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Abstract

The classical methods in the study of lattice dynamics, such as inelastic neutron
and x-ray scattering, are and will remain flux-limited, consequently the measure-
ments are time consuming. To maximise the yield of these techniques, measure-
ment strategies need to be established prior to the experiment. These strategies
can be elaborated and optimised by lattice dynamics calculations and thermal dif-
fuse scattering. Measuring thermal diffuse scattering is a simple experiment where
extended regions of reciprocal space can be rapidly explored in detail and character-
istic features of the lattice dynamics identified. Slower spectroscopy measurements
can then be applied on the selected regions of interest to gain access to the energy
and intensity of individual vibrations. Moreover, in some cases the input of ther-
mal diffuse scattering may become so constraining for the (quasi)harmonic lattice
dynamic calculation, that inelastic scattering experiment will not be a necessary
ingredient for the recovery of a self-consistent picture of the dynamics.

In the frame of this work, the combination of thermal diffuse scattering, in-
elastic x-ray scattering and lattice dynamics calculations from first principles (ab
initio) is applied to study the lattice dynamics of single crystals. Both diffuse scat-
tering intensities and inelastic spectra determined by experiment are compared to
the ones calculated ab initio. The combination of these three techniques gives ac-
cess to the full lattice dynamics in the harmonic description and permits valuable
new insights into the vibrational properties.

The reader will be introduced to the key formalism of lattice dynamics, in-
elastic and thermal diffuse scattering. Methods for the calculation of vibrational
properties from first principles are discussed, followed by a guideline for well con-
verged calculations. The experimental techniques used in this work are presented
and new possibilities for combined studies examined.

The methodology is illustrated for several benchmark systems. Two silica
polymorphs - coesite and a-cristobalite — were chosen as examples for covalent
systems and investigated in detail. The experimentally validated calculation was
used for the analysis of eigenvectors and eigenvalues of different modes, and their
contribution to the total and partial density of vibrational states. Comparison
with the most abundant silica polymorph - a-quartz - and germanium oxide in
a-quartz structure reveals distinct similarities and differences in the low-energy
vibrational properties. Metallic tin polymorphs were chosen to study the influence
of the electron subsystem on inter-ionic interactions and the lattice dynamics. Tin



exhibits both interesting structural properties and a complex Fermi surface. An
unusual asymmetry of thermal diffuse scattering is observed which can be explained
within the frame of harmonic lattice dynamics. Finally, the established method is
applied to ice which exhibits not only characteristic thermal diffuse scattering but
also static contributions from the hydrogen disorder.

The methodology proposed in the present work provides a powerful tool in
the study of lattice dynamics and will be applicable to a large variety of systems.
The studies can be extended to extreme conditions involving very high pressures
and a large temperature range. It may be also used to study localised properties
of atomic vibrations in systems with broken symmetries, e.g. disorder or surface
effects.
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Résumé (francais)

Les méthodes classiques dans 1’étude de la dynamique de réseau, comme la diffu-
sion inélastique des neutrons et des rayons X, sont et vont rester limitées en flux.
En conséquence les mesures sont couteuse en temps. Pour optimiser le rendement
de ces techniques, la stratégie de mesure doit étre préparée avant ’expérience.
Cette stratégie peut étre élaborée et optimisé par des calculs de la dynamique de
réseau et de la diffusion diffuse. La mesure de la diffusion diffuse thermique est une
expérience simple ot les régions étendues dans 'espace réciproque peuvent étre ex-
plorées rapidement et en détails, ce qui permet d’identifier les caractéristiques dans
la dynamique de réseau. Une méthode spectroscopique peut étre appliquée ensuite
sur les régions d’intérét donnant acces a ’énergie et a l'intensité des vibrations in-
dividuelles. Dans certains cas, la diffusion diffuse thermique devient tellement
contraignante pour les calculs de la dynamique de réseau (quasi)harmonique, que
I'expérience de diffusion inélastique n’est plus un ingrédient nécessaire dans la
reconstruction d’'une image cohérente de la dynamique.

Dans le cadre de ce travail la combinaison des techniques utilisant la diffu-
sion thermique, la diffusion inélastique des rayons X et les calculs réalisés a partir
des premiers principes (ab initio) est proposée pour 'étude de la dynamique de
réseau de monocristaux. Les intensités de diffusion diffuse ainsi que les spec-
tres inélastiques observés sont comparés a ceux calculés ab initio. Ces techniques
combinées donnent acces a la description complete de la dynamique de réseau
en approximation harmonique, et fournissent des informations supplémentaires
précieuses.

Le lecteur sera initié au formalisme de la dynamique de réseau et a celui de
la diffusion inélastique et thermique. Les méthodes de calculs des propriétés vi-
brationnelles issues des calculs ab initio vont étre introduites suivant un ensemble
d’étapes menant a la convergence et donc a la validation de I’ensemble des cal-
culs. Les techniques expérimentales utilisées tout au long de cette étude ainsi que
les nouvelles possibilités s’ouvrant désormais grace aux études combinées, serons
présentées. La méthodologie sera illustrée par plusieurs systemes de référence.
Dans le cadre des systemes a liaisons covalentes, deux polymorphes de silice -
coésite et cristobalite - sont a 1’étude. Les calculs expérimentaux validés sont
utilisés pour I’étude des vecteurs propres, des valeurs propres et de leur contri-
butions a la densité d’états vibrationnels (partiel et total). La comparaison avec
le polymorphe de silice le plus abondant - a-quartz - et 1'oxide de germanium

il



en structure de a-quartz - révele des ressemblances et des différences distinctes
dans les propriétés vibrationnelles a basse énergie. Les polymorphes d’étain ont
été choisis pour étudier I'impact du sous-systeme électronique sur les interactions
inter-ioniques et la dynamique de réseau de monocristaux. L’étain manifeste des
propriétés structurelles intéressantes, et une surface de Fermi relativement com-
plexe. On observe une asymétrie inhabituelle au niveau de la diffusion diffuse,
propriété qui peut s’expliquer dans le cadre d'une approximation harmonique de la
dynamique de réseau. Enfin, la méthode élaborée est appliquée a de la glace, ce qui
démontre non seulement une diffusion thermique caractéristique mais également
des contributions statiques provenant du désordre de I'hydrogene.

La méthodologie proposée fournit un outil puissant pour ’étude de la dy-
namique de réseau et sera applicable a une large variété de systemes. Les études
peuvent étre étendues a des conditions extrémes impliquant de tres hautes pres-
sions et une large gamme de températures. Cette méthodologie peut également
etre utilisée pour étudier les propriétés localisées de vibrations atomiques dans les
systemes avec des symétries brisées, par exemple des systemes avec du désordre
ou des effets topologiques.

v



Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt.
Albert Einstein
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Chapter 1

Introduction

1.1 General overview

The scattering of monochromatic X-rays from a perfect and infinite crystal lattice
results in discrete reflections. In a real crystal the atoms located on the lat-
tice points fluctuate around their equilibrium positions. These fluctuations result
in temperature dependent vibrations but remain finite at zero temperature. In a
quantum mechanical picture the vibrations take discrete energies and are described
in the frame of lattice dynamics. The traditional way to study so-called phonon
excitations experimentally is inelastic neutron or x-ray scattering (Hippert et al.,
2006). Employing these methods one can actually measure the phonon energy at
a chosen point in reciprocal space and obtain some limited information on ampli-
tude and direction of the vibrations. The phonons, which span typically an energy
range of up to a few hundreds meV, also influence the absolute intensity of Bragg
reflections and give rise to diffuse scattering in-between the Bragg spots. This
so-called thermal diffuse scattering (TDS) contains valuable information on the
lattice dynamics, and can be measured with a detector which does not allow for a
discrimination of the different phonon energies. Historically, TDS from X-rays was
the first technique to be proposed to study phonon dispersion relations (Faxénl,
1923, Waller, 1923)) and became popular in the study of elastic constants in the
1950s (Wooster}, |1962). The currently available high flux and brilliant x-ray beams
from synchrotrons in combination with bi-dimensional single photon counting x-
ray detectors with good quantum efficiency and low noise led to a revival of TDS
studies. By the use of force constant models it is possible to determine the phonon
dispersion relations (Holt et al., 1999, 2001, Xu et al., [2008). The accuracy of
the extracted phonon dispersion relations is thus model dependent. Nevertheless,
TDS is very powerful because the intensity distribution of a large volume in three
dimensional reciprocal space can be determined in a very reasonable time. Char-
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acteristic scattering intensity distributions can be traced and inelastic scattering
measurements can be performed at selected points in reciprocal space.

The classical methods in the study of lattice dynamics such as triple axis in-
elastic neutron scattering (INS) and inelastic x-ray scattering (IXS) are typically
very time demanding, even with the most advanced spectrometers. Time-of-flight
neutron scattering is more efficient, as it allows for a measurement of phonon en-
ergies in a large volume of reciprocal space. As for triple axis INS the ratio of
energy resolution to incoming energy AE/FE is only in the order of 1072 whereas
IXS spectrometers can be realised with meV resolution and AE/E in the order of
10~7. The resolution in momentum transfer is much better defined in scattering
experiments using X-rays, where it is also decoupled from the energy resolution.
INS involves a complex resolution function with dependency on both, energy and
momentum transfer. The difficulties in focusing neutrons results furthermore in
the requirement of large samples.

In this work the combination of IXS, TDS and ab initio lattice dynamics cal-
culations is proposed to get access to the full lattice dynamics in single crystals.
The measurement of TDS is a simple experiment where extended regions of recip-
rocal space can be rapidly explored in detail. Characteristic features in the lattice
dynamics can be localised and selected for an energy resolved measurement em-
ploying IXS. The scattering intensities, which contain informations on the phonon
eigenvectors, are calculated ab initio and compared to the experiment. With the
validated calculation it is then possible to get new insights into the lattice dynam-
ics. Benchmark studies were performed for covalent frameworks (silica polymorphs
and ice) and metallic systems (tin polymorphs).

The work is structured as follows. Chapter [1| provides a general overview and
the motivation for the investigated systems. The theoretical background and the
key formulas for computing the scattering intensities are presented in Chapter
Chapter 3| provides an introduction to ab initio lattice dynamics calculations. The
experimental set-ups and the implementation of an instrument for the combined
study of TDS and IXS is discussed in Chapter [4] Details of the data analysis can
be found in Chapter [5] Results obtained on the benchmark systems are presented
and discussed in Chapter [ Chapter [7] summarises the findings, discusses the
impact of the actual study, and provides an outlook for future applications.

1.2 Lattice dynamics in silica polymorphs

At very low energies, the atomic vibrations in crystals are described by sound
waves, discussed within the long wavelength limit in Section 2.5l In this energy
region the density of vibrational states (VDOS), g(F), follows the Debye model
g(E) ~ E?% which is valid for an elastic continuum. The VDOS exhibits an excess
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over the Debye level, as the wave vector approaches the zone boundary of the
Brillouin zone. This is due to the fact that the initially linear dispersion becomes
flat, which results in so-called Van Hove singularities (Van Hove, [1953)).

The VDOS of glasses also exhibits an excess of states over the Debye law, the
so-called 'Boson peak’. The temperature dependence of the magnitude of this
peak obeys the Bose statistics, which explains the origin of its name. The Boson
peak appears at an energy of a few meV, where the VDOS of the corresponding
crystal usually does not show any distinct feature. The difference in energy be-
tween the Boson peak and the Van Hove singularities in the corresponding crystals
was considered to be large enough to attribute the origin to different physical phe-
nomena. In fact, the origin of the Boson peak in glasses was thought to originate
from disorder and generally accepted to be a glass specific feature. In most of
the models proposed so far the appearance of the Boson peak is attributed for
example to instabilities of vibrational modes due to saddle points in the energy
landscape (Grigera et al.| [2003), locally favoured structures (Tanakay, 2001), vibra-
tions of clusters (Duval et al., [1990), librations (Buchenau et al., |1984)), coherent
motions (Angell,(1995) of molecular fragments, or the breakdown of the continuum
approximation (Monaco and Giordanol, 2009), to name a few of them.

Only a few works consider the Boson peak and the van Hove singularities as
related phenomena (Schirmacher et al., (1998, Taraskin et al., |2001)). Recently it
was shown for a sodium silicate glass (Chumakov et al. 2011) that the Boson
peak in the glass appears at the same energy as the Van Hove singularities in
the corresponding crystal if the densities are matched. The phenomenon was thus
suggested to originate not from disorder but from the difference in density and
sound velocities of the glassy and crystalline counterparts.

In a very recent work (Chumakov et al.; 2013|) we could show for various glassy
and crystalline SiO, polymorphs that the excess states over the Debye law in the
VDOS in absolute numbers are very similar for glasses and crystals with matched
densities. The excess states in the systems with matched densities are found to
be located at the same energies and to provide the same heat capacity. The
appearance of the Boson peak in glasses at lower energies than the Van Hove
singularities in crystals as well as the difference in heat capacity is thus not due
to disorder but because the density of a glass is typically lower than the density
of the corresponding crystal.

In the frame of this work one step further is undertaken, namely the clarification
of the reciprocal space positions and the nature of the associated vibrations. The
combination of thermal diffuse scattering (TDS), inelastic x-ray scattering (IXS)
and lattice dynamics calculations from first principles is used for the study of
lattice dynamics at arbitrary momentum transfers. The lattice dynamics of the
silica polymorphs coesite and a-cristobalite are investigated in detail and compared
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with the most abundant silica polymorph a-quartz and a-GeO,.

The knowledge of the full lattice dynamics allows the localisation of critical
points, which actually lead to the occurrence of Van Hove singularities, in 3D re-
ciprocal space and the attribution of its vibrational character and the topology
in energy-momentum space. The low energy region of the lattice dynamics gives
valuable insight for understanding the compression mechanism and phase transi-
tions. Coesite in particular has furthermore an interesting geological relevance,
see Chapter [6]

1.3 Lattice dynamics in metallic tin

The lattice dynamics in metals is influenced by the conducting electrons. The
Fermi surface, which defines the surface in electron momentum space that separates
occupied from unoccupied states, is one of the key concept for the physics in
metals. The shape of the Fermi surface is decisive for their electric, magnetic and
thermal properties. In the context of lattice dynamics the almost free electrons
at the Fermi surface play a crucial role; they can couple to the phonons resulting
in abrupt variations in the phonon dispersion relations (Kohn| 1959), so-called
Kohn anomalies. The electron phonon coupling is responsible for the Cooper-pair
formation in conventional super conductors and an important concept in the theory
of spin and charge density waves. Changes in the Fermi-surface topology lead to
anomalies in thermodynamic and elastic properties and leave their fingerprint in
the lattice dynamics.

The Fermi surface of metals consists in general of surfaces from different bands.
If a piece of a given Fermi surface is superposed to another piece by a translational
vector in reciprocal space, the Fermi surface is said to be nested by this vector.
For a reasonable simple Fermi surface some anomalies in the phonon dispersion
relations can be assigned to specific nesting vectors. This was for example possible
in the case of vanadium (Bosak et all 2008)). When all the Fermi surfaces are
combined together, the resulting patterns can be decomposed into nested Fermi
surfaces if the avoided crossings of these surfaces are neglected (Whangbo et al.,
1991). Some anomalies in the phonon dispersion relations can be assigned to such
hidden Fermi surface nesting.

Pronounced anomalies in the phonon dispersion relations lead to characteristic
variations in the TDS intensities. A tracing of the intensity variations in three
dimensional reciprocal space can eventually be used to map out the shape of Fermi
surface sections (Bosak et al., 2009b).

In the frame of this work the metallic polymorphs of tin, which show interesting
structural properties on one hand and a complex Fermi surface on the other hand,
are investigated. Tin shows in fact a marked crystal anisotropy and crystallises to a
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non-centrosymmetric environment of atoms at room temperature (/-tin). Alloying
tin with indium results in substitutionally disordered crystals with a primitive
hexagonal lattice containing one atom per unit cell, called y-tin. It is a convenient
model system in the study of lattice dynamics and electron-phonon interactions,
because its phonon dispersion relations consists only of acoustic branches and it is
stable at ambient conditions. The strong influence of the electron sub-system on
inter-ionic interactions and its influence on the lattice dynamics are subject of a
detailed study in this work. The combination of TDS, IXS and lattice dynamics
calculations from first principles is again proposed as an effective strategy to study
atypical features in the lattice dynamics.

1.4 Lattice dynamics in ice

Water exhibits a very simple structure at molecular level. However, the hydrogen-
bonded network of water molecules within its crystalline structure results in a
complex phase diagram with at least 16 and at least 2 amorphous forms of ice
showing interesting physical and chemical properties (Bartels-Rausch et al., 2012,
Petrenko and Whitworth, |1991)). More than 60% of the fresh water on the Earth
is kept in the form of ice. Ice Ih is the only ice existing in the crust, while the
metastable ice Ic is suspected to form in the atmosphere (Kuhs et al., 2012, Murray
et al., |2005) It has been proposed that snow crystals may start growing at low
temperatures from a cubic symmetry with stacking disorder before transforming to
the hexagonal structure (Kobayashi and Kuroda, |1987, Kuhs et al.| 2012). Stacking
faults are indeed frequent also in ice Th and contribute to diffuse scattering (Oguro
and Hondoh, |1988). In the ice-Th phase the oxygen atoms are arranged in a wurzite
structure, and the hydrogen atoms are placed randomly according Pauling’s ice
rules (Pauling, |1935). The hydrogen disorder, however, affects the positions of
oxygen atoms, resulting in a deviation of their crystallographic position by up to
several hundreds of an Angstom (Kuhs and Lehmann), [1986)).

The dynamical properties of ice have been subject of many studies and inter-
esting features were observed. The investigation by x-ray scattering of amorphous
ice, for example, revealed a narrow width of phonon excitations in amorphous ice
in contrast to the broad features usually observed in amorphous systems and the
absence of a dominant excess of low-energy modes (Koza et al., 2004, Schober
et al., 2000)). Ultrasonic measurements reveal negative Griineisen and Bridgman
parameters, indicating phase transitions due to elastic instabilities (Gromnitskaya
et al., 2001)). Anomalous features in the lattice dynamics are responsible for the
negative thermal expansion at low temperatures and the softening of transverse
acoustic modes an important concept in pressure induced amorphisation (Strassle
et al., 2004]).
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Structure and dynamical properties of the most usual polymorph ice Th have
been also the focus of many theoretical studies. The disorder of both hydrogen
and oxygen atoms makes the problem theoretically challenging. Ab initio lattice
dynamics calculations have been carried out for different phases, phonon dispersion
relations and densities of vibrational states are reported (Adeagbo et all 2005|
Cote et al., [2003). A pressure dependent study of ice XI, the ordered version
of ice Th, using density functional perturbation theory (DFPT) was carried out
by [Umemoto et al.|(2004). The authors find that pressure induces a mechanical
instability, which is initiated by the softening of an acoustic phonon occurring at an
incommensurate wavelength, followed by the collapse of the entire acoustic band
and by the violation of the Born stability criteria (these criteria require all principal
minor of the elastic tensor to be positively defined). Phonon dispersion relations,
measured by INS; are exclusively documented for D,O (Bennington et al., 1999,
Fukazawa et all 2003 Renker, 1969). The only detailed study of x-ray diffuse
scattering on H»O ice is dated back to 1949 (Owston, 1949)), where the technique
was quite limited.

In this work we investigate single crystals of ice-Ih, extracted from the sub-
glacial Vostok lake accretion ice layer by means of diffuse and inelastic x-ray scat-
tering. Ab initio calculations and Monte-Carlo modelling are used to rationalise
the experimental results.
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1.5 Apercu général (francais)

La diffusion des rayons X monochromatiques d'un cristal parfait et infini produit
des réflexions discretes. Dans un vrai cristal les atomes situés sur les noeuds du
réseau vibrent autour de leurs positions d’équilibre. Ces fluctuations entrainent
des vibrations collectives des atomes dépendant de la température et toujours
présentes au zéro absolu. Selon la mécanique quantique, ces vibrations se car-
actérisent par des énergies discretes et sont décrites dans le cadre de la dynamique
de réseau. La maniere traditionnelle expérimentale d’étudier les excitations de
phonons est la diffusion inélastique des neutrons et des rayons X (Hippert et al.|
2006). Ces méthodes donnent acces a ’énergie des phonons a un point choisi
dans l'espace réciproque. Elles contiennent également des informations limitées
sur I'amplitude et la direction des vibrations. Les phonons réduisent l'intensité
absolue des réflexions de Bragg et donnent lieu a une diffusion diffuse entre les
spots de Bragg. Cette diffusion diffuse thermique (TDS) contient des informa-
tions précieuses sur la dynamique de réseau, méme si celle-ci est mesurée a partir
d’un détecteur qui ne permet pas une discrimination des énergies de phonons. Les
phonons couvrent typiquement une gamme d’énergie allant jusqu’a quelques cen-
taines de meV. La TDS de rayons X a été proposée comme premiere technique
dans ’étude de dispersion des phonons (Faxén, (1923, Waller| |1923)) devenant pop-
ulaire pour I'étude des constantes élastiques dans les années 1950 (Wooster), [1962).
Le flux élevé et la brillance actuellement disponible du rayonnnement synchrotron
en combinaison avec des détecteurs bidimensionnels qui présentent une bonne ef-
ficacité quantique et un faible bruit du fond, ont mené a la renaissance des études
TDS. En utilisant un modele de constantes de force, il est possible d’exploiter la
dispersion des phonons (Holt et al., 1999 2001, Xu et al., 2008]). La précision
de la dispersion des phonons extrait du TDS est donc dépendante du modele.
Néanmoins, la TDS est une technique tres puissante car la cartographie de la
distribution des intensités permet une exploration rapide et détaillée des régions
étendues dans l'espace réciproque. Cela permet d’identifier les caractéristiques
de la dynamique de réseau. Une méthode spectroscopique comme la diffusion

7
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inélastique peut étre appliquée ensuite sur les régions d’intérét. Elle offre I'acces
a ’énergie et I'intensité des vibrations individuelles.

La spectrométrie a neutrons triple axe et la diffusion inélastique des rayons
X (IXS) sont généralement trés couteuses en temps, méme avec les spectrometres
les plus avancés. La spectrométrie de neutrons a temps de vol est plus efficace,
car elle permet une mesure des énergies des phonons en régions étendues dans
I’espace réciproque. Cependant, comme pour la spectrométrie a neutrons triple
axe, le ratio de la résolution en énergie a 1'énergie incidente AE/E est seulement
de I'ordre de 1072, alors que les spectrometres IXS peuvent réaliser des études
avec des résolutions proche du meV et AE/E de I'ordre de 1078. La résolution du
moment de diffusion est beaucoup mieux définie dans des expériences utilisant des
rayons X ou elle est découplée de la résolution en énergie. La diffusion inélastique
de neutrons (INS) implique une résolution complexe. Celle-ci dépend a la fois du
transfert d’énergie et du vecteur de diffusion. Les difficultés a focaliser les neutrons
nécessitent de grands échantillons. Dans ce travail, la combinaison de IXS, TDS
et des calculs ab initio est proposée afin d’accéder a la dynamique de réseau de
monocristaux. La mesure de la TDS est une expérience simple ou les régions
étendues de l'espace réciproque peuvent étre explorées. Les caractéristiques de
la dynamique de réseau peuvent étre localisées et sélectionnées pour la mesure
IXS. Les intensités de diffusion, qui contiennent des informations sur les vecteurs
propres de phonons, sont calculés ab initio et comparées a l'expérience. Avec le
calcul validé, il est ensuite possible d’accéder a des nouvelles connaissances sur la
dynamique de réseau. Des études de référence ont été effectuées pour des systemes
a liaisons covalentes (polymorphes de silice et glace) et des systemes métalliques
(polymorphes d’étain).

