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identification is performed and the response of the material for various case studies reported. This has 

helped in designing the experimental test for the identification of the fatigue criterion. The values 

obtained are in agreement with available data in the literature. A mythology is then provided to 

combine the results from the stress distribution across the structure together with the estimation of the 

local plastic strain amplitude value. This latter will finally allows a prediction of the exchanger 

lifetime when subjected to thermal cyclic loadings through the identified fatigue criterion. 

This manuscript has been divided into three parts. In Chapter 1, the company Alfa Laval and the 

industrial context of the study is presented. A main part is devoted to the analysis of the welded heat 

exchanger design under consideration in this study. Some cases for which failures have been observed 

in bench tests in different units are then reported. The investigations localises the regions 

corresponding to large stress concentrations in the heat exchanger. The next step consists inn 

introducing a damage analysis by borrowing a oligocyclic fatigue criterion in the literature and 

identifying the parameters for the material under consideration. A rapid literature survey about the heat 

exchanger failure analysis is given to situate the context of the study. 

The finite element model construction of the heat exchanger at the scale of the structure has been 

carried out in a step by step approach in Chapter 2. From several assumptions verified experimentally, 

the thermo-elastic response of the heat exchanger under uniform thermal loading has been firstly 

investigated. The region of the exchangers where the stress concentrates has been identified. Two 

thermo-mechanical tests have been performed to validate the thermo-elastic description of the heat 

exchanger. 

In Chapter 3, the elastic-plastic mechanical response of the 316L steel is identified, which exhibits a 

combined isotropic and kinematic hardening. An energy equivalent method is proposed to estimate the 

magnitude of the equivalent plastic deformation from the analysis at the level of the structure. This 

estimation is used to predict the exchanger life from a Manson-Coffin criterion identified in the low 

cycle fatigue regime. The prediction is finally compared to experimental data. 
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I. STATE OF THE ART 

In this chapter, the company Alfa Laval as well as the industrial context of the study is firstly 

introduced. A main part is devoted to the analysis of the welded heat exchanger design about to be 

studied. The next step of this part then introduces the involved damage mechanics in the reported 

failure cases as well as the material properties needed for the study. Finally a literature review about 

the heat exchanger failure analysis is given to situate the context of the study 
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I.2. Alfa Laval Group 

Gustaf de Laval (cf. Figure I.1) and his partner, Oscar Lamm, founded the company AB Separator in 

1883, six years after the beginning of his work on the development of a centrifugal separator and four 

after its first demonstration in Stockholm. In 1890 the world’s first continuous separator using an Alfa-

disc technology is introduced in order to manufacture the first Milk pasteurizer. The first French 

Subsidiary of the current Alfa Laval Company called “La Société des Ecrémeuses Alfa Laval” is 

founded in 1907 by H.H Mac Coll. Until 1938 the company developed different kind of separator, 

particularly for farm’s application and oil purification. Nevertheless AB Separator already introduced 

its first heat exchanger the same year. From this time, Lund has become the development and 

production’s centre of heat exchangers. It is only in 1963 that the company changed its name to Alfa-

Laval. In 2008, the group represents 20 production sites and almost 11500 employees around the 

world (with more than 800 in France). In 1998, Alfa Laval acquired Vicarb based at Le Fontanil and 

Nevers in France, and Packinox based at Chalon-sur-Saone in 2005. Those two companies are 

specialised in the fabrication of welded plate heat exchangers. 

Nowadays, the Alfa Laval group develops three key technologies in the world market, namely the heat 

transfer the separation and the fluid handling. Up to 3% of sales are today invested annually in 

Research & Development and from which the company can suggest technological solutions in 

different applications area such as: 

- energy,  

- environment conservation,  

- food and water supplies,  

- Pharmaceuticals. 

 

Figure I.1 - Gustaf de Laval / Old heat exchanger model 

The project being focused on the heat exchanger durability analysis, the next part particularly deals 

with the presentation of their structure and functionalities.  
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I.3.2. Design description 

A classical heat exchanger consists of the assembly of two main parts such as a core or a matrix 

containing the heat transfer surfaces and fluid distribution elements (as headers and tank, inlet and 

outlet nozzles and pipes for instance, cf. Figure I.3). 

Generally all the components of an exchanger are fixed, except for particular cases such as rotary 

generator (in which the matrix is able to rotate). In all cases, the fluids are in contact with the transfer 

surface permitting the heat to be transferred from the hot fluid to the cold one. As a consequence, the 

fluid becomes hotter or colder, wins or loses energy. Therefore it is clear that the exchanger efficiency 

strongly depends on its exchange surface.  

I.3.3. Heat exchanger classification in the market 

Industrial heat exchangers are classified according to different aspects and criterion which are given in 

the paragraphs below. 

I.3.3.1. Classification according to the heat exchangers design 

It concerns the global geometry of the heat exchanger, which can be classified into four main parts: 

- Tubular heat exchangers (double pipe, shell and tube, coiled tube), 

- Plate heat exchangers (produced by the Alfa Laval group), 

- Extended surface heat exchangers (fin-tube, thin-sheet), 

- Regenerators (fixed matrix, rotary). 

Alfa Laval Group mostly produces plate heat exchangers classified in three groups: 

- Gasketed plate heat exchangers, 

- Spiral heat exchangers , 

- Welded plate heat exchangers which are considered in this study. 

I.1.1.1. Classification according to transfer process 

Two types of thermal transfer are distinguished: 

- An indirect contact type (direct transfer type, storage type, fluidized bed), 

- A direct contact type (the two fluids are note separate by a wall). 

The project deals with the indirect transfer type exchangers in which there is a continuous flow of the 

heat from the hot to the cold fluid through a separating wall. The fluids’ mixing is prevented by 

separated fluid passages. 
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Figure I.5 - Isometric view of the welded heat exchanger 

Depending on the thermal specifications given by the customers, a heat exchanger can contain odd or 

even number of passes. A pass is created by installing baffles through channels. Typically, its role is to 

define a thermal circuit within the exchanger (cf. Figure I.4). 

I.3.3.2. Classification according to the heat transfer mechanism 

Although the heat transfer through the plates is made by conduction, the fluids temperature is then 

able to change by a liquid/solid or liquid/stream contact, permitting the exchange in the full structure. 

Convection force can be thus seen as the major heat transfer mechanism involved in the exchanger. 

I.4. Welded heat exchangers of Alfa Laval Vicarb 

I.4.1. General considerations 

The welded heat exchanger of Alfa Laval Vicarb belongs to the Compact exchanger family. This one 

called “Compabloc” has been developed by the company for more than 20 years. The major interest of 

using this exchanger is to get optimal performances when the operating conditions become severe as 

in chemical aggressive environment or/and under high temperature’s variations (from ΔT = -50 to 

400°C) with extreme pressure conditions (up to 40 bars). 

I.4.2. Design of the exchanger 

The Figure I.5 shows an isometric view of the welded heat exchanger depicting the different 

constitutive parts of this heat exchanger. As it is shown, the structure is typically composed of two 

mains parts which are presented in more details in the following. 
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Figure I.6 - Heart of the exchanger 
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Figure I.8 - From a totally smooth plate to a stack of N plates 

This picture displays corrugations on the plates. The role of these corrugations is to generate 

turbulence allowing a non-negligible increase of the heat transfer coefficient (by a factor of 3 to 5 

compared to a shell-and-tube heat exchanger). Furthermore, the fouling can be minimized which make 

longer operating periods possible. By the way, different patterns of corrugations are available, these 

ones being called CPX, CPK or CPL. From a fabrication point of view, the corrugations are obtained 

by metal forming, whereas “papillotes” as the lateral ledges are formed after folding. Besides, both 

deformation processes induce residual stresses by plastic deformations in the initial state of the 

material. The plates are welded together at the “papillotes” area and along ledges, forming then a 

“cassette”.  

Two types of welding techniques are mainly used: the smaller heat exchanger (CP15 and CP20) are 

TIG welded (tungsten inert gas welding) whereas the biggest ones are laser welded (CP30 to CP75). 

Naturally, this automatic process has the advantage to be more accurate than the TIG welding. The 

second production step is the assembly. Typically, it consists of the welding of the cassette to a profile 

(also called the column liner). The goal is to build a physical link between the heart and the frame 

parts of the system (cf. Figure I.9). At this time, there are only two end plates which have to be welded 

on both end sides of the heart. 

I.4.2.2. Frame part of the exchanger 

As shown in Figure I.9, the core is then supported by four corner girders, linked to the plate through 

the contact with the column liner (itself welded to the ”papillotes”) in which a small looseness is 

allowed. In this way, the thermal expansion of the girder in the perpendicular direction to the plate 

surface does not directly exert itself on the “papillotes” as this girder could slip in the column liner. 

The setting up of both top and bottom panels prevent the sliding and constitute with the four side 

panels (with nozzle connections) the way to confine the heat exchanger heart. These geometrical 

aspects will be particularly important to consider in the boundary conditions description of the model. 
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Final view of the exchanger heart on the bending bench
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I.5. Context of the study 

This PhD project concerns the problematic of heat exchangers durability and more particularly the 

study of the cyclic thermo-mechanical loading influence on the mechanical response on these kinds of 

systems. In fact, the trouble shooting analysis available in Alfa Laval Vicarb reports the occurrence of 

recent failure cases in their 316L welded heat exchangers due to a new use in severe operating 

conditions (The unit being subjected to thermal fields highly anisothermal). Although having a long 

experience in the understanding of these possible damages, this department needs available tools to 

advise customer concerning the appropriate temperature range in which the unit can be used and to 

avoid definitively these troubles by optimizing its design in the future. 

I.5.1. Failure cases reported 

The most often reported failure cases are reported just below. The damaged zones will be observed 

thanks to a penetrant testing (PT) fluid which is a widely used method for the detection of open and 

surface breaking discontinuities. The main advantage of this non-destructive testing method is that we 

can easily detect the position, direction and size of the defect by colorizing the damaged zones (in red).  

I.5.1.1. Along the column liner and at the inner angles 

In Figure I.11, a failure along the column liner is shown. It involves the appearance of leaks between 

heat exchanger plates and “papillotes” connecting both heart and frame parts. Several abrupt angles 

can be effectively observed in this zone making it very sensitive to the temperature variations. 

Similarly as in the foregoing case, leaks appear at the inner angle in the corners of the core where the 

“papillotes” is even subjected to deformations strongly heterogenic due to the proximity of particular 

end plate surrounded by the frame. 

These two failure cases correspond to more than the half the reported cases. In the sequel, the heat 

exchanger response in the vicinity of the “papillotes” will be carefully analysed, since it seems to be 

the weakest zone of the structure. It will be important to build a sufficient precise model in these 

regions to show that they are particularly highly stress concentrated. 

I.5.1.2. Corner of the head plates and loss of contact points 

A damaged zone has also been reported in the seam weld between the column liner and the head plate. 

