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Partie I : Contexte de l’étude et des travaux menés 

durant la Thèse 

Chapitre 1 : Contexte de l’étude : le traitement du cancer de 

la prostate. 

Le cancer de la prostate est le deuxième cancer le plus diagnostiqué dans le 

monde. Par exemple, en 2008, il représentait 14 % (903 500) des nouveaux cas de 

cancer. Il représente également la 6ème cause de mortalité par cancer chez les hommes 

(Jemal, Bray et al. 2011). De plus, environ un tiers des patients diagnostiqués présente 

en plus un ou plusieurs symptômes, comme des mictions fréquentes, la nycturie 

(miction accrue la nuit), la difficulté à commencer et à maintenir un flux constant 

d’urine, hématurie (sang dans l’urine), et la dysurie (douleur de miction). Le cancer de 

la prostate peut également causer des problèmes liés la fonction sexuelle telle la 

difficulté à atteindre l’érection ou l’éjaculation douloureuse. 

Généralement le cancer de la prostate débute lorsque des cellules normales de la 

prostate mutent en cellules cancéreuses. Statistiquement, l’adénocarcinome de la 

prostate est le plus courant dans la zone périphérique. Dans un premier temps, ces 

cellules cancéreuses sont localisées dans les glandes prostatiques normales. C’est la 

condition connue sous le nom de carcinome in situ ou néoplasie intra-épithéliale 

prostatique. Après cette période de début, les cellules cancéreuses commencent à se 

multiplier et à se propager aux tissus environnants et forment ainsi la tumeur. Celle-ci 

continue à croître jusqu’à atteindre et envahir les organes voisins tels que les vésicules 

séminales, la vessie ou le rectum. Les cellules tumorales ont alors la capacité de 

voyager avec le sang ou le système lymphatique et peuvent entraîner des métastases. 

Même si c’est actuellement un sujet de controverse, dans les pays occidentaux, 

pour les personnes de plus de cinquante ans, un dépistage systématique est 

programmé en utilisant principalement le toucher rectal ou/et la mesure du taux de 

PSA, l’antigène spécifique de la prostate. Si ces tests présentent quelques soupçons de 

cancer de la prostate, des examens complémentaires comme les biopsies ou l’imagerie 

seront effectués pour confirmer ou infirmer les soupçons. Ces examens 

complémentaires sont également utilisés pour classifier les tumeurs selon leur 

extension anatomique. 

Les techniques d’imagerie de la prostate les plus courantes sont l’échographie et 

l’IRM. 

- L’échographie transrectale (TRUS), fournit des images de la glande de la 
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prostate et les tissus environnants. Dans l’étape de diagnostic, l’échographie 

est utilisée pour préparer la biopsie en essayant de définir les zones 

potentielles des tumeurs. Cependant, les lésions tumorales apparaissent avec 

une échogénicité variable. Dans la plupart des cas, il reste difficile de 

différencier les différentes zones de la prostate et des tissus environnants. Son 

usage en diagnostic est assez restreint, mais comme l’échographie est très 

répandue, et permet une imagerie en temps réel cette modalité est largement 

utilisée dans le contexte des thérapies guidées par l’image. 

- Parmi les différentes modalités d’imagerie utilisées pour l’exploration des 

tumeurs de la prostate, seule l’IRM permet de visualiser l’anatomie avec une 

résolution et un contraste suffisants pour discriminer la tumeur dans le volume 

de la prostate. De nouveaux protocoles ont été développés en IRM pour la 

détection des cancers de la prostate (spectrocopy imaging –MRSI–, diffusion 

weighted imaging – DWI– ou dynamic contrast-enhanced imaging – DCE 

MIR –) car ils améliorent la précision du diagnostic et l’estimation du stade du 

cancer. 

 

Si après une surveillance active, une thérapie semble nécessaire, plusieurs 

approches peuvent être proposées : la prostatectomie radicale, la cryogénie, la 

radiothérapie, la curiethérapie, la thérapie ultrasonore, … La tendance de ces thérapies 

est de proposer des gestes de moins en moins invasifs , à accès minimal. Cette 

tendance a pu se mettre en œuvre par la part de plus en plus importante de l’image et 

de l’informatique dans la procédure thérapeutique. La finesse de ces dernières 

thérapies permet maintenant d’envisager des traitements localisés à la tumeur en 

préservant les structures saines de la prostate et donc en minimisant les effets 

secondaires liés aux traitements (trouble de l’érection, trouble urinaire, etc.). 
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Chapitre 2 : traitement par ultrasons focalisés et position du 

problème de guidage par l’image. Trame et justification des 

travaux de recherche de la Thèse. 

Le travail de Thèse s’est déroulé dans le cadre du projet ANR TECSAN MULTIP 

(Mari, Bouchoux et al. 2013), en collaboration avec la société IMSONIC, le LabTau 

INSERM U1032 et la société EDAP. La société EDAP propose un procédé d’ablation 

de la prostate par ultrasons focalisés à haute intensité (HIFU), l’Ablatherm1, utilisé en 

routine clinique. Le principe de l’Ablatherm est d’utiliser un transducteur ultrasonore 

en forme de cuillère. Ce transducteur émet des ultrasons de hautes intensités qui se 

concentrent en un point focal. L’énergie ultrasonore déposée en ce point focal est 

transformée en énergie thermique. L’échauffement du tissu en ce point se traduit 

ensuite par une nécrose. Le transducteur est en fait composé de différents éléments 

qui peuvent être pilotés électriquement de manière indépendante. En jouant sur le 

déphasage des signaux entre les différents éléments et sur la position de la sonde, il 

est possible de défléchir le point focal sur l’ensemble du volume de la zone à nécroser, 

la prostate en l’occurrence. Cette thérapie est guidée par l’image. Au centre de la 

sonde de thérapie, soit une sonde d’imagerie, soit une zone d’éléments dual mode 

(thérapie et imagerie) permet de prendre une image échographique de la prostate.  

Le thérapie se déroule de la manière suivante (Figure 1) : 1) dans un premier 

temps, la sonde d’imagerie échographique fait l’acquisition du volume de la prostate à 

traiter et des organes environnants ; 2) sur ce volume d’imagerie l’urologue définit de 

manière interactive la zone à traiter sous la forme d’une juxtaposition de tâches 

focales ; 3) l’Ablatherm échauffe ensuite automatiquement la zone définie par 

l’urologue. Ce traitement peut être effectué en une passe ou en plusieurs passes afin 

de corriger manuellement la déformation de la prostate due à l’œdème provoqué par 

l’échauffement. 

 

                                                        

1 http://www.edap-tms.com 
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Figure 1 : Éléments d’une thérapie ultrasonore : acquisition du volume échographique ; 

délimitation de la zone de traitement ; planning de traitement sur le volume échographique ; 

traitement selon le planning. (Images EDAP .http://www.edap-tms.com). 

 

Les avancées sur cette thérapie, en particulier sur la sonde (sonde sectorielle, 

sonde dual mode, …), permettent des traitements de plus en plus précis et localisés. 

Le degré de précision pour un traitement focal de la tumeur est maintenant atteint. Un 

nouveau protocole de guidage de la thérapie doit donc être envisagé. Ce nouveau 

protocole est complètement lié aux techniques d’imagerie qui permettent d’acquérir 

l’information nécessaire. Dans notre cas, deux types d’imagerie seront utilisés : 

- L’imagerie ultrasonore. C’est la technique utilisée actuellement lors de 

l’intervention pour définir le planning et pour piloter la thérapie (Figure 

3-droite). Une sonde d’imagerie (ou une partie dual mode de la sonde de 

thérapie) permet une acquisition du volume de la prostate par voie endorectale. 

Par contre, les différentes zones de la prostate et la tumeur elle-même ne sont 

pas (ou peu) discernables sur les images. L’information est généralement 

donnée par une distribution de speckle. Le contraste entre la prostate et les 

tissus environnants n’est généralement pas suffisant pour distinguer 

automatiquement les contours de la prostate. En outre, sur l’image 

per-opératoire l’échographie est affectée par l’ombre de la sonde urinaire et du 

ballon qui sont utilisés en thérapie pour protéger l’urètre et la vessie. 

- L’imagerie IRM. D’un point de vue clinique, nous avons choisi l'IRM T2 pour 

la planification pré-opératoire en raison sa bonne résolution et de sa capacité à 

pouvoir localiser la lésion sur la prostate (Figure 3-gauche). En effet, sur cette 

séquence, les différentes zones de la prostate sont généralement bien 

séparables et la tumeur peut apparaître hypointense dans la zone périphérique 

qui est normalement hyperintense, ou peut apparaître comme homogène et de 

faible intensité dans la zone de transition qui est normalement hétérogène. 

L'expert peut alors y localiser et délimiter la tumeur, soit manuellement, soit 

aidé par des outils de traitements d'images. 
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Figure 3 : IRM T2 et image échographique du même patient. 

 

L’idée générale de la Thèse est alors de définir la zone de la tumeur dans un 

volume IRM T2 pré-opératoire et de reporter cette information dans le volume 

échographique per-opératoire afin de guider la thérapie. Ceci nécessite une opération 

de fusion, de recalage des données et de l’information en IRM T2 sur les données 

échographiques. 

 

 

Figure 4 : Cadre général de l’étude. Fusion IRM T2 vers image échographique. 

 

Le cadre générale de la Thèse est résumé dans la Figure 4.  

- En images d’entrée, nous avons un volume acquis en IRM T2 et un volume 

obtenu par une échographie transrectale. Sur le volume IRM T2, nous 

supposons connaître l’information sur la tumeur obtenue, soit de manière 

interactive par un urologue, soit de manière automatique par une procédure de 

traitement d’images2. 

- Dans un premier temps, nous effectuons un recalage élastique 3D entre le 

volume IRM T2 et le volume ultrasonore. Ce recalage nous permet de définir 

                                                        

2 La localisation de la tumeur est hors du cadre de la Thèse.  
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une transformation élastique entre les deux volumes. 

- Nous appliquons alors la déformation ainsi estimée pour déformer le volume 

IRM T2 vers le référentiel de l’échographie. 

- L’information de la tumeur, après déformation est propagée vers le volume 

échographique. 

- Le planning et le guidage de la thérapie peuvent alors être ciblés sur la tumeur 

dans le volume échographique 

 

La procédure de recalage entre le volume IRM T2 et un volume échographique est 

le point clé de cette étude. Les méthodes de recalage peuvent être classées en fonction 

de l’information commune utilisée pour fusionner les volumes. Classiquement, deux 

types d’information sont utilisés pour le recalage : 

- Des statistiques sur la distribution des intensités ou valeurs des voxels des 

deux volumes. Cette classe de méthodes utilise l’ensemble de l’information 

contenue dans le volume. De ce fait, elle est réputée être assez robuste. Elle 

sous-entend toutefois que les intensités sont une mesure caractéristique des 

objets à recaler.  

- Des éléments géométriques (surface, courbes, points) extraits des volumes et 

permettant de caractériser les objets à recaler. Cette classe de méthodes est 

directement axée sur les propriétés spatiales des objets à recaler. Toutefois, elle 

est aussi liée aux procédures d’extraction des éléments géométriques et à leurs 

degrés de précision. 

Le choix entre ces deux classes d’approche est généralement guidé par le contenu 

des images à recaler. 

 

Dans le cadre de la Thèse nous avons choisi dans un premier temps d’explorer une 

méthode basée sur l’intensité. Le problème est que les différents organes dans 

l’image ultrasonore sont définis par une distribution spatiale de speckle (une texture) 

et non par une distribution spatiale d’intensités. Nous nous proposons d’utiliser un 

descripteur de texture qui pourra être intégré dans la mesure de similarité de la 

méthode de recalage. En dehors de la distribution spatiale caractéristique des organes, 

le speckle subit une disposition spatiale liée à l’imageur (disposition en arc de cercle 

et taille de speckle variant en fonction de la distance à la sonde. Nos travaux nous ont 

donc amenés à étudier un descripteur de texture basé sur des moments invariants 

en rotation et en échelle. Si ce descripteur donne des résultats intéressants sur 

l’image échographique, l’hétérogénéité de l’IRM T2 ne nous a pas permis de finaliser 

la méthode de recalage basée sur l’intensité. 
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Comme solution de repli, nous avons décidé de rechercher une solution de 

recalage basée sur la surface de la prostate. Cette solution impose d’extraire (de 

segmenter) la surface de la prostate dans les deux modalités. Une Thèse précédente a 

proposé de segmenter la surface de la prostate dans les images échographiques à 

l’aide de contours actifs ou de Définition Optimale de la Surface (OSD) (Garnier, 

Bellanger et al. 2011). En nous basant sur les conclusions de cette Thèse, nous avons 

choisi d’adapter la méthode OSD à la segmentation de la prostate en IRM T2. 

Cette méthode a été affinée en proposant une segmentation concurrente de la prostate, 

de la vessie et du rectum par OSD multi-objets. Les surfaces de la prostate extraites 

du volume échographique et du volume IRM T2, nous ont permis d’envisager une 

première tentative de recalage surface/surface par la méthode des démons. 
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Partie II : Caractérisation de régions en imagerie 

échographique 

Chapitre 3 : Description de la texture de l’image 

échographique par moments invariants. 

L’objectif de cette étude est de proposer un descripteur de la texture du speckle de 

l’image ultrasonore. Du fait de la géométrie de la sonde échographique transrectale, le 

speckle a une disposition spatiale assez particulière (voir Figure 3-droite) : disposition 

et orientation du speckle en arc de cercle et augmentation de la taille en fonction de la 

distance à la sonde. Cette variation en orientation et en taille est généralement gênante 

pour les méthodes de description de texture. Il existe plusieurs classes de descripteurs 

plus ou moins sensibles aux variations de taille et d’orientation de la texture. Les 

moments orthogonaux complexes peuvent être utilisés en tant que descripteur et le 

module de ces moments possède a priori l’avantage d’être invariant à la rotation. Par 

contre, le module ne génère pas un ensemble d’invariants. En outre, les moments 

orthogonaux ne sont pas invariants en échelle. Plus récemment, des approches ont été 

proposées afin d’obtenir un ensemble complet de moments invariants par rapport à la 

rotation et l’échelle (Chen, Shu et al. 2011) (Zhang, Dong et al. 2010) (Zhang, Shu et 

al. 2010). Ces moments sont utilisés actuellement pour la reconnaissance de formes. 

Dans le cadre de cette Thèse, nous nous proposons d’utiliser 3 types de moments 

orthogonaux invariants pour décrire la texture du speckle. Les 3 types sont : les 

moments invariants de Zernike -ZMIp,q-, les moments invariants de Pseudo-Zernike 

-PZMIp,q- et les moments invariants orthogonaux de Fourier-Mellin -OFMMIp,q-. Dans 

les 3 cas p indique l’ordre et q la répétition.  

 

Dans un premier temps, l’invariance en rotation et échelle de ces moments par 

rapport à la version classique a été évaluée sur des images de texture de Brodatz ayant 

subi des rotations et des changements d’échelle, dans différentes zones d’images 

échographiques simulées (Figure 5-a) et d’échographies transrectales réelles (Figure 

5-b). Dans tous les cas, les moments invariants se sont avérés beaucoup plus stables 

que les moments classiques par rapport aux transformations géométriques. 

Contrairement aux moments classiques, les moments invariants ont permis d’obtenir 

une information relativement homogène dans les zones partageant une même 

distribution de texture (Figure 6). Les moments invariants peuvent donc servir 
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d’indicateur de zone de même distribution de speckle et peuvent donc servir dans une 

mesure de similarité basée intensités. Par contre la différence entre les trois types de 

moments invariants est marginale. 

 

Figure 5 : a) Image échographique simulée ; b) Échographie transrectale réelle. 

 

Figure 6 : Comparaison entre moments classiques (col. de gauche) et moments invariants (col de 

droite) sur l’image échographique simulée et sur l’échographie transrectale réelle. 

 

Dans un second temps, nous avons évalué l’influence de l’ordre p et de la 

répétition q des moments invariants sur le pouvoir de description de la texture. Si 

l’ordre p n’a que peu d’influence sur les moments mesurés, la variation de la 

répétition q a mis en avant des propriétés intéressantes pour notre projet et ceci pour 

les 3 types de moments invariants : pour q=0, les moments sont sensibles à la 

distribution régionale de l’information de texture (Figure 7-gauche) ; pour q=1, les 

moments sont sensibles à la rupture entre deux textures (Figure 7-centre) et peuvent 

être assimilés à un “gradient de texture” et pour q=2, les moments peuvent être 

assimilés à un "Laplacien de texture" (Figure 7- droite). Cette caractéristique se 

retrouve également sur les vraies images échographiques. 
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Figure 7 : Images de moments appliqués sur l’échographie simulée. Exemple de l’impact de la 

variation de la répétition sur les moments invariants de Zernike d’ordre 2 : q=0 (gauche), q=1 

(centre) et q=2 (droite)  

 

Cette propriété inattendue, nous ouvre de nouvelles perspectives d’utilisation de 

descripteurs de texture à l’aide de moments invariants. Dans l’analyse classique 

d’images par la texture, un ensemble de mesures de texture (statistiques d’ordre 1 ou 

2, dimension fractale, moments à différents ordres ou répétitions,..) sont généralement 

mesurés sur l’image et un procédé de classification est alors effectué afin de 

caractériser les objets d’intérêt.  

Dans notre cas, les moments invariants de répétition q = 0 fournissent des 

informations de région de texture similaire et ceux avec q = 1 fournir des informations 

sur les contours d’une région texturée. L’idée est alors d’utiliser ces deux types 

complémentaires d’information. De nombreuses techniques de segmentation d’images 

utilisent l’information de contours, seule ou en combinaison avec l’information sur les 

régions. C’est le cas par exemple des contours actifs, de modèles déformables, des 

level sets, etc. Nous pensons que les moments invariants pourraient fournir ce type 

d’information pour les images échographiques et donc permettraient l’utilisation de 

ces outils classiques de traitement d’images.  

 

Afin de démontrer cette proposition, nous avons intégré les deux types 

d’informations (région et contours) donnés par les moments invariants dans une 

procédure de segmentation par coupe de graphe min-cut/max-flow (min-cut/max-flow 

graph cut). Dans cette approche, la segmentation agit par minimisation d’une énergie : 

ET = Eclassif +  Econtinuité. Dans notre cas, Eclassif l’énergie liée à l’attache aux données 

est codée dans le graphe en utilisant un moment de répétition q=0 et Econtinuité l’énergie 

de régularisation liée au voisinage par un moment de répétition q=1 (Figure 8).  

contrôle la part de l’énergie liée aux contours. 
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Figure 8 : Données utilisées par l’algorithme graph cut. 

 

Cet algorithme a été appliqué sur les données échographiques de simulation et sur 

les données réelles. L’influence de l’information de contours permet d’améliorer 

sensiblement la segmentation (Figure 9). 

 

Figure 9 : Segmentation par graph cut. a) points permettant l’apprentissage des classes « objet » 

(vert) et « fond » (rouge) ; b) résultat de la segmentation avec la seule information de région 

(=0) ; c) résultat de la segmentation avec l’intégration de l’information de contour de texture 

(=1). 

 

En conclusion. Nous avons démontré que les moments invariants sont un bon 

indicateur de zones partageant une même distribution de speckle, ceci quelles que 

soient l’orientation ou l’échelle de ce speckle. Les moments invariants peuvent donc 

servir dans une mesure de similarité basée intensités. Nous avons également démontré 

que si les moments invariants de répétition q=0 sont un indicateur de régions de 

speckle de même distribution, les moments invariants de répétition q=1 sont eux 

sensibles aux ruptures entre régions et fournissent donc une indication sur les contours 

des objets texturés. Cette caractéristique nous semble très utile pour les méthodes de 

segmentation intégrant à la fois l’information de contours et l’information de régions 

(contour actifs, graph cut, etc.). 

 

Concernant maintenant le schéma de recalage basé intensités, les moments 

invariants appliqués sur l’image échographique peuvent être intégrés directement dans 

la mesure de similarité (information mutuelle, …). Par contre, l’hétérogénéité des 

images IRM T2 ne nous a pas permis de finaliser le recalage US/IRM T2.Une 

approche surface/surface doit alors être envisagée. 
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Partie III : Éléments d’un recalage basé surfaces 

Chapitre 4 : Segmentation de la surface de la prostate en 

IRM T2 par la Détection Optimale de la Surface (OSD). 

Le recalage surface/surface nécessite une description de la surface de l’objet à 

recaler dans les deux modalités. L’extraction de la surface prostate dans le volume 

échographique a fait l’objet d’une Thèse précédente (Garnier, Bellanger et al. 2011). 

Deux méthodes, l’une de contours actifs et l’autre par Détection Optimale de la 

Surface (OSD) ont été explorées avec un léger avantage pour la seconde méthode en 

termes de précision et de robustesse. L’idée est alors d’extraire la surface de la 

prostate dans le volume IRM T2 par cette même méthode. La segmentation de la 

surface de la prostate en IRM T2 est relativement difficile. Dans cette modalité, la 

prostate est divisée en une zone périphérique en hypersignal, une zone centrale 

hétérogène et un stroma antérieur fibromusculaire. Elle est entourée par une bande 

fibromusculaire, appelée capsule, qui présente un hyposignal difficile à séparer 

d’organes environnants proches telle la paroi de la vessie. Le volume de la prostate est 

décrit sur une dizaine de coupes relativement épaisses rendant la surface difficile à 

discriminer sur les coupes extrêmes du côté de la base ou de l’apex. Or ces zones, par 

exemple l’apex proche des sphincters, sont très sensibles lors de la thérapie.  

