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1 Introduction

Atomic clocks are known to be the most performing time and frequency references. Their basic goal, based

on the Bohr’s law, is to obtain a local oscillator (LO) signal that indicates an interval of time that is as

perfect in its duration as the fundamental separation of the energy levels of an atom specie. Atomic clocks

are of fundamental importance in a wide number of applications from fundamental research and the probe

of fundamental physic constants [1] [2] to civil, industry or military applications with telecommunication

systems, navigation and positioning systems and space explorations [3] [4].

Impressive improvements in timing precision have been realized since the demonstration of the first Cs

beam clock developed in NPL by Essen and Parry [5]. The pioneering work of Rabi [6] was improved and

updated thanks to revolutionizing concepts such as the separated oscillatory fields spectroscopy technique

proposed by Ramsey [7], optical pumping [8], laser cooling [9] and trapping techniques or the advent of

optical frequency combs [10] [11] that allowed to accelerate greatly the development and characterization of

up-to-date state-of-the-art optical clocks [2] [12] [13] [14] [15] [16].

In parallel to the development of these ultimate performance metrology clocks, more and more accommo-

date applications require clocks with limited volume, power consumption and not extreme but nevertheless

excellent frequency stability performances. For embedded and portable applications, the Defense Advanced

Research Projects Agency (DARPA) project referred to as CSAC (Chip-Scale Atomic Clock), which ran

during the 2000’s was very successful and conducted to the development of a frequency standard on a chip,

taking up 15 cm3, using 30 mW of power, and exhibiting 10−11 frequency stability at one hour or even

one day integration time [17]. CSACs are now commercially available [18]. Different projects in Europe

were led in this frame too [19] [20]. The more recent Integrated Micro Primary Atomic Clock Technology

(IMPACT) project (also a DARPA-funded project) has a greater focus on long-term stability. The volume

and power requirements are slightly relaxed compared to the CSAC project, but the goal is to create a

standard that has nearly the same stability as a cesium beam clock for strongly reduced volume and power

[21]. The short term frequency stability of clocks developed in these projects remain modest, in the order

of a few 10−11 at 1 s integration time. Better performances, at the level of 10−12 to 10−13 at 1 s, while

keeping a modest volume of a few liters, are required in several fields such as telecommunications and satellite

radio-navigation. In this domain, a valid alternative is represented by vapor cell clocks, well-known through

commercially-available double-resonance Rb clocks [22], that were studied and developed in several research

laboratories. These secondary frequency standards are based on cell technology that is well-established,

reliable and widely exploited. Recently, due to better performing laser sources and innovative techniques

to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability

have been developed [23] [24]. For the same category of applications, the pulsed Cs vapor cell clock based on

Coherent Population Trapping (CPT) proposed by LNE-SYRTE, Observatoire de Paris also demonstrated

recently impressive frequency stability performances [25], still at the level of a laboratory-prototype. This

clock combines a specific interaction scheme and pulsed Ramsey-like interrogation to allow the detection

of high-contrast and narrow Ramsey CPT fringes [26] with reduced sensitivity to light shift phenomena

[27]. The main drawback of the latter clock, for potential industrial transfer, is the use of two phase-locked

external cavity diode lasers for atomic preparation, interrogation and signal detection. This complexity is

not compatible with the development of an industrial clock that requires low volume, simplicity and low-cost.
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In that sense, the philosophy and main objective of my thesis was the demonstration of a simple-

architecture, compact, single diode laser system for the detection of high-contrast CPT resonances in Cs

vapor cells. The optical system we developed simply combines a Distributed Feedback (DFB) diode laser, an

intensity Mach-Zehnder electro-optic modulator (MZ EOM) and a Michelson delay-line system. Advanced

noise reduction techniques were implemented to make the system operate properly. CPT spectroscopy is

done with an optimized CPT pumping scheme, named push-pull optical pumping (PPOP), initially proposed

by Jau et al. in 2004 [28]. Our system allows the detection of very high contrast CPT resonances, about

two orders of magnitude higher than with the use of standard interaction schemes. In the end of my thesis,

we proposed an original upgrade of our system by driving the EOM in pulsed regime by making it operate

as a fast light switch. This leads to make the atoms interact with a sequence of optical pulse trains and

allows the detection of high-contrast and narrow Ramsey CPT fringes, all along with a simple system. While

no efforts for integration of our system was done in the frame of my PhD thesis, we’re confident that it is

compatible to be reduced onto a A3 format optical breadboard. Encouraging results obtained in this thesis

have allowed us to participate to an exciting European project, named MClocks, funded by EURAMET,

led by Dr. S. Micalizio (INRIM, Italy), that started June, 2013, 1st and that aims to develop compact and

high-performance vapor cell microwave atomic clocks. This project will help to further develop, test and

validate preliminary studies proposed in this manuscript.

In section 1, basic knowledge and concepts of atomic clocks is reported. Time and frequency metrology

tools used to characterize the performances of an atomic clock are reminded. Recipes to respect to improve

the frequency stability performances of an atomic clock are given. We also present an overview of compact

atomic clocks developed worldwide to introduce the context of our work.

In section 2, we introduce basics of CPT physics. The impact of main experimental parameters on the

resonance line (linewidth, signal) is studied in order to know how to optimize the short term frequency sta-

bility performances of a CPT atomic clock. Main frequency shifts, including the Zeeman shift, the light shift

and the collisional shift, are introduced to point out key points to work to improve the mid and long term

performances of a CPT clock. In such a clock, a static magnetic field is applied in order to split Zeeman

transitions and to isolate the magnetic field-insensitive clock transition. It is pointed out that low CPT

signals are detected in standard CPT clocks because atoms interact with circularly polarized light. This

leads numerous atoms to be lost in extreme Zeeman magnetic sublevels with the highest angular momentum

mF . For this purpose, different optimized CPT pumping schemes were proposed in the literature such as lin

⊥ lin[26] [27], Push-Pull Optical Pumping (PPOP) [28] and lin ‖ lin [29] schemes. In our case, we analyze

theoretically in detail the PPOP scheme that is found to be similar to the lin ⊥ lin scheme under given

conditions. A brief review of the Ramsey interference scheme is given to make easier the reading of section

5.

In section 3, we present the experimental setup we developed for the detection of high contrast CPT

resonances and Ramsey fringes in Cs vapor cells using the push-pull optical pumping technique. The exper-

imental setup is mainly divided into 4 key parts: a Distributed Feedback (DFB) diode laser tuned on the

Cs D1 line, a pigtailed Mach-Zehnder intensity Electro-Optic Modulator (MZ EOM) driven by a microwave
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synthesizer for sidebands generation, a Michelson delay-line system to produce the PPOP scheme and the

Cs vapor cell in which CPT interaction takes place. Each block of this setup is described in detail. Several

advanced noise reduction techniques are proposed to make the future CPT clock operate properly.

In section 4, continuous (CW) and Ramsey CPT spectroscopy in different Cs vapor cells is reported.

High-contrast CPT resonances up to 78 % are reported in the CW regime. The efficiency of the PPOP

scheme to pump a maximum number of atoms in the clock transition is demonstrated. The impact of several

experimental parameters on the CPT resonance is reported. It is shown that high contrasts are obtained with

high laser intensities at the expense of the CPT line broadening, i.e a degradation of the clock short term

frequency stability. Thus, we proposed a slightly modified scheme that allows to make the atoms interact

with a sequence of optical pulse trains separated by a time T where atoms evolve freely. Preliminary studies

demonstrate the detection of high-contrast and narrow Ramsey fringes.

In section 5, I report different annex works I participated to during my thesis. An all-fibered simple

laser system at 1550 nm using a DFB laser, a pigtailed intensity EOM and a dual phase shift key (DPSK)

demodulator was proposed at the beginning of my thesis to generate two orthogonally polarized optical

sidebands frequency-splitted in the microwave domain. First results are shown. A compact table-top Cs

CPT clock based on microfabricated cell with advanced frequency stability performance is reported. These

performances are measured to be 3.8 × 10−11 τ−1/2 at 1 second and well below 10−11 τ−1/2 until 50 000

seconds. Eventually, we characterized microfabricated cells in which are deposited at the wafer-level getters

in order to reduce undesired impurities in the cell and to improve the microcell inner atmosphere. The

impact of the presence of the getter is evaluated by different techniques including residual gas analysis and

CPT spectroscopy.

In section 6 aims to give a conclusion on my work and to present its perspectives.
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2 Basics on atomic clocks

2.1 Atomic clock principle

The normalized signal of a perfect clock is shown in Figure 1. We define the period T of the signal in seconds

and the frequency ν0 = 1/T in Hz, as the number of cycles per second.

Figure 1: Typical signal of a perfect clock. Period: duration of one cycle; Frequency: number of cycles per

second.

The periodic signal sent by an ideal clock should always keep the same frequency. Atomic clocks are the

best candidate for ideal clocks because of their stable atomic transition. Atoms consist of a dense central

nucleus surrounded by a cloud of negatively charged electrons. These electrons can change from one energy

level E1 to another E2 (E2 > E1) by emitting or absorbing a photon whose energy must be exactly equal to

the energy difference between the two levels such as (Bohr’s law):

E2 − E1 = hνat (1)

where h is the Planck constant (6.62606957(29)× 10−34 J. s) and νat is the atomic transition frequency.

Energy exchange between atoms and light is realized through three different basic processes shown in

figure 2: absorption, spontaneous emission and stimulated emission.

Figure 2: Basic processes for atomic transitions: (a) absorption; (b) spontaneous emission; (c) stimulated

emission.

Absorption occurs when an atom in E1 absorbs a photon whose energy is equal to the energy difference

between two energy levels and is excited to E2. Spontaneous emission occurs when an atom in E2 decays to

9



E1 by emitting a photon equal to the energy difference between both energy levels. Stimulated emission is

the process by which an atom in the higher level E2 drops to the lower level E1 due to interaction with an

incident photon equal to the energy difference E2 − E1. The photon created in this manner presents phase

coherence with the incident photon. Stimulated emission is a basic quantum mechanical process used for

the development of lasers or masers.

Since the atomic transition frequency νat is based on the Bohr’s law and is an inherent property of atom, we

can build an atomic clock by locking the frequency of a local oscillator to the atomic transition frequency.

A simplified scheme of an atomic clock is shown in Figure 3.

Figure 3: Simplified scheme of an atomic clock. νat: Atomic transition frequency; νosc: Frequency of the

local oscillator.

In a passive atomic clock, a LO generates a periodic signal with frequency νosc to probe the atoms. An

atomic resonance signal depending on the detuning δR = νosc−νat is generated. The amplitude of the signal

reaches an extremum when the detuning δR equals zero, i. e when the frequency of the LO exactly equals the

atomic transition frequency. An error signal generated in a feedback loop is then used to lock the frequency

of the local oscillator to the atomic transition frequency.
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2.2 Characterization of atomic clocks

2.2.1 Basics

Figure 4 shows an example of the time evolution of atomic clock frequency.

Figure 4: Typical frequency of a local oscillator when locked to an atomic resonance.

The frequency of the clock can be described by:

νosc = νat(1 + ε+ y(t)) (2)

where ε is difference between the frequency of local oscillator’s signal and the ideal atomic transition fre-

quency choosen and y(t) is the signal relative frequency fluctuations.

Performances of an atomic clock are evaluated by two main parameters: accuracy and relative frequency

stability. Accuracy is defined as the uncertainty of the evaluation of ε. This parameter describes how much

the actual frequency of an atomic clock deviates from the exact atomic transition frequency, which is 9.192

631 770 GHz for Cs atomic clock. It is usually given by:

Accuracy =
ν − νref
νref

(3)

where νref presents the standard frequency of the reference source, and ν is the actual averaged frequency

of the clock.

2.2.2 Frequency instabilities in the time domain

In the time domain, the clock output signal can be given by:

V (t) = V0 sin(2πν0t+ ϕ(t)) (4)

where V0 is the amplitude of the signal here assumed to be constant, ν0 is clock signal frequency and ϕ(t)

represents phase fluctuations of the clock signal. From Equation 4, we can derive the instantaneous phase

of the clock signal Φ(t):

Φ(t) = 2πν0t+ ϕ(t) (5)
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The instantaneous frequency of the clock is:

ν(t) = ν0 +
1

2π
ϕ̇(t) (6)

The signal relative frequency fluctuations y(t) can be expressed from the instantaneous frequency ν(t):

y(t) =
ν(t)− ν0

ν0
=

1

2πν0
ϕ̇(t) (7)

In the time domain, the frequency stability of a clock can be characterized from Allan deviation σy(τ) of the

signal relative frequency fluctuations y(t) in a given averaging time τ [30] [31] [32]. To calculate the Allan

deviation, we measure the averaged frequencies in a fundamental interval τ . These measurements constitute

a statistics result that presents frequency fluctuations of the source. We define the fractional frequency

fluctuations averaged in τ , which presents the integration of y(t) = ν0 + 1
2πν0

dϕ
dt between the instants tk and

tk+1:

yk =
1

τ

∫ τk+1

τk

y(t)dt =
ϕ(tk + τ)− ϕ(tk)

2πν0τ
(8)

Allan deviation σy(τ), a two-sample deviation, is calculated by:

σy(τ) =

√
1

2
〈(yk+1 − yk)2〉 (9)

The first advantage of using Allan deviation is that we can compare frequency stability performances of

clocks with different frequencies. The slope of the curve on the Allan deviation plot is the signature of a type

of noise, resumed on figure 5. Assuming that all experimental parameters are well controlled, the typical

Allan deviation slope of an atomic clock is τ−1/2, signature of a white frequency noise.

Figure 5: Allan deviation plot of different noises.

Figure 6 shows the basic scheme of frequency stability measurement of a clock. Signals of the source

under test and a reference oscillator are mixed to generate a beatnote signal. The beatnote signal is sent to

a frequency counter to count the beatnote frequency and to evaluate the relative frequency stability.
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Figure 6: Basic scheme of frequency stability measurement.

2.2.3 Instabilities in the frequency domain

The spectral density of instantaneous frequency fluctuations Sy(f) can be expressed with the spectral density

of phase noise Sϕ(f) (rad2/Hz or dBrad2/Hz) as:

Sy(f) =
1

ν2
0

S∆ν(f) =
1

ν2
0

f2Sϕ(f) (10)

where S∆ν(f) is the spectral density of frequency fluctuations (Hz2/Hz).

Figure 7 shows the basic measurement scheme of phase noise of an oscillator.

Figure 7: Basic scheme of phase noise measurement.

In this measurement setup, we assume that: Φ̇1(p) is the angular frequency fluctuations of the oscillator

under test; Φ̇r(p) is the angular frequency fluctuations of the reference oscillator; Φ̇c(p) is the correction of

the fluctuations applied on the reference oscillator; µ (measured typically in V/rad) is the sensitivity of the
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mixer, which is used as a phase detector; H1(p) is the transfer function of the low-pass filter; G(p) is the

gain of the amplifier; H(p) is the transfer function of the feedback loop; K is the sensibility of the electronic

tuning of the reference oscillator; p is the symbolic variable equals j2πf where f is the analyzed frequency.

If the input signals of the mixer is in quadrature, the output signal of the mixer V1(p) is proportional to

the phase fluctuations between the oscillator under test and the reference oscillator. It can be described by:

V1(p) =
µ

p
(Φ̇1(p)− Φ̇r(p)− Φ̇c(p)) (11)

The low-pass filter is used to remove the carrier signal, H(p) = 1 at the low frequency. Then, the output

signal of the amplifier is given by:

V2(p) =
µG(p)

p
(Φ̇1(p)− Φ̇r(p)− Φ̇c(p)) (12)

At the output of the feedback loop H(p), the correction signal of the fluctuations applied on the reference

oscillator is:

Φ̇c(p) = KV3(p) =
µG(p)H(p)

p
(Φ̇1(p)− Φ̇r(p)− Φ̇c(p)) (13)

From Equation 11, 12 and 13, we can derive that:

V2(p) =
µG(p)

p+ µKG(p)H(p)
(Φ̇1(p)− Φ̇r(p)) =

µG(p)

1 + µKG(p)H(p)
p

(Φ̇1(p)− Φ̇r(p)) (14)

If the term µKG(p)H(p)
p in the Equation 14 is much larger than 1, we can approximate the Equation 14

to:

V2(p) =
Φ̇1(p)− Φ̇r(p)

KH(p)
(15)

In the other hand, if the gain of the feedback loop is very low, the Equation 14 can be rewritten:

V2(p) = µG(p)(Φ̇1(p)− Φ̇r(p)) (16)

Consequently, if the value of G, µ and K are adjusted suitably, we can obtain a output signal of the

measurement setup which is proportional to the phase fluctuations. A FFT spectrum analyzer is used to

measure the spectral density of phase noise Sϕ(f).

2.2.4 Inter-domains transition

From power spectral density of frequency noise, we can deduce Allan variance σ2
y(τ) of frequency stability

by:

σ2
y(τ) = 2

∫ ∞
0

Sy(f) | H(f) |2 sin4(πfτ)

(πfτ)2
dν (17)

where | H(f) |2= 1
1+(f/fc)2

presents the transfer function of low pass filter in the measurement setup.
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Sy(f) can be described by the power law:

Sy(f) =

2∑
α=−2

hαf
α (18)

Sϕ(f) can be described by the power law:

Sϕ(f) =

0∑
α=−4

bαf
α (19)

In a phase noise logarithmic plot, a term fα is a straight line of slope α. Figure 8 shows the relation

between power spectral density of phase noise Sϕ(f), power spectral density of frequency noise Sy(f) and

Allan variance σ2
y(τ) of frequency stability [33].

Figure 8: Power laws for spectra and Allan variance.

Table 1 resumes the relations between Sϕ(f), Sy(f) and σ2
y(τ).
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Table 1: Relation of power spectral densities and Allan variance.

noise type Sϕ(f) Sy(f) σ2
y(τ)

white phase noise ϕ b0 h2f
2 ∝ τ−2

flicker phase noise ϕ b−1f
−1 h1f ∝ τ−2

white frequency noise f b−2f
−2 h0

1
2h0τ

−1

flicker frequency noise f b−3f
−3 h−1f

−1 2 ln(2)h−1

random walk of frequency f b−4f
−4 h−2f

−2 4π2

6 h−2τ
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2.3 Frequency stability of an atomic clock

Figure 9 shows an example of an atomic resonance signal obtained with CPT in a Cs cell.

Figure 9: Example of an atomic resonance signal. The LO detuning is defined as the frequency difference

between the atomic transition frequency and the local oscillator frequency.

The short term frequency stability σy(τ) of an atomic clock is given by:

σy(τ) = K
∆ν

ν0

1

SNR
τ−1/2 (20)

where K ' 1 − 2 is a constant that depends on the modulation detection scheme, ∆ν is the full width at half

maximum (FWHM) of the atomic resonance signal, ν0 is the clock frequency, SNR is the clock resonance

signal-to-noise ratio in a 1 Hz bandwidth and τ is the averaging time of the measurement. We define the

atomic Q-factor Q as:

Q =
ν0

∆ν
(21)

The contrast C of the resonance is defined as:

C =
S

y0
(22)

To improve the short term frequency stability performance, different methods can be considered. First of

all, increasing the atomic transition frequency ν0 is an effective way to improve the short term frequency

stability. This idea has allowed to develop optical clocks that surpass greatly performance of best microwave

atomic clocks [2] [12] [13] [14] [15] [16]. The stability can also be improved by decreasing the resonance

linewidth ∆ν. This means that it is required to maximize the atom-field interaction time. In general, for

atomic clocks based on alkali vapor cells (main study in this manuscript), there are two main methods for

this purpose. The first one is to fill the cell with a pressure of buffer gas (Ne, Ar, N2,..) in order to oper-

ate in the Dicke regime [34]. In this case, atoms experience multiple collisions against buffer gas atoms or

molecules and the time for alkali atoms to reach the cell walls is increased. The second one consists to deposit

an anti-relaxation coating on the cell inner windows to increase the coherence lifetime of atoms [35] [36].

Atoms experience multiple bounds against the cell walls before complete spin-depolarization. Additionally,

the Ramsey interference scheme is a method widely used to narrow the resonance signal of atomic clocks [7].
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This technique will be detailed later in the manuscript. Ultimately, laser-cooled atoms are the most efficient

technique to slow down atoms and to allow the detection of very narrow resonances. Eventually, reaching a

good short term frequency stability requires to detect the signal with the highest signal-to-noise ratio. This

implies to concentrate the maximum number of atoms into the clock transition levels and to ensure relevant

efforts to reduce the different noise sources of the system such as laser relative intensity noise (RIN), the

laser frequency noise, the local oscillator phase noise, the detection noise, etc.

For long integration times, the clock frequency stability is degraded by the effect of environmental pertur-

bations or/and internal components aging. Main contributions in vapor cell clocks are the Zeeman shift, the

light shift and the collisional frequency shift. These frequency shifts will be detailed in the section devoted

to CPT physics.

2.4 Atomic clocks applications

Atomic clocks are widely required by any application that needs a precise and stable clock. Different types of

atomic clocks were proposed and produced. Each type of atomic clock has its own performance and volume,

determining its field of application. We only focus in the manuscript on compact microwave atomic clocks.

2.4.1 Ultimate performances

The International System of Units (SI) strictly and precisely defines the second as the duration of 9 192 631 770

periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state

of 133Cs atom assumed at rest and in a null magnetic field. The second is a key unit in metrology and

some other basic units are defined from the second definition. For example, the definition of the meter

is the distance traveled by light in vacuum in 1
299 792 458 second. Consequently, devices that can generate

and measure the second with high accuracy and frequency stability are very important. Besides the exact

definition of the second, we need an universal time reference. Atomic clocks are used world wide to build

International Atomic Time (TAI) and Coordinated Universal Time (UTC). The TAI is a high precision

atomic coordinate time standard based on the notional passage of proper time on Earth’s geoid. The UTC

is the primary time standard from which the world regulates clocks and time. Fundamental physics, atomic

and molecular physics researches, measurements of physical constants like Rydberg constant R∞, hyperfine

structure constant α, time variation of fundamental constants, properties of atoms and molecules, absolute

frequency measurements or gravity measurements, also require ultra-precise measurement of frequencies and

time.

2.4.2 Compact and embedded systems

Global navigation satellite system Global Navigation Satellite System (GNSS) such as GPS, GLONASS,

BeiDou and GALILEO use atomic clocks to measure the signal propagation time ∆τ between satellites and

receivers. The propagation time ∆τ allows to obtain a distance D between the satellite and the receiver.

If the instant of signal emission and the spatial coordinates of the emission source are known, we can fix

the position of the source by measuring the propagating time ∆τ . Uncertainty of 1 ns leads to an uncer-

tainty of 30 cm positioning. A nominal GNSS is composed by 24 satellites orbiting the Earth to send the

signal, ground tracking stations and users’ receivers. The precision of positioning may be disturbed by two
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Table 2: Atomic clocks embedded in GPS and GALILEO.

Performances GPS GALILEO

Type of clocks Rb II/IIA RAFS PHM

Embedded quantity 2 2 2

Frequency stability at 1 s 7× 10−12 3× 10−12 7× 10−13

Flicker 1× 10−14 3× 10−12 6× 10−15

Drift per day 4 ∼ 10× 10−14 2× 10−13 5× 10−15

Volume / 2.4 L 28 L

Weight 6 kg 3.2 kg 18 kg

reasons: time fluctuations of signal propagating through atmosphere and desynchronization of time bases

to transmit and receive. The time bases are given by atomic clocks. The time references of these systems

are generated by the ground tracking stations in the Earth. The embedded atomic clocks in the satellites

have worse performances than atomic clocks in the ground tracking stations because of limitations of volume

and power consumptions. For this purpose, embedded atomic clocks must be calibrated when the satellites

pass over the ground tracking stations every day. Today, the clocks installed in the GNSS systems (GPS

or GALILEO) are Rb Atomic Frequency Standard (RAFS), Cs beam clocks and Passive Hydrogen Maser

(PHM). Typical performances of these clocks are given in Table 2. Although the performances of the clocks

embedded in GNSS can satisfy current requirements, developing better performance atomic clocks are a great

benefit for next generations of satellites. Indeed, the proliferation of systems, the reduction of ionospheric

contribution and the weight becomes more important for navigation systems. Additionally, better mid-long

term frequency stability allows to relax the constraints of periodic calibration of ground tracking stations.

Reliability and autonomy of navigation systems can be improved by using better performance atomic clocks.

GNSS receiver today uses a quartz oscillator to synchronize with satellite’s signal, the precision of positioning

can be greatly improved if quartz oscillator is replaced by CSAC.

Deep space network Deep Space Network (DSN) is a world wide network of large antennas and com-

munication facilities that supports interplanetary spacecraft missions and radar astronomy observations of

the solar system and the universe. The network is constituted by three stations in Goldstone, Madrid and

Canberra to track the path of probe 24h/24h. These stations are synchronized by atomic clocks. Usually,

navigation of probe is realized by measuring Doppler velocity with a two-way link. This two-way link mea-

sures Doppler shift between the signal sent by antenna and the signal resent by probe with a transponder.

Typically, these two-way links should be maintained for 7 to 8 hours to navigation of one probe. Atomic

clocks that have frequency stability performance better than 10−14 for some days allows a precise enough

navigation working with one way link from probe to antenna [4]. Such a configuration allows to track

simultaneously a number of probes that orbit around the same plant [37].

Very large baseline interferometry Very Large Baseline Interferometry (VLBI) is a kind of astronom-

ical interferometry used in radio astronomy. The VLBI can detect signal from an astronomical radio source

by multiple radio telescopes in the Earth, then the distances between these radio telescopes can be calculated

by the time difference between the detection of signal. By combining all the observations of these telescopes,

we can emulate a telescope with a size equal to the maximum separation between these telescopes. Atomic
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clocks in such a system are used to synchronize all the separate telescopes. The frequency stability require-

ments of the VLBI is about 10−13 τ−1/2 that is currently satisfied by hydrogen maser. Today, compact

atomic clocks exhibit short term frequency stability performance similar to hydrogen maser but with smaller

volume. Consequently, developments of high performance, low power consumption compact atomic clocks

could be meaningful for improving reliability and autonomy of VLBI.

Telecommunications With the development of telecommunication systems, data transmission becomes

more and more important. To efficiently transfer the data and avoid the errors, high accuracy synchronization

of different points of transfer is required. A high performance atomic clock embedded in every emitter and

receiver can greatly improve the synchronization of telecommunication system. Table 3 shows atomic clocks

performances required by different applications.

Table 3: Applications of atomic clocks and their requirements

Application Short term frequency stability Long term frequency stability Constraints

Metrology 10−13 τ−1/2 10−16 Laboratory-size

Fundamental physics 10−13 τ−1/2 10−16 Laboratory-size

GNSS 10−12 τ−1/2 10−14 Compact system

DSN 10−12 τ−1/2 ≤ 10−14 -

VLBI 10−13 τ−1/2 10−15 -

GNSS receiver 10−11 τ−1/2 ≤ 10−13 Miniaturize clocks

Telecommunication 10−11 τ−1/2 ≤ 10−13 Miniaturize clocks
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2.5 Overview of compact atomic clocks

Today, developments of compact atomic clocks are on the upswing. Compact atomic clocks emphasize

compact volume, simple architecture and high performance. Compact atomic clocks are based on different

atoms and preparation schemes have different volumes and performances. In the following section, a brief

overview of main compact microwave atomic clocks is presented.

2.5.1 Cs beam atomic clock

The Cs beam clock is considered as the original frequency reference to define the duration of one second.

According to the method of selection of atoms in clock, Cs beam clocks are divided into two types: Cs beam

clocks based on magnetic deflection and based on optical pumping. Figure 10 shows a principle scheme of

Cs beam clock based on magnetic deflection. Figure 11 shows a principle scheme of the Cs beam clock based

on optical pumping (Jet Pompé Optiquement (JPO) developed by SYRTE).

Figure 10: Principle scheme of Cs beam clock based on magnetic deflection. The figure is extracted from

NRC website (http://inms-ienm.nrc-cnrc.gc.ca).

Figure 11: Principle scheme of Cs beam clock based on optical pumping. The figure is extracted from [39].
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In a Cs beam clock, Cs atoms are heated to about 100 ◦C in an oven to generate a Cs beam. Microchannels

are used to calibrate the Cs beam. The clock consumes about 1 gramme Cs atoms in one year with a Cs beam

jet velocity of 200 m/s and an outflow of 1014 atoms/s. After the Cs beam is generated, the Cs atoms in an

appropriate state are selected and sent into a resonant cavity. This selection is realized by a magnet (magnetic

deflection) or a laser (optical pumping). The magnet selects the atoms by generating an inhomogeneous

magnetic field. Atoms in expected state deflect an angle when passing though the magnetic field and are

sent into the resonant cavity. Since the Cs atoms into the oven are distributed in 16 different Zeeman

sublevels, the expected atoms are only about 1/16 of the total atoms. Magnetic deflection also depends

on the atom velocity and magnetic field length. Atoms in the expected state can not enter the resonant

cavity appropriate if they are too fast or too slow. This causes the number of atoms sent into resonance

cavity is even smaller. Optical pumping technique can avoid this defect. In this case, the deflection angle of

atoms is generated by momentum exchange with photons, which is much smaller than the one generated by

magnetic deflection. Therefore, the optical pumping can increase number of atoms involved into interaction

with microwave compared to the magnetic deflection. With the help of laser pumping, nearly all the atoms

can be pumped into one hyperfine ground state. Once selected, atoms are sent in a Ramsey microwave

resonant cavity. It is composed by two arms separated by a free-evolution zone whose length fixes the free-

evolution time T . At the output of the resonant cavity, a resonance signal is detected by a heating wire

(for magnetic deflection) or fluorescence optically. The signal detection is also improved thanks to the use

of cycling transitions such as the S1/2|F = 4〉 −→ P3/2|F = 5〉. An atomic resonance signal of the JPO Cs

beam clock is shown in Figure 12.