Le travail est structuré comme suit : Le Chapitre [l présente un apercu général
et ce qui motive I’étude des systémes choisis (en anglais). La description théorique
et les formules clés pour calculer les intensités de diffusion sont présentées au
Chapitre Le Chapitre |3 propose une introduction aux calculs ab initio de
la dynamique de réseau. Le dispositif expérimental et la mise en ceuvre d’un
instrument pour 'étude combinée de TDS et IXS est élaboré au Chapitre [dl Les
détails de l'analyse des données peuvent étre trouvées dans le Chapitre [ Les
résultats obtenus sur les systemes de référence sont présentés et discutés dans le
Chapitre[6] Enfin, le Chapitre [7] est dédié aux conclusions, a 'impact de ce travail
et aux perspectives pour des futures applications.



Chapter 2

Theoretical basis

The following review provides the key formulae for computing the scattering in-
tensities and analysing experimental results. The standard formalism of lattice
dynamics is briefly introduced in Section followed by the formalism of TDS
and IXS (Section [2.2). Higher order contributions to the scattering intensities
are discussed in Section [2.3] Some background on the quantitative analysis of
experimental results is given in Section [2.4] and [2.5]

2.1 Equation of motion and dynamical matrix

The key information of lattice dynamics is contained in the dynamical matrix (see
for example Maradudin et al| (1971), Willis and Pryor| (1975), Xu et al. (2009)
for a detailed description). We shall see that it contains both the frequencies and
displacements associated with all possible lattice vibrations in a crystal. Here we
follow the formalism of Xu et al.| (2009)).

Consider a crystal with N unit cells containing n atoms, labelled s. The crystal
is initially in mechanical equilibrium, and the positions of the s-th atom in the
[-th unit cell are given by r; ; = R; + T,, where R, is the lattice vector and 7, the
atomic basis vector within a unit cell. Allowing the atoms to move around their
equilibrium positions with a displacement wu; s the position vector becomes r; ; =
R;+ 7,4+ u; 5. In order to derive the equation of motion for the vibrations we write
the total energy as a Taylor expansion about structural equilibrium coordinates,
which is the basis of harmonic lattice dynamics,

FE = Eo—i-za s+ = Z’U,ZS lsl’ ,,'l,l,l//+ (21)
Uy s

lsl’ !

The sum runs over all atoms and unit cells, including thus all atoms in the crystal.

9
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!
@la;al, o 1s the matrix of the force constants

/ O’F
s = e A (2.2)
S 8uﬁ‘58u§75,
and a = 1,2, 3 denotes the Cartesian x,y,z.
At equilibrium the forces £}, = —fu—}f are all zero and the first-order term

vanishes. The invariance of the potential energy against rigid body translations

requires
DOl =0 (2.3)

Y
s

In the Harmonic Approximation the 3" and higher order terms are neglected. One
can now write down the equation of motion for each atom

msups = E (I)l,s,l/,s’ul’s/a (24)
s

where m, denotes the atomic mass. Assuming Born-von-Karman periodic bound-
ary conditions (Willis and Pryor, [1975) the solution for u,; s will be a linear super-
position of traveling harmonic waves with wave vector k and mode j = 1,2, ..., 3n.
Substituting a plane-wave guess for the solution, one obtains

1 , .
U s = Re | ——a, 'ek,-e(lk(Rl)ﬂLWk,jt)) 7 2.5
S e monsens 2

with phonon wavevector k, defined in the first Brillouin zone, vibration ampli-
tude ay ;, polarisation vector ey ;, and vibrational frequency wg ;. This yields an
eigenvalue equation

O(k)ék,j = wi’jam. (26)

The dynamical matrix is the mass-reduced Fourier transform of the force constant

matrix
a,o’ e(ile’l,)

» |
Co ) = = s D Wil ’
stits’ =

s,s’

(2.7)

which is Hermitian by construction. Because of translational invariance one can
set R; = 0 for simplicity. The eigenvectors

ek,j,81

ek»j782
€k,j = .

ek)j)sn
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are periodic in reciprocal space and satisfy the orthonormal relationship
* *
€k € = D ki it jrs = ki 0 (2.8)
S

The vibrational frequencies of each vibrational mode are obtained as the square
roots of the eigenvalues, and the eigenvectors give the pattern of atomic displace-
ments belonging to each vibrational mode. The dynamical matrix contains thus
the complete information of the lattice dynamics. The above expressions are de-
rived in C-matrix notation but there exists also a common non-periodic D-matrix
notation. The distinction is important as different codes for lattice dynamics calcu-
lation output the results in different notations. Consider the following alternative
definition for the solution of Equation

k(R4 ) o)) (2.9)

1
U = Z Re ———Qg j€k ;€
s - (\/m_s J J

which explicitly includes the atomic basis vector 7 in the lattice Fourier transfor-
mation. The resulting dynamical matrix is given by

! 1 ! kR, /+Ts
Dii (k) = = Pl T, (2.10)
which has the same eigenvalue Equation as the dynamical matrix (Expression
) in C-matrix notation. The resulting eigenvectors eﬁ ;¢ differ from the ones
based on the C-matrix notation by a phase factor

e,?w = ekJ,se’ikTs. (2.11)

The scattering intensities for IXS and TDS will be developed using the periodic
C-matrix notation. For a description using the D-matrix notation please refer to
Xu and Chiang| (2005).

2.2 Scattering intensities from phonons

In the following the formulae for IXS and TDS intensities are derived in the adi-
abatic approximation. The considerations are limited to the case in which the
electronic part of the total wave function is not changed by the scattering pro-
cess. A detailed discussion on the applied approximation can be found elsewhere
(Schulke, 2005). The intensity distribution of a linearly polarised x-ray beam scat-
tered by a single electron, ., is given by the Thomson scattering formula (Warren),

1966),
1. =1, ¢! n?¢p + cos? 2(26 2.12
. Zmzc4d2(82n ¢ + cos“pcos”(20)), (2.12)
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where I; is the incident intensity, 26 the scattering angle, ¢ the angle between
the scattering plane and the plane defined by the polarisation and the direction
of the incident beam, and d is the distance between the scattering center and the
detector. The intensity of X-rays scattered by a crystal at scattering vector @ and
energy transfer Ahw arises from the sum of the scattering from all electrons in the
system,

[(Q, Aw) = (| ) foeQRrtTetue)

l,s

Vo(hw — Ahw), (2.13)

where f is the atomic scattering factor and (. ..) denotes averaging over time. The
formula can be simplified using an identity for harmonic lattices (Ott} |1935)

<eiQ“) = e_%<(Q”)2>, (2.14)
yielding
(Q Ahw — 1, Z fsfs’e QRI'+7, o) o= H(Quys—up )2 >5(hw—Ahw). (2'15)
Ll s,s’

Assuming an independent random phase for each mode and exploiting translational
symmetry (>, , = N )_,), the time average in Equation can be evaluated to

1 A
;@wfmmﬂ:m+m~§5ﬁ14aMJ@%M#%@w>

where M, denotes the Debye-Waller factor
1
M, = > ki’ | Qe (2.17)

4dm
¥ kg

The amplitude of each vibrational mode satisfies the Bose-Einstein relation of the
corresponding phonons,

2h 1 1 h hwy
12 — ) = th 2.18
|ak,]| ka,] <6hwk,j/kBT -1 + 2) kaj co 2]{jBT ( )

with Boltzmann constant kg and temperature T
The general formula for scattering from phonons thus reads

[(Q,Ahw) = NI, Y fofge Mo Mo e QBT 6600 (hw — Ahw)  (2.19)
l,s,s’
with
h 1

/ heog
Glg = coth(

o) 2.20
2Ny 4 W QkBT)(Qe’“’“) (Qerjis)e™™, (2.20)
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where the double summation ), , has been replaced by N ), exploiting transla-
tional invariance. The intensity of scattered X-rays is determined by the eigenfre-
quencies wy,; and eigenvectors ey ; of the dynamical matrix (Equation [2.7). The
evaluation of the general formula and is numerically demanding because
of the two nested three dimensional sums (one in real and one in reciprocal space).
A standard approach for simplifying the expressions is a Taylor expansion

I=1Iy+L+1,+.... (2.21)

For a large crystal we can assume N — oo, and
> e =N 5k - K,), (2.22)
! 1

where K, is a reciprocal vector. The assumptions are not applicable for clusters
or nanocrystals but valid for standard single crystal studies. The series expands
to

IO(Q) = Nz[e Z fsfs’eiMsiMS/eiiQTs’sl Z (5<Q — Kp), (223)
s,s’ 1

L(Q, hw) = M\QUEZ ! coth(h:BT>><

w
] Q.j

|Z “Me(Qeqs)e P20 (hw — Ahw),  (2.24)

and

h2Nvl, A’k
[2(Q>hw> - / 3 ZW’C]WQ k,j’ X

8
> %eMseiQ*s<Qek,j,s><Qer,j,s> "S(h ~ ),
5 (2.25)
where v is the volume of the real space unit cell and Wy ; is given by
Wi = Wiﬁ coth(;(:BT> (2.26)

The integral in Equation [2.25|is over the first Brillouin zone. The zeroth-order
term (Equation corresponds to Bragg diffraction at Q = K. The intensity
of the Bragg peaks is reduced by the temperature dependent Debye-Waller factor
(Equation and diffusively distributed in reciprocal space. The first order term
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(Equation corresponds to single phonon scattering and gives the scattering
intensity of IXS. Each first order scattering event at a given scattering vector Q
involves one phonon of any of the 3n branches at the same wave vector because
of momentum conservation. The phonon involved in the scattering process can be
either emitted or absorbed and the involved energy transfer Ahw corresponds to
the phonon energy. TDS is the sum of the scattering of all branches. It reduces
the energy and momentum transfer resolved intensity /(Q, hw) to a momentum
transfer resolved intensity /(Q) which is generally non-zero for any scattering
vector. In first order it is given by

ENT 1 lwa,
L(Q) =~ th( QJ)
Q) == ZJ: wos T\ kT

,MS QeQ,j s) —iQTs|2

(2.27)

I, is strongly influenced by the thermal population factor contained in the coth
function. The low energy phonons - in particular the acoustic phonons close to
Bragg reflections - contribute most.

2.3 Higher order contribution

The second and higher order terms correspond to multiphonon scattering processes
and involve all phonons; the momentum transfer can be shared in an infinite num-
ber of ways. The second order contribution involves the integration over the first
Brillouin zone (see Equation . It scales with ¢? and increases linearly with T
for > Tpy, where T, denotes the Debye temperature. |Xu et al.| (2009)) computed
the total and higher order (zeroth and first order contribution subtracted) intensi-
ties for Cu and Si at different temperatures for an arbitrarily chosen direction, see
Fig. 2.1 Aiming for a 3% accuracy the example shows that one should limit @ to
~ 47 /a at room temperature or ~ 67/a at 100 K; here a is the lattice parameter.
The temperature enters through Aw/kgT, the higher order processes are thus less
pronounced for systems with a high Debye temperature. Characteristic features of
TDS are contained in the first order contribution, the higher order contributions
are smoother with increasing order. In the following we limit our considerations
to the first order contribution.

2.4 Reconstruction of lattice dynamics from ther-
mal diffuse scattering

Experimental information on the phonon dispersion relations is traditionally ob-
tained from INS (Brockhouse et al., |1961)) and IXS (Burkel, |2000). The informa-

tion on the phonon eigenvectors can be extracted from inelastic intensities (Stranch
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Figure 2.1: a) Calculated total, first order and higher order TDS intensities of Cu

at 300 K for @ along [1.00 0.20 0.02]. b) Ratio of high-order TDS to total TDS
intensities at the indicated temperatures for Cu along the same direction.
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and Dorner, [1986)), but such experiments are rarely undertaken. For a quantitative
analysis of the dynamical matrix from inelastic scattering one usually introduces a
model of interatomic interactions which reproduces the missing eigenvectors. The
extraction of phonon dispersion relations from first order TDS intensities is typi-
cally performed assuming a model of interatomic potentials; see for instance (Holt,
et al., 2002, Xu et al., 2008, Xu and Chiang [2005). The accuracy of the extracted
phonon dispersion relations is thus model dependent. Alternatively, one may com-
pute the scattering intensities from an ab initio calculated dynamical matrix and
compare them with experiment. In this way one may get the description of the full
lattice dynamics from single crystal (Bosak et al., 2012) or powder studies (Bosak
et al.; 2009a). A model-free reconstruction of the dynamical matrix from first or-
der TDS intensities is possible for mono-atomic crystals (Bosak and Chernyshov),
2008). For more complex structures part of the information is irreversibly lost in
the kinematic regime. The missing information may in principle be recovered from
dynamic scattering (Bosak and Chernyshov}, [2008) but the approach is neither easy
nor very practical.

In the frame of this thesis I will concentrate on comparing TDS and IXS in-
tensities to values calculated from ab initio determined dynamical matrices.

2.5 Derivation of elastic constants

Some quantities can be directly reconstructed from TDS intensities. At reciprocal
space positions close to Bragg peaks the long wave length limit is reached involving
two assumptions: (i) The TDS intensity is dominated by acoustic modes. The
thermal factor (Equation becomes most important in the TDS intensity
(Equation as w — 0. Expression reduces for kT > hw to 1/Nhw?.
For ¢ — 0 the acoustic modes will contribute most as their frequencies approach
zero. (ii) The displacements of all atoms in the unit cell are the same due to the
acoustic-like vibrations. This assumption holds for a negligible influence of the
optic modes on the eigenvectors. The acoustic modes become elastic waves whose
wavelength compares to the size of many unit cells. The absolute displacement
becomes the same for all atoms in one cell and this displacement is either parallel
(longitudinal mode) or perpendicular (transverse mode) to the reduced momentum
transfer for high symmetry directions. Under condition (i) and (ii) one finds

€q.,s = eq,j,j =1...3 (228)

and Equation [2.27) can be reformulated as follows,

ANI, <~ 1 hwo ; fs
1(Q) = coth( —924 ]QeQ7<]2| —25 o Ms

2, (2.29)
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Assuming a linear dispersion relation w = qu, , where ¢ = |q| and v, is the sound
velocity, one finds

ANI, 1 hqua,; fs _
1Q)="5->" coth<2k3%)|QeQ7j|2|Z\/_m_se M2, (2.30)

j=1 q'Ua,j

which can be further simplified for kT > hw to 1/Nhw? to,

3

hNIe 1 2 fs —Ms
1(Q) = B Zqzvg’j’QeQﬂ |¥ ’_mse

j=1

2, (2.31)

For a general position in reciprocal space assumptions (i) and (ii) break down
and the 3n-3 optic modes contribute to the intensity. Important to note is the
breakdown of assumption (ii) near the zone boundary where the displacement of
the acoustic modes becomes more optic like. A polarisation selective excitation of
a specific mode at arbitrary position is thus impossible.

The TDS intensity can now be interpreted in the frame of elastic theory (see
for example Fedorov| (1968))). Starting from the differential equations of the dis-
placement vector w

0y,

jULig

where ¢;jim, is the tensor of elastic constants, and taking a monochromatic plane
wave Ansatz for the solutions one obtains

Pty = Cijimkjkit,. (2.33)

k = kn and w are the wave vector and the frequency of the elastic wave, respec-
tively. Introducing the reduced elastic-modulus tensor

1
)\z’jlm = ;Cijlma (2-34>

one can reformulate Equation [2.33]in the form of
(Nijimmnng — V? G ) U, = 0. (2.35)
Considering the second-rank tensor
A = (Nijimmning), (2.36)
one can write 235 in the form of

(A — v2)u =0, (2.37)
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which is known as Christoffel’s equation, where [ is the identity matrix. Reformu-
lating A in terms of ¢ yields

1

1
Ajm(q) = = (Nijim@iqr) = @(Ciﬂm%%)- (2.38)

The TDS intensities can be rewritten as follows,

_hNI ., 1 hq\/A M 2
=5 o oth szT )Q|Z 5 (239)

which further reduces for kgT > hg\/A(q) to

T
I= N]eQ kB

, (2.40)

in agreement with the previously established result from elasticity theory (Wooster,
1962)). Collecting TDS intensities along all directions around many Bragg reflec-
tions allows thus the determination of the full set of elastic constants (independent
from ¢) from a simple diffraction experiment. This was a subject of investigation
for several systems (Wooster, 1962). Measuring TDS with modern area detectors
will allow an over determination of the eigenvalue equation and may provide an
alternative tool for a precise measurement of elastic constants.



Chapter 3

Ab-1nitio lattice dynamics
calculation

Lattice dynamics calculations are required to obtain the full description of the
dynamical matrix. Experimental methods usually provide only part of the infor-
mation. For a given dynamical matrix both IXS and TDS scattering intensities
can be calculated following the formalism laid out in Chapter 2] Modern density
functional theory, introduced in Section [3.1} provides two powerful methods for
calculating the dynamical matrix ab initio, either by perturbation theory (Section
or by finite displacement (Section . The advantages and limitations of the
two methods are discussed together with a guideline for well converged calcula-
tions (Section and . The calculation of large numbers of g-points required
for the computation of TDS intensity distributions and the density of vibrational
states is discussed in Section 3.4l

3.1 General strategy

The goal of a lattice dynamics calculation is to compute the second derivatives of
the total energy for a given system to construct the dynamical matrix as defined
in Equation 2.7 The total energy of a system can be obtained by an electronic
structure calculation in the frame of density functional theory. Such calculations
have become an important tool in solid state physics and quantum chemistry and
allow the determination of electronic properties from first principle. A complete
and comprehensive description can be found for example in [Kohanoff| (2006]). Here,
some of the key ingredients are introduced.

We make use of the adiabatic approximation (Born and Oppenheimer; 1927)
which allows a decoupling of the vibrational from the electronic degrees of free-
dom. It assumes that the electrons instantaneously follow the motion of the nuclei,

19
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while remaining always in the same stationary state of the electronic Hamilto-
nian. This approach allows the separation of nuclear and electronic wave func-
tions. Within the frame of density functional theory these wave functions, and
thus also the energy of the electronic system is exclusively determined by the
electronic ground state charge density distribution. Density functional theory is
based on the Hohenberg-Kohn theorem (Hohenberg and Kohn, [1964)) and a prac-
tical scheme for determining the ground state was devised by |Kohn and Sham
(1965)). The energy functional consists of different contributions which can be
addressed separately. These are the non-interacting kinetic energy, the classical
electron-electron interaction, the interaction of the electrons with external fields,
the exchange energy and a correlation term. The most widely used approaches to
the exchange and correlation terms within density functional theory are the local
density and generalised gradient approximations (Kohanoff, 2006)).

The wave functions for free electrons in a periodic crystal can be expanded
in plane waves and they are the exact solution of the electronic problem if the
potential due to the atoms is neglected. In a real crystal the potential due to
the atomic nuclei can not be neglected. It exhibits singularities at the nucleus
positions and results in steep wave functions. A plane wave expansion of the
real wave function would therefore require an enormous number of plane wave
components. Based on the two observations that: (i) the core states are highly
localised and not fundamental for the chemical bonding and (ii) a good description
of the valence wave functions inside the core is not strictly necessary, there is no
lack of crucial information if the core wave function is replaced with a smooth
and nodeless pseudo-wave function, which can be easily expanded in plane waves.
The pseudo-wave function is not a solution of the atomic problem, it corresponds
to the lowest energy state of an effective, pseudo-atomic problem, where the true
potential is replaced by a pseudo-potential. According to Bloch’s theorem the
electron wave function can be expanded in a plane-wave basis set (Bloch [1929)).
The Fourier components of the wave function decrease with increasing reciprocal
lattice vector and the expansion can be limited to all waves with a kinetic energy
below some energy cut-off.

Solving the electronic structure in practice involves the convergence towards
a self-consistent solution, where the input charge density distribution equals the
output one within a certain numerical tolerance. The charge density is thereby
sampled on a uniform grid and the problem solved iteratively, starting with a guess
for the charge density.

We can now write the total energy of the system as

~ - h2
2m

V2 + Vsor, (3.1)

e

with wave function ¥, Hamiltonian H and self consistent field potential Vgcr, in
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Dirac notation. Introducing an atomic displacement perturbation A, the force can
be calculated,

dFE dv . A dW
) (Rt SRt ) (32)
In the case of (V| representing the ground state of H , the first two terms vanish.
This is known as the Hellmann-Feynman theorem,

A~ dU dU
(WA = (0] =0, (3.3)

where €, are the Kohn-Sham eigenvalues. The solution of the stationary problem
corresponds to an energy minimisation which is referred to as geometry optimisa-
tion. Such a geometry optimisation can be performed for a given structure and is
well defined also in the presence of external stress (Pfrommer et al., 1997). A vari-
ation of internal and cell parameters is referred to as full geometry optimisation.
The force constants are the second derivatives of the total energy

d*E AV dV dVv dv

V1) (3.4)

_d)\2_<d)\| v+ |d>\ d)\> (v |d)\2
and none of the terms vanishes. The second derivatives of the energy require the
linear response of the wavefunctions with respect to the perturbation ((%D This
may be accomplished either by a finite-displacement method, calculating the total
energy for small displacements of each atom in all directions (finite displacement,
Section or by computing first order response orbitals by density functional
perturbation theory (DFPT, Section . A more detailed description can be
found elsewhere (Baroni et al., |2001)).

3.2 Density functional perturbation theory

The linear response to A, which may be a displacement of atoms with wavevector g
or an electric field, requires the first order Kohn-Sham orbitals ®™). These orbitals
have a Bloch-like representation

(1) = ey, (3.5)

where u has the periodicity of the unit cell. The perturbation can thus be
performed at arbitrary q in the primitive cell description. The first order response
orbitals are the solutions of the Sternheimer equation

(1 = ?)|@}") = —PaVje)”), (36)
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where P, is the projection operator onto unoccupied states and v") the first order
potential which includes response terms of Hartree and exchange correlation po-
tentials. v depends on the first order density which in turn depends on the first
order Kohn-Sham orbitals. Finding ® is thus a self consistent problem, just like
solving the Kohn-Sham equations for the ground state. The self consistent field
can be solved using a formalism based on Green’s function (Baroni et al., 2001)
or a variational principle (Gonze, 1997)). The developments introduced in |Baroni
et al. (2001) and Gonze (1997) showed that these quantities can be calculated as
accurately as the square roots of the ground state properties derived from den-
sity functional theory. The variational formulation is particularly elegant. It is
based upon the 2n + 1 theorem, stating that the (2n + 1)th-order response of the
energy may be calculated using only the n-th order response of the Kohn-Sham
orbitals. The method can be formulated as a minimisation problem with respect
to the basis-set coefficients. The full description of the formalism can be found in
Gonze (1997) and (Gonze and Lee| (1997). The calculation of Raman and infrared
intensities requires the third derivatives in energy, which may be computed for a
very well converged structure (Giannozzi and Baroni, [1994)).

