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vi Résumé

Résumé

Dans cette thèse, nous considérons des questions relatives aux homomorphismes de quatre
types distincts de graphes : les graphes orientés, les graphes orientables, les graphes 2-arête
colorés et les graphes signés. Pour chacun des ces quatre types, nous cherchons à déterminer le
nombre chromatique, le nombre de clique relatif et le nombre de clique absolu pour différentes
familles de graphes planaires : les graphes planaires extérieurs, les graphes planaires extérieurs
de maille fixée, les graphes planaires et les graphes planaires de maille fixée. Nous étudions
également les étiquetages "2-dipath" et "L(p,q)" des graphes orientés et considérons les catégories
des graphes orientables et des graphes signés. Nous étudions enfin les différentes relations pouvant
exister entre ces quatre types d’homomorphismes de graphes.

Keywords: graphes orientés, graphes orientables, graphes 2-arête colorés, graphes signés, ho-
momorphismes
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Abstract

An oriented graph is a directed graph with no cycle of length at most two. A homomorphism
of an oriented graph to another oriented graph is an arc preserving vertex mapping. To push a
vertex is to switch the direction of the arcs incident to it. An orientable graph is an equivalence
class of oriented graph with respect to the push operation. An orientable graph [

−→
G ] admits a

homomorphism to an orientable graph [
−→
H ] if an element of [

−→
G ] admits a homomorphism to an

element of [
−→
H ].

A signified graph (G,Σ) is a graph whose edges are assigned either a positive sign or a negative
sign, while Σ denotes the set of edges with negative signs assigned to them. A homomorphism
of a signified graph to another signified graph is a vertex mapping such that the image of a
positive edge is a positive edge and the image of a negative edge is a negative edge. A signed
graph [G,Σ] admits a homomorphism to a signed graph [H,Λ] if an element of [G,Σ] admits a
homomorphism to an element of [H,Λ].

The oriented chromatic number of an oriented graph
−→
G is the minimum order of an oriented

graph
−→
H such that

−→
G admits a homomorphism to

−→
H . A set R of vertices of an oriented graph−→

G is an oriented relative clique if no two vertices of R can have the same image under any
homomorphism. The oriented relative clique number of an oriented graph

−→
G is the maximum

order of an oriented relative clique of
−→
G . An oriented clique or an oclique is an oriented graph

whose oriented chromatic number is equal to its order. The oriented absolute clique number of
an oriented graph

−→
G is the maximum order of an oclique contained in

−→
G as a subgraph.

The chromatic number, the relative chromatic number and the absolute chromatic number
for orientable graphs, signified graphs and signed graphs are defined similarly.

In this thesis we study the chromatic number, the relative clique number and the absolute
clique number of the above mentioned four types of graphs. We specifically study these three
parameters for the family of outerplanar graphs, of outerplanar graphs with given girth, of planar
graphs and of planar graphs with given girth. We also try to investigate the relation between
the four types of graphs and prove some results regarding that.

In this thesis, we provide tight bounds for the absolute clique number of these families in all
these four settings. We provide improved bounds for relative clique numbers for the same. For
some of the cases we manage to provide improved bounds for the chromatic number as well.

One of the most difficult results that we prove here is that the oriented absolute clique
number of the family of planar graphs is at most 15. This result settles a conjecture made by
Klostermeyer and MacGillivray in 2003. Using the same technique we manage to prove similar
results for orientable planar graphs and signified planar graphs.

We also prove that the signed chromatic number of triangle-free planar graphs is at most 25
using the discharging method. This also implies that the signified chromatic number of triangle-
free planar graphs is at most 50 improving the previous upper bound.

We also study the 2-dipath and oriented L(p, q)-labeling (labeling with a condition for dis-
tance one and two) for several families of planar graphs.

It was not known if the categorical product of orientable graphs and of signed graphs exists.
We prove both the existence and also provide formulas to construct them.

Finally, we propose some conjectures and mention some future directions of works to conclude
the thesis.

Keywords: oriented graphs, orientable graphs, signified graphs, signed graphs, homomor-
phisms
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Chapter 1

Introduction

“How many colors do you need to color a planar map?" This simple sounding question, asked
by Francis Guthrie while coloring the map of England, gave rise to a popular topic of discrete
mathematics called graph coloring. He postulated the four color conjecture, noting that four
colors were sufficient to color the map so that no regions sharing a common border received the
same color. Guthrie’s brother passed on the question to his mathematics teacher Augustus de
Morgan at University College, who mentioned it in a letter to William Hamilton in 1852. Arthur
Cayley raised the problem at a meeting of the London Mathematical Society in 1879. The same
year, Alfred Kempe published a paper that claimed to establish the result, and for a decade the
four color problem was considered solved. For his accomplishment Kempe was elected a Fellow
of the Royal Society and later President of the London Mathematical Society.

In 1890, Heawood pointed out that Kempe’s proof was wrong. However, in that paper he
proved the five color theorem, saying that every planar map can be colored with no more than
five colors, using ideas of Kempe. In the following century, a vast amount of work and theories
were developed to reduce the number of colors to four, until the Four-Color Conjecture was
finally positively settled in 1976 by Appel and Haken. The proof went back to the ideas of
Heawood and Kempe and largely disregarded the intervening developments. The proof of the
Four-Color Theorem is also noteworthy for being the first major computer-aided proof. Later
some simplifications of the proof were done but each of them involves a computer-check and uses
the idea of Appel and Haken.

By the time of Appel and Haken, researchers had reformulated the problem in terms of graphs,
instead of maps, using the notion of proper vertex coloring of graphs and chromatic numbers.
Basically, the graph theoretic formulation of the Four-Color Theorem said that the chromatic
number of a planar graph is at most 4. Though the question asked by Guthrie gave rise to a
particular type of graph coloring, namely proper vertex coloring, naturally many variations of
graph colorings have been defined and studied for over a century by several researchers, turning
graph colorings into a very rich theory underlined by many great results.

Nowadays, a popular way of studying proper graph coloring is through graph homomor-
phisms, which, in a way, is a more general concept. It is possible to define proper graph colorings
through graph homomorphisms on different types of graphs and study problems analogous to
the Four-Color Theorem in different graph theoretic settings.

∗ ∗ ∗

In this thesis, we study homomorphisms of oriented graphs (directed graphs without directed
cycles of length 1 or 2), orientable graphs (particular equivalence classes of oriented graphs),
signified graphs (undirected graphs with positive or negative signs assigned to the edges) and
signed graphs (particular equivalence classes of signified graphs). One of our main interests is to
study chromatic numbers and clique numbers, defined using homomorpisms, for the family and
some sub-families of planar graphs of the above kinds. There will be some related problems that
we consider as well.

Untill now, from what we have discussed, it can be understood that the problem of determin-
ing the chromatic number of graphs is difficult when we consider the family of planar graphs. In
fact, speaking in a more mathematical way, we can take a leaf from the theory of computational
complexity (which we will not define in this thesis as we do not use it anywhere other than here
to motivate and justify our works) and say that “given a graph, it is an NP-complete problem
to determine if it has a k-coloring or not for k ≥ 3”. In general, it is NP-hard to determine
the chromatic number of a given graph. There are many polynomial algorithms to determine
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if a graph is planar or not. So, basically, the Four-Color Theorem answers a question which is
NP-hard in general for a class of graphs that are easy to recognize.

Now, we know that the notion of proper vertex coloring can be captured by the notion of
graph homomorphisms. A substantial amount of research has been done, and is being done, on
vertex coloring of graphs. But what about its counter-part, vertex coloring of directed graphs?
A definition of vertex coloring of directed graphs can be given using homomorphisms (that is,
arc preserving vertex mappings) of directed graphs.

∗ ∗ ∗

The formal definition of oriented coloring and oriented chromatic number will be given in
Chapter 3. We also define “oriented clique numbers” with respect to oriented colorings. It
turns out that we need to define two different parameters, namely, the oriented relative clique
number and the oriented absolute clique number, to capture the parameter analogous to the
clique number for simple graphs. The notion analogous to cliques is called ocliques for oriented
graphs. The ocliques are basically the oriented graphs whose chromatic number is the same as
their order.

It was proved by Klostermeyer and MacGillivray that, given an oriented graph, it is an NP-
complete problem to determine if it has a k-coloring or not for k ≥ 4 while Culus and Demange
showed that the problem is difficult even for bipartite graphs (note that the classical vertex
coloring problem is easy for simple bipartite graphs).

It has been proved by Bensmail, Duvignau and Kirgizov that given a simple graph, it is
NP-hard to determine if any orientation of it is an oclique or not. Also to determine the oriented
relative clique number or the oriented absolute clique number of an oriented graph is an NP-
hard problem (this easily follows from the fact that to determine the clique number of a graph
is NP-hard).

We address the problem of determining the oriented chromatic number, the oriented relative
clique number and the oriented absolute clique number for the family of planar graphs and some
of its subfamilies. The subfamilies that we consider are mainly the family Og of outerplanar
graphs with girth (the girth of a graph is the length of its shortest cycle) at least g, and the
family Pg of planar graphs with girth at least g for g ≥ 3. That is, we are trying to find results
analogous to the Four-Color Theorem and the Grötzsch Theorem (triangle-free planar graphs
have chromatic number at most 3) from classical graph coloring in the domain of oriented coloring.
For now, there is not even a conjecture regarding what the oriented chromatic number of the
family of planar graphs could be, let alone a conjecture analogous to the Hadwiger’s conjecture
(Kk-minor-free graphs have chromatic number at most k − 1) for oriented graphs. The oriented
chromatic number for these families have been well studied and the existing upper and lower
bounds are difficult to improve. We provide improved bounds for the other two parameters of
these families.

In particular, we settle a conjecture made by Klostermeyer and MacGillivray in 2002 by
proving that there is no planar oclique of order more than 15. In fact, in a joint work with
Sopena, we have improved the above mentioned result and proved a uniqueness property as well.
We could not improve the existing bound for the oriented relative clique number of the family
P3 but we do improve it for the family P4. In fact, we provide tight bounds for the oriented
absolute clique number of the families Og and Pg for all g ≥ 3 while we provide tight bounds for
the oriented relative clique number of the families Og and Pj for all g ≥ 3 and for all j ≥ 5.

In the same chapter, we also prove results related to the L(p, q)-labeling span of some planar
families. For this, we use homomorphisms of oriented graphs as a tool. The definitions of labeling
is given and discussed in Chapter 3, Section 3.4, in details.

In the next chapter, we consider a particular equivalence relation, called push relation, on
oriented graphs. Klostermeyer and MacGillivray had defined and studied homomorphisms of
orientable graphs, which are basically equivalence classes of oriented graphs with respect to the
push operation, and proved that the problem of determining the orientable chromatic number
(defined using homomorphisms) of an orientable graph is NP-hard in general.

We will define the orientable relative clique number and the orientable absolute clique number
similar to parameters defined for oriented graphs and study them for the families Og and Pg for
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all g ≥ 3. We also study and provide improved upper and lower bounds for the orientable
chromatic number for the above mentioned families of graphs. Interestingly, some of the results
will imply improved bounds for L(2, 1)-labeling of some oriented planar families.

It has been observed and remarked that the chromatic number of 2-edge-colored graphs or
signified graphs seems to have some relation with the oriented chromatic number of graphs.
While there is no result supporting this speculation, in practice it has been observed that usually
the same kind of technique can be used to prove similar bounds for these two chromatic numbers.
Due to this similarity, we first tried to investigate if there is some general relation between the two
types of chromatic numbers. To our surprise, we ended up constructing examples of (underlying)
graphs with the two chromatic numbers arbitrarily higher or lower from each other in Chapter 5.

Then, in a joint work with Bensmail, we defined signified relative clique number and signified
absolute clique number and tried to adopt the techniques used to prove bounds for the oriented
chromatic number, the oriented relative clique number and the oriented absolute clique number
of several planar families. This idea worked and hence we ended up proving many results similar
to the ones proved for oriented graphs.

Like we have considered the chromatic number and clique number problems for orientable
graphs, we also consider the similar parameters for signed graphs, which are equivalence class of
signified graphs with respect to the resigning relation in Chapter 6. Homomorphisms of signed
graphs have been recently studied by Naserasr, Rollová and Sopena where they showed how the
notion of homomorphism of signed graphs can capture the notion of classical graph coloring.
They, in fact, restated some major important theorems and conjectures, such as the Four-Color
Theorem and Hadwiger’s conjecture, using the notion of signed graph homomorphisms and
extended some of them to achieve stronger results or conjectures.

In order to make this theory richer, they asked some basic questions regarding the signed
chromatic number, the signed relative clique number and the signed absolute clique number of
some families of graphs. In particular, questions related to the families we studied for the other
three kinds of graphs were asked too. In a joint work with Ochem and Pinlou, we tried to answer
them and improved some of the existing lower and upper bounds including the upper bound of
40 for the signed chromatic number of planar graphs and the upper bound of 25 for the signed
chromatic number of triangle free planar graphs.

Among the conjectures extended by Naserasr, Rollová and Sopena, a conjecture by Naserasr
was extended as well. The extended version of this conjecture is proved to be equivalent to a
conjecture by Seymour regarding edge coloring of regular planar multigraphs (this conjecture,
if proved true, will generalize the Four-Color Theorem). In this thesis, we prove a result with
supporting evidence in favor of the conjecture. This is a joint work with Naserasr and Qiang.
The result is discussed in details in Chapter 6, Section 6.4.

In this thesis, we will see that we can consider each of the class of all oriented graphs, the
class of all orientable graphs, the class of all signified graphs and the class of all signed graphs as
a category. Also, we will show that the category of orientable graphs is actually isomorphic to a
subcategory of the category of oriented graphs while the category of signed graphs is isomorphic
to a subcategory of the category of signified graphs.

It was unknown whether categorical product exists for signed graphs. In a joint effort with
Naserasr and Sopena we showed that such a product indeed exists and, in fact, provided a formula
for the product of two signed graphs. The same argument worked for orientable graphs as well.
To prove the existence of these products we used the known fact that the categorical product
exists for oriented (resp. signified) graphs and the obsevation that the categorical product exists
in the subcategory of oriented (resp. signified) graphs which is isomorphic to the category of
orientable (resp. signed) graphs.

Some open problems and discussion regarding possible future work will be discussed in Chap-
ter 7.

∗ ∗ ∗

The organization of thesis is as follows. Some basic definitions and results, mainly regarding
classical graph colorings and simple graphs, are given in Chapter 2. In Chapter 3 we discuss
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results related to oriented graphs and in Chapter 4 we discuss results related to orientable
graphs. Then in Chapter 5 we discuss results related to signified graphs and in Chapter 6
we discuss results related to signed graphs. The definitions and notations regarding oriented
graphs, orientable graphs, signified graphs and signed graphs will be given in the begining of
their respective chapters. Some definitions and notations, that are only needed for specific
proofs, are stated under the heading of that particular proof. Finally, in Chapter 7, some open
problems and possible future direction of works will be discussed to conclude the thesis.
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Chapter 2

Preliminaries

In this chapter we provide the basic definitions and fix some notations, mainly regarding undi-
rected graphs, for the rest of the thesis. The definitions that will be used specifically for a chapter
are not given here as they will be mentioned in the begining of their respective chapters. While
defining something we will use italics for the defined item.

Graphs

A graph or an undirected graph is an ordered pair G = (V (G), E(G)) with a set of vertices
V (G) and a set of edges E(G), where an edge is an unordered pair of vertices (uv, or equivalently
vu). A loop is an edge between a vertex and itself. A simple graph is a graph without loops.
Sometimes we allow the set of edges E(G) to be a multiset and the repeated elements in it are
called multiple edges or multi-edges. In this case G is called a multigraph.

Two vertices u, v ∈ V (G) are adjacent if they are an edge of G, that is, uv ∈ E(G). Adjacent
vertices are neighbors and the set of neighbors of a vertex v in a graph G is denoted by NG(v) (or
N(v) when there is no chance of confusion). The degree dG(v) (or d(v) when there is no chance
of confusion) of a vertex v in a graph G is the number of neighbors of v in G. A d-regular graph
is a graph in which every vertex has degree d.

The order of a graph is the cardinality of its set of vertices while the size of a graph is the
cardinality of its set of edges. The order of a graph G is denoted by |V (G)| or |G|.

A digraph or directed graph is an ordered pair
−→
G = (V (

−→
G), A(

−→
G)) with a set of vertices

V (
−→
G) and a set of arcs A(

−→
G), where an arc is an ordered pair of vertices. Two arcs having two

different ordered pairs with the same pair of vertices (for example, −→xy and −→yx) are opposite arcs.
A loop is an arc from a vertex to itself. An oriented graph is a directed graph without loops
or opposite arcs. The underlying graph und(

−→
G) or G of the directed graph

−→
G is obtained by

replacing each arc by an edge (that is, replacing −→uv by uv).
The order of a digraph is the cardinality of its set of vertices while the size of a digraph is

the cardinality of its set of arcs.
A k-edge-colored graph (G) = (V (G), E1(G), E2(G), ..., Ek(G)) is an ordered (k + 1)-tuple

with a set of vertices V (G) and k different types of set of edges, where an edge is an un-
ordered pair of vertices of type i for some i ∈ {1, 2, ..., k} and Ei(G) denotes the set of edges
of type i. The underlying graph und(G) (or simply G) of a k-edge-colored graph (G) =
(V (G), E1(G), E2(G), ..., Ek(G)) is the graph with the set of vertices V (G) and the set of edges
E(G) = E1(G)∪E2(G)∪ ....∪Ek(G). A 2-edge-colored graph is also known as a signified graph
and is alternatively defined in Chapter 5.

Note that an 1-edge-colored graph is just an undirected graph.

Subgraphs and minors

A subgraph H of a graph G is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G). We use the
notation H ⊆ G for H is a subgraph of G.

The induced subgraph G[V ′] of G, induced by the vertex set V ′ ⊆ V (G) is the graph G[V ′]
with V (G[V ′]) = V ′ and E(G[V ′]) = {uv ∈ E(G) | u, v ∈ V ′}.

Let F be a set of graphs. A F -free graph is a graph that does not contain any graph from
the set F as a subgraph. Here F is a set of forbidden subgraphs.

In a graph G we can remove one edge and identify the vertices of that edge to get another
graph. This process is called edge contraction. A graph H obtained by zero or more edge
contractions on a subgraph of a graph G is a minor of the graph G. Let M be a set of graphs.
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A M -minor free graph is a graph that does not contain any graph from the set M as a minor.
Here M is a set of forbidden minors.

Some particular graphs

An independent set of vertices of a graph is a subset of the vertex set that induces a subgraph
with no edges.

A path of length k or a k-path is a graph with vertices u0, u1, ...uk and edges u0u1, u1u2, ..., uk−1

uk and is denoted by u0u1...uk. A path of odd length is an odd-path and a path of even length
is an even-path.

A connected graph is a graph in which any pair of vertices is connected by a path inside the
graph.

A graph H obtained by replacing some edges of a graph G each by a path is a subdivision of
G.

A cycle of length k or a k-cycle is a graph with vertices u0, ..., uk−1 and edges u0u1, u1u2, ...,
uk−2uk−2, uk−1u0 and is denoted by u0u1...uk−1. A 3-cycle is a triangle. A cycle of odd length
is an odd-cycle and a cycle of even length is an even-cycle.

A tree is a graph with exactly one path between any two vertices. In other words, any
connected cycle-free graph is a tree. A star is a tree with a vertex u that is adjacent to all the
other vertices (every vertex except u of the graph has degree 1). A forest is a disjoint union of
trees.

A complete graph on n vertices is a simple graph on n vertices such that there is an edge
between any two vertices. We denote it by Kn. A tournament on n vertices is an oriented graph
such that its underlying graph is Kn.

A k-partite graph is a graph whose vertex set can be written as the disjoint union of k
independent sets. These k independent sets are called parts of the graph. This partition may
not be unique. A complete k-partite graph is a simple k-partite graph with all the edges between
two different parts. A 2-partite graph is a bipartite graph. Moreover, we denote a complete
bipartite graph with parts of size r and s by Kr,s.

The complement of a graph G is the graph Ḡ with V (Ḡ) = V (G) such that two distinct
vertices of Ḡ are adjacent if and only if they are not adjacent in G.

The projective cube Projn of dimention n is the graph with set of vertices V (Projn) = {u =
(u1, u2, ..., un)|ui ∈ {0, 1} for i = 1, 2, ..., n} and with set of edges E(Projn) = {uv|ui 6= vi for
exactly one i ∈ {1, 2, ..., n}} ∪ {uv|ui 6= vi for all i ∈ {1, 2, ..., n}}.

Planar graphs

To draw a graph we can draw some points in the plane representing the vertices of the graph
and join the points corresponding to the adjacent vertices with a line. These lines represent the
edges. We can draw a digraph in a similar way by replacing the lines by arrows pointing towards
the point corresponding to the successor. Note that these drawings are not unique.

A planar graph is a graph that can be drawn in the plane in such way that its edges do
not intersect. Such a drawing of a planar graph is a planar embedding. Note that, in a planar
embedding of a planar graph, the edges of the graph divide the plane into different connected
components. Each of these connected components, including the outer unbounded component,
is a face of the planar graph.

A planar graph is triangulated if every face is surrounded by exactly three edges. Triangulat-
ing a planar graph means to add some edges to obtain a triangulated planar graph. Notice that
it is not possible to add more edges between the vertices of a triangulated planar graph, keeping
the graph planar.

The oldest mathematical formula related to planar graphs is probably the Euler’s formula.

Theorem 2.1 (Euler’s formula [60]). If a finite, connected planar graph has v vertices, e edges
and f faces, then v − e+ f = 2.

The polish mathematician Kuratowski provided a characterization of planar graphs in terms
of forbidden subgraphs, known as Kuratowski’s theorem.
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Theorem 2.2 (Kuratowski’s theorem [60]). A finite graph is planar if and only if it does not
contain a subdivision of the complete graph K5 or of the complete bipartite graph K3,3 as a
subgraph.

Instead of dealing with subdivisions, Wagner stated the result, equivalent to Kuratowski’s
theorem, using the concept of forbidden minors.

Theorem 2.3 (Wagner’s theorem [60]). A finite graph is planar if and only if it does not contain
the complete graph K5 or the complete bipartite graph K3,3 as a minor.

An important subfamily of the family of planar graphs is the family of outerplanar graphs.
An outerplanar graph is a planar graph with a planar embedding where every vertex of the
graph is on the same face. Such a planar embedding of an outerplanar graph is an outerplanar
embedding.

There is a similar characterization for outerplanar graphs as well.

Theorem 2.4. [60] A finite graph is outerplanar if and only if it does not contain the complete
graph K4 or the complete bipartite graph K2,3 as a minor.

The girth of a graph is the length of the shortest cycle contained in it as a subgraph. While
determining graph parameters for the family of planar graphs sometimes is a difficult problem to
handle, researchers tend to solve the similar problems on easier subfamilies, such as, the family
of planar graphs with girth at least g for g ≥ 4 (in particular, graphs with girth at least 4 are
also known as triangle-free graphs), the family of outerplanar graphs, the family of outerplanar
graphs with girth at least g for g ≥ 4, etc. In this thesis, these are the major planar subfamilies
that we consider.

The average degree of a graph G is ad(G) = 2|E(G)|/|V (G)|, while the maximum average
degree of a graph G is mad(G) = max{ad(H)|H ⊆ G}. We use maximum average degree as
a tool to solve problems for families of planar graphs with girth at least g due to the following
result:

Theorem 2.5. [7] If G is a planar graph with girth at least g then mad(G) < 2g/(g − 2).

Using this result, we prove results for graphs with bounded maximum average degree which
implies results for planar graphs with girth restrictions.

Some families of planar graphs and their notations

We denote by Og the family of outerplanar graphs with girth at least g and by Pg the family of
planar graphs with girth at least g. Note that O3, in fact, denotes the family O of all outerplanar
graphs and P3 denotes the family P of all planar graphs.

Clique number and Chromatic number

A clique of order k or a k-clique of a graph G is a complete graph Kk contained in G as a
subgraph. The clique number ω(G) of a graph G is the maximum order of a clique of G.

A proper vertex k-coloring or vertex k-coloring of a graph G is a mapping φ from the set
of vertices V (G) to a set of cardinality k such that for any two adjacent vertices u, v we have
φ(u) 6= φ(v). Usually, {1, 2, ..., k} is chosen for the set of cardinality k for convenience. The
chromatic number χ(G) of a graph G is the smallest integer k such that G has a proper vertex
k-coloring.

It is easy to note that for any graph G we have ω(G) ≤ χ(G).
It is not very difficult to see that the clique number of a planar graph is at most 4 (as the

complete graph K5 is not planar). But the question, “what the chromatic number of a planar
graph is upper bounded by?" is actually the graph theoretic formulation of the question “how
many colors do you need to color a map?" mentioned in the introduction. As one can imagine,
the answer, even though the same as the upper bound of the clique number, is far from easy and
is the famous Four-Color Theorem.

Theorem 2.6 (Four-Color Theorem [60]). [Appel and Haken 1976] The chromatic number
of a planar graph is at most 4.
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Even though the Four-Color Theorem was very difficult to prove, if we restrict the problem
to the family of outerplanar graphs or to the family of planar graphs with girth restrictions, the
problem becomes relatively easier to handle. It is easy to prove that the chromatic number of
an outerplanar graph is at most 3 [60], which is also the upper bound for the clique number of
an outerplanar graph.

In two of the above instances, the clique number and the chromatic number coincide. But
in general, the chromatic number of a graph can be arbitrarily higher than its clique number,
as proved by Erdös. In fact, Erdös and many other researchers have constructed examples of
graphs with arbitrary high girth as well as arbitrary high chromatic number.

This made the study of the chromatic number of graphs with higher girth interesting. For
planar graphs with girth restriction, we have the following result.

Theorem 2.7 (Grötzsch’s theorem [60]). The chromatic number of a triangle-free planar graph
is at most 3.

One of the significant early attempts to solve the Four-Color Conjecture was on 1880 (unsolved
at that time) by Tait using edge coloring. Before mentioning it, we will define a few more things.

A proper k-edge-coloring or k-edge-coloring of a graph G is a mapping φ from the set of
edges E(G) to a set of cardinality k such that, for any two incident edges uv and vw, we have
φ(uv) 6= φ(vw). The chromatic index χ′(G) of a graph G is the smallest integer k such that G
has a proper edge k-coloring.

A bridgeless graph is a graph which remains connected after removing any edge from it.
Initially Tait proposed a conjecture stronger than the Four-Color Conjecture. This conjecture

was disproved by Tutte. After that a weaker version of the conjecture, equivalent to the Four-
Color Conjecture was proposed. This conjecture is known as Tait’s conjecture. As the conjecture
is equivalent to the Four-Color Conjecture, we can state it as a theorem now because the Four-
Color Theorem has been proved.

Theorem 2.8 (Tait’s conjecture [60]). Every bridgeless 3-regular planar graph has a 3-edge-
coloring.

Later, on 1973, Seymour generalized Tait’s conjecture and stated the following:

Conjecture 2.9 (Seymour 1973 [13]). Every d-regular planar multigraph M has a d-edge-
coloring, provided that for every odd set X ⊆ V (M) of vertices, there are at least d edges between
the vertices of X and the vertices of V (M) \X.

For d = 3 the above conjecture is precisely Tait’s conjecture, hence, equivalent to the Four-
Color Theorem. So, this conjecture generalizes the Four-Color Theorem. It has been proved for
d ≤ 8 by different researchers [13].

The most popular generalization of the Four-Color Theorem is probably Hadwiger’s conjec-
ture.

Conjecture 2.10 (Hadwiger’s conjecture [60]). Every Kk-minor free graph has chromatic num-
ber at most (k − 1).

While the case k = 5 clearly implies the Four-Color Theorem, it has been shown by Wagner
that it is actually equivalent to the Four-Color Theorem. This conjecture has been proved for
k ≤ 6 by different researchers [52].

There are some concepts that generalize the concept of coloring. For instance, graph coloring
problem can be viewed as partitioning a graph into independent sets. In other words, the vertices
that receive same color induce an independent set. But there is no condition on the type of graph
induced by the vertices that received different colors. An extension of graph coloring is by putting
such a condition.

An acyclic k-coloring φ of a graph G is a proper graph coloring of G where any subgraph
of G colored by at most two colors does not have a cycle. The result analogous to that of the
Four-Color Theorem for vertex coloring is the celebrated result by Borodin which is the following.

Theorem 2.11 (Borodin [4]). Any planar graph has an acyclic 5-coloring.
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Another generalization of graph coloring is graph labelings. A special such labeling is the
L(p, q)-labeling which we will define and discuss about in Chapter 3.

Graph homomorphisms

A popular way of formulating proper graph coloring is through graph homomorphisms. In-
deed, graph homomorphism is a more general concept.

A homomorphism of a graph G to a graph H is a mapping φ : V (G)→ V (H) such that for
every edge uv ∈ E(G) we have φ(u)φ(v) ∈ E(H). We denote the existence of a homomorphism
of a graph G to a graph H by G → H and H is called the target graph. We also use the
term H bounds G to mean that G → H. If every graph from a family F of graphs admit a
homomorphism to a particular graph H then H is a universal target or a universal bound of
F . An isomorphism of a graph G to a graph H is a bijective homomorphism of G to H whose
inverse is also a homomorphism.

Notice that a homomorphism G → Kk actually corresponds to a vertex k-coloring of G.
Hence an alternative definition of the chromatic number of a graph G is the smallest k for which
G admits a homomorphism to the complete graph Kk.

Hence, according to the Four-Color Theorem, the complete graph K4 is a universal bound for
the family of planar graphs while according to Grötzsch’s Theorem the triangle K3 is a universal
bound for the family of triangle-free planar graphs. Note that the graph K4 is actually planar
while the graph K3 is not in the family of triangle-free planar graphs. Naturally, the question
occurs to mind that if there is a triangle-free planar graph that bounds the family of triangle-free
planar graphs. Regarding this question by Nešetřil, Naserasr has proposed a general conjecture,
discussed below, that captures this question.

We can even ask general questions like, “what is the smallest (in terms of order) graph with
property P which is a universal bound of the family of graphs F?" This question can be modified
to correspond to different coloring and labeling problems.

The most important theorem proved in this context is the one by Nešetřil and Ossona De
Mendez. For any set X of graphs, let Forbh(X) denote the set of graphs that admit no homo-
morphism from a member of X, and Forbm(X) denote the set of graphs that admit no member
of X as a minor. Then we have:

Theorem 2.12 (Nešetřil and Ossona De Mendez [23]). For every set of graphs M and every set
of connected graphs H, the class Forbm(M) ∩ Forbh(H) is bounded by a graph in Forbh(H).

Finding a bound as in Theorem 2.12 with the smallest possible number of vertices proves to
be a very difficult question in general. For the simplest case of M = H = {Kn}, finding the
smallest bound in terms of number of vertices will, in particular, solve Hadwiger’s conjecture.

For the case M = {K5,K3,3} and H = {C2k−1} it is conjectured by Naserasr that the
projective cube Proj2k of dimension 2k is a solution [38]. Note that the conjecture actually claims
that every planar graph with no odd-cycle of length at most 2k + 1 admits a homomorphism
to the projective cube Proj2k of dimension 2k. The odd-girth of a graph is the length of the
shortest odd-cycle contained in it as as subgraph. Hence a restatement of the conjecture is as
follows:

Conjecture 2.13. Every planar graph with odd girth 2k + 1 admits a homomorphism to the
projective cube Proj2k of dimension 2k.

This conjecture for each k is equivalent to Conjecture 2.9 by Seymour for d = 2k+ 1. Hence,
Conjecture 2.13 by Naserasr captures Conjecture 2.9 by Seymour for the odd numbers.

Conjecture 2.13 has been extended (see Chapter 6, Section 6.4, Conjecture 6.36) by Naserasr,
Rollová and Sopena using the notion of consistent signed graphs that captures all the cases of
Seymour’s conjecture [39]. In this thesis, we will prove a supporting result to that conjecture in
Chapter 6, Section 6.4.

Some other graphs

A graph is self-complementary if it is isomorphic to its complement.
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w u v

b c

a

Figure 2.1: List of all triangle-free planar graphs with diameter 2 (Plesník (1975)).

A graph G is vertex-transitive if for each pair of vertices u, v ∈ V (G) we have an isomorphism
φ of G to G such that φ(u) = v.

A graph G is edge-transitive if for each pair of edges uv,wx ∈ E(G) we have an isomorphism
φ of G to G such that φ(u) = w and φ(v) = x.

A strongly regular graph G with parameters (v, k, λ, µ) is a k-regular graph of order v such that
every pair of adjacent vertices have exactly λ common neighbors and every pair of non-adjacent
vertices have exactly µ common neighbors.

Some other graph parameters

We define some graph parameters, not related to coloring, and some results related to those
parameter which will be used later.

The distance dG(x, y) (or d(x, y) when there is no confusion) between two vertices x and y
of a graph G is the smallest length of a path connecting x and y. The diameter diam(G) of a
graph G is the maximum distance between pairs of vertices of the graph.

Theorem 2.14. [24] The triangle-free graphs with diameter 2 are precisely the graphs listed in
Fig. 2.1.

The graphs depicted in Fig. 2.1 are the stars, the complete bipartite graphs K2,n for some
natural number n, and the graph obtained by adding copies of two non-adjacent vertices of the
5-cycle.

A vertex subset D is a dominating set of a graph G if every vertex of G is either in D or
adjacent to a vertex of D. The domination number γ(G) of a graph G is the minimum cardinality
of a dominating set of G.

Theorem 2.15. [18] Any planar graph with diameter 2 has domination number at most 2, except
for a particular planar graph on 9 vertices (depicted in Fig. 2.2) which has domination number
3.

Figure 2.2: The unique planar graph with diameter 2 and domination number 3.

We will use these definitions and results to prove some results in the upcoming chapters. As
we will use these definitions and results several times, we are defining and stating them here.

Category

Now we will state the formal definition of category and functors which will be used later.
A category C consists of

− a class ob(C) of objects

− a class hom(C) of morphisms between objects, where a morphism φ is from a unique object
A to a unique object B. The class of all morphisms from an object A to an object B is
denoted by homC(A,B).
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− a binary operation composition ◦ : homC(A,B) × homC(B,C) → homC(A,C), (that is,
for every α, β ∈ homC(A,B) × homC(B,C) we have β ◦ α ∈ homC(A,C)) for every three
objects A,B,C such that the following axioms hold:

. for every triplet (α, β, γ) ∈ homC(A,B) × homC(B,C) × homC(C,D) we have, (γ ◦
β) ◦ α = γ ◦ (β ◦ α) (associativity property).

. for every A ∈ ob(C) there exists an identity morphism 1A ∈ homC(A,A) such that,
for every φ ∈ homC(A,A) we have, 1A ◦ φ = φ ◦ 1A = φ (identity property).

A subcategory S of a category C is a category with ob(S) ⊆ ob(C) and for any two objects
A,B ∈ ob(S) we have homS(A,B) ⊆ homC(A,B).

An object (A ⊕ B) of C is the coproduct of two objects A,B ∈ C if it satisfies the following
universal property:

− there exist morphisms φ1 : A → A ⊕ B,φ2 : B → A ⊕ B such that for every object C
and every pair of morphisms ψ1 : A → C,ψ2 : B → C there exists a unique morphism
ϕ : A⊕B → C such that the following diagram commutes:

C

A A⊕B B

∃! ϕ

φ1 φ2

ψ1 ψ2

An object A × B of C is the product of two objects A,B ∈ C if it satisfies the following
universal property:

− there exist morphisms φ1 : A × B → A, φ2 : A × B → B such that for every object C
and every pair of morphisms ψ1 : C → A,ψ2 : C → B there exists a unique morphism
ϕ : C → A×B such that the following diagram commutes:

C

A A×B B

∃! ϕ

φ1 φ2

ψ1 ψ2

Let C and D be two categories. A functor F of C to D is a mapping such that

− for each A ∈ ob(C) we have F (A) ∈ ob(D),

− for each φ ∈ homC(A,B) we have F (φ) ∈ homD(F (A), F (B)) and the following holds:

. F (1A) = 1F (A) for all A ∈ ob(C),

. F (φ ◦ ψ) = F (φ) ◦ F (ψ) for all (φ, ψ) ∈ homC(B,C) × homC(A,B) where A,B,C ∈
ob(C).

Two categories C and D are isomorphic if there is a functor F of C to D such that

− F : ob(C)→ ob(D) is a bijection,

− F : homC(A,B)→ homD(F (A), F (B)) is a bijection for all A,B ∈ C.
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It is not difficult to check that the class of all graphs can be regarded as a category with homo-
morphisms of graphs as the morphisms of the category with isomorphic graphs being considered
as the same object.

Overview

We have given the basic definitions, fixed some notations and have recalled some famous
results here. We have also mentioned some other results which will be used in this thesis.
The definitions, specific to a chapter, will be given in the beginning of the chapter. The main
objective of the thesis is to present results regarding homomorphisms of four different types of
graphs, namely, oriented graphs (Chapter 3), orientable graphs (Chapter 4), signified graphs
(Chapter 5) and signed graphs (Chapter 6).

We have four main chapters in this thesis, each dedicated to each of these types of graphs.
We will consider the problems of determining the chromatic number and the clique number,
defined using homomorphisms, of these different types of graphs. We will consider some related
questions regarding the L(p, q)-labeling of oriented graphs and the bound of planar consistent
signed graphs. Some categorical aspects of these types of graphs will be discussed as well. We
have tried our best to provide a comparative study of homomorphisms in these four different
settings.
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Chapter 3

Oriented graphs

In this chapter we deal with oriented graphs. Our main focus is to present some results regarding
oriented colorings and oriented L(p, q)-labelings. While oriented coloring is a well-studied topic,
oriented L(p, q)-labeling is quite new.

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Some oriented graphs and their properties . . . . . . . . . . . . . . . 14
3.3 Oriented coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 L(p, q)-labeling of oriented graphs . . . . . . . . . . . . . . . . . . . . . 41
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

The organization of the chapter is as follows. In Section 3.1 we give the basic definitions and
notations related to oriented graphs and homomorphisms of oriented graphs. Then in Section 3.2
we give definitions of some oriented graphs which we will use later in this thesis. After that we
present our main results regarding oriented coloring in Section 3.3 and our main results regarding
oriented L(p, q)-labeling in Section 3.4. Finally, we conclude this chapter in Section 3.5.

The proof of Theorem 3.21(a) stated in Section 3.3 appeared in [55] while the other parts of the
same theorem appeared as an extended abstract in Bordeaux Graph Workshop BGW’2012 [54].
The rest of the results proved in Section 3.3 is a joint work with Sopena and is an article in
process. Most of the results proved in Section 3.4 are part of an article which is accepted and in
press for publication [53].

3.1 Preliminaries

An oriented graph is a directed graph with no cycle of length 1 or 2. By replacing each edge of
a simple graph G with an arc (ordered pair of vertices) we obtain an oriented graph

−→
G ;
−→
G is an

orientation of G and G is the underlying graph of
−→
G . We denote by V (

−→
G) and A(

−→
G) respectively

the set of vertices and arcs of
−→
G . An arc (u, v) (where u and v are vertices) is denoted by −→uv.

The set of all adjacent vertices of a vertex v in an oriented graph
−→
G is called its set of

neighbors and is denoted by N−→
G

(v) (or N(v) when there is no chance of confusion). If there is
an arc −→uv, then u is an in-neighbor of v and v is an out-neighbor of u. The set of all in-neighbors
and the set of all out-neighbors of v are denoted by N−−→

G
(v) (or N−(v) when there is no chance of

confusion) and N+
−→
G

(v) (or N+(v) when there is no chance of confusion) respectively. The degree

of a vertex v in an oriented graph
−→
G , denoted by d−→

G
(v) (or d(v) when there is no chance of

confusion), is the number of neighbors of v in
−→
G . Naturally, the in-degree (resp. out-degree) of a

vertex v in an oriented graph
−→
G , denoted by d−−→

G
(v) (resp. d+

−→
G

(v)) (or d−(v) (resp. d+(v)) when

there is no chance of confusion), is the number of in-neighbors (resp. out-neighbors) of v in
−→
G .

The order |
−→
G | of an oriented graph

−→
G is the cardinality of its set of vertices V (

−→
G).

Two vertices u and v of an oriented graph agree on a third vertex w of that graph if w ∈
Nα(u) ∩ Nα(v) for some α ∈ {+,−}. Two vertices u and v of an oriented graph disagree on a
third vertex w of that graph if w ∈ Nα(u) ∩Nβ(v) for some {α, β} = {+,−}.
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a b

c

d

e f
g

φ

w = φ(b) = φ(g)

x = φ(c), y = φ(d)

z = φ(e) = φ(f) = φ(a)

w

x

y

z

Figure 3.1: Oriented graph homomorphism.

A directed path of length k or a k-dipath from v0 to vk an oriented graph with vertices
v0, v1, ..., vk and arcs−−→v0v1,

−−→v1v2, ...,
−−−−→vk−1vk where v0 and vk are the terminal vertices and v1, ..., vk−1

are internal vertices. A directed cycle of length k or a directed k-cycle is an oriented graph with
vertices v1, v2, ..., vk and arcs −−→v1v2,

−−→v2v3, ...,
−−−−→vk−1vk and −−→vkv1. The directed distance

−→
d −→
G

(u, v) (or
−→
d (u, v) when there is no chance of confusion) between two vertices u and v of an oriented graph
−→
G is the smallest length of a directed path of

−→
G from u to v. A 2-dipath with arcs −→uv and −→vw

is denoted by −−→uvw. More generally, a 2-dipath with terminal vertices u,w and internal vertex v
is denoted by uvw (this denotes, either the 2-dipath −−→uvw or the 2-dipath −−→wvu).

Let
−→
G and

−→
H be two oriented graphs. A homomorphism of

−→
G to

−→
H is a mapping φ :

V (
−→
G) → V (

−→
H ) which preserves the arcs, that is, uv ∈ A(

−→
G) implies φ(u)φ(v) ∈ A(

−→
H ). We

write
−→
G →

−→
H whenever there exists a homomorphism of

−→
G to

−→
H and say that

−→
H bounds

−→
G .

A bijective homomorphism whose inverse is also a homomorphism is an isomorphism. If two
oriented graphs admit oriented homomorphisms to each other then they are homomorphically
equivalent oriented graphs.

Example 3.1. A sample homomorphism of oriented graphs is given in Fig. 3.1.

Different coloring and labeling problems on oriented graphs are solved using homomorphisms.

3.2 Some oriented graphs and their properties

In this section we define some families of oriented graphs and discuss some of their properties
which will be helpful for proving some of the results discussed in this thesis.

For any prime p ≡ 3 (mod 4) and for any positive integer n the Paley tournament [32]
−→
P q of

order q = pn is the oriented graph with set of vertices {0, 1, 2, ...., q−1} and set of arcs {−→xy | y−x
(mod p) is a non-zero square}. As −1 (mod p) is a not a square , either (x− y) or (y − x) (but
not both) is a square for all x, y ∈ Fq. Hence

−→
P q is a tournament.

The Paley plus graph
−→
P +
q is the oriented graph obtained from the oriented Paley graph

−→
P q

by adding a new vertex ∞ which is an in-neighbor of every other vertex.
For any prime p ≡ 3 (mod 4) and for any positive integer n the Tromp graph [32]

−→
T 2q+2 of

order (2q+ 2), where q = pn, is the oriented graph with the set of vertices and the set of arcs as
follows:

V (
−→
T 2q+2) = {0, 1, ..., (q − 1)} ∪ {0′, 1′, ..., (q − 1)′} ∪ {∞,∞′}

A(
−→
T 2q+2) = {−→ij ,

−→
i′j′,
−→
j′i,
−→
ji′ | i, j ∈ {0, 1, ..., (q − 1)} and

(j − i) (mod p) is a non-zero square}

∪ {−→i∞,
−−→
∞i′,

−−→
i′∞′,

−−→
∞′i | i ∈ {0, 1, ..., (q − 1)}}.

Intuitively, in
−→
T 2q+2 there are two vertices∞,∞′ such thatN+(∞) = N−(∞′) andN+(∞) =

N−(∞′) with each of the sets N+(∞) and N−(∞) inducing a Paley tournament
−→
P q. Also, if

−→
ij

is an arc in the
−→
P q induced by N+(∞) and

−→
i′j′ is the corresponding arc of the

−→
P q induced by
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x

y

x′

y′

∞′

∞

N+(∞′)

= N−(∞) =
−→
P q −→

P q = N+(∞)

= N−(∞′)

(0, ∗, 0)

(0, ∗, 1)

(1, ∗, 0)

(1, ∗, 1)

S2

(∗, 0, 0)

(∗, 0, 1)

(∗, 1, 0)

(∗, 1, 1)

S1

(0, 0, ∗)
(0, 1, ∗)
(1, 0, ∗)
(1, 1, ∗)

S3

(b)(a)

Figure 3.2: (a) The Tromp graph ~T2q+2 (thick arrow means all the arcs are
to/from ∞ or ∞′ from/to the vertices inside the ellipse. (b) Adjacency of a vertex
of the Zielonka graph ~Z3.)

N−(∞), then we also have the “reversed” arcs
−→
ji′ and

−→
j′i. For pictorial help, check Fig. 3.2 (a).

Note that
−→
T 2q+2 is a complete (q+1)-partite graph with all parts of size two. For further details

about this graph, see Marshall’s paper [32].

For any positive integer k the Zielonka graph [57]
−→
Z k of order k× 2k−1 is the oriented graph

with set of vertices V (
−→
Z k) = ∪i=1,2,...,kSi where

Si = {x = (x1, ..., xk)|xj ∈ {0, 1} for j 6= i and xi = ∗}

and set of arcs

A(Zk) = {−→xy | x = (x1, ..., xk) ∈ Si, y = (y1, ..., yk) ∈ Sj and
either xj = yi and i < j or xj 6= yi and i > j}.

Note that Zk is a complete k-partite graph with all parts of size 2k−1.

Example 3.2. Adjacency of a vertex of the Zielonka graph Z3 is depicted in Fig. 3.2(b).

A pattern Q of length k is a word Q = q0q1...qk−1 with qi ∈ {+,−} for every i, 0 ≤ i ≤ k− 1.
A Q-walk in a directed graph or digraph

−→
G is a walk P = x0x1.....xk such that for every i,

0 ≤ i ≤ k− 1, xixi+1 ∈ A(
−→
G) if qi = + and xi+1xi ∈ A(G) otherwise. For X ⊆ V (

−→
G) we denote

by NQ(X) the set of all vertices y such that there exists a Q-walk going from some vertex x ∈ X
to y. We then say that a digraph

−→
G is k-nice if for every pattern Q of length k and for every

vertex x ∈ V (
−→
G) we have NQ({x}) = V (

−→
G). In other words, a digraph is k-nice if for all pairs

of vertices x, y (allowing x = y) there is a k-walk from x to y for each of the 2k possible oriented
patterns. Observe that if a digraph G is k-nice for some k, then it is k′-nice for every k′ ≥ k.

Example 3.3. Consider the graph
−→
B (Fig 3.3). One can check that it is a 4-nice graph.

Now we state a theorem from [22] (recall that Pg denotes the class of planar graphs with
girth at least g).

Theorem 3.4 (Hell et al. 1997). Let Nk be a k-nice oriented graph, k ≥ 3. Every oriented graph
whose underlying graph is in P5k−4 admits a homomorphism to Nk.
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4 3

7 0

5 2

6 1

Figure 3.3: ~B is a 4-nice graph.
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1 1
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4

(a) (b)

Figure 3.4: Oriented coloring.

3.3 Oriented coloring

Colorings of oriented graphs first appeared in the work of Courcelle [14] on the monoadic second
order logic of graphs. Since then it has been considered by many researchers, following the work
of Raspaud and Sopena [51] on oriented colorings of planar graphs.

An oriented k-coloring [58] of an oriented graph
−→
G is a mapping φ from the vertex set V (

−→
G)

to the set {1, 2, ...., k} such that,

- (i) φ(u) 6= φ(v) whenever u and v are adjacent and

- (ii) if −→uv and −→wx are two arcs in
−→
G , then φ(u) = φ(x) implies φ(v) 6= φ(w).

The oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is the smallest integer k for

which
−→
G has an oriented k-coloring.

Alternatively, we can define oriented chromatic number by defining homomorphisms of ori-
ented graphs. The oriented chromatic number χo(

−→
G) of an oriented graph

−→
G is the minimum

order (number of vertices) of an oriented graph
−→
H such that

−→
G admits a homomorphism to

−→
H .

The oriented chromatic number χo(G) of an undirected graph G is the maximum of the
oriented chromatic numbers of all the oriented graphs with underlying graph G. The oriented
chromatic number χo(F) of a family F of graphs is the maximum of the oriented chromatic
numbers of the graphs from the family F .
Example 3.5. We give an oriented 4-coloring of the graph in Fig. 3.4 (a) whereas, in Fig. 3.1 we
showed that the same graph admits a homomorphism to an oriented graph of order 4. These two
facts essentially means the same thing. Also note that we cannot provide an oriented 3-coloring
of this graph, hence it has oriented chromatic number 4.

Example 3.6. Consider the oriented coloring of the disjoint union of two graphs from Fig. 3.4 (b).
Note that if we oriented color the two graphs from Fig. 3.4 (b) (both are orientations of a triangle)
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x1 x2

x7
x6

x4

x5 x3

Figure 3.5: ~B is an oriented planar graph with girth 5.

individually, as each of them has three vertices which are pairwise adjacent, we can easily show
that each of these graphs has oriented chromatic number 3. But when we consider the disjoint
union of these two graphs as one oriented graph, we are not able to provide an oriented 3-coloring
of the graph. In this case, we will need at least 4 colors to provide an oriented coloring of the
graph. In Fig. 3.4 (b) we have given an oriented 4-coloring of the graph.

Notice that the terminal vertices of a 2-dipath must receive distinct colors in every oriented
coloring because of the second condition of the definition. In fact, for providing an oriented
coloring of an oriented graph, only the pairs of vertices which are either adjacent or connected
by a 2-dipath must receive distinct colors (that is, for every other type of pair of vertices there
exists an oriented coloring which assigns the same color to the pair of vertices). Motivated by
this observation, the following definitions were proposed.

An oriented relative clique of an oriented graph
−→
G is a set R ⊆ V (

−→
G) of vertices such that

any two vertices from R are at directed distance at most 2 in
−→
G . The oriented relative clique

number ωro(
−→
G) of an oriented graph

−→
G is the maximum order of an oriented relative clique of

−→
G . The oriented relative clique number of an oriented graph is otherwise known as the 2-dipath
chromatic number [35] [61] of an oriented graph. The term oriented relative clique is given by
following the term used in [40] for a similar definition for signed graphs.

An oriented absolute clique or simply oclique, a term coined by Klostermeyer and MacGillivra-
y [27], is an oriented graph

−→
G for which χo(

−→
G) = |V (

−→
G)|. Note that ocliques can hence be

characterized as those oriented graphs whose any two distinct vertices are at directed distance
at most 2, that is, either adjacent or connected by a 2-dipath. Note that an oriented graph with
an oclique of order n as a subgraph has oriented chromatic number and oriented relative clique
number at least n. The oriented absolute clique number ωao(

−→
G) of an oriented graph

−→
G is the

maximum order of an oclique contained in
−→
G as a subgraph.

The oriented relative clique number ωro(G) (resp. oriented absolute clique number ωao(G)) of
a simple graph G is the maximum of the oriented relative clique numbers (resp. oriented absolute
clique numbers) of all the oriented graphs with underlying graph G. The oriented relative clique
number ωro(F) (resp. oriented absolute clique number ωao(F)) of a family F of graphs is the
maximum of the oriented relative clique numbers (resp. oriented absolute clique numbers) of the
graphs from the family F .

From the definitions, clearly we have the following:

Lemma 3.7. For any oriented graph
−→
G we have, ωao(

−→
G) ≤ ωro(

−→
G) ≤ χo(

−→
G).

Corollary 3.8. For any oclique
−→
O we have ωao(

−→
O ) = ωro(

−→
O ) = χo(

−→
O ) = |V (

−→
O )|.

Example 3.9. Note that the vertices x1, ..., x5 of the graph
−→
B depicted in Fig. 3.5 induce an

oclique of order 5 and there is no oclique of order more than 5 in
−→
B .

Now, if we try to provide an oriented coloring of the graph
−→
B , the vertices x1, ..., x5 will

receive distinct colors as they are vertices of an oclique. But note that the vertex x6 must receieve
a color distinct from the color received by x1, ..., x5 even though these six vertices do not induce
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an oclique in
−→
B .

It is easy to show that for the graph
−→
B depicted in Fig. 3.5 we have, ωao(

−→
B ) = 5, ωro(

−→
G) = 6

and χo(
−→
G) = 7. This is an example of a graph for which each inequality of Lemma 3.7 is strict.

Note that the above defined three graph parameters respect homomorphisms of oriented
graphs in the sense of the following result:

Lemma 3.10. Let
−→
G →

−→
H . Then χo(

−→
G) ≤ χo(

−→
H ), ωro(

−→
G) ≤ ωro(

−→
H ) and ωao(

−→
G) ≤ ωao(

−→
H ).

Determining the oriented chromatic number, the relative clique number and the absolute
clique number of different families of graphs are challenging problems in the domain of oriented
coloring. A usual technique for obtaining the upper bound is to prove that every graph in the
family of graphs in question admits a homomorphism to a particular oriented graph, that is to
find an oriented graph that bounds every graph of that family. Such a graph is called a universal
bound of that family of graphs. Note that not every family of graphs have a universal bound of
order equal to the oriented chromatic number of the family.

For example, the family of all oriented graphs on 3 vertices have oriented chromatic number
3 as each graph in the family is clearly oriented 3-colorable. As previously discussed, the two
oriented graphs on 3 vertices depicted in Fig. 3.4 (their disjoint union is not 3-colorable) cannot
admit a homomorphism to a single oriented graph on 3 vertices.

If we consider the set of all oriented graphs to be a category with objects being the oriented
graphs and morphisms being the oriented homomorphisms then we clearly have the proposition
stated below. This proposition is just a restatement of a proposition by Sopena [57] regarding
complete family of graphs (a family of graphs is complete if given two graphs in the family
there is a third graph in it that contains both the given graphs as subgraphs) in the language of
categories.

Proposition 3.11. For any family F of oriented graphs that also contains the categorical co-
products of the graphs from the family, there exists a universal bound of F on χo(F) vertices.

Observe that a categorical co-product (unique up to homomorphic equivalence) of oriented
graphs is simply the oriented graph obtained by taking the disjoint union of the oriented graphs.
The families of planar graphs, outerplanar graphs, planar graphs with given girth and outerplanar
graphs with given girth are each of the type that we mentioned in the above theorem.

3.3.1 Oriented chromatic number

One of the first major results proved related to oriented chromatic number is the following
theorem by Raspaud and Sopena [51].

Theorem 3.12. Every graph with acyclic chromatic number at most k has oriented chromatic
number at most k.2k−1.

To prove this theorem, Raspaud and Sopena showed that for every graph G with acyclic chro-
matic number at most k, any oriented graph with underlying graph G admits a homomorphism
to the Zielonka graph Zk.

Ochem [44] proved that this bound is tight for every k ≥ 3. Conversely, Kostochka, Sopena
and Zhu [29] proved that every undirected simple graph with bounded oriented chromatic number
has bounded acyclic chromatic number.

Another general bound, for graphs with bounded degree, was proved by Kostochka, Sopena
and Zhu [29].

Theorem 3.13. Every oriented graph with maximum degree ∆ has oriented chromatic number
at most 2(∆+1).∆2. Also, for every ∆ ≥ 2, there exists an oriented graph with maximum degree
∆ and oriented chromatic number at least 2∆/2.

Some specific families of graphs have also been studied. The most studied family of graphs
for oriented chromatic number is the family of planar graphs and some sub-families of planar
graphs, such as outerplanar graphs, planar graphs with given girth, outerplanar graphs with
given girth etc.
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The known bounds, which are tight, for the oriented chromatic number of outerplanar graphs
and outerplanar graphs with given girth are listed in the following theorem. The relevent refer-
ences are given after the results. Recall that Og denotes the family of outerplanar graphs with
girth at least g.

Theorem 3.14.

(a) χo(O3) = 7. [57]

(b) χo(O4) = 6. [47]

(c) χo(Ok) = 5 for k ≥ 5. [47]

To prove Theorem 3.14(a) Sopena [57] showed that every oriented outerplanar graph admits a
homomorphism to the Paley tournament

−→
P 7 of order 7. This proves that the oriented chromatic

number of outerplanar graphs is bounded above by 7. He also constructed an outerplanar oclique
of order 7 to complete the proof. This proof by Sopena [57] also proves Theorem 3.17(a) and
Theorem 3.20(a) clearly. Similarly, to prove the upper bounds in the other two results, Pinlou
and Sopena [47] found oriented graphs that are universal bounds on 6 and 5 vertices for the family
of oriented outerplanar graphs with girth at least 4 and 5, respectively. They also constructed
examples to prove the lower bounds.

The known bounds for the oriented chromatic number of planar graphs and planar graphs
with given girth are listed in the following theorem. The reference for lower bound is given first
in each case. Recall that Pg denotes the family of planar graphs with girth at least g.

Theorem 3.15.

(a) 18 ≤ χo(P3) ≤ 80. [33] [51]

(b) 11 ≤ χo(P4) ≤ 40. [43] [45]

(c) 7 ≤ χo(P5) ≤ 16. [34] [46]

(d) 7 ≤ χo(P6) ≤ 11. [34] [7]

(e) 6 ≤ χo(P7) ≤ 7. [42] [5]

(f) 5 ≤ χo(P8) ≤ 7. [42] [5]

(g) 5 ≤ χo(Pk) ≤ 6 for 9 ≤ k ≤ 11. [42] [31]

(h) χo(Pk) = 5 for k ≥ 12. [42] [6]

To prove the lower bound of Theorem 3.15(a) Marshall [33] showed that there is no oriented
graph on 17 vertices that bounds the family of planar graphs (this suffice due to Proposition 3.11).
The proof is quiet novel and complicated. To prove the upper bound of Theorem 3.15(a) Raspaud
and Sopena [51] used Theorem 3.12 and the famous theorem of Borodin [4] (see Chapter 2,
Theorem 2.11) that proves that every planar graph has an acyclic 5-coloring, to show that every
oriented planar graph admits a homomorphism to the Zielonka graph

−→
Z 5 of order 5.

For proving the lower bound of Theorem 3.15(b), Ochem used an oriented planar graph of
girth 4 with oriented chromatic number 10 to construct a bigger graph which does not admit a
homomorphism to any oriented graph on 10 vertices. Ochem used a computer check to prove
his result. However, it is easy to note that the oriented planar graph of girth 4 with oriented
chromatic number 10 used by Ochem for his proof also has oriented relative clique number 10
which actually proves the lower bound of Theorem 3.18(b).

To prove the lower bounds of Theorem 3.15(c) and (d) Marshall showed that no oriented
graph of order 6 bounds the family of oriented planar graphs with girth 6 (this suffice due to
Proposition 3.11). The proof is highly non-trivial, while our example of the graph depicted in
Fig. 3.5 independently proves Theorem 3.15(c) without much difficulty. For the upper bound of
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Theorem 3.15(c) Pinlou proved that the Tromp graph
−→
T 16 bounds the family of oriented planar

graphs with girth at least 5.
All the other upper bounds are proved using oriented graphs that bound certain families of

graphs while the lower bounds are proved by constructing examples.