This induces loss of the contact points between the corrugated zones of two plates thus reducing 

noticeably the heat exchanger efficiency. 

I.5.1.3. Welded zone in column liner and at head plates 

Additional damage cases are also reported at the seam weld in the column liner and at the head plates 

as depicted in the figures below. These concerns some damage outside the heat exchanger’s heart, in 

zone related to the body part.  
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Figure I.11 - Failure along the column liner 
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I.5.2. Generalities on the involved damage mechanics 

Welded heat exchangers are subjected to both thermal and mechanical loadings. The first one comes to 

the material temperature variation due to the fluid flow, involving a heterogeneous thermal field. The 

second is due to in duty pressure. Pressure measurements inside the exchanger revealed intensities 

relatively small (around 15MPa) compared to mechanical properties of the material (as the yield stress 

of magnitude order at least twenty times bigger, cf. chapter 2). In this context, thermal loading appears 

to be the most detrimental effects particularly during transient regimes including start up and shut 

down of the exchanger. Thermo-mechanical fatigue phenomenon is involved in a lot of industrial 

domains such as aeronautics, nuclear, railroad and of course heat exchange. During their life time, 

mechanical structures are so subjected to repeated thermal loads leading to the cracks nucleation 

damageable for installations where the process implied both thermal and mechanical stresses 

according to Auger. 

More precisely, Spera specifies that thermo-mechanical fatigue corresponds to the gradual 

deterioration of the material induced by a progressive cracking during successive alternated heating 

and cooling in which free deformation is partially or entirely impeded. Thus mechanical stresses result 

from thermal loading associated to the boundary conditions of the structure. More generally (thermal) 

fatigue phenomenon is particularly insidious due to its progressive and discreet character. Industrial 

experience has already shown that cracks occurring by fatigue can lead to the brutal failure of the 

component. Thus the design of these components needs need to take into account thermo-mechanical 

fatigue aspects. Before considering it in the domain of the heat exchange, the next paragraph 

introduces more carefully the fatigue phenomenon. 
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Figure I.15 - SN curve description 

I.6.2. Fatigue damage 

Fatigue damage is characterized by the damage resulting for a cyclic loading whose amplitude can 

remain constant or be able to vary. Fatigue test data are mainly presented through the SN curve of the 

material (also called the Wöhler curve, cf. Figure I.15), stress level being depicted as the function of 

the number of cycle to failure under a logarithmic scale. This phenomenon can be induced by different 

levels of stress intensity on the Wöhler curve: 

- The oligocyclic fatigue or low cycle fatigue (LCF) regime corresponds to a number of cycles 

to fracture lower than almost 104 in which thermal fatigue is habitually classified. Here plastic 

strains are generally induced. At high temperatures, this fatigue phenomenon could be merged 

with eventual creep damage [1,4] 

- The unlimited endurance domain involves strength implying no plastic deformation, at least at 

the macroscopic level. Fracture will occur after a high number of cycles, almost from 106 to 

109 ). Fatigue is thus qualified as gigacyclic. 

- Between both domains, high cycle fatigue is characterized by deformation mainly elastic, 

where fracture occurs after a certain number of cycles, increasing with the stress decrease.  

Fatigue strength describes the stress below which fracture is supposed to never occur. The knowledge 

of such stress level is obviously interesting for the engineer who normally uses it as a reference stress 

to design a structure. This threshold is nevertheless often difficult to identify through experiments 

making the use of SN curves necessary. In some other cases (as for problems involving corrosion) 

where the horizontal asymptote does not exist, a conventional threshold (107) is considered. 
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Figure I.16 - Loading parameters in fatigue 
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Different parameters used to describe a fatigue loading are thus recapitulated in Figure I.16. Loading is 

in principle mainly characterized by the amplitude (σm/ εm) or the mean value (σm/ εm). The fatigue life 

is then predicted for a given frequency or R ratio defined by the difference between σMax and σmin. Four 

types of load are thus distinguished: 

- R = -1 implying alternated symmetric stresses, 

- -1 < R < 0 making alternated stresses asymmetric, 

- R = 0 corresponding to the application of repeated stresses (σm = Δσ/2), 

- 0 > R > 1 simply corresponding to the application of repeated stresses. 

I.6.4. Classical fatigue models parameters 

In conclusion, classical fatigue models use thus parameters defined during one loading cycle: 

- Stress or strain amplitude Δσ/2 = (σMax - σmin)/2 or Δε/2 = (εMax - εmin)/2, 

- Stress  or strain mean value σm = (σMax + σmin)/2 or εm = (εMax + εmin)/2, 

- Load ratio �� = �� ��⁄   or  �� = 	� 	�⁄  

- Strain energy density 
� = ∮ �
	 dissipated energy accumulated during one cycle 

In the case of metals, the strain amplitude parameter is the most representative of their fatigue 

behaviour for a description in deformation. This is particularly the case for a thermal fatigue problem, 

concerning precisely the damage mechanics implying the heat exchanger failure in service considering 

in this study. SN curves being in addition not suitable in a low cycle fatigue regime involving 

permanent deformations, some plasticity tools are introduced in a next paragraph to previously 

characterize the cyclic material behaviour. 
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Figure I.17 - Linear kinematic hardening (i) in the deviatoric plane, (ii) in the σ = f(εp) response 

   

Figure I.18 - (i) predicted strain memory effect by three different strain amplitude and (ii) predicted cyclic 

plasticity behaviour (50cycles) for nickel base alloy under tension-compression (from Dieng et al., 2004) 

 

Figure I.19 - Cyclic material response under different force loadings with (i) the elastic adaptation, (ii) the 

plastic accommodation and (iii) the Ratchetting effect 

 

(iii) Ratchetting (ii) Accommodation (i) Adaptation 

(i) (ii) 

(i) (ii) 

X 



Thermo-mechanical modelling and durab
 

 

I.7.1.3. Accumu

Classical hardening laws take in

noted p in an uniaxial case. This

careful look at Figure I.17. In 

applied, the opposite unload BA g

 

Under N cycle(s) of loading-unlo

 � = ��
Isotropic hardening is mainly a f

whose utilisation mainly depends

about to be used in a future applic

values p (1.6), the power law 

kinematic hardening, two main 

hardening parameters, X as R bein

I.7.2. Observations in m

The loading path can play a criti

other metallic alloys. A load intr

points of a structure is so calle

parameters. On the contrary, con

From equal amplitude loadings, 

loading path. 

I.7.3. Tridimensional yie

The unidirectional plasticity thres

��� and ��� represent respectively 

(	�� = 0) in the domain. ��� � �
elastic domain of the material 

generalization in Tridimensiona

describing a domain in the 2, 3 

generates elastic strains. 

In the case of metals, physical me

tensor. Here the well-known Von

plate anisotropy appears to be ver

rability analysis of welded heat exchangers 

I-20 

mulated plastic deformation and hardenin

 into account the plastic strain εp but or the accum

his term after N identical cycles can be pointed ou

 fact, plastic deformation increases when a load

A giving the same results in absolute value. 

	 � 	! = |	! � 	 | = 
	� 

loading, total accumulated uniaxial plastic strain ca

�"
	�!→ " $ "
	� →!"% = 2�
	� = ' "	�� "
(�
)  

a function of p with R = R(p) and 3 different laws

nds on the material. Voce law is classically used t

plication. It shows its ability to saturate for high cum

w being more in adequacy with aluminium beh

in laws are introduced in Table I.2. C and γ are 

eing functions of the plastic deformation history. 

 multiaxial  

ritical role in the mechanical response of some ma

introducing no variation of the principal stress tens

alled proportional. It allows generally to determi

considering non-proportional loading introduced th

, they can lead to an additional hardening depen

 yield stress criterion 

reshold defines the elastic domain in the one dimen

ly yield stress in traction and compression, no plas

� ���. Considering the particular case of identica

ial can be described by the criteria function�
nal case is the yield stress criterion still formu

 3 or 6 dimensions stress space, in which a stress

mechanics can justify the convexity of the criteria f

on Mises isotropic criterion will be used for the s

very negligible (cf. experimental tensile curves in C

ing laws 

umulated plastic strain 

 out by having a more 

oad on the path AB is 

(1.2)  

 can be defined as 

(1.3)  

ws exist (cf. Table I.1) 

d to study steels and is 

cumulated plastic strain 

ehaviour. Considering 

re known as kinematic 

 materials as steels and 

ensor directions in any 

minate elastic domain 

 the hardening notion. 

ending strongly on the 

ension stress space. If 

lastic flow is observed 

tical yield stress, initial 

= |�| � �� � 0 . Its 

ulated by  � � 0  and 

ess variation will only 

ia function of the stress 

e study as the eventual 

 Chapter 2). 



State of the art 
 

I-21 
 

Hardening law tip Formulation  

Linear � = *+� (1.4) 

Power � = *��, �-  (1.5) 

Exponential (Voce law) � = *.(1 � 123�) (1.6) 

Table I.1 - Different isotropic hardening laws 

Hardening law tip Formulation  

Linear of Prager 5 = 6)	7 (1.7) 

Nonlinear of Armstrong-Fredericks 5� = 23 6	7� � 95�� (1.8) 

Table I.2 - Different kinematic hardening laws under cyclic considerations 

 

Figure I.20 - Isotropic hardening description 

Thus the function f depends only on the principal stresses. Starting from the postulate that material 

behaviour becomes plastic when the elastic distortion energy or the shear elastic energy reaches the 

threshold value, the initial function associated to the Von Mises criterion can be described by: 

 �(�) = �:; � �� (1.9)  

with �:; = <32 �=: �′ = √3AB (1.10) 

With �′ is the deviatoric stress tensor. 

I.7.4. Specific plasticity laws 

To describe plasticity behaviour, different laws are available in the literature depending on the material 

and the kind loading from which it is subjected. 

I.7.4.1. Isotropic hardening model 

Isotropic hardening is the most commonly used plasticity law particularly in the automotive industry. 

Here only one scalar variable is necessary to describe the evolution of the elastic domain size. Figure 
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 5 = H DID� = 6)� = 6)ε� = 23 6ε� (1.19) 

The linear kinematic hardening law of Prager could be thus summarized by equations (1.11) and 

(1.19) where the hardening modulus is constant and equals to C. 

I.7.4.3. Non-linear Kinematic hardening of Armstrong -Fredericks 

Hardening law linearity certainly implies easier and faster calculation resolution. Nevertheless in case 

of cyclic loading, Bauschinger effect could not be precisely represented, stress state will accommodate 

from the first cycle and Ratchetting effects are moreover not described. In this way, non-linear 

kinematic hardening of Armstrong-Frederick is going to be used. This model is curiously very famous 

although its publication had been more recent. Until 2007, it has been limited to an internal report of 

the Central Energy Generating Board (CEGB). The yield surface remains defined here by (1.17). In 

order to get round the disadvantage of the proportionality between 	7�  and 5� , a third term is added in 

(1.8),  ��  is the cumulated plastic strain velocity and (C, γ) material parameters. This third term is 

known as dynamic restoration due to its one degree homogeneity against the time. Generally, 5 tensor 

is supposed equal to 0 at the initial stage as the other plasticity theory elements are not modified. 