L’idée principale de l’OSD est de rechercher la surface au voisinage d’une 

première approximation par une méthode de graph cut (Li, Wu et al. 2004). Le 

schéma général de la segmentation est le suivant : 

- Une première étape d’initialisation donnant une première approximation de la 

surface. Cette étape peut être automatique. Par contre, afin de pallier la 

difficulté de définir la surface au niveau de la base et l’apex, nous avons 

décidé d’utiliser une initialisation interactive par un expert. Il définit 6 points : 

base, apex et 4 points dans la coupe centrale. Une surface paramétrique par 

spline biharmonique ajustée sur ces points sert alors de première 

approximation. 

- Un graphe est construit à partir de l’information au voisinage de cette surface. 

Les nœuds du graphe sont formés par les voxels se trouvant de part et d’autre 

de la surface de départ le long de la normale. Certains liens entre nœuds 

permettent de coder la probabilité qu’un nœud appartient à la surface. La 

topologie de certains autres liens entre nœuds permet d’imposer des 

contraintes de lissage de la future surface. Nous avons testé 3 méthodes 

différentes pour assigner la probabilité qu’un nœud appartient à la surface : 
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 une méthode basée sur les gradients des intensités des voxels ; 

 une méthode basée sur un modèle de probabilité de surface. Ce modèle a 

été construit à partir de surfaces délinéées par un expert sur 33 différents 

volumes IRM T2 et alignées les unes par rapport aux autres. Cet 

alignement permet de définir une surface moyenne et une carte de 

distribution des surfaces par rapport à la surface moyenne. 

 Une méthode basée sur un modèle de profil de gradients autour de la 

surface. Ce modèle est également construit à partir des surfaces délinéées 

par un expert sur les 33 volumes et alignés les une par rapport aux autres. 

En chaque point de ces surfaces, le profil des gradients est mesuré le long 

de la normale à la surface. Un modèle de profil de gradient est alors 

estimé à partir des 33 différents profils. Pour une surface inconnue, une 

mesure de distance de Mahalanobis entre le profil de la surface inconnue 

et le modèle de profils permet d’estimer une probabilité de surface.  

- Une coupe de graphe permet alors de déterminer la surface optimale. 

 

Afin de mettre au point les paramètres de cette technique et d’évaluer la précision 

des 3 méthodes d’assignation de probabilité, nous avons utilisé une base de données 

de 33 volumes IRM T2 cliniques de la prostate provenant de 5 machines différentes, 

avec des résolutions et des épaisseurs de coupes différentes. Un urologue a contouré 

la prostate dans toutes les coupes de tous les volumes. Ce contourage manuel a servi 

de « vérité terrain » pour évaluer la performance de notre segmentation (à l’aide de 

mesure comme le taux de recouvrement de volumes ou de Dice Score) mais 

également pour fabriquer les modèles de probabilité de surface ou de profil de 

gradients.  

Dans un premier temps, nous avons ajusté les paramètres un par un, le jeu de 

paramètre donnant le meilleur résultat (la meilleure moyenne de taux de recouvrement 

de volumes) pour toutes les bases a été gardé  

Nous avons ensuite comparé les 3 méthodes pour assigner la probabilité qu’un nœud 

appartient à la surface. Si pour certains cas précis, les méthodes basées sur des 

modèles de surface ou de gradient  pouvaient donner de meilleurs résultats que les 

gradients des intensités, globalement leurs scores obtenus par l’utilisation des modèles 

étaient inférieurs. Ces modèles n’ont pas été retenus par la suite. 

 

En regardant de plus près les résultats de la segmentation, nous avons constaté que 

la segmentation par OSD décrivait souvent correctement la surface de la prostate dans 

la zone médiale. Par contre, elle a plus de problèmes vers les extrêmes, base et apex, 

du fait que dans ces zones, les coupes épaisses sont tangentes à la surface et que dans 



 

 XIV 

ces zones également, la prostate est en contact avec la vessie ou le rectum. En IRM T2, 

la paroi de la vessie a des intensités similaires à la capsule de la prostate et que le 

rectum est totalement inhomogène en forme et intensités en fonctions de contenu. Ces 

particularités rendent très difficile la délimitation de la surface dans ces zones, or 

certaines de ces zones sont très sensibles lors de la thérapie (par exemple les 

sphincters urinaires sont au niveau de la base : de même les positions du rectum et de 

la prostate doivent être bien définies afin d’éviter des fistules lors de la thérapie). 

Nous proposons donc une segmentation concurrente entre la vessie, la prostate et le 

rectum par un algorithme d’OSD multi-objets (Song, Liu et al. 2010). L’idée est que 

la compétition entre ces organes améliore la segmentation de la surface de la prostate. 

L’OSD multi-objets nécessite une description initiale des trois organes : 

- Prostate. La surface initiale de la prostate est donnée par OSD simple comme 

il a été décrit précédemment (Figure 10-vert). 

- Vessie. La forme de la vessie est très diverse en fonction de son remplissage. 

En IRM T2, l’urine apparaît en hypersignal mais la paroi est en hyposignal. La 

description initiale de la vessie sera donc donnée par sa paroi interne 

recherchée par une surface déformable (Garnier, Ke et al. 2011). Pour cela à 

partir de la position de la prostate, nous cherchons automatiquement un point 

germe dans la zone urinaire (recherche d’hypersignal au-dessus de la base de 

la prostate). À partir de ce point germe, une petite surface ellipsoïdale est 

définie. Cette surface est mise en expansion jusqu’à ce que les forces 

d’expansion s’équilibrent avec des forces liées aux données et indiquant la 

transition urine/vessie (Figure 10-rouge). 

- Rectum. Du fait de sa variabilité en forme et intensité, nous avons choisi 

d’ajuster un modèle géométrique simple de cylindre brisé sur le rectum à partir 

de 4 points définis de manière interactive (Figure 10-jaune). 

 

Figure 10 : Description initiale de la vessie (rouge), de la prostate (vert) et du rectum (jaune). 

 

Au final seulement 10 points (6 pour la prostate et 4 pour le rectum) définis de 

manière interactive sont nécessaires pour initialiser les 3 surfaces. Nous constatons 
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que dans certaines zones, les maillages initiaux s’interpénètrent ou sont très proches 

les uns des autres. Ces zones seront appelées zone de conflit. Pour chaque organe 

nous construisons alors un graphe de la manière décrite pour l’OSD simple. Toutefois, 

dans les zones de conflit nous rééchantillonnons la position spatiale des nœuds pour 

que les deux graphes y partagent les mêmes nœuds. En plus des liens décrits utilisés 

dans l’OSD simple, nous ajoutons de nouveaux liens dans les zones de conflits 

empêchant deux surfaces à s’interpénétrer. De même, modifions également certaines 

probabilités d’appartenance afin de prendre en compte certains paramètres 

anatomiques des organes, par exemple le fait que la paroi de la vessie à une épaisseur 

de l’ordre de 3 à 5 mm.  

L’algorithme du graph cut appliqué sur les trois graphes permet alors de définir 

respectivement la surface des 3 organes (Figure 11-droite). 

Nous avons également utilisé la base de 33 volumes annotés pour ajuster les 

différents paramètres de la méthode de segmentation. 

Par contre, par souci de comparaison, nous avons décidé d’évaluer la 

performance de notre algorithme de segmentation sur les données fournies par un 

challenge MICCAI en 2012 sur la segmentation de la prostate en IRM T2 (Challenge 

PROMISE (MICCAI 2012))3). Nous avons comparé les performances de l’OSD 

simple, de l’OSD multi-objets prostate/vessie et de l’OSD multi-objets 

prostate/vessie/rectum. L’OSD multi-objets prostate/vessie/rectum donnait les 

meilleurs résultats. De plus, les performances de nos méthodes étaient du même 

niveau que la meilleure méthode présentée en 2012 lors du Challenge (Vincent, 

Guillard et al. 2012). 

D’un point de vue qualitatif, nous avons constaté que l’OSD multi-objets empêchait 

l’extension de la surface de la prostate vers la vessie (Figure 11-gauche) et vers le 

rectum (Figure 11-centre). 

 

                                                        

3 Nous n’avons en fait utilisé que les 11 volumes des données d’entraînement acquises à l’aide d’une 

antenne externe. Nous n’avons pas utilisé les volumes acquis à l’aide d’une antenne endorectale 

car la correction des inhomogénéités d’intensités dûes à ces antennes était hors des propos de cette 

Thèse. 
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Figure 11 : Comparaison entre la surface de la prostate : à gauche, au niveau de la vessie par OSD 

simple (mauve) et OSD multi-objets (vert) ; au milieu au niveau du rectum par OSD simple (vert) 

et OSD multi-objets (bleu clair). À droite, surfaces segmentées des 3 organes : vessie (bleu), 

prostate (vert) et rectum (orange) 

 

Chapitre 5 : Étude préliminaire d’un recalage 

surface/surface échographie/IRM T2 

Nous disposons de la surface de la prostate dans les deux modalités : extrait du 

volume échographique grâce à l’OSD (Garnier, Bellanger et al. 2011) et du volume 

IRM T2 grâce à l’OSD multi-objets. Entre les deux acquisitions, la prostate a subi un 

déplacement et une déformation, entre autres dûs à la présence de la sonde de thérapie. 

Un recalage élastique doit donc être envisagé. Il s’effectue en deux étapes : 

- un premier recalage rigide pour aligner les deux surfaces. Pour cela nous 

avons choisi d’utiliser l’algorithme itératif du plus proche voisin (ICP) (Besl 

and McKay 1992) entre les nœuds des maillages des deux surfaces (Figure 12). 

La matrice de transformations estimée entre les deux surfaces servira 

d’initialisation au recalage élastique proprement dit. 

 

   

Figure 12 : Recalage rigide entre la surface de la prostate en échographie (gauche) et en IRM T2 

(centre). 

 

- Un recalage élastique. Nous avons choisi d’utiliser l’algorithme rapide des 

démons à forces symétriques (Thirion 1998, Vercauteren, Pennec et al. 2009). 
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Pour cela deux volumes binaires sont construits par remplissage des surfaces 

des deux organes. Le volume lié à l’échographie est considéré comme image 

fixe. L’algorithme des démons4 est utilisé dans un schéma de multi-résolution 

pour estimer le champ de déformations entre les deux organes. Ce champ est 

ensuite utilisé pour reporter l’information de l’IRM T2 préopératoire vers le 

volume échographique peropératoire (Figure 13).  

 

    

Figure 13 : Étapes du recalage entre le volume IRM T2 préopératoire et le volume échographique 

peropératoire. De gauche à droite : coupe du volume échographique peropératoire ; recalage 

rigide ; puis recalage élastique du volume IRM T2 vers l’échographique peropératoire ; 

superposition des deux informations 

 

Ce schéma a été essayé sur dix paires de volumes de patients traités par 

l’Ablatherm afin de montrer la faisabilité de l’approche. Une étape de validation, 

entre autre de la pertinence de la déformation des structures internes de la prostate en 

IRM T2, en particulier de la tumeur, doit maintenant être menée. 

                                                        

4 La classe itkFastSymmetricForcesDemons -RegistrationFilter de la librairie ITK.  
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Conclusion 

Cette Thèse a essayé de proposer, dans le cadre d’un traitement focal de la tumeur 

de la prostate par HIFU, des méthodes permettant de reporter l’information 

préopératoire de l’anatomie de la prostate et de la position de la tumeur sur l’image 

échographique peropératoire. Deux approches ont été explorées : 

- Un schéma de recalage basé sur les intensités. Notre contribution a été de 

proposer une méthode de description de la texture de speckle de l’image 

échographique par des moments invariants pouvant servir dans les mesures de 

similarités entre volumes. Du fait de l’inhomogénéité des intensités dans la 

prostate en IRM T2, nous n’avons pas pu valider l’utilisation de cette méthode 

de description dans le schéma de recalage basé intensités. Toutefois, cette 

méthode a montré sa performance à décrire des régions en échographie 

présentant des distributions similaires de speckle, quelles que soient leurs 

orientations ou tailles. De plus, certains moments sont sensibles aux contours 

d’une région texturée. Cette information complémentaire région/contour peut 

être utilisée dans des algorithmes de segmentation intégrant à la fois 

l’information de contours et l’information de régions (contours actifs, graph 

cut, etc.). Nous avons démontré cette possibilité dans un algorithme de 

segmentation 2D de la prostate en échographie par min-cut/max-flow graph 

cut. 

- Un schéma de recalage basé sur la surface de la prostate. Un travail de thèse 

précédent à permis d’estimer la surface de la prostate en échographie 3D par 

contours actifs ou par Détection Optimale de la Surface (OSD. Notre 

contribution dans le schéma de recalage a consisté à adapter l’algorithme OSD 

à la segmentation de la surface en IRM T2 et à améliorer cette segmentation 

dans les zones sensibles (aux voisinages de la vessie ou du rectum) par un 

OSD multi-objets. Cette méthode a permis d’extraire la surface de la prostate 

avec une bonne précision, comparativement à d’autres méthodes. À partir des 

surfaces extraites dans les volumes IRM T2 préopératoire et échographique 

peropératoire nous avons pu utiliser une méthode de recalage élastique et de 

fusion d’information entre ces deux volumes. Cette méthode doit être 

maintenant évaluée dans un cadre clinique. 
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Introduction 

 Prostate cancer is the second most frequently diagnosed cancer in the world, and 

also the sixth leading cause of cancer death in males. Many types of treatment, 

including active surveillance, surgery, radiation therapy, high-intensity focused 

ultrasound (HIFU), chemotherapy, cryosurgery, hormonal therapy, and sometimes 

combination of treatments, are used in prostate cancer therapy. 

 High intensity focused ultrasound (HIFU) technology, which focus ultrasound 

waves to prostate to locally heat and destroy the target tissue, has been shown to be 

effective in prostate cancer treatment. In the past few years, HIFU therapy has taken 

benefit from the development of new technological advances, such as new probe 

design, new therapeutical planning, imaging guided techniques, which lead to more 

precise spatial treatment. The current trend in medicine is to perform focal therapy by 

only treating the tumor area within the organ. So, in the near future, the new HIFU 

device must be able to locate the tumor area within the prostate and then to focus the 

ultrasound waves to this specific area. 

Our Thesis is part of the ANR TecSan MULTIP project (Matrice de transducteurs 

Ultrasonores pour La Thérapie et l'Imagerie de la Prostate) which aimed at using 

up-to-date piezoelectric technologies to design dual-mode ultrasonic probes for 

cancer-foci treatment and monitoring and also to propose image processing methods 

permitting the design of the ultrasonic imaging/therapy process. The general goal of 

the thesis is to propose image processing techniques for the planning and the 

guidance of HIFU focal prostate cancer therapy. 

Currently the therapy planning and guidance of the HIFU prostate therapy is 

performed on a transrectal ultrasound (TRUS) volume acquired by the HIFU device 

probe. If the quality and resolution of the TRUS images are sufficient enough to allow 

a therapy planning for the entire prostate, the tumor itself cannot be discriminated 

within the prostate. On the other hand, we can get high quality information about the 

prostate anatomy and the prostate tumor on a preoperative T2 MRI. A transfer of this 

information extracted during the preoperative planning onto the peroperative 

ultrasound image should allow retrieving the tumor location during the therapy. This 

transfer requires a phase of registration or fusion between the 3D MRI volume and 

the ultrasound images. Beside other considerations, several registration strategies 

can be considered according to the common information used for the merging. Two 

strategies of registration methods will be explored in this Thesis: the intensity-based 

registration and the feature-based registration.  

In intensity-based registration, the main hypothesis is that a tissue is described by 
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a specific intensity distribution. But in ultrasound images, tissues are characterized by 

their speckle spatial distribution instead of an intensity distribution. The main idea is 

to use a texture description method which is able to transpose a specific speckle 

distribution into a characteristic value distribution. Texture estimation tools had some 

success in ultrasound image analysis. But, in our case, the circular US probe provides 

an irregular spatial speckle organization in orientation and scale over the image. A 

texture analysis tool invariant to speckle orientation and scale must be considered 

to characterize the tissues in the US image. 

In feature-based registration, common features (points, lines, surfaces…) are 

extracted or labeled in both image modalities and are used for the registration. In our 

specific case, TRUS image and T2 MRI of the prostate share only little common 

information. However, the prostate surface is visible in both image modalities. A 

registration framework can so be defined: A) the extraction of the prostate surface on 

the preoperative T2-MRI volume by segmentation; B) the extraction of the prostate 

surface on the peroperative TRUS volume by segmentation; C) elastic registration 

between the 2 surfaces; and D) the deformation field estimated by the registration step 

is applied to fuse the T2 MRI volume information (prostate structures and tumor) to 

the peroperative HIFU TRUS volume. The bottlenecks of this framework are the 

prostate surface segmentation methods. For TRUS images, we will use the work done 

at our lab by Carole Garnier which proposed active contours or Optimal Surface 

Detection (OSD) for the extraction of the prostatic surface in 3D ultrasound (Garnier, 

Bellanger et al. 2011). The segmentation of the prostate surface in T2 MR image is 

more problematic. The intensity distribution inside the prostate is really 

inhomogeneous due to its complex structures and the prostate surface itself has a 

hyposignal with similar level intensities as these of neighbor organs tissues as the 

bladder wall or the rectum. A T2 MRI segmentation method dealing with these 

difficulties must be developed in order to extract the prostate surface alone or in a 

multi-objects competition scheme. The next issue is then to perform an elastic 

registration scheme which can not only align together the two surfaces but also can 

estimate a 3D deformation field between the preoperative and the peroperative 

volumes. 

These several questions will give the structure of the Thesis. It is composed by 3 

main parts: 

Part I gives the context of the study and justifies the several approaches proposed 

in the Thesis. In chapter 1, we introduce the medical application background of the 

Thesis: the prostate cancer and its treatment. This part will show the importance of the 

problem we are dealing with. Chapter 2 is focused on our specific problem. We first 

describe the actual principle and workflow of the HIFU treatment. The importance of 
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the registration problem in image guide therapies will be highlighted. After a brief 

description of the image properties of the preoperative T2 MRI and the peroperative 

TRUS and also of the characteristic of registration and segmentation methods, we will 

justify the choice of the proposed methods used for the intensity-based registration 

and the feature-based registration. 

Part II presents our contribution in intensity-based registration methods. In 

chapter 3, a moment invariants based texture descriptor is introduced to convert 

speckle distribution of the ultrasound image to intensity distribution. This work 

should be a preparation of an intensity-based registration, but we did not fulfill it 

because of its disadvantage on T2 MRI.  

Part III presents our contribution in surface-based registration methods. In chapter 

4, we introduce an OSD based multi-objects segmentation method on T2 MRI. The 

segmented surfaces will be used as prostate feature in the registration process. In 

chapter 5, we apply the surface based registration on MRI/TRUS volumes. We give 

some preliminary results from 10 cases of MRI/TRUS data, and make a discussion. 

Finally in chapter 6, we conclude the work and contribution of this thesis, and 

give the possible future works. 
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Chapter 1: Prostate cancer treatment 

1.1 Prostate cancer 

Prostate cancer is the second most frequently diagnosed cancer in the world 

accounting for 14% (903,500) of the total new cancer cases in 2008. It is also the sixth 

leading cause of cancer death in males. In 2008, about 258,400 males died because of 

prostate cancer, which is the 6% of the total cancer deaths (Jemal, Bray et al. 2011).  

In recent years, the incidence rates of prostate cancer vary by more than 25-fold 

worldwide. It is the highest rates recorded primarily in the developed countries of 

Oceania, Europe, and North America. It is in part because of the wide utilization of 

prostate specific antigen (PSA) testing which detects clinically important tumors in 

prostate.  

The incidence rates in countries with higher uptake of PSA testing such as the 

United States, Australia, Canada, and the Nordic countries rose rapidly in the early 

1990s, soon after the introduction of PSA testing, then followed by a sharp decline due 

to a smaller pool of prevalent cases (Kvåle, Auvinen et al. 2007, Baade, Youlden et al. 

2009). In other high-income countries with a low and gradual increase in the 

prevalence of PSA testing, such as Japan and the United Kingdom, rates continue to 

increase slightly (Baade, Youlden et al. 2009). 

In many developed countries, death rates for prostate cancer have been decreasing, 

including Australia, Canada, the United Kingdom, the United States, Italy, and Norway 

in part because of the improved treatment with curative intent. In contrast to the trends 

in Western countries, incidence and mortality rates are rising in Central and Eastern 

European and several Asian countries, such as Japan (Baade, Youlden et al. 2009, Bray, 

Lortet-Tieulent et al. 2010).  

 

About one third of patients diagnosed as prostate cancer have one or more 

symptom, such as frequent urination, nocturia (increased urination at night), difficulty 

starting and maintaining a steady stream of urine, hematuria (blood in the urine), and 

dysuria (painful urination), which are similar to symptom of other prostate diseases 

such as benign prostatic hyperplasia. It is because the prostate gland surrounds the 

prostatic urethra. Changes within the gland will directly affect the urinary function 

(Miller, Hafez et al. 2003). 

Prostate cancer may also cause problems with sexual function and performance, 

such as difficulty achieving erection or painful ejaculation. It is because the vas 
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deferens deposits seminal fluid into the prostatic urethra, and secretions from the 

prostate gland itself are included in semen content (Miller, Hafez et al. 2003). 

Advanced prostate cancer can spread to other part of body and will cause 

additional symptoms. When cancer spread into vertebrae (bones of the spine), pelvis, or 

ribs, it may cause bone pain. Prostate cancer spreading in the spine can also compress 

the spinal cord, causing leg weakness and urinary and fecal incontinence (van der 

CRUIJSEN-KOETER, Vis et al. 2005).  

 

There are so many risk factors for prostate cancer, that a complete understanding of 

these causes remains elusive. Many researchers try to figure out the risk factors 

associated with prostate cancer, and get some preliminary conclusions: 

 

- Age is one of the primary factors for prostate cancer. Prostate cancers are 

rarely diagnosed for men younger than 45, but becomes more and more 

common with growing age. The average age at the time of diagnosis is 70 

(Hankey, Feuer et al. 1999). However, in many cases, prostate cancer may 

never been diagnosed before patient’s deadth. Autopsy studies of Chinese, 

German, Israeli, Jamaican, Swedish, and Ugandan men who died by other 

causes showed that prostate cancer was found in 30% of men in their fifties, 

and found in 80% of men in their seventies (Breslow, Chan et al. 1977). 