Polar systems

The total energy in the case of polar systems consists of a contribution from the
electron system and a contribution from the electrostatic energy between the ions.
Similarly, the dynamical matrix split in two parts,

% (q) = O3 (q) + O J(q)- (3.7)

8,8’ el,s,s’ Ew,s,s’

The electronic contribution C’eo‘lizls,(q) is obtained from the knowledge of the first-
order wave functions with respect to one perturbation. The ion-ion contribution
C’gﬁ’ls’s, (@) requires the mixed second-order derivative of the energy with respect to
atomic displacements and a macroscopic electric field. The long-range Coulombic
tail of the dynamical matrix of a polar system can be modelled using a generalised
electrostatic dipole- dipole interaction of pseudo ions with charges given by the
Born effective charges in an effective dielectric medium (Dal Corso and Mauri,
1994). By subtracting the tail computed using this model the remainder of the
dynamical matrix is short-ranged decaying as 1/r°. Fourier interpolation of this
charge subtracted set may be converged using a much coarser grid of g-points than
the original dynamical matrix. As a final step the dipole-dipole model contribution
to the dynamical matrix is added back at the interpolated g-points. C’;ij&s,(q)
is direction dependent and has a non-analytic behaviour at ¢ = 0 resulting in
the spitting of longitudinal optical and transverse optical modes. The formula at
arbitrary momentum transfer and its limit for ¢ = 0 can be found in Gonze and

Lee| (1997).
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Metals

DFPT is directly applicable to metals at zero temperature where a clear separa-
tion between occupied and unoccupied states is possible. The number of k-points
required to correctly represent the Fermi surface is, however, very large and per-
turbation calculations may become prohibitively expensive in computer time and
memory. A practical implementation has been proposed by de Gironcoli (1995) in
the pseudo-potential formalism, based on a smearing technique for dealing with
Fermi effects. In this approach the Kohn-Sham energy levels are broadened by a
smearing function,

5ol€) = ~5(c/a), (3.8)

which is an approximation to Dirac’s  function that becomes exact for vanishing
linewidth o. & can be any function that integrates to unity, for example a Gaussian
or Lorentzian or the derivative of the Fermi-Dirac function. The latter somewhat
mimics the electronic temperature (Baroni et al., [2001). The approximated local
density of electronic states is the original density of electronic states convoluted
with the smearing function

n(r €)= 3 250wy, (3.9)

o o

where the sum refers to the discrete k-vector index and to band and spin indices
for all bands. The electron density is given by

n(r) = /00 n(r, €)de. (3.10)

o0

Advantages and Limitations

The main advantage of DFPT amongst all other methods is the feasibility to per-
form perturbations on the primitive cell at arbitrary momentum transfer. The
splitting of longitudinal optical and transverse optical modes is included via the
ion-ion interaction which allows for the treatment of polar systems. Metallic sys-
tems can be treated with an adequate smearing scheme for Fermi surface effects.
The price to pay is a complex formalism which requires a lot of programming.
Anharmonic terms in the lattice dynamics can be computed by evaluating higher
order response (Debernardi et al., [1995).

3.3 Finite displacement method

An alternative method of computing the dynamical matrix consists in numerical
differentiation of forces while atoms are displaced by a small amount from their
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equilibrium positions. The total energy of the system can be calculated for the
situation where the ion s’ is displaced in direction o’ by a small distance +u. The
forces are then obtained by the central-difference formula,

dFspz ~ Fs—t_a - sta . dQEO

dus,a 2us,a dus,adus’,a’ 7

(3.11)

where F :a and F_ , denote positive and negative displacements, respectively. By
iterative evaluation of the numerical derivative for displacements on every ion in
each direction one obtains the dynamical matrix at zero momentum transfer. In
order to obtain the dynamical matrix at arbitrary momentum transfer, one may
take advantage of the short range nature of the real-space force constant matrix
(IDET;,?}/,’S,. The elements of the force constant matrix in Equation decrease in
fact as 1/r® with interatomic distance for most non-polar insulators and metals,
(IDZ‘;?}/,S, — 0 as R,, — oo. Introducing a supercell (Frank et al. |1995) which
consists of p X ¢ X r primitve cells one finds that the dynamical matrix at ¢ = 0
of a supercell is the real-space force constant matrix in the m-th unit cell,

O (aupercen = 0) = B0 (3.12)
if the supercell sizes L; are larger than twice the distance beyond which the force
constants are treated as zero. The dynamical matrix of the primitive cell at arbi-
trary q is obtained by Fourier transformation,

o elaR, (3.13)

a,o’ 1
Cov (@) = T > e e

8,8’

The method can be adapted for polar systems with long range forces (Yin and
Cohen, 1980).

Advantages and Limitations

The main advantage of the finite displacement method is its general character, it
can be applied to any system. A further advantage is the choice of the displacement
amplitude. Large displacement amplitudes allow to include anharmonic effects to
some limited extent and dynamical stabilisation may be obtained (Antolin et al.|
2012). The formalism is less complex and can be programmed as extension to many
total energy codes. One has, however, to deal with supercells whose size depend
on the range of the internal forces. Calculations for systems containing many
electrons and long ranging forces can get prohibitively expensive in computation
time and memory.
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3.4 Fourier interpolation of dynamical matrices

The DFPT formalism requires a self-consistent perturbation calculation for every
single g-point. The calculation of precise phonon dispersion curves requires hun-
dreds and 3D TDS intensity distributions or VDOSs thousands of g-points. The
calculation of a large number of g-points within very reasonable computational
expense is possible taking advantage of the short-range nature of the real-space
force constant matrix fl)lof:'ll,s,, as in the finite displacement method. The approxi-

mation of CIDZO‘;QZI/S, in a p x ¢ x r supercell is given by the Fourier transform of the
dynamical matrices on a p X ¢ X r grid,

P ZC‘”‘ (3.14)

8,8’

see Section for the notation. The dynamical matrix at any desired g-point in
the primitive cell description is obtained by Fourier transformation, as in the finite
displacement method using a supercell. The method can be refined by including
all image forces, referred to as cumulant method (Parlinski et al., |1997). In the
case of polar systems the Fourier interpolation can be performed on the electronic
part of the force constants. The ion-ion contribution with longer ranged Coulomb
forces (they vary with 1/r®) can be handled analytically via the Born effective
charges and added after the Fourier interpolation. In the case of metals a larger
set of g-points is required in order to accurately describe the electron-phonon
interaction. Taking advantage of this method reduces the number of expensive
DFPT calculation to a reasonable number of g-points for the calculation of the
dynamical matrix C’ . on a dense grid or fine path.

3.5 Convergence criteria

Ab-initio lattice dynamics calculation are very sensitive to several convergence
issues, discussed in the following.

Electronic structure

A very well converged geometry is the pre-requisite for any lattice dynamics cal-
culation. The energy expansion Equation makes the explicit assumption that
the system is in mechanical equilibrium and that all internal atomic forces are
zero. External stress can be present; the lattice dynamics is in fact well defined
at any stress or pressure. A high level of plane-wave cutoff, self consistent field
and electronic k-point sampling is required to achieve well converged dynamical
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matrices. The requested convergence tolerance is system dependent and can re-
quire internal forces to be converged within < 10~ eV /A. Each parameter must
be independently tested for convergence. The force constant matrix ®; 4 ¢ is
positive definite for a lattice dynamics calculation performed in the geometrical
configuration which minimises the total energy of the system. If the system is not
in a minimum energy equilibrium configuration, ®; ¢ is not necessarily positive
definite resulting thus eventually in negative eigenvalues.

Convergence of the DFPT solver

The convergence of the perturbation calculations depends strongly on the con-
vergence of the ground state electron density and wave functions. The DFPT
equations include the ground-state wave functions, both, directly and as a con-
sequence of the orthogonality condition between ground-state and first-order re-
sponse orbitals (Gonze and Lee| 1997, Refson et al., 2006)). The error in the second
derivatives of the energy is variational and depends thus quadratically on the error
in the first order response orbitals. In order to achieve phonon energies converged
to 0.1 meV the total energy per atom must be converged within ~ 10710 eV /A2,

Convergence of the finite displacement method

The evaluation of the numerical derivatives of forces requires the knowledge of
the total energy with the same accuracy as in the case of DFPT. The size of the
supercell for computing the dynamical matrix at arbitrary wave vector must be
chosen carefully. It must be large enough to exceed the spatial range of the forces in
order to cope with the variation of the dynamical matrix. Force constants outside
the supercell must be negligible small.

Convergence of the Fourier interpolation

The accuracy of the Fourier interpolation depends on the number of primitive cells
taken to construct the supercell. The real force constants outside the supercell are
treated as zero. The number of primitive cells must be large enough to exceed
the spatial range of the forces. A too large supercell on the other hand can lead
to high-frequency artefacts in the dynamical matrix calculated by the performed
perturbations. In this case perturbation calculations on a finer g-grid are required.
The shape of the supercell should be as close to cubic as possible, irrespective of
the shape of the primitive cell, in order to optimise the ratio of the supercell size to
the distance at which the force constants may be neglected. The symmetry of the
supercell should, however, be compatible with the primitive cell. Best convergence
is obtained for a grid containing the I'-point.
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Sum rules

The convergence of phonon calculations close to and at I" can be monitored by the
help of two sum rules.

(i) Acoustic sum rule (Born and Huang), |1954). The total energy and thus also
the vibrational Hamiltonian is invariant to a uniform translation of the system in
space. This symmetry argument requires the eigenfrequencies of the three acoustic
modes at I' to be zero and can be formulated in real and reciprocal space with
expressions for the force constants and dynamical matrices,

> oar, = Z(J‘”" =0) = 0. (3.15)

s,m

The translational invariance is not exactly satisfied in plane wave calculations as
the exchange-correlation potential and energies are evaluated on a fixed grid in
real space. The translation of all atoms by an arbitrary vector results in small
energy changes. Consequently the acoustic sum rule is violated. The dynamical
matrices (or the force constant matrix) can be corrected by a transformation so
that the sum rule is satisfied (Gonze and Lee, 1997):

Co(@=0)=C8(g=0)— 50 » CO5 (g =0). (3.16)

s//

By this operation the eigenfrequencies at ¢ = 0 will change. A generalisation for
g # 0 can be obtained using the Ewald summation technique (Pick et al., [1970),

ézgeé,<q> = Csoj’a - 55 s’ Z Ca O/L/ = (317)

which results in a wavevector-independent correction on the site-diagonals of the
dynamical matrices. In addition to translational invariance one may also make use
of the index symmetries of the force constants,

a0 ga,d
O = P vy (3.18)
and rotational invariance
a,o/ ol a,a” o
Z (q)l7s7l’7s’Rs’ - ¢l,s7l’7s’Rs’> (319)
l,s

about the axis R¢. This has the advantage of not violating the Hermitian or point
group symmetry invariance of the dynamical matrix. A sophisticated version of
the acoustic sum rule correction based on a projection method (Mounet, 2005) is
implemented in modern codes such as QUANTUM EXPRESSO (Giannozzi et al.|
2009) and CASTEP (Clark et al., 2005).
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(ii) Sum rule for Born effective charges (Pick et al.,[1970). The charge neutrality
must be fulfilled at the level of the Born effective charges, Z%*". The sum of these
charges of all atoms in one unit cell must vanish,

>z =0 (3.20)

S

The finite number of plane waves or the evaluation of exchange-correlation poten-
tials and energies on a discrete grid breaks this rule. A correction scheme based on
the mean effective charge excess can be found elsewhere (Gonze and Lee, [1997)).

3.6 Lattice dynamics calculations in practice

The different steps for a typical ab initio lattice dynamics calculation within the
plane wave formalism employing pseudo-potentials is illustrated in Figure |3.1
The total energy is calculated for a given electronic structure in the primitive
cell description. Convergence tests are performed by evaluating internal forces
for different sampling of the electron density and levels of the plane wave cut-off
as well as for the self-consistent field. Accurate pseudo-potentials are required in
order to achieve the high level precision in the total energy. A rigorous geometry
optimisation follows for all systems for which the forces are not necessary zero
by symmetry. A high level structure optimisation to the requested precision is
mandatory for a good lattice dynamics calculation (see Section .

Phonon calculations can now be performed by DFPT or by the finite displace-
ment method. If DFPT is chosen the dynamical matrix can be calculated for
arbitrary g-points. Convergence criteria need to be evaluated on the level of the
DFPT solver and can be performed at an arbitrary g-point. I'-point calculations
are in particular useful for monitoring the convergence with the sum rules. If dis-
persion relations or the dynamical matrices on a fine g-sampling are desired, per-
turbation calculations are performed on a uniform g-grid which allows for Fourier
interpolation. The number of grid points can be efficiently reduced by symmetry
following the ideas of Monkhorst and Pack| (1976), referred to as Monkhorst Pack
grid. The required sampling is again system dependent and needs to be checked
for convergence. Dispersion relations and a fine g-sampling are finally obtained by
Fourier interpolation.

The procedure for a phonon calculation employing the finite displacement
method follows a similar line. I['-point calculations are performed and the con-
vergence criteria for the numerical derivatives and the displacement amplitude is
evaluated. For the calculation of g-points other then I' a supercell must be con-
structed and a I'-point phonon calculation of this supercell is performed. The size
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Figure 3.1: Schematic overview of a typical lattice dynamics calculation using
either DFPT (left branch) or the finite displacement method (right branch). See

text for further details.
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of the supercell must be tested. Dynamical matrices along a dispersion curve or
on a dense grid may finally be obtained by Fourier transformation.



Chapter 4

Experimental techniques

4.1 Diffuse scattering setup

The experimental geometry of a diffuse scattering experiment is identical to x-ray
diffraction. Monochromatic X-rays are scattered from the sample, preferable in
transmission geometry, and the scattered intensity distribution is recorded by an
area detector. Care needs to be taken in the reduction of background scattering
and read-out noise of the detector due to the weak signal. Air scattering can be
minimised by using a collimator in front of the sample and a beamstop behind it.
The conceptual design of a suitable beamline (ID29 at the ESRF) is sketched in
Figure Synchrotron radiation is monochromatised by a pair of channel-cut
silicon crystals (Si (1 1 1) and Si (3 1 1) reflection) providing an energy resolution
AFE/E = 107°. The X-rays are focused by a toroidal mirror; a second mirror takes
care of the rejection of higher harmonics. The background is massively reduced
by the slits. The incoming x-ray energy is chosen by the scattering angle of the
monochromators. The sample is mounted on a goniometer (see Figure and
the direct beam is blocked by a beamstop behind the sample. The intensity is
collected by a pixel detector with practically no dark noise. Technical details of
ID29 can be found elsewhere (de Sanctis et al., 2012).

The choice of a suitable detector is essential for the quantitative analysis of 3D
TDS intensity distributions. Silicon hybrid pixel detector systems are currently
the best option available for TDS studies with x-ray energies of below 20 keV. Area
detectors made of such devices are for example the PILATUS detector (Kraft et al.|
2009). Such detectors can be operated in single photon counting mode. FEach
pixel is read out individually. These detectors possess no dark current and no
read-out noise, provide a good point spread function, high quantum efficiency, and
a high dynamic range. The read-out time is in the ms range, thus shutterless data
collection becomes possible. Fluorescence can be largely suppressed by setting an

31
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Figure 4.1: Schematic lay-out of ID29, a beamline suitable for diffuse scattering
studies. See text for details.

energy threshold. The energy resolution of the PILATUS detector is, for example,
500 eV. The mar345 detector (Marresearch GmbH]), based on the image plate
technique, is a suitable alternative. The readout time is much higher (> 60 s)
and an energy threshold is not implemented. Most of the presented TDS results
were measured at beamline ID29 and the Swiss-Norwegian Beamline BMO1A. The
latter provides a more flexible sample environment and got recently equipped with
the PILATUS 2M detector, but the total flux is lower and the x-ray beam size is
larger. The diffraction geometry and experimental strategy for collecting 3D TDS
intensity distributions are discussed in Chapter [5

4.2 Inelastic x-ray spectrometer

The instrumental concept of the IXS beamline ID28 is based on a triple axis
spectrometer (Burkel, 2000, Krisch and Sette, 2007). X-rays are monochroma-
tised using the very high energy resolution monochromator selecting the energy
of the incoming beam. The sample position and orientation are controlled by the
goniometer and translational stage. The chosen scattering angle determines the
momentum transfer. The crystal analyser specifies the scattered photon energy.
The schematic layout of a triple axis IXS spectrometer is illustrated in Figure 4.2

The synchrotron radiation with a bandwidth of AE/E ~ 1072 and an inte-
grated power of ~ 200 W is monochromatised by a series of three optical devices
(see Figure . Pre- and post-monochromator improve the energy resolution to
AE/E ~ 107" and then to AE/E ~ 107°. Their main task is to reduce the
heat load on the main monochromator. They consist of Si (1 1 1) and Si (4 0 0)
channel-cut single crystals kept in high vacuum. The pre-monochromator crystal
is cooled by liquid nitrogen. A collimator unit made of beryllium lenses ensures
the angular acceptance of the post-monochromator, which is water cooled. The
main monochromator operates in backscattering geometry at a Bragg angle of
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Figure 4.2: Schematic layout of a triple axis IXS spectometer. The precise value of
the energy of the X-rays is determined by the monochromator and analyser. The
momentum transfer ¢ of the measured photon is defined by the scattering angle
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Figure 4.3: Sketch of the IXS beamline ID28 at the ESRF. See text for a detailed

explanation.
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89.98°. This ensures minimal geometrical contribution to the energy resolution.
A high-order Bragg reflection and a perfect crystal are mandatory to obtain an
energy resolution of AE/E ~ 1077 — 1073, The chosen reflection of the main
monochromator determines the incident energy E, resolution AFE, and the flux of
the x-ray beam. The best energy resolution can be achieved using the Si(13 13
13) reflection providing E = 25.704 keV, AE = 1.0 meV, and a flux of 1.5 x 10°
photons per seconds. A good compromise between resolution and flux is the Si
(9 9 9) reflection with E = 17.794 keV, AE = 3.0 meV, and a flux of 2.7 x 10
photons per second. The spot size of the x-ray beam at the sample position can
be chosen by applying on of the following focusing schemes. (i) Horizontal and
vertical focusing is achieved by a platinum-coated toroidal mirror, located 25 m
from the sample position, resulting in a spot size of 270 x 70 pm (horizontal X
vertical). (ii) The cylindrical part of the mirror is used for vertical focusing and
a multilayer mirror is used for horizontal focusing. This scheme results in a spot
size of 14 x 60 pm. (iii) The x-ray beam from the main monochromator deflects
the beam slightly upwards (thus not utilising the toroidal mirror) and is focused
in the vertical direction by a platinum-coated mirror located 2.5 m away from the
sample and the same multilayer mirror for horizontal focusing as in configuration
(ii) is used. This scheme results in a spot size of 14 x 7 um.

Parasitic scattering contribution is blocked by the sample slits. The momentum
transfer resolution is set by the analyser slits and typically in the order of 0.3 x 0.9
nm~! (horizontal x vertical). The energy of the scattered photons is analysed by
silicon crystals which Bragg-diffract the photons into detectors. The big challenge
of building an analyser is to ensure that the Bragg angles are identical for all
photons entering this device. The analyser must therefore have a spherical surface
whose radius equals the sample-analyser distance (Rowland condition). It can be
realised by a stress free arrangement of approximately 12 000 flat single silicon
crystals (surface size 0.6 x 0.6 mm?) on a spherical substrate (Masciovecchio et al.
1996). X-rays are detected without angular contribution to the energy resolution
and the intrinsic resolution is preserved due to unstressed single crystals. The
analysed photons are detected by a silicon diode detector with an active area of
3 x 8 mm?2. It is inclined at 20° with respect to the backscattered x-ray beam
from the analysers. The photoelectric absorption is maximised within its active
thickness of 1.5 mm. The detector has a very low dark noise level of about 1 count
in 30 min. The inelastic scattering beamline ID28 is equipped with nine analysers
arranged in the horizontal plane with a fixed angular offset. They are mounted
on a 7 m arm which can be rotated between 0 and 55° around a vertical axis
passing through the sample position. The set-up allows spectra to be recorded
at nine momentum transfers simultaneously. When performing experiments one
chooses a set of momentum transfers via the scattering angle 26 and the orientation
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of the sample. The energy is scanned by changing the temperature T of the
main backscattering monochromator corresponding to the precise change of the
lattice parameter of the crystal. The temperature of the analyser is kept constant.
According to Bragg’s law

nhc

F = 2dsin 8, (41)

a relative variation of the lattice parameter Ad corresponds to a variation of the
diffracted energy AE/E = —Ad/d. The expansion of the lattice parameter with
the temperature is given by

2% _ a(T)AT. (4.2)

The temperature dependent expansion coefficient a(7") has been precisely mea-
sured by x-ray interferometry (Bergamin et al., [1997)

a(T) = ag + BAT, (4.3)

with ag = 2.581+0.002x 107 K=, 8 = 0.016+0.004x 107 K=2, AT = T—T,, and
To = 22.5 °C. Inserting this relation into Equation one obtains an expression
for the conversion of temperature to energy shift

AE _

g 1

To

The required energy resolution of AE/E = 1077 implies a very accurate tem-
perature control of the main monochromator in the mK-range. It is realised by
a carefully designed temperature bath controlled by an active feedback system.
The instrumental resolution function is determined by scattering from a plexiglass
sample at ¢ = 10 nm~* and 7' = 10 K, where the inelastic contributions to the
signal are minimised. The recorded resolution function for the Si (9 9 9) reflection
has a full-width half-maximum of 3.0 meV and is best fitted with a pseudo-Voigt
function. The resolution function for this configuration is shown in Figure [4.4] for
one analyser on linear and logarithmic scales together with the corresponding fit.
The intensity is normalised to the incoming flux and then scaled such that the
total area under the curve equals unity.

The count rate of an inelastic scattering experiment is determined by the in-
coming flux, the scattering cross section, the illuminated volume and the efficiency
of the analysers. The minimal time per energy point is determined by the time
required for temperature stabilisation. The collecting times vary thus between 10
s up to a few min per energy point.
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Figure 4.4: Instrumental resolution function in the Si(9 9 9) configuration de-
termined from the elastic scattering of plexiglass at ¢ = 10 nm™! and 7' = 10

K.

4.3 Integration of a diffuse scattering setup on
the IXS spectrometer

TDS and IXS are traditionally performed in two independent experiments due
to the conceptional difference in the experimental geometry. Combining the two
studies in a single experiment offers unique possibilities in the study of lattice
dynamics. Interesting features in the TDS intensity distribution can be analysed
using the area detector and studied under the same experimental conditions with
the IXS spectrometer. This is in particular of interest for delicate sample envi-
ronments under extreme conditions involving high pressure cells, cryostats, laser
heating, etc.

