with [1yB the restriction of B to
H(M)® H(M). The norm of [1y B is given by |1y BI> = 3, B(E4, Ep)*. Then

VUl = > (Vu)Ea, Ep)* = ) [Ea(Ep) = (Vg Ep)@)]* =

a,b a,b
= Z gH(VEuVHM s Eb)2 = Z ge(VEaVHM s VEHVHM)
a,b a

so that
T V2ull* = § Ve,V ull®. (1.61)
a

Next
[Ea, Ep] = VE,Ep — Vi, E, — Tv(E,y, Ep)

hence (by (1.57) and (1.59))
[Eq, Eb]xo = 2Q(Ea, Eb)xo Txo

and taking into account
VxVy = VyVx + RV (X, Y) + Vixy;, X,Y € X(M),
where RV is the curvature tensor field of V) one obtains
Ve, Ve, Viu= Vg, Vi Vi + RV(E,, Ep)VTu + 2Q(E,, Ep)Vr V7 u (1.62)
at xop. Moreover

20(VE, Ve, Vi, Xo)y, = {Ep (80(Vie, V71, E)) = go(VE, VU, Vi, Eq)} =

X0

=Ep (Eg(u) - (VEaEa)(u))

Xo
that is
Z 8o(VE, VEN U, By = —Ep (Apn)y, - (1.63)
a

Therefore (by (1.62)-(1.63))

> 8o(VE, VeV 1, By Ep(fy =
a,b

= = > HEAyu) Ec)}y, + ) {0(RY (Eay EOVI i, EEc(u)+

+2Q(Eq, Ec) go(VrV"u, E)E(u)] =

X0

= —(VMu)(Apt) + ) {20(RY (Ea, V') V"u, Eo)+

+ 280(Ea, V" 10)g0(Vr V"1, E))

X0

= —~(VHu)(Apu),, + Ricy(VHu, VHu), + 2g9(VrV7u, JVu),,
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where Ricy(X,Y) = trace{Z — RY(Z,Y)X)} as customary. Then (by (1.61)) the identity (1.60)
becomes

1 .
=58 (IV72l?) = I V7ul = (V™) (Ape) + Riew(V7u, V)+
+280(VrVHu, IVHU) + 2g9(VHE Tu, V1)

yielding the following pseudohermitian version of Bochner-Lichnerowicz formula
1 2 2
=3 8o (I97l) = 1192 = (9" () + (1.64)

+Ricy (V'u, V¥u) + 2 Lu,
for any u € C*(M, R). Here the differential operator L is given by
Lu = (JV"u) (Tu) - UV VHu)(w) (1.65)

and its presence in (1.64) is of course the main bias from the Riemannian case. Formula (1.64)
was derived by E. Barletta (cf. equations (6)-(7) in [32], p. 79). However only the formalism
is new (the local calculation in [9] is replaced by a local frame free VxY calculation) and (1.64)
is qualitatively that obtained by A. Greenleaf, [9]. Indeed let {T, : 1 < a < n} be a local Gy-
orthonormal (i.e. Gg¢(T, Tﬁ) = 0qp) frame of the CR structure Ty o(M). Then

n
V=3 (usTo + uaTs), tte = Tolw), ueC'(M,R).

a=1

Let us compute the terms in (1.64) with respect to the local frame {T, : 1 < @ < n}. Using
(4.32)-(4.33) in Chapter 4 of this thesis one obtains

Ricy (V¥u, V¥u) = Z [2R Fuzup+ (1.66)
a,B=1

+i(n—-1) (Aaﬁ”E”E B AEE”"MB)} ’

V7] = 290" =2 ugiiz. (1.67)
a=1
(V710) (M) = D {utg (Api)g + i (Apz) (1.68)
a=1

for any u € C3(M, R). The calculation of ||HHV2u||2 is more involved. We start by setting

1 i
= %(Ta'FTE)’ Enio = JE, = %(TQ_TE%

so that G¢(E, , Ep) = 04 forany 1 < a,b < 2n. Then

Eq

2n

V2l = > (V2u) (Ea. Eb)? = (1.69)
a,b=1
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n

-2 3% (o) () + () )

Finall
y n
JVHY = iz (ugTy — uaTs),

a=1

(V") (o) = i ) uTo(o) = uaTx(uo)}, o = T(w),
a=1
TA(”O) = TA(T(M)) - (VTAT)(M) = (VTAdM)T = VAMO ’ Ace {1a Y T’ e ’ﬁ},
IV = i Y (T () To + Uz To = T(a)Ts = eV Tz},

a=1

(]VTVHM) (u) = iznl {T(ug)u(, + uar’ﬁauﬂ — T(ug)ug — uarﬁ?ug} =

a=1

=—i Za] {ug [T(ua) - Tﬁauﬁ] — Uy [T(ug) - r’ga]} =

= =i Y {uzVoua — usVoug}

a

hence (by (1.65) and the commutation formula Voug = Vgug — ugAg)

n
Lu=2i Z (ttz Vouty — ttg Voilz) + (1.70)

a=1

n

+i Z (Aaﬁuau/; - Aaﬁuauﬁ).
a,p=1

Substitution from (1.66)-(1.70) into (1.64) leads to

—Ab(||VH”||2) =2 Z {(Vauﬁ)(Vaug) + (Vaug)(vauﬁ)}+ (1.71)
aB=1

+4i2 {uz Vouy, — uy Voug} +

a=1

n n
+2 Z R uzip — Z {ug (Apu)y + o (Apu)z} +
ap=] a=1

n
+i(n + 1) Z {Aaﬁuauﬁ - Aaﬁuguﬁ}
a,f=1
which is the pseudohermitian analog to Bochner-Lichnerowicz formula as got by A. Greenleaf (cf.
[9]) except for the coefficient® n + 1 in the last row of (1.71).

8Said coefficient is 2n in [9] and the difference is perhaps due to distinct exterior calculus conventions.
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Our next purpose, in this section, is to derive an alternative version of Greenleaf’s formula
(1.64) or (1.71) written in terms of the so called CR Paneitz operator as introduced by S-C. Chang
& H-L. Chiu, [92] (and used by us in Chapter 4 of this thesis). S-C. Chang & H-L. Chiu’s operator
P is locally® given by

Pof = faﬁﬁ + 2niAaﬁfﬁ >

fO=8¢Pf. fo=Ta(f). feC'M.0).

Through the reminder of this section we work with a local Ggy-orthonormal frame {7, : 1 < a <
n} € C*(U, T o(M)). Hence the operator P,, as well as the two commutation formulae we shall

use, may be written
n

Pott = > {u, g5+ 2niAopu) (1.72)
B=1
n
Voup = Vgito = " Aupltz, (1.73)
a=1
VauB = Vﬁua — 2idqpUo , (1.74)

for any u € C'(M,R). We shall also need a commutation formulae for third order covariant
derivatives, that we proceed to derive. One has

5, = (Vu)(To, T3, Ty) = (V7,Vu) (T5. T)) =
= To (V2u)(Tj. Ty)) = (V2u) (Y1, T5. Ty) = (V2u) (T3, V1,T)) =
= Ta' (VBLL},) - F’ZBVﬁMY - FﬁyVBuﬂ =
(by using (1.74) three times)

= T (Vyuug + 2idpy10) - rﬁﬁ (Vi + 2idyy1t0) = T, (V5 + 2ig,u0) =

(l7
= To ((V?u)Ty , T3) = (V2u) (V1, Ty, T5) = (VZu) (T, Vr,T5) +
+2i {%Ta(uo) ~ 15 up — FZBM()} =

= (Vr, VZu) (T, , T3) + 2idpy Ta(ut)
because of

FZE = -1, (1.75)

as a peculiarity of the fact that we make use of orthonormal frames of T o(M). Indeed Vgy = 0
may be written locally B
To(887) = Tyg8uy + 8l

an identity which for 80p = 0qp 1s easily seen to yield (1.75). Summing up we have proved

u(zﬁy = u(xyB + 21'5’37V(,u0 (176)

The global expression of the operator P is given in Chapter 4.
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because of VI' = 0 (implying that 7,(u#g) = V,up). Let us contract 8 and vy in (1.76) so that to

derive
n

D (s = o) = 2ni Vattg . (1.77)
B=1

The next step is to compute 4i Zgzl {ugz Vouy, — u, Voug} in terms of third order covariant deriva-
tives (by making use of (1.77)). This brings into picture the operator P, as claimed. Indeed (by

(1.73) and (1.77))
20 Z ugVouy = 2i Z Ug [Vauo - Z Aaﬁuﬁ] =
B

a [02

- % 2w (s — hogp) = 21 Z; Aapliaily =
@,

@ ’ﬁ

(by (1.72))

= % Z Ug [Z Uyps ~ Pou + 2ni Z Aaﬁug -2 Z Aaﬁuaug =
a B ap

1 1

At this point we may add the complex conjugate so that to obtain

n

4i Z {ttz Vouty — ity Vo) = (1.78)
a=1
2 & 2
= Z:; {ug Pou + uy Pzu} + p 0%211 {uauagg + uauaﬁﬁ}.

To deal with the third order covariant derivatives in (1.78) we shall compute Gy (VH u, V7 (Abu)).
To this end we need the following local formula for the sublaplacian

Apit = — Z (Voutz + V=ity) . (1.79)

a=1

Formula (1.79) is an easy consequence of definitions. Indeed

Apu = —trace (VHu) = —trace {Z — VZVHu} =

= —trace Z [Z(ua) + ugwg(Z)] Ty + Z [Z(uc,) + u/ga)‘g(Z)] Tz =
a B
Ty(uz) + Lpugls, Ty(ua) + Xg u,,r%
= —trace =

Ty(ug) + Lpuglsy Tyue) + Xg uﬂr%3

1<y,a<n
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(by contracting the indices a and y)
. Z {Ta(ua) + T2z + Tolug) + T2 uﬁ}
.

as the trace of an endomorphism of a real vector space V coincides with the trace of the C-linear
extension to V ®g C of that endomorphism. On the other hand

au =(Vr, du)T =Ty(u ) Fy uy

(by (1.75))
= a/(ug) + Z rﬁy”?
Y

and (1.79) is proved. We may then perform the calculation (by (1.79))

GV, V) = 3 {uz(Aptt)o + o Apit)g) = (1.80)

@
= —Z ugT, Vﬂu + V= uﬁ) + u, T, (Vﬁu + V= uﬁ)}

We shall replace the ordinary derivatives in (1.80) by covariant derivatives. To this end note that
sy = (V'u)Ta, Tp, T3) = (V1,Vu)(Tp, Ty) =

= T (Vpuy) = TSV otty — T5: Vpuz

ie.
T (Vputy) = uagy + TV otty + T3 Vtiz . (1.81)

Let us substitute from (1.81) and its complex conjugate into (1.80) and observe the cancellation
(by (1.75)) of Christoffel symbols. We obtain (by (1.72))

Go (VH“’ VHA"”) = Z {”5 (”aﬁﬁ + ”aBB) +la (”aﬁﬁ + MEBB)} =
B

Zua U.5s Zua P(yM—ZI’liZAQﬁME -
B

apB

- Z Uallgss = Z Uy | Pgu + 2ni Z AEB“ﬂ
aB @ B

hence

Z (u(, Uyps T uauaﬂﬁ) -Gy (VHM , VHA;,u) - (1.82)
B

- Z (ugPou + uy, Pgzu) + 2ni Z (Aaﬁuauﬁ - AaB”fl”b’) .
43 B
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Substitution from (1.82) into (1.78) now gives

. 4
4i ) uVous — uaVoug) = == 3 (ugPau + uaPru) + (1.83)
a a

+4i Z (Aaﬁuauﬁ - Arzﬁua“ﬁ) B % G (VH“’ VHA”M) '
a

Finally substitution from (1.83) into Greenleaf’s formula (1.71) gives

| 2
38 (||VHu||2) = V2l - (1 + Z) Go (V" , V¥ Apu) + (1.84)

n n
+2 Z Ra[;blauﬂ +i(n—-3) Z (Aaﬁu(,uﬁ - A(,ﬁuauﬁ) -
a,p=1 a,B=1

4 n
—; Zl (MaPa,Lt + uaPau) .
a=

This is formula (2.1) in S-C. Chang & H-L. Chiu work (cf. [92]), except for the n — 3 factor'©.
Greenleaf’s formula in Chang-Chiu version replaces the "non-Riemannian" term Lu (cf. (1.70)
above) in terms of the operator P,. In view of the non-nengativity of the CR Paneitz operator
Py (cf. [92], p. 269-271, and exploited by us in Chapter 4 of this thesis) re-writing Greenleaf’s
formula as in (1.84) proves to be a crucial ingredient.

Identity (4.121) in Chapter 4, re-written in terms of a local Gg-orthonormal frame {7, : 1 <
a <n} € C*(U, Ty o(M)) (rather than an arbitrary local frame of T o(M)), reads

n
i > (upVouz — uzVoug) = 2nug+ (1.85)
B=1

n
+i Z (Aaﬁugug - Aaﬁuauﬁ) —div (M()JVHM) .
a,f=1
Of course functions appearing in the left and right hand side of (1.85) are local expressions on U
of globally defined functions on M. By a common language abuse we shall use the same symbols
to denote both the given global function and its local expression with respect to {7, : 1 < a < n}.
For instance iZgzl (uﬁVouE - uﬁvouﬁ) will denote both the underlying element of C*°(M,R) and
its restriction to U. Then we may integrate over M in (1.85) and use Green’s lemma to obtain

n
if ugVouz — uzVoug ‘P(;:an u(z)‘I’9+ (1.86)
3 oo -

M

n

+ij1;[ Z (AQBMEME—AEBMQMB) Yy .

a,f=1

OWhich is 27 in (2.1) of [92], p. 265, again due to different exterior calculus conventions.

54



1.10. BOCHNER-LICHNEROWICZ FORMULA AFTER A. GREENLEAF

This is essentially'! formula (2.4) in Lemma 2.2 of [92], p. 268. We close this section by proving
the identity

n
i f D (o Vouz — uz Voue) = (1.87)
M =

1 n
= Z fA‘/[ Z {(Vﬁua) (VBME) - (VBMQ) (Vﬁuﬁ) + Raﬁuauﬁ} )
a,B=1

This!? is (2.5) in Lemma 2.3 of [92], p. 268. The rather involved proof of (1.87) makes use of a
commutation formula for third order covariant derivatives

—Ugya T Uypy = 2lg137 V()l/tg - Rﬁuyﬁ ug . (188)
that we proceed to derive. We first compute
Ty (Vyuz) = Tg (V?u)(Ty ., T)) = Tg((Vr,du)Tz) =
= Ty (Ty(uz) - . uz) =

= TyTyuz = T (T5) wz = T T (ug)

or (by introducing the Lie bracket of Tz and T5 and replacing ordinary derivatives Tg (uﬁ) by
covariant derivatives)
Ty (Vyuz) = [Ts. T5| (uz) + (1.89)

+T7Tﬂua - Tﬁ (Fl;a) ug — F/;a (Vﬁuﬁ + l"gju;) .

The point is that one may express the Lie bracket [Tﬁ , T;] in terms of the Tanaka-Webster con-
nection V of (M, ), as a consequence of the purity of its torsion Ty

2iggy T = Ty(Ty, Ty) = Ty T = T4, T, = | T, Ty

i.e.
| Ty Ty| = T T = T, Ty = 2ip, T. (1.90)

Let us substitute from (1.90) into (1.89). We obtain (by also replacing ordinary derivatives Tg(uz)
in terms of covariant derivatives)

_f ,
Tp (Vyugz) = T Trug) = T2 Ty (ug) = 2i8p, T (ug)+
7 7 7 i, _
+Ty (Vpuz + Dggug) = T (T% ) e = T Vgug = T4 Ty =
=T (Vauz + rl%ug) - (Vg + r;jaug) +

+Ty (Vpua) + Ty (D) e = T (1% ) g = T4 Vs = T2 T it

"Second integral in (2.4) of [92], p. 268, bears a n factor (rather than a 2n factor as in our (1.86)).
120nce again, as compared to our formula (1.87), identity (2.5) in Lemma 2.3 of [92], p. 268, has an extra 2 factor in
its right hand member.
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+Fgar%u5 + FZ@V?”/T — 2idpy Voug — 2i6ﬁ7rl075u’7

or
Tp (Vyuz) = Ty (Vpuz) + (1.91)
+Ty () = T (T4 ) e + Ty Tt — r”ﬂrgauﬁ

—F%Fgﬁug + Fzﬁl";'“ug - 216,371"

H H : H H
—F?EV/guﬁ + FﬂaV7Mp - 2l5ﬁyVOMa + Fﬂyvlgua - FWVNME .

To understand the meaning of identity (1.91) let us observe that T5 (Vﬂug) is the term looked
for (switching the derivatives in the directions 7 and T5). The next two rows in (1.91) will be
recognized as a curvature term (of the Tanaka-Webster connection). The remaining terms will be
shortly seen to be a third order covariant derivative of the function u#. To recognize curvature we
need to conduct the following calculation

R#'55Tz = RV (T3, Tp)Tz = V. V1,15 = Vi, V1,76 — Virs T

leading to (by (1.90)) B
R =Ty (r“ )- Tﬁ( o) - 2iggTh (1.92)
] ) ]
+Fgal"y(7 F;rdFF + rgyrm - Fgﬂy‘; 5
Let us substitute from (1.92) into (1.91). We obtain

TB (Vyug) = Ty (Vﬁug) + Raﬁ?ﬂuﬁ— (193)

—F’;aVlguﬁ + FZEV?ME - 2i5[3yVOM§ + FZ7V/7M5 - FgﬁVﬂug .

Finally we may compute —ugy5 + uygz (by making use of (1.93)) and observe the cancellation of
Christoftel symbols. This leads to the commutation formula (1.88). Identity (1.88) actually holds
for an arbitrary local frame {7, : 1 < a < n} of T (M) (as emphasized by the presence of the
metric components ggy there) yet it will be only used for orthonormal frames (ggy; = dp,). If this
is the case let us contract 8 and vy in (1.88) so that to derive

n

n
D (~ugps + ) = 2inVouz = > R zouz. (1.94)
B=1 Bu=1

Let us go back to the proof of (1.87). Using (1.94) we may replace terms of the form Vouy in
terms of third order covariant derivatives plus curvature. Precisely

2i Z (e Vouz — uzVoity) = (1.95)

1
= Z Z Uy (—uﬁﬁa + uBﬁa + ; Ray,b’ﬁ”ﬂ] +

@ ’ﬁ

1
+ > ”“[_”ﬁﬁa g, + ) Rauﬁﬁ”ﬂ]
u

a,B
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ad let us integrate over M to get a candidate to (1.87). Here we shall integrate by parts so that to
replace the third order covariant derivatives by second order covariant derivatives. For instance

s =t (5,5°4) T, o) =
= Uy {Tﬁ (Vgua) - FZ BVpua - FZEVEME} =
(by exploiting the derivative of the product uavﬁug)
=Tg (uaVBug) - Tﬂ(ua)VBug - uaFZ BVﬁug - uafgﬁVEuﬁ =
(by replacing the ordinary derivative T in terms of covariant derivative Vp)
= Vg (uaVEug) + FZBuaVﬁug - (Vlgua + Fgauﬂ) V’gury—
- u(,rgﬁvﬁua - ual“gavﬁuﬁ =
(by observing the cancellation of FZ 7 and by using identity (1.75))
= div (o (Vuz)Tp) -
~(Vptta)(Vguz) + > Tt Vit — Ty Viug
"
so that (by observing the cancellation of A =)

Uattgsy = ~(Vpita)(Vguiz) + div (e (VPuz)Tg). (1.96)

Similarly
Uoltggy = —(Vgua)(Vpuz) + div (ua(Vﬁua)TE). (1.97)

Identities (1.96)-(1.97) then lead to

Z Uy (—uﬁﬁa + uﬁﬁa) = Z [(Vﬁua)(vlgua) - (V’EMQ)(V[;ME):I . mod div
ap a,

hence (by integrating (1.95) and using Green’s lemma)

2ni o Voug — ugVoue) Yo = 1.98
nlLZa:(u olty — Uz Vouy) Yo (1.98)
= f D [ (Vpua)(Vzu) = (Vauta) (Vpuz) | Wo+

M ap

+ f Z (Ra%gﬁuauy + R(ﬁﬂBMEMY) \Pg.
M apy

The last step (in the proof of (1.87)) is to recognize pseudohermitian Ricci curvature R,z in the
contracted curvature terms appearing in (1.98). This is a rather involved calculation, based on
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curvature theory (for the Tanaka-Webster connection) as built in [94]. We start with Theorem 1.6
in [94] according to which
RV (X,Y)Z = RV (X, Y)Z+ (1.99)

+(LX ANLY)Z - 2UX,Y)JZ — go(S(X,Y),Z)T
forany X, Y,Z € H(M). Here

L=71+J, SXY)=((Vxn)Y—-(VynX.

Also RY' is the curvature tensor field of the Levi-Civita connection V? of the Riemannian manifold
(M, gg). Taking the inner product of (1.99) with W € H(M) gives (by g¢(W,T) = 0)

KV W,ZX,Y)= KY(W,Z X, Y)+ (1.100)

+8o(LX AN LY)Z, W) = 2Q(X, Y)go(JZ, W).

Here KV and KV are respectively the Riemann-Christoffel tensor of (M, gg) and its pseudohermi-
tian analog. For instance
KY(W.Z,X.Y) = go(R" (X, Y)Z, ).

Moreover (by recalling the meaning of wedge product of two vector fields (X A Y)Z = gy(X, 2)Y —
8o(Y, 2)X)
8o((LX N LY)Z, W) = go(LX, Z)go(LY, W) — go(LY, Z)go(LX, W)

so that (1.100) becomes
KV (W.Z.X,Y) = KY(W,Z, X, Y) + 2Q(X, ")Q(Z, W)+ (1.101)
+80(LX, Z)go(LY, W) — go(LY, Z)go(LX, W).
using (1.101) and the known symmetry
KV (W,2X,Y) = K" (X, ¥, W,2)

of the Riemann-Christoffel tensor (a symmetry which KV fails to enjoy, as one of the known
obstacles in pseudohermitian geometry) one obtains

KY(W,Z,X,Y) = K'(X, Y, W,Z)+ (1.102)

+80(LW, Y)go(LZ, X) — go(LZ, Y)go(LW, X)+
+89(LY, Z)go(LX, W) — go(LX, Z)go(LY, W).

Finally the terms of the form go(LX, Y) may be explicitly calculated (by L = 7+ J) so that (1.102)

may be written
K'W,Z,X,Y)= KV (X, Y,W,Z)+ (1.103)

+2 {AX, 2)QUY,W) — A(Y, 2)QX, W)+
+ A(Y, WQX, Z) — A(X, WQ(Y, Z2)}
forany X, Y,Z, W € H(M). Next

\%
Ry 55 = 80 (RY (T3, Tp)Ts, Ty) =
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=K' (Ty, Tz, Ty, Ty) =
(by the symmetry property (1.103))

= KV(TE’ Tﬁa T)/ ’ TE)"‘

+2{A(T5, T)QUTp, Ty) — ATy, T)QUT5, Ty) +

+A(Tg, To)QT5, Tz) — AT, T)QUTg , T)} =

(as A vanishes on complex vector fields of distinct types, while Q vanishes on complex vector
fields of the same type)

_ Vv _ _
= K"(T3, Tg, Ty, T3) = Rgg . =

(by the symmetry property in Theorem 1.8 of [94])
=R g -

Yet
Raﬁ = Ricy (T, TB) = trace {Z — RY(Z, Tg)Ta} =

(as RV (X, Y) maps T (M) into Ty o(M))

= trace {Ty - RV (Ty, Tp)To = R* 5T} =

— Y _ — _
= Ra B Z Ra?vﬁ
Y
and we may conclude that
D Rigs= > Rm =Ry (1.104)
B B
Finally substitution from (1.104) into (1.98) leads to (1.87). Q.e.d.

