T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, p.571, 1973.
DOI : 10.1016/0001-6160(73)90064-3

T. D. Fornes and D. R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, vol.44, issue.17, p.4993, 2003.
DOI : 10.1016/S0032-3861(03)00471-3

B. Mortazavi, M. Baniassadi, J. Bardon, and S. Ahzi, Modeling of two-phase random composite materials by finite element, Mori???Tanaka and strong contrast methods, Composites Part B: Engineering, vol.45, issue.1, p.1117, 2013.
DOI : 10.1016/j.compositesb.2012.05.015

F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, Fiber waviness in nanotube-reinforced polymer composites???I: Modulus predictions using effective nanotube properties, Composites Science and Technology, vol.63, issue.11, p.1689, 2003.
DOI : 10.1016/S0266-3538(03)00069-1

S. Tu, W. Cai, Y. Yin, and X. Ling, Numerical Simulation of Saturation Behavior of Physical Properties in Composites with Randomly Distributed Second-phase, Journal of Composite Materials, vol.32, issue.5, p.617, 2005.
DOI : 10.1063/1.1658506

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483342

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan et al., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, vol.8, issue.3, p.902, 2008.
DOI : 10.1021/nl0731872

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov et al., Dimensional crossover of thermal transport in few-layer graphene, Nature Materials, vol.9, issue.7, p.555, 2010.
DOI : 10.1038/nmat2753

Q. Li, Z. Li, M. Chen, and Y. Fang, Real-Time Study of Graphene???s Phase Transition in Polymer Matrices, Nano Letters, vol.9, issue.5, p.2129, 2009.
DOI : 10.1021/nl900681n

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society, vol.118, issue.45, p.11225, 1996.
DOI : 10.1021/ja9621760

S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio et al., A new force field for molecular mechanical simulation of nucleic acids and proteins, Journal of the American Chemical Society, vol.106, issue.3, p.765, 1984.
DOI : 10.1021/ja00315a051

K. M. Shahil and A. A. Balandin, Graphene???Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials, Nano Letters, vol.12, issue.2, p.861, 2012.
DOI : 10.1021/nl203906r

J. M. Haile, Molecular dynamic simulation, 1992.

F. Ercolessi, A molecular dynamics primer, ICTP, 1997.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, p.571, 1973.
DOI : 10.1016/0001-6160(73)90064-3

H. Hiroshi and T. Minoru, Equivalent inclusion method for steady state heat conduction in composites, International Journal of Engineering Science, vol.24, issue.7, p.1159, 1986.
DOI : 10.1016/0020-7225(86)90011-X

G. J. Weng, The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds, International Journal of Engineering Science, vol.28, issue.11, p.1111, 1990.
DOI : 10.1016/0020-7225(90)90111-U

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483342

S. Torquato, Effective stiffness tensor of composite media???I. Exact series expansions, Journal of the Mechanics and Physics of Solids, vol.45, issue.9, pp.1421-1468, 1997.
DOI : 10.1016/S0022-5096(97)00019-7

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, p.571, 1973.
DOI : 10.1016/0001-6160(73)90064-3

T. D. Fornes and D. R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, vol.44, issue.17, p.4993, 2003.
DOI : 10.1016/S0032-3861(03)00471-3

H. W. Wang, H. W. Zhou, R. D. Peng, and L. M. Jr, Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Composites Science and Technology, vol.71, issue.7, p.980, 2011.
DOI : 10.1016/j.compscitech.2011.03.003

Y. Li, A. M. Waas, and E. M. Arruda, A closed-form, hierarchical, multi-interphase model for composites???Derivation, verification and application to nanocomposites, Journal of the Mechanics and Physics of Solids, vol.59, issue.1, p.43, 2011.
DOI : 10.1016/j.jmps.2010.09.015

S. Mercier, A. Molinari, and M. E. Mouden, Thermal conductivity of composite material with coated inclusions: Applications to tetragonal array of spheroids, Journal of Applied Physics, vol.87, issue.7, p.3511, 2000.
DOI : 10.1063/1.372374

B. Mortazavi, M. Baniassadi, J. Bardon, and S. Ahzi, Modeling of two-phase random composite materials by finite element, Mori???Tanaka and strong contrast methods, Composites Part B: Engineering, vol.45, issue.1, p.1117, 2013.
DOI : 10.1016/j.compositesb.2012.05.015