The integration of a PILATUS detector on the IXS spectrometer 1D28 is pos-
sible and was tested in the frame of this work. The conceptional realisation is
depicted in Figure [L.5] Moving the IXS spectrometer to a scattering angle of
40° frees enough space to bring in the PILATUS detector for diffuse scattering
measurements in a comfortable position. In order to provide a flexible sample
environment, the incoming X-rays leave the vacuum tube about 400 mm before
the sample position. The background scattering from the slit unit and the air are
prevented to contribute to the IXS spectra by the small aperture and focal depth
of the spectrometer. In the case of diffuse measurements using an area detector
the background contribution could be significantly reduced by the installation of
an absorption plate and a thin collimator tube inserted in the beam path in front
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Figure 4.5: Integration of the PILATUS 300K detector on the IXS spectrometer
ID28. a) Working position of IXS spectrometer at small angles, the PILATUS
detector is moved out. b) Working position of PILATUS detector with IXS spec-
trometer at 40°. The set-up for diffuse scattering requires further equipment for
background reduction, see Figure [4.6]
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of the sample. The experimental realisation is shown in Figure

The concept was tested on a S-tin single crystal. The diffuse scattering around
the (2 2 0) reflection measured at 100°C with the PILATUS 300K detector is shown
in Figure in standard configuration (a) and with the additional equipment for
background reduction (b). Diffuse features are resolved with good statistics in the
latter case. The count rate is low due to the limited flux of the highly monochro-
matic X-rays (=% AE/E = 1078) provided by the backscattering geometry. Such
extreme energy resolution is required for IXS measurements, but not for diffuse
scattering. In order to increase the energy band width, a scheme based on a
temperature gradient on the backscattering monochromator is currently under in-
vestigation. A suitable monochromator crystal requires an maximised ratio of
absorption to extinction length, i. e. diamond. An alternative scheme based on a
multi crystal monochromator unit was found to be unpractical.
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scattering shield  transfer tube pinhole sample beamstop to spectrometer arm

Figure 4.6: Diffuse scattering setup with background reduction on 1D28. Back-
ground scattering from the slit unit and air scattering is effectively reduced by
inserting a scattering shield and a collimator tube of 2 mm diameter. The sample
(8-tin single crystal needle of 100 gum diameter) is mounted on a goniometer head
which in turn is mounted on the four circle goniometer. The PILATUS detector,
installed behind the spectrometer arm, is not visible.
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Figure 4.7: Diffuse scattering of S-tin around the (220) reflection at 100°C mea-
sured with the PILATUS 300K detector at the IXS spectrometer ID28. a) Stan-
dard configuration without background reduction (counting time 1s). b) With
background reduction equipment (counting time 100s). The intensity displayed in
colours is given in counts per s (a) and counts per 100 s (b). The image is the
projection of part of the Ewald sphere onto the detector (see Chapter . Strong
diffuse features are visible around the Bragg reflection and weak features further
out in reciprocal space (right side). The shadow of the beam stop and its holder
is visible on the left of the image. The origin of reciprocal space is in the center
of the beam stop shadow. The vertical lines separate the three active detector
moduli, total size 1475 x 195 pixels.
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Data analysis

Different aspects of the data analysis are discussed in the following. Section
- describe the analysis of the TDS intensity distribution. In order to collect
diffuse scattering in 3D reciprocal space the crystal is rotated around an axis
perpendicular to the incoming X-rays and diffuse scattering patterns are collected
with a 2D detector. This leads to some geometrical effects which need to be taken
into account. These are discussed in Section and Various types of diffuse
scattering apart from TDS are discussed in Section Section describes the
analysis of IXS spectra. IXS directly probes the phonon energy at a selected point
in reciprocal space and the data treatment is more simple. The derivation of the
X-VDOS from powder IXS spectra is discussed in Section [5.8]

5.1 Diffraction geometry

The geometry of a diffuse x-ray scattering experiment is sketched in Fig. [5.1]
The primary beam is absorbed by a beam stop and the scattering intensity is
detected in transmission geometry. The accessible section of reciprocal space for
a given crystal orientation lies on the Ewald sphere. The wave vector k; of the
incoming monochromatic X-rays with modulus |k;| = 27/A hits the origin (0 0
0) of the reciprocal lattice. In an elastic scattering process all Bragg reflections
with positions on the Ewald sphere with radius 27 /A become visible. The energy
uncertainty AE of the incoming X-rays results in a thickness of the Ewald sphere
Ak. A geometrical consideration yields AE/E = Ak/k. The flat area detector
records the projection of the Ewald sphere. Fig. shows the projection for 5-tin
for the experimental configuration typically used in this work (A = 0.7 A and
sample-detector distance D = 200 mm) as well as a configuration at much shorter
wavelength (A = 0.1 A). The distortion needs to be taken into account during
the reconstruction. For short wavelengths the radius of the Ewald sphere becomes

41
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beam stop

Ewald sphere Detector

Figure 5.1: Diffraction geometry for a diffuse scattering experiment in transmis-
sion. The incoming X-rays with wave vector k; are scattered by the sample and
diffracted onto the Ewald sphere. The red point indicates the origin (0 0 0) of the
reciprocal lattice. The direct beam is blocked by a beam stop behind the sample.
The flat area detector records the projection of the Ewald sphere. See text for
further details.
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Figure 5.2: Projection of the Ewald sphere for -tin crystal with the c-axis parallel
to the incoming X-rays and the a-axis in the horizontal plane for two different
experimental configurations: a) A = 0.700 A) and sample-detector distance D =
200 mm b) A = 0.1 A and D = 2000 mm. The lines represent constant Miller
indices.

Ewald sphere 3D volume

Ak

Figure 5.3: Left panel: Part of the Ewald sphere with momentum transfer un-
certainty Ak collected for a given crystal orientation. Right panel: Rotation of
the crystal around an axis perpendicular to the incoming X-rays and collecting
diffraction patterns with small angular steps gradually fills up a large volume in
reciprocal space.
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so large that the diffraction pattern appears to be almost undistorted over a few
Brillouin zones (see (Gibaud et al. (1997) for further discussion). The projection
equations are discussed in Section [5.5] A large volume in reciprocal space can be
filled up by rotating the crystal around an axis perpendicular to the incoming X-
rays and collecting diffraction patterns in small angular steps (see Fig. . The
projection formula for a standard kappa diffractometer were subject of a separate
PhD thesis (Meyer} 1998) and are summarised in Section

5.2 Planar projection and parallax

Planar projection of the scattered X-rays to a 2D detector requires a geometrical
correction factor D for the solid angle conversion,

1
D = cos?(20)" (5.1)
This correction factor can be applied on each pixel or directly on the reconstructed
volume.

The parallax effect leads to a smooth distortion of an image caused by the
absorption properties of the sensor array. Pixel detectors are usually made of thick
Silicon sensors and suffer thus from parallax. The geometry and x-ray absorption
properties of the sensor as well as the energy and the spatial distribution of the
X-ray beam need to be considered. The correction is generally detector specific; an
algorithm for the PILATUS detector is described elsewhere (Hiilsen et al., [2005)).

5.3 Lorentz and Polarisation correction

The rotation of a crystal exposed to a monochromatic x-ray beam results in a
geometrical influence on the exposure time for an arbitrary point in reciprocal
space. Reciprocal space points with large absolute momentum transfer move out
of the scattering geometry faster than points with small momentum transfer. The
so called Lorentz correction (Buerger and Klein, 1945) accounts for this effect. The
measured intensity has to be divided pixel-wise by the Lorentz factor (He, 2008])

1

= 2
45in20cos6’ (5:2)

where 6 denotes the scattering angle. Equation holds for point like objects
(Bragg peaks). The Lorentz correction is required for sharp features like Bragg
reflection. The TDS intensity distributions is much smoother, except for the very
proximity of Bragg nodes. The formula for diffuse scattering intensity distribution
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of different shape can be found elsewhere (Boysen and Adlhart} 1987). Ideally
such corrections should be implemented iteratively. In the following work we did
not perform such corrections, as we concentrate on relatively large q values.

The polarisation of the incident beam results in an angular dependence of the
scattered intensity. For totally polarised synchrotron radiation the polarisation
factor is given by (Holt et al., 2002])

P = sin*(®) + cos*(®)cos*(26), (5.3)

were ® is the azimuthal angle between the plane of polarisation of the incident
beam and the scattering plane.

5.4 Absorption correction

The absorption is given by the transmission coefficient

1
A=— PV 0.4

where V' the illuminated sample volume, p is the linear absorption coefficient and
p is the total beam path in sample, including the incident and scattered beam
path. Different approaches are used to calculate and correct the absorption effect
for various sample shapes and geometries (Malsen, 1992). A pixel-wise correction
adapted for diffuse scattering experiments with area detector systems is discussed,
for example, in Scheidegger et al. (2000)); an absorption correction based on a
three-dimensional model reconstruction from visual images in |Leal et al. (2008)).

5.5 3D reconstruction

The reconstruction of 3D intensity distribution from area detector data as illus-
trated in Figure requires the projection of the flat image onto the Ewald sphere
and the correction for the above discussed effects. The strategy presented here fol-
lows the convention of a standard 4-circle kappa goniometer (Meyer, 1998)) with
the laboratory reference system illustrated in Figure 5.4, With all diffractometer
angles set to zero, the Cartesian reference system is chosen as follows: The w-axis
is parallel to e3, ey is pointing in the direction of the x-ray source and e, completes
a right-handed orthonormal system. The k-axis and the ¢-axis lie in the e;-e3
plane, the r-axis having an angle « to e3, the ¢-axis an angle [ to e3. The area
detector is mounted on the 6 arm of the goniometer. The #-axis is parallel to the
w-axis, and to es. Changing 6 rotates the detector about the w-axis.
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axis w

uu'

axis 6

Figure 5.4: Laboratory reference system (bold vectors) of a standard 4-circle kappa
diffractometer, adapted from |Meyer (1998). The basis vector es points towards
the reader.

Positive rotations about the e; axes are defined as follows,

1 0 0

R(L,m) = [ 0 costy) sin(n) | (5.5)
0 —sin(n) cos(n)

cos(n) 0 —sin(n)
R2,m= 0o 1 0 , (5.6)

sin(n) 0  cos(n)

cos(n) sin(n) 0
R(3,7n) = —sig(n) 002(77) (13 : (5.7)

Using the above rotation matrices the position of the primary beam is characterised
by two rotations by and b3,

-1
Sg — R(3, bg)R(z, bg) 0 . (58)
0
The diffraction condition is fulfilled for
|s| = |so| + 7, |s] = |50, (5.9)

where s is the diffracted beam and r the reciprocal vector in diffraction condition.
The reciprocal lattice vector of a crystal mounted on the standard 4-circle kappa
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Figure 5.5: Projection of a diffraction vector s onto the flat area detector plane,
from Meyer| ((1998]).

diffractometer may be transformed by the goniometer angles w, x and ¢. The
transformation is expressed as (Meyer} 1998]),

r = Rry (5.10)
with
R=R3,w)R(2,0)R(3,k)R(2, —a)R(2, 5)R(3, ) R(2, —3). (5.11)

The projection used to relate the laboratory reference system to a detector
coordinate system el . el is illustrated in Figure Vector p, connect the
origins of the two coordinate systems. The detector coordinate system is given by

el = R(3,0)R(3,ds)R(2,d2) R(2, dy) : (5.12)

0
1
0
0
e? = R(3,0)R(3,ds)R(2,dy)R(2,d5) [ 0 |, (5.13)
1

where R(i,d;) are the tilts of the detector around e; of the laboratory reference
system and R(3, ) the f-rotation of the detector. A vector p in the detector plane
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is defined as

p= xe? + ye2D =18 — Py, (5.14)
with
oo (5.15)
* s-eP xel '

where d denotes the sample detector distance and x the cross product. For a
crystal with reciprocal lattice vectors a*, b* and ¢* and reciprocal lattice angle o*,
£* and v*, one may define a orthonormalised crystal based description containing
both direct and reciprocal lattice parameters (Busing and Levy, 1967,

a* b*cos(v*) c*cos(B*)
Ag=| 0 bsin(y*) —c'sin(f*)cos(a) | . (5.16)
0 0 c !

The rotation of the crystal-based reference system with respect to the Cartesian
laboratory system is given by

U =R(3,c3)R(2,c3)R(1,¢1). (5.17)
The product U Ay is called orientation matrix. The expression

is finally used to relate the crystal based diffraction vector h to the laboratory
system based diffraction vector 7.

Large angular steps of acquired diffraction patterns or large magnification of
3D objects will create gaps between the projections of flat images to the reciprocal
space. In order to overcome the problem several interpolation algorithms have
been suggested (Campbell et al.,|1995, [Stanton et al.,[1992)). For diffuse scattering
features any kind of interpolation is a delicate topic due to the large difference in
absolute intensities compared to Bragg reflections. For the reconstructions under-
taken within this thesis a step-like extrapolation was used to avoid interpolation
artefacts. The reconstruction can further be improved by applying the Laue sym-
metry of the system. Missing volume in reciprocal space can be recovered and the
statistics is significantly enhanced (up to 48 times for cubic symmetry).

5.6 Various types of diffuse scattering

Thermal vibrations substantially reduce the intensities of Bragg reflections and dis-
tribute the intensity diffusively in reciprocal space as thermal diffuse scattering.
There are a number of other effects which contribute to the diffuse scattering in the
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study of crystals. These effects can be classified in elastic and inelastic scattering
processes, depending whether the photon undergoes a change in energy or not.
Different contributions to elastic and inelastic scattering processes are discussed
in the following. Apart from TDS there are two other relevant inelastic scatter-
ing processes, namely Compton scattering and fluorescence. Other fundamental
excitations which can be probed by X-rays are plasmons, excitons and magnons.
Their contribution to the total diffuse scattering intensity is, however, negligible
in most scattering experiments.

Compton scattering

The scattering process of a photon from a free electron involves energy and momen-
tum transfer. The energy and momentum conservation formulated in the quantum
mechanical picture results in a difference between the incident wavelength \; and
scattered wavelength A¢

h (1 —cos(20)) = A\e(1 — cos(26)), (5.19)

MeC

A= Ap =

where h is the Planck constant m, the electron rest mass and c¢ the speed of light
in vacuum. The constant m— is known as the Compton wavelength of the electron.
The difference in wavelength is independent from the incoming energy. The relative
change in energy becomes more important for high energy X-rays. In contrast to
scattering from a free electron the momentum transfer can be absorbed by the
crystal which contains bound electrons. In a typical x-ray scattering experiment
the scattering from core electrons will mostly result in elastic processes whereas
the scattering from the weakly bound valence electrons contributes most to the
Compton scattering.

Fluorescence

The photoelectric effect involves the complete absorption of the incident photon
and an emission of an electron. The interaction of X-rays with sufficient high en-
ergy can involve the emittance of core electrons. The so created vacancy will be
filled by an electron of a higher energy shell emitting a photon of a element specific
characteristic wavelength. This fluorescence radiation will contribute to the diffuse
scattering. The energy difference between incident and emitted photons can be
large enough to be separated by modern pixel detectors (Kraft et al., 2009). The
adjustment of the incident X-ray energy away from the characteristic absorption
edges further helps to reduce the fluorescence contribution. X-ray absorption spec-
troscopy on the other hand is a widely used technique in the study of the local
electronic structure and correlation, see for example Hippert et al.| (2006)).
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Elastic and quasi-elastic diffuse scattering

Besides the discussed inelastic diffuse scattering processes there are numerous
sources for elastic diffuse scattering. In an elastic scattering process there is a
well defined phase relation between incident and scattered beam. The elastic scat-
tering processes are coherent, in contrast to the inelastic contribution. Any kind
of violation of the crystal symmetry, including static displacements, vacancies, dis-
locations, fluctuations, incommensurate phases or low-dimensional structures will
create diffuse scattering. The study of elastic diffuse scattering is an important
tool in the study of local structure and defects and gives access to the pair cor-
relation of atoms on separate sites. An overview of recent advances can be found
in |Barabash et al.| (2009). The contribution of multiple scattering effects to the
diffuse scattering is, for example, discussed in Ramsteiner et al.| (2009).

Slow dynamical processes give rise to quasi-elastic scattering with energy trans-
fers in the peV range. It contains both coherent and incoherent components. The
coherent component contains information about interference phenomena between
atoms, such as lattice distortions or short-range order. Incoherent scattering re-
lates to scattering by individual atoms: if the atoms or molecules undergo stochas-
tic motions (translational or rotational diffusion) during the scattering event, this
single-particle scattering is accompanied by an energy transfer. As the motions are
not quantised, this results in a broadening of the sharp line arising from elastically
scattered X-rays. Quasi-elastic scattering can be resolved by neutron scattering
and be used to study diffusion in solids, where an individual particle displaces
randomly over the crystal lattice. The line width of the central component can be
used to validate diffusion models. See Willis and Carlile| (2009) for further details.

5.7 IXS spectra

The intensity of the energy resolved IXS spectra in first order approximation is
Equation [2.24] convoluted with the resolution function of the spectrometer,

1(Q, E) = AQ)[L(Q, E) ® R(E)] + B(Q, E), (5.20)

where E' is the phonon energy, A(Q) is an intensity factor taking into account
the scattering geometry and the experimental set-up, ® denotes the convolution
operator, R(F) is the experimental resolution function and B(Q, F) takes into
account the background of the electronics and the environment. The background
due to the electronics of the IXS spectrometer ID28 at the ESRF is in the order of
one count per 30 min and can thus usually be neglected. The phonon excitations
can be fitted with Lorentzian functions weighted by the detailed balance factor
and convoluted by the experimental resolution function.
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5.8 X-VDOS from IXS

The generalised x-ray weighted VDOS (X-VDOS),
! Q) iqr, Wiy -
G(E) = N/dezj: | ;ﬁe InN(Q - eqjn)PO[E — Eq),  (5.21)

with momentum transfer @, phonon energy E and eigenvector component e of
branch j, atomic form factor f, mass m, position vector , Debye Waller factor W
of atom n and normalisation factor N =) f,.(Q)//m, can be determined from
IXS spectra of polycrystalline samples (Bosak and Krisch|, 2005). The X-VDOS
can be obtained following the standard double-Fourier transformation procedure,
described elsewhere (Kohn and Chumakov, 2000). In order to cover scattering
contributions from all vibrational states a wide range in momentum transfer space
up to large scattering angles must be covered and IXS spectra must be measured
up to large energy transfers. The momentum transfer range corresponding to the
first Brillouin zone needs to be excluded, since in this case the total momentum
transfer @) is equal to the phonon wave vector ¢ , and mainly phonon modes with
an eigenvector component parallel to ¢ yield in finite intensity. The thickness of
the integration shell needs to be considered as well. The atomic form factor f(Q)
has a pronounced () dependence with an approximately exponential decay. This
can be cast into the following form (Cromer and Mann| 1968)),

3

Q) = ae ™ +c (5.22)

=0

This decay is element dependent, and the half-value of f(Q) corresponds roughly
to the inverse of the spatial extent of the atom. Measured IXS spectra can be
extended to the Anti-Stokes side using the detailed balance law. The elastic
contribution must be subtracted using the measured resolution function of the
spectrometer. The measured spectra are actually composed of many partial sub-
spectra characterised by different recoil energies. These recoil energies are related
to the different scattering angles and the different masses of the atomic species.
The data can be processed using a single variable parameter of the mean recoil
energy. It can be estimated from the mean scattering angle and the mean atomic
mass, and finally adjusted such that a zero X-VDOS is obtained in a chosen en-
ergy range. This energy range must correspond to a gap between optical modes
or above the highest ones. This choice guarantees a proper elimination of multi-
phonon contributions from the measured spectra.






Chapter 6

Results

In the following the combination of IXS, TDS and ab initio lattice dynamics calcu-
lations is presented for several benchmark systems. Characteristic features in the
lattice dynamics are localised by the inspection of TDS intensity distributions in
3D reciprocal space. Selected regions in reciprocal space are then selected for an
energy resolved measurement employing IXS and compared to scattering intensi-
ties calculated ab initio. The validated calculation permitts new insights into the
lattice dynamics. The approach is illustrated for the silica polymorphs, a-quartz,
coesite and a-cristobalite, germanium dioxide in a-quartz structure, the metallic
tin polymorphs - and - tin, and for water in its most common crystalline form,
ice Th.

6.1 «a-quartz and germanium dioxide in a-quartz
structure

The lattice dynamics of a-quartz (a-SiOs) is revised with the focus on the origin
of the first peak in the VDOS and compared to the quartz-like polymorph of
germanium dioxide (a-GeQO,). An extensive study combining IXS from single- and
polycrystalline samples, 3D mapping of TDS and ab initio calculations has been
conducted previous to this work for a-quartz (Bosak et al., 2012). An improved
calculation reveals that a local saddle point at the L point contribute most to the
first peak in the VDOS of a-SiOs and a-GeO,. We show that the critical point
found in [Bosak et al.| (2012)) actually contributes to a peak located at slightly
higher energy. Our finding is justified by comparing the calculated X-DOS with
the one obtained from powder IXS spectra. The comparison of the TDS intensity
distribution of the two systems nicely illustrates the similarity of the interaction
potential.

53
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Introduction

a-quartz has been the subjects of many studies. Its structure-related properties
are of fundamental interest for many technological applications, such as pressure
gauges, oscillators, resonators, and wave stabilisers making use of the piezoelectric
properties. a-quartz can be described as spirals made up of corner-connected SiO4-
tetrahedra with intrinsic degrees of freedom. The lattice dynamics of quartz has
been extensively studied and the phonon dispersion in high-symmetry directions
based on inelastic neutron (Dorner et al., (1980, |Strauch and Dorner| 1993) and
x-ray scattering (Halcoussis, [1997) are documented.

Experimental Details

TDS studies were performed on beamline X06SA at the Swiss Light Source. Mo-
nochromatic X-rays with wavelength 0.7 A were scattered from rod-like 1 mm
thick crystals at room temperature in transmission geometry. The sample was
rotated with an increment of 0.1° orthogonal to the beam direction over an angular
range of 360° while diffuse scattering patterns were recorded in shutterless mode
with a PILATUS 6M detector (Kraft et al., 2009). The orientation matrix and
geometry of the experiment were refined using the CrysAlis (Oxford diffraction
Ltd.) software package. For the final reciprocal space reconstructions corrections
for polarisation and for solid angle conversion associated with the planar projection
were applied using in-house developed software.

The generalised x-ray weighted VDOS (X-VDOS) was obtained from IXS spec-
tra of a polycrystalline a-quartz sample measured at ID28 in transmission geom-
etry. The scattered radiation was collected by eight crystal analysers. The mo-
mentum transfer resolution of each analyser was ~ 0.3 nm~!. The values of the
momentum transfers for each analyser were chosen away from the Debye-Scherrer
rings and covered the [10 : 70] nm ™! range. The data combine the results of mea-
surements with 1.4 meV resolution at 23.725 keV incident energy within [-25 : +25]
meV energy range and 0.2 meV energy steps and results from the measurement
with 3.0 meV resolution within [-25 : +180] meV energy range and 0.7 meV steps.
The elastic peak in the IXS spectra was subtracted using the instrumental function
of each analyser determined by x-ray scattering from a polymethylmethacrylate
(PMMA) sample close to the maximum of its structure factor. The X-VDOS was
obtained from the summed IXS spectra within the incoherent approximation fol-
lowing the data treatment procedure established by Bosak and Krisch| (2005), see
Chapter ] for details.

Single crystal IXS measurements on a-GeOs; were conducted at 1D28 at the
ESRF. The spectrometer was operated at 17.794 keV incident energy, providing an
energy resolution of 3.0 meV full-width-half-maximum. The momentum resolution
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was set to ~ 0.3 nm ™! x 0.8 nm~! in the horizontal and vertical plane, respectively.
[XS scans were performed in transmission geometry along selected directions in
reciprocal space.