 

- The genetic background may also contribute to prostate cancer risk. 

Comparing with men without prostate cancer in the family, men who have 

first-degree family members with prostate cancer appear to have double risk 

of getting the disease (Zeegers, Jellema et al. 2003). A study showed that the 

probability for men with an affected brother is greater than the probability for 

men with an affected father. In the United States, prostate cancer affects 

more commonly black men than white or Hispanic men, and caused higher 

mortality rate for black men (Gallagher and Fleshner 1998, Hoffman, 

Gilliland et al. 2001). In contrast, the incidence and mortality rates for 

Hispanic men are one third lower than for non-Hispanic white men. Studies 

of twins in Northern Europe find that forty percent of prostate cancer risk can 

be explained by inherited factors (Lichtenstein, Holm et al. 2000). 

 

- The evidence about some dietary factors associate with prostate cancer is still 

tentative (Venkateswaran and Klotz 2010). For now, some evidence show us 

that fruits and vegetables play little role in prostate cancer (Key 2010). No 

evidence can be proved that red or processed meats will increase the prostate 
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cancer probability (Alexander, Mink et al. 2010). However, higher meat 

consumption has been associated with a higher risk in some studies. A low 

vitamin D level or an excessive multivitamins ingestion have been shown to 

increase the risk of developing the disease (Lawson, Wright et al. 2007, 

Wigle, Turner et al. 2008). 

 

- Some other factors may also be related to the risk of prostate cancer. E.g. 

men with high blood pressure are more likely to develop prostate cancer 

(Martin, Vatten et al. 2010). There is also a small increased risk of prostate 

cancer associated with the lack of exercise (Friedenreich, Neilson et al. 2010), 

etc. 

1.2 Anatomy of the prostate and pathology 

The mean weight of a healthy adult male’s prostate is about 11 grams, usually 

ranging between 7 and 16 grams. It is classically said to be slightly larger than a walnut 

(Leissner and Tisell 1979). The prostate is located in the pelvis, under the urinary 

bladder and in front of the rectum (Fig 1.1). It is the only exocrine organ located in the 

midline of the human bodies. It is close to the rectum and can be felt during a rectal 

exam. Prostate surrounds the urethra coming from the bladder. This part is called the 

prostatic urethra and merges with the two ejaculatory ducts. The sphincter urethrea 

muscle is just appended at the exit of the urethra from the prostate. Prostate is 

enveloped by a so-called capsule, in reality, an integral fibromuscular band which 

surrounds the organ (Ayala, Ro et al. 1989). It is bounded by the muscles of the pelvic 

floor (Raychaudhuri and Cahill 2008). Along the posterior part of the prostate are two 

collections of vessels and neural structures called neurovascular bundles. 

 

   

Fig 1.1: The structure of prostate gland and surrounding organs 
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McNeal models the prostate gland into four distinct glandular regions, defined 

according to the different segments of the prostatic urethra (McNeal 1968)(Fig 1.1): 

- Peripheral zone (PZ): It is the sub-capsular portion of the posterior part of the 

prostate gland that surrounds the distal urethra. The peripheral zone 

represents up to 70% of the prostate volume by young men. 70-80% of the 

prostate cancers originate in the peripheral zone. 

- Central zone (CZ): This zone surrounds the ejaculatory ducts. It is 

approximately 25% of normal gland volume. The central zone accounts for 

roughly 2.5% of the prostate cancers. But these cancers tend to be more 

aggressive and have higher risk to invade the seminal vesicles. 

- Transition zone (TZ): It is only 5% of the gland volume at puberty. It 

surrounds the proximal urethra and is the region of the prostate gland that 

grows throughout life. It is responsible for the disease of benign prostate 

enlargement. About 10-20% of the prostate cancers originate in this zone. 

- Anterior fibro-muscular zone (AFZ): This zone is approximately 5% of the 

prostate. It is usually devoid of glandular components but composed only of 

muscle and fibrous tissues. 

 

The main function of the prostate is to secrete and store the seminal fluid. In the 

prostate, small glands secrete about 20% of the fluid constituting the semen. The 

prostate surrounds part of the urethra, the tube that carries urine from the bladder during 

urination and semen during ejaculation (Moore 2013). Because of its position, prostate 

diseases often affect urination, ejaculation, and rarely defecation. 

The prostate accumulates zinc and product citrate. Zinc is transported into prostate 

cells by the protein ZIP1. It is used to change the metabolism of the cell to produce 

citrate which is an important component of semen. All these processes (including zinc 

accumulation, alteration of the metabolism and the citrate production) will need 

enormous amounts of energy (ATP). Protein ZIP1 is the product of gene SLC39A1 

which is called tumor suppressor gene. The absence of zinc is thought to occur via a 

silencing of gene SLC39A1 and lack of transporter protein ZIP1. When prostate cancer 

cells are lack of zinc, the citrate production is interrupt. The excess energy will be used 

to grow and spread cancer cells.  

Prostate cancer begins when normal semen-secreting prostate gland cells mutate 

into cancer cells. The adenocarcinoma region of prostate gland is most common in the 

peripheral zone. At first, these cancer cells are limited by other normal prostate glands. 

This is the condition known as carcinoma in situ or prostatic intraepithelial neoplasia 

(PIN). Although PIN is not a cancer precursor according to the state of research, it is 

only closely associated with cancer. After this first  period, the cancer cells start to 
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multiply and spread to the surrounding tissues (the stroma), this forming the tumor. The 

tumor will continuously grow until it is large enough to invade the nearby organs, such 

as the seminal vesicles, the rectum, the bladder or the lower ureters. In some worse 

situation, the tumor cells may develop an ability to travel trough the bloodstream or 

lymphatic system. A mass of cells that can invade other parts of the body when the 

prostate cancer is consider as a malignant tumor. The invasion of other organs is called 

metastasis. The organs which are usually affected by prostate cancer metastasis are the 

bones or the lymph nodes.  

1.3 Diagnose 

Prostate cancer can be diagnosed during systematic screening or in cases of 

specific symptoms. Systematic screening is for the moment controversial. So far, 

research has not yet proved that the potential benefits of testing outweigh the harms of 

testing and treatment. The American Cancer Society suggests that men should not be 

tested without learning about what we know and don't know about the risks and 

possible benefits of testing and treatment. People who is more than 50 years old are 

recommend to talk to the doctor about the pro and cons of testing before making a 

decision (Smith, Cokkinides et al. 2002). However, in the western countries people 

over fifty are screened systematically, mostly using digital rectal examination (DRE) or 

prostate specific antigen (PSA) tests. If these tests present some prostate cancer 

suspicions, complementary examinations, like imaging and biopsies will be performed 

to confirm or infirm the suspicions. These complementary examinations will also have 

the purpose to diagnose how far the cancer has spread within or outside the prostate. 

This process is called the staging of the prostate cancer, and will help to evaluate the 

prognosis and to select the most appropriate therapy. The PSA rate is one of the 

element of the staging. The result of the biopsy known as Gleason Score is another 

element. Another element is the four-stage TNM system (Tumor/Nodes/Metastases), 

which evaluates by DRE and imaging the extent of the primary tumor, the number of 

involved lymph nodes, and the presence of any other Metastases (Sobin and Fleming 

1997). The T stage is important because it allows to separate cancers which are 

confined within the prostate (stage T1 and T2) to cancer which are spread to neighbor 

organs (stage T3 and T4). The TNM information combined with the Gleason Score and 

PSA, helps determining the treatment options and prognosis (Partin, Yoo et al. 1993). 
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- PSA 

Prostate-specific antigen, or PSA, is a protein produced by cells of the prostate 

gland. If PSA is overexpressed, it is high probability to suspect prostate cancer. The 

PSA test was approved by the FDA in 1986 to monitor the progression of prostate 

cancer in men who had already been diagnosed with the disease. In this test, the blood 

sample is sent to the doctor for analysis, and the results are reported as nanograms of 

PSA per milliliter (ng/mL) of blood. 

A man’s PSA level can also rise in a number of benign conditions. Statical data 

shows that prostatitis (inflammation of the prostate) and benign prostatic hyperplasia 

(BPH) (enlargement of the prostate) are the most frequent benign prostate conditions 

that cause an elevation in PSA level. For now, there is no evidence that prostatitis or 

BPH leads to prostate cancer. It is possible for a man to have one or both of these 

conditions and to develop prostate cancer as well. 

Because of overdiagnosis exists in PSA testing, an overtreatment may be applied 

to benign and none threatening tumors. Overtreatments for early prostate cancer, as 

surgery or radiation therapy, can expose the patient unnecessarily to potential 

complications or harmful side effects. The side effects of these treatments include 

urinary incontinence (inability to control urine flow), problems with bowel function, 

erectile dysfunction (loss of erections, or having erections that are inadequate for sexual 

intercourse), and infection.  

There is also possibility to have false-positive or false-negative results in PSA 

testing. The false-positive test results may create anxiety for a man and his family and 

lead to additional medical procedures. And false-negative test results may give a man, 

his family, and his doctor the false assurance that he does not have cancer, when he may 

in fact have a cancer that requires treatment. 

Study shows that it is hard to quantify the role of PSA testing in the reduction of the 

prostate cancer mortality rates at the population level. A large US-based randomized 

trial on the efficacy of PSA testing in reducing mortality from prostate cancer found no 

benefit (Andriole, Crawford et al. 2009), while another similar European-based trial 

found a modest benefit (Schröder, Hugosson et al. 2009). However, this test is still one 

of the first diagnosis step in the systematic prostate cancer screening.   

 

- Biopsy 

Despite its invasiveness, biopsy is the only test that can fully confirm the diagnosis 

of prostate cancer. In a biopsy, the doctor will pick small pieces of the prostate for 

microscopic examination. 

Normally, biopsy is only offered when prostate cancer is suspected. During a 

biopsy, the urologist obtains small tissue samples from the prostate via the rectum. The 

biopsy gun with special hollow-core needles is inserted and removed in less than a 



 

13 

second. In this process, usually three to six tissues on each side of the prostate are taken 

away. The prostate biopsy process rarely requires hospitalization. But reports show that 

more of 50 percent of men feel uncomfortable during prostate biopsy (Essink-Bot, Nijs 

et al. 1998). 

After taking tissue samples, the doctors will exam these samples by using a 

microscope. They will evaluate the microscopic features and determine whether cancer 

cells are present or not in tissues. If the cancer is detected, the doctors will grade the 

tumor by using Gleason Score. Cancers with a higher Gleason Score are more 

aggressive and have a worse prognosis (Gleason and Mellinger 1974). 

 

- Imaging 

The two most main imaging methods used for prostate cancer detection and 

diagnose are the Ultrasound (US) and Magnetic Resonance Imaging (MRI).  

Prostate ultrasound, also called transrectal ultrasonography (TRUS), provides 

images of a man's prostate gland and surrounding tissues. The transducers are usually 

composed by a circular 7.5 MHz imaging probe. In the diagnose stage, ultrasound is 

used to prepare the biopsy in defining the potential prostate areas suspected to be 

tumors. However, tumor lesions appear with variable echogenicity. On the US images, 

the lesions are most often hypoechoic but sometimes hyperechoic. In most of the cases, 

they are difficult to differentiate from the surrounding prostate tissues. Abnormal 

contours are also difficult to distinguish in the US images. At least, the poor tissue 

resolution of this imaging modality is a limitation to its usage as diagnostic tool. But 

because it is wide spread and it has real-time facility, this modality is widely used in an 

image guide therapy context. 

 

MRI is for the moment the only imaging device which has enough spatial 

resolution and tissue discrimination possibilities to locate and characterize prostate 

cancer. The prostate can be examined by several MRI sequences which constitute the 

multi-parametric prostate MRI (Gupta, Kauffman et al. 2013) (Fig 1.2): 

- T2 weighted imaging usually has a high resolution in the images but with a 

slice thickness of around 3-4 mm. It provides the best assessment of the 

prostate's morphology, margins, and internal structures. It allows to make the 

distinction between the peripheral zone and the central gland. Usually the 

tumors appears as an hyposignal.  

- Diffusion Weighted imaging (DWI) provides functional information about 

tissue microstructures. This imaging technique is sensitive to the motion of 

water proton within the tissues. Because many prostate tumors present higher 

cellular density with more complex intracellular microstructure, the 

diffusion of water is restricted, which is detectable on DWI images. Even 
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more, the apparent diffusion coefficient map produce from DWIs at several 

scales can be directly used to locate and grade the tumors.  

- Dynamic contrast-enhanced imaging (DCE-MRI) is build from a set of fast 

acquisitions during the diffusion of a contrast medium bolus. The tumors can 

be detected because their angiogenesis produces a different microvascular 

density, and so a different blood flow. The diffusion of the contrast medium 

within the tumors is different compared with the surrounding organs. 

- MR spectroscopic imaging (MRSI) provides information about relative 

concentrations of various metabolites in tissues. If this imaging technique 

brings good information about the metabolites that are present in higher 

concentrations in prostate cancers compared with normal tissue, its main 

drawback relies in the low spacial resolution. Moreover, prostate MRSI is 

technically challenging and time-consuming, and many centers do not 

include MRSI in their protocols. 

 

The combination of fusion of these multi-parametric images for prostate cancer 

diagnosis and localization is still an open research topic (Haider, van der Kwast et al. 

2007). 

 

 

Fig 1.2: A 65-year-old male with prostate-specific antigen (PSA) 

level of 5.1 ng/ml and prior negative transrectal ultrasound 

(TRUS)-guided biopsy was referred for multi-parametric prostate 

MRI: (A) T2-weighted MRI; (B) Diffusion weighted MRI; (C) 

Apparent diffusion coefficient MRI and (D) Dynamic 

contrast-enhanced (Gupta, Kauffman et al. 2013) 
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Like ultrasound imaging, MRI is sometimes used to identify targets for prostate 

biopsy. In some cases, the urologists target prostate cancer by using the fusion of MRI 

and ultrasound (US) (Singh, Kruecker et al. 2008). Research shows that fusion MR/US 

guided prostate biopsy detected 33% of cancers compared to 7% with standard 

ultrasound guided biopsy (Natarajan, Marks et al. 2011).  

However, MRI is mostly used in the diagnoses for the staging. As it is fast and 

relatively reliable, MRI is used to locate the tumor and define the uni-or bilateral 

lesions. It helps to access the tumor volume. It can detect as best an extracapsular 

extension (Cornud, Bellin et al. 2006). It helps also to find an affected lymph node if 

the presumption is high.  

The lymph node metastases can be identified by on not only MRI but also on other 

imaging method, like CT or PET (Hall, Kwon et al. 2012). If the results of the different 

tests lead to an intermediate risk, a bone scan should be performed to detect possible 

metastases finally. 

 

1.4 Treatment 

There are many kinds of treatments for prostate cancer including active 

surveillance, surgery, radiation therapy, High-Intensity Focused Ultrasound (HIFU), 

chemotherapy, cryosurgery, hormonal therapy, and sometimes combination of 

treatments. Because the treatments of prostate cancer can have significant side effects, 

such as erectile dysfunction and all urinary incontinence, the choice of a treatment 

needs to balance the benefits of the therapy with the risks of lifestyle alterations. It 

usually depends on the stage of the cancer, the Gleason score, and the PSA level, and 

also related to patient's age, general health, feelings about potential treatments and 

possible side effects of treatment.  

 

- Active surveillance 

In early stage when slow-growing prostate cancer is suspected, the doctor will 

suggest to take active surveillance which means observation and regular monitoring 

without invasive treatment. Active surveillance is kept till the risks of surgery, radiation 

therapy, or hormonal therapy outweigh the possible benefits. When there are signs that 

the cancer expansion is accelerating or if new symptoms are developed, other 

treatments can be considered. Approximately one-third of men choose active 

surveillance for early stage tumors when they have signs of tumor progression, and 

many of them may need to begin treatment within three years (Wu, Sun et al. 2004). 

But generally, the increasing of the disease progression risk or the appearance of 
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metastasis is small if the program of surveillance is followed closely. Study results in 

2011 suggest that active surveillance is the best choice for older 'low-risk' patients. It 

should be noticed that active surveillance may not mean avoiding treatments, but may 

reasonably allow a delay of a few years or more, during which time the quality of life 

impact by active treatment can be avoided. 

 

- Hormonal therapy 

Dihydrotestosterone (DHT) is a hormone produced in the prostate and it is required 

for the growth and spread of most prostate cancer cells. A feedback loop of DHT 

involving the testicles, the hypothalamus, and the pituitary, adrenal, and prostate glands 

controls the blood levels of DHT. Low blood levels of DHT stimulate the 

hypothalamus to produce gonadotropin-releasing hormone (GnRH). Then, GnRH 

stimulates the pituitary gland to produce luteinizing hormone (LH), and LH stimulates 

the testicles to produce testosterone. At last, testosterone from the testicles and 

dehydroepiandrosterone from the adrenal glands stimulate the prostate to produce more 

DHT. Hormonal therapies target the pathways used to produce DHT. Medications or 

surgery can be used to block prostate cancer cells from getting DHT, and usually they 

stop the growing and even make shrink the prostate cancer. There are several forms of 

hormonal therapies, such as orchiectomy, antiandrogens, total androgen blockade 

(TAB), GnRH antagonists or agonists and abiraterone acetate. They interrupt the DHT 

producing pathway at different point. Orchiectomy and GnRH agonists are considered 

as the most successful hormonal treatments, but they also have some disadvantages. 

The psychological impact of removing the testicles in orchiectomy can be significant, 

and sterility is certain. GnRH agonists eventually cause the same side effects as 

orchiectomy but may cause worse symptoms. It should be noticed that prostate cancer 

is rarely cured by hormonal therapy, and the cancer cells will become resistant after one 

or two years. 

 

- Surgery 

Radical prostatectomy is proved to be effective when tumor have not spread 

beyond the prostate boundary (Bill-Axelson, Holmberg et al. 2005).  The surgery is 

traditionally used alone when the location of cancer is detected within the prostate. It is 

a common treatment as a first intention or when other therapies failed. However, in this 

latter case, because other therapies can cause tissue changes, radical prostatectomy has 

higher risks of complications and side effects. There are several types of radical 

prostatectomy. The radical retropubic prostatectomy, in which the surgeon removes the 

prostate through an abdominal incision, is the most common type of prostatectomy. In 

radical perineal prostatectomy, the surgeon removes the prostate through an incision in 

the perineum, the skin between the scrotum and anus. In contrast with the open surgical 
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form, laparoscopic radical prostatectomy is made through a series of small (1 cm) 

incisions in the abdomen. The surgery can also be performed with robotic technology. 

When compared to radical retropubic prostatectomy, robotic-assisted laparoscopic 

prostatectomy ensures a higher precisions in the gesture, a better sight of the scene 

(scene magnification or 3D view) and some movements not available in the classical 

laparoscopy (Smith Jr, Chan et al. 2007). The cure rate of prostatectomy depends 

directly on the risk factors (PSA level, Gleason grade, etc). However, radical 

prostatectomy may cause erection problems (impotence) in up to 70% of men and 20% 

will have minor problems with urinary incontinence. 

 

- Cryosurgery 

Cryosurgery is a prostate cancer therapy in which the surgeon exposes the prostate 

to freezing temperatures. In this surgery, the doctor will insert metal rods under 

ultrasound guidance, through the skin of the perineum into the prostate. These rods are 

cooled by highly purified argon gas, and freeze the surrounding tissues at −186°C. The 

cells of the prostate will die because of the freezing. During the therapy, the urethra is 

protected from freezing by a catheter filled with warm liquid.  

Compared with other treatments, cryosurgery may decrease the risk of urinary 

control problem, but it will cause impotence up to 90% of the time. Some research 

showed that cryosurgery has a 10-year biochemical disease-free rate superior to all 

other treatments including radical prostatectomy or any form of radiation. (Bahn, Lee et 

al. 2002) It is demonstrated to be superior to radical prostatectomy for a recurrent 

cancer following a radiation therapy. 

 

- Radiation therapy 

Normal cells are able to repair themselves from radiation damage, while cancer 

cells are not. Radiation therapy exploits this fact to treat prostate cancer. Normally, 

radiation therapy uses ionizing radiation such as gamma and x-rays to kill prostate 

cancer cells. When radiation is absorbed in tissue, it damages the DNA of cancer cells, 

which lead to apoptosis (cell death). It can be used to treat all stages of prostate cancer. 

It is also used after an unsuccessful surgery. There are two kinds of radiation therapy in 

prostate cancer treatment: external beam radiation therapy and brachytherapy. 

External beam radiation therapy uses directed high-energy x-rays beam produced 

by a linear accelerator towards to the prostate. The Intensity Modulated Radiation 

Therapy (IMRT) is used to adjust the radiation beam according to the shape of the 

tumor. High doses will be focused on the prostate and seminal vesicles, and low doses 

on the bladder and rectum to avoid damage. This therapy is given in radiation therapy 

centers for several weeks. The IMRT system provides fewer side effect than traditional 

surgery (Zelefsky, Fuks et al. 2002). The stereotactic body radiation therapy (SBRT) 
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technology is also used to treat prostate cancer. The new trends of this therapy concerns 

image-guided radiation therapy (IGRT) that includes imaging to increase the accuracy 

and precision of target localization, and the following of the dose over the treatment 

period (de Crevoisier, Louvel et al. 2009). 

Brachytherapy is another treatment choice for patients with low intermediate risk 

features. It consists in implanting small "seeds" containing radioactive material into the 

tumor. While patients are under epidural or general anesthesia, the doctor implants 

under US guidance about 100 short-range radiation-sources seeds with a needle 

through the perineum directly into the prostate. After the radiation period, the seeds 

become inert and remain in the prostate permanently. Generally, the risk that men with 

implanted seeds will expose other people to radiation is accepted to be insignificant 

(Perez, Hanks et al. 1993). It is associated with good 10-year outcomes with relatively 

low morbidity (Nag, Beyer et al. 1999). The survival rate is similar to that found with 

EBRT or surgery (radical prostatectomy), but with fewer side effects such as impotence 

and incontinence (Frank, Pisters et al. 2007). 