Figure 12: Atomic resonance signal of JPO Cs beam clock. The Rabi pedestal linewidth is 20 kHz, the

central Ramsey fringe linewidth is 100 Hz. The figure is extracted from [39].

The JPO clock demonstrated a record of frequency stability of 3.5 × 10−13 τ−1/2 (Figure 13) and an

accuracy of 6× 10−15 [39].

Some industrial companies have produced commercial Cs beam clock with a reasonable size. Cs beam

clocks act as a frequency reference source to calibrate new types of atomic clock in many laboratories. The

best commercial Cs beam clock based on magnetic deflection is the 5071A clock developed by Symmetricom

(Figure 14). It exhibits a relative frequency stability of 5× 10−12 τ−1/2 and accuracy better than 2× 10−13

with 30 liters volume. Its service life is about 7-8 years limited by the Cs atoms quantity.
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Figure 13: Frequency stability of JPO. The figure is extracted from [38]

Figure 14: Symmetricom 5071A clock Photo.

Up to date, no commercially-available Cs beam clocks based on optical pumping exist. The OSCC

project, headed by Thales TED, aims to realize to realize a Cs beam clock using only one laser. This

achieves a frequency stability of 3× 10−12 at 1 second [40].

2.5.2 Double-resonance Rb vapor cell clocks

Continuous regime Rb clock The double-resonance Rb vapor cell clock is widely used in commercial

and portable applications which require high accuracy and stability such as GPS, radar or VLBI. In such a

clock, the core heart is a glass cell that contains alkali vapor and buffer gas to operate in the Dicke regime

[34].

Figure 15 shows a principle scheme of the RAFS.

In such a clock, a spectral lamp emits a large spectrum that contains D1 (795 nm) and D2 (780 nm) lines

of Rb. A hyperfine filter blocks the optical lines that can be resonant with the |F = 2〉 energy level of 87Rb.

The filtered optical field is sent into a cell containing Rb atoms vapor and buffer gas and then absorbed by

the |F = 1〉 energy level of Rb atoms. The Rb atoms in the cell are excited by the optical field and relax
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Figure 15: Principle scheme of a lamp-based RAFS.

separately until there is not any atom anymore in the |F = 1〉 energy level. When all the atoms are pumped

into the |F = 2〉 energy level, the atoms vapor do not absorb the filtered optical field any more. Therefore,

the transparency of the Rb vapor reaches a maximum and a photodiode at the output of cell can detect the

light flux signal. If a microwave field resonant with the atoms radiates the vapor cell continuously, the atoms

will repopulate the |F = 1〉 energy level and the absorption rate of Rb atoms will increase. If the spectral

lamp is replaced by a laser source, the absorption rate of Rb atoms is even higher. The resonance signals

detected by a RAFS have a typical linewidth of 1 kHz and 0.5 % contrast with spectral lamp and up to 25

% contrast with laser source [41] [42].

Atomic clocks based on Rb vapor cell were first commercially produced in the 1960s by the Perkin-Elmer

company. These clocks played an important role in the compact navigation system, such as GPS and Deep

Space Navigation (DSN) because of their compact volume and excellent stability performance. According to

the performances, the best commercial RAFS is the RFS-IIF fabricated by the Perkin-Elmer with frequency

stability of 2 × 10−12 τ−1/2 with a flicker level to 5 × 10−15 and drift to 2 × 10−13 for one day integration

time. The RAFS developed by Dupuis et al., has short term frequency stability performance of 10−12 τ−1/2

to a 2 × 10−15 flicker level, and a drift to 2 × 10−14 for one day integration time [43]. The RAFS clock

applied on the GALILEO project has frequency stability of 3× 10−12 τ−1/2 with a level to 10−14 and then

drift to 2× 10−13 for one day [44]. The Rb Atomic Frequency Standard (RAFS) atomic clock fabricated by

Symmetricom has 1 L level volume with a frequency stability of 2.5 × 10−12 τ−1/2 at 1 second [45]. These

commercial Rb clocks usually use a Rb spectral lamp as a pumping source.

The performance of a Rb atomic clock can be improved by at least one order of magnitude by replacing

spectral lamp with a diode laser. The best performance laboratory-prototype continuous regime RAFS was

demonstrated by C. Stefanucci et al. in Université de Neuchatel [46]. Figure 16 shows the resonance signal

of this RAFS. A compact magnetron cavity (Volume = 0.044 dm3) operating with a TE011-like mode is used

in this RAFS. This cavity ensures an excellent microwave magnetic field homogeneity and the compactness

of the whole system. This RAFS demonstrated a short term frequency stability of 2.4 × 10−13 at 1 second
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integration time. Figure 17 shows the frequency stability performance of this RAFS.

Figure 16: Resonance signal of the RAFS developed by C. Stefanucci et al.,. The figure is extracted from

[46].

Figure 17: Frequency stability of the RAFS developed by C. Stefanucci et al.,. Solid line: the measured

stability. Dotted line: the signal-to-noise estimated value. Dashed-dotted line: the shot-noise limit. Dashed

line: the stability of an active H-maser, against which the clock is measured. The figure is extracted from

[46].
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Pulsed Optically Pumped (POP) Rb maser with microwave detection Pulsed Optically Pumped

(POP) Rb maser developed by A. Godone et al. [47] in INRIM achieves a high performance of frequency

stability by using the Ramsey technique to interrogate the atoms [7]. The Ramsey interaction permits clock

signal linewidth independent from the laser intensity and the RF power and greatly reduces the cavity-

pulling effect [48]. Additionally, the light shift is reduced in comparison with the classical double resonance

continuous approach. Figure 18 shows the experimental setup of the pulsed Rb maser. It is divided into

three main parts: the physics package, optics and electronics.

Figure 18: Experimental setup of pulsed Rb maser. LNA: low noise amplifier. The figure is extracted from

[47].

The quartz cell (diameter=30 mm, length=18 mm) contains Rb vapor and buffer gases, Ar and N2 in the

pressure ratio 1.6 to 1 to minimize the collisional frequency shift, the total buffer gases pressure is 25 Torr.

The operating temperature of the cell is stabilized around 63 ◦C in order to reach the highest atom number

without increasing significantly the decay rates for spin exchange of atoms. An external cavity diode laser

(ECDL) at 795 nm and a power up to 100 mW is used in the optic part. The laser is frequency locked to

the Rb atomic transition observed in an external Rb vapor cell. The laser beam is sent to an acousto-optic

modulator (AOM) to generate pulsed light sequence. The AOM also redshifts the laser frequency to match

the absorption frequency of Rb in the physics package which is shifted by buffer gases. The laser beam at the

input of the Rb cell is expanded to a diameter of 20 mm to cover as many atoms as possible. In electronic

section, a microwave synthesizer is used to generate two microwave pulses for the Ramsey interrogation. A

heterodyne detector is enabled during the detection window. The error signal generated in a servo system

is used to lock the quartz oscillator at 10 MHz to the Rb atomic transition. Figure 19 shows the Ramsey

fringes detected by the experimental setup. The central fringe has a linewidth of 54 Hz.

Figure 20 shows the measured frequency stability of the pulsed Rb maser at high laser intensity (about

10mW/cm2). The best performance of frequency stability of this system is achieved, which is 1.2 × 10−12

at 1 second after drift removal of 6× 10−14 per day. This performance is close to the thermal noise limited

stability, which is 1× 10−12 at 1 second.
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Figure 19: (a) Full pattern of Ramsey fringes; (b) central fringes. The figure is extracted from [47].

Figure 20: Frequency stability at high laser intensity. The figure is extracted from [47].
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Pulsed Optically Pumped (POP) Rb clock with optical detection S. Micalizio et al. in INRIM

has proposed a compact pulsed Rb vapor cell atomic clock prototype [23] with optical detection. Compared

to the POP maser using passive maser for detection [47], this clock uses a laser as a probe in the detection.

In this case, a higher signal-to-noise ratio of signal can be detected, because energy of optical photon is

higher than energy of microwave photon, so the short term frequency stability can be improved. Moreover,

the microwave cavity does not play a role in the detection and a high-Q cavity is no longer required. Thus,

the mid-long frequency stability is also improved because cavity-pulling is negligible. Like the POP maser,

Ramsey interference technique [7] is applied in this POP clock. Figure 21 shows the basic scheme of the

POP clock.

Figure 21: Basic scheme of the POP clock. The figure is extracted from [23].

The POP clock is divided into three main parts: physics package, optics and electronics. The physics

package contains a quartz cell filled with Rb vapor and buffer gas, microwave cavity, magnetic shields and

heaters. The quartz cell (Diameter = 20 mm, length = 20 mm) is filled with Rb vapor and a mixture of

Ar and N2 in the pressure ratio 1.6 with a total pressure of 25 Torr. The mixture of gases compensates

collisional frequency shift at 65 ◦C. The microwave cavity is made of molybdenum and resonates on the

electromagnetic mode TE011 at the Rb ground state hyperfine frequency. In the optic part, the clock uses

a Distributed feedback (DFB) diode on Rb D2 line (780 nm) as laser source. The laser diode is frequency

locked to the Rb atomic transition F = 1 → F ′ = 1. The laser beam is sent to an AOM that acts as an

optical switch to generate the pulsed pumping sequence. Meanwhile, the laser frequency is redshifted to

match the absorption frequency of Rb vapor shifted by buffer gas in the cell. The laser in this clock is not

only used to pump the atoms, but also used to detect the resonance signal. The resonance signal detected by

a photodetector is processed by a trans-impedance amplifier. Figure 22 shows the Ramsey fringes detected

by the POP clock. The central Ramsey fringe linewidth is 150 Hz. Figure 23 shows the measured frequency

stability of the POP clock, which is lower than 1.7 × 10−13 τ−1/2 at 1 second, and reaches nearly 10−15

for 10000 seconds. The frequency stability performance of the POP clock is close to the one of a Hydrogen

Maser (T4S iMaser 3000 for example shown in figure 23).

For additional information, a polarization selective method was developed by M. Zhu for detecting a clock

signal [49] with high contrast. Recently, this novel detection scheme was implanted to a POP clock developed

in China by J. Lin et al.. They obtained a ultrahigh resonance contrast up to 90% [51]. This detection scheme

is only suitable for the D1 line. The frequency stability of the POP clock using this detection scheme was

improved by an order of magnitude under equivalent conditions compared to a standard detection technique.
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Figure 22: Ramsey fringes detected in the POP clock. The free evolution time T=3.3 ms. The figure is

extracted from [23].

Figure 23: Frequency stability of POP clock and T4S iMaser 3000. Data of the figure are extracted from

[23] and http://www.t4science.com/products/.
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2.5.3 CPT clocks

Coherent Population Trapping (CPT) is a quantum interference process that occurs when a 3-energy level

atomic system interacts with two phase coherent optical lines [52] [53]. If the frequency difference between

both optical lines exactly equals the ground state hyperfine splitting of the atoms, the atoms do not absorb

photons anymore and the transparency of atoms vapor reaches a maximum. Consequently, a CPT resonance

signal can be detected by a photodiode. Atomic clocks based on CPT allow to generate resonance signal

without a resonant cavity because the microwave signal that resonates with alkali atoms is optically carried.

Consequently, CPT allows to realize ultra-compact or even miniature atomic clocks thanks to the develop-

ment of MEMS techniques.

In 1976, G. Alzetta et al. first observed CPT line in an interaction between a multimode laser and Na

atoms [52]. Theoretical explanation of the CPT phenomenon was made by E. Arimondo et al. [53]. In

1982, J. E. Thomas et al. observed the first Ramsey fringes on CPT resonance by combing two separated

oscillating fields with CPT phenomenon in a Na atomic beam [54]. In the following decade, researches of

atomic clocks based on CPT took place in different laboratories. Godone et al. developed a POP Rb maser

exhibiting a frequency stability of 1.2×10−12 τ−1/2 for integration times up to 105 seconds [47]. An original

pulsed Cs CPT clock was developed in LNE-SYRTE [26]. Eventually, thanks to the help of microfabrication

techniques, the development of chip-scale atomic clocks became feasible.

A simplified scheme of a CPT atomic clock is shown in figure 24. A laser system generates two frequency-

separated phase coherent optical lines. Both optical lines are resonant with the alkali atoms in a glass cell

such that both ground state levels are connected to a common excited state. The glass cell contains a buffer

gas used to reduce the linewidth of the resonance. A photodiode detects the transmitted optical power

through the cell. The CPT resonance is detected in the bottom of the absorption line when both optical

lines are exactly frequency-splitted by the atom ground state hyperfine splitting (9.192 GHz for Cs atom).

The signal at the output of the photodiode is used to stabilize the laser frequency and to lock the local

oscillator to the atomic transition frequency.

Figure 24: Simplified scheme of a CPT atomic clock.

Continuous Wave (CW) CPT clocks M. Zhu et al. developed a polarization-selective method for

detecting high-contrast CPT resonances in a vapour cell [49]. The method uses a single laser beam with

frequency modulation to induce CPT resonance and to control the AC Stark shift. The method provides a

30



CPT resonance signal with a high contrast of 22%.

Figure 25 shows the block diagram of the experimental setup.

Figure 25: Block diagram of the CW CPT clock from M. Zhu. The figure is extracted from [49].

A single frequency diode laser is frequency modulated by coupling a microwave signal into the injection

current. The ±1 order sidebands serve as the CPT-generation and CPT detection frequencies while the

higher order sidebands suppress the AC Stark shift. The first waveplate (WP1) converts the linear polar-

ization of the laser output beam to the desired elliptical polarization so that most of the power is in the

σ+ polarization for CPT generation. The second waveplate (WP2), which is a combination of three lin-

ear waveplates, converts the circular polarizations of the laser fields emerging from the absorption cell into

the desired linear polarizations, and provides the necessary relative phase shift between the two orthogonal

polarizations. The waveplate WP2 and the polarization analyzer (PA) are aligned so that the polarization

analyzer blocks most of the power in AC Stark shifts suppression frequency components and the CPT res-

onance signal is symmetric. Figure 26 shows the detected CPT resonance with this setup. The linewidth

is 218 Hz and the contrast is 22 %. As shown in figure 27, this CPT-based rubidium vapour cell frequency

standard demonstrated a measured short term frequency stability of 1.4× 10−12 τ−1/2 up to 100 s. This is

among the best short term frequency stability for a CW CPT clock we found in the literature.

For increased simplicity, CPT clocks are realized with VCSEL diode lasers whose injection current is di-

rectly modulated. Nevertheless, these diode lasers suffer from a relevant frequency noise and exhibit a wide

linewidth (typically 100 MHz). Such clocks, as the one presented in figure 28, present a short term frequency

stability in the range of 1 × 10−11 τ−1/2 when the VCSEL used operates on the alkali atom D2 line. A

relevant improvement can be expected with the use of a laser resonant on the alkali D1 line.
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Figure 26: CPT resonance in the CW CPT from M. Zhu. The figure is extracted from [49].

Figure 27: Allan deviation of the CW CPT clock from M. Zhu. The figure is extracted from [49].
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Figure 28: CPT resonance in a CW CPT clock with a modulated VCSEL. The figure is extracted from [50].
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Pulsed Cs CPT clock Figure 29 shows the basic scheme and typical Ramsey fringes of the pulsed Cs

CPT clock developed in the LNE-SYRTE. To the best of our knowledge, this pulsed Cs CPT clock is the

best CPT clock in the world.

Figure 29: Principle scheme and Ramsey fringes of Pulsed Cs CPT clock for different free evolution times

T. The figure is extracted from [25].

The pulsed CPT clock uses two phase-locked external cavity diode lasers (ECDL) to constitute the

bichromatic light field required for CPT interaction. The master laser is frequency locked to the F =

4 − F ′ = 4 hyperfine component of the Cs D1 line by a saturated absorption in an auxiliary Cs vapor cell.

The slave laser is phase locked to the master laser with a frequency offset around 9.192 GHz with an optical

phase lock loop. The laser beam is sent to an acousto-optic modulator (AOM) which acts as a light switch

to realize Ramsey interrogation. This AOM is also used to compensate for the buffer gas frequency shift in

the CPT cell. At the output of the AOM, the light field is sent through a cm-scale vapor cell filled with

Cs atoms and a N2-Ar buffer gas mixture. In this setup, atoms interact with a sequence of optical pulse

trains. Each pulse is used both for CPT pumping and CPT detection. Each light pulse is separated by a

time T where atoms evolve freely in the dark. High-contrast and narrow Ramsey fringes are detected by

combination of lin ⊥ lin interaction scheme and Ramsey-like temporal pulsed interrogation [26]. The clock

signal is detected by a photodiode and processed to a computer to lock the local oscillator frequency. Figure

30 shows the frequency stability performance of the prototype. A short-term frequency stability of 7×10−13

at 1 s was demonstrated in [25][59]. More recently, these results were improved to 6.4×10−13 τ−1/2 as shown

on figure 30.
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Figure 30: Frequency stability of the pulsed Cs CPT clock. Courtesy from J. M. Danet, SYRTE.
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CPT maser The dark line signal, CPT signal, observed in the fluorescence spectrum of a three level system

submitted to a Λ interaction scheme or the electromagnetically induced transparency (EIT) signal observed

in the transmitted laser power are considered as interesting references for the realization of highly stable

frequency standards. Alternatively to the optical signal, the oscillating magnetization induced in the medium

can be used for the realization of a frequency standard: when the atoms are placed in an electromagnetic

cavity, this magnetization is responsible for a coherent emission (CPT maser) observed in alkali-metal atoms

at the ground-state hyperfine transition frequency. This is the basic principle of the CPT maser developed

in INRIM and well-detailed in [48]. Figure 31 shows the CPT maser diagram.

Figure 31: CPT maser block diagram. The figure is extracted from [48].

An external cavity diode laser resonant at 795 nm is coupled to a 5 GHz bandwidth EOM with a single-

mode polarization maintaining fiber. The laser beam at the EOM output is expanded to a diameter of 2 cm

and sent to the physics package through a quarter-wave plate to produce circular polarization. The total

optical power coupled to the atoms is 1 mW. The quartz cell has a diameter of 28 mm and a length of

22 mm. It contains the Rb87 vapour and a mixture of buffer gases, Ar and N2, in the ratio of 1.6 to 1 to

minimize the linear temperature coefficient. The total buffer gas pressure is 25.7 Torr. A photodiode detects

the transmitted laser intensity at the output of the cell. The cell operating temperature is 60 ◦C to have

a high enough atomic density to reach a good signal-to-noise ratio without increasing the maser linewidth

via spin-exchange and optical thickness of the vapour. The output microwave signal is sent to a double

conversion heterodyne detector which provides the error control signal to the digital servo loop of the quartz

oscillator at 10 MHz. A square wave frequency modulation may be used for the coherent detection of the

maximum of the maser emission profile. The quartz oscillator is followed by a low phase noise frequency

synthesizer.

Figure 32 shows the maser emission profile at the cavity output. Figure 33 shows the CPT maser

clock relative frequency instability. A short term frequency stability of 3× 10−12 τ−1/2, a value close to the
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theoretical predication [48]. The fundamental noise contribution to the frequency stability of the CPT maser

is the thermal additive noise estimated to be in this experiment 7 × 10−13 at 1 s. The thermal detection

noise limit may be achieved in the short term (white frequency noise region). The medium term frequency

stability is dominated by temperature drift and no flicker floor is observed at the level of 4× 10−14.

Figure 32: Maser emission profile at the cavity output. The figure is extracted from [48].

Figure 33: Allan deviation of the CPT maser with or without drift removed. The figure is extracted from

[48].
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Chip Scale Atomic Clocks (CSAC) Figure 34 shows the typical scheme of a miniature atomic clock

[55]. Alkali atoms in a microfabricated cell interact with the laser beam from a VCSEL diode laser whose

injection current is directly modulated by a local microwave signal with a frequency equal to the half of

the ground state hyperfine splitting (4.596 GHz for the Cs atom). The output spectrum of the VCSEL

contains two phase coherent optical lines frequency-splitted by 9.192 GHz required for CPT interaction. The

carrier and the other higher order sidebands are still present and should be taken account for the light shift

evolution. The output power of the laser is attenuated with a neutral density filter to maintain a laser power

of about 10-20 µW at the input of the cell. The transmitted optical power through the cell is detected by

a photodiode. The output signal of the photodiode is used in two main servo loops. The first one is used

to stabilize the laser frequency on the bottom of the absorption line. For this purpose, the laser current is

modulated at about 10 kHz and the signal is synchronously demodulated at the output of the photodiode

with a lockin amplifier to increase the signal to noise ratio. The second loop is used to correct the local

oscillator frequency using a similar synchronous modulation technique at a typical modulation frequency of a

few 100 Hz. The frequency locked local oscillator acts as the reference signal to the RF system and provides

an output signal to be compared with a hydrogen maser for frequency stability measurement. The first

microfabricated atomic clock was demonstrated in NIST in 2004 [56]. In 2011, Symmetricom released the

first commercially-available Chip Scale Atomic Clock based on CPT [57]. For information, figure 35 shows

the frequency stability of 10 pre-production prototypes miniature clocks developed by R. Lutwak et al. [58].

All frequency stabilities are better than 3 × 10−10 τ−1/2 out to averaging intervals of τ > 100 seconds.

The latest commercially-available CSAC, SA.45s CSAC model fabricated by Symmetricom, demonstrates a

frequency stability of 2.5 × 10−10 at 1 second with a volume < 17 cm3 and total power consumption lower

than 120 mW [18]. Figure 36 shows a photograph and a typical CPT resonance signal of the CSAC SA.45s

model. The CPT resonance signal linewidth is 1313 Hz. Such atomic clocks can be applied on numbers of

compact system, such as underwater sensor systems, GPS receivers, Backpack radios, unmanned vehicles,

telecommunication systems and defense systems.

Figure 34: CSAC testbed scheme. Data of the figure is extracted from [55].
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Figure 35: Frequency stability of 10 pre-production prototypes miniature clocks. The figure is extracted

from [58].

Figure 36: Photograph and typical CPT resonance signal of SA.45s CSAC. The figure is extracted from [18].

In Europe, the MAC-TFC project, led by FEMTO-ST from 2008 to 2012, allowed the development of

the first European Cs miniature atomic clock. Figure 37 shows a photograph of the miniature atomic clock

physics package prototype developed in this frame. In parallel, CSEM in Switzerland has demonstrated a

well-advanced prototype of miniature atomic clock based on Rb atom shown on figure 38. This prototype

demonstrated excellent performances of 6× 10−11 at 1 s and 3× 10−11 at 1 day integration [20].
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Figure 37: MAC-TFC clock prototype.

Figure 38: CSEM clock prototype, named SMAC.
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2.5.4 Cold atom compact clocks

Laser cooling atoms is a useful method to increase atom-light interaction time and to reduce the resonance

linewidth. Many applications based on laser cooling atoms have been demonstrated [60] [61] [62] [63]. The

world’s most accurate atomic clocks are based on ultra-cold atoms because the interrogation time is very

long and the perturbations are greatly reduced compared to traditional atomic clocks [64].

HOrloge à Refroidissement d’Atomes en CEllue HOrloge à Refroidissement d’Atomes en CEllule

(HORACE) is a compact cold cesium atom clock developed in LNE-SYRTE for space applications and

onboard systems. The operation of this clock is different from fountains since the laser cooling; the microwave

interrogation and the detection are sequentially performed inside a spherical microwave cavity. This allows

a high potential for compacity.

Figure 39: Heart of HORACE clock.

Figure 40: Architecture of HORACE clock.

What is specific about the HORACE clock is that all interactions (laser cooling, microwave spectroscopy

and detection) are performed at the same place, directly inside a spherical OFHC copper microwave cavity.
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In order to perform laser cooling, this cavity is fed with 6 multimode optical fibers in the (1,1,1) configuration.

Its wall are optically polished so as to reflect and scatter the 852 nm cooling light. A nearly isotropic light

field is created inside leading to an optical molasscs cooling scheme. The microwave cavity acts here as a

reflecting sphere for the laser field and averages power imbalances between multimode fibers. Two slits (1 ×
4 mm) provide symmetrical microwave coupling. The cavity operates a TEM011 mode with a quality factor

of about 5000. This cavity is surrounded by a solenoid creating a 5 mG vertical static magnetic field to raise

the Zeeman degeneracy. For experimental reasons and convenience a blown quartz bulb is used to prevent

interaction between Cs atoms and copper cavity walls. As it shifts cavity resonance by several 100 MHz, each

cavity has to be made, polished and tuned for a given bulb. This bulb is glued to a laser soldered Titanium

apparatus. An ion pump maintain a residual pressure below 7.5× 10−9 Torr in the vacuum chamber and in

the bulb. A glass cell containing liquid Cs acts as a reservoir which can be heated up to increase Cs pressure

in the bulb. A time-off light detection zone, located 9 cm below the cavity, allows to perform atomic velocity

diagnostics.

The typical operation sequence of the HORACE clock that consists of laser cooling, atom preparation,

clock transition interrogation and detection is shown on figure 41.

Figure 41: Sequence of HORACE clock.

Atoms are first laser-cooled isotropically. About 4× 107 atoms are captured in Tcool ∼ 40 ms. Although

parameters are set for Doppler cooling, atomic temperatures of 35 µK, much below the Doppler limit, are

observed. Atoms are then optically pumped in the |F=3〉 state among all Zeeman sublevels thanks to a 0.5

ms and 100 µW light pulse. The fraction of atoms in the useful sublevel is about 20% of the total number.

During atomic free fall (limited by gravity to 50 ms), the clock transition is probed by applying either Rabi

or Ramsey sequence. The typical result linewidth is about 20 Hz. The interrogation microwave field is

derived from a 100 MHz reference signal. The probability of transition is derived by measuring the atomic

population of the |F=4〉 state only. The goal of the cooling stage is to produce the largest number of cold

atoms in the shortest time in order to improve the following trade-off. On the one hand, a large number of

atoms contributing to the clock signal improves the signal to noise ratio and the clock stability. On the other

hand, one cannot perform a too long cooling sequence so as not to increase sensitivity to the local oscillator

phase noise. A recapture technique was implemented to recapture atoms from one clock cycle to the next

one in that sense to optimize the clock performances [65]. Figure 42 shows Allan deviation of Horace clock.

A short term relative frequency stability of 2.2× 10−13 τ−1/2 is achieved. Results on mid term show that a

level of 4× 10−15 is reached after 5000 s of integration. The main contribution comes from the atomic shot
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noise.

Figure 42: Allan deviation of HORACE clock.
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Miniature cold-atom clock V. Shah et al. developed a miniature cold atom physics package with volume

< 75 cm3 [70]. The device is demonstrated as a miniature cold atom frequency standard (MCAFS). Figure

43 shows a 3D cross-sectional view of the MCAFS. A frequency stabilized distributed bragg reflector (DBR)

laser pass though an optical shutter, which is a stack of four liquid crystal display (LCD) polarization

rotators. At the output of the optical shutter, a 1.6 × 1.8 cm2 circularly polarized laser beam is generated

by a pair of beam expansions lenses and a quarter wave plate. The beam is divided into three pairs of

opposing circularly polarized beams by a conical mirror. The three pairs of beams are used to cooling atoms

in a MOT. The MOT contains an electrically heated Cs metal dispenser (AMD) and a non-evaporable getter

(NEG) pump.

Figure 43: 3D cross-sectional view of the MCAF. (a): packaged diode laser. (b): optical shutter. (c):

expansions lenses and quarter wave plate. (d): photodiodes for fluorescence collection. (e): ultra high

vacuum chamber. (f): copper cone. (g): magnetic field coil for MOT. The figure is extracted from [70].

Figure 44 shows the detected Cs resonance signal interrogated with the Ramsey and Rabi techniques,

respectively. Figure 45 shows the typical frequency stability of the MCAFS. The short term frequency

stability is better than 2× 10−11 at 1 second integration time.
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Figure 44: Microwave resonance seen by sweeping the LO frequency. (a) : Two pulse microwave Ramsey

interrogation, frequency sweep=3 kHz. (b): Rabi interrogation with one 16 ms microwave pulse, frequency

sweep=500 Hz. The figure is extracted from [70].

Figure 45: Frequency stability of the MCAFS. The figure is extracted from [70].
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CPT cold atom clock Recently, a compact cold atom frequency standard based on CPT was proposed

in NIST [71]. The cold atom clock developed by F.-X. Esnault et al. [71] is based on a compact source of

laser cooling Rb atoms. The vacuum system has two chambers, which allows a 2D+ magneto-optical trap

(MOT) beams loads to a 3D MOT in different pumping configurations. A laser system with a relatively

pure spectrum based on an optical phase lock loop with two commsercial DFB/DBR laser diodes [72] is

used. The clock uses lin ‖ lin pumping scheme [29] to pump atoms in order to produce high contrast CPT

resonance. Ramsey interrogation is applied in the clock to reduce the average intensity of the CPT light.

The interrogation time is limited to less than 10 ms, because a short interrogation time allows the atoms

being recaptured from cycle to cycle with the MOT beams. Figure 46 shows an Allan deviation of the

frequency steers of this cold atom clock. The short term frequency stability is limited by laser frequency

noise to 4× 10−11. The mid-long term frequency stability is limited by magnetic field drift.