Calculation

The lattice dynamics calculation was performed using the DFPT approach (Gonze
and Lee, [1997) as implemented in the CASTEP code (Clark et al., 2005| Refson
et al., 2006). Local density approximation within the plane-wave formalism was
employed using the norm conserving pseudopotentials from (Refson et al. |2006)
for silicon and oxygen. The pseudopotential for Germanium was created within
the same approximations and algorithm used for silicon. The plane wave cut-
off and the sampling of the electronic grid were carefully tested by evaluating
the convergence of internal forces. The electronic structure was computed on a
5 x 5 x 4 Monkhorst-Pack grid and the plane wave cut-off was set to 780 eV for
both systems. A full geometry optimisation was performed employing the Broyden-
Fletcher-Goldfarb-Shannon method (Pfrommer et all |1997)), varying lattice and
internal parameters. Phonon frequencies and eigenvectors were computed on a
5 x 5 x 4 Monkhorst-Pack grid of the irreducible part of the Brillouin zone by
perturbation calculations. The acoustic sum rule as well as the charge neutrality at
the level of Born effective charges were imposed. A Fourier interpolation with a grid
spacing of 0.005 A~! in the cumulant scheme including all image force constants
was applied for the VDOS. The calculation was tested to be well converged with a
maximum error in phonon energies of < 0.05 meV. TDS and IXS intensities were
calculated from the phonon eigenvectors and frequencies within the validity of
both the harmonic and adiabatic approximation using in house developed software
(Mirone and Wehinger, 2012). The scattering intensities were calculated in first
order approximation.

Results

The X-VDOS for a-quartz is shown in Figure a) and compared to the calcu-
lation. The calculated real VDOS of a-quartz and a-GeO, are depicted in Figure
b) and ¢). The X-VDOS was used for the determination of an overall energy
scaling factor. It turns out that an overall stretching of 4 % leads to a good agree-
ment of experimental and theoretical X-VDOS with exception of the high energy
optical modes. Discrepancies between experiment and theory are mostly due to the
limited accuracy of sampling the reciprocal space with powder IXS spectra. The
underestimation of the calculated energies can be attributed to the limited accu-
racy of the exchange correlation function within the local density approximation;
see Refson et al.| (2006) for a detailed discussion.
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Figure 6.1: a) Experimental (blue points) and theoretical (black line) X-VDOS of
a-quartz. The energies of the theoretical data were scaled by 1.04 and convoluted
by the experimental resolution. b) Calculated VDOS of a-quartz with applied
energy scaling. ¢) Calculated VDOS of a-GeOs.
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Peaks in the VDOS require critical points in the phonon dispersion relations
for which the gradient in all crystallographic directions becomes zero (Van Hovel,
1953)). In fact the VDOS g(F) can be written in an alternative description (Landau
and Lifshitz, [1980| Van Hove, |1953)),

Vo df, q
8= 5% | g o

where v is the unit cell volume with Z atoms in [ dimensions, V,E(q) is along
the normal to the constant-energy surface through a point in q space, df, is the
constant-energy surface element and the sum runs over all vibrational modes. In a
three dimensional crystal the VDOS shows a logarithmic singularity for |V,E(q)|
at £ = FE, at some q which lies on a constant-energy surface. Such a singularity
leading to divergence in the VDOS may actually exist under certain conditions in
monoatomic body-centred cubic crystals (Gilat], [1967). If |V4E(q)| occurs at some
point which does not lie on a constant energy surface (ordinary singular critical
point) it results at most in finite singularities for |gj}%§;’;| # 0, where o and /3
denote the directions of ¢q. The vanishing of the second order determinant is not
required by symmetry and occurs only for special relations of the forces between
the atoms. The accidental occurrence, however, would lead to higher singularities
by a continuous family of critical points. For an ordinary singular critical point

the frequency surface can be expanded to second order to

l
E_EO:Zaa£27€:q_q07a€§R' (62)
a=1

In the case of a three dimensional crystal four types of critical points (minimum,
maximum, two different saddle points) can occur, leading to square root singu-
larities with analytic expressions (Van Hovel 1953). Only the saddle points can
produce a peak in the VDOS. For a slightly extended neighbourhood the series
can be expanded,

l
E—Ey=) an& +bu" + ... (6.3)
a=1

Numerical integration of Eq. including the second terms in the expansion
shows that also local minima and maxima can lead to a peak like singularity, if
at least one |b,| >> |as|.- In the case of coesite (see Section the extended
expansion is of relevance.

In order to localise the critical points contributing most to the first peak in the
low energy part of the VDOS, two filters were applied simultaneously. An energy
filter of AE= 0.3 meV was applied to the ab initio calculated phonon energies of
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Figure 6.2: Brillouin zone of the quartz structure and localisation of the critical
point contributing most to the first peak in the VDOS of a-SiOy and a-GeOs.

the first Brillouin zone and 1/|V4E(q)| was computed within this energy window.
A saddle point at L point (see Figure |6.2]) was found to contribute most to the
first peak in the VDOS at 9.1 meV in the case of a-SiOs and 8.9 meV in the case
of a-GeOs,. The saddle point at (1/4 0 1/2) found in (Bosak et al., [2012)) creates
the second peak in the VDOS of a-quartz located at 9.8 meV. The accuracy of
the pseudo-potentials used in the current calculation is improved in respect to
the standard potentials used in Bosak et al. (2012). Furthermore we used the cell
geometry as predicted by the calculation whereas the lattice parameters previously
where fixed to the experimental ones.

Reconstructed high symmetry reciprocal space sections of TDS intensity dis-
tributions from experiment are shown in Figure [6.3a) - ¢). We note a complex
distribution of diffuse features. A quite uniform background is visible which arises
mainly from air scattering. Decisive conclusions for the origin of the features in
the rather complex a-quartz structure can be obtained by the lattice dynamics
calculation. Ab initio calculated TDS intensity distributions for the same recipro-
cal space sections are shown in Figure [6.31) - €). We note that all features of TDS
are well described by the calculation. The strong features in the TDS intensity
distribution are dominated by the low energy part of the lattice dynamics, as the
intensity is proportional to w? in the long wavelength limit. This includes that this
part of the lattice dynamics must be well described by the calculation. The diffuse
scattering along I' - A was further investigated by IXS in the proximity of the (0 0
3) reflection. An IXS intensity map composed of 6 measured spectra is shown in
Figure together with the intensity map calculated ab initio. The comparison
show that the diffuse scattering is almost exclusively of inelastic nature. Both
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Figure 6.3: Experimental (a) - (¢) and calculated (d) - (f) TDS intensity distribu-
tion of a-GeOy in the indicated reciprocal space sections. The diffuse scattering
along T - A near the (0 0 3) reflection (marked by a polygon in b) is investigated
by IXS.
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Figure 6.4: Experimental (a) and ab initio calculated (b) IXS intensity map of a-
GeO, along I' - A. The experimental map consists of six spectra with a g-spacing
of 0.083 nm™! measured with an energy spacing of 0.7 meV. These spectra are
linearly interpolated to 18 ¢-points and 72 energy steps. The calculated IXS map
was computed on 20 g-points and the intensity convoluted with the experimental
resolution function.

energies and intensities are in good agreement with the calculation.

Diffuse scattering intensity distributions of a-GeOs and a-SiO4 are compared
in Figure [6.5l Both systems show very similar strong diffuse features, mirroring
the similarity of the electronic structure and the interaction potential. Despite the
similarity there are also distinct differences in the lattice dynamics. Remarkably,
the isolated diffuse line propagating along [001] observed in a-SiO, is not visible in
a-GeQ,. This feature was shown to originate from the transverse acoustic phonon
in purely longitudinal geometry (Bosak et al., [2012]).

Conclusions

In summery we have shown that the improved ab initio calculation of a-quartz
describes the VDOS remarkably well after a small linear scaling of the calculated
phonon energies, except for the highest energy optical phonons. The ab initio lat-
tice dynamics calculation of a-GeO, was validated for the low energy part by com-
paring IXS spectra and TDS intensity distributions with the calculation. While
distinct lattice dynamics features in terms of a simultaneous retrieval of phonon
energy and momentum are not directly extractable from experiment, it was possi-
ble to get access to these features with help of the calculation. A saddle point at L
was found to contribute most to the first peak in the VDOS of a-quartz and ger-
manium dioxide in a-quartz structure. The strong resemblance of TDS intensity
distributions for the two systems nicely illustrates the similarity of the interaction
potential.
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Figure 6.5: Diffuse scattering intensity distribution in the indicated reciprocal
space section of a-GeO;y (a) and (b) and a-SiOy (c) and (d). An isolated diffuse
line propagating along [001] is highlighted by a square in (d).
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6.2 Coesite

The lattice dynamics of coesite has been studied by a combination of diffuse x-ray
scattering, inelastic x-ray scattering and an ab initio lattice dynamics calculation.
The combined technique gives access to the full lattice dynamics and thus even-
tually provides detailed information on the elastic properties, the stability and
metastability of crystalline systems. The experimentally validated calculation was
used for the investigation of eigenvectors, mode character and their influence on
the density of vibrational states. The low-energy vibrational properties are investi-
gated for similarities and distinct differences and compared to the most abundant
silica polymorph a-quartz. The synthesis of the high quality crystal and the details
of the measurement are given in Experimental methods. The lattice dynamics cal-
culation is described in section Calculation. Experimental and theoretical results
are presented and discussed in Results and Discussion.

Introduction

Coesite, SiOq, is the highest density tetrahedrally coordinated crystalline poly-
morph of silica with space group C 1 2/c 1 (Gibbs et al., 2003). It was first syn-
thesised in 1953 at 3.5 GPa and 750 °C (Coes|, 1953)) and later found in sandstone of
the Arizona Barringer crater (Chao et al., [1960) and led to the general acceptance
of the impact cratering theory and to important implications for the recognition
of meteorite impact craters in quartz-bearing geologic formations (Mark, [1995).
The discovery of coesite revolutionised the whole meteorite study and the anal-
ysis of impact products. It was also shown that being encapsulated in diamond
formed in deep Earth’s interior, coesite allows the unambiguous identification of
‘fossilised” high pressure states in individual inclusions of mantle samples delivered
to the Earth’s surface in the course of various geological processes (Sobolev et al.|
2000). The fossilised pressure phases of the inclusion and the thermoelasticity
of the host-inclusion (diamond-coesite) ensemble may provide a highly accurate
geobarometer (Sobolev et al., 2000)). Elastic and dynamical properties of coesite
have been intensively studied in the past. Elastic constants for instance were
examined using Brillouin light scattering (Weidner and Carleton, (1977) and ab
initio calculations (Kimizuka et al., 2008)); vibrational properties at zero momen-
tum transfer were measured by Raman (Liu et al| 1997, Sharma et al., [1981) and
infrared spectroscopy (Lippincott et al., [1958, [Williams et al., 2000). The com-
pression mechanism was studied by single crystal x-ray diffraction (Angel et al.
2003, Levien and Prewitt|,|1981)) and ab initio calculations (Kimizuka et al., 2008).
The investigation of silica under pressures lead to the discovery of unexpected phe-
nomena, such as, for example, the formation of mesoporous coesite at a pressure of
12 GPa and a temperature of 300 °C (Mohanty et al.; 2009, [2010]). Currently, the
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study of the phonon dispersion relations is limited to numerical calculations using
potential based methods (Dean et al., 2000)). Experimental studies of dispersion
relations have not been presented yet. The knowledge of the full lattice dynamics
is, however, fundamental for the understanding of the compression mechanism and
phase transitions. In particular the origin of the first peak of the density of vibra-
tional states (VDOS) is of interest regarding the origin of the Boson peak in silica
glass. As suggested in |(Chumakov et al.| (2011) the Boson peak in glasses originates
from the acoustic phonon branches near the boundary of the pseudo-Brillouin-zone
and has its counterpart in the VDOS of the corresponding crystal.

In the following we report the results of the powerful combination of diffuse
scattering and inelastic x-ray scattering (IXS) for the study of distinct lattice dy-
namical features in a twinned crystal and the validation of the DFPT calculation.
The combined approach allows understanding the lattice dynamics at arbitrary
momentum transfers over the entire energy range and thus delivers a complete
picture of the vibrational properties. The validated calculation is used for the
study of particularities in the dispersion relations and contributions of different

modes to the VDOS.

Experimental details

A polycrystalline sample of coesite was synthesised by Leonid Dubrovinsky (Bay-
erisches Geoinstitut, Universitat Bayreuth, Universitatsstrase 30, D-95440 Bayreuth,
Germany) and Natalia Dubrovinskaia (Material Physics and Technology at Ex-
treme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440
Bayreuth, Germany) using the high pressure high temperature technique at P =
5.5 GPa and T = 1000 °C. A 1000-ton hydraulic press (Voggenreiter GmbH) with
a toroidal-type high-pressure cell (Khvostantsev et al., |1977) was employed. The
size of the synthesised sample was of about 50-70 mm?® of pure coesite. As a
starting material compacted amorphous silica (Sigma Aldrich, 99.9 % purity) was
used. The cross-section of the sample container just after the synthesis is shown
in Figure [6.6]

The single crystals were grown by Vadim Brazhkin and Tatiana Dyuzheva (In-
stitute for High Pressure Physics RAS, 142190 Troitsk Moscow region, Russia)
employing the hydrothermal method described elsewhere (Dyuzheva et al., [1998).
X-ray diffuse scattering experiment was conducted on beamline ID29 (de Sanctis
et al., 2012) at the European Synchrotron Radiation Facility (ESRF). Monochro-
matic X-rays with wavelength 0.7 A were scattered from an elongated (~0.1x0.3
mm?) coesite crystal at room temperature in transmission geometry. The sample
was rotated with an increment of 0.1° orthogonal to the beam direction over an
angular range of 360° while diffuse scattering patterns were recorded in shutterless
mode with a PILATUS 6M detector (Kraft et al., [2009). The orientation matrix
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Figure 6.6: Cross-section of the pressure pellet containing a polycrystalline sample
of coesite synthesised at P= 5.5 GPa and T=1000 °C.

and geometry of the experiment were refined using the CrysAlis (Oxford diffrac-|
software package. The sample was found to be twinned in the ac plane.
The single crystal IXS study was carried out on beamline ID28 at the ESRF.
The spectrometer was operated at 17.794 keV incident energy, providing an en-
ergy resolution of 3.0 meV full-width-half-maximum with a beam focus of 30 x 60
pm full-width-half-maximum. IXS scans were performed in transmission geometry
along selected directions in reciprocal space. Further details of the experimental
set-up and the data treatment can be found in Chapter [4] and [3]

The generalised x-ray weighted VDOS (X-VDOS) was obtained from IXS spec-
tra of a polycrystalline sample measured at 1D28. The scattered radiation was
collected by nine crystal analysers. The momentum transfer resolution of each
analyser was ~ 0.3 nm~!. The values of the momentum transfers for each analyser
were chosen away from the Debye-Scherrer rings and covered the [10 : 70] nm™!
range. The data combine the results of measurements with 1.4 meV resolution at
23.725 keV incident energy within [-25 : 4+25] meV energy range and 0.2 meV en-
ergy steps and results from the measurement with 3.0 meV resolution within [-25
: +180] meV energy range and 0.7 meV steps. The elastic peak in the IXS spec-
tra was subtracted using the instrumental function of each analyser determined
by x-ray scattering from a polymethylmethacrylate (PMMA) sample close to the
maximum of its structure factor. The X-VDOS was obtained from the summed
IXS spectra within the incoherent approximation.
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Figure 6.7: x component of the symmetrised force on an oxygen atom as function
of the plane wave cut-off. The force is converged to 1.5 x 10~*eV/A at 800 eV.

Calculation

The lattice dynamics calculation was performed using the DFPT approach (Gonze
and Lee, |1997) as implemented in the CASTEP code (Clark et al., 2005, |[Refson
et all 2006). See Chapter 3| for further details. The local density approxima-
tion within the plane-wave pseudopotential formalism was employed using norm
conserving pseudopotentials. The pseudopotentials were taken from the DFPT
calculation of a-quartz (Refson et al., 2006]). The atomic configuration of oxygen
and silicon atoms in coesite are the same as in a- quartz and the bond lengths are
very similar. The plane wave cut-off and the sampling of the electronic grid were
carefully tested by evaluating the convergence of internal forces. The convergence
of the plane wave cut-off is shown in Figure [6.7]

The plane wave cut-off was set to 800 eV and the electronic structure was
computed using a 3x3x2 Monkhorst-Pack grid (Monkhorst and Pack, 1976)). A full
geometry optimisation was performed employing the Broyden-Fletcher-Goldfarb-
Shannon method (Pfrommer et al |1997), varying lattice and internal parameters.
The cell parameters of the optimised cell are compared to the experimental values
(Smyth et al, [1987) from single-crystal neutron and x-ray diffraction in Table [6.1]
They agree within 1.6 %.
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Table 6.1: Cell parameters of SiO; coesite from calculation and experiment (Smyth
et al., |1987).

Calculation Experiment

a= T7.137TA a= 7136 A
b=12295A b=12384A
c= T70712A c= 7186 A
a=7=90" a=v=90°
B =120.374° B = 120.375°

Phonon frequencies and eigenvectors were computed on a 4 x 4 x 3 Monkhorst-
Pack grid of the irreducible part of the Brillouin zone by a perturbation calculation
and further Fourier interpolated for the VDOS and dispersion relations. The
calculated phonon energies were tested to be converged to < 0.05 meV. TDS
and IXS intensities were calculated from the phonon eigenvectors and frequencies
following the formalism discussed in Chapter [2| in assumption of the validity of
both the harmonic and adiabatic approximation using in house developed software
(Mirone and Wehinger, 2012). The scattering intensities were calculated in first
order approximation. See Chapter [2| for a detailed discussion.

Results and discussion

High symmetry reciprocal space sections of diffuse scattering as obtained from
experiment and corresponding calculated TDS intensity distributions are shown
in Figure 6.8

Corrections for polarisation and projection (He, 2008) and the Laue symmetry
of the system were applied. A complex intensity distribution is noticeable. Intense
features indicated in Figure were selected for a detailed IXS measurement in
order to distinguish between possible elastic and inelastic contributions and to
resolve the energies of the phonons contributing most to the TDS. A remarkable
consistence between the experimental and calculated patterns can be seen for in-
stance from the shape of indicated features. The twinning is mostly visible in the
third column of Figure 6.8, The number of Bragg reflections can only be described
by a combination of two domains. The HKO plane is common. The structure could
be solved for a twinning of 180° around the reciprocal lattice axis a* with an inten-
sity contribution from 25% of the smaller crystal. The corresponding calculated
TDS in the second row was created by the weighted superposition of the indicated
intensity distributions. Experimental artefacts due to non-uniform absorption -
arising from the anisotropic shape of the sample - are visible.

Figure shows two representative IXS spectra. One can clearly note the
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W e s

Figure 6.8: Experimental (first row) and calculated (second row) diffuse scattering
intensity distributions of coesite in high-symmetry reciprocal space sections. The
absolute intensity is scaled to the best visualisation of the diffuse features. The
calculated intensity distributions in the second row are created by the weighted
superposition of the two crystalline orientations shown in the third and fourth row.
The diffuse features marked by a circle and a polygon were selected for an IXS
study, the intense features highlighted by a rectangle and a polygon are guides
for the comparison of experimental and calculated diffuse scattering. See text for
further details.
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Figure 6.9: Experimental (black points with error bars) and theoretical (red line)
IXS spectra from coesite crystal. The theoretical spectra are the weighted sum of
the two crystalline orientations: domain 1 - 75% (blue dashed line), domain 2 -
25% (green dotted dashed line). Theoretical intensities were convoluted with the
experimental resolution function and the energy transfer was scaled by 1.045.
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influence of the two crystalline domains on the inelastic spectra in Figure a).
The spectra of the two domains belong to different Q)-values with different phonon
eigenvectors and energies and are thus different. The calculated spectra of the
two domains in the common plane b) are, except for the overall intensity,
identical. The experimental spectra also show a small elastic line. After scaling
the calculated energies by 1.045 the theoretical spectra describe quite well both
position and intensity of the phonons. The scaling factor was determined from the
VDOS, and its value is justified further below.

Figure [6.10] shows the IXS intensity maps along the indicated directions from
calculation and measurement. The experimental spectra show that the diffuse
scattering is of almost exclusively inelastic nature. Taking into account the inten-
sity contribution of the two crystalline domains, both, energy transfer and inelastic
intensities of the different phonon branches are well described by the calculation
for arbitrary directions. This implies that the theory correctly predicts both eigen-
values and eigenvectors at arbitrary momentum transfers.

The generalised x-ray weighted VDOS (X-VDOS) (see Section for coesite
is shown in Figure ). The X-VDOS was used for the determination of an
overall energy scaling factor. In fact the VDOS probes the energy of the ensemble
of states in three dimensional reciprocal space and is therefore most appropriate
for the determination of the scaling factor. It turns out that an overall stretching
of 1.045 leads to a good agreement of experimental and theoretical X-VDOS. Dis-
crepancies between experiment and theory are mostly due to the limited accuracy
of sampling the reciprocal space with powder IXS spectra. The underestimation
of the calculated energies can be attributed to the limited accuracy of the ex-
change correlation function within the local density approximation; see Refson
et al.| (2006) for a detailed discussion. The partial density of states (Figure
b and c)) separate the contribution of silicon and oxygen atoms. Looking at the
low energy part of the partial VDOS (Figure e)) we find that the first peak
located at 10.1 meV has equal contributions from silicon and oxygen atoms. The
main peak of the scattering function at 14.4 meV is, however, dominated by the
vibration of the oxygen atoms. The low energy VDOS of a-quartz is plotted in
Figure f) for comparison. The a-quartz calculation was performed using the
same pseudopotentials and similar parameters as for coesite. For a detailed dis-
cussion on the calculation see Refson et al.| (2006). Here, the first peak dominates
the low energy part of the VDOS. It arises as in coesite from equal contributions
from silicon and oxygen atoms.