As an immediate consequence of the above

)
2 2
uWo = — (Apu)” Yo+ (1.105)
f]\i[ 0*e 41’!2 M 0

. n
! 1
+Z fﬂ; Z (AEBMGM,B - Aaﬁ”ﬁ”ﬁ) Wy - 2 j]‘; u Pou'Py .

a,B=1

This is essentially'? (2.6) in Corollary 2.4 of [92], p. 269. To check (1.105) we start by integrating
(1.83) over M

Zif (ugVouy — uaVoug) Yo =
" Za: Y (0% @ (07

2
= - zal (ugPou + uy Pgu) Yo+

3With respect to our identity (1.105), the relation (2.6) in [92], p. 269, bears an extra 2 factor in its right hand side.
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+2i f[t‘/[ aZﬂ: (AQ,BMEME - Aaﬁua”ﬁ) Yo — % j;/[ (VHM) (Apu) ¥y .

substitute fM > UzgVoue — uaVoug) Wy from (1.83)

—4n jﬂ‘/[ u(z)‘l’g - Zif Z (Aaﬁuauﬁ - Aaﬁuauﬁ) Yy =

M apB
2 (. 5 _ _
= 8o ((P(,u)é’ + (Pzu)6”, u598 + M,EOB) Yo+
nJm

+2if Z (Aaﬁuauﬁ - Aaguauﬁ) Wy,
MG

simplify torsion terms and use the identities

ng((P+ﬁ)u,dbu)‘I’9:—fuPou‘I’g
M

M

(a consequence of our calculations in Chapter 4) and

f (V) (Apit) By =
M

= f {div ((Apu) V7u) = (Apue) div(Vu)} Wy = f (Apu)? Wy
M M
(by Green’s lemma). The proof of (1.105) is complete.
1.11 Non-negativity of CR Paneitz operator

We close Chapter 1 by giving a proof of

f uPou¥y>0, ueCMR),
M

(1.106)

i.e. the CR Paneitz operator Py is non-negative. This has been shown in [92], p. 269-270. Our
proof follows the ideas in [92], transposed under the conventions adopted in this thesis. The
result is used in Chapter 4 and leads to a new lower bound on the first nonzero eigenvalue of the
sublaplacian A,. To prove (1.106) we start from the observation that i fM > W Voug — ugVouy)
has been previously calculated in two different manners, the outcome being that in formulae (1.86)-

(1.87). Hence, for any c € R, we may write

i f D (e Voug — uzVous) =
M 3

= ¢ X (RHS of (1.86)) + (1 — ¢) (RHS of (1.87)) =

=c {2nf u% Wy + if Z (A(,Buauﬁ - Aaﬁuauﬁ) Yo +
M

M a.f
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1-c
= D [ (Voua) (V1) — (Vgua)(Vpuz) + R g ¥
ap

and substitution into Greenleaf’s formula (1.71) integrated over M leads to

lf(Abu)z‘I’g+4cnfu%‘P9=
2 Ju M
2(1 -¢)
:(1+ . ) fM a%:(vauﬁ)(vauﬁ) Wyt

+(1_2(1—c)

) fM D {(Vattp)(Vaup) + R gugius) Yo+
op

. n+1
+i (2c + T) f Z (Aaﬁuauﬁ - Aaﬂuaug) .
M Q’,ﬂ

Let ¢ € R such that n — 2(1 — ¢) # 0 so that (by (1.107))

- fM %}{(Vauﬂ)<vauﬂ>+kaﬁ}%=

n+2( -
_n—2(1—c)

ndc+n+1)
+ n - 2(1 - C) f Z Qﬁu(luﬁ A(yﬁua )‘{19_

n 1
| (Apu) P+ 4 2y, b
n—2(1—c){2fM( pu)- Vo + cnfMuo e}

On the other hand (by (1.105))

fM uPou ¥y = % f {(Abu)2 }‘P9+
+2nf iZ (AEBMC,MB _Aaﬁ”aﬁ) Y.
M ap

Equation (1.107) for ¢ = —n/2 becomes

1 2 1
2L{(Abu)2 }lIle_ (n+ )f Z(Vaulg)(vauﬁ)ly(f

Z(vau,;)(v tg) Vo

2
-= f Z{(V(,uﬁ)(vaug)+1eaﬁu5uﬁ} Yot
M ap

n | f Z apUally aﬁuauﬁ)

a,fB
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Let us substitute [ {(Apu)? — 4n%ul} Wy from (1.110) into (1.109). We obtain

f uPou Wy = 2n + l)f Z(V uz)(Vaiug) Yo (1.111)
apB

2
= f > (Vau) (Vtiz) + R puizug) Wot
M ap

N (2 n-— 1) f iz (AEBu(yuﬁ - Aaﬁu@) Yy .
M ap

Let us substitute — [, 34 5 {(Vatp)(Vaiz) + R 5} Py from (1.108) into (1.111). We obtain
2 n+2(1
PouWo==|n+1+ Vo) (Vaug) Yot 1.112
fﬁ;u o Ty n[n n—2(1—c)]fz( Mﬁ)( Mﬁ) 0 ( )
n—1 de+n+1

+ ] A — Agpit—=) Yo—
2 nln—2(1 - ¢)] Ll;‘( apUalip lfﬁuaﬁ) 9

2 U apu wo + 4 e
m f(},l/t) 9+Cl’lj[;1u09.

Let ¢y € R be the solution to

+|2n —

n—1 deg+n+1
2n — + =0. 1.113
T T - 2(1 = co)] (1113
In particular for ¢ = ¢ equation (1.112) becomes
f uPou ¥y = (1.114)
M

2 n+2(1 = co) o B
=~ [n +1+ m] fM ;‘;(Vauﬁ)(vauﬁ) ¥,

2 1
- {— Au): Py + 4 2y, L
n—2(1—00){2fM( pu)" ¥ + CO”IM”‘) "}

We shall need the identity

= (Apu)* + 4n*u? . (1.115)

aly

This follows easily from 2inuy = 3, (Vgite — Veug). Indeed

2
—4n? ”0 = (Z Vaue — auaJ =
2 2 2
= [Z V(,ua] -2 + [Z Vaua] =
a o

aly
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2

2
:(Ejvamf+ﬁjvam4 —4
(67 [0
Z Vaug
a

Z V(,ME
«

2

= (Apu)* -4

Q.e.d. Next (by (1.115))

2 1
Z ’Va/ufg’ > -
a,f n

2
1

= —(Apu)” + nu
4n( pU)” + nu

Z VQM(T
a

f u Pou Wy >
M

1 n+2(1 - co) 1 )
Z{ﬁ[n_'-1+n—2(1—Co)]_n—z(l—CO)}L(Ahu) ‘{’9+

+ 2n+1+n+2(1_60) — 8nco fu(%%zo
n—2(1-cp) n—2(1-cy)) Ju

as both coefficients are non-negative (as a consequence of (1.113)).

hence (by (1.114))
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Chapter 2

Eigenvalues as functions of the contact
structure

2.1 1-Parameter variations of the contact form

We start by recalling the needed notions of functional analysis, cf. e.g. A. Kriegl & P.W. Michor,
[10]. Let H be a Hilbert space and {A(f)};cr a family of linear operators A(¢) : D(A®)) ¢ H — H.
We say A(?) is real analytic (respectively C*, or C5) with respect to the parameter ¢ if there is a
dense subspace V c H such that i) D(A(r)) = V and A(¢) is selfadjoint for any ¢ € R and ii) the
function r € R +— (A(u, v)4; € C is real analytic (respectively C°, or C5®) for every u € V and
v € H. If this is the case then (by a result in [11]) the (vector valued) function

Ro>H, teR— AQueH,

is of the same class for every u € V. Also it is customary to call t € R — A(¢) an analytic curve
(respectively a curve of class C®, or Ck®). A function f : R — H is of class C* if the set
{|r — sl‘“[f(")(t) - f(k)(s)] : t # s} is locally bounded.

A sequence {4,},>1 of scalar functions 4, : R — C is said to parametrize the eigenvalues of
{A(H)}er if for any ¢ € R and any A € o (A(?)) the cardinality of the set {v > 1 : 4,(f) = A} equals
the multiplicity of A.

We shall make use of the following result, which is referred hereafter as the Rellich-Alekseevsky-
Kriegl-Losik-Michor theorem (cf. F. Rellich, [41], for statement (i), D. Alekseevski & A. Kriegl &
M. Losik & P.W. Michor, [20], for statement (ii), and A. Kriegl & P.W. Michor, [10], for statements

(iii)-(iv))
Theorem 2.1. Let t € R — A(t) be a curve of unbounded selfadjoint operators in a Hilbert space
H, with common domain of definition and compact resolvent. Then

1) If A(?) is real analytic in t € R then the eigenvalues and the eigenvectors of A(t) may be
parameterized real analytically in t.

ii) If A(¢) is C*™ in t € R and if no two unequal continuously parameterized eigenvalues meet
of infinite order at any t € R, then the eigenvalues and eigenvectors can be parameterized C* in t
on the whole parameter domain.
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iii) If A is C* then the eigenvalues of A(t) may be parameterized C? in t.

iv) If A(t) is C* in t € R for some a > O then the eigenvalues of A(f) may be parameterized
Clint.

More is actually proved in [10] and statements (iii)-(iv) in Theorem 2.1 follow from the
stronger result (cf. [10], p. 2)

Theorem 2.2. Under the assumptions of Theorem 2.1

iii.1) If A(t) is C3™® in t and if the multiplicity of an eigenvalue never exceeds n, then the
eigenvalues of A may be parameterized C?.

iii.2) If the multiplicity of any eigenvalue never exceeds n, and if the resolvent (A(t) — A" is
C¥ into L(H, H) in t and A jointly , then the eigenvalues of A(t) may be parameterized C? in t.

iv.1) If the resolvent (A(t) — Al YyLis CVinto L(H, H) jointly in t and A then the eigenvalues of
A(f) may be parameterized C' in t.

iv.2) Under the hypothesis of statements (iv) or (iv.1), for any continuous parametrization A,(t)
of o (A(1)), every function A, has a right sided derivative /lE,Jr)(t) and a left sided derivative /15,7)(1‘)
at each t, and {/l§+)(t) 1 A,(t) = A} equals {/l(v_)(t) : 4,(t) = A} with correct multiplicities.

Among the applications to statement (iii) in Theorem 2.1 as proposed in [10] one may consider
a compact manifold M and a smooth curve ¢ — g, of smooth Riemannian metrics on M. If
moreover ¢t = Ag is the corresponding smooth curve of Laplace-Beltrami operators on L*(M)
then (by (iii) in Theorem 2.1) the eigenvalues may be parameterized C? in ¢. This was exploited
by A. El Soufi & S. Ilias, [5]-[7], who discussed an array of related questions such as critical
points of the functional g € M — A;(g), or suitable deformations of g € M producing quantitative
variations of A;. Here M is the set of all Riemannian metrics on M.

Let (M, 8) be a compact strictly pseudoconvex pseudohermitian manifold, of CR dimension n.
Let
9ty =€e"0, teR,

be an analytic deformation of 8 i.e. {u},cr is a family of real valued C* functions which is analytic
with respect to ¢ and uy = 0. Here C*(M, R) is thought of as organized as a real Fréchet space and
the vector valued function

u:R—-C°(M,R), u(®)=u, teR,

is assumed to be of class C*. For a theory of power series in Fréchet spaces we shall use Appendix
B in [27]. Let Ap be the sublaplacian of (M, 6(z)).

Theorem 2.3. If 6(t) = €"“ 0 is an analytic deformation of 6 then there is € > 0 and a family of
real analytic functions {1,},>1 C C“((—¢, €),R) such that for any |t| < € and for any eigenvalue
A € o (Ap,) of multiplicity m there exist m families of C* functions

{wi®hy<e € C*(M,R), 1<i<m,
such that each u; : (—e, €) — C*°(M,R) is real analytic in t and
DA@®=41<i<m,
2) Apsui(t) = Aui(t), 1 <i<m,
3) {u;(t) : 1 < i < m}is orthonormal in L*(M, Wor).
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Proof. The proof relies on the Rellich-Alekseevici-Kriegl-Losik-Michor theorem (cf. Theorem
2.1 above). To this end we introduce the family of operators

U : LX(M,¥g) — L*(M, Yo), U =e D42y ye L2(M,¥y).
{U,}:er 1s a real analytic family of unitary i.e.

WU ullr2n w0 = Ntllz2canw,)

operators among the Hilbert spaces L*(M,¥,) and L*(M, Yoy and US Ly = e+ Dul2y Moreover
let A(7) be the family of operators

A() = Ul o Ay o Uy 0 L2(M, Pg) — L2(M, ).

Then
Ap () = Auit) &= A (U7 wi0) = AU i),

Let us show that the family {A(¢)},cr is analytic in ¢. Indeed the dense subspace D(Ap) = C*(M) C
L*(M,¥y) is the domain of A(¢) and, as we shall check in a moment, A(f) C A(7)*. By a result of
E. Barletta & S. Dragomir (cf. Proposition 5 in [28], p. 11) if 8(f) = e 6 then the sublaplacians
Apgand Ap; = Ap gy are related by

Apev = (A = n(V"V)(wy)), v e CA(M). 2.1)

Then for each v € D(Ap)

Ay = (U oAy 0 Uy

— e%l Uy Ab,[ (e_nzil Uy V)

oy —utly H,~"lu
= e2 U, ’(Ah(e T My)y—n(Vie 2 tV)(ut))
= Tl (Ab(e‘% i v)) —ne' T e (Ve T ) ()
= e (Abv +veT U A e T — 26" Gy(VHy, Ve ut))

n+ +1 nt ot
- n eTl U e_u’ (—v n e_Tl U VH Ur + e_Tl e VH V)(ul‘)
+1 + 1
= e [Abv —v- 2 (Apu; + : 2 ’VH”t|2) +(n+ 1) Gy(Vy, VHut)]
+1
- ne ' (-v BTy ur + V7))
+1 +1

= eMApy—ve™ U ) ) [Abut + U B ) |VH“1|2 - ”(VHM’)(W)]
+ e Ge(VHy, vy,

et

| -1
Apv + Go(VHu,, vy = 2 ; (Abu, _ . )|VHM,|2) v} .
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Therefore for any v € D(Ap) and w € L*(M, ¥y)
(A(t)v, W>L2(M,ll’0) =
= (™" (Apv + Go(Vur, V), W 201w,

(n+1) n-1)
2

H 2
Apuy — TW wl” v, W>L2(M,‘Pg)

_<e_”t

Finally the family {A(¢)},cr satisfies the Krigel-Michor theorem, [10]: be a self-adjoint operator
in L*(M,¥y) with common domain of definition and with compact resolvent (see Lemma 1.4),
then we have the eigenvalues and the eigenvectors of A(¢) are analytically in ¢ i.e there exists m
analytic families of vectors u;(¢) and m real analytic valued functions A;(¢) in ¢ satisfying 1,2 et 3
of Theorem 2.3. o

2.2 Ciritical contact forms

We adopt the notations and conventions in [4]. We start by discussing derivatives of eigenvalues
with respect to deformations of contact forms. Let M be a compact strictly pseudoconvex CR
manifold. For any positively oriented contact form 6 € P, let 0 < 41(0) < (0) < --- < A(0) <
- -+ be the spectrum of the sublaplacian A;, = Ap g of (M, 8). For every k € N let

E(0) = Ker (A — 4(0)])

be the eigenspace A;, corresponding to the eigenvalue to Ax(6). Also let 7y : L*(M,¥y) — Ei(6)
be the orthogonal projection on Ey(6). Let us fix k € N and consider the functional 6 € P, +—
Ax(0) € R. This functional is continuous (with respect to an appropriate metric topology on .,
as shown in § 2.7) but not differentiable in general. However, by perturbation theory Ay is left and
right differentiable along any analytic curve in $... The main purpose of this section is to express
the derivatives of A (with respect to analytic deformations of contact structures) in terms of the
eigenvalues of an explicit quadratic form on E(6).

Theorem 2.4. Let M be a compact strictly pseudoconvex CR manifold. For every 6 € P, on M let
{0()}5j<e C P+ be a complex analytic family of contact forms such that 6(0) = 6. Then

1) The function t € (—¢, €) — Ax(0(t)) admits left and right derivatives at t = (.

2) The derivatives

d d
7 OO0 > ZAUOD)) =0+ € R

are eigenvalues of the operator

’ 4 d
oAy Ex(0) — Ex(@), A= 7 {Ab}i=o -

3) If 4(0) > A1(0), then LN(O))|_, and LA(0(1)| _,. are the greatest and the least
eigenvalues of my o A on Ei(0), respectively.

4) If 4(0) < Ay41(6) then

d d
7 V@0~ > — AU} €R

are the smallest and the greatest eigenvalue of m o A, on E(6) respectively.
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Proof. 1. By Theorem 3.1, for |f| < €, there exist A;(¥) € R and u;(t) € C*(M), i =1, ...,mde-
pending real analytically on ¢ where m is the dimension of Ex(8) and A1(0) = ... = A,;(0) =
Ax(8). Since t — Ax(6(t)) is continuous and, Vi < m, t — A;(¢) is analytic with A;(0) = A4;(6),
there exist 6 > 0 and two integers p, g < m such that

A1) for 1€ (=5,0)

A(6(D) = { Ay(t) forte(0,0).

Then the function ¢t — A(6(¢)) admits left and right derivatives at t = 0. Moreover, one has
d , d ,
O],y = Ap(0) and — ABD)],_o. = AY(O).

2. Fori < m,let Apu;i(t) = Ai(f)u;(¢) by deriving at r = 0, we get
AL ui(0) + Apui(0) = AJ(0)u;i(0) + Ax(0)u(0) 2.2)

where u/(0) = %”i(Z)L:O’ we obtain after multiplying (4.1) by u; and integrating by parts

, AN(O) if j=i
. . - i
j];,, ujbpui¥o { 0  otherwise.

Since {uy, -, uy} is an orthonormal basis of E(6) with respect to the L%(M, 6), we deduce
that
(7Tk o A'b)u, = A:(O)M,

In particular, A7,(0) and A/(0) are eigenvalues of 7 o A

3. Assume now Ai(6) > Ax-1(0) and for any i < m, one has A;(0) = A4(0) > A—1(0).

Then by continuity, we have A;(f) > A;—1(6(¢)) for sufficiently small . Hence, there ex-
ists n > 0 such that, Y|t < n and Vi < m, Ai(t) = A4(6()), which means that 1;(6(¢)) =

min{A(?), -+, Au(®)}. This implies that

d ’ ’
Eﬂk(e(z))L:O, = max {A}(0), -+ . A}, (0)}.

and J
—A(B(0)] . = min (A, AL O}

4. The proof is similar to the previous one. If 4;(8) < A;+1(6), one has, for sufficiently small ¢,
Ai(t) < A;(6(¢)) which means that A;(6(¢)) = max {A(?), - - , A, (?)} and, then,

d : :
AWy, = max {A0).-- . ALO)

and J
d—tak(e(z))L:O, = min {A](0). -+ . A, (0)}.
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Let M be a compact strictly pseudoconvex CR manifold. For each 6 € . we set
C(O) = {e’0; f € C™(M)and vol(e! 6) = vol(6)]

where Vol(6) = f " Yy is the volume of (M, ). In the following, we study critical pseudohermitian
structure of the functional A restricted to a conformal class C(6) for any positive integer k.

Definition 2.5. A pseudohermitian structure 0 is said to be critical for the functional Ay restricted
to C(0) if for any analytic deformation {6(t) = ¢80} c C(6) with 6(0) = 6, we have

d d
SO - X = 400)] . <0.

We denote by Ay(M, 6) the set of regular functions f with zero mean on M, that is, fM fWy=
0.

Theorem 2.6. Let 0 be a pseudohermitian structure on a compact strictly pseudoconvex CR man-
ifolds M.

1. If 0 is a critical pseudohermitian structure of the functional A restricted to C(6), then,
Y f e Ay(M,0), the quadratic form

0w =+ 1) [ (aon = 2 |7l )1 s 23

is indefinite on Ey(6).

2. Assume that A(6) > A—1(0) or 4x(0) < Ag+1(0). The pseudohermitian structure 6 is critical
for the functional Ay restricted to C(0) if and only if, ¥ f € Ao(M, 0), the quadratic form Qy
is indefinite on Ei(6).

Proof. 1. Vf € Ay(M, 0), the conformal deformation of € given by

[ vol®) 17
o) = [vol(e’fe)] -

belongs to C(6) and depends analytically on ¢ with %Q(I)’IZO = f0, for f € Ay(M,6). The
sub-Laplacian A associated with 6(¢) is given by

vol(e'/ 6)

vol(6) } e (Apu = ntV ', V g, ).

Ab’tu = [

Therefore, since fM fYy = 0, we have

d : d oy
d—tvol(e’fe(t))'tzo = fM PAUARNIEL O

t=0

(n+1)ff‘Pa=0,
M
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and, then,

, d
A = —Bnil

= —fApu—n(V7u, Vg,

Consequently, Yu € E(9),

f u(m o ADu¥y = f ul,u¥y
M M
= f (= fulpu — nu(V2u, V)P,
M
= [ (- fud= S vy
M 2
= [ Gt - Sraniyn,
" 2
= f (/1k(9)u2 —nulpu —n HVHu”2 )f ¥
M
= f (1 + DA — n||[VHul* ) ¥,
M
Thus,
j}; u(m o AWy = Qr(u) (2.4)

Since 6 is critical, we apply (2) of Theorem 2.4 to deduce that the eigenvalues of the operator
T © A; restricted to E(6) are not all positive or all negative. From (2.4), it follows that the
quadratic form Qy is indefinite on E(6).

2. Let 8(t) = "0 € (C(0) be an analytic deformation of 6. Since vol(6(¢)) is constant with

respect to ¢, the function f = %u,L:O € Ap(M, 6). Indeed,

d d
_ (n+Duy _
d—tvol(H(t))L=0 = fMe * ‘I’9|[:0 =+ I)Lf‘l’e.

Using (2.4) and (3), (4) of Theorem 4.1, we get the result.
O

Proposition 2.7. Let 6 be a pseudohermitian structure on a compact strictly pseudoconvex CR
manifold M. The two following conditions are equivalent:

1. Forall f € Ay(M,0), the quadratic form Qy is indefinite on E(6).

2. There exists a finite family {uy, - - - ,ug} C Ex(0) of eigenfunctions associated with Ax(6) such
that Zf ”;‘2 =1.

Proof. 1. Let K be the convex hull :

K=13(m+1) [Ak(e)u.z -2 ||VHui||2] Lu; € Ex(9), J C N, J finite y ¢ L2(M, 6).
— " n+1
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We show that the constant function 1 belongs to K. Indeed, if 1 ¢ K, then, applying classical
separation theorem in the finite dimensional subspace of L*(M, §) generated by K and 6, we
deduce the existence of v € L*(M, 6) such that fM vWy > 0and, ¥V w € K, fM wwW¥y < 0. Let

fo=v- m [, VWo € Ao(M. 6). Then , Yu € E(6)

QO (u)

n 2
fM (Akw)uz—mlivf’ull )foPe

fM (O = —— |[Vul[* ey

fM &L ) n 2
D [ o - L9l ey
j;;,[ (A(O)u* - # HVHM||2 W

AO) [, v
(n + 1)vol(6(r))

Ltzlyg.

Since [, (Ax(Ou? - 725 [|vH u“z )WWs < 0, the quadratic form Qy, is negative definite, which

contradicts the assumtion (1). Hence, there exist uy, - - - , ug € Ex(0) such that
d n 2 1
2 H _
> (Ao} - —— [[V7ul") = T (2.5)

i

Weset g =2y ”12 — 1. From (2.5) we get

d d
gAbg = n(/lk(Q) Z ”12 + Z “VHui||2)
= A4(0)g.
This implies that g = 0, since the sub-Laplacian admits no negative eigenvalues. Therefore
Shu? = 1.
2. Letuy, - ,ug € Ei(6) such that Z? “1'2 = 1. One has
d d d
VIVl = A Y ey e
i i i
= (0.

Therefore,

d
[ 32 [0n ol = 249 [ -
M - n+1

Y f € Ay(M,0). This implies that Q is indefinite on E¢(6).

Theorem 2.6 and Proposition 2.7 lead to the following
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Theorem 2.8. Let 8 be a pseudohermitian structure on a compact strictly pseudoconvex CR man-

ifolds M.
1. If 8 is a critical pseudohermitian structure of the functional Ay restricted to C(6), then there
exists a finite family {uy,--- ,uqg} C Ex(6) of eigenfunctions associated with Ay such that
Zf ui2 =1

2. Assume that A(0) > A;—1(0) or A(0) < Ax+1(0). Then, 0 is critical for the functional Ay
restricted to C(0) if and only if, there exists a finite family {uy,-- - ,uq} C Ey(0) of eigenfunc-
tions associated with A;(0) such that Z? u? =1.

An immediate consequence is the following:

Corollary 2.9. If 6 is a critical metric of the functional Ay restricted to C(6), then A;(0) is a
degenerate eigenvalue, that is
dim E.(6) > 2.

This last condition means that at least one of the following holds: Ax(6) = Ax—1(8) or A4(0) =
Ag+1(6). In the case when 6 is a local maximizer or a local minimizer, we have the following more
precise result

Proposition 2.10. 1. If 0 is a local minimizer of the functional Ay restricted to C(g), then
A(0) = A—1(6).

2. If 0 is a local maximizer of the functional Ay restricted to C(g), then Ax(0) = Ag+1(0).
Proof. Assume that 6 is a local minimizer and that 4;(6) > Ax—1(0). Let f € Ay(M,0) and let
(1) = "6 € C(0) be a volume-preserving analytic deformation of 6 such that d%@(t)L:O = f6.
Denote by A(?),- -, Ay(), the associated family of eigenvalues of Ap;, depending analytically

on ¢t and such that Aj(0) = -+ = A,(0) = Ax(6) with m = dim Ex(0) (see the proof of Theorem
2.4). For continuity reasons, we have, for sufficiently small 7 and all i < m,

Ai(#) > -1 (60(1)).
Hence, Vi < m and V¢ sufficiently small,
Ai() = 4(0(2)) = 4(0) = Ai(0).

Consequently for all i < m, A}(0) = 0. Since A{(0),---, A}, (0) are eigenvalues of the operator
mi o Ay (by Theorem 2.4) and (mx o Ap)u = 0, Yu € Ei(6). Applying (2.4), we deduce that,
Vf e Ap(M,80),

Qr(u) = 0.

Yu € E(0). Thus, there exists a constant 8 so that
2 n H |12\ _
(n+ (O — —— [[V7u[") = p
Integrating, we get
(0
- «(6) 2
vol(0) Ju
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Then, we obtain

2 n e 1 2
o+ 0 = s 9 = fM .

Let x € M be a point where u” achieves its minimum. At x, we have
2
[V#u)||” =0

and

2 _ 1 f 2
(n+ Du(x) = —VOI(Q) Mu Wy

which leads to a contradiction (since u is not constant ).
A similar proof works for (2). a

2.3 Eigenvalues ratio functionals

Let (M, 6) be a compact strictly pseudoconvex CR manifold of CR dimension #. This section deals
Ay+1(0)

A4(6) . , .
to fix the volume of pseudohermitian structure form under consideration. If 6(¢) is any analytic
A+1(6(1))

A(6(1))

with the functional 8 +— . This functional is invariant under scaling, so it is not necessary

deformation of a pseudohermitian structure form 6, then ¢ +— admits left and right

derivatives at t = 0 (Theorem 2.4).

A
Definition 2.11. /. A pseudohermitian structure form 6 is said to be critical for the ratio %

Ak1(6(0))

k
if for any analytic deformation 0(t) of 6, the left and right derivatives of 2:00) =0
k

have opposite signs.

.. . .. . : Ak+1
2. The pseudohermitian structure form 0 is said to be critical for the ratio functional Chel

k
restricted to the conformal class C(0) if the condition above holds for any conformal analytic
deformation 6(t) = e6 of 6.

Let 8 be a pseudohermitian structure form on M. We introduce the following operator
Pyt Ex(0) ® E+1(6) — Er(6) ® Ej11(6)

defined by
Py = 41(0)(mi 0 A)) ® IdE,, 0) — A(O)]dE ) ® (Tks1 © Ay)

where 71 : L2 (M, ¥y) — Ex(0). The quadratic form naturally associated with Py, is denoted by O I
and is given by, Yu € Ex(6) and Vv € E,1(6),

O ®v) = s 1 (0) V7 ) Q) = (O) 5 ) Qr(¥),

where

0w =+ 1) [ (o = = [l )
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Akt

ph if and only

Theorem 2.12. A pseudohermitian structure 6 on M is critical for the functional
if the quadratic form Qf is indefinite on Ey(6) @ Er+1(0).