Both types of radiation therapy may cause side effects, including diarrhea and 

mild rectal bleeding due to radiation proctitis, as well as potential urinary incontinence 

and impotence. Most symptoms tend to disappear after a period, except erections which 

will be worse as time progresses. In some surgery, the doctor will place an absorbable 

spacer between the prostate and rectum to reduce rectal radiation injury. 

 

- High intensity focused ultrasound  

High intensity focused ultrasound (HIFU) technology has been shown to be 

effective in prostate cancer treatment. The HIFU device focus ultrasound waves to the 

tissues to be ablate or destroyed. The acoustic waves absorbed by the tissues are 

converted into heat increasing the local temperature until the tissue necroses. The 

ultrasonic waves focus point can be displaced over the volume to be destroyed (the all 

prostatic volume or some specifically areas). The spacial containment of the focus 

points lower the risks of affecting other tissue or organs, and so lower sthe risk of both 

incontinence and impotence (0.6% and 0-20%, respectively) (Uchida, Ohkusa et al. 

2006). According to international studies, HIFU treatment has a high success rate with 

a reduced risk of side effects. Studies using HIFU have shown that 94% of patients with 

a pretreatment PSA of less than 10 ng/mL were cancer-free after three years (Uchida, 

Ohkusa et al. 2006). 

 

- Palliative care and alternative therapies 

When cancer cells spread to neighbor area of the prostate or produce metastasis, 

the disease goes to advanced-stage. Palliative care is usually used to extend life and 

relieve the symptoms of metastatic diseases. Abiraterone Acetate treatment causes a 
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dramatic reduction in PSA levels and tumor size in aggressive advanced-stage prostate 

cancer for 70% of patients. Chemotherapy is also used when prostate cancer goes to 

advanced-stage. It may be offered to slow the disease progression and postpone the 

symptoms. For example, a study showed that the median survival was 16.5 months in 

the mitoxantrone group, 18.9 months in the group given docetaxel every 3 weeks, and 

17.4 months in the group given weekly docetaxel (Tannock, de Wit et al. 2004). 

Bisphosphonates, for example zoledronic acid, have been proved to delay skeletal 

complications, including fractures. For patients with hormone-refractory metastatic 

prostate cancer, bisphosphonates will also be used to satisfy the need for radiation 

therapy (Saad, Gleason et al. 2002). Metastatic disease may cause bone pain in some 

cases. Opioid pain relievers such as morphine and oxycodone are used to relieve pain. 

Injections of radioisotopes, such as strontium-89, phosphorus-32, or samarium-153, 

also target bone metastases and may be helpful in pain relief. 

Other therapies are also consider for prostate cancer as alternative to active 

surveillance or definitive treatments. A vegan diet (fish allowed), regular exercise, and 

stress reduction have been shown effective to lower PSA level in men with apparent 

localized prostate cancer (Ornish, Weidner et al. 2005). These research have proved to 

be durable after two-years' treatment so far. Phytochemicals in plants may also have 

cancer benefits. For example pomegranate juice seems to reduce the PSA growing on 

patients which had a first therapy (Pantuck, Leppert et al. 2006). 

1.5 Imaging guided therapies 

The trend in surgery and even for other therapies is to propose less and less 

invasive interventions. Since 20 years, the scientific progress in computer science and 

medical imaging, but also by the definition of new therapies, led to the development of 

computer-guided therapies. A definition of computer-guided therapies has been given 

in (Lavallée, Cinquin et al. 1997): “Methods and systems which assists the physician in 

the efficient and quantitative use of data coming from several modalities (often imaging 

systems), with the aim of planning but also achieving a medical intervention”. 

The first attempts of surgical gestures assistance were involved in stereotactic 

approaches (Spiegel, Wycis et al. 1947, Galloway and Maciunas 1990). In these 

approaches, a frame fixed physically on the patient allows to locate the tools relatively 

to the anatomy, this despite the limited available imaging (X-ray radiography). From 

this starting point, therapies have been improved by new imaging techniques, new 

navigation systems, robotics and new therapeutic practices. In her review, J. Troccaz 

(Troccaz 2009) described three main evolution periods: (i) the realization of 

positioning tasks, with mainly applications built on simple paths and rigid structures, 
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such as neurosurgery and orthopedics (1985-1995), (ii) the definition of interactive 

procedures for more complex gestures, such as endoscopic surgery on deformable 

structures (1990-2005) and (iii) robots that perceive, communicate and act within the 

human body (since 2000). 

The main clinical expected benefits of computer-assisted therapies are: 

- the reduction of the invasiveness of the therapy; 

- the improvement of the surgical accuracy by the definition of an optimal 

planning and a strict application of this planning; 

- to secure the gesture; 

- the reduction of post-treatment complications risks; 

- the reduction of the intervention duration and costs; 

- the reduction of radiation exposure for the patient and the medical staff; 

- the design and performance of new difficult procedures; 

- the integration of previous results in the surgical planning; 

- the basis for surgical gestures training simulators;... 

 

In prostate cancer treatment, image guided therapies also gained importance with 

minimal invasive prostatectomy (laparoscopic or with a robotic surgical system (Abbou, 

HOZNEK et al. 2001)), prostate brachytherapy (Wei, Wan et al. 2004), image guided 

radiotherapies (Otto 2008), HIFU... 

More generally spoken, image guided therapies can be seen as a process of 

Perception - Decision - Action (Cinquin, Bainville et al. 1995). The Perception is 

performed through the direct visual perception of the physician but also through the 

several imaging devices or the several multidimensionnal sensors available on the 

several stages of the therapy. This information is fused to form a generic or patient 

specific intervention model in which the planning and the gesture will be performed. 

The Decision occurs during the development of an operational strategy and in the 

achievement of the gesture. The decision is performed on the model defined by the 

perception. The Action is then performed by the practician assisted by a navigation or a 

robotic system. However, this global framework is not so linear in the sense that the 

action can modify the perception and the decision in a loop (or collaboration) between 

the real world and the patient specific model (Haigron, Luo et al. 2009).   

The applicability and the success of image guided minimally invasive therapies 

depend on some specific technological key elements like image segmentation, image 

modality registration, visualization tools, motion or gesture tracking, real-time 

capabilities... These key elements will occur on all the several stages of the procedure 

workflow and will have a direct impact on its success.  

In the next chapter, we will describe a specific prostate cancer therapy, the HIFU 
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ablation. The several perception tools, the patient specific therapy planning strategy 

and the therapy itself will be described and discussed. 
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Chapter 2: HIFU therapy and registration 

problem 

The work of this thesis has been performed in the context of the ANR TecSan 

MULTIP project dealing with HIFU therapy. In this chapter, we will extend the 

analysis of prostate cancer HIFU treatment after the brief description done in chapter 

1. We will introduce not only the principle and workflow of the HIFU treatment, but 

also the components of a specific HIFU device. These details could help us to 

understand the role and importance of the problems that we are facing in this work. 

It's obvious that most of these problems are general in nature and may affect other 

medical applications (hepatocellular carcinoma treatment, thyroid tumors, etc.). But 

being restricted to prostate can better target our purpose. 

2.1 HIFU therapy 

2.1.1 Principle of HIFU thermotherapy 

 The idea of using ultrasound as a tool for non-invasive surgery appeared very 

early after the discovery of the biological effects of ultrasound waves. In the 50s, the 

Fry brothers effectuate work on the external treatment for neurological disorders. 

Directing the ultrasound on the treatment area, they noticed the occurrence of tiny 

lesions. However, the development of this type of therapy has been interrupted 

because of the absence of a sufficiently powerful and accurate visualization device. In 

the 80s, Lizzi, created a device for the treatment of glaucoma and intraocular tumors 

with more advanced technology. Extracorporeal shock wave lithotripsy is another 

high-energy ultrasound technology for the treatment of kidney stones which has been 

applied for the first time on humans in 1980. From the 90s to now, therapeutical 

ultrasound applications had a rapid growth. The ultrasound is considered as a mean of 

generating heat in a non-destructive way. Alone or in combination with other 

therapies, ultrasound generates high energy beam for the ablation of tumoral tissues or 

for occlusion of vessels. There are many studies in this area, specifically for the 

treatment of liver tissue, the kidney tissue removal or the tissue destruction in the 

spleen and breast. Some research is also done to coagulate the vessels to stop bleeding 

or for the myocardial revascularization of heart muscle. Ultrasound is especially 

interesting in a therapeutical context due to its minimally invasiveness and 
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selectiveness e.g. intracavitary approaches, with laparoscopic, endoscopic or external 

and focus probes. 

 Urology and moreover the treatment of prostate cancer is probably the medical 

application field where the clinical use of HIFU is the most advanced. This 

application tries to destroy the prostate cells by heating. The principle of ultrasound 

thermotherapy is the following. The transducer sends continuous ultrasound waves to 

the tissues to be destroyed. The sound pressure variations produced by the transducer 

generate local tissue motion (expansion and contraction) whose amplitude is 

proportional to the pressure level. But the tissue response is not perfectly elastic. 

During its propagation in the environment, the acoustic wave amplitude decreases, in 

particular because of absorption. The energy loss of the pressure is then transformed 

locally as heat which increases the tissues temperature. In the case of a focused 

transducer, the concentration of the ultrasound beam produces a maximum pressure 

variation at the focal point. The intense absorption of ultrasonic pressure leads to a 

sudden and fast rise in temperature, destroying the cells located in the treated area by 

coagulation which induces the necrosis. The temperature rise occurred around the 

focal point, propagates also to the neighbor area by heat diffusion. This diffusion 

depends not only on the ultrasound pressure deposit but also on the duration of the 

exposure. 

 Due to its minimal invasive and no radiation property, HIFU technology plays an 

important role in prostate cancer treatment. Today, prostate therapies are the main 

clinical commercial application for HIFU, thanks to some new technological progress 

(piezoelectric technology, image processing, medical treatment method, etc.). Some of 

these improvements are particularly noteworthy: 

 

- Image guided therapy 

In past few years, HIFU therapy has taken benefit from the development of 

imaging technique. The medical images from different imaging modalities not only 

offer high resolution anatomical information for pre-operative planning, but also 

make it possible to obtain real-time image to guide the therapy during the 

intervention. 

High resolution images, such as computed tomography (CT), magnetic resonance 

image (MRI) and transrectal ultrasound (TRUS) images, may provide spatially 

localized information to support the surgical planning. 

Meanwhile, real-time imaging techniques like US make it possible to scan the 

organ during the intervention. The real-time imaging can display the surgery target 

(tumors, etc.) and the intervention tools (probe, etc.). It helps surgeons to guide the 

therapy on lesion area, to make some adjustments when the organ deforms, and to 



 

25 

control the therapy by temperature measurements. Usually, TRUS, fluoroscopy and 

MRI are used to estimate the prostate volume for surgery guidance. 

 

- Pre-operative planning 

With some high resolution imaging technique, the surgeon can now establish the 

specific anatomical model of a patient. According to the anatomy information, the 

surgeon will define the target to be treated and the zone which should be avoided. 

Usually, the organ will be divided into a series of blocks, and dose of each block 

could be decided by simulation. This step will establish the closets patient specific 

planning just before the intervention. In section 2.2, we will give a specific example 

of a pre-operative planning before HIFU treatment. 

 

- The evolution towards partial treatment or targeted tumors 

 The strategy of HIFU treatment today is totally devoted on the destruction of the 

whole prostate to prevent the recurrence of cancer, and on avoiding the surrounding 

tissues. This strategy is characterized by the complete loss of the organ’s 

physiological functions with some high risks of side effects (blood in urine, difficulty 

passing urine, etc.). As mentioned before, high resolution imaging technique and 

image guide therapy process allow the surgeons to delineate more and more precisely 

the tumor within the prostate. The focused treatment, which is not applied to the 

whole prostate but only focused on the tumor area, can be now considered. The 

prostate sparing treatment could destroy only the tumor and so minor the side effects. 

2.2 Ablatherm device and MULTIP project 

2.2.1 Ablatherm device and HIFU therapy 

 Several manufacturers are positioned in this technology area about HIFU prostate 

surgery, such as EDAP Technomed, Insightec, etc. EDAP is actually the market leader. 

Ablatherm, the clinical products of EDAP designed in collaboration with INSERM 

556 Lyon in the early 90s, is currently used for the treatment of prostate cancer by 

HIFU in Europe, Canada, Russia, Australia and South Korea. Since the first patient in 

1993, the number of treatments has been increasing (Fig 2.1). We will give a 

description of the Ablatherm and the associated therapy guidance based on the 

product sold today. It is obvious that it will continue to evolve in the coming years, 

significantly in the transducer part with the arrival of potentially CMUT (Capacitive 

Micromachined Ultrasound Transducers) technology, different transducer geometries, 

phased array transducers, more sophisticated data processing ... This presentation can 
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therefore quickly become obsolete. 

 
Fig 2.1 Evolution of the number of HIFU treatments since 2001 

(http ://www.edap-tms.com) 

 

The present device (Fig 2.2) is composed by a table on which the patient is 

positioned. This table supports the therapeutic and imaging endorectal probe. This 

equipment is completed by a control module which enables the surgeon to plan and 

check the treatment via a computerized system which guides the robotic endorectal 

probe. Figure 2.2 illustrates the endorectal probe used during the therapy. The 

therapeutical ultrasound piezoelectric transducers have the form of a spoon. In the 

center of the transducer is the ultrasound imaging part used for the therapy planning. 

This imaging tranducer has a central frequency of 7.5 MHz, while the therapeutical 

transducer generates ultrasonic waves with a frequency of 3 MHz. During the therapy, 

this probe will be covered by a degassed balloon filled by water which serves for the 

ultrasound coupling to the patient tissues. This liquid is set in a continuous flow in 

order to cool the probe and to preserve the patient’s rectal wall. 

 

 

Fig 2.2 Ablatherm device and probe for imaging and therapy 

(http://www.edap-tms.com). 

  

 During the therapy, the heat produced by the high intensity ultrasound usually 

causes the swelling of the prostate. A urethra resection is performed to prevent the 

compression by this swelling, and a catheter is introduced to ensure the urine flow. 

 



 

27 

Once the patient is installed on the bed, the endorectal probe is inserted within the 

rectum and positioned in front of the prostate. The treatment is divided into two steps: 

The lesion planning on an US volume (Fig 2.3 a) and the treatment by HIFU (Fig 2.3 

b).  

 

Fig 2.3 (a) Acquisition of ultrasound prostate (b) Treatment with 

HIFU (http://www.edap-tms.com). 

 

The planning step begins with a first acquisition of the prostate volume by an 

ultrasound scan. The ultrasound imaging device produces a set of equidistant and 

parallel slices (Fig 2.4 a) with a transverse resolution of 0.154 mm/pixel and a size of 

500×490. The ultrasound slices are then interpolated in the 3rd dimension to make an 

isotropic volume. It can be then displayed on the screen as an axial or a transverse 

plane. In the transverse plane (Fig 2.4 a), the operator annotates then manually the 

base and the apex. These annotations allow defining the treatment zone and moreover 

the safety distances in relation to the sensitive areas. Especially in order to preserve 

the sphincter at the apex to ensure continence, the treatment will not be applied to the 

area less than 6 mm from the apex. At the other side, the seminal vesicles at the front 

of the prostate (pubic symphysis side) do not present a risk, and no sequels have ever 

occurred in the bladder. The prostate is then divided into a series of blocks. On these 

blocks, the software proposes then a set of axial slices on which the operator 

annotates the rectal wall (Fig 2.4 b). Because the rectal wall is sensitive to 

temperature, a security distance of 3 to 8 mm to the wall is set to limit the lesions and 

avoid a fistula. For each defined area, the software will calculate the appropriate 

number of lesions.  
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Fig 2.4 Planning (a) Annotation of the base (U), the apex (A) 

and a margin of safety (L) on the transverse slice, (b) Definition of 

the rectal wall and a variety of lesions in the left lobe on an axial 

slice 

 

Once the treatment has been planned, the shooting phase can automatically begin. 

The planned area is covered by a set of 6 seconds long shots, interrupted by a waiting 

time of 4 seconds. The geometrical shape and the phased array of the therapy probe 

helps to focus the ultrasound beam to the previously defined points. The temperature 

reaches 85 to 100°C at the focal points. The lesion height range from 19 to 26 mm 

(anterior-posterior distance) enables the prostate height to be treated in a single pass. 

Between 400 and 800 adjacent elementary lesions are required to cover the whole 

prostate volume. The image of the processed slice is displayed in real time. A motion 

sensor keeps the distance between the lesion and the rectal wall. The cooling water 

temperature control ensures the patient safety. In case of some therapy failure or 

patient movement, the treatment will be paused with an alert message to the surgeon. 

 

Fig 2.5 Division of the prostate for a block processing. 

  

If the prostrate is big, the treatment must be performed in several blocks (Fig 2.5) 

because the prostate shape can deform during therapy (edema, etc.). In this case, a 

new sequence composed of ultrasound acquisition, pre-operative planning and heating 

is performed for each block. The treatment time is between 1.5 and 2.5 hours, 

depending on the volume of the prostate. 

The advantage of this technique is that it is precise and easy to control. It enables 

the surgeon to choose different treatment options, such as a complete treatment or 
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partial and nerve-sparing treatment. The HIFU therapy can be not only applied as a 

first intention treatment, but also employed in failure of a previous therapy 

(radiotherapy, brachytherapy, or a first HIFU treatment). According to these different 

situations, the treatment protocol will be adapted to avoid the risk of overheating, for 

example, already treated prostate should be less perfused and so will cool more slowly 

than normal tissues. 

In some cases, a tumor recurrence after HIFU treatment remains. It is mainly due 

to the margins taken at the apex to avoid the urethral sphincter damage. Because this 

area is only treated by heat diffusion, the tissue necrosis depends mainly on the 

patient’s tissue characteristics. 

2.2.2 MULTIP project and problem statement 

More and more research showed that radical prostatectomy surgery or 

radiotherapy often lead to side-effects (urinary incontinence, erectile dysfunction, 

bowel toxicity, for example) (Ahmed, Hindley et al. 2012). Because the diagnoses 

imaging (i.e. multi-parametric prostate MRI) will allow to discriminate the tumor 

more and more precisely in an early stage, the current trend is to perform focal 

therapy by only treating the tumor area within the organ (Eggener, Scardino et al. 

2007, Lazzeri and Guazzoni 2010, Rouvière, Gelet et al. 2012). A large volume 

treatment and time consuming procedure could so be avoided. In the future, the new 

HIFU device must be able to locate the tumor area and then to focus the ultrasound 

waves to this specific lesion area. 

The aim of the MULTIP project (Matrice de transducteurs Ultrasonores pour La 

Thérapie et l'Imagerie de la Prostate) is to improve the current device by using 

up-to-date piezoelectric technologies and image processing methods (Mari, Bouchoux 

et al. 2013). This new device must be more efficient in focal treatment of prostate 

cancer tumors. For this, the future device should comply the following requirement of 

clinical applications: 1) being small in size to be inserted into the rectum; 2) embed a 

guiding device such as an ultrasound imaging transducer; 3) enable a precise 

treatment of locate tumors while maintaining the global prostate treatment ability; 4) 

being used in the operating room by an urologist or radiologist. 

As a result of this project, some protototypes of a dual mode ultrasonic probe 

have been developed. The main ideas were to propose a new geometry of a 

multi-element therapy probe in order to deflect electronically the position of the US 

focus and to integrate in the middle of this probe a dual-mode (therapy and imaging) 

array. This imaging section will be used, as for the previous Ablateherm procedure, to 

plan and guide the treatment in the operating room. 
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Because the aim of the new probe is to allow a focal tumor treatment, the 

treatment planning and image guidance have to be modified according to the imaging 

capabilities. An US imaging system (embedded in the therapeutical probe or an even 

more dedicated TRUS with better resolution and post-treatments) is not able to locate 

the tumor within the prostate. So at contrary to the whole prostate treatment, the focal 

tumor therapy under US imaging guidance is not directly possible. For the moment, 

only MRI can be used to describe the prostate, its different zone and the tumor with 

sufficient contrast and resolution. The main idea for the therapy guidance in the 

MULTIP project is to use a clinical pre-operative T2 MRI volume to locate the tumor 

within the prostate and then to use this information within the US guided therapy. This 

fusion of information can be performed by registering the pre-operative T2 MRI 

volume to the pre-operative ultrasound images. 

The MRI prostate zonal segmentation and tumor delineation is a problem at itself 

and many research works are still devoted to this purpose (Ghose, Oliver et al. 2012). 

Some solutions exists, the simplest one is the delineation of the tumor by a radiologist 

or an urologist. Because the aim of this thesis is to propose a guidance strategy, we 

choose to consider the tumor delineation problem as solved, and we focus our work 

on the fusion of the preoperative MRI extracted information into the peroperative US 

volume. 

A MRI/US registration, which aligns the prostate in MRI volume to prostate in 

US volume, is necessary in HIFU focal prostate tumor treatment. The aim of this 

registration is to map the information about the tumor location from MRI to the 

preoperative US image used to plan and guide the process. In the following section, 

we will introduce the framework of MRI/US registration research. 

2.3 MRI/US registration problem - presentation of the 

research framework 

2.3.1 MRI for pre-operative imaging 

As we mentioned in the previous section, a pre-operative planning is necessary 

before the prostate cancer therapy. In this planning the target and the several operative 

steps of the intervention are defined. Usually, the surgical decision about the future 

intervention is based on some clinical information which is not necessary based on 

spatial or anatomically information. However, in the case of prostate focal 

intervention, MRI techniques may offer some advantages, specifically because they 

provide spatially localized information to help the planning, particularly for robotic or 
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image guided therapies. 