In order to localise the critical points contributing most to the first and the
main peak in the low energy part of the VDOS, two filters were applied simul-
taneously. An energy filter of AEF= 0.3 meV was applied to the ab initio cal-
culated phonon eigenfrequencies of the first Brillouin zone and 1/|V,E(q)| was
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Figure 6.10: Experimental IXS intensity maps (first row) from coesite crystal to-
gether with theoretical intensity maps along the indicated directions (second row).
Each experimental map consists of 4 measured spectra with linear Q-spacing and
energy steps of 0.7 meV. The momentum- and energy- transfers are linearly inter-
polated to 20 g-points and 72 energy steps. The theoretical maps were obtained by
the weighted superposition of inelastic spectra for the two domains. The inelastic
intensity is calculated from the eigenvectors and eigenfrequencies for 120 points
along the given direction in reciprocal space and convoluted with the experimental
resolution function of the spectrometer.
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Figure 6.11: a) Experimental (blue points) and theoretical (black line) X-VDOS
of coesite. The calculated X-VDOS is the x-ray weighted sum of the partial VDOS
of oxygen (b) and silicon (c). The energies of the theoretical data were scaled by
1.045 and the resulting spectrum was broadened by the experimental resolution.
d) Low-energy part of the VDOS (black line) and the local contribution of the
critical points to the VDOS within a cube in reciprocal space with Ag =1 nm™1.
The partial VDOS of oxygen (red dots) and silicon (green line) are compared in
(e), where the silicon contribution is multiplied by a factor of two. f) Partial VDOS
of oxygen (red dots) and silicon (green line) in the low-energy range of a-quartz.
The silicon contribution is multiplied by a factor of two.
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Figure 6.12: a) Dispersion relations along the main crystallographic directions
through the critical point (0.87 0.69 0.42) and the displacement pattern (primitive
cell) of the atoms at this saddle point contributing strongly to the first peak in the
VDOS of coesite. b) Dispersion relations and displacement pattern at the Y point
(1 00) in coesite. ¢) Orthogonal dispersion relations and displacement pattern at
the L point (1/2 0 1/2) in a-quartz.
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computed within this energy window. A saddle point close to the zone bound-
ary at (0.87 0.69 0.42) was found to contribute strongly to the first peak in the
VDOS and a local minimum at Y (1 0 0) is responsible for the main peak of the
VDOS. The local contribution of the critical points to the VDOS within a cube
in reciprocal space with Ag = 1 nm—1 is shown in Figure d). The dispersion
relations along the main crystallographic direction through the critical points and
the displacement patterns are shown in Figure and compared to the ones of
a-quartz.

Summarizing the results shown in Figure and we note: (i) Critical
points close to or at the zone boundary contribute most to the first and main peak
of the low energy VDOS in both systems. This observation might be explained
in a simplified picture with the piling up of vibrational states due to a flattening
of the dispersion relations at the zone boundary (Van Hove, [1953)). (ii) The first
peaks in both coesite and in a-quartz are due to an almost equal contribution from
silica and oxygen atoms. The main peak in coesite is, however, dominated by the
vibration of oxygen atoms. The character of vibration is more libration like. (iii)
In coesite both the first and the main peak are located at higher energies than in
a-quartz. This observation could be expected from the higher density structure
but we observe that (iv) the atomic displacements of both critical points in coesite
are different from the atomic displacement pattern of a-quartz. This shows that
the peaks cannot be compared directly.

Calculated dispersion relations along high symmetry directions and the result of
an interatomic potential calculation (Dean et al. 2000)) together with experimental
values from the IXS measurements and Raman scattering (Liu et al., [1997) are
shown in Figure[6.13] The two calculations are in reasonable qualitative agreement
for most of the branches. However for the Y - I' - direction our calculation agrees
much better with the experimental results, particularly for the fast acoustic and the
measured optic mode. The calculation of the low energy optical branches is very
delicate and sensitive to small geometrical differences and require a fine electronic
grid sampling. We note that both acoustic and optical phonon branches contribute
to the main peak of the scattering function at 14.4 meV. The M - Y dispersion
relation of the branch containing the critical point is very flat. Experimental
phonon energies as determined by the IXS measurement and Raman scattering
(Liu et al., 1997) are in good agreement with our calculation.

The calculation is further compared to experimental results from Raman and
infrared (Lippincott et al, [1958) studies in Table[6.2] The modes were attributed
by a careful comparison of experimental and calculated intensities. A good overall
accordance is obtained. The calculation predicts some additional modes to be
Raman or infrared active with low intensity contribution. A Raman spectrum
modelled for a Laser wavelength of 514.5 nm (Ar laser) at room temperature
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Figure 6.13: Brillouin zone of coesite crystal together with calculated dispersion
relations along high symmetry directions (black lines), the results of an interatomic
potential calculation (Dean et al. 2000) (dashed green lines) and experimental
values from the IXS measurements (blue squares) and Raman measurements
et al (red points). The critical point at Y is marked with a magenta
star. The energies of our calculation are scaled by 1.045 whereas the energies of
interatomic potential calculation are scaled arbitrary for best visual fit.
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Table 6.2: Raman and infrared energies [meV] of coesite at ambient conditions.
The calculated values are scaled by 1.045. Intensity contributions are indicated by
very weak (vw), weak (w), strong (s) and very strong (vs). Experimental values
are taken from |Liu et al.| (1997) (Raman) and Lippincott et al.| (1958) (Infrared)

Raman infrared
Calculation Experiment Calculation Experiment
94 w 9.7 s 13.0 vw -
149 s 146 s 175 vw -
183 w 18.7 w 184 vwvw -
221 s 21.9 s 22.9 wvw -
24.6 vw - 31.2 wvw -
25.1 s 25.3 w 325 wvw -
30.3 w 30.3 w 33.8 wvw -
33.8 s 33.6 s 36.4 vw -
35.9 wvw - 36.9 vw -
393 w - 374 vw -
409 w 404 w 40.7 vw -
442 w 441 w 422 w 422 w
472 w 470 w 46.2 w -
53.1 s 529 w 46.8 w -
55.1 w - 489 w 483 w
57.6 vw - 52.1 w 53.3 w
58.5 w 57.8 w 52.2 w -
65.7 vs 64.6 vs 55.0 w 54.8 w
68.4 w - 56.6 w -
84.2 vw - 614 w -
85.6 w - 69.6 w 69.1 w
101.3 w 97.6 w 75.9 w 741 w
101.6 s 101.2 w 85.8 vw -
105.1 s 104.0 w 871 w 84.7 w
1059 vw 1055 w 1025 w 98.7 w
108.1 w 110.7 w 105.0 w 100.8 w
135.6 s 1322 w 108.1 vw -
136.1 w 132.8 w 1354 vs 129.0 wvs
139.7 w 139.0 w 139.5 wvs 136.1 wvs
1405 w 141.8 w 1404 w -
149.1 s - 142.8 s 145.1 w
151.0 s - 1493 w -
153.2 w - 1504 w 151.9 w

159.3 wvw -

160.6 w -
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and an infrared spectra modelled for room temperature are shown together with
experimental spectra in Figure [6.14,  The calculation of Raman and infrared
intensities involves the third derivation of the total energy (Giannozzi and Baroni,
1994). The convergence criteria are tighter than for calculating the dynamical
matrix. The results shown here are sufficiently converged for a mode attribution
but the absolut intensities were not tested for convergence.

With the knowledge of the phonon dispersion relations and the VDOS we can
now go back to the intensity distribution of TDS and investigate the origin of divers
features. For this purpose the same sections of TDS intensity distribution as shown
in Figure are computed taking into account exclusively phonons with energies
within specified windows, see Figure [6.15. The TDS intensity distributions from
phonons comprising the full energy range are compared to the intensity distribution
comprising the first and main peak in the VDOS (0 - 16.5 meV). The intensity
distributions were calculated from phonon eigenvectors and energies on 800 X
800 @-points as obtained by Fourier interpolation in the first Brillouin zone and
symmetry operations for the outer zones. The lower limit of the phonon energies
was set to 1073 meV for numerical reasons. We note that the intensity distribution
comprising the first and main peak can describe all strong features. The absolute
contribution to the HKO plane (first column) is 84% and from the contribution
of the full energy range in the visible Q-range. The percentage for the reciprocal
space sections in the second and third column is 76%. The applied energy window
does not account for a separation of the contribution of different modes. However,
it illustrates, that TDS is most sensitive to the low energy part of the lattice
dynamics.

Conclusions

With the validated model it is possible to access the dynamical properties at arbi-
trary momentum transfer. The investigation of the VDOS, probing the ensemble
of vibrational states, allows the identification of distinct dynamical features. In
the case of coesite a small linear energy scaling of the ab initio calculated phonon
frequencies leads to a good agreement of experiment and theory. The investigation
of the nature of the dominating features in the low energy part of the VDOS shows
that critical points located close to or at the zone boundary provide the largest
contribution. The contribution of oxygen atoms is found to dominate the main
peak. The extension of the model for the lattice dynamics at ambient conditions
to high pressure potentially builds the basis for understanding the compression
mechanism and phase stability. This extension may provide an accurate model
for the elastic properties at the formation of coesite inclusions in diamond im-
plying a precise calibration of the coesite-in-diamond barometer proposed in Ref.
(Sobolev et al., [2000). Comparison with the most abundant silica polymorph a-



6.2. Coesite 77

700 ‘ ‘
a) Raman — Calculation

600 — Experiment||

500} §

400} |

300 1

| [arb. units]

200 §

1001 b

0 i ‘ ' Ly
b) Infrared

200 §

150F b

100

| [arb. units]

0 I T N “1 Ix | A | |
0 20 40 60 80 100 120 140 160 180

Energy [meV]
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quartz reveals valuable new insights into the low-energy vibrational properties of
this prototypical oxide.
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6.3 Cristobalite

The combination of diffuse and inelastic x-ray scattering combined with ab ini-
tio lattice dynamics calculations is used to investigate the origin of the first peak
in the density of vibrational states of a-cristobalite. The system is in particular
interesting due to its structural similarity to ambient silica glass. Diffuse scat-
tering is used to map out the intensity contribution of low energy phonon modes
in reciprocal space. Selected features are investigated by IXS and compared to
theory. Distinct features in the lattice dynamics are compared to the findings
in a-quartz and coesite revealing similarities in the vibrational character of the
modes contributing most to the first Van Hove singularities.

Introduction

Cristobalite, SiOs, crystallises at high temperature to a cubic structure (/-phase)
and undergoes a phase transition to its a-phase upon cooling. a-cristobalite has
space group P4;2;2 (Pluth et al., [1985) and is stable at room temperature and
ambient pressure. Natural crystals are usually twinned (Dollase], 1965)). Recently
it could be shown that ambient silica glass and a-cristobalite, which exhibit of very
similar mass densities (2.20(1) g/cm?® and 2.289(1) g/cm?, respectively), reveal very
similar thermodynamic properties and distinct similarities on the level of atomic
vibrations (Chumakov et al. 2013). The boson peak of ambient silica glass (see
Section is located at the same energies as the first van Hove singularity of
a-cristobalite. The VDOS in the energy range of the Boson peak is well described
by the smearing out of the van Hove singularity, thus taking into account a finite
width of the boundary of the pseudo-Brillouin zone in the glass. The boson peak
and the van Hove singularity contain the same number of excess states above the
Debye levels in both ambien silica glass and a-cristobalite. These observations
strongly suggest that, similar to crystals, the excess of vibrational states in glasses
originates from the piling up of the acoustic-like branches near the boundary of
the pseudo-Brillouin zone. This suggests in turn that the low-energy dynamics in
the meV range and the low-temperature heat capacity around 10K of silica glass
are not anomalous. They are indeed similar to those of a crystal with similar
mass density. They reflect more the residual order present in glasses than their
structural disorder. In the following we use the combination of TDS, IXS and ab
initio lattice dynamics calculation to clarify the reciprocal space positions of the
van Hove singularity in a-cristobalite and the nature of the associated vibrations.
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Experimental Details

a-cristobalite crystals from Ellora Caves, Hyderabad, India used for this study
were kindly made available from the Harvard Mineralogical Museum collection
(Courtesy of the Harvard Mineralogical museum, Cristobalite, HMM#97849). An
octahedral single crystal with 0.2 mm along the four-fold axis was used for both
TDS and IXS studies which were conducted at room temperature. One major
twin and some mosaic spread was observed during the x-ray diffuse scattering.
One domain could be used for experimental study with very little contribution of
the the other one. A synthetic polycrystalline sample provided by M. Dove was
used for the powder IXS measurements. The purity of the polycrystalline sample
was verified by high-resolution x-ray diffraction at ID28. The samples revealed
pure single-phase patterns. The crystalline quality was checked by x-ray diffuse
scattering collected at ID29. Clear patterns of diffraction rings without noticeable
effects of structural disorder were observed.

The x-ray diffuse scattering experiment was conducted on beamline ID29 (de Sanc-
tis et al.| 2012)) at the ESRF. Monochromatic X-rays with wavelength 0.700 A were
scattered from the crystal in transmission geometry. The sample was rotated with
an increment of 0.1° orthogonal to the beam direction over an angular range of
360° while diffuse scattering patterns were recorded in shutterless mode with a PI-
LATUS 6M detector (Kraft et al., |2009)). The orientation matrix and geometry of
the experiment were refined using the CrysAlis (Oxford diffraction Ltd.) software
package. 2D reconstructions were prepared using locally developed software.

The single crystal IXS study was carried out on beamline ID28 at the ESRF.
The spectrometer was operated at 17.794 keV incident energy, providing an energy
resolution of 3.0 meV full-width-half-maximum with a beam focus of 30 x 60 pum
full-width-half-maximum. IXS scans were performed in transmission geometry
along selected directions in reciprocal space.

The generalised x-ray weighted VDOS (X-VDOS) was obtained from IXS spec-
tra measured by A. Chumakov and A. Bosak at ID28. The scattered radiation
was collected by nine crystal analysers. The momentum transfer resolution of
each analyser was ~ 0.3 nm~'. The values of the momentum transfers for each
analyser were chosen away from the Debye-Scherrer rings and covered the [10 :
70] nm~! range. The data combine the results of measurements with 1.4 meV
resolution at 23.725 keV incident energy within [-25 : +25] meV energy range and
0.2 meV energy steps and results from the measurement with 3.0 meV resolution
within [-25 : +180] meV energy range and 0.7 meV steps. The elastic peak in
the IXS spectra was subtracted using the instrumental function of each analyser
determined by x-ray scattering from a polymethylmethacrylate (PMMA) sample
close to the maximum of its structure factor. The X-VDOS was obtained from
the summed IXS spectra within the incoherent approximation following the data
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treatment procedure established in |Bosak and Krisch (2005]). See Section for
details on the data analysis.

Calculation

The lattice dynamics calculations were performed using the DFPT approach (Gonze
and Lee, [1997) as implemented in the CASTEP code (Clark et al., 2005| Refson
et al., 2006). Local density approximation within the plane-wave formalism was
employed using the same norm-conserving pseudopotentials as for the study on co-
esite and a-quartz. The plane wave cut-off and the sampling of the electronic grid
were carefully tested by evaluating the convergence of internal forces. The elec-
tronic structure was computed on a 6 x 6 x 6 Monkhorst-Pack grind and the plane
wave cut-off was set to 800 eV. A full geometry optimisation was performed em-
ploying the Broyden-Fletcher-Goldfarb-Shannon method (Pfrommer et al., [1997),
varying lattice and internal parameters. For the cell parameters of the optimised
cell we find a =b =4.939 A and ¢ = 6.870 A. These values compare within 1.1%
to those determined by x-ray diffraction (a = b = 4.97(8) A and ¢ = 6.94(8) A
(Dollase, |1965). Phonon frequencies and eigenvectors were computed on a 7 x 7 x 7
Monkhorst-Pack grid of the irreducible part of the Brillouin zone by a perturba-
tion calculation. Sum rules for the acoustic branches close to and at I' as well
as the charge neutrality at the level of Born effective charges were imposed. See
Chapter [3] for details. A Fourier interpolation with a grid spacing of 0.005 A~
in the cumulant scheme including all image force constants was applied for the
VDOS. The calculation was tested to be well converged with a maximum error in
phonon energies of < 0.05 meV. TDS and IXS intensities were calculated from the
phonon eigenvectors and frequencies following the formalism discussed in Chap-
ter [2| within the validity of both the harmonic and adiabatic approximation. The
scattering intensities were calculated in first order approximation.

Results and Discussion

High symmetry reciprocal space sections of experimental diffuse scattering and
calculated TDS intensity distributions are shown in Figure[6.16] A complex distri-
bution of diffuse scattering is noticeable. The diffuse scattering in the HOL plane
is more intense for low momentum transfers in the <1 0 1> direction in particular
between (2 0 0) and (0 0 2). Its origin was proven by IXS to be of elastic nature
and corresponds to the inter-twin boundary. In the HHL plane we note streak like
diffuse features along <1 1 0>, in agreement with the prediction of the rigid unit
modes model from [Dove et al| (2007) and the observation by electron diffraction
(Withers et al., [1989)). Even stronger streaks are observed along <1 1 2>.
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Figure 6.16: Experimental diffuse scattering (left part of individual panels) and cal-
culated (right part of individual panels) TDS intensity distribution of a-cristobalite
in the indicated reciprocal space sections. The experimental intensity distributions
show signatures of the mosaic spread. See text for further details.
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Figure 6.17: Experimental (black points with error bars) and theoretical (red line)
IXS spectra from a-cristobalite at the indicated reciprocal space points. Theoret-
ical intensities were convoluted with the experimental resolution function and the
energy transfer was scaled by 1.039. The excitation in the spectrum at M point
(a) contains the contribution of two branches, see Figure [6.19]
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Figure 6.18: Experimental IXS intensity maps (first row) from a-cristobalite crys-
tal together with theoretical intensity maps along the indicated directions (second
row). The experimental maps in a) consist of 5 and in b) and ¢) of 8 measured
spectra with linear g-spacing and energy steps of 0.7 meV. The momentum- and
energy- transfers are linearly interpolated to 200 g-points and 72 energy steps.
The theoretical dispersion relations are traced as lines. The theoretical maps were
calculated from the eigenvectors and eigenfrequencies for 200 points along a given
direction in reciprocal space and convoluted with the experimental resolution func-
tion of the spectrometer. The absolute intensity is scaled for best visualisation of
the inelastic features.
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The streaks along <1 1 0> and <1 1 2> and some more directions were ex-
plored by IXS. A few prototypical scans are shown in Figure and compared
to calculated spectra. Some more IXS scans are summarised in the intensity maps
along certain directions in Figure [6.18 After stretching the calculated energies
by ~4% the theoretical spectra describe quite well both position and intensity of
the phonons. The scaling factor was determined from the X-VDOS, and its value
is justified further below. The overall agreement of experiment and calculation is
good. The minima of the lowest energy phonon branch are slightly underestimated
in the showcases. A small elastic line is also present in all spectra. Figure[6.17h)
and b) shows the IXS intensity map along <1 1 0> and <1 1 2>, respectively.
Remarkably, we note quite flat phonon branches with energies around 5 meV. The
calculation underestimates the energies of these bands slightly.

Calculated dispersion relations along high symmetry directions together with
experimental values from the IXS measurements are shown in Figure The
phonon energies at the I' point are compared to infrared (Swainson et al., 2003])
and Raman measurements (Bates, 1972, |Sigaev et al., [1999)) as well as to ab initio
calculated values from (Coh and Vanderbilt| (2008). We note good agreement of
our calculation with all experimental values, whereas the calculated values from
Coh and Vanderbilt| (2008) are significantly different.

The X-VDOS for a-cristobalite is shown in Figure a) and the calculated
real VDOS in Figure d). A linear scaling of all calculated phonon energies
by 1.039 leads to an almost perfect agreement of experimental and theoretical X-
VDOS over the complete energy range. We observe some very small discrepancies
between experiment and theory, which are mainly due to the limited accuracy
of sampling the reciprocal space with powder IXS spectra. The first peak in the
VDOS is observed at a slightly higher energy as calculated (discrepancy is 0.9 meV
after the applied scaling). The underestimation of the calculated energies can be
attributed to the limited accuracy of the exchange correlation function within the
local density approximation and the fact that the calculation does not include
any temperature effects (see Refson et al| (2006]) for a detailed discussion). The
partial density of states (Figure b and c)) separate the contribution of silicon
and oxygen atoms. Focusing on the low energy part of the partial VDOS (Figure
6.20| ¢)) we find that the first peak located at 4.56 meV is slightly dominated by
the vibration of the oxygen atoms. The low energy VDOS of a-quartz is plotted
in Figure f) for comparison. We note that the first peak of the VDOS of
a-cristobalite is located at much lower energy than in a-quartz. In a-cristobalite
the partial contribution of oxygen atoms is slightly higher than in a-quartz.

The localisation of critical points contributing most to the first peak of the
VDOS was conducted by the simultaneous application of two filters. An energy
filter of AE= 0.3 meV was applied to the ab initio calculated phonon energies of the
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Figure 6.19: Brillouin zone of a-cristobalite together with calculated dispersion
relations along high symmetry directions (black lines) and experimental values
from the IXS measurements (blue points).The phonon energies at the I' point are
compared to Infrared (Swainson et al., [2003) (magenta diamonds) and Raman
measurements (Bates| [1972) (red triangles up) and (Sigaev et al.,[1999) (red trian-
gles down) as well as ab initio calculated values from |Coh and Vanderbilt| (2008))
(green squares). The energies of our calculation are scaled by 1.039.
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Figure 6.20: a) Experimental (blue points) and calculated (black line) X-VDOS
of a-cristobalite. The calculated X-VDOS was convoluted with the experimental
resolution function and the energies scaled by ~4%. The partial VDOS of oxygen
and silicon and the VDOS are shown in b), ¢) and d), respectively. The partial
VDOS of oxygen (red dots) and silicon (green line) of the low energy part are
compared in (e), where the silicon contribution is multiplied by a factor of two. f)
Partial VDOS of oxygen (red dots) and silicon (green line) in the low-energy range
of a-quartz. The silicon contribution is multiplied by a factor of two.
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Figure 6.21: Contribution and topology of the critical point responsible for the first
van Hove singularity in a-cristobalite. a) VDOS (blue) and the contribution of the
energy surface containing the critical point at M (1/2 1/2 0) within Ag = Inm™*
(green). b) Dispersion relations of the two branches containing the critical point
along the indicated directions. The straight lines belong to the energy surface
containing the saddle point, the dots belong to the sheet containing a minimum.
c¢) and d) Energy surface projections of the dispersion surface containing the saddle
point in the HKO and HHL plane, respectively.
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first Brillouin zone, and 1/|V4E(q)| was computed within this energy window. The
investigation reveals two saddle points with the same phonon energy contributing
to the first peak in the VDOS of a-cristobalite. The computation of the local
contribution within a cube in reciprocal space of Ag = 1 nm~! shows that the
first peak arises mainly from the region around the M point (1/2 1/2 0). The
local contribution is shown in Figure a). The phonon dispersion surface
containing the critical point shows a double degeneracy along <1 0 0>, <0 1 0>
and <0 0 1>, which is split along the <1 1 0> direction, see Figure b). The
lower sheet forms a saddle point whereas the upper sheet forms a minimum which
is of parabolic nature close to M. The peak in the VDOS arises thus from the
lower branch (see discussion in Section . The topology of the energy surface
projected on the HK0O and HHL plane is shown in Figure c) and d). A second
saddle point with the same phonon energy located at (0.47 0.2 0.33) was found to
have a smaller local contribution to the VDOS.

The VDOS of the silica polymorphs a-quartz, coesite and a-cristobalite and the
displacement patterns of the vibration responsible for the first peak are compared
in Figure [6.22l We note, that the low energy part of the VDOS is different.
In particular the first peak in the VDOS is located at different energies. Quite
remarkable is the fact that critical points which are responsible for the first peak
are located at the zone boundary in the case of all three silica polymorphs under
investigation. The topology of the energy surface in the vicinity of the critical
points is different, but despite this, the associated displacement patterns are very
similar: The largest displacement is observed for oxygen. The vibration consists
mainly of a tetrahedron tilt, accompanied by a small distortion. The study from
Chumakov et al.| (2013)) revealed that the number of excess states above the Debye
levels in the VDOS of ambient silica glass and a-cristobalite are very similar (6.2(9)
% and 6.8(9)%, respectively). It was furthermore shown that the excess states for
both glass and crystal are located nearly at the same energy. Taking into account
the similarity observed in the displacement patterns of the investigated three silica
polymorphs we can now conclude, that the vibration causing the Boson peak in
silica glasses must be similar as well on a local scale.