F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, Fiber waviness in nanotube-reinforced polymer composites???I: Modulus predictions using effective nanotube properties, Composites Science and Technology, vol.63, issue.11, p.1689, 2003.
DOI : 10.1016/S0266-3538(03)00069-1

S. Tu, W. Cai, Y. Yin, and X. Ling, Numerical Simulation of Saturation Behavior of Physical Properties in Composites with Randomly Distributed Second-phase, Journal of Composite Materials, vol.32, issue.5, p.617, 2005.
DOI : 10.1063/1.1658506

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483342

D. S. Li, G. Saheli, M. Khaleel, and H. Garmestani, Quantitative prediction of effective conductivity in anisotropic heterogeneous media using two-point correlation functions, Computational Materials Science, vol.38, issue.1, pp.45-50, 2006.
DOI : 10.1016/j.commatsci.2006.01.004

S. Torquato, Effective stiffness tensor of composite media???I. Exact series expansions, Journal of the Mechanics and Physics of Solids, vol.45, issue.9, p.1421, 1997.
DOI : 10.1016/S0022-5096(97)00019-7

K. M. Shahil and A. A. Balandin, Graphene???Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials, Nano Letters, vol.12, issue.2, p.861, 2012.
DOI : 10.1021/nl203906r

D. T. Fullwood, B. L. Adams, and S. R. Kalidindi, A strong contrast homogenization formulation for multi-phase anisotropic materials, Journal of the Mechanics and Physics of Solids, vol.56, issue.6, p.2287, 2008.
DOI : 10.1016/j.jmps.2008.01.003

W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan et al., Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, International Journal of Heat and Mass Transfer, vol.51, issue.5-6, p.1431, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2007.10.017

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan et al., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, vol.8, issue.3, p.902, 2008.
DOI : 10.1021/nl0731872

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov et al., Dimensional crossover of thermal transport in few-layer graphene, Nature Materials, vol.9, issue.7, p.555, 2010.
DOI : 10.1038/nmat2753

D. W. Boukhvalov and M. I. Katsnelson, Chemical Functionalization of Graphene with Defects, Nano Letters, vol.8, issue.12, p.4373, 2008.
DOI : 10.1021/nl802234n

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber et al., N-Doping of Graphene Through Electrothermal Reactions with Ammonia, Science, vol.324, issue.5928, p.768, 2009.
DOI : 10.1126/science.1170335

A. Lherbie, R. X. Blasé, Y. Niquet, F. Triozon, and S. Roche, Charge Transport in Chemically Doped 2D Graphene, Physical Review Letters, vol.101, issue.3, p.36808, 2008.
DOI : 10.1103/PhysRevLett.101.036808

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu et al., Atomic layers of hybridized boron nitride and graphene domains, Nature Materials, vol.102, issue.5, p.430, 2010.
DOI : 10.1038/nmat2711

Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing, ACS Nano, vol.4, issue.4, p.1790, 2010.
DOI : 10.1021/nn100315s

B. Zheng, P. Hermet, and L. Henrard, Scanning Tunneling Microscopy Simulations of Nitrogen- and Boron-Doped Graphene and Single-Walled Carbon Nanotubes, ACS Nano, vol.4, issue.7, p.4165, 2010.
DOI : 10.1021/nn1002425

Q. Li, Z. Li, M. Chen, and Y. Fang, Real-Time Study of Graphene???s Phase Transition in Polymer Matrices, Nano Letters, vol.9, issue.5, p.2129, 2009.
DOI : 10.1021/nl900681n

Y. Li, Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study, Journal of Physics D: Applied Physics, vol.43, issue.49, p.495405, 2010.
DOI : 10.1088/0022-3727/43/49/495405

B. V. Martins and D. Galvao, Curved graphene nanoribbons: structure and dynamics of carbon nanobelts, Nanotechnology, vol.21, issue.7, p.75710, 2010.
DOI : 10.1088/0957-4484/21/7/075710

K. Matsunaga, C. Fisher, and H. Matsubara, Tersoff Potential Parameters for Simulating Cubic Boron Carbonitrides, Japanese Journal of Applied Physics, vol.39, issue.Part 2, No. 1A/B, p.48, 2000.
DOI : 10.1143/JJAP.39.L48

M. Topsakal and S. Ciraci, Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study, Physical Review B, vol.81, issue.2, p.24107, 2010.
DOI : 10.1103/PhysRevB.81.024107

L. A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Physical Review B, vol.62, issue.19, p.13104, 2000.
DOI : 10.1103/PhysRevB.62.13104