Figure 46: Allan deviation of the CPT cold atom clock. The figure is extracted from [71].
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2.5.5 Trapped ion clocks

In the previous section, we presented that the buffer gas in alkali vapor cell is used to increase the interaction

time between alkali atoms and light fields in Lamb-Dicke regime. A potential well can also realize this

purpose. The potential well in an atomic clock is used to trap ions in a small space without extra wall for

a long period. The type of potential well can be magnetic, electric and dipolar. The confinement regime of

the clock permits to achieve an appropriate Lamb-Dicke regime to reduce the systematic effects, which leads

to great increase of atomic quality factor and interaction time, some seconds in a Hg+ ion trapped clock

for example. Compared to atomic clocks based on vapor cells, the needless of external wall of this clock

also prevents the atoms-wall collisions. Nevertheless, potential well also disturbs the clock transition due to

Zeeman or AC Stark effect. To reduce this disturbance, a confinement regime that traps the atoms around

zero potential well is expected, in such a confinement regime, the frequency shift is reduced to minimum.

For magnetic and dipolar potential wells, there are also certain ”magic” value that shift the two hyperfine

energy levels identically, where the atomic transitions are not affected. Since ions are trapped in a certain

space in this clock, the performance of ion trapped clock is no longer limited by its physical dimension as

alkali atoms beam clock does.

Hg+ trapped ion clock Jet Propulsion Laboratory (JPL) developed a 199Hg+ ion trapped clock called

Linear Ion Trap (LITE) to be applied on DSN of NASA [37]. The frequency stability of LITE is 2× 10−13

τ−1/2 without flicker floor. The volume of LITE is 3 liters. Figure 47 shows a principle scheme of LITE.

Figure 47: Principle scheme of LITE. The figure is extracted from [37].

In the LITE, some HgO is heated into Hg vapor. The Hg vapor is ionized to 199Hg+ by collisions with

electrons emitted from a canon. The 199Hg+ ions are trapped in a quadrupole potential well. A spectral lamp

that contains 202Hg can pump the 199Hg+ ions to the energy level |F = 0,mF = 0〉, because the emission

spectrum of 202Hg overlaps with the absorption spectrum of 199Hg+. The ions are sent to a interrogation

zone and trapped by buffer gas and 16 poles potential well after the optical pumping finished. The linear

zone of 16 poles potential well of clock can confine a large number of ions (106 to 107). This greatly improves

the signal to noise ratio. Meanwhile, the systematic effects are reduced by coulomb repulsion between ions.
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The ions trapped in the confinement are then interacted with a 40.5 GHz light field in continue wave regime

(Rabi) or pulsed regime (Ramsey). The interaction time can last up to ten seconds. After the interaction,

the ions are sent back to the quadrupole trap in order to turn on the spectral light again. Then the ions

return to the energy level |F = 1〉 by microwave, and a fluorescence signal is detected by a photomultiplier

tube (Figure 48).

Figure 48: LITE resonance signal in continue wave regime for 3 s (left) and in pulsed regime for 0.5+5+0.5

s (right). The figure is extracted from [66].

Figure 49 shows a typical measurement of Hg+ ions trapped clock frequency stability. The short term

frequency stability is 2× 10−13 at 1 second integration time, and averaging to 10−15 at 1 day.

Figure 49: Typical frequency stability of Hg+ ions trapped clock. The figure is extracted from [67].

Yb+ trapped ion clock Recently, Sandia National Laboratory and JPL proposed a low power miniature
171Yb+ ion clock [68]. The hyperfine ground state splitting of 171Yb+ is 12.6 GHz. The atomic transition for
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optical pumping and detection of Yb is at 369 nm. This allows to use low volume and low power consumption

frequency-doubled laser diode. The laser source in Yb+ ions clock can scatter thousands of photons per ion.

The 171Yb+ ions are trapped in a miniature, completely sealed-off 3 cm3 ion-trap vacuum package. Figure

50 shows energy level structure of 171Yb+ ion and the system level schematic of the frequency control loop.

Figure 50: a: Energy level structure of 171Yb+ ion with the 12.6 GHz clock transition, the optical transition.

b: System level schematic of the frequency control loop of the clock. The figure is extracted from [69].

As shown in Figure 50, 171Yb+ ion has low-lying D3/2 and F7/2 states. To improve detection and optical

pumping, these two states must be cleared out. For the D3/2, a 935 nm laser is applied, and for the F7/2,

different strategies were proposed, including optical pumping transitions at 638 nm or 864 nm, back filling

with buffer gas, and dumping and reloading the trap. A 12.6 GHz microwave impulse is used to interact

with 171Yb+ ions, and the 369 nm and the 935 nm light fields are used to illuminate the ions to determine

the number of ions that participate in the transition. The ion fluorescence from the F = 1 to the F ′ = 0

transition is detected by a detector. The fluorescence signal is used to generate a control signal to lock

the local oscillator on the ions hyperfine ground state transition. Figure 51 shows the key part of Yb+

ions trapped clock miniature vacuum package. A Yb source was constructed form a micromachined silicon

hotplate that has Yb evaporated onto the surface. The getter pump was used to contain required vacuum

of the package, which is 10−6 Torrs of He or Ne buffer gas with the partial pressures of other gases a few

orders of magnitude lower. The buffer gas introduced was used to cooling the trapped ions. The ion trap

of this clock is a linear RF Paul trap with octupole configuration, because the octupole configuration can

balance good optical access and large trap depth to reduce the second order Doppler shift.

Figure 52 shows the typical frequency stability of the miniature 171Yb+ ion clock. The short term

frequency stability is 3.5× 10−11 at 1 second and reaches the 10−14 range after a few days.
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Figure 51: Vacuum package and octupole ion trap of Yb+ Ions Trapped Clock. The figure is extracted from

[69].

Figure 52: Frequency stability of the miniature 171Yb+ ion clock. The blue dashed line represents 3.5×10−11

τ−1/2. The inset shows the typical signal of the clock resonance (Rabi fringes) with the microwave pulse

length is 200 ms. The figure is extracted from [68].
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2.5.6 Resume of compact atomic clocks

Table 4 resumes typical performances of best laboratory-prototype vapour cell clocks. We clearly identify

some prototypes with best frequency stability performances in the range of a few 10−13 τ−1/2: the CW Rb

clock (UNINE), the POP clock with optical detection (INRIM), the pulsed Cs CPT clock (LNE-SYRTE) and

the cold atom HORACE clock (LNE-SYRTE). These frequency standards present a high potential for high

performance and compacity. Among them, current performances of the POP clock with optical detection

(INRIM) and the pulsed Cs CPT clock (LNE-SYRTE) remain far from being at the shot noise level.

It is thought that the Cs CPT clock has a great potential for improvement of performances and further

compacity. In that sense, the main goal of my PhD thesis was to develop a simple-architecture laser system

at 895 nm to demonstrate the detection of high-contast CPT resonances in Cs vapour cells. This study

will be a basis for the development of a future high-performance and compact Cs CPT clock. Obviously,

some studies in this thesis were done in close collaboration with researchers from LNE-SYRTE of Paris

Observatory.

Table 4: Resume of best laboratory-prototype vapour cell clocks typical performances. FWHM: clock signal

linewidth; SNR: signal-to-noise ratio of the clock resonance in a 1 Hz bandwidth; C: contrast of the resonance

= ratio between the signal height and the dc background; FL: fundamental limit (shot noise or thermal noise,

best achievable frequency stability at 1 s; x: not known or not measured.)

Atomic clock FWHM (Hz) SNR C (%) σy(1s) σy(1000s) FL (1s)

CW Rb clock (UNINE) 361 2.2× 105 25 2.4× 10−13 7× 10−15 5.5× 10−14

POP µ (INRIM) 54 x x 1.2× 10−12 3× 10−14 1× 10−12

POP opt (INRIM) 150 x 33 1.7× 10−13 6× 10−15 2× 10−14

POP opt (China) 125 840 90 2× 10−12 2.5× 10−14 ¡1× 10−13

CPT maser (INRIM) 210 21× 103 x 3× 10−12 4× 10−12 7× 10−13

CW CPT (Zhu) 218 2.6× 104 22 1.5× 10−12 2× 10−13 x

CW CPT (Knappe) 100 1100 x 1× 10−11 2× 10−12 x

Pulsed CPT (LNE-SYRTE) 125 4× 104 12 3.2× 10−13 3× 10−14 2× 10−14

MCAFS (Shah) 50 x x 2× 10−11 x 1× 10−12

Horace (LNE-SYRTE) 20 900 x 2.2× 10−13 5× 10−15 1× 10−13
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3 CPT Physics

3.1 Three energy level Λ-system

CPT resonance [52] [53] is a type of quantum interference process that can be most of the time described by

a simple three energy level Λ-system which can be easily found in the D lines of alkali atoms (Cs, Rb, K etc.).

It occurs when two phase coherent optical lines couple two ground states of an atomic specie to a common

excited state and an excited state of alkali atoms (Cs, Rb, K etc.). When the frequency difference between

these two optical lines is exactly equal the ground state hyperfine splitting atoms do not absorb photons

anymore. In this case, the atoms are trapped in a so-called dark state. Under ideal conditions (isolated

Λ-system, no ground-state decoherence), all the atoms involved into the CPT interaction can be trapped

into the dark state, which is fully decoupled from the excited state. In this particular state, a narrow peak

CPT resonance signal is observed through EIT [73]. CPT resonance signal has been widely investigated for

precision sensing in view of applications in high resolution spectroscopy, magnetometers [74], laser cooling

[9], slow light [75] or quantum frequency standards [76].

The three energy level Λ-system is composed by two frequency-separated long-lived ground states |1〉 and

|2〉 at energies h̄Ω1 and h̄Ω2 respectively, where h̄ = h
2π and Ω is angular frequency. These two states are

splitted by a frequency ∆HFS = Ω2 − Ω1 as well as a common excited state |3〉. In our case, ∆HFS=9 192

631 770 Hz for Cs atoms (Figure 53). We consider a bichromatic light field with frequencies ω1 and ω2 that

couples each ground state to the excited state.

Figure 53: Cs three energy level Λ-system for CPT interaction.

The total light field E(t) can be described by:

E(t) = E1exp(−iω1t+ iϕ1) + E2exp(−iω2t+ iϕ2) (23)

where ω1 and ω2 are angular frequencies of the light field, ϕ1 and ϕ2 are phases of the light field.

The interaction between atoms and bichromatic light field can be described by the Hamiltonian:
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Ĥint =
h̄g1

2
e−iω1t+iϕ1 | 3〉〈1 | + h̄g2

2
e−iω2t+iϕ2 | 3〉〈2 | +h.c. (24)

The interaction strength is included in the Rabi frequencies:

gj = −〈3 | er̂ | j〉
h̄

Ej , j ∈ {1, 2}. (25)

In the three energy levels Λ-system, the coupled state and the non-coupled state are defined as: | C〉 and

| NC〉. They are described in Equation 26.

| C〉(t) =
1√

|g1|2 + |g2|2
(g1e

−iΩ1t | 1〉+ g2e
−iΩ2t+i(ϕ2−ϕ1) | 2〉)

| NC〉(t) =
1√

|g1|2 + |g2|2
(g2e

−iΩ1t | 1〉 − g1e
−iΩ2t+i(ϕ2−ϕ1) | 2〉)

(26)

The non coupled state | NC〉 is an eigenstate of the interaction Hamiltonian Ĥint. The excitation amplitudes

of the coupled state | C〉 and the non coupled state | NC〉 are given by Equation 27.

〈3 | Ĥint | C〉(t) =
h̄

2
√
|g1|2 + |g2|2

e−i(Ω1+ω1)t+iϕ1(g2
1 + g2

2e
iδRt+i(ϕ2−ϕ1))

〈3 | Ĥint | NC〉(t) =
h̄g1g2

2
√
|g1|2 + |g2|2

e−i(Ω1+ω1)t−iϕ1(1− eiδRt−i(ϕ2−ϕ1))

(27)

where δR is the Raman detuning which equals ω1 − ω2 −∆HFS . From these equations, we can see that the

excitation is impossible in the non coupled state when the Raman detuning δR = 0 and the phase differences

ϕ2 − ϕ1 = 2nπ, so the non coupled state is called dark state. The excited conditions indicate that if the

frequencies or phases of the bichromatic light field fluctuate, the atoms will be excited to the excited state

again.
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3.2 Frequency stability performances: a first approach

Figure 54 shows a typical normalized CPT resonance.

Figure 54: Normalized CPT resonance.

Let’s define the full width at half maximum (FWHM) of the resonance (FWHM = ∆ν) and S the peak-

peak height of the resonance. The resonance contrast C is defined as the ratio between the height S and the

dc background y0 (see figure 54)

C =
S

1−B
=

S

y0
(28)

The absorption contrast CA (assuming B << 1) is:

CA =
S

B
(29)

The condition B << 1 stands when the cell temperature and the cell length are such that the vapor is

optically thin. If B << 1, the signal S is associated to the transmitted optical power change when the

local oscillator frequency is swept around the CPT resonance. The out-of-CPT-resonance absorption can be

written:

B = 1− exp[−αL] = 1− exp[−nσL] ∼ nσL (30)

with n the alkali density, L the cell length, σ the optical cross-section and α the absorption coefficient (later

defined). The amplitude maximum of the signal A is then:

A = SPin = CAnσLPin (31)

with Pin the incident optical power in the cell. We observe that the signal is proportional to the alkali

density, the incident power and the absorption contrast CA. In practice, the typical value of CA is 0.1 -

10%. Experimentally, it has been demonstrated for cm-scale cells that the optimum CPT signal is typically

obtained for CA = 0.5.

The noise on the signal comes from different sources such as the laser relative intensity noise, the laser

frequency noise, the local oscillator noise, the detector noise. The fundamental and ultimate noise is the

photon shot noise. The power spectral density function of this (optical power) noise is given by [77]:

S∆P ≡ N2 = 2hνopt(1−B)Pin = 2hνopt(1− σnL)Pin (32)
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with N the noise and hνopt the energy of a single photon.

The signal-to-noise ratio can be expressed in terms of the CPT resonance parameters above as:

S

N
= SNR = CAnσL

√
(1− nσL)Pin

2hν
(33)

Expressed in this way, the signal-to-noise ratio is proportional to the optical absorption contrast and the

square root of the input power, but has a somewhat complicated dependence on the alkali atom density

and cell length. To simplify this problem, the signal-to-noise ratio can be expressed instead in terms of the

transmission contrast C and the output power Pout = y0Pin:

S

N
= SNR = C

√
Pout

2hνopt
(34)

In this expression, all of the effects of the alkali density are contained within the parameters Pout and C,

which can be measured experimentally in a direct manner. We see therefore that the characterization of

the CPT resonance in terms of the absorption contrast CA allows for a density- independent measure of the

CPT resonance parameters, while the characterization in terms of the transmission contrast C allows for a

simple evaluation of the signal-to-noise ratio and clock stability. In the following, we study the impact of

main experimental parameters on the CPT resonance.

3.3 CPT resonance linewidth

The full width at half maximum (FWHM) of a CPT resonance signal in an optically thin medium and low

laser intensity regime can be described by [76]:

FWHM =
1

π
(γ2 +

ω2
R

Γ?
) (35)

where γ2 is the hyperfine ground state coherence relaxation rate, Γ∗ is the excited state decay rate or

linewidth of the optical resonance and ωR is the optical Rabi pulse related to the laser intensity I as:

ω2
R ∝ I (36)

The optical pumping rate Γp is defined as:

Γp =
ω2
R

Γ?
(37)

The CPT resonance FWHM increases with increased laser intensity. Figure 55 shows an example FWHM

of resonance signal measured as a function of laser intensity with a Cs-Ne cell (Diameter = 2 cm, length =

2.5 cm, Ne pressure = 9.7 kPa) [78].

When the laser intensity equals zero, the FWHM is only limited by the hyperfine ground state coherence

relaxation rate γ2. Different relaxation mechanisms can affect the ground state coherence. The CPT reso-

nance FWHM is mainly limited by collisions between the Cs atoms and the cell walls in low density regime,

and spin exchange collisions of Cs atoms themselves play a more important role in high density regime. In

general, a buffer gas is introduced in the alkali atoms vapor cell in order to reduce the FWHM. With the

presence of buffer gas, the diffusive motion of the Cs atoms in the cell reduces the residual Doppler broad-

ening through the Lamb-Dicke effect [34] [79]. The buffer gas can also slow down the atoms to reach the cell

55



Figure 55: FHWM of resonance signal measured as a function of laser intensity with a Cs-Ne cell (Diameter=2

cm, length=2.5 cm, Ne pressure=9.7 kPa). The figure is extracted from [78].

walls. However, the buffer gas also brings a new relaxation mechanism caused by Cs-buffer gas collisions.

The hyperfine ground state coherence relaxation rate γ2 is given by:

γ2 = γw + γse + γcsbg (38)

The first term γw in the equation (38) presents the collisions between the Cs atoms and the cell walls. It

can be described as:

γw = [(
2.405

R
)2 + (

π

L
)2]D0

P0

P
(39)

where L and R present respectively the length and the radius of the vapor cell, D0 is the diffusion constant

of Cs atoms in buffer gas with pressure P0 = 101.3 kPa (for Cs−Ne, D0 = 0.153± 0.014cm2/s; for Cs−N2,

D0 = 0.087± 0.015cm2/s; for Cs−Ar, D0 = 0.134± 0.02cm2/s [59]), and P is the buffer gas pressure. This

equation shows that γw is inversely proportional to the buffer gas pressure P for given cell dimensions. This

CPT linewidth contribution is increased when the buffer gas pressure is increased.

The second term γse represents the contribution to the ground state coherence of the Cs spin exchange

collisions, which is given by:

γse =
6I + 1

8I + 4
vrncsσse (40)

with I is the nuclear spin quantum number (I = 7/2 for Cs), σse = (2.18 ± 0.12) × 10−14 cm2 the Cs spin

exchange cross-section [80] and ncs presents the density of Cs atoms. vr is the average velocity of Cs atoms

which relates to the cell temperature T :

vr =

√
8kBT

πµcs
(41)

where kB = 1.38× 10−23 JK−1 is the Boltzmann constant and µcs = 66.5 stands for the Cs reduced mass.

The last term γcsbg presents the alkali-buffer gas collisions, which is described by:

γcsbg = L0vrelσcsbg
P

P0
(42)
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where L0 ' 2.69 × 1025 m−3 is the Loschimdt constant, vrel is the relative velocity of Cs atoms with

respect to buffer gas, and σcsbg is the collisional cross-section between Cs and buffer gas (for Cs−Ne,

σcsbg = 9.3±0.9×10−23cm2; for Cs−N2, σcsbg = 60±4.4×10−23cm2; for Cs−Ar, σcsbg = 104±10×10−23cm2

[59]). This type of collisionally broadened width is proportional linearly to the buffer gas pressure P .

As an example, figures 56(a), 56(b), 56(c) and 56(d) show the linewidth contribution for each process

described above for a Cs vapor microcell filled with a Ne buffer gas pressure. Experimental data are L =

1.4 mm, D = 2 mm and T = 80 ◦C.

(a) (b)

(c) (d)

Figure 56: Contributions of collisions on the CPT linewidth in a Cs-Ne microcell (L=1.4mm, D=2mm,

T=80◦C) versus the Ne pressure.(a): atoms-walls; (b): atoms-buffer gas; (c):Cs-Cs; (d): total linewidth

The CPT linewidth due to atom-wall collisions is decreased when the buffer gas pressure is increased

because the time for the atoms to reach the cell walls is increased. At the contrary, the increase of buffer gas

pressure increases the linewidth contribution due to atom-buffer gas collisions. The spin-exchange linewidth

contribution essentially depends on the Cs denstiy, i. e the cell temperature. For such a mm-scale cell, the

total CPT resonance is minimized for a Ne buffer gas pressure of about 750 Torr. This optimum is found to

be of a few tens of Torr in a cm-scale cell.
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3.4 CPT resonance signal height

The CPT resonance signal height H can be derived by the population difference in excited state in resonance

and off resonance, which is given by:

H ∝ ncs
ω4
R

Γ?
1

2γ2 + ω2
R/Γ

?
(43)

where ncs is the number density of Cs, ωR is the optical Rabi pulse, Γ? is the exited state decay rate or

linewidth of the optical resonance and γ2 is the hyperfine coherence relaxation rate.

Figure 57 shows an example of height of resonance signal measured in a Cs-Ne cell (Diameter = 2 cm,

length = 2.5 cm, Ne pressure = 5.1 kPa) as a function of laser intensity [78]. The signal height increases

quadratically with increased laser intensity in low intensity regime and linearly in high intensity regime.

Figure 57: Height of resonance signal measured in a Cs-Ne cell (Diameter = 2 cm, length = 2.5 cm, Ne

pressure = 5.1 kPa) as a function of laser intensity. The figure is extracted from [78].

Since γ2 is related to the contribution of alkali-buffer gas collisions γcsbg, the CPT resonance signal height

is influenced by the buffer gas pressure. Indeed, optical atomic transitions of alkali atoms can be broadened

and shifted by alkali atoms-buffer gas collisions [81]. For illustration, examples of pure Cs and Cs-Ne (buffer

gas pressure = 90 Torr) absorption spectra on Cs D1 line are shown in the figure 58 [59]. The comparison

between the atomic transition of pure Cs and Cs + 90 Torr Ne shows the optical broadening and shift of

optical transitions. The Cs-Ne collisional relaxation decreases the optical pumping rate and reduces the

CPT signal height H. Figure 59 shows the height of a CPT signal generated with a microfabricated Cs-Ne

cell (D = 2 mm, L = 1.4 mm) in a temperature of 80 ◦C as a function of the Ne pressure under different

laser intensities. The signal height H is decreased when Ne pressure is increased. The CPT resonance signal

height is proportional to the number density ncs, which increases with the vapor temperature. At the same

time, the Cs vapor becomes optically thick at high temperature. The output laser power Pout of the alkali

atoms vapor cell depends on the input laser power Pin and the absorption coefficient α:

Pout = Pine
−αL (44)
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where

α =
Γ?λ3ncs

8π

√
mcs

2πkBT
(45)

where λ is the wavelength of the laser and mcs is the Cs atom mass.

Figure 58: Examples of pure Cs and Cs + 90 Torrs Ne absorption spectra on Cs D1 line.
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Figure 59: CPT signal height as a function of Ne pressure under different laser intensities with a microfab-

ricated Cs-Ne cell (D = 2 mm, L = 1.4 mm) at 80 ◦C.

By considering the equation 44 and the equation 45 together, the output laser power Pout decreases with

the increase of alkali atoms vapor temperature T , which causes the reduction of the CPT resonance height.

The competition between the ncs and the α coefficient determines that an optimal vapor temperature exists

for a maximal CPT signal height. S. Knappe et al. measured the properties of CPT resonance in Cs vapor

cm scale cells as a function of the cell temperature [82]. R. Boudot et al. [83] reported a similar study

for Cs-Ne microcells with different Ne pressure. In the figure 60, the CPT resonance signal increases with

the Cs density ncs in the low cell temperature regime. When the cell temperature rises to around 50 - 60
◦C, the Cs vapor becomes optically thick and the CPT resonance signal starts to decrease. For the even

higher cell temperature, the CPT resonance signal drops rapidly and nearly vanishes completely at about

85 ◦C. The measured curves agree well with the theoretical explanations above. Meanwhile, by comparing
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these three different curves, we can see that the CPT signal height is also decreased with higher buffer gas

pressure. This phenomenon can be explained by the expression of γcsbg (Equation 42). The γcsbg term is

linearly proportional to the buffer gas pressure, which means it is inversely proportional to CPT signal height

(Equation 43). In this Cs-Ne microfabricated cell, the optimal temperature for a maximal CPT signal height

is around 55 ◦C. This optimal temperature is shifted to higher temperatures for higher Ne pressure.

Figure 60: CPT resonance signal height as a function of the cell temperature for three Cs-Ne cells with

different Ne pressure (8.1 kPa for cell 1, 6.7 kPa for cell 2 and 4.4 kPa for cell 4). Experimental parameters

are: I = 500 µW/cm2, Pµ = 2.5 dBm. The data are extracted from [83].
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3.5 Frequency shifts

Mid-long term frequency stability of an atomic clock is mainly limited by fluctuations of experimental

parameters such as temperature variations, laser intensity and frequency variation, magnetic field variation

and cell aging. The clock frequency can be shifted by different mechanisms. Main shifts are the Zeeman

shift, the collisional shift and the light shift. Basic analysis of each frequency shift is presented in this section.

3.5.1 Zeeman shift

The energy levels of atoms are divided into a number of Zeeman sublevels with the presence of a static

magnetic field. Figure 61 shows the evolution of the mF Zeeman sublevels as a function of the static

magnetic field for the Cs atom ground state.

Figure 61: Evolution of the mF Zeeman energy sublevels as a function of the static magnetic field for the

Cs atom ground state (D1 line). The figure is extracted from [84]

The dependence of the 0-0 clock transition frequency is quadratic to the magnetic field for low B values.

The shift of the Cs clock frequency ∆νz as a function of the magnetic field B is given by:

∆νz = 427.45B2 (46)

where B is expressed in Gauss.

A variation dB of the static magnetic field produces a change d(∆νz) of the Zeeman shift. The clock

frequency sensitivity to the static magnetic field is for B = 60 mG:

1

ν

d(∆νZ)

dB
= 5.58× 10−9per Gauss (47)

A complete reversal of the clock in the earth magnetic field induces a change of 1 Gauss in the magnetic

field induction. To get a relative stability objective of 1× 10−12, we need to attenuate by a factor of at least
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1 000 the magnetic field variations. This is difficult to obtain with a single layer magnetic shield.

The dc magnetic induction B is generated by a current I circulating in a solenöıd or Heltmoltz coils.

Rewritting the previous formula for a mean magnetic induction B = 60 mG, we get that the relative

frequency stability is related to the current source stability by:

dν

ν
≈ 3.4× 10−10 dB

B
= 3.4× 10−10 dI

I
(48)

A relative frequency stability of 1 × 10−12 imposes a relative current stability of 3 × 10−3 with a small

sensitivity to temperature changes.

3.5.2 Buffer gas collisional shift

In order to reduce the CPT resonance linewidth, we introduce a pressure of buffer gas into the alkali vapor

cell. The presence of buffer gas causes a frequency shift of the hyperfine transition of alkali atoms [85] [86].

When buffer gas atoms are introduced, collisions between alkali atoms and buffer gas atoms cause a distortion

of electron clouds of the alkali atom. On the one hand, the Van der Walls force attracts the electrons, and the

electrons density is reduced to nucleus, then the hyperfine ground states coherence interaction is decreased.

On the other hand, the electron clouds are repush and recover when the alkali atoms approaching the buffer

gas atoms, and this approaching rises the electrons density to nucleus. Consequently, the hyperfine ground

states coherence interaction increases in this case. The unbalance of these two opposite effects shifts the

CPT resonance frequency to positive or negative. For the light buffer gas atoms, such as Ne, He, N2, the

exclusion force is dominant, and the CPT resonance frequency is blueshifted. For heavier buffer gas atoms

as Ar, Kr and Xe, the frequency is redshifted, because the Van der Walls force is dominant. Consequently,

a classical method to reduce the buffer gas frequency shift is to fill the alkali atoms cell with two buffer

gas shifting the clock frequency in opposite directions [87]. In the case of a single buffer gas, the collisional

frequency shift ∆νcoll can be described by:

∆νcoll = P [β + δ(T − T0) + γ(T − T0)2] (49)

where P presents the buffer gas pressure at the reference temperature T0 = 273 K, and β, δ and γ are pressure

and temperature shift coefficients [85] [86]. In the case of a buffer gas mixture, the collisional frequency shift

∆νcoll is given by:

∆νcoll = P [(r1β1 + r2β2) + (r1δ1 + r2δ2)(T − T0) + (r1γ1 + r2γ2)(T − T0)2] (50)

where βi, δi and γi with i = 1, 2 are pressure and temperature coefficients for buffer gas 1 and 2 respectively.

ri with i = 1, 2 are the ratio between the buffer gas i pressure and the total buffer gas pressure respectively,

so r1 + r2 = 1. The value of β, δ and γ for different buffer gas were measured by different groups [85] [88]

[89] [90] [91] [92] [93] . Table 5 shows these pressure and temperature shift coefficient values for Ne, N2

and Ar of Cs clock transition measured by Kozlova et al. [88]. Frequency shift of alkali atoms mixed with

different types of buffer gas can be calculated thanks to these shift coefficients.

Figures 62(a), 62(b) and 62(c) show the expected CPT resonance frequency shift versus the cell temper-

ature in different Cs-buffer gas cells (Ne, N2 and Ar).

In the case of the Cs-Ne cell, the quadratic relation between frequency shift and the cell temperature

exists at about 79 ◦C. In a Cs-N2 cell, a quadratic relation should exist at about 160 ◦C. This indicates that
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Table 5: Pressure and temperature shift coefficients of the Cs clock transition in presence of Ne, N2 and Ar

(D1 line).

Buffer gas β (Hz/Torr) δ (Hz/(Torr.K)) γ (mHz/(Torr.K2))

Ne 686 ± 14 0.266 ± 0.006 −1.68 ± 0.05

N2 922.5 ± 4.8 0.824 ± 0.006 −2.51 ± 0.03

Ar −194.4 ± 1.6 −1.138 ± 0.010 0.0 ± 0.3

(a) (b)

(c)

Figure 62: CPT resonance frequency shift versus the cell temperature. (a): Cs-Ne with a pressure of 20

Torr. (b): Cs-N2 with a pressure of 20 Torr. (c): Cs-Ar with a pressure of 20 Torr. Coefficients of table 5

are used.

the temperature dependence of the Cs clock frequency is canceled at this so-called inversion temperature.