Thus, one of the main characteristic of this model corresponds to the classic plasticity formulation 

with two surfaces (allowing the description of a continuous hardening modulus evolution): 

- The elasticity limit surface merged with the yield surface, 

- A limit surface induced by the variables re-actualisation, the state (	N2,� , 5N2,) being the 

consequence of the prior plastic flow.  

I.7.4.4. Combined hardening law 

Although isotropic hardening alone remains the most widely used model in the industry, taking into 

account Bauschinger effect recently showed beneficial influence on numerical prediction reliability, 

particularly in the case of spring back. In this way, a new standard of models is emerging. It is a matter 

of a superposition of a non-linear kinematic hardening to an isotropic one, implying both translation 

and dilatation of the elasticity domain. This combination will be particularly recommended in case of 

reversed strain path. It is described with two state variables: the cumulated plastic strain p and the 

associated thermodynamical force R (inducing the size variation of the yield surface). Always 

considering a Von Mises criterion, the yield surface is now defined in term of: 

 � = AB(� � 5) � � � �� (1.20) 

R varies as a function of the accumulated plastic strain taking into account the progressive hardening. 

As it will be pointed out later, regarding cyclic behaviour, this evolution is in principle relatively slow. 

It can increase, the term of cyclic hardening is thus introduced, or decrease for the cyclic softening 
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cook cycle occurs. A linear FE (Nastran) shell analysis has been so conducted. A thermal load 

corresponding to the worst in duty one in terms of stress concentration identified by a first study is 

applied to the heat exchanger model. The stress in each node is thus extracted. In order to predict the 

fatigue behaviour, a failure criterion is then used. This failure criterion is based on the maximal stress 

admissible. This empirical criterion stated that the maximal load is given by the endurance limit at 

infinite life corrected by factors taking into account the surface finish, the size, the temperature effects, 

etc…: 

R: = STS3S�SUS:R:=  
With Se the modified endurance limit, ka the surface finish factor (taking into account the thermo 

mechanical treatments experienced by the base material), kb the size factor and kc the load factor (the 

value of these two parameters are set and there real significance is not expressly given), kd the 

temperature factor (taking onto account the evolution of the base material properties with the 

temperature), ke the stress concentration factor. At last Se’  the endurance limit at infinite life. 

Moreover, the authors added a Palmgren-Miner equation to take into account the different types of 

load experienced by the heat exchanger on the total damage. This approach permits to obtain a fair 

idea of the fatigue life of this type of heat exchanger. However, it is clear that the failure criterion 

proposed is more an ad-hoc fitting parameter only describing the case studied. Thus any prediction of 

fatigue life in an other configuration seems to be not possible with this approach. 

Carter P and TJ [8] have then suggested a metallurgical failure analysis of aluminium plate fin 

exchanger to identify the involved damage mechanism in a first approach. In that case, the material is 

composed of a core material namely 3003 Al-Mn alloy and a clad made of Al-Si. This clad permits to 

braze the structure when a thermal cycle is imposed due to the lower melting temperature of the Al-Si 

alloy. It is shown that fracture occurs due to the presence of brittle phases in the solidified clad. In a 

second time, the study has been followed by a life prediction through a numerical analysis and the 

application of a fatigue model. This structure normally also works in a steady state, being submitted to 

significant pressure and thermal loads cycles occurring this time irregularly during start-up and shut 

down of the unit. Thermal fatigue failure was confirmed. Linear FE (Abaqus) shell analysis of a corner 

piece was performed in steady and transient state followed by stress analysis in which the weakest 

zone has been identified. A version of Manson-Coffin law taking into account total strain and stress 

amplitude (corresponding partially to Basquin’s method) has been used to predict the final fatigue life. 

The authors consider that fracture is determined by the behaviour of the brazed materials. Thus only 

the mechanical strength of this one is considered. The finite element model developed here predicts 

that the transient regime seems to be more detrimental for the structure considering fatigue. The 

fatigue life is reduced to less than 100 cycles for a transient with a difference in temperature of 130°C.  

Moreover this model predicts also the right location of the fracture. Even if the model presented here 
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Figure I.21 – Real geometry of the heat exchanger (a) and the equivalent solid plate considered for finite 

element calculations (b) [11] 

I.9. Goal of the study 

Although some studied cases exist in the literature, all projects can obviously differ in the approach 

simply due to the differences of design or industrial application for example. Thus the aim of this PhD 

project has been to provide insight of the welded heat exchanger response in use in order to explain the 

most common failure cases reported in the Trouble Shooting Department of Alfa Laval. In this way, a 

methodology has been thought to answer this given problem with the: 

- Linear FE description of the full exchanger by locating the weakest zones thanks to 

assumptions in adequacy with the reality and physics of the problem. It is something already 

innovative as references previously presented (paragraph 1.8) had the tendency to consider 

only a small part of the exchanger in the modelling. Here the model is supposed to be able to 

describe a structure weight of almost 50,000kg, composed of 500 plates, 

- Validation of boundary conditions and numerical results by comparing the simulation with 

thermal fatigue test performed one or several prototypes, 

- Identification of the material cyclic response to be able to get the real material behaviour 

involved in the working unit and proposition of a way to incorporate in the FE model, 

- Suggestion a fatigue model able to make a link between local material response and fatigue 

life predication, easily usable in an industrial environment.  
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II. STRUCTURE MODELLING DESCRIPTION 

The finite element model construction of a heat exchanger has been carried out in a step by step 

approach. From several assumptions verified experimentally, the thermo-elastic response of the heat 

exchanger under uniform thermal loading has been firstly investigated. Regions of the exchangers 

where the stress concentrates have been identified. Two thermo-mechanical tests have been performed 

to validate the thermo-elastic description of the heat exchanger. 
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II.2. Motivation and methodology 

This chapter deals with the construction of a simplified 3D description of the heat exchanger, 

something never made until now mainly due to the difficulty to easily take into account structure size, 

boundary conditions, thermal loading, transitory effects, among other aspects. The aim is to build a FE 

model that allows thermo-elastic calculations to point out zones of stress concentration in the corners 

of the heat exchanger core, where some vulnerability may be observed. It is here necessary to have a 

good balance between a realistic description of the mechanical fields that are responsible for damage 

and a low cost simulation time. To the end, a bottom-up approach has been adopted, starting with a 

simple description of the plate (i) and their assembly through “papillotes”. Using simple boundary 

conditions and homogeneous thermal loading, regions that are potentially critical have been identified. 

Then more realistic boundary conditions have been considered by a detailed analysis of the plates pack 

environment (iii). From a balance between a refined description where stress partially concentrate and 

a simplification (where heterogeneous fields are found), the final macroscopic FE model is reached by 

the last consideration of the core extremities (iv). It is finally compared to experimental tests to check 

its validity. 

Regarding thermal loading, it is in practice generated by fluid flows in the whole exchanger. It is 

assumed that it is the only load supposed to be detrimental for the structure resistance, internal 

pressure effect being here neglected, although the model could be used for burst test (pressure 

resistance). If thermal loading has been considered as the existing data of the methodology, real 

temperature distribution calculation have been performed by Alfa Laval research center. Throughout 

the construction of the 3D FE model of the exchanger core, it has been supposed during heating (resp. 

cooling) transient step, thermal inertia between core and external frame panels is different enough to 

consider frame part as a rigid while the core deforms thermo-mechanically. Thin plates (1mm) of the 

core (in red) should have tendency to heat and expand very quickly when it is expected that thicker 

frame panels (almost 120mm, in blue) and girders need much more time to reach the asymptotic 

temperature by conduction. In this way, throughout the project, whole frame part will be fixed, 

applying rigidity effect on the core. It is in addition during these first instant that boundary conditions 

applied on the core are supposed to be the strongest through this assumption. This important postulate 

should be verified experimentally. At each step, thermo-mechanical calculations have been so carried 

out to identify regions where a defined description is necessary and those where a simplified one is 

allowed by the observation of the stress distribution under a simple uniform temperature field. ANSYS 

finite element code has been used for all simulations in this study. From a technical point of view, the 

FE model has been parameterized so that the future user can vary plate size, plates and passes number, 

column liner and girder dimensions and size of “papillotes” as desired. The sequel of the chapter 

follows the bottom um approach depicted in Figure II.1. 
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Figure II.2 -  Uniaxial tensile test stress-strain response of the rolled 316L steel under consideration in this study 

along the rolling direction (long), at 45° and transversely 

II.3. Mechanical characterization of the material 

The material involved in the project has been here previously characterised. Plates are made from a 

laminated 316 L steel whose basis composition is a high Chromium content (17%) for corrosion 

problem, from 11 to 13% of Nickel and around 2% of Molybdenum (elements particularly adapted for 

aggressive environments). Cr-Ni alloy is here characteristic of an austenitic stainless steel. In a 

mechanical point of view, this material is ductile and presents high tensile strength and creep 

resistance. Nevertheless it cannot be subjected to a thermal treatment and its forming should be made 

at room temperature (as the plate embossing or lamination).  Regarding the external frame part, panels 

and girders are manufactured in low carbon content steel, not characterized here the frame has been 

only considered as rigid body displacements applying at its contact with the core. 

The mechanical material properties of rolled 316L steel have been identified in uniaxial monotonic 

tensile tests performed at 0°, 45° and 90°C to the rolling direction, allowing to also point out a 

possible plate plastic anisotropy. Specimen thickness is 1mm and all tensile tests have been conducted 

at a strain rate of 1x10-4s-1. Longitudinal and transverse strains have been recorded with a non-

contacting video method. Cauchy stress was finally calculated from the load assuming an isochorus 

transformation during the plastic deformation. Figure II.2 shows material responses along the three 

directions (Long, 45° and transverse) in the same σ-ε plot and it is shown here that plastic anisotropy 

is relatively low. Added to the fact, plate rolling direction is oriented randomly in the manufacturing 

process of the exchanger, material plasticity has been simply supposed isotropic in Chapter 3. 
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Figure II.4  - Uniaxial stress-strain response of the 316L steel along the direction perpendicular to the 

corrugations and corresponding samples 

 

Figure II.5 - Zoom on the beginning of the stress-strain response of the 316L steel along the direction 

perpendicular to the corrugations 

In this way, Figure II.4 shows the uniaxial stress-strain response of the corrugated 316L steel. The 

curve can be split in three parts. The reaction along direction 2 shows (i) a reduced stiffness up to (ii) a 

plateau corresponding to a geometrical accommodation of the corrugations. The third part (iii) finally 

points out material hardening of the flattened material. In order to estimate the stiffness E2 along the 

direction normal to the corrugations, the first slope of the curve has been considered (cf. Figure II.5). 
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Figure II.6 -  Geometry, mesh and boundary conditions of the single plate model 
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which is incrementally solved by ANSYS. All necessary tools being now available, the structure 

modeling description is introduced in the next paragraph by the brief analysis of a plate behavior. 