3.3.2 Oriented relative clique number

The bounds in the above theorem are difficult to narrow. Hence it is natural to consider “easier”
parameters, such as the oriented relative clique number and the oriented absolute clique number
and try to figure out the bounds in these cases. In fact, we managed to obtain tight bounds for
the oriented absolute clique number of the families of planar graphs and of planar graphs with
given girth. After that we tried the “more difficult” problem of determining the oriented relative
clique number of the families of planar graphs and of planar graphs with given girth. Before
listing the best bounds obtained for the above mentioned problem, we present a general bound
for the oriented relative clique number of graphs with maximum degree ∆.

Proposition 3.16. Every oriented graph with maximum degree ∆ has oriented relative clique
number at most ∆2 + 1.

Proof. Let
−→
G be an oriented graph with maximum degree ∆. Let R be a relative clique of

maximum order in
−→
G . Let v ∈ R be a vertex. Now, v can have at most ∆ adjacent vertices and

each of these vertices can have at most (∆− 1) adjacent vertices excluding v. Hence, there can
be at most ∆.(∆ − 1) vertices of

−→
G at directed distance 2 from v. As every vertex, other than

v, in R is at most at directed distance 2 from v, we have,

|R| ≤ |{v}|+ |{vertices adjacent to v}|
+ |{vertices at directed distance 2 from v}|

≤ 1 + ∆ + ∆.(∆− 1)

= ∆2 + 1.

Hence, we are done. �

We consider the problem of determining the oriented relative clique number of the families of
outerplanar graphs and of outerplanar graphs with given girth. We list the related results below.

Theorem 3.17.

(a) ωro(O3) = 7.

(b) ωro(O4) = 5.

(c) ωro(O5) = 5.

(d) ωro(Ok) = 3 for k ≥ 6.

Finally, we list the bounds for the oriented relative clique number of the families of planar
graphs and of planar graphs with given girth below.

Theorem 3.18.

(a) 15 ≤ ωro(P3) ≤ 80.

(b) 10 ≤ ωro(P4) ≤ 26.

(c) ωro(P5) = 6.

(d) ωro(P6) = 4.
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(e) ωro(Pk) = 3 for k ≥ 7.

Proof of Theorem 3.17

(a) The example constructed by Sopena [57] to prove the lower bound of Theorem 3.14(a)
is an outerplanar oclique of order 7. Hence, our result directly follows from Theorem 3.14(a),
using Lemma 3.7.

(b) The lower bound follows from the fact that the directed 5-cycle is an oclique.

Let
−→
G be a triangle-free outerplanar oriented graph of minimum order with ωro(

−→
G) > 5. Let

R be a relative clique of maximum order of
−→
G and let S = V (

−→
G) \R.

Claim 1: For any v ∈ V (
−→
G) we have, |Nα(v) ∩R| ≤ 2 for α ∈ {+,−}.

Proof of Claim 1: Let v ∈ V (
−→
G) and Nα(v) ∩ R = {v1, ..., vk} with k ≥ 3. Fix an

outerplanar embedding
−→
G . Assume without loss of generality that the vertices v1, v2, ..., vk are

arranged around v in a clockwise order in the embedding. Clearly v1, v2, ..., vk are pairwise non-
adjacent vertices as the graph

−→
G is triangle-free. Now, as v1, v2, v3 ∈ R, pairwise they should

be at directed distance at most 2. Let, v1 and v2 be connected by a 2-dipath using the internal
vertex v12. Now note that v3 is non-adjacent to v12 as otherwise v, v12, v1, v2, v3 together will
induce a complete bipartite subgraph K2,3 in

−→
G , which is not possible as

−→
G is an outerplanar

graph. With a similar arguement, we can conclude that there are three distinct vertices v12, v23

and v13 such that for 1 ≤ i < j ≤ 3, vi and vj are connected by a 2-dipath using the internal
vertex vij . Now the complete bipartite graph K2,3 is a minor of the graph induced by the vertices
v, v12, v23, v13, v1, v2, v3, which is a contradiction as

−→
G is outerplanar. ♦

Let v ∈ R then as
−→
G is connected (because of minimality), clearly d(v) ≥ 1.

Assume, d(v) = 1 and without loss of generality assume that N(v) = N+(v) = {u}. Then
every w ∈ R \ {u, v} will be connected to v by a 2-dipath with the internal vertex u. As |R| ≥ 6
we have, |N+(u) ∩R| ≥ 4 which is a contradiction by Claim 1. Hence, d(v) ≥ 2.

Assume, d(v) = 2 and N(v) = {u1, u2}. Then every w ∈ R \ {u1, u2, v} will disagree with v
either on u1 or on u2.

Case 1: Let u1, u2 ∈ S. Then |R \ {u, v}| ≥ 5. Hence, at least three vertices of R disagree
with v either on u1 or on u2 which contradicts Claim 1. Hence, at least one of u1, u2 is in R.

Case 2: First assume, without loss of generality, u1 ∈ S. Then by Case 1, u2 ∈ R. Hence
we will have at least two vertices w1, w2 ∈ R that disagree with v on u1 as |R \ {v, u1, u2}| ≥ 4.

Now assume, u1, u2 ∈ R. Then |R \ {v, u1, u2}| ≥ 3 and hence Claim 1 implies that we will
have at least two vertices w1, w2 ∈ R that disagree with v either on u1 or on u2.

So, we can assume, without loss of generality, that u2, w1, w2 ∈ R and that w1, w2 disagree
with v on u1. As

−→
G is triangle-free, w1, w2 are non-adjacent. Now, w1 and w2 cannot be

both adjacent to u2 as
−→
G is outerplanar and the edges w1u2 and w2u2 will create the complete

bipartite graph K2,3 which is a contradiction. Hence, w1 and w2 are both adjacent to some
vertex w /∈ {u1, u2, v} to have directed distance at most 2 between themselves. We also require
−→
d (u2, w1) ≤ 2 and

−→
d (u2, w2) ≤ 2. We cannot have the edge u2w as it creates a subdivision

of the complete bipartite graph K2,3 which is a contradiction. If we try to connect wi and u2

through an edge or by a 2-dipath with internal vertex yi (y1 = y2 is possible) for i ∈ {1, 2}, we
will create a subdivision of the complete graph K4 in

−→
G which is a contradiction.

So, the above case analysis implies that d(v) ≥ 3 for any v ∈ R.
Now note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help

connecting any two (or more) vertices of R by a 2-dipath with the internal vertex being itself
(that is, z) and hence can be deleted to get an oriented outerplanar triange-free graph with
the relative oriented chromatic number equal to that of

−→
G but with order less that

−→
G which

contradicts the minimality of
−→
G . Now, a degree 2 vertex z of S must connect two vertices of R

by a 2-dipath with the internal vertex being itself (that is, z).
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Now delete each degree 2 vertex of S and connect its neighbors with an edge (there was no
edge between them as

−→
G is triangle-free). Note that this graph is also outerplanar (may not be

triangle-free) and that vertices of the new graph have the same degree in the new graph as they
had in

−→
G . We know that every outerplanar graph has at least one vertex of degree 2. That

vertex has to be a vertex from R by the construction of the new graph. Hence, there was a
vertex of degree 2 in

−→
G that belonged to R. But this gives a contradiction.

(c) Note that a directed cycle of length 5 is an oclique. Hence, using Theorem 3.14(c), our
result follows using Lemma 3.7.

(d) The 2-dipath is an oclique of order 3 and contains no cycle. This gives us the lower
bound.

For the upper bound, assume
−→
G is an oriented outerplanar graph with girth at least 6 such

that ωro(
−→
G) > 3. Let R be a relative oclique of maximum order in

−→
G . Now, it is easy to check

that it is not possible to pairwise connect any four vertices of R with an arc or a 2-dipath without
creating a cycle of length at most 5 or a subdivision of K4 or a subdivision of K2,3. �

Proof of Theorem 3.18

(a) The upper bound follows from Theorem 3.15(a) and the lower bound follows from The-
orem 3.21(a), which proves ωao(P3) = 15, using Lemma 3.7.

(b) The lower bound follows from the triangle-free planar oclique of order 10 constructed by
Ochem [43] for proving the lower bound of Theorem 3.15(b).

Let
−→
G be a triangle-free planar oriented graph of minimum order with ωro(

−→
G) > 26. Let R

be a relative clique of maximum order of
−→
G and let S = V (

−→
G) \R.

Claim 1: For any v ∈ V (
−→
G) we have, |Nα(v) ∩R| ≤ 4 for α ∈ {+,−}.

Proof of claim 1: Let v ∈ V (
−→
G) and Nα(v) ∩ R = {v1, ..., vk} with k ≥ 5. Fix a planar

embedding
−→
G . Assume, without loss of generality, that the vertices v1, v2, ..., vk are arranged

around v in a clockwise order in the embedding. Clearly v1, v2, ..., vk are pairwise non-adjacent
vertices as the graph

−→
G is triangle-free. Now, as v1, ..., v5 ∈ R, pairwise they should be at directed

distance at most 2. Hence, each pair of vertices vi and vj must be connected by a 2-dipath using
an internal vertex vij 6= v (it is not necessary to have these vertices all distinct from each other),
for 1 ≤ i < j ≤ k.

Suppose v15 6= v24. Now, without loss of generality, also suppose that the 2-dipath is −−−−→v2v24v4.
Now, we must have v24 = v13 and v24 = v35 to keep the graph planar. Also we will have v24 = v14

and v24 = v25 to keep the graph planar.
Now, v24 = v14 implies the arc −−−→v1v24. This and v24 = v13 imples the arc −−−→v24v3.
Similarly, v24 = v25 implies the arc −−−→v24v5. This and v24 = v35 imples the arc −−−→v3v24.
But

−→
G is an oriented graph, hence cannot have both the arcs −−−→v24v3 and −−−→v3v24. Hence, we

must have v15 = v24. This will force v15 = v24 = v13 = v35. Now, without loss of generality,
suppose that the 2-dipath connecting v1 and v5 is −−−−→v1v15v5. This will imply the arcs −−−→v15v3 and
−−−→v3v15 to connect v3 by 2-dipath with v1 and v5 respectively. But

−→
G is an oriented graph, hence

cannot have both the arcs −−−→v15v3 and −−−→v3v15. ♦

Now note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by a 2-dipath with the internal vertex being itself
(that is, z) and hence can be deleted to get an oriented planar triange-free graph with the relative
oriented chromatic number equal to that of

−→
G but with order less that

−→
G which contradicts the

minimality of
−→
G . Now, a vertex z of S must connect at least two vertices of R by a 2-dipath

with the internal vertex being itself (that is, z).
Now for each vertex z ∈ S with d(z) ≤ 5, assume that the neighbors of z are v1, v2, ..., vk. Fix

a planar embedding of
−→
G and assume that the neighbors of z are arranged in a clockwise order

around z. Now delete the vertex z and add the edges v1v2, v2v3, ..., vk−1vk, vkv1 (for d(z) = 2
add only one edge v1v2) to obtain a new graph.
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Note that this new graph is also planar and the degree of each vertex in the new graph, which
were in

−→
G also, is as much as the degree of the corresponding vertex in

−→
G . Hence, there is a

vertex v in the new graph, which belongs to R and has degree at most 5.
Hence, there will be a neighbor u of v and at least 5 vertices of R \ (N(v) ∪ {v}) which are

connected to v with a 2-dipath with internal vertex u which is a contradiction to Claim 1. So,
we can conclude that ωro(

−→
G) ≤ 26.

(c) The lower bound follows from the oriented graph depicted in Fig. 3.5. As previously
discussed, this graph has oriented relative clique number 6.

We will now prove the upper bound by contradiction.
Assume that

−→
G is an oriented planar graph with girth at least 5 of minimum order with

ωro(
−→
G) > 6. Moreover assume that

−→
G is such that, if we delete any arc of

−→
G , the new graph

will have oriented relative chromatic number at most 6. Let R be an oriented relative clique of
maximum order of

−→
G and let S = V (

−→
G) \ R. Note that S induces an independent set of

−→
G as

deleting any arc between two vertices of S will not decrease the oriented relative clique number
of the graph

−→
G .

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by a 2-dipath with the internal vertex being itself
(that is, z) and hence can be deleted to get an oriented planar graph with girth at least 5 and
with relative oriented chromatic number equal to that of

−→
G but with order less that

−→
G which

contradicts the minimality of
−→
G .

Also, for any z ∈ V (
−→
G), we must have |N(z)∩R| ≤ 2. If not then we will have |Nα(z)∩R| ≥ 2

for some α ∈ {+,−}. Now to have directed distance at most 2 between two vertices of Nα(z)∩R,
there should be a 2-dipath joining the two vertices. This will create a cycle of length 4, which is
a contradiction. Hence for any z ∈ S we have, d(z) = 2 and that z must be an internal vertex of
a 2-dipath with two terminal vertices from R.

As oriented forests have an oriented 3-coloring [58],
−→
G must have a cycle. Also,

−→
G must

contain a cycle of length 5 with edges ab, bc, cd, de and ea, using Theorem 3.18(c) and (d) whose
proofs are independent from this proof. As S is an independent set in

−→
G , we can have at most

2 vertices (which should be non-adjacent) of the cycle from S.

First assume that all the vertices of the cycle are from R. Then any w ∈ R \ {a, b, c, d, e} is
not adjacent to any of a, b, c, d, e as otherwise we will have a vertex with at least three neighbors
from R which is not possible. Hence, w is connected to each of a, b, c, d, e with a 2-dipath
with internal vertices from S. Now, we have at least two such vertices in R, say, w and u as
|R \ {a, b, c, d, e}| ≥ 2. Now, w and u are either adjacent or connected by a 2-dipath with the
internal vertex different from a, b, c, d, e. Note that this will create a subdivision of the complete
graph K5 which is a contradiction as

−→
G is planar.

Hence, R does not induce any cycle of length 5 in
−→
G .

Now assume, there is a cycle of length 5, with edges ab, bc, cd, de and ea, in
−→
G with four

vertices a, b, c, d from R. But, at most one vertex from R \ {a, b, c, d} can be adjacent to a and
at most one vertex from R \ {a, b, c, d} can be adjacent to d, while no vertex from R \ {a, b, c, d}
can be adjacent to b or c because of the degree restrictions proved before. As |R \{a, b, c, d}| ≥ 3
there is a w ∈ R such that w is non-adjacent to each of a, b, c, d, e. Now, w is connected to each
of a, b, c, d with a 2-dipath.

Now assume that at least one internal vertex is from R. Without loss of generality we can
assume that the internal vertex u connecting w and a by a 2-dipath is from R. Now, u cannot be
adjacent to d, b or c (this will create a cycle of length less than 5). Hence, u must be connected
by a 2-dipath with c. But this creates a subdivision of the complete bipartite graph K3,3 which
contradicts the planarity of

−→
G .

Hence, all the internal vertices connecting w to of a, b, c, d with 2-dipaths are from S.
If there is another vertex u 6= w in R \ {a, b, c, d} such that u is neither adjacent to a nor to

d then u must be connected to a, b, c, d by 2-paths with internal vertices from S. Also, w and u
will be either adjacent or connected by a 2-dipath. This will create a subdivision of the complete
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graph K5 which is a contradiction as
−→
G is planar. Hence, any vertex u ∈ R \ {a, b, c, d, w} must

be adjacent either to a or to d. Without loss of generality we may assume that u is adjacent
to a. Now, u cannot be adjacent to w, d, b or c (this will create a cycle of length less than 5).
Hence, u must be connected by a 2-dipath with w, c and d. But this creates a subdivision of the
complete graph K5 which contradicts the planarity of

−→
G .

Hence, there is no cycle of length 5 in
−→
G with four vertices of it from R.

So, there is a cycle of length 5 in
−→
G , with edges ab, bc, cd, de and ea, in

−→
G with three vertices,

without loss of generality, a, c, d (no two vertices from S can be adjacent) from R. At most
two vertices from R \ {a, c, d} can be adjacent to a. Hence there is at least two vertices, say,
u, v ∈ R \ {a, c, d} which are non-adjacent to a. The vertices u, v cannot be adjacent to c or
d as well, because otherwise it will create a cycle of length less than 4 to have

−→
d (t, t′) ≤ 2 for

t ∈ {u, v} and t′ ∈ {c, d}. Hence, both u and v are connected to a, c, d by 2-dipaths. Also, u
and v are either adjacent or connected by a 2-dipath. But then this creates a subdivision of the
complete graph K5 which contradicts the planarity of

−→
G .

(d) The lower bound follows from the oriented graph obtained by connecting a vertex with
2-dipaths to three independent vertices of a directed 6-cycle. It is easy to check that this oriented
graph has girth 6 and oriented relative clique number 4.

We will now prove the upper bound by contradiction.
Assume that

−→
G is a planar oriented graph with girth at least 6 of minimum order with

ωro(
−→
G) > 5. Moreover assume

−→
G is such that, if we delete any arc of

−→
G , the new graph will have

oriented relative chromatic number at most 5. Let R be an oriented relative clique of maximum
order of

−→
G . Let, S = V (

−→
G) \ R. Note that S induces an independent set of

−→
G as deleting any

arc between two vertices of S will not decrease the oriented relative clique number of the graph−→
G .

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by a 2-dipath with the internal vertex being itself
(that is, z) and hence can be deleted to get an oriented planar graph with girth at least 6 and
with relative oriented chromatic number equal to that of

−→
G but with order less that

−→
G which

contradicts the minimality of
−→
G .

Also, for any z ∈ V (
−→
G), we must have |N(z)∩R| ≤ 2. If not, then we will have |Nα(z)∩R| ≥ 2

for some α ∈ {+,−}. Now to have directed distance at most 2 between two vertices of Nα(z)∩R,
there should be a 2-dipath joining the two vertices. This will create a cycle of length 4, which is
a contradiction. Hence for any z ∈ S we have, d(z) = 2 and that z must be an internal vertex of
a 2-dipath with two terminal vertices from R.

As every oriented forest admit an oriented 3-coloring [58],
−→
G must have a cycle. Also,

−→
G

must contain a cycle abcdef of length 6 (that is, the edges of the cycle are ab, bc, cd, de, ef and
fa) using Theorem 3.18(d) whose proofs are independent from this proof. As S is an independent
set in

−→
G , we can have at most three vertices (which should be non-adjacent) of the cycle from

S.
As the vertices of S are non-adjacent, without loss of generality, we can assume that a, c, e ∈

R. If another vertex of R is in the cycle, then, without loss of generality, we can assume it to be
d. If so, then d and a must be connected by a 2-dipath or be adjacent which creates a cycle of
length less than 6, hence is not possible. Therefore, exactly three vertices of the cycle are from
R.

Now, for any w ∈ R, we have w connected by a 2-dipath to each of a, c, e. If we have two
such vertices w and x, which are adjacent or connected by a 2-dipath, it will create a subdivision
of the complete graph K5 in

−→
G which contradicts the planarity of

−→
G .

(e) The lower bound follows from the fact that a 2-dipath is an oclique of order 3.
It is easy to check that it is not possible to construct an oriented graph with girth at least 7

in which at least 4 vertices are at directed distance at most 2 keeping the graph planar. �
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Figure 3.6: Planar oclique of order 15.

3.3.3 Oriented absolute clique number

The questions related to the oriented absolute clique number have been first asked by Kloster-
meyer and MacGillivray [27] in 2002. In their paper they asked: “what is the maximum order of
a planar oclique?” which is equivalent to asking “what is the oriented absolute clique number of
planar graphs?” In order to find the answer to this question, Sopena [59] found a planar oclique
of order 15 while Klostermeyer and MacGillivray [27] showed that there is no planar oclique of
order more than 36 and conjectured that the maximum order of a planar oclique is 15. Later in
2011, we positively settled that conjecture [55] and will state it as Theorem 3.21(a) in this sec-
tion. Later, in a joint effort with Sopena, we proved the following stronger result which implies
Theorem 3.21(a) and proves a uniqueness property of planar ocliques of maximum order.

Theorem 3.19. A planar oclique has order at most 15 and every planar oclique of order 15
contains the planar oclique

−→
P depicted in Fig. 3.6 as a subgraph.

The similar question for planar ocliques with given girth is also of interest and was asked by
Klostermeyer and MacGillivray [27]. We answered these questions and provided tight bounds for
the problem. Before stating the results concerning the oriented absolute chromatic number for
the families of planar graphs and of planar graphs with given girth, we state the similar results
for the families of outerplanar graphs and of outerplanar graphs with given girth.

Theorem 3.20.

(a) ωao(O3) = 7.

(b) ωao(O4) = 5.

(c) ωao(O5) = 5.

(d) ωao(Ok) = 3 for k ≥ 6.
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The proof of this theorem clearly follows from the proof of Theorem 3.14 and Theorem 3.17.

Theorem 3.21.

(a) ωao(P3) = 15.

(b) ωao(P4) = 6.

(c) ωao(P5) = 5.

(d) ωao(Pk) = 3 for k ≥ 6.

Proof of Theorem 3.19

Goddard and Henning [18] (see Chapter 2, Theorem 2.15) proved that every planar graph of
diameter 2 has domination number at most 2 except for a particular graph on nine vertices.

Let
−→
B be a planar oclique dominated by the vertex v. Sopena [58] showed that any oriented

outerplanar graph has an oriented 7-coloring. Hence let c be an oriented 7-coloring of the oriented
outerplanar graph obtained from

−→
B by deleting the vertex v. Now for u ∈ Nα(v) let us assign

the color (c(u), α) to u for α ∈ {+,−} and the color 0 to v. It is easy to check that this is an
oriented 15-coloring of

−→
B . Hence any planar oclique dominated by one vertex has order at most

15.

Lemma 3.22. Let
−→
H be a planar oclique of order 15 dominated by one vertex. Then

−→
H contains

the planar oclique depicted in Fig. 3.6 as a subgraph.

Proof. Suppose
−→
H is a triangulated planar oclique of order 15 dominated by one vertex v. Now,

note that Nα(v) is an oriented relative clique in
−→
H [N(v)] (that is, the oriented subgraph of

−→
H

induced by the neighbors of v which is actually the oriented graph obtained by deleting the
vertex v from

−→
H ) for any α ∈ {+,−}. Also note that

−→
H [N(v)] is an outerplanar graph. Hence

by Theorem 3.17(a) we have |Nα(v)| ≤ 7 for any α ∈ {+,−}. But we also have,

|N+(v)|+ |N−(v)| = 14.

Hence we have,

|N+(v)| = |N−(v)| = 7.

Now assume N(v) = {x1, x2, ..., x14}. Moreover fix a planar embedding of
−→
H and without

loss of generality assume that the vertices x1, x2, ..., x14 are arranged in a clockwise order around
v. The triangulation of

−→
H forces the edges x1x2, x2x3, ..., x13x14, x14x1. Now we know from the

above discussion that there should be two disjoint oriented relative cliques N+(v) and N−(v),
each of order 7, in the outerplanar graph

−→
H [N(v)]. We already have the cycle x1x2...x14 forced in

the outerplanar graph
−→
H [N(v)]. We will now prove some more structural properties of

−→
H [N(v)].

As
−→
H [N(v)] is an outerplanar graph, it must have at least two vertices of degree at most 2.

As every vertex of the graph is part of a cycle, there is no vertex of degree at most 1. Hence
there is at least two vertices of degree exactly 2 in

−→
H [N(v)].

Without loss of generality assume that d−→
H [N(v)]

(x2) = 2 and x2 ∈ Nα(v) for some fixed α ∈
{+,−}. By triangulation we must have the edge x1x3. Now the vertices of Nα(v) \ {x1, x2, x3}
must be connected to x2 by 2-dipaths with internal vertex either x1 or x3.

Let four vertices of Nα(v) \ {x1, x2, x3} be connected to x2 by 2-dipaths with internal vertex
x1. Then there will be two vertices, among the above mentioned four vertices, at directed
distance at most 3 which is a contradiction. So at most three vertices of Nα(v) \ {x1, x2, x3} can
be connected to x2 by 2-dipaths with internal vertex x1. Similarly we can show that at most
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Figure 3.7: Structure of ~G (not a planar embedding)

three vertices of Nα(v) \ {x1, x2, x3} can be connected to x2 by 2-dipaths with internal vertex
x3.

Now suppose there are at least two vertices xi, xj ∈ Nα(v) \ {x1, x2, x3} that are connected
to x2 by 2-dipaths with internal vertex x1 and there are at least two vertices xk, xl ∈ Nα(v) \
{x1, x2, x3} that are connected to x2 by 2-dipaths with internal vertex x3.

Notice that, as the graph
−→
H is planar, with the given planar embedding of

−→
H we must have

i, j > k, l. Now, without loss of generality, we can assume that i > j and k > l. Now it will be
impossible to have directed distance at most 2 between xi and xl keeping the graph

−→
H planar.

So, at least one of the vertices between x1, x3 must be the internal vertex of at most one 2-dipath
connecting a vertex of Nα(v) \ {x1, x2, x3} to x2.

Now if at least one vertex between x1 and x3 is from Nα(v), then we will have,

|Nα(v) \ {x1, x2, x3}| ≥ 5.

But then by the above discussion we will have a contradiction (there will be at least two
vertices of Nα(v) \ {x1, x2, x3} connected by 2-dipaths with internal vertex x1 and at least two
vertices of Nα(v) \ {x1, x2, x3} connected by 2-dipaths with internal vertex x3).

Hence we must have x1, x3 ∈ Nα(v). Without loss of generality we have three vertices
xi, xj , xk ∈ Nα(v) \ {x1, x2, x3} connected by 2-dipaths with internal vertex x1 and 1 vertex
xl ∈ Nα(v) \ {x1, x2, x3} connected by a 2-dipath with internal vertex x3. Without loss of
generality we can assume i > j > k > l.

Now to have
−→
d (xi, xs) ≤ 2 for s ∈ {2, 3, l}, the vertices x2, x3, xl must disagree with xi on

x1. Also to have
−→
d (xi, xk),

−→
d (x2, xl) ≤ 2 we must have the 2-dipaths xixjxk and x2x3xl. But

then the induced oriented graph
−→
H [Nα(v)] contains the oriented graph induced by Nα(a0) of

the planar oclique depicted in Fig. 3.6.
Further notice that no vertex of Nα(v), other than x2, has degree 2 in

−→
H [N(v)]. Hence we

can infer that a vertex of Nα(v) has degree 2 in
−→
H [N(v)]. That will imply that the induced

oriented graph
−→
H [Nα(v)] contains the oriented graph induced by Nα(a0) of the planar oclique

depicted in Fig. 3.6.
Hence the planar oclique depicted in Fig. 3.6 is a subgraph of

−→
H . It is easy to check that,

regardless of the choice of
−→
H (it is a triangulation of the planar oclique depicted in Fig. 3.6), if

we delete one arc of the oriented subgraph, isomorphic to the planar oclique depicted in Fig. 3.6,
of
−→
H , the oriented graph

−→
H does not longer remain an oclique.

This proves the lemma. �

Now, to prove Theorem 3.19, it will be enough to prove that every planar oclique of order at
least 15 must have domination number 1. In other words, it will be enough to prove that any
planar oclique with domination number 2 must have order at most 14. More precisely, we need
to prove the following lemma.

Lemma 3.23. Let
−→
H be a planar oclique with domination number 2. Then |

−→
H | ≤ 14.
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Figure 3.8: A planar embedding of und( ~H)

Let
−→
G be a planar oclique with |

−→
G | > 14. Assume that

−→
G is triangulated and has domination

number 2.
We define the partial order ≺ for the set of all dominating sets of order 2 of

−→
G as follows:

for any two dominating sets D = {x, y} and D′ = {x′, y′} of order 2 of
−→
G , D′ ≺ D if and only if

|N(x′) ∩N(y′)| < |N(x) ∩N(y)|.
Let D = {x, y} be a maximal dominating set of order 2 of

−→
G with respect to ≺. Also for the

rest of this thesis, t, t′, α, α, β, β are variables satisfying {t, t′} = {x, y} and {α, α} = {β, β} =
{+,−}.

Now, we fix the following notations (Fig: 3.7):

C = N(x) ∩N(y), Cαβ = Nα(x) ∩Nβ(y), Cαt = Nα(t) ∩ C,
St = N(t) \ C, Sαt = St ∩Nα(t), S = Sx ∪ Sy.

Hence we have,

15 ≤ |
−→
G | = |D|+ |C|+ |S|. (3.1)

Let
−→
H be the oriented graph obtained from the induced subgraph

−→
G [D∪C] of

−→
G by deleting

all the arcs between the vertices of D and all the arcs between the vertices of C. Note that it is
possible to extend the planar embedding of und(

−→
H ) given in Fig 3.8 to a planar embedding of

und(
−→
G) for some particular ordering of the elements of, say C = {c0, c1, ..., ck−1}.

Notice that und(
−→
H ) has k faces, namely the unbounded face F0 and the faces Fi bounded by

edges xci−1, ci−1y, yci, cix for i ∈ {1, ..., k − 1}. Geometrically, und(
−→
H ) divides the plane into k

connected components. The region Ri of
−→
G is the ith connected component (corresponding to

the face Fi) of the plane. Boundary points of a region Ri are ci−1 and ci for i ∈ {1, ..., k − 1}
and, c0 and ck−1 for i = 0. Two regions are adjacent if they have at least one common boundary
point (hence, a region is adjacent to itself).

Now for the different possible values of |C|, we want to show that und(
−→
H ) cannot be extended

to a planar oclique of order at least 15. Note that, for extending und(
−→
H ) to

−→
G , we can add new

vertices only from S. Any vertex v ∈ S will be inside one of the regions Ri. If there is at least
one vertex of S in a region Ri, then Ri is non-empty and empty otherwise. In fact, when there
is no chance of confusion, Ri might represent the set of vertices of S contained in the region Ri.

As any two distinct non-adjacent vertices of
−→
G must be connected by a 2-dipath, we have

the following three lemmas:

Lemma 3.24. (a) If (u, v) ∈ Sx×Sy or (u, v) ∈ Sαt ×Sαt , then u and v are in adjacent regions.
(b) If (u, c) ∈ Sαt ×Cαt , then c is a boundary point of a region adjacent to the region containing

u.

Lemma 3.25. Let R,R1, R2 be three distinct regions such that R is adjacent to Ri with common
boundary point ci while the other boundary points of Ri is ci for all i ∈ {1, 2}. If v ∈ Sαt ∩R and
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Figure 3.9: For |C| = 1 while x and y are non-adjacent

ui ∈ ((Sαt ∪ St′) ∩ Ri) ∪ ({ci} ∩ Cαt ), then v disagrees with ui on ci, where i ∈ {1, 2}. If both u1

and u2 exist, then |Sαt ∩R| ≤ 1.

Lemma 3.26. For any arc −→uv in
−→
G , we have |Nα(u) ∩Nβ(v)| ≤ 3.

Now we ask the question “How small |C| can be?” and try to prove possible lower bounds of
|C|. The first result regarding the lower bound of |C| is proved below.

Lemma 3.27. |C| ≥ 2.

Proof. We know that x and y are either connected by a 2-dipath or by an arc. If x and y are
adjacent, then as

−→
G is triangulated, we have |C| ≥ 2. If x and y are non-adjacent, then |C| ≥ 1.

Hence it is enough to show that we cannot have |C| = 1 while x and y are non-adjacent.
If |C| = 1 and x and y are non-adjacent, then the triangulation will force the configuration

depicted in Fig 3.9 as a subgraph of und(
−→
G), where C = {co}, Sx = {x1, ..., xnx} and Sy =

{y1, ..., yny}. Without loss of generality we may assume |Sy| ≥ |Sx|. Then by equation (3.1) we
have,

ny = |Sy| ≥ d(15− 2− 1)/2e = 6.

Clearly nx ≥ 3 as otherwise {c0, y} is a dominating set with at least two common neighbors
{y1, yny} which contradicts the maximality of D.

For nx = 3, we know that c0 is not adjacent to x2 as otherwise {c0, y} is a dominating set
with at least two common neighbors {y1, yny} contradicting the maximality of D. But then x2

should be adjacent to yi for some i ∈ {1, ..., ny} as otherwise d(x2, y) > 2. Now the triangulation
will force x2 and yi to have at least two common neighbors. Also x2 cannot be adjacent to yj for
any j 6= i, as it will create a dominating set {x2, y} with at least two common neighbors {yi, yj}
contradicting the maximality of D. Hence, x2 and yi are adjacent to both x1 and x3. Note that
t`t and t`t+k are adjacent if and only if k = 1, as otherwise d(t`t+1, t

′) > 2 for 1 ≤ `t < `t+k ≤ nt.
In this case, by equation (3.1) we have,

ny = |Sy| ≥ 15− 2− 1− 3 = 9.

Assume i ≥ 5. Hence, c0 is adjacent to yj for all j = 1, 2, 3, as otherwise d(yj , x3) > 2. This
implies d(y2, x2) > 2, a contradiction. Similarly i < 5 will also force a contradiction. Hence
nx ≥ 4.

For nx = 4, c0 cannot be adjacent to both x3 and xnx−2 = x2 as it creates a dominating set
{c0, y} with at least two common neighbors {y1, yny} contradicting the maximality of D. For
nx ≥ 5, c0 is adjacent to x3 implies, either for all i ≥ 3 or for all i ≤ 3, xi is adjacent to c0, as
otherwise d(xi, y) > 2. Either of these cases will force c0 to become adjacent to yj , as otherwise
we will have either d(x1, yj) > 2 or d(xnx , yj) > 2 for all j ∈ {1, 2, ..., ny}. But then we will have
a dominating set {c0, x} with at least two common vertices contradicting the maximality of D.
Hence for nx ≥ 5, c0 is not adjacent to x3. Similarly we can show, for nx ≥ 5, that c0 is not
adjacent to either x3 or xnx−2.

So, for nx ≥ 4, without loss of generality we can assume that c0 is not adjacent to x3. We
know that d(y1, x3) ≤ 2. We have already noted that tlt and tlt+k are adjacent if and only if
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k = 1 for any 0 ≤ lt < lt + k ≤ nt. Hence to have d(y1, x3) ≤ 2, we must have one of the
following edges: y1x2, y1x3, y1x4 or y2x3. The first edge will imply the edges x2yj as otherwise
d(x1, yj) > 2 for all j = 3, 4, 5. These three edges will imply d(x4, y3) > 2. Hence we do not have
y1x2.

The other three edges, assuming we cannot have y1x2, will force the edges x2c0 and x1c0 for
having d(x2, y) ≤ 2 and d(x1, y) ≤ 2. This will imply d(x1, y4) > 2, a contradiction. Hence we
cannot have the other three edges also.

Hence we are done. �

Now we will prove that, for 2 ≤ |C| ≤ 5, at most one region of
−→
G can be non-empty. Later,

using this result, we will improve the lower bound of |C|.

Lemma 3.28. If 2 ≤ |C| ≤ 5, then at most one region of
−→
G is non-empty.

Proof. For pictorial help one can look at Fig 3.8. For |C| = 2, if x and y are adjacent, then the
region that contains the edge xy is empty, as otherwise triangulation will force x and y to have
a common neighbor other than c0 and c1. So for the rest of the proof we can assume x and y to
be non-adjacent for |C| = 2.

Step 0: First we shall show that it is not possible to have either Sx = ∅ or Sy = ∅ and have
at least two non-empty regions. Without loss of generality assume that Sx = ∅. Then x and y
are non-adjacent, as otherwise y will be a dominating vertex which is not possible.

For |C| = 2, if both Sy ∩ R0 and Sy ∩ R1 are non-empty, then triangulation will force,
either multiple edges c0c1 (one in each region) or a common neighbor of x, y other than c0, c1, a
contradiction.

For |C| = 3, 4 and 5, triangulation implies the edges c0c1, ..., ck−2ck−1, ck−1c0. Hence every
v ∈ Sy must be connected to x by a 2-dipath through ci for some i ∈ {1, 2, ..., k − 1}. Now
assume |Sαy | ≥ |Sαy | for some α ∈ {+,−}. Then by equation (3.1) we have,

|Sαy | ≥ d(15− 2− 5)/2e = 4.

Now by Lemma 3.24, we know that the vertices of Sαy will be contained in two adjacent
regions for |C| = 4, 5. For |C| = 3, Sαy ∩Ri for all i ∈ {0, 1, 3} implies |Sαy | ≤ 3 by Lemma 3.25.
Hence, without loss of generality, we may assume Sαy ⊆ R1∪R2. If both Sαy ∩R1 and Sαy ∩R2 are
non-empty, then by Lemma 3.25, each vertex of Sαy ∩ R1 disagrees with each vertex of Sαy ∩ R2

on c1. Then {c1, y} becomes a dominating set with at least six common neighbors (c0, c2 and
four vertices from Sαy ) which contradicts the maximality of D.

Hence, all the vertices of Sαy must be contained in one region, say R1. Then each of them
should be connected to x by a 2-dipath with internal vertex either c0 or c1. However, the vertices
that are connected to x by a 2-dipath with internal vertex c0 should have directed distance at
most 2 with the vertices connected to x by a 2-dipath with internal vertex c1. It is not possible
to connect them unless they are all adjacent to either c0 or c1. But then it will contradict the
maximality of D.

Hence both Sx and Sy are non-empty.

Step 1: Now we will prove that at most four sets out of the 2k sets St∩Ri can be non-empty,
for all t ∈ {x, y} and i ∈ {0, 1, ..., k−1}. It is trivial for |C| = 2. For |C| = 4 and 5, the statement
follows from Lemma 3.24. For |C| = 3, we consider the following two cases:

(i) Assume St ∩ Ri 6= ∅ for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then by Lemma 3.25 we
have, |St ∩Ri| ≤ 1 for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then by equation (3.1) we have,

15 ≤ |
−→
G | = 2 + 3 + 4 = 9.

This is a contradiction.
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(ii) Assume that five out of the six sets St ∩ Ri are non-empty and the other one is empty,
where t ∈ {x, y} and i ∈ {0, 1, 2}. Without loss of generality we can assume Sx ∩ R0 = ∅. By
Lemma 3.25 we have |St ∩Ri| ≤ 1 for all (t, i) ∈ {(x, 1), (x, 2), (y, 0)}. In particular, |Sx| ≤ 2.

Now, all verticex of St ∩ Ri is adjacent to c1, for being at directed distance at most 2 from
each other, by Lemma 3.25. That means, every vertex of Sx is adjacent to c1. Hence, there can
be at most three vertices in (Sy ∩ R1) ∪ (Sy ∩ R2) as otherwise the dominating set {c1, y} will
contradict the maximality of D. Hence, |Sy| ≤ 4.

Therefore by equation (3.1) we have,

15 ≤ |
−→
G | = 2 + 3 + (2 + 4) = 11.

This is a contradiction.
Hence at most four sets out of the 2k sets St ∩ Ri can be non-empty, where t ∈ {x, y} and

i ∈ {0, 1, ..., k − 1}.

Step 2: Now assume that exactly four sets out of the sets St ∩ Ri are non-empty, for all
t ∈ {x, y} and i ∈ {0, ..., k− 1}. Without loss of generality we have the following three cases (by
Lemma 3.24):

(i) Assume the four non-empty sets are Sx ∩R1, Sy ∩R0, Sy ∩R1 and Sy ∩R2 (only possible
for |C| ≥ 3). We have the edges c0ck−1 and c1c2 by triangulation. Lemma 3.25 implies that
Sx ∩R1 = {x1} and that the vertices of Sy ∩R0 and the vertices of Sy ∩R2 disagree with x1 on
c0 and c1 respectively. Hence by Lemma 3.26, we have |Sy ∩R0|, |Sy ∩R2| ≤ 3.

For |C| = 3, if every vertex from Sy ∩R1 is adjacent to either c0 or c1, then {c0, c1} will be a
dominating set with at least four common neighbors {x, y, x1, c2} contradicting the maximality
of D. If not, then triangulation will force x1 to be adjacent to at least two vertices y1, y2 (say)
from Sy. But then {x1, y} will become a dominating set with at least four common neighbors
{y1, y2, c0, c1} contradicting the maximality of D.

For |C| = 4 and 5, Lemma 3.24 implies that vertices of Sy ∩ R0 and vertices of Sy ∩ R2

disagree with each other on y. Now by Lemma 3.25, any vertex of Sy ∩R1 is adjacent to either
c0 (if it agrees with the vertices of Sy ∩ R0 on y) or c1 (if it agrees with the vertices of Sy ∩ R2

on y). Also vertices of Sy ∩R0 and Sy ∩R2 are connected to x1 by a 2-dipath through c0 and c1

respectively.
Now by equation (3.1) we have,

|Sy| ≥ (15− 2− 5− 1) = 7.

Hence, without loss of generality, at least four vertices y1, y2, y3, y4 of Sy are adjacent to
c0. Hence {c0, y} is a dominating set with at least five common neighbors {y1, y2, y3, y4, ck−1}
contradicting the maximality of D for |C| = 4.

For |C| = 5, each vertex of Sy ∩R1 disagree with c3 by Lemma 3.24 and hence without loss
of generality are all adjacent to c0. Now |Sy ∩R2| ≤ 3 and |Sy| ≥ 8 implies |Sy ∩ (R0 ∪R1)| ≥ 5.
But every vertex of Sy ∩ (R0 ∪R1) and c4 are adjacent to c0. Hence {c0, y} is a dominating set
with at least six common neighbors, contradicting the maximality of D for |C| = 5.

(ii) Assume the four non-empty sets are Sx ∩R0, Sx ∩R1, Sy ∩R0 and Sy ∩R1. For |C| = 2
every vertex in S is adjacent to either c0 or c1 (by Lemma 3.25). So, {c0, c1} is a dominating
set. Hence no vertex w ∈ S can be adjacent to both c0 and c1 because otherwise {c0, c1} will be
a dominating set with at least three common neighbors {x, y, w} contradicting the maximality
of D. By equation (3.1) we have,

|S| ≥ 15− 2− 2 = 11.

Hence, without loss of generality, we may assume |Sx∩R0| ≥ 3. Assume {x1, x2, x3} ⊆ Sx∩R0.
Now all vertices of Sx ∩ R0 must be adjacent to c0 (or c1), as otherwise it will force all vertices



32 3.3. Oriented coloring

of Sy ∩R1 to be adjacent to both c0 and c1 (by Lemma 3.25). Without loss of generality assume
all vertices of Sx ∩ R0 are adjacent to c0. Then all w ∈ Sy will be adjacent to c0, as otherwise
d(w, xi) > 2 for some i ∈ {1, 2, 3}. But then {c0, x} will be a dominating set with at least three
common vertices {x1, x2, x3} contradicting the maximality of D.

For |C| = 3, 4, every vertex of S will be adjacent to c0 (by Lemma 3.25). By equation (3.1)
we have,

|S| ≥ (15− 2− 4) = 9.

Hence, without loss of generality, |Sx| ≥ 5. Hence {co, x} is a dominating set with at least
five common neighbors Sx ∪ {y} contradicting the maximality of D for |C| = 3, 4.

For |C| = 5, every vertex of St ∩ Ri disagree with ci+2 on t and hence |St ∩ Ri| ≤ 3 for
i ∈ {0, 1} by Lemma 3.24. Assume, |Sx ∩ R0| = 3 and Sx ∩ R0 = {x1, x2, x3}. Now assume
without loss of generality that c2 ∈ Nα(x). Hence, we must have {x1, x2, x3} ⊆ Nα(x).

Note that x1, x2, x3 must agree on c0 in order to be at directed distance at most 2 with the
vertices of Sy∩R1. Further assume that {x1, x2, x3} ⊆ Nβ(c0). But then as all the three vertices
{x1, x2, x3} are adjacent to both x and c0, the only way each of them can be at directed distance
2 with c3 is by a 2-dipath with internal vertex x. Hence we have c3 ∈ Nα(x). This implies that
x4 ∈ Nα(x) for any vertex x4 ∈ Sx ∩ R1. But then the vertices of Sx ∩ R1 must disagree with
vertices of Sx∩R0 on c0 making it impossible for the vertices of S1∩R0 to be at directed distance
at most 2 with x1, x2, x3 and with the vertices of Sx ∩R1. Hence we must have |Sx ∩R0| ≤ 2.

Similarly we can prove |St ∩Ri| ≤ 2 for i ∈ {0, 1}.
Now we will show that it is not possible to have |St ∩Ri| = 2 for all (t, i) ∈ {x, y} × {0, 1}.
Suppose we have |St ∩ Ri| = 2 for all (t, i) ∈ {x, y} × {0, 1}. Then clearly, the vertices of

St ∩Ri disagree with ci+2 and ci+3 on t. Hence, the vertices of St ∩R0 agree with the vertices of
St ∩R1 on t. Therefore, the vertices of St ∩R0 must disagree with the vertices of St ∩R1 on c0.

Then it will not be possible to have both the vertices of Sx ∩R0 at directed distance at most
2 with all the four vertices of Sy.

Therefore, we have |S| ≤ 7. Hence by equation (3.1) we have,

15 ≤ |
−→
G | ≤ 2 + 5 + 7 = 14.

This is a contradiction. Hence we are done.

(iii) Assume the four non-empty sets are Sx∩R1, Sx∩R2, Sy∩R0 and Sy∩R1 (only possible
for |C| = 3). Now Lemma 3.25 implies that every vertex of (Sx ∩R1) ∪ (Sy ∩R0) is adjacent to
c0 and every vertex of (Sx ∩R2) ∪ (Sy ∩R1) is adjacent to c1.

Moreover triangulation forces the edges c0c2 and c1c2. Triangulation also forces some vertex
v1 ∈ Sy ∩R1 to be adjacent to c0. This will create the dominating set {c0, c1} with at least four
common neighbors {x, y, v1, c2} contradicting the maximality of D.

Hence at most three sets out of the 2k sets St ∩ Ri can be non-empty, where t ∈ {x, y} and
i ∈ {0, 1, ..., k − 1}.

Step 3: Now assume that exactly three sets out of the sets St ∩ Ri are non-empty, where
t ∈ {x, y} and i ∈ {0, ..., k − 1}. Without loss of generality we have the following two cases (by
Lemma 3.24):

(i) Assume the three non-empty sets are Sx∩R0, Sy ∩R0 and Sy ∩R1. Triangulation implies
the edge c0c1 inside the region R1.

For |C| = 2, there exists u ∈ Sy∪R1 such that u is adjacent to both c0 and c1 by triangulation.
Now if |Sy ∪ R1| ≥ 2, then some other vertex v ∈ Sy ∪ R1 must be adjacent to either c0 or c1.
Without loss of generality we may assume that v is adjacent to c0. Then every w ∈ Sx ∩R0 will
be adjacent to c0 to have d(v, w) ≤ 2. But then {c0, y} will be a dominating set with at least
three common neighbors {c1, u, v} contradicting the maximality of D.
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So we must have |Sy∪R1| = 1. Now let us assume that Sy∪R1 = {u}. Then any w ∈ Sx∩R0

is adjacent to either c0 or c1. If |Sx| ≥ 5, then without loss of generality we can assume that at
least three vertices of Sx are adjacent to c0. Now to have at most distance 2 with all those three
vertices, every vertex of Sy will be adjacent to c0. This will create the dominating set {c0, x}
with at least three common neighbors contradicting the maximality of D.

Also |Sx| = 1 clearly creates the dominating set {c0, y} (as x1 is adjacent to c0 by triangula-
tion) with at least three common neighbors (a vertex from Sy ∩ R0 by triangulation, u and c1)
contradicting the maximality of D.

For 2 ≤ |Sx| ≤ 4, c0 (or c1) can be adjacent to at most two vertices of Sy ∩ R0 because
otherwise there will be one vertex v ∈ Sy ∩ R0 which will force c0 (or c1) to be adjacent to
all vertices of w ∈ Sx in order to satisfy d(v, w) ≤ 2 and create a dominating set {c0, y} that
contradicts the maximality of D.

Also, not all vertices of Sx can is adjacent to c0 (or c1) as otherwise {co, y} (or {c1, y}) will be
a dominating set with at least three common neighbors (u, c1 (or c0) and a vertex from Sy ∩R0)
contradicting the maximality of D.

Note that, by equation (3.1), we have,

|Sy ∩R0| ≥ 10− Sx.

Assume Sx = {x1, ..., xn} with triangulation forcing the edges c0x1, x1x2, ..., xn−1xn, xnc1

for n ∈ {2, 3, 4}.
For |Sx| = 2, at most four vertices of Sy ∩ R0 can be adjacent to c0 or c1. Hence there will

be at least four vertices of Sy ∩R0 each connected to x by a 2-dipath through x1 or x2. Without
loss of generality x1 will be adjacent to at least 2 vertices of Sy and hence {x1, y} will be a
dominating set contradicting the maximality of D.

For |Sx| = 3, without loss of generality assume that x2 is adjacent to c0. To satisfy d(x1, v) ≤ 2
for all v ∈ Sy ∩ R0, at least four vertices of Sy will be adjacent connected to x1 by a 2-dipath
through x2 (as, according to previous discussions, at most two vertices of Sy can be adjacent to
c0). This will create the dominating set {x2, y} contradicting the maximality of D.

For |Sx| = 4 we have x2c0 and x3c1 as otherwise at least three vertices of Sx will be adjacent
to either c0 or c1 which is not possible (because it forces all vertices of Sy to be adjacent to c0

or c1). Now each vertex v ∈ Sy ∩R0 must be adjacent to either c0 or x2 (to satisfy d(v, x1) ≤ 2)
and also to either c1 or x3 (to satisfy d(v, x4) ≤ 2) which is not possible to do keeping the graph
planar.

For |C| = 3, 4, 5 by Lemma 3.25, each vertex of Sx disagree with each vertex of Sy ∩ R1 on
c0. We also have the edge x1c2 for some x1 ∈ Sx by triangulation. Now by equation (3.1) we
have,

|S| ≥ (15− 2− |C|) = 13− |C|.

Hence |Sx| ≤ 2 for |C| = 3, 4, as otherwise every vertex u ∈ Sy will be adjacent to c0 creating
a dominating set {c0, t} with at least (|C|+ 1) common neighbors St ∪ {c1} for some t ∈ {x, y}
contradicting the maximality of D. For |C| = 5, as every vertex in Sx∩R0 agree with each other
on x (as they all must disagree with c2 on x) and on c0 (as they all disagree with vertices of
Sy ∩ R1 on c0). So, by Lemma 3.26, we have |Sx ∩ R0| ≤ 3. But if |Sx ∩ R0| = 3 then every
vertex of Sy will be adjacent to c0 creating a dominating set {c0, y} with at least six common
neighbors Sy ∪ {c1} contradicting the maximality of D.

Hence |Sx| ≤ 2 for |C| = 3, 4 and 5.

Now for |C| = 3, we can assume x and y are non-adjacent as otherwise {c0, y} will be a
dominating set with at least four common neighbors (x, c1 and, two other vertices each from the
sets Sy ∩R0, Sy ∩R1 by triangulation) contradicting the maximality of D. Hence triangulation
will imply the edge c1c2. Now for |Sx| ≤ 2, either {c0, c2} is a dominating set with at least four
common neighbors {x, y, c1, x1} contradicting the maximality of D or x1 is adjacent to at least
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two vertices y1, y2 ∈ Sy ∩ R0 creating a dominating set {x1, y} (the other vertex in Sx must be
adjacent to x1 by triangulation) with at least four common neighbors {y1, y2, c0, c2} contradicting
the maximality of D.

For |C| = 4 we have |Sy∩R1| ≤ 2 as otherwise we will have the dominating set {c0, y} with at
least five common neighbors (c1, vertices of Sy ∩R1 and one vertex of Sy ∩R0 by triangulation)
contradicting the maximality of D. Now by equation (3.1) we have,

|Sy ∩R0| ≥ (15− |D| − |C| − |Sx| − |Sy ∩R1|)
≥ (15− 2− 4− 2− 2) = 5.

Now, at most two vertices of Sy ∩ R0 can be adjacent to c0 as otherwise {c0, y} will be a
dominating set with at least five common neighbors (c1, vertices of Sy ∩ R0 and one vertex of
Sy ∩R1 by triangulation) contradicting the maximality of D.

Also by triangulation in R3 we either have the edge xy or have the edge c2c3. But, if we
have the edge xy, then |Sy ∩R1| = 1 as otherwise the dominating set {c0, y} will contradict the
maximality of D. Hence, by triangulation, and to have directed distance at most 2 with the
vertices of Sx, each vertex of Sy ∩ R0 will be adjacent either to c3 or to x1. This will create a
dominating set {x1, y} or {c3, y} that contradicts the maximality of D. Hence, we do not have
the edge xy (not even in other regions) and have the edge c2c3.

For |Sx| ≤ 2, the vertices of Sy ∩R0 will be adjacent to either c3 or c0 or x1 to have directed
distance at most 2 with x. But then triangulation will force at least one vertex of Sy ∩R0 to be
common neighbor of c3 and x1 and another vertex of Sy ∩R0 to be common neighbor of c3 and
x1 or the edge c0c3. It is not difficult to check, casewise, (drawing a picture for individual cases
will help in understanding the scenario) that one of the sets {c0, y}, {c3, y} or {x1, y} will be a
dominating set contradicting the maximality of D.

For |C| = 5 by Lemma 3.24, each vertex of Sy ∩Ri must disagree with ci+2 on y. If vertices
of Sy ∩R0 and vertices of Sy ∩R1 agree with each other on y, then they must disagree with each
other on c0 which implies |Sy ∩ Ri| ≤ 3 for all i ∈ {0, 1}. If vertices of Sy ∩ R0 and vertices of
Sy ∩R1 disagree with each other on y, then vertices of Sy ∩Ri must agree with c3−i on y. Then,
by Lemma 3.25, each vertex of Sy ∩ Ri must be connected to c3−i by a 2-dipath through c4−3i

which implies |Sy ∩Ri| ≤ 3 for all i ∈ {0, 1}.
Assume, we have |Sy ∩R0| = 3 and |Sy ∩R1| = 3. Then each vertex of Sy ∩Ri must disagree

with both ci+2 and ci+3 on y. This will imply that the vertices of Sy ∩R0 and vertices of Sy ∩R1

disagree with each other on c0. Now there will be no way to have directed distance at most 2
between a vertex of Sx and all the six vertices of Sy.

Hence we must have |Sy| ≤ 5. Then by equation (3.1) we have,

15 ≤ |
−→
G | ≤ 2 + 5 + (2 + 5) = 14.

This is a contradiction. This concludes this particular subcase.

(ii) Assume the three non-empty sets are Sx ∩ R1, Sy ∩ R0 and Sy ∩ R2 (only possible for
|C| ≥ 3). By Lemma 3.25, we have Sx = {x1} and the fact that each vertex of Sy ∩Ri disagrees
with ci2/4 on x1 for i ∈ {0, 2}. Triangulation implies the edges x1c0, x1c1, ck−1c0, c0c1 and c1c2.

For |C| = 3, {c0, c1} is a dominating set with at least four common neighbors {x, y, c2, x1}
contradicting the maximality of D. For |C| = 4 and 5 we have, every vertex of Sy ∩R0 disagree
with every vertex of Sy∩R2 on y. Hence, by Lemma 3.26, we have |Sy∩Ri| ≤ 3 for all i ∈ {0, 2}.
Hence by equation (3.1) we have

15 ≤ |
−→
G | = |D|+ |C|+ |S|
≤ [2 + 5 + (1 + 3 + 3)] = 14.

This is a contradiction.

Step 4: Hence at most two sets out of the 2k sets St∩Ri can be non-empty, where t ∈ {x, y}
and i ∈ {0, 1, ..., k − 1}.
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Figure 3.10: The only non-empty region is R1

Now assume that exactly two sets out of the sets St ∩ Ri are non-empty, where t ∈ {x, y}
and i ∈ {0, ..., k − 1}, yet there are two non-empty regions. Without loss of generality assume
that the two non-empty sets are Sx ∩R0 and Sy ∩R1. Triangulation will force x and y to have
a common neighbor other than c0 and c1 for |C| = 2 which is a contradiction.

For |C| = 3, 4, 5 triangulation implies the edges ck−1c0 and c0c1. By Lemma 3.25, we know
that each vertex of S is adjacent to c0. By equation (3.1) we have,

|S| ≥ (16− 2− 5) = 9.

Hence, without loss of generality, we may assume |Sx| ≥ 4. Then {c0, x} will be a dominating
set with at least six common neighbors Sx ∪ {ck−1, c1} contradicting the maximality of D.

Hence we are done. �

The lemma proved above was one of the key steps to prove the theorem. Now we will improve
the lower bound of |C|.
Lemma 3.29. |C| ≥ 6.

Proof. For |C| = 2, 3, 4, 5 without loss of generality by Lemma 3.28, we may assume R1 to be
the only non-empty region. Then triangulation will force the configuration depicted in Fig 3.10
as a subgraph of und(

−→
G), where C = {co, ..., ck−1}, Sx = {x1, ..., xnx} and Sy = {y1, ..., yny}.

Without loss of generality we may assume,

|Sy| = ny ≥ nx = |Sx|.

Then by equation (3.1) we have,

ny = |Sy| ≥ (15− 2− |C| − |Sx|) = 13− |C| − |Sx|. (3.2)

First of all assume nx = 0. Then x is non-adjacent to y as otherwise y will dominate the
whole graph. So we have the edges c0c1, c1c2, ..., ck−1c0 by triangulation. Then by equation 3.2
we have,

|Sy| ≥ 13− 5 = 8.

Now to have
−→
d (x, yi) ≤ 2, every yi must be connected to x by a 2-dipath with internal vertex

either c0 or c1. Hence at least four vertices of Sy must be adjacent to either c0 or c1. Note that
c0 is also adjacent to ck−1, c1 and that c1 is also adjacent to c0, c2. So, the dominating set {c0, y}
or {c1, y} will contradict the maximality of D. Hence nx ≥ 1.

Claim 1: |C| = 5 is not possible.
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Proof of claim 1: Assume that |C| = 5. Then by equation 3.2 we have,

|Sy| ≥ 13− 5− nx = 8− nx.

Therefore, as ny ≥ nx, we have ny ≥ 4. Now every vertex of Sy disagree with c3 on y. They
also must disagree with y on c2 as otherwise all of them will be connected to c2 by 2-dipaths with
internal vertex c1 and imply

−→
d (y1, y4) > 2. For similar reason, the vertices of Sy must disagree

with c4 on y.
Moreover, the edge c0c1 does not exist because it will force each vertex of Sy to be connected

to vertices of Sx by 2-dipaths with internal vertex either c0 or c1. In fact, for nx ≥ 2, as not
all vertices of Sx can be adjacent to both c0 and c1, every vertex of Sy will be connected to the
vertices of Sx by 2-dipaths with internal vertex being exactly one of c0, c1 implying

−→
d (y1, y4) > 2.

For nx = 1, as ny ≥ 7, at least four vertices of Sy will be connected to the vertices of Sx by
2-dipaths with internal vertex being exactly one of c0, c1 implying

−→
d (yi, yi+3) > 2 for some

i ∈ {1, 2, ..., ny}. Hence the edge c0c1 does not exist.
Also, if we have the edge y1y4 and without loss of generality assume the edge y1y3 by tri-

angulation, then every vertex of Sx must be connected to y2 by 2-dipaths with internal vertex
y1. In this case {y1, y} is a dominating set with at least ny common neighbors (c0 and ny − 1
common neighbors from Sy). Hence, to avoid contradicting the maximality of D, we must have
ny ≤ 5. Then we must also have nx ≥ 3. But then, as every vertex of Sx agree on c0 and on x (as
they all disagree with c3 on x), they must disagree with c1, c2 and c4 to have directed distance
at most 2 with them. Also the vertices of Sy must disagree on c1 to have directed distance at
most 2 with it. Hence the vertex c4 and c1 agree with each other on x and y. Hence we have−→
d (c4, c1) > 2 as the edge c0c1 does not exist. This is a contradiction. Hence we do not have the
edge y1y4.

Therefore, y1 and y4 must be connected by a 2-dipath with an internal vertex xj from Sx
for some j ∈ {1, 2, .., nx}. As we cannot have the edge y1y4, this will imply that every vertex of
S \ {xj} will be adjacent to xj to be at directed distance at most 2 from each other. Then we
can arrive to a contradiction exactly like the case described in the paragraph above.