This result is meaningful for developing miniature atomic clocks operating in this temperature range because

it avoids to use another suitable buffer gas to compensate the frequency shift [88] [94]. In the Cs-Ar cell, the

frequency shift is found to decrease linearly with increased cell temperature.
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3.5.3 Light shift

Introduction The light-shift (AC-Stark shift) is the shift of atomic energy levels due to the interaction

of the induced atomic dipole moment with the oscillating electric field of the light [95]. The light-shift δνi

of an atomic level i can be approximated by a sum of dispersive Lorentzians (as a function of a single laser

of frequency fL and intensity I ∼ |Ω2
R|) of width Γik centered at the optical atomic transition frequency fik

[96]:

δνi(fL, I) =
1

4

4∑
k=3

|ΩRk|2
(fL − fik)

(fL − fik)2 + Γ2
ik/4

(51)

The total light shift δν00 of the microwave atomic clock transition is the difference of the involved ground-

state level shifts (including the contribution from the off-resonant excited state by summation over k in Eq.

51:

δν00(fL, I) = δν4(fL, I)− δν3(fL, I) (52)

The light-shift δν00 of the clock transition is shown schematically in Fig. 63 b, as a function of the

frequency fL for a monochromatic laser field varied around the Cs D1 transition. In the case of a multi-

frequency laser spectrum, e.g. for CPT induced with a frequency-modulated laser, the total light-shift

is obtained as the sum over the contributions from all existing laser frequency components fj with their

respective intensities Ij :

δν00(fL, I) =
∑
j

[δν4(fj , Ij)− δν3(fj , Ij)] (53)

where fL is the laser carrier frequency (j=0) here and j 6= 0 numbers the modulation sidebands. A typical

case of a multi-frequency laser spectrum used for CPT excitation is depicted in Fig. 63 c.

In an atomic clock application, the light-shift can be expressed locally (i.e. at a given laser frequency and

laser intensity) by coefficients known as the intensity light-shift coefficient αi and the frequency light-shift

coefficient βi, by partial derivation of Equation 52 and 53:

αi(fL, I) =
dν00

dI
(54)

βi(fL, I) =
dν00

dfL
(55)

Calculation of light shifts is complicated. Results are highly dependent on the experimental conditions

and laser field characteristics. With modulated laser sources, light shift slopes can be nulled or at least

greatly reduced by adjusting the RF modulation power [83] or the cell temperature [97]. Active light shift

cancelation techniques can be implemented [98] [99]. We report in Table 6 typical reported values of αi and

βi.
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Figure 63: Schematic view of light-shift in the case of CPT on the Cs D1 line. a) example of an optical

transmission spectrum for a thermal Cs vapour, showing line broadening by a buffer-gas. b) frequency-

dependence of the light-shift δν00 of the clock transition in presence of one single light frequency fL only.

The dashed vertical lines indicate the positions of the optical transitions. c) typical example of a multi-

frequency laser spectrum, for CPT excitation by the positive and negative first-order sidebands. Italic

numbers give the order j of each sideband.

Table 6: Reported values of α and β in different configurations. The values for β are normalized to the

resonant laser intensity of I = 45µW/cm2 used in [78]. The line labelled ”I−1 / I0 / I+1” gives the percentage

of total light intensity contained in the -1st-order sideband, the carrier, and the +1st-order sideband in the

respective studies (CPT is induced using the two first-order sidebands in all cases).

Reference Nagel et al. [100] Knappe et al. [78] Lutwak et al. [101] Boudot et al. [83] Miletic et al. [97]

Transition D2 D2 D2 D2 D1

Buffer gas Ne Ne N2-Ar Ne Ne

Laser PLL ECLD VCSEL VCSEL VCSEL DFB+EOM

I−1/I0/I+1 [%] 60/0/40 19/8/47 no data 14/14/33 32/16/35

αi [µW/cm2)−1] 8.7 × 10−10 1.08 × 10−10 1.6 × 10−10 −3.2 × 10−12 −1.7 × 10−13

βi [mHz/MHz] no data −20 no data no data −11
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As an example, for laser frequency fluctuations, assuming a value of −20 mHz/MHz, we get:

1

∆fL

∆ν0

ν0
= 2.2× 10−12/MHz (56)
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Models J. Vanier et al. [102] and T. Zanon et al. [103] proposed different models to describe the light

shift. Both models are briefly described in the following.

J. Vanier model

The light shift in CPT resonance is considered to be a sum of light shift caused by a single optical field.

Then, the light shift ∆LS of the hyperfine sublevels transition frequency ∆HFS is given by:

∆LS ∼
−∆0

∆2
0 + (Γ?/2)2

(ω2
1 − ω2

2) (57)

where ω1 and ω2 are the Rabi frequencies, and Γ? = Γ31 + Γ32 is the excited decay rate.

In the low laser power regime, the relation between light shift and total laser power is linear with a coefficient

α = ∆LS/δPL. The light shift also depends on the power difference between two optical fields (ω2
1 − ω2

2).

In this case, the coefficient between light shift and light power can be rewritten as α1,2 = ∆LS/δPL1,L2,

where PL = PL1 + PL2. According to Equation 57, the lightshifts in the two hyperfine levels are equivalent

when two optical fields powers are the same, and the light shift as a function of input laser power has a

Lorentzienne lineshape. In the paper of J. Vanier et al., [102], the linear dependence of light shift on the

light field detuning ∆0 is canceled, but a quadratic dependence on the light field is observed, which is not

explicated in the paper.

T. Zanon model

The J. Vanier model indicates that light shift relates to hyperfine ground state coherence, but the Equation

57 does not include the term correspond to this coherence. T. Zanon et al., proposed a light shift equation

that contains the hyperfine ground state coherence (Equation 58) [103].

∆maximum ' ∆0
γ2

2γopt

2γ2Γ?S − (ω2
1 − ω2

2)

2γoptγ∗ + Γ?γ2S
(58)

where Γ? = Γ31 + Γ32 is the excited decay rate, and Γ31 = Γ32 for alkali atoms, γ2 is the hyperfine coherence

relaxation rate, γopt is the optical coherence relaxation rate and we assume the relaxation rates to |1〉 and

|2〉 are the same, γ∗ =
ω2

1+ω2
2

4γopt
is a power enlargement, and S =

ω2
1ω

2
2

γoptΓ?(ω2
1+ω2

1)
. Then we have:

∆maximum ' ∆0
γ2

γopt

2γ2ω
2
1ω

2
2 − γopt(ω4

1 − ω4
2)

2γ2ω2
1ω

2
2 + γopt(ω1 + ω2)2

(59)

When γ2 = 0, the light shift is zero, which means the atoms are completely decoupled with light fields. The

light shift increases linearly with the light field detuning increases. If two light fields powers are equivalent,

the light shift is low, otherwise, the variation of light shift is very complicate when two light fields powers

are different.
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3.6 Optimized CPT pumping schemes

3.6.1 Overview

In a simple approach, the CPT phenomenon can be well represented by a simple three energy level Λ-system.

Nevertheless, the actual energy structure of atoms is much more complex. Each energy level is splitted into

several Zeeman sublevels in the presence of a static magnetic field. Among the atomic transitions between

the different Zeeman sublevels, the ground state transition between mF = 0 Zeeman sublevels is the clock

transition.

A promising technique to improve the frequency stability performances of CPT atomic clocks is to increase

the resonance contrast. In that sense, let us first remind that the D1 line of alkali atoms is the best candidate

for the development of CPT atomic clocks [104]. Compared to the D2 line, the D1 line allows the detection

of narrower resonances with higher contrast, i.e. to increase the number of atoms participating to the 0− 0

clock transition. Figure 64 shows a CPT resonance in similar experimental conditions using the D1 or D2

line.

Figure 64: CPT resonance in similar experimental conditions using the D1 (A) or D2 line (B) (Rb atom).

From [104].

The advantage of the D1 line is simply due to the fact that there is a smaller number of energy levels

in the hyperfine structure. The distribution of atoms among a multiple number of Zeeman sublevels is then

reduced. Moreover, frequency splitting between both excited states is higher on the D1 line (1.16 GHz for

the Cs atom D1 line instead of about 250 MHz on the Cs D2 line). On the Cs D2 line, excited states F ′ = 2

and F ′ = 5 act as loss-channels because each of them is coupled to one of the ground states only. Atoms

in the superposition state can then be excited through one-photon transitions to these states, increasing

the width of the resonance and reducing the CPT signal. In classical CPT atomic clocks, atoms interact

with circularly polarized bichromatic optical field. Figure 65 shows an interaction scheme of a right circular

polarized bichromatic light with Cs atoms on the D1 line. Figure 66 shows an example of Zeeman sublevels

transitions signals generated by left and right circular bichromatic light fields with a microfabricated Cs-Ne

cell we measured. With use of circular polarization, it is observed that numerous atoms are concentrated

in the extreme Zeeman magnetic sublevels with the highest angular momentum mF . Consequently, only

a small fraction of atoms participates to the magnetic-field-insensitive clock transition, resulting in CPT

resonances with very low contrast of about 1 or a few %. Higher CPT resonance contrast can be achieved by

increased laser intensity but at the expense of the CPT linewidth power broadening. Consequently, classical
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CPT atomic clocks operate with low laser intensity in order to minimize the ratio between linewidth and

contrast, to optimize the short term frequency stability of the clock.

Figure 65: The interaction scheme of right circular bichromatic light field-Cs atoms.

Figure 66: Example of Zeeman sublevels transitions signals generated by left (blue) and right (green) circular

polarized bichromatic light fields.

In order to optically pump the maximum number of atoms into the dark state out of any other trap

state, different optimized CPT pumping schemes were proposed in the literature. Jau et al. proposed the

so-called Push Pull Optical Pumping (PPOP) technique. In this method, alkali atoms interact with a D1 line

resonant bichromatic optical field separated into left and right circular polarized sub-optical fields, with one

sub-optical field delayed with respect to the other by a half period of the ground state hyperfine transition

[28] (Figure 67 (a)). The resulting optical field can be thought as alternating between the states of left and

right circular polarization. A CPT resonance with contrast of 30 % was achieved in a Rb vapor cell using

this pumping scheme. PPOP was used in an elegant mode-locked laser atomic oscillator where a K-vapor

cell, inserted in the external cavity of a semiconductor diode laser, acts as an optical modulator and causes

the laser to be self-modulated at the clock transition frequency of the atoms [105]. Later, different research

groups have realized the PPOP scheme with different architectures [106] [107].
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T. Zanon et al. demonstrated another optimized pumping scheme: the lin ⊥ lin double-Λ interaction

scheme using two orthogonally polarized light fields [26] (Figure 67 (b)). CPT resonance contrasts higher

than 50% were observed using this technique [27] in Cs vapor cells. A Ramsey-type pulsed sequence was

also combined with such a CPT resonance signal to obtain a CPT frequency stability better than 7× 10−13

τ−1/2 at 1 second [25]. Recently, efforts have been made in different laboratories to realize the lin ⊥ lin

interaction scheme with only one single laser source and a simple architecture laser system [108] [109] [110].

We demonstrated during my thesis that lin ⊥ lin and PPOP are strictly identical under given conditions

(see section 3.6.2).

A. V. Taichenachev et al., developed a CPT optimized pumping method based on the use of a σ+ − σ−
configuration of polarized counterpropagating wave resonant with alkali atoms D1 line in small size cells

[111]. Essentially, this pumping scheme is equivalent to the PPOP, except that this pumping scheme requires

a particular place of the alkali atoms vapor cell along the optical beams and a small cell length comparing to

the microwave length. A so-called lin ‖ lin pumping scheme was also proposed by A. V. Taichenachev et al.,

(Figure 67 (c)). This pumping scheme uses bichromatic linearly polarized light field to increase significantly

the contrast of of CPT resonances on the alkali atoms D1 line with nuclear spin I = 3/2 [112]. A Rb

CPT atomic clock prototype was developed based on this interaction scheme [113] [114]. This configuration

was also implemented with alkali atoms of large nuclear spin, such as Cs [115]. Nevertheless, the lin ‖ lin
pumping scheme creates a dark state between mF = ±1 Zeeman sublevels of both hyperfine levels instead of

0-0 Zeeman sublevels, which means the dark state of lin ‖ lin is more sensitive to fluctuations of magnetic

field.

Figure 67: Optimized CPT pumping schemes.a: Push Pull Optical Pumping; b: lin ⊥ lin; c: lin ‖ lin.

3.6.2 Theoretical analysis of push-pull optical pumping

In the frame of my PhD thesis, we developed a theoretical model to analyze the push-pull optical pumping

(PPOP) interaction scheme. This scheme is used in the experimental setup we developed and is presented in

chapiter 4. This work was conducted and concluded thanks to the precious help of Emeric De Clercq (LNE-

SYRTE). We point out that the push-pull interaction scheme is identical to the so-called lin⊥lin polarization

scheme. Expressions of the relevant dark states, as well as of absorption, are reported. This model is in

correct agreement with experimental observations led in section 5.

Pumping waves The push-pull interaction scheme uses two sets of circularly polarized fields, rotating

in opposite directions, propagating along the z axis. Each set contains two frequencies ω1 and ω2; one set
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is phase delayed with respect to the other one. The right-handed circularly polarized beam,
−→
Er, and the

left-handed circularly polarized one
−→
El, can be written using the Jones vectors:


−→
Er(t) =

(
Erx(t)

Ery(t)

)
=
E1

2
ei(k1z−ω1t)

(
1

−i

)
+
E2

2
ei(k2z−ω2t+η)

(
1

−i

)
,

−→
El(t) =

E1

2
ei(k1z−ω1t+ϕ)

(
1

+i

)
+
E2

2
ei(k2z−ω2t+η+ϕ′)

(
1

+i

)
,

(60)

where E1, E2 are the amplitudes of the rotating fields, k1 (k2) is the wave number of the field E1 (E2) and

η is the phase difference between the two fields. ϕ,ϕ′ are the phase shifts due to the optical path difference

∆z between the El and the Er fields such as:

ϕ = k1∆z, ϕ′ = k2∆z. (61)

As the two optical frequencies ω1, ω2 are very close, a beat-note occurs for each beam. For the sake of

simplicity the calculation is performed in the case of equal amplitudes E2 = E1. Equations (60),(61) can be

rewritten as :
−→
Er(t) = E1e

i
2 [(k1+k2)z−(ω1+ω2)t+η]) cos

[
(k1 − k2)z − (ω1 − ω2)t− η

2

](
1

−i

)
,

−→
El(t) = E1e

i
2 [(k1+k2)z−(ω1+ω2)t+η+ϕ+ϕ′]) cos

[
(k1 − k2)z − (ω1 − ω2)t− η + ϕ− ϕ′

2

](
1

+i

)
.

(62)

The two sets of circularly polarized waves exhibit a beat note at the angular frequency (ω1−ω2)/2, phase

shifted relative to each-other by:

θ =
ϕ− ϕ′

2
=

(k1 − k2)∆z

2
= π

∆z

λmw
, (63)

with λmw the wavelength of the microwave wave of angular frequency (ω1 − ω2).

When the terms of same frequency are grouped together, we get:


−→
E1 =

E1

2
ei(k1z−ω1t)

[(
1

−i

)
+ eiϕ

(
1

+i

)]
= E1e

i(k1z−ω1t+
ϕ
2 )

(
cos(ϕ2 )

− sin(ϕ2 )

)
,

−→
E2 =

E2

2
ei(k2z−ω2t+η)

[(
1

−i

)
+ e+iϕ′

(
1

+i

)]
= E2e

i(k2z−ω2t+η+ϕ′
2 )

(
cos(ϕ

′

2 )

− sin(ϕ
′

2 )

)
.

(64)

Equations (64) represent linearly polarized waves of angle −ϕ/2 and −ϕ′/2, respectively, with the x axis.

The angle between both polarization vectors is:

θ =
−ϕ′ + ϕ

2
= (k1 − k2)

∆z

2
. (65)
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Then


θ = 0 when ∆z = 2pλmw,

θ =
π

2
when ∆z =

(
2p+

1

2

)
λmw,

(66)

with p an integer.

Here, we demonstrate that the push-pull scheme is identical to two linearly polarized waves of angular

frequencies ω1 and ω2 respectively. Their polarization vectors form an angle θ = π∆z/λmw, depending on

the path difference ∆z. If the path difference is realized in a Michelson interferometer like in [28], it is

worth to note that a displacement δz of a mirror in one arm of the interferometer yields a path difference

2δz. Then, the angle between polarization vectors increases from 0 to π/2 for a displacement δz = λmw/4.

This angle is equal to the phase shift between the two beat-notes of equation (62), which are in phase and

in quadrature when θ = 0 and θ = π/2, respectively. Finally, we point out that the push-pull scheme is

identical to the lin⊥lin scheme of [26] when θ = π/2.

Dark states

Interaction Hamiltonian As the push-pull scheme is equivalent to two linear polarized fields with an

angle θ between them, we consider now this last case. The same calculation can be performed with circular

polarizations. Let’s assume two waves copropagating along the z axis,
−→
E1 parallel to x axis, and

−→
E2 forming

an angle θ with the x axis.


−→
E1(t) = E1(t)êx =

E1(t)√
2

(ê− − ê+),

−→
E2(t) = E2(t) (cos(θ)êx + sin(θ)êy) =

E2(t)√
2

[
eiθ ê− − e−iθ ê+

]
,

(67)

with E1(t) = E1(e−iω1t + eiω1t)/2, E2(t) = E2(e−i(ω2t−η) + ei(ω2t−η))/2. We used the standard basis, defined

as: ê± = ∓(êx± iêy)/
√

2, ê0 = êz. The interaction Hamiltonian between the atoms and the electromagnetic

fields is the dipole interaction Hamiltonian:

V = −
−→
D ·

(−→
E1(t) +

−→
E2(t)

)
= V1 + V2, (68)

where
−→
D is the electric dipole operator. The operators V1, V2 are equal to:


V1 =

E1(t)√
2

(D+ −D−) ,

V2 =
E2(t)√

2

(
D+e

−iθ −D−eiθ
)
.

(69)

where D+ and D− are the standard components of D such as: D+ = −(Dx+iDy)/
√

2, D− = (Dx−iDy)/
√

2.
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We consider a four-level atom, two hyperfine levels of the ground state with quantum magnetic number

m = 0, |1〉 and |2〉, and two Zeeman sublevels |3〉 and |4〉 in the excited state, with m = −1 and m = +1

respectively (see Fig.67(b)). The field
−→
E1(t) is resonant with the transitions |1〉 − |3〉 and |1〉 − |4〉,

−→
E2(t)

with the transitions |2〉 − |3〉 and |2〉 − |4〉. The V2 term can be written:

V2 =
dE2(t)√

2

[
e−iθ (c42|4〉〈2| − c32|2〉〈3|)− eiθ (c32|3〉〈2| − c42|2〉〈4|)

]
, (70)

with d = 〈Je||D||Jg〉/
√

2Je + 1, Je, Jg the total electronic angular momentum quantum numbers of the

excited and ground states, respectively. The cij coefficients are the Clebsch-Gordan coefficients such that

〈i|D|j〉 = dij = cijd; their values for alkali-metal atoms are given in appendix 4E of [79]. In the rotating

frame V2 becomes Ṽ2 [116] :

Ṽ2 = T (t)V2T
†(t), (71)

with: {
T (t) = e−iS(t),

S(t) = ω2t|2〉〈2|.
(72)

In the rotating wave approximation we get:

Ṽ2 =
dE2

2
√

2

{
ei(η−θ)c42|4〉〈2| − ei(η+θ)c32|3〉〈2|+ e−i(η−θ)c42|2〉〈4| − e−i(η+θ)c32|2〉〈3|

}
. (73)

The same calculation leads to:

Ṽ1 =
dE1

2
√

2
{c41|4〉〈1| − c31|3〉〈1|+ c41|1〉〈4| − c31|1〉〈3|} . (74)

Dark states The dark state, when it exists, is a linear superposition of the two ground states: |dark〉 =

a|1〉+ b|2〉. It must satisfy:

(Ṽ1 + Ṽ2)|dark〉 = 0. (75)

Substituting Ṽ1 and Ṽ2 by their expression in (74), (73), it comes:
b

a
= −c31

c32

E1

E2
e−i(η+θ),

b

a
= −c41

c42

E1

E2
e−i(η−θ),

(76)

where the first (second) equation holds for coupling with the |3〉 (|4〉) excited state, respectively. A dark

state common to the two Λ schemes exists when the following condition is satisfied:

ei2θ =
c42

c41

c31

c32
. (77)

We consider the Cs D1 line. The |1〉 and |2〉 states are the ground states |F = 3,m = 0〉 and |F = 4,m =

0〉, respectively, with F the hyperfine quantum number. The states |3〉 and |4〉 are the states |F ′,m = −1〉
and |F ′,m = +1〉, respectively of the 62P1/2 excited state hyperfine level F ′ (F ′ = 3 or F ′ = 4). The

Clebsch-Gordan coefficients are such that:
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{
F ′ = 4 : c42 = −c41 c32 = c31 = c41

F ′ = 3 : c42 = −c41 c32 = c31 = −c41.
(78)

These relations are valid for the D1 line of all alkali-metal atoms, but not for the D2 line. The dark states

corresponding to the transitions towards |3〉 and towards |4〉 are:
|dark3〉 =

1√
E2

1 + E2
2

(E2|1〉 − E1e
−i(η+θ)|2〉)

|dark4〉 =
1√

E2
1 + E2

2

(E2|1〉+ E1e
−i(η−θ)|2〉).

(79)

Note that when θ = 0 and E1 = E2 the dark state |dark3〉 for the transitions with |3〉 is the bright state

for the transitions with |4〉, and vice-versa. In this case, no CPT effect occurs. According to (77) and (78)

a common dark state exists when ei2θ = −1, i. e.:

θ =
π

2
+ kπ, (80)

where k is an integer. The common dark state is then:

|dark+〉 =
1√

E2
1 + E2

2

(E2|1〉+ iE1e
−iη|2〉) when θ =

π

2
+ 2kπ,

|dark−〉 =
1√

E2
1 + E2

2

(E2|1〉 − iE1e
−iη|2〉) when θ = −π

2
+ 2kπ,

i.e.,

|dark〉 =
1√

E2
1 + E2

2

(E2|1〉+ E1e
iθe−iη|2〉) when θ =

π

2
+ kπ.

(81)

It is worth to note that, according to relations (78), this dark state is also common to transitions involving the

two excited levels of the D1 line of alkali-metal atoms, of hyperfine number (F ′ = I−1/2) and (F ′ = I+1/2)

with I the nuclear spin quantum number, as already reported in [104]. This means that in a vapor cell where

the optical transitions are broadened by Doppler effect and buffer gas collisions, the dark state built with an

optical transition is not destroyed by the coupling with the other hyperfine excited level.

∆m = 2 transitions Double Λ schemes as PPOP or lin⊥lin induce two single Λ transitions corre-

sponding to ∆m = 2 [25]. These transitions are enabled by the coexistence of σ+ and σ− polarized light.

They are those created in lin||lin configuration [112]. One transition couples the states |F = I − 1/2,m− 1〉
and |F = I + 1/2,m+ 1〉, and the other one the states |F = I + 1/2,m− 1〉 and |F = I − 1/2,m+ 1〉. For

simplification, these states are labeled |1′〉, |2′′〉, |2′〉, |1′′〉, respectively. Calculations lead to the dark states

expressions: 
|dark1′2′′〉 =

1√
c201′E

2
1 + c202′′E

2
2

(c02′′E2|1′〉+ c01′E1e
−i(η+θ)|2′′〉)

|dark2′1′′〉 =
1√

c202′E
2
1 + c201′′E

2
2

(c01′′E1|2′〉+ c02′E2e
−i(η−θ)|1′′〉),

(82)

where the cij coefficients are the Clebsch-Gordan coefficients defined above. These dark states are indepen-

dent and exist whatever the value of θ. The corresponding CPT resonances split by increasing the magnetic

field value. Unlike previous dark states, these dark states are not common to both excited hyperfine levels

of the D1 line. Cs atoms in these states are not fully uncoupled from the laser field because the transitions

towards other excited Zeeman sublevels remain.
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3.6.3 Absorption

An analytical calculation of the light propagation in a medium of four-level atoms in a double Λ configuration

has been performed by Korsunsky and Kosachiov [117]. This was realized in the particular case corresponding

to the D1 line of an alkali-metal atom with E1 = E2, at resonance. Following their calculation it is more

convenient to use Rabi frequencies rather than field amplitudes, with Ωij = |dijEij |/h̄, where Eij is the

amplitude of the field component coupling the atomic states |i〉 and |j〉. At the steady-state the absorption

of the Rabi frequency along the cell length z is governed by:

dΩij
dz

= − nd
ε0ch̄

ωij |dij |2Im(ρ̃ij), (83)

where nd is the density of involved atoms, ωij is the Bohr angular frequency between |i〉 and |j〉, ρ̃ij is the

optical coherence in the rotating frame, ε0 is the vacuum permittivity, c the speed of light and h̄ the Plank

constant divided by 2π.

From the expression of the steady-state optical coherence density matrix elements imaginary part estab-

lished in [117], it can be shown that the absorption phenomenon along z can be described at low saturation

Ωij � Γij by:

dΩij
dz
' − nd

8ε0ch̄
ωij |dij |2

Ω2
ij (1− cos(Φ)) + 2Γijγ2

ΩijΓij
, (84)

with Γij the relaxation rate of the population |i〉 towards |j〉, γ2 the hyperfine coherence decay rate and

dij = |dij |eiηij . Φ is a relative phase given by:

Φ = (β31 − β32)− (β41 − β42), (85)

with βij = ϕij + ηij the sum of the laser phase ϕij and the phase of the atomic dipole moment ηij . Using

Eq. (60), (61), and (85) it comes:

(ϕ31 − ϕ32)− (ϕ41 − ϕ42) = (k1 − k2)∆z. (86)

According to (78) the phases ηij are equal to 0 or π, so that (η31 − η32) − (η41 − η42) = π. From (85) and

(65) we get:

Φ = (k1 − k2)∆z + π = 2π
∆z

λmw
+ π = 2θ + π, (87)

dΩij
dz
' − nd

4ε0ch̄
ωij |dij |2

Ω2
ij cos2(θ) + Γijγ2

ΩijΓij
. (88)

For the D1 line of alkali-metal atoms, the |dij | (and the Γij) coefficients are equal for the different involved

atomic states. We note Γ1 = Γij . With a good approximation, we consider that ω31 = ω41 = ω32 = ω42 = ωeg

because the optical angular frequencies ωij are very close. Consequently, we define the same absorption

coefficient αd for the four laser fields such as:

αd =
nd

2ε0ch̄

ωeg|dij |2

Γ1
. (89)

In a Cs vapor cell, most atoms are not involved in the CPT resonance because of the presence of other

Zeeman sublevels for which the Raman detuning is too large. However, these atoms contribute to the laser

light absorption because the related optical transitions remain at resonance. In order to take into account
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this additional absorption we add an absorption coefficient αij , corresponding to the absorption of the laser

beam of intensity Iij , related to Ωij by Iij = ε0ch̄
2Ω2

ij/2d
2. Iij corresponds to an angular frequency ω1 or

ω2 and a polarization σ− or σ+. Using Iij , αd, αij the equation (88) becomes:

dIij
dz
' −

(
αd cos2(θ) + αij

)
Iij −

nd
4
h̄ωegγ2. (90)

The last term of (90) is the linear absorption expected for a closed system in a dark state (αij = 0, cos(θ) = 0)

[117] [118]. The solution of (90) is:

Iij(z) '
(
Iij(0) +

(nd/4)h̄ωegγ2

αij + αd cos2(θ)

)
e−(αij+αd cos2(θ))z − (nd/4)h̄ωegγ2

αij + αd cos2(θ)
, (91)

where Iij(0) is the beam intensity at the cell input (z = 0), we recall that we have assumed that all the

partial intensities are equal, Iij(0) = I0/4 with I0 the full laser intensity at the cell input.

For reasons of symmetry the absorption coefficients αij of the beams σ+ and σ+ are equal. However, the

absorption coefficients are different for the beams of angular frequencies ω1 and ω2, depending on the ground

state hyperfine level involved. The full transmitted laser intensity is given by the sum of the four intensities:

It =
∑
Iij . In the usual conditions of an alkali-metal vapour cell filled with buffer gas and for usual laser

intensities, we assume that γ2 is sufficiently weak (Ω2
ij � Γijγ2) and the transmitted total laser intensity

can be simplified as follows:

It(z) '
I0
2
e−αd cos2(θ)z

(
e−α1z + e−α2z

)
, (92)

where the subscript 1, 2 holds for the angular frequencies ω1, ω2. When cos(θ) = 0, atoms involved in the

dark state become fully transparent and eq. (92) reduces to the well-known Beer-Lambert law.

Note that the model of [117] is valid for a four-level atom and equal laser intensities. Here we have many

levels and, even if the laser intensities are equal at the input of the cell, as the absorption coefficients due

to other levels are different for the two frequencies, the laser intensities equality will not be valid after

propagation inside the cell.

3.7 Ramsey interference

A well-known technique to reduce the linewidth of atomic resonance is the Ramsey interference scheme using

two separated oscillating fields [7]. Ramsey interrogation is realized by using a sequence of microwave pulses

to interact with alkali atoms. Figure 68 shows the Ramsey interference scheme. To simplify the analysis, we

only consider two energy levels of atoms |1〉 and |2〉 here.