II.4.3. Simplified plate description and thermo-mechanical simulation 

A shell description of the plate has been adopted, the thickness being actually much smaller than the 

two other dimensions of the problem. SHELL181 elements have been used, composed of 4 nodes and 

6 DOF per nodes. Account for the plate stiffness is allowed and an anisotropic elastic description is 

used to represent the corrugated region, isotropic elasticity is used in the flat squared zone (cf. Figure 

II.6). A first thermo-mechanical calculation has been conducted on a simple plate (cf. Figure II.6, 

geometrical model and mesh) by blocking displacements at the four corners. These boundary 

conditions have been thought to account for the plate thermal expansion compressing corners on rigid 

frame panels subjected to a reduced mobility. 

A uniform temperature field of 90°C have been prescribed representing a standard magnitude for a 

switch on. In Figure II.7, the distribution of the Mises stress normalized by the yield stress is reported 

for (i) an isotropic plate and (ii) an anisotropic plate. If the ratio is less than one, a considered zone 

remains in the elastic domain. A noticeable stress concentration in the vicinity of the corners is 

observed, showing that plasticity could appear in these parts of the plates. The preferably orientation 

of the stresses (ii) is related to the corrugations orientation along one axis involving a higher stiffness 

(cf. Table II.3) than in the perpendicular direction. As a consequence, corrugations generate a higher 

rigidity inducing more difficulty to deform and so a stress increasing for the same displacement. 

All the DOF on the 4 
corner are blocked 

Smooth zone 

Corrugated zone 
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However boundary conditions are for the moment very conservative to make any additional 

conclusion concerning zones of interest. Consequently, these results indicate that a refinement of the 

structure response is necessary in these locations, by approaching progressively the real design of the 

exchanger. Always keeping in mind the step by step aspect of the methodology, a two plates assembly 

is now going to be introduced in the next paragraph. 
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Figure II.9 -  Distribution of the Von Mises stress on a crossed plates assembly 

II.4.5. Introduction of a more realistic boundary conditions case 

II.4.5.1. Account for the column liner in the FE model 

During the last paragraph, all steps necessary to build a one and two plates model have been 

successively presented. The influence of different parameters as the corrugations (with their contact), 

the thermal load and the meshing and the considering of a crossed plate geometry has been more 

particularly pointed out. At this time, the two first points seems to constitute key parameters in the 

stress concentration location and intensity. Nevertheless more accurate boundary conditions of the 

exchanger core structure in duty still need to be described. The modelling of the “papillotes” 

associated with a crossed plates geometry has been a first development, boundary conditions until now 

supposing plate corners totally fixed. To be more representative of the service conditions, the link 

between “papillote” and frame part is now taken more carefully into account. As shown in Figure II.1 

and Figure II.10 (in purple), heart and frame parts are maintained together thanks to a piece called the 

column liner. This “intermediate” part of the heat exchanger is expected to play a major role in the 

strength transmission and so in the stress concentration location. 

Figure II.10 shows a cross-section of the region of interest including the plates stack (in black), the 

“papillote” (in blue, both already considered in our previous models), the frame part (frame panels + 

girder in red) and the column liner (in purple). Showing that the girder is able to slide inside the 

column liner design, the real configuration also reveals a gap j between both expected as being a way 

to unload considerably the “papillote”. The column liner used to join the plate of the exchanger with 

the assumed rigid frame is so going to be introduced in the model. Part of the displacement generated 

by the thermo-elastic response is now accommodated by the structure as depicted in Figure II.11. 
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II .10 - Cross section of the heat exchanger model 

11 - Boundary conditions imposed on the column liner 

set of the transient heating time), the frame part (zo

 remain totally cold when the temperature of the 

late pack expansion would happen in an environm

. In this way, this hypothesis implies surfaces and li

locked in the normal direction but can potentially 

ree surfaces modelling a gap between the plate dia

of the “papillote” are finally represented.  

j 

j 

H: jx and jy -> 0  

  
 as at the 
hanger duty 

the xy plane 

Free surfaces i
a more flexib

C

Uy = 0 

Ux = 0 

= 0 

 

 

 (zone striped in orange 

he heat exchanger core 

nment which does not 

d lines in contact to the 

ly slip (in their planes) 

 diagonal and the girder 

 

es inducing 
xible zone 

Corrugated zone 

x 

y 



Structure modelling description 
 

II-15 
 

 

Figure II.12 - Stresses concentration comparison with (iii, iv, v) and without (i, ii) column liner 

Nevertheless two conditions should be preliminary imposed. The first one supposes a unit onset as 

transient regime, as in this case it seems to be rational to foresee a plates expansion in their plane. This 

physical reaction should normally make the column liner completely pinned against the girder. The 

second condition is a consequence of the first one as it is suggested to neglect jx and jy in Figure II.10. 

Considering the fact only the bottom part of the model will be firstly blocked in z to run a linear 

calculation, different responses under a uniform thermal loading of 90°C are presented in Figure II.12. 

Here stress distribution is shown in two corners (pictures (i) and (iii)  in the corrugations direction, 

inversely (ii)  and (iv) in the opposite one). As expected, it is clearly observable that stresses in the 

“papillote” sharply decrease (until a value below the yield stress) thanks to the column liner elasticity. 

In addition, no more plastic deformation seems to appear in the smooth zones of the plates whatever 

the corrugations direction. The influence of the “papillotes” thickness has also been investigated. 

Effectively, papillote are not directly linked on its external side to the column liner but by the two 

folded plate edges with the same thickness welded on its both sides. Therefore in a first approach, a 

calculation has been carried out considering a thickness corresponding to the sum of the three plates 

(picture (v) in Figure II.12). Under the same boundary conditions, it is shown that the whole crossed 

plate geometry, including the “papillotes” stays in the elastic domain. Nevertheless, for any thickness, 

the relaxation of these “papillotes” seems to correlate with a high stress level in the column liner (cf. 

Figure II.12 - iii, iv and v). After several tests, this observation is apparently not a consequence 

imposed by the girder reaction on the column liner, but rather the supposed compression applied by 

static frame panels situated in its extremities. In any cases, the account of the column liner allows 

some mechanical accommodation of the “papillote” implying a stress concentration drop. 

(ii) 

(iii)  

(i) 

(iv) 

(v) 

Two thicknesses involved 

for the “papillote” mesh 

- 1mm (i, ii, iii, iv) 

- 3mm (v) 



Thermo-mechanical modelling and durab
 

 

Reminding the hypothesis of fram

is a good alternative to avoid t

recommendation is very import

calculation time. In addition to th

would have finally supposed cont

II.4.5.2. Influen

It is necessary to deal will the str

order to reach the more realistic c

fact the superposition of three su

together on each side by laser we

located in the middle between the

one (not considered in Figure II.1

between plate pack and “papillot

in order to anticipate the future 

have been introduced in the FE

corresponding to tied displaceme

equivalent numerical tool needs 

joint straight. Having a careful de

can be carried out. Boundary con

and bottom lines are blocked in z,

The first thing to note is the vari

part of the structure. If the colum

Figure II.12) and (ii)  (cf. Figure 

“papillote” now exhibits a large

blocked expansion along the z ax

between the core and frame part,

observed. Thus stresses increase 

Another interesting point conce

welding zone generates stresses c

This one appears to be particularl

coincides with the zone where da

the column liner is finally less e

instant of the transient regime in 

structure would constitute the 

macroscopic model. 

rability analysis of welded heat exchangers 

II-16 

rame constituents supposed thermally stable, applica

the consideration of volume panels and girders

ortant for the rest of the study the possible dra

 the consideration of further volume element, takin

ontact elements introduction, a solution naturally co

ence of the welded zone on the strength tra

 strength transmission between the column liner an

configuration of boundary conditions. Reminding

superposed 1mm plates, a more careful look shows

welding technics. Two main vertical welded joints 

 the column liner and the plates pack going along th

13 and introduced in Figure II.17) being at the lev

lotes”. Two other horizontal joints are added at the

re insertion of end plate. Figure II.13 shows how

FE model. Their locations represented by green l

ments imposed to nodes respectively in front of o

s nevertheless a perfect mapped meshing in order

l description of the model geometry and meshing, a

onditions remain those depicted in Figure II.11 exc

 z, simulating the presence of future top and bottom

ariation difference in the stress distribution due to

lumn liner does not show so much difference betw

re II.13 where a uniform temperature loading of 90

rger stress concentration, showing the non-negligi

 axis. Then concerning more precisely the strength t

rt, the loose of the stresses homogeneity at least in

se closer to the column liner, where a flexible disp

cerns the zone circled in red in Figure II.13. Th

s concentration at the link between the “papillote”

arly located at the top of the structure. It is worth n

damage occurs in the real duty. The important str

s expected, certainly due to a lower temperature 

 in reality thanks to the contact with the colder gird

 elementary model for the following building

lication of their rigidity 

ers in the model. This 

drastic increase of the 

ing frame into account 

 costly.  

 transmission 

 and the plates pack, in 

ng that “papillote” is in 

ws that they are linked 

ts are thus respectively 

g the z axis, the second 

level of the folded zone 

the top and bottom part 

w these welded zones 

n links are observable, 

f one to the other. The 

er to make the welded 

g, an elastic calculation 

xcept from now on top 

tom rigid frame panels. 

 to blocking of the top 

etween pictures (v) (cf. 

 90°C is still used), the 

igible influence of the 

h transmission analysis 

t in the plates is clearly 

isplacement is allowed. 

 The modelling of the 

te” and the plates pack. 

 noting that this region 

 stress concentration in 

re increase in the first 

irder. In any cases this 

ing of the whole 3D 



Structure modelling description 
 

II-17 
 

 

 

Figure II.13 - (i) Description of the welded joints along the plane of the “papillote”, influence of (iii) welded 

joints description on the stress distribution compared to (ii) a modelling describing the superposition of the three 

surfaces as one area of 3mm thickness 

    

Figure II.14 - Repetition of the elementary model 

It is finally important to note that the welding of the plates are considered here only through the 

boundary conditions and not by a possible change in mechanical properties certainly caused by the 

thermal welding cycle. It has been in fact considered that the main structural evolution of the 316 L 

steel could be an increase of a grain size. Nevertheless, due to the fact that laser welding involves 

highly isothermal cycle, the phenomenon is considered to be negligible. 