This proves the claim. ♦

Claim 2: |C| = 4 is not possible.

Proof of claim 2: Assume that |C| = 4. Then by equation 3.2 we have,

|Sy| ≥ 13− 4− nx = 9− nx.

Therefore, as ny ≥ nx, we have ny ≥ 5.
Now we will show that every vertex of Sy disagree with c2 and c3 on y. First note that no

vertex can agree with both c2 and c3 on y as otherwise it must be adjacent to both c0 and c1

which is impossible as ny ≥ 5. So, if the claim is not true, then some vertices of Sy will agree
with c2 on y and the other vertices of Sy will agree with c3 on y.

Also at most three vertices of Sy can agree with c2 (or c3) on y. So, ny ≤ 6. Hence, nx ≥ 3.
Now, three vertices agree on, say, c2, then they will all disagree with c2 on c1 and every

vertex (there are at least three such vertices) of Sx will disagree with those three vertices on c1.
Then, to have directed distance at most 2 with the vertices of Sx, the other vertices (there are at
least two such vertices) of Sy should be adjacent to c1 which is not possible as they are already
connected to c3 with 2-dipaths with internal vertex c0.

The rest of the proof is similar to the proof Claim 1. Using similar arguments it is possible
to show that the edge c0c1 does not exist, the edge y1y4 does not exist and it is not possible to
have a 2-dipath with internal vertex from Sx connecting y1 and y4. ♦

Proof of claim 3: Assume that |C| = 3. Then by equation 3.2 we have,

|Sy| ≥ 13− 3− nx = 10− nx.
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Therefore, as ny ≥ nx, we have ny ≥ 5.
First note that it is not possible to have the edge c0c1 as this will force some three vertices of

Sy to be connected to vertices of Sx by 2-dipaths with internal vertex c0 (or c1) making {c0, y}
(or {c1, y}) a dominating set that contradicts the maximality of D.

For nx ≥ 7, there are at least 4 vertices in Sy that agree with each other on y. We need
to have directed distance at most 2 between them. Let those four vertices be yi, yj , yk, yl with
i > j > k > l.

Now assume we have the edge yiyl. Then every vertex of Sx will be adjacent to either yi or
yl. Without loss of generality assume that every vertex of Sx is adjacent to yi. But then {yi, y}
will be a dominating set with at least 4 common neighbors contradicting the maximality of D.
Hence ny ≤ 6. Therefore we must have nx ≥ 4.

For ny = 5, 6, one can show that these cases are not possible without creating a dominating
set that contradicts the maximality of D. If one just tries to have directed distance at most 2
between the vertices of S, the proof will follow. The proof of this part is also similar to the ones
done before and, though a bit tedious, is not difficult to check. ♦

Proof of claim 4: Assume that |C| = 2. Then by equation 3.2 we have,

|Sy| ≥ 13− 2− nx = 11− nx.

Therefore, as ny ≥ nx, we have ny ≥ 6.
This is actually the easiest of the four claims. The case ny ≥ 7 can be argued as in the

previous proof. For ny = 6, we must have nx ≥ 5. If one just tries to have directed distance at
most 2 between the vertices of S, the proof will follow. The proof of this part is also similar to
the ones done beforeand, though a bit tedious, is not difficult to check. ♦

This completes the proof of the lemma. �

So, now we have proved that the value of |C| is at least 6. This is an answer to our question
”how small |C| can be?”. Now we will ask the question “How big |C| can be?” and try to provide
upper bounds for the value of |C|. The following lemma will help us to do so.

Lemma 3.30. If |C| ≥ 6, then the following holds:
(a) |Cαβ| ≤ 3, |Cαt | ≤ 6, |C| ≤ 12. Moreover, if |Cαβ| = 3, then

−→
G [Cαβ] is a 2-dipath.

(b) |Cαt | ≥ 5 (respectively 4, 3, 2, 1, 0) implies |Sαt | ≤ 0 (respectively 1, 3, 4, 5, 6).

Proof. (a) If |Cαβ| ≥ 4, then there will be two vertices u, v ∈ Cαβ with d(u, v) > 2 which is a
contradiction. Hence we have the first inequality which implies the other two.

Also if |Cαβ| = 3, then the only way to connect the two non-adjacent vertices u, v of Cαβ is
to connected them with a 2-dipath through the other vertex (other than u, v) of Cαβ .

(b) Lemma 3.24(b) implies that if all elements of Cαt do not belong to the set of four boundary
points of any three consecutive regions (like R,R1, R2 in Lemma 3.25), then |Sαt | = 0. Hence we
have |Cαt | ≥ 5 implies |Sαt | ≤ 0.

By Lemma 3.25, if all the elements of Cαt belong to the set of four boundary points c1, c2, c1, c2

of three consecutive regions R,R1, R2 (like in Lemma 3.25) and contains both c1, c2, then |Sαt | ≤
1. Also Sαt ⊆ R by Lemma 3.25. Hence we have,

|Cαt | ≥ 4 implies |Sαt | ≤ 1.

Now assume that all the elements of Cαt belongs to the set of three boundary points c1, c2, c1 of
two adjacent regions R,R1 (like in Lemma 3.25) and contains both c1, c2. Then by Lemma 3.24,
v ∈ Sαt implies v is in R or R1.

Now if both Sαt ∩R and Sαt ∩R1 are non-empty, then each vertex of (Sαt ∩R)∪{c2} disagrees
with each vertex of (Sαt ∩R1) ∪ {c1} on c1 (by Lemma 3.25).

Hence by Lemma 3.26 we have,
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|(Sαt ∩R) ∪ {c1}|, |(Sαt ∩R1) ∪ {c2}| ≤ 3.

This clearly implies,

|Sαt ∩R|, |Sαt ∩R1| ≤ 2 and |Sαt | ≤ 4.

Now suppose we have |Sαt | = 4 and hence also |Sαt ∩ R|, |Sαt ∩ R1| = 2. Then St′ = ∅ as
the only way for a vertex of St′ to have directed distance at most 2 with every vertex of St is
by being connected by a 2-dipath with internal vertex c1, which is impossible as the vertices of
Sαt ∩R disagree with the vertices Sαt ∩R1 on c1.

In fact, for the same reason, it is impossible to have directed distance at most 2 between all
the vertices of St and t′ unless we have the edge tt′ (that is the edge xy). But then the edge tt′

makes t a vertex that dominates the whole graph contradicting the domination number of the
graph being 2. Therefore, it is not possible to have |Sαt | = 4. Hence we have |Sαt | = 3 in this
case.

Also if one of Sαt ∩R and Sαt ∩R1 is empty then we must have |Sαt | ≤ 3 by Lemma 3.25 and
3.26.

Hence we have

|Cαt | ≥ 3 implies |Sαt | ≤ 3.

Let R,R1, R2, c1, c2, c1, c2 be like in Lemma 3.25 and assume Cαt = {c1, c2}. By Lemma 3.24,
v ∈ Sαt implies v is in R, R1 or R2 and also that both Sαt ∩R1 and Sαt ∩R2 can not be non-empty.
Hence, without loss of generality, assume Sαt ∩R2 = ∅.

Then by Lemma 3.25, vertices of Sαt ∩ R1 disagree with vertices of (Sαt ∩ R) ∪ {c2} on c1.
Hence by Lemma 3.26 we have,

|Sαt ∩R1|, |(Sαt ∩R) ∪ {c2}| ≤ 3.

This implies |Sαt | ≤ 5.
Now if Sαt ∩ R1 = ∅, then we have Sαt = Sαt ∩ R. Let |Sαt ∩ R| ≥ 6. Now consider the

induced graph
−→
O =

−→
G [(S ∩ R) ∪ {c1, c2}]. In this graph the vertices of (Sαt ∩ R) ∪ {c1, c2} are

pairwise at directed distance at most 2. Hence χo(
−→
O ) ≥ 8. But this is a contradiction as

−→
O is

an outerplanar graph and every outerplanar graph has an oriented 7-coloring [58]. Hence,

|Cαt | ≥ 2 implies |Sαt | ≤ 5.

Now suppose we have |Sαt | = 5. Then we must have St′ = ∅ as otherwise it is not possible to
have directed distance at most 2 between the vertices of S.

We also do not have the edge xy as it will contradict the domination number of the graph
being 2 (t will dominate the graph). So, by triangulation we have the edges c1c2 and c1c1. So,
each vertex of St must be connected to t′ with a 2-dipath with internal vertices from {c1, c1, c2}.
But then it will not be possible to have directed distance at most 2 between the five vertices of
St.

Hence,

|Cαt | ≥ 2 implies |Sαt | ≤ 4.

In general Sαt is contained in two distinct adjacent regions by Lemma 3.24. Without loss
of generality assume Sαt ⊆ R1 ∪ R2. If both Sαt ∩ R1 and Sαt ∩ R2 are non-empty, then by
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Lemma 3.25 we know that vertices of Sαt ∩ R1 disagree with vertices of Sαt ∩ R2 on c1. Hence
|Sαt ∩R1|, |Sαt ∩R2| ≤ 3 which implies |Sαt | ≤ 6.

Now assume only one of the two sets Sαt ∩ R1 and Sαt ∩ R2 is non-empty. Without loss of
generality assume Sαt ∩ R1 6= ∅. If c0, c1 /∈ Cαt and |Cαt | = 1, then we have |Sαt ∩ R1| ≤ 3 by
Lemma 3.25 and 3.26. In the induced outerplanar graph

−→
O =

−→
G [(S ∩R1) ∪ {c1, c2}] vertices of

Sαt ∪ (cαt ∩ {c1, c2}) are pairwise at directed distance at most 2.
Hence 7 ≥ χo(

−→
O ) ≥ |Sαt ∪ (cαt ∩ {c1, c2})|. Therefore,

|Cαt | ≥ 1 (respectively 0) implies |Sαt | ≤ 6 (respectively 7).

Now, when both the equalities hold, we must have St′ = ∅ as otherwise Cαt ∪ St ∪ St′ will
contain an oriented outerplanar graph with oriented chromatic number at least 8, which is not
possible, in order to have all the vertices of S at directed distance at most 2.

Now, St′ = ∅ will imply that the edge xy is not there as otherwise t will dominate the whole
graph. Hence, each vertex of St must be connected to t′ by a 2-dipath with internal vertex ci for
some i ∈ {0, 1, 2}. But this will force |St| ≤ 5 as otherwise the vertices of St will no longer be at
directed distance at most 2 from each other.

Hence,

|Cαt | ≥ 1 (respectively 0) implies |Sαt | ≤ 5 (respectively 6).

Hence we are done. �

Now we will prove that the value of |C| can be at most 5 which contradicts our previously
proven lower bound of |C|. That actually proves Lemma 3.23.

Lemma 3.31. |C| ≤ 5.

Proof. Without loss of generality we can suppose |Cαx | ≥ |C
β
y | ≥ |Cβy | ≥ |Cαx | (the last inequality

is forced). We know that |C| ≤ 12 and |Cαx | ≤ 6 (Lemma 3.30(a)). So it is enough to show that
|S| ≤ 12− |C| for all possible values of (|C|, |Cαx |, |C

β
y |) since it contradicts (3.1).

For (|C|, |Cαx |, |C
β
y |) = (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4) we

have |S| ≤ 12− |C| using Lemma 3.30(b).
For (|C|, |Cαx |, |C

β
y |) = (8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5) we are

forced to have,

|Cαβ| > 3.

This is a contradiction by Lemma 3.30(a).
So, (|C|, |Cαx |, |C

β
y |) 6= (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4),

(8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5).
We will be done if we prove that (|C|, |Cαx |, |C

β
y |) cannot take the other possible values also.

That leaves us checking a lot of cases. We will check just a few cases and observe that the other
cases can be checked using similar logic.

Case 1: Assume (|C|, |Cαx |, |C
β
y |) = (9, 6, 6).

Then we are forced to have, |Cαβ| = |Cαβ| = |Cαβ| = 3 in order to satisfy the first inequality
of Lemma 3.30(a). So

−→
G [Cαβ],

−→
G [Cαβ] and

−→
G [Cαβ] are 2-dipaths by Lemma 3.30(a). Without

loss of generality we can assume Cαβ = {c0, c1, c2} and Cαβ = {c3, c4, c5}. Hence by Lemma 3.24
we have u ∈ R1∪R2 and v ∈ R4∪R5 for any (u, v) ∈ Sβy ×Sαx . Hence by Lemma 3.24, either Sβy or
Sαx is empty. Without loss of generality assume Sβy = ∅. Therefore we have, |S| = |Sx| = |Sαx | ≤ 3
(by Lemma 3.30(b)). So this case is not possible.

Case 2: Assume (|C|, |Cαx |, |C
β
y |) = (7, 6, 4).
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φ(w) φ(u)
φ(v)

φ(b) φ(c)

φ(a)

Figure 3.11: Planar ocliques with girth at least 4

So, without loss of generality, we can assume that
−→
G [Cαβ] and

−→
G [Cαβ] are 2-dipaths and,

Cαβ = {c0, c1, c2}, Cαβ = {c3, c4, c5} and Cαβ = {c6}.
By Lemma 3.30 we have |Sx| ≤ 5 and |Sy| ≤ 3 + 1 = 4. So we are done if either Sx = ∅ or

Sy = ∅.
So assume both Sx and Sy are non-empty. First assume that Sβy 6= ∅. Then by Lemma 3.24

we have Sβy ⊆ R5, Sαx ⊆ R5 ∪R6 and hence Sβy = ∅. By Lemma 3.25, vertices of Sβy and vertices
of Sαx ∩ R5 must disagree with c6 on c5 while disagreeing with each other on c5, which is not
possible. Hence, Sαx ∩ R5 = ∅. Also |Sαx ∩ R6| ≤ 3 as they all disagree on c5 with the vertex of
Sβy . So |S| ≤ 4 when Sβy 6= ∅.

Now assume Sβy = ∅ hence Sβy 6= ∅. Then by Lemma 3.24 we have Sβy ⊆ R1∪R2, Sαx ⊆ R0∪R1

and hence Sβy = ∅. Assume Sβy ∩ R2 = ∅ as otherwise vertices of Sαx will be adjacent to both c0

and c1 (to be connected to c6 and vertices of Sβy ∩R2 by a 2-dipath) implying |Sαx | ≤ 1 implying
|S| ≤ 5. If Sαx ∩ R0 6= ∅, then |Sβy ∩ R1| = 1, |Sαy ∩ R1| ≤ 1 and |Sαy ∩ R0| ≤ 3 by Lemma 3.25

and hence |S| ≤ 5. If Sαx ∩R0 = ∅ then we have |Sβy ∩R1| ≤ 2, |Sαy ∩R1| ≤ 3 and hence |S| ≤ 5.
So this case is not possible.

Similarly one can handle the other cases. �

Therefore, from the above lemmas, we learnt that every planar oclique of order at least 15 is
dominated by a single vertex. Moreover, we also have proved that a planar oclique dominated
by one vertex can have order at most 15.

Hence, there is no planar oclique of order more than 15. We also proved that every oclique
of order 15 must contain the planar oclique depicted in Fig. 3.6 as a subgraph.

This concludes the proof of Theorem 3.19. �

Proof of Theorem 3.21

(a) The proof follows directly from Theorem 3.19.

(b) In 1975, Plesník [24] characterized and listed all triangle-free planar graphs with diameter
2 in Theorem 2.14. They are precisely the graphs depicted in Fig. 2.1 (see Chapter 2). Now
note that any orientation of those graphs from Fig. 2.1 admits a homomorphism to the graphs
depicted in Fig. 3.11 respectively (that is, the first oriented graph depicted in Fig. 3.11 is a
universal bound for the first family of graphs described in Fig. 2.1; the second ... etc.).

To prove the homomorphisms, we map the vertices w, u, v, a from Fig. 2.1 to the corresponding
vertices φ(w), φ(u), φ(v), φ(a) in Fig 3.11 respectively. The vertices b and c are mapped to the
vertices φ(b) (or φ(c)) and φ(c) (or φ(b)) depending on the orientation of the edge bc. Without
loss of generality we can assume the edge to be oriented as

−→
bc and assume that the vertices b, c

map to the vertices φ(b), φ(c) respectively.
Now to complete the first homomorphism, map the vertices of Nα(w) to the unique vertex

in Nα(φ(w)) for α ∈ {+,−}.
To complete the second homomorphism, map the vertices of Nα(u) ∩ Nβ(u) to the unique

vertex in Nα(φ(u)) ∩Nβ(φ(v)) for α, β ∈ {+,−}.
To complete the third homomorphism, map the vertices of Nα(a) ∩ Nβ(t) to the unique

vertex in Nα(φ(a)) ∩Nβ(φ(t)) for α, β ∈ {+,−} and t ∈ {b, c}.
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Now note that the first two oriented graphs depicted in Fig. 3.11 are ocliques of order 3 and
6 respectively, while the third graph is not an oclique but clearly has oriented relative chromatic
number 5.

Hence, there is no triangle-free planar oclique of order more than 6. Also, the only example
of a trianlge-free oclique of order 6 is the second graph depicted in Fig. 3.11.

(c) From the proof above, we know that there is no triangle-free planar oclique of order more
than 6 and the only example of a trianlge-free oclique of order 6 is the second graph depicted in
Fig. 3.11, which is a graph with girth 4. Hence, there is no planar oclique with girth at least 5
on more than 5 vertices while the directed cycle of length 5 is clearly a planar oclique with girth
5.

(d) The 2-dipath is an oclique of order 3. From Plesník’s characterization, the rest of the
proof follows easily. �

3.4 L(p, q)-labeling of oriented graphs

To distinguish between close and very close transmitters in a wireless communication system,
Griggs and Yeh [20] proposed a variation of the Frequency Assignment Problem (or simply FAP)
by introducing the L(2, 1)-labeling which was generalized by Georges and Mauro [17] as follows.

For any two positive integers p and q, a k-L(p, q)-labeling of a graph G is a mapping ` from
the vertex set V (G) to the set {0, 1, ...., k} such that

- | `(u)− `(v) |≥ p if u and v are at distance 1 in G,
- | `(u)− `(v) |≥ q if u and v are at distance 2 in G.
The L(p, q)-span λp,q(G) of a graph G is defined as min{k | G has a k-L(p, q)-labeling }. For

a family F of graphs, λp,q(F) = max{λp,q(H) | H ∈ F}.
A common feature of graph theoretic models for FAP is that communication is assumed to be

possible in both directions (duplex) between two radio transmitters and, therefore, these models
are based on undirected graphs. But in reality, modelling FAP with directed or oriented graphs
could be interesting as pointed by Aardal et al [1] in their survey.

There are two different oriented versions of L(p, q)-labeling, namely 2-dipath L(p, q)-labeling,
introduced by Chang et al [12], and oriented L(p, q)-labeling, introduced by Gonçalves, Raspaud
and Shalu [19].

A 2-dipath k-L(p, q)-labeling of an oriented graph
−→
G is a mapping ` from the vertex set V (

−→
G)

to the set {0, 1, ...., k} such that
- | `(u)− `(v) |≥ p if u and v are adjacent in

−→
G ,

- | `(u)− `(v) |≥ q if u and v are connected by a 2-dipath in
−→
G .

The 2-dipath span
−→
λ p,q(

−→
G) of an oriented graph

−→
G is defined as min{k |

−→
G has a 2-

dipath k-L(p, q)-labeling }. The 2-dipath span
−→
λ p,q(G) of an undirected graph G is defined

as max{
−→
λ p,q(

−→
G) |

−→
G is an orientation of G}. The 2-dipath span

−→
λ p,q(F) of a family F of

(oriented or undirected) graphs is defined as max{
−→
λ p,q(H) | H ∈ F}.

An oriented k-L(p, q)-labeling of an oriented graph
−→
G is a mapping ` from the vertex set

V (
−→
G) to the set {0, 1, ...., k} such that
- ` is a 2-dipath k-L(p, q)-labeling of G,
- if −→xy and −→uv are two arcs in

−→
G , then `(x) = `(v) implies `(y) 6= `(u).

The oriented spans λop,q(
−→
G), λop,q(G) and λop,q(F) are defined similarly as 2-dipath spans.

Example 3.32. The oriented graph depicted in Fig. 3.12(a) admits a 2-dipath (p + q)-L(p, q)-
labeling. The same labeling is also an oriented (p+ q)-L(p, q)-labeling of the graph. This labeling
is optimal for p ≥ q. Hence, for p ≥ q, the graph has both 2-dipath and oriented L(p, q)-labeling
span equal to (p+ q).

Example 3.33. Consider the 2-dipath and oriented L(p, q)-labeling of the disjoint union of the
two oriented 3-cycle depicted in Fig. 3.12(b) for p ≥ q. Note that it is possible to provide a 2-
dipath 2p-L(p, q)-labeling of the graph by labeling each triangle by the labels 0, p and 2p. But the
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Figure 3.12: 2-dipath and oriented L(p, q)-labeling for p ≥ q.

same is not possible for oriented L(p, q)-labeling. Hence, the graph has 2-dipath L(p, q)-labeling
span 2p and oriented L(p, q)-labeling span 2p+ 1.

From the definitions, the following lemma is immediate:

Lemma 3.34. For every (undirected or oriented) graph G and every p, q > 0,
−→
λ p,q(G) ≤ λop,q(G).

Also from these definitions we easily get the following:

Lemma 3.35. If there is a homomorphism f :
−→
G −→

−→
H then

−→
λ p,q(

−→
G) ≤

−→
λ p,q(

−→
H ) and

λop,q(
−→
G) ≤ λop,q(

−→
H ), for every p, q > 0.

The additional condition in oriented L(p, q)-labeling ensures that any oriented L(p, q)-labeling
is an oriented coloring as well. Note that any oriented k-L(p, q)-labeling is an oriented (k + 1)-
coloring but a 2-dipath k-L(p, q)-labeling is not necessarily an oriented (k + 1)-coloring.

Now we prove a general upper bound on oriented L(p, q)-span of multipartite graphs.

Theorem 3.36. For every k-partite oriented graph
−→
G , where k ≥ 3, we have

−→
λ p,q(

−→
G) ≤ λop,q(

−→
G) ≤| V (

−→
G) | q + k(max(p, q)− q)−max(p, q).

In particular for p ≥ q, both the equalities hold if
−→
G is a complete k-partite oclique.

Proof. Let, K = Kn1,n2,...,nk be the complete k-partite graph with the parts being V1, V2, ...Vk
with | Vi |= ni for all i = 1, 2, ..., k. Also, let the vertices of Vi be denoted by {vi1, vi2, ..., vini}.

Let
−→
K be any orientation of K. Now, consider the labeling L of

−→
K given by

L(vij) = (
∑

t<i(nt − 1)q) + (j − 1)q + (i− 1)max(p, q), for i = 1, 2, ..., k and j = 1, 2, ..., ni.

For any i, vir and vis (r 6= s) cannot be connected by an arc but can be connected by a
2-dipath. While for any vir and vjs, i 6= j, can be connected by either an arc or a 2-dipath.

Then we have the following,
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| L(vir)− L(vis) |= | [(
∑
t<i

(nt − 1)q) + (r − 1)q + (i− 1)max(p, q)]

− [(
∑
t<i

(nt − 1)q) + (s− 1)q + (i− 1)max(p, q)] |

=|(r − s)q| ≥ q, for r 6= s.

and (without loss of generality we assume that j < i),

| L(vir)− L(vjs) |=|[(
∑
t<i

(nt − 1)q) + (r − 1)q + (i− 1)max(p, q)]

− [(
∑
t<j

(nt − 1)q) + (s− 1)q + (j − 1)max(p, q)]|

=|(
∑
j<t<i

(nt − 1)q) + (nj − 1)q + (r − 1)q

− (s− 1)q + (i− j)max(p, q)|
(without loss of generality we assume i > j)

=|(
∑
j<t<i

(nt − 1)q) + (nj − s)q + (r − 1)q + (i− j)max(p, q)|

(nj ≥ s as vjs ∈ Vj)
≥max(p, q).

As all vertices have different labels, L is an oriented coloring of
−→
K .

Hence we have,

−→
λ p,q(K) ≤ λop,q(K) ≤

k−1∑
t=1

(nt − 1)q + (nk − 1)q + (k − 1)max(p, q)

=| V (K) | q + k(max(p, q)− q)−max(p, q).

Now as any oriented k-partite graph
−→
G is a subgraph of some orientation of the complete

k-partite graph K, using Lemma 3.34 and Lemma 3.35 the theorem follows.
In particular, if

−→
K is an oclique, then any two vertices are at distance at most 2. Moreover,

if
−→
K is also an orientation of the complete k-partite graph, then any two vertices from different

parts, are adjacent. Hence both the equalities hold for p ≥ q. �

We have the following corollaries of Theorem 3.36:

Corollary 3.37.
−→
λ 2,1(T2q+2) = λo(T2q+2) = 3q + 1.

Corollary 3.38.
−→
λ 2,1(Zk) = λo(Zk) = k(2k−1 + 1)− 2.

The 2-dipath and oriented L(1, 1)-labeling span corresponds to the oriented relative clique
number and the oriented chromatic number respectively. Apart from these two, the most fre-
quently studied L(p, q)-labeling problem is for (p, q) = (2, 1) (both undirected and oriented
versions).

In this section, we mainly focus on studying 2-dipath and oriented L(2, 1)-span of some
families of planar graphs. We will state and proof the results in the following.

For the family of planar graphs and for the family of planar graphs with given girth, we prove
the following result.

Theorem 3.39.

(a) 18 ≤
−→
λ 2,1(P3) ≤ λo2,1(P3) ≤ 83.
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(b) 9 ≤
−→
λ 2,1(P4) ≤ λo2,1(P4) ≤ 58.

(c) 6 ≤
−→
λ 2,1(P5) ≤ λo2,1(P5) ≤ 22.

(d) 4 ≤
−→
λ 2,1(P6) ≤ λo2,1(P6) ≤ 19.

(e) 4 ≤
−→
λ 2,1(P7) ≤ λo2,1(P7) ≤ 19.

(f) 4 ≤
−→
λ 2,1(Pk) ≤ λo2,1(Pk) ≤ 10 for 8 ≤ k ≤ 15.

(g) 4 ≤
−→
λ 2,1(Pk) ≤ λo2,1(Pk) ≤ 7 for k ≥ 16.

Theorem 3.39(c) disproves the conjecture
−→
λ 2,1(P5) ≤ 5 proposed by Calamoneri and Sinaimeri

[11] and Theorem 3.39(f,g) improve the previous bounds
−→
λ 2,1(P11) ≤ 12 and

−→
λ 2,1(P16) ≤ 8 given

by the same authors [11].
For the family O of outerplanar graphs, we prove the following:

Theorem 3.40. 9 ≤
−→
λ 2,1(O) ≤ λo2,1(O) ≤ 10.

We are not able to provide exact results for the family of outerplanar graphs. We also consider
a planar superfamily and a planar subfamily of it, namely the family T2 of partial 2-trees and
the family C of cacti. For both these families we managed to give exact results. In fact, we prove
the following general result for the family Tk of partial k-trees:

Theorem 3.41.

(a)
−→
λ 2,1(T2) = λo2,1(T2) = 10.

(b)
−→
λ 2,1(T3) ≤ λo2,1(T3) ≤ 22.

(c)
−→
λ 2,1(Tk) ≤ λo2,1(Tk) ≤ (k + 1)(2k + 1)− 2.

In [11] Calamoneri and Sinaimeri proved that 6 ≤
−→
λ 2,1(C) ≤ 8. We improve this result as

follows:

Theorem 3.42.
−→
λ 2,1(C) = λo2,1(C) = 7.

Proof of Theorem 3.39

(a) Raspaud and Sopena [51] showed that every oriented planar graph admits a homomor-
phism to the Zielonka graph

−→
Z 5. Hence, using Lemma 3.35 and Corollary 3.38, we get the upper

bound.

For proving the lower bound, we will construct an example. Recall the oriented planar graph
depicted in Fig. 3.6 and call it

−→
H 1. Now we add twelve common neighbors of a0 and ai for

each i ∈ {−7,−6, ...,−1, 1, 2, ..., 7}. The new arcs are oriented in such a way that for each such
pair a0, ai of vertices, we have exactly three common neigbors, among the twelve new ones, in
Nα(a0)∩Nβ(ai) and add two arcs between the new three vertices of Nα(a0)∩Nβ(ai) to obtain
a 2-dipath for any α, β ∈ {+,−}. This new oriented graph is

−→
H 2. Note that

−→
H 2 is planar.

We regard
−→
H 2 as an extension of

−→
H 1, hence the names of the vertices, as presented in Fig. 3.6,

remains the same.
First we show that it is impossible to have a 2-dipath 17-L(2, 1)-labeling f of

−→
H 2 with

f(a0) = 1. We will prove this by contradiction. Hence, assume that f is a 2-dipath 17-L(2, 1)-
labeling of

−→
H 2. Notice that the graph

−→
H 2 is dominated by the vertex a0. So, the labels {0, 1, 2}

cannot be used for labeling any of the vertices, except a0 of
−→
H 2. Note that we cannot use the

same label, used to label a vertex of N+(a0), to label a vertex of N−(a0) as those two vertices
are connected by a 2-dipath through internal vertex a0. As both N+(a0) and N−(a0) contains
an oclique of order 7, we need at least seven labels for each of them.
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x y

a1 b1

u

v

a2 b2

Figure 3.13: ~F is an oriented planar graph with girth 5.

In total, we have {3, 4, 5, ...., 17} labels, that is, fifteen labels, available to label the vertices
of N(a0). Hence, we need to use exactly seven labels for either the vertices of N+(a0) or the
vertices of N−(a0). Without loss of generality assume that exaclty seven labels are used for
labeling the vertices of N+(a0).

In particular, f(ai) 6= f(aj) for i 6= j and i, j ∈ {−7,−6, ...,−1, 1, 2, ..., 7}. Now, we cannot
use the same label, used to label a vertex ofN+(a0)∩N+(ai), to label a vertex ofN+(a0)∩N−(ai)
for i ∈ {−7,−6, ...,−1, 1, 2, ..., 7}. Both these sets contain a 2-dipath and we need to use three
different labels to label a 2-dipath. So, for each label f(ai), we must have six labels, none of
them belonging to {f(ai) − 1, f(ai), f(ai) + 1}, from the set of labels used to label the vertices
of N+(a0) for i ∈ {−7,−6, ...,−1, 1, 2, ..., 7}.

This will force the set of seven labels, used to label the vertices of N+(a0), to contain two
labels f(a−i)−1 and f(a−i)+1 for some i ∈ {1, 2, ..., 7}. Now, it is not possible to use the labels
f(a−i)− 1 and f(a−i) + 1 to label neighbors of a−i. So, we can use at most five labels from the
set of labels used to label the vertices of N+(a0) to label neighbors of a−i. On the other hand,
as noticed earlier, we need at least six labels from the set of labels used to label the vertices of
N+(a0) to label the vertices from the sets N+(a0) ∩N+(a−i) and N+(a0) ∩N−(a−i). This is a
contradiction.

Hence, it is not possible to provide a 2-dipath 17-L(2, 1)-labeling of
−→
H 2 with f(a0) = 1.

Similarly we can show that it is not possible to provide a 2-dipath 17-L(2, 1)-labeling of
−→
H 2 with

f(a0) = 16.
Now consider the graph obtained by gluing

−→
H1 on each vertex of a planar oclique of order

at least 7 by identifying that vertex with the vertex a0 of
−→
H 1. Call this new graph

−→
H0. Note

that
−→
H 0 is planar. Notice that, for any 2-dipath 17-L(2, 1)-labeling of a planar oclique of order

at least 7 (for example,
−→
H1 is such an oclique), we need to use at least seven labels. Therefore,

to label the oclique, we must use some label j /∈ {0, 1, 2, 15, 16, 17} to label some vertex v of it.
Then we cannot use the labels {j−1, j, j+1} to label the fourteen other vertices of the

−→
H 1 glued

to v. But these fourteen vertices are part of an oclique, hence must receive fourteen different
labels. Now to label those fourteen vertices, we must use either 1 or 16 as labels.

Now, construct the oriented graph
−→
H3 by gluing a copy of

−→
H2 on each vertex of

−→
H0 by

identifying that vertex with the vertex a0 of
−→
H2. Note that

−→
H 2 is planar. Now, if we try provide

a 2-dipath 17-L(2, 1)-labeling of this graph, we will have a induced
−→
H 2 inside it, with a 2-dipath

17-L(2, 1)-labeling f of it with f(a0) = 1 or 16. This is a contradiction.

(b) The lower bound follows from the lower bound of Theorem 3.18(b).

To prove the upper bound of Theorem 3.15(b) Ochem and Pinlou [45] showed that the Tromp
graph

−→
T 40 is a universal bound for the family of oriented planar graphs with girth at least 4.

Now the upper bound easily follow using Lemma 3.35 and Corollary 3.37. This completes the
proof.

(c) In Theorem 3.15(c) Pinlou [46] proved that every planar graph of girth at least 5 admits
a homomorphism to the Tromp graph

−→
T 16. Then, using Lemma 3.35 and Corollary 3.37, we get

the upper bound.



46 3.4. L(p, q)-labeling of oriented graphs

x1 x2

x6

x4

x5 x3

Figure 3.14: ~E is an oriented planar graph with girth 5.

To prove the lower bound, we first show that it is impossible to have a 2-dipath 5-L(2, 1)-
labeling f of the graph

−→
F , depicted in Figure 3.13, with {f(x), f(y)} = {3, 5}.

Notice that, if f(x) = 3 and f(y) = 5, then f(a1) ∈ {0, 1} and f(b1) ∈ {0, 1, 2}. This implies
f(u) = 4. Similarly, we have f(v) = 4 which is not possible as u, v are adjacent. The case
f(x) = 5 and f(y) = 3 is similar.

The oriented planar graph
−→
E , depicted in Figure 3.14, has girth 5. Moreover, the vertices

{x1, x2, x3, x4, x5, x6} will get pairwise different labels for any 2-dipath L(2, 1)-labeling since they
are pairwise connected by a 2-dipath. Consider a 2-dipath 5-L(2, 1)-labeling g of

−→
E such that

g(x6) = 0. Then we have {g(x1), g(x2), g(x3), g(x4), g(x5)} = {1, 2, 3, 4, 5}. Hence there exists
an arc −→wz ∈ A(

−→
G [{x1, x2, x3, x4, x5}]) such that {f(w), f(z)} = {3, 5}.

Now on each of the five vertices x ∈ {x1, x2, x3, x4, x5} of
−→
E , we glue a copy of

−→
E by

identifying x with the vertex x6 of the copy. Call this graph
−→
G .

Note that
−→
G is a planar graph with girth 5 such that for any 2-dipath 5-L(2, 1)-labeling `

of
−→
G , there is −→wz ∈ A(

−→
G) with {`(w), `(z)} = {3, 5}. We can then construct a new graph

−→
H

by gluing the oriented graph
−→
F (Fig. 3.13) on each arc of

−→
G by identifying that arc with the

arc −→xy of
−→
F . Clearly,

−→
H is also a planar graph with girth 5 which does not have any 2-dipath

5-L(2, 1)-labeling. Hence we get the lower bound.

(d), (e) It is easy to observe that the directed path of length 5 has 2-dipath L(2, 1)-span 4.
Hence the lower bounds.

Let R(
−→
P 7) be the oriented graph obtained by deleting the vertices∞ and∞′ from the Tromp

graph
−→
T 16. Later in this thesis, in Theorem 4.17(d) (Chapter 4, Section 4.2.1), we prove a result

equivalent to proving that every planar graph with girth at least 6 admits a homomorphism to
the oriented graph R(

−→
P 7). It is easy to check that R(

−→
P 7) admits an oriented 5-L(2, 1)-labeling.

Hence, using Lemma 3.35 and Lemma 3.34, we have the upper bounds. This completes the proof.

(f), (g) It is easy to observe that the directed path of length 5 has 2-dipath L(2, 1)-span 4.
Hence the lower bounds.

Later in this thesis, in Theorem 4.17(d) (Chapter 4, Section 4.2.1), we prove a result equivalent
to proving that every planar graph with girth at least 6 admits a homomorphism to the oriented
graph

−→
T 8. Also, one can check that the graph

−→
B (Fig 3.3) is 4-nice (we have verified it using

a computer-check). Then, using Theorem 3.4, Lemma 3.35, Lemma 3.34 and Corollary 3.37, we
have the results.

Proof of Theorem 3.41

To prove the following lemma we use the same technique as the one used to prove that every
oriented outerplanar graph has oriented chromatic number at most 7 in [58].

Lemma 3.43. Every oriented partial 2-tree
−→
D admits a homomorphism to the Tromp graph T8.
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x y

Figure 3.15: The oriented 2-tree D1

Proof. It is possible to check that for every u, v ∈ V (T8) and every α, β ∈ {+,−}, there exists
wαβ ∈ Nα(u) ∩Nβ(v).

Let
−→
G be a minimal (with respect to the number of vertices) counterexample to the lemma.

Without loss of generality we may assume that
−→
G is a 2-tree. Since

−→
G is a 2-tree,

−→
G must

have a vertex x of degree 2. Let N(x) = {x1, x2}. Now, by removing the vertex x from
−→
G and

adding an arc between x1 and x2 (if there was not already one), we get a 2-tree that admits a
homomorphism to T8 (because of the minimality of

−→
G). Using the property of T8 stated in the

begining of the proof, clearly this homomorphism can be extended to a homomorphism of
−→
G to

T8, a contradiction. �

The next result is to prove the lower bound.

Lemma 3.44. There exists an oriented 2-tree D13 for which
−→
λ 2,1(D13) ≥ 10.

Proof. First, we will describe a family of oriented 2-trees by induction. We start with the oriented
2-tree D1 (Fig: 3.15). By induction, we construct a graph Di+1 by gluing D1 on each arc of Di

by identifying that arc with the arc −→xy of D1. Note that every so-obtained graph Di is a 2-tree.
Assume that f is a 9-L(2, 1)-labeling of D13.

Step 0: Notice that, in each copy of D1, all the vertices should get different labels and for
any vertex v ∈ N(x) ∩N(y) we have, |f(t)− f(v)| ≥ 2 for t = x, y.

Step 1: If we restrict f toD1 then there is a vertex v1 ∈ N(x)∩N(y) such that f(v1) /∈ {0, 9}.
Similarly, if we restrict f to D2, we can find a vertex v2 ∈ N(x)∩N(v1) such that f(v2) /∈ {0, 9}.

Step 2: Now, if we restrict f to D3, we can find a v3 ∈ N(v1) ∩ N(v2) such that f(v3) /∈
{0, 9}. So we have {f(v1), f(v2), f(v3)} ⊆ {1, 2, 3, 4, 5, 6, 7, 8} with no two of {f(v1), f(v2), f(v3)}
being consecutive numbers, since {v1, v2, v3} are pairwise adjacent vertices. Hence there exists
i, j ∈ {1, 2, 3} such that {f(vi) − 1, f(vi), f(vi) + 1} ∩ {f(vj) − 1, f(vj), f(vj) + 1} = ∅ and
f(vi) < f(vj).

Step 3: In D4 there exists vαβ ∈ Nα(vi) ∩ Nβ(vj) for all α, β ∈ {+,−}. Notice that the
vertices {v++, v+−, v−+, v−−} will be labeled by the four remaining labels different from the
labels {f(vi)− 1, f(vi), f(vi) + 1, f(vj)− 1, f(vj), f(vj) + 1}.

Step 4: Now we want to show that there is a vertex in D5 that receives label 1 or 8. If
f(t) ∈ {1, 8} for some t ∈ {vi, vj , v++, v+−, v−+, v−−}, we are done.

If not, then we can conclude that f(vi) = 2, f(vj) = 7 since any other possible choice of labels
(other than 1 or 8) for vi, vj will force at least one of the labels among {f(v++), f(v+−), f(v−+),
f(v−−)} to be equal to 1 or 8. This will imply {f(v++), f(v+−), f(v−+), f(v−−)} = {0, 4, 5, 9}.
Choose v4 from the set {v++, v+−, v−+, v−−} such that f(v4) = 5. Then in D5, there is a vertex
v5 ∈ N(vi) ∩N(v4) with f(v5) = 8.

Hence in D5, there exists a vertex v6 with f(v6) ∈ {1, 8}.

Step 5: Now we want to show that there is a vertex in D7 that receives label 1. If f(v6) = 1,
we are done.

If not, then f(v6) = 8. This implies that, in D6, there exists t ∈ N(v6) such that f(t) ∈
{1, 4, 5}, since we need to use at least five distinct labels from {0, 1, 2, 3, 4, 5, 6} to label all vertices
of N(v6). If f(t) = 1, we are done. otherwise in D7, we can find some s ∈ N(v6) ∩ N(t) such
that f(s) = 1.
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Hence in D7 we can find a vertex a with f(a) = 1.

Step 6: Now we want to show that in D9 there is a vertex b ∈ N(a) with f(b) = 8.
Now, in D8, there are at least five vertices in N(a) which receive pairwise different labels.

Therefore, for some t ∈ N(a), we will have f(t) ∈ {8, 4, 5}. If f(t) = 8, we are done. Otherwise,
in D9, we can find s ∈ N(a) ∩N(t) with f(s) = 8.

Hence, in D9, there is a pair of adjacent vertices a and b with f(a) = 1 and f(b) = 8.

Step 7: Therefore, in D10, there will be a copy of D1 with vertices {a, b} corresponding to
the vertices {x, y} of D1 (as in Fig 3.15).

Step 8: Now notice that, in D12, there are ui ∈ N(a) such that f(ui) = i for all i ∈
{3, 4, ..., 9}. Hence, in D13, there are uαβi ∈ Nα(a) ∩Nβ(ui) for all α, β ∈ {+,−}.

Step 9: Note that it is not possible to have p ∈ N+(a) and q ∈ N−(a) with f(p) = f(q).
Hence the function Fa(i) = α if t ∈ Nα(a) and f(t) = i for i ∈ {3, 4, ..., 9} and α ∈ {+,−}, is
well defined. Intuitively, the function Fa is a function indicating whether a label is used for an
in-neighbor of a or for an out-neighbor of a.

Step 10: Note that for each i ∈ {3, 4, ..., 9}, Fa(f(u++
i )) = Fa(f(u+−

i )) = + and Fa(f(u−+
i )) =

Fa(f(u−−i )) = −.
Also, notice that {f(uαβi )|α, β ∈ {+,−}} = {3, 4, ..., 9} \ {i − 1, i, i + 1} for each i ∈

{4, 5, 6, 7, 8}.
We will use the two above observations repeatedly in the following.

Step 11: Let {γ, γ} = {+,−}. Without loss of generality assume that Fa(3) = γ.

Claim: Fa(6) = γ.

Proof of the claim: If possible, let Fa(6) = γ. Now {f(uαβ8 )|α, β ∈ {+,−}} = {3, 4, 5, 6}.
So two of Fa(3), Fa(4), Fa(5), Fa(6) will be + and the other two will be −. But we already have
Fa(3) = γ and Fa(6) = γ. Hence, {Fa(4), Fa(5)} = {γ, γ}. Similarly, we have {f(uαβ7 )|α, β ∈
{+,−}} = {3, 4, 5, 9}. This will force Fa(9) = γ. After that we have {f(uαβ4 )|α, β ∈ {+,−}} =

{6, 7, 8, 9} which forces Fa(7) = Fa(8) = γ. Now we also have {f(uαβ5 )|α, β ∈ {+,−}} =
{3, 7, 8, 9}. But Fa(3) = Fa(7) = Fa(8) = γ, a contradiction. Hence, Fa(6) = γ.

Step 12: Now {f(uαβ8 )|α, β ∈ {+,−}} = {3, 4, 5, 6} implies Fa(4) = Fa(5) = γ. Similarly,
{f(uαβ7 )|α, β ∈ {+,−}} = {3, 4, 5, 9} implies Fa(9) = γ. Lastly {f(uαβ4 )|α, β ∈ {+,−}} =
{6, 7, 8, 9} implies Fa(7) = Fa(8) = γ.

Hence, we got the full description of Fa (depending on the value of γ).

Step 13: Similarly, we can define a function Fb (one can imitate the previous steps, or just
use symmetry). As f(a) = 1, f(b) = 8 and Fa(8) = γ, we have Fb(1) = γ. Now, by symmetry
we get Fb(1) = Fb(2) = Fb(4) = Fb(5) = γ and Fb(0) = Fb(3) = Fb(6) = γ.

Step 14: Therefore, Fa(l) 6= Fb(l) for all such l on which both the functions are defined.
But we have Fa(f(u++

8 )) = Fb(f(u++
8 )) = +. This is a contradiction.

Hence, we are done. �

We are now able to prove Theorem 3.41.
Proof of Theorem 3.41(a) The proof follows from Lemma 3.43, Lemma 3.44, Lemma 3.35

and Corollary 3.37.
Proof of Theorem 3.41(b), (c) From [57] we know that any partial 3-tree admits a

homomorphism to the tromp graph
−→
T 16 and that any partial k-tree admits a homomorphism

to the Zielonka graph
−→
Z k+1. Hence the proof follows using Lemma 3.35 and Corollaries 3.37

and 3.38. �

Proof of theorem 3.40

Every outerplanar graph is also a partial 2-tree. So, the upper bound follows from Theo-
rem 3.41.
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Figure 3.16: The oriented outerplanar graph ~O

To prove the lower bound, we will construct an oriented outerplanar graph
−→
O∗ with

−→
λ 2,1(

−→
O∗) ≥

9. This will complete the proof.
First, we show that the outerplanar graph

−→
O (Figure 3.16) has no 2-dipath 8-L(2, 1)-labeling

if v gets label 1.
Let f be a 2-dipath 8-L(2, 1)-labeling of

−→
O such that f(v) = 1. This implies f(t) /∈ {0, 1, 2}

for t ∈ {x1, x2, ..., x8, y1, ..., y8} and f(xi) 6= f(yj) for any i, j = 1, 2, ..., 8.
Clearly, we need at least three distinct labels for each of the sets {xi | i = 1, ..., 8} and

{yi | i = 1, ..., 8}. Also, if we use exactly three labels for either of these sets, then those three
labels should have pairwise difference at least 2.

To satisfy the above conditions, by symmetry, we may assume without loss of generality that
we use labels {3, 5, 7} for {x1, ..., x8} and {4, 6, 8} for {y1, ..., y8}.

Now, with these assumptions, the following conditions are forced:

(a) f(bi) /∈ {f(x1)− 1, f(x1), f(x1) + 1} for i = 1, 2, ..., 8.

(b) f(bi) 6= f(bj) for i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8}.

(c) f(bi) /∈ {1, f(x2), f(y1)} for i = 1, 2, 3, 4.

(d) f(xi) = f(xi+3) for all i = 1, 2, 3.

(e) we need at least three distinct labels for either of the sets {b1, ..., b4} and {b5, ..., b8} for
i = 1, ..., 8. Also, if we use exactly three labels for either of these sets, then those three
labels should have mutual difference at least 2.

There are three cases to consider.

Case 1: If f(x1) = 7, then f(y1) = 4 and f(x2) = 3 or 5.
Then {f(b1), f(b2), f(b3), f(b4)} = {0, 2, 5} (by (a), (c), (e)).
This implies {f(b5), f(b6), f(b7), f(b8)} = {1, 3, 4} (by (a), (b)) which contradicts (e).

Case 2: If f(x1) = 5, then f(y1) = 8 and f(x2) = 3 or 7.
Then {f(b1), f(b2), f(b3), f(b4)} = {0, 2, 7} (by (a), (c), (e)).
Hence f(x2) = 3. This implies f(x3) = 7. Therefore, f(x6) = 7 (by (d)).
Now, the only possibility is to have f(y8) = 4 which will force f(x7) = 7 since f(x7) ∈

{3, 5, 7}. But x6 and x7 cannot have same labels since they are connected by a 2-dipath through
y8. This is a contradiction.

Case 3: If f(x1) = 3, then f(y1) = 6 or 8 and f(x2) = 5 or 7.
Then {f(b1), f(b2), f(b3), f(b4)} = {0, 5, 8} (by (a), (c), (e)).
This implies {f(b5), f(b6), f(b7), f(b8)} = {1, 6, 7} (by (a), (b)) which contradicts (e).

Hence, we do not have a 8-L(2, 1)-labeling f of
−→
O such that f(v) = 1. By symmetry, we can

say that we do not have a 8-L(2, 1)-labeling f of
−→
O such that f(v) = 7.

Now define S = V (
−→
O ) \ {x2, x7, x8, y2, y7, y8} and let

−→
G =

−→
O [S].
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Figure 3.17: The oriented cactus ~H.

Notice that if we try to 2-dipath 8-L(2, 1)-label
−→
G , then we need to use three different labels

for the vertices v, x1 and y1. One of these three vertices should have a label l /∈ {0, 8}. To label
the neighbors of that vertex, we clearly need at least six labels other than l − 1, l and l + 1. So,
we have to use all the remaining six labels and whatever the value of l may be, we necessarily
use label 1 or 7 to 2-dipath 8-L(2, 1)-label

−→
G .

Now, we construct a new graph
−→
O∗ by gluing a copy of

−→
O on each vertex of

−→
G by identifying

that vertex of
−→
G with the vertex v of

−→
O .

Note that
−→
O∗ is an outerplanar graph that cannot admit a 2-dipath 8-L(2, 1)-labeling, which

proves the theorem. �

Proof of Theorem 3.42

Lemma 3.45. There exists an oriented cactus
−→
C with

−→
λ 2,1(C) ≥ 7.

Proof. Let
−→
H be the oriented cactus depicted in Figure 3.17. We first show that there is no

6-L(2, 1)-labeling f of
−→
H with f(x) = 2. Assume to the contrary that such a labeling f exists.

The assumption implies that f(t) /∈ {1, 2, 3} for t ∈ {z1, z2, z3, z4, y1, y2, y3, y4}.
Also we have, f(zi) 6= f(yj) for i, j = 1, 2, 3, 4 and, for t ∈ {y, z},

| f(t1)− f(t2) |≥ 2 and f(t3) 6= f(t4) .
This will force either {f(z3), f(z4)} = {0, 5} or {f(y3), f(y4)} = {0, 5}. But these two cases

are symmetric. So, without loss of generality, we can assume {f(z3), f(z4)} = {0, 5}.
Again, by symmetry, we can assume f(z3) = 0 and f(z4) = 5. This will force f(v) = 3. Then

f(t) /∈ {2, 3, 4} for t ∈ {v+
1 , v

+
2 , v

+
4 , v

+
5 , v

−
1 , v

−
2 , v

−
4 , v

−
5 }.

Similarly as before, we have f(v+
i ) 6= f(v−j ) for i, j = 1, 2, 4, 5 and, for t ∈ {v+, v−}, |

f(t4)− f(t5) |≥ 2 and f(t1) 6= f(t2).
Moreover, f(v+

i ) 6= f(z3) = 0 and f(v−i ) 6= f(z4) = 5 for i = 1, 2, 4, 5.
This forces {f(v+

1 ), f(v+
2 )} = {5, 1}.

Then no label is available for v+
3 , a contradiction.

Hence, we do not have a 6-L(2, 1)-labeling f of
−→
H such that f(x) = 2.

Let
−→
G be a graph obtained by gluing a copy of the induced subgraph

−→
H [x, y1, y2, z1, z2]

on each vertex of the directed 5-cycle
−→
C5 by identifying each vertex of

−→
C5 with the vertex x of−→

H [x, y1, y2, z1, z2]. Clearly,
−→
G is a cactus.

Now, if we 2-dipath 6-L(2, 1)-label
−→
G , we need to use at least five labels for the

−→
C5 inside it.

If 2 is not among those five labels, then at least one of {4, 5} is among those five labels. Now, the
−→
H [x, y1, y2, z1, z2] glued with the vertex that got label 4 (or 5) clearly must use label 2. Hence,
for any 2-dipath 6-L(2, 1)-labeling of the cactus

−→
G , we need to use 2 as one of the labels.

Now, we construct a new graph
−→
C by gluing a copy of

−→
H on each vertex of

−→
G by identifying

that vertex of
−→
G with the vertex x of

−→
H .

Note that
−→
C is a cactus that cannot admit a 2-dipath 6-L(2, 1)-labeling. This completes the

proof. �
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y y y y

Figure 3.18: Four different oriented 3-cycles with respect to the vertex y.

Let
−→
B be the oriented graph depicted in Figure 3.3. Then we have:

Lemma 3.46. Let
−→
O be an oriented cycle. Given any x ∈ V (

−→
O ) and y ∈ V (

−→
B ), there exists a

homomorphism h :
−→
O −→

−→
B such that h(x) = y.

Proof. We know that
−→
B is 4-nice. Hence it is enough to show that for any oriented 3-cycle

−→
T

and given any x ∈ V (
−→
T ) and y ∈ V (

−→
B ), there exists a homomorphism h :

−→
O −→

−→
B such that

h(x) = y. In other words, we need to show that for each y ∈ V (
−→
B ), the 3-cycles in Figure 3.18

are subgraphs of
−→
B , which can easily be checked. �

Lemma 3.47. Every oriented cactus
−→
C admits a homomorphism to

−→
B .

Proof. Let
−→
G be a minimal counterexample to Lemma 3.47.

If there is a degree one vertex v in
−→
G such that v ∈ N+(u) (or v ∈ N−(u)) for some

u ∈ V (
−→
G), then

−→
G [V (

−→
G) \ {v}] is also a cactus. As

−→
G is a minimal counterexample, there is a

homomorphism f from
−→
G [V (

−→
G \ {v}] to

−→
B . Now, since all the vertices of

−→
B have at least one

in-neighbor and one out-neighbor, we can extend the homomorphism f to a homomorphism of−→
G to

−→
B by mapping v to any vertex x ∈ N+(f(u)) (or x ∈ N−(f(u))). This is a contradiction.

Hence there cannot be a degree one vertex in
−→
G .

No vertex of degree one in
−→
G implies at least one cycle

−→
C ⊆

−→
G such that exactly one vertex

z of the cycle
−→
C has degree greater than 2 (since, by Lemma 3.46,

−→
G cannot be a cycle).

Now,
−→
G [V (

−→
G) \ {V (

−→
C ) \ {z}}] is a cactus and, since

−→
G is a minimal counterexample, there

is a homomorphism f from
−→
G [V (

−→
G) \ {V (

−→
C ) \ {z}}] to

−→
B . By Lemma 3.46, we can extend f

to a homomorphism of
−→
G to

−→
B , a contradiction. This completes the proof. �

We are now able to prove Theorem 3.42.

The proof of Theorem 3.42 follows from Lemma 3.45, Lemma 3.47, Lemma 3.35 and the fact
that λo2,1(

−→
B ) = 7 (from Fig: 3.3). �

3.5 Conclusion

In this chapter we mainly studied oriented colorings and oriented L(p, q)-labelings of some families
of planar graphs. Our main focus remained on the families Og (family of outerplanar graphs
with girth at least g) and Pg (family of planar graphs with girth at least g) for g ≥ 3.

Concerning oriented colorings we focused on determining the oriented chromatic number, the
oriented relative clique number and the oriented absolute clique number of the above mentioned
families.

The oriented chromatic number of these families is a well studied problem. The existing
bounds for this parameter are tight for the family of outerplanar graphs with girth at least g and
the family of planar graphs with girth at least k for all g ≥ 3 and for all k ≥ 12. So, the bounds
are not tight for the family of planar graphs with girth at least g for 3 ≤ g ≤ 11. These bounds
seem difficult to improve.

Though we could not improve any of these existing bounds, we want to comment that it
might be possible to construct a planar graph with girth at least 5 with oriented chromatic
number at least 8 using the graph depicted in Fig. 3.5 with techniques similar to those used for
proving the lower bound of Theorem 3.39(c). This would improve the lower bound of χo(P5).
Of course, even though we have a rough idea of how this might work, we are yet to do it.
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For the other two parameters, that is the oriented relative clique number and the oriented
absolute clique number, we provided improved bounds, and mostly tight bounds in that matter.

In fact, we provided tight bounds for ωao(Og) and for ωao(Pg) for all g ≥ 3. We also provided
tight bounds for ωro(Og) for all g ≥ 3 and for ωro(Pk) for all k ≥ 5. Even though we could not
provide exact bounds for ωro(P3) and for ωro(P4), we have an intuition about what the answer
could be.

So we propose the following conjectures.

Conjecture 3.48. ωro(P3) = 15.

Notice that we already know ωro(P3) ≥ 15. So we already know that the lower bound of
the conjecture is tight. Right now the upper bound for ωro(P3) is 80. Even though we do not
have any idea to prove Conjecture 3.48, we want to comment that the upper bound of ωro(P3)
might be improved using a similar idea used by Klostermeyer and Macgillivray [27] to prove
ωao(P3) ≤ 36.

Conjecture 3.49. ωro(P4) = 10.

Notice that we already know ωro(P4) ≥ 10. So we already know that the lower bound of the
conjecture is tight.

Notice that, by proving ωao(P3) = 15, we actually proved that the largest (in terms of number
of vertices) planar oclique is of order 15. We can ask the similar question for graphs on other
surfaces, such as the torus or, in general, the surfaces with genus k for some k ≥ 1.

We showed that the only minimal (with respect to subgraph inclusion) planar oclique of order
15 is the oriented graph depicted in Fig. 3.6. We think that it is possible to extend the proof of
the above mentioned result to list out all the minimal planar ocliques. The task, though tedious,
is possible to do with a little modification of the proof.

We also studied two different L(p, q)-labeling problems, namely, the 2-dipath L(p, q)-labeling
problem and the oriented L(p, q)-labeling problem, on oriented graphs. We tried to determine the
two corresponding labeling spans for some planar families. We mainly focused on the particular
case (p, q) = (2, 1).

However, we want to remark that studying the oriented chromatic number and the oriented
relative clique number of graphs is actually equivalent to studying the oriented L(1, 1)-labeling
span and the 2-dipath L(1, 1)-labeling span, respectively. It will be interesting to study L(p, q)-
labeling of oriented graphs for other values of (p, q) as well.

Finally, trying to bound all these parameters for specific families of graphs is a big pool of
problems in the domain of oriented coloring and oriented L(p, q)-labeling.
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Chapter 4

Orientable graphs

In this chapter we deal with orientable graphs. Our main focus is to present some results
regarding orientable colorings.

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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Vertex pushing, that is, reversing the orientation of the incident arcs of a vertex, of directed
graphs has been studied by Fisher and Ryan [16], who studied the operation in tournaments and
counted the number of non-isomorphic equivalence classes of tournaments that the push opera-
tion induces. Klostermeyer [25] [26] studied the operation in powers of graphs with particular
emphasis on graphs whose all orientations can be pushed to have a Hamilton cycle. Additional
works on push operation has been done by Mosesian [37], Pretzel [50] [49] [48] and MacGillivray
and Wood [30].

The push operation was used on oriented graphs by Ochem and Pinlou [45] while proving the
upper bounds of the oriented chromatic number for the families of triangle-free planar graphs
and of 2-outerplanar graphs. Finally, Klostermeyer and MacGillivray [28] considered the push
operation on oriented graphs to define equivalence classes of oriented graphs and studied homo-
morphisms between them. These graphs were named “push graphs”. We, in this thesis, propose
the name “orientable graphs” instead as it readily suggests a relation with oriented graphs.

There is a similarity in the way orientable graphs and signed graphs (see Chapter 6) are
defined. Hence, we speculate that the study of homomorphisms of orientable graphs will help de-
velop a rich theory similar to the one introduced and studied by Naserasr, Rollová and Sopena [40]
for signed graphs.

The organization of the chapter is as follows. In Section 4.1 we give the basic definitions
and notations related to orientable graphs and homomorphisms of orientable graphs. Then we
present our main results regarding orientable coloring in Section 4.2. In Section 4.3 we discuss
some categorical aspects which is a joint work with Naserasr and Sopena. Finally, we conclude
this chapter in Section 4.4.