In this scheme, two energy levels atoms interact with successive microwave pulses for a pumping time of

τp. The pulses are separated by a dark time T and the atoms evolve freely in the time T without interacting

with microwave field. In the free evolution time T , alkali atoms aren’t disturbed. The evolution of atoms

|Ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉 in every impulse is given by:

|Ψ(t)〉 = [c1(0) cos(
ωR
2
t) + i(

−δRc1(0) + 2ωc2(0)

ωR
) sin(

ωR
2
t)]|1〉

+[c2(0) cos(
ωR
2
t) + i(

δRc2(0) + 2ωc1(0)

ωR
) sin(

ωR
2
t)]|2〉

(93)

with the initial conditions c1(0) and c2(0) at t = 0 and the Rabi pulse frequency ωR =
√
δ2
R + 4ω2, δR is

the Raman detuning between the microwave impulse frequency and the atomic transition frequency. The
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Figure 68: Ramsey interference scheme. T is free evolution time, τp is pumping time, ω is frequency of

microwave field. Atomic transition probability between two states is measured after the second impulse, the

probability will reach maximum if τp · 2ω = π/2.

Rabi pulse frequency ωR describes the coupling between the dipolar momentum of atomic transition and the

exciting field. We introduce an electromagnetic field along the z axis, and the 3 dimensions Pauli vector σ

relate to |1〉 and |2〉, then the evolution |Ψ(t)〉 is rewritten:

|Ψ(t)〉 = [cos(
ωR
2
t) + iσ · (−δRẑ + 2ωx̂

ωR
) sin(

ωR
2
t)]|Ψ(0)〉 (94)

During each step of Ramsey interrogation, the temporal evolution is given:

Uτp = cos(
ωR
2
τp) + iσ · (−δRẑ + 2ωx̂

ωR
) sin(

ωR
2
τp) during the pumping time τp,

UT = cos(
δR
2
T )− iσ · ẑ sin(

δR
2
T ) during the free evolution time T

Uτp = cos(
ωR
2
τp) + iσ · (−δRẑ + 2ωx̂

ωR
) sin(

ωR
2
τp) during the pumping time τp,

(95)

Then the atomic transition probability in a final state |f〉 after a sequence of interrogation can be described

as:

P (2τp + T ) = |〈f |Ψ〉|2 = |〈f |UτpUTUτp |Ψ(0)〉|2 (96)

We assume the initial conditions c1(0) = 1 and c2(0) = 0 when the atoms in the |1〉. Then by Equation

96, we have the probability of atoms exist in the |2〉:

P2(t) = 16
ω2

ω
sin2(

ωRτp
1

)[cos(
ωRτp

2
) cos(

δRT

2
)− δR

ωR
sin(

ωRτp
2

) sin(
δRT

2
)]2 (97)
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If we consider the detuning between the excitation impulse ω and the Rabi pulse frequency ωR is very

weak, we can simplify the probability of atoms exist in each states:

P1(t) =
1

2
(1− cos[δRT ])

P1(t) =
1

2
(1 + cos[δRT ])

(98)

with central Ramsey fringes linewidth ∆ν = 1/2T when τp � T . From equation 98, we can measure the

phase shift between atoms and the microwave field caused by possible disturbances [7].
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4 Experimental Setup

We developed an experimental set-up to detect high-contrast CPT resonances in Cs vapor cells using the

push-pull optical pumping technique. This section is devoted to describe in detail the experimental set-up and

its main components. The philosophy of this work was to develop a simple-architecture, compact and high-

performance laser system compatible with the future development of a high-performance Cs CPT clock. The

typical frequency objective is in the first step 10−12 τ−1/2. To be compatible with industrial requirements, a

choice was to use as many commercially-available components as possible. Even if not realized in the frame

of this PhD thesis, we’re confident that this laser system can be integrated in a A3-format elegant optical

breadboard. Different noise reduction techniques were implemented for proper operation of the future Cs

CPT clock.

4.1 System architecture

Figure 69 shows the experimental set-up used to detect high-contrast CPT resonances in Cs vapor cells

using PPOP. The setup is divided in four main basic blocks defined as the laser source, the optical sidebands

generation using an electro-optic modulator (EOM), a Michelson delay-line system to produce PPOP [28]

and the Cs vapor cell physics package. These blocks will be described in detail in the following.

The laser source is a 1 MHz-linewidth DFB diode laser tuned on the Cs D1 line at 894.6 nm. The laser

frequency is shifted from Cs atom resonance by about 4.596 GHz. The laser light is injected into a 20 GHz

bandwidth polarization maintaining (PM) pigtailed intensity Mach-Zehnder electro-optic modulator (MZ

EOM, Photline NIR-MX800-LN). CPT sidebands are created by driving the EOM with a low noise 4.596

GHz microwave signal generated by frequency division from a 9.192 GHz frequency synthesizer. At the

output of the EOM, the modulated light beam of fixed linear polarization passes through a half-wave plate.

The incident beam is divided in two sub-beams in the two arms of a Michelson interferometer. A quarter-

wave plate is placed in each arm. A fine adjustment of both quarter-wave plates and the half-wave plate

allows to obtain at the output of the polarizing cube two superimposed beams of equal intensity, linearly

polarized at right angle, and differing by a phase delay. A mirror, mounted on a micrometric translation

stage, allows to tune the time-delay. A displacement of the mirror of λ0/4, one quarter of the clock transition

wavelength, induces a differential optical path ∆` = λ0/2, and shifts the intensity peaks of the beat-note

on one beam by half a hyperfine period with respect to the peaks of the other beam. A last quarter-wave

plate ensures that the output beams are circularly polarized, rotating in opposite directions. The laser beam

passes through a Cs vapor cell. The cell is temperature-stabilized at the mK level and surrounded by a

static magnetic field parallel to the laser beam direction in order to lift the Zeeman degeneracy. The cell

is isolated from external electromagnetic perturbations with a double-layer µ-metal shield. The transmitted

optical power through the cell is detected by a low noise photodiode.

4.2 894.6 nm frequency-stabilized DFB laser

A frequency-stabilized laser source is required in atomic clock applications because frequency fluctuations

of the laser source can degrade the frequency stability of the atomic clock. Numbers of frequency stabi-

lization techniques were described and proposed in the literature [119]. For short term integration times,
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Figure 69: Experimental setup used to detect high-contrast CPT resonances in Cs vapor cells with push-pull

optical pumping. A MZ EOM is used to generate optical sidebands with linear and parallel polarizations,

frequency-separated by the clock transition (9.192 GHz). A microwave-based stabilization technique of the

transfer function operating point is implemented to stabilize the optical carrier rejection. The Michelson

interferometer is used to obtain at the output of the cube C1 two time-delayed optical components with

orthogonal linear polarizations. The last quarter wave plate before the cell creates alternating right and left

circular polarizations for push-pull interaction. The photodiode PD detects the transmitted optical power

through the vapor cell. MS: microwave synthesizer, PD: photodiode, EOM: electro-optic modulator, FPD:

fast photodiode, Cs+BG: Cs + buffer gas, QWP: quarter-wave plate, HWP: half-wave plate, BPF: bandpass

filter, M1 and M2: mirrors, LNA: low-noise amplifier, SA: microwave spectrum analyzer, FP: Fabry-Perot

interferometer.

the frequency of the laser source can be stabilized by locking to the transmission peak of a ultra stable

Fabry-Perot cavity with the Pound-Drever-Hall technique [120]. The frequency stability of such a laser can

reach exceptional frequency stability level at the order of a few 10−16 for averaging times of 1− 10 seconds

[121] [122] [123] [124]. A compact alternative method to cavity stabilization for fast Fourier frequencies noise

reduction consists to use an optical fiber delay line interferometer with arm imbalance to measure the laser

frequency fluctuations during a fixed time delay [125] [126] [127]. For atomic clocks, the long term frequency

stability is required. In this case, we can use absorption line of atoms or molecules as frequency references to

lock the frequency of the laser source. Narrow linewidth (∼ 100 kHz) external cavity diode laser (ECDL) can

achieve high frequency stability by using saturated absorption technique [128] [129] [130]. However, ECDLs

usually have strict requirements of environmental vibrations, optical alignment of the optical feedback path

and accurate cavity length. Since our aim is to simplify our experimental setup as much as possible, ECDL

is not a good candidate for us. A narrow linewidth Distributed Feedback (DFB) laser diode is a potential

cost-effective alternative for atomic clock because of its more compact volume and less strict requirements.

DFB with linewidth lower than 1 MHz was demonstrated by F. J. Vermersch et al., [131], and even as narrow

as 350 kHz on Cs D1 line (895 nm) [132]. We built a DFB laser diode source tuned on Cs D1 line that can

be frequency-stabilized by the standard saturated absorption technique.
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4.2.1 Saturated absorption setup

The laser source is a 1 MHz linewidth DFB diode laser resonant on the Cs D1 line at 894.6 nm. The laser

source is a commercially available GaAs semiconductor DFB laser diode with integrated grating structure

emitting in a single mode at 895 nm (Eagleyard EYP-DFB-0895). It is housed in a hermetic TO-3 package

with thermistance and thermoelectric cooler. The maximum output optical power is about 50 mW while

its threshold current is about 50 mA. The temperature coefficient of wavelength is about 0.06 nm/K while

the dependence of wavelength on injection current is ∼ 1 GHz/mA. The diode laser is driven by a low noise

current controller inspired by [133] exhibiting a current noise power spectral density lower than 50 pA/
√

Hz.

The diode laser temperature is stabilized within to the mK level with a high precision temperature controller

using the internal Peltier. The laser diode is frequency-stabilized by saturated absorption technique with a

2 cm diameter and 2.5 cm long anti-reflection coated auxiliary Cs cell. Figure 70 shows the DFB laser diode

combined with the saturated absorption scheme.

Figure 70: DFB laser diode optical setup for saturated absorption spectroscopy. C1, C2: Polarizing beam

splitter cube; Plates: half-wave plate.

The DFB diode laser beam is collimated by an anti-reflection coated aspheric lens with a focal length of

2.5 mm and a numerical aperture of 0.55. The output of the DFB laser is passed through an optical Faraday

isolator with isolation of 45 dB in order to avoid optical feedback. A half wave plate is used to rotate the

polarization of the laser beam. The isolated and oriented laser beam is splitted in two directions by the PBS

C1 in free space. Figure 71 shows a 3D graphic model of the optical structure of the laser system. The first

beam is sent to the saturated absorption setup used to stabilize the laser frequency. In the first sense, the 3

mm diameter beam is used as the pump beam to saturate Cs vapor contained in the auxiliary cell. There

are four optical transitions on the Cs D1 line: F = 3 → F = 3′, F = 3 → F = 4′, F = 4 → F = 3′ and

F = 4 → F = 4′. We do not directly use the linear absorption peak as a frequency reference for the laser

diode, because these signals have a large linewidth of about 350 MHz due to the Doppler effect. In order to

generate narrow resonance signal, the laser beam is retroreflected by a silver coated mirror at the output of

the cell and detected by a low noise photodiode at the output of the PBS C2. The reflected beam is used as

the probe beam. This technique is so-called saturated absorption technique. The linewidth of this saturated

absorption peak signal is close to the Cs D1 line natural linewidth (about 5 MHz). Figure 72 shows the

saturated absorptions spectrum on the Cs D1 line. We usually use the saturated absorption signal of the

F = 4→ F = 3′ or the F = 4→ F = 4′ as a reference signal for the laser system.

The auxiliary cell is surrounded by a single layer µ metal magnetic shield in order to avoid perturbations
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Figure 71: 3D graphic model of the optical structure of the laser system. (a): DFB diode. (b): Reflection

coated aspheric lens. (c): Optical Faraday isolator. (d): Polarizer. (e): Diaphragm. (f): Half wave plate.

(g): Polarization beam splitter. (h): Half wave plate. (i): Fiber port collimator.

Figure 72: Saturated absorption spectrum on the Cs D1 line with our DFB laser. Dips in the bottom of the

absorption line are due to saturated absorption spectroscopy.

from external magnetic fields. For optimized mid-long term operation and frequency stability, the cell is

placed in an oven temperature-stabilized using an improved analog-digital version of the electronic temper-

ature controller presented in [134]. The cell temperature sensor is controlled below the mK level at 1 second

integration time and better than 10−5 K level at 4000 seconds. The laser frequency is stabilized by applying

a low frequency sinusoidal modulation of 60 kHz added to the DFB laser injection current. The saturated

absorption signal is amplified, filtered and synchronously demodulated by a laboratory prototype lockin

amplifier. The lockin amplifier generates a dispersive error signal used to correct the laser frequency by

adjusting the injection current through a PI controller. The second beam is sent to the EOM for sidebands

generation. A half wave plate is used adjust the laser polarization before entering the EOM.

4.2.2 Characterization of the laser system

Figure 73 shows the voltage noise of the laser frequency servo lockin amplifier output in free running and

locked conditions. Optimal conditions result from a trade-off between loop noise reduction for long term

operation and control bandwidth. In this case, the laser frequency servo bandwidth is about 300 Hz while

the noise level at 1 Hz offset frequency is reduced by about 50 dB.
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Figure 73: Voltage noise of the laser frequency servo lockin amplifier output (servo ON or servo OFF)

Figure 74 shows the frequency noise of the laser S∆ν in free running regime. The frequency noise

spectrum presents a f−1 slope from 1 Hz to 100 kHz. The f−1 slope indicates that the principal type of

noise flicker frequency noise. The frequency stability of the laser can be calculated from its frequency noise.

The frequency noise at 1 Hz is measured to be 2.5× 105 Hz/
√

Hz. From the equation 10, we calculate that

h−1 = 1.488 × 10−18. From the Table 1, we deduce σy(τ) at 1 s by:

σy(τ) =
√

2 ln 2h−1 =
√

2 ln 2× 1.488× 10−18 = 2× 10−9 (99)

Figure 74: Frequency noise of the laser in free running regime.

Since the frequency noise has the same f−1 slope from 1 Hz to 100 kHz, we can expect that there is a

flicker floor at the level of 2 × 10−9 from τ = 10−5 s to τ = 1 s in free running regime. This corresponds

to typical laser frequency fluctuations of about 670 kHz for such integration times. In order to measure

experimentally the frequency stability of our laser system, we built another similar laser system to measure

the beatnote signal. Figure 75 shows the experimental setup.

Both lasers are locked to independent Cs vapor cells onto the different optical transitions: F = 4→ F = 3′

and F = 4 → F = 4′. The frequency difference between these two optical transitions is about 1.16 GHz.

Both laser beams are injected into a 50-50 splitting ratio optical polarization maintaining fiber coupler.
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Figure 75: Measurement of the optical beatnote at 1.16 GHz between both DFB lasers.

The coupler is used to mix the two beams and to generate the beatnote signal. FC-APC connectors are

used to avoid optical feedback. The beatnote signal is detected by a fast photodiode, low-pass filtered,

amplified by 23 dB with a low noise amplifier and analyzed with a microwave spectrum analyzer. Figure 76

shows the spectrum of the beatnote signal at 1.16 GHz from these two similar DFB laser systems in locked

configuration. The linewidth of the beatnote signal is 1.95 MHz and 1.47 MHz in free running regime and

locked regime, respectively. The linewidth of a single laser signal is about 975 kHz in free running regime.

Figure 76: DFB beatnote spectrum in locked configuration.

The 1.16 GHz beatnote signal is compared to a 1.16 GHz + 6 MHz signal generated by a IFR2023A

synthesizer driven by a hydrogen maser. The final beatnote signal at 6 MHz is low pass filtered, amplified

and counted using a high resolution frequency counter. This frequency down-conversion to 6 MHz was done

because no microwave counter was available in the laboratory but also to improve the frequency counting

resolution. Figure 77 shows the Allan deviation versus the integration time of the beatnote signal frequency

under free running or locked conditions.

In the free running regime, the short term frequency stability is measured to be 1.5 × 10−9 at 1 second

integration time, increasing to reach about 8 × 10−9 at 100 s integration time. The resulting frequency

stability at 1 second is in good agreement with the 2 × 10−9 level flicker floor derived from the frequency
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Figure 77: Relative frequency stability of a single laser in locked configuration and free-running regime.

noise. In the stabilization regime, the laser beatnote exhibits a frequency instability of 1 × 10−11 at 1 s

integration time and decreases with a
√
τ slope until 4 s before reaching a wide flat flicker floor at the level

of about 5− 6× 10−12. For averaging times longer than 200 seconds, the deviation increases again without

showing a clear τ slope drift. These results are reported in IEEE Trans. Instr. Meas. [135] and compare

favorably with those presented on Cs D2 line [136] [137].

Laser frequency fluctuations can induce a clock frequency fluctuations though the lightshift. Typically,

frequency of atomic clock varies about −20 mHz for a 1 MHz laser frequency change [78]. In our laser

system, the DFB laser frequency instability of 1×10−11 in locked regime corresponds to a frequency variation

of 3.5 kHz at 1 second. This frequency variation induces an atomic clock frequency variation of 3.5 kHz

×−20mHz
1000 kHz = 0.07 mHz. CPT based Cs vapor cell clock frequency stability limitation due to laser frequency

changes could be consequently reduced to a level of 0.07mHz
9.192GHz = 7×10−15, which is several orders of magnitude

lower than frequency stability performances obtained with state-of-the-art CPT based Cs vapor cell atomic

frequency references [25]. Consequently, frequency stability performances of our DFB laser system seems

satisfying for a CPT Cs vapor cell clock application.
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4.3 Electro-optic modulator (EOM)

A key element of our system is the electro-optic modulator for sidebands generation. We worked with

20 GHz-bandwidth pigtailed LiNbO3 electro-optical modulators (EOM). Pigtailed EOMs were prefered to

bulk modulators for their compacity and low driving voltages. We tested commercially-available phase

modulator Photline NIR-MPX800 and intensity Mach-Zehnder modulator Photline NIR-MX800. These

EOMs integrate a 10 kΩ thermistance for temperature control. No integrated photodiode is available at 894

nm. The modulators are connected with polarization maintaining fibers with FC-APC connectors. Figure

78 shows photographs of the EOMs.

Figure 78: Photographs of the phase modulator Photline NIR-MPX800(a) and the intensity modulator

Photline NIR-MX800 (b). The figure is extracted from [138].

4.3.1 Phase modulator

The phase modulator is constituted by a simple light guide where the electrical length or optical path length

can be adjusted by the electro-optic Pockels effect. Optical sidebands are generated by driving the phase

modulator with a low noise microwave signal.

We assume that the input optical signal is Ein(t) = E0e
iω0t. The microwave signal is s(t) = Vs sin(Ωt),

where Vs represents the amplitude of the microwave signal. The output signal of the phase modulator is

given by:

Eout(t) = E0e
iω0t+iVm sin(Ωt) (100)

where Vm = mVs, m is the modulation index.

We can use the Taylor expansion to rewrite Equation 100:

Eout(t) = E0e
iω0t(1 + iVm sin(Ωt)) = E0e

iω0t(1 +
Vm
2

(eiΩt − e−iΩt))

= E0(eiω0t +
Vm
2
ei(ω0+Ω)t − Vm

2
ei(ω0−Ω)t)

(101)

Equation 101 indicates that the output signal of the phase modulator consists of the carrier signal and

two optical sidebands at ω0 + Ω and ω0 −Ω, respectively. One of the optical sidebands is phase opposite to

the carrier signal and the other sideband. However, this equation is obtained by using only the first term in

the Taylor expansion. In order to describe the actual phase modulation, we use the Jacobi-Anger expansion
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to get:

Eout(t) = E0e
iω0t+iVm sin(Ωt) = E0e

iω0t(J0(Vm) +

∞∑
k=1

Jk(Vm)eikΩt +

∞∑
k=1

(−1)kJk(Vm)e−ikΩt) (102)

Equation 102 indicates that there are an infinite number of sidebands besides the carrier signal and the

two first order sidebands. The frequency difference between two neighboring sidebands is Ω. Figure 79 shows

the output power of the carrier signal and both first-order sidebands generated by our phase modulator versus

the microwave signal power. The frequency of the modulation is 4.596 GHz. We measured that the CPT

signal reaches a maximum when the optical power of both first-order optical sidebands is maximized.

Figure 79: Powers of the carrier signal and the two first order sidebands generated by a phase modulator

versus the microwave signal power at 4.596 GHz. The RF powers are amplified by an amplifier with gain =

22 dB.

4.3.2 Intensity Mach-Zehnder modulator

The intensity EOM is constituted by an integrated Mach-Zehnder interferometer (MZ EOM). The modulation

is realized by adjusting optical path difference between two optical arms of the interferometer by electro-optic

effect. The MZ EOM has a RF connector to generate two phase coherent optical bands and a dc bias voltage

connector to control the optical path difference of the interferometer. The carrier signal at the output of

the MZ EOM can be rejected by adjusting the bias voltage Vdc. Figure 80 shows a simplified scheme of a

pigtailed MZ EOM.

We assume that the input signal is Ein = E0e
iω0t. The microwave signal s(t) = Vm cos(Ωt). The output

signal Eout(t) is given by:

Eout(t) = E0 cos(ω0t){J0(Cm) cos(φdc + φ0) + 2

∞∑
n=1

(−1)nJ2n(Cm) cos(φdc + φ0) cos(2nΩ)

+2

∞∑
n=1

(−1)nJ2n−1(Cm) sin(φdc + φ0) cos((2n− 1)Ω)}
(103)
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Figure 80: Simplified scheme of pigtailed MZ EOM. Vbias: voltage bias; RF: microwave; Ein and Eout:

Amplitude of input and output signal.

with φdc = πVdc/Vπdc and Cm = πVm/Vπm is the modulation index of the MZ EOM, where Vπdc and Vπm

are half wave voltages at the RF and dc of the MZ EOM. The amplitude of each sideband depends on the

microwave signal power and the dc voltage bias.

In order to optimize the configuration of the MZ EOM, we measured the transfer function of the MZ EOM

as a function of microwave power and bias voltage, respectively. Figure 81 reports the transfer function

of the MZ EOM as a function of microwave power when the bias voltage is fixed. The power of the three

sidebands is equivalent when the microwave power is slightly lower than 0 dBm.

Figure 81: Transfer function of the MZ EOM as a function of microwave power with a bias voltage of 1.3 V.

The RF powers are amplified by an amplifier with gain = 22 dB.

Figure 82(a) shows the transfer function of the MZ EOM as a function of bias voltage when the RF is

on. We also report the CPT signal amplitude at the output of the cell for each case.

The CPT signal resonance height is found to be optimized when the carrier signal power is minimized

and the sidebands powers maximized (see Figure 82(b)). This operation point is called dark point.
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(a) (b)

Figure 82: (a): Transfer function of MZ EOM as a function of bias voltage. Red curve: carrier signal power.

Blue curve: sidebands power. Green curve: CPT resonance signal detected by the experimental setup using

the MZ EOM. (b): Typical spectrum of the MZ EOM output signal at the carrier suppression point.
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4.3.3 Choice of the EOM

We tested the CPT spectroscopy with the phase EOM and the intensity MZ EOM at different frequencies

(4.596 or 9.192 GHz). The bias voltage of the MZ EOM is adjusted to reject the carrier by 28 dB. Figure

83(a), 83(b), 83(c) show the optical sidebands generated by the different EOMs that participate into CPT

interaction, respectively.

(a) (b)

(c)

Figure 83: Different optical sidebands that participate into the CPT interaction. (a): MZ EOM modulated

at 4.596 GHz. (b): MZ EOM modulated at 9.192 GHz. (c): Phase modulator modulated at 9.192 GHz.

We measured the CPT resonance parameters as a function of the laser intensity for different excitations

with MZ EOM (AM) and phase modulator (PM) in a given Cs vapor cell (N2-Ar buffer gas mixture, L =

5 cm, D = 2 cm). Figure 84(a), 84(b) and 84(c) show the CPT resonance contrast, the FWHM and the

FWHM/Contrast as a function of the laser intensity for different excitations. The laser is locked at the 4-4’

optical transition. The cell temperature is stabilized at 33◦C. The laser beam diameter is 6 mm.

These results indicate that the CPT resonance contrast and the FWHM are optimized in the case of the

MZ EOM modulated at 4.596 GHz. The FWHM/Contrast ratio for the AM 4.596 GHz case is the lowest
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(a)

(b)

(c)

Figure 84: CPT resonance contrast (a), FWHM (b) and FWHM/Contrast (c) as a function of the laser

intensity for AM modulated at 4.596 GHz (red), AM modulated at 9.192 GHz (Blue) and PM modulated at

9.192 GHz (Green). The cell temperature is 33◦C. The laser beam diameter is 6 mm.
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among the three configurations. Consequently, we decided to develop our system in this configuration. In

the case of the AM modulation at 4.596 GHz, CPT interaction is realized by both first-order sidebands.

The optical carrier must be rejected as much as possible to reduce light shift effects and perturbations of

the signal. This carrier rejection is limited by the EOM extinction ratio of the EOM, measured to be 28 dB

with our device. Higher-order harmonics were measured to be in power about 30 dB lower than first-order

sidebands. Moreover, these optical lines are 4.596 GHz out of CPT resonance and should not participate to

CPT interaction.
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4.3.4 MZ EOM Stabilization

The transfer function operating point of a MZ EOM is known to drift due to the temperature variations,

photorefractive effects and aging [139] [140]. The stabilization of the MZ EOM transfer function operation

point is required in our experiment. In our case, we want to make it operate at the so-called dark point

where the optical carrier is suppressed. We developed several advanced techniques to make the EOM operate

properly. At the first, the EOM is temperature stabilized. A carrier suppression stabilization technique was

implemented. The microwave power of the microwave synthesizer that drives the EOM is actively stabilized.

Eventually, the optical power at the output of the EOM is stabilized using a voltage-controlled liquid crystal

device (LCD) attenuator to ensure that the optical power contained in both first-order sidebands realizing

the CPT interaction is stable. These techniques are described in the following parts.

EOM temperature stabilization The EOM is actively temperature controlled. For this purpose, the

EOM is inserted in a mechanical duralumin box on which a high-precision electronic temperature controller

inspired from [134] is embedded. The ensemble is placed in a box containing a 5 cm-thick insulating foam

to isolate the system from ambient temperature variations. The integrated EOM thermistance is used for

temperature control while a second thermistance is placed close to the EOM in the duralumin box to monitor

the EOM temperature. The duralumin box is heated with 2 IRF840 transistors symmetrically fixed on each

side of the duralumin box. Figure 85 shows the temperature fluctuations of the laboratory room, the CPT

experiment optical table that is passively temperature stabilized with an insulating foam box and the EOM

temperature. The EOM set temperature is 41.7 ◦C. The temperature fluctuations in the servo regime

achieves 2× 10−4 ◦C at 1 second integration time and remain well below 1× 10−3 ◦C up to 50 000 s.

Figure 85: Temperature fluctuations of the laboratory room, the CPT experiment optical table and the

EOM temperature. Temperatures of the laboratory room and optical table are about 24◦C.

Microwave power stabilization Figure 86 shows the microwave power stabilization loop system. The

4.596 GHz microwave power is detected by a Schottky diode detector. The resulting output voltage is

compared with an ultrastable voltage reference (LM399). An error signal is generated at the output to be

amplified and processed in a PI controller to send a correction voltage to a voltage-controlled attenuator at

93



the output of the synthesizer. In the locked regime, microwave power fractional fluctuations are measured

to be 1× 10−3 at 1 second integration time and better than 1× 10−5 at 10000 s.

Figure 86: Microwave power stabilization loop. MS: microwave synthesizer. F(p): low pass filter. Vref :

LM399 voltage reference.

Carrier suppression stabilization We have already seen that the optimal CPT resonance signal height

is detected when the carrier signal at the output of the MZ EOM is suppressed. A microwave technique to

stabilize the operating point of the MZ EOM at the exact dark point is then required. A classical technique

to stabilize the operating point of a MZ EOM is the low frequency synchronous modulation-demodulation

technique [141] [142] [143]. The operating point voltage is slightly modulated at low frequency (typically 1

kHz) and the optical power at the output of the EOM is detected with a photodiode. The detected signal is

synchronously demodulated and a correction signal is applied on the dc electrode of the MZ EOM. However,

this technique was not appreciated for our application because it adds noise at Fourier frequency of 1 or a few

kHz. This additional noise could disturb the clock performance through the Dick effect [144]. Consequently,

we developed a carrier signal suppression microwave stabilization technique inspired by [145].

Let first explain the basic concept of this servo loop. Owing to the interference mechanism, the power P

at the output of a MZ EOM for a given input power P0 is given by:

P = P0 cos2

(
φ0

2
− π

2

V

Vπ

)
=
P0

2

[
1− cos

(
φ0 − π

V

Vπ

)]
(104)

where φ0 is a phase that results from actual length of the arms and ultimately from the manufacturing

process, V is the control voltage, and Vπ is the value of V needed to shift the differential phase by π.

Intensity mismatch between the two arms results in a residual power at the output not included in Eq.

(104), and expressed by the ‘extinction ratio’ parameter for the modulator. In general, the so-called dark

point, shown in figure 87, is of a great interest. We propose here an original measurement technique to

identify and stabilize the dark point.

At the exact dark point, the transparency (power) is an even function of the control voltage. The

modulator acts as a maximally-efficient frequency doubler for the microwave modulation frequency ω0.
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Figure 87: Transparency of the MZ EOM as a function of the ration between V and Vπ.