Welded joints 

(ii) (iii) 

(i) 
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Figure II.15 - End plates in the macroscopic FE model and (i) corresponding global boundary conditions, (ii) 

local representation of particular corrugations and their rigid direction, (iii) influence on the boundary conditions 

 

Figure II.16 - Additional corrugations on the end plate - Zoom of Figure II.1 (a) 
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Figure II.17 - Optimization of the critical zone description and welding joints representation 

 

    

 

Figure II.18 - VM stress distribution on a 40 plates CPK75 heat exchanger 
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(ii(iii)  (iv) 
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and the possibility to consider it rigid at the onset of the transient regime, it is necessary to point out 

the time needed for this last one to start the temperature increase and to reach its maximum. 

 

Figure II.19 - Finite element model of the prototype structure tested in Alfa Laval Lund AB 

 

Figure II.20 - Mean thermal load in the plate pack 
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time, even a little bit sooner (probably due to the quick contact of the fluid with the thermocouple), the 

growth is then clearly slighter. Progressively, this internal frame temperature will reach the maximal 

one in an asymptotical way. This conduction velocity is even slower considering thermocouple 6 in 

the external side of the frame part, panels thickness here assuming to play a non-negligible role in the 

thermal transfer process. Starting from the room temperature as the exchanger being not insulated, 

thermocouple 6 exhibits an onset of increase about two minutes after the thermocouple 1 reached its 

maximum temperature. In addition, the analysis of the full temperature cycle in appendix show that 

this temperature need more than 45 minutes to stabilize at a value of 70°C, when the internal side 

takes almost 20 minutes to reach the thee hot fluid temperature. Thus, if the strongest frame effect on 

the core occurs in fact in the earliest stages of the transient regime, this kind of loading on this 

exchanger design shows that “papillotes” will be loaded in a decreasing magnitude during almost 45 

minutes. In any cases, this time interval corresponding to the thermal inertia of the frame is 

sufficiently important to suppose a totally rigid frame part in the earlier moments of duty. In this way, 

it seems to be realistic to avoid the frame part consideration the FE exchanger modelling by directly 

taking into account its reaction with rigid boundary conditions as reported in Figure II.15. 

  

 

Figure II.23 - Zoom on the (ii) strain gauges dposition according to (i) the stress distribution 

II.6.3. Validation of the FE model 

II.6.3.1. Location of the strain gauges 

From the observation of the existing thermal inertia of the frame and supposing boundary conditions 

reported in Figure II.15, strains recorded in duty by specific strain gauges placed at appropriated 

locations (cf. Figure II.23) with numerical strains predicted by the finite element simulation can now 

be compared. Figure II.23 shows (ii) the position of 5 Gauges (Rosette of 3 elements, type FRA-1-17-
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Figure II.24 - Local strain gauges for 1, 2 and 3
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ure II.25 - Principal strain for gauges 1, 2 and 3 

2400 3600 4800 6000 7200 840
Time (s)

2400 3600 4800 6000 7200 840

Time (s)

2400 3600 4800 6000 7200 840

Time (s)

Gauge 1

Gauge 2 

Gauge 3 

 values used 
e comparison 

Three εL values used 
for the comparison 

e εL values used 
he comparison 

 

 

 

8400

εL1

εT1

8400

εL2

εT2

8400

εL3

εT3

e 1 (i) 

 2 (ii) 

 3 (ii i) 



Structure modelling description 
 

II-29 
 

II.6.3.2. Strain variation analysis and processing 

A cycle of heating up to 80°C and cooling down to 13°C is represented and repeated one time in 

Figure II.24. The three gauges points out a first steep variation of the strain response followed by a 

plateau. This sequence is clearly reproducible for the gauge 2. Regarding the gauge 3, each branch of 

the variation is quantitatively comparable although no plateau is observed in the second cycle. For the 

gauge 1, the two branches along the vertical and horizontal direction are reproducible, not hat at 45° in 

blue. The records of the first cycle are expected to be reliable, the cyclic repetition of the fluid flow 

being able to have damaged the gauges 1 and 3. Form these experimental records in Figure II.24, the 

components of the plane principal strain have been derived in Figure II.25 by the methodology 

described in appendix. The longitudinal component is given in blue when the transverse in red.  

The first graphic (i) shows the strain variation for the gauge 1 located on the “papillotes” in the middle 

of the pass. The different response between the two temperature rises is here confirmed, the two 

components showing diverging variation in each cycle. During both heating and cooling, the two 

principal strains seem to reach quasi instantaneously a plateau. Regarding the gauge 3 (iii) located on 

the “papillotes” closed to the end plate (cf. Figure II.23), the second heating cycle still shows some 

non-stable response. It is nevertheless interesting to point out the similar response (in intensity and 

curvature) between gauges 1 and 3 despite the instability picks noticed for gauge 1 during cycle 1. The 

gauge 2 located on the column liner in the middle of the pass near the junction with the “papillotes” 

still exhibits a comparable variation during the two cycles. This can be explained by the particularity 

to point out no more longitudinal strain during cooling, as an elastic comeback to the initial stage. 

Whatever the gauges considered, the transient regimes clearly underline a steep strain variation related 

to the cyclic thermal load. Three points circle for each gauges in Figure II.25 are used for the 

comparison. The minimal and maximal values delimit the error bar around a medium value supposed 

to be the most representative. Having now introduced a way to carry out a comparison from the 

experimental results analysis with the predictions, Figure II.26 gives a procedure to read representative 

equivalent numerical strain concerning gauges 1 and 3. Thus, mesh size analysis is introduced to study 

more carefully its influence on the local response in the critical zones. 

II.6.3.3. Comparison with the FE predictions and discussion 

Two types of “papillote” mesh are presented here among the 3 tested to analyse their influence on the 

mechanical response (cf. Figure II.26). The first one used until now is noted A, the structure definition 

being then refined two times to make the mesh case B, and again 2 times to obtain finally mesh case 

C. Considering each mesh size, a green region represents the zone covered in the experiment by the 

gauge 1 or 3. It takes respectively into account 9, 25 and 81 nodes for mesh cases (A), (B) and (C) 

mesh. 
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Figure II.27 - Comparison of experimental and predicted first principal strain  

for the 3 meshing refinements (i) A, (ii) B and (iii) C of the green zone 
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If tied displacements can model in a strong way the welded joint, in practice forces transfer between 

frame and plate pack through these ones can explain additional local dropped strains. It is important to 

remind that residual stresses due to the welding process could also been involved although it is here 

difficult to give a rough idea of their value. In any cases, if the gauge located in the perpendicular 

corrugations direction still shows higher strain intensity, considering values a little bit far from the 

welded joints implies lower heterogeneities more in adequacy with experimental results. A lower 

influence of the mesh refinement is finally observable as a slight diminution of the mean value 

intensity is detectable in Figure II.28.  

II.6.3.4. Possible origins of the discrepancy 

In this part, the features potentially responsible for the discrepancy between experimental and 

predicted results are discussed. Even firstly considering the lower experimental values in the Figure 

II.27 and Figure II.28, the first thing to note is that plasticity appears to be already involved in the 

“papillotes” for this kind of thought “light” loading. As expected, material model used were not 

adequate for this study in a first approach justifying its first coarse introduction in the last graph (vi). 

This observation naturally implies the necessity to describe the real behaviour of rolled 316L steel 

under cyclic plastic loading.  

The thermal loading used in the FE simulation can also have a particular influence in regions closed to 

the frame as the column liner. If experiment conditions have been thought to make the thermal loading 

as uniform as possible, recorded temperature variations close to the end plate show that the thermal 

field does not reach the maximal value (80°C). Actually thermocouple 9 precisely situated in the dry 

channel (between the end plate and the top panel Figure II.21) shows a very slow temperature growth 

during hot fluid circulation (cf. appendix). Whereas plate pack has already reached 80°C in the earlier 

critical stage, temperature there has only increased of 5°C reaching a maximum of 30°C at the end of 

the transient regime. Thus, it would have been interesting to make the fluid flowing directly in contact 

with the end plate. Actually, it implies that the uniform thermal loading considered in the corner of the 

numerical study should overestimate the real fluid temperature there and globally in the whole dry 

channel. This phenomenon is even more expected on the column liner situated in this channel, 

exhibiting no temperature variation due to its contact with the cold girder. It could be so explained the 

high numerical mean value of the local strain in the “papillote”. In this way column liner in contact 

with the girder could also show a slighter increase of the temperature and probably a lower 

temperature would have to be applied there. 

Numerical strain heterogeneity in the corners has been also identified as a possible explanation of 

intensities overestimation. In fact, the gauges in this location are covering a region with possible high 

strain gradient between two nodes side by side, implying local magnitude beyond the range of the 

gauge.  
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Figure II.29 - 40 plates CP75 prototype 

II.7. Second thermal test for evaluating the FE model 

II.7.1. Design of the prototype and test specifications 

The design of the tested unit is this time a 40-plates CPK75 prototype (cf. Figure II.29). As the 

previous test, the heat exchanger is subjected to a Steam /Water thermal load imposed at the A-Side 

(cf. Figure II.19). The test has been also performed at room temperature at the Thermal Products Test 

Centre of Alfa Laval Lund AB. If localization of the fatigue failure and the corresponding number 

cycle at which it occurs is the main goal of this test (cf. Chapter 3), the objective is also to verify the 

model developed in a configuration closer to one taken into account. 

The cyclic thermal loading has been conducted as shown in Figure II.30. One test cycle includes the 

heat up with a 180°C steam during 20 minutes and the cooling down to 15 °C (with the same ramp) 

during one half hour, separating by 20 seconds of draining or emptying. Being able to carry out a cycle 

of maximum 50 minutes, both heat and cooling length have been chosen in order to allow to reach 

temperature stabilization of the frame part (referring to the last thermal analysis in Figure II.22). This 

aspect is actually mandatory to make sure that the heat exchanger solicitations in service are respected. 

A-side have been this time chosen to involve end plates in contact with the fluid in order to be as 

closed as possible of a homogeneous thermal field for the future comparison with the prediction. 

Five strain gauges have been glued along the “papillotes” in the dry circuit (cf.  

Figure II.31) allowing measurements in the same 3 directions than the previous thermal fatigue test. 

Their positions have been chosen to allow a more accurate appreciation of strain variation in the 
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thermocouples have been respectively welded closed to each strain gauge and 10 other in the rest of 

the exchanger to confirm the graph obtained in Figure II.22. 
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Figure II.32 - Expe
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Figure II.33 - Experimental local strains for gauges 2 & 3 far from the corners 

II.7.2. Results analysis 

In Figure II.32 and Figure II.33, strain variation recordings during the heating and cooling of the first 

cycle are reported respectively for gauges 1 and 4, then 2 and 3. For each gauge, the three curves 

correspond to the three axis x, y and x1 with (x,y) = 90°, (x,x1) = 45° = (x1,y), x and y approximately 

belonging along the horizontal and vertical direction. It is worth noting that during the heating cycle, 

no plateau is reached for any gauge neither one of their component. This is likely due to a sequence of 

heating the core with the frame remaining cold, showing a temperature progressively increasing. Thus 

the magnitude of the strain record during the first transient regime has been used. The values reported 

here do not account for a temperature dependence and only the strain gauge factor is considered. 