The proof of Theorem 4.17 and Theorem 4.22(a) proved in Section 4.2 appeared as a poster
at the Eurcomb 2013 Conference [56]. The rest of the results proved in Section 4.2 is an article
in process.

4.1 Preliminaries

Recall the definitions and notations related to oriented graphs from Chapter 3. To push a vertex
v of an oriented graph

−→
G is to change the orientations of all the arcs (that is, to replace the

arc −→uv by −→vu) incident with v. Two oriented graphs
−→
G

1
and
−→
G

2
are in a push relation if it is

possible to obtain
−→
G

2
by pushing some vertices of

−→
G

1
. Note that this push relation is in fact an

equivalence relation. A push graph or an orientable graph [
−→
G ] is an equivalance class of oriented
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Figure 4.1: Orientable graph homomorphism.

graphs (where
−→
G

1
is an element of the equivalence class) with respect to the above mentioned

relation. An element
−→
G

1
of the equivalence class [

−→
G ] is a presentation of [

−→
G ]. We use the

notation
−→
G

1
∈ [
−→
G ] for

−→
G

1
is a presentation of [

−→
G ].

Note that the graphs having a push relation have the same underlying graph. Hence, we
can define the underlying graph of an orientable graph [

−→
G ] by the underlying graph of any

presentation of it and denote it by G. The order of an orientable graph is the number of vertices
of its underlying graph, hence can be denoted by |V (

−→
G)| or |V (G)|. Intuitively, we can treat

an orientable graph as an oriented graph whose arcs, incedent to a vertex, are able to switch
directions. For a fixed presentation of an orientable graph, we can use the notations defined for
oriented graphs. Given any oriented graph

−→
G we can consider the orientable graph [

−→
G ].

Note that two oriented trees whose underlying graphs are isomorphic to the same tree are
equivalent with respect to the push relation. Given a connected graph G with n vertices and m
edges the minimum number of edges we need to delete in order to obtain a tree from G is exactly
m−n+ 1 (it follows from the fact that a connected tree on n vertices has n−1 edges). So, given
a graph G with n vertices, m edges and c connected components the minimum number of edges
we need to delete in order to obtain a tree from G is exactly m− n+ c.

Now let G be a graph with n vertices, m edges and c connected components. Also let T be
a forest obtained from G by deleting m − n + c edges. Now fix an orientation

−→
T of T . Clearly

every orientable graph whose underlying graph is G has a presentation which contains
−→
T as a

subgraph. The following result follows from counting the number of distinct ways we can orient
the deleted edges of G.

Proposition 4.1. If an undirected graph G has n vertices, m edges and c connected components,
then there are 2m−n+c distinct orientable graphs with underlying graph G.

Some of the “distinct” orientable graphs can actually be isomorphic. The distinction in the
above theorem works considering fixed labels for the vertices of G. So up to isomorphism, there
are at most 2m−n+c distinct orientable graphs with underlying graph G. Babai and Cameron
had studied automorphism of orientable graphs [3].

In [28], Klostermeyer and MacGillivray introduced homomorphisms of orientable graphs.
An orientable graph [

−→
G ] admits a homomorphism φ to an orientable graph [

−→
H ] if there are

presentations
−→
G

1
∈ [
−→
G ] and

−→
H

1
∈ [
−→
H ] such that φ is a homomorphism of

−→
G

1
to
−→
H

1
. We

write [
−→
G ]→ [

−→
H ] whenever there exists a homomorphism of [

−→
G ] to [

−→
H ] and say that [

−→
H ] bounds

[
−→
G ]. A bijective homomorphism whose inverse is also a homomorphism is an isomorphism. If two
orientable graphs admit homomorphisms to each other then they are homomorphically equivalent
orientable graphs.

Lemma 4.2. If [
−→
G ] admits a homomorphism to [

−→
H ], then for any presentation

−→
H

1
of [
−→
H ] there

exists a presentation
−→
G

1
of [
−→
G ] such that

−→
G

1
admits a homomorphism to

−→
H

1
.

Proof. Let φ be a homomorphism of [
−→
G ] to [

−→
H ]. This implies φ is a homomorphism of

−→
G

1
to
−→
H

1
,

for some presentation
−→
G

1
and
−→
H

1
of [
−→
G ] and [

−→
H ] respectively. Now, let

−→
H

2
be any presentation

of [
−→
H ].
Let X = {x1, x2, ..., xk} be the set of vertices we need to push to obtain

−→
H

2
from

−→
H

1
. Now

push the vertices of the set {v ∈ V (G)|φ(v) ∈ X} to obtain the presentation
−→
G

2
∈ [
−→
G ] from

−→
G

1
.
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v2
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v′2
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R(
−→
G) =

V (
−→
G)
||

Figure 4.2: The anti-twined graph R(
−→
G) of [

−→
G ].

Clearly, φ is a homomorphism of
−→
G

2
to
−→
H

2
. �

The above lemma allows us to study homomorphisms of an orientable graph [
−→
G ] to an oriented

graph
−→
H .

Example 4.3. A sample homomorphism of orientable graphs is given in Fig. 4.1. Note that we
need to push one of the vertices to obtain the homomorphism.

Let [
−→
G ] be an orientable graph with vertex set V (G) = {v1, v2, ..., vk} and

−→
G

1
∈ [
−→
G ]. Then

the anti-twined graph R(
−→
G) of [

−→
G ] is the oriented graph with the set of vertices and the set of

arcs as the following:

V (R(
−→
G)) = {v1, v2, ..., vk} ∪ {v′1, v′2, ..., v′k}

A(R(
−→
G)) = {−−→vivj ,

−−→
v′iv
′
j ,
−−→
vjv
′
i,
−−→
v′jvi | −−→vivj ∈ A(

−→
G

1
)}.

Intuitively, R(
−→
G) is the graph obtained from [

−→
G ] by adding and pushing a twin vertex v′i for

each of the vertices vi of
−→
G

1
. Observe that R(

−→
G) is well defined, that is, for any presentation

of [
−→
G ], we will get the same oriented graph R(

−→
G). The anti-twined graph R(

−→
G) of an oriented

graph
−→
G

1
was defined and used by Klostermeyer and MacGillivray in [28].

Example 4.4. For better understanding of the definition of an anti-twined graph see Fig. 4.2
where we have pictorially presented the construction of the anti-twined graph of an orientable
graph [

−→
G ].

Now suppose the orientable graph [
−→
G ] admits a homomorphism φ to the orientable graph [

−→
H ].

Also suppose that the presentations
−→
G

1
∈ [
−→
G ] and

−→
H

1
∈ [
−→
H ] are such that φ is a homomorphism

of
−→
G

1
to
−→
H

1
. The anti-twined homomorphism R(φ) of φ is the homomorphism of R(

−→
G) to R(

−→
H )

such that we have,

R(φ)(v) = φ(v) and R(φ)(v′) = φ(v)′ for v ∈ V (
−→
G).

Observe that R(φ) is indeed a homomorphism. Also R(φ) is well defined, that is, it does not
depend on the choice of the presentations

−→
G

1
∈ [
−→
G ] and

−→
H

1
∈ [
−→
H ] such that φ is a homomorphism

of
−→
G

1
to
−→
H

1
.

The following result, proved in [28], directly follows from the above definitions.

Proposition 4.5. Given two orientable graphs [
−→
G ] and [

−→
H ], we have [

−→
G ] → [

−→
H ] if and only if

R(
−→
G)→ R(

−→
H ).

Proof. First assume that [
−→
G ] admits a homomorphism φ to [

−→
H ]. Then according to the above

discussion R(φ) is a homomorphism of R(
−→
G) to R(

−→
H ).

Now assume that R(
−→
G)→ R(

−→
H ). Also we have

−→
G → R(

−→
G) by inclusion. Now consider the

orientable graphs [R(
−→
G)] and [R(

−→
H )]. Then we must have orientable homomorphisms [

−→
G ] →
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[R(
−→
G)] and [R(

−→
G)] → [R(

−→
H )]. By composing the above two homomorphisms we have an

orientable homomorphism [
−→
G ]→ [R(

−→
H )].

Now consider the presentation
−→
H ∈ [

−→
H ]. Consider the function ψ : V (R(

−→
H )) →

−→
H defined

as the following:

ψ(x) = ψ(x′) = x for x ∈ V (
−→
H ).

It is easy to check that ψ is a homomorphism of R(
−→
H ) to

−→
H . Hence, there exists an orientable

homomorphism [R(
−→
H )] → [

−→
H ]. By composing it with a homomorpism [

−→
G ] → [R(

−→
H )] we will

obtain a homomorphism of [
−→
G ] to [

−→
H ]. �

A splitable oriented graph
−→
S is an oriented graph isomorphic to the anti-twined graph R(

−→
T )

of some oriented graph
−→
T . The oriented graph

−→
T is the split graph of

−→
S .

Similarly, a splitable oriented homomorphism is a homomorphism ψ of a splitable oriented
graph

−→
S1 = R(

−→
T1) to a splitable oriented graph

−→
S2 = R(

−→
T2) such that we have ψ = R(φ) for

some orientable homomorphism φ of [
−→
T1] to [

−→
T2].

Notice that the set of vertices of any splitable oriented graph
−→
S can be partitioned into two

equal parts and a 1-1 correspondence between the vertices of those two parts can be established
in a way that the corresponding vertices are not adjacent and they disagree with each other on
all their common neighbors, while they have the same set of neigbors. The oriented induced
subgraph on one of those partitions is the split graph of the splitable graph in question. Hence
we have the following result.

Lemma 4.6. An oriented graph
−→
S is splitable if and only if it is possible to partition the set

of vertices V (
−→
S ) into two equal parts V1 and V2 with a bijection f : V1 → V2 such that for all

u ∈ V1 we have N+(u) = N−(f(u)) and N−(u) = N+(f(u)).

For example, for each vertex u in a Tromp graph or a Zielonka graph (see Chapter 3, Sec-
tion 3.2) there is a unique vertex v such that we have N+(u) = N−(v) and N−(u) = N+(v).
So, it is easy to see that these graphs are splitable oriented graphs.

Using the notion of splitable graphs we now state the following useful result.

Lemma 4.7. Let
−→
S = R(

−→
T ) be a splitable graph. Then

−→
G →

−→
S if and only if [

−→
G ]→

−→
T .

Proof. Let
−→
S = R(

−→
T ) be a splitable graph. Assume that

−→
G →

−→
S . This implies [

−→
G ] → [

−→
S ].

Now consider the following function ψ from V (R(
−→
T )) to V (

−→
T ):

ψ(x) = ψ(x′) = x for x ∈ V (
−→
T ).

It is easy to check that ψ is a homomorphism of R(
−→
T ) to

−→
T . This implies that there

exists an orientable homomorphism [R(
−→
T )]→ [

−→
T ]. By composing this homomorphism with the

homomorphism [
−→
G ]→ [

−→
S ] we obtain a homomorphism [

−→
G ]→

−→
T . This proofs the “only if” part.

For proving the “if” part assume [
−→
G ] →

−→
T . Then by Proposition 4.5 we have R(

−→
G) →

−→
S .

By composing this homomorphism with the inclusion homomorphism of
−→
G to R(

−→
G) we will be

done. �

We will use this lemma several times in this chapter.

4.2 Orientable coloring

Colorings of orientable graphs first appeared in the work of Klostermeyer and MacGillivray [28]
(they called it push coloring) and is a recent field of research.

An orientable k-coloring of an orientable graph [
−→
G ] is a vertex coloring which is an oriented

k-coloring of a presentation of the graph. The orientable chromatic number χ[o]([
−→
G ]) of an
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Figure 4.3: Orientable coloring (we push the vertices marked with dashed circles
of the graph in the left).

orientable graph [
−→
G ] is the minimum of the oriented chromatic numbers of the elements of the

equivalence class [
−→
G ].

Alternatively, the orientable chromatic number χ[o]([
−→
G ]) of the orientable graph [

−→
G ] is the

minimum order of an orientable graph [
−→
H ] such that [

−→
G ] admits a homomorphism to [

−→
H ].

By virtue of Lemma 4.2, we can equivalently define the orientable chromatic number χ[o]([
−→
G ])

of an orientable graph [
−→
G ] by the minimum order of an oriented graph

−→
H such that [

−→
G ] admits

a homomorphism to
−→
H .

The orientable chromatic number χ[o](G) of an undirected graph G is the maximum of the
oriented chromatic numbers of all the orientable graphs with underlying graph G. The orientable
chromatic number χ[o](F) of a family F of graphs is the maximum of the orientable chromatic
numbers of the graphs from the family F .

Example 4.8. Fig 4.3 depicts an orientable 4-coloring of an orientable graph. One can easily
check that the orientable chromatic number of this graph is 4.

Now, take an oriented cycle of length 4 with arcs
−→
ab,
−→
bc,
−→
cd,
−→
ad. Note that all the oriented

graphs which are in push relation with it are isomorphic to it. We name this special 4-cycle
an unbalanced 4-cycle. Notice that the non-adjacent vertices of an unbalanced 4-cycle always
get different colors as they are always connected with a 2-dipath, no matter which vertex of the
graph you push. This is in fact a necessary and sufficient condition for two non-adjacent vertices
to receive two distinct colors under an orientable coloring.

A relative orientable clique of an orientable graph [
−→
G ] is a set R ⊆ V (

−→
G) of vertices such

that any two vertices from R are either adjacent or part of an unbalanced 4-cycle. The orientable
relative clique number ω[ro]([

−→
G ]) of an orientable graph [

−→
G ] is the maximum order of an orientable

relative clique of [
−→
G ].

An orientable clique, or simply an [o]-clique, is an orientable graph [
−→
G ] for which χ[o]([

−→
G ]) =

|V (
−→
G)|. Note that [o]-cliques can hence be characterized as those orientable graphs whose any

two distinct vertices are either adjacent or part of an unbalanced 4-cycle (for any presentation).
Note that an orientable graph with an [o]-clique of order n as a subgraph has orientable chromatic
number and orientable relative clique number at least n. The orientable absolute clique number
ω[ao]([

−→
G ]) of an orientable graph [

−→
G ] is the maximum order of an [o]-clique contained in [

−→
G ] as

a subgraph.
The orientable relative clique number ω[ro](G) (resp. orientable absolute clique number

ω[ao](G)) of a simple graph G is the maximum of the orientable relative clique numbers (resp.
orientable absolute clique numbers) of all the orientable graphs with underlying graph G. The
orientable relative clique number ω[ro](F) (resp. orientable absolute clique number ω[ao](F)) of
a family F of graphs is the maximum of the orientable relative clique numbers (resp. orientable
absolute clique numbers) of the graphs from the family F .

From the definitions, clearly we have the following:

Lemma 4.9. For any orientable graph [
−→
G ] we have, ω[ao]([

−→
G ]) ≤ ω[ro](

−→
G) ≤ χ[o]([

−→
G ]).

Corollary 4.10. For any [o]-clique [
−→
O ] we have, ω[ao]([

−→
O ]) = ω[ro](

−→
O ) = χ[o]([

−→
O ]).
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Example 4.11. Consider the oriented graph
−→
B+ obtained by adding a new vertex ∞ to the

oriented graph
−→
B depicted in Fig. 3.5 (see Chapter 3, Section 3.3) in such a way that we have

N+(∞) = V (
−→
B \{∞}. It is easy to check that ω[ao]([

−→
B+]) = 6, ω[ro]([

−→
B+]) = 7 and χ[o]([

−→
B+]) =

8. This is an example of a graph for which each inequality of the above theorem is strict.

Note that the above defined three graph parameters respect homomorphisms of orientable
graphs in the sense of the following result.

Lemma 4.12. Let [
−→
G ] and [

−→
H ] be two orientable graphs. If [

−→
G ] → [

−→
H ], then χ[o]([

−→
G ]) ≤

χ[o]([
−→
H ]), ω[ro]([

−→
G ]) ≤ ω[ro]([

−→
H ]) and ω[ao]([

−→
G ]) ≤ ω[ao]([

−→
H ]).

A usual technique for obtaining an upper bound for the three graph parameters of orientable
graphs defined in this section is to prove that every graph in the family of graphs in question
admits a homomorphism to a particular orientable graph, that is, to find an orientable graph
that bounds every graph of that family. Such a graph is called a universal bound of that family
of graphs. Note that not every family of graphs have a universal bound of order equal to its
orientable chromatic number (the family of all orientable graphs of order 4 is such an example).

If we consider the set of all orientable graphs to be a category with objects being the orientable
graphs and morphisms being the orientable homomorphisms then we clearly have the following:

Theorem 4.13. For any family F of orientable graphs that also contains the categorical co-
products of the graphs from the family, there exists a universal bound of F on χ[o](F) vertices.

Observe that a categorical co-product (unique up to homomorphic equivalence) of orientable
graphs is simply the orientable graph obtained by taking the disjoint union of the orientable
graphs. The families of planar graphs, outerplanar graphs, planar graphs with given girth and
outerplanar graphs with given girth are each of the type that we mentioned in the above theorem.

4.2.1 Orientable chromatic number

The first result proved by Klostermeyer and MacGillivray [28] on orientable chromatic number
is the following relation between oriented chromatic numbers and orientable chromatic numbers.

Proposition 4.14. For any oriented graph
−→
G , we have χ[o]([

−→
G ]) ≤ χo(

−→
G) ≤ 2χ[o]([

−→
G ]).

In the first relation, equality holds for any oriented graph whose underlying graph is a com-
plete graph, while in the second relation, equality holds for splitable graphs.

One of the main general results we can prove using Lemma 4.7 follows easily from the fact
that Zielonka graphs are splitable.

Theorem 4.15. Every graph with acyclic chromatic number at most k has orientable chromatic
number at most k.2k−2.

As the bound in Theorem 3.12 is tight for k ≥ 3, it is tight for k ≥ 3 in the above theorem
too by Proposition 4.5.

Now we list the bounds for the orientable chromatic number of the families of outerplanar
graphs and of outerplanar graphs with given girth. The relevant references are given beside the
results. Recall that Og denotes the family of outerplanar graphs with girth at least g.

Theorem 4.16.

(a) χ[o](Ok) = 4 for k = 3, 4. [28]

(b) χ[o](Ok) = 3 for k ≥ 5.

Now we list the bounds for the orientable chromatic number of the families of planar graphs
and of planar graphs with given girth. Recall that Pg denotes the family of planar graphs with
girth at least g.

Theorem 4.17.

(a) 9 ≤ χ[o](P3) ≤ 40.
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(b) 6 ≤ χ[o](P4) ≤ 20.

(c) 4 ≤ χ[o](P5) ≤ 8.

(d) 4 ≤ χ[o](P6) ≤ 7.

(e) χ[o](P8) = 4.

(f) 3 ≤ χ[o](Pk) ≤ 4 for 9 ≤ k ≤ 20.

(g) χ[o](Pk) = 3 for k ≥ 21.

We prove the lower bound of part (a) of the above theorem by constructing an example.
Even though the lower bound immediately follows from Marshall’s [33] proof of 18 ≤ χo(P3),
our proof is independent of that and is simpler.

Proof of Theorem 4.16

(a) Klostermeyer and MacGillivray [28] proved that the orientable chromatic number of the
family of outerplanar graphs is at most 4. It is easy to note that the bound is tight, even for
the family of outerplanar graphs with girth at least 4, as the unbalanced 4-cycle has orientable
chromatic number 4.

(b) In [47], Pinlou and Sopena showed that every outerplanar graph with girth at least k
and minimum degree at least 2 contains a face of length l ≥ k with at least (l − 2) consecutive
vertices of degree 2.

Now, to prove Theorem 4.16(b), we will show that every orientable outerplanar graph of girth
at least 5 admits a homomorphism to the directed 3-cycle

−→
C3.

Let [
−→
H ] be a minimal (with respect to inclusion as a subgraph) orientable outerplanar graph

with girth at least 5 having no homomorphism to
−→
C3.

(i) Suppose that [
−→
H ] contains a vertex u of degree 1. Then, due to the minimality of [

−→
H ], the

orientable outerplanar graph obtained by deleting the vertex u from [
−→
H ] (which has girth

at least 5) admits a homomorphism to
−→
C3. Since every vertex of

−→
C3 has in-degree and out-

degree equal to 1, the homomorphism can easily be extended to obtain a homomorphism
of [
−→
H ] to

−→
C3, a contradiction.

(ii) Suppose that [
−→
H ] contains a face ux1x2...xl−2v of length l ≥ 5 with at least (l−2) consecu-

tive vertices x1, x2, ..., xl−2 of degree 2. Then, due to the minimality of [
−→
H ], the orientable

outerplanar graph [
−→
H ′] obtained by deleting the vertices x1, x2, ..., xl−2 from [

−→
H ] (which

has girth at least 5) admits a homomorphism φ to
−→
C3. Now, let

−→
H ′

1
be a presentation

of [
−→
H ′] with φ :

−→
H ′

1
→
−→
C3. Note that the vertices u and v are adjacent in

−→
H ′

1
. Hence,

φ(u) 6= φ(v).

It is possible to check that (a bit tidious, but not difficult, by case analysis), given any
oriented path of length m ≥ 4, with edges a1a2, a2a3, ..., am−1am and a mapping ψ :

{a1, am} → V (
−→
C3) with ψ(a1) 6= ψ(am), it is possible to push the vertices ai for i ∈

{2, ..,m− 1} to obtain an oriented path and extend the mapping ψ to a homomorphism of
that oriented path to

−→
C3.

Hence, by the above observation, we can extend the homomorphism of [
−→
H ′] to

−→
C3 to a

homomorphism of [
−→
H ] to

−→
C3, a contradiction.

Hence, every orientable outerplanar graph with girth at least 5 admits a homomorphism to−→
C3. Of course, any cycle of odd length has orientable chromatic number at least 3. Hence the
bound is tight. �

Proof of Theorem 4.17(a),(b) and (c)
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x1 x2 x3

x4

x5 x6 x7

x8

Figure 4.4: The planar [o]-clique ~B0 of order 8.

(a) To prove the upper bound we use Theorem 4.15 and the theorem of Borodin [4] (see
Chapter 2, Theorem 2.11) that states that every planar graph has an acyclic 5-coloring.

For the lower bound, we show that there is no universal bound of the family of orientable
planar graphs on 8 veritces.

The planar graph from Fig 4.4 is an orientable planar [o]-clique on 8 vertices. Now assume that
−→
H is an oriented graph of order 8 to which every orientable planar graph admits a homomorphism.

Then we construct an oriented planar graph
−→
B1 by gluing a copy of the planar [o]-clique

−→
B0

(Fig. 4.4) to each vertex of
−→
B0 by identifying the vertex with the vertex x8 of

−→
B0. After that we

construct another oriented planar graph
−→
B2 by gluing a copy of the planar [o]-clique

−→
B0 to each

arc of
−→
B1 by identifying the arc with the arc −−→x8x4 of

−→
B0.

By assumption [
−→
B2] admits a homomorphism to

−→
H . Now, each vertex of the inital [o]-clique

−→
B0 dominates an [o]-clique of order 8 in [

−→
B2]. So, in particular, we must have the degree of each

vertex in
−→
H at least 7. Hence,

−→
H is a tournament.

Now note that as [
−→
B2] admits a homomorphism to

−→
H , for each arc −→uv of

−→
H there are at least

three vertices on which u and v agree and there are at least three vertices on which u and v

disagree. No matter how you push the vertices, this will be true. But as
−→
H has order 8, for

each arc −→uv, the oriented graph
−→
H must have exactly three vertices on which u and v agree and

exactly three vertices on which u and v disagree.
We now construct a planar graph with two vertices x and y and a directed 5-cycle with

vertices a, b, c, d, e such that N+(x) = {a, b, c, d, e}, N+(y) = {a, b, c, d} and N+(y) = {e}. Since
this is a planar graph, it admits a homomorphism to

−→
H . The images of x and y are different

vertices (they are part of an unbalanced 4-cycle) and have at least 4 vertices on which they either
agree or disagree (those vertices are images of a, b, c, d which have pairwise distinct images as
they are pairwise either adjacent or part of an unbalanced 4-cycle) which contradicts the above
discussion.
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Figure 4.5: An orientable triangle-free planar graph with orientable relative clique
number 6 (the six vertices with black circles around them are part of a relative
clique).

Hence there is no universal bound of the family of orientable planar graphs on 8 vertices. �

(b) Ochem and Pinlou [45] showed that the Tromp graph
−→
T 40 bounds the family of oriented

planar graphs with girth at least 4. Note that the Tromp graph
−→
T 40 is a splitable oriented graph

whose split graph is the graph
−→
P +

19 on 20 vertices. Hence, by Lemma 4.7, the upper bound
follows.

The lower bound follows from the example in Fig. 4.5.

(c) The lower bound follows from the fact that every cycle of odd length has orinetable
chromatic number 3.

Pinlou [46] showed that the Tromp graph
−→
T 16 bounds the family of oriented planar graphs

with girth at least 5. Note that the Tromp graph
−→
T 16 is a splitable oriented graph whose split

graph is the graph
−→
P +

7 on 8 vertices. Hence, by Lemma 4.7, the upper bound follows. �

Proof of Theorem 4.17(d),(e)

To prove Theorem 4.17(d) and (e) we use the discharging method. We first provide a (small)
set of forbidden confgurations, that is a set of graphs that a minimal counterexample [

−→
H ] to our

claim cannot contain as subgraphs. We will then assume that every vertex v in [
−→
H ] is valued by

its degree deg(v) and define a discharging procedure which specifies some transfer of values among
the vertices in [

−→
H ], keeping the sum of all the values constant. We will then get a contradiction

by considering the modernized degree deg∗(v) of every vertex v, that is the value obtained by v
owing to the discharging procedure.

Drawing conventions: In all the figures depicting forbidden configurations, we will draw
vertices with prescribed degrees as ‘square vertices’ and vertices with unbounded degree as ‘cir-
cular vertices’. All the neighbors of square vertices are drawn. Unless otherwise specified, two or
more circular vertices may coincide in a single vertex, provided that they do not share a common
square neighbor.

(d) The lower bound follows from the lower bound of Theorem 4.17(e) whose proof is given
independently of this proof.

For proving the upper bound we will show that every orientable [
−→
G ] with maximum aver-

age degree less than 3 admits a homomorphism to the Paley tournament
−→
P 7 (see Chapter 3,

Section 3.2). We will use the discharging method for our proof.

Observation 1: Given a pair of distinct vertices u, v of
−→
P 7, the set Nα−→

P 7
∩Nβ

−→
P 7

is non-empty
for any α, β ∈ {+,−}.

Observation 2: It directly follows from Observation 1 that N++({v}) = N−−({v}) =

V (
−→
P 7) \ {v} and N+−({v}) = N−+({v}) = V (

−→
P 7) for all v ∈ V (

−→
P 7) (recall the definition of

NQ(X) for a pattern Q and a set of vertices X from Chapter 3, Section 3.2).
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(i) (ii)

u1

u2

u3

v1 v2

(iii)

u1

u2

u3

u4v1

(iv)

u1

u2

u3

u4

u5

v1

(v)

Figure 4.6: Forbidden configurations for Theorem 4.17(d).

First assume that [
−→
H ] is a mimimal (with respect to the number of vertices) orientable graph

with maximum average degree less than 3 that does not admit a homomorphism to the Paley
tournament

−→
P 7.

First we will show that [
−→
H ] does not contain any of the configurations depicted in Fig. 4.6.

(i) Obvious since every vertex of
−→
P 7 has degree at least one.

(ii) Directly follows from Observation 2.

(iii) Consider the orientable graph [
−→
H ′] obtained by deleting the vertex v2 of [

−→
H ]. Therefore,

there exists a presentation
−→
H ′

1
∈ [
−→
H ′] such that

−→
H ′

1
admits a homomorphism f ′ to

−→
P 7.

Now consider a presentation
−→
H

1
∈ [
−→
H ] that contains

−→
H ′

1
as a subgraph and is such that the

vertices v1 and u3 agree with each other on v2 (such a presentation is possible to obtain by
pushing v1 if needed). Now we can extend f ′ to a homomorphism (we might need to change
the value of f ′(v1) in the extension) of

−→
H

1
to
−→
P 7 by Observation 1 and Observation 2.

(iv) Consider the orientable graph [
−→
H ′] obtained by deleting the square vertex of degree 3 from

[
−→
H ]. Therefore, there exists a presentation

−→
H ′

1
∈ [
−→
H ′] such that

−→
H ′

1
admits a homomor-

phism f ′ to
−→
P 7.

Now choose a vertex x ∈ V (
−→
P 7) \ {f ′(u1), f ′(u2), f ′(u3), f ′(u4)}. Suppose that x ∈

Nα−→
P 7

(f ′(u1)).

Now consider the presentation
−→
H

1
∈ [
−→
H ] that contains

−→
H ′

1
as a subgraph and is such that

v1 ∈ Nα
−→
H

1(u1) (such a presentation is possible to obtain by pushing v1 if needed).

Now we can extend f ′ to a homomorphism of f of
−→
H

1
to
−→
P 7 with f(v1) = x using

Observation 2.

(v) Consider the orientable graph [
−→
H ′] obtained by deleting the square vertex of degree 3 from

[
−→
H ]. Therefore, there exists a presentation

−→
H ′

1
∈ [
−→
H ′] such that

−→
H ′

1
admits a homomor-

phism f ′ to
−→
P 7.
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Now choose a vertex x ∈ V (
−→
P 7) \ {f ′(u1), f ′(u2), f ′(u3), f ′(u4), f ′(u5)}. Suppose that

x ∈ Nα−→
P 7

(f ′(u1)).

Now consider the presentation
−→
H

1
∈ [
−→
H ] that contains

−→
H ′

1
as a subgraph and is such that

v1 ∈ Nα
−→
H

1(u1) (such a presentation is possible to obtain by pushing v1 if needed).

Now we can extend f ′ to a homomorphism of f of
−→
H

1
to
−→
P 7 with f(v1) = x using

Observation 2.

We now use the following discharging procedure: each vertex of degree at least 4 gives 1/2
to each of its neighbors with degree 2.

Let us check that the modernized degree deg∗(v) of each vertex v is at least 3, which contra-
dicts the assumption mad(H) < 3. We consider the possible cases for the old degree deg(v) of
v:

(i) deg(v) = 1: there is no such vertex in [
−→
H ] by (i).

(ii) deg(v) = 2: by (ii) and (iii), its neighbors have degree at least 4. Therefore, it receives
exactly 2× 1/2 = 1, and thus deg∗(v) = 2 + 1 = 3.

(iii) deg(v) = 3: by (iii), it neither receives nor gives away anything. Therefore, we have
deg∗(v) = 3.

(iv) deg(v) = 4: by (iv), it gives away at most 2 × 1/2 = 1. Therefore, we have deg∗(v) ≥
4− 1 = 3.

(v) deg(v) = 5: by (v), it gives away at most 3 × 1/2 = 3/2. Therefore, we have deg∗(v) ≥
5− 3/2 = 7/2 > 3.

(vi) deg(v) = k ≥ 6: it gives away at most k × 1/2 = k/2. Therefore, we have deg∗(v) ≥
k − k/2 = k/2 ≥ 6/2 = 3.

Therefore, every vertex of [
−→
H ] gets a modernized degree at least 3. Hence, every orientable

graph with maximum average degree less than 3 admits a homomorphism to
−→
P 7. Hence our

theorem is proved using Theorem 2.5 (see Chapter 2).

(e) Take the directed 9-cycle
−→
C9. Now construct the graph

−→
H by taking

−→
C9 and a new

vertex v and then connecting each vertex of
−→
C9 to v by two distinct paths of length 4 (one

of them directed and the other with three forward arcs and one backward arc). Now consider
the orientable graph [

−→
H ]. If χ[o] ≤ 3, then there must be a presentation of [

−→
H ] that admits a

homomorphism to the directed 3-cycle
−→
C3.

Notice that for any presentation
−→
H ∈ [

−→
H ] we will have one 4-path, with either three forward

arcs and one backward arc or with three backward arcs and one forward arc, connecting v to
each vertex of the 9-cycle.

Observe that the 4-path x0x1...x4 with three forward arcs and one backward arc does not
admit a homomorphism with x0 and x4 mapped to the same vertex of

−→
C3. Now let f be a

homomorphism of
−→
H to

−→
C3. Then, because of the above observation, f(v) 6= f(u) for every

vertex u from the 9-cycle. But we know that the 9-cycle has orientable chromatic number equal
to 3. That means f must be onto on the vertices of

−→
C3 when restricted to the 9-cycle. Hence

f(v) /∈ V (
−→
C3). This is a contradiction.

Hence we have the lower bound.

For proving the upper bound we will show that every orientable [
−→
G ] with maximum average

degree less than 8/3 admits a homomorphism to the Paley plus graph
−→
P +

3 . We will use the
discharging method for our proof.
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(i) (ii)

u1

u2

u3

v1

v2

v3

(iii)

Figure 4.7: Forbidden configurations for Theorem 4.17(e).

Observation 3: It is easy to check that N++({v}) ∪ N−−({v}) = V (
−→
P +

3 ) \ {v} and
N+−({v}) ∪ N−+({v}) = V (

−→
P +

3 ) for all v ∈ V (
−→
P +

3 ) (recall the definition of NQ(X) for a
pattern Q and a set of vertices X from Chapter 3, Section 3.2).

First assume that [
−→
H ] is a mimimal (with respect to the number of vertices) orientable graph

with maximum average degree less than 8/3 that does not admit a homomorphism to
−→
P +

3 .
First we will show that [

−→
H ] does not contain any of the configuration depicted in Fig. 4.7.

(i) Obvious since every vertex of
−→
P +

3 has degree at least one.

(ii) Directly follows from Observation 3.

(iii) Consider the orientable graph [
−→
H ′] obtained by deleting all the square vertex of degree

3 from [
−→
H ]. Therefore, there exists a presentation

−→
H ′

1
∈ [
−→
H ′] such that

−→
H ′

1
admits a

homomorphism f ′ to
−→
P 7.

Now choose a vertex x ∈ V (
−→
P +

3 )\{f ′(u1), f ′(u2), f ′(u3)}. Suppose that x ∈ Nα−→
P +

3

(f ′(u3)).

Now consider the presentation
−→
H

1
∈ [
−→
H ] that contains

−→
H ′

1
as a subgraph and is such that

v3 ∈ Nα
−→
H

1(u3) (such a presentation is possible to obtain by pushing v3 if needed).

Now we can extend f ′ to a homomorphism of f of
−→
H

1
to
−→
P +

3 (by pushing the vertices v1

and v2 if needed) with f(v1) = x using Observation 3.

We now use the following discharging procedure: each vertex of degree at least 3 gives 1/3
to each of its neighbors with degree 2.

Let us check that the modernized degree deg∗(v) of each vertex v is at least 8/3 which
contradicts the assumption mad(H) < 8/3. We consider the possible cases for the old degree
deg(v) of v:

(i) deg(v) = 1: there is no such vertex in [
−→
H ] by (i).

(ii) deg(v) = 2: by (ii), both its neighbors have degree at least 3. Therefore, it receives exactly
2× 1/3 = 2/3, and thus deg∗(v) = 2 + 2/3 = 8/3.

(iii) deg(v) = 3: by (iii), gives away at most 1/3. Therefore, we have deg∗(v) = 3− 1/3 = 8/3.

(iv) deg(v) = k ≥ 4: it gives away at most k × 1/3 = k/2. Therefore, we have deg∗(v) ≥
k − k/3 = 2k/3 ≥ 8/3.

Therefore, every vertex of [
−→
H ] gets a modernized degree at least 8/3. Hence, every orientable

graph with maximum average degree less than 8/3 admits a homomorphism to
−→
P +

3 . Hence our
theorem is proved using Theorem 2.5 (see Chapter 2). �

Proof of Theorem 4.17(f),(g)

(f) The lower bound follows from the fact that every cycle of odd length has orientable
chromatic number 3.
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The upper bound follows from the upper bound proved in part (e) of this theorem.

(g) The lower bound follows from the fact that every cycle of odd length has orientable
chromatic number 3.

Consider the anti-twined graph R(
−→
C3) of the directed 3-cycle

−→
C3. It is possible to check that

the oriented graph R(
−→
C3) is 5-nice. Hence by Theorem 3.4 (see Chapter 3, Section 3.2) we know

that every oriented planar graph with girth at least 21 admits a homomorphism to the oriented
graph R(

−→
C3). Now Lemma 4.7 implies that every orientable planar graph with girth at least 21

admits a homomorphism to the directed 3-cycle
−→
C3. Hence, we have the upper bound. �

4.2.2 Orientable relative clique number

As we have done for oriented colorings, naturally we also define and consider the orientable
relative clique number for some planar families of graphs. Before listing those bounds, we will
present a general bound for the oriented relative clique number of graphs with maximum degree
∆.

Proposition 4.18. Every orientable graph with maximum degree ∆ has orientable relative clique

number at most
∆(∆ + 1)

2
+ 1.

Proof. Let [
−→
G ] be an orientable graph with maximum degree ∆. Let R be a relative clique of

maximum order in of [
−→
G ]. Let v ∈ R be a vertex. Now, v has ∆ adjacent vertices and each

of these vertices can have at most (∆ − 1) adjacent vertices excluding v. But, if a vertex u
at distance 2 from v is in R, then it has to be part of an unbalanced 4-cycle of which also v
is part of. For that u needs to be adjacent to at least two neighbors of v. There are at most
∆.(∆ − 1) edges between the neighbors of v and the vertices at distance 2 from v. Now, there
are (|R| −∆− 1) vertices of R that are each adjacent to at least two neighbors of v. Hence we
have,

2(|R| −∆− 1) ≤ ∆.(∆− 1)⇒ 2|R| − 2∆− 2 ≤ ∆2 −∆

⇒ 2|R| ≤ ∆2 + ∆ + 2

⇒ |R| ≤ ∆.(∆ + 1)

2
+ 1

Hence, we are done. �

We consider the problem of determining the orientable relative clique number of the families
of outerplanar graphs and of outerplanar graphs with given girth. We list the related results
below.

Theorem 4.19.

(a) ω[ro](Ok) = 4 for k = 3, 4.

(b) ω[ro](Ok) = 2 for k ≥ 5.

The proof of the above theorem directly follows from Theorem 4.16.
Now we list the best bounds for the orientable relative clique number of the families of planar

graphs and of planar graphs with given girth.

Theorem 4.20.

(a) 8 ≤ ω[ro](P3) ≤ 40.

(b) 6 ≤ ω[ro](P4) ≤ 17.

(c) ω[ro](Pk) = 2 for k ≥ 5.
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Proof of Theorem 4.20

(a) The upper bound follows from Theorem 4.17(a) while the lower bound follows from
Fig. 4.4.

(b) Let [
−→
G ] be a triangle-free planar orientable graph of minimum order with ω[ro]([

−→
G ]) > 17.

Let R be a relative clique of maximum order of [
−→
G ] and let S = V (

−→
G) \R.

Claim 1: For any v ∈ V (
−→
G) we have, |N(v) ∩R| ≤ 4.

Proof of Claim 1: Push the neighbors of v in such a way that we obtain a presentation
of [
−→
G ] with N(v) = N+(v). Now, as [

−→
G ] is triangle-free, each pair of neighbors of v must be

part of an unbalanced 4-cycle. For a pair of neighbors of v to be part of an unbalanced 4-cycle,
we must have a directed 2-path joining them. Now by the proof of Claim 1 of the proof of
Theorem 3.18(b), we know this is not possible. Hence, our claim is proved. ♦

Now note that for any z ∈ S, we have d(z) ≥ 2 as otherwise z can be deleted to get an
orientable triange-free planar graph whose relative orientable chromatic number is equal to that
of [
−→
G ] but with order less than [

−→
G ], which contradicts the minimality of [

−→
G ]. Now, a vertex z

of S must connect at least two vertices of R the internal vertex being itself (that is, z).
Now for each vertex z ∈ S with d(z) ≤ 5, assume that the neighbors of z are v1, v2, ..., vk. Fix

a planar embedding of [
−→
G ] and assume that the neighbors of z are arranged in a clockwise order

around z. Now delete the vertex z and add the edges v1v2, v2v3, ..., vk−1vk, vkv1 (for d(z) = 2
add only one edge v1v2) to obtain a new graph.

Note that this new graph is also planar (may not be triangle-free) and the degree of each
vertex in the new graph, which were in [

−→
G ] also, is as much as the degree of the vertex in [

−→
G ].

Hence, there is a vertex v in the new graph, which belongs to R, with degree at most 5.
As each vertex from R \N(v) ∪ {v} is adjacent to at least two neighbors of v for being part

of the same unbalanced 4-cycle with v, there will be a neighbor u of v and at least five neighbors
from R\N(v)∪{v} which is a contradiction to Claim 1. So, we can conclude that ω[ro]([

−→
G ]) ≤ 17.

(c) As any two non-adjacent vertices of an orientable relative clique must be part of an
unbalanced 4-cycle, the vertices of an orientable relave clique in a planar graph with girth at
least 5 must be all adjacent to each other. So, it is not possible to have a planar orientable
relative clique with girth at least 5 of order more than 2. Hence the upper bound.

An arc has oriented relative clique number 2. Hence the lower bound. �

4.2.3 Orientable absolute clique number

As we have done for oriented colorings, we also define and consider the orientable absolute clique
number for some planar families of graphs. First we list the results regarding the orientable
absolute clique number of the families of outerplanar graphs and of outerplanar graphs with
given girth.

Theorem 4.21.

(a) ω[ao](Ok) = 4 for k = 3, 4.

(b) ω[ao](Ok) = 2 for k ≥ 5.

The above result follows directly from Theorem 4.19.
Now we list the results regarding the orientable absolute clique number of the families of

planar graphs and of planar graphs with given girth.

Theorem 4.22.

(a) ω[ao](P3) = 8.

(b) ω[ao](P4) = 4.

(c) ω[ao](Pk) = 2 for k ≥ 5.
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C−−

C−+

C++

C+−

S−x

S+
x

S−y

S+
y

x y

Figure 4.8: Structure of ~G (not a planar embedding)

The parts (b) and (c) of the above theorem easily follow from the list of triangle-free planar
graphs with diameter 2 given by Plesník (see Chapter 2, Theorem 2.14). We do prove part (a)
of the theorem.

Proof of Theorem 4.22(a)

The lower bound follows from the example of the planar [o]-clique of order 8 depicted in
Fig. 4.4.

Now we will prove the upper bound.
We know that an [o]-clique is an orientable graph with each pair of non-adjacent vertices in

the same unbalanced 4-cycle. So, each pair of non-adjacent vertices of an [o]-clique is connected
by two distinct 2-paths (one of them is directed while the other is not). In particular, an [o]-clique
has diameter at most 2.

Goddard and Henning (see Chapter 2, Theorem 2.15) showed that every planar graph with
diameter 2 has domination number at most 2 except for a particular graph on nine vertices
(see Fig. 2.2). It is easy to find a pair of vertices in this graph which are not connected by
two distinct 2-paths. Therefore, it is not an [o]-clique. Hence, planar [o]-cliques must have
domination number at most 2.

Let [
−→
B ] be a planar [o]-clique dominated by the vertex v. Fix the presentation

−→
B ∈ [

−→
B ] such

that we have N+
−→
B

(v) = N−→
B

(v) (it is possible to obtain such a presentation by pushing all the

in-neighbors of v from any presentation of [
−→
B ]). Note that every vertex of N−→

B
(v) is connected

by a 2-path with internal vertex v which is not a 2-dipath. So, each pair of non-adjacent vertices
from N−→

B
(v) must be connected by a 2-dipath with its internal vertex from N−→

B
(v). Therefore,

the oriented induced subgraph
−→
B [N(v)] is an oclique. Notice that

−→
B [N(v)] is also an outerplanar

graph. Now Sopena [58] showed that any oriented outerplanar graph has an oriented 7-coloring.
Therefore, [

−→
B ] has order at most 8.

To prove Theorem 4.22 it will be enough to prove that any planar [o]-clique with domination
number 2 must have order at most 8. More precisely, we need to prove the following lemma.

Lemma 4.23. Let [
−→
H ] be a planar [o]-clique with domination number 2. Then |V (

−→
H )| ≤ 8.

Let [
−→
G ] be a planar [o]-clique with |V (

−→
G)| > 8. Assume that [

−→
G ] is triangulated and has

domination number 2. Now fix the presentation
−→
G ∈ [

−→
G ] and without loss of generality assume

that we have N+
−→
G

(v) = N−→
G

(v) (it is possible to obtain such a presentation by pushing all the

in-neighbors of v from any presentation of [
−→
G ]).

We define the partial order ≺ for the set of all dominating sets of order 2 of
−→
G as follows:

for any two dominating sets D = {x, y} and D′ = {x′, y′} of order 2 of
−→
G , D′ ≺ D if and only if

|N−→
G

(x′) ∩N−→
G

(y′)| < |N−→
G

(x) ∩N−→
G

(y)|.
Let D = {x, y} be a maximal dominating set of order 2 of

−→
G with respect to ≺. Also for the

rest of this section, t, t′, α, α, β, β are variables satisfying {t, t′} = {x, y} and {α, α} = {β, β} =
{+,−}.
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x y

c0

c1

c2

ci

ck−2

ck−1

R0

R1

Rk−1

Figure 4.9: A planar embedding of und( ~H)

Now, we fix the following notations (Fig: 4.8):

C = N−→
G

(x) ∩N−→
G

(y), Cαβ = Nα−→
G

(x) ∩Nβ
−→
G

(y), Cαt = Nα−→
G

(t) ∩ C,

St = N−→
G

(t) \ C, Sαt = St ∩Nα−→
G

(t) and S = Sx ∪ Sy.

Hence we have,

9 ≤ |
−→
G | = |D|+ |C|+ |S|. (4.1)

Let
−→
H be the oriented graph obtained from the induced subgraph

−→
G [D∪C] of

−→
G by deleting

all the arcs between the vertices of D and all the arcs between the vertices of C. Note that it is
possible to extend the planar embedding of und(

−→
H ) given in Fig 4.9 to a planar embedding of

und(
−→
G) for some particular ordering of the elements of, say C = {c0, c1, ..., ck−1}.

Notice that und(
−→
H ) has k faces, namely the unbounded face F0 and the faces Fi bounded by

edges xci−1, ci−1y, yci, cix for i ∈ {1, ..., k − 1}. Geometrically, und(
−→
H ) divides the plane into k

connected components. The region Ri of
−→
G is the ith connected component (corresponding to

the face Fi) of the plane. Boundary points of a region Ri are ci−1 and ci for i ∈ {1, ..., k − 1}
and, c0 and ck−1 for i = 0. Two regions are adjacent if they have at least one common boundary
point (hence, a region is adjacent to itself).

Now for the different possible values of |C|, we want to show that und(
−→
H ) cannot be extended

to a planar [o]-clique of order at least 9. Note that for extending und(
−→
H ) to

−→
G we can add new

vertices only from S. Any vertex v ∈ S will be inside one of the regions Ri. If there is at least
one vertex of S in a region Ri, then Ri is non-empty and empty otherwise. In fact, when there
is no chance of confusion, Ri might represent the set of vertices of S contained in the region Ri.

First we will ask the question that “How small |C| can be?” and prove the following lower
bound of |C|.

Lemma 4.24. |C| ≥ 3.

Proof. We know that x and y are either connected by two distinct 2-paths or by an arc. So, if
x and y are non-adjacent, then we have |C| ≥ 2. If x and y are adjacent, then the triangulation
of
−→
G implies |C| ≥ 2. Hence we have

|C| ≥ 2.

To complete the proof we need to show that |C| 6= 2. We will prove by contradiction.
Therefore, assume that |C| = 2. To get a contradiction to our assumption, by equation 4.1, it
will be enough to show
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|S| ≤ 4.

Note that, if we have St = ∅, then triangulation will force either mutiple edges c0c1 (one in R0

and one in R1) or the edge xy making x a dominating vertex. Both contradicts our assumption.
Hence we do not have St = ∅ for any t ∈ {x, y}.

First assume that all the four sets St ∩ Ri 6= ∅ for all (t, i) ∈ {x, y} × {0, 1}. In this case,
to have two distinct 2-paths connecting a vertex u ∈ St ∩ R0 and a vertex v ∈ S′t ∩ R1, both
u and v must be adjacent to both c0 and c1. For that we must have |St ∩ Ri| ≤ 1 for all
(t, i) ∈ {x, y} × {0, 1}. This implies,

|S| ≤ 4.

Hence we cannot have all the four sets St ∩Ri 6= ∅ for all (t, i) ∈ {x, y} × {0, 1}.
Now assume that we have exactly three non-empty sets among the four sets St ∩ Ri for all

(t, i) ∈ {x, y} × {0, 1}. Without loss of generality we can assume that the three non-empty sets
are Sx ∩R0, Sx ∩R1 and Sy ∩R0. Hence by triangulation we have the edge c0c1 inside R1. Now
to have two distinct 2-paths connecting a vertex u ∈ Sy ∩ R0 and a vertex v ∈ Sx ∩ R1, both u
and v must be adjacent to both c0 and c1. For that we must have,

|Sx ∩R1| ≤ 1 and |Sy ∩R0| ≤ 1.

By triangulation, there is at least one vertex in |Sx ∩ R0| adjacent to c0. Now we have the
dominating set {x, c0} with at least three common neighbors (c1, a vertex from Sx ∩ R0 and a
vertex from Sx∩R1) contradicting the maximality of D. Hence we cannot have three of the four
sets St ∩Ri non-empty for all (t, i) ∈ {x, y} × {0, 1}.

Now assume that we have at most two non-empty sets among the four sets St ∩ Ri for all
(t, i) ∈ {x, y} × {0, 1}. As we cannot have St = ∅ for any t ∈ {x, y}, we must have exactly two
non-empty sets of the form Sx ∩Ri and Sy ∩Rj for some i, j ∈ {0, 1}.

If i 6= j, then to have two distinct 2-paths connecting a vertex u ∈ Sx ∩ Ri and a vertex
v ∈ Sy ∩Rj , both u and v must be adjacent to both c0 and c1. For that we must have,

|Sx ∩R1| ≤ 1 and |Sy ∩R0| ≤ 1.

This will imply,

|S| ≤ 2.

So, we can assume i = j.

Therefore, assume without loss of generality that exactly the sets Sx ∩ R0 and Sy ∩ R0 are
the two non-empty sets among the four sets St ∩Ri for all (t, i) ∈ {x, y} × {0, 1}.

For this case, assume that Sx = {x1, x2, ... , xnx} and Sy = {y1, y2, ..., yny}. Without loss
of generality also assume that we have the edges c0x1, x1x2, .. ., xnx−1xnx , xnxc1 and the edges
c0y1, y1y2, ..., yny−1yny , ynyc1 by triangulation. Furthermore, we can assume nx ≥ ny without
loss of generality.

Assume ny = 1. So, to have |S| ≥ 5 we should have nx ≥ 4. Note that we cannot have the edge
xy as otherwise {y1, x} will be a dominating set with at least three common neighbors {c0, c1, y}
contradicting the maximality of D. Hence, we have the edge c0c1 inside R1 by triangulation.
Note that the vertex x2 ∈ Sx must be adjacent to either c0 or c1 or y1 to have two distinct
2-paths connecting it to y. This will create a dominating set {c0, x} or {c1, x} or {y1, x} with at
least three common neighbors {x1, x2, c1} or {xnx , x2, c0} or {x2, c0, c1} respectively. This will
contradict the maximality of D. Therefore,
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ny ≥ 2.

Now assume that we have the edge x2c0. Then to have two distinct 2-paths connecting a
vertex w ∈ Sy to x1 we will have y adjacent to both x2 and c0. That means, each vertex of Sy
will be adjacent to both x2 and c0. But this is not possible keeping the graph planar as ny ≥ 2.
So, there is no edge between c0 and x2. By similar arguments, we can show that every ti is non-
adjacent to c0 for i ∈ {2, 3, ..., nt} and every tj is non-adjacent to c1 for i ∈ {1, 2, ..., nt−1} for all
t ∈ {x, y}. With a similar argument we can also show that the edge titi+k for 1 ≤ i < i+ k ≤ nt
does not exist unless k = 1 for any t ∈ {x, y}.

Now notice that nx ≥ 3 by equation 4.1 and the assumption that nx ≥ ny. By triangulation
we must have the edge x2yi for some i ∈ {1, 2, ..., ny}. Then to have two distinct 2-paths
between x1 and yj for j ∈ {i+ 1, ..., ny} and to have two distinct 2-paths between x3 and yl for
l ∈ {1, ..., i− 1} we must have every vertex of Sy adjacent to x2.

If ny ≥ 3, then we cannot have two distinct 2-paths between the non-adjacent vertices x1

and y3. So we must have

ny = 2.

Now to have two distinct 2-paths between the non-adjacent vertices x1 and y2 we must have
the edge x1y1. This creates the dominating set {x, y1} with at least three common neighbors
{c0, x1, x2} contradicting the maximality of D. Therefore, it is not possible to have |C| = 2.

Hence we are done. �

Now we will ask the question that “How big |C| can be?” and prove the following upper
bound of |C|.
Lemma 4.25. |C| ≤ 3.

Proof. First assume that |C| ≥ 7. Recall that C ⊆ N+
−→
G

(x). So, we must have

|C ∩Nα−→
G

(y)| ≥ 4.

Further assume that C ∩ Nα−→
G

(y) = {ci1 , ci2 , ..., cim} for some m ≥ 4 and i1 < i2 < ... < im.
Now without loss of generality we may assume that i1 = 1. So, each cil must be either adjacent
or connected by a 2-dipath to ci1 for l ∈ {i2, ..., im}.

For that we must have {ci2 , ..., cim} ⊆ {c2, c3, cm−1, cm}. If c3 ∈ {ci2 , ..., cim} then we have
cm−1, cm /∈ {ci2 , ..., cim} as there is no way to connect c3 by a 2-dipath to either cm−1 or cm.
But this will imply {ci2 , ..., cim} ⊆ {c2, c3} which is a contradiction as m ≥ 4. Hence, c3 /∈
{ci2 , ..., cim}. Similarly we can show that cm−1 /∈ {ci2 , ..., cim}. But this will imply {ci2 , ..., cim} ⊆
{c2, cm} which is a contradiction as m ≥ 4.

Hence we must have

|C| ≤ 6.

Now assume |C| ≥ 5 and S 6= ∅. Then, without loss of generality, assume a vertex v ∈ Sx∩R0.
Notice that it is not possible to have two distinct 2-paths connecting the non-adjacent vertices
v and c2. So, we have |S| = 0. Then by equation 4.1 we have

9 ≤ |G| ≤ 2 + 6 + 0 = 8.

This is a contradiction. Hence we must have
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|C| ≤ 4.

Now assume |C| = 4 and S 6= ∅. Then, without loss of generality, assume that there is a
vertex v ∈ Sx ∩ R0. To have two distinct 2-paths connecting v to c1 and c2 we must have the
edges vc0 and vc3. Hence we have |Sx ∩ R0| ≤ 1. In fact with a similar argument we can show
that

|St ∩Ri| ≤ 1 for all (t, i) ∈ {x, y} × {0, 1, 2, 3}. (4.2)

Also note that if we have a vertex v ∈ Sx ∩R0, then it is not possible to have any vertex in
Sy ∩Ri for i ∈ {1, 2, 3} and in Sx ∩R2. So basically, only adjacent regions can be non-empty.

Hence, at most two of the eight sets St∩Ri for all (t, i) ∈ {x, y}×{0, 1, 2, 3} can be non-empty.
Then equation 4.2 implies |S| ≤ 2. Then by equation 4.1 we have

9 ≤ |G| ≤ 2 + 4 + 2 = 8.

This is a contradiction. Hence we must have

|C| ≤ 3.

Hence we are done. �

Therefore, the only possible value for |C| is 3. To prove Theorem 4.22(a) we will show that
|C| = 3 is not possible in the following lemma.

Lemma 4.26. |C| 6= 3.

Proof. We will prove this lemma by contradiction. So, assume that |C| = 3. Also, without loss
of generality, assume that Sx ≥ Sy.

Note that by equation 4.1 we have |S| ≥ 5. Hence we have |Sx| ≥ 3.
First assume that Sy = ∅. Hence we do not have the edge xy as otherwise x will dominate

the whole graph. Now note that any two regions are adjacent for |C| = 3. The vertices from
different regions must be adjacent to their unique common boundary point to have two distinct
2-paths connecting them.

Hence, if we have all the regions non-empty, then we will have the vertices of each region
adjacent to both the boundary points of that region. This will imply

|Sx ∩Ri| ≤ 1 for all i ∈ {0, 1, 2}.

This will imply |S| ≤ 3 and contradict our assumption. Hence, it is not possible to have all
the three regions non-empty when Sy = ∅.

If we have exactly two regions, say R0 and R1, non-empty, then every vertex of Sx must be
adjacent to c0 to create two distinct 2-paths between the vertices of Sx ∩ R0 and the vertices
of Sx ∩ R1. This will create a dominating set {c0, x} with at least four common neighbors
contradicting the maximality of D. Hence, we can have at most one region non-empty when
Sy = ∅.

Now assume that exactly one region, say R1, is non-empty. Then each vertex of Sx must
be adjacent to either c0 or c1 to have two distinct 2-paths connecting it to c2. Then, without
loss of generality, we will have at least three vertices of Sx adjacent to c0. This will create
a dominating set {c0, x} with at least four common neighbors (three vertices from Sx and c2

because of triangulation) contradicting the maximality of D.
Hence Sy 6= ∅.
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Now assume, without loss of generality, that Sx ∩ R0 6= ∅. This implies Sy ∩ R1 = ∅ and
Sy ∩R2 = ∅ as it is not possible to have two distinct 2-paths between the vertices of Sx from one
region and the vertices of Sy from a different region. But we also know that Sy 6= ∅. Hence we
must have Sy ∩R0 6= ∅.

Now assume that Sx = {x1, x2, ... , xnx} and Sy = {y1, y2, ..., yny}. Without loss of generality
also assume that we have the edges c0x1, x1x2, .., xnx−1xnx , xnxc1 and the edges c0y1, y1y2, ...,
yny−1yny , ynyc1 by triangulation.

Now x2 must be adjacent to either c0 or c2 for having two distinct 2-paths connecting x2 and
c1. Without loss of generality assume that x2 is adjacent to c0. Now each vertex of Sy must be
adjacent to both x2 and c0 to have two distinct 2-paths connecting it to x1. But this contradicts
the planarity of

−→
G unless we have ny = 1. Therefore,

ny = 1.

If ny = 1, then nx ≥ 4 by equation 4.1. If we have the edge xy (say, inside region R2), then
each vertex of Sx must be adjacent to c0 to have two distinct 2-paths connecting it to c1 creating
the dominating set {c0, x} with at least four common neighbors (the vertices of Sx) contradicting
the maximality of D. Hence we do not have the edge xy.

Therefore, by triangulation, we must have the edges c0c1 and c1c2. Now it is not possible
to have more than two vertices of Sx adjacent to c0 as it will create the dominating set {c0, x}
contradicting the maximality of D. Similarly, it is not possible to have more than two vertices
of Sx adjacent to c2. But as |Sx| ≥ 4, by triangulation we must have (to avoid having more than
two vertices from Sx adjacent to c0 or c2) at least two vertices of Sx adjacent to y1. This will
create the dominating set {y1, x} with at least four common neighbors (c0, c2 and two vertices
of Sx) contradicting the maximality of D.

Hence it is not possible to have |C| = 3. Hence we are done. �

The above three lemmas prove that for no value of |C| it is possible to have a planar [o]-clique
with domination number 2 and order at least 9. Whereas, we already showed that every planar
[o]-clique with domination number not equal to 2 has order at most 8.