Proof. The case where Ay.1(g) = Ax(g) is obvious 0 r(u®u) = 0. Assume that i, 1(6) > Ax(0) and
let 6(¢) be an analytic deformation of 6. From Theorem (2.4)

d d
SO and - AO)],

are the least and the greatest eigenvalues of (7 o A)) on Ey(6) respectively.
Similarly, d%/lk(g,)| =0 and d%/lk(g,)| o+ are the greatest and the least eigenvalues of (. o A;) on
E;(6). Therefore,

2 d /lk+1(9(t))

O 6w

d d
= [/lk(g)d—t/lkﬂ(g(t))',:o - ﬂk+1<9>#k(9(t))|t:o—]

is the greatest eigenvalue of P on Ei(0) ® Er.1(6), and

zi /lk+l(9(t))

WO G 0w

d d
= [ﬂk(e)z/llﬁl (Q(I))|t20+ = Aks1 (Q(I))Eﬂk(a(l‘))L:OJ’]

t=0*

is the least eigenvalue of P on Er(0) ® E.1(0). Hence, the criticality of 6 for ’lj—zl is equivalent

to the fact that P, admits eigenvalues of both signs, which is equivalent to the indefiniteness of

Q. o

Proposition 2.13. Let M be a compact strictly pseudoconvex CR manifold. For any pseudohermi-
tian structure 8 on M, the two following conditions are equivalent:

1. Vf e Ay(M, 0), the quadratic form Qf is indefinite on Ex(6) @ Ey+1(0).

2. There exist two finite families {ul, ‘.- ,up} C Ex(0) and {vl, ‘e ,vq} C Ey+1(0) of eigenfunc-
tions associated with A (0) and Ay1(6) respectively, such that
2 n 2 ! n 2
2 H 2 H
Z(ak(e)u,. = [I¥"ui] ): Zj:(akﬂ(e)v,. - — V" ) (2.6)
Proof. 1. = (2) : Let us introduce the two following convex cones

K, = {Z (ak(a)u? - n”? & u,-||2); w; € Ex(6), 1 C N, Iﬁnite} c IX(M, 6)

iel
and
i€l

K=1> (ak+](9)v.2 -1 ||VHV,~||2); vi € Exe1(0), I C N, Ifinite p < LA(M, 6)
" n+1

It suffices to prove that K| and K, have a nontrivial intersection. Indeed, otherwise, applying
classical separation theorems, we show the existence of h € L?>(M,¥y) such that, Yw; €

Ki,wi #0,
f W]h >0
M
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and Ywy € K7,

fW]hSO
M

Therefore, Yu € Ei(0) and Vv € Ey1(6), withu # Oand v # 0, one has Q(u) <0, Qr(v) >0
and

Orw®v) = As1(0) V725 Cr(w) — A(O) lull}s ) O ()

A1 0) M7 ) Q) < 0,

IA

which implies that QO r 1s negative definite on Ex(0) ® Ex+1(6).

2. = (1) : Let {ul, e ,up} C Ey(0) and {vl, e ,vq} C Ey+1(6). From the identity (2.6), we get,
after taking the trace and integrating

p q
2 J Il e = 3% 15l v
which gives,

P q
O Y iy = 2t ®) D [villr2 -
i J

Therefore,
~ _ 2 2
> 0w @vy) = > A1) vl ) Q@) = AO) il ) Qv)).
bj bj
Then (2.6) implies that
p q
0wy = )" 0s(w)).
i J
Therefore,

q p p
D 0rwiev) = > 4@ [vill 0 — D O liliZsyyy | D Qi) =0.
ij F i i

Consequently, O ¢ is indefinite on Ei(6) ® Ei41(6). ]

Theorem 2.14. Let M be a compact strictly pseudoconvex CR manifold. A pseudohermitian struc-
ture 6 on M is critical for the functional /lfzz L restricted to C(0) if and only if, there exist two fam-

ilies {ul, e ,up} C Ey(6) and {vl, e ,vq} C Er+1(0) of eigenfunctions associated with Ax(6) and
Ak+1(0), respectively, such that

P q P q
2 2__ 1 H, || H. |I?
Ak(e)zi: 2 — Akﬂ(e);vj = — I(Z‘ V%" - ZJ: Iv%;|5. 2.7)
Proof. A straightforward calculation shows that the equation (2.6) are equivalent to the condition
(2) of Proposition 2.13. m|
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2.4 A topology on the space of oriented contact forms

We study the behavior of the eigenvalues of a sublaplacian A, on a compact strictly pseudoconvex
CR manifold M, as functions on the set #, of positively oriented contact forms on M by endowing
%P, with a natural metric topology.

Let M be a compact strictly pseudoconvex CR manifold of CR dimension 7, without boundary.
Let # be the set of all C* pseudohermitian structures on M. Every 6 € P is a contact form on M
i.e. 0 A (d6)" is a volume form. Let P be the sets of § € P such that the Levi form Gy is positive
definite (respectively negative definite). For 6 € P, let Aj, be the sublaplacian

Apu = —div(VH ) (2.8)

of (M, 6) acting on smooth real valued functions u € C*(M,R). As Ay, is a subelliptic operator (of
order 1/2) it has a discrete spectrum

0=2(6) < 21(0) < 22(6) < -+ T +00 2.9)

(the eigenvalues of A, are counted with their multiplicities). Each eigenvalue 4,(6), v =0,1,2,---,
is thought of as a function of 6 € £,. We shall deal mainly with the following problem: Is there
a natural topology on P, such that each eigenvalue function A, : P, — R is continuous? The
analogous problem for the spectrum of the Laplace-Beltrami operator on a compact Riemannian
manifold was solved by S. Bando & H. Urakawa, [90], and our main result is imitative of their
Theorem 2.2 (cf. op. cit., p. 155). We shall establish

Corollary 2.15. For every compact strictly pseudoconvex CR manifold M the space of positively
oriented contact forms P, admits a natural complete distance function d : P+ X P, — [0, +0)
such that each eigenvalue function Ay : P+ — R is continuous relative to the d-topology.

By aresult of J.M. Lee, [59], for every 6 € P, there is a Lorentzian metric Fy € Lor(C(M)) (the

Fefferman metric) on the total space 9t of the canonical circle bundle S ' o) X M. Also if
O is the Laplace-Beltrami operator of Fy (the wave operator) then Spec(A,) € Spec(O). Therefore
the eigenvalues A; may be thought of as functions /11[ :C > RonthesetC = {Fy € Lor(C(M)) :
6 € P.} of all Fefferman metrics on 9. On the other hand Lor(C(M)) may be endowed with the
distance function dg’ considered by P. Mounoud, [80] (associated to a fixed Riemannian metric

g on M) and hence (C, d;") is itself a metric space. It is then a natural question whether /l,t are
continuous functions relative to the d,;°-topology.

This section is organized as follows. The distance function d (in Corollary 2.15) is built in the
following. In § 2.5 we establish a Max-Mini principle (cf. Proposition 2.21) for the eigenvalues
of a sublaplacian. Then Corollary 2.15 follows from Theorem 2.22 in § 2.6. In § 2.7 we prove the
continuity of the eigenvalues with respect to the Fefferman metric (cf. Corollary 2.23) though only
as functions on C, = {"" Fg, : u € C*(M,R), u > 0}.

Let {U,},ea be a finite open covering of M such that the closure of each U, is contained in a
larger open set V; which is both the domain of a local frame {X, : 1 < a < 2n} c C*(V,, H(M))
with X,., = JX, for any 1 < @ < n, and a coordinate neighborhood with the local coordinates
(x!,---, x**1). For each point x € M let P, (respectively S ;) be the set of all symmetric positive
definite (respectively merely symmetric) bilinear forms on 7 (M). If ¢, € S, then we consider
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the anti-reflexive partial order relation ¢ < ¥ & ¥ — ¢ € P,. Next let p// : Py X Py — [0, +0)
be the distance function given by

P (@, y) = inf {6 > 0 : exp(=6) ¢ < ¥ < exp(d) ¢}

for any ¢,y € P,. Then (Py, p)) is a complete metric space (by (iii) of Lemma 1.1 in [90], p.
158).

Let M be the set of all Riemannian metrics on M, so that gg € M for every 6 € .. Following
[90] one may endow M with a complete distance function p. Indeed as M is compact one may set

P’ (g1, 82) =sup pl(g1x. 8&2.x), &1,8 €M
xeM

Also let S (M) be the space of all C* symmetric (0, 2)-tensor fields on M, organized as a Fréchet
space by the family of seminorms {| - | : kK € N U {0}} where

gl = )" Iglk, Iglk = sup ) [Dgii(x)],
AeA xeU, |al|<k
where D? = §l9l/g(x")21 - .- 9(x*"+ 1)@t and g;; = g(8/0x', 8/0x7) € C¥(Vy,R) for any g €
S (M). The topology of S (M) as a locally convex space is compatible to the distance function

’ 1 |g1 ngk
. 2) = § —_©° o K , g2 € S(M).
p (g1, &) £ k1 21 Sk 81, 82 (M)

In particular (S (M), p’) is a complete metric space. If p(g1, g2) = p’(g1, g2) + p” (g1, g2) then
(M, p) is a complete metric space (cf. Proposition 2 in [90], p. 158). Each metric g € M deter-
mines a Laplace-Beltrami operator A, hence the eigenvalues of A, may be though of as functions
of g and as such the eigenvalues are (by Theorem 2.2 in [90], p. 161) continuous functions on
(M, p). To deal with the similar problem for the spectrum of a sublaplacian, we start by observ-
ing that the natural counterpart of M in the category of strictly pseudoconvex CR manifolds is
the set My of all sub-Riemannian metrics on (M, H(M)). Nevertheless only a particular sort of
sub-Riemannian metric gives rise to a sublaplacian i.e. A, is associated to Gy € My for some
positively oriented contact form 8 € ... Of course P, ¢ Q' (M) and one may endow Q' (M) with
the C* topology. One may then attempt to repeat the arguments in [90] (by replacing S (M) with
Q!(M)). The situation at hand is however much simpler since, once a contact form 6y € P, is fixed,
all others are parameterized by C*(M, R) i.e. for any 6 € P.. there is a unique u € C*°(M, R) such
that 8 = €"6y. We may then use the canonical Fréchet space structure (and corresponding complete
distance function) of C*(M, R). Precisely, for every u € C*°(M,R), 2 € A and k € N U {0} we set

pax() = sup > [D"u(),

xeUk |a|<k

[0e]

1 pi(u)
pe) = paxw), lules = Y o
1A = 2 L+ )
If 6y € P, is a fixed contact form then we set
d' (01, 602) = luy —walcw, 61,6, € Py,
where u; € C*(M,R) are given by 6; = "6 for any i € {1,2}. The definition of d’ doesn’t depend
upon the choice of 6y € P.
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Lemma 2.16. (P, d’) is a complete metric space.

Proof. Let {0,},>1 be a Cauchy sequence in (P, d’). If u, € C*(M,R) is the function deter-
mined by 6, = €76y then (by the very definition of d’) {u,},> is a Cauchy sequence in C*(M, R).
Here C* (M, R) is organized as a Fréchet space by the (countable, separating) family of seminorms
{pr : k € NU{0}}. Hence there is u € C*(M,R) such that |4, — u|c~ — 0 as v — oco. Finally if
0 =¢e"0ye P, thend (0,, 0) > 0asv — 0. Q.e.d.

Let S(H) ¢ H(M)* ® H(M)* be the subbundle of all bilinear symmetric forms on H(M). For
every G € C*(S(H)),keZ, k> 0,and 1 € A we set

2n
Gl = sup Y~ > |D*Gap(x)]

x€Uj |al<k a,b=1

[Se]

1 |Gl
Gl = E IGlak, |Gle= = 5 pvs ;
FEN im0 2 116k

where G, = G(X,, Xp) € C*(V,R). Moreover we set

Pu(G1, G2) =G = Gale . G1,G2 € CV(S(H)).

Lemma 2.17. {| - |y : k € N U {0}} is a countable separating family of seminorms organizing
X = C% (S(H)) as a Fréchet space. In particular (X, p},) is a complete metric space.

Proof. For each k € NU {0} and N € N we set
1
V(k,N) = {G €X: |Gk < N} (2.10)

Let 8 be the collection of all finite intersections of sets (2.10). Then B is (cf. e.g. Theorem 1.37
in [104], p. 27) a convex balanced local base for a topology 7 on X which makes X into a locally
convex space such that every seminorm | - | is continuous and a set £ C X is bounded if and only
if every | - |¢ is bounded on E. 7 is compatible with the distance function p7,. Let {Gplm>1 C X
be a Cauchy sequence relative to p7,. Thus for every fixed k € N U {0} and N € N one has
G, — G, € V(k,N) for m, p sufficiently large. Consequently

1
|D*(G)an(x) = D(Gp)ap()| < 5

xeU,, A€A, |a|<k, 1<ab<2n.

It follows that each sequence {D*(G)ap}m>1 converges uniformly on U, to a function G, In
particular for @ = 0 one has (G;)q»(x) — ng(x) as m — oo, uniformly in x € Uy If A, € A are
such that U; N Uy # 0 and

X, =AjX,, A=|Af]: UynUy —» GL2nR),
is a local transformation of the frame in H(M) then

(Gn),y = ASAY (Gp)ea on UaN Uy
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so that (for m — 0) G’y = ASAYG®, on Uy N Uy. Thus G, € C*(U,) glue up to a (globally
defined) bilinear symmetric form G on H(M) and G,, —» G® in X as m — 0. Q.e.d.

For each point x € M let P(H), be the set of all symmetric positive definite bilinear forms on
H(M),. If ¢, € S (H), then we consider the anti-reflexive partial order relation

o<y =y —-ypecPH),.
Next let 7 : P(H), X P(H), — [0, +00) be given by

Py (g, ) =inf {6 > 0 : exp(=6) ¢ < ¥ < exp(d) ¢}
for any ¢, € P(H),.

Lemma 2.18. p’ is a distance function on P(H),.

Proof. As ¢ < i < ey is equivalent to ey < ¢ < €%y, it follows that p’/ is symmetric.
To prove the triangle inequality we assume that p”/ (¢, ) > p% (@, x) + p”’ (x, ¥) for some ¢, ¥, x €
P(H),. Then
P (@) = i (¢, x) > inf{d > 0 : exp(=G)x < ¢ < exp(d)x}

-5

hence there is §, > 0 such that ™2y < ¥ < €%y and p/ (¢, ) — p’ (¢, x) > 6. Similarly

Py (@, ) = 62 > inf{6 > 0 : exp(=6)g < x < exp(6)e}

yields the existence of a number §; > 0 such that e™'¢ < y < €%'¢ and p”/ (¢, ) — 62 > 6. Let
us set § = &1 + 6. The inequalities written so far show that e < ¢ < €%¢ and p”/ (¢, ) > 6, a
contradiction. Finally, let us assume that p’/ (¢, ) = 0 so that for any k € N

1
inf{6 > 0 : exp(—6)p < ¥ < exp(d)y} < %

i.e. there is 6; > 0 such that e™%¢ < i < €%y and 6y < 1/k. Thus limy_,c 6 = 0 and ¢ — e % €

P(H), shows (by passing to the limit with k — oo in Y/(v,v) — e %@(v,v) > 0, v € H(M), \ {0})
that ¢ < . Similarly e%¢ —y € P(H), yields in the limit ¢ < ¢, and we may conclude that ¢ = .
Viceversa, if ¢ € P(H), then

(6>0:(1—-e), (1) e P(H),} = (0, +c0)

hence p’/ (¢, ) = 0. Q.e.d.

Lemma 2.19. i) (P(H),, pY) is a complete metric space.

ii) Let {¢;}jen C P(H)y suchthatlim; . ¢; = ¢ € P(H), in the p’/-topology. Thenlim;_,. ¢ j(v,w) =
(v, w) for any v,w € H(M),.

Proof. 1) Let {¢}} jeny C P(H), be a Cauchy sequence in the p’/-topology i.e. for any € > 0 there
is je € N such that pY/(¢j.p, ;) > € for any j > j. and any p = 1,2,---. Hence there is 6. > 0
such that e % i< @jsp < e j and 6, < €. Consequently

|10g ®j+p(v,v) —logp;(v, v)' <0 <€
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for any v € H(M), \ {0}. Therefore if

&= (logej(v,v), -+ ,logej(v,v)) € R

then {£;} e is a Cauchy sequence in R?". Let then &=limj & andletg : HM),x H(M), — R
be the bilinear form given by ¢(v,v) = exp(£?) for any v € H(M), \ {0} followed by polarization.
Here £ = (£',- -+ ,£2"). Then ¢ € P(H), and lim ;. ¢; = ¢ in the p/-topology.

ii) If p; — ¢ as j — oo then logg;(v,v) — logy(v,v) as j — oo, for any v € H(M), \ {0}.
Then lim;_, ¢;(v,v) = ¢(v, v) uniformly in v and statement (ii) follows by polarization. Q.e.d.

As M is compact we may set

Pp(G1,G2) = sup p(Gix, Gay),
xeM

pu(G1,G2) = pyy(G1,G2) + p(G1,G2), G1,G2 € My

Also let d be the distance function on £, given by
d6, 62) =d' (01, ) + p(Gy, , Go,), 61,6, € P,

Proposition 2.20. i) (Mpy, pg) is a complete metric space.
ii) The map 6 € P, — Gy € My of (P, d) into (Mp, pg) is continuous.
iii) (P4, d) is a complete metric space.

iv) Two fixed contact forms 6y , 8y define equivalent distance functions d, d on P,.

Proof. i) Let {G} j»1 be a Cauchy sequence in (Mg, py). Then {G} ;> is a Cauchy sequence
in both (X, p},) and (My , pj)). Yet (X, p},) is complete (by Lemma 4.2). Thus p},(G;, G) — 0 as
Jj — oo for some G € X. In particular

lim G (v, w) = G(v, w) 2.11)
J—

for every x € M and v,w € H(M),. On the other hand, as {G}};> is Cauchy in (My, p};), for
every € > 0 there is N > 1 such that

Py (Gix, Gjx) < pg(Gi, Gj) <€ (2.12)

for every i,j > N and x € M. Thus {G;,};> is Cauchy in the complete (by Lemma 2.19)
metric space (P(H),, p}) so that p?/ (G, ¢) = 0as j — oo for some ¢ € P(H),. Then (by (iii) in
Lemma 2.19) lim o G (v, w) = ¢(v,w) for every v,w € H(M), hence G, = ¢ yielding G € My.

ii) Let {6,},>1 € P such that d(6,,0) — O for v — oo for some 6 € P,. If 6, = "6
and 6 = ¢€"6p then |u, —ulc» — 0 as v — oo. Then Gy, = Gy, and Gy = €"“Gg,. Since
D%, — D%u as v — oo, uniformly on U,, for any A € A, |a| < k and k € N U {0}, it follows that
D*(Ge,)ap — D*(Gg)ap as v — oo uniformly on U, for any 1 < a,b <2n. Hence Gg, — Gy in X
so that (by the very definition of d and py) pu(Ge, , Gg) — 0. Q.e.d.

iii) If {6,},>1 is a Cauchy sequence in (P, d) then {u,},>; is Cauchy in (P, , d’) as well.
Yet (by Lemma 2.16) (P, , d’) is complete hence d’(6, , ) — O for some 6 € P,. Then, as a
byproduct of the proof of statement (ii), one has Gy, — Gy in X. Finally, the verbatim repetition
of the arguments in the proof of statement (i) yields p};(Gy, , Gg) — 0 so that d(6, , 6) — 0. Q.e.d.
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2.5 A max-mini principle

For each k € N U {0} we consider a (k + 1)-dimensional real subspace Lyy; € C*(M,R) and set
IV 1112,
112,

1Al = (foz ‘Pe)z X2 = (fMge(X,X) ‘1’9)2 )

for any f € C*(M,R) and any X € X(M). Let {u,},>0 € C*(M,R) be a complete orthonormal
system relative to the L? inner product (f, g);2 = fM fg Wy such that u, € Eigen(A,; 1,(6)) for
every v > 0. If f € C*(M,R) then f = 377 a,(f) u, (L? convergence) for some a,(f) € R. Let
Lg ., be the subspace of C*(M, R) spanned by {u, : 0 < v < k}. Let (VH)* be the formal adjoint of
Vi ie.

Ag(Lis1) = Sup{ D f € Ly \{0}}-

Here

VIf X0 = (f. (V)X
for any f € C*(M,R) and X € C*(H(M)). Mere integration by parts shows that
(VAy X = —div(X), X € C*(H(M)),
implying (by (2.8)) the useful identity
IV9AI5, = (f, Do)z, f € CO(M,R). (2.13)
Let f € L2+1 \ {0} so that f = Z];:o ayu, for some a, € R. Then (by (2.13))

k

k
VAT = D 2 40 < w6 Y a2 = 4@ 11,
v=0

v=0
hence
Ag(LY, ) < A4(6). (2.14)
Our purpose in this section is to establish
Proposition 2.21. Let M be a compact strictly pseudoconvex CR manifold and 0 € P, a positively

oriented contact form. Then
A(0) = Plf Ag(Ly+1) (2.15)
k+1

where the g.Lb. is taken over all subspaces Ly,1 C C*(M,R) with dimg Ly =k + 1.

So far (by (2.14)) A4(6) > Ag(Lg +1) = infr,,, Ag(Li+1). The proof of Proposition 2.21 is by
contradiction. We assume that Ax(6) > inf,,, Ag(Li4+1) i.e. there is a (k + 1)-dimensional subspace
Liy1 € C®(M,R) such that Ag(Lgy1) < Ax(6). Then Ay(Ly1) is finite and

A2, A6(Liet) > IV? I, . f € Lier -

Then (by (2.13))

(o)

D@l AelLis) 2 ) A Oar(f)?
v=0

v=0
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so that

a,(f)? [Ag(Lis1) = 1,(0)] = (2.16)
Ag(Lg+1)=A,(0)

> D a0 - AL,

Ao(Lir1)<A,(0)
Let®: Ly, — C*(M,R) be the linear map given by

m

() = D af(Puy, €L,

v=0

where m = max{v > 0 : 1,(0) < Ag(Lg+1)}. Note that 0 < m < k — 1 (by the contradiction
assumption). We claim that
Ker(®) # (0). 2.17)

Of course (2.17) is only true within the contradiction loop. The statement follows from dimg ©(Lg1) <
m+1 <k <k+ 1 (hence ® cannot be injective). Let (by (2.17)) fo € L+ such that O(fy) = 0
and fo # 0. Then a,(fp) = O for any 0 < v < m i.e. whenever Ag(Liy1) > 4,(6). Applying (2.16)

to f = fo yields a,(fo) = 0 whenever Ag(Lg+1) < 4,(6). Thus fy = 0, a contradiction.

2.6 Continuity of eigenvalues

The scope of § 2.6 is to establish

Theorem 2.22. Let M be a compact strictly pseudoconvex CR manifold. If § > 0 and 6,0 € P,
are two contact forms on M such that d(6, 0) < & then e=° 14(6) < Ax(0) < € A4(6) foranyk > 0.

Proof. For any x e M
§>inf{e>0: e Gy < Gy, < Gy

i.e. there is 0 < € < ¢ such that G, — e “Ggr € P(H), and e“Ggx — Gy, € P(H)x. There is a
unique u € C*(M, R) such that § = ¢“0. Consequently

O A (dO)" = Vg A (dO)" . (2.18)

On the other hand e“;Gg’x(v, V) < G@’x(v, V) < e‘ng,x(v, v) for any v € H(M), \ {0} implies |u| < 0.
Then for every f € C*(M) (by (2.18))

e_(n+1)5f 2y, < f 12 v, Se("H)éf 2 ¥, (2.19)
M M M

VAf=e vy (2.20)
where V7 f is the horizontal gradient of f with respect to 6. Thus (by (2.20)) ||V f||§ = e IVH ]2 <
|IVH f112 so that (by (2.18))

Moreover

e 0 f V7 £1l5 o < f V7 £ 5 < (2:21)
M M
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S e(l’l+2)§f ||VHf||§ \P@.
M
Finally (by (2.19)-(2.20))
Hpp IV 1115 Hpp
SV fM ite VAR,

7 = se 2
A7 f 2y, A1
M

so that (by the Max-Mini principle)

€70 (0) < Ak(0) < & 1(0). (2.22)
Theorem 2.22 is proved. Corollary 2.15 follows from (2.22).

2.7 Spectra of A, and O

Let Fy be the Fefferman metric of (M, 8) and O the corresponding wave operator (the Laplace-
Beltrami operator of (C(M), Fy)). We set M = C(M) for simplicity. Let g be a fixed Riemannian
metric on M. The space S (M) of all symmetric tensor fields may be identified with the space of
all fields of endomorphisms of 7' (M) which are symmetric with respect to g i.e. for each & € § (M)
let i € C*(End(T(9M))) be given by

ghX,Y) = h(X,Y), X, Y e XM).

From now on we assume that M is compact. Then 9t is compact as well (as M is the total space of
a principal bundle with compact base and compact fibres) and we endow S () with the distance
function
- 2\]'/2
dy(hy . hy) = sup [trace (¢2)] ", hihy € SEM),
zeM

where ¢ = h; — hy and (,03 = ¢, o @,. The set Lor(N) of all Lorentz metrics on i is an open set of
SN, dg") and for any pair g1, g> of Riemannian metrics on 9 the distance functions d,, and dg,
are uniformly equivalent (cf. e.g. [80], p. 49). We shall use the topology induced by d;;* on Lor(9t)
(and therefore on C c Lor()). By a result of J.M. Lee, [59], the sublaplacian A, of (M, 0) is the
pushforward of the wave operator i.e. 7.0 = Ap. In particular Spec(Ap) C Spec(d). Thus each
Ak + P+ — R may be thought of as a function /III : C — R such that /l][ o F = Ay forevery k > 0,
where F : £, — C is the map given by F(6) = Fy for every 6 € P,. As another consequence of
Theorem 2.22 we establish

Corollary 2.23. Let M be a compact strictly pseudoconvex CR manifold and let g be an arbitrary
Riemannian metric on M = C(M). Let 6y € P, be a fixed contact form and P, = {€"0y : u €
C®(M,R), u>0} IfCy ={Fy:60¢€ P} then for every k € N U {0} the function /111 :Cy — Ris
continuous relative to the dg’-topology.