Figure II.32 also point out the expected difference of behaviour thanks to the corner position faced to 
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to deform along its x length, y strain show a lower intensity. It is nevertheless difficult here to make 

any parallel of strains variation with the previous thermal fatigue test in Figure II.24 due different 
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However, a high temperature can potentially increase the thermal field heterogeneity, making the 

uniform temperature loading used in the calculation sufficiently coarse to cause these discrepancies. 

The assumption of a linear elastic response is finally also questionable. 

II.7.4. Thermal tests summary 

Two thermal fatigue tests have been performed to evaluate the heat exchanger structure model for 

simplified configurations. The record of the temperatures variation between the plate pack and the 

frame during thermal cyclic loads has evidenced a thermal inertia between these two parts, the panels 

reaction being always deleted in time. This observation has especially motivated the use of fixed 

displacements at the core - frame boundary, preventing the consideration of this last one in the 

modelling. Strain gauges measurements mainly located at different places along the “papillotes” have 

been compared to numerical prediction obtained by the FE model. For the two validation tests 

performed during this work, the comparison between the measures and the numerical results 

quantitatively in agreement. The magnitude of the strains on the “papillotes” is maximum near the 

corners and minimum in the center of the plate pack. To some extent, these are quantitatively in 

agreement with the experiments. Thus, thanks to the thermal analysis, the boundary conditions seem to 

be able to reproduce the “papillote” response at least far from the corners. If corners often show high 

values dispersion, high strain concentration is globally also observed, potentially consistent with the 

analysis of the Trouble Shooting Department from Alfa Laval Vicarb. 

The discrepancy between measures and predictions can originate in an over simplified temperature 

loading, mainly in the second case which is likely to be non-uniform. Details related to the description 

of the welded joints have also shown to induce large heterogeneities in the estimation of the 

deformation, tied displacements representing a relative conservative and rigid way to consider them. It 

is finally important to keep in mind that the goal of the parts II.6 and 0 was to validate structural 

behaviour of the heat exchanger structure without particularly utilizing a thermal load. If experiment 

have been designed to make the temperature distribution as uniform as possible, it has been pointed 

out that it is not really the case, mainly in the dry channel. This point has previously been expected to 

be at the origin of the potential divergence in the corners. A potential way to get round of this problem 

should have to make circulating alternatively hot and fluid in the two channels. However, the 

modelling of the structure presented here is shown useful as a marker of regions where stress 

concentrates and where damage and failure are expected. This requires a realistic description of the 

elastic-plastic response of the material and the use of a specific criterion for failure to be presented in 

the sequel. 
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III. LOCAL MATERIAL BEHAVIOUR IN A LOW CYCLE 

FATIGUE (LCF) REGIME  

The region of the exchangers where the stress concentrates are now identified in the analysis of the 

structure reported in Chapter 1. In the present part, the elastic-plastic mechanical response of the 316L 

steel under consideration I identified with the use of combined isotropic and kinematic hardening. An 

energy equivalent method is proposed to estimate the magnitude of the equivalent plastic deformation 

from the analysis at the level of the structure. This estimation is used to predict the exchanger life from 

a Manson-Coffin criterion identified in the low cycle fatigue regime. The prediction is finally 

compared to available experimental data. 
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III.2. Identification of the plastic material response 

Compact welded heat exchangers are designed to be used in severe operating conditions (temperature, 

pressure and aggressive fluid for instance). Fatigue failure has been observed after relatively low cycle 

number (less than 1000 in laboratory tests). Thus the assumption that large cyclic strains due to 

thermo-mechanical cyclic loads seems to be valid and the description with an elastic-plastic 

constitutive law appears to be necessary to consider stainless steel sheet of one 1mm thickness. In this 

way, a combined non-linear hardening model for rate independent plasticity has been identified. This 

material model accounts for an isotropic hardening characterized by a Voce formulation and a 

kinematic part based on a Armstrong-Fredericks description (1966) [1]. It presents the advantage to 

have a popularity making this model already implemented in several commercial finite element codes. 

Within the framework of generalised standart material presented by Lemaitre and Chaboche [1] and 

related normality rules, the rate independent description of plasticity is based on the yield surface 

 ���, �, �	� = �� − ���������� − ���� − 
� (3.1)  

where σY is the initial yield stress, R�p� the isotropic hardening, p the cumulated plastic strain, XXXX the 

kinematic hardening and σσσσ denoting the equivalent Von Mises stress √3��. The response would be 

elastic for � < 0, � = 0 and �� = 0 defining the conditions for plasticity. The Voce formulation for the 

isotropic hardening is 

 ���� = ���1 − �� !" (3.2)  

�� and b being material parameters, p defined as 

 � = $ %23 '�()! �*�: '�()! �*�,*
-
.  

(3.3)  

The kinematic stress tensor is initially null and varies according to the Armstrong-Fredericks 

formulation 

 /�() = 230���: '�()! − 1���/()�� (3.4)  

with �� = %23 '�()! : '�()!  

(3.5)  

C and γ being kinematic hardening parameters. The role of γ is precisely here to determine the rate at 

which the saturation value of kinematic hardening decreases with the increase of plastic strain. If C 

and γ are supposed to be constants, the saturation of back stress in the reversed load part is the same in 
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Figure III.1 -  Device for the alternated bending test and its corresponding sample geometry 

(The width of the strip is w = 4.25mm, the length being L = 59mm) 

 

Figure III.2 -  Identification methodology based on tension-compression diagram  

(from Carbonnière et al. [3], 2009) 
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Figure III.4 -  Cyclic solicitation on a simple FEM 

In order to reveal the Bauschinger effect, it is suggested to continue the test until a certain level of 

plasticity in compression, as shown below (cf. Figure III.6) with a R=-1 stress ratio (R=σmin/σmax). The 

kinematic part of the hardening shows up, meaning that a reversed strain path is mandatory to look at 

this phenomenon. 

As described in the theorical part in Chapter 1, two main types of hysteresis stabilization can be 

moreover distinguished here. In the case where R=-1 and until a maximal load σmax almost equal to the 

ultimate tensile stress (almost 1050 MPa), material elastic adaption occurs after a number of cycle 

increasing with σmax intensity (cf. Figure III.6, graph on left studying the case of σmax=600Mpa). 

Considering higher level of load, the elastic-plastic loop describes a plastic accommodation after a 

certain number of cycle (graph on the right), the stored energy remaining the same each cycle once the 

stabilization reached. Nevertheless this second case is physically not reproducible as the material is 

supposed to fail before the end of the first tensile cycle. 
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Then Figure III.7 shows two responses issued from a cyclic calculation using just the kinematic part of 

the hardening. Considering R=-1 symmetric cyclic load (cf. Figure III.7 picture on the left), plastic 

accommodation is reached right from the first cycle. In the same way, it is shown that Ratchetting can 

only occur under non-symmetric cyclic loading (picture on the right where R=-2/3) because the initial 

slope of the tangent modulus of the stress–strain curve in compression differs from that in tension. In 

conclusion, both Figure III.6 and Figure III.7 point out that if a combined hardening behaviour is used, 

an elastic adaption of the material is in principle expected when the stress strain curve stabilizes. 

III.3.2.2. Displacement driven cyclic tests 

Material mechanical response subjected to cyclic displacement (or deformation) is considered in this 

paragraph. This kind of loading appears to fairly reproduce the mechanical load classically involved in 

thermal fatigue analysis. Actually, it amounts to see the “papillotes” subjected to displacement 

induced by expansion and contraction of the plates during transient regimes. Thus the responses to 

different cyclic loads are presented in Figure III.8. The left and right graphs respectively suppose 

displacement Umin = 0 and Umin = 0,4 mm (> 0) applied in compression, both cases involving the same 

Umax = 0,7mm in tension on a initial length of L0 = 1mm. Whatever the cyclic load considered, the 

material shows an identical behaviour. It is observed that strain amplitude remains almost constant 

with N (property very interesting for the future steps of the study), when axial stress amplitude 

increases every cycle. A cyclic material hardening is so occurring until the stress state saturate after a 

certain number of cycles. 

Figure III.9 plots the variation of the axial stress with the number of cycles, confirming that stress 

amplitude stabilizes after a certain number of cycles. This value appears to be very closed to the 

ultimate tensile stress observed in monotonic tension whatever the displacement amplitude intensity 

applied here. In order to get a simple model for failure in fatigue, it is interesting to find a way to link 

the number of cycles before stabilization and the number of cycles to failure. For this purpose, the next 

experiment has aimed at a physical meaning to this saturation. 

As a conclusion of this part, the majority of the low cycle fatigue model is dealing with constant strain 

amplitude along the time resulting from a displacement driven problem. In the case of metals, this 

material response is in addition the most representative of their fatigue behaviour as described by a 

combination of isotropic and kinematic hardening. This is finally particularly true in the thermal 

fatigue configuration, in which the heat exchanger is currently solicited. Under these conditions, the 

next part introduces the fatigue model used to study the heat exchanger behaviour in duty. 
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III.4. Identification of a low cycle fatigue life model 

III.4.1. LCF model introduction 

Fatigue laws define damage increment per cycle. In the oligocyclic fatigue domain (cf. Chapter 1), 

plastic strain is sufficiently large to permit a consideration of certain time or frequency effect by 

supposing a cyclic damage function of the plastic strain amplitude [1] under a power law form: 

 
HIHJ = IK . DM'!20 E

B 4N
 (3.14) 

Supposing a hysteresis stabilized during a cyclic loading, this last equation has been integrated from 

the first cycle J�I = 0� = 0 to the last one JO = J�I = IK� = JP. The most common law linking 

plastic deformation with the number of cycle to failure is due to Manson-Coffin [5,6] as 

 JP4 M'!2 = 0 (3.15) 

The two parameters C and m (respectively fatigue ductility coefficient and ductility exponent) 

describes a power law curve. Moreover negligible influence of the temperature has been observed 

below 400°C, corresponding almost to the maximum temperature involved in the heat exchanger duty 

and respecting the ratio T/TF < 0.5. The Manson-Coffin criterion is usually considered in the 

oligocyclic regime (Nf smaller than 103 to 104 [1]). It has been also observed that it tends to over-

predict the cycle life under extremely low cycle fatigue (ELCF) condition particularly considering 

high temperatures (below 100 cycles). It is mainly due to a change of damage mechanisms from 

fatigue fracture to accumulation of ductile damage, ductility being itself reduced by the initiation of 

small cracks. Fatigue life could be so dominated by surface crack growth and cyclic damage would 

have no more influence on the crack growth rate.Different models have been suggested to overcome 

this small divergence in a range of number cycle to failure being sometimes able to concern the heat 

exchanger in duty. Faced with the other assumptions already involved, Manson-Coffin law is 

supposed to be valid in the present study. It is viewed as an alternative expression for a crack growth 

law, determined by crack length and applied stress strain. 