P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B, vol.65, issue.14, p.144306, 2002.
DOI : 10.1103/PhysRevB.65.144306

J. Thomas, R. Iutzi, and A. Mcgaughey, Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes, Physical Review B, vol.81, issue.4, p.45413, 2010.
DOI : 10.1103/PhysRevB.81.045413

D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni et al., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, vol.14, issue.4, p.783, 2002.
DOI : 10.1088/0953-8984/14/4/312

W. R. Zhong, M. P. Zhang, B. Q. Ai, and D. Q. Zheng, Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study, Applied Physics Letters, vol.98, issue.11, p.113107, 2011.
DOI : 10.1063/1.3567415

S. K. Chien, Y. T. Yang, and C. K. Chen, The effects of vacancy defects and nitrogen doping on the thermal conductivity of armchair (10, 10) single-wall carbon nanotubes, Solid State Communications, vol.151, issue.14-15, p.1004, 2011.
DOI : 10.1016/j.ssc.2011.04.025

R. Nicklow, N. Wakabayashi, and H. G. Smith, Lattice Dynamics of Pyrolytic Graphite, Physical Review B, vol.5, issue.12, p.4951, 1972.
DOI : 10.1103/PhysRevB.5.4951

I. Yarovsky and E. Evans, Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins, Polymer, vol.43, issue.3, p.963, 2002.
DOI : 10.1016/S0032-3861(01)00634-6

H. B. Fan and M. M. Yuen, Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation, Polymer, vol.48, issue.7, p.2174, 2007.
DOI : 10.1016/j.polymer.2007.02.007

A. Bandyopadhyay, P. K. Valavala, T. C. Clancy, K. E. Wise, and G. M. Odegard, Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties, Polymer, vol.52, issue.11, p.2445, 2011.
DOI : 10.1016/j.polymer.2011.03.052

C. Y. Li and A. Strachan, Effect of Thickness on the Thermo-Mechanical Response of Free-Standing Thermoset Nanofilms from Molecular Dynamics, Macromolecules, vol.44, issue.23, p.9448, 2011.
DOI : 10.1021/ma201927n

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society, vol.118, issue.45, p.11225, 1996.
DOI : 10.1021/ja9621760

S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio et al., A new force field for molecular mechanical simulation of nucleic acids and proteins, Journal of the American Chemical Society, vol.106, issue.3, p.765, 1984.
DOI : 10.1021/ja00315a051

E. K. Watkins and W. L. Jorgensen, Perfluoroalkanes:?? Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations, The Journal of Physical Chemistry A, vol.105, issue.16, p.4118, 2001.
DOI : 10.1021/jp004071w

T. Schneider and E. Stoll, Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions, Physical Review B, vol.17, issue.3, p.1302, 1978.
DOI : 10.1103/PhysRevB.17.1302

F. G. Garcia, B. G. Soares, V. J. Pita, R. Sanchez, and J. Rieumont, Mechanical properties of epoxy networks based on DGEBA and aliphatic amines, Journal of Applied Polymer Science, vol.39, issue.3, pp.2047-2052, 2007.
DOI : 10.1002/app.24895

K. M. Shahil and A. A. Balandin, Graphene???Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials, Nano Letters, vol.12, issue.2, p.861, 2012.
DOI : 10.1021/nl203906r

B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Rémond, and S. Mehdi-vaez-allaei, Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study, Solid State Communications, vol.152, issue.4, p.261, 2012.
DOI : 10.1016/j.ssc.2011.11.035

B. Mortazavi, S. Ahzi, Y. Rémond, and V. Toniazo, Nitrogen doping and vacancy effects on the mechanical properties of graphene: A molecular dynamics study, Physics Letters A, vol.376, issue.12-13, p.1146, 2012.
DOI : 10.1016/j.physleta.2011.11.034

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society, vol.118, issue.45, p.11225, 1996.
DOI : 10.1021/ja9621760

S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio et al., A new force field for molecular mechanical simulation of nucleic acids and proteins, Journal of the American Chemical Society, vol.106, issue.3, p.765, 1984.
DOI : 10.1021/ja00315a051

A. Bandyopadhyay, P. K. Valavala, T. C. Clancy, K. E. Wise, and G. M. Odegard, Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties, Polymer, vol.52, issue.11, p.2445, 2011.
DOI : 10.1016/j.polymer.2011.03.052

M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu et al., Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces, Journal of Materials Chemistry, vol.123, issue.43, p.9635, 2010.
DOI : 10.1039/c0jm01620a

