

MESURES DE RENDEMENTS ISOTOPIQUES DE FISSION DE L'²³⁸U ISSUS DE L'EXPÉRIENCE SOFIA AU GSI

Thèse présentée par Eric Pellereau

Directeur de thèse : Laurent Tassan-Got Encadrant : Julien Taieb

CEA – DAM – ILE DE FRANCE ECOLE DOCTORALE MIPEGE U-PSUD

www.cea.fr

11/12/2013

Division d'un noyau lourd en deux noyaux plus légers

- 1938 : Découverte 75 ans
- 1939 : Interprétation par Bohr et Wheeler basée sur le modèle goutte liquide : fondements mais fission symétrique ≠ premières expériences : asymétrique.
- ➤ 1967 : Strutinsky : effets de couche dans les barrières de fission → fission asymétrique.
- > Aujourd'hui: modèles microscopiques basés sur l'interaction nucléonnucléon. Complexes et encore peu prédictifs aujourd'hui.
- Modèle de fission le plus prédictif aujourd'hui : code phénoménologique GEF

Phénomène très riche de la physique nucléaire :

- dynamique (mouvement collectif de grande amplitude)
- effets de structure
- réorganisation nucléonique : répartition des nucléons dans les 2 FF
- Très étudiée depuis sa découverte pour ses applications civiles et militaires (²³⁵U). Mais
 - Toujours beaucoup de zones d'ombres aujourd'hui
 - Prédictions précises difficiles
- Enjeux applicatifs (GEN IV) : améliorer la sûreté par la précision sur les rendements (aujourd'hui : 10 % d'incertitude sur l'²³⁵U)

LES 2 CONFIGURATIONS EXPÉRIMENTALES

MESURES DE RENDEMENTS DE FISSION

Méthode	Mesure de rendement sur	Avantage(s)	Inconvénient(s)	
Radiochimiques	Z, A	Très précises	 Quelques FF (rapports embranchements) Normalisation 	Dire
2E / 2V / <u>(2E,2V)</u>	A	2 FF	Résolution (3-4 u/ <u>0.5 u</u>)	C
Spectromètre recul (Lohengrin)	Z, A	A très précis	 σ(Z) lourd 	te
GSI (KH. Schmidt <i>et al.</i> 1996) E _{kin} ~ 500 A.MeV	Z	70 systèmes fissionnant, 2 FF, σ(Ζ), Ζ _{CN} < 92	■ A ? ■ E* ± 3 MeV	Inve
GANIL (F. Farget <i>et al.</i>) E _{kin} ≈ 10 A.MeV	Z, A	E* mesurée, Z _{CN} > 92	σ(Z) lourdAcceptance	erse

Jamais pu mesurer A et Z des deux FF sur toute la gamme

FISSION EN CINÉMATIQUE INVERSE RELATIVISTE

Fission de l'²³⁸U en cinématique inverse ⇔ n (≈6 MeV) + ²³⁷U

GSI (DARMSTADT)

LES NOYAUX MESURES SUR SOFIA

LES NOYAUX MESURES SUR SOFIA

Le dispositif SOFIA

DISPOSITIF SOFIA EN CAVE C

Les détecteurs en détails

CIBLE ACTIVE

CIBLE ACTIVE : FISSION DANS LES MATÉRIAUX LOURDS

Suite de chambres d'ionisations

matériaux lourds (U ou Pb)

Anodes : donnent ΔE

 ΔE anode 2

TWIN MUSIC

TWIN MUSIC

TWIN MUSIC : MULTI-SAMPLE IONISATION CHAMBER

TWIN MUSIC : MULTI-SAMPLE IONISATION CHAMBER

MWPCS

Anodes +1200V

- 1) Création d'ed'ionisation
- 2) Avalanche d'e- autour des fils d'anodes
- 3) Influence sur les pistes de cathode

200 μm requis en X 135 μm mesures FWHM

DISPOSITIF TEMPS DE VOL

DISPOSITIF TEMPS DE VOL

DISPOSITIF TEMPS DE VOL

Haute énergie et base de vol courte (7.5 m) : Nécessaire pour séparer A lourds : **40 ps FWHM** Au GSI : 100 ps **FWHM au mieux**

Stop : contrainte de taille :
 Dimensions : 90 * 60 cm² (dispersion du dipôle)

Bruyères-Le-Châtel

A. Ebran *et al.*, NIM A 728 (2013) 40-46

90 cm

Stop

TOF : RÉSOLUTION

<u>En résumé :</u>

SOFIA : conçu pour mesurer A et Z des deux fragments

- Validation des performances (FWHM) :
 - ✓ Positions (MWPCs) : 135 µm
 - ✓ Angle (Twin MUSIC) : 0,2 mrad
 - ✓ Temps de vol : 40 ps

Spectres

Charges Masses

OBTENTION DES CHARGES

• Signaux énergies Twin-MUSIC corrigés de plusieurs dépendances

• Sélection des fissions électromagnétiques ?

Z2 VS Z1

Z2 VS Z1 : SÉLECTION BASSE E*

SÉLECTION Z1 + Z2 = 92

RECHERCHES DES FISSIONS E.M.

Dans le spectre précédent, pratiquement plus que des fissions électromagnétiques

mais

Il reste une part de fission nucléaire résiduelle \rightarrow que l'on peut toutefois soustraire

DE LA RECHERCHE À L'INDUSTRIE

SPECTRE DE CHARGES FISSIONS E.M.