III.4.2. Experimental procedures 

The identification of the Manson-Coffin criterion has to be performed in experimental fatigue tests. As 

for the study of the hardening, cyclic repeated test at different constant strain amplitude are needed to 

trigger the Bauschinger effect. The only difference is now the necessity to reach the failure in order to 

make a link between a critical cycle number and a plastic strain amplitude constant with the time (so 

far as it is possible). 
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Figure III.12  - (i) Description of the alternated four points bending test and (ii) model for the FE analysis 
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Figure III.15 -  Alternated bending test modelling including rolls and contact elements 

 

 

Figure III.16 -  Total strain state evolution in the specimen 
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(C8) as detailed in Figure III.19.  
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Figure III.18  - Stress/plastic strain variation at point P’ for loading case (C4) to (C6) (see Table III.2) 
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Figure III.19  - Stress/plastic str
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III.4.5. Experimental identification of the LCF criterion 

The account for contact elements in this second FE modelling makes the observation a hysteresis 

stabilisation for more than one cycle. If stress amplitude appears to need more time to reach its 

maximum unlike the previous experiment, plastic strain amplitude seems to stabilize more rapidly 

after a few number of cycles. The half value of the difference between the maximal and the minimal 

plastic strain during the first cycle is finally used and considered as a representative plastic strain 

amplitude for in the identification. Although overestimating the value at stabilisation better 

reproducing the material response during a certain number of cycles, this higher value has been chosen 

probably corresponding more carefully to the experimental conditions. 

Indeed, whatever the configuration, failure experimentally occured close to a central roll (cf. Figure 

III.20), in spite of numerical simulation predicting the maximum strain amplitude in the symmetry axis 

of the sample (cf. Figure III.16). Thus, the physical contact between the sample and the roll in addition 

to “effets de bord” tend to increase locally the strain. The plastic accommodation appears to occur long 

before experimental failure, pointing out the necessity to carry out experimental fatigue tests. 

Plastic strain amplitude is a function of the loading intensity, in terms of displacement prescribed on 

the rolls (cf. Table III.2). For any numerical loading case analysed, it has been carried out the 

corresponding alternated bending test thanks to a four points bending device available at SIMAP 

laboratory (University of Grenoble, cf. Figure III.20). The previous calculations have also allowed to 

adjust displacement loading to make number of cycle to failure with an order of magnitude coinciding 

with the utilization of a Manson-Coffin low (almost 103). Effectively, data concerning 316L steel 

behaviour in the low cycle regime are available in the literature [7] for the raw material. As expected, 

loading intensity is here not directly inversely linked to number of cycle to failure simply due to 

random experimental fatigue effects. 

In Figure III.21 are represented the seven points identified in a logarithmic scale. The set up has been 

unfortunately developed for sheets normally thinner than the studied plates, allowing not to apply 

larger displacement amplitude (cf. Table III.2). Therefore no failure for very low number of cycle 

could have been determined, although it could better describe the exchanger loaded in the LCF regime. 

Thus identifying a possible non-linearity of the curve for the lowest values is not tractable. 

Nevertheless considering other assumptions already induced in the study, the current material 

behaviour description in the low cycle fatigue should remain sufficiently accurate. In any cases, the 

eight available points plotted in Figure III.21 are used to identify the parameters m and C involved in 

the Manson-Coffin criterion. 



Thermo-mechanical modelling and durab
 

 

Figure III. 20

Figure III.

Ta

In Figure III.21, the linearized pl

the rolled 316L steel can be easil

data reported in the literature, for

to apply the full methodology t

prediction to available data. 

  

0,5

5

300

Δ
ε

x
x
/2

(%
)

rability analysis of welded heat exchangers 

III-22 

20 - Four points bending device (University of Grenoble)

21 - Identification of Coffin Manson law parameters 
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III.5. Fatigue lifetime prediction of the exchanger 

In Chapter 2, results from a second thermal fatigue test on a prototype have been introduced. 

Temperature of the hot fluid (180°C) had been precisely chosen to encourage a quick occurrence of 

the exchanger failure. Circulating alternatively with a colder water at 13°C, the resulting temperature 

amplitude can be here simplified to a uniform temperature field of 167°C. This thermal load has been 

considered for the elastic structure response, first step of the methodology introduced in the following. 

III.5.1. Introduction of a durability prediction methodology 

From both thermo-elastic FE description of the structure (cf. Figure III.22 (i), result already presented 

in Chapter 2) and an accurate definition of the material hardening, it is now necessary to find a way to 

introduce these features in the LCF model. In this way, the first step of the process is to extract a 

representative strain amplitude of this elastic response of the structure, preventing an elastic-plastic 

calculation on the full model. The significant exchanger model size could actually involve 

convergence difficulties and a resulting long calculation time. Instead of performing a full non-linear 

analysis at the scale of the structure, a methodology in two steps has been adopted to make easier its 

future use in an industrial context (cf. Figure III.22 and Figure III.23). Thus, firstly an elastic 

calculation is carried out on the full core structure supposing a real thermal loading previously defined. 

In picture (i) of the Figure III.22, linear exchanger response under a uniform thermal loading of 167°C 

is given, approximating the thermal loading of the second thermal fatigue test. The regions where the 

stress concentrates are expected to trigger damage. An almost square zoom (h being the space between 

two plates and p/2 the half length of a “papillote”) in the region highly stress concentrated is thus 

considered (ii) on both sides of the first plate below the end plate. A meshing description named B in 

Chapter 2 has been adopted. Equivalent elastic strain energy density WOABCD stored during one half 

cycle (iii) is then extracted in six elements of the square. The mean value of the ones showing the 

smaller gradient has been actually considered (circle in black in picture (iii) of Figure III.22). In Figure 

III.23, an equivalent uniaxial tensile test has been numerically modelled by only one element (ii) (from 

the one already introduced in Figure III.4-b) such a way the estimation of the equivalent total strain 

amplitude is made by energy equivalence. In picture (i), two areas representative of strain energy are 

depicted. The elastic density WOABCD determined in Figure III.22 is found again by the orange 

triangle from which the area should equal the equivalent plastic density stored during the simplified 

uniaxial test (yellow area). 

Numerical procedure Nf comparison 

∆T°C We εeq/2 Prediction Experiment 

167 27,123 6,365 11 23 

Table III.4 - Application of the methodology 
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III.5.2. Comparison of the final prediction with the 2nd thermal fatigue test 

Table III.4 gives a summary of the two main terms involved in the numerical fatigue life prediction 

procedure, that is to say the mean value of the corresponding equivalent strain amplitude obtained by 

the procedure illustrated in Figure III.23. This table finally allows to compare the predicted number 

cycle to failure to experimental value from which the first internal leakage zoomed in Figure III.24 

occurred and the correlation is pretty good.  

Having reached the same order of magnitude of the experimental is obviously encouraging. Actually, 

knowing that this procedure concerns fatigue phenomenon, the dispersion risk of experimental data 

used to characterize the LCF model was large. In addition, although simplifications are done in the 

structure modelling assumptions considered in the mechanical analysis, involving boundary 

conditions, simple thermal loading, specific numerical tools or energy equivalence, have thus shown 

relevance for this methodology. Ideally some more comparisons would have to be carried out to adjust 

for example some particularly steps of the methodology as the critical zone size considered in Figure 

III.22. Another test considering real service conditions could also permits to make definitive 

conclusion concerning the methodology validity. 

In any case, fatigue failure identified during the second test Figure III.24 and Figure III.25 are also in 

agreement with the regions highly stress concentrated identified in Chapter 2, the first showing failure 

having occurred after 23 cycles between the first and the second plate just below the end plate. It is 

moreover interesting to notice that the corner involved in this leakage corresponds to the one situated 

in the perpendicular direction of the end plate papillote. Two other fatigue failure cases have been 

reported almost 10 cycles later on the external side of the end plate. Both are corresponding to stress 

concentration regions already pointed out in Chapter 2. 

 



Thermo-mechanical modelling and durab
 

 

Figure III.24 -  Intern

Figure III.25 -  Exter

  

rability analysis of welded heat exchangers 

III-26 

ternal fatigue failure after the second experiment on a pro

 

ternal fatigue failure after the second experiment on a pr

 

(i) 

prototype 

 prototype 

(ii) 



Local material behaviour in a low cycle fatigue regime 
 

III-27 
 

III.6. References 

[1] Lemaitre J, Chaboche J-L, Benallal A, Desmorat R. Mécanique de matériaux solides, 3e édition, 

Editions Dunod. 

[2] Simon P, Sabourin F, Morestin F, Phan L. Direct identification of a combined hardening with a 

cyclic bending test. IDDRG 2005. Besançon (France), 2005-06-20-2005-06-22 

[3] Carbonnière J, Thuillier S, Sabourin F, Brunet M, Manach P.Y. Comparison of the work hardening 

of metallic sheets in bending-unbending and simple shear, International Journal of Mechanical 

Sciences, Accepted, ref n°IJMS-08-182R1. 

[4] Coffin Jr LF. Low cycle fatigue – a review. Appl Mater Res 1962;1(3):129–41. 

[5] Manson SS. Behavior of materials under conditions of thermal stress. Technical Report NACA-

TR-1170, National Advisory Committee for Aeronautics ; 1954. 

[6] Coffin Jr LF. A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc 

Mech Eng 1954 ; 76:931–50. 

[7] Hong S, Thuillier S, Yoon S, Lee S. The effect of temperature on low-cycle fatigue behavior of 

prior cold worked 316L stainless steel, International Journal of Fatigue, Volume 25, Issues 9–11, 

September–November 2003, Pages 1293-1300 

[8] Coffin Jr LF. A note on low cycle fatigue laws. J Mater JMLSA 1971 ; 6(2): 388–402. 