MRI offers a suite of sequences to enable the prostate cancer detection, grading, 

spatial localization, etc. For surgical planning, a MRI is typically performed 6–8 

weeks after a prostate biopsy to avoid the effect of hemorrhage artifact. Usually 

endorectal MRI is used because it provides better spatial resolution than 

transabdominal MRI. The aim of the conventional MRI includes providing the entire 

prostate size, distinguishing the zonal anatomy, the seminal vesicles and the rectum, 

detecting the enlargement of local lymph nodes, etc. Several MR sequences are 

available for this purpose. On T1 weighted sequences, the bladder and seminal 

vesicles are homogeneously gray, the fat surrounding the organ has hypersignal, and 

the bladder which is filled with urin is in hyposignal. On T2 weighted images, the 

prostate is divided to bright peripheral gland, heterogeneously bright central gland and 

anterior fibromuscular stroma. Therefore, the T2 MRI could be used to identify the 

prostate zonal anatomy and the extracapsular integrity. On T2 MRI image, the lesions 

of prostate are typically hypointense in the peripheral zone which is normally 

hyperintense, or may appear as homogenous and with low signal intensity in the 

transition zone which is normally heterogeneous. In our case, we chose T2 weighted 

MRI for the pre-operative planning because of its ability of locating the lesion in the 

prostate (Fig 2.6). 

 

  

(a)                     (b) 

Fig 2.6 Axial (a) and coronal (b) T2 MRI of the prostate of a 

65-year-old man with a cancer in the left peripheral zone (Tan, 

Margolis et al. 2012), and a Gleason Score of 3 

 

It should be notice that the MR imaging techniques to locate the tumor are still in 

development. Some functional imaging techniques such as diffusion weighted 

imaging, dynamic contrast imaging, diffusion tensor imaging, and MR spectroscopy 

could be complementary techniques to conventional MRI, especially to locate the 

tumor (Alonzi, Padhani et al. 2007) (Aigner, Pallwein et al. 2007) (Beyersdorff, 

Taymoorian et al. 2005) (Gerst, Touijer et al. 2005) (Sciarra, Barentsz et al. 2011) 

(Langer, van der Kwast et al. 2009). Although our work is based on T2 weighted MR 

image, it could be adapted to other functional MR images. 
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2.3.2 Ultrasound for inter-operative imaging 

Transrectal ultrasound (TRUS) can be used before the intervention for biopsy 

guidance. But as mentioned in the Ablatherm procedure, in our case, TRUS is used in 

the intervention as the image to estimate the prostate volume and plan the location of 

the future HIFU spots. 

The imaging transducers are part of the therapeutic probe. The probe is inserted 

within the rectum and positioned in the front of the prostate. The image transducers 

have a central frequency of 7.5 MHz and can acquire an axial circular section. A 

translational movement of the probe allows to scan the prostate as a peroperative 

TRUS volume. Although TRUS is able to image the whole prostate gland in real-time, 

it still has limitations to discriminate the several prostate zone and the tumor because 

of its low sensitivity. In our case, the quality and resolution of the acquired TRUS 

volume are even lower that actual TRUS, because the dual mode transducers have to 

make a compromise between the imaging capabilities and the therapeutical efficiency. 

 In an US image, the tissues are characterized by speckle. Speckle arises from the 

signal interference caused by tissue micro-inhomogeneities (tissue cells, capillaries, 

blood cells, etc). This coherent summation of backscattered signals forms a spatial 

distribution of speckle that is specific to the density and distribution of the scatterers 

and thus to the nature of the tissue. The contrast itself between the prostate and 

surrounding organs is usually not high enough to well distinguish the tissues 

boundaries. Moreover, the inter-operative TRUS image is affected by the shadow of 

the urethral catheter used to protect the urinary outflow during the therapy. 

Although the TRUS is the most convenient way to image prostate, it can not offer 

enough information for a focal prostate cancer HIFU therapy. The important 

information, such as the prostatic structures and the tumor itself are not visible. This 

information should be acquired by another imaging method, and mapped to the 

peroperative TRUS image by registration. 

2.3.3 MR-US image registration 

We already notice that a precise pre-operative planning and an image driven 

guidance during the intervention are needed in a minimally invasive therapy. 

Although the probe of the HIFU device offer real-time ultrasound image of the 

inter-operative processing, the ultrasound images could not offer enough information 

about the lesion detection because of its low resolution and speckle distribution. On 

the other hand, we can get high quality information about the prostate anatomy and 

the prostate tumor on a preoperative T2 MRI. An obvious solution is to register the 
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pre-operative information from MRI onto the peroperative ultrasound images to 

improve the precision of the therapy. To solve this problem, we need to develop an 

algorithm to make the registration between 3D MRI and 3D ultrasound images. The 

estimated transformation is then used to propagate the information of the tumor area, 

which could be detected on MRI, to the ultrasound image in order to label the tumor 

area during the therapy (Fig 2.7). 

 

 

Fig 2.7 TRUS-MR registration. The information of tumor position 

can be mapped from MRI to TRUS image. 

 

Image or volume registration is one of the key steps of several image processings. 

It helps overlaying images of the same scene obtained from different imaging 

conditions (different time, viewpoints or sensors), and align these images 

geometrically into a common referential. Usually one image is considered as the 

reference image, the other image, called the moving image, will be geometrically 

transformed in order to match as close as possible to the reference image. In the past 

decades, several types of methods have been introduced for the image registration. 

See (Maintz and Viergever 1998) (Pluim and Fitzpatrick 2003) (Zitova and Flusser 

2003) for some surveys. 

Generally, most of the registration methods have a similar workflow:  

- Define a similarity measure between the reference and the moving images. 

- Apply some geometrical transformations (global or local) to the moving 

image.  

- Apply an optimization method which allows finding the geometrical 



 

34 

transformation parameters that maximize the similarity measure between 

the two images. 

2.3.3.1 Geometrical transformations 

According to the geometrical transformations used for the registration, the several 

methods found in the literature can be classified as global (sometimes called rigid) or 

elastic registration. 

- Global registration transformations are characterized by the fact that only a 

global geometrical transformation is performed on the moving image. This 

transformation can be the combination of rigid transforms (translation and 

rotation) and/or global non-rigid transforms, such as scaling and/or affine 

transform. 

- Elastic transforms are related to the elasticity theory and they describe local 

deformations. The image content is considered as continuous bodies and 

different local deformations are applied on its different part. Several model 

of the deformation field are proposed in the literature going from the 

simplest (and fast) basis function extension (spline, etc.) to physical models 

(fluid flow, etc.). A non exhaustive survey can be found in (Holden 2008). 

 

In our specific problem, the MRI-US registration, the deformation of the prostate 

is a problem which cannot be ignored in the registration framework. In fact, unlike as 

in the pre-operative situation in MRI, the prostate gland and its surrounding organs 

are deformed during the HIFU therapy because of the probe size, the balloon or even 

by the therapy itself. After a short term of the therapy, the focal ultrasound heating the 

gland will lead to an edema within the prostate, and deform it. This situation leads us 

to consider an elastic registration scheme. 

2.3.3.2 Similarity measure 

The similarity measure is the other key point of the several registration methods. 

Generally, two kind of information could be important in image registration: the 

voxels intensities and/or some image features. On one hand, all the image information 

is available in the distribution of its values. Some global intensity-based statistics 

analysis can then be used to estimate and maximize the similarity of the moving and 

the reference images. On the other hand the content of an image can offer some 

features that could be easily detected on both images by an image analysis method. 

These features are then used in a feature-based registration scheme. In more details: 
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- Intensity-based registration estimates the transformation by optimizing the 

measures calculated directly from the voxel values. This set of voxel 

similarity measures includes the sum of squared differences (SSD) (Hajnal, 

Saeed et al. 1995) (Hajnal, Saeed et al. 1995), correlation coefficient (CC), 

ratio image uniformity (RIU) (Woods, Cherry et al. 1992, Woods, Grafton 

et al. 1998) and partitioned intensity uniformity (PIU) (Woods, Mazziotta et 

al. 1993). Some information theory techniques consider the registration as 

trying to maximize the shared information between the moving image and 

fixed image. These information based measure class, includes joint entropy 

(Maes, Collignon et al. 1997), entropy correlation coefficient (Maes, 

Collignon et al. 1997), mutual information (MI) (Maes, Collignon et al. 

1997), normalized mutual information (Studholme, Hill et al. 1999), point 

similarity measure based on MI (Rogelj, Kovačič et al. 2003), histogram 

energy (Bro-Nielsen 1997), correlation ratio (Roche, Malandain et al. 1998) 

and Woods criterion (Woods, Mazziotta et al. 1993). They are widely used 

in medical image registration, especially for inter-modality images 

registration.  

- In feature-based registration, the measures to be optimized are not provides 

by the voxel intensities but the by the structure features in images. In 

medical image registration, the simplest features are the manual fiducial 

marks. In this case, special fiducial points are labeled on some special 

positions in both moving and reference image sets, and these image sets are 

aligned by the determination of transformation (rigid or elastic) that 

minimizes the distance between these fiducial points (Kaplan, Oldenburg et 

al. 2002) (Cool, Bax et al. 2011) (Natarajan, Marks et al. 2011). Other 

structure information, such as contour and surface, are also important 

features which can be used as registration measures. In (Narayanan, 

Kurhanewicz et al. 2009), the prostate surfaces are extracted from both 3D 

TRUS and MR images, and then a deformable surface registration is 

performed by using an adaptive focus deformable model (AFDM). In 

(Reynier, Troccaz et al. 2004), the rigid and elastic registrations are applied 

by aligning 3D point clouds constructed by segmenting prostate contours 

on TRUS and MR images. 

In our specific case, both approaches are problematic and have some specific 

difficulties. We chose to explore an intensity-based and a feature-based registration 

approach. In the following part we will analyze the difficulties of these both 

approaches and give a brief description of our solutions. 
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2.3.4 Intensity-based registration 

The most obvious solution to register the prostate from different imaging 

modalities is to use the intensity information contained in both images. This class of 

method is often used in medical imaging problems because no previous feature 

extraction is necessary, it can handle the registration of different modalities and its 

relative robustness (no influence of a feature extraction error, high number of 

information taken into account during the similarity measure estimation, etc.). 

The difficulty in our case is that in ultrasound images the information about the 

several organs consists of a spatial speckle distribution and not on a specific gray 

level distribution. Some work has been done in cardiac ultrasound imaging to use 

intensity based matrix for US/CT registration (Huang, Moore et al. 2009) (Huang, 

Hill et al. 2006) (Sandoval and Dillenseger 2013) (Sandoval Z 2013). But in this 

ultrasound cardiac registration framework, only 2 structures have to be registered with 

to extreme speckle density cases: mainly the myocardium (speckle) and the heart 

chambers or main vessels (no speckle).    

In our work, we will consider the speckle distribution in the ultrasound image as a 

texture characteristic for each structure. We will introduce a texture descriptor which 

could convert the speckle information to an intensity information. Some of the 

prostatic US image characteristics have to be taken into account for the choice of a 

tissue descriptor. The size (or scale) of speckle increases according to the distance 

from ultrasound probe, because of ultrasound beam form. Moreover, for circular 

probes, the ultrasound beam directions radiate from the probe center due to its 

geometry. The speckle orientations are so different, depending on its position across 

the image. This situation indicates that the texture descriptor should at least have 

rotation and scaling invariant properties. In Chapter 3, we will introduce such a 

texture descriptor based on moment invariants on rotation and scaling. 

 Although moment invariants based texture descriptor could extract regional 

information, and be applied to some TRUS image registration. But in the case of 

TRUS-MR registration, there is no such a texture distribution in T2 MR image. The 

prostate intensity distribution in MR image is much more inhomogeneous: the 

intensity of center gland is much lower than apex area, and the prostate boundary area 

has the similar intensity as the surrounding organs. So we did not continue 

intensity-based registration in our work. 
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2.3.5 Feature-based registration 

The necessary condition of a feature-based registration method is that common 

information is available on both imageries. In medical images, these features usually 

are related to the position of bones or on other organ surfaces or on some other spatial 

anatomical structures, even on external implanted landmarks. If we can easily detect 

them on both moving and reference images, and simplify them to geometric features 

such as points, lines or surfaces, a geometrical transform could be estimated based on 

the corresponding relationship of these features. 

But in our case, the registration between MRI and ultrasound images for prostate 

cancer surgery, the problem is more complicated. Since the moving and reference 

images are from different imaging modalities, they share little common information. 

For example, because of the speckle distribution and low resolution of ultrasound 

image, there are no much information on the prostate structures except the external 

surface and partially the urethra. On the other hand, T2 MRI has a good quality and a 

higher resolution especially in the image plane. It is very rich in features like the 

several prostate zone, the tumor if any, etc. However, when dealing with common 

information with US, it is mainly the prostate surface which can be used as a common 

feature. We propose to segment the prostatic surface both in US and MRI and then 

perform an elastic registration of this common information. Some method has been 

proposed to extract the surface of prostate in US (Ladak, Mao et al. 2000) (Gong, 

Pathak et al. 2004) (Shen, Zhan et al. 2003) (Zhan and Shen 2006) (Garnier, Bellanger 

et al. 2011). But in MRI, the surface of prostate is in hypo-signals and also share 

similar values with neighbor organs, such as bladder wall and the rectum. Moreover, 

MRI has no homogeneous intensity within prostate gland. It is not easy to extract 

some common features directly from the ultrasound image and the MRI. The feature 

based registration problem will then be a segmentation problem (for a review of the 

segmentation method in prostate MRI and a justification of the proposed method, see 

section 2.4). 

The registration framework we will propose in chapter 5 is based on the 

following framework (Fig 2.8): 

 

- Extract the surface prostate surface information from ultrasound images. 

For this we will use the work done at our lab by Carole Garnier which 

proposed active contours and Optimal Surface de Detection (OSD) for the 

extraction of the prostatic surface in MRI 3D ultrasound image (Garnier, 

Bellanger et al. 2011).  
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- Extract the surface in MRI. This part represents one of the contributions of 

this PhD Thesis. We adapted the OSD method to a multi-objects (prostate, 

bladder and rectum) surface detection in T2 MRI (see chapter 4). 

- Perform the 3D elastic registration between both extracted surfaces (TRUS 

and T2 MRI).  

- The 3D deformation field estimated from this surface-to-surface elastic 

registration will be used for the fusion of the tumor location information 

into the inter-operative US volume (see chapter 5). 

 

 

Fig 2.8 surface-to-surface registration framework 

2.4 The segmentation 

Prostate surface is an important measure for registration, but the surface 

segmentation itself is a challenging problem in medical image processing area. The 

manual segmentation by surgeon is time consuming and its accuracy depends on the 

specific surgeon. Moreover, the manual segmentation only offers contours on 2D 

slices, but not a 3D surface which is necessary in our registration. In the past few 

years, several prostate segmentation methods have been developed for different 

medical images (CT, MRI, TRUS) (Ghose, Oliver et al. 2012). Our work will only be 

focused on prostate segmentation on TRUS and T2 MR images. In this section, we 

will show the characteristic of TRUS and T2 MR images and the difficulties of their 

respective segmentation. After the review of some solutions given in the literature, we 

will make a brief description and justification of our work on prostate segmentation. 

2.4.1 Ultrasound image segmentation 

Even with a relative good 3D spatial resolution, TRUS image segmentation is a 

difficult task, due to its low contrast, speckle distribution and imaging artifacts. To 

improve the performance of segmentation, two kinds of prior knowledge are 

considered to be used: the shape and contour information of the prostate, and the 
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speckle distribution of TRUS image. Because of the low contrast and imaging 

artifacts, the prostate boundary may be not clearly defined in some special position 

near the bladder and rectum. Some prior knowledge can be given to initialize the 

contours and build a shape or contour based model. Ladak et al. (Ladak, Mao et al. 

2000) interpolate four manual defined points on the prostate boundary to generate a 

discrete dynamic contour (DDC) (Lobregt and Viergever 1995), and segment prostate 

of 2D ultrasound images. In (Ding, Chen et al. 2003), the DDC is used in prostate 

segmentation in 3D ultrasound image, and the final contour on one slice is used to 

initialize the contours on neighbor slices. Hodge et al. (Hodge, Fenster et al. 2006) 

construct an active shape model (ASM) (Cootes, Hill et al. 1994) based on manual 

segmented contours. They divide the prostate mid gland images intro three regions 

and generate three shapes from each of them. Hu et al. (Hu, Downey et al. 2002) 

initialize an ellipsoid with manual defined axes, then they warp the ellipsoid to cross 

six manual marked points, and at last they deform the ellipsoid by internal and 

external forces to make the segmentation. Several other methods (Ding, Wei et al. 

2006) (Badiei, Salcudean et al. 2006) (Saroul, Bernard et al. 2008) (Sara Mahdavi, 

Chng et al. 2011) are proposed to segment prostate by fitting curves (usually ellipsoid 

curves). Betrouni et al.(Betrouni, Vermandel et al. 2005) combine adaptive 

morphological filtering and median filtering to enhance the prostate contours, then 

they use a heuristic optimization algorithm on the contour initialized from a prostate 

model. In the work made in our group by Garnier (Garnier, Bellanger et al. 2011), a 

prostate surface mesh is initialized with eight manual marked points, then two kinds 

of algorithms have been explored for the prostate segmentation: the first algorithm, a 

DDC method, used internal forces, external forces and damping forces to push the 

initial mesh nodes to the prostate surface; the second algorithm, optimal surface 

detection (OSD) method, construct a graph by adding nodes and arcs based on the 

initial mesh, and apply a graph cut algorithm to segment prostate. According to the 

results in (Garnier, Bellanger et al. 2011), OSD based segmentation show higher 

accuracy. DDC based segmentation accuracy is a bit lower because it is sensitive to 

initial contour position, meanwhile it could be applied to OSD based segmentation 

results to improve final segmentation performance. The OSD based TRUS 

segmentation framework will be used in our work to obtain the prostate surface from 

TRUS image for the surface based registration scheme. 

As we mentioned earlier, the TRUS image is composed by speckle. A specific 

tissue is so characterized by a specific speckle spatial distribution, but each speckle 

can have its own scale and orientation. One solution could be considering these 

speckles as a kind of texture distribution, and extract useful information with texture 

analysis. Zaim et al. (Zaim 2005) describe the ultrasound image by using texture 
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features, spatial information and gray-level values, and then use a self organizing 

neural network to segment the prostate. Richard et al. (Richard and Keen 1996) 

extract the texture features from ultrasound image, and use the mean shift algorithm to 

cluster these features and segment the prostate. Zhan et al. (Zhan and Shen 2003) use 

a Gabor filter to capture texture features of ultrasound image, and classify these 

features by SVM. These classified texture feature space are used as external force in a 

deformation model to segment the prostate. In (Zhan and Shen 2003), the same group 

proposes a method to combine texture and edge information to improve the 

performance of segmentation. On our work about the intensity based registration with 

the moment invariants texture description, we noticed that moment invariants with 

special order and repetition can give both regional and boundary information. 

Moment invariants can so be used to adapt to ultrasound the segmentation techniques 

where boundary information alone or in combination with regional information is 

needed, i.e. active contours, deformable models, level sets, etc. In chapter 3, we tried 

to prove the previous assessment, without loss of generality, by using the two kinds of 

moment-invariant features in a min-cut/max-flow graph cut algorithm.  The 

preliminary segmentations results on simulated and real ultrasound images will 

demonstrate the benefits of the joint region- and boundary-sensitive moment-invariant 

texture features. Moment invariants are so eligible to be used to adapt techniques 

based on the combination on regional and boundary information to the segmentation 

of ultrasound images. 

2.4.2 T2 MRI segmentation 

T2 MR image of the prostate has a high resolution in the image but a low 

resolution in the third direction. As we noticed before, the intensity distribution inside 

the organ is inhomogeneous due to its complex structures and the prostate surface has 

a hyposignal. A traditional edge detector operator can detect many false boundaries on 

T2 MRI. Some model based segmentation methods, such as active contour model, 

active shape appearance model, are introduced to solve the problem. For example, 

Samie et al. (Samiee, Thomas et al. 2006) estimate the average gradient values based 

on prior shape information, and this information is used to trace the boundary of the 

prostate. Flores-Tapia et al. (Flores-Tapia, Thomas et al. 2008) construct a feature 

space from Haar wavelet coefficients in a multi-resolution framework, and use some 

prior shape information to trace prostate boundary in this feature space. Cootes et al. 

(Cootes and Taylor 2001) propose the active shape model (ASM) framework, and 

give a prostate segmentation as application of this model. Zhu et al. (Zhu, Williams et 

al. 2007) segment the prostate on MRI with a hybrid model of 2D and 3D ASMs. 
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Vikal et al. (Vikal, Haker et al. 2009) build an average shape model from manual 

contours, and segment the prostate based on this model. Tsai et al. (Tsai, Yezzi Jr et al. 

2003) merge texture and shape into a level-set framework to segment prostate. Makni 

et al. (Makni, Puech et al. 2009) use a deformation model in a probabilistic 

framework initialized by a statistical shape model. Using our experience with the 

TRUS segmentation, in chapter 4 we will try to apply the OSD based segmentation on 

T2 MRI. In this approach we will introduce some shape prior information in this 

approach.  

The other difficulty of the T2 MRI prostate segmentation comes from its 

surrounding organs. The capsule of prostate, which is a hyposignal in T2 MRI, has the 

same level intensity as outer and inner structures. In some slices around prostate to the 

apex and base, the segmentation accuracy is affected by the bladder and the rectum. 

Song et al. (Song, Liu et al. 2010) has proposed a multiple objects OSD framework to 

segment prostate and bladder in CT volumes. Inspired by Song’s work, we propose a 

multiple OSD segmentation framework, which contains the information from bladder 

and rectum boundaries. Some prior knowledge, such as the thickness of the bladder 

wall, are introduced into this framework to improve our segmentation. 