Proof. Let 6; € Py, i € {1,2}, and letus set ¢ = Fyg, — Fy,. Let {E, : 1 < p < 2n+ 2} be alocal
g-orthonormal frame on 7' (9t), defined on the open set U c M. Then

2n+2

trace (¢%) = " 8WPEy, Ep) = Y {Fo,(¢E,, Ep) = Fo,(¢E,, Ep))
p=1 4
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on U. On the other hand if 9E, = tp?,Eq then go;], =FO)(E,, Eg) — F()(E,, E,) hence
trace (%) = (¢°7 = €2°) || Fy I3 (2.23)

where u; € C*(M,R) is given by 6; = €"i6 and || Fg||, is the norm of Fg, as a (0, 2)-tensor field on
M with respect to g. Then (by (2.23))

d;o (F9] , ng) = S;:lnp'eulon — otom

1F g0 llg - (2.24)

As M is compact a = inf ey [|Fg,llg; > 0. Indeed (by compactness) a = [|Fyg||g -, for some zg € M.
If a = O then Fy,,,, = 0, a contradiction (as Fg, is Lorentzian, and hence nondegenerate). Let e > 0
such that a’g"(Fg1 , Fg,) < €. Then |e"' — "?| < €/a everywhere on M. Asboth #; > 0and up > O it
follows that [u; — up| < log(1 + €/a). Indeed e*' — €"? < €/a is equivalent to "' ™2 < 1 + (e/a)e™™
hence (as uy > 0)

up —up < log[l + (e/a) e™] < log(1 + €/a).

Therefore

-1
(1 + E) G91 ,x(V’ V) < ng,x(v, V) < (1 + E) Ggl ,x(V, V)
a a

for any v € H(M), \{0} and any x € M. Consequently p};(Ggl , Gg,) < log(1+e€/a). The arguments
in § 5 then yield

e\! €
(1 + 5) A (Fg) < A(Fy) < (1 + 5) A (Fy)
and Corollary 2.23 follows. The problem of the behavior of /l,[ : C — Ris open. So does the

more general problem of the behavior of the spectrum of the wave operator on 9t with respect to a
change of F € Lor(9).
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Chapter 3

Subelliptic Harmonic Maps and
Spectrum of CR Manifolds

3.1 Levi tension field

Let (M, 6) be a strictly pseudoconvex CR manifold, of CR dimension #, and let (N, &) be a Rie-
mannian manifold, where # is its Riemannian metric. The concept of energy density of a smooth
map f : M — N was adapted to the CR case by E. Barletta & S. Dragomir & H. Urakawa, [30],
as follows. Let f~'T(N) — M be the pullback bundle i.e. (f"!T(N))x = T (N) for any x € M.
For every X € X(M) we consider the section f.X € C*(f ~1T(N)) defined by

(fX)(0) = (dcf)Xx, x€M.
The natural lift Y/ € C®°(f~'T(N)) of Y € X(N) is given by
Y (x) =Y, xe€M.
In particular if (V,y?) is a local coordinate system on N and s; = (3/8y') € C®(U, f~'T(N)) is the
natural lift of the local vector field 3/dy’ then {s; : 1 < i < v} is a local frame in f~!T(N) - M

defined on the open set U = (V). Here v = dim(N). Let i/ = f~'h be the pullback of 4 by f
i.e. the Riemannian bundle metric on f~!T(N) — M locally given by

0 0
ayl " dy’
For further use we denote by C(f ~IT(N)) and C(f~'T(N), h/) the affine space of all connections

in the vector bundle f “IT(N) - M, respectively the affine subspace of all D € C(f ~1T(N)) such
that Dh/ = 0. Let e,(f) : M — R be defined by

hf(siasj)=h( )Of, 1<ij<w

1
es(f) = 5 traceq, (1 fh). 3.1)

Here Iy f*h is the restriction of f*h to H(M) ® H(M). Let x € M be an arbitrary point and
{X, : 1 < a < 2n} alocal frame of the Levi distribution H(M), defined on an open neighborhood

U c M of x. Then )
n

1
(e =5 D oo (@ Xas, (@ef)Xas). (32)
a=1
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3.1. LEVI TENSION FIELD

By aresult in [30] (cf. Theorem 3.1 there) the first variation of the energy functional

Ey(f) = fM ep(f) Yo (3.3)

is
d
BN = - f W (H() . V) ¥
M

where Hy(f) € C°°(f‘1T(N)) is given by
Hy(f) = traceg, (ITupy). (3.4)

The section Hy(f) in f~'T(N) — M is referred to as the Levi tension field of f. Here 3 ¢ 1s the
vector valued bilinear form on H(M) given by

Br(X.Y) = VLf.Y - £.VxY, XY € ¥(M),

and [1yB; denotes the restriction of 87 to H(M) ® H(M). Also V/ = f~'Vh € C(f~'T(N)) is the
pullback by f of the Levi-Civita connection to V" of (N, h). Moreover V is the Tanaka-Webster
connection of (M, #). Locally

2n
Hy(f) = ) V5 fiXa = fiVxXa. (3.5)
a=1

Mappings with Hy(f) = 0 are called pseudo-harmonic by E. Barletta & S. Dragomir & H. Urakawa
[30]. In the case where (N, h) is the standard R™, it is clear that

Hy(f) = (Apf1s e Ap fin)- (3.6)

For the natural inclusion j : S*"*! — C"! of S?'*!, the form B; is given by, B;(X,Y) =
—(X, Y)cnr1 X + % (JX, Y)cnr1 JX, where X is the position vector field. Thus,

Hy(j) = -2n %. (3.7)

In the particular case where f is an isometric immersion from (M, gg) to (N, h), one has (see [30,
p. 740])
Hy(f) = H(f) - By(T,T),
where By is the second fundamental form and H(f) = traceg,By is the mean curvature vector of
f.
In the sequel we will focus on maps f : (M, §) — (N, h) that preserve lengths in the horizontal
directions as well as the orthogonality between H(M) and T, that is, VX € H(M),

ldf(XOlh = Xlg,  and  {df(X),df(T)n =0,

which also amounts to f*h = gg+(u—1)8? for some nonnegative function u on M. For convenience,
such a map will be termed semi-isometric. Notice that the dimension of the target manifold N
should be at least 2n. When the dimension of N is 2n, then a semi-isometric map f : (M,0) —
(N, h) is noting but a Riemannian submersion satisfying df(T) = 0. Important examples are
given by the standard projection from the Heisenberg group H” to R?" and the Hopf fibration
82n+1 — CP".
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Lemma 3.1. Let (M, 0) be a strictly pseudoconvex CR manifold and let (N, h) be a Riemannian
manifold. If f : (M,0) — (N, h) is a C* semi-isometric map, then the form 3 ¢ takes its values
in the orthogonal complement of df(H(M)). In particular, the vector Hp(f) is orthogonal to
df(H(M)).

Proof. Let X,Y and Z be three horizontal vector fields. Since the Levi-Civita connection of (N, &)
is torsionless, one has V‘;d f(Y)— VJ;d f(X) =df([X, Y]). From the properties of the torsion of the
Tanaka-Webster connection V, one has VyY — VyX = [X, Y. Thus,

Br(X,Y) = Br(Y, X) = 0([X, YDA f(T).
Since df(T) is orthogonal to d f(H(M)), we deduce the following symmetry property:
BrX.Y),df(D)n = Br(Y, X), df (L)) (3.8)
On the other hand, we have,
Z-{dfX),df(Y)n=2Z-(X,Y)G, (3.9

Since Gy is parallel with respect to the Tanaka-Webster connection V and # is parallel with respect
to the Levi-Civita connection V", one gets

Z-dfX),df(Y)n = <V£df(X),df(Y)>h +{df(X), VJchf(Y»h
and

Z-(X,Y)q, (VzX,Y)G, + (X, VzY)g,

df(VzX),df(Y))n +df(X),df(VzY)n

where the last equality comes from the fact that VX and VY are horizontal. Replacing into (3.9)
we obtain

(VRdf(X) = df(V2X),df () + (VA f(¥) = df(V2Y),d f O = 0.
Therefore, ¥V X, Y,Z € H(M),
B(Z,X), df X)) + Bf(Z,Y),df(X))n = 0. (3.10)

Taking X = Y in (3.10) we obtain, VY X, Z € H(M),

B(Z, X),df(X))n = 0. (3.11)
Now, taking Z = X in (3.10) and using (3.8) and (3.11), we get, V X, Y € H(M),

BrX, X),df(Y))n = 0.
The symmetry property (3.8) enables us to conclude. O

A direct consequence of Lemma 3.1 is the following

Corollary 3.2. If f : (M,0) — (N, h) is a Riemannian submersion from a strictly pseudoconvex
CR manifold (M, 0) to a Riemannian manifold (N, h) with df(T) = 0, then By = 0 and Hp,(f) = 0.
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3.2 Semi-isometric maps into Euclidean space

Let (M, 6) be a strictly pseudoconvex CR manifold and let Q be a bounded (relatively compact)
domain of M. In the case where M is a closed manifold, we allow Q to be equal to the whole
of M. We are interested in Schrodinger-type operator —A, + V where V is a function on Q. We
assume in all the sequel that the spectrum of —A, + V in Q, with Dirichlet boundary conditions
if 0Q # 0, is discrete and bounded from below. We will always denote by {1;(6)};>1 the non
decreasing sequence of eigenvalues of —A;, + V and by {u;};>; a complete orthonormal family of
eigenfunctions in Q with (=A, + V)u; = 1;(O)u;.

Theorem 3.3. Let (M, 0) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 and
let f : (M,0) — R be a semi-isometric C> map. The sequence of eigenvalues {1 i@} j=1 of
the Schrodinger-type operator —Ap + V in a bounded domain Q C M, with Dirichlet boundary
conditions if Q # M, satisfies for every k > 1 and p € R,

k k

2, B 1
> (Am(e)—ai(e))”s—maxi rl > At @ = 4@ (W@ + 7D)  (u12)
i=1 i=1

with

Di = [ (P = 47)a o

Moreover, if V is bounded below on Q, then for every k > 1,

21 < 1
() < (14 2) ;Aiw) +5-Das (3.13)
and
2 1 1 2 1
Des1(0) < (1 + D)k A1(0) + ~ ((1 + )k — 1)1)00 (3.14)
n 4 n

with Do = supg (|Hp(f)2, — 4V).

Applying this result to the standard CR sphere whose standard embedding j : $>**! — C!

satisties |Hp(J = 4n~ (see (3.7)), we get the followin
isfies |[Hp(j)I%,., = 4n” (see (3.7)), we get the following

Corollary 3.4. Let Q be a domain in the standard CR sphere S***! ¢ C™*!. The eigenvalues of the
operator —Ay + V in Q, with Dirichlet boundary conditions if Q # S**1, satisfy, for every k > 1
and p € R,

max{2, p}

k k
D (A (©) = 4(0)" < D st 0) = 4O (O + = T))
i=1 i=1

n
with T; = fg Vul.Z‘I’g. Moreover, if V is bounded below on Q, then, for every k > 1,
21 ¢ 2
L1 () < (1+ 2) le Ai(0) +2n ~ = inf v
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and )
Aee1(0) < (1 + 2k 14(6) + Cln, k., V)
n

with C(n,k, V) = ((1 + 2kn — 1) (n? —infq V).

Theorem 3.3 also applies to the Heisenberg group H" endowed with its standard CR structure.
The corresponding sub-Laplacian is nothing but the operator Ag» = % D jgn(ij + YJZ.) (see section

3.4 for details). Since the standard projection H* — R?* is semi-isometric (up to a dilation)
with zero Levi-tension (see Corollary 3.2), Theorem 3.3 leads to the following corollary which
improves the results by Niu-Zhang [81] and El Soufi-Harrell-Ilias [8].

Corollary 3.5. Let Q be a domain in the Heisenberg group H". The eigenvalues of the operator
—Ap + V in Q, with Dirichlet boundary conditions, satisfy, for everyk > 1 and p € R,

k

k
D i@ = 40 < "2LLS (o)~ oy o) - 1)

i=1 i=1

with T; = fg Vul.z‘l’g. Moreover, if 'V is bounded below on Q, then, for every k > 1,

21 & 2
< 21 a2
Ak+1(0) < (1 + n)k i; () - 1?2fV

and

Ap+1(0) < (1 + %)k%/ll(e) - ((1 + %)k% - l)ian.
n n Q

The proof of Theorem 3.3 relies on a general result of algebraic nature using commutators.
The use of this approach in obtaining bounds for eigenvalues is now fairly prevalent. Pioneering
works in this direction are due to Harrell, alone or with collaborators (see [8, 35, 36]). For our
purpose, we will use the following version that can be found in a recent paper by Ashbaugh and
Hermi [74] (see inequality (26) of Corollary 3 and inequality (46) of Corollary 8 in [74]).

Lemma 3.6. Let A : D c H — H be a self-adjoint operator defined on a dense domain D
which is semibounded below and has a discrete spectrum A1(0) < A2(0)--- < 4;(0) < ---. Let
B : A(D) — H be a symmetric operator which leaves D invariant. Denoting by {u;}i>1 a complete
orthonormal family of eigenvectors of A with Au; = 1;(0)u;, we have, for everyk > 1 and p € R,

k k

2 (Ae1(6) = 4O (1A, Bluz, Buy) < max( 1, £} ) (410) = 4,0 4. Bl
i=1 i=1

Proof of Theorem 3.3. Let f : (M,0) — R™ be a semi-isometric map and let fi, ..., f;, be its
Euclidean components. For each @ = 1, ..., m, we denote by f, the multiplication operator naturally
associated with f,,. Let us start by the calculation of ([-Ap+V, folui, foui),» and |[[[-Ap+V, fa]uilliz.
One has,

[Ap + V, folui = —=Ap(foui) + fo(Apui)
~(Apfu; — 2V £, V)G,
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Thus,
A=Ay + V. fulutg, fottr) 2 = — fQ RIATE: fg V2,92, (3.15)

Here and in the sequel, all the integrals over M are calculated with respect to the volume form ¥y
or, equivalently, the Riemannian volume element induced by the Webster metric gy. The integra-
tion over the eventual boundary is calculated with respect to the Riemannian metric induced on
0Q) by the Webster metric gg. Integration by parts leads to (see (1.15))

fQ V2V, = - fg Bo i + ﬁ B,
C

where v is the unit normal vector to the boundary with respect to the Webster metric gg. Since u;
vanishes on Q2 when 0Q # (), we get

f V2V = - f (A2
Q Q

-2 [f fa(Abfa)u%‘*'flVHfal%;aM%}.
Q Q

Substituting in (3.15) we obtain

(=AM + V, folu, fattidpz = f VH %, .
Q
Thus

Z([—Ab +V, folui, fouid2 = Z fg |VHfa|ég”i2'
a=1 a=1

Now, since f preserves the Levi-form, one has with respect to a Gg-orthonormal frame {e;} of
H,(M),

m m 2n 2n m
DIVIRG, = D)V faeg, = > D (T e)g,
a=1 a=1 i=1 i=1 a=1

2n 2n

2 2
D ldf(edin = ) leilg, = 2n.
i=1 i=1

Therefore,
m
D =0 + Vol fidz =20 [ 42 =2n (3.16)
a=1 Q

On the other hand, we have

-+ Vool = [ (oo + 29" V)
@i +a [ v,
Q Q

2 f (Apfu )V fo, Vi),
Q

+
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Using (3.6), we get

2 f (Apfa)u; = f |Hp ()N
a=1v Q

Using the isometry property of f with respect to horizontal directions, we get

m m

DAV for VUil = > N ful V) B
a=1 a=1

ua
DV o, Vg,
a=1

df (Vw2 = V7 uilg,.

Thus,

m
> [, = [ 9, = a0 - [ vid
Q Q Q

a=1

Finally, denoting by {E,} the standard basis of R” and using Lemma 3.1, we get,

PRI
pe Q

m m
O Dotk DV for V)G, Ear Y
a a

(Hp(f), df (V¥ ub)yam = 0.

Using all these facts, we get

m
DA+ V, faluilZ, = 4 (&-(9) - f Vu%) + f \Hy,(f)lgmtt; - (3.17)
a=1 Q Q
Applying Lemma 3.6 with A = —A, + V and B = f,, summing up with respectto a = 1, ..., m, and
using (3.16) and (3.17), we get the inequality (3.12).

To prove the inequality (3.13), we consider the quadratic relation that we derive from (3.12)
after replacing p by 2 and D; by D, thatis,V k > 1,

k k

2 Do
E (As1(0) = 2:(0))* < = § (A1) = 4(0))(A(0) + ——) (3.18)
n 4

i=1 i=1

WIliCh leads to
k+1 k+1 k ) oo ) T k 2 ot =

with M = % Z;‘: 1 Ai(0) and Oy = % Zle /11.2(9). Using Cauchy-Schwarz inequality M? < Qy, we
get

2 1 2 1

2 2

221 (0) = L (0)(2 + )M+ —2’11)00) +(L+ M + Do My < 0
which can also be written as follows:

2 1
(Ak41(60) — My) (/lk+1(9) -+ )M - —Doo) <0.
n 2n
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Since Ay41(0) — My is clearly nonnegative, we get Ax.1(0) < (1+ %)Mk + ﬁDm which proves (3.13).

Now, if we set 4;(0) := 2;(6) + }‘Dm, then the inequality (3.18) reads

k k
_ _ o) _ _
D At ) = O < = 3" A (60) = TONAO).
1 1
Following Cheng and Yang’s argument [83, Theorem 2.1 and Corollary 2.1], we obtain

11 (0) < (1 + %)il(e)ki

which gives immediately the last inequality of the theorem. m|

3.3 Riemannian submersions

Let (M, 6) be a strictly pseudoconvex CR manifold and let f : (M,8) — N be a Riemannian sub-
mersion over a Riemannian manifold N of dimension 2xn. The manifold N admits infinitely many
isometric immersions into Euclidean spaces. For every integer m > 2n we denote by 7(N,R™) the
set of all C? isometric immersions from N to the m-dimensional Euclidean space R™. Thanks to the
Nash embedding theorem, the set U,enZ (N, R™) is never empty, which motivates the introduction
of the following invariant :

H®"“(N) = inf [|H(®)lle
¢€U7716NI(Nva)

where H(¢) stands for the mean curvature vector field of ¢.

Theorem 3.7. Let (M, 0) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 and let
f:(M,0) = N be a Riemannian submersion over a Riemannian manifold of dimension 2n such
that df(T) = 0. The eigenvalues of the operator —A, + V in a bounded domain Q C M, with
Dirichlet boundary conditions if Q # M, satisfy for every k > 1 and p € R,

k k

2, _ 1
D (er® - 4@ < TS () - @) @) + JHENP -T) 319)
i=1 i=1

with T; = fQ Vul.z‘Pg. Moreover, if V is bounded below on Q, then, for every k > 1,

k
2.1 1 euc 2 2 .
L@ < (14 2)7 ;,1,-(9) + 5 HUWNY = Zinf v (3.20)
and
2
D1 (0) < (1 + )k 1(0) + C (3.21)
n

with C = ((1 + Dkn = 1) (LH“(N)? — infq V).
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Proof. Let ¢ : N — R™ be any isometric immersion. It is straightforward to check that the map
f =¢o f:(M,0) » R™is semi-isometric and that, VX, Y € H(M),

BiX,Y) = dp(Bs(X,Y)) + By(df(X),df(Y)) = Bs(df(X),df(Y)),

where By stands for the second fundamental form of ¢ and where the last equality follows from
Corollary 3.2. Now, from the assumptions on f, the differential of f induces, for each x € M, an
isometry between H,(M) and T f()N. Thus, if Xy, -- , X3, is a local orthonormal frame of H(M),
then df(Xy),--- ,df(Xp,) is also an orthonormal frame of T/N. This leads to the equality

Hy(f) = H(¢p).

Therefore, it suffices to apply Theorem 3.3 to f and then take the infimum with respect to ¢ to
finish the proof.

O

For example, when N is an open set of R?" or, more generally, a minimal submanifold in R”,
then H**“(N) = 0 and the Theorem above gives a class of pseudoconvex CR manifolds including
domains of the Heisenberg group, for which the following holds :

Corollary 3.8. Let (M, 0) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 which
admits a Riemannian submersion f : (M, 0) — N over a minimal submanifold N of dimension 2n
of R™ such that df(T) = 0. The eigenvalues of the operator —Ap +V in a bounded domain Q C M,
with Dirichlet boundary conditions if Q # M, satisfy for every k > 1 and p € R,

k

2,p) & )
D Wer® - 40 < LS s - oy o -1y G22)

i=1 i=1

with T; = fg Vul.z‘l’g. Moreover, if 'V is bounded below on Q, then for every k > 1,

k
21 2
L@ < (1+ 2)7 ; 4(6) - ~inf v (3.23)
and 5 5
Des1(0) < (1 + 2)kn 2,(6) — ((1 + Syen - 1)1ng. (3.24)
n n

The natural embedding j : S*" — R>"! of the sphere into the Euclidean space satisfies
[H( j)l2 = 4n2. Thus, Theorem 3.7 leads to the following

R2n+1

Corollary 3.9. Let (M, 0) be a strictly pseudoconvex CR manifold of real dimension 2n+1. Assume
that (M, 0) admits a Riemannian submersion f : (M,0) — D c S*" over a domain D of the
standard sphere with df(T) = 0. The eigenvalues of the operator —Ap, + V in a bounded domain
Q c M, with Dirichlet boundary conditions if Q # M, satisfy for every k > 1 and p € R,

k 2,p) = .
Z (A+1(0) = 1)’ < %p} Z (As1(0) = :0))" (O + n® = T))
i=1 i=1
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with T; = fg leliz‘Pg. Moreover, if V is bounded below on €, then for every k > 1,

k
21 2.
Lt (6) < (1+ 2) Z‘ AuO) + 20 = = inf V
and )
Les1(0) < (1 + Z)k%m(e) +C
with C(n.k, V) = ((1 + 2kn — 1) (n? - infq V).

In the particular case of a manifold M without boundary that satisfies the assumptions of
Corollary 3.9, one has, with V = 0, 4,(0) = 0,

A(0) < 2n

and, for every k > 1,
es1(0) < n(n + 2k — n?.

We denote by FP™ the m-dimensional real projective space if F = R, the complex projective
space of real dimension 2m if F = C, and the quaternionic projective space of real dimension 4m
if F = Q. The manifold FP™ carries a natural metric so that the Hopf fibration & : S#+D-1
F™+l 5 FP™ is a Riemannian fibration, where dx = dimg F.

Let Hy1(F) = {A € M,(F) | A = A = A} be the vector space of (m + 1) X (m + 1)
Hermitian matrices with coefficients in F, that we endow with the inner product

1
(A,B) = Etrace(A B).

The map y : S#+D=1 c pr+l 5 ¢4, .| (F) given by

lzo® 2021+ 20Zm

- 2 -

21Z20 - 21z
y@=1"" . "
- - 2

ZmZ0 ZmZl cc |zml

induces through the Hopf fibration an isometric embedding ¢ from FP™ into H,,+1(F). More-
over, ¢(FP™) is a minimal submanifold of the hypersphere S ( L /%) of H,,+1(F) of radius

m+1°

[ .
/% centered at . One deduces that the mean curvature H(¢) satisfies

|H(¢)* = 2m(m + 1)dz2.
Therefore, H®“(FP™)? < 2m(m + 1)d]§ and Theorem 3.7 leads to the following

Corollary 3.10. Let (M, 6) be a strictly pseudoconvex CR manifold of real dimension 2n+ 1 which
admits a Riemannian submersion f : (M,0) — D C EP™ over a domain of the projective space
EP™ of real dimension 2n (i.e. m = 2n/dg) with df(T) = 0. The eigenvalues of the operator
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—Ap + V in a bounded domain Q C M, with Dirichlet boundary conditions if Q # M, satisfy for
everyk>1and p € R,

{2,
Zuml(e) oy < T2 Z(ml(e) L@ (A0) + n(2n + dg) - T)
i=1 i=1

with T; = fg Vul.z‘I’g. Moreover, if V is bounded below on Q, then for every k > 1,
2.1 ¢ 2
Li(®) < (1+ =) ; (0) +2(2n +dg) ~ ~inf V

and 5
Les1(0) < (1 + Z)k%m(e) +C

with C(n,k, V) = (1 + 2kn = 1) (n(2n + de) — info V).

3.4 Semi-isometric maps into Heisenberg groups
Theorem 3.11. Let (M, 0) be a strictly pseudoconvex CR manifold of dimension 2n + 1 and let
f:M— H" bea C? semi-isometric map satisfying df(H(M)) C HH™). Then the eigenvalues

of the operator —Ap + V in any bounded domain € C M, with Dirichlet boundary conditions if
Q +# M, satisfy for every k > 1 and p € R,

k 2, k ) |
D @ - 10) < PN - @y e+ o) 329)
i=1 i=1

with
D; = f (R — 4V) i Wy,
Q

Moreover, if V is bounded below on M, then for every k > 1,

k
2.1 1
<(1+-)- i —D, 2
Aes1(0) < (1 + n)k iél Ai(0) + o (3.26)

and

A+1(0) < (1 + )kn/ll(G) + - ((1 + )kn - 1) (3.27)

In the particular case where (M, 0) is the Heisenberg group H" endowed with the standard con-
tact form, this theorem provides an alternative way to derive Corollary 3.5

The following observation will be crucial for the proof of Theorem 3.11.
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Proposition 3.12. Let (M, 0) be a strictly pseudoconvex CR manifold and let
f: (M0 —>H"=C"xR
x  — )= F1), ..., Fn(x), a(x)

be a C* map such that df(H(M)) ¢ H(H™). Then

Hy(f) = D (Ap X + Ay ¥))

J=1

where ¢ j(x) = ReF j(x) and  j(x) = ImF j(x).
In particular, Hy(f) is a horizontal vector field and

Hy (Pl =4 D [(Aop))” + (Apr )]

J=1

Proof. One has, for any vector W € TM,

m

df(w) = Z (dsoj(W) + dl//J(W)—) +0(df(W))T.

j=1
For W € H(M), df(W) € HH™) and, then,

m

df(W) = )" (dej(W)X; +dy (W)Y)). (3.28)
j=1

Let {e;} be a local orthonormal frame of H(M), then
Brleiei) = Vidf(e) = df (Veen.

Since e; and V,,e; are horizontal and that d f(H(M)) C H(H™), we have

Brlenen) = D Vi(dpienX; +dyienY)) = > [dp(Vee)X; +dj(VeenY))
j=1

j=1
with
VL (doi(enX)) = e; - dpj(e)X; + dpj(e))VE df(e)
and
Vf(ddf](e,)Y ) =e;-dyi(e)Y;+ dwj(el)Vdf(e)
Therefore,

Bylei,ei)

Ms

|ei - dej(en — dej(Veen)| X +Z[el dyj(e) = dy (V)| Y

1

J

+

[a'(,o](e Vit X+ drj(e)Vi Y] (3.29)
j=1
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Recall that the Levi-Civita connection of H™ is such that

Thus,

and

H™ H™ H™
Vi X;=Vy'Y;=V5T=0,
VY Y= =26, T, Vy T=2Y., Vy T=-2X,

Vy X;=26,T, Vi Xe=2Y, Vi Yp=-2X.