T. Kuilla, S. Bhadrab, D. Yao, N. H. Kim, S. Bosed et al., Recent advances in graphene based polymer composites, Progress in Polymer Science, vol.35, issue.11, p.1350, 2010.
DOI : 10.1016/j.progpolymsci.2010.07.005

C. Bao, Y. Guo, L. Song, Y. Kan, X. Qian et al., In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements, Journal of Materials Chemistry, vol.21, issue.35, p.13290, 2011.
DOI : 10.1039/c1jm11434d

P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B, vol.65, issue.14, p.144306, 2002.
DOI : 10.1103/PhysRevB.65.144306

M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen et al., Energy Dissipation in Graphene Field-Effect Transistors, Nano Letters, vol.9, issue.5, p.1883, 2009.
DOI : 10.1021/nl803883h

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov et al., Dimensional crossover of thermal transport in few-layer graphene, Nature Materials, vol.9, issue.7, p.555, 2010.
DOI : 10.1038/nmat2753

B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, and S. Ahzi, Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites, Carbon, vol.60, pp.356-365, 2013.
DOI : 10.1016/j.carbon.2013.04.048

B. Mortazavi and . Ahzi, Thermal conductivity and tensile response of defective graphene: A molecular dynamics study, Carbon, vol.63, 2013.
DOI : 10.1016/j.carbon.2013.07.017

. Ruch, Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites, Thermochimica Acta, vol.552, pp.106-113, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00771210

B. Mortazavi, J. Bardon, and S. Ahzi, Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study, Computational Materials Science, vol.69, pp.100-106, 2013.
DOI : 10.1016/j.commatsci.2012.11.035

B. Mortazavi, M. Baniassadi, J. Bardon, and S. Ahzi, Modeling of two-phase random composite materials by finite element, Mori???Tanaka and strong contrast methods, Composites Part B: Engineering, vol.45, issue.1, pp.1117-1125, 2013.
DOI : 10.1016/j.compositesb.2012.05.015

B. Mortazavi, J. Bardon, J. A. Bomfim, and S. Ahzi, A statistical approach for the evaluation of mechanical properties of silica/epoxy nanocomposite: Verification by experiments, Computational Materials Science, vol.59, pp.108-113, 2012.
DOI : 10.1016/j.commatsci.2012.03.002

K. Davami, B. Mortazavi, H. M. Ghassemi, R. S. Yassar, J. S. Lee et al., A computational and experimental investigation of the mechanical properties of single ZnTe nanowires, Nanoscale, vol.22, issue.3, pp.897-903, 2012.
DOI : 10.1002/cphc.201100486

B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Rémond, and S. Mehdi-vaez-allaei, Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study, Solid State Communications, vol.152, issue.4, pp.261-264, 2012.
DOI : 10.1016/j.ssc.2011.11.035

Y. Mortazavi and . Rémond, Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations, Physica E: Low-dimensional Systems and Nanostructures, vol.44, issue.9, pp.1846-1852, 2012.
DOI : 10.1016/j.physe.2012.05.007

B. Mortazavi and S. Ahzi, Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene, Solid State Communications, vol.152, issue.15, pp.1503-1507, 2012.
DOI : 10.1016/j.ssc.2012.04.048

B. Mortazavi, Y. Rémond, S. Ahzi, and V. Toniazzo, Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations, Computational Materials Science, vol.53, issue.1, pp.298-302, 2012.
DOI : 10.1016/j.commatsci.2011.08.018

S. Mortazavi, V. Ahzi, Y. Toniazzo, and . Rémond, Nitrogen doping and vacancy effects on the mechanical properties of graphene: A molecular dynamics study, Physics Letters A, vol.376, issue.12-13, pp.1146-1153, 2012.
DOI : 10.1016/j.physleta.2011.11.034

B. Mortazavi, J. Bardon, S. Ahzi, A. Ghazavizadeh, Y. Rémond et al., Atomistic-Continuum Modeling of the Mechanical Properties of Silica/Epoxy Nanocomposite, Journal of Engineering Materials and Technology, vol.134, issue.1, p.10904, 2012.
DOI : 10.1115/1.4005419

M. Baniassadi, B. Mortazavi, H. A. Hamedani, H. Garmestani, and S. Ahzi, Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM, Computational Materials Science, vol.51, issue.1, pp.372-379, 2012.
DOI : 10.1016/j.commatsci.2011.08.001

URL : https://hal.archives-ouvertes.fr/hal-00676345