Consequently, the fundamental frequency ω0 is ideally absent in the microwave modulation. In this case, we

note and replace in equation (104) φ0 → φdc for the dc point and −πV/Vπ → φp cos(ω0t) for the microwave

modulation. Since the operation is ideally kept at the exact dark point, it is legitimate to assume that φdc

is a small quantity, hence to approximate sinφdc ' φdc and cosφdc ' 1.

Accordingly, Eq. (104) rewrites as:

P (t) =
P0

2

{
1− cos

[
φdc + φp cos(ω0t)

]}
(105)

P (t) ' P0

2

{
1− cos

[
φp cos(ω0t)

]
+ φdc sin

[
φp cos(ω0t)

]}
(106)

Further, we use the following expansions derived from the Jacobi-Anger identity:

cos(z cos θ) = J0(z)− 2J2(z) cos(2θ) + . . . (nωo terms, even n) (107)

sin(z cos θ) = 2J1(z) cos(θ) + . . . (nωo terms, odd n) (108)

The power at the modulator output is given by:

P (t) =
P0

2

[
1− J0(φp) + 2φdcJ1(φp) cos(ω0t) + 2J2(φp) cos(2ω0t) + . . .

]
(109)

Figure 88 reports the experimental setup able to detect the ‘cos(ω0t)’ term of P (t), which is proportional

to φdc. The mixer is saturated at the LO input, and receives a small signal VRF cosω0t at the RF input. In

this condition, it operates as a synchronous detector. The output signal is VIF = 2
`m
VRF , where `m is the

SSB loss of the mixer, and the factor 2 is due to the overlapping of the lower and upper sidebands in the

synchronous conversion.

In the end, the output voltage is

V0 = Kφdc, (110)

where

K =
2

`m
AJ1(φp) ρP0R0 (V/rad) (111)
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Figure 88: Basic scheme for carrier signal suppression stabilization.

Here A is the total voltage amplification (rf and dc), ρ is the photodetector responsivity, ρP0 is the pho-

tocurrent at the frequency ω0, and R0 is the resistance seen by the photodetector.

We implemented this technique in our setup. A fast photodiode at the output of the MZ EOM detects

the optically carried 4.596 GHz microwave signal. The 4.596 GHz detected signal is amplified by a low

noise amplifier with a gain of 52 dB and filtered by a band-pass filter with bandwidth about 50 MHz. This

signal is sent to a microwave mixer to be compared with the 4.596 GHz signal generated by the synthesizer.

An error signal is generated at the output of the mixer and active feedback control is applied to the MZ

EOM dc electrode bias voltage Vbias. Figure 89 shows as a function of the bias voltage Vbias the power

of the first-order optical sidebands (measured with a Fabry-Perot interferometer), the power of the 4.596

GHz optically carried signal detected with a fast photodiode, the dc voltage Vm at the output of the mixer

and the CPT signal height. When Vbias ' 3.1V , the first order optical sidebands power is maximized and

the optical carrier power is minimized. It is then clearly observed that the mixer output voltage exhibits a

sharp zero-crossing point that can be used for keeping the carrier signal suppressed. In our experiment, a

microwave mixer with an ultralow intrinsic offset output voltage is finely selected to prevent being slightly

shifted from the exact dark point. For Vbias ' 3.1V , the CPT signal height is maximized while the CPT

signal dc background is minimized, maximizing the CPT resonance contrast. In figure 89, the mixer output

is also nulled where the optical sidebands power is minimum while the optical carrier signal is maximized

when Vbias ' 6V . In this configuration, the CPT signal and contrast is greatly reduced. This result indicates

the importance to stabilize actively the MZ EOM operating point to the exact dark point for CPT atomic

clock.

Figure 90 shows the 4.596 GHz optical beatnote signal power versus time in free running regime and

stabilized regime. In the free running regime, the carrier suppression is degraded by about 17 dB in 3000 s.

In the stabilized regime, the relative carrier power fluctuations are less than 5×10−3 after 1000 s integration

time. Relative power fluctuations at the output of the MZ EOM are reduced by a factor 100 in the stabilized

regime.
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Figure 89: Impact of the MZ EOM bias voltage Vbias on experimental signals. The laser beam diameter is

2 cm. The cm scale Cs vapor cell (Diameter=2 cm, length=5 cm) is used. (a) Optical sidebands power. (b)

Power of the optically carried 4.596 GHz signal at the output of the MZ EOM. (c) dc signal at the output

of the microwave mixer. (d) CPT resonance signal height.

Figure 90: Power of the 4.596 GHz optically carried signal at the MZ EOM output versus measuring time:

servo loop ON or OFF.
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4.3.5 Laser Power Stabilization

After the carrier suppression is stabilized, the power of optical sidebands for CPT signal generation needs

to be stabilized. The fluctuations of the optical sidebands power could increase the intensity noise. Our

system uses a voltage-controlled liquid crystal device (LCD) attenuator. Figure 91 shows the laser power

stabilization servo loop implemented at the output of the MZ EOM. The LCD consists of a voltage-controlled

half wave plate (HWP) placed between two crossed linear polarizers (Figure 92). Since the HWP rotation

can change polarization direction of the input laser beam, the transmitted laser power can be adjusted by

the voltage applied on the HWP. The LCD is driven by a 2 kHz square signal. Changing the peak to peak

voltage of this signal allows to change the transmitted laser power. A polarizer is placed at the output of the

LCD to control the polarization direction of the laser beam before entering the Michelson interferometer.

The laser power is detected by a low noise photodiode. The detected signal is sent to a DAQ card connected

to a computer. The DAQ card detects 20 samples per second. The detected signal is compared with a digital

reference signal in a LabVIEW program to generate an error signal. The error signal is sent to a PI controller

in the programme. Subsequently, the programme generates a correction signal to adjust the output square

signal amplitude of the Agilent 33220A by GBIP link.

Figure 91: Laser power stabilization servo loop. LCD: liquid crystal device. DAQ: National Instruments

data acquisition card. Agilent 33220A: 20 MHz function arbitrary waveform generator.

Figure 92: Basic scheme of a liquid crystal device. HWP: half wave plate.

Figure 93 shows the LCD output power as a function of the 2 kHz square signal amplitude. This transfer

function presents two linear zones. We set the operating point at the center of the linear zone to build

the laser power stabilization servo loop. Figure 94 shows the laser power detected by the photodiode as a

function of measuring time in free running regime (a) and stabilized regime (b).
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Figure 93: LCD output laser power as a function of the 2 kHz square signal amplitude.

Figure 94: Laser power detected by the photodiode as a function of measuring time. (a): free running

regime. (b): stabilized regime.

Figure 95 shows the relative laser power fluctuations at the output of the LCD in free running regime

(black) and stabilized regime (red). The relative laser power fluctuations in stabilized regime are 2 × 10−6

at 500 seconds integration time, which is almost 4 orders of magnitude lower than power fluctuations in the

free running regime.

Figure 95: Relative laser power fluctuations at the output of the LCD in free running regime (black) and

stabilized regime (red).
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4.4 4.596 GHz Frequency Synthesizers

The short term frequency stability of an atomic clock can be degraded by the local oscillator noise [144] [146].

In a continuous wave (CW) regime atomic clock with resonance frequency ν0, operating at a LO modulation

frequency fm, the frequency stability limitation σy(τ) due to this aliasing effect is given by:

σy(τ) ∼ fm
ν0

√
Sϕ(2fm) (112)

where Sϕ(2fm) is the LO phase noise at Fourier frequency 2f .

This relation indicates that an atomic clock with a relative frequency stability of 10−12 at 1 s, operating

at a LO modulation frequency of 100 Hz requires a LO with a phase noise at 200 Hz lower than about

−80 dBrad2/Hz. For the Cs CPT clock under development, Rodolphe Boudot, my thesis tutor, developed

a frequency-multiplied quartz oscillator-based low phase noise microwave synthesizer used to drive the MZ

EOM.

Figure 96 shows the basic scheme of the microwave frequency synthesizer architecture. The architecture is

inspired from [25] with additional functions.

Figure 96: Basic scheme of the microwave synthesizer linked to the optical setup. BPF: bandpass filter.

FPD: fast photodiode. PNMS: phase noise measurement system. LNA: low noise amplifier.

A high spectral purity 100 MHz quartz oscillator is phase locked through a SP8401 digital frequency

divider by 10 to a high stability frequency-doubled 5 MHz quartz oscillator with a bandwidth of about 60

Hz. At the output of this chain, the 100 MHz signal is frequency doubled to 200 MHz using a Minicircuits

RK3 frequency-doubler and amplified to a power of about 21 dBm with a low noise amplifier (Minicircuits

Gali-84+). After bandpass filtering, the 200 MHz signal is used to drive a Non-Linear Transmission Line

(NLTL) device that generates harmonics up to 20 GHz. The 9.2 GHz harmonics generated by the NLTL is

bandpass filtered with a 50 MHz bandwidth bandpass filter and amplified to a power of about 8 dBm with a

low noise microwave amplifier (AML612L2201). Microwave isolators are added for 50 Ω impedance matching

and to prevent undesired feedback. The 9.2 GHz is sent to a mixer to be compared with a 9.192 GHz signal

from a dielectric resonator oscillator (DRO). The resulting 7.368 MHz beatnote signal is low-pass filtered and

compared to the 7.368 MHz from a direct digital synthesis (DDS) to generate an error signal. The error signal

is filtered, processed in a PI controller and used to phase lock the DRO to the frequency-multiplied 100 MHz

signal with a bandwidth of 200 kHz. A low phase noise 9.192 GHz signal with a microwave power of about
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13 dBm is then obtained at the output of the DRO. The signal is splitted into two different arms to generate

9.192 GHz or 4.596 GHz frequency outputs. A low noise frequency divider is used to frequency divide the

9.192 GHz signal into the 4.596 GHz signal. The output microwave signal is isolated, bandpass filtered and

amplified with a 4-12 GHz bandwidth high power amplifier to drive the MZ EOM with a microwave power

of about 23-24 dBm. Figure 97 shows a photograph of the microwave synthesizer. All the components of the

synthesizer, except the 10 MHz quartz oscillator source and the DDS, are inserted and mechanically fixed in

a 12 dm3 rack. The total power consumption of this rack is 12.9 W.

Figure 97: Photograph of the microwave frequency synthesizer. The 10 MHz quartz oscillator and the DDS

are not included here.

Figure 98 plots absolute phase noise performances of the key signals of the system. The phase noise

spectrum L(f) = 1
2Sϕ(f) of the free running 10 MHz quartz oscillator pilot is given in dBc/Hz by the power

law (−145)f0 + (−127)f−1 + (−121)f−3. The phase noise spectrum L(f) of the free running 100 MHz

crystal oscillator is given in dBc/Hz by the power law (−128)f0 + (−121)f−1 + (−70)f−3. The free running

DRO phase noise spectrum exhibits from f = 1 Hz to 10 MHz a f−3 slope with +12 dBc/Hz at 1 Hz offset

frequency. Its phase noise floor for f > 10 MHz is about −175 dBc/Hz. The 9.192 GHz output signal from

the synthesizer presents phase noise performances of −170, −120 and −61 dBc/Hz at f = 10 MHz, 10 kHz

and 1 Hz respectively. The peak at 200 kHz is attributed to the DRO PLL gain while the slope change at 55

Hz is due to the bandwidth of the 100 MHz oscillator PLL. At the output of the frequency divider by 2, the

4.596 GHz signal phase noise performances are as expected 6 dB lower than those of the 9.192 GHz signal.

The phase noise floor of the 4.596 GHz signal is limited by the frequency divider residual noise at a level

of −149 dBc/Hz. No phase noise degradation is observed between the 9.192 GHz optical beatnote signal at

the output of the EOM and the direct synthesis output for f < 1 kHz. For higher Fourier frequencies, the

phase noise floor is limited by the low input power (about −51 dBm) of the microwave amplifier placed at

the output of the fast photodiode used to detect the optical beatnote. With equation 112, the phase noise

performances of the optical beatnote should be compatible with the development of a CPT atomic clock
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with frequency stability better than 2× 10−13 at 1 second integration time.
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Figure 98: Absolute phase noise performances of key signals of the frequency synthesizer.

102



4.5 Michelson system

A key part of our laser system is the Michelson delay-line system placed at the output of the EOM. This

system is shown in Figure 99.

Figure 99: Michelson delay-line and orthogonalizer system. M1, M2: mirrors. QWP: quarter wave plate.

HWP: half-wave plate.

At the output of the MZ EOM, both optical lines of fixed linear polarization pass through a polarization-

beam splitter cube (PBSC) to be divided into two sub-beams in the two arms of a Michelson interferometer.

A half wave plate is placed before the input of the Michelson system in order to balance the laser intensity in

both arms. A quarter wave plate is placed in each arm to rotate as desired the polarization of each sub-beam

and to ensure that no optical power is sent back to the system input. The splitted laser beams traverse

X → Y →M1→ Z and X → Y →M2→ Z paths respectively.

Let’s assume that the polarizations of both sub-beams beams are along the x and z axes respectively and

that the frequencies of the two optical lines in each arm are ω1 and ω2. The polarizations of the optical lines

ω1 and ω2 at the output of the Michelson interferometer are presented by a unit vector:

ε̂(ω1) =
1√
2

(x̂+ e2ik1∆Lŷ)

ε̂(ω2) =
1√
2

(x̂+ e2ik2∆Lŷ)

(113)

where k1 and k2 are the wavevector for the ω1 and ω2 fields respectively, 2∆L is the optical path difference

between the two paths.

The two optical lines are orthogonally polarized to each other when the following conditions are satisfied
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[108].

2k1∆L = 2mπ

2k2∆L = (2n+ 1)π
(114)

with m and n present integers.

A fine adjustment of both quarter wave plates makes possible to obtain at the output of the polarizing cube

two superimposed beams linearly polarized with perpendicular angle and differing by a phase delay. The

optical path difference of the Michelson system induced a time-delay between both orthogonally polarized

optical lines. A displacement of the mirror of λ0/2 shifts the intensity peaks of the beatnote on one beam

by half a hyperfine period with respect to the peaks of the other beam. A quarter wave plate at the output

of the Michelson interferometer allows to create two time-delayed sets of bichromatic circularly polarized

optical fields rotating in opposite directions. This is the basic principle of the PPOP scheme.

The evolution of the polarizations of the two optical lines is analyzed using a linear polarizer at the output

of the system. The results are shown in Figure 100. The distance between two peaks is about 16 mm,

corresponding to half the wavelength of the clock transition. The optical path difference between both arms

of the interferometer can be written:

∆L = 2(x− x0) (115)

where x is the mirror position and x0 is the position where the optical path differences is null or a multiple

of λ0 = 32.6mm.

Figure 100: Polarization analysis for the output beams. Black curve: the field at ω1. Red curve: the field at

ω2.

The theoretical laser transmitted power, described in section 3, with θ = 2π(x− x0)/λ0, can be written:

S = Smaxe
−αd cos2(2π

x−x0
λ0

)L (116)

where S is the transmitted power, Smax the signal at CPT resonance maximum, αd the absorption coefficient
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and L the cell length.

In our experimental setup, the actual Michelson system is not stabilized. For further studies, Hugo Dzuira

(along a training period) developed a compact box that will contain all components of the Michelson system

(Figure 101(a) and 101(b)). One arm of the system will be fixed with mirrors, QWP and cube glued. The

length of the other arm will be certainly actively controlled using a PZT actuator. Nevertheless, additional

measurements are to be done to fix specifications of the system. Eventually, the whole box will be actively

temperature controlled.

(a) (b)

Figure 101: 3D model of Michelson system rack.
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4.6 Physics Package

The physics package is made of a Cs-buffer gas cell, an oven to control the temperature of the cell, a

solenoid to apply a static magnetic field and a double-layer mu-metal shield to protect the atoms from

ambient electromagnetic perturbations. The package is suitable for different cell dimensions. We tested

three different Cs vapor-buffer gas cells. Figure 102 shows the photographs of cells 1, 2 and 3. Their main

characteristics are reported in Table 7. Cell 1 is a microfabricated cell realized according to the process

described in [147] and studied in [83], whereas cell 2 and cell 3 are glass-blown cm-scale pyrex vapor cells.

We thank Stéphane Guérandel from LNE-SYRTE, Observatoire de Paris, for lending us cells 2 and 3.

Figure 102: Tested Cs vapor-buffer gas cells. (a): cell 1. (b): cell 2. (c): cell 3.

Figure 103 shows the cell oven. The oven is heated by a coaxial wire. Amagnetic thermistance and

heater are used. The cell temperature is stabilized using a home-made external high-precision temperature

controller. Figure 104 shows typical relative temperature fluctuations of the cell at a set point of 38◦C. These

results correspond to a typical temperature variation of 0.9 mK and 100 µK at 1 s and 1000 s respectively.

Figure 103: Oven used to control the cell temperature.

In order to split the Zeeman sublevels and to control the static magnetic field, the oven is placed into a

mechanical tube surrounded by a solenoid as figure 105 shows. The coil is connected to a Thorlabs LDC 201

C ULN laser diode current driver to generate the magnetic field. Measuring the frequency splitting between

the transitions |F = 3,mF = −1〉 → |F = 4,mF = −1〉 and |F = 3,mF = −1〉 → |F = 4,mF = −1〉
versus the solenoid current, the relation between the magnetic field B and the current I such as B = αI was
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Table 7: Characteristics of tested buffer gas filled cells and relevant parameters. For buffer gas mixtures, r is

defined as the ratio PAr/PN2
between Ar and N2 partial pressures. The experimental data are the features of

the cell, the buffer gases, the laser beam, the contrast and the CPT linewidth. All other data are calculated

values.

Cell 1 2 3

Buffer gas Ne N2-Ar N2-Ar

Buffer gas total pressure P (Torr) 75 15 15

Buffer gas ratio r - 0.4 0.4

Cell length L (cm) 0.14 1 5

Cell diameter D (cm) 0.2 1 2

Cell temperature Tcell (◦C) 80 38 32

Cs atomic density nCs (at/cm3) 4.0 × 1012 1.6 × 1011 9.0 × 1010

Cs-wall collisions relaxation rate γw (rad/s) 2470 442 374

Cs-Buffer gas relaxation rate γbg (rad/s) 16 19.4 19.2

Spin-exchange relaxation rate γse (rad/s) 2040 73 42

Ground-state relaxation rate γ2 (rad/s) 4520 534 435

CPT linewidth FWHM (kHz) 1.4 0.17 0.14

Laser power PL (mW) 0.5 0.5 0.5

Laser diameter (cm) 0.2 0.6 0.6

Rabi Frequency Ω (rad/s) 2.9 × 107 9.5 × 106 9.5 × 106

Excited level relaxation rate Γ? (rad/s) 5.9 × 109 1.8 × 109 1.8 × 109

Optical transition width Γ?/2π (MHz) 937 292 292

Optical transition shift (MHz) -155 -136 -131

Number of Cs atoms in the laser beam 1.8 × 1010 4.5 × 1010 13 × 1010

Experimental contrast (%) 6 10.5 50

Experimental CPT linewidth (kHz) 1.32 0.59 0.42
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Figure 104: Relative temperature fluctuations of the cell at a set point of 38 ◦C.

measured to be α = 44.52 mG/mA.

Figure 105: Mechanical tube with the solenoid to generate the static magnetic field.

Figure 106 shows the relative fluctuations of the current source when I = 3.5 mA. They are measured to

be 6×10−4 and 3×10−5 at 1 s and 10000 s respectively. From these performances, we evaluate the expected

clock frequency stability limitation due to the variations of the magnetic field (induced by variations of the

solenoid current). For a current I = 3.5 mA, we have B = αI = 155.75 mG. The current stability is about

3 × 10−5 at 10000 s. This means that current fluctuations don’t exceed 0.1 µA at 10000 seconds. For the

magnetic field, the fluctuations dB is limited to 1×10−4 mA · 44.5 mG/mA = 4.45×10−3 mG= 4.45×10−6

G. The frequency shift of the 0-0 transition ∆νcs caused by the magnetic field variations is:

∆νcs = 2 ·B · dB · 427(Hz/G2) ≈ 0.6 mHz (117)

This limits the clock frequency stability to a level of 6.5×10−14 at 10 000s. This result can be improved by re-
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ducing the ratio between magnetic field and current, this ratio equals 44.5 mG/mA in our case. Modifications

will be realized in a near future to reduce this limitation.

Figure 106: Relative fluctuations of the current source when I = 3.5 mA.

Figure 107 shows a photograph of the total physics package.
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Figure 107: Photograph of the physics package of Cs vapor-buffer gas cell. (a): µ metal shell. (b): Foam to

keep temperature. (c): µ metal shell. (d): mechanical tube with the wound coils. (e): oven. (f): support of

vapor cell.
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5 Continuous and Ramsey spectroscopy with push-pull optical

pumping

This section is devoted to report CPT spectroscopy results we obtained with our experimental set-up. These

results were reported in [149]. In the first part, we present the results of CPT characterization in continuous

wave regime. The efficiency of the PPOP technique to increase greatly the number of atoms involved in the

clock transition is demonstrated. The existence of ∆m = 2 transitions, neighbours to the clock 0-0 transition,

induced by the coexistence of left and right circular polarization in the PPOP scheme is pointed out. For

different cells, we measured the impact of the laser intensity onto the CPT resonance line (linewidth, contrast,

linewidth/contrast). CPT resonance with different beam diameters or under different optical transitions is

also reported. CPT resonances with high-contrast are reported using the PPOP scheme. The contrast is

found to be increased with increased laser intensity at the expense of the CPT line broadening. To circumvent

this issue, we propose in the second part an original setup allowing the detection of high-contrast and narrow

Ramsey fringes by combination of PPOP and a Ramsey-like temporal pulsed interrogation. These results

were reported in [150].

5.1 CPT spectroscopy with PPOP in CW regime

5.1.1 Zeeman Spectrum : PPOP versus circular polarization

Figure 108(a) and 108(b) show a Zeeman spectrum obtained with the cell 2 with classical circular polarization

and PPOP, respectively, for identical total incident laser intensity. It is clear that most of the atoms are

lost in extreme Zeeman sublevels with circular polarization. At the opposite, the number of atoms that

participate to the central clock transition is greatly favored with PPOP. In this case, the Zeeman spectrum

is found to be well symmetrical and the clock resonance contrast is here 5.5 %. Figure 109 shows a Zeeman

spectrum obtained in the cell 3 with PPOP. The 0-0 Zeeman transition in this case is even more favored.

The static magnetic field is only homogeneous over 2 cm long, so the extreme Zeeman transitions are not

so well symmetrical. On this figure, it is pointed out that neighbor Zeeman transitions are ”dirty”. This is

explained by the fact that the physics package we used at this moment only ensured a homogeneous static

magnetic field along a length of 2 cm as shown on figure 110. Figure 111 shows that extremely high contrasts

can be obtained in the cell 3 by operating with high laser intensity. In this case, a CPT resonance with a

contrast of 78 % is detected with a laser beam diameter of 6 mm. To our knowledge, this value is among

the best contrasts ever measured on a CPT resonance.
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Figure 108: Zeeman spectrum detected in the cell 2. The total laser power is 1.05 mW. The beam diameter

is 1 cm. The static magnetic field is not the same for both curves (without consequence on the CPT signal).

(a): Circular polarization (b): Push-pull optical pumping.
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Figure 109: Zeeman spectrum detected in the cell 3. The total laser power is 800 µW. The beam diameter

is 6 mm.
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Figure 110: Magnetic field in the physic package as a function of the position in magnetic field.
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Figure 111: CPT resonance detected in the cell 3. The laser power is 3 mW. The beam diameter is 6 mm.

The contrast is 78 %.
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5.1.2 Impact of the mirror position

Figure 112 displays the light power transmitted through the cell 3 as a function of one mirror position the

Michelson interferometer.

Figure 112: Transmitted light power through cell 3 and linewidth of the CPT resonance versus the position

of the mirror of one arm of the interferometer. Squares: measured light power, dotted line: light power far

from CPT resonance (large Raman detuning). The dashed line is a fit of Eq. 116. The solid line is a fit of

Eq. (116) with an additional background. White dots: CPT resonance width.

The squares are the experimental data. The dotted line is the light power far from CPT resonance for

a large Raman detuning. The distance between two maxima is 16 mm which is half the wavelength of

the clock transition. The optical path difference between both arms of the interferometer can be written

∆` = 2(x− x0), where x is the mirror position and x0 the position where the optical path difference is null

or a multiple of λ0 (32.6 mm).

The theoretical output signal is given by Eq. (116). The dashed curve is a fit of experimental data with

αd and x0 the adjustable parameters. The agreement is not good. The solid line on Fig. 112 is a fit of Eq.

(116) with an additional background. Surprisingly, the agreement is found to be very good. Nevertheless,

the fitted value of the background is significant and very close of the off-CPT resonance signal. We have

no explanation for this and Eq. (116) with a background added can be considered as a phenomenological

model.

In our experimental conditions, the last term of Eq. (91) is negligible and can not explain the disagreement

between the theoretical expression and experimental data. At the opposite, the latter could be explained

by an oversimplification of our model developed in section 3.6.3. Indeed, our model is based on analytical

expressions from [117] calculated for a closed four level scheme whereas in our experience, atoms can circulate

on the 16 Zeeman sublevels of the ground state. At CPT resonance (θ = π/2), a significant part of the atoms

are pumped in the dark state. When θ deviates from π/2, a growing part of these atoms leaks towards other

sublevels by absorption and spontaneous emission. Then, the atomic population of the states involved in the

dark state decreases. This implies that the absorption coefficients αd, α1, α2 of Eq. (91) are not constant
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but θ dependent. This could explain that experimental peaks are sharper than in the theoretical case. For

further study, a complete analytical calculation does not seem possible. A full numerical calculation taking

into account all the sublevels and all the optical transitions is required. The leak of the (m = 0) clock level

populations when θ deviates from π/2 corresponds to an increase of the hyperfine coherence relaxation γ2,

and consequently of the width of the CPT resonance. This is confirmed by the measurement of the resonance

width as a function of θ, shown by white dots curve on Fig. 112. It is clearly seen that the CPT width and

the signal are in opposite phase.
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Figure 113: CPT spectra for various static magnetic fields: (a): 45 mG, (b): 1.335 G, (c): 2.07 G, (d): 2.531

G. Neighboring single Λ ∆m = 2 transitions close to the central clock transition are noted (1) and (2). For

clarity of the figure, the Zeeman frequency shift of the clock transition is compensated for each value of B.

On Fig. 112, the difference between minimum experimental values and the off-CPT resonance signal

(dashed line) can be explained by the presence of neighboring ∆m= 2 CPT resonances close to the clock

transition. For illustration, Fig. 113 shows typical CPT spectra observed in the cell 3 for various static

magnetic fields. ∆m= 2 transitions connecting levels 2′ → 0 → 1′′ and 2′′ → 0 → 1′ are noted on Fig.

113 (1) and (2) respectively. For low static magnetic fields, adjacent peaks from ∆m= 2 transitions are not

resolved. When the static magnetic field is increased, resonances (1) and (2) move apart the clock transition

with opposite directions. We measured a sensitivity of − 1141 Hz/G + 26 Hz/G2 and + 1125 Hz/G +

24 Hz/G2 for the frequency splitting ν(1) − ν0 and ν(2) − ν0 respectively, that is in reasonable agreement

with theoretical values ν = ±1116.5 Hz/G +27 Hz/G2. As expected by calculations, we observed that

the amplitude of the neighboring ∆m= 2 transitions resonances does not change with the mirror position.

Compared to the clock transition, the relative amplitude of the ∆m = 2 transitions was measured to be 6%

in the experimental conditions of Fig. 112. Note that the presence of these ∆m= 2 transitions induces a

broadening of the CPT clock resonance and can cause a supplemental sensitivity to the static magnetic field.

5.1.3 Impact of the laser intensity

Figure 114(a), 114(b), 114(c), Figure 115(a), 115(b), 115(c) and Figure 116(a), 116(b), 116(c) display the

linewidth, contrast and linewitdh-contrast ratio versus the laser intensity for the cells 1, 2 and 3 respectively.
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As expected and already observed for single Λ schemes [78], the linewidth increases with higher laser intensity.

For all the cells, the CPT linewidth-laser intensity dependence is well fitted by a linear function and is

measured to be (0.21 I+ 1.32) kHz, (0.19 I+ 0.59) kHz and (0.058 I+ 0.42) kHz for the cells 1, 2 and

3 respectively (I is the laser intensity in µW/mm2). The resonance contrast increases with higher laser

intensity because of increased optical pumping rate. This behavior is similar to the one reported in [28].

For a laser intensity of 30 µW/mm2, the contrast is measured to be 4.7 %, 10.2 % and 45 % for the cells

1, 2 and 3 respectively. For the cell 1 (microcell), the maximum contrast is measured to be about 6 %.

This value is only 2-3 times higher than the contrast obtained with classical circular polarization. The

linewidth-to-contrast ratio is minimized for laser intensities of about 3, 5 and 30 µW/mm2 for cells 1, 2 and

3 respectively.