Vﬂd{;(e,-)xj = Z(dSDk(ei)VXka+dl//k(ei)Vkaj)
k

dgbj(ei)Vijj = 2dl,bj(€l)T

Hm
Vdf(e;)Yj = —2d<pj(e,~)T.

Replacing into (3.29) and summing up with respect to i, we get

Hy(f)

M=

2n

D0 (lei- dejen) — dgj(Ve,e)IX; + Le; - dj(ei) — dsj(Veen]1Y )

1 j=1

1

_ (AbSDJ'Xj + Ab%//ij) :

J

]
—_

Proof of Theorem 3.11. As in the proof of Theorem 3.3, we will use the components of the map
S as multiplication operators. Let us write f(x) = (F{(x), ..., F(x), a(x)) € C" x R and F;(x) =
@;(x) + iy j(x). The main difference with respect to the Euclidean case is that here, only the C™
components of f come in. All along this proof we will use the fact that, V W € H,(M), the vector
df(W) is horizontal and (see (3.28))

m

df W)l = 4> (Idp (WP + ldy (W) (3.30)
j=1

Repeating the same calculations as in the proof of the Theorem 3.3, we get

m

Z([—Ab +Vopilui, ojuiye  + ([=Ap + Vo lui, ¥jui 2
j=1

m
= O [ e, 19
=1
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Let {e;} be a Gy-orthonormal basis of H,(M), then

[\

(Vg eig, + (V' e,
1

m
DUVH R + IV,
j=1

1

I
v IV
1=

<V§0], el>(;9 + <Vlﬁ]5 el)Gg

—_

v T
T
l\)\‘
3

(dtﬁ](e )+ dij(e))

Il
iNg
T
S .
T

n
\df(e)Vim = 3
=1

Bl —

Thus,

m

n
§ ([=Ap + V@ lui, @juiy 2 + ([=Ap + Vot jlug, Y jui) 2 = 3
=1

On the other hand,

2
f (v + 2V, V)G, )
Q
[ @i 4 [ e T2,
Q Q

2 f (Do )V 0, VUG, .
Q

I=Ap + V. @jluilly

+

We have a similar formula for ||[-A, + V, wj]uilliz. Since V7 u; € H(M), one has

+

m
DV, Vg,
j=1

(V. Vg,

D 1de (V7w + dy (V"))
j=1

1 1
= I e = 21V uilG,

Therefore,

m

1
> f (V. VHung, + (V. Vi), = 5 f Vw2,
oive Q

LY PP >
= 4(1,(9) LVui).

For the two remaining terms, we have thanks to Proposition 3.12,

Z f (Do) + Doy )?) u? f |y ()t}
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and

Z L (Ab90j<VH90ja V26, + Ay (VT ;, VHM?)GH)
=1

1 n m
=7 L(Hb(f), Z de (VAuHX; + Z dy (VDY
J=1 Jj=1

1
= Zf<Hb(f),df(VHu,-2)>Hm =0,
o

where the last equality follows from the fact that H,(f) is orthogonal to d f(H(M)) (Lemma 3.1).
Finally,

1
=8 + V. oslllzs + 1=y + V. Juilly = 46) + 5 fg (1Hs (W = V)i (3.32)

Applying Lemma 3.6 with A = —A;, + V and B = ¢; then B = i;, summing up with respect to j
and using (3.31) and (3.32), we obtain the inequality (3.25).

As in the proof of Theorem 3.3, we derive the inequalities (3.26) and (3.27) from (3.25) with
p=2. m|

3.5 Reilly type inequalities on CR manifolds

Let (M, 8) be a compact strictly pseudo-convex CR manifold. If f : (M,0) — R™ is a semi-
isometric C? map, then Theorem 3.3 (i.e. inequality (3.12) with k = 1 and p = 1) gives,

2 1
2(0) <1+ D00 + o fM (I (B —4V) 2.

When M is a compact manifold without boundary and V = 0, one has 4;(f) = 0 and u% =

-~ Therefore, the following Reilly type result holds (see[4] for details about Reilly inequali-

2”V(M, 0) M b R

ties)

This result can be obtained in an independent and simpler way, in the spirit of Reilly’s proof,
under weaker assumptions on f. Moreover, the equality case can be characterized. Indeed, we
first have the following

Theorem 3.13. Let (M, 6) be a compact strictly pseudoconvex CR manifold of dimension 2n + 1
without boundary. For every C* map f : (M,0) — R™ one has

1
BOF) < 5 f Hy () (3.33)
M

where the equality holds if and only if the Euclidean components f, ..., fn of f satisfy —Apfo =
A2(6) (f(, - ff(,)for every @ < m.
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Proof. Replacing if necessary f, by f, — f fo we can assume without loss of generality that the
Euclidean components fi, ..., f,, of f satisfy fM fo o = 0 so that, we have

2o [ #< [ 90k, (3.34)
M M

Summing up with respect to @, we get

(6 ngfmvHaz.
2(>fM|f| L

Denoting by {¢,} the standard basis of R and by {X;} a local orthonormal frame of H(M), we
observe that

2n 2n m
2ep(f) = D NAfXDREw = Y D (AF (X, €
i=1 i=1 a=1
m 2n m
= > D X = D IV ful,
a=1 i=1 a=1
Therefore,
20 [ s [ 39, =280, (335)
a=1

On the other hand, we have

AEL(f)?

m 2 m )
{Z} | IVHfa%g) :(Z [ faAbfa]
m 2
{j]‘:[(f(x)’ Z(Abf(l)ECl)Rm]
2
([ etz < [ ik [ .

2 2Ep(f) 2
4E5(f) ST@)Lle(f)lRm

Combining with (3.35), we get

which gives the desired inequality.

Now, if we have, for every @ < m, —Apfy, = 22(0) f,, then Hy(f) = (Apfi,..., Mpfm) = —2(0)f
and [, [Hy(Nlgn = 42(0)° [, |f 13- On the other hand, Ex(f) = [, X, V7 folg;, = 22(0) [, 1
which implies that the equality holds in (3.33). Reciprocally, if the equality holds in (3.33) for a
nonconstant map f, then it also holds in (3.34) for each @. Thus, the functions fi,..., f,, belong
to the A,(6)-eigenspace of —A,. ]

If amap f : (M,0) — R™ preserves the metric with respect to horizontal directions (i.e.,
|df(X)Igm = |X|g, for any X € H(M)), then its energy density e,(f) is constant equal to n and

Ep(f) =nV(M,0).
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Inequality (3.33) becomes in this case

1 2
() < 2V(IL0) fM [Hp(f)lgm- (3.36)

The characterization of the equality case is the last inequality requires the following Takahashi’s
type result.

Lemma 3.14. Let (M, 6) be a strictly pseudoconvex CR manifold of dimension 2n + 1 and let
f:(M,0) — R™ be C* map.
i) Assume that f(M) is contained in a sphere S"~\(r) of radius r centered at the origin. Then f is
pseudo-harmonic from (M, 0) to S\ (r) if and only if its Euclidean components fi, ..., fn satisfy,
Ya < m,

—Apfo = ifa
with p1 = Sep(f) € C(M).
ii) Assume that f is semi-isometric. If the Euclidean components fi, ..., f, of f satisfy, Ya < m,
—Apfo = AO)f, for some A(0) € R, then f(M) is contained in the sphere s™=1(r) of radius r =
A /% and f is a pseudo-harmonic map from (M, 6) to S m=1(p). Conversely, if f(M) is contained in
a sphere S™\(r) and if fis a pseudo-harmonic map from (M, 6) to S m=1(p), thenVa < m, —A, fo =
2n
r_zfa'-

Proof of Lemma 3.14. i) For convenience, let us write f = jo f where j : S '(r) — R™ is the
standard embedding and f : M — S"™=1(r) is defined by f(x) = f(x). It is straightforward to
observe that, VX, Y € H(M),

Br(X,Y) = Bidf(X),df(Y) + dj(BX,Y))

where B;(W, W) = —r%IWIme is the second fundamental form of the sphere S”~!(r). Taking the
trace, we obtain

2ep(f) = . 2 _
) = =22 F o ajernpy = 25D £+ ajcen .

Hence, if f is pseudo-harmonic from (M, 6) to S”~!(r), then Hy,(f) = 0 and, consequently, H,(f) =

—290) £ with Hy(f) = (Apfis- - - Apfin). Thus, Vo < m, —Apfy = Zep(H)fo-
Reciprocally, if there exists a function u € C* such that —A, f, = uf, for every @ < m, then

m m m
0=A, [Z fi] =2u ) f2+2 ) IV flg, = 2ur + dey ().
a=1 a=1 a=1
Hence, u = @, Hy(f) = —@ f and, then, H,(f) = 0, which means that f is pseudo-harmonic

from (M, 6) to S"~(r).

ii) From the assumptions, one has H,(f) = —A(0)f. Since f is semi-isometric, we know that
Hy(f) is orthogonal to df(H(M)) (Lemma 3.1). Therefore, Vx € M and VX € H,(M), one has
(f(x),df(X))grm = 0 which implies that the function x — |f (x)@m has zero derivative with respect
to all horizontal directions. Since the distribution H(M) is not integrable, this implies that | f (x)l]ém
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is constant on M, that is f(M) is contained in a sphere S"™1(r) of radius r centered at the origin.

The pseudo-harmonicity of f from M into S"™=1(r) then follows from (i). Moreover, one necessar-
2ep(f)

ily has A(0) = = with e (f) = n since f is semi-isometric. Thus, the radius of the sphere is such
that /> = 7%

Theorem 3.13 and Lemma 3.14 lead to the following

Corollary 3.15. Let (M, 6) be a compact strictly pseudoconvex CR manifold of dimension 2n + 1
without boundary and let f : (M,0) —s R™ be C* semi-isometric map. Then

1
2O < —————— | [Hp()zn- 3.37
2(6) < VL) LI »(Plg (3.37)
Moreover, the equality holds in this inequality if and only if f(M) is contained in a sphere S"~'(r)
of radius r = A%) and f is a pseudo-harmonic map from (M, ) to the sphere S™'(r).

Similarly, for CR manifolds mapped into the Heisenberg group, one has the following

Theorem 3.16. Let (M, 0) be a compact strictly pseudoconvex CR manifold of dimension 2n + 1
without boundary.
i)Let f: M — H" = R x R be any C? map satisfying df(H(M)) C HH™). Then

1
LOE < 5 [ DR,
M
where the equality holds if and only if the first 2m components fi, ..., fam Of [ satisfy —Apfy =

A2(0) (fc, - ffa)for every a < 2m.
ii) Let f : M — H™ be any C? semi-isometric map satisfying df(H(M)) € HMH™). Then

1 2
@@sﬁwﬁamemw

Moreover, the equality holds in this last inequality if and only if f(M) is contained in the product

S 1(r)xR c H" withr = | /lf(”g), and ro f is a pseudo-harmonic map from (M, 0) to the sphere

§2m=1(r), where m : H"™ — R is the standard projection.

Proof. i) Let f : M — H" = R*" x R be a C?> map satisfying df(H(M)) C H(H™) and set
fi=mof: M — R¥ where n : H” — R?" is the standard projection. One has, for every pair
(X, Y) of horizontal vectors,

Bi(X.Y) = Bx(df(X),df(Y)) + dn(Bs(X,Y))

Since for any X € H(H™), |d7T(X)|%2m = }Tlezm and dn(T) = 0, one can easily check that

Br = 0 (Corollary 3.2) and ﬁf(X, Y) = dn(By(X,Y)). Thus, Hb(f) = dn(Hp(f)) and, since Hy(f)
is horizontal (Proposition 3.12), |H( f)@zm = 1|H(f)|%.. On the other hand, it is clear that e,(f) =
zlxeb( f) and, then, Ep( f) = %Eb( f). Therefore, it suffices to apply Theorem 3.33 to complete the

proof of the first part of the theorem.
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ii) Assume now that the map f is semi-isometric. Using the assumption that f preserves horizon-
tality, i.e., df(H(M)) € H(H™), one checks that the map 27 o f is also semi-isometric. Applying
Corollary 3.37 to the latter we easily deduce what is stated in part (ii) of the theorem.

O

3.6 Horizontal Laplacians on Carnot groups

A Carnot group of step r is a connected, simply connected, nilpotent Lie group G whose Lie
algebra g admits a stratification
g=Vi®e..eV,

so that [V],Vj] = Vj+1, j=1,.,r—1and [V, Vj] C V,'+j, j=1,..,r, with V; = {0} for
k > r. We also assume that g carries a scalar product (, ), for which the subspaces V; are mutually
orthogonal. The layer V| generates the whole g and induces a sub-bundle HG of TG of rank
d; = dim V, that we call the horizontal bundle of the Carnot group. The Heisenberg group H¢ is
the simplest example of a Carnot group of step 2.

For each i < r, let {e’i, e ,e;_} be an orthonormal basis of V; and denote by {X’i, e ,Xil_} the
system of left invariant vector fields that coincides with {e"l, cee, eil_} at the identity element of G.

We consider the Riemannian metric g on G with respect to which the family {X ; S, Xcll1 S, XI R

constitute an orthonormal frame for 7G. The corresponding Levi-Civita connection V induces a
connection on V¥ on HG that we call “horizontal connection” : If X and Y are a smooth sections
of HG, then V)I? Y = nyVxY, where ny : TG — HG is the orthogonal projection. The horizontal
Laplacian Ay is then defined for every C? function on G by

Agu = traceHVHdu = Z Xil . (Xi1 . u),
i<d,

H

where the last equality follows from the fact that VX X{ = 0forany i, j = 1...d;. The operator

Ap is a hypoelliptic operator of Hormander type. 1
Theorem 3.17. Let G be a Carnot group and let Q be a bounded domain in G. Let V be a function
on Q so that the operator —Agy + V, with Dirichlet boundary conditions if Q # G, admits a purely

discrete spectrum {A} j»1 which is bounded from below. Then, for every k > 1 and p € R,

£ max{4,2p} <
Z (A1 — ) < T Z (et — 4~ (A = T,

i=1 i=1

where d is the rank of the horizontal distribution HG, T; = fg Vul.sz and vg is the Riemannian
volume element associated with gg. Moreover, if V is bounded below on €, then for every k > 1,

k
4\ 1 4

A1 ST+ =)= A — — inf

k+1—( +d)k;’ dlrglzv

and

4\ >
A TE .
Aps1 < (1 + d)k"/l] C(d, k) lng
with C(d, k) = (1 + ki — 1.
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Proof. Let{ey,...,es} be an orthonormal basis of the subspace V| and denote by {X{, - -+ , X} the
system of left invariant vector fields that coincides with {ey, ..., es} at the identity element of G.
Since the group G is nilpotent, the exponential map exp : ¢ — G is a global diffeomorphism. We
can define, for each i < d, a smooth map x; : G — R by

xi(g) = <exp_1(g), ei>q .
These functions satisfy (see [21, Proposition 5.7]), Vi, j = 1, ..., m,

Xj X = (5,']' and AH)C,' =0.

Again, we apply Lemma 3.6 with A = —Ag + Vand B = x,, | < @ < m. We need to deal

with the calculation of {([—Ag + V, xo]ui, xqu;)r2 and ||[[-Ag + V, xa]uiHiz, where {u;};>1 a complete

orthonormal family of eigenfunctions with (—Ap, + V)u; = A;u;. We have after a straightforward
calculation :
[-An + V. xolu; = =2X, - u;.

Integrating by parts we get

1 , 1, L, 1
L(Xa'ui)xaui:EL(Xa'ui)xa:_iLui (Xw'xa):_zLui :_5'

Thus,

d d
Z ([=An + V, xo]u;, x(l’”i)Lz =-2 Z f (Xo - ui) Xou; = d.
a=1 a=1 Q

On the other hand, we have

d d
D=+ Vol =4 Y [ Mol =404- 1)
a=1v¢

a=1

Putting these identities in Lemma 3.1, we obtain the first inequality of the theorem.

The rest of the proof is identical to that of Theorem 3.3.
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Chapter 4

Pseudohermitian Bochner-Lichnerowicz
formula

4.1 CR Paneitz operator and Chang-Chiu’s formula

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold, of CR dimension n. For all local calcu-
lations in this chapter we consider a local frame {T, : 1 < @ < n} of T (M), defined on the open
set U, and set

gaﬁ = GH(T(I ’ ng)s TE = T(l/ 9

VTB = LL)BATA , a)BA = FéBQC ,

(To) = AoTg,  Aap = 2ayAy,

a’ﬁ’y""e{l’.“’n}7 AQB’C’...G{OQ]"...7n’I""7ﬁ}'
Here {6” : 1 < a < n} is the adpated coframe determined by
0“(Tp) = 5‘5, HQ(TB) =0, 8%4T)=0.
Then (cf. e.g. (1.62) and (1.64) in [94], p. 39-40)
d6 = 2ig 56" N, (4.1)
d0” = 0F N ws® +OAT", T“EA%GE, A%:A_g, (4.2)
Aup = Apa . 4.3)

Therefore, if we set A(X,Y) = go(tX,Y) for any X, Y € X(M) then A is symmetric. Let RV be the
curvature tensor field of the Tanaka-Webster connection V. As to the local components of R¥ we
adopt the convention RV (Ts, Tc)Ta = RaPpcTp (cf. [94], p. 50). The Ricci tensor of V is

Ricy(Y, Z) = trace {X € T(M) — R"(X.2)Y}, Y.ZeT(M).
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Locally we set Rap = Ricy(Ta, Tp). The pseudohermitian Ricci tensor is then Ryz. By a result of
S. Webster, [100] (to whom the notion is due) Rz = R, .. The pseudohermitian scalar curvature

. = -1
is p = g%R,; where [g“ﬁ] = [gaﬁ] . Let us set
7 = dw,” — w” Aw)P,
Q. =117 - 2i0, AP + 2it, AP,

where

O =gaBOB, =067, 1, :gaBTE’ T'EzAEQO‘.
By a result of S.M. Webster, [100] (cf. also Theorem 1.7 in [94], p. 55)
QL =R 0 NF+ W 0 AG—- W 0 AG (4.4)
al
where
Wgﬁ = Vohir, W =g VAL 4.5)
Given u € C™(M,R) the pseudohermitian Hessian is

(VZu)(X,Y) = (Vxduw)Y, X,Y € X(M).

Locally we set Vaup = (V2u)(T4, Tg). The pseudohermitian Hessian is not symmetric. Rather one
has the commutation formulae

Voug = Vaiy (4.6)
Vot = Vaue = 2ig zuo, uo = T(w), 4.7)
Voug = Vpug — ugAyg . (4.8)

The third order covariant derivative of u is given by
(Vu)(X,Y.Z) = (VxH)(Y,2) =
= X(Hu(Y,2)) = H/(VxY,2) = HJ(Y,VxZ), H,=V’u,

for any X, Y,Z € X(M). Locally we set uspc = (V3u)(T4, T, Tc). Commutation formulae for
uspc have been established by J.M. Lee, [60] (cf. also [94], p. 426) and are not needed through
this chapter.

Let Apu = —div (VH u) be the sublaplacian of (M, 6). Another useful expression of A is
Apu = —traceg, Iy VZu 4.9)

or (locally)
2n

Apt = = > {Eo(Ea() = (Vi Eq)(w))

a=1
for any local Gy-orthonormal frame {E, : 1 <a <2n}of HM)on U c M. If {T, : 1 < a < n} iﬁ
local frame of T1o(M)on U C M and E, = EﬁT,z + EﬁTj for some Eg € C*(U,C) with Eg = E;,l
then Gg(E, , Ep) = d4p yields

2n 2n _ _
D ESEL=0. ) EiE]=g".
a=1 a=1
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so that (4.9) may be written locally as
Apu = =Vou® = Vzu® . (4.10)

A complex valued differential p-form w € QP(M) ® C is a (p,0)-form (respectively a (0, p)-
form) if To (M)]w = 0 (respectively To (M) |w = 0 and T Jw = 0). Let AP°(M) - M
and A%?(M) — M be the relevant bundles and Q7°(M) and Q*?(M) the corresponding spaces
of sections. Let ¥ be the flow on M tangent to the Reeb vector T (i.e. T(F) = RT). Let
QL’O(T ) = {w € QYYM) : T]w = 0} be the space of all basic (1, 0)-forms (on the foliated
manifold (M, F), cf. also [29]). If w € Qllg’o(?') one may use the Levi form to define a unique
complex vector field wtecC ©(Tp,1(M)). Here ot is determined by

W(Z) = Go(Z, o), Z e T1o(M),

hence locally of = wETB where f = g"Bwa and w = w,0%. Let 6, : 920(7—') — C*(M,C) be the
differential operator (due to [60]) defined by

Spw =div(wf), 6,0=0, weQ ).
Similarly, again by following [60], if 7 € QO1L(M) then let 17ﬂ € C*(T1,0(M)) be determined by
n@) = Go(p . Z),  Z € T1o(M),
and let us consider

8y : QM (M) - C¥(M,0), & =div(n), neQ® (M),

so that (locally) n* = T, where n = 77595 and n% = g“Bnﬁ. Also (again locally) 6pw = VEa)B and
(_Sbn = V,n®. For each f € C*(M,C) we set

(PHZ = g (Vf)(Z T, Ty) +2niA(Z. (V1 )0), (4.11)

(P)Z=0, (PAT =0, ZeToM).

Here X0 = ITy oX for any X € H(M) and 119 : H(M) ® C — T (M) is the natural projection
associated to H(M) ® C = Ty (M) & Ty 1(M). Note that g% (VTE(V2 f)) (T, Z) is invariant under
a transformation

T, = UsTy, det|U5|#0 on UNU’,

hence (Pf)Z is globally defined. Locally one has
Pf=(Pgf)6’, Paf = f5"+2niAg,f7,

(compare to Definition 1.1 and (1.2) in [92], p. 263). Similar to P : C*(M,C) — Q};O(T) we
build P : C®(M, C) — Q%! (M) given by

(Pf)Z= g% (V*f) Ts, Ta) = 2niA (Z. "), (4.12)
(PNZ=0, (PAT =0, ZeToM),
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where X! = X0 for any X € H(M). Also let!
Pof = 6p(Pf) + 6p(Pf), f € C(M,C). (4.13)

From now on we assume that M is a compact strictly pseudoconvex CR manifold and 6 € P,.
Then gy is a Riemannian metric on M. It should be observed that the operators above are com-
plexifications of real operators familiar in Riemannian geometry, as follows. For instance let #§ be
"raising of indices" with respect to gy i.e. gg (afﬁ,X) = a(X) for any (real) 1-form ny € QY (M) and

any (real) vector field X € X(M). Then the musical isomorphisms § : ng(f ) = C®(Ty,1(M))
and § : Q%\(M) — C*(T1p(M)) (as built above) are restrictions of the C-linear extension (to
Q(M)®C = C*(T*(M)®C)) of f : Q'(M) — X(M) to Q°(F) and Q"' (M) respectively.

Also let Qg(?) be the space of all basic 1-forms on (M, ) and dj, : C*°(M) — Qlli,(?') the first
order differential operator given by

dpu=du—uy0, ueC MR), uy=T().
Letd, : Q}g(?') — C*(M,R) be the formal adjoint of d, i.e.
(dyw. u),, = @, dpw)2 , w € QUF), ueC (M),

with respect to the L? inner products

(u’ V)L2 = f uy \Pea (a’ﬁ)L2 = f g;(a/’ ﬂ) lPHa
M M

u,v € C*(M,R), a,BecQ'(M).
Letd, : C*°(M,C) — Qg(?‘) ®Candd, : Q}g(?’: )® C — C*(M,C) be the C-linear extensions of
dp and d;. Then
Lemma 4.1. i) QL(F) ® C = Q°(F) @ Q%' (M),
i) dyf = Opf + Opf for any f € C*(M,C),
iif) dZ|Qg,o(,}_) =3 = —6,

V) d;l o141y = O = —Ob-

Here the tanggltial C-R operator 5;, is thought of as QOL(M)-valued (i.e. one requests that
Z|0pf =and T |0pf = O to start with). Also 9 f is the unique element of 9119,0(7_« ) coinciding
with df on Ty o(M). Locally

Of = ful", Opf =fal", fo=Tol). fr=Ta(f)

Also
3y QU(F) - C*(M,C), 3§, : Q*(M) —» C*(M,0),

are the formal adjoints of

0y : C(M,C) — Qp°(F), 8y : C°(M,C) — Q"(M),

"The operator Py in this thesis and [92] differ by a multiplicative factor ‘{.
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with respect to the L? inner products
(fs )2 = f f&%¥e, (wi,w)p2= f Gy(wr, @) Yy,
M M

for any f, g € C*(M,C) and any complex 1-forms w; , w, either in Q};O(T) or in Q%! (M). State-
ments (i)-(ii) in Lemma 4.1 are immediate. The last equality in (iii) (respectively in (iv)) is due to
[60] (cf. also [94], p. 280). To prove (iii) let w € 9;0(7’ )and f € C*(M,C). Then

Gi(w, dpf) = div(fw) — fdiv(w?) (4.14)

hence (by Green’s lemma)
(dyw. 1), = fM Gy, dpf) ¥y = - fM Fdiv(w’) ¥y = = (60 )2
so that dw = Spew. As to the proof of (4.14) one may locally compute
Gy, &) = waT5(Fg" = Ta(fof) = F Tg(ef) =
= div (? wﬁTB) - ?{aﬁdiv(TB) + TE(J*)} -
= div (Fof) - 7{Tg(cﬁ) ; F%wg} = div (fof) - FV5/

and B
Vﬁwﬁ = trace {Tg — VTEa)ﬂ} = div(wﬁ).

Finally one may complete the proof of (iii) by observing that Gy (w, apf) = Gyw, dyf) so that
dyw = 0, w. The proof of (iv) is similar (hence omitted). Lemma 4.1 is proved.