General Conclusion 
 

Conclusion-1 
 

GENERAL CONCLUSION 

  



Thermo-mechanical modelling and durab
 

 

Reminder of the project goal 

The motivation of this PhD projec

conditions more severe than thos

new markets. There have been 

already considered as the weake

located at the border of the core

called “weak region do coincide

mismatch between the core and t

thermal inertia between both part

at guarantying the durability of 

more severe. Numerical tools hav

to improve their construction. 

recommendations for an appropri

Main outcomes reached durin

The work has combined a thermo

material response under cyclic 

corrugated plate with an anisotro

was firstly to estimate the stress d

frame. The description of this reg

core and the frame, including the

been shown necessary. Upon con

regions where the stress concentr

have been then compared to exp

out on prototypes. It has been sh

consider a rigid frame when the 

and cooling stage of the loading. 

the predictions at locations far fr

reasons presented in the presen

information for the magnitude of 

In a second step, the aspect of the

the level of the structure showed

stress. This suggested that non-li

and kinematic hardening involvi

hardening of the rolled 316L stee

rability analysis of welded heat exchangers 

Conclusion-2 

 

ject was to evaluate the lifetime of welded plates he

ose prescribed at the moment, allowing Alfa Laval

n some reported cases where damage could be e

akest part of the core at the beginning of this wo

ore (constituted of thin plates) with the thicker fra

ide with parts of the material subjected to a stron

d the frame. It is due to a temperature difference th

arts during transient cyclic regime heating/cooling. 

of the exchangers whereas the operating condition

have been developed so that Alfa Laval Vicarb has

n. In a second stage, these tools should all

priate use of the unit. 

ring the project. 

mo-elastic FE modeling of the exchanger and a det

ic loadings. At the scale of the exchanger, the

tropic elastic modulus tensor allows a drastic sim

s distribution along the “papillotes”, connecting the

region is shown critical and an accurate account of

 the column liner, the “papillotes” and the involve

onstructed, thermo-elastic thermal loadings have be

ntrates detected. The strain prediction of the FE m

xperimental measurements obtained from thermal 

 shown experimentally that there is a thermal ine

he thermal plate expands and contracts respectivel

g. Measurements of the thermo-elastic strains agree

 from the regions where stress concentrates quanti

sent report. The description is though realistic 

of load in the heat exchanger. 

 thermal fatigue of the structure has been considere

ed stress concentration with a magnitude larger tha

linear behaviour were so expected. As the materia

ing cyclic effects, low cycle fatigue has finally 

teel has been identified by the use a combined non

 heat exchangers under 

val Vicarb to expand in 

expected in a region 

work. This region was 

 frame panels. The so-

ong thermal behaviour 

that originates from a 

g. Thus this work aims 

ions became more and 

has now acquired skills 

allow to give useful 

detailed analysis of the 

the description of the 

implification. The goal 

the core plates with the 

t of the part linking the 

lved welded region has 

 been simulated and the 

 model of the structure 

al fatigue tests carried 

inertia large enough to 

vely during the heating 

reed quantitatively with 

ntitatively due to some 

tic enough to provide 

ered. The calculation at 

 than the material yield 

rial exhibited isotropic 

ly been suggested. The 

on-linear isotropic and 



General Conclusion 
 

Conclusion-3 
 

kinematic hardening through alternated bending tests. Once implemented in ANSYS, its mechanical 

response under different cyclic loadings has been investigated. Classical thermal fatigue problem 

being strain controlled, the plastic strain amplitude has been identified as representative fatigue 

parameter of the material. A Manson-Coffin fatigue model relying this latter to the number of cycle to 

failure has been finally identified through cyclic alternated bending tests. Through a simple 

methodology combining the calculation at the scale of the structure and the identification of the 

mechanical characteristics of the material, lifetime predictions are presented. Thus from the full 

thermo-elastic response of a given structure subjected to a thermal loading, the region stress 

concentrated has been carefully considered by locally reading the strain energy density. An uniaxial 

plastic strain amplitude has been obtained by energy equivalence with an elastic-plastic calculation 

performed on a elementary volume. Its magnitude is used in the LCF criterion for the lifetime 

prediction. This methodology particularly allowed to prevent an elastic-plastic calculation of the full 

structure, probably too costly in term of time. The corresponding lifetime estimation was finally 

consistent with experiment value reported by the second thermal fatigue test, in spite of the coarse 

thermal field used for the elastic response of the exchanger. 

Perspectives 

This methodology has been developed for one particular type of heat exchanger. Nevertheless the FE 

model of the full exchanger core has been described by parameterizing for example all geometrical 

length, the number of plates, the mesh refinement or material models. The methodology can be easily 

adapted to different model of heat exchanger, by providing mechanical properties of other corrugation 

patterns or materials used to build the unit (as for example the titanium). Although if the mechanical 

behaviour of the exchanger has been carefully studied this project, it could be necessary to incorporate 

a realistic description of the thermal field prescribed the unit in operating conditions. In addition, Alfa 

Laval Vicarb engineers are currently working on a way to introduce the frame part in the modelling, 

feature obviously necessary to better describe the thermal loading. Actually, the full FE analysis could 

be divided in two steps, both carried out the same meshing in ANSYS software. The first one would 

consist in the thermal loading characterization with the necessity to identify some parameters from the 

operating conditions as the fluid temperature, the room temperature and the different exchange 

coefficients. The second would allow to simply perform the mechanical calculation using the thermal 

response previously obtained.  
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IV.2. Temperature recordings during a thermal loading 

The Figure IV.3 shows the temperature variation for the 10 different thermocouples of which location 

is presented in Figure II.21. We observe that the thermocouple number 6 (external side of the frame 

panel) partially worked (only for the cycle 2) and the number 2 (just beside the number 1 in front of 

the plate pack) not at all. The cycle 2 has been more carefully studied in Figure II.22. 

 

Figure IV.3 - Temperature variation in ten different thermocouple locations (cf. Figure II.21 in Chapter 2) 

The low temperature variation at positions 7, 8, 9 and 10 indicates that a modest temperature variation 

in the external parts of the frame but a problem during the record could be the reason for such a low 

signal. No reliable information can be extracted from these probes. Thermocouples 7 and 8 are located 

in the vicinity of thermocouples 5 and 6 in the dry channel. They exhibit an onset of temperature 

increase only in the second cycle, showing that the variation is very slow there. In the same way, no 

variation is observed in thermocouples 9 and 10 located on both sides of the top panel in contact with 

end plate. Thus, the fact that the fluid do not circulate in the dry channel involves a very 

heterogeneous thermal field in these parts being able to influence the strain field. Unfortunately, using 

only one channel of the exchanger remains the only way to have thermal field as homogeneous as 

possible. 
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 ε�������� � a��a� ε� ���� (1.7)  

 ε���� � aε�� � a��a� ε�  (1.8)  

 ε���� � cos� � ε�� � 2 cos� sin� ε�� � sin� � ε�� (1.9)  

Rearranging the forgoing equations, we	have 

 ε�� �	 1
2 tan� ε�� �

tan�
2 ε�� � 1

2 cos� sin� ε���� (1.10)  

 ε�� �	 ())*(++� � ε���� for α � 45° (1.11)  

The shear strain value being now calculated, the eigenvalues of the strain tensor are extracted to 

estimate the principal strain components. This has been prost-process as 

 012 3ε� � 4 ε��
ε�� ε� � 45 � 0 (1.12)  

 7 � ε�� � ε�� � 4ε��� � 2ε�ε� (1.13)  

The two solutions correspond finally to the first and second principal strains in the gauge plan. 

 ε8 �
ε� � ε� �9ε�� � ε�� � 4�ε� � ε�2 � ε������ � 2ε�ε�

2  (1.14)  

 

ε: �
ε� � ε� �9ε�� � ε�� � 4�ε� � ε�2 � ε������ � 2ε�ε�

2  

(1.15)  

 

Figure IV.5 - Strain gauges 1 & 2 on the prototype 
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IV.5. Temperature recordings for thermal test 2 

Figure IV.10 show the temperature variation in 15 different locations represented in Figure IV.9 for 

the second thermal test. The thermocouples 14 and 15 inside the pipe, as 4 and 5 direct in front of the 

fluid flow obviously show the quicker temperature increase. Recordings are globally consistent with 

the first thermal test, except the thermocouples 7 and 8.  

  

Figure IV.9 - Thermocouples location 

 

Figure IV.10 - Temperature variation in the 15 locations 
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IV.6. Elastic response of the bigger 500 plates model 

In order to illustrate the flexibility of the model developed during this work, we present in Figure 

IV.12 a case with 500 plates. We reort the stress distribution for a thermoelastic loading for a uniform 

temperature variation of 167°C. The large size of the structure (almost 7,000,000 degrees of freedom) 

involves a CPU time for the calculation close to  two hours using four processor of a computer. If it 

remains reasonable to carry out this type of calculation from elastic material properties, a non  linear 

calculations with account for plasticity would noticeably increase the calculation time. This has 

motivated the adopted methodology with a two scales and two steps approach based on the energy 

equivalences has been provides (see chapter 3). The figure (ii) shows a similar stres distribution near 

the corner as the case with the 40 plates model presented in Figure II.18 (i). Thus more beyond some 

amount of plates, corner reaction is independent of this number for a given uniform thermal field. 
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Figure IV.13 - (ii) Elastic response of 200 plates model subjected to (i) real thermal field obtained in ANSYS 
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RESUME 

L’objectif de ce travail est de proposer une méthodologie simple pour évaluer l’intégrité et la durée de 

vie d’échangeurs thermiques soudés. Une approche à deux échelles est proposée. Une description 

macroscopique avec la prise en compte de la structure de l’échangeur est menée pour permettre des 

calculs thermoélastiques par éléments finis. La réponse mécanique de l’échangeur pour des 

chargements thermiques, cycliques, simples est évaluée. Notamment, les zones de concentration de 

contraintes sont repérées. A partir cette étude, une étude micromécanique du comportement du 

matériau composant l’échangeur est menée. Le matériau considéré est un acier 316L. Son 

comportement élastoplastique est identifié avec un écrouissage isotrope et cinématique. La tenue 

mécanique pour des chargements en fatigue oligocyclique est évaluée à l’aide d’un dispositif de 

flexion 4 points alternée et un critère de Manson-Coffin est identifié. Ce critère est utilisé pour évaluer 

le nombre de cycle admissible par l’échangeur pour une amplitude de chargement donnée. Pour cela, 

la déformation plastique attendue dans l’échangeur est évaluée à partir d’une équivalence en énergie 

aux endroits où la contrainte se concentre. Les prédictions du modèle ont été comparées de manière 

satisfaisante avec les résultats expérimentaux menés sur un échangeur test, pour la réponse 

thermoélastique que pour l’évaluation du nombre de cycles à rupture. 

Mots clés : échangeurs thermiques, fatigue oligocyclique, comportement thermomécanique 

ABSTRACT 

This study proposes a simple methodology to estimate the mechanical response and lifetime of welded 

heat exchangers subjected to thermal loadings. The structure of the heat exchanger is modeled to 

estimate its mechanical response for thermal loads. Thermoelastic calculations are carried out with the 

finite elements method. From these simulations, the regions where the stress concentrates are 

identified. Then, a micromechanics approach is adopted to identify the material’s elastic plastic 

response with isotropic and kinematic hardening. Its durability under oligocyclic fatigue is 

investigated with an original 4 points alternate bending.d vice. From these experiments, a Manson-

Coffin criterion is identified. This criterion is used to estimate the heat exchangers lifetime in terms of 

maximum cycles for thermal loadings with different magnitude. To this end, the plastic deformation is 

estimated from the macroscopic calculation with an energy equivalence between the thermoelastic 

calculation and the non linear one. The predictions are found in agreement with experimental data 

carried out on test-heat exchangers, for both the thermoelastic response and the number at cycles at 

rupture.  

Keywords: welded heat exchangers, fatigue, thermomechanical description 

 