(a) (b)

(c)

Figure 114: CPT resonance contrast (a), FWHM (b) and FWHM/Contrast (c) as a function of the laser

intensity for cell 1. The laser beam diameter is 2 mm. The cell temperature is 80 ◦C.
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(a) (b)

(c)

Figure 115: CPT resonance contrast (a), FWHM (b) and FWHM/Contrast (c) as a function of the laser

intensity for cell 2. The laser beam diameter is 6 mm. The cell temperature is 32 ◦C.
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(a) (b)

(c)

Figure 116: CPT resonance contrast (a), FWHM (b) and FWHM/Contrast (c) as a function of the laser

intensity for cell 3. The laser beam diameter is 6 mm. The cell temperature is 38 ◦C.
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From equations 34 and 20, the shot noise limited short-term frequency stability of an atomic clock can be

derived by the CPT resonance FWHM/Contrast ratio. Figure 117 shows the shot noise limited short-term

frequency stability as a function of the laser intensity for the three cells. For all the cells, the clock frequency

stability is improved with increased laser intensity until a plateau after which the clock stability slightly

degrades. The optimum laser intensity Iopt for best stability performances is measured to be 1-2 µW/mm2,

10 µW/mm2 and 33 µW/mm2 for cell 1, cell 2 and cell 3, respectively. For the largest cell, the cell 3, only

considering photon shot noise, the expected clock short-term frequency stability is close to 2 × 10−14 for a

laser intensity of 33 µW/mm2. This value is about one order of magnitude better than frequency stability

performances of state-of-the-art vapor cell frequency standards [23].

Figure 117: Estimated shot noise limited clock short-term frequency stability at 1 s for the different cells

with PPOP interaction. The combination of Equations 34 and 20 is used for the calculation. The laser beam

diameter is 2 mm for cell 1, 6 mm for cells 2 and 3.
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5.1.4 Impact of the laser beam diameter

Figure 118(a), 118(b) and 118(c) shows in the case of the cell 3 the CPT contrast (a), FWHM (b) and

FWHM/Contrast ratio (c) as a function of the laser intensity for two different laser beam diameter: 6 mm

and 2 cm. As expected, a larger beam diameter, that allows to make interact more atoms with light, leads

to a better contrast and a narrower linewidth. With a smaller beam diameter, the CPT linewidth is limited

by the time-of-flight of the atoms across the laser beam.

(a) (b)

(c)

Figure 118: CPT resonance contrast (a), FWHM (b) and FWHM/Contrast (c) as a function of the laser

intensity for different laser beam diameter: 6 mm (blue) and 2 cm (red). The cell temperature is 33◦C. The

optical sidebands are generated by a MZ EOM modulated at 9.192 GHz.
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5.2 Detection of CPT Ramsey fringes

High-contrast CPT resonances were obtained in continuous regime with the PPOP scheme. However, high

contrasts are obtained with high intensity laser beam that induces CPT FWHM broadening. To circumvent

this issue, inspired by [26], we developed an original simple architecture laser system combining for the first

time PPOP and Ramsey spectroscopy for the detection of high contrast and narrow Ramsey fringes. The

experimental setup is presented in the section 5.2.1. Preliminary characterization of Ramsey fringes are

presented and studied.

5.2.1 Experimental setup

Figure 119 shows the experimental setup for the detection of Ramsey fringes [150]. It is about perfectly

similar to the one developed for the CW interaction. The only difference is that here, the signal from the

microwave synthesizer that drives the EOM is switched on and off with a fast switch. The MZ EOM operates

both as a a sideband generator and a light switch to make the atoms interact with a sequence of optical

pulse trains. The operating point of the MZ EOM is fixed at the carrier signal suppression point. The use

of the EOM MZ as a light switch prevents the use of an additional acousto-optic modulator (AOM) for light

switching. In the first direction, the laser beam is analyzed by a Fabry-Perot interferometer (FPI) or a fast

photodiode and a spectrum analyzer. In the second direction, the modulated light of fixed linear polarization

is sent through the Michelson interferometer to create the PPOP scheme. The laser light is sent into the

cell 3. The resulting signal is analyzed by a computer that drives the microwave switch and the synthesizer

output frequency. CPT spectroscopy is realized by scanning the local oscillator frequency around 4.596 GHz.

Figure 119: Ramsey fringes detection experimental setup. FPI: Fabry-Perot interferometer. S.A: microwave

analyzer. M1 and M2: mirros. The inset shows the energy-level diagram involved in Cs vapor with PPOP.

The clock transition is the ground state 0-0 transition.
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5.2.2 Pulsed interaction with a MZ EOM

Figure 120 displays the optical harmonics power (height of the peaks at the output of the FPI) and the

CPT signal (in continuous regime) at the output of the MZ EOM versus the bias voltage V when the RF

power is continuously activated. The CPT signal height is found to be maximized for the so-called dark point

V = Vd = 2.6 V where the optical carrier is optimally rejected and the power in first-order optical sidebands

is maximized. At the opposite case, the CPT signal vanishes for V = Vc = 5 V where the optical carrier

is maximized and first-order optical sidebands power minimized. We checked that when no RF modulation

is applied, the output optical power is minimized (carrier suppression point) for V = Vd. According to the

transfer functions reported above, we implemented the Ramsey sequence described in figure 121 to make the

atoms interact with a sequence of optical pulse trains. This pulsed interaction scheme is inspired from [26].

0 2 4 6 8
0

100

200

300

400

500

Vc C
P

T 
si

gn
al

 h
ei

gh
t (

a.
 u

)

H
ar

m
on

ic
s 

po
w

er
 (a

. u
)

P+1 = P-1

EOM bias voltage V (V)

Vd

0

500

1000

1500

2000

2500

P0

Figure 120: Optical power in the carrier (squares), first-order sidebands (circles) at the output of the MZ

EOM and height of the CPT signal (triangles) versus the EOM bias voltage V .

The first pulse allows to pump the atoms in the CPT state during a time τp. For this purpose, the RF

power is switched on using a microwave switch (Mini-Circuits ZASW-2-50-DR+) and the EOM bias voltage

is adjusted to Vd to reject the optical carrier. Then, the RF power is turned off while the EOM bias voltage

is kept to Vd to switch off the light. During this period, the atoms evolve freely in the dark for a time T .

The next pulse is used both for the atomic signal detection and pumping again the atoms in the CPT state.

The EOM-based light switching time was measured to be < 10 µs. The signal is typically detected a time

τd = 10 µs after the pulse trigger and averaged on a measurement time tm = 25 µs. The Ramsey time T is

ultimately limited by the microwave coherence relaxation time T2 in the CPT cell.
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Figure 121: Pulsed sequence to scan and detect the CPT Ramsey fringes. The CPT pumping time τp is

typically 1-2 ms. The Ramsey time T is of a few ms.
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5.2.3 Detection and preliminary characterization of CPT Ramsey fringes

Fig. 122 reports, on a large span of 30 kHz, Ramsey fringes detected with τp = 2 ms and T = 3 ms for a

total laser input power of 3.8 mW. The central fringe exhibits a linewidth ∆ν = 1/(2T ) = 166 Hz with a

contrast C of 33 %. In order to highlight the efficiency of the PPOP technique, we compare on Fig. 123

Ramsey fringes obtained with standard circular polarization and push-pull optical pumping for identical

experimental conditions. The contrast of the central fringe is found to be 31 % with push-pull interaction

scheme whereas it is only 2.8 % with circular polarization.
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Figure 122: 166-Hz width Ramsey fringes with a contrast of 33 %. Experimental conditions: T = 3 ms, τ =

2 ms, PL = 3.8 mW.

Figures 124(a) and 124(b) show the contrast and the contrast/linewidth ratio of the central Ramsey

fringe versus the Ramsey time T . We note that contrasts as high as 50 % and 24.2 % are obtained for T

= 1 ms and T = 3 ms respectively. For T = 10 ms (fringe linewidth = 50 Hz), the contrast of the Ramsey

fringe is still significant (3 %). Experimental data on Fig. 124(a) are well fitted by an exponential decay

function with a time constant of about 3 ms. This value can be interpreted as an experimental estimation

of the CPT hyperfine coherence lifetime T2. The ratio contrast/linewidth is maximized for T = T2 = 3 ms.

This result indicates that a Ramsey time T = T2 is a good trade-off between a large signal and a narrow

fringe for atomic clocks applications, as already observed in [23] and [148].

Figure 125 plots the contrast of the central fringe versus the laser power PL for T = 5 ms and τp = 2

ms. The contrast of the resonance is increased with increased laser power until PL ' 3 mW before reaching

a plateau. For PL=1 mW, the contrast is found to be about 10 %. For comparison, in [25], a contrast of

4.6 % was obtained at T = 5 ms for a laser intensity 2 times lower in a similar cell. Contrary to the CW

regime where the CPT linewidth broadens with increased laser power, we measured in the pulsed case that

the fringe linewidth does not depend on the laser power and narrows as 1/(2T ).
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Figure 123: Comparison of Ramsey fringes obtained with standard circular polarization (dotted line) and

push-pull optical pumping (solid line). Experimental conditions: T = 3 ms, τ = 2 ms.
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Figure 124: Contrast (a) and contrast/linewidth ratio (b) of the central Ramsey fringe versus the dark time

T . The solid line on (a) is an exponential decay function fit to experimental data. Experimental conditions

are: τ = 2 ms, PL = 3 mW.

A possible drawback of the used MZ EOM is to exhibit a relatively low extinction ratio of only 24dB.

In order to estimate its effect (see Fig. 126), we degraded intentionally the light extinction by changing

the EOM bias voltage V during the free evolution time T . The laser power during the pumping time is 3.6

mW. Maximum and minimum optical power seen by the atoms in the dark time are respectively 4.6 mW

and 25.6 µW, limited by the EOM extinction ratio. Note that MZ EOMs with extinction ratio of 60 dB are

commercially available. Such devices could allow to reduce greatly the minimum optical power to a level of

a few nW during the time T . The CPT fringe signal is measured to decrease rapidly when the laser power in
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Figure 125: Contrast of the central fringe versus the laser power PL. Experimental conditions are: T = 5

ms, τp = 2 ms.

the time T is increased. The signal is found to vanish completely for PL > 1 mW. Interestingly, for a residual

light power < 100 µW, a plateau seems to be reached indicating that a better light extinction does not bring

a relevant improvement on the clock signal. Nevertheless, we expect that a total light extinction during the

time T is of great importance and to be preferred in order to minimize light shift effects for atomic clocks

applications.

The shot-noise limited frequency stability of the pulsed atomic clock can be estimated by:

σy(τ) ' ∆ν

ν0

1

C

√
hν

Po

√
Tc
tmτ

, (118)

where ∆ν is the fringe width, ν0 is the clock frequency, C is the contrast of the resonance, hν is the energy

of a single photon, P0 is the laser power at the output of the cell, Tc = T + τp is the clock cycle time, tm is

the length of the detection window and τ is the averaging time of the measurement. From the clock signal

shown in Fig. 122, Eq. (118) yields σy(τ) ' 9× 10−15 at 1 s averaging time. This value is about one order

of magnitude better than shot-noise estimations in the CW regime [149]. In the real life, this result will be

degraded by various noise mechanisms such as the detector noise, the laser intensity and frequency noise or

the oscillator phase noise through the Dick effect [144]. In the first step, we estimate that demonstrating an

experimental frequency stability better than 10−12 at 1 s integration time with our system is a reasonable

objective.
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Figure 126: CPT fringe peak-peak signal versus laser power seen by the atoms in the Ramsey time T . The

CPT signal for the lowest power point is normalized to 1. The inset shows a zoom on first points of the

graph.
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6 Annex Works

At the beginning of my thesis, all components of the laser system at 895 nm I presented were not available.

Waiting for their reception, I started in collaboration with Eric Kroemer (master’s degree) the development

of a demonstration experiment at 1550 nm to produce two frequency-splitted orthogonally polarized optical

lines with a simple laser system. These studies were realized thanks to the precious help of J. M. Merolla,

CNRS researcher in Optics Department from FEMTO-ST. At this wavelength, numerous fiber-optics compo-

nents are available, including Dual Phase Shift Key (DPSK) modulators we used for optical lines separation

at the output of a MZ EOM. This section aims to report very preliminary results we obtained in this domain.

An interesting point to highlight is that 780 nm wavelength (Rb atom transition line) can be generated from

frequency-doubling of a 1560 nm source. Results presented here could be potentially used for Rb atom

spectroscopy using telecom-wavelength based components. Some interesting results were reported recently

to probe Rb atoms with 1.5 µm laser sources [151].

Moreover, during my thesis, I participated to different measurements focused on the use of microfabri-

cated cells. When I started my thesis (october 2010), the European MAC-TFC project was in progress [19].

This section reports experimental setups we implemented to operate a Cs-Ne microcell-based table-top Cs

CPT clock prototype. CPT spectroscopy on the Cs D1 line was realized in Cs-Ne microcells to optimize

the short-term frequency stability performances of the clock whereas all studies had been done with D2 line

VCSEL in the past of the project. Advanded light shift cancellation (LSC) techniques were implemented to

improve the frequency stability performance of the clock for mid and long term integration times. Our re-

ported results are among state-of-the-art frequency stability performances for a microcell-based CPT atomic

clock. These results, published in IEEE UFFC [152], are presented in this section.

Moreover, in collaboration with FEMTO-ST MN2S department in charge of the microcell fabrication, I

participated to study the impact of the presence of getters on hermetically sealed micromachined Cs-Ne cells.

Our basic CPT tests allowed to confirm that the presence of getters allows to improve the microcell internal

atmosphere purity and to reduce greatly undesired impurities. These results, detailed in this section, were

published in Journal of Micromechanics and Microengineering [153].
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6.1 Dual-frequency and dual-polarization modulated laser system at 1.5 µm

Figure 127 shows the basic scheme of a preliminary laser system we developed at 1.5 µm. A fiber pigtailed

DFB diode laser is used. A MZ EOM is modulated by a microwave signal to generate two frequency-separated

optical sidebands. The output carrier signal of the MZ EOM is suppressed by adjusting the bias voltage on

the dc electrode of the MZ EOM. A DPSK demodulator (detailed later) is used to separate the two optical

sidebands. At the output of the DPSK, one of the optical sidebands is rotated in polarization by 90◦ with

a half wave plate. Eventually, both optical sidebands are recombined with a combiner into two orthogonally

polarized sidebands. Figure 128 shows a photograph of the laser system.

Figure 127: Basic scheme of the preliminary architecture at 1.5 µm.
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Figure 128: Photograph of the laser system at 1.5 µm.
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6.1.1 1550 nm DFB laser source

A low noise and stable laser source at 1550 nm is needed in our system. Three different commercial laser

sources were available in our laboratory when I started this project: a Agilent tunable laser source, a RIO

Orion DFB laser diode and a Teraxion DFB laser diode. In order to select the best performance laser source,

we built a measurement system, inspired by [154], to measure the frequency noise of each laser source. Figure

129 shows the frequency noise measurement system. In this measurement setup, frequency fluctuations of

the laser are converted at the output of the DPSK demodulator as intensity fluctuations. This intensity noise

is converted into a voltage signal by a photodiode and transimpedance amplifier. This signal is analyzed

by a FFT analyzer. The system is duplicated to realize cross-correlation measurements and to reject no

correlated noise sources in both arms. Preliminary RIN measurements are realized to check that we are not

limited by laser amplitude noise. The DPSK demodulator transfer function is:

K(ν) =
1

2
+

cos(2πντ)

2
(119)

with ν the optical frequency and τ = 1/FSR when FSR is the DPSK free spectral range. In our case, τ =

40 ps. We write:
δK(ν)

δν
= −πτ sin(2πντ) (120)

For a given wavelength, τ is finely adjusted by adjusting the laser temperature or current such as we got

(sin(2πντ) = 1). Then, we obtain:

K(ν) = K0 + δν(
δK(ν)

δν
)ν0 (121)

The conversion factor to obtain the laser frequency noise is:

Cν =
δν

δV
=

1
δK(ν)
δν PoptρRPDG

=
1

πPoptτρRPDG
(122)

with Popt the optical power at the input of the DPSK, ρ the photodiode quantum efficiency, RPD the load

resistance of the photodiode and G the amplifier gain. The average voltage VDC at the output of the amplifier

is:

VDC =
PoptρRPDG

2
(123)

The factor of conversion Cν can be simplified by:

Cν =
1

2πτVDC
(124)

Before the measurement, we adjust the laser frequency (or the DPSK dc bias voltage) in order to put both

outputs of the DPSK in quadrature. Voltages of both outputs of the DPSK are then equal. In this case, the

DPSK is operating in the middle of the linear part of the transfer function.

Figures 130 shows the frequency noise of each laser source for 0 dBm laser power. The RIO DFB laser is

found to be the best source with a frequency noise of −50 dBMHz2/Hz at f= 10 Hz. We selected this diode

laser for tests.

We measured the relative frequency stability of the beatnote signal between the RIO DFB and the Agilent

laser source (Figure 131). The frequency stability is measured to be 9.5×10−10 at 1 second integration time,

and increases to 3.5×10−8 at 1000 seconds. Figure 132 reports the relative intensity fluctuations of the RIO

DFB diode along time. It is measured to be 2× 10−4 at 1 second and lower than 1× 10−3 to 2000 seconds.
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Figure 129: Frequency noise measurement system. The DPSK is used as a amplitude-frequency converter.

Figure 130: Frequency noise of the different laser sources: Agilent (Red), RIO (Black) and Teraxion (Blue).

Figure 131: Relative frequency stability of the beatnote signal between the RIO DFB diode and the Agilent

laser source.
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Figure 132: Relative intensity fluctuations of the RIO DFB diode.
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6.1.2 Dual Phase Shift Key demodulator (DPSK)

The DPSK is used to separate both optical sidebands. The DPSK can be assimilated to an imbalanced

Mach-Zehnder interferometer shown in figure 133.

Figure 133: Simplified scheme of an imbalanced Mach-Zehnder interferometer.

Assuming a field Ein at the input of the DPSK, the output signals of the DPSK are given by:

Eout1 =
1

2
(Ein(t)− Ein(t+ τ))

Eout2 =
i

2
(Ein(t) + Ein(t+ τ))

(125)

The first output signal can be rewritten to:

Eout1 =
Ein(t)

2

⊗
(δ(t)− δ(t+ τ)) (126)

If we apply the Fourier transformation on the first output signal, we can get:

Eout1(ω) =
Ein(ω)

2
(1− ejωτ )

‖Eout1(ω)‖2 =
Ein(ω)

4
(1− cos(ωτ))

(127)

where τ = L/ cn = nL
c = 1

FSR is the differential delay time, with L is the optical path, n is the refraction

index. FSR is the free spectral range. From the expression of τ , we have:

‖Eout1(ω)‖2 =
Ein(ω)

4
(1− cos(

ω

FSR
))

‖Eout2(ω)‖2 =
Ein(ω)

4
(1 + cos(

ω

FSR
))

(128)

Equation 128 indicates that the transfer functions of the DPSK output signals are sinusoidal. If we consider

that the carrier signal is suppressed and the sidebands at ω0 − Ω and ω0 + Ω reach maximum, we have:

ω0 − Ω = 2kπFSR

ω0 + Ω = (2k + 1)πFSR
(129)

with 2Ω = πFSR. The two optical sidebands at the outputs of the DPSK are given by:

‖Eout1(ω0 − Ω)‖2 =
‖Ein(ω0 − Ω)‖2

4
(1− cos(2kπ)) = 0

‖Eout1(ω0 + Ω)‖2 =
‖Ein(ω0 + Ω)‖2

4
(1− cos((2k + 1)π)) =

‖Ein(ω0 + Ω)‖2

2

(130)
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and

‖Eout2(ω0 − Ω)‖2 =
‖Ein(ω0 − Ω)‖2

4
(1 + cos(2kπ)) =

‖Ein(ω0 − Ω)‖2

2

‖Eout2(ω0 + Ω)‖2 =
‖Ein(ω0 + Ω)‖2

4
(1 + cos((2k + 1)π)) = 0

(131)

Equation 130 and 131 show that there is only one frequency signal in each output of the DPSK. Figure 134

shows the output spectra of the DPSK.

Figure 134: Spectra of output signals of the DPSK.

The differential delay between both arms of the DPSK is controlled by a dc voltage Vc. Figure 135 shows

the voltages of the DPSK output signals versus the square voltage V 2
c . Figure 136 shows the carrier signal

and the optical sidebands power at the output 1 of the DPSK as a function of the square voltage V 2
c .

Figure 135: Optical powers of the two output signals of a DPSK as a function of the square voltage V 2
c .
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Figure 136: Optical power of the carrier signal and the sidebands at the output 1 of the DPSK as a function

of the square voltage.
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6.1.3 Laser system at 1550 nm

Our system uses a DPSK (FSR=25 GHz) at 1550 nm and a MZ EOM modulated at 6.25 GHz (quarter of

the FSR). At one of the DPSK outputs, a polarization controller is used to rotate the polarization of the

sideband. A fibered polarization combiner is used to recombine two orthogonally polarized optical sidebands.

A Fabry-Perot fibered analyzer at the output of the system is used to observe the spectrum of the output

signal. Figure 137 shows the spectrum of the output signal. The frequency difference between the sidebands

is 12.5 GHz. The rejection rate of the carrier signal is 28 dB.

Figure 137: Spectrum of the recombined output signal. The frequency difference between the sidebands is

12.5 GHz.

Figure 138 shows the polarizations of the two optical sidebands as a function of the angle of the half wave

plate at the output of the system. This figure confirms that the output signals are orthogonally polarized

to each other. There is a light amplitude difference between two optical sidebands, which implies that the

whole system would need to be stabilized for real operation.

Figure 138: Polarizations of the optical sidebands as a function of the angle of the half wave plate.

6.1.4 Conclusion

A laser system at 1550 nm was built to generate two orthogonally polarized optical sidebands frequency-

separated by 12.5 GHz. The system mainly consists of a laser source, a MZ EOM and a DPSK demodulator.

Characterization of different components was reported. This architecture is simple. All the components are
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commercially available and can be easily controlled. Further tests should be realized to validate fully this

system for our application. In particular, we didn’t have the opportunity to measure the phase noise of the

optically carried microwave signal at the output of the DPSK. This test would be important to do to confirm

the potential of this system.
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6.2 A high-performance frequency stability compact clock based on a Cs-Ne

microcell

In this section, we report a compact table-top micro-cell based Cs CPT clock with advanced frequency

stability performance in this section. The heart of the clock is a single buffer gas Cs-Ne microfabricated cell

realized in FEMTO-ST. As most microfabricated cells worldwide, the Cs microcell technology developed in

FEMTO-ST is basically based on etching of a silicon wafer and subsequent anodic bonding of a thin glass

wafer to each side [155]. However, our filling method differs from traditional ones [156], [157] in that the

Cs vapor is generated only after complete sealing of the cell by local heating of a side-cavity Cs metallic

dispenser with a high power infrared laser source [147]. This method is intended to reduce interactions with

high-reactive Cs chemistry and to achieve a strong bonding quality. When I started my PhD thesis, best

frequency stability results of a CPT clock with a Cs microcell in FEMTO-ST were measured to be 1.5 × 10−10

at 1 s and 10−10 at 1000 s [83]. During my thesis, in collaboration with Rodolphe Boudot, I participated to

the implementation of advanced techniques to improve greatly these frequency stability performances. We

developed a system using a DFB laser resonant on the Cs D1 line and did CPT spectroscopy on a Cs-Ne

microcell to improve greatly the short term frequency stability performances. Moreover, we implemented

advanced noise reduction techniques, mainly a light shift cancelation technique inspired by [158] to improve

the stability performances on the mid and long term. These results proved for the first time that the Cs-Ne

cell technology solution developed in FEMTO-ST is compatible with the development of high-performance

miniature atomic clocks. The following describes these studies.

6.2.1 Experimental setup

Figure 139 shows a scheme of the Cs CPT clock experimental setup. The laser source is a DFB diode at

894.6 nm on the Cs D1 line. A Faraday optical isolator is placed at the output of the DFB laser to avoid

optical feedback. Optical sidebands required to perform CPT spectroscopy are generated by driving an

external pigtailed phase EOM at 9.192 GHz using a microwave frequency synthesizer. The fiber modulator

ensemble is inserted into a box with insulating foam and is actively temperature-stabilized to the mK level to

reduce output laser intensity fluctuations. No phase noise degradation was observed between the microwave

frequency synthesizer output and the 9.192 GHz optically carried signal. The 2 mm diameter collimated laser

beam is circularly polarized using a quatre wave plate. The laser power is 17 µW before entering the atomic

resonator. The atomic resonator consists of a 2 mm diameter and 1.4 mm long cylindrical microfabricated

Cs vapor cell filled with Ne. The cell temperature Tcell is stabilized close to 80◦C, which corresponds to a

Cs density of 4.05 × 1012 atom/cm3. Temperature fluctuations of the microcell are below the mK level. A

static magnetic field of a few microteslas parallel to the laser beam propagation direction is applied to split

the hyperfine ground state Zeeman transitions. The ensemble is surrounded by a two layer µ metal magnetic

shield as we presented in the section 4.6. The CPT resonance is detected by a low noise photodiode. The

laser is frequency-stabilized near the center of the homogeneously broadened absorption line by modulating

the DFB laser current at 60 kHz and demodulating it with the lock-in amplifier LA1. The atomic clock

closed loop operation is achieved by a conventional synchronous modulation-demodulation technique (about

1 kHz frequency) applied to the local oscillator frequency through the lock in amplifier LA2.
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Figure 139: Schematic of the Cs-Ne microcell-based CPT clock. MS: 10 MHz quartz oscillator based mi-

crowave synthesizer; EOM: electro-optic modulator; LCD: voltage controlled liquid plate attenuator; P:

polrizer; HWP: half wave plate; QWP: quarter wave plate; LA1: lock in amplifier based servo for DFB laser

frequency stabilization through modulation at 60 kHz of the laser bias current; LA2: lock in amplifier based

servo for locking the local oscillator frequency to the CPT resonance transition; LA3: lock in amplifier based

servo for light shift correction.

6.2.2 Experimental investigations and results

A typical CPT resonance observed in the Cs-Ne cell for Tcell = 80◦C is reported in the inset of Figure

139. The resonance shape is well fitted by a Lorentzian function. The linewidth of the CPT resonance is

1.6 kHz in correct agreement with theoretical values. From [83], the hyperfine coherence relaxation rate γ2

is calculated to be 4391 rad/s and the optical resonance homogeneous broadening Γ∗/2π is 862 MHz. At

80◦C, contributions to the CPT linewidth from wall-collisions and spin-exchange collisions are about equal

and clearly dominant over buffer gas collisions. The contrast is measured to be about 1.25 %. Figure 140

shows both the CPT resonance contrast and the clock frequency shift versus the cell temperature. The

CPT contrast is maximized in the 74◦C to 81◦C temperature range. For higher temperatures, the vapor

medium becomes optically thick and causes a strong reduction of the CPT signal. In [83], with VCSEL

emitting at 852 nm, the CPT signal maximum with temperature was measured to be in the 55◦C to 60◦C

range for quite similar Cs-Ne microcells. This can be qualitatively explained by intrinsic differences between

D1 and D2 excitation lines hyperfine structures. The Cs D2 line excited state is composed of 4 hyperfine

levels with a frequency separation (150 to 250 MHz) much lower than buffer-gas-induced optical broadening

in microfabricated cells. Both hyperfine levels of the Cs D1 line are well resolved and separated by about

1.16 GHz. Also, some excited states on the Cs D2 line couple to only one of the ground states and act as

loss-channels for the CPT interaction. Consequently, optical absorption is stronger for the Cs D2 line and

the alkali vapor becomes optically thick for lower temperatures than in the D1 line case. Moreover, the Cs

clock frequency temperature dependance is canceled close to 80◦C in the presence of Ne. Using coefficient

in [88], a fit of experimental points gives a Ne pressure of 79 Torr. This cell allows the overlap of a zero

sensitivity of the clock frequency to temperature variations and a maximum of CPT contrast close to 80◦C.

This will lead to mutual improvements of the clock long term and short term frequency stability.

Combined with a greatly reduced sensitivity of the clock frequency to temperature variations, the light

shift is continuously minimized using a method inspired by [158]. For this purpose, the laser power is slowly
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Figure 140: CPT resonance contrast (filled squares) and clock frequency shift (triangles) versus the cell

temperature. The solid line is a second-order polynomial function fit to the frequency data. For a given

temperature, each frequency shift is found from an extrapolation to zero intensity of the light shift curve.

The CPT contrast is found to be optimized close to the clock frequency inversion temperature.

Figure 141: CPT resonance contrast (filled square) and light shift slope (triangles) versus the RF modulation

power. The indicated RF power is before amplification of 24 dB. Close to PRF = -2 dBm, the CPT resonance

contrast is maximized and the light shift can be canceled. The cell temperature is 80◦C. For each RF power,

the frequency shift is measured for 5 to 6 different laser intensity values and is found to be well approximated

by a linear function. Each triangle point corresponds to the slope of this function.

modulated at 15 Hz (12% depth) using a voltage-controlled liquid crystal display (LCD) attenuator. This

laser power modulation is converted across the cell through the light shift effect into a slight clock frequency

modulation that can be easily detected at the error signal output of the lockin amplifier LA2 used to stabilize

the LO frequency. This modulation signal is found to vanish close to a so-called RF power zero-light-point

driving the EOM. An additional servo loop based on the lock-in amplifier LA3 is eventually added to lock

the RF power point where no light shift is present. For illustration, Fig. 141 plots both the light shift slope
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and the CPT resonance contrast versus the RF modulation power. The light shift slope is measured to be

negative for PRF < −2 dBm, positive for PRF > −2 dBm and can be nulled by finely adjusting the RF

power to PRF ∼ −2 dBm. Moreover, as shown in Fig. 141, this RF power coincides with the one maximizing

the CPT resonance contrast. It corresponds well to the RF power maximizing the optical power contained

in the two resonant light fields.