For every f € C*(M,R)
[ &+ Por @) Wa= (P +PF o), =

= (dy(Pf+Pf). f),, = —(Pof , P2

(compare to (1.3) in [92], p. 263). By a result of S-C. Chang & H-L. Chiu, [92], the operator Py
is nonnegative i.e. fM(Pou)u Yy > 0 for any u € C*(M,R). We end the preparation of CR and
pseudohermitian geometry by establishing

u® uaﬁﬁ +u” uaﬁg = —u® Pou — u® Pgu+ (4.15)
+2ni (Aaﬁuauﬁ - AEBMEME) — (V""u) (Apu)
(compare to (2.3) in [92], p. 267). Indeed (by (4.10))
g0 (VHu , VHAbu) = u® (Apu) 85t u” (Apu)’ gap =

=-u" (Vyuy + V;zﬁ) —u® (Vyuy + V;zﬁ) =

a a
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= —u" (VoVyu? + Vo V¥ ) = u® (VaVyu? + V5Viu")
- (gyﬁ uy 5+ &7 u,ﬁﬂ) _ E(gyﬁ — u@ﬁ) -

=—u® (MQBB + l/laﬁﬂ) - ME (MaBB + ME'BIB) =

= —y” (Pau - ZniAaﬁuﬂ + uaﬁﬂ) —u® (uaﬁﬁ + Pgu + 2niAaEuE).

Q.e.d.

4.2 Bochner-Lichnerowicz formulae on Fefferman spaces

Let S' — C(M) % M be the canonical circle bundle over a strictly pseudoconvex CR manifold
M, of CR dimension n (cf. e.g. Definition 2.9 in [94], p. 119). We set It = C(M) for simplicity.
Let 6 € .. be a positively oriented contact form on M and let Fy be the corresponding Fefferman
metric on M i.e.

Fo=n"Ge+2(n"0) 00, (4.16)

* [ . l v p
dy + Y- —o"dg ;- ———0];. 4.17
n+2{7 "(“‘)" 28 T 4t 1) )} @417)
Cf. Definition 2.15 and Theorem 2.4 in [94], p. 128-129. As to the notations in (4.16)-(4.17)
we set Gy = Gy on H(M) ® H(M) and Go(T, W) = 0 for every W € X(M). Moreover y is a
local fibre coordinate on 9i. We recall that Fy € Lor(9) i.e. Fy is a Lorentzian metric on 9t (a
semi-Riemannian metric of signature (— + - - - +)) and its restricted conformal class {¢*“"Fy : u €
C®(M,R)} is a CR invariant (cf. [59]).

Let D be the Levi-Civita connection of (9%, Fy). Given a point zg € M let {E, : 1 < p < 2n+2}
be a local orthonormal (i.e. Fy(E,, E;) = €,0,4 With €, € {£1}) frame of T (M), defined on an
open neighborhood 7~!(U) ¢ M of zp, such that

g =

(D, E)(z0) =0, 1<p,g<2n+2.

Such a local frame may always be built by parallel translating a given orthonormal basis {e), : 1 <
p <2n+ 2} C T,,(M) along the geodesics of (M, Fy) issuing at 2.

Let O be the wave operator (the Laplace-Beltrami operator of (M, Fy)). If f € C(M,R) and
g = Fo(Df, Df) then

2n+2

(0)0) = = > & {Ep (En(®) - (D5, E,) (9], =

20
p=1

=22 & Ey(FoDr,Df . Df) =
p

<0

= -2 & (Fo(Ds,Ds,Df . Df) + Fo(Dg,Df , Dg,Df)]
p

20
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As{E, : 1 < p <2n+ 2} is orthonormal, the first term may be written

Fo(Dg, D, Df , Df)zy = ) € Fo(DE, D, Df , Eq)zy Eq(f)zy -
q

On the other hand
Fo(Dg,Dg,Df , Eg)yy =

- E, (Fg(DEpD f, Eq))ZO —Fy (DEPD f. Dk, Eq)zo -
(by (Dg,Ey)z, = 0 and DFy = 0)

=Epz {Ep (FO(Df, Eq)) - Fy (Df, DEqu)} =

= Epy |Ep(Eg(9) = (D, E(f)} = Epoy {(D*FUE, . Ey)]

where
(D*F)(X.Y) = X(Y(f) - (DxY)(f), X,Y e XM,

(the Hessian of f). As Fy is a Lorentzian metric, D? f is symmetric. Thus
2 _ 2 —
Epo {(D*F)Ep, Ep)} = Epz, ((D*F)E,, Ep)} =

(by reversing the calculation above)

= Fy(Dg,Dg,Df , E,)

<0

So far we obtained

~(1/)0(FyDf. D)), = ), & Fo(D&,Df . Di,Df)_+
p

+ Z ep€q Fo(Dr, Dr, DY . E,,)ZO E,(f)z -
Pq

(4.18)

Let (U, x/) be a local coordinate system on M and let (m~1(U), ZP) be the induced local coordinates

onMie. Z/ = x/ orand Z¥'*? = . If B is a C®(M)-bilinear form on ¥(M) then
Fy(B,B) = FF"F¥8B,, 9B,
on 7~ 1(U) where
Fpg=Fg(0p.0q). Bpg=B(0,.0). 0p=-—
If E, = E}d, then ¥, €, ELE}, = F9'. Hence

FyD*f, D*f)yy = ) epeg(D*)E,, Eg), =
P9

= Z €€y {Ep(Eq(f)) - (DEPE‘])(f)}Zz,o -
pq
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_ ; &¢,Fs (Dr,Df , Ey).

that is

Fy(D*f , D*f);y = > € Fy(De,Df , D, D). (4.19)
p

Let RP be the curvature tensor field of RP. Then

Dg,Dg, = Dg,Dg, + RP(E, , Eg) + |E, . By,
|Ep. Eq|, =0,

Z &Fo(De, D, DS . EP)ZO - Z &Eq (Fo(Dr,DF Ep))zo -
P p

= E,(div(Df)) = —E,(@f),

so that

Z ep€qFo (Di, Di, D . E,,)ZO E,(f)s = (4.20)
p-q

= Z € {_Eq(Df)zo + Z EpFH (RD(EP ’ ECI)Df’ Ep)zo} Eq(f)Zo .
q

p

Let Ricp and K be respectively the Ricci curvature and the Christoffel 4-tensor of (M, Fy)i.e.

Ricp(X, Y) = trace {z e T(M) - RP(Z, Y)X},

KP(X.Y.Z,W) = Fy(RZ. W)Y, X),

forany X, Y, Z, W € T(9). Then (by taking into account the symmetries of the Christoffel tensor)

Z &Fo(RP(E, . E)Df . Ep) =

20
p

= >, &k (Ep. Df . Ey, E,), = )" &K"(Ey. Eq. Ey. D), =
p p

= &Fs(RP(E,, DNE,, Ep) =

20
p
= trace {z eT(M) -~ RP(Z, D f)Eq}Z = Ricp(E, , Df)
0
so that (by (4.20))
Z EquFb’ (DE,,DEqu, Ep)ZO Eq(f)zo =
2

= Z € {_Eq(l:'f)zo + Ricp(E,, Df)} Eq(f)z =

q
= =(Df)@f)z + Riep(Df, Df)y
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and (by taking into account (4.19)) one may write (4.18) as
~(1/2)a(Fo(Df, Df) = Fy (D*f , D*f) - (4.21)

—(Df)@f) + Ricp(Df , Df).

Let us assume that M is a closed manifold (i.e. M is compact and M = (). Then i is a closed
manifold, as well (as the total space of a locally trivial bundle over a compact manifold, with
compact fibres). Integration of (4.21) over M leads (by Green’s lemma) to the (Lorentzian analog
to the) L? Bochner-Lichnerowicz formula

LE {F; (D*f. D*f) + Ricp(Df , Df)} dvol(Fy) = (4.22)

- fm (DO dVolF.

Compare to (G.IV.5) in [71], p. 131.

4.3 Curvature theory

By a result in [18] the 1-form o € Q' (M) is a connection form in the canonical circle bundle
ST = M - M. Let XT € ¥(M) denote the horizontal lift of X € X(M) i.e. XZT € Ker(d,m) and
(dzﬂ')XZT = Xy for any z € M. Let S € X(M) be the tangent to the S '-action i.e. locally

n+2£
2 Oy’

The Levi-Civita connection D of (I, Fy) is given by (cf. Lemma 2 in [31], p. 03504-26)
Dy YT = (Vx)T + (4.23)

+HQX. Vyor) TT+{o([X".¥"]) - 24X, V) o n} s,

Dy T" = {z(X) + (X)), (4.24)

Dy X' = (VX +¢X)" + 4 (do)(XT, TN S, (4.25)
1

DyiS = DgX' = 3 Jx', (4.26)

DT =2V", DgS =DgT' = DS =0, (4.27)

where Q = —d6 while ¢ : H(M) — H(M) and V € H(M) are the bundle endomorphism and vector
field determined by

Go(¢X.Y) o = (do)(XT, YD), (4.28)

Go(V,X) = (do)(T", XT), (4.29)

for any X, Y € H(M). The differential form Q € Q2(M) bears a certain similarity to the canonical
2-form associated to a Kihlerian metric, in that it may be written as Q(X, Y) = gg(X, JY) for any
X, Y € X(M), yet similarity doesn’t go any further e.g. the de Rham cohomology class [Q2] = 0
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(while statements on the Betti numbers of a Kéhlerian manifold may be got by a mere inspection
of the powers [Q]¥, cf. [96]). Locally ¢ and V are given by

B _ i RB_ p B _ 0 _ 4
b 2(n +2) { “ 2+ 1) ‘Sﬁ} " =0, ¢a” =0, (4.30)
yo o By oy L iwe 4.31)

S8R BT e ) 4+ BT e '

In particular [J, ¢] = 0 (as a consequence of (4.30)). We recall (cf. (1.100) in [94], p. 58)
1

RngH(T# , T;) = —5 RyT/ + 8uv (432)
Ry =i(n—1)A,, (4.33)
Roy =S5, Ru=0, Ry =0. (4.34)

Here Ricy, is the Ricci curvature of the Riemannian manifold (M, gg). Also
SX,Y)=(Vxn)Y = (VyD)X, X, Y € X(M),
so that SEV are among S,{[Tj = 8(T, Te). As a consequence of (4.32) one has R,; = Ry,. Let us

take the exterior derivative of (4.17)

i 5 1
2 — * ] . a _ MY /\ v —
(n+2)do=nr {zdw, 548 dgy —4(n ) d(p@)}
and observe that dg"” A dg,y = 0. Also (by Theorem 1.7 in [94], p. 55)
dw," = Ryg 0 N0 + (W3, 0! = W 0F) A 6
where {6* : 1 < a < n} is an admissible local frame of T o(M)* i.e.
0% (Tp) = 6%, QQ(TE) =0, 6%T)=0.
Throughout §* = 0. By taking into account (4.32)-(4.34)
Ricy(X, JY) = =2i (Rz6" A 07) (X, Y) - (n — DA(X, Y) (4.35)

for any X, Y € H(M). Also d(pf) = —pQ on H(M) ® H(M). Consequently

P
2(n+1)

2(do)(XT, YT = nlﬂ { QX,Y)- (4.36)

— (n—- 1) AX, Y) — Ricy(X, JY)}.

By a result in [98], Vol. I, p. 65, [X, Y]" is the horizontal component of [XT, YT] for any X, Y €
X(M). When X, Y € H(M) the vertical component may be easily derived from (4.36). One obtains
the decomposition

[XT i YT] =x, Y]+ 2 5 [Ricy(X. JY)+ (4.37)

n+
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+(n— DAKX,Y) - 2(np+ T Y)} S.

Similarly let us compute f € C*(M)in [XT, TT = [X, T]T + fS. If ¢ = i(WC‘Z’AQ’l - W;’ﬁeﬁ) then

1
i([dwe )X, T) = (e AOX,T) = 5 ¢X,

1
2(n+2)(do)X", TT) = o(X) - ST deOXT)
or 1
Tty _
2do) (X', T") = — {tp(X) e I)X(p)} (4.38)
as T | d8 = 0. We conclude (as o(S) = %)
2
T oty 7 _
X', T'1=[XT] +n+2{4(n+1)X(p) cp(X)}S. (4.39)

‘We need to establish

Lemma 4.2. Let M be a strictly pseudoconvex CR manifold, of CR dimension n, and 6 € P, a
positively oriented contact form. The curvature RP of the Lorentzian manifold (W, Fy) is given by

RP(x', YHZ' = (RV(X, Y)Z)T B .40,
2+ D(n+2) (X(0) QY,Z) - Y(p) UX, Z)} S —

n+5
n+2

{(VxA)Y, Z) — (VYA)X,2)} S +
+; {(VxRicy)(Y, JZ) — (VyRicy)(Y, JZ2)} S +
n+2

1 T_ P T
+Q(Y, Z) {(TX) +(¢X) Xt Dt ) (JX) }

Je

_ 1 S
QX 2) {(TY) OV - T D)

(JY)T} +

+ {Ricy(Y, JZ) — (n + 5) A(Y, Z)} (JX)'-

2(n+2)

. _ T_
) {Ricy(X, JZ) — (n + 5)A(X, Z)} (JY)

—ﬁ {RicV(X, JY)(J2)" - 2Q(X, Y) Ricy(T, JZ) S} -

P
2n+ 1)

L {(n - DAKX,Y) - QX, Y)} J2)'-
n+2

_ t,_ 2 1
2Q(X,Y) {(¢Z) +n+2 w(2) 4(n+1)Z(P) St
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RO, THZ' = (R'X.1)2)' + (Vx$)2)! -

1
——— {Ricy(X, J¢Z) + Ricy(tX, JZ)} S+
n+2

1
+—— {e@UX) + pXU2)T} -

1

- - 1 1
A+ Dn+2) {ZX" + X2+

2
3 {(szo)Z - (dep)Z} S-

4n+ 1)

———{(VrRicy)(X,JZ) — (n + 5)(VTA)X, Z2)} S +
n+2

_ (Y A ) G
QX $2) - QX D)) {T 2+ D(n + 2)5}

_ 1T o
20X, 2) {V dn+ 1)(n+2) S
_3(n +3)
+2

(AKX, ¢Z) - A(rX, 2)} S,
RP(xT, $)Z" =

1 .
= 22 RVE 2D+ 1+ AXJZ)) S -

1 P
1 |

RP(XT, YDHTT = (Vx1)Y + (Vxd)Y)T + 4Q(X, Y)VT-
1
——{Ricy(JTX, Y) — Ricy(X, JTY)+
n+2

+Ricy(J¢X, Y) — Ricy(X, JpY)} S —
_n+ 5
2(n +2)?

RP(XT, YNH)s =0,
R2(TT, $)7" =

1
=— {¢(JZ) - (JZ)(p)} S~

4n+1)

{90(2) - Z(p)} S,

n+2 dn+1)
RP(TT, $)TT =0,
RP(TT, $)S =0,

forany X,Y,Z € HM).
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4.3. CURVATURE THEORY

Proof. As H(M) is parallel with respect to V one has VyZ € H(M). Then (by (4.23) and (4.36))

Dyt (VyZ)! = (VxVyZ)T+ (4.48)
t___ P
+Q(X,VyZ) {T St 1)(n+2)5}+

+

1
) {Ricy(X, JVyZ) — (n+ 5)A(X,VyZ)} S.
n

Next (by (4.23)-(4.24), (4.26), (4.36) and (4.48))

DDy Z" = (VxVy2)T + (4.49)

P
+HX(QY,2)) + X, Vy2)} {T 2(n+ H(n+2) S} ’

X
2m+ DH(n+2)

nt ; (XA, 2)) + AX.VyZ2)} S +

QY,2)S -

1
+—— (X(Ricy(Y, J2)) + Ricy(X. JVyZ)} S +
n

X - — P xy
+Q(Y.2) {(TX) +(¢X) TEERNEEE) (JX) }+
i - 1
oo Riev(J2) —(n+ 5 AX.2)) UX)'.

The calculation of D[XT’YT]ZT is a bit trickier as [X, Y] ¢ H(M) in general. To start with one uses
the decomposition (4.37) followed by [X, Y] = [14[X, Y] + 8([X, Y])T. This yields (by (4.26))

2

1
= Dy 2 + 60X, YD) D 2" + — B(X,Y)(JZ)!

where we have set

o
2(n+1)

B(X,Y) =Ricy(X,JY)+(n—1)AX,Y) - QX,Y)

for simplicity. At this point we may use (4.23) (as [1y[X, Y] € H(M)) and (4.25) so that
Dyt ynZ' = (Viyixn2)' + QUy(X, ¥1,2) T"-

~2{(do) ((u[X, YD, Z7) + A([Ty[X. Y], 2)} S+

+0(IX. YD{(V72)! + (¢2)" + 4do)Z" . TS | +

1
— BX.Y)(J2)'.
+n+2 (X,Y)(JZ)
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4.3. CURVATURE THEORY

Next (by T ]Q =T ] A = 0 and the identities (4.36) and (4.38))

D[xT’YT]ZT = (V[X,Y]Z)T +

+Q(X, Y], 2) {TT _ P S} S X Y1.2)S +

2+ 1D(n+2) n+2

1
— {RicV(X, JY)(J2)" + Ricy (Iy[X, Y1, JZ) S} +
n

1 B oy i
t— {(n DA(X,Y) T D) Q(X, Y)} J2)T+

2 1
Ty = _
+O([X, Y]){(¢Z) t [GD(Z) 3+ D) Z(P)]S}-
Moreover (by (4.49)-(4.50))
RP(XT, YNZ" = ([Dx1, Dyt] = Dy yn)) 2" =
= (VxVy2)! +

T__ P gl

X
2n+ D(n+2)

n ; {(X(A(Y,2)) + A(X,VyZ)} S+

QY,2)S -

1
+? {X(Ricy(Y, JZ)) + Ricy(X, JVyZ)} S +
n

Jol

N T
2t Do) VX }+

+Q(Y, Z) {(TX)T +(@X) -

{Ricy(Y,JZ) — (n + 5) A, Z)} (JX)-

2m+2)
—(VyVx2) -

—(Y(QX, Z)) + QY, VxZ)} {TT S S} +

2+ D(n+2)
L Yo
2(n+ H(n+2)

n+5
+2

QX,7)S +

+ {Y(A(X,2)) + A(Y, Vx2)} S -

1
~— (Y(Ricy(X. /2)) + Ricy (Y. JVxZ)} § -
n

_ 0 r____ P L
Q(X,2) {(TY) +(¢Y) T D12 JY) }
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{Ricy(X, JZ) — (n + 5) A(X, Z)} (JY)'—-

2(n +2)
- (Vixn2)' -
_ T_ p nS _
Q(X,Y],2) {T ST S} + S AlX.Y1.2)

—— Jlr 5 [Ricy(X. JY) (J2)! + Ricy (Ty[X. Y], JZ) S} -

Jol
2n+ 1)

1
—m {(n - I)A(X, Y) -

Q(X, Y)} JZ)'-

_ 1,2 1
(X, Y]){(¢Z) e o(Z) I+ D) Z()|S ¢.

Using the identity
[X,Y]=VxY - VyX +2QX, V)T, X,Y € HM), (4.52)

one has
X(QY,2)) + QX, VyX)—

-Y(QX,2)) - QY,VxZ) - U[X, Y], Z2) =
= (VxQ)(Y,Z2) — (VyQ)(X,Z) - 2QX, )T, Z) =0
as VQ =0and 7T ] Q = 0. Similarly (again by (4.51)and T ]A = 0)

-X(A(Y,2)) — A(X, VyZ)+

+Y(A(X,2)) + A(Y, VxZ) + A(X, Y], Z) =
= =(VxA)(Y, Z) + (VyA)(X, Z).

Next (by VJ = 0)
X(Ricy(Y, JZ)) + Ricy(X, JVyZ)—

-Y(Ricy(X, JZ)) — Ricy(Y, JVxZ) — Ricy(Ily[X, Y], JZ) =
= (VxRicy)(Y, JZ) — (VyRicy)(Y, JZ) + 2Q(X, Y) Ricy(T, JZ).

Consequently (4.51) yields (4.40). The proof of the remaining identities (4.41)-(4.47) is relegated
to §4.6.

Using Lemma 4.2 one may compute the Ricci curvature of (I, Fy). Let {E, : 1 < a < 2n} be
an orthonormal frame of H(M) i.e. G¢(E,, Ep) = d4p. Then

{E,c1<p<on+2f={El. TT+5 : 1 <a<2n),

E,=El, Epu=T'=S, Eya=T"+8,
is a local Fy-orthonormal frame of 7'(9t), so that for any U, W € X(I)

2n+2
Ricp(U, W) = > &Fg(RP(E,, W)U, E,) =
p=1
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4.3. CURVATURE THEORY

2
= Zn"m (RP(EL, WU, E]) -
a=1

—Fy (RD(TT -S, WU, 1" - S) +Fy (RD(TT +S, WU, T + S)

1.e.
2n

Ricp(U, W) = Z Fo(RP(E). W)U, E})+ (4.53)

a=1
+2{Fy (RP(TT, W)U, §) + Fy (R(S, W)U , TT)}.
We may state the following

Lemma 4.3. Forany X,Y € H(M)

1
Ricp(XT, YT = % {Ricy(X, Y) + 3AX, JY)} + (4.54)
P
—  _GyX,Y
St hnty &Y,
Ricp(XT,TT) = Ricy(X, T) + trace {I15(Vp)X} + (4.55)
1
X)-2QV,X)+ ————Qx, VA
+n+2s0(J ) v )+4(n+1)(n+2) (X, V%),
Ricp(XT,8) =0, (4.56)
1

Ricp(TT,TT) = —— trace { I (np+ 5 Jo —3(n+3) 72} + (4.57)

+ traceg, Iy {Ricy(-, J¢ -) + Ricy(r-, J-)—

n+2
1
-V vd
AP TFER
1
g4 Lwriene, 19}
2 2
Ricp(T',8) = —F (4.58)
’ 4n+1)’

Ricp(S,S) = g (4.59)

Proof. Let X, Y, E € H(M) and let us replace (X, Y, Z) in (4.40) by (£, ¥, X) and take the inner
product of the resulting identity with ET. As

FoX", Y1 = Gy(X,Y) ox,
FoX", TT) =0, FpXT,S)=0,

Go(JX,JY) = Go(X. Y),
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4.3. CURVATURE THEORY

we obtain
Fy (RD(ET, YHx', ET) = Gy (RV(E, )X, E) +

+QY, X){Go(TE, E) + Go(¢E, E)} -

Jo

~Q(E, X) {Ge(TK E)+GeWY.E) = v D)

Go(JY, E)} -

1 .
T2+ 2) {Ricy(E, JX) — (n + 5) A(E, X)} Gy(JY, E)—

1
———Ricy(E, JY)Go(JX, E)—
n+2

P
2(n+1)

1
-— {(n— DA(E,Y) - Q(E, Y)} Gyo(JX,E).
n+2
Let us replace E by E, and sum over 1 < a < 2n. Since
trace(t) =0, X = Z Go(X,E))E,, X e H(M),
a

one obtains
Z Fy(RP(E], YHX', El) = Ricv(X, Y)+ (4.60)
a

+Q(Y, X) trace(d) — Q(7Y, X) — Q(¢Y, X)+

p

It Do) PVEX-

2+ 2) {Ricy(JY,JX) — (n + 5) A(JY, X)} —

1
—— Ricy(JX, JY)—
n+2 iev( )

)
2n+ 1)

Note that (by the symmetry of A together with7o J 4+ Jo1 =0)

1
e {(n -DAUX,Y) - QUJX, Y)}.
A(UX,Y) =AX,JY), Go(JX,JY)=Gy(X,Y),

Q7Y X) = AX, JY).

To further simplify (4.60) we need some preparation. Let us replace X by JX in (4.35). One has

Ricy(JX, JY) = =2i (R0 A 0") (JX,Y) = (n - ) A(JX, Y) =

= 2i(Rz6" A 6) (Y, JX) - (n - ) A(X,JY) =

(by applying (4.35) once again)

= —Ricy(Y, J2X) — (n — DAY, JX) — (n — 1) A(X, JY)
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4.3. CURVATURE THEORY

or (as J?> = =1 on H(M))
Ricy(JX, JY) = Ricy(X, Y) — 2(n — 1) A(X, JY) (4.61)
for any X, Y € H(M). Here we have also used the symmetry of Ricy on H(M) ® H(M)
Ricy(X, Y) = Ricy(Y, X)
which is an immediate consequence of (4.32)-(4.33). Moreover
trace(¢) = 0 (4.62)

as a corollary of (4.30) and the fact that the trace of the endomorphism ¢ : H(M) — H(M)
coincides with the trace of its extension by C-linearity to H(M)® C (and ¢, is purely imaginary).

Next one needs to compute Q(¢Y, X). If {T, _1 < a < n} is a local frame of T (M) and
X = X°T, + X°T5 for some X € C*(U,C) (with X¢ = X?) then

Q@Y. X) = Go(¢Y, JX) =
= —iY* X7 ggrpe” + iYEX‘TgBU%E -
(by identity (4.30))

1 ol I4
= vexe|lp—-_ £,
2 +2) { [ a7 2(n+1)g‘“’}+
- p
YoX7 |Roy — —L—— oo

QY , X) = (4.63)

{Ricv (YLO : XO’I) + Ricy (YO’I , XLO)} -

or

T 2n+2)

“Torr oz (G0 (110 X0+ Gy (0, x10)

where we have set X' = X*T, and X% = X1.0 (so that X = X'0 + XO). To further compute
(4.63) let us observe that (by (4.33))

Ricy (Y19, X%1) + Ricy (Y01, X19) =
= Ricy (Y'?, X) - Ricy (Y', X"°)+
+Ricy (YO!, X) - Ricy (Y01, X01) =
= Ricy(Y, X) = i(n = DY X Aqo + i(n — Y X7 Az =
~ Ricy(X. Y) — i(n — 1) {A (YI,O’ XI,O) A (YO,I ’ Xo,l)} -
(as A vanishes on T o(M) ® To.1(M), as a consequence of T T o(M) C Ty 1(M))

= Ricy(X, Y) —i(n - D{A(Y'0, X) - A (Y, X))
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4.3. CURVATURE THEORY

or (as JY = i(Y'0 — YOy

Ricy (YI’O, XO’I) + Ricy (YO’1 , xl’o) = (4.64)

= Ricy(X,Y) - (n - 1) A(X, JY).