Conclusions

We have seen, that the lattice dynamics of a-cristobalite can be very well described
by our lattice dynamics calculation. The thermal diffuse scattering shows a rich
structures, including features which were predicted by the theory of rigid unit
modes. The validated calculation allowed us to draw a unifying picture for the
displacement patterns of the vibration responsible for the first peak in the VDOS
of all investigated silica polymorphs.
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92 Chapter 6. Results

6.4 Metallic tin polymorphs

The lattice dynamics of the metallic tin 5 and v polymorphs has been studied by a
combination of diffuse scattering, inelastic x-ray scattering and density functional
perturbation theory. The shape TDS intensity distributions were investigated
in detail. The influence of the electron subsystems on inter-ionic interactions
were analysed and the effect of the S-tin structure with a non-centrosymmetric
environment of atoms considered.

Introduction

Metallic tin crystallizes in a body-centred tetragonal lattice (space group 14; /amd)
at ambient conditions, known as white tin (8—Sn). Despite the fact that the
stability range of white tin lies between 291and ~ 450 K (Kubiakl, |1986)) it can be
supercooled far below the transition temperature maintaining the crystal structure.
Below ~ 4.2 K it becomes a type-I superconductor which can be described in the
frame of BCS theory (Matthias et al., |1963)), indicating strong electron-phonon
coupling (Rowe, |1967). The o — 8 phase transition in tin is possibly the simplest
and prototypical case of an entropy-driven structural transformation determined
by the vibrational properties of the two phases (Pavone et al., |1998).

Alloying tin with indium results in a substitutionally disordered crystal with
a primitive hexagonal lattice containing one atom per unit cell (Raynor and Lee|
1954)), called ~-tin. It is a convenient model system in the study of lattice dy-
namics and electron-phonon interactions (Ivanov et al., [1987)), because its phonon
dispersion relations consist only of acoustic branches and it is stable at ambient
conditions. The ~-phase of pure tin (Kubiak, [1986) is orthorhombic and differs
thus slightly from the primitive hexagonal lattice. It is stable between ~ 450 K
and the melting point of tin (505 K).

Diffuse scattering of white tin has a long history. First Laue photographs
showing a ”diffuse background with regions of maximum intensities” were pub-
lished in 1943 (Arlman and Kronig, [1943)) and ”considered in the light of thermal
theory” in 1946 (Bouman et al., 1946). Elastic constants were derived from the
diffuse features in 1955 (Prasad and Wooster, 1955)). Phonon dispersion relations
have been largely studied in the past, in particular by inelastic neutron scattering
(INS) (Parratt, 1967, Rowe, |1967, Rowe et al. 1965 and density functional per-
turbation theory (Pavone et al., 1998). The available data are nevertheless limited
to high-symmetry directions and the determination of the eigenfrequencies. The
rich Fermi surface of f—Sn (Deviller et al., |1974) suggests a complex topology of
electron-phonon interaction, studied by [Ivanov et al.| (1995).
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Experimental Details

The diffuse x-ray scattering experiment was conducted at the Swiss-Norwegian
Beamlines at ESRF (BMO01) and the ID29 ESRF beamline. Monochromatic X-rays
with wavelength 0.7 A were scattered from a needle-like single crystal of 100 x 100
pm cross section at room temperature. Single crystal of 5- and ~y-tin were provided
by Alexander Ivanov (Institue Laue-Langevin, Grenoble, France). They were cut
by a diamond saw and polished with diamond powder. The final size was obtained
by short etching in concentrated HCI acid. The sample was rotated orthogonal to
the beam direction over an angular range of 360° and diffuse scattering pattern
were recorded in transmission geometry. Preliminary experiments were performed
with a mar345 detector (Marresearch GmbH)). The follow-up experiments were
employing a PILATUS 6M detector (Kraft et al., [2009) at ID29, where the diffuse
scattering patterns were collected in shutterless mode with fine angular slicing of
0.1°. The orientation matrix and the geometry of the experiment were refined
using the CrysAlis (Oxford diffraction Ltd.) software package, 2D and 3D recon-
structions were prepared using locally developed software. The single crystal IXS
study was carried out at beamline ID28 at the ESRF. The spectrometer was op-
erated at 17.794 keV incident energy, providing an energy resolution of 3.0 meV
full-width-half-maximum. IXS scans were performed in transmission geometry
along selected directions in reciprocal space. See Chapter 4] and [5| details.

Calculation

First-principle lattice dynamics calculations were performed with the CASTEP
package (Clark et al., 2005| Refson et al., 2006]) using the DFPT solver for metal-
lic systems (de Gironcoli, 1995). The local density approximation (LDA) and
general gradient approximation (GGA) within the density functional theory for-
malism were used as implemented with a plane wave basis set and norm-conserving
pseudopotentials. For the exchange correlation functional the Perdew and Zunger
parametrization (Perdew and Zunger, |1981) of the numerical results of Ceperley
and Alder (Ceperley and Alder} [1980) were used in LDA and the density-gradient
expansion for exchange in solids and surfaces (PBEsol functional) (Perdew et al.,
2008) in GGA. The self-consistent electronic minimization was performed with
density mixing in the Pulay scheme and the occupancies were smeared out by a
Gaussian function of 0.1 eV full-width-half-maximum. The Sn pseudo-potential
was of the optimized norm conserving type generated using the Vanderbilt scheme
with a single projector for each of the 5s and 5p electrons, with a cut-off radius
of r. = 1.9 ag. The pseudopotentials for the LDA and PBEsol calculations were
created using the CASTEP on-the-fly technology, optimized separately for each
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Figure 6.23: All electron (dashed line) and pseudo- (full line) wave functions of
the 5s, p and d orbitals. The vertical dotted line indicates the cut-off radius.
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Table 6.3: Lattice constants of 5-Sn from calculation and experiment (Swanson
and Tatge, [1953).

LDA PBEsol Experiment

a=b 5755A 5808A 5831A
c 3114 A 3144 A 3.182 A

exchange and correlation functional and carefully tested for transferability [} The
pseudo potential is compared to an all-electron calculation in Figure [6.23] The
pseudation makes the wave functions nodeless, but they are identical above the
cut-off radius. The pseudo-potential was tested for prediction of lattice parame-
ters in §- and ~ tin as well as tin monoxide and compared to previously published
potentials (Meyer et al., 2001)). The convergence of internal forces with respect to
the plane wave cut-off and sampling of the electronic grid were carefully tested.
In order to accurately describe the Fermi surface a very dens electronic grid is
required. The self-consistent electronic minimisation was performed with density
mixing in the Pulay scheme and the occupancies were smeared out by a Gaussian
function of 0.1 eV full-width-half-maximum. The systems were converged in plane
waves with an upper bond error for internal forces of < 1072 eV /A which required
a plane wave cut-off of 320 eV and 24 x 24 x 24 Monkhorst-Pack grid sampling of
the first Brillouin zone. The systems were converged in plane waves with an upper
bond error for internal forces of < 1073 eV/ A which required a plane wave cut-off
of 380 eV and 24 x 24 x 24 Monkhorst-Pack grid sampling of the first Brillouin zone.
The Fermi surface of 5-tin as obtained from the electronic structure calculation is
illustrated in Figure A complex topology is visible in 3D reciprocal space.
The HOL section is in good agreement with previous calculations and experiment
(Deviller et al., |1974)).

The structure optimization was performed using the Broyden-Fletcher-Goldfarb-
Shannon method (Pfrommer et al., [1997) by varying lattice and internal param-
eters. The equilibrium lattice constants of 5-Sn as obtained in LDA and PBEsol
are reported in Table The cell parameters agree within 2.2 % with the experi-
mental values in LDA and 1.2 % in PBEsol. Phonon frequencies and eigenvectors
were computed by perturbation calculations on a 8 x 8 x 8 Monkhorst-Pack grid
and further Fourier interpolated in the cumulant scheme including all image force
constants (Parlinski et al., [1997)). The well converged internal forces yield a maxi-
mum error in phonon energies of < 0.2 meV. The acoustic sum rule correction was
applied to the calculated dynamical matrix in order to account for translational in-

!The CASTEP on-the-fly stings used in this work are 2|1.9/1.9]1.5/9.6/10.8/11.7|50N:
51N(qc = 4.1) in LDA and 2|1.9]1.9]1.5/9.6/10.8/11.7|50N: 51N(gc = 5.05) in PBEsol.
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Figure 6.24: Fermi surface of -tin as obtained from the electronic structure cal-
culation in 3D recirocal space and in the HOL plane.
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variance with maximal correction of 2 meV at I'. The lattice dynamics calculation
for ~-tin was performed in LDA with the same parameters and pseudopotential
as used for 5-Sn. The primitive hexagonal structure was imposed for the unit cell
containing one Sn atom. The optimized cell parameters were a = b = 3.1667 A
and ¢ = 2.9722 A, in agreement within 1.4 % with the experimental values (a=b
= 3213 A and ¢ = 2.999 A (Kubiak and K., [1974)). TDS and IXS intensities were
calculated assuming the validity of both harmonic and adiabatic approximation
using in house developed software (Mirone and Wehinger, 2012). The scattering
intensities were calculated in first order approximation.

Results and Discussion

The calculated dispersion relations for S-tin along high symmetry directions as ob-
tained in LDA and PBEsol are compared to experimental results from IXS and to
previously published results (Ivanov et al. |1987, Parratt, 1967, Rowe et al.; [1965)
in Figure[6.25] Both experimental and calculated dispersion relations show several
anomalies, due to the complex electronic structure with long range force constants
and the interplay of electrons and phonons. Some anomalies are indicated in Fig-
ure The influence of the applied sum rule on the phonon branches and the
anomalies was carefully tested. The transformation was found to have minimal im-
pact on the optical branches and the anomalies, but created an artefact close to the
M point, labelled G in Fig[6.25 Despite the fact that the lattice constants within
the LDA are underestimated by the calculation, we note a good agreement for the
acoustic phonon branches and the phonon anomalies. The dispersion relations are
in close agreement with previous calculations by [Pavone et al.| (1998]). Some of the
experimentally observed anomalies are better reproduced by the present calcula-
tion. In particular the anomalies labelled A - F are more accurately described.
The highest energy optical mode shows several anomalies in both experiment and
our calculation whereas the same branch is almost completely flat in the previ-
ous calculation. The anomalies are in fact sensitive to the Fermi surface which
is described more accurate in the present calculation due to a finer k-point sam-
pling and a smaller smearing width of the occupancies. We are therefore confident
that the present calculation accounts sufficiently well for the electron-ion interac-
tion. We note a slight over-estimation of the highest optical branch and a slight
underestimation of the transverse acoustic branch in the I'-H-M direction - the
intersection of two equivalent mirror planes. A phonon with wave vector in this
direction is purely longitudinal or transverse and the transverse modes are doubly
degenerate. The acoustic A4 branch along the I'-X direction (see Figure [6.25)]) is
slightly softer than experimentally observed. This may be an artefact due to the
acoustic sum rule violation and correction. The reproducibility of the the optical
phonon branches is improved in the PBEsol calculation but the acoustic branch
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Figure 6.25: Dispersion relations of S-tin along the indicated high symmetry di-
rections. The calculations (solid lines - a) LDA and b) PBEsol) are compared
to experimental values from IXS measurements at 300K (circles), INS at 300K
(squares) (Ivanov et al [1995) and (+) (Parratt, |1967) and INS at 110K () (Rowe,
1967). The dispersion relations along the I'-X direction are labelled according to
the symmetry classification proposed in (Chen, [1967). The differences between
the experimental data sets are due to different experimental conditions: Data
were taken at different temperatures, with different statistics and resolution in
momentum and energy transfer. Note the pronounced anomalies in the dispersion
relations (arrows). The labelled anomalies are discussed in the text. The first
Brillouin zone and a section of the HOL plane in reciprocal space are shown on the
right.
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Figure 6.26: a) - e) Experimental diffuse scattering (left part of individual panels)
and calculated (right part of individual panels) TDS intensity distribution of S-tin
in the indicated reciprocal space sections. Note the almost forbidden reflections in
a), ¢) and d) (arrows labelled F), visible due to the electron density asymmetry
(Merisalo and Soininen, 1979)). f) Experimental 3D isosurface of TDS in colour
denoting the distance from (0 0 0).

along ['"H-M and the acoustic A4 branch along I'-X are significantly softer. The
discrepancy in the A4 branch may again be related to the acoustic sum rule viola-
tion and correction, whereas the difference in the acoustic branch along I'-H-M is
related to the different approximation in the exchange and correlation functional.
The shape of the phonon anomalies are, however, well described in both approx-
imations. In the following the results of the LDA calculation were used because
this study focuses on the low energy phonons.

Reciprocal space sections and a three-dimensional isosurface of diffuse scatter-
ing as obtained from experiment and calculated TDS intensity distributions are
shown in Figure Corrections for polarisation and projection (Holt et al.,
, and the Laue symmetry of the system were applied. All shapes of diffuse
features are remarkably well reproduced by the calculation in harmonic approxi-
mation. This implies that higher order scattering processes and anharmonic effects
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Figure 6.27: Experimental diffuse scattering of -tin crystal in the vicinity of the
211 reflection in the HK1 plane.

at room temperature are much less pronounced than previously thought
lhashi et al.l [2006). The pronounced elastic anisotropy is reflected by the butterfly
shape of TDS in the vicinity of the Brillouin zone centers I' in the HKO plane. The
very different sound velocities result in a large contrast in TDS intensities close
to T for different directions. In fact, the TDS intensities scale &~ 1/w? close to
I'. Non-typical diffuse features features are observed in the HK2n+1 and HK2n
reciprocal space sections:

(i) An asymmetry in diffuse scattering of individual features is observed in
the HK2n+1 reciprocal space sections. It is most pronounced around the (211)
reflection, see Figure [6.27] The HK2n+1 pattern as a hole are symmetric in
agreement with the Laue symmetry of the system. The asymmetry of the diffuse
scattering in the vicinity of the (211) reflections is further investigated by IXS
measured at selected reduced momentum transfer g-values along the asymmetric
TDS profile. IXS spectra are reported in Figure Comparing the two pairs of
experimental spectra at wave vectors with equivalent ¢ one observes a difference
in the integrated intensities corresponding to TDS and an energy shift of the main
excitation. The calculation shows that the experimentally observed excitation
contains the contribution of both A4 and As acoustic branches. The drastic change
of spectral weight between the two branches leads to an energy shift of the envelope
function. The A4 optic branch, which is almost completely suppressed on one side,
shows the same particularity.

(ii) A cross-like feature is observed around the almost forbidden reflections in
the HK2 planes (these reflections become visible due to the asymmetry in the
electron density distribution (Merisalo and Soininen) [1979))). IXS is used to clarify
the nature of the cross-like TDS feature. IXS scans along [£ £ 2] are summarized in
an intensity map in Figure m The inelastic intensity close to (0 0 2) is dominated
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Figure 6.28: Experimental IXS spectra (left panels) of S-tin on different momen-
tum transfers in the HK1 plane. The reduced momentum transfer ¢ of panels a)
and c) is equivalent, the same holds for panels e) and g). The peak position of
the envelope function of the two acoustic branches is indicated by vertical lines
in the experimental spectra. The inelastic contribution of the different branches
(vertical lines) as obtained from the DFPT calculation and its convolution with
the experimental resolution are shown for the corresponding momentum transfers
in the right panels. The vertical lines are scaled by a factor 1/2 in respect to the
convoluted spectra for best visualisation.
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Figure 6.29: IXS intensity maps from (002) to (112) as obtained from experiment
(upper panel) and calculation (lower panel). The experimental map consists of
eight IXS spectra with a g-spacing of 0.1 r.l.u and 0.7 meV energy step, linearly
interpolated to a 200 x 85 grid. The calculated IXS intensity is convoluted with
the experimental resolution function of 3.0 meV full-width-half-maximum. The
dispersion of the different branches is plotted as lines.
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by the acoustic A4 branch with a significant contribution of the optic A4 branch,
determined from the experiment at (0.1 0.1 2) to be 10.8 %. The intensity close
to (1 1 2) is dominated by the acoustic Az branch with vanishing contribution of
the optic A4 branch. The intensity along [ 0 2] and [0 £ 2] is suppressed. The
diffuse features in the HK2n reciprocal space sections remain symmetric.

The measured phonon energies and IXS intensities are in good agreement with
the calculation in the illustrated direction. The three-dimensional isosurface of
diffuse scattering intensities, depicted in Figure f), allows one to identify the
shape of diffuse features. We note plate-like, elongated cross-like and asymmetric
shapes. The topology of the diffuse scattering is in fact quite complex and its
investigation requires a fine sampling of 3D reciprocal space. The inspection of only
a few planes in reciprocal space may provide an incomplete picture, the authors
of a previous study (Takahashi et al., [2006) could only identify rod-like features.
The Fermi surface topology of S-tin is much more complex than in the case of
zinc, where a directional tracing of the Kohn anomalies was undertaken (Bosak
et al., 2009b). This is not possible in the case of f-tin, as the interaction of
phonons with the conduction electrons is of complex nature and the anomalies
in the dispersion curves are not sufficiently pronounced to allow a tracing of TDS
anomalies. Furthermore, the complexity of the electronic system does not allow for
an attribution of the anomalies to specific nesting geometries of the Fermi surface
as it was possible for vanadium (Bosak et al., [2008).

The study on S-tin was extended to y-tin. Calculated dispersion relations along
high symmetry directions are compared to experimental results from INS (Ivanov
et al., [1987) in Figure . The calculation describes the experimental results
very well, including the phonon anomalies. Reciprocal space sections of diffuse
scattering as obtained from experiment and calculated TDS are confronted to the
results of S-tin in Figure [6.31] The diffuse scattering in 7-tin is almost perfectly
reproduced by the calculation. The similarity of the compared TDS intensity
distributions of g and v-tin can be appreciated. It reflects the symmetry relation
of the two phases which have common subgroups, consequently some symmetry
elements are retained at the v-3 transition (Raynor and Lee, [1954). The vectorial
relationship between the two structures is given by

ag -1 10 a,
bs | = 00 2 b, |, (6.4)
Cp 1 10 cy

where the vectors a, b and ¢ denote the unit cell vectors with corresponding indices
for the § and v phase. see Figure for illustration. The phase transition is
induced by the I'-point mode in S-tin and the L-point mode in 7-tin (Ivanov
et al [1991). The I'-H-M direction in [-tin for instance corresponds to the I'-
K-M direction in ~-tin. We note that the anomalies in the dispersion relation
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Figure 6.30: Phonon dispersion relations of «4-tin along the indicated high symme-
try directions. The calculation (solid lines, pure Sn) is compared to experimental
values of a Sngglngo single crystal from (Ivanov et al., [1987) (x). The labelled
anomalies are discussed in the text.
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2

Figure 6.31: Experimental diffuse scattering (left part of individual panels) and
calculated (right part of individual panels) TDS intensity distribution of [-tin
(a) and (c) and 7-tin (b) and (d) in the indicated reciprocal space sections. The
experimental TDS intensity distribution of «-tin was obtained from a Sngglngo
single crystal, whereas the calculated one results from pure Sn.
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Figure 6.32: Structural relationship between §-tin (a) and v-tin from [Ivanov et al.
(1991). The arrows indicated the directions of atomic displacements for -tin (I'-
point mode) and for «-tin (L-point mode). The full and open circles represent the
atoms in the two different body-centered tetragonal sublattices of 5-Sn.

labelled B and C (see Figure appear at the same position as in [§-tin, see
Figure [6.25 The change in slope labelled A is less pronounced in 7-tin, resulting
in a smoother intensity distribution of diffuse scattering. The structure of the
two phases is different, the momentum transfer dependency of the underlying
electronic potential is, however, similar. In fact the interatomic distances and
force constants are very comparable in the two structures. A strong asymmetry in
diffuse scattering as observed in the HK2n+1 reciprocal space sections in -tin is
not present in the y-phase. The particularity in diffuse scattering in S-tin is thus
a symmetry related feature.

Conclusions

We provide an accurate description of the lattice dynamics of the metallic tin £
and v polymorphs. It was shown that the diffuse and inelastic scattering from
phonons can be described to a good approximation in the frame of one-phonon
scattering within the harmonic approximation. The observed features are repro-
duced in great detail by DFPT at arbitrary momentum transfers. The strong
influence of the electron subsystem on inter-ionic interactions causes anomalies in
the phonon dispersion relations. An unusual asymmetry of thermal diffuse scat-
tering is observed in S-tin which is related to the non-symmorphic structure. The
comparison of TDS from - and ~v-tin reveals a strong resemblance and reflects
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the symmetry relation between the two structures and a strong similarity of the
underlying potential.
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6.5 Ice

Single crystals of natural ice-Ih, extracted from the subglacial Vostok lake accretion
ice layer (Antarctic) were investigated by means of diffuse and inelastic x-ray
scattering. The diffuse scattering was identified as mainly inelastic and rationalised
by an ab initio lattice dynamics calculation for ordered ice (XI phase). A Monte-
Carlo simulation was used to model the static disorder contribution to the diffuse
scattering and allowed to reconsider previously published data of neutron diffuse
scattering on heavy ice as the sum of thermal diffuse scattering and static disorder
contribution. The experiment illustrates nicely the sensitivity of inelastic x-ray
scattering to the hydrogen.

Introduction

In the ice-Ih phase the oxygen atoms are arranged in a wurzite structure, and the
hydrogen atoms are placed randomly in one of the two energy minima in between
each pair of oxygens while only two nearest neighbours are allowed (Bernal and
Fowler| [1933| |[Pauling) 1935]). The average structure is hexagonal with space group
P63/mme. It is the only ice phase existing in the crust. At temperatures below 72
K an ordered structure (ice XI) becomes stable. The hydrogen ordering reduces the
symmetry from hexagonal to orthorhombic (Cme2;). The dynamical properties of
ice have been subject of many experimental and theoretical studies, see Section[I.4]
but a quantitative study of diffuse scattering in HyO ice ITh has not been reported.

Here we investigate natural single crystal ice-Th samples, extracted from the
subglacial Vostok lake accretion ice layer at a depth of 3621 m and cut from the
core - kindly provided by V. Ezhov and S. Bulat (St. Petersburg Nuclear Physics
Institute). The expedition was primarily undertaken to reconstruct past climate
variations (Petit et al.l 2005). In parallel, the ice core was studied to understand
how microbial cells could survive for long time periods at deep subfreezing temper-
atures (Abyzov, 1993). The characteristic grain size for crystals from this accretion
is reported to be approximately 1 m. Diffuse and inelastic x-ray scattering are the
instruments of experimental work while ab initio lattice dynamics calculations and
Monte-Carlo modelling are used to rationalise the results.