2.5 Summary: the contribution of thesis 

In this chapter, we reviewed the HIFU prostate therapy process, and introduced 

the MULTIP project. This information is helpful to understand the role of TRUS-MR 

registration in a HIFU focal prostate cancer therapy. 

Our first contribution of this thesis is to propose a moment invariants based 

texture descriptor for TRUS image. This texture descriptor is invariant to speckle 

rotation and scaling in the ultrasound image. It can be used to generate region 

information for intensity based registration. As we explored this descriptor, we found 

that the invariant values with special orders and repetitions can not only characterize 

the regional information of textures but also can show the boundary between different 

textures. In order to prove this ability of moment invariants, we encode both regional 

and boundary information into a graph cut segmentation framework, and give primary 

segmentation results on simulated and real ultrasound images. This part of work is 

already published in (Wu, Garnier et al. 2010) (Wu, Shu et al. 2013). 

Another part of work made in this thesis is about prostate segmentation on T2 

MRI. We adapt the work in (Garnier, Bellanger et al. 2011) for US data to build an 

OSD based segmentation framework on T2 MRI. After the initialization of a prostate 

surface mesh and the construction of a graph, three kinds of weights are introduced to 

assign shape/boundary information to the graph. At last, the energy of graph is 
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minimized by graph cut algorithm. We have published this work in (Wu, Garnier et al. 

2013). In order to improve the segmentation performance, we also build graphs on the 

bladder and the rectum, and segment them together. The prior information and 

constraints are encoded into the graphs in order to avoid the prostate surface leakage 

to the surrounding organ area. 

The third part of our work is about TRUS-MR registration. We segment the 

prostate surface on TRUS and MR images based on our previous work. After a rigid 

registration to align prostate surfaces from TRUS and MR, an elastic registration 

based on Demons algorithm is used to warp MR surface to TRUS surface. The 

generated deformation field could be used to transfer 3D MR preoperative 

information into the peroperative TRUS volume. 
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Chapter 3: Moment invariant based texture 

analysis 

In intensity based registration, the main hypothesis is that a tissue is described by 

a specific intensity distribution. But in ultrasound images, tissues are characterized by 

their speckle spatial distribution with huge intensity variation. The main idea is to use 

a texture description method which is able to translate a specific speckle distribution 

into a constant value. This value can then be used in an intensity based similarity 

measurement metric like Mutual Information, etc. 

 In this chapter, moment invariant based texture descriptors are introduced to 

characterize the features of ultrasound images. These moment invariant based 

descriptors could extract texture features from ultrasound image which are invariant 

to rotation and scaling. This property could be used to compensate the impact of 

speckle shape rotation and size changing in the ultrasound images. Three kinds of 

moment invariants with different basis functions will be investigated in our work. 

First we will give the definitions and principles of invariant moments. The ability to 

extract a feature from the speckle distribution despite a change in scale and rotation 

will be evaluate on the Brodatz texture database, a simulated synthetic ultrasound 

image and a real ultrasound image. Beside this expected property, we have also 

noticed that the moment invariants based texture descriptors should be able to 

describe not only regional information but also the boundaries of the objects in texture 

image. This non expected property can be used in an ultrasound image segmentation 

scheme. We proved this possibility by combining these regional and boundary 

information in a graph cut scheme, and give an example of segmentation.  



3.1 Texture analysis on ultrasound image 

3.1.1 Ultrasound image 

Ultrasound has a wide usage in clinical applications, not only as a primary 

investigation modality but also as a complement to other diagnostic procedures. The 

principle of ultrasound imaging is to send high frequency sound pulse into the body, 

then to record the echoes backscattered from the structures and tissues within the 

body, to process and to display them on the monitor in real time. Ultrasound imaging 
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plays an important role in the clinic due to its real-time imaging modality, non- 

ionizing radiation, and the ability of measuring and imaging the blood flow. 

 

 

Fig 3.1 Ultrasound image 

 

As a kind of coherent imaging, ultrasound imaging has an inherent characteristic 

that the tissues are described as a distribution of speckle. Speckle is a random, 

deterministic, interference pattern in the ultrasound image. It formed from the 

interferences between the reflected ultrasound beams from sub-resolution scatterers 

within a tissue. Speckle is usually considered as a negative impact on ultrasound 

imaging due to its reduction in contrast resolution. It is responsible for the poorer 

effective resolution of ultrasound compared to other medical images (CT, MRI, etc). 

But the sub-resolution scatterers (tissues cells, capillaries, blood cells, etc.) 

distribution is specific to a tissue. So the coherent summation of backscattered signals 

forms a spatial distribution of speckle that is specific to the density and distribution of 

the scatterers and thus to the nature of the tissue. 

Several speckle spatial distribution models have been proposed in the literature 

according to the level of organization and the density of the scatterers within the 

tissues (Rayleigh-, Rician-, K-, Nakagami-distributions, etc). So the speckle has been 

used in several ways to characterize the tissues (Noble and Boukerroui 2006). Some 

authors tried to estimate the speckle distribution model by some statistics on the gray 

level intensities (i.e. (Seabra, Ciompi et al. 2011)), but this class of methods overlooks 

the spatial nature of the distribution. Treating the speckle distribution as a kind of 

texture, and processing ultrasound image by using texture analysis method could be a 

solution. 

3.1.2 Texture analysis 

Image texture is usually defined as a function of the spatial variation in pixel 

intensities. The analysis of texture can be useful in a variety of applications and has 

been a subject of intense study by many researchers, and one of them is the 
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recognition of image by using texture properties. In some cases, texture is the most 

important visual cue in identifying the several types of homogeneous regions. 

Texture analysis has been traditionally used to characterize the spatial distribution 

of patterns. Beside studies who aimed at directly estimate the speckle distribution 

(Shankar 2004), the use of general texture analysis methods had some successes in 

ultrasound image segmentation (Noble and Boukerroui 2006). However, texture 

analysis needs relatively large windows to perform the features estimation, this leads 

to lack of precision, especially on the tissues boundaries. Other US image 

characteristics can also make the feature extraction more problematic. Because of the 

ultrasound beam form, the size (or scale) of the speckle increases according to the 

distance to the ultrasound probe (Fig. 3.1). For circular probes, the speckle also has a 

concentric organization, so a single speckle has an orientation depending on its 

position in the image (Fig. 3.1). In these cases, a texture analysis tool should be able 

to extract features which are invariant to both scale and orientation. Some attempts 

have been proposed using Gabor filters (Zhang, Tan et al. 2002, Han and Ma 2007).  

In ultrasound image analysis, multi-scale and multi-orientation two-dimensional 

(2-D) Gabor filter banks (composed of six different orientations and two different 

scales) have been used to characterize the prostate boundaries and incorporate into a 

Kernel Support Vector machine for texture differentiation (Shen, Zhan et al. 2003, 

Zhan and Shen 2006). The likelihood obtained by this means is then used to drive a 

deformable surface model; however, this scheme is relatively complex because it 

needed a filter bank on one location. We will try to find a new texture indicator which 

is inherently invariant to rotation and scale which can characterize the speckle 

distribution in one pass. Moment based methods could be good candidates. 

3.2 Moment invariant based texture analysis 

Moment-based texture analysis has been introduced in the literature. The main 

idea of this method is the extraction of some features by computing a set of moments 

on regions of interests (ROIs) of the texture images (Fig 3.2). For example, low order 

geometric moments correspond to a geometric meaning of texture in the ROI such as 

mass, centroid and principal axes. Other classes of moments are not directly related to 

some specific properties of an image, but their abilities of texture characterization 

have been confirmed (Bigun and du Buf 1994), (Tuceryan 1994). In his pioneer work, 

Hu proposed to derive a set of seven 2-D moment invariants from the classical 

geometrical moments according to translation, rotation and scale (Hu 1962). Hu's 

moments have been widely used for pattern recognition, but could also be used for 

texture analysis.  
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Moments with orthogonal basis functions (e.g. Zernike or pseudo-Zernike 

polynomials) can represent an image by a set of mutually independent descriptors, 

and thus have a minimal amount of information redundancy. They were shown to 

have better image description capability and to be more robust to noise than geometric 

moments. In the past few years, the construction of orthogonal moment invariants 

with respect to geometric transformations such as translation, scale and rotation has 

been investigated (Chen, Shu et al. 2011) (Zhang, Dong et al. 2010) (Zhang, Shu et al. 

2010). These moment invariants have been applied to pattern recognition. However, 

to our knowledge, no work has been performed using these moment invariants for the 

texture analysis. In this section, we will introduce three moment invariant descriptors. 

They all satisfy the requirement of ultrasound image texture analysis: invariant to 

rotation and scaling. 

 

Fig 3.2 Moment based texture analysis 

3.2.1 Orthogonal moments 

In this section we will explore 3 classes of orthogonal complex moments Zernike, 

Pseudo-Zernike and Orthogonal Fourier-Mellin moment. 

 

Zernike moments 

The Zernike moment of order p  with repetition q  of  ,f r   is defined as: 
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where  ,p qR r  is the real-valued radial polynomial given by 
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Pseudo-Zernike moments  

The pseudo-Zernike moment of order p  with repetition q  of image intensity 

function  ,f r   is defined as (Teh and Chin 1988): 
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where   denotes the complex conjugate, and  , ,p qV r   is the pseudo-Zernike 

polynomial of order p  with repetition q  given by: 
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and the real-valued radial polynomial  ,p qR r  is defined as 
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Orthogonal Fourier-Mellin moments 

The Orthogonal Fourier-Mellin moment of order p  with repetition q  of an 

image intensity function  ,f r   is defined as (Sheng and Shen 1994) 
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where  pR r  is a set of radial polynomials given by 
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3.2.2 Orthogonal moment invariants 

According to (Ghorbel, Derrode et al. 2006), the most important properties to be 

accessed by image descriptors are: 

- Invariance against some geometrical transformations (translation, rotation, 

scaling);  

- Stability to noise, to blur, to non-rigid and small local deformations;  

- Completeness. 

In the past decades, the construction of moment invariants and their application to 

pattern recognition have been extensively investigated (Li 1992) (Jin and Tianxu 2004) 

(Xu and Li 2008) (Chim, Kassim et al. 1999). 
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Complex moments are inherently invariant under image rotation, as an example 

with Zernike moments, when an image undergoes a rotation of angle the Zernike 

moments of the transformed image are given by
,

f jq

p q
ZM e

 . Thus, the magnitude of the 

Zernike moment, i.e.
,

f

p q
ZM , is invariant to rotation. This can be generalized to any 

complex moments. However, as indicated by Flusser (Flusser 2000), the magnitudes 

do not generate a complete set of invariants, and completeness is an important 

property for assessment of image descriptors. Additionally, our three original 

orthogonal moments are not invariant to image scaling. To solve this problem, the 

normalization process (Khotanzad and Hong 1990) is often used to achieve the scale 

invariance. Several moment invariants developed in (Chong, Raveendran et al. 2003) 

(Chong, Raveendran et al. 2004) (Zhu, Shu et al. 2007) with scale invariance perform 

better than the classical approaches. But all these moment invariants above do not 

have completeness property. In (Chen, Shu et al. 2011) (Zhang, Dong et al. 2010) 

(Zhang, Shu et al. 2010), the complete set of moment invariants are construct based 

on ZMs, PZMs and OFMMs (a proof of the invariance can be found in appendix A). 

These image descriptors not only are invariant to image rotation and scaling, but also 

have property of completeness. Theoretically, they could be good texture descriptors 

on ultrasound image. 

 

Zernike moment invariants 

A complete set of Zernike moment invariants (ZMIs) with respect to image 

rotation and scaling of order p  and repetition q  (where 2p q m   with 0m  ) 

of an image intensity function  ,f r   has been constructed as (Chen, Shu et al. 

2011): 
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Pseudo-Zernike moment invariants 

A complete set of pseudo-Zernike moment invariants (PZMIs) with respect to 

rotation and scaling of order p  and repetition q  (where p q m   with 0m  ) 

has been constructed as (Zhang, Dong et al. 2010): 
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Orthogonal Fourier-Mellin moment invariants 

A complete set of Orthogonal Fourier-Mellin moment invariants (OFMMIs) with 

respect to rotation and scaling of order p  and repetition q  of an image intensity 

function  ,f r   has been constructed as (Zhang, Shu et al. 2010) 

 2

, , , ,
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where ,

f

k qOFMM  is the original Orthogonal Fourier-Mellin moment. 

 1,1arg f

f OFMM  , 0,0

f

f OFMM  , ,p lc  and ,l kd  are given by: 
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3.2.3 Evaluation of the invariance properties of the moments 

The invariance of moment invariants have been proved theoretically (see 

Appendix). Equation (48) of Appendix shows that the complete sets of moment 

invariants are linear combinations of their original moments. These moment 

invariants could offer a feature space equivalent to the feature space extract by the 

original moment functions, but also with some new properties useful for texture 

analysis. In this section, we will evaluate their texture rotation and scaling invariance 

abilities on different materials. 
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Fig 3.3 Texture images from Brodatz database, from left to right: 

D4, D9 and D17 (http://www.ux.uis.no/~tranden/brodatz.html) 

 

We choose the D4, D9 and D17 images from the Brodatz database to evaluate the 

texture analysis: the first two types offer some random distributed texture, and the last 

type contains a kind of orientation change (rotation). The size of texture image is 

512×512. 

In order to prove the rotation invariance property, these texture images are rotated 

by different angles (0, 45, 90, 135, 180, 225, 270, 315 degrees). Then, 40 sample 

windows with a 31×31 size are randomly chosen on each rotated image for the 

moment feature computation. At the end, we take the mean value of the 40 computed 

features for comparison.  

We applied using the framework dispayed in in Fig 3.2 all the three moment 

classical moments (ZMs, PZMs, OFMMs) and the three moments invariants (ZMIs, 

PZMIs, OFMMIs) with the same order and repetition  Because the moments, are 

complex number,  we used the moments magnitude (the modulus) as the texture 

feature. 

In Fig 3.4, we compare the features estimated using 2,0ZMI , 3,0PZMI , 

2,0OFMMI  and 2,2OFMMI  to their related original moment functions ( 20ZM , 

3,0PZM , 2,0OFMM , 2,2OFMM ). The result shows that, with the same orders and 

repetitions, the features estimated by the moment invariants are more stable than these 

by the original moment functions, .This studies shows also that although the 

magnitude would ensure the rotation invariance of the original moment, this has not 

been totally verified in the tests. 
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Fig 3.4.1: Rotation invariance evaluation on D4 texture. The red 

line represents the moment invariant features and the blue line 

represents the original moment features. Top left: 
2,0ZM  and 

2,0ZMI , top right: 3,0PZM and 3,0PZMI , bottom left: 2,0OFMM  

and 2,0OFMMI , bottom right: 2,2OFMM  and 2,2OFMMI  

 

Fig 3.4.2: Rotation invariance evaluation on D9 texture. The red 

line represents the moment invariant features and the blue line 

represents the original moment features. Top left: 2,0ZM  and 

2,0ZMI , top right: 3,0PZM and 3,0PZMI , bottom left: 2,0OFMM  

and 2,0OFMMI , bottom right: 2,2OFMM  and 2,2OFMMI  
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Fig 3.4.3: Rotation invariance evaluation on D17 texture. The red 

line represents the moment invariant features and the blue line 

represents the original moment features. Top left: 
20ZM  and 

20ZMI , top right: 3,0PZM and 3,0PZMI , bottom left: 2,0OFMM  

and 2,0OFMMI , bottom right: 2,2OFMM  and 2,2OFMMI  

 

A similar test is made to evaluate the scaling invariance (Fig 3.5). We zoomed the 

Brodatz texture images by several scaling ratio r : (1/ 2,  3 / 4,  1,  5 / 4,  3 / 2,  

7 / 4,  2 ). For each scaled image, 40 sample windows (31×31) are randomly chosen 

for the moments features estimation. It should be noticed that the sample window size 

is not changed. So inside a sample window, not only the texture size is scaled, but the 

content itself also has changes. This is not a strict image scaling situation, but the 

scaling invariant property will be helpful to keep the texture feature consistency. 

 

Fig 3.5.1: Scaling invariance evaluation on D4 texture. The red line 

represents the moment invariant features and the blue line represent 

the original moment features Top left: 20ZM  and 20ZMI , top 

right: 3,0PZM and 3,0PZMI , bottom left: 2,0OFMM  and 

2,0OFMMI , bottom right: 2,2OFMM  and 2,2OFMMI  
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Fig 3.5.2: Scaling invariance evaluation on D9 texture. The red line 

represents the moment invariant features and the blue line represent 

the original moment features. Top left: 
20ZM  and 

20ZMI , top 

right: 3,0PZM and 3,0PZMI , bottom left: 2,0OFMM  and 

2,0OFMMI , bottom right: 2,2OFMM  and 2,2OFMMI  

 

Fig 3.5.3: Scaling invariance evaluation on D17 texture. The red 

line represents the moment invariant features and the blue line 

represent the original moment features. Top left: 20ZM  and 

20ZMI , top right: 3,0PZM and 3,0PZMI , bottom left: 2,0OFMM  

and 2,0OFMMI , bottom right: 2,2OFMM  and 2,2OFMMI  

 

We also give the comparison between moment invariants and the original 

moment functions. The result shows that, the moment invariants based texture 

features are more stable in the texture scaling context. 

With this series of tests on Brodatz texture images, we found that moment 

invariants not only can extract texture features, but also are invariant to texture 

rotation and scaling. The results of these tests indicate that the moment invariants 

could be a good texture descriptor on ultrasound images. In the following sections, we 

will try to extract the texture features on simulated and real ultrasound images by 

using moment invariants, and test the properties of these features. 
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3.2.4 Evaluation of the invariance properties for texture 

estimation 

In order to evaluate the performance of these moment invariants to extract the 

speckle distribution feature, we used 2 kind of images: a simulated synthetic 

ultrasound image and a real transrectal ultrasound image. 

- The simulated image is composed by an elliptical shaped region within a 

background region. The ultrasound simulation is performed by the method 

described in (Dillenseger, Laguitton et al. 2009). This method predicts the 

appearance and properties of a B-Scan ultrasound image from acoustical 

impedances and spatial distributions of point scatterers. In our case, each region 

is characterized by a specific acoustical impedance and a random spatial 

distribution of scatterers with a specific probability distribution. The parameters 

defined in (Dillenseger, Laguitton et al. 2009) for fat and liver were used to 

differentiate the 2 regions. This scatterers model serves as input for the 

simulation of an ultrasound image acquired by a circular ultrasound 3.5 MHz 

probe (Fig 3.6 a). In this image the gray scale values depends only on the 

scatterer’s spatial distribution. The image size is 512×512 with a 0.6 mm pixel 

size . 

- The real data is a transrectal prostate ultrasound (TRUS) image acquired 

intra-operatively on an Ablatherm device (Fig. 3.6 b). The transrectal ultrasound 

imaging probe is operating at 7.5 MHz. A slice has 500×490 pixels with a 

transverse pixel size of 0.154 mm/pixel and a thickness of 2 mm. 

 

  

(a)                          (b) 

Fig 3.6 (a) Simulated image (b) Real ultrasound image 

 

 As we mentioned before, the speckle orientation and scale depends on its location 

in the beam. So if the speckle distribution is constant for a same object, the individual 

speckle patterns have different orientation and size. This situation could be 
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approximated as texture rotation and scaling.  

In order to evaluate the invariance properties for texture estimation, we choose 

randomly 40 sample windows on respectively the background and object (resp. 

outside and inside the elliptical region for the simulated image; resp. outside and 

inside the prostate for the real ultrasound image). Moment invariants and original 

moment functions are computed on the 40 sample windows (31×31) as we did before. 

The textures of these sample windows have different orientations and speckle sizes. 

Comparisons between the moment invariants and the original moments can be seen in 

Fig 3.7 for the simulated ultrasound image and in Fig 3.8 for the real TRUS image: 

 

Fig 3.7.1 Features from 2,0ZM  and 2,0ZMI  on the simulated 

image. The red line represents the moment invariant features and the 

blue line represents the original moment features. The graph on the 

top shows the features in the object area, and the graph on the 

bottom the features in the background area. 

 

Fig 3.7.2 Features from 3,0PZM and 3,0PZMI  on the simulated 

image. The red line represents the moment invariant features and the 

blue line represents the original moment features. The graph on the 

top shows the features in the object area, and the graph on the 

bottom the features in the background area. 
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Fig 3.7.3 Features from 2,0OFMM  and 
2,0OFMMI  on the 

simulated image. The red line represents the moment invariant 

features and the blue line represents the original moment features. 

The graph on the top shows the features in the object area, and the 

graph on the bottom the features in the background area.  

 

 

Fig 3.7.4 Features from 2,2OFMM  and 2,2OFMMI  on the 

simulated image. The red line represents the moment invariant 

features and the blue line represents the original moment features. 

The graph on the top shows the features in the object area, and the 

graph on the bottom the features in the background area. 
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Fig 3.8.1 Features from 
20ZM  and 

20ZMI  on the real image. 

The red line represents the moment invariant features and the blue 

line represents the original moment features. The graph on the top 

shows the features in the object area, and the graph on the bottom 

the features in the background area. 

 

Fig 3.8.2 Features from 3,0PZM and 3,0PZMI  on the real image. 

The red line represents the moment invariant features and the blue 

line represents the original moment features. The graph on the top 

shows the features in the object area, and the graph on the bottom 

the features in the background area. 
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Fig 3.8.3 Features from 2,0OFMM  and 
2,0OFMMI  on the real 

image. The red line represents the moment invariant features and the 

blue line represents the original moment features. The graph on the 

top shows the features in the object area, and the graph on the 

bottom the features in the background area. 

 

Fig 3.8.4 Features from 2,2OFMM  and 2,2OFMMI  on the real 

image. The red line represents the moment invariant features and the 

blue line represents the original moment features. The graph on the 

top shows the features in the object area, and the graph on the 

bottom the features in the background area. 