Substitution from (4.64) into (4.63) leads to

Q(¢Y, X) =

2+ 2) {Ricv(X,Y) — (n — DA(X, JY)} - (4.65)

Jol

a1

for any X, Y € H(M). Substitution from (4.61)-(4.62) and (4.65) into (4.60) leads to (after simpli-
fications)

2n

Z Fo(RP(E). YDXT, El) = (4.66)

a=1

2(n-1)
n+?2

= " Ricy(X,Y)+ AKX, JY) + Gy(X, V).
n+2

Y
n+D(n+2)

Let us take the inner product of (4.41) with § and use

Fyo(S,5)=0, FyuT'",S)= % Fo(X",8)=0, X e HWM).
Since (by (4.41))

RP (X", T1)Z" = (Q(X, ¢2) - QrX. 2)IT", mod H(M)*, S,

we obtain

Fo(RP(XT, TNHZ", 8) = ={Q(X, ¢Z) — Q(1X, Z)). (4.67)

1
2
Therefore the last two terms in (4.53) (with U = X" and W = YT) may be computed (by (4.67) and
(4.65)) as

Fo(RP(TT, YDXT,8) + Fo (RP(S, YHXT,TT) = (4.68)

1 .
= 2+ 2) {Ricy(X,Y) + (n + 5) A(X, JY)} -

Je

“d ey 0

Finally formulae (4.53) and (4.68) lead to (4.54). The proof of the remaining identities (4.55)-
(4.59) is given in § 4.6.
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4.4. PSEUDOHERMITIAN BOCHNER-LICHNEROWICZ FORMULA

4.4 Pseudohermitian Bochner-Lichnerowicz formula

Let f € C* (). Then

2n+2

Df = ) &E(NE; =) ENNEL+2{T"(NS +S(NHT")

J=1

hence \
D@won) = Z EJ)E} +2Tw)S = (V"u) +2u S (4.69)

for any u € C*(M), where we have set uy = T(u). Next (by (4.54), (4.56) and (4.59) in Lemma
4.3)
Ricp(D(uom), D(uonm)) =

2n
= Z E (wEywRicp(E], E}) + 4ul Ricp(S,S) =
a,b=1

1
= 2nf + ) Eq(w)Ep(w) {% [Ricy(E,, Ep) + 3A(E,, Ep)] +
a,b

0
* 2+ Dt o) Pk Eb)}
or

Ricp(D(u o mr), D(u o 7)) = 2nui+ (4.70)

il ; {Ricv (VHu, vH u) +3A(VHy, gvH u)} +

n+
P H |?
Tarvarn

Lemma4.4. Letu € C*(M)and f =uon e C°(M). Then

D? (X", YT = (VZu) (X, Y) — QX, V)ug (4.71)
(D*HXT,TT) = (V2u)(T, X) - ($X)(w), (4.72)
(DNKT,$) = 3 X)W, (4.73)

(D* YT, TT = T(up) - 2V(u), (4.74)
(D*F)(TT,$) =0, (4.75)
(D*f)(S.S) =0, (4.76)

forevery X, Y € H(M). Consequently
Fy(D*f, D*f) = | V2ul[" + 2mad — 2 div IV 1) (ug)+ 4.77)

+{V ) wo) = (c79u+ 9IV!u) ()

126



4.4. PSEUDOHERMITIAN BOCHNER-LICHNEROWICZ FORMULA

Proof. By (4.23) and S(f) = 0
(D’ NHXT, YN = X1 Y1) = Dy YD) =
= X(Y()) = (Vx¥)(u) = QX, V)u
yielding (4.71). Similarly (4.72) follows from (4.24)
(D’ NHXT, T = X(uo) — (X)(w) = (@X)(u)

and 7(X) = VyX — [T, X]. Next (4.73) is an immediate consequence of (4.26). Also the first
identity in (4.27) yields (4.74). Finally the last identity in (4.27) implies (4.75)-(4.76). The proof
of (4.77) is more involved. One has (by (4.75)-(4.76))

2n+2
Fy(D£.07)= Y D) (Ey. Ey) =

P-q=1

= Y (D NELEN? - 2D (T =S, T" + 5)%+
b
2 3 D HEL T +8)? = (D F)EL T - §)*)+
+(D2jf)(TT =S, TT =S +(D*NH(TT+5, TN +8)* =
= Y (D’ PELE) +8 ) (D*EL T (D*)ELS)
hence (by (4.71)-(4.73); ' a

FyD f.D* 1) = > [(Vu)(Ean Ev) ~ QEq, Epuo] - (4.78)
a,b

~4 3" (V2T Eq) - (PE) W)} (JE)(w).
On the other hand Y ,(JE,)(u) E, = —JV"u so that (4.78) becomes
Fy(D*f.D*f) = |Vl + 2n + 2 up traceg, {Tu(Vu)s) + (4.79)

+4{(V2u) (T, V" u) = (9 IV u)(w)}
where we have set

2n
[0V =Y (VupEa, En).
a,b=1

(V2u) (X, Y) = (V2u) (X, JY), X,Y e H(M).
Moreover (by Vgg = 0)

traceg, {[Tn(V2u)s} = )" {Eq (JE)@) = (Ve JE) W)} =

a
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4.4. PSEUDOHERMITIAN BOCHNER-LICHNEROWICZ FORMULA

== > {Ea (800", E0)) - 2o(JV"u, Vi, Eq)} =

== 80V, JV"u, Ey)

i.e.
traceg, {[u(V2u),} = —div (JV"u). (4.80)
Also
(Vu)(T,X) = X(up) — (xX)(w), X € H(M),

and substitution from (4.80) into (4.79) leads to (4.77). By a result of J.M. Lee, [59],if f =uon
then Of = (Apu) o m hence (by (4.69))

(DA@S) = (VHu)(Apu), (4.81)

Fo(Df,Df) = IV7ull*. (4.82)

Finally (by taking into account the identities (4.70), (4.77) and (4.81)-(4.82)) the Bochner-Lichnerowicz
formula (4.21) becomes

—% Ay (V7 ulP) = [T V24| + dnu — 2div (JV7u) uo+ (4.83)

+4{(IV u)uo) = (tIVu + IV u) ()] = (V) Apu)+

1
+2 Ricy (V7 u, Vi) + 3 AV, IV ) +
n+2
P H. 112
+— ||V .
Sty v o
The term (¢JV7u)(u) may be expressed in terms of pseudohermitian Ricci curvature and torsion.
As
JViy = i(uaTa - uaTa), u® = g“ﬂuﬁ, ug = TB(I/!),
one has (by (4.30))
¢JVHu = i(u”qﬁaﬁ Tg - U Tﬁ) =
= —; u® (RSP - P & T + complex conjugate =
2(n+2) 2n+1) ¢
1 o o \LO
= _2(n 2 gﬁRlcV ((V u) , T;) Tp+
N
4n+ 1(n+2)

- ! {gﬁVRicv ((VH u)l’o , T;) Tp+

2(n+2)

+ P Ricy ((VH u) TV) T

(VHu)l’O + compl i =
plex conjugate =

| b
4n+1)(n+2)
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hence (as Ricy is symmetric on H(M) ® H(M))
P
4n+ D(n+2)

1 Riey (v, (7)),

@IV u)(u) = IVH ul [~ (4.84)

Formula (4.33) implies
1
Ricy (X0, x*1) = 5 (Ricy(X. X) = (n = DA, JX)} (4.85)

for any X € H(M). Hence (by (4.85) with X = Vi) formula (4.84) becomes

Je

Zns ey Vo (4.86)

(pJVIu)(u) =
1 Cm L
T [Ricy (Vu, VHu) = (n = ) A(VHu, J9"u)}.
Let us substitute from (4.86) and (rJV7u)(u) = A(Vu, JV*u) into (4.83). We obtain

1

=5 8 (I9"2lP) = |19 = (VA ga0) + 4+ (4.87)

+4(JIVIw) (o) = 2 div(IV7u) uo+

n+3 . H H P H. 12
T i (Vu, V) Sty v
3n+1
30D vty vy,
n+
Lemma 4.5. For any u € C™(M)
div (JV"u) = 2nug . (4.88)

Proof. One has
Vi, IV u = i{(Vpu®) To = (Vpu®) T3},

AL i{(VEuo‘) To - (V5u®) T5},
hence (by div(X) = trace {Y — VyX})
div (JV"u) = i {Vou® - Vau®}. (4.89)
On the other hand
(VZu)(X,Y) = (Vu)(Y, X) +2Q(X, Vug, X,Y € HM),

yields (for X = T, and Y = Tﬁ)
Vaug = V’Eua - 2iga/§ uo
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4.5. ALOWER BOUND ON 2,(6)

or (by contraction with g%) i
Va/l,ta = Vaua — Zinu() . (490)

Finally substitution from (4.90) into (4.89) leads to (4.89). Q.e.d.
As a consequence of Lemma 4.5 the identity (4.87) simplifies to
1 2
—5 & (V) = |1 V2u]|” = (V7 u)(Apue)+ (4.91)

+4(IV ) (o) +
n+3
+2

Jol

St Dty v

+

Ricy (VH u, v u)

3(n+1)
n+2

(the pseudohermitian Bochner-Lichnerowicz formula). Let us integrate over M and observe that
(by Green’s lemma and (4.88))

AVTy, JVvy).

f IV u)(ug) Py = — f uo div(JV7u) Wy = —2n |luoll2, .
M M

‘We obtain
T V2|2, — 8 lluoliZ, + (4.92)
+f {” 3 Ricy (V"u, V"u) - MA(V‘Hu, JVHu)} W, =
m\n+2 n+?2

1 2
= L(VHM> (Ablx[) ng + m Lp ||VHI/l|| ‘Ilg

(the integral pseudohermitian Bochner-Lichnerowicz formula).

4.5 A lower bound on 4,(6)

Let A € o(Ap) be an eigenvalue of A, and u € Eigen(A,, 1) an eigenfunction corresponding to A.
With these data

f (V771) (D) ¥y = A ||V, - (4.93)
M
On the other hand (cf. (27) in [32], p. 88)
1
V2 = — (Apu)? (4.94)
2n
everywhere on M. Moreover (by Green’s lemma)
1Apull?, = 2 f ulbyu Vo = V7 ull7, . (4.95)
M
By our assumption (29)
f Ricy (V7u, V7u) ¥y > k [V7ul], . (4.96)
M

130



4.5. ALOWER BOUND ON A1,(6)

Moreover (by (29) with X = E, and (4.117))
p > nk. (4.97)
In particular py = sup ¢y, p(x) > 0 and
fM IVl ¥y < po V4[5, . (4.98)
For any X, Y € H(M) (by Cauchy-Schwartz inequality)
IAX, V)l = |Go(X, TV)| < IXIHITYI < NIl XYL,
I7llx = sup {Gox (txv, Txv) v e HM),, Ggy(v,v) =1}, xeM.
Consequently (by Gy(JX,JY) = Go(X, Y))
fM AV, IVHu) < o |[V7ul, (4.99)
where 79 = sup, ¢, l|I7llx. The integral Bochner-Lichnerowicz formula (4.92) reads (by (4.93))

0 = ||TL V24l — 8n lluol, +

3 3+ 1
+f nt Ricv(vHu,VHu)—ﬂA(vHu,JVHu) P,
m\n+2 n+2

vl - o Il o 2

1
2n+ 1)(n+2) j;,,
(by (4.94) and (4.96)-(4.99))

1 2 2
> — [Apull?, — 8n lluoll?, +

(n+3)k 3(n+ 1)7’0] HVHu||2 3
12

~ 2n n+2 n+2
2 Lo H |2
-1 ||v# - ||V
” M”L? 2(n+ 1)(n+2) ” u“LZ
so that (by (4.95))
i_1+1 (n+3)k_3(n+1)7'0_
2n Al n+2 n+2
Po

- | Al <8 2.
CESIE 2)]} 1Apul, < 8n o2,
Finally (by (4.95) and Chang-Chiu inequality (4.118) in §4.7)

_2n+3+1 (n+3)k_(11n+19)‘1'0_ £0 <
n+2 A(2n+1) n+2 2+ D(n+2))
or
2n

{(n +3)k - (11n+ 1979 - } (4.100)

A1>— " £0
(n+2)(n+3) 2(n+1)
which the announced lower bound on 4;(6) (cf. (30) above). Of course this is useful only when

S (Iln + 19)‘(’0 + £0o
n+3 2n+ D(n+3)°

In particular (by (4.97)) it must be k > 2(n + 1)(11n + 19)7o/[(n + 2)(2n + 3)].

k

(4.101)

131



4.6. CURVATURE OF THE FEFFERMAN METRIC

4.6 Curvature of the Fefferman metric

The main purpose of §4.6 is to complete the proof of Lemmas 4.2 and 4.3. We start with the
calculation of
RP (X", TV Z" = [Dy:, Dy1] 2" = Dy 1y 2"

for any X,Z € H(M). By (4.25) (followed by (4.23) and (4.26))
DyiDpiZ' = (VxV72)" + (VxpZ)T + (4.102)
+{QX,V72) + Q(X, ¢Z)) TT-
~2{(do) (X", (Vr2)") + (do) (X", (92)") +
+A (X, V72) + AKX, $Z)} S +
+ax" ((da)(zT , TT)) S + 2(do)(Z", THIX)'.

Similarly
DDy Z' = (V%2 + (¢VxZ)T+ (4.103)

+T QX 2V T +2Q(X, 2)VT+
+4(do) (Vx2)", TT) S -
~277((do) (X7,27)) S - 2T(A(X. 2))S,
DixiZ" = (Vixn2)' + QUX, T1,2)T"- (4.104)
~2{(do) (IX.T1", Z") + A(IX. T1, 2)} S +

1 T
a2 {4(n TP ‘”(X)} J2)".

The identities
[X,T]=-Vr X+1(X), VQ=0,

together with (4.102)-(4.104) lead to
R, TZ! = (RV(X.T)Z) + (Vx9)2)! +
+{QX, ¢Z) - QX, 2 TT - 2Q(X, Z) VT +

+4 {A(TX, Z) - A(X, ¢Z) + % (VrA)(X, Z)} S—

~2{(de) (X", (Vr2)") + (do) (X, (92)")} S+
+4X"((do) (27, T7)) S+

+2(do) (21, TT) (UX) - 4(do) ((Vx2)', TT) S +
+27" ((do) (x7,27)) S -

-2 {(dU) ((VTX)T , ZT) - (do) ((TX)T , ZT)} S—
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4.6. CURVATURE OF THE FEFFERMAN METRIC

1 1 :
) {4(n D X(p) - SD(X)} J2)',

and then (by (4.36) and (4.38)) to (4.41). Next one needs to compute R” (XT,8)Z". One has (by
(4.23)-(4.27))

Dy DsZ' = % {(VxJ2)" - Go(x, 2)T™} - (4.105)
—{dor)x",(J2)") + AKX, JZ)} S,

DsDyZ' = % IVx2Z)' =25 (do)X", Z))s. (4.106)

Finally
Dix151Z' =0 (4.107)

because of (by (4.26))
[x".5]| = Dy:S - DsX" = 0.

Then (4.105)-(4.107) lead to
1
RP(X",8)7" = ) Go(X,2)T" — A(X,JZ)S +

+ {2 S ((da)(xT, ZT)) — (do) (X", (JZ)T)} S

and then (by (4.36) i.e. § ((do)(X", Z")) = 0) to (4.42). Next one computes R°(XT, ¥)T". To this
end (by (4.24))
DyiDyiT" = Dyt (Y +¢Y)' =

or (by (4.23))
DyiDyi TT = (VxtY + VyoY)' (4.108)

HOQX, TY) + QX, pY)IT -
=2{(de) (X", @) + (dor) (X", (1))} S -
~2{A(X, TY) + A(X, $Y)}S.

The identities
QX, 1Y) = -AX,JY), AX,7Y) = Gy(rX, 1Y),

and (4.65) show that Q(X, 7Y), A(X, 7Y) and Q(X, ¢Y) are symmetric in (X, Y). Let us interchange
X and Y and subtract the resulting identity from (4.108). We obtain

DDy T" = Dy Dy TT = (4.109)
= (Vx1Y — VytX + VxoY — VypX)| —
—2{A(X, ¢Y) — A(Y, $X)}S —
~2{do) (X", @¥)") = (do) (Y". =X)T)} 5 -
—2{do) (X", (¢1)") - (do) (Y7, (6X)")} .
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4.6. CURVATURE OF THE FEFFERMAN METRIC

On the other hand (by (4.65))

AX, pY) = Go(tX, ¢Y) = Go(JTX, JPY) = Q(@JY, TX) =

= 2t 2) {Ricy(tX,JY) — (n — DA(@X, JY)} -

Jo

A+ D(n+2) AXJY)

where
A(TX,JY) = GQ(TZX, JY) = —Gy(tX, JTY) = -Q(7X,TY)

is skew-symmetric in (X, Y). Thus

A(X, ¢Y) — A(Y, ¢X) = (4.110)

n—1
= Ri X,JY) — Ri Y, JX — Q(tX, 1Y).
) {Ricy(7X, JY) — Ricy(7Y, JX)} + P (X, 1Y)
Moreover (by (4.37), (4.24) and (4.27))
Dy T! = @GIX. YD + (41X, YD - 4QX, V' (4.111)
Then (4.109)-(4.111) and (4.52) (together with 7T = ¢T = 0) lead to

RPXT, YDHTT = (Vx1)Y + (Vxp)Y)' — (4.112)

1
———{Ricy(7X, 1Y) — Ricy (7Y, JX)} S —
n+2

2n—1)
n+2

~2{(de) X", @)1 = (do) (YT, (xX))} S -

Q(TX,7Y)S +4Q(X,Y) V=

~2{(dn) X", (1)) = (do )Y, (eX)N} S
hence (by (4.36))
RP(XT, YDTT = (Vx1)Y + (Vxp)Y)! — (4.113)
L {Ricy(tX, JY) — Ricy(tY, JX)+
n+2
+Ricy(Y, JTX) — Ricy(X, JTY)+
+Ricy (Y, J¢X) — Ricy(X, JpY)} S —

_2(n—1)
+2

Q(TX,7Y)S +4Q(X, V)V =
I L
2(n+ D(n +2)

n—1

+2

QX 7Y) = Q, 7X) + Q(X, ¢pY) — Q(Y, ¢ X)} S+

+

{AX,7Y) - A(Y, 7X) + A(X, ¢Y) — A(Y, $X)} S.
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4.6. CURVATURE OF THE FEFFERMAN METRIC

Yet the quantities (X, 7Y) = —A(X, JY) and (by (4.65)) Q(X, ¢Y) and A(X,7Y) = Go(7X,7Y) are
symmetric in (X, Y) hence (4.113) simplifies (again by (4.110)) to (4.43). Next we compute

RP(X",Y1S = Dy1Dy1S — DyiD1S — Dy y1yS =

(by (4.26), (4.37) and (4.27))
1 1
= Dy (E(JY)T) — Dy (E(JX)T) — DixypS-

Jel
2(n+1)

2 {Ricv(X, JY)-(n—- DAKX,Y) -
n+2

(by (4.23) and (4.26)-(4.27))

Q(X, Y)} DsS =

{(VXJY)T +QX,INT' -2 [(dO')(XT, UNN + AX, JY)] S—

| =

—(VyIX) = QY IX)T" +2 [(da)(YT, JXON + A(Y, JX)] S} -

—3 UTILX, YT = 60X, YD1 =
(by (4.52)) .
= 5 (VxDY = (VyHX)T -
~{dr) XTI + (@) (TX)T, YD) S =
(by VJ = 0 and (4.36))

_ 1 o o )
B 2(n+2){2(n+1)Q(X’JY) (n— DA(X, JY)

—Ricy(X, JZY)} -

! p
“2(n+2) {2(n TRV D) — (= DAUX, V)

—Ricy(JX,JY)} =

= 2 12) 2(n-1DAX, JY)+

+Ricy(JX, JY) — Ricy(X,Y)} =0

(by applying (4.61)) thus leading to (4.44). Next we compute
RP(1",$)2" = Dp1DsZ" - DyD1 2" = Dy 12" =

(by (4.25)-(4.26) and [TT,S] = 0)

=Dyt (% (JZ)T) - Ds ((V7Z + ¢2)" + 4(do)(2", THS ) =
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4.6. CURVATURE OF THE FEFFERMAN METRIC

(by (4.25))

((VrIZ +¢J2)! + 4(do)(IZ)', TS | -

| =

—% J(V7Z + ¢Z)! =4S (do)(Z", TT))S — 4(do)(Z", THDgS =
(by (4.27))
= % (VrDZ +[¢, J12)" +
+2(do ) ((JZ)T, THS = 4(do)(Z", THS.

Finally VJ = 0, [¢, J] = 0 and (4.38) yield (4.45). The proof of (4.46)-(4.47) follows (by (4.27))
from

RY(T",$)T" = D1y DsT" = DgDy TV = Dy T =
=-Ds (2VT) = -UV),
R(T",8)S = Dy1DsS — DsDy1S — Digi 618 = 0.

The proof of Lemma 4.2 is complete.
To prove (4.55) let X € H(M). Then (by (4.53))

Riep(XT.77) = 3 FoRP(EL THXT, E)+
a

+2 Fg(RP(s, THXT, TT)
and (by (4.41))
RPELTHX" = (RY(EWTIX)' + (Ve,0)X) +

= {eOUED + @E)UX)'| -

- 1 n_
4n+ D(n+2) {X(p)(JEa) + E (p)(JX) }

“20(E,;, X)V!, mod T7,S.

Let us take the inner product with El and sum over 1 < a < 2n. One obtains

Z Fo(RP(E), THXT, E!) = Ricy(X, T)+ (4.114)

+trace {I1g(Vo)X} + L e(JX)+
n+2

1
A+ D+ 2)
Also (by the symmetries of the Riemann-Christoffel tensor and (4.46))

QX, Vi p) — 20V, X).

Fo(RP(S, THX", TT) = Fo(TTS)TT, X" =0
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so that (4.114) yields (4.55). Next (again by (4.53))

RP(X,8) = )" FoRP(EL,$)XT, ED)+

+2 Fo(RP(T7,$)X1,8) =0

by (4.42) and (4.47). Indeed (by (4.42)) RP(E], $)X" = 0, mod T, S and H(M)™ is orthogonal
on RTT @ RS. This yields (4.56). Moreover (by (4.46))

Ricp(T1,T7) = 3" FoRP(E], THT', E}) =
a
= - > FoRP(E], THE],T")
a

and (by (4.41))
1
RP(XT, THX" = - {Ricy(X, J¢X) + Ricy(tX, JX)—-
n

-2 [(VX@X - (Vxdp)X |+

4n+1)
+(V7rRicy)(X, JX) + (n + 5)(V7 AKX, X)+

P
2(n+1)

+3(n +3)[AX, ¢X) — AX, X)]}, mod HM)', TT,

+

[QX, pX) — QUtX, X)] +

hence (for X = E,)
Ricp(TT,TT = (4.115)

1
= traceg, I1g {Ricy(-, J¢-) + Ricy(r-, J-) +
n+?2

n+5

+

1 .
4(n n 1) Vdp - V(p - E (VTRICV)(- ,J ) + VTA} +

P 3(n + 3)
+—4(n Dt trace(Jo — 1J) + p—

Since trace(rJ) = trace(r¢) = 0 the identity (4.115) implies (4.57). Moreover (by (4.53))

trace(t¢ — Tz).

Ricp(T1,8) = > FoRP(EL,$)TT,E]) =
a

= - > FyRP(E], $)EL,T")
a

or (by (4.42)) np
Ricp(T1,§)= —————= 4.116
o S) =~ D) (4.116)
+4(n ) traceg,I1y Ricy
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and
traceg, [ Ricy = Z Ricy(E,, E,) =
a

= S ELELR Y + ELETR ; + ELEAR,, + ELERRy).
a

Ea = E(/IITA + EZTX’ EZ = E_le, Z EZ}EE = g/lﬁ ,
a

so that (by (4.32)-(4.33)) _
trace, ITyRicy = 2g¥R 7+

+ Z i(n—1) {EﬁEﬁAM - EZE’ZAE} -
a
=2p+i(n—1) ) {AGE, EY%) - AGEY!, EQD) =
a
=2p+(n=1) ) AUEq4, Eq) = 2p + (n = 1) trace(r.)
a

i.e.
traceg, I1g Ricy = 2p.

Substitution from (4.117) into (4.116) leads to (4.58). Finally (by (4.42))

Riep(S.8) = ) FuRP(EL.$)S. E}) =

1 n
_ D, -7 T _ - _ "
= Ea Fo(R™(Eg, S)E;,S) = 1 % Go(Ey, Ey) = >

i.e. (4.59) holds. Lemma 4.3 is proved.

4.7 The Chang-Chiu inequality
The purpose of § 4.7 is to give a proof of

1
n ol < ~ Al + 4 7o |97l

(4.117)

(4.118)

for any u € C*(M,R) (compare2 to (3.5) in [92], p. 270). This is referred to as the Chang-Chiu

inequality. To prove (4.118) let us contract (4.8) by #? so that to obtain
Lt‘BV()uﬁ = uﬁVﬁuo - Aaﬁuauﬁ

or
Mﬂ Vouﬁ = V/g (M()Mﬁ) — Uy Vﬁuﬁ - Aaﬁu”uﬁ .

(4.119)

Discrepancies among (4.118) and (3.5) in [92], p. 270, are due to the different convention as to wedge products of
1-forms producing the additional 2 factor in (4.7). Cf. also (1.62) in [94], p. 39, and (9.7) in [94], p. 424. Through this

thesis conventions as to wedge products and exterior differentiation calculus are those in [98], p. 35-36.
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On the other hand (by (4.7)) B
Vil = Vgl = 2in ug

so that (by substitution into (4.119))
WP Voug + o Vi = 2inud — Agpu®tl® + Vg (uo) (4.120)
Next (again by (4.8))
uo VEuB = VE (uouB) - u’EVBuo = VB (uouﬁ) - uB(VouE + u),A%)
hence (by substitution of ug Vguﬁ into (4.120))

i(:ﬁ Vouz - i Vouﬁ) - 4.121)

= 2nu% + i(Aaﬂuauﬂ - Aaﬁuaug) + i{Va (uoua) -V, (uou")}
(compare to (2.4) in Lemma 2.2, [92], p. 268). Calculations are performed with respect to an

arbitrary local frame {T,, : 1 < @ < n}in T o(M) (rather than a Gg-orthonormal frame, as in [92]).
The next step is to evaluate the left hand side of (4.121) in terms of the operator P + P. One has

w0 = 5- (Vﬁuﬁ - VEMB)
hence (by (4.8))

_ _ i - — _ -
u® Voug = u® (Vguo - uﬁA’g) =5 u*Vy (Vﬁuﬂ - Vguﬁ ) - AEBM‘I W’ =

= o (VaVl = VeVl ) - Agu® =
= (éﬁ gy — & y“aBy) - AaB“a“E
or )
— l —_ =
W™ Voug = 5 u (uz"5 - uz”y) = Aggu v’ . (4.122)

Using Pgu = ug”, — 2ni A uﬂ the identity (4.122) becomes

iu” Vouz = = u” (Pgu - uz’5). (4.123)

1
2n
Let us take the complex conjugate of (4.123) and add the resulting equation to (4.123). We obtain

2ni (u Voug — uﬁVouﬁ) = u"Pgu + u®Pou — {u uay +u uayy} (4.124)
where P u = ucﬁy + 2niAa,3uﬁ. Let us replace u® uaﬁﬁ +u® uflg from (4.15) into (4.124). We
obtain

2ni (u” Vouz — u” Vouq) = 2 (u” Pou + u” Pgu) - (4.125)
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“ni (Aaﬁuauﬁ - Aaﬁﬁuﬁ) + (V) Ay,
Finally substitution from (4.125) into (4.121) leads to
2 (u” Py + u” Pgu) + (V"u) (Apu) = (4.126)
= 4n2u(2) + 4ni (Aaﬁu“uﬁ - Aaﬁuaﬁ) + 2ni {Va (uoua) -V, (uoua)} .