Experimental methods

The crystals were gently shaped by a scalpel blade to rod-like samples of about 2
mm in diameter. They were glued by a water drop to a sample holder made out of
glass, mounted on a rotation stage and cooled by a nitrogen cryostream. The tem-
perature was keept at 175 4+ 1K. The sample was etched prior to the measurement
by cold methanol, resulting in a smooth and transparent surface. The crystalline
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quality was verified by x-ray diffraction at the Swiss-Norwegian Beamlines at the
ESRF (BMO01A). The pilot diffuse scattering measurements were performed by
A. Bosak and D. Chernyshov at BM0O1A using a mar345 detector (Marresearch
GmbH). The follow-up experiment was performed at beamline ID29 at the ESRF,
where the diffuse scattering patterns were collected with a PILATUS 6M detector
(Kraft et al., 2009)). The crystals were in both cases exposed to monochromatic
X-rays with a wavelength of 0.700 A. The sample was rotated orthogonal to the
beam direction over an angular range of 360° and diffuse scattering patterns were
recorded in transmission geometry. The orientation matrix was refinement using
the CrysAlis software package (Oxford diffraction Ltd.). For the final reciprocal
space reconstructions we applied corrections for polarisation and for solid angle
conversion associated with the planar projection. All the test samples were found
to be good quality single crystals, showing narrow rocking curves. The absence of
diffuse streaks indicates that the crystals are largely stacking-fault free.

The IXS experiment was performed on beamline ID28 at the ESRF. The in-
strument was operated at 17.794 keV, providing an overall energy resolution of 3.0
meV FWHM. The momentum transfers were chosen by an appropriate setting of
the scattering angle and the crystal orientation in the horizontal scattering plane.
The momentum resolution was set to ~0.25 nm~! x 0.75 nm~! in the horizontal
and vertical plane, respectively. Further details of the experimental setup can be
found in Chapter [dl IXS measurement were performed at constant momentum
transfer with an exposure time of ~20 s per energy point.

Calculations

Different approaches of ab initio electronic structure calculations for ice-Ih have
been proposed (Kuo et al., 2005)) and a lattice dynamics calculation following the
proposed approximation is in principle possible. However, such calculations are
very demanding. We circumvent this difficulty to some extend, using ordered ice
XTI (Jackson et al.;|1997). Such an approximation appears to be valid in reasonable
extend in terms of oxygen dynamics, and provides some insight into the hydrogen
dynamics and its contribution to the scattering.

The ab initio lattice dynamics calculation of HyO ice-XI was performed using
DFPT (Gonze and Lee|, 1997) as implemented in the CASTEP code (Clark et al.|
2005, Refson et al., [2006)). In contrast to the calculations performed on the silica
and tin polymorphs the use of a general gradient approximation in the Perdew-
Burke-Ernzhof regime (Perdew et al.| |1996) was found to be most appropriate for
the accurate description of the bond lengths. The calculations were performed in
the plane-wave formalism using norm conserving pseudo-potentials form the Ben-
nett & Rappe Pseudo-potential Library (Bennet and Rappe). The geometry was
optimised on a 7 x 7 x 4 Monkhorst-Pack grid with a plane wave cut-off energy of
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820 eV, ensuring the convergence of internal forces to <10—3 eV/ A. The relaxed
lattice parameters for HyO ice XI with space group Cme2; are a = 4.396 A, b =
7.654 A and ¢ = 7.188 A. These values correspond to a ~ 6% smaller volume than
experimentally determined for D,O ice XI. Indeed, replacing hydrogen by deu-
terium causes a volume increase due to anomalous nuclear quantum effects, which
are well described within density functional theory (Pamuk et al., 2012)). The lat-
tice dynamics calculation of D;O was performed using the same pseudo-potentials
and lattice parameters as for light ice XI, thus neglecting these effects. The dy-
namical matrix was computed on a 5 x 5 x 4 Monkhorst-Pack grid by perturbation
calculation and further Fourier interpolated for the calculation of TDS and IXS
intensities. The scattering intensities were computed in first order approximation
using in house developed software. The lattice parameters were rescaled to the
experimental lattice parameters of ice Ih and the O-H bond length was brought to
the value 0.95A by the translation along the O-O direction for the calculation of
the x-ray patterns. The stretching value is justified by x-ray diffraction. Individual
Debye-Waller factors were calculated from the dynamical matrix and averaged over
all positions of the same atomic species in order to produce isotropic values. The
temperature dependence of the averaged Debye-Waller factors is shown in Figure
[6.33l Due to the difference in mass the values for deuterium atoms are smaller
than for hydrogen. A slight difference of the the Debye-Waller factors for the oxy-
gen atoms in the two environment is also noticeable. The calculated values for
oxygen are about 20% smaller then experimentally observed (Kuhs and Lehmann,
1986) at low temperatures but deviate by ca. 60% at 220K. The deviation at high
temperature may partly be explained by anharmonic contributions.

Monte Carlo simulations were performed by A. Bosak to model the static com-
ponent of the diffuse scattering. 128 fully disordered model clusters were gener-
ated starting from 64 x 64 x 64 cells of ice XI crystals which contained in total
222 protons. These model clusters produced a sufficiently large number of self-
closed random walks and guarantee thus Pauling’s model (Pauling, 1935). Cyclic
boundary conditions were imposed and closed walks were preferred to prevent the
creation of residual (charged) defects. The static disorder of oxygen atoms was
taken into account by displacing the oxygen atoms are displaced along the H-O-H
angle bissectrix by 0.05 A in consistence with experimental and theoretical values
(Kuhs and Lehmann, {1986, Kuo et al. [2005). The intensity of total scattering,
normalised per formula unit, is calculated as

1(Q) = Irps(Q) + Lat(Q) (6.5)

(6.6)

1os(@) = 5 3 eoth (G815 e @)
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Figure 6.33: Temperature dependence of the calculated Debye-Waller factors for
the different species in H,O and D50 ice XI polymorphs.

is the TDS intensity and

]stat(Q) _ 1 |Zfse—Ms—iQTs|2 (67)

Zstat

corresponds to the contribution of disorder. Zg,, is the number of formula units
in the primitive cell (4 for ice XI) and Zg, is the total number of formula units
used in the simulation (here 228).

Results and discussion

Experimental diffuse scattering intensity distributions in high symmetry reciprocal
space sections are compared to ab initio calculated TDS and previously published
semi-quantitative data (Owston, 1949) in Figure We note a very structured
intensity distribution and an excellent agreement between experiment and calcu-
lation. All features are well described. The experimental results are in agreement
with the (incomplete) data from 1949, which shows that despite the limitations of
the technique at that time the data were of good quality. From the resemblance of
the diffuse scattering with TDS we can conclude that at least for the low-energy
modes - which contribute most to the TDS intensity due to the w?-dependence
in the long wavelength limit - the ab initio calculation of the proton-ordered ice
XI describes quite well the dynamics of ice Th both in terms of eigenvalues and
eigenvectors of the oxygen atoms.

The static disorder contribution to the diffuse scattering as computed from the
Monte Carlo simulation is compared to experimental diffuse scattering in Figure
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Figure 6.34: Diffuse x-ray scattering intensity distributions of crystalline HyO
ice Th at 175 K (a, b, ¢) compared to the ab initio calculation for the ice XI
approximant (d, e, f). For the cell relationships see Figure c. Note the
inequivalence of left and right halves of panels (e) and (f) and the absence of a six-
fold axis in panel (d). (g) and (h) show the semi-quantitative data from

(1919).
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Figure 6.35: Diffuse x-ray scattering intensity distributions of HyO ice Th at 175 K
(left part of individual panels) compared to the calculated static x-ray contribution
(right part of individual panels) for the indicated reciprocal space sections.

6.35. The intensity of the calculated patterns is magnified for best visualisation
of the diffuse features. The absolute contribution of static disorder is very weak
compared to TDS. We note that the regions with small contribution from static
disorder roughly coincide with the minima of TDS. Consequently, there is no region
where the static component could be observed separately.

Selected directions in reciprocal space were investigated by IXS and compared
to the calculation in Figure We note that the intensity distribution is well
described by the calculation. The relationships between the hexagonal and or-
thorhombic unit cell are illustrated in Figure ). Note that the [¢ ¢ 0] and [0
¢ 0] directions in ice XI become degenerate in ice Th. The experimental intensity
map Figure ) can be described by the average of the intensities of the two
directions in ice XI, except for (2 0 0), point. The measured phonon energies are
systematically lower than the calculated ones for ice XI. The presented IXS maps
provide the only available data on experimental phonon dispersions of HyO ice and
serve as proof that the lattice dynamics in the low energy region of ice Ih can be
described in good approximation by the lattice dynamics of the ordered phase.

A detailed inspection of the calculated TDS maps in Figure [6.34] reveals some
asymmetry in the scattering intensity distribution and the absence of the six fold
symmetry in the HKO plane, which is again due to the difference in structure. The
asymmetry of scattering intensity in the proximity of the (004) reflection and, to
some extent in the proximity of the other reflections in the HK4 layer, is due to the
hydrogen contribution to the scattering factor, as illustrated in Figure [6.37 The
TDS intensity distribution of the HOL plane of ice XI (corresponds to HHL in ice
Ih) is calculated with and without the contribution of hydrogen scattering. The
scattering around the (004) reflection disappears if the hydrogen contribution is
neglected. Diffuse scattering around this reflection is indeed observed, see Figure
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Figure 6.36: Measured (a, d) IXS intensity maps of HoO ice Ih at 175 K together
with the corresponding calculated IXS map for ice XI (b, e, f) along the indi-
cated directions in reciprocal space (b, e, f). Both (e) and (f) correspond to (d)
as these directions become degenerate in the disordered Th phase. Panel (c) illus-
trates the relationships between the hexagonal unit cell of Ih ice (index h) and the
orthorhombic unit cell of ice XI (index o).
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Figure 6.37: (a) TDS intensity distribution in the HOL plane calculated for ice XI
(equivalent to the HHL plane in ice Th) at 175 K using both hydrogen and oxygen
scattering factors (upper part) and oxygen scattering factor only (lower part). (b)
Difference between the two maps of panel (a). The intensity difference is multiplied
by a factor four. Zero difference is projected to gray, negative difference is lighter
and positive difference darker. Arrows point towards the region of interest around
the (004) reflection.

). The observation that IXS and TDS are sensitive to the scattering from
hydrogen is not fully unexpected, but can be considered as non-trivial experimental
observation.

The Monte Carlo simulation for the static contribution to the diffuse scatter-
ing arising from hydrogen disorder and the ab initio calculation of D50 ice were
used for the revision of published neutron scattering data (Li et al., [1994)). Previ-
ously, the experimental patterns were modelled via reverse Monte Carlo procedure
(Beverley and Nield, 1997). The authors had to include an additional frozen-in
displacement to mimic the thermal diffuse scattering. With the help of the ab
initio calculation we can evaluate the observed scattering as the sum of TDS and
a disorder-related component. The result is illustrated in Figure [6.38, where the
experimental data from (Li et al., |1994) is compared to the intensity distribution
arising from TDS, the static contribution, and to the sum of the two. We clearly
note that the contribution from static hydrogen disorder, which is exclusively gov-
erned by the ice rules, contributes much stronger to neutron scattering than to
x-ray scattering, but despite the low temperature of 10 and 20 K the contribution
from TDS remains significant. Taking into account both contributions the neutron
scattering is very well described. This proves that Pauling’s model remains a very
good approximation in the description of ice.
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Figure 6.38: Diffuse neutron scattering intensity distribution measured by
for Th ice crystal in the indicated reciprocal space sections (right part of
individual panels). The temperature was 10 K for the HKO plane and 20 K for
HOL and HHL planes. The diffuse scattering intensity distribution is compared
to the calculated contribution from static displacements of hydrogen atoms only
(a, b, ¢), TDS only (d, e, f), and static displacement plus inelastic component (g,
h, i). The calculated TDS intensity distributions are divided in two sub-panels.
The upper and lower parts show separately the contribution of two planes in ice
XTI which become degenerate in ice Ih. The same intensity scale is applied for all
calculated intensity distributions.
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Conclusions

In summary, we have shown that the x-ray diffuse scattering in ice Ih is almost
entirely due to TDS and can be well described by the lattice dynamics of the or-
dered ice XI polymorph. Despite the fact that the measured low energy part of
the dispersion relations in high symmetry directions is lower than the calculated
one for ice XI, we note a good agreement of measured and calculated intensities.
This implies that the phonon eigenvectors of the low energy branches must be
similar in both ordered and disordered ice, in particular for the oxygen atoms.
Within the discussed assumptions, our model provides valuable information, for
example, for the estimation of purely phonon Debye-Waller factors and separation
of the disorder contribution (so called ’static Debye-Waller factor’). We further-
more notice that IXS and, obviously, TDS are sensitive to the scattering arising
from the hydrogen atoms. The calculation strategy for the static disorder contri-
bution allowed us to model neutron diffuse scattering as the sum of thermal diffuse
scattering and disorder component which is exclusively governed by Pauling’s ice
rules. The numerical recipes can be transferred to numerous frustrated systems;
see Section for further discussion.






Chapter 7

Conclusions and Outlook

This chapter evaluates the applied methodology of combining TDS, IXS and ab
initio lattice dynamics calculations and concludes system specific results. The
impact of the actual study and future trends are discussed.

7.1 Conclusions

Based on the benchmark studies performed on the silica polymorphs a-quartz, co-
esite and a-cristobalite, germanium dioxide in a-quartz structure, the tin - and
~- polymorphs and ice Ih we have seen that the combination of TDS, IXS and ab
initio lattice dynamics calculations provides a powerful tool in the study of lattice
dynamics of crystals. TDS experiments can serve as a rigorous benchmark for
parameter-free calculations even for relatively complex structures, in particular if
they are complemented with IXS on powder, single crystals or both of them. It is
thus possible to recover the full description of the lattice dynamics (in harmonic
approximation). Characteristic features in the lattice dynamics can be localised by
the inspection of TDS intensity distributions in 3D reciprocal space. Selected re-
gions are further investigated by an energy resolved measurement employing I1XS.
The full set of experimental data is then confronted to the calculation. Thus vali-
dated calculation allows for a detailed analysis of interesting features in the lattice
dynamics, not only in terms of phonon energies, but also accessing the phonon
eigenvectors. For the systems under investigation both TDS and IXS intensities
can be convincingly described in the frame of one-phonon scattering within har-
monic approximation, including characteristic details in the fine structure. The
implementation of an appropriate 2D pixel detector for TDS studies at the IXS
spectrometer ID28 (ESRF) allows the combined study of IXS and TDS for the
same sample position in delicate sample environments, involving high pressure
cells, cryostats, laser heating, etc. System-specific results are summarised in the
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following.

Silica polymorphs

The extended studies of the silica polymorphs a-quartz, coesite and a-cristoba-
lite were conducted with particular interest on the first peak in the vibrational
density of states. The combination of TDS, IXS and lattice dynamics calculations
from first principles were used for the study of the lattice dynamics at arbitrary
momentum transfers. The VDOS, obtained from powder IXS spectra, probes
the ensemble of vibrational states and was used to determine an overall scaling
factor for the ab initio calculation. The application of a nearly identical linear
scaling factor of a few percent for all tetrahedral coordinated silica polimorphs
leads to a very good agreement between ab initio calculated and measured phonon
energies. The recovery of the full lattice dynamics allowed for the localisation of
the critical points responsible for Van Hove singularities and the attribution of
their vibrational character and the topology in energy-momentum space. With
the help of the calculations decisive conclusions for lattice dynamical features in
the relatively complex structure of the silica polymorphs could be drawn.

The first peak in the VDOS is located at different energies for the three silica
polymorphs. Quite remarkable, the critical points responsible for the first peak
are located at the zone boundary in the case of all three silica polymorphs un-
der investigation. For a-quartz and germanium dioxide in a-quartz structure the
same point in reciprocal space is responsible for the first peak. The topology of
the energy surface in the vicinity of the critical points is different, but despite this,
the associated displacement patterns are very similar: The largest displacement is
observed for oxygen. The vibration consists mainly of a tetrahedron tilt, accompa-
nied by a small distortion. The study from Chumakov et al.| (2013) revealed that
the numbers of excess states above the Debye levels in the VDOS of ambient silica
glass and a-cristobalite are very similar and that the excess states for both glass
and crystal are located nearly at the same energy. The same is true for densified
glass and a-quartz, if the densities are matched. Taking into account the similarity
observed in the displacement patterns of the investigated three silica polymorphs
we can now conclude, that the vibration causing the Boson peak in silica glass
must be similar as well on a local scale.

In the framework of the silica polymorphs we are now able to provide accurate
models of the lattice dynamics of a-quartz, coesite, a-cristobalite and stishovite
(Bosak et al., 2009a)). The calculation for these polymorphs can be extended to
high pressures and allow the derivation of thermodynamical properties. The pre-
diction of the lattice dynamics for new high pressure phases like seifertite and
others (Dubrovinsky et al., 2004)) should be possible within the employed calcula-
tion scheme.
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Metallic tin polymorphs

For the tin polymorphs a strong resemblance of the diffuse scattering intensity
distribution in §- and 7-tin was observed. The similarity reflects the symmetry
relation between the two phases and also shows the strong similarity of the un-
derlying electronic potential. The non-centrosymmetric environment of atoms in
[-tin results in a non-typical asymmetry of thermal diffuse scattering. The strong
influence of electron subsystems on inter-ionic interactions creates anomalies in
the phonon dispersion relations in - and 7-tin. The complex electron phonon
coupling is nevertheless properly accounted for by the calculation.

Ice

New data on the lattice dynamics of HyO ice Ih were obtained by the investigation
of natural ice single crystals from the subglacial Antarctic Vostok lake accretion
layer. X-ray diffuse scattering was found to be almost entirely due to TDS and can
be well described by the ab initio lattice dynamics of the ordered ice XI polymorph.
The study illustrated that IXS and, obviously, TDS are sensitive to the scatter-
ing arising from the hydrogen atoms. A Monte Carlo simulation corresponding to
Pauling’s model was used to model the static disorder component to the diffuse
scattering. This component becomes important in neutron scattering and the two
models together were successfully used to reanalyse previously published data on
diffuse neutron scattering on ice Ih. The numerical recipes used for the calcula-
tion of static disorder contributions can be transferred to a number of frustrated
systems, starting from so called spin ices with pyrochlore structure and beyond.

7.2 Future prospectives

The combined approach of TDS, IXS and lattice dynamics calculations can be
applied to a broad class of crystalline systems with interesting lattice dynamics
features. These comprise for example charge density wave systems, supercon-
ductors, multiferroics, relaxors and materials at extreme pressure. In particular
promising is the extension to extreme pressures. X-rays can be focused to a few
microns thus IXS studies on high pressures using diamond anvil cells become fea-
sible (Antonangeli et al., 2004, Farber et al.,|2006]). Pressures up to ~ 1 Mbar can
be applied and combined with very high or low temperatures (Antonangeli et al.|
2008, |[Leroux et al., 2012)). The full reconstruction of the lattice dynamics may not
be possible, due to geometrical constraints imposed by the sample environment
and Compton scattering if diamond anvil cells are used. Of interest for Earth and
Planetary science is the possibility to determine the elastic constants from TDS
measurements under high pressure and high temperature.
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The methodology may be also extended to lattice dynamics studies beyond
the harmonic approximation, for example melting processes or non-equilibrium
phonons (McWhan et al., 1982, [Trigo et al., |2010)).

Diffuse neutron and diffuse x-ray scattering techniques can be as complemen-
tary as INS and IXS are. For example, the combination of INS and IXS pro-
vides a unique technique to separate inelastic scattering arising from magnons and
phonons.



Conclusions

7.3 Conclusions (frangais)

En se basant sur les études de systemes de référence tels que les polymorphes de
silice a-quartz, coésite et a-cristobalite, les polymorphes de ’étain en phase [ et
v, et la glace Th, nous avons constaté que la combinaison de la TDS, IXS et des
calculs ab wnitio s’avere étre un outil puissant dans 1’étude de la dynamique de
réseaux de monocristaux. Les expériences de la TDS peuvent servir de référence
fiable pour les calculs de premier principes, méme pour des structures relativement
complexes, en particulier s’ils sont complétés par des études IXS sur la poudre, sur
des monocristaux ou sur les deux. Il est alors possible de récupérer la description
complete de la dynamique de réseau (en approximation harmonique). L’analyse
des distributions en intensité de la TDS en 3D dans I’espace réciproque permet
de localiser des caractéristiques de la dynamique de réseau. Certaines régions de
I’espace réciproque sont sélectionnées pour une mesure IXS haute résolution en
énergie. L’ensemble des données expérimentales est alors confronté aux calculs.
Ceux-ci alors validés, permettent une analyse détaillée des caractéristiques essen-
tielles de la dynamique de réseau, non seulement en termes d’énergies de phonons,
mais également en termes de vecteurs propres. Pour les systemes de référence on
peut constater que les intensités TDS et IXS peuvent étre décrites en bonne estima-
tion dans le cadre de la diffusion de premiere ordre en approximation harmonique,
y compris la finesse des détails caractéristiques.

La mise en ceuvre d’un détecteur a pixels hybride bidimensionnel adapté pour
les études TDS sur le spectrometre IXS (la ligne de lumiere ID28 a 'ESRF) per-
met 1’étude combinée d'IXS et TDS a la méme position pour 1’échantillon. De
cette maniere, les variations de la dynamique de réseau sur des stimuli externes
(température et pression) peuvent étre étudiées aux environnements d’échantillons
délicats, comme des cellules a haute pression, cryostats, chauffage laser, etc.

Les résultats spécifiques pour les systemes de références sont résumés en détail
dans la version anglaise.

Les principaux résultats pour les polymorphes de silice sont : l'identification
de l'origine du premier pic dans la densité d’états vibrationnels pour tous les poly-
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morphes, ainsi que la mise en évidence d'une forte similarité entre les polymorphes.
Le premier pic dans la VDOS est situé a différentes énergies pour les trois poly-
morphes de silice. Tout a fait remarquable, les points critiques responsables pour
ce pic sont situés au bord de la zone Brillouin. La topologie de la surface d’énergie
au voisinage des points critiques est différente, mais malgré cela, les modes de
déplacement associés sont tres semblables: le plus grand déplacement est observé
pour l'oxygene. Les vibrations correspondent principalement a une inclinaison
tétraédrique, accompagnée d’une petite distorsion.

Pour les polymorphes d’étain, on observe une forte ressemblance de la distribu-
tion des intensités TDS. Celle-ci reflete la relation de symétrie des deux phases et la
similarité dans le potentiel électronique. L’environnement non-centrosymétrique
des atomes entraine une non-habituelle asymétrie de distribution des intensités
TDS.

L’étude de la glace révele que la diffusion diffuse des rayons X est presque
entierement due a la TDS et peut étre décrite par les calculs ab initio relatant
la dynamique de réseau pour la glace (ice XI). L’étude a montré que IXS et,
évidemment TDS, sont sensibles a la diffusion provenant des atomes d’hydrogene
La diffusion diffuse de neutrons - déja publié - peut étre modélisée par la somme
de TDS (définie approximativement de la glace en phase XI) et d'une contribution
provenant du désordre d’hydrogene.

Une perspective pour de futures applications est présentée en détail dans la
version anglaise. La méthodologie proposée peut étre appliquée a une large classe
de systemes cristallins avec une dynamique de réseau intéressante, par exemple des
supraconducteurs, des systemes d’onde de densité de charge, des multiferroiques,
relaxeurs et des matériaux a la pression extréme, etc. Ces études peuvent étre
étendues sur les échantillons dans des conditions extrémes en température et en
pression et sur ’étude de la dynamique de réseau anticipant ’approximation har-
monique. L’usage combiné de rayons X et de neutrons est également une option
intéressante.
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