Therefore, we have proved Theorem 4.22(a). �

4.3 Categorical aspects

First note that the family of all oriented graphs and the family of all orientable graphs can be
regarded as categories with the morphisms of the category being the homomorphisms of graphs.
Notice that isomorphic graphs represent the same object in the category. Let CO and C[O] denote
the category of oriented graphs and the category of orientable graphs respectively.

We want to show that C[O] is isomorphic to a subcategory of CO.
Consider the subcategory COs of CO with ob(COs) being the class of splitable oriented graphs

and homCOs (
−→
A,
−→
B ) being the set of splitable oriented homomorphisms for any

−→
A,
−→
B ∈ COs .

Note that the function R, defined in Section 4.1, acts as a functor of C[O] to COs .
In fact, is it not difficult to notice that the functor R gives an isomorphism of C[O] to COs .

Therefore, we have the following result.

Proposition 4.27. The two categories C[O] and COs are isomorphic categories.

It was not known if a categorical product existed for orientable graphs or not. Whereas, it
is a well known fact that a categorical product exists for oriented graphs and coincides with the
cartesian product of it [23].

The product
−→
A ×

−→
B of the oriented graphs

−→
A and

−→
B has the set of vertices and the set of

arcs given as follows:



Chapter 4. Orientable graphs 73

V (
−→
A ×

−→
B ) = {(u, v)|(u, v) ∈ V (

−→
A )× V (

−→
B )},

A(
−→
A ×

−→
B ) = {

−−−−−−−→
(u, v)(w, x)|(−→uw,−→vx) ∈ A(

−→
A )×A(

−→
B ).

Hence, we know that given any two splitable oriented graphs R(
−→
A ) and R(

−→
B ) there exists a

categorical product R(
−→
A )×R(

−→
B ) of them. Note that the product R(

−→
A )×R(

−→
B ) is an oriented

graph though it is not ensured if it is also a splitable oriented graph or not. In the following we
will prove that the product indeed is a splitable oriented graph.

Lemma 4.28. The cross product of two splitable oriented graphs is also a splitable oriented
graph.

Proof. Let R(
−→
A ) and R(

−→
B ) be two splitable oriented graphs with V (

−→
A ) = {a1, a2, ..., an} and

V (
−→
B ) = {b1, b2, ..., bm}.
Then the cross product R(

−→
A )×R(

−→
B ) of R(

−→
A ) and R(

−→
B ) is an oriented graph with the set

of vertices and the set of arcs given as follows:

V (R(
−→
A )×R(

−→
B )) = {(ai, bj), (ai, b′j), (a′i, bj), (a′i, b′j)| for

i = 1, 2, ...n and j = 1, 2, ...,m}

A(R(
−→
A )×R(

−→
B )) = {

−−−−−−−→
(u, v)(w, x)|−→uw ∈ A(R(

−→
A ))

and −→vx ∈ A(R(
−→
B ))}

Now let us partition V (R(
−→
A )× R(

−→
B )) into two equal parts V1 = {(ai, bj), (ai, b′j) and V2 =

{(a′i, b′j), (a′i, bj). Moreover, define the function f : V1 → V2 as follows:

f(ai, bj) = (a′i, b
′
j) and f(ai, b

′
j) = (a′i, bj).

Note that f is a bijection and satisfies the conditions of Lemma 4.6. Therefore, the product
R(
−→
A )×R(

−→
B ) is indeed a splitable oriented graph. �

Let
−→
A ,
−→
B and

−→
C be three oriented graphs. Let ψ1 be a homomorphism of

−→
C to

−→
A and ψ2

be a homomorphism of
−→
C to

−→
B . Then the following diagram must commute.

−→
C

−→
A

−→
A ×

−→
B

−→
B

∃! f

π1 π2

f1 f2

For oriented graphs, the product
−→
A ×

−→
B is the cross product of

−→
A and

−→
B while the homo-

morphisms π1, π2 and f are defined as

π1(a, b) = a and π2(a, b) = b for all (a, b) ∈ V (
−→
A ×

−→
B ).

f(u) = (f1(u), f2(u)) for all u ∈ V (
−→
C ).

Now notice that if
−→
A ,
−→
B and

−→
C are all splitable oriented graphs and the homomorphisms f1

and f2 are splitable oriented homomorphisms, then the product
−→
A ×

−→
B is a splitable oriented

graph (by Lemma 4.28) and the homomorphisms π1, π2 and f are splitable oriented homo-
morphisms (it is easy to check). Hence the categorical product (of countable objects) exists in
COs .



74 4.4. Conclusion

−→
C

−→
A

−→
P

||

−→
A ×

−→
B

−→
B

∃! ϕ

φ1 φ2

ψ1 ψ2

R(
−→
C )

R(
−→
A ) R(

−→
P )

||
R(
−→
A )×R(

−→
B )

R(
−→
B )

∃! R(ϕ)

R(φ1) R(φ2)

R(ψ1) R(ψ2)

R

Figure 4.10: The functor R.

Hence by Fig. 4.10 we know that the categorical product (of countable objects) also exists in
C[O].

Formula

Now we will provide a formula for obtaining the categorical product of two orientable graphs
[
−→
A ] and [

−→
B ].

Let
−→
A

1
∈ [
−→
A ] and

−→
B

1
∈ [
−→
B ] be such that V (

−→
A ) = {a1, a2, ...., an} and V (

−→
B ) = {b1, b2, ...., bm}.

Then the categorical product [
−→
A ]× [

−→
B ] of [

−→
A ] and [

−→
B ] has the set of vertices and the set of arcs

given as follows:

V ([
−→
A ]× [

−→
B ]) = {(ai, bj), (ai, b′j)| for i = 1, 2, ...n and j = 1, 2, ...,m}

A([
−→
A ]× [

−→
B ]) = {

−−−−−−−−−→
(ai, bj)(ak, bl),

−−−−−−−−−→
(ai, b

′
j)(ak, b

′
l),
−−−−−−−−−→
(ai, bl)(ak, b

′
j),

−−−−−−−−−→
(ai, b

′
l)(ak, bj)|

−−→aiak ∈ A(
−→
A

1
) and

−→
bjbl ∈ A(

−→
B

1
)}

Notice that the formula is independent of the choice of the presentations
−→
A

1
∈ [
−→
A ] and

−→
B

1
∈ [
−→
B ]. An interesting point to note is that the product has 2nm vertices whereas usually

one would expect the product to have mn vertices.

4.4 Conclusion

Klostermeyer and MacGillivray [28] introduced the orientable chromatic number and asked sev-
eral questions regarding them. One of their main questions was to determine the orientable
chromatic number of planar graphs. They determined the orientable chromatic number for the
family of outerplanar graphs in [28].

Here we considered the problem for the families of outerplanar graphs with given girth, of
planar graphs and of planar graphs with given girth. The topic is new and not much works have
been done on it before. So, all the results are new (that is, none of them are improvements of
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previous known bounds). We also introduced the notion of the orientable relative clique number
and the orientable absolute clique number mimiking the case of oriented graphs.

We provided upper bounds of χ[o](Pg) for all g ≥ 3. It turns out that the target graphs used
to prove the best known upper bounds for the oriented chromatic number of the family of planar
graphs with girth at least g are splitable graphs for g = 3, 4, 5. So, in these cases an upper bound
directly follows from the results regarding oriented colorings. This also means that improving
these upper bounds for orientable graphs will improve the upper bounds for oriented graphs,
which we know to be difficult. So, improving these bounds is also difficult.

For g ≥ 6 we proved upper bounds for χ[o](Pg) independently of the results from oriented
colorings. In particular, for proving χ[o](P6) ≤ 7 and χ[o](P8) ≤ 4 we used discharging methods
and actually proved the following two stronger results.

Theorem 4.29.

(a) If mad(G) < 3, then χ[o](G) ≤ 7.

(b) If mad(G) < 8/3, then χ[o](G) ≤ 4.

We showed that any planar graph with girth at least 21 admits an orientable homomorphism
to the directed 3-cycle

−→
C 3. It seems that it would be possible to prove a similar result for planar

graphs with girth g for some g < 21. So, the question is: “what is the smallest g such that every
planar graph with girth at least g admits an oriented homomorphism to the directed 3-cycle−→
C 3?”.

For the other two parameters, that is, the orientable relative clique number and the orientable
absolute clique number, we proved mostly tight bounds.

In fact, we provided tight bounds for ω[ao](Og) and for ω[ao](Pg) for all g ≥ 3. We also
provided tight bounds for ω[ro](Og) for all g ≥ 3 and for ω[ro](Pk) for all k ≥ 5.

Given a graph G we clearly have ω[ao](G) ≤ ωao(G) and ω[ro](G) ≤ ωro(G). Is it possible to
obtain a better relation between these parameters?

We also proved the existence of categorical products for orientable graphs and provided a
formula for it. For proving this we showed that the category of orientable graphs is isomorphic
to a subcategory of the category of oriented graphs. One might try to obtain more categorical
relations between the two categories.

Finally, we would like to remark that the study of homomorphisms of orientable graphs is a
fresh field of research and is worth persuing. We hope that a sound theory can be developed using
the notion of orientable homomorphisms that will capture both theories of classical colorings
and of oriented colorings using ideas similar to the one used for developing the theory of signed
homomorphisms, recently, by Naserasr, Rollová and Sopena [40].
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Chapter 5

Signified graphs

In this chapter we study homomorphisms of signified graphs which are also known as 2-edge-
colored graphs. Despite the fact that the term 2-edge-colored graph is more popular and well
known, we, in this thesis, prefer to use the term signified graphs as it readily gives a hint of the
graph having a relation with signed graphs.

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Some signified graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Signified coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

The term signified graphs has been proposed by Naserasr, Rollová and Sopena [40] while
studying particular equivalence class of them which they called signed graphs (see Chapter 6
for details). An important point to note is that Harary [21] and Zaslavsky [62] initially used
the term signed graph for 2-edge-colored graphs. Brewster studied the vertex coloring of edge-
colored graphs in his thesis [8]. Due to the notion of signed graph homomorphisms, the term
signed graph was used for the equivalence class by Naserasr, Rollová and Sopena [40].

Homomorphisms of signified graphs were studied by Nešetřil and Raspaud [41], Alon and
Marshall [2] and Montejano et al. [36]. It was observed that there seems to be some connection
between signified colorings of graphs and oriented colorings of graphs as several results in these
two settings appear to be the same (or similar) and could be proved using similar techniques.

Our primary idea was to study oriented colorings which we did in Chapter 3. We proved
some results in the domain of oriented colorings and wanted to check whether similar results can
be proved in the domain of signified colorings or not. To our surprise, most results had a similar
“signified version” and could be proved using the same proof techniques, with little adaptations.
This made us wonder if there is any relation between the oriented chromatic number and the
signified chromatic number of undirected simple graphs. We, in fact, managed to prove on the
contrary that no such relation exists in general.

In Section 5.1 we give the basic definitions and notations needed. We define some important
signified graphs in Section 5.2 which will be used later. In Section 5.3 we present our main results
about signified colorings and then conclude the chapter in Section 5.4. In this chapter we will
present our main results regarding signified colorings which are joint work with Bensmail and is
an article in process.

5.1 Preliminaries

A signified graph (G,Σ) is a graph G with an assignment of positive (black lines used to denote
them in the figures) and negative (black “dashed” lines used to denote them in the figures) signs
to its edges where Σ is the set of negative edges and G is its underlying graph. We denote the
set of positive edges by Σc. When the set of negative edges Σ is understood, we can denote the
signified graph (G,Σ) by (G). In general, the set of vertices and the set of edges of the signified
graph (G,Σ) are denoted by V (G) and E(G). Two adjacent edges uv ∈ Σ and vw ∈ Σc are
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w = φ(b) = φ(g)

x = φ(c), y = φ(d)

z = φ(e) = φ(f) = φ(a)

w

x
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z

Figure 5.1: Signified graph homomorphism.

together called an unbalanced 2-path with terminal vertices u,w and internal vertex v. In such
cases, we say that the vertices u and w are connected by an unbalanced 2-path.

The set of all adjacent vertices of a vertex v in a signified graph (G,Σ) is called its set of
neighbors and is denoted by N(G,Σ)(v) (or N(v) when there is no chance of confusion). If uv ∈ Σ,
then v is a positive-neighbor of u and if uv ∈ Σc, then v is a negative-neighbor of u. The set
of all positive-neighbors and the set of all negative-neighbors of v are denoted by N+

(G,Σ)(v) (or
N+(v) when there is no chance of confusion) and N−(G,Σ)(v) (or N−(v) when there is no chance of
confusion) respectively. The degree of a vertex v in a signified graph (G,Σ), denoted by dG(v) (or
d(v) when there is no chance of confusion), is the number of neighbors of v in (G,Σ). Naturally,
the positive-degree (resp. negative-degree) of a vertex v in a signified graph (G,Σ), denoted by
d+

(G,Σ)(v) (resp. d−(G,Σ)(v)) (or d+(v) (resp. d−(v)) when there is no chance of confusion), is the
number of positive-neighbors (resp. negative-neighbors) of v in (G,Σ). The order |(G,Σ)| of a
signified graph (G,Σ) is the cardinality of its set of vertices V (G).

Two vertices u and v of a signified graph agree on a third vertex w of that graph if w ∈
Nα(u) ∩ Nα(v) for some α ∈ {+,−}. Two vertices u and v of a signified graph disagree on a
third vertex w of that graph if w ∈ Nα(u) ∩Nβ(v) for some {α, β} = {+,−}.

If two vertices u, v of a signified graph (G,Σ) are adjacent then they have unbalanced distance
1 denoted by Ud(G,Σ)(u, v) = 1 (or Ud(u, v) = 1 when there is no chance of confusion) and if two
vertices of a signified graph are connected by an unbalanced 2-path then they have unbalanced
distance 2 denoted by Ud(G,Σ)(u, v) = 2 (or Ud(u, v) = 2 when there is no chance of confusion).
We are only defining unbalanced distance 1 and 2 here as it serves our purpose and as we are
not entirely sure about what the best general definition could be. For consistancy, let us fix a
convention for pair of vertices u, v which are neither adjacent nor connected by an unbalanced
2-path by saying they are at unbalanced distance “infinity” denoted by Ud(G,Σ)(x, y) = ∞ (or
Ud(x, y) =∞ when there is no chance of confusion).

Given two signified graphs (G,Σ) and (H,Λ), φ is a homomorphism of (G,Σ) to (H,Λ) if
φ : V (G) −→ V (H) is a mapping such that every edge of (G,Σ) is mapped to an edge of the same
sign of (H,Λ). We write (G,Σ) → (H,Λ) whenever there exists a homomorphism of (G,Σ) to
(H,Λ). A bijective homomorphism whose inverse is also a homomorphism is an isomorphism. If
two signified graphs admit signified homomorphisms to each other then they are homomorphically
equivalent signified graphs.

Example 5.1. A sample homomorphism of signified graphs is given in Fig. 5.1. Note that it
will also be a homomorphism if we have φ(g) = x instead of φ(g) = w.

This example is similar to the one described to explain oriented homomorphisms in Chapter 3,
Section 3.1. While noting the clear similarity between the two examples, note that here we actually
can have two different homomorphisms by making a choice for φ(g) as indicated above. Whereas,
there is only one homomorphism possible in the oriented case.

Throughout this chapter we will encounter results, similar to results concerning oriented
colorings, proved by adapting the proof of its oriented counterpart. This will show how similar
the two types of graphs are. Nevertheless, in Section 5.3 we will point out some differences
between the two families of graphs.
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5.2 Some signified graphs

For any prime power q ≡ 1 (mod 4), there is a unique (up to isomosphism) finite field Fq of order
q. The Paley graph Pq is the undirected graph with set of vertices V (Pq) = Fq and the set of
edges E(Pq) = {xy | y − x is a non-zero square in Fq }. Also, −1 is a square in Fq so (x− y) is
a square if and only if (y − x) is a square. That is why the definition of edge is consistent. We
also know that a Paley graph Pq is self-complementary, edge transitive [63] and strongly regular
with parameters (q, (q − 1)/2, (q − 5)/4, (q − 1)/4) [10].

For any prime power q ≡ 1 (mod 4) the signified Paley graph [36] (SPq, N) is the signified
graph with set of vertices Fq and the set of negative edges N = {xy | y − x (mod p) is a non-
square}. Intuitively, we replace the edges and non-edges of a Paley graph Pq by positive and
negative edges respectively to get a signified Paley graph (SPq).

The signified Paley plus graph (SP+
q ) is the signified graph obtained from the signified Paley

graph (SPq) by adding a new vertex ∞ which is adjacent to every other vertex with a positive
edge.

For any prime p ≡ 1 (mod 4) and for any positive integer n the signified Tromp graph [36]
(ST2q+2,Σ) of order (2q + 2), where q = pn, is the signified graph with the set of vertices, the
set of negative edges and the set of positive edges as the following:

V (ST2q+2) = {0, 1, ..., (q − 1)} ∪ {0′, 1′, ..., (q − 1)′} ∪ {∞,∞′}.

Σ = {ij, i′j′, | i, j ∈ {0, 1, ..., (q − 1)}
and (j − i) (mod p) is a non-zero square }

∪ {ij′ | i, j ∈ {0, 1, ..., (q − 1)}
and (j − i) (mod p) is not a non-zero square }

∪ {i∞, i′∞′ | i ∈ {0, 1, ..., (q − 1)}}.

Σc = {ij, i′j′, | i, j ∈ {0, 1, ..., (q − 1)}
and (j − i) (mod p) is not a non-zero square }

∪ {ij′ | i, j ∈ {0, 1, ..., (q − 1)}
and (j − i) (mod p) is a non-zero square }

∪ {i∞′, i′∞ | i ∈ {0, 1, ..., (q − 1)}}.

Intuitively, in (ST2q+2,Σ) there are two vertices ∞,∞′ such that N+(∞) = N−(∞′) and
N+(∞) = N−(∞′) with each of the sets N+(∞) and N−(∞) inducing a signified Paley graph
(SPq). Also, if the edge ij is a positive edge in the (SPq) induced by N+(∞) and i′j′ is the
corresponding positive edge of the (SPq) induced by N−(∞), then the edges ij′ and i′j are
negative. For pictorial help, check Fig. 5.2 (a). Note that (ST2q+2) is a complete (q + 1)-partite
graph with all parts of order two.

For any positive integer k the signified Zielonka graph [2] (SZk,Σ) of order k × 2k−1 is the
signified graph with set of vertices V (SZk) = ∪i=1,2,...,kSi, where Si = {x = (x1, ..., xk)|xj ∈
{0, 1} for j 6= i and xi = ∗} while the set of negative edges Σ = {xy | x = (x1, ..., xk) ∈ Si, y =
(y1, ..., yk) ∈ Sj and xj 6= yi} and the set of positive edges Σc = {xy | x = (x1, ..., xk) ∈ Si, y =
(y1, ..., yk) ∈ Sj and xj = yi 6= ∗}. For pictorial help, check Fig. 5.2 (b). Note that (SZk) is a
complete k-partite graph with all parts of size 2k−1.

5.3 Signified coloring

An signified k-coloring [2] of an signified graph (G,Σ) is a mapping φ from the vertex set
V ((G,Σ)) to the set {1, 2, ...., k} such that,
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Figure 5.2: (a) The signified Tromp graph (ST2q+2). (thick edges refer to positive
edges between the vertex ∞ or ∞′ and all vertices inside the ellipse while thick
dashed edges refer to negative edges between the vertex ∞ or ∞′ and all vertices
inside the ellipse (b) Adjacency of a vertex of the signified Zielonka graph (SZ3).)
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Figure 5.3: Signified coloring.

- (i) φ(u) 6= φ(v) whenever u and v are adjacent and

- (ii) if uv is a positive edge and wx is a negative edge of (G,Σ), then φ(u) = φ(w) implies
φ(v) 6= φ(x).

The signified chromatic number χs((G,Σ)) of a signified graph (G,Σ) is the smallest integer
k for which (G,Σ) has a signified k-coloring.

Alternatively, we can define the signified chromatic number using homomorphisms of signified
graphs. The signified chromatic number χs((G,Σ)) of a signified graph (G,Σ) is the minimum
order of a signified graph (H,Λ) such that (G,Σ) admits a homomorphism to (H,Λ).

The signified chromatic number χs(G) of an undirected graph G is the maximum of the
signified chromatic numbers of all the signified graphs with underlying graph G. The signified
chromatic number χs(F) of a family F of graphs is the maximum of the signified chromatic
numbers of the graphs from the family F .
Example 5.2. We give a signified 4-coloring of the graph in Fig. 5.3 (a) whereas, in Fig. 5.1 we
showed that the same graph admits a homomorphism to a signified graph of order 4. These two
facts essentially means the same thing. Also note that we cannot provide an oriented 3-coloring
of this graph, hence it has oriented chromatic number 4.

Example 5.3. The signified coloring of the disjoint union of the two graphs depicted in Fig. 5.3 (b)
is interesting. Note that if we signified color the two graphs from Fig. 5.3 (b) (both have triangles
as underlying graphs but with different set of negative edges) individually, as each of them has
three vertices which are pairwise adjacent, we can easily show that each of these graphs has sig-
nified chromatic number 3. But when we consider the disjoint union of these two graphs as one
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x1 x2 x3 x4 x5

x6

Figure 5.4: (B,Λ) is a signified planar graph with girth 5.

signified graph, we are not able to signified 3-color the graph. In this case, we will need at least
4 colors for a signified coloring of the graph. In Fig. 5.3 (b) we have given a signified 4-coloring
of the graph.

Notice that the terminal vertices of an unbalanced 2-path must receive distinct colors in
every signified coloring because of the second condition of the definition. In fact, for providing
a signified coloring of a signified graph, only the pairs of vertices which are either adjacent or
connected by a 2-dipath, must receive distinct colors (that is, for every other type of pair of
vertices there exists a signified coloring which assigns the same color to the pair of vertices).
Motivated by this observation, the following definitions are proposed.

A relative clique of a signified graph (G,Σ) is a set R ⊆ V ((G,Σ)) of vertices such that any
two vertices from R are either adjacent or connected by an unbalanced 2-path. The relative
clique number ωrs((G,Σ)) of a signified graph (G,Σ) is the maximum order of a signified relative
clique of (G,Σ). The term relative clique and the definition is given by following the similar
term and definition used in [40] for signed graphs.

A signified clique or an sclique is a signified graph (G,Σ) for which χs((G,Σ)) = |V ((G,Σ))|.
Note that scliques can hence be characterized as those signified graphs whose any two distinct
vertices are either adjacent or connected by an unbalanced 2-path. Note that a signified graph
with an sclique of order n as a subgraph has signified chromatic number at least n. The signified
absolute clique number ωas((G,Σ)) of a signified graph (G,Σ) is the maximum order of an sclique
contained in (G,Σ) as a subgraph.

The relative clique number ωrs(G) (resp. absolute clique number ωas(G)) of a simple graph
G is the maximum of the relative clique numbers (resp. absolute clique numbers) of all the
signified graphs with underlying graph G. The relative clique number ωrs(F) (resp. absolute
clique number ωas(F)) of a family F of graphs is the maximum of the relative clique numbers
(resp. absolute clique numbers) of the graphs from the family F .

From the definitions, clearly we have the following:

Lemma 5.4. For any signified graph (G,Σ) we have, ωas((G,Σ)) ≤ ωrs((G,Σ)) ≤ χs((G,Σ)).

Corollary 5.5. For any sclique (O,Λ) we have ωas((O,Λ)) = ωrs((O,Λ)) = χs((O,Λ)) =
|V (G)|.

Example 5.6. The vertices x1, x2, x3 of the graph (B,Λ) depicted in Fig. 5.4 induce an sclique
of order 3 and there is no sclique of order more than 3 in (B,Λ). Now, if we try to provide a
signified coloring of the graph (B,Λ), the vertices x1, x2, x3 will receive distinct colors as they are
vertices of an sclique. But note that the vertex x6 must receieve a color distinct from the colors
received by x1, x2, x3 even though these four vertices do not induce an sclique in (B,Λ). It is easy
to show that for the graph (B,Λ) depicted in Fig. 5.4 we have, ωas((B,Λ)) = 3, ωrs((B,Λ)) = 4
and χs((B,Λ)) = 5. This is an example of a graph for which each inequality of lemma 5.4 is
strict.

From the above example we can observe that it is not possible to provide a signified 3-coloring
of the 5-path with adjacent edges having alternative signs (that is, the path x1x2x3x4x5 from
Fig. 5.4). It is easy to check that the signified 5-path x1x2x3x4x5 has signified chromatic number
4. Whereas, any oriented tree admits an oriented 3-coloring. So, any orientation of a 5-path
will admit an oriented 3-coloring. Therefore, if we consider the undirected 5-path Path5, then
χs(Path5)− χo(Path5) = 1.
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Example 5.7. On the other hand, it is easy to check that every signified 5-cycle admits a signified
4-coloring. In fact, the signified 5-cycle with 2 non-adjacent negative edges and 3 positive edges
has signified chromatic number 4. So, we have χs(C5) = 4. But we know that the directed 5-cycle
has oriented chromatic number 5. So, we have χs(C5)− χo(C5) = −1.

So, we can have either of the two chromatic numbers higher than the other for the same
undirected graph. Motivated by the above examples we have the following result.

Proposition 5.8. Given any integer n, there exists an undirected graph G such that χs(G) −
χo(G) = n.

Proof. All the complete graphs have their oriented chromatic number equal to their signified
chromatic number. So, we need to prove χs(G)− χo(G) = n for non-zero integers n.

Let A and B be two undirected graphs. Let A + B be the undirected graph obtained by
taking disjoint copies of A and B and adding a new vertex ∞ adjacent to all the vertices of A
and B. So, A+B is the undirected graph dominated by the vertex ∞ and N(∞) is the disjoint
union of A and B.

It is easy to observe that

χs(A+B) ≤ χs(A) + χs(B) + 1.

Let ΣA ⊆ E(A) and ΣB ⊆ E(B) be such that we have χs((A,ΣA)) = χs(A) and χs((B,ΣB)) =
χs(B). Now choose ΣA+B ⊆ E(A+B) such that,

ΣA+B = ΣA ∪ ΣB ∪ {∞b|b ∈ V (B)}.

Clearly, the vertex ∞ must receive a color different from any other vertex in the graph in
any signified coloring. Also, due to the choice of ΣA+B, the signified graph induced by N+(∞)
is isomorphic to (A,ΣA) and the signified graph induced by N−(∞) is isomorphic to (B,ΣB).
Note that the vertices of N+(∞) must receive colors different from the colors received by the
vertices of N−(∞) in any signified coloring. Therefore,

χs((A+B,ΣA+B)) ≥ χs((A,ΣA)) + χs((B,ΣB)) + 1

= χs(A) + χs(B) + 1.

This implies

χs(A+B) = χs(A) + χs(B) + 1. (5.1)

Similarly, consider orientations
−→
A ,
−→
B and

−−−−→
A+B of A, B and A+ B respectively such that

χo(
−→
A ) = χo(A), χo(

−→
B ) = χo(B) and that the oriented graphs induced by N+(∞) and N−(∞)

in
−−−−→
A+B are isomorphic to

−→
A and

−→
B respectively.

With arguments similar to what we gave for proving equation 5.1 we have,

χo(A+B) = χo(A) + χo(B) + 1. (5.2)

Let H be an undirected graph. Then we define, by induction, the graph Hk = H +Hk−1 for
k ≥ 2 where H1 = H. Note that,

χs(Hk) = k × χs(H) + (k − 1) and χo(Hk) = k × χo(H) + (k − 1).

The above two equations implies
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χs(Hk)− χo(Hk) = k × (χs(H)− χo(H)). (5.3)

TakingH = Path5 andH = C5 in equation 5.3 we have the proof of our result as χs(Path5)−
χo(Path5) = 1 and χs(C5)− χo(C5) = −1 as observed earlier. �

Note that the above defined three graph parameters respect homomorphisms of signified
graphs in the sense of the following result.

Lemma 5.9. Let (G,Σ) → (H,Λ). Then χs((G,Σ)) ≤ χs((H,Λ)), ωrs((G,Σ)) ≤ ωrs((H,Λ))
and ωas((G,Σ)) ≤ ωas((H,Λ)).

Determining the signified chromatic number, the signified relative clique number and the
signified absolute clique number of different families of graphs are challenging problems in the
domain of signified coloring. A usual technique for obtaining the upper bound for these three
graph parameters is to prove that every graph in the family of graphs in question admits a
homomorphism to a particular signified graph. Such a graph is called a universal bound of that
family of graphs. Note that not every family of graphs have a universal bound of order equal to
the signified chromatic number of the family.

Example 5.10. Note that the family of all signified graphs on 3 vertices have signified chromatic
number 3 as each graph in the family is clearly signified 3-colorable. But, as previously discussed,
the two signified graphs on 3 vertices depicted in Fig. 5.3 (their disjoint union is not 3-colorable)
cannot admit a homomorphism to a single signified graph on 3 vertices.

If we consider the set of all signified graphs to be a category with objects being the signified
graphs and the morphisms being the signified homomorphisms then we clearly have the following:

Theorem 5.11. For any family F of signified graphs that also contains the categorical co-
products of the graphs from the family, there exists a universal bound of F on χs(F) vertices.

Observe that the categorical co-product (unique up to homomorphic equivalence) of signified
graphs is simply the signified graph obtained by taking the disjoint union of the signified graphs.
The families of planar graphs, outerplanar graphs, planar graphs with given girth and outerplanar
graphs with given girth are each of the type that we mentioned in the above theorem.

5.3.1 Signified chromatic number

One of the general results proved related to signified chromatic number is the following regarding
graphs that admits an acyclic k-coloring.

Theorem 5.12. Every graph with acyclic chromatic number at most k has signified chromatic
number at most k.2k−1.

This theorem was proved by Alon and Marshall [2] and later generalized by Nešetřil and
Raspaud [41], both in a more general setting. Fabila-Monroy et. al. [15] proved that the above
mentioned bound is tight for k ≥ 3.

Some specific families of graphs have also been studied in the domain of signified homomor-
phism. The most studied family of graphs for signified chromatic number is the family of planar
graphs and some sub-families of planar graphs, such as outerplanar graphs, planar graphs with
given girth, outerplanar graphs with given girth etc.

The known bounds, which are tight, for the signified chromatic number of outerplanar graphs
and outerplanar graphs with given girth are listed in the following theorem.

Theorem 5.13.

(a) χs(O3) = 9. [36]

(b) χs(Ok) = 5 for k ≥ 4. [36]
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Figure 5.5: A signified outerplanar graph with signified chromatic number 9.

In the above theorem, the lower bounds were achieved by constructing suitable examples.
The upper bounds were achieved by showing that the signified Paley graphs SP9 and SP5 bound
the family of signified outerplanar graphs with girth 3 and 4 respectively, by Montejano et al. [36].

The known bounds for the signified chromatic number of planar graphs and planar graphs
with given girth are listed in the following theorem. The relevent references are given after the
results. We will prove part (b) of the theorem.

Theorem 5.14.

(a) 19 ≤ χs(P3) ≤ 80. [41][2]

(b) 10 ≤ χs(P4) ≤ 50. (proved in this thesis)

(c) 5 ≤ χs(P5) ≤ 20. [36]

(d) 5 ≤ χs(P6) ≤ 12. [36]

(e) 5 ≤ χs(P7) ≤ 10. [36]

(f) 5 ≤ χs(P8) ≤ 8. [36]

(g) χs(Pk) = 5 for k ≥ 14. [36]

The upper bound of Theorem 5.14(a) follows from Theorem 5.12. Theorem 5.14(c)-(g) was
proved by Montejano et al. [36]. We will prove the lower bound of Theorem 5.14(a) and both
bounds of Theorem 5.14(b) in the following.

Proof of Theorem 5.14

(a) (proof for the lower bound) For the lower bound we use the example of the outerplanar
signified graph with signified chromatic number 9 depicted in Fig. 5.5.

We take two copies of that graph, say, (A,Σ) and (A′,Σ′). We take a vertex v and put positive
edges between all the vertices of (A,Σ) and v and put negative edges between all the vertices of
(A′,Σ′) and v. This new graph is planar. Now if we try to provide a signified coloring of this
new graph, as v is adjacent to every other vertex, it will get a color distinct from every other
vertex. Also, as each vertex of (A,Σ) is connected with an unbalanced 2-path with each vertex
of (A′,Σ′), they will receive distinct colors. Now, we know that we need 9 colors to provide a
signified coloring of each of the graphs (A,Σ) and (A′,Σ′). Hence we need in total 9 + 9 + 1 = 19
colors to provide a signified coloring of the whole graph. Hence the lower bound.

(b) The lower bound follows from the example depicted in Fig. 5.6.

Let R(SP25) be the signified graph obtained by deleting the vertices ∞ and ∞′ from the
signified Tromp graph (ST52). In Chapter 6, Section 6.3.1 while proving Theorem 6.23 we
will prove a fact equivalent to proving that every signified triangle-free planar graph admits a
homomorphism to the signified graph R(SP25) of order 50. The upper bound follows from that.
This completes the proof. �
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Figure 5.6: A signified planar graph with girth 4 and signified chromatic number
10.

5.3.2 Signified relative clique number

Like in the case of oriented graphs, we consider some parameters “easier” to handle than the
signified chromatic number, such as the signified relative clique number and the signified absolute
clique number, and try to figure out the bounds in these cases. First we present a general bound
for the signified relative clique number of graphs with maximum degree ∆.

Proposition 5.15. Every signified graph with maximum degree ∆ has signified relative clique
number at most ∆2 + 1.

Proof. Let (G,Σ) be an signified graph with maximum degree ∆. Let R be a relative clique of
maximum order in (G,Σ). Let v ∈ R be a vertex. Now, v can have at most ∆ adjacent vertices
and each of these vertices can have at most (∆− 1) adjacent vertices excluding v. Hence, there
can be at most ∆.(∆ − 1) vertices of (G,Σ) at unbalanced distance 2 from v. As every vertex,
other than v, in R is at most at unbalanced distance 2 from v, we have,

|R| ≤ |{v}|+ |{vertices adjacent to v}|
+ |{vertices at unbalanced distance 2 from v}|

≤ 1 + ∆ + ∆.(∆− 1)

= ∆2 + 1.

Hence, we are done. �

We consider the problem of determining the signified relative clique number for the families
of outerplanar graphs and of outerplanar graphs with given girth as well. We list the related
results below.

Theorem 5.16.

(a) ωrs(O3) = 7.

(b) ωrs(O4) = 5.

(c) ωrs(O5) = 4.

(d) ωrs(Ok) = 3 for k ≥ 6.

Finally, we list the bounds for the signified relative clique number for the families of planar
graphs and of planar graphs with given girth below.

Theorem 5.17.

(a) 15 ≤ ωrs(P3) ≤ 80.
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Figure 5.7: A signified outerplanar graph with signified relative clique number 7.

(b) 10 ≤ ωrs(P4) ≤ 27.

(c) ωrs(P5) = 5.

(d) ωrs(P6) = 4.

(e) ωrs(Pk) = 3 for k ≥ 7.

Proof of Theorem 5.16

(a) The lower bound follows from Fig. 5.7.
Now we prove the upper bound.
Assume that (G,Σ) is a signified outerplanar graph of minimum order with ωrs((G,Σ)) > 7.

Moreover, assume (G,Σ) is such that if we delete any edge of (G,Σ), it will no longer have
signified relative clique number greater than 7.

Let R be a relative clique of maximum order in (G,Σ) and let S = V (G) \ R. Note that
S induces an independent set of (G,Σ) as deleting any edge between two vertices of S will not
decrease the signified relative clique number of the graph (G,Σ).

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by an unbalanced 2-path with the internal vertex being
itself (that is, z) and hence can be deleted to get a signifieded planar graph with relative signified
chromatic number equal to that of (G,Σ) but with order less than (G,Σ), which contradicts the
minimality of (G,Σ).

In fact, any z ∈ S with d(z) = 2 must be the internal vertex of an unbalanced 2-path that
connects two vertices of R. But, we can replace that unbalanced 2-path by an edge and obtain
another signified outerplanar graph to contradict the minimality of (G,Σ). Hence, d(z) ≥ 3 for
all z ∈ S.

Claim 1: For any v ∈ V (G) we have, |Nα(v) ∩R| ≤ 3 for α ∈ {+,−}.

Proof of claim 1: Let v ∈ V (G) and Nα(v) ∩ R = {v1, ..., vk} with k ≥ 4. Fix an out-
erplanar embedding of (G,Σ). Assume, without loss of generality, that the vertices v1, v2, ..., vk
are arranged around v in a clockwise order in the embedding. Now, to have unbalanced distance
at most 2 between the vertices v1 and v3, we must have an unbalanced 2-path connecting them
with internal vertex either v2 or v4 as anything else will contradict the fixed embedding of the
graph (G,Σ) being outerplanar. Without loss of generality we can assume that v1 and v3 are
connected by an unbalanced 2-path with internal vertex v2. Similarly, we can also assume that
v2 and v4 are connected by an unbalanced 2-path with internal vertex v3. So, we have the edges
v1v2, v2v3, v3v4 in our graph. Now, to have Ud(v1, v4) ≤ 2 we must have either the edge v1v4

or an unbalanced 2-path connecting v1 and v4 both of which contradicts the embedding being
outerplanar. Hence we have proved the claim. ♦

As (G,Σ) is an outerplanar graph, there exists a vertex x ∈ V (G) with d(x) ≤ 2. By the
above discussion we know that x ∈ R. Clearly d(x) 6= 0 as otherwise it will contradict the
minimality of (G,Σ).

If d(x) = 1 and N(x) = Nα(x) = {w} for some α ∈ {+,−}, then every vertex from R\{x,w}
is connected to x by an unbalanced 2-path with internal vertex w. This contradicts Claim 1 as
|R \ {x,w}| ≥ 6. Hence, d(x) = 2.

Assume that N(x) = {w, z}. Now as |R \ {x,w, z}| ≥ 5, without loss of generality, we can
assume that at least three vertices of R are connected to x by unbalanced 2-paths with internal
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(a) (b)

Figure 5.8: (a) A signified outerplanar graph with girth 4 and signified relative
clique number 5. (b) A signified outerplanar graph with girth 5 and signified relative
clique number 4.

vertex w and at least two vertices of R are connected to x by an unbalanced 2-path with internal
vertex z. It is easy to note that it is not possible to have distance (we do not even need to
use unbalanced distance in this case) at most 2 among these five vertices keeping the graph
outerplanar. So, this is a contradiction.

(b) This result follows from Theorem 5.13(b) and the signified outerplanar graph with sig-
nified relative clique number 5 depicted in Fig. 5.8(a).

(c) Let (G,Σ) be a signified outerplanar graph, with girth at least 5, of minimum order with
ωrs((G,Σ)) > 4. Moreover assume (G,Σ) is such that, if we delete any edge of (G,Σ), it will no
longer have ωrs((G,Σ)) > 4.

Let R be a relative clique of maximum order in (G,Σ) and let S = V (G) \ R. Note that S
induces an independent set of

−→
G as deleting any edge between two vertices of S will not decrease

the signified relative clique number of the graph (G,Σ).

Claim 1: For any v ∈ V (G) we have |N(v) ∩ R| ≤ 2 and |Nα(v) ∩ R| ≤ 1 for some
α ∈ {+,−}.

Proof of claim 1: Let v ∈ V (G) and |N(v)∩R| ≥ 3. Then we must also have |Nα(v)∩R| ≥
2 for some α ∈ {+,−}. Any two vertices from Nα(v) ∩R must be either adjacent or connected
by an unbalanced 2-path which will create a cycle of length less than 5, hence is a contradiction.
So, the claim is true. ♦

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by an unbalanced 2-path with the internal vertex
being itself (that is, z) and hence can be deleted to get a signified planar graph with girth at
least 5 and relative signified chromatic number equal to that of (G,Σ) but with order less that
(G,Σ) which contradicts the minimality of (G,Σ).

In fact, any z ∈ S with d(z) = 2 must be the internal vertex of an unbalanced 2-path that
connects two vertices of R. But, we can replace that unbalanced 2-path by an edge and obtain
another signified outerplanar graph (not necessarily of girth at least 5) without decreasing the
degree of the remaining vertices of the graph. As there is at least one vertex of degree at most
2 in an outerplanar graph, we can conclude that there is a vertex of degree at most 2 in (G,Σ)
from R.

Now, let x ∈ R be such that, d(x) ≤ 2. Clearly, d(x) 6= 0. If d(x) = 1 with w being its
neighbor, then each vertex from R \ {x,w} will be connected to x by an unbalanced 2-path with
internal vertex w, which contradicts Claim 1.

Hence, d(x) = 2. Assume that N(v) = {w, z}. Then each vertex from R \ {x,w} will be
connected to x by an unbalanced 2-path with internal vertex either w or z. If both w and z are
not from R, then we have at least three vertices in R \ {x,w}, which will imply |Nα(t) ∩R| ≥ 2
for some t ∈ {w, z} and for some α ∈ {+,−}, which contradicts Claim 1.

So, we have w, z ∈ R and exactly one vertex w′ connected to x by an unbalanced 2-path
with internal vertex w and exactly one vertex z′ connected to x by an unbalanced 2-path with
internal vertex z. We need to have distance at most 2 between the pairs of vertices w′, z′ and
w, z′ and w′, z which is not possible keeping the graph outerplanar. This is a contradiction.
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(d) The lower bound follows from the fact that an unbalanced 2-path is an sclique of order
3.

It is easy to check that it is not possible to construct a signified graph with girth at least 6
in which at least 4 vertices are at unbalanced distance at most 2 keeping the graph outerplanar.
This completes the proof. �

Proof of Theorem 5.17

(a) The upper bound follows from Theorem 5.14(a).
The lower bound follows from the planar sclique of order 15 described later in Section 5.3.3

to prove the lower bound of Theorem 5.19(a).

(b) The lower bound follows from the example in Fig. 5.6.
The proof of the upper bound is similar to the proof of Theorem 3.18(b) (see Chapter 3).
We omit the rest of the proof (see Appendix).

(c) Assume that (G,Σ) is a signified planar graph with girth at least 5 of minimum order
with ωrs((G,Σ)) > 6. Moreover, assume (G,Σ) is such that, if we delete any edge of (G,Σ), it
will no longer have signified relative clique number greater than 6.

Let R be a relative clique of maximum order in (G,Σ) and let S = V (G) \ R. Note that
S induces an independent set of (G,Σ) as deleting any edge between two vertices of S will not
decrease the signified relative clique number of the graph (G,Σ).

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by an unbalanced 2-path with the internal vertex
being itself (that is, z) and hence can be deleted to get a signified planar graph with girth at
least 5 and with relative signified chromatic number equal to that of (G,Σ) but with order less
than (G,Σ) which contradicts the minimality of (G,Σ).

Also, for any z ∈ V (G), we must have N(z)∩R ≤ 2. If not, then we will have |Nα(z)∩R| ≥ 2
for some α ∈ {+,−}. Now to have unbalanced distance at most 2 between two vertices of
Nα(z) ∩ R, there should be an edge or an unbalanced 2-path connecting the two vertices. This
will create a cycle of length less than 5, which is a contradiction. Hence for any z ∈ S we have,
d(z) = 2 and that z must be an internal vertex of an unbalanced 2-path with two terminal
vertices from R.

The graph (G,Σ) must contain a 5-cycle abcde because of Theorem 3.18(d) and (e) whose
proofs are independent from this proof. As S is an independent set in

−→
G , we can have at most

two vertices (should be non-adjacent) of the cycle from S.
First assume that all the vertices of the cycle is from R. Then there are at least two adjacent

edges in the cycle that have the same sign. Assume these edges are ab and bc. Now, a and c are
either adjacent or connected by an unbalanced 2-path, hence creating a cycle of length less than
5 which is a contradiction. Hence, R does not induce any cycle of length 5 in (G,Σ).

Now assume that the 5-cycle has four vertices a, b, c, d from R. But, at most one vertex from
R\{a, b, c, d} can be adjacent to a and at most one vertex from R\{a, b, c, d} can be adjacent to
d, while no vertex from R \ {a, b, c, d} can be adjacent to b or c because of the degree restrictions
proved before.

For any w ∈ R such that, w is non-adjacent to each of a, b, c, d, we must have w connected
to each of a, b, c, d with an unbalanced 2-path.

Now, we have |R \ {a, b, c, d}| ≥ 2. Assume that u, v ∈ R \ {a, b, c, d}.
Assume first that both vertices are non-adjacent to a, b, c, d. Hence, each of them is connected

to each of a, b, c, d with unbalanced 2-paths. They are also either adjacent or connected by an
unbalanced 2-path to each other. But to achieve all these connections, either we need to create
a cycles of length less than 5 or contradict the planarity of the graph.

Now assume that exactly one vertex, say v, is non-adjacent to a, b, c, d. Hence, v is connected
to each of a, b, c, d with unbalanced 2-paths. Assume, without loss of generality, that u is adjacent
to a. The vertices v and u are also either adjacent or connected by an unbalanced 2-path to each
other. Now u is connected by an unbalanced 2-path to c (the edge uc creates a cycle of length
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4). But to achieve all these connections, either we need to create a cycles of length less than 5
or contradict the planarity of the graph.

Now assume, without loss of generality, that u is adjacent to a and v is adjacent to d. They
are also either adjacent or connected by an unbalanced 2-path to each other. Then u is connected
by an unbalanced 2-path to c (the edge uc creates a cycle of length 4) and v is connected by
an unbalanced 2-path to b (the edge vb creates a cycle of length 4). But to achieve all these
connections, either we need to create a cycle of length less than 5 or contradict the planarity of
the graph.

Now assume that the 5-cycle has three vertices a, c, d from R and two vertices b, e from S.
Assume u, v ∈ R \ {a, c, d} and u and v are adjacent to c and d respectively.

To avoid creating a cycle of length less than 5, u and v must be connected by an unbalanced
2-path with internal vertex, say, w. But then cuwvda is a cycle with four vertices from R. This
is not possible. Hence, at least one vertex among c and d must be non-adjacent to every vertex
of R \ {a, c, d}. Let us assume, without loss of generality, that c is the vertex.

Then every vertex of R \ {a, c, d} must be connected to c by unbalanced 2-paths. Now, they
can no longer be adjacent to d as well because that will create a 4 cycle. But the vertices of
R \ {a, c, d} (there are at least three such vertices) must be at unbalanced distance at most 2 to
the vertex a also. That is not possible to achieve without creating a cycle of length less than 5
or contradicting the planarity of the graph.

(d) Consider the signified 6-cycle x1x2x3x4x5x6 with the set of negative edges {x1x2, x3x4,
x5x6}. Obtain the signified graph by connecting a new vertex with unbalanced 2-paths to the
vertices x1, x3, x5 of the signified 6-cycle described above.

It is easy to check that this signified graph has girth 6 and signified relative clique number 4.
The proof of the upper bound is similar to the proof of Theorem 3.18(d).
We omit the rest of the proof (see Appendix).

(e) The lower bound follows from the fact that an unbalanced 2-path is an sclique of order
3.

It is easy to check that it is not possible to construct a signified graph with girth at least 7
in which at least four vertices are at unbalanced distance at most 2 keeping the graph planar.
This completes the proof. �

5.3.3 Signified absolute clique number

As we have done for oriented colorings and orientable colorings, we define the signified absolute
clique number and consider the problem of determining the parameter for some families of planar
graphs. First we list the results regarding the signified absolute clique number of the families of
outerplanar graphs and of outerplanar graphs with given girth.

Theorem 5.18.

(a) ωas(O3) = 7.

(b) ωas(O4) = 4.

(c) ωas(Ok) = 3 for k ≥ 5.

The proof of Theorem 5.18(a) and (b) easily follows from the proof of Theorem 5.16(a) and
the proof of Theorem 5.19(b) respectively, while the proof of Theorem 5.18(c) is trivial.

Now we list the results regarding the signified absolute clique number of the families of planar
graphs and of planar graphs with given girth.

Theorem 5.19.

(a) ωas(P3) = 15.

(b) ωas(P4) = 6.
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φ(w) φ(u)
φ(v)

φ(b) φ(c)

φ(a)

Figure 5.9: Planar signified graphs with diameter 2 and girth at least 4 (the
dotted edge bc refers to an edge which can be negative or positve as per necessity).

(c) ωas(Pk) = 3 for k ≥ 5.

Proof of Theorem 5.19

(a) Take two copies of the signified outerplanar sclique depicted in Fig. 5.7 and a vertex ∞.
Join ∞ and the vertices of the first copy of the signified outerplanar sclique depicted in Fig. 5.7
with positive edges. Join ∞ and the vertices of the second copy of the signified outerplanar
sclique depicted in Fig. 5.7 with negative edges. This so-obtained graph is an sclique of order
15. Note that the graph is also planar. This proves the lower bound.

For proving the upper bound, first consider an sclique (H) with domination number 1. Sup-
pose (H) is dominated by the vertex v. As (H) is an sclique, the set of vertices N+(v) are part
of a relative clique in the signified outerplanar graph ((H[N(v)]). Therefore, by Theorem 5.16(a)
we have |N+(v)| ≤ 7.

Similarly we have |N−(v)| ≤ 7. Hence, |N(v)| ≤ 14. This implies that the order of the graph
(H) is at most 15.

Goddard and Henning [18] (see Chapter 2, Theorem 2.15) proved that every planar graph of
diameter 2 has domination number at most 2 except for a particular graph on nine vertices.

Hence, to prove the theorem, it will be enough to prove that any planar sclique with dom-
ination number 2 must have order at most 15. More precisely, we need to prove the following
result.

Lemma 5.20. Let (H) be a planar sclique with domination number 2. Then |V ((H)| ≤ 15.

The above lemma can be proved using similar arguments used for proving Lemma 3.23. The
only changes we need to make are to consider unbalanced instead of directed distance and use
the concept of unbalanced 2-path instead of 2-dipath.

This proof is in fact a bit easier because of the relaxed upper bound in the statement of the
claim (15 instead of 14).

We omit the rest of the proof (see Appendix).

(b) In 1975, Plesník [24] characterized and listed all triangle-free planar graphs with diameter
2. They are precisely the graphs depicted in Fig. 2.1 (see Chapter 2, Theorem 2.14). Now
note that any signified graph with the graphs from Fig. 2.1 as underlying graphs admits a
homomorphism to the graphs depicted in Fig. 5.9 respectively (that is, the first signified graph
depicted in Fig. 5.9 is a universal bound for the first family of graphs described in Fig. 2.1; the
second ... etc.).

To prove the homomorphisms we map the vertices w, u, v, a, b, c from Fig. 2.1 to the corre-
sponding vertices φ(w), φ(u), φ(v), φ(a), φ(b), φ(c) in Fig 5.9 respectively. Choose the sign of the
edge φ(b)φ(c) the same as the sign of the edge bc.

Now to complete the first homomorphism, map the vertices of Nα(w) to the unique vertex
in Nα(φ(w)) for α ∈ {+,−}.

To complete the second homomorphism, map the vertices of Nα(u) ∩ Nβ(u) to the unique
vertex in Nα(φ(u)) ∩Nβ(φ(v)) for α, β ∈ {+,−}.

To complete the third homomorphism, map the vertices of Nα(a) ∩ Nβ(t) to the unique
vertex in Nα(φ(a)) ∩Nβ(φ(t)) for α, β ∈ {+,−} and t ∈ {b, c}.
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Now note that the first two signified graphs depicted in Fig. 5.9 are scliques of order 3 and
6 respectively, while the third graph is not an sclique but clearly has signified relative clique
number 5.

Hence, there is no triangle-free planar sclique of order more than 6. Also, the only example
of a triangle-free sclique of order 6 is the second graph depicted in Fig. 5.9.

Hence we are done.

(c) It is easy to check that the upper bound and the lower bound follows from the fact that
the unbalanced 2-path is an sclique of order 3. �

5.4 Conclusion

In this chapter we mainly studied signified colorings of some families of planar graphs. Our main
focus remained on the families Og (family of outerplanar graphs with girth at least g) and Pg
(family of planar graphs with girth at least g) for g ≥ 3.

Concerning signified coloring we focused on determining the signified chromatic number, the
signified relative clique number and the signified absolute clique number of the above mentioned
families.

There was no known upper bound for the signified chromatic number for the family of planar
graphs with girth at least 4 apart from the upper bound 80 of χs(P3). In this chapter we
improved the upper bound of χs(P4) to 50.

We, in fact, defined two other parameters, that is, the signified relative clique number and
the signified absolute clique number, mimicking the case of oriented coloring. We provided upper
and lower bounds, most of them being tight, for some planar families.

In fact, we provided tight bounds for ωas(Og) and for ωas(Pg) for all g ≥ 3. We also provided
tight bounds for ωrs(Og) for all g ≥ 3 and for ωrs(Pk) for all k ≥ 5. Even though we could not
provide exact bounds for ωro(P4), we have an intuition about what the answer could be.

So we propose the following conjecture.

Conjecture 5.21. ωrs(P4) = 10.

We think it is possible to mimic the proof of Theorem 3.19 to prove that the only minimal
(with respect to subgraph inclusion) planar sclique of order 15 is the signified planar sclique
described to prove the lower bound of Theorem 5.19(a). It should alo be possible to extend the
proof and list out all the minimal planar scliques.

Nevertheless, despite Proposition 5.8, it is still interesting to seek for similarities between
oriented and signified coloring. It might be possible to prove similar results regarding the relation
between oriented and signified clique numbers as well.

We think it is possible to find specific families of graphs and prove some relation between
the two chromatic numbers of those families (without knowing the chromatic numbers). For
instance, can we prove some relation between χo(P3) and χs(P3) without determining those
values?

Finally, the problem of bounding these three parameters for specific families of graphs is an
interesting general problem in this topic.
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Chapter 6

Signed graphs

In this chapter we deal with signed graphs. Our main focus is to present some results regarding
signed colorings.

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Some signed graphs and their properties . . . . . . . . . . . . . . . . 96
6.3 Signed coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4 Bounding planar consistent graphs . . . . . . . . . . . . . . . . . . . . 118
6.5 Categorical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Signed homomorphisms have been introduced and studied recently by Naserasr, Rollová
and Sopena in [40]. The theory captures a number of well known conjectures which can be
reformulated using the definition of signed homomorphisms. Here we mention some definitions
introduced in [40] and study signed homomorphisms for the class of planar graphs with different
girth.

An important point to note is that Harary [21] and Zaslavsky [62] initially used the term
signed graph for 2-edge-colored graphs. Due to the notion of signed graph homomorphisms, the
term signed graph was used for the equivalence class by Naserasr, Rollová and Sopena [40].

The organization of the chapter is as follows. In Section 6.1 we give the basic definitions
and notations related to signed graphs and homomorphisms of signed graphs. Then we present
our main results regarding signed colorings in Section 6.3. In Section 6.4 we prove some results
regarding bounds of planar consistent signed graphs. In Section 6.5 we discuss some categorical
aspects which is a joint work with Naserasr and Sopena. Finally, we conclude this chapter in
Section 4.4.

Section 6.2 and Section 6.3.1 is a joint work with Ochem and Pinlou and is an article in
process. Section 6.4 is a joint work with Naserasr and Sun and is an article in process.

6.1 Preliminaries

Recall the definitions and notations related to signified graphs from Chapter 5. To resign a vertex
v of a signified graph (G,Σ) is to change the signs of the edges incident to v. Two signified graphs
(G,Σ) and (G,Σ′) are in a resign relation if we can obtain (G,Σ′) by resigning some vertices
of (G,Σ). Note that the resign relation is an equivalence relation. A signed graph [G,Σ] is an
equivalance class of signified graphs (where (G,Σ) is an element of the equivalence class) with
respect to resign relation. Any element of the equivalence class [G,Σ] is a presentation of it. We
use the notation (G,Σ) ∈ [G,Σ] for (G,Σ) is a presentation of [G,Σ].

We might use [G] for a signed graph when the set of its negative edges is understood, while
G is its underlying graph (note that every presentation of a particular signed graph has the same
underlying graph).

The order of a signed graph is the number of vertices of its underlying graph and hence can
be denoted by |V (G)|. Intuitively, we can treat a signed graph as a signified graph whose vertices
are able to change the signs of all the edges incident to them. For a fixed presentation of a signed
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Figure 6.1: Signed graph homomorphism.

graph, we can use the notations defined for signified graphs. Given any signified graph (G,Σ)
we can consider the signed graph [G,Σ].

It is easy to check the following result from [40]:

Proposition 6.1. If an undirected graph G has n vertices, m edges and c connected components,
then there are 2m−n+c distinct signed graphs with underlying graph G.

An unbalanced cycle of length k, or an unbalanced k-cycle for short, of a signed graph [G,Σ]
is a cycle of length k in (G) which has an odd number of negative edges for some (G) ∈ [G].
Notice that this definition is independent of the choice of the presentation of [G]. Similarly, a
balanced cycle of length k, or a balanced k-cycle for short, of a signed graph [G,Σ] is a cycle of
length k in (G) which has an even number of negative edges for some (G) ∈ [G].

The first major result in the theory of signed graphs is the following by Zaslavsky [62].

Theorem 6.2. Two signified graphs are presentation of the same signed graph if and only if they
have the same set of unbalanced cycles.

In other words, the set of unbalanced cycles uniquely determines a signed graph. The
unbalanced-girth of a signed graph is the shortest length of its unbalanced cycles.

In [40], Naserasr, Rollová and Sopena introduced homomorphisms of signed graphs. Given
two signed graphs [G,Σ] and [H,Λ], we say there is a homomorphism φ of [G,Σ] to [H,Λ] if
φ is a homomorphism of a presentation (G,Σ′) ∈ [G,Σ] to a presentation (H,Λ′) ∈ [H,Λ].
We write [G,Σ] → [H,Λ] whenever there exists a homomorphism of [G,Σ] to [H,Λ] and say
that [H,Λ] bounds [G,Σ]. A bijective homomorphism whose inverse is also a homomorphism
is an isomorphism. If two signed graphs admit homomorphisms to each other then they are
homomorphically equivalent signed graphs.

Lemma 6.3. If [G,Σ] admits a homomorphism to [H,Λ], then for any presentation (H,Λ′) of
[H,Λ] there exists a presentation (G,Σ′) of [G,Σ] such that (G,Σ′) admits a homomorphism to
(H,Λ′).

Proof. Let φ be a homomorphism of [G,Σ] to [H,Λ]. This implies φ is a homomorphism of
(G,Σ1) to (H,Λ1), for some presentation (G,Σ1) and (H,Λ1) of [G,Σ] and [H,Λ] respectively.
Now, let (H,Λ′) be any presentation of [H,Λ].

LetX = {x1, x2, ..., xk} be the set of vertices we need to resign to obtain (H,Λ′) from (H,Λ1).
Now resign the vertices of the set {v ∈ V (G) | φ(v) ∈ X} to obtain the presentation (G,Σ′) of
[G,Σ] from (G,Σ1). Clearly, φ is a homomorphism of (G,Σ′) to (H,Λ′). �

The above lemma allows us to study homomorphisms of a signed graph [G] to a signified
graph (H).

Example 6.4. A sample homomorphism of signed graphs is given in Fig. 6.1. Note that in the
example we need to resign one of the vertices to obtain the homomorphism.

Let [G,Σ] be a signed graph with vertex set V (G) = {v1, v2, ..., vk} and (G,Σ) ∈ [G,Σ].
Then its anti-twined graph (R(G), R(Σ)) is the signified graph with the set of vertices, the set of
edges and the set of positive edges as follows:
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Figure 6.2: The anti-twined graph (R(G)) of [G].

V (R(G)) = {v1, v2, ..., vk} ∪ {v′1, v′2, ..., v′k}.
E(R(G)) = {vivj , v′iv′j , viv′j | vivj ∈ E(G)}

R(Σ) = {vivj , v′iv′j , viv′k | vivj ∈ Σ and vivk ∈ Σc}.