Figure 142 reports the frequency stability of the CPT clock based on a Cs-Ne microcell. It is measured

by a comparison with a reference hydrogen maser. In this figure, last results obtained with a D2 line VCSEL

and a Cs-Ne microcell are also reported for comparison. In our new experiment, the short term frequency

stability was measured to be 3.8 × 10−11 at 1 second integration time. It is in agreement with a measured

atomic Q-factor of 5.7 × 106 and a clock resonance signal-to-noise ratio of 4500 in a 1 Hz bandwidth. We

measured that our laser power modulation for the light shift correction degrades the optimal short term

stability by a factor of about 1.5. The Allan deviation curve decreases well with a τ−
1
2 slope until 1000 s.

After 1000 s, the Allan deviation increases again with a τ
1
2 slope corresponding to a random walk frequency

noise. The frequency stability is found to be 4 × 10−12 at 40000 s. These results obtained with optimal

laboratory-scale electronics are comparable to those presented in [159] and [160] and are among best results

reported for a microcell-based CPT clock [152].

Figure 142: Allan deviation of the Cs CPT clock based on a Cs-Ne microcell. (circles): VCSEL D2 line,

no light shift correction, Tcell = 60◦C, Ne pressure = 60.7 Torr [83]; (squares): DFB D1 line, light shift

correction, Tcell ' 80◦C, Ne pressure = 79 Torr.
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6.3 Effects of getters on hermetically sealed micromachined Cs-Ne cells for

atomic clocks

6.3.1 Introduction

Hermetical sealing of MEMS structures is an important fabrication step to generate miniature devices such

as atomic clocks. These miniature devices require a precisely controlled atmosphere for short and long term

stability. In this fabrication process, the anodic bonding is the most reliable sealing technique to achieve

such MEMS devices. Although different alkali atoms, such as Rb and Cs, as well as different techniques to

fill the cavities with such atoms have been employed, most of them rely on anodic bonding in order to seal

the cavities [156] [157] [161] [162]. However, it has been shown that the devices sealed by anodic bonding

contain considerable amount of residual gases such as H2, O2, N2 and CO2 due to the bonding reaction and

outgassing of glass substrate during high temperature processing [166]. Due to this reason, the inner cell

atmosphere might be modified, especially for long-term use of the devices. In order to solve this problem,

using getter materials to ensure vacuum in small cavities [164] is an effective solution. For instance, Ti

coatings used in the vacuum cavity of a gyroscope has been reported to minimize such impurity gases [165].

In this section, the wafer-level integration technique of PageWafer (SAES Getters solution for getter film

integration into wafer to wafer bonded devices) has been tested in hermetically sealed miniature Cs-Ne

microcells similar to the one used in section 6.2. In frequency stability tests shown on Fig. 142, the clock

frequency shift after 1000 s integration time could be due to the variation of the cell atmosphere that relates

to reactions between very reactive alkali atoms and impurities. The integration of PageWafer to eliminate

impurity gases seemed to be interesting in order to further improve the reliability of Cs vapor cells and to

improve the purity of their internal atmosphere. Getter effects on the cell atmosphere were analyzed by

quadruple mass spectroscopy and coherent population trapping (CPT) spectroscopy as reported below. I

mainly participated to CPT measurements.

6.3.2 Micro Cs vapor cells

Figure 143 shows the Cs-Ne cells made of a Si wafer sandwiched between two borosilicate glass wafers. The

cell contains two cavities connected through micro surface channels: one for CPT resonance detection and

the other for Cs dispenser storage, achieving an inner volume of nearly 7.5 mm3.

Figure 143: Schematic of the getter-integrated Cs vapor cell.
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For getter-integrated cells, the PageWafer is deposited inside the cavity before the sealing of the cavity, in

top-glass trenches located around the optical window and the dispenser cavity window, as shown in Figure

143. Figure 144 shows the fabrication process of the Cs vapor microcell. First, an array of cell cavities

and filtration channels are patterned and etched in a Si wafer by using deep reactive ion etching (DRIE),

followed by an additional KOH surface treatment for surface quality improvement. At the same time, a 10

µm deep cavity for getter deposition is etched in high frequency in a glass wafer, which is called cap wafer.

For this purpose, a mask made of a layer of Au/Cr is sputtered on both surfaces of the glass wafer for high

frequency etching. The cavity patterns are transferred into the mask layer by photolithography, and the

sample is immersed in an high frequency aqueous solution. Thus, PageWafer is deposited inside the 10 µm

deep cavities. Subsequently, the cell is sealed. Firstly, the getter-deposited top-glass wafer is anodically

bonded to the Si wafer in vacuum. Once a Cs dispenser pill is placed in the cavity, the cell is sealed by

anodic bonding in the chamber filled with Ne. For this step, we applied a two-step anodic bonding process

in order to fill the cell cavity with Ne without the problem of electrical breakdown between electrodes when

a high voltage is applied. After the sealing of the wafer, the array of microcells is diced into single cell chips.

At last, Cs dispenser pill is locally heated with a high power laser source, so that the Cs vapor generated

from the dispenser diffuses through the microchannels to the CPT detection cavity. Activation of the Cs

dispenser is done after the cell is sealed, the most efficient gettering is done in a Ne atmosphere. PageWafer

film sorption capacity for the various active gases is much higher under warm conditions, as it is during the

bonding step, than at room temperature, which is almost two orders of magnitude at 450 ◦C. This is because

higher temperatures promote the diffusion of the chemisorbed gases form the surface of the getter film into

its bulk. This higher capacity allows the PageWafer film to also act as a process getter allowing the sorption

of a larger quantity of gases desorbed during the high-temperature bonding process. Besides, use of Ne as

a buffer gas prevents the undesired effect of pressure decrease inside the microcell because noble gases are

not absorbed by the getter film. Therefore, with this cell configuration, the CPT resonance frequency is not

expected to vary because of cell atmosphere variations. The top-glass wafer with deposited getters should

be preferably bonded at last. Therefore, the getter would not undergo an activation during the first bonding

process, as it is our case due to alignment restrictions in the employed bonding machine. In the following

section, the efficiency of the getter and its great potential for purification of alkali vapor cell atmosphere are

presented.
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Figure 144: Fabrication steps of the getter-integrated Cs vapor microcell.
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6.3.3 Residual gas analysis

The inner atmosphere of the cells are analyzed at room temperature in an ultrahigh vacuum chamber

equipped with a high sensitivity quadrupole mass spectrometer (QMS). The microcells for this analysis

contain Ne but neither a Cs dispenser nor Cs vapors in order to avoid possible partial gettering of Cs and

also to simplify the residual gas analysis. A Cs-Ne microcell was placed in a small vacuum chamber equipped

with an opening tool and a capacitance manometer. The chamber was evacuated and was isolated from the

pumping system. Then, the cell was broken by an opening tool and the total pressure of the chamber was

measured. The original pressure inside the cell is calculated by using the chamber and inner-cell volumes.

After the total pressure was measured, a small part of the gas was introduced to another chamber and its

composition was investigated with QMS. Table 8 shows the comparison the results of residual gas analysis

from a getter-free cell and a getter-integrated cell. The main impurities in the getter-free cell are H2, N2, O2

and CO2, which are generated during anodic bonding reaction and to be active gas [166] [167]. These gases

are not detected in the getter-integrated cell, which indicates that the PageWafer efficiently absorbed these

gases. The pressure of Ne in both cells is comparable, which means Ne is not absorbed by the PageWafer. The

value difference results from the precision of our Ne filling technique. In contrast to the above-mentioned gas

species, it has to be mentioned that traces of hydrocarbons were detected (although four orders of magnitude

lower than Ne pressure), which could be related to residual impurities of the manufacturing processes for

getter patterning.

Table 8: Effects of getter films on cell atmosphere. Cells are filled with Ne (pressure=99.75 Torr.)

Residual gas pressure (Torr)

Gas Cell A (Getter-free) Cell B (Getter-integrated)

H2 2.07× 10−2 0.00

He 2.783× 10−3 1.63× 10−3

CO 0.00 0.00

N2 6.09× 10−2 0.00

CH4 3.34× 10−3 2.79× 10−2

H2O 0.00 0.00

Ne 1.05× 102 1.42× 102

O2 6.07× 10−1 0.00

C2H6 0.00 5.28× 10−3

C3H8 5.72× 10−3 2.12× 10−2

Ar 5.46× 10−3 0.00

CO2 1 0.00

Figure 145 summarizes the averages of residual gas pressure corresponding to each impurity in the getter-

free and getter-integrated cells. Four samples of the getter-free cells and six samples of the getter-integrated

cells are randomly chosen for gas analysis. All cells are filled with Ne but contain neither Cs vapor nor a Cs

dispenser. The total residual gas pressure is significantly reduced in the getter-integrated cells by comparison

with the getter-free cells. It is also important to note that the pressure errors among the cells are drastically

reduced for the getter-integrated cells. The average pressure of total impurities was 3 × 10−2 Torr for the

getter-integrated cells, whereas it was 1.5 Torr for the getter-free cells. In other terms, the residual gas

remaining in the getter-integrated cells is 2% of that in the getter-free cells.
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Figure 145: Residual gas pressure in Ne cells.

6.3.4 CPT spectroscopy

Cs-Ne cells were characterized by CPT spectroscopy employing a Cs CPT clock prototype. CPT spectroscopy

is employed here for Ne pressure estimation. Indeed, presence of Ne buffer gas, in addition to narrowing

of CPT resonance thanks to Dicke effect [34], is also responsible for a shift of the Cs hyperfine resonance

frequency. This shift is proportional to Ne pressure, so pressure uniformity among the fabricated cells and

process reproducibility can be estimated. The measured clock frequency fclk is given by:

fclk = f0 + aB2 + bI + ∆fbg (132)

where f0 is the frequency of the unperturbed Cs atom (9.192 631 770 GHz), aB2 is the quadratic Zeeman

shift due to the static magnetic field B (a=427 Hz/G2), bI is the so-called light shift (frequency shift of the

clock attributed to variations of the laser intensity I) and ∆fbg is the collisional frequency shift due to the

presence of buffer gas. The value of ∆fbg should be determined in order to estimate the Ne pressure in the

cell. For this purpose, the microcell temperature is fixed in the 60◦C to 80◦C range. The static magnetic field

is 132 mG, inducing a fixed Zeeman shift of 7.4 Hz. Then, the clock frequency is measured for various laser

intensities in order to determine the linear light shift function bI. At last, once the Zeeman shift taken into

account, the collisional frequency shift ∆fbg due to the presence of buffer gas is measured by extrapolation

at zero intensity of the light shift curve. For Ne, the collisional frequency shift ∆fbg is given by [88]:

∆fbg = P0 × (686.014 + 0.266× (T − T0) + (−0.001676)× (T − T0)2) (133)

where P0 is the buffer gas pressure in Torr at the reference temperature of T0 = 0 ◦C. In this experiment,

the uncertainty on clock resonance frequency measurements was estimated to be only ±50 Hz because the

LO frequency was not actively locked to the atomic transition. This uncertainty limits the estimation of Ne

pressure value in the cell at a level of ±0.0975 Torr.

Batch pressure uniformity In the first step, Cs-Ne getter-cells were characterized from two different

batches, called batch A and batch B, resulting from two fabrication runs. Cells are noted Axx and Bxx.
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Eight or more samples from each batch were examined using CPT spectroscopy. For each batch, the Ne set

pressure during fabrication is 99.75 Torr at 65 ◦C. Figure 146 shows a typical CPT resonance detected in

the A04 cell. The resonance is well fitted by a lorentzian function with a FWHM of 1.88 kHz. Measured

FWHM of cells from batch A are in the range of 1.66 kHz to 1.96 kHz (average: 1.76 kHz) and from batch

B in the range of 1.59 kHz to 1.75 kHz (average: 1.66 kHz).

Figure 146: Typical 1.88 kHz linewidth CPT resonance detected in the A04 cell.

Figure 147 reports pressures in Cs-Ne cells derived from the measured collisional frequency shift of the

CPT resonance for the two considered batches. Except for one cell, the Ne pressure is similar among the

cells of the same batch. For cells Axx, the average pressure is 78.45 Torr. The minimum and maximum

pressure is 77.475 and 81.15 Torr respectively. The pressure deviation is 4.5%. If we remove the exceptional

cell (A08), the pressure deviation is reduced to 2%. For cells Bxx, average pressure is 91.575 Torr. The

minimum and maximum pressure is 89.775 and 93.225 Torr respectively. The pressure deviation is 7.7%, and

it is reduced to 3.7% if the B02 is not considered. For these two batches, the average pressures are 21.3 and

8.175 Torr lower than the set pressure, respectively. The difference in Ne pressure between the two batches

is around 15% and is considered to result from the uncertainty of our Ne filling system.

Figure 147: Estimated pressure at 65 ◦C of the (a) Axx and (b) Bxx Cs-Ne cells using CPT resonance

frequency measurements.
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Frequency stability measurements Accelerated aging tests were performed in order to evaluate the

variation of the cell inner atmosphere along time. The clock signal lineshape and frequency were first

measured in Cs-Ne cell at 80◦C cell temperature. Then, the cells were placed in an oven at 110◦C during

240 hours. This heating process can be considered as an aging test of 240× 8 = 1920 h at 80◦C [168]. The

clock signal lineshape and frequency in the cell were then measured again at 80 ◦C. In both measurements,

experimental parameters are kept identical. Figure 148 shows the evolution of the CPT resonance frequency

as a function of the laser power for 3 different cell (A01, B03, B05) before and after aging. Experimental

data are fitted by a linear function. Extrapolation to null laser power is performed to cancel the so-called

frequency shift and isolate the collisional frequency shift value.

Figure 148: CPT resonance frequency measurements as a function of laser power of three different cells: (a)

A01, (b) B03 (lower curve) and B05 (upper curve) before aging (black squares) and after aging (red circles).

Experimental data are fitted by a linear function for extrapolation at null power.

Similar fit function results are obtained for cells B03 and B05 fabricated in the same batch. For the

3 cells, measured light shift slopes are found to be about 1 to 3 Hz/µW. The clock frequency variation at

null laser power, during the aging test equivalent to 1920 hours at 80 ◦C, is lower than 53, 1 and 35 Hz for

cells A01, B03 and B05 respectively, with uncertainties in the range of 100 Hz. This result demonstrates

the excellent stability of the cell inner atmosphere. For comparison, a Cs vapor microcell-based miniature

atomic clock characterized by relative frequency stability below 10−11 at 1 hour integration time has its

frequency varying less than 0.1 Hz at 1 hour, i.e. less than 192 Hz in 1920 hours. The tested cells are below

this limit. However, in order to further validate getter-cells, their compatibility to be used in a miniature

atomic clock exhibiting a relative frequency stability of 10−11 at 1 day integration should be demonstrated.

This will be analyzed by optimizing the frequency resolution of our setup or increasing the time duration of

the aging test. Such tests will be led in a growing number of cells to check the repeatability of performances

of our cells.

6.3.5 Conclusion

The PageWafer integration technology in Cs-Ne microcells for miniature atomic clocks was investigated.

The residual gas analysis with quadruple mass spectroscopy revealed that PageWafer efficiently eliminates

undesirable anodic-bonding-related gases such as H2, O2, N2 and CO2. Such cells achieve the impurity

pressure in the order of 10−2 Torr which is 2% of that of the getter-free cells. CPT spectroscopy of the

getter-integrated Cs-Ne cells showed that Ne pressure is almost identical among the cells fabricated in one

150



run (less than 5% deviation). We performed preliminary aging tests showing that these cells are compatible

with the development of miniature atomic clocks exhibiting a relative frequency stability better than 10−11

at 1 hour integration.
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7 Conclusion

In this thesis, a research work on CPT spectroscopy on Cs vapor cells was presented. Since classical CPT

atomic clocks generate low contrast CPT signals, we developed an experimental setup to detect high-contrast

CPT resonances using the push-pull optical pumping (PPOP) technique. Theoretical analysis of PPOP was

reported and allowed to be compared with the so-called lin ⊥ lin interaction scheme. CPT resonance signals

with contrasts as high as 78 % were detected in the CW regime, that represents almost an improvement of

two orders of magnitude compared to standard interaction schemes. The impact of some experimental pa-

rameters on the CPT resonance lineshape was studied. In order to reduce the CPT resonance linewidth, we

developed an original simple-architecture laser system combining for the first time PPOP and Ramsey inter-

rogation for the detection of high-contrast and narrow CPT-Ramsey fringes. In this system, an EOM is used

both for CPT sidebands generation and light switch. Consequently, atoms interact with a sequence of optical

pulse trains where each pulse is used both for CPT pumping and CPT signal detection. The central Ramsey

fringe, for a free-evolution time T = 3 ms exhibits a linewidth of 166 Hz and a contrast of 33 %. This laser

system could be interesting for the development of a high-performance Cs CPT vapor cell frequency standard.

Our system combines basically a DFB laser at 895 nm, a pigtailed intensity Mach-Zehnder EOM, a

Michelson system and a low noise microwave frequency synthesizer. We developed a DFB laser system that

can be frequency stabilized by standard saturation absorption scheme on Cs Doppler-free D1 line. In the

free running regime, the short term relative frequency stability of the laser is measured to be 1.5 × 10−9

at 1 s integration time, increasing to reach about 8 × 10−9 at 100 s integration time. With the frequency

stabilizatipon system, it exhibits a fractional frequency instability better than 10−11 at 1 s integration time

and lower than 5× 10−12 at 200 s. The laser power can be stabilized using a commercial voltage controlled

LCD attenuator-based servo loop. In stabilized regime, the relative laser power fluctuations are 2 × 10−6

at 500 s integration time, which is almost 4 orders of magnitude lower than fluctuations in the free running

regime.

We compared phase and intensity EOMs for sidebands generation. Intensity MZ EOM, with bias voltage

adjusted to reject the optical carrier, was found to give better CPT signals. We implemented a technique to

stabilize the optical carrier signal suppression at the output of the MZ EOM to ensure that atoms interact

with ”only” two optical lines. The carrier signal power fluctuations at the output of the MZ EOM are

reduced by a factor of about 100 compared to the one in free running regime.

We developed and measured phase noise performances of a frequency-multiplied quartz oscillator based low

phase noise microwave synthesizer. This one is used to drive EOM. The absolute phase noise of the 9.192

GHz signal at the output of the EOM was measured to be better than − 85 dBc/Hz at f= 100 Hz. No

relevant phase noise degradation was observed between the synthesizer direct output and the 9.192 GHz

optical beatnote at the output of the EOM. Performances are compatible with the development of an atomic

clock with a relative frequency stability at the level of 2× 10−13 at 1 s.

In our experiments, we tested three Cs vapor-buffer gas cells with different dimensions and buffer gas con-

tents. Contrasts up to 78% were achieved in a 5 cm long and 2 cm diameter Cs-N2-Ar cell in the CW regime.

The PPOP technique was found to be more efficient to obtain high contrasts when the cell dimensions are

increased. Consequently, our study suggests that optimized CPT pumping schemes such as PPOP or lin⊥lin

cannot be used efficiently to improve the performances of chip-scale atomic clocks, but are very promising

for more conventional atomic clock using cm-size cells. We pointed out that high-contrast CPT resonances

are achieved with increased laser intensity, at the expense of laser power broadening. A Ramsey pulsed
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interaction technique was then implemented to allow the detection of narrow Ramsey fringes, that should

constitute a good reference for the development of a high-performance CPT clock. Typical Ramsey fringes

with a linewidth of 166 Hz and a contrast of 33% were detected in a cm-scale buffer gas filled Cs vapor cell.

Besides the main work of my thesis, I participated into the development of a high performance frequency

stability compact clock based on a Cs-Ne microfabricated cell. The clock frequency stability was measured

to be 3.8 × 10−11 at 1 s integration time and below 10−11 until 50000 s thanks to the implementation of

light shift cancellation techniques. These results demonstrate the possibility to develop high performance

chip-scale atomic clocks using vapor cells containing a single buffer gas. Moreover, I participated to study

the impact of the presence of getters in hermetically sealed micromachined Cs-Ne cells.

The laser system we developed in this PhD thesis will be further studied and improved along the MClocks

project, funded by EURAMET. This project combines the competence of best european laboratories in the

field of vapor cell clocks. Significant efforts remain to be done to validate fully our laser system for the

development of a high-performance CPT atomic clock. The first next step is to realize clock frequency

measurements and to evaluate the influence of the laser system components and parameters onto the clock

frequency. Clock frequency shifts linked to laser frequency variations, intensity variations, EOM bias voltage

variation, Michelson system length fluctuations, polarization fluctuations need to be measured in detail to

know how experimental parameters must be controlled to reach frequency stability objectives. This is really

the clock frequency metrology and this will be the most important step in the validation of

our system. Note also that we’re confident that the volume of our laser system architecture is compatible

to be strongly reduced. In particular, we expect to replace nextly the TO3-packaged DFB laser we used

by a ”butterfly-packaged” pigtailed diode laser. This would allow to connect directly the output of the

laser to the MZ EOM and will simplify greatly the system. Nevertheless, commercially-available pigtailed

diode lasers resonant at 895 nm are not easy to find. We contacted recently different suppliers (Eagleyard,

Nanoplus, Toptica, Photodigm) for this purpose but none of them is currently able to deliver such diodes

at this wavelength. The Michelson system ensemble will be inserted in a small mechanical duralumin box

with active temperature control and active control of the optical path difference. At the end, the aim is to

insert the total laser system into an elegant A3-A2 format rack that would be easily transportable. Some

insulating foam will be used to stabilize passively fiber lengths of the system.
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Annex

Cesium Properties

Table 9 shows basic cesium physical properties [84].

Table 9: Cesium Physical Properties.

Atomic Number Z 55

Total Nucleons Z+N 133

Relative Natural Abundance η(133Cs) 100%

Nuclear Lifetime τn stable

Atomic Mass m 2.206 946 50(17) × 10−25 kg

Density at 25◦C ρm 1.93 g/cm3

Melting Point TM 28.44◦C

Boiling Point TB 671◦C

Specific Heat Capacity cp 0.242 J/g·K
Molar Heat Capacity Cp 32.210 J/mol·K
Vapor Pressure at 25◦C Pv 1.3 × 10−6 torr

Nuclear Spin I 7/2

Ionization Limit EI 3.893 905 32(14) eV

Table 10 shows cesium D1 line transition optical properties [84].

Table 10: Cesium D1 (62S1/2-62P1/2) Transition Optical Properties.

Frequency ω0 2π · 335.116 048 807(41) THz

Transition Energy h̄ω0 1.385 928 475(50) eV

Wavelength (Vacuum) λ 894.592 959 86(11) nm

Wavelength (Air) λair 894.353 09 nm

Wave Number (Vacuum) kL/2π 11 178.268 160 7(14) cm−1

Lifetime τ 34.894(44) ns

Decay Rate / FWHM Γ 28.659(36) × 106 s−1 / 2π · 4.5612(57) MHz

Absorption Oscillator Strength f 0.3438(13)

Recoil Velocity υr 3.3561 mm/s

Recoil Energy ωr 2π · 1.8758 kHz

Recoil Temperature Tr 180.05 nK

Doppler Shift (νatom = νr) ∆ωd(νatom = νr) 2π · 3.7516 kHz

Frequency Shift for Standing Wave Moving with νSW = νr ∆ωSW (νSW = νr) 2π · 7.5031 kHz

Table 11 shows cesium D transition hyperfine structure constants [84].
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Table 11: Cesium D Transition Hyperfine Structure Constants.

Magnetic Dipole Constant, 62S1/2 A62S1/2
h · 2.298 157 942 5 GHz (exact)

Magnetic Dipole Constant, 62P1/2 A62P1/2
h · 291.920(19) MHz

Magnetic Dipole Constant, 62P3/2 A62P3/2
h · 50.275(3) MHz

Magnetic Dipole Constant, 62P3/2 B62P3/2
h · -0.53(2) MHz

Table 12 shows cesium D transition magnetic and electric field interaction parameters [84].

Table 12: Cesium D Transition Magnetic and Electric Field Interaction Parameters.

Electron spin g-factor gS 2.002 319 304 373 7(80)

Electron orbital g-factor gL 0.999 995 87

Fine structure Landé g-factor (62S1/2) gJ(62S1/2) 2.002 540 32(20)

Fine structure Landé g-factor (62P1/2) gJ(62P1/2) 0.665 90(9)

Fine structure Landé g-factor (62P3/2) gJ(62P3/2) 1.3340(3)

Nuclear g-factor gI -0.000 398 853 95(52)

Clock transition Zeeman shift ∆ωclock/B
2 2π · 427.45 Hz/G2

Ground-state polarizability α0(62S1/2) h · 0.1001(20) Hz/(V/cm)2

D1 scalar polarizability α0(62P1/2) - α0(62S1/2) h · 0.2415(24) Hz/(V/cm)2

D2 scalar polarizability α0(62P3/2) - α0(62S1/2) h · 0.308 60(60) Hz/(V/cm)2

D2 tensor polarizability α2(62P3/2) h · -0.065 29(37) Hz/(V/cm)2

Figure 149 shows cesium D1 line hyperfine structure [84].
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Figure 149: Cesium D1 transition hyperfine structure, with frequency splittings between the hyperfine energy

levels. The approximate Landé gF -factors for each levels are given, with corresponding Zeeman splittings

between adjacent magnetic sublevels.
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Circuit Diagram

We applied different electronic drive circuits and feedback loops in our experimental setups. The circuit

diagrams of each part are shown in the following parts. Figure 150 shows the circuit diagram of the laser

drive.

Figure 151, 152 and 153 shows the circuit diagram of the variable dc source applied on the MZ EOM.

Figure 154, 155 and 156 shows the circuit diagram of the cell temperature regulator.
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Figure 150: Circuit diagram of the laser drive.
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Figure 151: Circuit diagram of DC bias voltage of the variable dc source applied on the MZ EOM.
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Figure 152: Circuit diagram of tiny tiger of the variable dc source applied on the MZ EOM.
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Figure 153: Circuit diagram of supply voltage of the variable dc source applied on the MZ EOM.
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Figure 154: Circuit diagram of the cell temperature regulator.
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Figure 155: Circuit diagram of the cell temperature regulator.
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Figure 156: Circuit diagram of the cell temperature regulator.
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Abstract 

This thesis reports the development of a simple-architecture laser system resonant at 895 nm used for the 

detection of high-contrast coherent population trapping (CPT) resonances in Cs vapor cells. The laser system 

combines a distributed feedback-diode (DFB) laser, a pigtailed Mach-Zehnder intensity electro-optic modulator 

(EOM) driven at 4.596 GHz for the generation of optical sidebands frequency-splitted by 9.192 GHz and a 

Michelson delay-line system to produce a bichromatic optical field that alternates between right and left 

circular polarization. This polarization pumping scheme, pioneerly proposed by Happer’s group in Princeton on 

K atoms, allows to pump optically a maximum number of Cs atoms into the 0-0 magnetic field insensitive clock 

transition. Advanced noise reduction techniques were implemented in order to stabilize the laser power, the 

optical carrier suppression at the output of the EOM and the DFB laser frequency. Using this system, we 

demonstrated the detection of CPT resonances with a contrast of 80% in cm-scale Cs vapor cells. This contrast 

was measured to be increased until a saturation effect with the laser power at the expense of the CPT line 

broandening. To circumvent this issue, we proposed with a simple setup Ramsey spectroscopy of CPT 

resonances in vapor cells to combine high-contrast and narrow linewidth of the CPT resonances. In this setup, 

the EOM is used both for optical sidebands generation and light switch to produce Ramsey interaction. Ramsey 

fringes of 166 Hz linewidth with a contrast better than 30% were detected with this setup. This laser system 

will be in a near future devoted to be used for the development of a high-performance CPT-based atomic clock. 

Keywords: coherent population trapping (CPT), Cs vapor cells, electro-optic modulator, atomic clock. 

 

 

Résumé 

Cette these reporte le développement d’un système d’architecture simple, resonant à 895 nm, utilisé pour la 

detection de resonances à piégeage coherent de population (CPT) de fort contraste dans des cellules à vapeur 

de cesium. Le système laser combine une diode laser DFB, un modulateur électro-optique d’intensité type 

Mach-Zehnder piloté à 4.596 GHz pour la génération de bandes latérales optiques séparées de 9.192 GHz et un 

système de type Michelson pour produire à terme un champ optique bichroamatique dont la polarisation est 

alternativement circulaire gauche et circulaire droite au rythme de la fréquence de Bohr des atomes. Ce 

schéma de polarisation CPT optimisé, proposé par le groupe de Happer à Princeton en 2004, permet de 

pomper optiquement un grand nombre d’atomes sur la transition d’horloge entre les sous-niveaux Zeeman 0-0 

de l’état fondamental. Des techniques avancées ont été implémentées pour stabiliser la puissance laser, la 

suppression de porteuse optique en sortie de l’EOM et la fréquence laser. En utilisant ce montage, nous avons 

démontré la détection de résonances CPT avec un contraste de 80% dans des cellules Cs de dimensions 

centimétriques. Le contraste augmente avec la puissance laser au dépit d’un élargissement de la résonance 

CPT. Pour contourner ce problème, nous avons proposé la spectroscopie Ramsey de résonances CPT pour 

combiner fort contraste et faible largeur de raie. Dans ce montage, l’EOM est utilisé et pour la génération de 

bandes latérales optiques et comme un obturateur de lumière pour produire l’interaction Ramsey. Des franges 

de Ramsey de largeur 166 Hz et de contraste supérieur à 30% ont été détectées avec ce système. Ce système 

laser sera utilisé dans un future proche au sein d’une horloge atomique CPT de haute-performance. 

Mots-clés : piégeage cohérent de population (CPT), cellule à vapeur de césium, modulateur électro-optique, 

horloge atomique. 