 

The standard deviation of the different texture feature values measured in all the 

40 sample windows are listed in Tab 3.1: 
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Texture 

Descriptor 

Standard deviation on the simulated 

image 

Standard deviation on the real 

ultrasound image 

Object area Background area Prostate area Background area 

2,0ZM  0.9478 4.2589 16.0500 19.5321 

2,0ZMI  0.0351 0.0231 0.0086 0.0068 

3,0PZM  0.5525 1.3114 4.6808 4.5361 

3,0PZMI  0.4512 0.8959 0.7589 0.7033 

2,0OFMM  0.7605 2.7072 8.1953 9.8076 

2,0OFMMI  0.3455 0.3384 0.2798 0.2527 

2,2OFMM  0.3898 0.9620 3.0755 2.6430 

2,2OFMMI  0.1305 0.1708 0.2111 0.1914 

Tab 3.1 The standard deviation of different texture feature values 

 

In the simulated ultrasound image case, the moment invariants based feature 

values are more constant than these estimated using the original moments. Even for 

the worst case here, the PZMIs (Fig 3.7.2), the standard deviation shows better 

performance than PZMs (Tab 3.1). 

 In the case of real image, the performance to extract stable features decreased 

because of the non-uniform distribution of texture, This is especially true for the 

original moments based features. But the moment invariants based features are less 

affected by this situation and show higher ability to characterize the ultrasound texture 

The invariance properties can also be noticed on Fig 3.9. The classical moments 

are clearly affected by the speckle while the invariants remain mainly constant in the 

areas sharing a same speckle distribution.   

 

 

Fig 3.9 3,0PZM (left) and 3,0PZMI  (right) features on the 

simulated image (top) and real image (bottom) 

 



 

62 

The moment invariants can therefore serve as an indicator of an area sharing a 

same distribution of speckle. The moment invariants applied to an ultrasound image 

can be directly integrated into an intensity based similarity measure (Mutual 

Information, etc.).  

3.3 Moment invariants based texture segmentation 

3.3.1 Moment window size 

 Although the moment invariants are scale independent, the window size is an 

important parameter for any texture feature extraction method. Classically, in texture 

characterization methods a good windows size must be choosen in order to ensure a 

good compromise between detection capability and accuracy.  

 In order to expose the impact of the window size in the texture feature estimation, 

we make a test on 40 randomly chosen sample windows on the background area of 

the simulated ultrasound image (Fig 3.10 a). We calculate the moment invariant value 

of 2,0PZMI  on these windows, and then we estimate from these windows the 

features mean value and standard deviation. This work is repeated on different 

window size from 5×5 to 41×41. The result is shown in Fig 3.10 b. Two facts can be 

noticed: when the window size is too low (less than 23×23 in our case), the moment 

invariant values are less uniform distributed in the same texture area (high standard 

deviation); when the window size is high enough (more than 23×23 in our case), the 

moment invariant values have an uniform distribution in the same texture area. It is 

probably because the small window can not contain enough information to describe 

the speckle distribution, and when the window size is high enough, the duplicate 

speckles have little contribution to texture features. 

The blurring on the transition zone between 2 areas with different texture 

distributions has been estimated on another test. In the simulated ultrasound image we 

choose several sample windows along a line going from background area to the object 

area (Fig 3.11 a). We calculate 2,0PZMI  on these sample windows along the line. 

This test will be repeated with different window sizes to estimate its impact on the 

texture boundary areas. The result shows that, when the window size is too large, the 

accuracy of boundary information will decrease (Fig 3.11 b). 
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(a)                                 (b) 

Fig 3.10 (a) Position of the 40 randomly sample windows on the 

background area of the simulated ultrasound image. The white cross 

labeled the center points of these sample windows. (b) The mean 

and standard deviation of the 40 
2,0

PZMI  values with different 

window sizes from 5×5 to 41×41. 

  

 

  
(a)                                        (b) 

Fig 3.11 (a) Location of the sample window center points along the 

red line from background area to object area. (b) The 
2,0

PZMI  

values on these sample windows with different sizes 

 

 A compromise must be found between a large window size to capture the feature 

and a small window size to accurately locate the information. In our case we think 

that the window size should be related to the spatial size of the texture. 

We choose to illustrate the impact of the window size on the estimation of the 

2,1PZMI  feature in the simulated image. This feature presents some fine structures 

which will be directly impacted by the window size. In this image, the speckle 

longitudinal size was about 20 pixels. Fig 3.12 shows the 2,1PZMI  feature 

computed with window sizes of 11×11, 21×21 and 31×31. It can be clearly notified 

that the feature homogeneity increases with the window size but at the expense of the 

thinness of the features. In this case, the 21×21 window seemed to be a good 

compromise between the homogeneity of the features and the accuracy to extract 
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some image components. This window size will be used in the rest of this chapter. 

This behavior was confirmed for the other moment feature measurements. 

 

 

Fig 3.12 2,1PZMI  values estimated with 11×11, 21×21 and 31×31 

window size. In this figure only a rectangular window around the 

elliptic region of the simulated image is shown. The elliptic region 

boundary is shown in red. 

3.3.2 Order and repetition characteristics 

 The behavior of the moment invariants according to the order and the repetition 

parameter has been evaluated on the simulated image (Fig 3.6 a).  

The order p itself has a relatively low influence on the final result. As an 

example, Fig 3.13 shows the resulting images for ,0pPZMI with p  increasing from 

1 to 3. We can observe that the images are relatively similar. Maybe the images seems 

to be a bit more irregular for higher orders but the details like then contours are more 

well defined. 

 

 
Fig 3.13 Influence of the order p . ,0pPZMI with p  increasing 

from 1 to 3. 

 

The repetition q impacts directly the resulting features extracted by the moments. 

Fig 3.14 shows a selection of extracted features from several kinds of moment 

invariants at several order p  and repetition q . We can notice on this figure that all 

the 3 classes of moment invariants that: 

- for q = 0, the moments are sensitive to the regional distribution of texture 

information  

- for q = 1, the moments are sensitive to the rupture between two textures (Fig 3.6 

center) and can be similar to a “gradient of texture”  

- for q = 2, the moments can be seen as a “Laplacian of texture”. 
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Fig 3.14 Texture features of simulated image. The first row, from 

left to right: 
2,0ZMI , 

3,1ZMI  and 2,2ZMI ; the second row, from 

left to right: 
2,0PZMI , 2,1PZMI , 

2,2PZMI ; the third row, from 

left to right: 1,0OFMMI , 0,1OFMMI , 1,2OFMMI  

 

This regional and boundaries extraction behavior can also be seen on the features 

estimated from the real transrectal prostate ultrasound data (Fig 3.15). On this figure, 

the features extracted using the pseudo-Zernike moment invariants are also more 

homogeneous than those obtained using the classical moments. 

 

 
Fig 3.15 Features extracted on the transrectal prostate ultrasound 

image. Top left: 3,0PZM ; top right: 2,1PZM ; bottom left: 

3,0PZMI ; bottom right: 2,1PZMI  

 

In texture analysis, a set of texture features (moments and others) are usually 

measured on the image, and a classification process is then performed in order to 
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characterize the objects of interest. However, as the moment-invariant features with 

repetition q=0 provide regional information and those with q=1 provide information 

on the boundaries of a textured region, this allows us to use the texture features 

differently. In many segmentation techniques, boundary information alone or in 

combination with regional information is needed, i.e. active contours, deformable 

models, level sets, etc. Some of these techniques have been adapted to deal with 

ultrasound images and require boundary information (e.g. (Chen, Lu et al. 2000) 

where some Gabor based invariants where used to constraint snake models). Our two 

kinds of moment-invariant features (q=0 regional information and q=1 boundary 

information) could be directly used in such a segmentation scheme dealing with 

ultrasound images.  

3.3.3 Graph cut 

In order to prove the previous assessment, without loss of generality, we will use 

the two kinds of moment-invariant features in a min-cut/max-flow graph cut 

algorithm. So we will show how the features extracted by orthogonal moments can be 

directly used in a combined region and boundary based segmentation algorithm and 

how the boundary information can improve the segmentation. However, the goal of 

this section is neither to evaluate finely the impact of the several parameters used in 

the graph-cut segmentation nor to compare its performance to other techniques. 

The min-cut/max-flow graph cut algorithm popularized by Boykov is able to 

handle regional and boundary information (Boykov and Funka-Lea 2006). This graph 

partitioning approach is well adapted to an image binary classification issue. The 

segmentation problematic is described by a directional flow graph. The link topology 

and the initial weight assigned to these links are representative of an energy function 

to minimize. In our case, the segmentation problematic is formulated by the following 

energy function: 

T classify continuityE E E                         (17) 

where classifyE  is an energy coding the probability that a pixel belongs to the class 

“object” or “background”, and continuityE  is an energy coding the degree of similarity 

or discontinuity between two neighboring pixels. The coefficient   controls the 

balance between these two energy terms. 

In the classical min-cut/max-flow graph cut algorithm the energy terms are 

encoded within the graph as link’s weights estimated from the pixels values (Boykov 

and Funka-Lea 2006), (Esneault, Hraiech et al. 2007). For validating the usability of the 

moment invariants, we adapted a variant of the min-cut/max-flow graph cut algorithm 
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presented in (Esneault, Hraiech et al. 2007) in order to use the regional information 

features (with repetition q=0)  to encode classifyE  and the boundaries information 

features (with q=1) to directly encode continuityE  (Fig 3.16).  

 

 

Fig 3.16 Graph cut segmentation scheme 

 

As an example of this method, we will take the case with ZMI features. In this 

method, the user labels interactively some pixels as “object” and others as 

“background” (e.g. Fig. 3.17 a). The normalized histogram of these pixels in |ZMIp,0| 

is used to define the probability density function objectP  (resp. backgP ). For a pixel u , 

the weights  ,u S  (resp.  ,u T )5 associated with the regional energy classifyE can be 

seen in Tab 3.2. continuityE is encoded on the links between two adjacent pixels ,u v . 

This weight should be high between two neighboring pixels within the same region 

and low on boundaries. We can notice that this it is the opposite of the ,1pZMI  

image (see Fig 3.14). So, we first normalized and inverted ,1pZMI  to obtain the 

image '

,1pZMI  which is representative of the continuity between neighboring pixels 

(values close to 0 on boundaries, 1 on pixels within a same region). The weight 

between  ,u v is then given by (see Tab 3.2):  

   ' '

,1 ,1

2

p pZMI u ZMI v
 

The initial weights of the individual graph links are assigned to the graph 

according to Table 3.2. Once the graph is built, min-cut/max-flow graph cut algorithm 

is performed in order to segment the object (Boykov and Kolmogorov 2004). 

                                                        
5 S and T are the two terminal nodes associated with the labels “object” and “background” 

respectively, see Boykov, Y. and G. Funka-Lea (2006). "Graph cuts and efficient ND image 

segmentation." International journal of computer vision 70(2): 109-131. 

 . 
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links weights condition 

 ,u v  
   ' '

,1 ,1

2

p pZMI u ZMI v



 for  ,u v N  

 ,u S  

  for u  labeled as “object” 

  ,0object pP ZMI u  for the other u  

 ,u T  

  for u  labeled as “background” 

  ,0backg pP ZMI u  for the other u  

Tab 3.2 Initial weights for the graph cut segmentation 

 

 

Fig 3.17 Graph cut segmentation results. a) Graph cut seed points 

(green: “object”, red: “background”). The estimated boundaries 

using ZMI features with: b) 0  , with only the regional 

information, and c) 1  , with a mixture of region and boundary 

information. 

  

We performed the evaluation for the Hu’s moment invariants and the three 

orthogonal moment invariants on the simulated ultrasound image (Fig 3.6 a). Some 

small areas of pixels were interactively selected in both the object and background 

regions (Fig 3.17 a). These areas were used as seed points for the segmentation and 

also serve as training basis for the classifyE  related initial weight assignment. After the 

graph cut segmentation, the extracted region was compared with the real 

elliptically-shaped region. Each pixel could be classified as true positive (with TP the 

number of true positives), false positive (resp. FP), true negative (resp. TN) or false 

negative (resp. FN). The performance of our segmentation scheme is presented as: 

Fractional Area Difference: 
FP FN

TP FN

 
 

 
, 

Sensitivity: 
TP

TP FN

 
 

 
,  
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Accuracy: 
TP FP

TP FN

 
 

 
. 

 The crucial points of our method are: the choice of the features used to encode the 

region and boundary information, and the balance coefficient . 

 After some exploratory work we noticed that the more accurate results were 

obtained by using relatively high order moments for the regional information 1Hu , 

2,0ZMI , 3,0PZMI  and 3,0OFMMI , and for the regional information 2Hu , 

1,1ZMI , 2,1PZMI and 2,1OFMMI . These features can be seen in Fig 3.18 and are 

consistent with the remarks made in the previous section about more well defined 

details for higher moment orders. 
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Fig 3.18 Regional and boundary features of simulated ultrasound 

image 

 

 The   parameter setting was trickier because its influence is not linear and is 

data dependent. First, in an exploratory study, we interactively tuned   to analyze 

its influence. We noticed that, even with a relatively small , the continuity term was 

taken into account within the segmentation. Then, for a relatively large range of 

variation in , the segmentation results remained almost the same, with only some 
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small changes on the boundaries. Finally, for very high values of   (over 100) the 

segmentation accuracy decreased. Fig 3.17 shows the impact of the variation of  . 

The presented segmentation results were obtained using the ZMI set. For 0  , we 

only had the influence of the regional information of 2,0ZMI  (Fig 3.17 b). With 

1  , the boundary information of 1,1ZMI  was mixed with the regional information 

in order to delineate the region with a higher accuracy (Fig 3.17 c). 

Tab 3.3 compares the performance between the segmentation results of the 

min-cut/maxflow graph cut algorithm with 1  , using methods based on Hu, 

Zernike, pseudo-Zernike and orthogonal Fourier-Mellin moment invariants and the 

equivalent classical moments. In all cases (except one), moment invariants gave better 

results than the classical moments. The classical PZM and OFMM totally failed to 

extract the elliptic region because their behavior was too inhomogeneous. Surprisingly, 

the classical ZM gave very good results. Even though its standard deviation was not as 

good than that of ZMI (see Tab 3.1), the contrast (the mean values difference) between 

the 2 regions in 2,0ZM was much higher than in 2,0ZMI  allowing good regional 

information. If we compare the results obtained using the four moment-invariant sets 

we can see that OFMMI showed a slightly better performance in the case of the 

simulated data. 

 

 Fract area diff Sensitivity Accuracy 

Hu -7.8% 91.81% 91.42% 

ZM -4.63% 95.0% 94.63% 

ZMI -6.42% 93.47% 93.36% 

PZM -90.87% 9.13% 9.13% 

PZMI -4.22% 95.33% 94.88% 

OFMM -90.83% 9.17% 9.17% 

OFMMI -2.35% 96.99% 96.33% 

Tab 3.3 Comparisons of moments-based texture segmentation on 

simulated image 

 

We applied our method to the real transrectal prostate image (Fig 3.6 b). In this 

data, the speckle within and outside the prostate was more heterogeneous than that in 

the simulated US. Moreover, a urethral catheter was placed to protect the urethra from 

injury during HIFU ablation, and this catheter projected the classical ultrasonic 

shadow. However we expected to be able to overcome this problem by interactively 

setting some well adapted seed points (Fig. 3.19 a). The input images were the same 

moment features (same order and repetition) as for the simulated data. However, we 

changed the window size to 11×11 to adjust it to the transrectal prostate speckle 

dimension. Fig 3.19 compare the segmentation results of the min-cut/max-flow graph 
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cut algorithm with 1  , using the different moment sets. Because of the 

non-homogeneity of the speckle within the prostate, all the segmentation results show 

some gaps within the extracted region. However, two facts can be observed from Fig 

3.19. First, the classical moment sets were less efficient than the invariant moment 

sets for describing the prostate, mainly because they were less capable of expressing 

the regional information. This was especially true for PZM and OFMM that have 

failed to close the boundary of the prostate. Second, it can be seen that the orthogonal 

moment-invariant sets provided smoother boundaries than the classical sets, probably 

because they estimated more homogeneous features. Nevertheless it is difficult to 

significantly compare the different classes of moments on only the graph cut because 

the final segmentation result is directly dependent on user interaction (variables seed 

points and   value). However, in all the cases the segmentation was easier to tune 

with the orthogonal moment-invariant sets than with the other sets. 

 

 

Fig 3.19: Transrectal prostate ultrasound image segmentation. a) the 

seed points (green: “object”, red: “background”) and (in black) the 

contour drawn by an expert. Others: segmentation results. 

 

In conclusion, the purpose of this section was only to demonstrate that the region 

and boundary information obtained by moment-invariant sets on ultrasound image can 

be directly used in a classical segmentation method. Within the min-cut/max flow 

graph-cut framework, moments invariants showed their ability to extract texture 

information from the ultrasound image. Moreover the fact that moment invariants 

were able to extract boundary information clearly improved the segmentation results. 
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3.4 Conclusion 

 In this chapter, we presented three sets of orthogonal moment invariants that can 

be used to extract texture features when the texture pattern has a concentric 

organization or when its scale changes in the image, like the speckle in ultrasound 

images, for example. The moment invariant features extracted on a simulated circular 

ultrasound image demonstrated that they are able to extract the global distribution of 

the speckle and that they are little sensitive to speckle orientation or scale changes. 

This proved that moment invariants especially with repetition q=0, can be used as 

feature information in an intensity based similarity measure like Mutual Information, 

etc. 

The results also showed that some features were sensitive to regional texture 

information and others enhanced the boundaries between two textured regions. The 

features sensitive to the boundaries between two textured regions can be seen as 

texture “gradient” and can thus be used in segmentation techniques where the 

boundary information is needed, i.e. active contours, deformable models, level sets, 

etc. In order to demonstrate the usability of moment-invariant features, such as region 

and boundary information, we introduced this joint information into the 

min-cut/max-flow graph cut algorithm. The resulting segmentations on simulated and 

real ultrasound images demonstrated the benefits of the joint region- and 

boundary-sensitive moment-invariant texture features. Moment invariants are so 

eligible to be used to adapt techniques based on the combination on regional and 

boundary information to the segmentation of ultrasound images. 

Considering our intensity-based registration scheme, we have demonstrated that 

the moment invariants applied on ultrasound images can be directly used in a 

similarity measure between the 2 modalities. However, when we tried to include the 

information (directly the intensities or using the moment invariant) of the T2 MRI in 

the registration scheme, we get no significant results. This is probably due to the fact 

that in T2 MRI the prostate is heterogeneous in values (several zone, etc., see chapter 

2) and also that some prostatic zone share some common intensity distribution with 

some neighbor tissues. 

We decide then to give up the intensity based registration framework and redirect 

our work on an alternate surface-based registration scheme. 
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Part III:  

Surface-Based Registration 
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Chapter 4：OSD based prostate 

segmentation on T2 MRI 

Automatic/semiautomatic prostate segmentation scheme is playing an important 

role in prostate cancer treatment (eg. diagnosis and treatment planning). For now, 3D 

Prostate segmentation on T2 MRI is still a challenging task. It is not only because the 

prostate organ is a soft tissue which usually present a large variation in both shape and 

size, but also because the prostate is surrounded by other organs (eg. bladder and 

rectum) which have similar intensity information as the prostate boundary on T2 MRI, 

even worse, these organs may have serious mutual influence together (Freedman, 

Radke et al. 2005, Vu and Manjunath 2008) (Song, Liu et al. 2010). In this chapter, an 

Optimal Surface Detection (OSD) based method is introduced to segment the prostate 

from T2 MRI. This segmentation scheme uses information of local intensity changes 

around the prostate surface, and also considers the influence of the surrounding 

organs. The segmented prostate surface could be used in a surface-to-surface 

registration scheme between the ultrasound image and the MRI. 

4.1 OSD based prostate segmentation 

The OSD based segmentation has been originally introduced in (Li, Wu et al. 

2004), and has been applied to prostate segmentation on ultrasound images in 

(Garnier, Bellanger et al. 2011). The main idea of the OSD is to consider the 

segmentation problem as the computation of a minimum s-t cut in an oriented 

weighted graph, which is build from the voxels surrounding the surface of an initial 

mesh and from 2 auxiliary nodes s and t (source and sink respectively) (Li, Wu et al. 

2004). The whole OSD scheme contains several steps: mesh initialization, graph 

construction, weight assignation and graph cut. In following sections, we will give the 

detailed workflow of the OSD based prostate segmentation on T2 MRI. 

4.1.1 Initialization 

In order to convert the segmentation problem into a graph cut problem, an 

oriented weighted graph should be build from the voxels around the object surface. It 

means that a first surface of the object is needed as an initial state. The initialization 

method is introduced in (Hu, Downey et al. 2003). Six manual points are positioned 
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on the prostate surface: 4 of them  0 1 2 3, , ,init init init initp p p p  are located on the central 

section, and the remaining 2 points  int

4 5,initp p  are set at the base and the apex of the 

prostate.  

 

 

Fig 4.1 Six initial points manually set on the prostate surface. Four 

on the central section, one on the base, and the other on the apex. 

 

An ellipsoid mesh, describing the surface of prostate, is generated from the 6 

initial points: 

 , , , 0, ,5init

k k k kp x y z k  .                      (18) 

The ellipsoid center point  , ,c c cC x y z  and its half axeses , ,x y zs s s  are defined by: 

1 3 1 3
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 
 

 
 

 
 

                       (19) 

The ellipsoid is sampled by longitudes and latitudes angles in order to form a 

parametric space  ,a b : 

   , ,F F a b                           (20) 

The ellipsoid surface defined before, goes not exactly through the six initial 

points, and sometimes, it can be relatively far from the prostate edge. A 3D 

transformation by Biharmonic Spline (“Linear Spline”) (Bookstein 1989) is used to 

deform the mesh in direction of the initial points and still maintaining a smooth surface 

shape (Garnier 2009). 