Intuitively, (R(G)) is the graph obtained from (G) by adding and resigning a twin v′i for
each of the vertices vi of (G). Observe that (R(G), R(Σ)) is well defined, that is, for any
presentation (G,Σ) ∈ [G,Σ] we will get the same signified graph (R(G), R(Σ)). The anti-twined
graph (R(G), R(Σ)) of a signified graph (R(G), R(Σ)) was defined in a more general setting by
Brewster and Graves in [9].

Example 6.5. For better understanding of the definition of an anti-twined graph see Fig. 6.2
where we have pictorially presented the construction of the anti-twined graph of a signed graph
[G].

Now suppose the signed graph [G,Σ] admits a homomorphism φ to the signed graph [H,Λ].
Also suppose that the presentations (G,Σ) ∈ [G,Σ] and (H,Λ) ∈ [H,Λ] are such that φ is a
homomorphism of (G,Σ) to (H,Λ). The anti-twined homomorphism R(φ) of φ is the homomor-
phism of (R(G)) to (R(H)) such that we have,

R(φ)(v) = φ(v) and R(φ)(v′) = φ(v)′ for v ∈ V (G).

Observe that R(φ) is indeed a homomorphism. Also R(φ) is well defined, that is, it does not
depend on the choice of the presentations (G,Σ) ∈ [G,Σ] and (H,Λ) ∈ [H,Λ] such that φ is a
homomorphism of (G) to (H).

The following result follows from the above definitions.

Proposition 6.6. Given two signed graphs [G] and [H], we have [G] → [H] if and only if
(R(G))→ (R(H)).

The above result can be proved similarly as we proved Proposition 4.5 in Chapter 4.
A splitable signified graph (S) is a signified graph isomorphic to the signified graph (R(T ))

of some signed graph [T ]. The signified graph (T ) is the split graph of (S).
Similarly, a splitable signified homomorphism is a homomorphism ψ of a splitable signified

graph (S1) = (R(T1)) to a splitable signified graph (S2) = (R(T2)) such that we have ψ = R(φ)
for some signed homomorphism φ of [T1] to [T2].

Notice that the set of vertices of any splitable signified graph (S) can be partitioned into two
equal parts and a 1-1 correspondence between the vertices of those two parts can be established
in a way that the corresponding vertices are not adjacent and they disagree with each other on
all their common neighbors, while they have the same set of neigbors. The induced signified
subgraph on one of those partitions is isomorphic to the split graph of the splitable graph in
question. Hence we have the following result.
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Lemma 6.7. A signified graph (S) is splitable if and only if it is possible to partition the set
of vertices V (S) into two equal parts V1 and V2 with a bijecttion f : V1 → V2 such that for all
u ∈ V1 we have N+(u) = N−(f(u)) and N−(u) = N+(f(u)).

For example, for each vertex u in a signified Tromp graph or a signified Zielonka graph (see
Chapter 5, Section 5.2) there is a unique vertex v such that we have N+(u) = N−(v) and
N−(u) = N+(v). So, it is easy to see that these graphs are splitable signified graphs.

Using the notion of splitable graphs we now state the following useful result.

Lemma 6.8. Let (S) = (R(T )) be a splitable graph. Then (G) → (S) if and only if [G] → (T )
for any (T ) ∈ [T ].

The above result can be proved similarly as we proved Proposition 4.7 in Chapter 4.
We will use this lemma several times in this chapter.

6.2 Some signed graphs and their properties

While studying homomorphisms of signed graphs, to get upper bounds for the signed chromatic
number of a family F of graphs, we will try to find a target signified graph (T ) such that every
graphs of F admits a homomorphism to (T ).

Recall the definitions of Paley graphs and signified Paley graphs from Chapter 5, Section 5.2.
Also note that the Paley graph Pq is self-complementary, edge transitive [63] and strongly regular
with parameters (q, (q − 1)/2, (q − 5)/4, (q − 1)/4) [10].

A k-type-vector is a sequence α = (α1, α2, ..., αk) ∈ {+,−}k of k signs (that is, + or −)
while its conjugate is another k-type-vector ᾱ = (ᾱ1, ᾱ2, ..., ᾱk) with {αi, ᾱi} = {+,−} for all
i ∈ {1, 2, ..., k}.

Given a sequence of k vertices Xk = (v1, v2, ..., vk) of a signified graph (T ), that induces a
clique in T , a vertex u ∈ V (T ) is an α-successor of Xk if for every i ∈ {1, 2, ..., k}, we have
u ∈ Nαi(vi). Also, u is called an α̃-successor of Xk if it is an α-successor or an ᾱ-successor of
Xk. The set of α-successors of Xk is denoted by Nα(Xk) and the set of α̃-successors of Xk is
denoted by N α̃(Xk).

A signified graph (T ) has property Pk,l (resp., property P̃k,l) if, |Nα(Xk)| ≥ l (resp., |N α̃(Xk)| ≥
l) for any sequence Xk of k vertices of (T ) which induces a clique in T and for any k-type-vector
α.

Lemma 6.9.

(a) For q ≡ 1 (mod 4) and q ≥ 5, (SPq) has property P1,q−1/2, P̃1,q−1 and (SP+
q ) has property

P̃1,q.

(b) For q ≡ 1 (mod 4) and q ≥ 9, (SPq) has property P2,q−5/4, P̃2,q−3/2 and (SP+
q ) has property

P̃2,q−2/2.

(c) For q ≡ 1 (mod 4) and q ≥ 9, (SPq) has property P̃3,q−9/4 and (SP+
q ) has property P̃3,q−5/4.

Proof. (a) Any vertex of the Paley graph Pq has (q − 1)/2 neighbors and hence, (q − 1)/2 non-
neighbors (as it has q vertices). So, any vertex in the signified Paley graph (SPq) has (q − 1)/2
distinct (+)-neighbors and (q−1)/2 distinct (−)-neighbors. Hence, (SPq) has property P1,q−1/2.

The signified graphs (SPq) and (SP+
q ) have order q and (q + 1) respectively and any two

vertices in each of them are joined either by a positive edge or a negative edge. Therefore, clearly,
(SPq) has property P̃1,q−1 and (SP+

q ) has property P̃1,q.

(b) The Paley graph Pq is a strongly regular graph with parameters (q, (q − 1)/2, (q −
5)/4, (q− 1)/4). Hence, for any edge uv of Pq there are exactly (q− 5)/4 common neighbors of u
and v. Note that in the complement P̄q of Pq, uv is a non-edge. As Pq is self-complementary, P̄q
is also a strongly regular graph with parameters (q, (q− 1)/2, (q− 5)/4, (q− 1)/4). Hence, there
are exactly (q− 1)/4 common neighbors of u and v in P̄q. Therefore, there are exactly (q− 1)/4
common non-neighbors of u and v in Pq.
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Now assume that there are k1 vertices of Pq that are neighbors of u but non-neighbors of v
and k2 vertices of Pq that are non-neighbors of u but neighbors of v. Now Pq is strongly regular
with parameters (q, (q − 1)/2, (q − 5)/4, (q − 1)/4). So we have,

(q − 1)/2 = |{neighbors of u}|
= |{v}|+ |{common neighbors of u and v}|

+ |{neighbors of u that are non-neighbors of v}|
= 1 + (q − 5)/4 + k1

= (q − 1)/4 + k1

⇒ k1 = (q − 1)/2− (q − 1)/4

= (q − 1)/4.

Hence we have, k1 = (q − 1)/4. Similarly by counting the neighbors of v we can show that
k2 = (q − 1)/4.

Therefore, any for edge uv in Pq we have,

|{common neighbors of u and v}|
= (q − 5)/4

|{common non-neighbors of u and v}|
= |{neighbors of u that are non-neighbors of v}|
= |{non-neighbors of u that are neighbors of v}|
= (q − 1)/4

Now take the complement P̄q of Pq. For any non-edge uv in P̄q (as uv was any edge in Pq)
we have,

|{common non-neighbors of u and v}|
= (q − 5)/4

|{common neighbors of u and v}|
= |{non-neighbors of u that are neighbors of v}|
= |{neighbors of u that are non-neighbors of v}|
= (q − 1)/4

As Pq is self-complementary, any non-edge of Pq will have the same property as above.
Now note that we obtain the signified Paley graph (SPq) from the Paley graph Pq by replacing

its edges by positive edges and its non-edges by negative edges. So, from the above discussion,
for any pair of distinct vertices {x, y} of (SPq) and for any 2-type-vector α we have,

|Nα({x, y})| ≥ (q − 5)/4.

This proves that (SPq) has property P2,q−5/4.

From the above discussion we learn that, for any two distinct vertices {x, y} of (SPq) we
have,

|Nα({x, y})| = (q − 1)/4 for α ∈ {(+,−), (−,+)}.
|Nβ({x, y})| = (q − 5)/4 and |Nβ({x, y})| ≥ (q − 1)/4

for some β = (β1, β2) ∈ {(+,+), (−,−)}
while the sign of the edge xy is β1.
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Therefore, for any two distinct vertices {x, y} of (SPq) we have,

|N α̃({x, y})| = (q − 1)/2 for α ∈ {(+,−), (−,+)}.

|N β̃({x, y})| = (q − 3)/2 for β ∈ {(+,+), (−,−)}.

This proves Lemma 6.11 (stated later in this section) and shows that (SPq) has property
P̃2,q−3/2.

Now we will show that the signified graph (SP+
q ) has property P̃2,q−1/2. We know that there

is this vertex ∞ of (SP+
q ) and by deleting ∞ from (SP+

q ) we obtain the signified Paley graph
(SPq).

Let u ∈ V (SP+
q ) \ {∞}. We know by Lemma 6.9(a) that u has (q − 1)/2 distinct (+)-

neighbors and (q − 1)/2 distinct (−)-neighbors among V (SP+
q ) \ {∞, u}. As every other vertex

is adjacent to ∞ with a positive edge in (SP+
q ) we have,

|Nα({∞, u})| = (q − 1)/2 for α ∈ {(+,+), (+,−)}.

Hence, for any 2-type-vector α, we have,

|N α̃({∞, u})| = (q − 1)/2.

Now let v ∈ V (SP+
q ) \ {∞, u}. Then, from the above discussion, we know that {u, v} has

exactly (q − 1)/2 distinct α̃-neighbors for α ∈ {(+,−), (−,+)} and exactly (q − 3)/2 distinct
β̃-neighbors for β ∈ {(+,+), (−,−)} in V (SP+

q ) \ {∞, u, v}. Note that ∞ is a (+,+)-neighbor
of {u, v}. Hence in (SP+

q ) we have,

|N α̃({u, v})| = (q − 1)/2 for β ∈ {(+,+), (−,−)}.

This shows that (SP+
q ) has property P̃2,q−1/2.

(c) First we will show that (SP+
q ) has property P̃3,q−4/5. Let ∞, u and v be three distinct

vertices of (SP+
q ).

Let γ ∈ {+,−} be the sign of the edge uv. Then from the proof of Lemma 6.9(b) we know that
{u, v} has exactly (q − 5)/4 distinct (γ, γ)-neighbors and exactly (q − 1)/4 distinct β-neighbors
in V (SP+

q ) \ {∞, u, v} for any 2-type-vector β 6= (γ, γ). Hence in (SP+
q ), for any 3-type-vector

α, we have,

|N α̃({∞, u, v})| ≥ (q − 5)/4.

Now recall that V (SPq) =Fq. Also we know that there exists t ∈Fq such that Fq =
{0, t, t2, ..., tq−1 = 1}. Fix such a t for the rest of this proof.

So, the set of squares of Fq is the set N+ = {t2, t4, ..., tq−1} of even powers of t while the set
of non-squares of Fq is the set N− = {t, t3, ..., tq−2} of odd powers of t. Now by the definition of
the signified Paley plus graph (SP+

q ) we have, N+

(SP+
q )

(0) = N+ ∪ {∞} and N−
(SP+

q )
(0) = N−.

Now let (P ) be the signified graph obtained from (SP+
q ) by resigning the vertices of the set

N−. Now define the mapping φ from V (SP+
q ) to V (P ) as follows:

φ(x) =


0, if x =∞,
∞, if x = 0,

t−i, if x = ti.

(6.1)

Claim 1: The mapping φ is an isomorphism of (SP+
q ) to (P ).
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Proof of the Claim 1: It is easy to check that the mapping φ is a bijection. Now we will
show that it is also a homomorphism. For that we need to show that each edge uv of (SP+

q ) and
φ(u)φ(v) of (P ) have the same sign.

First of all note that exactly the set N− of negative neighbors of 0 in (SP+
q ) has been resigned

to obtain (P ). Hence in (P ), the edge 0u is positive for any u ∈ V (P ) \ {0}.
Hence, each edge∞v of (SP+

q ) and φ(∞)φ(v) (which is basically the edge 0φ(v) as φ(∞) = 0)
of (P ) are both positive for any v ∈ V (SP+

q ) \ {∞}.
Now note that φ(u) ∈ N+ if and only if u ∈ N+ and φ(u) ∈ N− if and only if u ∈ N−

because t−i = tq−1−i is a square in Fq if and only if ti is a square in Fq (as (q − 1− i) is even if
and only if i is even).

Hence, each edge 0v of (SP+
q ) and the edge φ(0)φ(v) (which is the edge ∞φ(v) of (P )

basically) are both positive for each v ∈ N+ ∪ {∞} and are both negative for each v ∈ N−.
Also note that the edge∞0 is positive in (SP+

q ) while its image φ(∞)φ(0) (which is the edge
0∞) is positive as well.

Therefore, now we are left with checking the edges of the form uv for all u, v ∈ V (SP+
q ) \

{0,∞} = N+ ∪N− . Without loss of generality assume that u = ti and v = tj . So we have,

f(ti)− f(tj) = t−i − t−j

= (tj − ti)/ti+j

We know that in Fq, −1 is a square and the product of two squares is a square, the product
of two non-squares is a square, whereas the product of a square and a non-square is a non-square
in Fq.

Now assume that u = ti and v = tj are both from N+. Note that i and j are both even as
u, v ∈ N+. Now, uv is positive in (SP+

q ),
if and only if (ti − tj) is a square in Fq,
if and only if (tj − ti) is a square in Fq (becasue −1 is a square and product of two squares

is a square),
if and only if (tj − ti)/ti+j is a square in Fq (becasue ti+j is a square as (i+ j) is even),
if and only if φ(u)φ(v) is positive in (SP+

q ),
if and only if φ(u)φ(v) is positive in (P ) (as φ(u), φ(v) ∈ N+, neither of them have been

resigned to obtain (P ) from (SP+
q ) ).

Similarly assume that u = ti and v = tj are both from N−. Note that i and j are both odd
as u, v ∈ N−. Now, uv is positive in (SP+

q ),
if and only if φ(u)φ(v) is positive in (SP+

q ) (by similar arguments as the above case),
if and only if φ(u)φ(v) is positive in (P ) (as φ(u), φ(v) ∈ N−, both of them have been resigned

to obtain (P ) from (SP+
q )).

Now assume that u = ti ∈ N+ and v = tj ∈ N−. Note that i is even and j is odd. Now, uv
is positive in (SP+

q ),
if and only if (tj − ti) is a square in Fq (similar arguements as before),
if and only if (tj − ti)/ti+j is a non-square in Fq (ti+j is a non-square as (i+ j) is odd),
if and only if φ(u)φ(v) is negative in (SP+

q ),
if and only if φ(u)φ(v) is positive in (P ) (as φ(u) ∈ N+ and φ(v) ∈ N−, only one of them

have been resigned to obtain (P ) from (SP+
q ) and therefore the edge have changed its sign).

Hence the mapping φ is indeed an isomorphism of (SP+
q ) to (P ). ♦

Now let α = (α1, α2, α3) be any 3-type-vector. Fix two distinct vertices x1, x2, x3 ∈ V (SP+
q )\

{∞}. Now define,

βi = ᾱi if xi ∈ N−,
= αi otherwise, for all i ∈ {1, 2}.
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Now define the 3-type-vector β = (β1, β2, α3). Now we will show that |N α̃({x1, x2, x3})| ≥
(q−5)/4 in (SP+

q ). To prove that we can assume, without loss of generality, that x3 = 0 because
the Paley graph Pq is vertex transitive. So, basically we are left with showing |N α̃({x1, x2, 0})| ≥
(q − 5)/4 in (SP+

q ).

Claim 2: A vertex v ∈ N α̃({x1, x2, 0}) in (SP+
q ) if and only if v ∈ N β̃({φ(x1), φ(x2),∞})

in (SP+
q ).

Proof of the Claim 2: As φ is an isomorphism we have, v ∈ Nα({x1, x2, 0}) (resp.,
v ∈ N ᾱ({x1, x2, 0})) in (SP+

q ),
if and only if v ∈ Nα({φ(x1), φ(x2),∞}) (resp., v ∈ N ᾱ({φ(x1), φ(x2),∞}) in (P ).
Recall that we obtained (P ) from (SP+

q ) by resigning the set N− of vertices. Hence we will
obtain (SP+

q ) from (P ) by resigning the set N− of vertices.
Hence, if φ(v) ∈ V (P )\N−, then φ(v) is an α-neighbor (or an ᾱ-neighbor) of {φ(x1), φ(x2),∞}

in (P ),
if and only if φ(v) is a β-neighbor (or a β̄-neighbor) of {φ(x1), φ(x2),∞} in (SP+

q ) (as φ(v)
has not been resigned to obtain (P ) from (SP+

q )).
Similarly, if φ(v) ∈ N−, then φ(v) is an α-neighbor (or an ᾱ-neighbor) of {φ(x1), φ(x2),∞}

in (P ),
if and only if φ(v) is a β̄-neighbor (or a β-neighbor) of {φ(x1), φ(x2),∞} in (SP+

q ) (as φ(v)
has been resigned to obtain (P ) from (SP+

q )).
This proves the claim. ♦

Now as any three distinct vertices {∞, u, v} have at least (q − 5)/4 distinct α̃-neighbors in
(SP+

q ) for any 3-type-vector α, we have proved that (SP+
q ) has property P̃3,q−5/4 using the above

claim.

Let {x, y, z} be three distinct vertices from V (SP+
q ) \ {∞}. We know by the above, that

{x, y, z} have at least (q − 5)/4 distinct α̃-neighbors in (SP+
q ) for any 3-type-vector α.

Note that ∞ is a (+,+,+)-neighbor of {x, y, z}. Hence, {x, y, z} have at least (q − 5)/4
distinct α̃-neighbors in (SPq) for any 3-type-vector α /∈ {(+,+,+), (−,−,−)}.

Also, we are sure that there is at least (q − 9)/4 (excluding ∞) distinct β̃-neighbors in (Pq)
for any β ∈ {(+,+,+), (−,−,−)}.

Therefore, (Pq) has property P̃3,q−9/4.
Similarly, we can show that there is at most (q − 5)/4 distinct β̃-neighbors in (Pq) for any

β ∈ {(+,+,+), (−,−,−)}. This will prove Lemma 6.12. �

From the above proof we readily get the following three results.

Lemma 6.10. For q ≡ 1 (mod 4), q ≥ 5 and for any vertex v ∈ V (SPq),

∪u∈Nα1 (v) N
α2(u) =

{
V (SPq) \ {v}, for (α1, α2) ∈ {(+,−), (−,+)},
V (SPq), for (α1, α2) ∈ {(+,+), (−,−)}.

Lemma 6.11. For q ≡ 1 (mod 4), q ≥ 9 and for any two distinct vertices u and v of (SPq),

|N α̃({u, v})| =

{
(q − 1)/2, for α ∈ {(+,−), (−,+)},
(q − 3)/2, for α ∈ {(+,+), (−,−)}.

Lemma 6.12. For q ≡ 1 (mod 4), q ≥ 9 and for any three distinct vertices u, v and w of (SPq),

|N α̃({u, v, w})| ≤

{
(q − 1)/4, for any 3-type-vector α,
(q − 5)/4, for α ∈ {(+,+,+), (−,−,−)}.
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Figure 6.3: Signed coloring (we resign the vertices marked with dashed circles of
the graph in the left.

6.3 Signed coloring

Colorings of signed graphs here correspond to colorings associated with homomorphisms of signed
graphs defined, discussed and studied by Naserasr, Rollová and Sopena [40]. Even though the
definition is based on homomorphisms of signed graphs, we first will define it without using
homomorphism.

A signed k-coloring of a signed graph [G] is a vertex coloring which is a signified k-coloring
of a presentation of the graph. The signed chromatic number χ[s]([G]) of a signed graph [G] is
the minimum of the signified chromatic numbers of the elements of the equivalence class [G].

Alternatively, the signed chromatic number χ[s]([G]) of the signed graph [G] is the minimum
order of a signed graph [H] such that [G] admits a homomorphism to [H].

By virtue of Lemma 6.3, we can equivalently define the signed chromatic number χ[s]([G])
of a signed graph [G] by the minimum order of a signified graph (H) such that [G] admits a
homomorphism to (H).

The signed chromatic number χ[s](G) of a simple graph G is the maximum of the signed
chromatic numbers of all the signed graphs with underlying graph G. The signed chromatic
number χ[s](F) of a family F of graphs is the maximum of the signed chromatic numbers of the
graphs from the family F .

Example 6.13. Check the signed 4-coloring provided in Fig. 6.3.

Notice that the non-adjacent vertices of an unbalanced 4-cycle always gets different colors
as they are always connected with an unbalanced 2-path, no matter which vertex of the graph
you resign. This is in fact the necessary and sufficient condition for two non-adjacent vertices to
receive two distinct colors under a signed coloring.

A relative signed clique of a signed graph [G] is a set R ⊆ V (G) of vertices such that any two
vertices from R are either adjacent or part of an unbalanced 4-cycle. The signed relative clique
number ω[rs]([G]) of a signed graph [G] is the maximum order of a signed relative clique of [G].

A signed clique or simply an [s]-clique is a signed graph [G] for which χ[s]([G]) = |V (G)|.
Note that [s]-cliques can hence be characterized as those signed graphs whose any two distinct
vertices are either adjacent or part of an unbalanced 4-cycle. Note that a signed graph with
an [s]-clique of order n as a subgraph has signed chromatic number and signed relative clique
number at least n. The signed absolute clique number ωas([G]) of a signed graph [G] is the
maximum order of an [s]-clique contained in [G] as a subgraph.

The signed relative clique number ω[rs](G) (resp. signed absolute clique number ω[as](G)) of
a simple graph G is the maximum of the signed relative clique numbers (resp. signed absolute
clique numbers) of all the signed graphs with underlying graph G. The signed relative clique
number ω[rs](F) (resp. signed absolute clique number ω[as](F)) of a family F of graphs is the
maximum of the signed relative clique numbers (resp. signed absolute clique numbers) of the
graphs from the family F .

From the definitions, clearly we have the following:

Lemma 6.14. For any signed graph [G] we have, ω[as]([G]) ≤ ω[rs]([G]) ≤ χ[s]([G]).

Corollary 6.15. For any [s]-clique [O] we have, ω[as]([O]) = ω[rs]([O]) = χ[s]([O]).
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Example 6.16. Consider the signified graph (B+,Λ′) obtained by adding a new vertex ∞ to the
signified graph (B,Λ) depicted in Fig. 5.4 (see Chapter 5, Section 5.3) in such a way that we
have N+(∞) = V (B \ {∞}. It is easy to check that ω[as]([B

+,Λ′]) = 4, ω[rs]([B
+,Λ′]) = 5 and

χ[s]([B
+,Λ′]) = 6. This is an example of a graph for which each inequality of the above theorem

is strict.

Note that the above defined three graph parameters respect homomorphisms of signed graphs
in the sense of the following result.

Lemma 6.17. Let [G] and [H] be two signed graphs. If [G] → [H], then χ[s]([G]) ≤ χ[s]([H]),
ω[rs]([G]) ≤ ω[rs]([H]) and ω[as]([G]) ≤ ω[as]([H]).

A usual technique for obtaining an upper bound for the three graph parameters of signed
graphs, defined in this section, is to prove that every graph in the family of graphs in question
admits a homomorphism to a particular signed graph, that is to find a signed graph that bounds
every graph of that family. Such a graph is called a universal bound of that family of graphs.
Note that not every family of graphs have a universal bound of order equal to its signed chromatic
number.

Example 6.18. For example, the family of all signed graphs on 3 vertices has signed chromatic
number 3 as each graph in the family is clearly signed 3-colorable. But it is easy to show that
a balanced 3-cycle and an unbalanced 3-cycle cannot admit a homomorphism to a single signed
graph on 3 vertices.

If we consider the set of all signed graphs to be a category with objects being the signed
graphs and morphisms being the signed homomorphisms, then we clearly have the following:

Theorem 6.19. For any family F of signed graphs that also contains the categorical co-products
of the graphs from the family, there exists a universal bound of F on χ[s](F) vertices.

Observe that a categorical co-product (unique up to homomorphic equivalence) of signed
graphs is simply the signed graph obtained by taking the disjoint union of the signed graphs.
The families of planar graphs, outerplanar graphs, planar graphs with given girth and outerplanar
graphs with given girth are each of the type that we mentioned in the above theorem.

6.3.1 Signed chromatic number

The first result on signed chromatic number is the following relation between the signed chromatic
number and the signified chromatic number which follows from Proposition 6.20.

Proposition 6.20. For any signified graph (G), we have χ[s]([G]) ≤ χs((G)) ≤ 2χ[s]([G]).

In the first relation, equality holds for any signified graph whose underlying graph is a com-
plete graph, while in the second relation, equality holds for splitable signified graphs.

One of the main general results we can prove using Lemma 6.8 follows easily from the fact
that the signified Zielonka graphs are splitable.

Theorem 6.21. Every graph with acyclic chromatic number at most k has signed chromatic
number at most k.2k−2.

As the bound in Theorem 5.12 is tight for k ≥ 3, it is tight for k ≥ 3 in the above theorem
too by Proposition 6.20.

Now we list the bounds for the signed chromatic number of the families of outerplanar graphs
and of outerplanar graphs with given girth. The relevant references are given beside the results.
Recall that Og denotes the family of outerplanar graphs with girth at least g.

Theorem 6.22.

(a) χ[s](O3) = 5. [40]

(b) χ[s](Ok) = 4 for k ≥ 4.
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Naserasr, Rollová and Sopena [40] proved that the signed chromatic number of the family of
outerplanar graphs is at most 5 and that this bound is tight. That proves part (a) of the result.
We will prove the other part in this section.

Now we list the bounds for the signed chromatic number of the families of planar graphs and
of planar graphs with given girth. Recall that Pg denotes the family of outerplanar graphs with
girth at least g.

Theorem 6.23.

(a) 10 ≤ χ[s](P3) ≤ 40.

(b) 6 ≤ χ[s](P4) ≤ 25.

(c) 4 ≤ χ[s](P5) ≤ 10.

(d) 4 ≤ χ[s](P6) ≤ 6.

(e) χ[s](Pk) = 4 for k ≥ 8.

Part (e) of the above theorem is proved by Charpentier, Naserasr and Sopena and is currently
part of an article in process.

The above theorem improves the previous upper bound of 48 for χ[s](P3) proved by Naserasr,
Rollová and Sopena [40]. We could not improve the lower bound of 10, but we do prove the
following result:

Theorem 6.24. If there exists a signed graph of order 10 to which every planar signed graph
admits a homomorphism, then that signed graph must be the signed Paley plus graph [SP+

9 ].

Proof of Theorem 6.22(b)

(b) The lower bound follows from the fact that every unbalanced cycle of even length has
signed chromatic number equal to 4 (shown in [40]).

In [47], Pinlou and Sopena showed that every outerplanar graph with girth at least k and
minimum degree at least 2 contains a face of length l ≥ k with at least (l−2) consecutive vertices
of degree 2.

Now, to prove Theorem 6.22(b), we will show that every signed outerplanar graph with girth
at least 4 admits a homomorphism to the signified graph (K4,Λ) with |Λ| = 1, that is the
signified graph on the complete graph K4 having only one negative edge.

Let [H] be a minimal (with respect to inclusion as a subgraph) signed outerplanar graph with
girth 4 having no homomorphism to (K4,Λ).

(i) Suppose that [H] contains a vertex u of degree 1. Then, due to the minimality of [H],
the signed outerplanar graph obtained by deleting the vertex u from [H] (which has girth
at least 4) admits a homomorphism to (K4,Λ). Since every vertex of (K4,Λ) has at least
one positive edge, the homomorphism can easily be extended to obtain a homomorphism
of [H] to (K4,Λ) by resigning (if needed) u.

(ii) Suppose that [H] contains a face of length l ≥ 5 with at least (l − 2) consecutive vertices
x1, x2, ..., xl−2 of degree 2. Then, due to the minimality of [H], the signed outerplanar
graph [H ′] obtained by deleting the vertices x1, x2, ..., xl−2 from [H] (which has girth at
least 4) admits a homomorphism φ to (K4,Λ). Now, let (H ′) be a presentation of [H] with
φ : (H ′)→ (K4,Λ).

It is possible to check (a bit tidious, but not difficult, by case analysis), that given any
signified path a0a1...am of length m ≥ 3 and a mapping ψ : {a1, am} → V (K4,Λ) (where
ψ(a1) can be equal to ψ(am)), it is possible to resign the vertices ai for i ∈ {1, ..,m − 1}
to obtain a signified path and extend the mapping ψ to a homomorphism of that signified
path to (K4,Λ). Note that it is enough to check the case m = 3 as the cases m > 3 are
implied by it.
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Figure 6.4: A signed triangle-free planar graph with signed relative clique number
6.

Hence, by the above observation, we can extend the homomorphism of [H ′] to (K4,Λ) to
a homomorphism of [H] to (K4,Λ).

This is a contradiction. Hence, every signed outerplanar graph with girth at least 4 admit a
homomorphism to (K4,Λ). �

Proof of Theorem 6.23(a),(c) and (d)

(a) To prove the upper bound we use Theorem 6.21 and the theorem of Borodin [4] (see
Chapter 2, Theorem 2.11) that states that every planar graph has an acyclic 5-coloring.

The lower bound was proved by Naserasr, Rollová and Sopena [40].

(c) The lower bound follows from the fact that every unbalanced cycle of even length has
signed chromatic number equal to 4 (shown in [40]).

Montejano et al. [36] showed that the signified Tromp graph (ST20) bounds the family of
signified planar graphs with girth at least 5. Note that the signified Tromp graph (ST20) is
a splitable signified graph whose split graph is the graph (SP+

9 ) on 10 vertices. Hence, by
Lemma 6.8, the upper bound follows.

(d) The lower bound follows from the fact that every unbalanced cycle of even length has
signed chromatic number equal to 4 (shown in [40]).

Montejano et al. [36] showed that the signified Tromp graph (ST12) bounds the family of signi-
fied planar graphs with girth at least 6. Note that the signified Tromp graph (ST12) is a splitable
signified graph whose split graph is the graph (SP+

5 ) on 6 vertices. Hence, by Lemma 6.8, the
upper bound follows. �

Proof of Theorem 6.23(b)

The lower bound follows from the example depicted in Fig. 6.4 as the six vertices with degree
at least 3 are part of a relative signed clique.

For proving the upper bound we will use a discharging method to show that every triangle-free
planar signed graphs admit a homomorphism to the signified Paley graph (SP25).

First let us define the partial order ≺. Let n3(G) be the number of vertices in G with degree
at most 3. For any two signed graphs [G1] and [G2], we let [G1] ≺ [G2] if and only if at least one
of the following conditions hold:

(i) | V (G1) |<| V (G2) | and n3(G1) ≤ n3(G2).

(ii) n3(G1) < n3(G2).
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Figure 6.5: Forbidden configurations for Theorem 6.23(b).

Note that the partial order ≺ is well-defined and is an extension of the induced subgraph
poset.

Let [H] be a minimal (with repect to ≺) triangle-free, planar signed graph (that is, the
underlying undirected graph H is triangle-free planar) that does not admit a homomorphism
to the signified Paley graph (SP25). We first prove that the underlying undirected graph H of
[H] does not contain the set of configurations listed in Lemma 6.25, 6.26 and 6.27 (depicted in
Fig. 6.5).

Then, using a discharging procedure, we will show that each signed triangle-free planar graph
contains at least one of these configurations, contradicting the fact thatH is a triangle-free planar
graph.

For convenience, we will refer to a vertex of degree exactly (respectively, at most, at least)
k by a k-vertex (respectively, ≥k-vertex, ≤k-vertex). Also, we will refer to a neighbor of degree
exactly (respectively, at most, at least) k of a vertex v by a k-neighbor (respectively, ≥k-neighbor,
≤k-neighbor) of v.

Assume a fixed planar embedding of H is given. A weak 7-vertex u in H is a 7-vertex adjacent
to four 2-vertices v1, ..., v4 and three ≥3-vertices w1, w2, w3 in such a way that the sequence of
neighbors of v appear as v1, w1, v2, w2, v3, w3, v4 (clockwise or counterclockwise).
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The drawing conventions for a configuration (Ck) contained in a signed graph [H] are the
following. If u and v are two vertices of (Ck), then they are adjacent in the underlying graph
H if and only if they are adjacent in (Ck). Moreover, the neighbors of a vertex drawn as a
square (called a square vertex) in H are exactly its neighbors in (Ck), whereas a vertex drawn
as a circle (called a circular vertex) may have neighbors outside of Ck. Two or more circular
vertices in (Ck) may coincide in a single vertex in H, provided they do not share a square
vertex as common neighbor. Finally, an edge will represent an edge in the underlying graph
H of the discussed signed graph [H], hence can represent either a positive or a negative edge.
Configurations (C2)-(C9) are depicted in Fig. 6.5.

Proving that configurations (C1)-(C7) are not contained in H as subgraphs is relatively
easier and is proved in the following lemma. For proving that configurations (C8) and (C9) are
not contained in H as subgraphs, we state and prove two different lemmas as the proofs are
somewhat more difficult.

Lemma 6.25. The graph H does not contain the following configurations (depicted in Fig. 6.5):

(C1) a ≤1-vertex;

(C2) a k-vertex adjacent to k 2-vertices for 1 ≤ k ≤ 49;

(C3) a k-vertex adjacent to (k − 1) 2-vertices for 2 ≤ k ≤ 23;

(C4) a k-vertex adjacent to (k − 2) 2-vertices for 3 ≤ k ≤ 12;

(C5) a 3-vertex;

(C6) a k-vertex adjacent to (k − 3) 2-vertices for 4 ≤ k ≤ 6;

(C7) two vertices u and v linked by two distinct 2-paths, both paths having a 2-vertex as internal
vertex.

Proof. For each configuration, we suppose that [H] contains (that is, the same that H contains
the configuration) it and we consider a triangle-free reduction [H ′] such that [H ′] ≺ [H]. There-
fore, by minimality of [H], [H ′] admits a homomorphism f to (SP25). We will then show that
we can choose f so that it can be extended to a homomorphism of [H] to (SP25) contradicting
the fact that [H] is a counterexample. Also, for the remainder of the proof, if [H] contains a
configuration, then [H∗] will denote the graph obtained from [H] by removing all the square
vertices from the configuration. Also we will assume that (H∗) is the presentation of [H∗] for
which f is a homomorphism of (H∗) to (SP25) and (H∗) can be obtained by deleting the square
vertices from the presentation (H) of [H].

Proof of configuration (C1): Obvious since every vertex of (SP25) has degree at least 1.

Proof of configuration (C2): Suppose [H] contains the configuration depicted in Fig. 6.5
(C2) and f is a homomorphism of [H∗] to (SP25).

Note that the edges vvi and viv′i can have either the same signs or different signs in (H) for
each i ∈ {1, 2, ..., 49}. Now, if we resign the vertex v then the edges vvi and viv′i having same
signs will change to have different signs and vice versa.

Now we resign v in (H), if needed, to obtain the presentation (H1) ∈ [H] such that vvi and
viv
′
i have different signs for at most b49/2c = 24 instances where i ∈ {1, 2, ..., 49}.
Let F = {f(v′i) | vvi and viv′i have different signs in (H1)}. As | F |≤ 24, we can extend f to

a homomorphism of [H] to (SP25) (with (H1) being the suitable presentation) using lemma 6.10,
by selecting f(v) from the set V (SP25)\F and choosing a feasible value for f(vi) using property
P2,5 of (SP25) for i ∈ {1, 2, ..., 49}.

Proof of configuration (C3): Suppose [H] contains the configuration depicted in Fig. 6.5
(C3) and f is a homomorphism of [H∗] to (SP25).

Let F = {f(v1), f(v′1), f(v′2), ..., f(v′k)}. As | F |≤ 24, it is possible to find u ∈ V (SP25) \ F .
Resign v in (H) to obtain a presentation (H1) ∈ [H] such that the edge v1v in (H1) has the

same sign as the edge uf(v1) of (SP25). Then we can fix f(v) = u and choose a feasible value for
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f(vi) using property P2,5 of (SP25) for i ∈ {1, 2, ..., 23} such that f extends to a homomorphism
of (H1) to (SP25).

Proof of configuration (C4): Suppose [H] contains the configuration depicted in Fig. 6.5
(C4) and f is a homomorphism of [H ′] to (SP25) where [H ′] is the signed graph obtained from
[H] by deleting the vertices {v3, ..., vk}. Without loss of generality we may assume (H ′) to be
the presentation that admits a homomorphism f to (SP25) and (H ′) can be obtained by deleting
the vertices {v3, ..., vk} from the presentation (H) of [H].

Let F = {f(v′3), f(v′4), ..., f(v′k)} and v be an α-neighbor of (v1, v2) in (H). Then by
lemma 6.9(b) we have,

|N α̃(f(v1), f(v2))| ≥ 11.

Now, as | F |≤ 10, it is possible to find u ∈ N α̃(f(v1), f(v2)) \ F . Replace the value of
f(v) with u keeping f a homomorphism (resign v, if needed, to find a suitable presentation) and
choose a feasible value for f(vi) using property P2,5 of (SP25) for i ∈ {3, 4, ..., 12}.

Proof of configuration (C5): Suppose that [H] contains the configuration depicted in
Fig. 6.5 (C5) and (H) be any presentation of it.

Let (H ′) be the signified graph obtained from (H) by deleting the vertex v and adding, for
every 1 ≤ i < j ≤ 3, a new vertex vij and the edges vivij and vijvj having the same sign as the
sign of the edges viv and vjv respectively in (H) denoted by αi and αj respectively.

As configuration (C1)-(C4) are forbidden in H by the above, we have dH(vi) ≥ 3 for i ∈
{1, 2, 3}. Hence, n3(H) < n3(H ′). Therefore, [H ′] ≺ [H]. Clearly, H ′ is triangle-free. Hence,
there is a homomorphism f of [H ′] to (SP25). Without loss of generality we may assume (H ′)
to be the presentation that admits a homomorphism f to (SP25).

Now by lemma 6.25 we can find an α̃-neighbor u of (f(v1), f(v2), f(v3)) in (SP25) with α =
(α1, α2, α3). Now fix f(v) = u. It is easy to note that f restricted to V (H) is a homomorphism
of [H] (resign v of (H), if needed, to get a suitable presentation) to (SP25).

Proof of configuration (C6): Let H ′ be the graph obtained by deleting the vertices
v4, ..., vk from H. Suppose [H] contains the configuration depicted in Fig. 6.5 (C6) and f is a
homomorphism of [H ′] to (SP25).

Without loss of generality we may assume (H ′) to be the presentation that admits a homo-
morphism f to (SP25) and (H ′) can be obtained by deleting the vertices {v4, ..., vk} from the
presentation (H) of [H].

Let F = {f(v′4), ..., f(v′k)} and v be an α-neighbor of (v1, v2, v3) in (H). Then by lemma 6.9(b)
we have,

|N α̃(f(v1), f(v2), f(v3))| ≥ 4.

Now, as | F |≤ 3, it is possible to find u ∈ N α̃(f(v1), f(v2), f(v3)) \ F . Replace the value
of f(v) with u keeping f a homomorphism of [H] (resign v of (H), if needed, to get a suitable
presentation) to (SP25) and choose a feasible value for f(vi) using property P2,5 of (SP25) for
i ∈ {4, 5, ..., 7}.

Proof of configuration (C7): Suppose [H] contains the configuration depicted in Fig. 6.5
(C7).

If u and w have no common neighbor other than v1 and v2 then consider [H ′] to be the
graph obtained from [H∗] by adding the edge uw. Clearly [H ′] ≺ [H] as we have | V (H ′) |=
(| V (H) | −2) and n3(H ′) ≤ n3(H). Also H ′ is triangle-free as u and v do not have any common
neighbor in H ′. Therefore, [H ′] admits a homomorphism f to (SP25) from which we can easily
find a homomorphism of [H] to (SP25) using property P̃2,11 of (SP25).

Now suppose u and w have at least one common neighbor v3 other than v1 and v2. Note
that, irrespective of the presentation of [H], there is i 6= j 6= 3 such that both vi and vj are
α̃-neighbors of {u,w} for some 2-type-vector (depending on the presentation) α.
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Now consider [H ′] to be the graph obtained from [H] by deleting the vertex vj . Clearly
[H ′] ≺ [H] as H ′ is a subgraph of H. Therefore, [H ′] admits a homomorphism f to (SP25).

Without loss of generality we may assume that (H ′) is a presentation that admits a homomor-
phism f to (SP25) and that (H ′) can be obtained by deleting the vertex vj from the presentation
(H) of [H].

Assume that vi is a β-neighbor of {u,w} in (H). Now, we resign vj in (H) to obtain the
presentation (H1) of [H] such that vj is also a β-neighbor of {u,w} like vi.

Now, fix f(vj) = f(vi) and thereby extend f to a homomorphism of (H1) to (SP25). �

In the following we will prove that configuration (C8) is not contained in H as subgraph.

Lemma 6.26. The graph H does not contain the following configuration (depicted in Fig. 6.5):

(C8) a 4-face abcd such that d is 2-vertex, a and c are weak 7-vertices, and b is a k-vertex
adjacent to (k − 3) 2-vertices for 3 ≤ k ≤ 8.

Proof. Suppose [H] contains the configuration depicted in Fig. 6.5(C8).
Consider [H ′] to be the graph obtained from [H] by deleting the vertex d. Clearly [H ′] ≺ [H]

as H ′ is a subgraph of H. Therefore, [H ′] admits a homomorphism f to (SP25). Without loss of
generality we may assume that (H ′) is a presentation that admits a homomorphism f to (SP25)
and that (H ′) can be obtained by deleting the vertex d from the presentation (H) of [H]. Also
assume that (H∗) is the presentation of [H∗] obtained by deleting the square vertices of (H) and
that f∗ is the homomorphism of (H∗) to (SP25) obtained by restricting f .

We want to show that f∗ can be extended to a homomorphism of [H] (by resigning the square
vertices of (H) we can obtain a suitable presentation) to (SP25). We will assume the contrary
and prove by contradiction.

Let a1 and a2 be the two ≥3-neighbors, other than b, of the vertex a. Now obtain the
presentation (H1) ∈ [H] by resigning the vertices a, b and c of (H), if needed, in such a way that
the edges a1a, ab and bc are all positive in (H1).

Note that we still get (H∗) if we remove the square vertices from (H1). Now let the three
2-neighbors of a (other than d) be a3, a4 and a5. Also, let the neighbor of ai, other than a, be
a′i for i ∈ {3, 4, 5}. Assume that a is an αa-neighbor of (a1, a2) in (H1) where αa = (αa1 , αa2)
(note that αa1 = +).

Now define the following sets in (SP25):

Sa+ = Nαa(f∗(a1), f∗(a2)) \ {f(a′3), f(a′4), f(a′5)}.
Sa− = N ᾱa(f∗(a1), f∗(a2)) \ {f(a′3), f(a′4), f(a′5)}.
Sa = Sa+ ∪ Sa−.

Similarly, we can define c1, c2, c3, c4, c5, c
′
3, c
′
4, c
′
5, αc, αc1 , αc2 , Sc+, Sc− and Sc.

Claim 1: We have f∗(a1) 6= f∗(a2) and f∗(c1) 6= f∗(c2).

Proof of Claim 1: First we will show that f∗(a1) 6= f∗(a2).
Assume that f∗(a1) = f∗(a2). Then f(a1) = f(a2) in (H ′) as well. As f is a homomorphism,

a1a and a2a have the same sign in (H ′) as the sign of the edge f(a1)f(a) in (SP25).
Now let a be a β-neighbor of (a1, b) in (H ′) for some 2-type-vector β. Now, as (SP25) has

property P2,5 by Lemma 6.9(b)), we have

|Nβ(f(a1), f(b))| ≥ 5.

Hence, we can choose some u ∈ Nβ(f(a1), f(b)) \ {f(a′3), f(a′4), f(a′5), f(c)}.
Now fix φ(a) = u and φ(x) = f(x) for all x ∈ V (H ′) \ {a, a3, a4, a5, d}. Note that φ can be

extended to a homomorphism of [H] (with (H) being the suitable presentation) to (SP25) using
property P2,5 of (SP25). But this is a contradiction. Hence, f∗(a1) 6= f∗(a2).

Similarly, we can show that f∗(c1) 6= f∗(c2). ♦
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Let b0 be the ≥3-neighbor, other than a and c, of the vertex b. Now let b1, b2, ..., bk−3 be the
(k − 3) 2-neighbors of b and let the neighbor of bi, other than b, be b′i for i ∈ {1, 2, ..., k − 3}.
Assume that bb0 is a an edge with the sign αb.

Define the following sets in (SP25):

Sb+ = Nαb(f∗(b0)) \ {f(b′1), f(b′2), ..., f(b′k−3)}.
Sb− = N ᾱb(f∗(b0)) \ {f(b′1), f(b′2), ..., f(b′k−3)}.
Sb = Sb+ ∪ Sb−.

As k ≤ 8, we have |Sb| ≥ 19 (by Lemma 6.9(a)). Also, using Lemma 6.9(b), we have
|Sa|, |Sc| ≥ 8.

Claim 2: For every u ∈ Sb \ {f∗(a1), f∗(a2)}, there exists a w ∈ Sa such that the homo-
morphism f∗ can be extended with f∗(a) = w and f∗(b) = u.

Proof of Claim 2: Assume the contrary. If u ∈ Sb+, then every vertex w1 ∈ Sa+ \ {u}
is a negative neighbor of u (otherwise f∗ can be extended with f(a) = w1 and f(b) = u) and
every vertex of w2 ∈ Sa− \ {u} is a positive neighbor of u (otherwise f∗ can be extended with
f(a) = w2 and f(b) = u).

Basically then each vertex of Sa \ {u} will be a γ̃-neighbor of (f∗(a1), f∗(a2), u) in (SP25)
for γ = (α1, α2,−). By Lemma 6.12 we know that,

|N γ̃(f∗(a1), f∗(a2), u)| ≤ 6 in (SP25).

This is a contradiction as we have,

Sa \ {u} ⊆ N γ̃(f∗(a1), f∗(a2), u) and
|Sa \ {u}| ≥ 7.

Hence the claim is true for u ∈ Sb+.
Similarly, we can prove the claim for u ∈ Sb−. ♦

Similar to the above claim we can also prove that for every u ∈ Sb \ {f∗(c1), f∗(c2)}, there
exists z ∈ Sc such that the homomorphism f∗ can be extended with f∗(c) = z and f∗(b) = u.

Hence, combining the two statements we get the following claim.
Claim 3: For every u ∈ Sb \ {f∗(a1), f∗(a2), f∗(c1), f∗(c2)}, there exists a w ∈ Sa and

a z ∈ Sc such that the homomorphism f∗ can be extended with f∗(b) = u, f∗(a) = w and
f∗(c) = z.

Notice that, if in this extention w 6= v, then we can extend the homomorphism to obtain a
homomorphism of [H] using property P2,5 of (SP25).

Therefore, as w = z, we also have the uniqueness of w and z. Hence, for every u ∈ Sb \
{f∗(a1), f∗(a2), f∗(c1), f∗(c2)} there exists exactly one w ∈ Sa and exactly one z ∈ Sc such that
w = z and the homomorphism f∗ can be extended with f∗(b) = u and f∗(a) = f∗(c) = w (= z).

Claim 4: If u ∈ Sb \ {f∗(a1), f∗(a2), f∗(c1), f∗(c2)}, then u ∈ Sa ∩ Sc.

Proof of Claim 3: Assume that u ∈ Sb \ {f∗(a1), f∗(a2), f∗(c1), f∗(c2)} and u /∈ Sa. We
know by Claim 2 that there is exactly one vertex w ∈ Sa such that the homomorphism f∗ can
be extended with f∗(b) = u and f∗(a) = w. That means if u ∈ Sb+, then each vertex of Sa \{w}
will be a γ̃-neighbor of (f∗(a1), f∗(a2), u) in (SP25) for γ = (α1, α2,−).

By Lemma 6.12 we know that

|N γ̃(f∗(a1), f∗(a2), u)| ≤ 6 in (SP25).

This is a contradiction as
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Sa \ {w} ⊆ N γ̃(f∗(a1), f∗(a2), u) and
|Sa \ {w}| ≥ 7.

We arrive to a similar contradiction if u ∈ Sb−. ♦

Hence, by Claim 4 we have shown that Sb \ {f∗(a1), f∗(a2), f∗(c1) ⊆ Sa. But we have

|Sb \ {f∗(a1), f∗(a2), f∗(c1)| ≥ 19 and |Sa| ≤ 12.

This is clearly a contradiction. Hence, H does not contain the configuration (C8). �

In the following we will prove that configuration (C9) is not contained in H as subgraph.

Lemma 6.27. The graph H does not contain the following configuration (depicted in Fig. 6.5):

(C9) a 4-face abcd such that d is 2-vertex, a and c are weak 7-vertices, and b is a k-vertex
adjacent to (k − 4) 2-vertices for 4 ≤ k ≤ 7.

Proof. Suppose [H] contains the configuration depicted in Fig. 6.5.
Consider [H ′] to be the graph obtained from [H] by deleting the vertex d. Clearly [H ′] ≺ [H]

as H ′ is a subgraph of H. Therefore, [H ′] admits a homomorphism f to (SP25).
Without loss of generality we may assume that (H ′) is a presentation that admits a homomor-

phism f to (SP25) and that (H ′) can be obtained by deleting the vertex d from the presentation
(H) of [H]. Also assume that (H∗) is the presentation of [H∗] obtained by deleting the square
vertices of (H) and that f∗ is the homomorphism of (H∗) to (SP25) obtained by restricting f .

We want to show that f∗ can be extended to a homomorphism of [H] (by resigning the square
vertices of (H) we can obtain a suitable presentation) to (SP25). We will assume the contrary
and prove by contradiction.

We define (H1), a1, a2, a3, a4, a5, a
′
3, a
′
4, a
′
5, αa, αa1 , αa2 , Sa+, Sa−, Sa, c1, c2, c3, c4, c5, c

′
3, c
′
4, c
′
5,

αc, αc1 , αc2 , Sc+, Sc− and Sc similarly as in the proof of Lemma 6.26.
Let b0+ and b0− be the two ≥3-neighbors, other than a and c, of the vertex b. Now let

the (k − 4) 2-neighbors of b be b1, b2, ..., bk−4 and let the neighbor of bi, other than b, be b′i for
i ∈ {1, 2, ..., k − 4}. Assume that b is an αb-neighbor of (f∗(b0+), f∗(b0−)) for the 2-type-vector
αb = (αb+, αb−).

Define the following sets in (SP25):

Sb+ = Nαb(f∗(b0+), f∗(b0−)) \ {f(b′1), f(b′2), ..., f(b′k−4)}.
Sb− = N ᾱb(f∗(b0+), f∗(b0−)) \ {f(b′1), f(b′2), ..., f(b′k−4)}.
Sb = Sb+ ∪ Sb−.

Claim 1: We have f∗(b0+) 6= f∗(b0−).

Proof of Claim 1: Let f∗(b0+) = f∗(b0−). Then f(b0+) = f(b0−) in (H ′) as well. As, f is
a homomorphism, b0+b and b0−b has the same sign in (H ′) as the sign of the edge f(b0+)f(b) in
(SP25).

Moreover, even if we resign the square vertices of (H ′), the two edges b0+b and b0−b still have
the same sign (that is, if the sign changes, it changes for both the edges simultaniously). Hence,
this case can be reduced to configuration (C8) as b0+b and b0−b have identical signs even if we
resign the square vertices of (H ′). We have shown in the proof of Lemma 6.26 that f∗ can be
extended to a homomorphism of [H] to (P25) and by resigning the square vertices of (H) we can
obtain a suitable presentation. Hence, f∗(b0+) 6= f∗(b0−). ♦

As k ≤ 3 we have, by Lemma 6.9(b), |Sa|, |Sb|, |Sc| ≥ 8.

Claim 2: We have f∗(a1) 6= f∗(a2) and f∗(c1) 6= f∗(c2).
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Proof of Claim 2: This claim can be proved in a way similar to the proof of Claim 1 of
Lemma 6.26. ♦

Define the subset Ca ⊆ Sb to be the set of vertices u ∈ Sb such that there exists w ∈ Sa and
the homomorphism f∗ can be extended with f∗(a) = w and f∗(b) = u. Similarly define Cc and
let C = Ca ∩ Cc.

Claim 3: We have Sb \ {f∗(a1), f∗(a2)} ⊆ Ca, Sb \ {f∗(c1), f∗(c2)} ⊆ Cc and Sb \ {f∗(a1),
f∗(a2), f∗(c1), f∗(c2)} ⊆ C.

Proof of Claim 3: To prove Sb \ {f∗(a1), f∗(a2)} ⊆ Ca we can just imitate the proof of
Claim 2 of Lemma 6.26. For the rest, we can imitate the discussion following the proof of Claim 2
in Lemma 6.26. ♦

Claim 4: For every u ∈ C, there exist exactly one w ∈ Sa and exactly one z ∈ Sc such
that w = z and the homomorphism f∗ can be extended with f∗(b) = u and f∗(a) = f∗(c) = w
(= z).

Proof of Claim 4: For every u ∈ C, there exists w ∈ Sa and z ∈ Sc such that the
homomorphism f∗ can be extended with f∗(b) = u and f∗(a) = w and f∗(c) = z is true by
Claim 3. Notice that if in this extention w = f∗(a) 6= f∗(c) = z, then we can extend the
homomorphism to obtain a homomorphism of [H] using property P2,5 of (SP25). Therefore, as
w = z, we also have the uniqueness of w and z. ♦

Claim 5: We have f∗(a1), f∗(a2), f∗(c1), f∗(c2) /∈ C.

Proof of Claim 5: Assume f∗(a1) ∈ C. Hence by Claim 4, there exists exactly one w ∈ Sa
and exactly one z ∈ Sc such that w = z and the homomorphism f∗ can be extended with
f∗(b) = f∗(a1) and f∗(a) = f∗(c) = w. If f∗(a1) ∈ Sb+, then each vertex of the set Sa \ {w}
will be a γ̃-neighbor of (f∗(a1), f∗(a2), f∗(a1)) in (SP25) for γ = (+, α2,−) (as α1 = +) which is
a contradiction. If f∗(a1) ∈ Sb+, then w will be a (+)-neighbor (resp., (−)-neighbor) of f∗(a1)
for w ∈ Sa+ (resp., w ∈ Sa−) as the homomorphism f∗ can be extended with f∗(b) = f∗(a1)
and f∗(a) = w. Hence, w is a γ̃-neighbor of (f∗(a1), f∗(a2), f∗(a1)) in (SP25) for γ = (+, α2,−)
(as α1 = +) which is again a contradiction. Hence, f∗(a1) /∈ C. Similarly, we can show that
f∗(a2), f∗(c1), f∗(c2) /∈ C. ♦

Claim 6: We have C ⊆ Sa ∩ Sc.

Proof of Claim 6: Assume that u ∈ C and u /∈ Sa. We know by Claim 4 that there is
exactly one vertex w ∈ Sa such that the homomorphism f∗ can be extended with f∗(b) = u
and f∗(a) = w. That means if u ∈ Sb+, then each vertex of Sa \ {w} will be a γ̃-neighbor of
(f∗(a1), f∗(a2), u) in (SP25) for γ = (α1, α2,−). By Lemma 6.12 we know that

|N γ̃(f∗(a1), f∗(a2), u)| ≤ 6 in (SP25).

This is a contradiction as Sa \ {w} ⊆ N γ̃(f∗(a1), f∗(a2), u) and |Sa \ {w}| ≥ 7. We arrive to
a similar contradiction if u ∈ Sb−. Hence the claim is proved. ♦

Claim 7: We have |Sa|, |Sc| = 8.

Proof of Claim 7: Assume that |Sa| ≥ 9. Then we have, for some u ∈ C, exactly
one w ∈ Sa such that we can extend the homomorphism f∗ with f∗(b) = u and f∗(a) = w.
Hence, Sa \ {w} ⊆ |N γ̃(f∗(a1), f∗(a2), u)| for some 3-type-vector γ. This is a contradiction as
|N γ̃(f∗(a1), f∗(a2), u)| ≤ 6 by Lemma 6.12 and |Sa \ {w}| ≥ 7. So, |Sa| ≤ 8. But we know
already that |Sa| ≥ 8. Hence, |Sa| = 8. Similarly, we can show that |Sc| = 8. ♦

Claim 8: We have αa = (+,+) and αc ∈ {(+,+), (−,−)}.

Proof of Claim 8: Now we have, |Sa| = 8. Hence, |Nαa(f∗(a1), f∗(a2))| ≤ 11. So, by
Lemma 6.12, we have αa ∈ {(+,+), (−,−)}. Similarly we have αc ∈ {(+,+), (−,−)}. Now,
αa = (+,+) because α1 = +. ♦
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Claim 9: We have C ⊆ Sb+ and αc = (+,+).

Proof of Claim 9: Assume u ∈ C such that u /∈ Sb+. Hence, y ∈ Sb−. By Claim 4 there
exists exactly one w ∈ Sa such that the homomorphism f∗ can be extended with f∗(b) = u
and f∗(a) = w. Hence, Sa \ {u,w} ⊆ N γ̃(f∗(a1), f∗(a2), u) for γ = (+,+,+). Hence, we
arrive to a contradiction as |N γ̃(f∗(a1), f∗(a2), u)| ≤ 5 by Lemma 6.12 and |Sa \ {u,w}| ≥ 6.
Hence, C ⊆ Sb+ as αa = (+,+). With similar logic, αc = (−,−) will imply C ⊆ Sb−. Hence,
αc 6= (−,−). Hence, αc = (+,+). ♦

Claim 10: We have, Sb− = Sb ∩ {f∗(a1), f∗(a2), f∗(c1), f∗(c2)}.

Proof of Claim 10: By Claim 3 and Claim 9 we already know that Sb− ⊆ Sb ∩ {f∗(a1),
f∗(a2), f∗(c1), f∗(c2)}. Now assume that f∗(a1) ∈ Sb+. But then for any w ∈ Sa, we can extend
the homomorphism f∗ with f∗(b) = f∗(a1) and f∗(a) = w (that the extension is a homomorphism
can be checked using the above claims). Hence, f∗(a1) ∈ Ca. If f∗(a1) ∈ {f∗(c1), f∗(c2)}, then
similarly f∗(a1) ∈ Cc. If f∗(a1) /∈ {f∗(c1), f∗(c2)}, then by Claim 3, f∗(a1) ∈ Cc. Hence,
f∗(a1) ∈ Ca ∩ Cc = C. But this contradicts Claim 5. So, f∗(a1) /∈ Sb+. Therefore, if f∗(a1) ∈
Sb, then f∗(a1) ∈ Sb−. Similar statement is true for f∗(a2), f∗(c1) and f∗(c2). So we have
Sb ∩ {f∗(a1), f∗(a2), f∗(c1), f∗(c2)} ⊆ Sb. ♦

Claim 11: If x ∈ Sa ∩ Sc, then x ∈ Sa+ if and only if x ∈ Sc+.