Let us observe that I
i(Aaguo‘uﬁ - Aaﬁu“ﬂ) =A (VHu , JVHM) ,

i{VQ (uou®) — Vg (uoua)} = div (uo JVHu) ,
u® Py + u® Pyu = gp(Lu, dpu),

where L = P + P. Then (4.126) becomes
285 (Lu, dpu) + (VH u) (Apu) = 4n* ul+ (4.127)
+4n A (V"u, IV u) = 2ndiv (o JV"u).

Let us integrate over M and use Green’s lemma. Then (by Lemma 4.1)

-2 f (Pou)u ¥y + f (VHM)(Abu)‘Pg= (4.128)
M M

= 4 |luol2, + 4nf A(Yu, I9"u) .
M

Also (again by Green’s lemma)

fM (VH1) (Apir) W = fM {div ((Apu) V'"u) = (Apue) div (VFu)} Wy =

= f (Apt)* Wo = [|Apull?, .
M

Finally as Py is nonnegative (4.99) and (4.128) lead to (4.118). Q.e.d.
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Chapter 5

A New proof of the CR Pohozaev
Identity and related Topics

5.1 Introduction and Main Results

We are concerned with non existence results for the following semilinear boundary value problems
on a bounded domain Q of the Heisenberg group H"

-Agu = gu) inQ
(P){ u =0 in 0Q),

where Ay is the sublaplacian of H”, g is a C' function. Recall that the Heisenberg group H" is the
homogeneous Lie group whose underlying manifold is R?**! and group law given by

@) =& E=@+xX, y+Y 1+ +2(<x, Y >=-<x,y>)

where < .,. > denotes the inner product in R", £ = (x,y,f) and & = (x’,)’,#'). The homogeneous
norm of the space

p@ = ((x P+ 1y P2 +2)

and the natural distance is accordingly defined by d(&,&") = p(&~! - ¢). The Koranyi ball of center
¢, and radius r for this distance is given by B,(¢) = {€ € H"/ d(&o,¢) < r}. There are a remarkable
families of transformations groups on H", the group of parabolic dilations and the groups of left
translations. The parabolic H"-dilatations are the following transformations

5,11Hn — H"
(x,y,f) — (Ax,Ay,2’t), 1> 0.

The Jacobian determinant of §, is A2"*2, it yields that the homogeneous dimension of H" is Q =
2n + 2. For a given ¢ € H", one can define a group of left translations by setting:

To(€) =T, (€)= aé & VEEH"
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The generators of the group of dilations {64, 4 > 0} and the group of left translations {7, , @ € R}
are given respectively by the following smooth vector fields

X = (x,‘ax,. + yiayi) + 2t0; (51)
i=1

YE) =YW, Y, 0) = ) (6 +yy) + ( +2A< x,y > = <X,y >)d. (5.2)
i=1
We say that a function « is homogeneous of degree k with respect to the parabolic dilations {0, 4 >
0} if and only if u 0 6, = A*u for A > 0, which implies that its Lie derivative with respect to X
satisfies Lyu = X u = k u. For example, the naturel distance function is homogenous of degree
1. In the other hand a function u is homogeneous of degree k with respect to the group of left
translations {7, @ € R} if and only if its Lie derivative with respect to Y satisfies

Lyeyu=Y(E)u=ku.

The subelliptic gradient is given by Vg = (X1,...,X,, Y1,...,Y,) where X; = 0y, + 2y;0;, ¥; =
0y, — 2x;0,, i € {1,2...n} span the horizontal subspace of the tangent space of H" accordingly to
the following decomposition TH" = H @& RT, where H is the horizontal subspace and T is the
Reeb vector field given by T = 9,. The Lie Algebra of left invariant vector fields is generated by
{(Xi, Y)1<i<n, T). Since [X;, Y;] = —4T, the Heisenberg laplacian Ay = 3 (X? + Y?), is a second
order degenerate elliptic operator of Hormander type and hence it is hypoelliptic. If we denote by
A = (a;;) the 2n+1)x(2n+1) symmetric matrix given by a;; = 6;;if i, j = 1,...2n, aon+1y; = —2x;
it j =n+1,..2n and agusnensn) = 4|z|*. We remark that the matrix A is related to Ay by
the formula Ay = div(A V) where V and div denote respectively the euclidian gradient and the
euclidian divergence operator of R?**!. The canonical contact and volume forms of H" are given
by 8y = dt + 23 1<i<p(xi dyi — yidx;) and d'¥q, = 6p A dag. A fundamental solution of —Ay with
pole at zero is given by (one can see [43])

rE) = -2
G
where cg = % and Q = 2n + 2. Moreover, a fundamental solution with pole at £ is
’ CQ
I'¢.¢)=——7575-
d(€,6)22

A basic role in the functional analysis on the Heisenberg group is played by the following Sobolev-
type inequality

lpl3e < clVamgl3, Vo € Cy(H™)

where Q* = % This inequality ensures in particular that for every domain Q of H", the function

lpl = [Venglz is a norm on C(€2). We denote by S 12(Q) the closure of Cy (€2) with respect to this
norm, S '2(Q) becomes a Hilbert space with the inner product

<U,v>gi2= f < Vmeu, Vignv > d¥Py,.
o)

Define S (l)’z(Q) as the completion of C7(€2) with respect to the norm above.
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The PohoZaev Identity is the principle tool used here to investigate the relation between domain
geometry and solvability of equation (P). We seek u a positive solution to equation (P), where g
has critical or supercritical growth, meaning, g(u) > ku'*7 for some positive constant k. We ask
the question " for a prescribed domain and a nonlinearity g, can we find a positive solution u?". For
Euclidean domains Q c R", S.PohoZaev in [97] proved that there is no solution for starlike ones,
on the other hand, A.Bahri and J.M.Coron, W.Y.Ding in [1] and [105], have shown that a solution
exists when g(u) = u”*, and the domain has nontrivial topology, here p* = (N + 2)/(N - 2)

is the critical exponent for the compactness of the Sobolev inclusion Wg’p Q) — L1(Q), for

1 1k
- =——-—-,1<p < g < oo where W(l;’p (€2) is the completion of C(€2) with respect to the
n

q p
norm |lullyrrqy = Sup o)<kl Dullr).-

For the Heisenberg group and using arguments related to the topology of the domain, G.Citti
and F.Uguzzoni [44] following the work of A. Bahri and Coron, gave the Kohn Laplacian coun-
terpart of the celebrated theorem in [1], and proved an existence result for Yamabe type problem
on domains which have a nontrivial homology group (with Z;-coefficients), I.Birendili, I.Capuzzo
Dolcetta and A.Cutri in [53] used blow up techniques to prove existence results, while in [39]
F.Uguzzoni gave a non-existence result for equation (P) involving the critical exponent on halfs-
paces of the Heisenberg group. We have also to mention the non existence results of E.Lanconelli
and F.Uguzzoni on unbounded domains of the Heisenberg group in [33] and [34], and the exis-
tence of positives solutions on the Heisenberg group one can see [65] and[91].

For euclidian domains by strict-starlike, we mean that if x € R" and v is the boundary normal,
then on the boundary of the domain (x.v) > O for all x. P.Pucci and J.Serrin noted that PohoZaev’s
result did not require strict starlikeness on the domain and what was needed was a domain with a
vector function 4 that acted like the starlike vector field 2 = x. Several authors P.Pucci, J.Serrin,
R.Schaaf, .McGough, J.Mortesen, C.Rickett and G.Stubendieck in [82], [88], [61], [62] and [63]
have examined this new class of A-starlike domains and the resulting extensions of the PohoZaev
like results.

While for the Heisenberg group H" using the geometry of the domain to give non existence and
existence results for equation (P), N.Garofalo and E.Lanconelli in [78] have used the analogy with
the hstarlike euclidean domains for a given vector field 4. They defined for the Heisenberg group a
notion of CR starlike domains for two special smooth vector fields, X and Y which are respectively
the generator of the group of dilations and the generator of the group of left translations of H" given
by (5.1) and (5.2). Next we will introduce the definition given in [78] of domains starshapeness
which will be used throughout the present work. Given a piecewise C! bounded domain Q c H",
we say that it is 0—starshaped with respect to a point &y € €, if denoting by N the outer unit normal
to the boundary of T (Q), we have

XN=>0 (5.3)

at every point of (9(T§61 (Q)). For a bounded domain Q of H”, we denote by C(ﬁ) the space of all

continuous functions f : Q — R such that X; f, Y;f, X2f and Y2f for i € {1,2,....n} are continuous
functions on Q and continuous up to the boundary of Q.
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CR versions of the Pohozaev identity

1. Letuce C(ﬁ) be a solution of the equation (P), then we have

fIIVHnullzX.NdO' = —(Q—2)fug(u)du+2QfG(u)du.
Q Q Q

where G(u) = fu g(s) ds.
0

2. We replace in equation (P) g(u) by g(&, u)_: Wiy (&) u, with € € H" and h € C*(H"), set
(P") the equation thus obtained. If u € C(Q) is a solution of (P’), then we have

1
f IVepul* X.Ndo = -2 f (h+ S (XW))? d¥g,.
90 Q 2

PohoZaev’s non existence results

Let Q c H”" be a bounded and connected domain such that 0 = (0,0,0) € Q and Q is
o—starshaped with respect to this point.

1. Then any positive solution u of equation (P) vanishes identically if

—(Q —2)ug(u) +20G(u) < 0. 5.4

2. Ifg(u) = Wi u, A < 0, then (P) has no positive solution u different of the trivial solution
u=0.

3. Let the function & given in equation (P’) satisfies
1
h+ E(Xh) < 0. (5.5)

Then there is no positive solution u € S (1)’2(9) of equation (P’) unless u = 0.

The chapter is organized as follows. In section 5.2, we prove preliminary results and give the CR
PohoZaev Identity. The section 5.3 is devoted to establish some non existence result for equation
(P) based on the theory of unique continuation property proved by N. Garofallo and E. Lanconelli
for solutions of semi linear equations on Heisenberg group domains, one can see [77] and [78]. In
section 5.4, we study a Yamabe like problem on a bounded domain of the Heisenberg group and
deduce a non existence result using a related CR PohoZaev Identity.
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5.2 Description of the Problem

We will be interested on the existence of a positive solution to the following semilinear equation
—Agu = gu) inQ
(P) { u =0 in 0Q2,

where Ay is the sublaplacian of H", g is a C! function on Q a bounded domain of the Heisenberg
group H".

Lemma 5.1. Ifu is a solution for problem (P), then we have

_fAHM(XM): fg(u)(XM)ZfX(G(u))=—(2n+2)fG(M)
Q Q Q Q
where G(u) = fu g(s) ds.

0

Proof. We multiply equation (P) by Xu and integrate by parts, we obtain

—fAHu(Xu)zfg(u)(Xu).
Q Q

Since i()ciG(u)) =G(u) + xiiG(u) for i € {1,...n}, we have
0x; Ox;

[ w6 = [ 6w+ [ w6
Q Bxi Q Q axi

0
thus it yields that f G(u) + f x,-a—G(u) = 0, since u is equal to zero on the boundary of Q.
Q Q Xi

In the same way we obtain
0
[ 6w+ [ yiz-Ga=o,
Q o Oy

0
fori e {1,...n} and f G(u) + f IEG(u) = 0, hence the proof of the lemma is complete.
Q Q
O

In what follows, for a bounded domain Q of H”, we denote by C(Q) the space of all continuous
functions f : Q — R such that X; f, Yif, Xl.2 f and Yi2 f fori € {1,2,...n} are continuous functions
up to the boundary of Q. Next we will consider the following vector field on H?, P = Xu(Vynu) =
(P1, P2, ...., Py;), where u is in C(ﬁ). If we denote by div the horizontal divergence operator on H",
we remark that

divP = divin P = Z(X,P + Y;P) = divP. (5.6)
i=1

where P = (Fl , FZ, - an, Fz,m) is the vector field on R?"*! obtained from P as

n
ﬁj = Pj, fOI’jZ 1,...2n and ﬁ2n+1 = ZZ(yij—Xan+j)
j=1
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Let Z be the vector field ||VHnu”2 X, since divX = 2n + 2, it yields

f divZ = 2n + 2)f IVerul® + X < Vu, AVu > . (5.7)
Q Q

Using (8) and (9), we obtain the following result:
Lemma 5.2. Let Q be a bounded domain of H" and u € C(ﬁ). Then

f&?vP:qu Ayu + fdin—anllVHnullz—f < AVu,V(Xu) > .
Q Q Q Q Q

Proof. We have
divP = (Xu)div(Venut) + VignuVen (Xu) = Xu Agu + VetV (Xu).

A simple computation gives

n
Ponv1 =2 Z(Xu) (v;Xj — x;Y;)
J=1
therefore, since VignuVyn(Xu) =< Vu, AVXu > and

X<Vu,AVu>—<AVu,Z( (o )ax,+X( )),)+X( )0;) >
j=1

< Vu, AVu > —2 Z X (1) = x;Y(w)),

< Vu,AVXu >

+

we obtain

fcﬁ'vP:
Q

Xu Agu + f divZ — 2n +2) f I
Q
n

<AVu,Vu—Z(( )axl+X( )>,)+X( ;) >
j=1

ou <
2[—( (v X;j(w) — x;Y (u))
o Ot ]Z:; JJ Jti
qu Agu + fdin—anIlVHnullz—f < AVu,V(Xu) > .
Q Q Q Q

Denoting by N the euclidian unit outer normal to dQ2 and do- the 2n-dimensional Hausdorff
measure on R?"*!if i is in C(Q) the following holds

+
5— 5

O

Theorem 5.3.

2f X(u)(AVu.N)dO'—f ||VHnu||2X.Nd0'=2quAHu—2nf||VHnu||2.
0 Q Q Q

146



5.2. DESCRIPTION OF THE PROBLEM

Proof. We have

f divZdWy, = f Z.Ndo = f <ZN>do= f Vil ? (X.N)do, (5.8)
Q 0Q 0Q 0Q

and
f divPd¥y, = f divPdx = f P.Ndo,
Q Q 0Q
where
Po= (P2 X@)(X;() = x;¥ () = (Xut.Ventt, 2 3" (X(u)y, X (1) = x;¥ 1))
i=1
= XV, 2 Y (X ) — x;Yj(u)) = X(u)(AVu).
i=1
Therefore

fdiv?dx:f Xw)(AVu.N)do. 5.9
Q 0Q

On one hand, using Lemma 2.2 and (11), we obtain
f Xw)(AVu.Nydo = f XuAgud¥e, + f ||VHnu||2 X.Ndo
40 Q 40

- f IV ezoudl> d¥, — f < AVu, V(Xu) > d¥y,.
Q Q

In the other hand, we have

f&?vpzfdivﬁ'
Q Q

f div(X(u)AVu)
Q

f(X(u)div(AVu) + DX(u)(AVu)
Q

f(X(u)div(AVu)+fVX(u).AVu
Q Q

qu.AHu + f < AVu,V(Xu) > .
Q Q

The result follows. O

We are now ready to state a CR version of the "Pohozaev identity". Let g : R — R be a C!

function with primitive G(u) = f g(s)ds and let u € C(ﬁ) be a solution of the equation
0

—Agu = gu) inQ
(P){ u =0 in 02,

in a bounded domain Q c H". Then there hold

f(—AHu)Xu= fg(u)X(u)=—(2n+2)fG(u),
Q Q Q

147



5.3. POHOZAEV’S NON EXISTENCE RESULTS

and

f IVignul* = f ug(u)du.
Q Q

In the other hand X.u =< X, Vu >, since the unit outer normal N = — we obtain

Vu
Vull’
X(wm)=—-<X,N>||Vu||.

Therefore

f Ve ul® X.Ndo f < AVu,Vu > X.Ndo
0Q 0Q

f < A||Vu|| N, ||Vul| N > X.Ndo
0Q

and computing this product, one obtain

<AVu,Vu><X,N> = |Vu|? <AN,N>.<X,N >

_v
= |V <AN.N >< X, —% 5
[Vul|

= —|Vu|| < AN,N >< X,Vu >
= —||Vu|| < AN,N > X.u
= <AVu,N > X(u).

It yields

f \Venul> X.Ndo = f X(u)AVu.Ndo.
0Q Q

Therefore using (5.10) and (5.11), Theorem 2.3 reads as

Theorem 5.4. Letu e C (5) be a solution of the equation (P), then we have
f ||VHnu||2 X.Ndo = —-(Q — 2)f ug(u)du + ZQf G(u)du.
0 Q o)

Theorem 2.4 is a CR version of the "Pohozaev identity".

5.3 Pohozaev’s non existence results

(5.10)

(5.11)

We say that a family of functions has the unique continuation property, if no function besides
possibly the zero function vanishes on a set of positive measure. In this section we proceed to
establish some non existence result based on the theory of unique continuation property proved
by N. Garofallo and E. Lanconelli for solutions of semi linear equations on Heisenberg group do-
mains, one can see [77] and [78]. We begin this section by introducing the notion of starshapeness

which will be used throughout this chapter.

148



5.3. POHOZAEV’S NON EXISTENCE RESULTS

Definition 5.5. [78] Given a piecewise C' domain Q c H", we say that is 6—starshaped with
respect to a point &y € Q, if denoting by N the outer unit normal to the boundary of Tfal(g), we
have

XN=0 (5.12)

at every point of (9(7551 (Q)).

We observe that if we left-translate & to the origin then v(¢) = M(Té;a]f) is in CT‘;;(;] (Q) and
satisfies the same equation as u. Therefore we may assume without loss of generality that the origin
belongs to the domain Q. By using the definition 3.1, we obtain as a consequence of theorem 2.4
the following non existence result for equation (P).

Theorem 5.6. Let Q C H" be a connected and bounded domain containing 0 = (0,0, 0),_and
assume that Q is d—starshaped with respect to this point. Then any positive solution u € C(Q) of
equation (P) vanishes identically if

—(Q —2ug(u) +20G(u) < 0. (5.13)

Proof. The proof is similar to the one given by N.Garofallo and E.Lanconelli for solution of such
example of semi linear equations on Heisenberg group domains, one can see [78]. The proof is
based on the theory of the unique continuation property developed in [77]. Since the domain is
o-starshaped i.e X.N > 0 on the boundary of €, hence from theorem 2.4, we deduce that ||VHnu||2
is identically equal to 0 in dQ N B, () for some & € dQ and r > 0. Therefore if we set u = 0 in
(H" \ Q) N B,(£), we obtain a positive solution of

—Agu=Vu in B.(§) (5.14)

where Ay is the sublaplacian of H", V € L¥(B.(§)), V = 8w whenu #0and V =0whenu =0
u

in B,(£). In the appendix of [78] Corollary A.1, by using the method of the unique continuation
property for the solution u of (16) the authors prove that u = 0 in B,(£). We can reformulate the
result of Corollary A.1 as follows, if we denote by D the maximal open set of B,(£) on which
u vanishes then there exist a sphere S such its interior is entirely contained in D and there exist
&€ ONNS. As u vanishes in one side of S, it follows that ¢ € D, and hence the maximal open set
D of B,(€) on which u vanishes is the hole ball i.e D = B,(£). To complete the proof i.e to show
that # = 0 on €, we use the fact that Q is connected. O

. 2
Next we will focus on the special case where g(u) = Au + u” , p* = 1+ — is the critical
n
1 1 k
exponent for the compactness of the Sobolev inclusion § kr(Q) — L%(Q), for — = — — i
s p n
1 < p < s < oo; here S¥P(Q) is a Folland Stein space [24], the CR counterpart of The Sobolev
space W!2(Q) for euclidean domains. Define S g’p (€2) as the completion of C°(€2) with respect to
the norm ||ullsrr) = Sup (a)<kllZ%llr@), Z% = (Zays -oer-Zay), Where @ = (i, ......, ax), each a;
isaninteger 1 < a; < 2n, l(a) = a; + ..... + a4 and

7 - X, forl1<a;<n
@ Yo, for n+1<ea; <2n.
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More precisely, given 4 € R we would like to solve the problem

—Agu = W+ inQ
E,(W{u > 0 in Q
u =0 in 0Q2

We obtain in this case the following non existence result

Corollary 5.7. Suppose Q is a bounded domain in H", which is 6—starshaped with respect to the
origin 0 = (0,0,0) and let A < 0. Then any solution u € S é’z(Q) of the boundary value problem
E,+(A) vanishes identically.

Proof. we will proceed by contradiction and suppose that there exist a nontrivial solution of
E,+(1). A simple computation shows that

—(0 - 2)ug(u) + 20G(u) = 24 u>. (5.15)
Therefore using the result of Theorem 3.2, one deduce that A > 0. The result follows. O

Let us remark that one can obtain the above result for a strict-0—starshaped domain by a direct
method, in fact two cases occur
-If 1 < 0, from equality (17) and theorem 2.4, we deduce that there is no positive solutions of
E, ().
-If 2 = 0, we use the Green formula for u,v € C (ﬁ)

f —Agu v d¥y, = f Vinu Vinv d¥g, — f v AVu.Ndo (5.16)
o) Q o0
. : -Vu . .
and setv =1 in (18), since N = m, we obtain for a solution u of (P)
u

Viepul|?
f—AHud%O :f Vel , (5.17)
Q oo IVull

Since Q is strict-0—starshaped with respect to 0 € H", we have X.N(£) > 0 for all £ € 9Q. Thus
from theorem 2.4, we deduce that ||VHnu||2 is identically equal to 0 on the boundary of Q, therefore

f —-Agu = 0. (5.18)
Q

2 ) .
Hence f ultin = 0, which means u = 0, since u > 0.
Q

Remarks

1. The result of corollary 3.3 still hold true for supercritical value of the exponent p, 1.e p > p*,
np-1-2

for any value of 1 < A* =
p+1
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2. If the domain € is not 6—starshaped then equation (E),) can have solutions even if (15) holds.
In fact, if we choose a pseudo annulus Q = {¢ = (x,y,1) € H'/R; < x> +y> < Ry, |t| < T}
for fixed Ry, R, T > 0, then for every fixed p > 1 and A > 0 the problem (E),) has a positive
solution u € § (1)’2(9) N C*(Q), which is Holder continuous up to the boundary one can see
[78].

However we can approch problem E (1) by a direct method and attempt to obtain non-trivial
solutions as relative minima of the functional

1
Jaw) = 5 f (IVenul* = 2u?)6o A 6, (5.19)
Q
on the unit sphere of L2*7(Q)
12 2+2
Z = {u e Sy, full % = 1). (5.20)

Equivalently, one may seek to minimize the Sobolev quotient

J,(IVenull* = 2u?)0o A d6

Sai(w) = ) , u#o0. 5.21)
™7,
Let us note that for 4 = 0
o, Vel 60 A d
So(Q) = inf Sai(w) = inf 5 , u#0 (5.22)
ues ) A(Q), uz0 ues 2(Q), uz0 ||u||2+32
L2+ﬁ

is related to the best constant for the Sobolev embedding § (1)’2(9) — L2+%(Q).

5.4 Yamabe like problems

In the sequel we will consider the case where A is a function. More precisely let 4 be a smooth
function on H", we are looking for solutions of the semilinear equation on a bounded domain Q

Agu = uthi+hu inQ
Ey(h){ u > 0 in Q
” =0 in 4Q

This problem arises naturally in CR geometry, in fact let (M;6) be a CR manifold of dimension
2n+ 1, n > 1. We ask the question on whether there exist a contact form 6 on M conformal to 6 i.e
~ 2

6 = un6,u > 0 which has a constant Webster scalar curvature. If we denote by Ry (respectively Ry)

the Webster scalar curvature of the contact form 6 (respectively 6), we have the following relation
2 1+2
2+ -)Apu+Rou=Rzu " (5.23)
n
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where Ay is the sublaplacian ( the real part of the Kohn Spencer laplacian) of the manifold M. The
existence of such a conformal contact form of constant Webster scalar curvature is equivalent to
the existence of a positive solution of (5.23). This problem is known to be the Yamabe problem,
one can see [24], [25], [75] and [76].

We have the following result.

Lemma 5.8. If u is a solution of problem E - (h), then
1
f —Apu (Xu) d¥, = _f ((n+ D) h+ 5 X h)u? d¥, - nf W2 Ay,
Q Q 2 Q

Proof. We multiply equation E)-(h) by Xu and integrate by parts, we obtain

f—AHu (Xu):fhu(Xquu”ﬁ (Xu).
Q Q Q

2(hwX u) = X(hu®)— (Xh) u?, (5.24)

on one hand, we have

and a simple computation as done in Lemma 2.1 gives

f Xhu?)=-2n+2) f hou?. (5.25)
Q Q
On the other hand, we have
f W't (Xu) = —n f W2t (5.26)
Q Q
By using (26), (27) and (28), we obtain the desired result. |

Following the method used in section2, we obtain the CR version of the "Pohozaev identity"
for the present case

Lemma 5.9. Letu e C (5) be a solution of the equation E - (h), then we have
1
f IVenul? X.Ndo = -2 f (n+ E(Xh))uz d¥y,.
a0 Q

Proof. Using theorem 2.3 and (13), we obtain

1
f —Apu (Xu) = —= f IVaoul* X.Ndo — n f Vil . (5.27)
Q 2 Jsa Q
By comparing the result of lemma 4.1 and (29), the proof of lemma 4.2 is completed. |

We are now ready to state a non existence result for equation E - (h).
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Corollary 5.10. Suppose Q is a connected and bounded domain in H" containing 0. Suppose that
Q is 6—starshaped with respect to this point and let h € C*(H") satisfying

1
h+ E(Xh) < 0. (5.28)
Then there is no positive solution u € S é’z(Q) of equation E-(h), u # 0.

Proof. The proof is similar to the one given for theorem 3.2 with V = s + h, when u # 0 and
V =0 when u = 0 in B,(£). ]
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