Poids du symétrique diminue encore

Spectres

Charges Masses

DE LA RECHERCHE À L'INDUSTR

SPECTRE DE MASSES


```
DE LA RECHERCHE À L'INDUSTRI
```

SPECTRE ISOTOPIQUE

DE LA RECHERCHE À L'INDUSTRI

SPECTRE ISOTOPIQUE - ZOOMS

Rendements

Charges
 Isotoniques
 Isotopiques
 Masses
 Neutrons prompts v

```
DE LA RECHERCHE À L'INDUSTRI
```

Cea

RENDEMENTS EN CHARGE


```
DE LA RECHERCHE À L'INDUSTRI
```

Cea

RENDEMENTS EN CHARGE

5) Neutrons prompts $\overline{\nu}$

- 3) Isotopiques4) Masses
- Charges
 Isotoniques: Y(N)=Y(A-Z)

<u>Rendements</u>


```
cea
```

RENDEMENTS ISOTONIQUES : N = A - Z

DE LA RECHERCHE À L'INDUSTR

Cea

EFFET PAIR-IMPAIR NEUTRONS

RENDEMENTS ISOTONIQUES : N = A - Z

22 EFFET PAIR-IMPAIR LOCAL

NEUTRONS

```
effet pair-impair local
```


NEUTRONS

Récapitulatif sur les effets pair-impairs :

- Diminue avec E*
- Reflète la répartition des protons à la scission

$\Box \delta_n$

- Constant avec E* (FF légers)
- (I) : Reflète les S_n des fragments

Rendements

1) Charges 2) Isotoniques 3) Isotopiques 4) Masses 5) Neutrons prompts $\overline{\nu}$

RENDEMENTS ISOTOPIQUES

RENDEMENTS ISOTOPIQUES

DE LA RECHERCHE À L'INDUSTRI

Cea

RENDEMENTS ISOTOPIQUES (LOURDS)

DE LA RECHERCHE À L'INDUSTRIE

POLARISATION EN CHARGE

RENDEMENTS ISOTOPIQUES ; ZOOM Z = 49-50

En fonction de N ici

DE LA RECHERCHE À L'INDUSTRIE

MODES DE FISSION (BROSA)

RENDEMENTS ISOTOPIQUES ; Z = 49-50

En fonction de N ici

cea

RENDEMENTS ISOTOPIQUES ; Z = 49-50

En fonction de N ici

RENDEMENTS ISOTOPIQUES ; Z = 49-50

En fonction de N ici

Rendements

Charges
 Isotoniques
 Isotopiques
 Masses
 Neutrons prompts v

de la recherche à l'industrie

RENDEMENTS EN MASSES

5) Neutrons prompts $\overline{\nu}$

Rendements

- 2) Isotoniques 3) Isotopiques 4) Masses
- 1) Charges

DE LA RECHERCHE À L'INDUSTRIE

$\overline{\boldsymbol{v}}$ vs z (zoom)

Objectifs de SOFIA atteints :

- Résolution en charge = 0,4 u FWHM
- Résolution en masse = 0,8 u FWHM pour A = 140
- Incertitudes rendements isotopiques < 5 %</p>
 - Permet de quantifier précisément plusieurs effets :
 - Effet pair-impair protons
 - Effet pair-impair sur le nombre de neutrons dans les FF semble constant avec E* (dans les légers)
 - Polarisation en charge : compétition des modes SL et S1
 - Nombre de neutrons émis (\overline{v}) en fonction de Z

 L'²³⁸U : 1 noyau sur les 80 mesurés → Intérêt aussi dans les systématiques
 SOFIA 2 en 2014

<u>Futur 1 : R3B</u>

- Aimant GLAD : 4,8 T.m. (ALADIN 2,2 T.m.)
- CALIFA : Mesure des gammas
- NEULAND : Mesure des neutrons (par fragment ?)
- Répartition de l'énergie dans la fission

Futur 2 : FELISE @ FAIR

 Fission at ELISE : excitation électromagnétique par des e- : E* mesurée

Merci de votre attention

SOUSTRACTION DE LA COMPOSANTE RÉSIDUELLE

La Sélection Z1+Z2 = 92 : n'élimine que les fissions de haute énergie ou des **PROTONS** sont enlevés

Suppression de la composante ou seuls des **NEUTRONS** sont enlevés ? \rightarrow Utilisation des fissions dans les <u>matériaux légers</u> (pas de fission e.m.)

SOUSTRACTION DE LA COMPOSANTE RÉSIDUELLE

La Sélection Z1+Z2 = 92 : n'élimine que les fissions de haute énergie où des **PROTONS** sont enlevés

Suppression de la composante où seuls des **NEUTRONS** sont enlevés ? \rightarrow Utilisation des fissions dans les <u>matériaux légers</u> (fissions nucléaires uniquement)


```
DE LA RECHERCHE À L'INDUSTRIE
```

MASSES - PIC/VALLÉE VS E*

DE LA RECHERCHE À L'INDUSTRIE

SPECTRE D'EXCITATION À LA FISSION

DE LA RECHERCHE À L'INDUSTRI

3/17/2014

DE LA RECHERCHE À L'INDUSTRIE

ACTIVE TARGET

MUSIC : ANGLE RESOLUTION

MUSIC : MULTI-SAMPLE IONISATION CHAMBER

EFFET PAIR-IMPAIR

NEUTRONS

Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions M. V Ricciardi et al. Nucl. Phys. A 733 (2004) 299-318

DE LA RECHERCHE À L'INDUSTRI

ÉMISSION NEUTRONS – E*