Proof of Claim 11: Assume that x ∈ Sa ∩ Sc and x ∈ Sa+. But yet let x ∈ Sc−. If
the vertex x is such that it is possible to extend the homomorphism f∗ with f∗(a) = x and
f∗(b) = u for some u ∈ C. Then by the definition of C and Claim 4 we can further extend
f∗ with f∗(c) = f∗(a) = x. But this extension is no longer a homomorphism because to have
f∗(c) = f∗(a) = x, we need to resign the vertex c of (H1), while keeping the vertex a as it is
(as x ∈ Sa+ ∩ Sc−), to obtain a suitable presentation needed for the homomorphism (the edges
ab and bc will have different signs whereas the edges f∗(a)f∗(b) and f∗(c)f∗(b) have the same
sign).

Now assume x is such that it is not possible to extend the homomorphism f∗ with either
f∗(a) = x and f∗(b) = u or f∗(c) = x and f∗(b) = u for any u ∈ C. Then, as it is not possible to
extend the homomorphism f∗ with f∗(a) = x and f∗(b) = u for any u ∈ C, we have C ⊆ N (−)(x)
(because, x ∈ Sa+). On the other hand, as it is not possible to extend the homomorphism f∗

with f∗(c) = x and f∗(b) = u for any u ∈ C, we have C ⊆ N (+)(x). This is a contradiction.
Hence, x ∈ Sa ∩ Sc and x ∈ Sa+ implies x ∈ Sc+. Similarly, we can prove that x ∈ Sa ∩ Sc and
x ∈ Sc+ implies x ∈ Sa+. ♦

Claim 12: We have {f∗(a1), f∗(a2)} = {f∗(c1), f∗(c2)}.

Proof of Claim 12: Note that C ⊆ N γ̃(X) where X = {f∗(a1), f∗(a2), f∗(c1), f∗(c2)}
and γ = (+, ...,+) is a |X|-type-vector by Claim 8, Claim 9 and Claim 11. If |X| ≥ 3, then
|C| ≤ 5 by Lemma 6.12. If |C| ≤ 5, then |Sb \ C| ≥ 3 as |Sb| ≥ 8. Now by Claim 3 we have
Sb \ C ⊆ X ∩ Sb−. Hence C ∪ {b0+, b0−} ⊆ N γ̃′(Sb \ C) where γ = (+, ...,+) is a |Sb \ C|-
type-vector. As |C ∪ {b0+, b0−}| ≥ 6 (because |C| ≥ 4 by Claim 3 and as |Sb| ≥ 8), this
is a contradiction to Lemma 6.12. Hence, |X| ≤ 2. Then by Claim 1 and Claim 2 we have
{f∗(a1), f∗(a2)} = {f∗(c1), f∗(c2)}. ♦

We have Sb− = {f∗(a1), f∗(a2)} by Claim 10 as by Lemma 6.9(b) we already know |Sb−| ≥ 2.
By the same lemma we know that |Sb+| ≤ 6. But as |Sb| ≥ 8, we have |Sb+| = 6. Hence
αb ∈ {(+,+), (−,−)}. Also we know already that Sb+ = C. Hence |C| = 6.

Let w ∈ C. Then there exists u ∈ Sb such that we can extend the homomorphism f∗ with
f∗(b) = u and f∗(a) = w, as otherwise Sb \ {u} ⊆ N γ̃(f∗(b0+), f∗(b0−), w) which leads us to a
contradiction by Lemma 6.12.

Hence, by Claim 4, there is a bijection λ from C to C such that we can extend the homo-
morphism f∗ with f∗(b) = λ(u) and f∗(a) = u for each u ∈ C.

Now assume w1, w2 ∈ C such that wi ∈ Sai for i ∈ {1, 2}. Then Sb \ {wi, λ(wi)} ⊆
N γ̃i(f∗(b0+), f∗(b0−), wi) for γ1 = (αb+, αb−,−) and γ2 = (αb+, αb−,+). Now we know by
Lemma 6.12 that either |N γ̃1(f∗(b0+), f∗(b0−), w1)| ≤ 5 or |N γ̃2(f∗(b0+), f∗(b0−), w2)| ≤ 5. This
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is a contradiction as |Sb \ {wi, λ(wi)}| ≥ 6. Hence, by Claim 11, either C ⊆ Sa+ ∩ Sc+ or
C ⊆ Sa− ∩ Sc−.

If αb = (+,+), then C ⊆ Sa+ ∩ Sc+. Then C ⊆ N γ̃′(f∗(b0+), f∗(b0−), f∗(a1)) for γ′ =
(+,+,+). Also, if αb = (−,−), then C ⊆ Sa− ∩ Sc−. Then C ⊆ N γ̃′(f∗(b0+), f∗(b0−), f∗(a1))
for γ′ = (+,+,+). This is a contradiction by Lemma 6.12 and the fact that |C| ≥ 6. Therefore,
the homomorphism f∗ can be extended to a homomorphism of [H] to (SP25). �

To complete the proof of Theorem 6.23(b), we use a discharging procedure. We define the
weight function ω by

ω(x) = d(x)− 4 for every x ∈ V (H) ∪ F (H).

Since H is a plane graph, we have by Euler’s formula (see Chapter 2, Theorem 2.1) (|V (H)|−
|A(H)|+ |F (H)| = 2):∑

x∈V (H)

ω(x) +
∑

x∈F (H)

ω(x) =
∑

x∈V (H)

(d(x)− 4) +
∑

x∈F (H)

(d(x)− 4) = −8 < 0

In what follows, we will define discharging rules (R1), (R2), and (R3) and redistribute weights
accordingly. Once the discharging is finished, a new weight function ω∗ is produced. However,
the total sum of weights is not modified by the discharging rules. Nevertheless, we can show that
ω∗(x) ≥ 0 for every x ∈ V (H) ∪ F (H). This leads to the following obvious contradiction:

0 >
∑

x∈V (H)

ω(x) +
∑

x∈F (H)

ω(x) ≤
∑

x∈V (H)

ω∗(x) +
∑

x∈F (H)

ω∗(x) ≥ 0

The discharging rules are defined as follows:
(R1) Each ≥4-vertex gives 1 to each of its 2-neighbors.
(R2) Each ≥5-face f = ...axb such that a and b are 2-vertices gives 1 (resp. 1/2 ) to x if x is

a weak 7-vertex (resp. is not a weak 7-vertex).
(R3) Each ≥5-face f = ...awxyb such that a, b, x are 2-vertices and w, y are weak 7-

vertices either receives 1/2 from the vertex z if wxyz is a 4-face, or receives 1 from the ≥5-face
f ′ = ...cwxyd if c, d are ≥4-vertices.

First we will calculate the value of the new weight function for every vertex of the graph and
prove the following.

Lemma 6.28. For all vertices v, ω∗(v) ≥ 0.

Proof. In the following, d≥4(v) denotes the number of neighbors of v with degree at least 4.
Similarly, d2(v) denotes the number of neighbors of v with degree exactly 2.

Then it is clear that, for every vertex v of [H], we have d(v) = d≥4(v) + d2(v) since [H]
contains neither vertices of degree at most 1 by (C1), nor 3-vertices by (C5).

Let v be a k-vertex of [H] . Therefore, k = d≥4(v) + d2(v). Recall that the initial charge of
v is ω(v) = k − 4. If k = 2, then v receives 2× 1 by (R1); hence, ω∗(v) = ω(v) + 2 = 0.

In the remainder of this section assume k ≥ 4.

− if d≥4 = 0, then d2(v) = k ≥ 50 by (C2). By (R1), v gives k× 1 . By (C7), v is incident to
k ≥5-faces, and therefore v receives k× 1/2 by (R2). Hence, ω∗(v) = ω(v)− k+ k/2 ≥ 21.

− if d≥4 = 1, then d2(v) = k − 1 ≥ 23 by (C3). By (R1), v gives (k − 1)× 1 . By (C7), v is
incident with (k − 2) ≥5-faces, and therefore v receives (k − 2) × 1/2 by (R2). Moreover,
v is adjacent to at most one weak 7-vertex and therefore (R3) does not apply. Hence,
ω∗(v) = ω(v)− (k − 1) + (k − 2)/2 ≥ 8.
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− if d≥4 = 2, then d2(v) = k − 2 ≥ 11 by (C3). By (R1), v gives (k − 2) × 1. By (C7),
v is incident with (k − 3) ≥5-faces, and therefore v receives at least (k − 3) × 1

2 by (R2).
Moreover, v is adjacent to at most two consecutive weak 7-vertices, therefore gives away
at most 1/2 by (R3). Hence, ω∗(v) = ω(v)− (k − 2) + (k − 4)/2− 1

2 ≥ 2.

− if d≥4 = 3, then d2(v) = k− 3 ≥ 4 by (C5) and (C7). So, k ≥ 7. In each subcase, by (R1),
v gives (k − 3)× 1.

B Suppose that the three ≥4-neighbors of v are consecutive. By (C7), v is incident with
(k − 4) ≥5-faces, each of which gives 1

2 to v by (R2). Moreover, v is adjacent to at
most 3 consecutive weak 7-vertices, therefore gives away at most 2 × 1

2 by (R3). If
k ≤ 8, then d2(v) ≤ 5, therefore by (C8) the discharging rule (R3) does not apply
to v. Hence, for k ≤ 8, ω∗(v) = ω(v) − (k − 3) + (k − 4)/2 ≥ 1

2 . If k ≥ 9, then
ω∗(v) = ω(v)− (k − 3) + (k − 4)/2− 2× 1

2 ≥
1
2 .

B Suppose that two ≥4-neighbors of v are consecutive. By (C7), v is incident with
(k − 5) ≥5-faces, each of which gives 1

2 to v by (R2). Moreover, v is adjacent to
at most 2 consecutive weak 7-vertices, therefore gives away at most 1

2 by (R3). If
k ≤ 8, then d2(v) ≤ 5, therefore by (C8) the discharging rule (R3) does not apply
to v. Hence, for k ≤ 8, ω∗(v) = ω(v) − (k − 3) + (k − 5)/2 ≥ 0. If k ≥ 9, then
ω∗(v) = ω(v)− (k − 3) + (k − 5)/2− 1

2 ≥
1
2 .

B Suppose that none of the ≥4-neighbors of v are consecutive. Hence (R3) does not
apply. By (C7), v is incident with (k−6) ≥5-faces, each of which gives 1

2 to v if k ≥ 8
or gives 1 to v if k = 7 (that is, if v is a weak 7-vertex) by (R2). Hence, for k = 7,
ω∗(v) = ω(v)−(k−3)+(k−6) = 0 and for k ≥ 8, ω∗(v) = ω(v)−(k−3)+(k−6)/2 ≥ 0.

− if d≥4 = 4, then d2(v) = k−44. By (R1), v gives (k−4)×1. Suppose (R3) does not apply.
Then ω∗(v) ≥ ω(v)− (k − 4) = 0. Now suppose that (R3) applies. Note that it applies at
most twice (otherwise there will be a weak 7-vertex with three consecutive 2-neighbors).
Moreover, by (C9), we have d2(v) ≥ 4, that implies k ≥ 8.

B Suppose first that (R3) applies only once; then v gives 1
2 to the corresponding ≥5-face.

Moreover, by (R2), v receives at least k−7
2 . Hence, ω∗(v) = ω(v) − (k − 4) + (k −

7)/2− 1
2 ≥ 0.

B Suppose now that (R3) applies twice; then v gives 2× 1
2 to the corresponding ≥5-faces.

Moreover, by (R2), v receives at least k−6
2 . Hence, ω∗(v) = ω(v) − (k − 4) + (k −

6)/2− 2× 1
2 ≥ 0.

− Suppose finally that d≥4(v) ≥ 5. By (C1), v gives (k − d≥4(v))× 1. Moreover, by (R3), v
gives at most bd≥4(v)

2 c × 1
2 . Hence, ω

∗(v) ≥ ω(v)− (k − d≥4(v))− (bd≥4(v)
2 )× 1

2 ≥ 0.

Thus, for every v ∈ V (H), we have ω∗(v) ≥ 0. �

Now we will calculate the value of the new weight function for every face of the graph and
prove the following.

Lemma 6.29. For all faces f , ω∗(f) ≥ 0.

Proof. Let f be a k-face of H. Since H is triangle-free, we have k ≥ 4. Recall that the initial
charge of f is ω(f) = k − 4.

− If k = 4, then no discharging rule applies. Hence, ω∗(f) = ω(f) = 0.

− If k = 5, then f is incident with at most two 2-vertices by (C3).

B If f has no incident 2-vertices, then ω∗(v) ≥ ω(f) = 1.
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B If f is incident with one 2-vertex, then only (R3) may apply at most once and thus
ω∗(v) ≥ ω(f)− 1 = 0.

B If f is adjacent to two 2-vertices x and z, then f gives at most 1 to the common
neighbor of x and z by (R2). (R3) does not apply in this case. Hence ω∗(v) ≥
ω(f)− 1 = 0.

− If k = 6, then f is incident with at most three 2-vertices by (C3).

B If f has no incident 2-vertices, then ω∗(v) ≥ ω(f) = 2.

B If f is incident with one 2-vertex, then only (R3) may apply at most once and thus
ω∗(v) ≥ ω(f)− 1 = 1.

B If f is adjacent to two 2-vertices x and z, and if x and z have a common neighbor,
then f gives at most 1 to that common neighbor by (R2). (R3) does not apply in this
case. Hence, ω∗(v) ≥ ω(f) − 1 = 1. If x and z has no common neighbor, then (R2)
does not apply. But (R3) may apply at most twice. Hence ω∗(f) ≥ ω(f)− 2× 1 = 0.

B Finally, suppose that f is adjacent to three 2-vertices.

� If f is incident with at most one weak 7-vertex, then f gives at most (1 × 1) +
(2× 1

2) = 2 by (R2). Hence, ω∗(f) ≥ ω(f)− 2× 1 = 0.
� If f is incident with two weak 7-vertices, then f gives (2 × 1) + (1 × 1

2) = 5
2 by

(R2). Moreover, f receives at least 1
2 by (R3). Hence, ω∗(f) ≥ ω(f)− 5

2 + 1
2 = 0.

� If f is incident with three weak 7-vertices, then f gives 3× 1 by (R2). Moreover,
f receives at least 3× 1

2 by (R3). Hence, ω∗(f) ≥ ω(f)− 3× 1 + 3× 1
2 = 1

2 .

− Suppose finally that k ≥ 7, and assume that (R2) applies n times and (R3) appliesm times.
It is clear that f gives weights by (R2) to at most bk2c vertices; hence n ≤ b

k
2c. Moreover,

we can easily check that 2n+3m ≤ k. With these constraints, we have n+m = n+2n+3m
3 ≤

b k
2
c+k
3 , which implies that n+m ≤ k − 4 when k ≥ 7. Hence, ω∗(v) ≥ ω(f)− n−m ≥ 0.

Thus, for every f ∈ F (H), we have ω∗(f) ≥ 0. �

This completes the proof. �

Proof of Theorem 6.24

The signified planar graph (B0) from Fig 6.6 is a presentation of the signed planar graph [B0]
with signed chromatic number 10 (one can check [40] for the proof). To prove that the signed
graph [B0] has signed chromatic number at least 10, Naserasr, Rollová and Sopena [40] showed
that for any signed coloring we need to use at least 4 colors for each of the sets {x1, x2, ..., x5}
and {y1, y2, ..., y5} of vertices of the graph while u and v receives two distinct colors different
from the colors received by every other vertices.

Note that the graph induced by the vertices u, v, x1, x2, x3, y1, y2, y3 is an [s]-clique on 8
vertices. Now assume that (H) is a signified graph of order 10 to which every signed planar
graph admits a homomorphism.

Now construct the signified planar graph (B1) by gluing a copy of the signified planar graph
(B0) (see Fig. 6.6) to each vertex of (B0) by identifying the vertex with the vertex v of (B0).
After that construct another signified planar graph (B2) by gluing a copy of (B0) to each positive
edge of (B1) by identifying the positive edge with the edge uv of (B0).

Now note that [B2] admits a homomorphism to (H). Now, each vertex of the inital graph [B0]
has nine neighbors which will have distinct images under the homomorphism. So, in particular,
we must have the degree of each vertex in (H) at least 9. Hence, the underlying graph H is a
complete graph.

Now note that, as [B2] admits a homomorphism to (H), for each edge ab ∈ E(H) (regardless
of the sign of the edge ab, as a and b must be the images of two adjacent vertices that has a
(B0) glued to them by identifying the edge with uv) there are at least four vertices, which got
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mapped to four different vertices under the homomorphism f , that a and b agree on and there
are at least four vertices, which got mapped to four different vertices under the homomorphism
f , that a and b disagree on with each other. No matter how you resign the vertices, this will
be true. But as (H) has order 10, for each edge ab ∈ (H), the signified graph (H) must have
exactly four vertices on which a and b agree and exactly four vertices on which a and b disagree.

Now, without loss of generality, assume that the vertices of (H) are z0, z1, ..., z9. Recall
that, by Lemma 6.3, any presentation of [H] will bound all the planar signed graphs. Assume,
without loss of generality (H) is the presentation in which all the vertices are adjacent to z9 with
a positive edge (this presentation which can be obtained by resigning the negative neighbors of
z9).

Now every other vertex agrees on exactly four vertices with z9 and disagrees on exactly
four vertices with z9. Hence, the signified induced by the neighbors of z9 has positve degree 4
for every vertex. Assume that for z0, without loss of generality, N+(z0) = {z1, z2, z3, z6} and
N−(z0) = {z4, z5, z7, z8}.

Now, if z1 has no positive neighbor from {z2, z3, z6}, then it must have exactly three positive
neighbors from {z4, z5, z7, z8} as it must have exactly four positive neighbors from N(z9). But
then z0 and z1 will disagree on at least six vertices, three from {z2, z3, z6} and three from
{z4, z5, z7, z8}. So, it is not possible for z1 to have no positive neighbor from {z2, z3, z6}.

Now assume z1 has at least two positive neighbors from {z2, z3, z6}. Then z1 will have at most
one positive neighbor from {z4, z5, z7, z8}. Hence, z0 and z1 will agree on at least five vertices,
two from {z2, z3, z6} and three from {z4, z5, z7, z8}.

Hence, z1 can have exactly one positive neighbor from {z2, z3, z6}. Similarly arguing about
z2, z3, z6, we can show that the signified graph induced by {z1, z2, z3, z6} has exactly two disjoint
positive edges, say z1z2 and z3z6 and all the other edges negative.

With a similar argument, we can conclude that the signified graph induced by {z4, z5, z7, z8}
has exactly two disjoint negative edges, say z4z8 and z5z7 and all the other edges positive.

Now, z1 has z0 and z2 as its positive neighbors. It must have exactly two positive neighbors
from {z4, z5, z7, z8}. Without loss of generality assume that z4 and z7 are positive neighbors of
z1.

Now note that z1 and z2 agrees on four vertices z9, z0, z3, z6. Hence, they must disagree on
{z4, z5, z7, z8}. So, z4 and z7 are negative neighbors of z2 while z5 and z8 are positive neighbors
of z2.

Now, z3 also must have exactly two positive neighbors among {z4, z5, z7, z8}. But it should
also agree on exactly two vertices from {z4, z5, z7, z8} with z1 (as it agrees on exactly two vertices
z0, z9 with z1 outside {z4, z5, z7, z8}). This forces z3 to have exactly one positive neighbor from
{z4, z7} and exactly one negative neighbor among {z5, z8}. Without loss of generality assume
that z4, z5 are the positive neighbors and 7, z8 are the negative neighbors.

Also note that z6 must disagree with z3 on the vertices {z4, z5, z7, z8}. Hence, we constructed
the whole graph.

It can be shown that this graph is isomorphic to the signified Paley plus graph (SP+
9 ) on 10

vertices. That ends the proof.
We are not explicitly showing the isomorphism. But one can easily observe that the graph

induced by the positive edges between the vertices {z0, z1, ..., z8} (that is, all vertices except z9)
is the undirected graph C3 × C3 obtained by the product of two 3-cycles. The signified graph
obtained from replacing the non-edges of C3×C3 is basically the signified Paley graph SP9 (this
is not difficult to notice). �

6.3.2 Signed relative clique number

The signed relative clique number was defined by Naserasr, Rollová and Sopena [40]. They
studied signed chromatic numbers and signed absolute clique numbers of planar graphs but did
not study their signed relative clique numbers. Here we study that for some planar families.

Before listing those bounds, we will present a general bound for the signed relative clique
number of graphs with maximum degree ∆.
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u

v

x5 x4 x3 x1x2 y1 y3 y4y2 y5

Figure 6.6: A presentation (B0) of a signed planar graph with signed chromatic
number 10.

Proposition 6.30. Every signed graph with maximum degree ∆ has signed relative clique number

at most
∆(∆ + 1)

2
+ 1.

Proof. Let [G] be a signed graph with maximum degree ∆. Let R be a relative clique of maximum
order in of [G]. Let v ∈ R be a vertex. Now, v has ∆ adjacent vertices and each of these vertices
can have at most (∆− 1) adjacent vertices excluding v. But, if a vertex u at distance 2 from v
is in R, then it has to be part of an unbalanced 4-cycle of which also v is part of. For that u
needs to be adjacent to at least two neighbors of v. There are at most ∆.(∆− 1) edges between
the neighbors of v and the vertices at distance 2 from v. Now, there are (|R| −∆ − 1) vertices
of R that are each adjacent to at least two neighbors of v. Hence we have,

2(|R| −∆− 1) ≤ ∆.(∆− 1)⇒ 2|R| − 2∆− 2 ≤ ∆2 −∆

⇒ 2|R| ≤ ∆2 + ∆ + 2

⇒ |R| ≤ ∆.(∆ + 1)

2
+ 1

Hence, we are done. �

We consider the problem of determining the signed relative clique number for the families of
outerplanar graphs and of outerplanar graphs with given girth. We list the related results below.

Theorem 6.31.

(a) ω[rs](Ok) = 4 for k = 3, 4.

(b) ω[rs](Ok) = 2 for k ≥ 5.

The proof of the above theorem is similar to the proof of Theorem 5.16 (see Chapter 5,
Section 5.3). We omit the proof (see Appendix).

Now we consider the problem of determining the signed relative clique number for the families
of planar graphs and of planar graphs with given girth.

Theorem 6.32.

(a) 8 ≤ ω[rs](P3) ≤ 40.

(b) 6 ≤ ω[rs](P4) ≤ 17.

(c) ω[rs](Pk) = 2 for k ≥ 5.

The proof of the above theorem is similar to the proof of Theorem 4.20 (see Chapter 4,
Section 4.2). We omit the proof (see Appendix).
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6.3.3 Signed absolute clique number

The signed absolute clique number was defined by Naserasr, Rollová and Sopena [40]. They
studied this parameter for the family of planar graphs and provided tight bounds for it.

We list the signed absolute clique number for the families of outerplanar graphs and of
outerplanar graphs with given girth.

Theorem 6.33.

(a) ω[as](Ok) = 4 for k = 3, 4.

(b) ω[as](Ok) = 2 for k ≥ 5.

The proof of the above result directly follows from Theorem 6.31.
We now list the signed absolute clique number for the families of planar graphs with given

girth.

Theorem 6.34.

(a) ω[as](P3) = 8. [40]

(b) ω[as](P4) = 4.

(c) ω[as](Pk) = 2 for k ≥ 5.

The proof of part (a) was given by Naserasr, Rollová and Sopena [40].
The parts (b) and (c) of the above theorem easily follow from the list of triangle-free planar

graphs with diameter 2 given by Plesnik in Theorem 2.14.

6.4 Bounding planar consistent graphs

A consistent signed graph is a signed graph in which every balanced cycle is of even length and
all unbalanced cycles are of the same parity. Thus there are the following two types of consistent
signed graphs:

(i) Odd signed graphs: An odd signed graph [G,Σ] is a signed graph with all unbalanced
cycles having odd length while all cycles of even length are balanced. It can be shown
(using Theorem 6.2) that in this case we have (G,E(G)) ∈ [G,Σ] as a presentation (that
is, a signified graph with all edges negative). It is easy to notice that any signed graph
with a presentation with all edges negative is an odd signed graph. Therefore, a signed
graph is an odd signed graph if and only if it has a presentation with all edges negative.

(ii) Even signed graphs (or bipartite signed graphs): An even signed graph or a bipartite signed
graph [G,Σ] is a signed graph with all cycles (both balanced and unbalanced) having even
length. In this case the underlying graph G is bipartite. Moreover, every signed graph
with its underlying graph a bipartite graph is an even signed graph. Therefore, a signed
graph is an even signed graph if and only if its underlying graph is bipartite.

It is easy to prove that if (G,Σ)→ (H,Λ), then the unbalanced-girth of (G,Σ) is at least as
much as the unbalanced-girth of (H,Λ).

Recall the definition of the projective cube Projn of dimention n (see Chapter 2). The
signified projective cube (SProjn,Σ) of dimention n is the signified graph with underlying
graph Projn and the set of negative edges Σ = {uv|ui 6= vi for all i ∈ {1, 2, ..., n} where
u = (u1, u2, ..., un) and v = (v1, v2, ..., vn)}. We refer to [39] for some properties of signed
projective cubes and for a proof of the following result.

Theorem 6.35. The signed projective cube of dimension k is a consistent signed graph and has
unbalanced-girth k + 1.
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Therefore, the signed projective cube [SProj2k−1] is an even signed graph with unbalanced
girth 2k and the signed projective cube [SProj2k] is an odd signed graph with unbalanced girth
2k + 1. It follows that if a signed graph admits a homomorphism to an odd (respectively, even)
signed projective cube, it must be an odd (respectively, even) signed graph.

Recall Theorem 2.12 from Chapter 2 and the discussion that followed. There we mentioned
a conjecture by Naserasr (see Chapter 2, Conjecture 2.13) which claims that every planar graph
with odd-girth 2k + 1 admits a homomorphism to the projective cube Proj2k of dimension 2k.

Recall the conjecture by Seymour from Chapter 2 (see Conjecture 2.9). Naserasr showed that
his conjecture for each k is equivalent to Conjecture 2.9 by Seymour for d = 2k + 1. But this
way, Naserasr’s conjecture only captures Seymour’s conjecture for odd values of d.

Recently Naserasr, Rollová and Sopena generalized Naserasr’s conjecture using the notion of
consistent signed graphs and proved that it captures Seymour’s conjecture (Conjecture 2.9) for
every value of d in [39].

Conjecture 6.36. Given k ≥ 2, every planar consistent signed graph of unbalanced-girth k + 1
admits a homomorphism to [SProjk].

In [39] Naserasr, Rollová and Sopena showed that this conjecture, for each k ≥ 2, is equivalent
to Conjecture 2.9 by Seymour for d = k + 1.

The conjecture is formed of two parts. For even values of d it is to say that every planar
odd signed graph with unbalanced-girth k + 1 admits a homomorphism to [SProjk]. This is
equivalent to saying that every planar graph with odd-girth k + 1 admits a homomorphism to
Projk, which is basically Conjecture 2.13 by Naserasr.

Since Proj2 is isomorphic to K4, the very first case of this conjecture (that is, for k = 2) is
the Four-Color Theorem. For k = 4, it is proved in [38] that Proj4, known as the Clebsch graph,
is the optimal bound (that is, a bound of minimum order).

For odd values of k it says that every planar even signed graph with unbalanced-girth k + 1
admits a homomorphism to [SProjk]. That is saying that every planar bipartite signed graph
with unbalanced-girth k + 1 admits a homomorphism to [SProjk].

In [40], Conjecture 6.36 has been proved for k = 3. The result is stronger than the Four-Color
Theorem and the proof was done using the Four-Color Theorem.

For the family of planar odd signed graphs with unbalanced girth k + 1 (where k is odd),
Theorem 2.12 confirms the existence of a universal bound (this is an easy observation as this
case corresponds to Conjecture 2.13 by Naserasr), no such analogus result for odd values of k
is known. While Conjecture 6.36 proposes [SProjk] as a candidate for a universal bound of the
family of planar consistent signed graphs (that is, for both odd and even signed graphs) with
unbalanced girth k + 1, we will prove in this section that if the conjecture is true then [SProjk]
must be a minimum bound with respect to, both, number of vertices and number of edges.

Theorem 6.37. Let [Bk] be a universal bound for the family of planar consistent signed graphs
with unbalanced-girth k + 1, for all k ≥ 2. Then |V (Bk)| ≥ 2k.

Note that, as [SProjk] is a k-regular graph on 2k vertices, if Conjecture 6.36 is true, then it
must be a minimum bound with respect to, both, number of vertices and number of edges.

To prove Theorem 6.37, we consider two cases, namely, when k is even and when k is odd.
We prove two results (Theorem 6.38 and Theorem 6.41) in the following which, together, will
directly imply Theorem 6.37.

Odd signed graphs

First we consider the case of odd signed graphs, that is, the case when k is even. We know
that this case corresponds to Conjecture 2.13 by Naserasr.

Given an undirected graph G and an integer k we define the k-th walk-power of G, denoted
G(k) to be the graph whose vertex set V (G(k)) = V (G) with two vertcies x and y being adjacent
if there is a walk of length k connecting x and y in G. This graph is loopless only if k is odd
and G has odd-girth at least k + 2. If φ is a homomorphism of G to H, then it can easily be
checked that φ is also a homomorphism of G(k) to H(k). Thus to prove our result we will prove
the following.
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Theorem 6.38. There is a planar graph G of odd-girth 2k + 1 with ω(G(2k−1)) = 22k.

To prove the theorem we will construct an example of such a graph. This construction is
based on the following local construction.

Lemma 6.39. Let G be a graph obtained by subdividing the edges of K4 such that in a planar
embedding of G each of the four faces of G is a cycle of length 2k+1. Then G(2k−1) is isomorphic
to K4k.

Proof. Let a, b, c and d be the original vertices of the K4 from which G is constructed. Let tuv
be the length of the path joining u and v in G for u, v ∈ {a, b, c, d}.

Then we have

tab + tbc + tca = tab + tbd + tad

= tac + tcd + tad

= tbc + tcd + tbd

= 2k + 1 (6.2)

From equation 6.2 we have

tuv = twx for {u, v, w, x} = {a, b, c, d}. (6.3)

Let u and v be a pair of vertices of G. If they are both vertices of a particular facial cycle of
G, then there is a walk of length 2k−1 connecting them since the facial cycle is of length 2k+ 1.

If there is no facial cycle of G containing both u and v, then we may assume, without loss
of generality, that u is a vertex of the path obtained by subdividing ab and v is a vertex of the
path obtained by subdividing cd.

Suppose that u has partitioned the path obtained by subdividing ab to paths of length t′ab
(length of the path connecting a and u) and t′′ab (length of the path connecting u and b) and
that v has partitioned the path obtained by subdividing cd into paths of length t′cd (length of
the path connecting c and v) and t′′cd (length of the path connecting v and d).

Note that by equation 6.3 we have

t′ab + t′′ab = t′cd + t′′cd

= tab = tcd. (6.4)

If tab = tcd is even, then t′ab and t′′ab have the same parity and t′cd and t′′cd have the same
parity. Moreover, this will imply that tac and tad have different parities.

On the other hand, if tab = tcd is odd, then t′ab and t
′′
ab have different parities and t′cd and t′′cd

have different parities. Moreover, this will imply that tac and tad have the same parity.
Now the path connecting u, v that contains the vertices a, c is of length t′ab+ tac+ t′cd and the

path connecting u, v that contains the vertices b, d is of length t′′ab+tbd+t′′cd. Clearly, t
′
ab+tac+t

′
cd

and t′′ab + tbd + t′′cd have the same parity irrespective of the parity of tab = tcd. Now note that

t′ab + tac + t′cd + t′′ab + tbd + t′′cd = tab + tac + tcd + tbd (by equation A.5)
= 2(tab + tac) (by equation 6.3)
= 2(tab + tac + tbc)− 2tbc

= 4k + 2− 2tbc (by equation 6.2)
≤ 4k (as tbc ≥ 1)

Hence we have min{(t′ab + tac + t′cd), (t
′
ab + tbd + t′cd)} ≤ 2k. Similarly, we can show that

min{(t′ab + tad + t′′cd), (t
′′
ab + tbc + t′cd)} ≤ 2k.



Chapter 6. Signed graphs 121

But note that min{(t′ab+ tac+ t′cd), (t
′′
ab+ tbd+ t′′cd)} and min{(t′ab+ tad+ t′′cd), (t

′′
ab+ tbc+ t′cd)}

have different parities irrespective of the parity of tab = tcd. Therefore, there is a walk of length
2k − 1 from u to v. �

Proof of Theorem 6.38

Consider a K4 on four vertices a, b, c and d. Let G1 be a subdivision of this K4 where edges
ab and cd each are subdivided into 2k− 1 edges. Thus G1 is a subdivision of K4 in which all the
four faces are cycles of length 2k + 1. Hence by Lemma 6.39 we have

ω(G
(2k−1)
1 ) = |V (G1)| = 4k.

In the following we build a sequence of graphs Gi, for i ∈ {1, 2, · · · , 2k − 2}, such that
each Gi+1 contains Gi as a subgraph, Gi+1 is planar and of odd-girth 2k + 1 and such that
ω(G

(2k−1)
i+1 ) > ω(G

(2k−1)
i ). At the final step we will have,

ω(G
(2k−1)
2k−2 ) ≥ 22k.

We start with the following partial construction. SupposeGi is built and let P = uv1v2 · · · vrw
be a maximal thread, that is, a path P connecting u and w such that all vj ’s are of degree 2 in
Gi but u and w are of degree at least 3, of Gi for j ∈ {1, 2, ..., r}. Furthermore, assume that P
is either part of a path of length 2k − 1 connecting a and b or part of a path of length 2k − 1
connecting c and d.

Since P is a thread, if we add the new edge uw in Gi, the resulting graph will still be planar.
So we add such an edge and subdivide it r times to obtain the new thread P ′ = uv′1v

′
2 · · · v′rw.

Consider a planar drawing of the graph in which P and P ′ form a facial cycle of length 2r. In
the face PP ′ connect v1 and v′r by a new edge. Subdivide this new edge 2k−r−1 times (that is,
into 2k− r edges), so that each of the facial cycles containing the new thread is of length 2k+ 1.

Let G′i be the resulting graph. We first note that G′i is also of odd-girth 2k+ 1. Now suppose
a maximal clique W of G(2k−1)

i contains vj of the thread P . Then we claim that W ∪ v′j is also
a clique of G′(2k−1)

i .
To prove this let x be any vertex of W . If x is not in P , then consider a walk of length

(2k − 1) from vj to x. Each time this walk uses a part of P replace it with the corresponding
part from P ′ and this would give a walk of length 2k − 1 connecting a to v′j .

If x ∈ P , then, without loss of generality, assume that P is part of a path of length 2k − 1
connecting a and b. Consider the subgraph induced by this path together with c, P ′ and the
v1...v

′
r thread we added to build G′i. This induced subgraph is a subdivision of K4 in which all

the faces are cycles of length 2k + 1. Thus, by Lemma 6.39 there is a walk of length 2k − 1
connecting x and v′j . In particular if all vertices of P are in W , then W ∪ {v′1, v′2, · · · , v′r} is a

clique in G′(2k−1)
i .

Now we describe our general construction. At first we haveG1 on 4k vertices and two maximal
threads. By Lemma 6.39 all the vertices of these two threads are parts of the unique clique of
order 4k in G(2k−1)

1 . We apply the previously mentioned construction on both threads to build
G2 which will have four maximal threads each of length 2k−2 (we are only considering maximal
threads that are part of a path of length 2k−1 connecting a, b or c, d). There is a clique of order
4k+ 2(2k− 2) in G(2k−1)

2 , and there are four maximal threads of length 2k− 2, each a part of a
path of length 2k − 1 either connecting a and b or c and d.

Continuing this construction, in general, there is a clique Wi of G
(2k−1)
i (2 ≤ i ≤ 2k − 1)

which is of order 4k +
∑i−1

j=1 2j(2k − j − 1) and there are 2i maximal threads of length 2k − i
which are part of a path of length 2k − 1 connecting a, b or c, d.

Note that Gi at each step is a planar graph of odd-girth 2k+ 1. The clique W2k−2 of G(2k−1)
2k−2

has order equal to
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4k +

2k−2∑
j=1

2j(2k − j − 1) = 4k + (2k − 1)

2k−2∑
j=1

2j − 2

2k−2∑
j=1

j2j−1

= 4k + [(2k − 1)(22k−1 − 2)]−
2[(1− 22k−1)− (−1)(2k − 1)22k−2]

= 4k + [k22k − 4k − 22k−1 + 2]−
[2− 22k + k22k − 22k−1]

= 22k.

This completes the proof. �

Even signed graphs

Recall that even signed graphs are simply signed graphs whose underlying graph is bipartite.
To prove our result we first introduce the following notations. Given a signed graph [G,Σ]

and an integer r we define [G,Σ](r) to be a graph (not signed) whose vertices are vertices of G
where two vertices u and v are adjacent if either they are connected by a path of odd length or
for any given presentation (G,Σ) ∈ [G,Σ], there are two paths P1 and P2 of even length, not
necessarily disjoint, connecting u, v such that P1 and P2 are both of length at most r and one of
them, say P1, has an odd number of edges in Σ and the other one, P2, has an even number of
edges in Σ.

Note that, while resigning at internal vertcies of P1 or P2 does not change the parity of their
number of negative edges, resigning at u or v will switch the role of P1 and P2. Hence [G,Σ](r)

is well defined.
The point of this definition is that if a homomorphism of [G,Σ] to [H,Λ] identifies u and v,

then (H,Σ) must contain either an odd-cycle or an unbalanced even-cycle of length at most r.
In other words, if [H,Λ] is an even signed graph of unbalanced-girth k > r, then no such pair
of vertices can be identified. Thus to prove our claim we will build a planar even signed graph
[G,Σ] of unbalanced-girth 2k for which [G,Σ](2k−2) has a clique of order 22k−1. To this end we
start with the following lemma which is the bipartite analogue of Lemma 6.39.

Lemma 6.40. Let [G,Σ] be a planar signed graph whose underlying graph G is a subdivision of
K4 in such a way that each of the four facial cycles of [G,Σ] is an unbalanced cycle of length 2k.
Then [G,Σ](2k−2) is isomorphic to K22k−1.

The proof of this lemma is similar to the proof of Lemma 6.39. We omit this proof (see
Appendix).

Theorem 6.41. There exist a planar signed bipartite graph [G,Σ] with unbalanced-girth 2k such
that ω([G,Σ](2k−2)) ≥ 22k−1.

This theorem can be proved using Lemma 6.40 similarly as we proved Theorem 6.38 using
Lemma 6.39. We omit this proof (see Appendix).

6.5 Categorical aspects

First note that the family of all signified graphs and the family of all signed graphs can be
regarded as categories with the morphisms of the category being the homomorphisms of graphs.
Notice that isomorphic graphs represent the same object in the category. Let CS and C[S] denote
the category of signified graphs and the category of signed graphs respectively.

We want to show that C[S] is isomorphic to a subcategory of CS .
Consider the subcategory CSs of CS with ob(CSs) being the class of splitable signified graphs

and homCSs ((A,Σ), (B,Λ)) is the set of splitable signified homomorphisms for any (A,Σ), (B,Λ) ∈
CSs .

Note that the function R, defined in Section 6.1, acts as a functor of C[S] to CSs .
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In fact, is it not difficult to notice that the functor R gives an isomorphism of C[S] to CSs .
Therefore, we have the following result.

Proposition 6.42. The two categories C[S] and CSs are isomorphic categories.

It was not known if a categorical product existed for signed graphs or not. Whereas, it was
known that a categorical product exists for signified graphs and coincides with the cartesian
product of it.

Let (G,Σ) and (H,Λ) be two signified graphs. Then their categorical product (P,Ω) =
(G)× (H) is the signified graph with the set of vertices, the set of negative edges and the set of
positive edges given as follows:

V (P ) = {(u, v) ∈ V (G)× V (H)},
Ω = {(u, v)(w, x)|(uw, vx) ∈ Σ× Λ},

Ωc = {(u, v)(w, x)|(uw, vx) ∈ Σc × Λc}.

Hence, we know that given any two splitable signified graphs (R(A), R(Σ)) and (R(B), R(Λ))
there exists a categorical product (R(A), R(Σ))× (R(B), R(Λ)) of them. Note that the product
(R(A), R(Σ))× (R(B), R(Λ)) is a signified graph though it is not ensured if it is also a splitable
signified graph or not. In the following we will prove that the product indeed is a splitable
signified graph.

Lemma 6.43. The cartesian product of two splitable signified graphs is also a splitable signified
graph.

Proof. Let (R(A), R(Σ)) and (R(B), R(Λ)) be two splitable signified graphs with V (A) = {a1, a2,
..., an} and V (B) = {b1, b2, ..., bm}.

Then the cartesian product (P,Ω) = (R(A), R(Σ)) × (R(B), R(Λ)) of (R(A), R(Σ)) and
(R(B), R(Λ)) is a signified graph with the set of vertices, the set of negative edges and the set
of positive edges given as follows:

V (P ) = {(ai, bj), (ai, b′j), (a′i, bj), (a′i, b′j)| for
i = 1, 2, ...n and j = 1, 2, ...,m},

Ω = {(u, v)(w, x)|uw ∈ R(Σ)

and vx ∈ R(Λ)},
Ωc = {(u, v)(w, x)|uw ∈ R(Σ)c

and vx ∈ R(Λ)c}.

Now let us partition V (R(A)) × (R(B)) into two equal parts V1 = {(ai, bj), (ai, b′j) and
V2 = {(a′i, b′j), (a′i, bj). Moreover, define the function f : V1 → V2 as

f(ai, bj) = (a′i, b
′
j) and f(ai, b

′
j) = (a′i, bj).

Note that f is a bijection and satisfies the conditions of Lemma 6.7. Therefore, the product
(R(A), R(Σ))× (R(B), R(Λ)) is indeed a splitable signified graph. �

Let (A,Σ), (B,Λ) and (C,Ω) be three signified graphs. Let ψ1 be a homomorphism of (C,Ω)
to (A,Σ) and ψ2 be a homomorphism of (C,Ω) to (B,Λ). Then the following diagram must
commute.

For signified graphs, the product (A)× (B) is the cartesian product of (A) and (B) while the
homomorphisms π1, π2 and f are defined as
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(C)

(A) (A)× (B) (B)

∃! f

π1 π2

f1 f2

[C]

[A] [P ]

||
[A]× [B]

[B]

∃! ϕ

φ1 φ2

ψ1 ψ2

(R(C))

(R(A)) (R(P ))

||
(R(A))× (R(B))

(R(B))

∃! R(ϕ)

R(φ1) R(φ2)

R(ψ1) R(ψ2)

R

Figure 6.7: The functor R.

π1(a, b) = a and π2(a, b) = b for all (a, b) ∈ V ((A)× (B)).

(6.5)
f(u) = (f1(u), f2(u)) for all u ∈ V (C).

Now notice that if (A), (B) and (C) are all splitable signified graphs and the homomorphisms
f1 and f2 are splitable signified homomorphisms, then the product (A) × (B) is a splitable
signified graph (by Lemma 6.43) and the homomorphisms π1, π2 and f are splitable signified
homomorphisms (it is easy to check). Hence the categorical product (of countable objects) exists
in CSs .

Hence by Fig. 6.7 we know that the categorical product (of countable objects) also exists in
C[S].

Formula

Now we will provide a formula for obtaining the categorical product of two signed graphs
[A,Σ] and [B,Λ].

Let (A,Σ) ∈ [A,Σ] and (B,Λ) ∈ [B,Λ] be such that V (A) = {a1, a2, ...., an} and V (B) =
{b1, b2, ...., bm}. Then the categorical product [P,Ω] = [A] × [B] of [A] and [B] has the set of
vertices, the set of negative edges and the set of positive edges
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V (P ) = {(ai, bj), (ai, b′j)| for i = 1, 2, ...n and j = 1, 2, ...,m},
Ω = {(ai, bj)(ak, bl), (ai, b′j)(ak, b′l), (ai, bj)(ak, b′l′),

(ai, b
′
l)(ak, bj)|(aiak, bjbl, bjbl′) ∈ Σ× Λ× Λc},

Ωc = {(ai, bj)(ak, bl), (ai, b′j)(ak, b′l), (ai, bj)(ak, b′l′),
(ai, b

′
l)(ak, bj)|(aiak, bjbl, bjbl′) ∈ Σc × Λc × Λ}.

Notice that the formula is independent of the choice of the presentations (A) ∈ [A] and
(B) ∈ [B]. An interesting point to note is that the product has 2nm vertices whereas usually
one would expect the product to have mn vertices.

6.6 Conclusion

Naserasr, Rollová and Sopena [40] introduced and studied homomorphisms of signed graphs
and asked several questions regarding them. They captured several existing theories related to
graph colorings using the notion of signed graphs. Apart from extending existing results and
conjectures, they also introduced three parameters, namely, the signed chromatic number, the
signed relative clique number and the signed absolute clique number, regarding homomorphisms
of signed graphs.

Here we considered the problem of determining lower and upper bounds for those three
parameters for the families of outerplanar graphs and of planar graphs.

We provided upper bounds of χ[s](Pg) for all g ≥ 3. It turns out that the target graphs used
to prove the best known upper bounds for the signified chromatic number of the family of planar
graphs with girth at least g are splitable graphs for g = 3, 5, 6. So, in these cases an upper bound
directly followed from the results regarding signified colorings. This also means that improving
these upper bounds for signed graphs will improve the upper bounds for signified graphs. So,
improving these bounds is also difficult.

We improved the existing upper bound from 48 down to 40 for the signed chromatic number
of the family of planar graphs. We could not improve the existing lower bound of 10 for the
same family. However, we proved that if there exists a signed graph of order 10 which bounds
the family of planar graphs, then it must be isomorphic to [SP+

9 ]. We tried to find examples of
planar signed graphs that do not admit a homomorphism to [SP+

9 ] in order to improve the lower
bound but failed to do so. This naturally makes us wonder about the following question:

Question 6.44. Is [SP+
9 ] a universal bound for the family of planar graphs?

We proved the upper bound of 25 for χ[s](P4). The proof based on discharging method is
non-trivial and is inspired by a proof of a similar result concerning the oriented chromatic number
by Ochem and Pinlou [45]. An important thing to notice here is that Ochem and Pinlou used
a computer for reducing two of their configurations needed for discharging. In this thesis, we
have reduced those two configurations using some argument using field theory. We guess that
something similar can be done for the oriented case as well thus providing a proof without the
use of computer.

For the other two parameters, that is, the signed relative clique number and the signed
absolute clique number, we mostly provided tight bounds.

In fact, we provided tight bounds for ω[as](Og) and for ω[as](Pk) for all g ≥ 3 and k ≥ 4.
A tight bound for ω[as](Pk) was already proved by Naserasr, Rollová and Sopena [40]. We also
provided tight bounds for ω[rs](Og) for all g ≥ 3 and for ω[rs](Pk) for all k ≥ 5.

Given a graph G we clearly have ω[as](G) ≤ ωas(G) and ω[rs](G) ≤ ωrs(G). Is it possible to
obtain a better relation between these parameters?

We also proved that any consistent signed graphs with unbalanced girth k + 1 that bounds
the family of planar consistent signed graphs with unbalanced girth k + 1 must have order at
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least 2k. We want to comment that with some more work we might be able to prove that the only
consistent signed graph of order 2k and with unbalanced girth k + 1 that bounds the family of
planar consistent signed graph with unbalanced girth k+1 is the signed projective cube [SProjk]
of dimension k.

We also proved the existence of categorical products for signed graphs and provided a formula
for it. For proving this we showed that the category of signed graphs is isomorphic to a sub-
category of the category of signified graphs. One might try to obtain more categorical relations
between the two categories.

Finally, we would like to remark that the theory of signed homomorphisms is a rich theory
and has the potential of becoming a popular area of research in near future. Especially, consistent
signed graphs are of interest and specific works regarding them might yield major improvements
in the domain of graph colorings in general.
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Chapter 7

Conclusion

In this thesis we considered problems related to homomorphisms of four different types of
graphs, namely oriented graphs, orientable graphs, signified graphs and signed graphs. For each
of these types, the problems of determining the chromatic number, the relative clique number
and the absolute clique number was considered.

We tried to determine the value for each of these parameters for different planar families,
mainly the families of outerplanar graphs, of outerplanar graphs with given girth, of planar
graphs and of planar graphs with given girth, in these four settings.

Given any family F of graphs one can consider the problem of determining upper and lower
bounds for one of these parameters for F . That offers us a rich collection of challenging open
problems. However, here we will mention some specific interesting problems which we would like
to investigate in the near future.

Question 7.1.

(a) Can we find a universal bound of minimum order for the family of oriented graphs whose
underlying graph is the complete graph Kn?

(b) Can we find a universal bound of minimum order for the family of signified graphs whose
underlying graph is the complete graph Kn?

We can ask a similar question for orientable and signed graphs as well but there is another
interesting question which, probably, should be asked before that.

Question 7.2.

(a) How many non-isomorphic orientable graphs, whose underlying graphs are each isomorphic
to the complete graph Kn, are there?

(b) How many non-isomorphic signed graphs, whose underlying graphs are each isomorphic to
the complete graph Kn, are there?

We provided tight bounds for the absolute clique number of the above mentioned families
in these four settings. In particular, we proved that the maximum order of a planar oclique (or
sclique) is 15. Basically, we proved that the maximum order of an oclique (or an sclique) drawn
on a surface of genus 0 is 15. Now we want to ask the following general question.

Question 7.3. What is the maximum order of an oclique (or an sclique) drawn on a surface of
genus k (≥ 1)?

Also, we can think of generalizing the idea of scliques to k-edge-colored graphs and define
k-edge-colored cliques. Then we can consider the problem of determining the maximum order of
a planar k-edge-colored clique.

A graph G is a perfect graph if for every induced subgraph H of G we have ω(H) = χ(H).
We do not have a notion of perfect graph for oriented or signified graphs. We wonder if it is
possible to introduce a notion of perfectness using the definitions of chromatic numbers, relative
clique numbers and absolute clique numbers for oriented or signified graphs.

Both oriented and signified graphs are similar in the sense that a vertex can have two different
kinds of neighbors in each of these types. While trying to find upper and lower bounds for the
above mentioned parameters for oriented and signified graphs we observed striking similarities
in the techniques used for proving the bounds. It lead us to wonder if they have some underlying
relation between them. To our surprise, we ended up constructing examples of graphs which can
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have their oriented chromatic number and signified chromatic number arbitrarily different from
each other. We think it is possible to prove similar results for the other two parameters as well.

Orientable and signed graphs are defined by considering equivalence classes of oriented and
signified graphs. The equivalence relation, in each case is by switching the two different kinds of
neighbors of a vertex. As in the case of oriented and signified graphs, we observed that similar
techniques can be used for proving bounds regarding the parameters of orientable and signed
graphs.

Unlike the previous case, we could not find an example of a graph which has higher orientable
chromatic number than signed chromatic number. So, finding such an example or proving that
the signed chromatic number is higher than the orientable chromatic number for each graph will
be a good problem to consider regarding these two types of graphs. However, we did observe
that the orientable chromatic number of an outerplanar graph is at most 4, while the signed
chromatic number of an outerplanar graph is at most 5 and both the bounds are tight. To be
precise, we would like to answer the following question.

Question 7.4. Given any graph G, can we show that χ[o](G) ≤ χ[s](G)?

The following result directly follows from the fact that the bounds are tight for k ≥ 3 in
Theorem 3.12, 4.15, 5.12 and 6.21:

Proposition 7.5. Let Ak denote the family of graphs with acyclic chromatic number at most k.
Then for k ≥ 3,

χo(Ak) = χs(Ak) and χ[o](Ak) = χ[s](Ak).

Naturally we want to know if there are more such families for which the chromatic numbers
coincide. In particular, can we ask if something similar for the family of planar graphs holds.
Regarding relations between the orientable chromatic number and the signed chromatic number
of graphs, we would like to state the following conjecture.

Conjecture 7.6. Let G be a bipartite graph. Then χ[o](G) ≤ χ[s](G).

For the 4-cycle C4 we know that χ[o](C4) = χ[s](C4) = 4. Hence the conjecture, if true,
is tight. We know from Theorem 4.17 that an even cycle of length at least 22 has orientable
chromatic number at most 3, whereas we also know that a signed unbalanced 22-cycle has signed
chromatic number equal to 4. Therefore, we cannot replace the inequality with equality in the
above conjecture.

For oriented graphs, we also studied the problem regarding 2-dipath and oriented L(p, q)-
labeling of graphs and provided upper and lower bounds for several planar families. Considering
the problem for other families of graphs can be an interesting field of research.

We proved the existence of categorical products for orientable and signed graphs. It will be
interesting to discover other categorical aspects of these two types of graphs. Also, we wonder
if there are any other categorical relations, other than the ones proved in this thesis, between
these four different types of graphs.

Finally, we would like to mention that it might be possible to adapt the techniques used for
the theory of signed homomorphisms developed by Naserasr, Rollová and Sopena for orientable
graphs. To do that, trying to figure out what the analogue of consistent signed graphs could be
in the notion of orientable graphs may be the first step.
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Appendix: omitted proofs

In this appendix, we gather some proofs that are of minor relevance or repetitive.
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A.1 Proof of Theorem 5.17(b) and (d) (upper bounds)

(b) (proof of the upper bound)
Let (G,Σ) be a triangle-free planar signified graph of minimum order with ωrs((G,Σ)) > 26.

Let R be a signified relative clique of maximum order of (G,Σ) and let S = V (G) \R.

Claim 1: For any v ∈ V (G) we have, |Nα(v) ∩R| ≤ 4 for α ∈ {+,−}.

Proof of claim 1: Let v ∈ V (G) and Nα(v) ∩ R = {v1, ..., vk} with k ≥ 5. Fix a planar
embedding (G,Σ). Assume, without loss of generality, that the vertices v1, v2, ..., vk are arranged
around v in a clockwise order in the embedding. Clearly v1, v2, ..., vk are pairwise non-adjacent
vertices as the graph (G,Σ) is triangle-free. Now, as v1, ..., v5 ∈ R, pairwise they should be at
unbalanced distance at most 2. Hence, each pair of vertices vi and vj must be connected by an
unbalanced 2-path using an internal vertex vij 6= v (it is not necessary to have these vertices all
distinct from each other), for 1 ≤ i < j ≤ k.

Suppose v15 6= v24. Now, without loss of generality, also suppose that v2v24 ∈ Σ and v24v4 ∈
Σc. Now, we must have v24 = v13 and v24 = v35 to keep the graph planar. Also we will have
v24 = v14 and v24 = v25 to keep the graph planar.

Now, v24 = v14 implies v1v24 ∈ Σ. This and v24 = v13 imples v24v3 ∈ Σc.
Similarly, v24 = v25 implies v24v5 ∈ Σc. This and v24 = v35 imples v3v24 ∈ Σ.
But this is a contradiction.
Hence, we must have v15 = v24. This will force v15 = v24 = v13 = v35. Now, without loss of

generality, also suppose that v2v24 ∈ Σ and v24v4 ∈ Σc.
Then we can argue similar to the previous case and arrive to a contradiction. ♦

Now note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by an unbalanced 2-path with the internal vertex
being itself (that is, z) and hence can be deleted to get a signified planar triange-free graph
with the signified relative clique number equal to that of (G) but with order less that (G) which
contradicts the minimality of (G). Now, a vertex z of S must connect at least two vertices of R
by an unbalanced 2-path with the internal vertex being itself (that is, z).

Now for each vertex z ∈ S with d(z) ≤ 5, assume that the neighbors of z are v1, v2, ..., vk. Fix
a planar embedding of (G) and assume that the neighbors of z are arranged in a clockwise order
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around z. Now delete the vertex z and add the edges v1v2, v2v3, ..., vk−1vk, vkv1 (for d(z) = 2
add only one edge v1v2) to obtain a new graph.

Note that this new graph is also planar and the degree of each vertex in the new graph, which
were in (G) also, is at least as much as the degree of the corresponding vertex in (G). Hence,
there is a vertex v in the new graph, which belongs to R and has degree at most 5.

Hence, there will be a neighbor u of v and at least 5 vertices of R \ (N(v) ∪ {v}) which are
connected to v with an unbalanced 2-path with internal vertex u which is a contradiction to
Claim 1. So, we can conclude that ωrs((G)) ≤ 26.

(d) (proof of the upper bound)
We will now prove the upper bound by contradiction.
Assume that (G,Σ) is a planar signified graph with girth at least 6 of minimum order with

ωrs((G)) > 4. Moreover assume (G,Σ) is such that, if we delete any edge of (G,Σ), the new
graph will have signified relative chromatic number greater than 5. Let R be a signified relative
clique of maximum order of (G). Let, S = V (G) \R. Note that S induces an independent set of
(G) as deleting any edge between two vertices of S will not decrease the signified relative clique
number of the graph (G).

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by an unbalanced 2-path with the internal vertex
being itself (that is, z) and hence can be deleted to get a signified planar graph with girth at
least 6 and with relative signified chromatic number equal to that of (G) but with order less than
(G) which contradicts the minimality of (G).

Also, for any z ∈ V (G), we must have |N(z)∩R| ≤ 2. If not, then we will have |Nα(z)∩R| ≥ 2
for some α ∈ {+,−}. Now to have unbalanced distance at most 2 between two vertices of
Nα(z) ∩ R, there should be an unbalanced 2-path joining the two vertices. This will create a
cycle of length 4, which is a contradiction. Hence for any z ∈ S we have, d(z) = 2 and that z
must be an internal vertex of a 2-dipath with two terminal vertices from R.

Note that every signified forest has signified relative clique number at most 3. Therefore,
(G) must have a cycle. Also, (G) must contain a cycle abcdef of length 6 (that is, the edges of
the cycle are ab, bc, cd, de, ef and fa) using Theorem 3.18(d) whose proofs are independent from
this proof. As S is an independent set in (G), we can have at most three vertices (should be
non-adjacent) of the cycle from S.

As the vertices of S are non-adjacent, without loss of generality, we can assume that a, c, e ∈
R. If another vertex of R is in the cycle, then, without loss of generality, we can assume it to be
d. If so, then d and a must be connected by an unbalanced 2-path or be adjacent which creates
a cycle of length less than 6, hence is not possible. Therefore, exactly three vertices of the cycle
are from R.

Now, for any w ∈ R, we have w connected by an unbalanced 2-path to each of a, c, e. If we
have two such vertices w and x, which are adjacent or connected by a 2-dipath, it will create a
subdivision of the complete graph K5 in (G) which contradicts the planarity of

−→
G . �

A.2 Proof of Lemma 5.20

Let (G,Γ) be a planar sclique with |V (G)| > 15. Assume that G is triangulated and has
domination number 2.

We define the partial order ≺ for the set of all dominating sets of order 2 of G as follows: for
any two dominating sets D = {x, y} and D′ = {x′, y′} of order 2 of (G), D′ ≺ D if and only if
|N(x′) ∩N(y′)| < |N(x) ∩N(y)|.

Let D = {x, y} be a maximal dominating set of order 2 of G with respect to ≺. Also for the
rest of this article, t, t′, α, α, β, β are variables satisfying {t, t′} = {x, y} and {α, α} = {β, β} =
{+,−}.

Now, we fix the following notations (Fig: A.1):
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Figure A.1: Structure of G (not a planar embedding)
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Figure A.2: A planar embedding of und(H)

C = N(x) ∩N(y), Cαβ = Nα(x) ∩Nβ(y), Cαt = Nα(t) ∩ C,
St = N(t) \ C, Sαt = St ∩Nα(t) and S = Sx ∪ Sy.

Hence we have,

16 ≤ |(G,Γ)| = |D|+ |C|+ |S|. (A.1)

Let (H) be the signified graph obtained from the induced subgraph (G)[D ∪ C] of (G) by
deleting all the edges between the vertices of D and all the edges between the vertices of C. Note
that it is possible to extend the planar embedding of H given in Fig A.2 to a planar embedding
of G for some particular ordering of the elements of, say C = {c0, c1, ..., ck−1}.

Notice that H has k faces, namely the unbounded face F0 and the faces Fi bounded by edges
xci−1, ci−1y, yci, cix for i ∈ {1, ..., k − 1}. Geometrically, H divides the plane into k connected
components. The region Ri of (G) is the ith connected component (corresponding to the face
Fi) of the plane. Boundary points of a region Ri are ci−1 and ci for i ∈ {1, ..., k − 1} and, c0

and ck−1 for i = 0. Two regions are adjacent if they have at least one common boundary point
(hence, a region is adjacent to itself).

Now for the different possible values of |C|, we want to show that H cannot be extended to
a planar sclique of order at least 16. Note that, for extending H to (G), we can add new vertices
only from S. Any vertex v ∈ S will be inside one of the regions Ri. If there is at least one vertex
of S in a region Ri, then Ri is non-empty and empty otherwise. In fact, when there is no chance
of confusion, Ri might represent the set of vertices of S contained in the region Ri.

As any two distinct non-adjacent vertices of (G) must be connected by an unbalanced 2-path,
we have the following three lemmas:

Lemma A.1. (a) If (u, v) ∈ Sx × Sy or (u, v) ∈ Sαt × Sαt , then u and v are in adjacent regions.
(b) If (u, c) ∈ Sαt ×Cαt , then c is a boundary point of a region adjacent to the region containing

u.
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x1

x2

xnx

y1

y2

yny

x yc0

Figure A.3: For |C| = 1 while x and y are non-adjacent

Lemma A.2. Let R,R1, R2 be three distinct regions such that R is adjacent to Ri with common
boundary point ci while the other boundary points of Ri is ci for all i ∈ {1, 2}. If v ∈ Sαt ∩R and
ui ∈ ((Sαt ∪ St′) ∩ Ri) ∪ ({ci} ∩ Cαt ), then v disagrees with ui on ci, where i ∈ {1, 2}. If both u1

and u2 exist, then |Sαt ∩R| ≤ 1.

Lemma A.3. For any edge uv in (G), we have |Nα(u) ∩Nβ(v)| ≤ 3.

Now we ask the question “How small |C| can be?” and try to prove possible lower bounds of
|C|. The first result regarding the lower bound of |C| is proved below.

Lemma A.4. |C| ≥ 2.

Proof. We know that x and y are either connected by an unbalanced 2-path or by an edge. If x
and y are adjacent, then as (G) is triangulated, we have |C| ≥ 2. If x and y are non-adjacent,
then |C| ≥ 1. Hence it is enough to show that we cannot have |C| = 1 while x and y are
non-adjacent.

If |C| = 1 and x and y are non-adjacent, then the triangulation will force the configuration
depicted in Fig A.3 as a subgraph of G, where C = {co}, Sx = {x1, ..., xnx} and Sy = {y1, ..., yny}.
Without loss of generality we may assume |Sy| ≥ |Sx|. Then by equation (A.1) we have,

ny = |Sy| ≥ d(16− 2− 1)/2e = 7.

Clearly nx ≥ 3 as otherwise {c0, y} is a dominating set with at least two common neighbors
{y1, yny} which contradicts the maximality of D.

For nx = 3, we know that c0 is not adjacent to x2 as otherwise {c0, y} is a dominating set
with at least two common neighbors {y1, yny} contradicting the maximality of D. But then x2

should be adjacent to yi for some i ∈ {1, ..., ny} as otherwise d(x2, y) > 2. Now the triangulation
will force x2 and yi to have at least two common neighbors. Also x2 cannot be adjacent to yj for
any j 6= i, as it will create a dominating set {x2, y} with at least two common neighbors {yi, yj}
contradicting the maximality of D. Hence, x2 and yi are adjacent to both x1 and x3. Note that
t`t and t`t+k are adjacent if and only if k = 1, as otherwise d(t`t+1, t

′) > 2 for 1 ≤ `t < `t+k ≤ nt.
In this case, by equation (A.1) we have,

ny = |Sy| ≥ 16− 2− 1− 3 = 10.

Assume i ≥ 5. Hence, c0 is adjacent to yj for all j = 1, 2, 3, as otherwise d(yj , x3) > 2. This
implies d(y2, x2) > 2, a contradiction. Similarly i < 5 will also force a contradiction. Hence
nx ≥ 4.

For nx = 4, c0 cannot be adjacent to both x3 and xnx−2 = x2 as it creates a dominating set
{c0, y} with at least two common neighbors {y1, yny} contradicting the maximality of D. For
nx ≥ 5, c0 is adjacent to x3 implies, either for all i ≥ 3 or for all i ≤ 3, xi is adjacent to c0, as
otherwise d(xi, y) > 2. Either of these cases will force c0 to become adjacent to yj , as otherwise
we will have either d(x1, yj) > 2 or d(xnx , yj) > 2 for all j ∈ {1, 2, ..., ny}. But then we will have
a dominating set {c0, x} with at least two common vertices contradicting the maximality of D.
Hence for nx ≥ 5, c0 is not adjacent to x3. Similarly we can show, for nx ≥ 5, that c0 is not
adjacent to either x3 or xnx−2.
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So, for nx ≥ 4, without loss of generality we can assume that c0 is not adjacent to x3. We
know that d(y1, x3) ≤ 2. We have already noted that tlt and tlt+k are adjacent if and only if
k = 1 for any 0 ≤ lt < lt + k ≤ nt. Hence to have d(y1, x3) ≤ 2, we must have one of the
following edges: y1x2, y1x3, y1x4 or y2x3. The first edge will imply the edges x2yj as otherwise
d(x1, yj) > 2 for all j = 3, 4, 5. These three edges will imply d(x4, y3) > 2. Hence we do not have
y1x2.

The other three edges, assuming we cannot have y1x2, will force the edges x2c0 and x1c0 for
having d(x2, y) ≤ 2 and d(x1, y) ≤ 2. This will imply d(x1, y4) > 2, a contradiction. Hence we
cannot have the other three edges also.

Hence we are done. �

Now we will prove that, for 2 ≤ |C| ≤ 5, at most one region of (G) can be non-empty. Later,
using this result, we will improve the lower bound of |C|.
Lemma A.5. If 2 ≤ |C| ≤ 5, then at most one region of (G) is non-empty.

Proof. For pictorial help one can look at Fig A.2. For |C| = 2, if x and y are adjacent, then the
region that contains the edge xy is empty, as otherwise triangulation will force x and y to have
a common neighbor other than c0 and c1. So for the rest of the proof we can assume x and y to
be non-adjacent for |C| = 2.

Step 0: First we shall show that it is not possible to have either Sx = ∅ or Sy = ∅ and have
at least two non-empty regions. Without loss of generality assume that Sx = ∅. Then x and y
are non-adjacent, as otherwise y will be a dominating vertex which is not possible.

For |C| = 2, if both Sy ∩ R0 and Sy ∩ R1 are non-empty, then triangulation will force,
either multiple edges c0c1 (one in each region) or a common neighbor of x, y other than c0, c1, a
contradiction.

For |C| = 3, 4 and 5, triangulation implies the edges c0c1, ..., ck−2ck−1, ck−1c0. Hence every
v ∈ Sy must be connected to x by an unbalanced 2-path through ci for some i ∈ {1, 2, ..., k− 1}.
Now assume |Sαy | ≥ |Sαy | for some α ∈ {+,−}. Then by equation (A.1) we have,

|Sαy | ≥ d(16− 2− 5)/2e = 5.

Now by Lemma A.1, we know that the vertices of Sαy will be contained in two adjacent regions
for |C| = 4, 5. For |C| = 3, Sαy ∩ Ri for all i ∈ {0, 1, 3} implies |Sαy | ≤ 3 by Lemma A.2. Hence,
without loss of generality, we may assume Sαy ⊆ R1 ∪ R2. If both Sαy ∩ R1 and Sαy ∩ R2 are
non-empty, then by Lemma A.2, each vertex of Sαy ∩ R1 disagrees with each vertex of Sαy ∩ R2

on c1. Then {c1, y} becomes a dominating set with at least six common neighbors (c0, c2 and
four vertices from Sαy ) which contradicts the maximality of D.

Hence, all the vertices of Sαy must be contained in one region, say R1. Then each of them
should be connected to x by an unbalanced 2-path with internal vertex either c0 or c1. However,
the vertices that are connected to x by an unbalanced 2-path with internal vertex c0 should have
unbalanced distance at most 2 with the vertices connected to x by an unbalanced 2-path with
internal vertex c1. It is not possible to connect them unless they are all adjacent to either c0 or
c1. But then it will contradict the maximality of D.

Hence both Sx and Sy are non-empty.

Step 1: Now we will prove that at most four sets out of the 2k sets St∩Ri can be non-empty,
for all t ∈ {x, y} and i ∈ {0, 1, ..., k−1}. It is trivial for |C| = 2. For |C| = 4 and 5, the statement
follows from Lemma A.1. For |C| = 3, we consider the following two cases:

(i) Assume St ∩ Ri 6= ∅ for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then by Lemma A.2 we
have, |St ∩Ri| ≤ 1 for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then by equation (A.1) we have,

16 ≤ |(G)| = 2 + 3 + 4 = 9.

This is a contradiction.
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(ii) Assume that five out of the six sets St ∩ Ri are non-empty and the other one is empty,
where t ∈ {x, y} and i ∈ {0, 1, 2}. Without loss of generality we can assume Sx ∩ R0 = ∅. By
Lemma A.2 we have |St ∩Ri| ≤ 1 for all (t, i) ∈ {(x, 1), (x, 2), (y, 0)}. In particular, |Sx| ≤ 2.

Now, all verticex of St∩Ri is adjacent to c1, for being at unbalanced distance at most 2 from
each other, by Lemma A.2. That means, every vertex of Sx is adjacent to c1. Hence, there can
be at most three vertices in (Sy ∩ R1) ∪ (Sy ∩ R2) as otherwise the dominating set {c1, y} will
contradict the maximality of D. Hence, |Sy| ≤ 4.

Therefore by equation (A.1) we have,

16 ≤ |(G)| = 2 + 3 + (2 + 4) = 11.

This is a contradiction.
Hence at most four sets out of the 2k sets St ∩ Ri can be non-empty, where t ∈ {x, y} and

i ∈ {0, 1, ..., k − 1}.

Step 2: Now assume that exactly four sets out of the sets St ∩ Ri are non-empty, for all
t ∈ {x, y} and i ∈ {0, ..., k− 1}. Without loss of generality we have the following three cases (by
Lemma A.1):

(i) Assume the four non-empty sets are Sx ∩R1, Sy ∩R0, Sy ∩R1 and Sy ∩R2 (only possible
for |C| ≥ 3). We have the edges c0ck−1 and c1c2 by triangulation. Lemma A.2 implies that
Sx ∩R1 = {x1} and that the vertices of Sy ∩R0 and the vertices of Sy ∩R2 disagree with x1 on
c0 and c1 respectively. Hence by Lemma A.3, we have |Sy ∩R0|, |Sy ∩R2| ≤ 3.

For |C| = 3, if every vertex from Sy ∩R1 is adjacent to either c0 or c1, then {c0, c1} will be a
dominating set with at least four common neighbors {x, y, x1, c2} contradicting the maximality
of D. If not, then triangulation will force x1 to be adjacent to at least two vertices y1, y2 (say)
from Sy. But then {x1, y} will become a dominating set with at least four common neighbors
{y1, y2, c0, c1} contradicting the maximality of D.

For |C| = 4 and 5, Lemma A.1 implies that vertices of Sy∩R0 and vertices of Sy∩R2 disagree
with each other on y. Now by Lemma A.2, any vertex of Sy ∩ R1 is adjacent to either c0 (if it
agrees with the vertices of Sy ∩ R0 on y) or c1 (if it agrees with the vertices of Sy ∩ R2 on y).
Also vertices of Sy ∩ R0 and Sy ∩ R2 are connected to x1 by an unbalanced 2-path through c0

and c1 respectively.
Now by equation (A.1) we have,

|Sy| ≥ (16− 2− 5− 1) = 8.

Hence, without loss of generality, at least four vertices y1, y2, y3, y4 of Sy are adjacent to
c0. Hence {c0, y} is a dominating set with at least five common neighbors {y1, y2, y3, y4, ck−1}
contradicting the maximality of D for |C| = 4.

For |C| = 5, each vertex of Sy ∩ R1 disagree with c3 by Lemma A.1 and hence without loss
of generality are all adjacent to c0. Now |Sy ∩R2| ≤ 3 and |Sy| ≥ 8 implies |Sy ∩ (R0 ∪R1)| ≥ 5.
But every vertex of Sy ∩ (R0 ∪R1) and c4 are adjacent to c0. Hence {c0, y} is a dominating set
with at least six common neighbors, contradicting the maximality of D for |C| = 5.

(ii) Assume the four non-empty sets are Sx ∩R0, Sx ∩R1, Sy ∩R0 and Sy ∩R1. For |C| = 2
every vertex in S is adjacent to either c0 or c1 (by Lemma A.2). So, {c0, c1} is a dominating set.
Hence no vertex w ∈ S can be adjacent to both c0 and c1 because otherwise {c0, c1} will be a
dominating set with at least three common neighbors {x, y, w} contradicting the maximality of
D. By equation (A.1) we have,

|S| ≥ 16− 2− 2 = 12.

Hence, without loss of generality, we may assume |Sx∩R0| ≥ 3. Assume {x1, x2, x3} ⊆ Sx∩R0.
Now all vertices of Sx ∩ R0 must be adjacent to c0 (or c1), as otherwise it will force all vertices
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of Sy ∩R1 to be adjacent to both c0 and c1 (by Lemma A.2). Without loss of generality assume
all vertices of Sx ∩ R0 are adjacent to c0. Then all w ∈ Sy will be adjacent to c0, as otherwise
d(w, xi) > 2 for some i ∈ {1, 2, 3}. But then {c0, x} will be a dominating set with at least three
common vertices {x1, x2, x3} contradicting the maximality of D.

For |C| = 3, 4, every vertex of S will be adjacent to c0 (by Lemma A.2). By equation (A.1)
we have,

|S| ≥ (16− 2− 4) = 10.

Hence, without loss of generality, |Sx| ≥ 5. Hence {co, x} is a dominating set with at least
five common neighbors Sx ∪ {y} contradicting the maximality of D for |C| = 3, 4.

For |C| = 5, every vertex of St ∩ Ri disagree with ci+2 on t and hence |St ∩ Ri| ≤ 3 for
i ∈ {0, 1} by Lemma A.1. Assume, |Sx ∩ R0| = 3 and Sx ∩ R0 = {x1, x2, x3}. Now assume
without loss of generality that c2 ∈ Nα(x). Hence, we must have {x1, x2, x3} ⊆ Nα(x).

Note that x1, x2, x3 must agree on c0 in order to be at unbalanced distance at most 2 with the
vertices of Sy∩R1. Further assume that {x1, x2, x3} ⊆ Nβ(c0). But then as all the three vertices
{x1, x2, x3} are adjacent to both x and c0, the only way each of them can be at unbalanced
distance 2 with c3 is by an unbalanced 2-path with internal vertex x. Hence we have c3 ∈ Nα(x).
This implies that x4 ∈ Nα(x) for any vertex x4 ∈ Sx∩R1. But then the vertices of Sx∩R1 must
disagree with vertices of Sx ∩R0 on c0 making it impossible for the vertices of S1 ∩R0 to be at
unbalanced distance at most 2 with x1, x2, x3 and with the vertices of Sx ∩ R1. Hence we must
have |Sx ∩R0| ≤ 2.

Similarly we can prove |St ∩Ri| ≤ 2 for i ∈ {0, 1}.
Now we will show that it is not possible to have |St ∩Ri| = 2 for all (t, i) ∈ {x, y} × {0, 1}.
Suppose we have |St ∩ Ri| = 2 for all (t, i) ∈ {x, y} × {0, 1}. Then clearly, the vertices of

St ∩Ri disagree with ci+2 and ci+3 on t. Hence, the vertices of St ∩R0 agree with the vertices of
St ∩R1 on t. Therefore, the vertices of St ∩R0 must disagree with the vertices of St ∩R1 on c0.

Then it will not be possible to have both the vertices of Sx ∩ R0 at unbalanced distance at
most 2 with all the four vertices of Sy.

Therefore, we have |S| ≤ 7. Hence by equation (A.1) we have,

16 ≤ |(G)| ≤ 2 + 5 + 7 = 14.

This is a contradiction. Hence we are done.

(iii) Assume the four non-empty sets are Sx∩R1, Sx∩R2, Sy∩R0 and Sy∩R1 (only possible
for |C| = 3). Now Lemma A.2 implies that every vertex of (Sx ∩R1) ∪ (Sy ∩R0) is adjacent to
c0 and every vertex of (Sx ∩R2) ∪ (Sy ∩R1) is adjacent to c1.

Moreover triangulation forces the edges c0c2 and c1c2. Triangulation also forces some vertex
v1 ∈ Sy ∩R1 to be adjacent to c0. This will create the dominating set {c0, c1} with at least four
common neighbors {x, y, v1, c2} contradicting the maximality of D.

Hence at most three sets out of the 2k sets St ∩ Ri can be non-empty, where t ∈ {x, y} and
i ∈ {0, 1, ..., k − 1}.

Step 3: Now assume that exactly three sets out of the sets St ∩ Ri are non-empty, where
t ∈ {x, y} and i ∈ {0, ..., k − 1}. Without loss of generality we have the following two cases (by
Lemma A.1):

(i) Assume the three non-empty sets are Sx∩R0, Sy ∩R0 and Sy ∩R1. Triangulation implies
the edge c0c1 inside the region R1.

For |C| = 2, there exists u ∈ Sy∪R1 such that u is adjacent to both c0 and c1 by triangulation.
Now if |Sy ∪ R1| ≥ 2, then some other vertex v ∈ Sy ∪ R1 must be adjacent to either c0 or c1.
Without loss of generality we may assume that v is adjacent to c0. Then every w ∈ Sx ∩R0 will
be adjacent to c0 to have d(v, w) ≤ 2. But then {c0, y} will be a dominating set with at least
three common neighbors {c1, u, v} contradicting the maximality of D.



140 A.2. Proof of Lemma 5.20

So we must have |Sy∪R1| = 1. Now let us assume that Sy∪R1 = {u}. Then any w ∈ Sx∩R0

is adjacent to either c0 or c1. If |Sx| ≥ 5, then without loss of generality we can assume that at
least three vertices of Sx are adjacent to c0. Now to have at most distance 2 with all those three
vertices, every vertex of Sy will be adjacent to c0. This will create the dominating set {c0, x}
with at least three common neighbors contradicting the maximality of D.

Also |Sx| = 1 clearly creates the dominating set {c0, y} (as x1 is adjacent to c0 by triangula-
tion) with at least three common neighbors (a vertex from Sy ∩ R0 by triangulation, u and c1)
contradicting the maximality of D.

For 2 ≤ |Sx| ≤ 4, c0 (or c1) can be adjacent to at most two vertices of Sy ∩ R0 because
otherwise there will be one vertex v ∈ Sy ∩ R0 which will force c0 (or c1) to be adjacent to
all vertices of w ∈ Sx in order to satisfy d(v, w) ≤ 2 and create a dominating set {c0, y} that
contradicts the maximality of D.

Also, not all vertices of Sx can is adjacent to c0 (or c1) as otherwise {co, y} (or {c1, y}) will be
a dominating set with at least three common neighbors (u, c1 (or c0) and a vertex from Sy ∩R0)
contradicting the maximality of D.

Note that, by equation (A.1), we have,

|Sy ∩R0| ≥ 10− Sx.

Assume Sx = {x1, ..., xn} with triangulation forcing the edges c0x1, x1x2, ..., xn−1xn, xnc1

for n ∈ {2, 3, 4}.
For |Sx| = 2, at most four vertices of Sy ∩ R0 can be adjacent to c0 or c1. Hence there will

be at least four vertices of Sy ∩R0 each connected to x by an unbalanced 2-path through x1 or
x2. Without loss of generality x1 will be adjacent to at least 2 vertices of Sy and hence {x1, y}
will be a dominating set contradicting the maximality of D.

For |Sx| = 3, without loss of generality assume that x2 is adjacent to c0. To satisfy d(x1, v) ≤ 2
for all v ∈ Sy ∩R0, at least four vertices of Sy will be adjacent connected to x1 by an unbalanced
2-path through x2 (as, according to previous discussions, at most two vertices of Sy can be
adjacent to c0). This will create the dominating set {x2, y} contradicting the maximality of D.

For |Sx| = 4 we have x2c0 and x3c1 as otherwise at least three vertices of Sx will be adjacent
to either c0 or c1 which is not possible (because it forces all vertices of Sy to be adjacent to c0

or c1). Now each vertex v ∈ Sy ∩R0 must be adjacent to either c0 or x2 (to satisfy d(v, x1) ≤ 2)
and also to either c1 or x3 (to satisfy d(v, x4) ≤ 2) which is not possible to do keeping the graph
planar.

For |C| = 3, 4, 5 by Lemma A.2, each vertex of Sx disagree with each vertex of Sy ∩R1 on c0.
We also have the edge x1c2 for some x1 ∈ Sx by triangulation. Now by equation (A.1) we have,

|S| ≥ (16− 2− |C|) = 13− |C|.

Hence |Sx| ≤ 2 for |C| = 3, 4, as otherwise every vertex u ∈ Sy will be adjacent to c0 creating
a dominating set {c0, t} with at least (|C|+ 1) common neighbors St ∪ {c1} for some t ∈ {x, y}
contradicting the maximality of D. For |C| = 5, as every vertex in Sx ∩ R0 agree with each
other on x (as they all must disagree with c2 on x) and on c0 (as they all disagree with vertices
of Sy ∩ R1 on c0). So, by Lemma A.3, we have |Sx ∩ R0| ≤ 3. But if |Sx ∩ R0| = 3 then every
vertex of Sy will be adjacent to c0 creating a dominating set {c0, y} with at least six common
neighbors Sy ∪ {c1} contradicting the maximality of D.

Hence |Sx| ≤ 2 for |C| = 3, 4 and 5.

Now for |C| = 3, we can assume x and y are non-adjacent as otherwise {c0, y} will be a
dominating set with at least four common neighbors (x, c1 and, two other vertices each from the
sets Sy ∩R0, Sy ∩R1 by triangulation) contradicting the maximality of D. Hence triangulation
will imply the edge c1c2. Now for |Sx| ≤ 2, either {c0, c2} is a dominating set with at least four
common neighbors {x, y, c1, x1} contradicting the maximality of D or x1 is adjacent to at least
two vertices y1, y2 ∈ Sy ∩ R0 creating a dominating set {x1, y} (the other vertex in Sx must be
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adjacent to x1 by triangulation) with at least four common neighbors {y1, y2, c0, c2} contradicting
the maximality of D.

For |C| = 4 we have |Sy∩R1| ≤ 2 as otherwise we will have the dominating set {c0, y} with at
least five common neighbors (c1, vertices of Sy ∩R1 and one vertex of Sy ∩R0 by triangulation)
contradicting the maximality of D. Now by equation (A.1) we have,

|Sy ∩R0| ≥ (16− |D| − |C| − |Sx| − |Sy ∩R1|)
≥ (16− 2− 4− 2− 2) = 6.

Now, at most two vertices of Sy ∩ R0 can be adjacent to c0 as otherwise {c0, y} will be a
dominating set with at least five common neighbors (c1, vertices of Sy ∩ R0 and one vertex of
Sy ∩R1 by triangulation) contradicting the maximality of D.

Also by triangulation in R3 we either have the edge xy or have the edge c2c3. But, if we
have the edge xy, then |Sy ∩R1| = 1 as otherwise the dominating set {c0, y} will contradict the
maximality of D. Hence, by triangulation, and to have unbalanced distance at most 2 with the
vertices of Sx, each vertex of Sy ∩ R0 will be adjacent either to c3 or to x1. This will create a
dominating set {x1, y} or {c3, y} that contradicts the maximality of D. Hence, we do not have
the edge xy (not even in other regions) and have the edge c2c3.

For |Sx| ≤ 2, the vertices of Sy∩R0 will be adjacent to either c3 or c0 or x1 to have unbalanced
distance at most 2 with x. But then triangulation will force at least one vertex of Sy ∩R0 to be
common neighbor of c3 and x1 and another vertex of Sy ∩R0 to be common neighbor of c3 and
x1 or the edge c0c3. It is not difficult to check, casewise, (drawing a picture for individual cases
will help in understanding the scenario) that one of the sets {c0, y}, {c3, y} or {x1, y} will be a
dominating set contradicting the maximality of D.

For |C| = 5 by Lemma A.1, each vertex of Sy ∩ Ri must disagree with ci+2 on y. If vertices
of Sy ∩ R0 and vertices of Sy ∩ R1 agree with each other on y, then they must disagree with
each other on c0 which implies |Sy ∩Ri| ≤ 3 for all i ∈ {0, 1}. If vertices of Sy ∩R0 and vertices
of Sy ∩ R1 disagree with each other on y, then vertices of Sy ∩ Ri must agree with c3−i on y.
Then, by Lemma A.2, each vertex of Sy ∩Ri must be connected to c3−i by an unbalanced 2-path
through c4−3i which implies |Sy ∩Ri| ≤ 3 for all i ∈ {0, 1}.

Assume, we have |Sy ∩R0| = 3 and |Sy ∩R1| = 3. Then each vertex of Sy ∩Ri must disagree
with both ci+2 and ci+3 on y. This will imply that the vertices of Sy ∩R0 and vertices of Sy ∩R1

disagree with each other on c0. Now there will be no way to have unbalanced distance at most
2 between a vertex of Sx and all the six vertices of Sy.

Hence we must have |Sy| ≤ 5. Then by equation (A.1) we have,

16 ≤ |(G)| ≤ 2 + 5 + (2 + 5) = 14.

This is a contradiction. This concludes this particular subcase.

(ii) Assume the three non-empty sets are Sx ∩ R1, Sy ∩ R0 and Sy ∩ R2 (only possible for
|C| ≥ 3). By Lemma A.2, we have Sx = {x1} and the fact that each vertex of Sy ∩Ri disagrees
with ci2/4 on x1 for i ∈ {0, 2}. Triangulation implies the edges x1c0, x1c1, ck−1c0, c0c1 and c1c2.

For |C| = 3, {c0, c1} is a dominating set with at least four common neighbors {x, y, c2, x1}
contradicting the maximality of D. For |C| = 4 and 5 we have, every vertex of Sy ∩R0 disagree
with every vertex of Sy ∩R2 on y. Hence, by Lemma A.3, we have |Sy ∩Ri| ≤ 3 for all i ∈ {0, 2}.
Hence by equation (A.1) we have

16 ≤ |(G)| = |D|+ |C|+ |S|
≤ [2 + 5 + (1 + 3 + 3)] = 14.

This is a contradiction.

Step 4: Hence at most two sets out of the 2k sets St∩Ri can be non-empty, where t ∈ {x, y}
and i ∈ {0, 1, ..., k − 1}.
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Figure A.4: The only non-empty region is R1

Now assume that exactly two sets out of the sets St ∩ Ri are non-empty, where t ∈ {x, y}
and i ∈ {0, ..., k − 1}, yet there are two non-empty regions. Without loss of generality assume
that the two non-empty sets are Sx ∩R0 and Sy ∩R1. Triangulation will force x and y to have
a common neighbor other than c0 and c1 for |C| = 2 which is a contradiction.

For |C| = 3, 4, 5 triangulation implies the edges ck−1c0 and c0c1. By Lemma A.2, we know
that each vertex of S is adjacent to c0. By equation (A.1) we have,

|S| ≥ (16− 2− 5) = 9.

Hence, without loss of generality, we may assume |Sx| ≥ 4. Then {c0, x} will be a dominating
set with at least six common neighbors Sx ∪ {ck−1, c1} contradicting the maximality of D.

Hence we are done. �

The lemma proved above was one of the key steps to prove the theorem. Now we will improve
the lower bound of |C|.
Lemma A.6. |C| ≥ 6.

Proof. For |C| = 2, 3, 4, 5 without loss of generality by Lemma A.5, we may assume R1 to be the
only non-empty region. Then triangulation will force the configuration depicted in Fig A.4 as a
subgraph of G, where C = {co, ..., ck−1}, Sx = {x1, ..., xnx} and Sy = {y1, ..., yny}. Without loss
of generality we may assume,

|Sy| = ny ≥ nx = |Sx|.

Then by equation (A.1) we have,

ny = |Sy| ≥ (16− 2− |C| − |Sx|) = 14− |C| − |Sx|. (A.2)

First of all assume nx = 0. Then x is non-adjacent to y as otherwise y will dominate the
whole graph. So we have the edges c0c1, c1c2, ..., ck−1c0 by triangulation. Then by equation A.2
we have,

|Sy| ≥ 14− 5 = 9.

Now to have Ud(x, yi) ≤ 2, every yi must be connected to x by an unbalanced 2-path with
internal vertex either c0 or c1. Hence at least four vertices of Sy must be adjacent to either c0

or c1. Note that c0 is also adjacent to ck−1, c1 and that c1 is also adjacent to c0, c2. So, the
dominating set {c0, y} or {c1, y} will contradict the maximality of D. Hence nx ≥ 1.

Claim 1: |C| = 5 is not possible.
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Proof of claim 1: Assume that |C| = 5. Then by equation A.2 we have,

|Sy| ≥ 14− 5− nx = 9− nx.

Therefore, as ny ≥ nx, we have ny ≥ 4. Now every vertex of Sy disagree with c3 on y. They
also must disagree with y on c2 as otherwise all of them will be connected to c2 by unbalanced
2-paths with internal vertex c1 and imply Ud(y1, y4) > 2. For similar reason, the vertices of Sy
must disagree with c4 on y.

Moreover, the edge c0c1 does not exist because it will force each vertex of Sy to be connected
to vertices of Sx by unbalanced 2-paths with internal vertex either c0 or c1. In fact, for nx ≥ 2,
as not all vertices of Sx can be adjacent to both c0 and c1, every vertex of Sy will be connected to
the vertices of Sx by unbalanced 2-paths with internal vertex being exactly one of c0, c1 implying
Ud(y1, y4) > 2. For nx = 1, as ny ≥ 7, at least four vertices of Sy will be connected to the
vertices of Sx by unbalanced 2-paths with internal vertex being exactly one of c0, c1 implying
Ud(yi, yi+3) > 2 for some i ∈ {1, 2, ..., ny}. Hence the edge c0c1 does not exist.

Also, if we have the edge y1y4 and without loss of generality assume the edge y1y3 by trian-
gulation, then every vertex of Sx must be connected to y2 by unbalanced 2-paths with internal
vertex y1. In this case {y1, y} is a dominating set with at least ny common neighbors (c0 and
ny−1 common neighbors from Sy). Hence, to avoid contradicting the maximality of D, we must
have ny ≤ 5. Then we must also have nx ≥ 3. But then, as every vertex of Sx agree on c0 and on
x (as they all disagree with c3 on x), they must disagree with c1, c2 and c4 to have unbalanced
distance at most 2 with them. Also the vertices of Sy must disagree on c1 to have unbalanced
distance at most 2 with it. Hence the vertex c4 and c1 agree with each other on x and y. Hence
we have Ud(c4, c1) > 2 as the edge c0c1 does not exist. This is a contradiction. Hence we do not
have the edge y1y4.

Therefore, y1 and y4 must be connected by an unbalanced 2-path with an internal vertex xj
from Sx for some j ∈ {1, 2, .., nx}. As we cannot have the edge y1y4, this will imply that every
vertex of S \ {xj} will be adjacent to xj to be at unbalanced distance at most 2 from each other.
Then we can arrive to a contradiction exactly like the case described in the paragraph above.

This proves the claim. ♦

Claim 2: |C| = 4 is not possible.

Proof of claim 2: Assume that |C| = 4. Then by equation A.2 we have,

|Sy| ≥ 14− 4− nx = 10− nx.

Therefore, as ny ≥ nx, we have ny ≥ 5.
Now we will show that every vertex of Sy disagree with c2 and c3 on y. First note that no

vertex can agree with both c2 and c3 on y as otherwise it must be adjacent to both c0 and c1

which is impossible as ny ≥ 5. So, basically, if the claim is not true, then some vertices of Sy
will agree with c2 on y and the other vertices of Sy will agree with c3 on y.

Also at most three vertices of Sy can agree with c2 (or c3) on y. So, ny ≤ 6. Hence, nx ≥ 3.
Now, three vertices agree on, say, c2, then they will all disagree with c2 on c1 and every vertex

(there are at least three such vertices) of Sx will disagree with those three vertices on c1. Then,
to have unbalanced distance at most 2 with the vertices of Sx, the other vertices (there are at
least two such vertices) of Sy should be adjacent to c1 which is not possible as they are already
connected to c3 with unbalanced 2-paths with internal vertex c0.

The rest of the proof is similar to the proof Claim 1. Using similar arguments it is possible
to show that the edge c0c1 does not exist, the edge y1y4 does not exist and it is not possible to
have an unbalanced 2-path with internal vertex from Sx connecting y1 and y4. ♦

Proof of claim 3: Assume that |C| = 3. Then by equation A.2 we have,

|Sy| ≥ 14− 3− nx = 11− nx.
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Therefore, as ny ≥ nx, we have ny ≥ 5.
First note that it is not possible to have the edge c0c1 as this will force some three vertices

of Sy to be connected to vertices of Sx by unbalanced 2-paths with internal vertex c0 (or c1)
making {c0, y} (or {c1, y}) a dominating set that contradicts the maximality of D.

For nx ≥ 7, there are at least 4 vertices in Sy that agree with each other on y. We need to
have unbalanced distance at most 2 between them. Let those four vertices be yi, yj , yk, yl with
i > j > k > l.

Now assume we have the edge yiyl. Then every vertex of Sx will be adjacent to either yi or
yl. Without loss of generality assume that every vertex of Sx is adjacent to yi. But then {yi, y}
will be a dominating set with at least 4 common neighbors contradicting the maximality of D.
Hence ny ≤ 6. Therefore we must have nx ≥ 4.

For ny = 5, 6, one can show that these cases are not possible without creating a dominating
set that contradicts the maximality of D. If one just tries to have unbalanced distance at most
2 between the vertices of S, the proof will follow. The proof of this part is also similar to the
ones done before and, though a bit tedious, is not difficult to check. ♦

Proof of claim 4: Assume that |C| = 2. Then by equation A.2 we have,

|Sy| ≥ 14− 2− nx = 12− nx.

Therefore, as ny ≥ nx, we have ny ≥ 6.
This is actually the easiest of the four claims. The case ny ≥ 7 can be argued as in the

previous proof. For ny = 6, we must have nx ≥ 5. If one just tries to have unbalanced distance
at most 2 between the vertices of S, the proof will follow. The proof of this part is also similar
to the ones done beforeand, though a bit tedious, is not difficult to check. ♦

This completes the proof of the lemma. �

So, now we have proved that the value of |C| is at least 6. This is an answer to our question
”how small |C| can be?”. Now we will ask the question “How big |C| can be?” and try to provide
upper bounds for the value of |C|. The following lemma will help us to do so.

Lemma A.7. If |C| ≥ 6, then the following holds:
(a) |Cαβ| ≤ 3, |Cαt | ≤ 6, |C| ≤ 12. Moreover, if |Cαβ| = 3, then (G)[Cαβ] is an unbalanced

2-path.
(b) |Cαt | ≥ 5 (respectively 4, 3, 2, 1, 0) implies |Sαt | ≤ 0 (respectively 1, 3, 4, 5, 6).

Proof. (a) If |Cαβ| ≥ 4, then there will be two vertices u, v ∈ Cαβ with d(u, v) > 2 which is a
contradiction. Hence we have the first inequality which implies the other two.

Also if |Cαβ| = 3, then the only way to connect the two non-adjacent vertices u, v of Cαβ is
to connected them with an unbalanced 2-path through the other vertex (other than u, v) of Cαβ .

(b) Lemma A.1(b) implies that if all elements of Cαt do not belong to the set of four boundary
points of any three consecutive regions (like R,R1, R2 in Lemma A.2), then |Sαt | = 0. Hence we
have |Cαt | ≥ 5 implies |Sαt | ≤ 0.

By Lemma A.2, if all the elements of Cαt belong to the set of four boundary points c1, c2, c1, c2

of three consecutive regions R,R1, R2 (like in Lemma A.2) and contains both c1, c2, then |Sαt | ≤ 1.
Also Sαt ⊆ R by Lemma A.2. Hence we have,

|Cαt | ≥ 4 implies |Sαt | ≤ 1.

Now assume that all the elements of Cαt belongs to the set of three boundary points c1, c2, c1

of two adjacent regions R,R1 (like in Lemma A.2) and contains both c1, c2. Then by Lemma A.1,
v ∈ Sαt implies v is in R or R1.

Now if both Sαt ∩R and Sαt ∩R1 are non-empty, then each vertex of (Sαt ∩R)∪{c2} disagrees
with each vertex of (Sαt ∩R1) ∪ {c1} on c1 (by Lemma A.2).
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Hence by Lemma A.3 we have,

|(Sαt ∩R) ∪ {c1}|, |(Sαt ∩R1) ∪ {c2}| ≤ 3.

This clearly implies,

|Sαt ∩R|, |Sαt ∩R1| ≤ 2 and |Sαt | ≤ 4.

Now suppose we have |Sαt | = 4 and hence also |Sαt ∩ R|, |Sαt ∩ R1| = 2. Then St′ = ∅ as the
only way for a vertex of St′ to have unbalanced distance at most 2 with every vertex of St is
by being connected by an unbalanced 2-path with internal vertex c1, which is impossible as the
vertices of Sαt ∩R disagree with the vertices Sαt ∩R1 on c1.

In fact, for the same reason, it is impossible to have unbalanced distance at most 2 between
all the vertices of St and t′ unless we have the edge tt′ (that is the edge xy). But then the edge
tt′ makes t a vertex that dominates the whole graph contradicting the domination number of the
graph being 2. Therefore, it is not possible to have |Sαt | = 4. Hence we have |Sαt | = 3 in this
case.

Also if one of Sαt ∩R and Sαt ∩R1 is empty then we must have |Sαt | ≤ 3 by Lemma A.2 and
A.3.

Hence we have

|Cαt | ≥ 3 implies |Sαt | ≤ 3.

Let R,R1, R2, c1, c2, c1, c2 be like in Lemma A.2 and assume Cαt = {c1, c2}. By Lemma A.1,
v ∈ Sαt implies v is in R, R1 or R2 and also that both Sαt ∩R1 and Sαt ∩R2 can not be non-empty.
Hence, without loss of generality, assume Sαt ∩R2 = ∅.

Then by Lemma A.2, vertices of Sαt ∩ R1 disagree with vertices of (Sαt ∩ R) ∪ {c2} on c1.
Hence by Lemma A.3 we have,

|Sαt ∩R1|, |(Sαt ∩R) ∪ {c2}| ≤ 3.

This implies |Sαt | ≤ 5.
Now if Sαt ∩R1 = ∅, then we have Sαt = Sαt ∩R. Let |Sαt ∩R| ≥ 6. Now consider the induced

graph (O) = (G)[(S ∩R)∪{c1, c2}]. In this graph the vertices of (Sαt ∩R)∪{c1, c2} are pairwise
at unbalanced distance at most 2. Hence ωrs((O)) ≥ 8. But this is a contradiction as (O) is an
outerplanar graph and every outerplanar graph has a signified relative clique number at most 7
(see Chapter 5, Section 5.3, Theorem 5.16(a) for details). Hence,

|Cαt | ≥ 2 implies |Sαt | ≤ 5.

Now suppose we have |Sαt | = 5. Then we must have St′ = ∅ as otherwise it is not possible to
have unbalanced distance at most 2 between the vertices of S.

We also do not have the edge xy as it will contradict the domination number of the graph
being 2 (t will dominate the graph). So, by triangulation we have the edges c1c2 and c1c1. So,
each vertex of St must be connected to t′ with an unbalanced 2-path with internal vertices from
{c1, c1, c2}. But then it will not be possible to have unbalanced distance at most 2 between the
five vertices of St.

Hence,

|Cαt | ≥ 2 implies |Sαt | ≤ 4.



146 A.2. Proof of Lemma 5.20

In general Sαt is contained in two distinct adjacent regions by Lemma A.1. Without loss
of generality assume Sαt ⊆ R1 ∪ R2. If both Sαt ∩ R1 and Sαt ∩ R2 are non-empty, then by
Lemma A.2 we know that vertices of Sαt ∩ R1 disagree with vertices of Sαt ∩ R2 on c1. Hence
|Sαt ∩R1|, |Sαt ∩R2| ≤ 3 which implies |Sαt | ≤ 6.

Now assume only one of the two sets Sαt ∩ R1 and Sαt ∩ R2 is non-empty. Without loss of
generality assume Sαt ∩ R1 6= ∅. If c0, c1 /∈ Cαt and |Cαt | = 1, then we have |Sαt ∩ R1| ≤ 3 by
Lemma A.2 and A.3. In the induced outerplanar graph (O) = (G)[(S ∩ R1) ∪ {c1, c2}] vertices
of Sαt ∪ (cαt ∩ {c1, c2}) are pairwise at unbalanced distance at most 2.

Hence 7 ≥ χs((O)) ≥ |Sαt ∪ (cαt ∩ {c1, c2})|. Therefore,

|Cαt | ≥ 1 (respectively 0) implies |Sαt | ≤ 6 (respectively 7).

Now, when both the equalities hold, we must have St′ = ∅ as otherwise Cαt ∪ St ∪ St′ will
contain an signified outerplanar graph with signified chromatic number at least 8, which is not
possible, in order to have all the vertices of S at unbalanced distance at most 2.

Now, St′ = ∅ will imply that the edge xy is not there as otherwise t will dominate the whole
graph. Hence, each vertex of St must be connected to t′ by an unbalanced 2-path with internal
vertex ci for some i ∈ {0, 1, 2}. But this will force |St| ≤ 5 as otherwise the vertices of St will no
longer be at unbalanced distance at most 2 from each other.

Hence,

|Cαt | ≥ 1 (respectively 0) implies |Sαt | ≤ 5 (respectively 6).

Hence we are done. �

Now we will prove that the value of |C| can be at most 5 which contradicts our previously
proven lower bound of |C|.
Lemma A.8. |C| ≤ 5.

Proof. Without loss of generality we can suppose |Cαx | ≥ |C
β
y | ≥ |Cβy | ≥ |Cαx | (the last inequality

is forced). We know that |C| ≤ 12 and |Cαx | ≤ 6 (Lemma A.7(a)). So it is enough to show that
|S| ≤ 13− |C| for all possible values of (|C|, |Cαx |, |C

β
y |) since it contradicts (A.1).

For (|C|, |Cαx |, |C
β
y |) = (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4) we

have |S| ≤ 13− |C| using Lemma A.7(b).
For (|C|, |Cαx |, |C

β
y |) = (8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5) we are

forced to have,

|Cαβ| > 3.

This is a contradiction by Lemma A.7(a).
So, (|C|, |Cαx |, |C

β
y |) 6= (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4),

(8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5).
We will be done if we prove that (|C|, |Cαx |, |C

β
y |) cannot take the other possible values also.

That leaves us checking a lot of cases. We will check just a few cases and observe that the other
cases can be checked using similar logic.

Case 1: Assume (|C|, |Cαx |, |C
β
y |) = (9, 6, 6).

Then we are forced to have, |Cαβ| = |Cαβ| = |Cαβ| = 3 in order to satisfy the first in-
equality of Lemma A.7(a). So (G)[Cαβ], (G)[Cαβ] and (G)[Cαβ] are unbalanced 2-paths by
Lemma A.7(a). Without loss of generality we can assume Cαβ = {c0, c1, c2} and Cαβ =

{c3, c4, c5}. Hence by Lemma A.1 we have u ∈ R1∪R2 and v ∈ R4∪R5 for any (u, v) ∈ Sβy ×Sαx .
Hence by Lemma A.1, either Sβy or Sαx is empty. Without loss of generality assume Sβy = ∅.
Therefore we have, |S| = |Sx| = |Sαx | ≤ 3 (by Lemma A.7(b)). So this case is not possible.
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Case 2: Assume (|C|, |Cαx |, |C
β
y |) = (7, 6, 4).

So, without loss of generality, we can assume that (G)[Cαβ] and (G)[Cαβ] are unbalanced
2-paths and, Cαβ = {c0, c1, c2}, Cαβ = {c3, c4, c5} and Cαβ = {c6}.

By Lemma A.7 we have |Sx| ≤ 5 and |Sy| ≤ 3 + 1 = 4. So we are done if either Sx = ∅ or
Sy = ∅.

So assume both Sx and Sy are non-empty. First assume that Sβy 6= ∅. Then by Lemma A.1
we have Sβy ⊆ R5, Sαx ⊆ R5 ∪R6 and hence Sβy = ∅. By Lemma A.2, vertices of Sβy and vertices
of Sαx ∩ R5 must disagree with c6 on c5 while disagreeing with each other on c5, which is not
possible. Hence, Sαx ∩ R5 = ∅. Also |Sαx ∩ R6| ≤ 3 as they all disagree on c5 with the vertex of
Sβy . So |S| ≤ 4 when Sβy 6= ∅.

Now assume Sβy = ∅ hence Sβy 6= ∅. Then by Lemma A.1 we have Sβy ⊆ R1∪R2, Sαx ⊆ R0∪R1

and hence Sβy = ∅. Assume Sβy ∩ R2 = ∅ as otherwise vertices of Sαx will be adjacent to both
c0 and c1 (to be connected to c6 and vertices of Sβy ∩ R2 by an unbalanced 2-path) implying
|Sαx | ≤ 1 implying |S| ≤ 5. If Sαx ∩R0 6= ∅, then |Sβy ∩R1| = 1, |Sαy ∩R1| ≤ 1 and |Sαy ∩R0| ≤ 3

by Lemma A.2 and hence |S| ≤ 5. If Sαx ∩ R0 = ∅ then we have |Sβy ∩ R1| ≤ 2, |Sαy ∩ R1| ≤ 3
and hence |S| ≤ 5. So this case is not possible.

In a similar way one can handle the other cases. �

This proves Lemma 5.20. �

A.3 Proof of Theorem 6.31

(a) The lower bound follows from the fact that the unbalanced 4-cycle is an [s]-clique.

Now we prove the upper bound.
Assume that [G,Σ] is a signed outerplanar graph of minimum order with ω[rs]([G,Σ]) > 4.

Moreover, assume [G,Σ] is such that if we delete any edge of [G,Σ], it will no longer have signed
relative clique number greater than 4.

Let R be a signed relative clique of maximum order in [G,Σ] and let S = V (G) \ R. Note
that S induces an independent set of [G,Σ] as deleting any edge between two vertices of S will
not decrease the signed relative clique number of the graph [G,Σ].

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex z does not help
connecting any two (or more) vertices of R by an unbalanced 4-cycle and hence can be deleted
to get a signed planar graph with relative signed chromatic number equal to that of [G,Σ] but
with order less than [G,Σ], which contradicts the minimality of [G,Σ].

In fact, any z ∈ S with d(z) = 2 must be the internal vertex of a 2-path that connects two
vertices of R. But, we can replace that 2-path by an edge and obtain another signed outerplanar
graph to contradict the minimality of [G,Σ]. Hence, d(z) ≥ 3 for all z ∈ S.

As [G,Σ] is an outerplanar graph, there exists a vertex x ∈ V (G) with d(x) ≤ 2. By the
above discussion we know that x ∈ R. Clearly d(x) = 2 as otherwise |R| ≤ 4.

Assume that N(x) = {w, z}. Now as |R \ {x,w, z}| ≥ 2, without loss of generality, we can
assume that at least two vertices of R are connected to x by unbalanced 4-cycles. Hence at least
three vertices of R, including x, must be connected to both w and z. It is easy to note that it is
not possible to obtain this keeping the graph outerplanar. So, this is a contradiction.

(b) As any two non-adjacent vertices of a signed relative clique must be part of an unbalanced
4-cycle, it is not possible to have a outerplanar signed relative clique with girth at least 5 of order
more than 2. Hence the upper bound.

An edge has signed relative clique number 2. Hence the lower bound. �

A.4 Proof of Theorem 6.32

(a) The upper bound follows from Theorem 6.23(a).
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Consider the graph obtained by deleting the vertices x4, x5, y4, y5 from the signified graph
(B0) (see Fig. 6.6). Notice that the new graph is a presentation of an [s]-clique of order 8. Hence
the lower bound.

(b) Let [G,Σ] be a triangle-free planar signed graph of minimum order with ω[rs]([G,Σ]) > 17.
Let R be a signed relative clique of maximum order of [G,Σ] and let S = V (G) \R.

Claim 1: For any v ∈ V (G) we have, |N(v) ∩R| ≤ 4.

Proof of Claim 1: Resign the neighbors of v in such a way that we obtain a presentation
of [G,Σ] with N(v) = N+(v). Now, as [G,Σ] is triangle-free, each pair of neighbors of v must be
part of an unbalanced 4-cycle. For a pair of neighbors of v to be part of an unbalanced 4-cycle,
we must have an unbalanced 2-path connecting them (note that they are already connected by
a 2-path, with internal vertex v, which is not unbalanced). Now by the proof of Claim 1 of the
proof of Theorem 5.17(b) (see Chapter A, Section A.1), we know this is not possible. Hence, our
claim is proved. ♦

Now note that for any z ∈ S, we have d(z) ≥ 2 as otherwise z can be deleted to get a signed
triange-free planar graph whose signed relative chromatic number is equal to that of [G] but with
order less than [G], which contradicts the minimality of [G]. Now, a vertex z of S must connect
at least two vertices of R by a 2-path with the internal vertex being itself (that is, z).

Now for each vertex z ∈ S with d(z) ≤ 5, assume that the neighbors of z are v1, v2, ..., vk. Fix
a planar embedding of G and assume that the neighbors of z are arranged in a clockwise order
around z. Now delete the vertex z and add the edges v1v2, v2v3, ..., vk−1vk, vkv1 (for d(z) = 2
add only one edge v1v2) to obtain a new graph.

Note that this new graph is also planar (may not be triangle-free) and the degree of each
vertex in the new graph, which were in G also, is at least as much as the degree of the vertex in
G. Hence, there is a vertex v in the new graph, which belongs to R, with degree at most 5.

As each vertex from R \ N(v) ∪ {v} is adjacent to at least two neighbors of v for being
part of the same unbalanced 4-cycle with v, there will be a neighbor u of v and at least five
neighbors from R \ N(v) ∪ {v} which is a contradiction to Claim 1. So, we can conclude that
ω[rs]([G,Σ]) ≤ 17.

(c) As any two non-adjacent vertices of a signed relative clique must be part of an unbalanced
4-cycle, the vertices of a signed relave clique in a planar graph with girth at least 5 must be all
adjacent to each other. So, it is not possible to have a planar signed relative clique with girth at
least 5 of order more than 2. Hence the upper bound.

An edge has signed relative clique number 2. Hence the lower bound. �

A.5 Proof of Lemma 6.40

Let a, b, c and d be the original vertices of the K4 from which [G,Σ] is constructed. Let tuv be
the length of the path joining u and v in [G,Σ] for u, v ∈ {a, b, c, d}.

Then we have

tab + tbc + tca = tab + tbd + tad

= tac + tcd + tad

= tbc + tcd + tbd

= 2k (A.3)

From equation A.3 we have

tuv = twx for {u, v, w, x} = {a, b, c, d}. (A.4)

Let u and v be a pair of vertices of [G,Σ]. If u and v are connected by an odd path then we
are done. Hence assume that all the paths connecting u and v are even for the rest of this proof.
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If u and v are both vertices of a particular facial cycle of [G,Σ], then there are two paths of
even length at most 2k connecting u, v such that one of them has an odd number of negative
edges and the other one has an even number of negative edges.

If there is no facial cycle of [G,Σ] containing both u and v, then we may assume, without
loss of generality, that u is a vertex of the path obtained by subdividing ab and v is a vertex of
the path obtained by subdividing cd.

Suppose that u has partitioned the path obtained by subdividing ab to paths of length t′ab
(length of the path connecting a and u) and t′′ab (length of the path connecting u and b) and
that v has partitioned the path obtained by subdividing cd into paths of length t′cd (length of
the path connecting c and v) and t′′cd (length of the path connecting v and d).

Note that by equation 6.3 we have

t′ab + t′′ab = t′cd + t′′cd

= tab = tcd. (A.5)

If tab = tcd is even, then t′ab and t′′ab have the same parity and t′cd and t′′cd have the same
parity. Moreover, this will imply that tac and tad have the same parity.

On the other hand, if tab = tcd is odd, then t′ab and t
′′
ab have different parities and t′cd and t′′cd

have different parities. Moreover, this will imply that tac and tad have different parities.
Now the path connecting u, v that contains the vertices a, c is of length t′ab+ tac+ t′cd and the

path connecting u, v that contains the vertices b, d is of length t′′ab+tbd+t′′cd. Clearly, t
′
ab+tac+t

′
cd

and t′′ab + tbd + t′′cd have the same parity irrespective of the parity of tab = tcd. Now note that

t′ab + tac + t′cd + t′′ab + tbd + t′′cd = tab + tac + tcd + tbd (by equation A.5)
= 2(tab + tac) (by equation 6.3)
= 2(tab + tac + tbc)− 2tbc

= 4k − 2tbc (by equation 6.2)
≤ 4k − 2 (as tbc ≥ 1)

Hence we have min{(t′ab + tac + t′cd), (t
′
ab + tbd + t′cd)} ≤ (2k− 2). Therefore, there is an even

path of length atmost (2k− 2) connecting u and v. Similarly, we can show that min{(t′ab + tad +
t′′cd), (t

′′
ab + tbc + t′cd)} ≤ 2k.

Let the number of negative edges contained in the path connecting u, v that contains the
vertices a, c be negac. Similarly define negbc, negad and negbd. Note that the parity of negac and
negbd is different from the parity of negad and negbc.

Therefore, there are two even paths, one with even number of negative edges and the other
with odd number of negative edges, of length at most 2k − 2 connecting u and v. �

A.6 Proof of Theorem 6.41

Consider a K4 on four vertices a, b, c and d. Let G1 be a subdivision of this K4 where edges ab
and cd each are subdivided into 2k − 2 edges. Let (G1,Σ1) be the signified graph with the new
edge incedent to a (created by the subdivision of ab) and the new edge incedent to c (created by
the subdivision of cd) being negative. Thus the signed graph [G1,Σ1] is a subdivision of K4 in
which all the four faces are cycles of length 2k. Hence by Lemma 6.40 we have

ω([G1](2k−2)) = |V (G1)| = 4k − 2.

In the following we will build a sequence of signified graphs (Gi,Σi), for i ∈ {1, 2, · · · , 2k−2},
such that each (Gi+1,Σi+1) contains (Gi,Σi) as a subgraph, the signed graph [Gi+1,Σi+1] is
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bipartite planar and of unbalanced-girth 2k and such that ω([Gi+1](2k−2)) > ω([Gi]
(2k−2)). At

the final step we will have,

ω([G2k−2](2k−2)) ≥ 22k−1.

We start with the following partial construction. Suppose (Gi,Σi) is built and let P =
uv1v2 · · · vrw be a maximal thread, that is, a path P connecting u and w such that all vj ’s are of
degree 2 in Gi but u and w are of degree at least 3, of (Gi,Σi) for j ∈ {1, 2, ..., r}. Furthermore,
assume that P is either part of a path of length 2k − 2 connecting a and b or part of a path of
length 2k − 2 connecting c and d.

Since P is a thread, if we add the new edge uw in (Gi), the resulting graph will still be planar.
So we add such an edge and subdivide it r times to obtain the new thread P ′ = uv′1v

′
2 · · · v′rw.

Also we assign signs of the new edges in a way such that the edges uv′1 and vrw has the same
sign, the edges v′rw and uv1 has the same sign and the edges v′iv

′
i+1 and vr−i+1vr−i has the same

sign.

Consider a planar drawing of the graph in which P and P ′ form a facial cycle of length 2r.
In the face PP ′ connect v1 and v′r by a new edge. Subdivide this new edge 2k − r − 2 times
(that is, into 2k − r − 1 edges), so that each of the facial cycles containing the new thread is of
length 2k. Choose signs of the edges of this new path in such a way that each of the facial cycles
containing the new thread is unbalanced.

Let (G′i,Σ
′
i) be the resulting signified graph. We first note that G′i is also of unbalanced-girth

2k. Now suppose a maximal clique W of [Gi]
(2k−2) contains vj of the thread P . Then we claim

that W ∪ {v′j} is also a clique of [G′i]
(2k−2).

To prove this let x be any vertex of W . If x is not in P , then consider a path of length r
from vj to x. Each time this path uses a part of P replace it with the corresponding part from
P ′. If r is odd, then we are done. If not, then there should be two even-paths P1 and P2, each
of length at most (2k − 2), connecting x and vj with P1 having odd number of negative edges
and P2 having even number of negative edges. Each time P1 or P2 path uses a part of P , replace
it with the corresponding part from P ′, to obtain even-paths P ′1 and P ′2, each of length at most
(2k − 2), connecting x and v′j . Note that according to our construction one of P ′1 and P ′2 has
odd number of negative edges while the other has even number of negative edges.

If x ∈ P , then, without loss of generality, assume that P is part of a path of length 2k − 2
connecting a and b. Consider the subgraph induced by this path together with c, P ′ and the
v1...v

′
r thread we added to build G′i. This induced subgraph is a subdivision of K4 in which all

the faces are unbalanced-cycles of length 2k. Thus, by Lemma 6.40 we are done. In particular if
all vertices of P are in W , then W ∪ {v′1, v′2, · · · , v′r} is a clique in [G′i]

(2k−2).

Now we describe our general construction. At first we have (G1,Σ1) on 4k − 2 vertices and
two maximal threads. By Lemma 6.40 all the vertices of these two threads are parts of the
unique clique of order 4k − 2 in [G1](2k−1). We apply the previously mentioned construction on
both threads to build (G2,Σ2) which will have four maximal threads each of length 2k − 3 (we
are only considering maximal threads that are part of a path of length 2k − 2 connecting a, b or
c, d). There is a clique of order (4k − 2) + 2(2k − 3) in [G2](2k−2), and there are four maximal
threads of length 2k − 3, each a part of a path of length 2k − 2 either connecting a and b or c
and d.

Continuing this construction, in general, there is a clique Wi of [Gi]
(2k−2) (2 ≤ i ≤ 2k − 2)

which is of order (4k − 2) +
∑i−1

j=1 2j(2k − j − 2) and there are 2i maximal threads of length
2k − i− 1 which are part of a path of length 2k − 2 connecting a and b or c and d.

Note that [Gi,Σi] at each step is a planar bipartite signed graph of unbalanced-girth 2k. The
clique W2k−2 of [G2k−2,Σ2k−2](2k−1) has order equal to
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4k − 2 +
2k−2∑
j=1

2j(2k − j − 2) = 4k − 2 + (2k − 2)
2k−2∑
j=1

2j − 2
2k−2∑
j=1

j2j−1

= 4k − 2 + [(2k − 2)(22k−1 − 2)]−
2[(1− 22k−1)− (−1)(2k − 1)22k−2]

= 4k − 2 + [k22k − 4k − 22k + 4]−
[2− 22k + k22k − 22k−1]

= 22k−1.

This completes the proof. �
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