This method finally provides a prostate-liked shape mesh (Fig 4.2). Even if the 

vertexes of the mesh can be still distant to the real prostate surface, this mesh will be 

considered as the initial surface. OSD will refine the surface near this initial mesh. 
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Fig 4.2 Initial surface mesh of prostate 

4.1.2 Graph construction 

An oriented graph composed by nodes and weighted links is constructed based on 

the initial mesh, and also defines the relations between the neighboring voxels.  

 

 

(a)                    (b)                   (c) 

Fig 4.3 Graph construction on prostate: (a) vertex normal definition, 

(b) nodes columns build on each vertex, (c) inter- and intra-column 

link definition 

 

The graph is composed by some specific nodes connected by weighted links. We 

will now develop the graph construction detailing the role of the several nodes and 

links. 

 

Nodes 

According to Boykov’s formalism two kinds of nodes are used: object nodes and 

terminal nodes. 

- Objects nodes: 

The main idea of OSD is to refine the surface position near the initial surface. 

For this, we will define a search zone near all the vertexes of the initial surface. In 

order to constraint the searching zone, we choose to estimate the refined surface 

position along the normal at each vertex of the initial mesh (Fig 4.3 b). For each 

vertex  ,i a b  of the mesh, we build a column of nodes. A column  Col i  

(or  ,Col a b ) consist of cn  nodes  ,N i c , each of the nodes corresponding to a 
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value  , ,ic ic icV x y z  estimated by the closest surrounding voxel value along the 

normal iR  (Fig 4.3 c). 

The calculation of the normal iR  is described in (Ghanei, Soltanian-Zadeh 

et al. 1998). The normal iR  at the vertex i  is the sum of the weighted unit 

normal from the neighboring facets. The weights correspond to the apex angle of 

the facet (Fig 4.3 a) and take into account the specific contributions from the 

different facets. 

1

, ,

0

1 M

i i k i k

ki








 R n                       (21) 
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 e e , ,i ke  is an unit vector from vertex 

 ,v i k  to vertex i . 

The normal vector of each facet is obtained by the cross product of two of its 

edges: 
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Finally, the outward directed vector ir , is constructed by normalization: 

i
i

i


R

r
R

                              (23) 

 The future surface will be defined on this node topology. On each column, 

the refinement process will find the nodes which have the highest probability to 

be on the surface. The pointed nodes on two adjacent columns will form an edge 

of the refined surface. 

- Terminal nodes: 

2 specific nodes, the source terminal node s  and the sink terminal node t , 

are also inserted into the graph. s is usually associate to the object to segment (the 

“surface” in our case) and t to the background (“no surface”). 

 

Links 

The links will encode the information about the data and the relationship between 

the data. Globally, they are 2 types of links: the t-links (t for terminal) which will 

links each object nodes to the 2 terminal nodes and the n-links (n for neighbor) which 

links together 2 objects nodes. The t-links will encode the data term information and 

the n-links some neighborhood or spatial information between 2 nodes. 

- n-links: 

This kind of links will define the neighborhood information between nodes 

(i.e the nodes belonging to a same column) but also some constraint on the 
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surface continuity or smoothness. Three kinds of n-links are added in this work: 

 

1) Column links: 

A set of oriented links of infinite weight is created by connecting the nodes in 

the same column (Fig 4.3 c). 

   , , , 1 , 0N i c N i c c                 (24) 

This links ensure that a surface crosses the column of nodes on only one 

node. 

 

2) Surface links: 

This set of infinitive weight provides the connection between 2 adjacent 

columns: 

     , , ,max 0, , iN i c N j c j N           (25) 

where jN  is the neighbor of i  (Fig 4.3 c). Because the initial mesh is a closed 

surface, the nodes of index 0b   are also included in their neighborhood index 

1bb n  ，and vice versa. 

  of equation (25) is the hard shape constraint which keeps the surface 

smooth. The smaller   is, the smoother optimal surface will be. Because the 

distances between two adjacent vertices are not regular over the initial surface, ∆ 

has been adapted according to this distance (in voxel): 

 , iij j N i jfloor p p                      (26) 

where ip  and jp  are the positions of vertex i  and j ,   is a constant, and 

floor  take the integer part of result. This hard shape constraint ensures that a 

surface can only move from a distance less than ∆ from one column to another. 

 

3) Shape constraint links:  

A shape constraint (shape-prior penalty) can be added to penalize the shape 

changes between two neighboring columns (Song, Liu et al. 2010). Additional 

inter-column links are added between  ,N i c  and  ,N j c h , 

and , , ,1, 2, , 1j i j i i jh        . These links are assigned with a weight equal to 

the second derivate of a convex function   2f h h . 

 

 

- t-links 

A link will be set between the terminal source node s and each object node. 

The weight of this links will encode the energy (or probability) that attached an 
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object node to the “surface” class. 

Respectively, a link will also be set between each object node and the 

terminal sink node t. The weight of this links will encode the energy (or 

probability) that attached an object node to the “not surface” class.  

 

In our case, for each node ( , )N i c  of the graph we will first assign a weight 

 ,w i c , which is defined by:  

   
   

, 0
,

, , 1

C i c if c
w i c

otherwiseC i c C i c

 
   

                 (27) 

here C  is the cost function, and it is related to the probability that the node belongs 

to the target surface. 

According to the sign of the nodes weight  ,w i c , a weight  ,w i c  is assigned 

on the links from s  to the node if  , 0w i c  , or on the links from the node to t  if 

 , 0w i c  . 

Several cost function will be discussed in section 4.1.3. However, a particular 

cost is assigned to the nodes on the 6 initial points in order to take the practitioner 

expertise into account. In our case, we used a very high negative cost: 

max1000C I                             (28) 

here maxI  is the maximum value of image. This weight cost forces the surface to go 

through these initial nodes. 

4.1.3 Graph cut  

With the previous weighted graph, the position of the future surface will be 

estimated from the weights assigned on the t-links (the energy or probability that a 

node belongs to the “surface” and “non surface” class) and from the topology of the 

surface links (parameter ) and shape constraint links (parameter  ). In our case, the 

optimal surface is obtained with the min-cut/max-flow algorithm (Boykov and 

Kolmogorov 2004). 

After the graph cut, one node of each nodes column will be assigned as surface 

point. These surface points are the new vertexes of the refined surface mesh. 
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Fig 4.4 The cut of the weighted graph will assign some nodes to 

belong to the “surface” class 

 

4.1.4 Data term weight assignment. 

The key point of the OSD algorithm is the cost function. Three different classes 

of cost functions have been tested based on different information and models: 

Image-based feature: gradients 

 The image-based surface energy is based on the smoothed gradient of image I : 

      , , , , , ,E x y z G I x y z x y z    G            (29) 

with G  is a Gaussian filter with standard deviation  . 

Three cost functions, only based on the energy of the current node location, have 

been tested: 

- POS_GDT: Promoting the positive gradients from low to high value transitions, 

that means the same direction as the surface normal. 
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- NEG_GDT: Promoting negative gradients: 

  ,

, , , ,

1
, ,

2

i c

i c i c i c i c

s
C x y z


  G                    (31) 

- ALL_GDT: Promoting any directions: 

 , , , ,, ,i c i c i c i cC x y z  G                          (32) 

 

 

 



 

84 

Shape probability model 

A cost function based on a shape probability is build based on a shape probability 

map. This map is build by the following steps:  

1) With a set of 3D T2 MRI volumes as training data, the urologist 

labeled the prostate contours manually on each case. On these volumes, 

the prostate surfaces are constructed based on these manual contours. 

2) A local prostate based reference system is defined on each prostate 

volume as Fig 4.5: 

 

Fig 4.5 The definition of local coordinate system 

 

The first axis is aligned from the apex to the base, the reference origin 

is set as the middle of the apex-base segment, and the other two axes 

are adjusted to the prostate surface. These expert surfaces are regularly 

resampled within their local reference systems in order to form a 

regular mesh. 

3) The meshes of all the surfaces of the training set are aligned using the 

generalized procustes algorithm (Gower 1975) implemented in VTK. 

On one hand, this algorithm gives the average shape of all the training 

data, and on the other hand, all the individual forms aligned on the 

average shape. 

4) A 3D distance map d  is built for each training shape, and then it is 

converted to Gaussian distance map g  by: 

2

2
exp

2 m

d
g



 
  

 
                          (33) 

with m  a constant. The shape probability map is finally built by 

averaging the Gaussian maps of all the aligned shapes (Fig 4.6). 

 

For the segmentation of a new T2 MRI volume, first we align the model average 

shape onto the initial mesh of the data to be segmented by using the generalized 

procrustes algorithm (Gower 1975). The estimated rigid transformation matrix 
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(translation, rotation and scaling) are then applied on the probability map in order to 

align it on the MRI data to segment (Fig 4.6). 

 

Fig 4.6 cost function constructed based on shape probability model 

 

 The shape probability based cost function  ,pC i c  at node  ,N i c  is then 

defined as: 

     , , ,p gC i c P i c C i c                      (34) 

here  ,P i c  is the probability map,  ,gC i c  is gradient based cost defined in the 

previous section. 

 

Gradient profile model 

 The gradient profile model is inspired by the work of Cootes (Cootes and Taylor 

2001). The idea is to build a statistical model of the gradient profiles variation from a 

learning set and then use this model to assign some costs.  

The gradient profile model is build from the training set as following steps:  

1) As described in the previous section, we align together all the training set 

surfaces. 

2) We resampled regularly all the aligned surface in order to share the same 

sampling topology for each surface. We are so able to define 

corresponding points between all the shapes. 

3) The gradient profile model is built as described in (Cootes and Taylor 

2001): From K  training surfaces each sampled on N  vertexes, a 

gradient profile ijg  is estimated at each sample i  ( 1, ,i N ) on each 

training surface j  ( 1, ,j K ). Each gradient profile ijg  consists in 

the gradients (see Equation(29)) estimated at 10 locations on both sides 

of the surface (Fig 4.7). At each sample i we can construct ig , a profile 

of vectors of gradients (a vector is composed by the K gradients 

computed at the same location on all the K surfaces). For simplicity the 

profile of vectors of gradients will be called profile vector. The vector ig  

is then be normalized as:  
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1
i i

ijj
g




g g .                         (35) 

If we assume that all the profiles are distributed as a multivariate 

Gaussian, the appearance on one sample can be modeled by the mean 

profile ˆ
ig  and the covariance matrix 

gi
S . The quality of the fit of a 

new profile sig  to the model can be estimated by the Mahalanobis 

distance: 

     1ˆ ˆ
T

si si i si if g g g g g  giS                  (36) 

 

To perform the segmentation of a new volume, the initial mesh of this volume is 

aligned on its local prostate based reference system (Fig 4.5) and resampled in order 

to ensure correspondence to the model vertices. It should be notice that, the a-priori 

information brought by the 6 initial points is lost in this configuration. 

 

 

Fig 4.7 cost function constructed based on gradients profile model 

 

The gradients profiles ,i cg  are computed at the location of all the nodes  ,N i c  

of the graph. The node cost value is then defined as: 

    , , maxi c i c sC f g f g                    (37) 

where   max sf g  is the maximum Mahalanobis distance over all the computed 

profiles in the current image. 
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4.1.5 Parameters adjustment 

 As we mentioned previously, 33 T2 axial MRI volumes are used in our work. 

These MRI volumes are acquired from 5 different devices with different qualities and 

image sizes (Tab 4.1). In this section, a series of tests are made on these data and in 

order to find the parameters which can give the best segmentation performance. 

MRI system Number Size (voxel) as  (mm) ts  (mm) 

3T Philips Achieva 10 720×720×20 0.416 4.001 

3T Siemsens Vero 5 320×320×20 0.625 3.600 

1.5T Siemens 

Magnetom Symphony 
16 256×256×24 0.781 3.000 

3T Philips Achieva 1 352×352×24 0.540 2.630 

GE Signa HDxt 1 512×512×16 0.391 4.500 

Tab 4.1 The parameters of T2 MRI training set 

 

We get manual contours for all the 33 T2 MRI volumes so they can be used as 

test database. For the segmentation of one volume, the values and the contours of the 

other 32 cases are used as training set to get the average shape and shape probability 

map, or the gradient profiles model.  

 

The following parameters are tuned sequentially in our work: 

-  : the hard shape constraint from inter-column links 

-  : the Gaussian filter standard deviation 

- POS_GDT, NEG_GDT and ALL_GDT: the promoted gradient directions in 

the gradient-based cost function 

- InD and OutD: The search distances inside and outside of surface 

  

For all the database of MRI volumes, we tuned separately each parameter and 

evaluated the performance of the segmentation scheme with the Volume Overlap 

metric: 

M A

M A

V V
VO

V V





                             (38) 

with MV  and AV  respectively the expert (manual) and the OSD (automatic) 

segmented volume. The mean in % and the standard deviation (std) of all the 33 VOs 

serve as global performance metrics. For a specific parameter, the value which gives 

the best performance is kept for the next parameter tuning. 
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With   = 1, InD = −20, OutD = 20 and the gradient search direction to 

ALL_GDT,   is tested from 1/4 to 1. The best performance is obtained with  = 

1/2, which will be used as hard shape constraint. 

 

  1/4 1/3 1/2 2/3 3/4 1 

mean (%) 72.73 75.62 76.90 75.05 73.79 68.29 

std 7.06 6.38 5.72 5.11 4.81 6.64 

Tab 4.2 choice of hard shape constraint   

 

With the fixed InD = −20, OutD = 20 and the gradient search direction to 

ALL_GDT,   is tested from 0 to 5. The best performance is obtained with   = 1. 

 

  0 1 3 5 

mean (%) 76.37 76.90 76.68 75.06 

std 6.04 5.72 5.73 5.40 

 Tab 4.3 choice of Gaussian filter standard deviation    

 

Several combinations of InD and OutD have been tested. In this case, the best 

global performance is obtained for InD = −5 and OutD = 15. 

 

 OutD 5 10 15 20 25 30 

InD = -20 
mean (%) 75.10 76.59 76.91 76.90 76.90 76.90 

std 7.54 5.99 5.72 5.72 5.72 5.72 

InD = -15 
mean (%) 75.10 76.59 76.91 76.90 76.90 76.90 

std 75.10 76.59 76.91 76.90 76.90 76.90 

InD = -10 
mean (%) 75.15 76.64 76.89 76.88 76.88 76.88 

std 7.47 5.84 5.72 5.72 5.72 5.72 

InD = -5 
mean (%) 75.63 76.86 77.15 77.14 77.14 77.14 

std 6.87 5.54 5.48 5.48 5.48 5.48 

Tab 4.4 choice of inside and outside search distance 

  

It can be seen that ALL_GDT promoting any directions gives the best results. 

 

 POS_GDT NEG_GDT ALL_GDT 

mean (%) 73.64 71.88 77.15 

std 6.83 7.17 5.48 

Tab 4.5 choice of promoting directions of gradient based cost function 
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4.1.6 Cost function evaluation 

 We also will evaluate the segmentation performance of all the three cost functions 

on the T2 MRI database. For the model based cost functions, when one volume is 

segmented, the other 32 cases are used to generate the model. 

In the case of shape probability-based cost function, segmentation result depends 

on the parameter m . The segmentation on 7 volumes with m  from 0 to 10 is tested 

at a first stage, and we found that m = 8 can obtain the best performance. 

The mean and standard deviation of volume overlaps obtained for all the 33 data 

are shown in Fig 4.8. The global performance of all 33 cases is shown in Tab 4.6. 

 

Cost Function Gradient Shape Probability Model Gradient Profile Model 

mean volume overlap (%) 77.15 76.71 74.88 

std 5.48 6.17 6.93 

Tab 4.6 global performance of different cost functions 

 

 
Fig 4.8 volume overlaps of all 33 cases with different cost functions 

 

On Tab 4.6, it can be seen that, comparing to the use of the single gradient-based 

cost function, the use of a shape probability decreases a bit the global performance. 

Fig 4.8 shows that the shape probability can slightly increases the overlap in some 

cases, but globally gives less performing results. 

Gradient profile model-based cost function also seems to be less performing with 

lower global volume overlap (Tab 4.6). In more detail, we can see on Fig 4.8 that the 

gradient profile model-based cost function gives some high performance increasing in 

some cases (e.g. cases 8, 11, 25) but also some really performance decreases (e.g. case 

10). In fact, the assumption of a Gaussian distribution of the profiles is not always 

pertinent. Moreover, T2 MRI prostates have a high variability in texture. Tumors may 

appear a hypo-intense and at different locations, mainly in the peripheral zone whose 

gray level is high in the healthy part of the prostate and can modify the gradient 

profiles. Thus, the gradient profile model built from these T2 MRIs has difficulties to 

separate the prostate boundary between surroundings and the inside of the prostate. 
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The local gradient cost function that only looks for the strong energy of the 

boundary is more robust. In the following work, we will only use gradient based cost 

functions. 

4.2 Multiple objects OSD based prostate segmentation 

 In the previous section, we proposed a T2 MRI prostate surface segmentation 

scheme based on Optimal Surface Detection (OSD). Globally, the single OSD method 

can give relatively good results but with some weaknesses, especially on the base and 

apex. Generally, the false definition of surface on the base and apex is because there, 

the prostate is imaged on slices parallel to the surface with high partial volumes. 

Other problems happen near the surrounding organs like the bladder and the rectum. 

In these areas, the intensities at the prostate surface are closed to these of the 

surrounding organs. And sometimes, these organs may mutually influence the shape 

of each other. In this section, a joint multi-objects method (Song, Liu et al. 2010) is 

introduced in the segmentation scheme. In the multiple objects OSD method, the 

information of the several organs is competing in order to find the more probable 

surfaces. 

 

The overall framework of the multiple OSD segmentation is the following: 

1) An initial surface mesh is built for each organ 

2) Graphs are built for all the organs. These graphs will share some common 

nodes at the same location. Some competition constraints will be set at these 

nodes. 

3) Graph cut will be used to estimate the surfaces of all the graphs 

4) We keep the prostate surface as segmentation result. 

 

Fig 4.9 framework of the multiple objects OSD 

segmentation 
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4.2.1 Initialization of bladder 

 The bladder is a distensible organ whose shape changes continuously according 

the amount of collected urine and the position of the surrounding organs. It is placed 

superior to the prostate base, but sometimes can literally envelop the upper part of the 

prostate. The variability of the bladder makes it difficult to use a shape model. 

 

(a)                      (b) 

Fig 4.10 Prostate and its surrounding organs in T2 MRI 

 

In T2 MRI, the urine is seen as a hyper-signal, while the bladder wall itself 

presents a hypo-signal with values similar to the prostate capsule (Fig 4.10). In 2D, 

the wall thickness can appear differently on the several slices, especially when the 

bladder is tangent to the slice as in (Fig 4.10 a). 

 

 

Fig 4.11 a rough segmentation on bladder to obtain initial mesh 

 

An initial bladder segmentation framework based on deformable model has been 

introduced in (Garnier, Ke et al. 2011). An initial point inside the bladder is located 
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automatically using some geometrical (location of the bladder with respect to those of 

the prostate) and image (hyperintensity of the urine) features. Centered on this point, 

an initial mesh shaped as a small ellipsoid surface is built. The combination of 

inflation and internal forces, locally adapted according to the gray levels, allow 

deforming the mesh toward the bladder inner boundaries while overcoming the 

leakage issues that can occur at weak edges (Fig 4.11). 

4.2.2 Initialization of rectum 

 A precise location of the rectum in therapy is absolutely necessary in order to 

avoid fistula near the prostate. The rectum has a globally curved form with a wide 

variability in shape, which depends on its filling and the position of the surrounding 

organs. In T2 MRI, if the rectal wall presents a relatively low signal, the materials 

inside can be totally inhomogeneous in shape and values from hypo-signal (gaz) to 

higher gray level values. 

 

 

(a)                (b)              (c) 

Fig 4.12 Initialization of rectum surface mesh 

 

Because any automatic segmentation method applied on the rectum gave a robust 

result, we decided to adjust interactively a fast 3D broken tubular model to the data. 

On a sagittal slice or on a axial slice centered on the prostate, the urologist or 

radiologist selects two points ( 0

initP and 1

initP ) on the lateral diameter of the rectum:. 

These two points give the rectum central tabular section (position and diameter, Fig 

4.12 a). Then the user defines 2 other points in the middle of the rectum 

( 2

initP and 3

initP ): in the front and in the back of the prostate. These two points give the 

axes directions of the broken tube (Fig 4.12 b). 
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4.2.3 Initial mesh resampling 

With our previous work, we have the initial meshes of prostate, bladder and 

rectum. Meanwhile, interacting areas, where the meshes of prostate and of the 

neignbor organs are closed enough, are estimated before graph construction. 

Interacting Area 

 

   

Fig 4.13 The definition of interacting area. The blue line is ray 

oriented along normal of prostate mesh vertex. When the distance 

between vertex and surrounding surface mesh is less than a 

threshold (  ), the surrounding area (brown dash line 

surrounded) is defined as interacting area. 

 

For each vertex i  of the prostate mesh, a ray oriented along the normal ir  (see 

equation (23)) is cast until it crosses the neighbor organ mesh. This gives the distance 

from vertex i  to the neighbor organ mesh (Fig 4.13). When the distance is less than 

a defined threshold (20 voxels for prostate and 15 voxels for rectum), the vertex i  

and the ray intersection point with the neighbor surface belong to an interacting area. 

In this area, some special constraint will be defined to avoid a surface conflict in the 

segmentation. 

 

In interacting areas, the vertexes of the neighbor organ surface mesh, will be 

resampled because: 

- The surface meshes of the prostate and the neihgbor organs can overlap 

each other (the neighbor mesh inside the prostate). 

- To build a multi-objects graph, the vertex of prostate mesh should have a 

corresponding vertex on the neighbor organ mesh. This vertex pair will be 

used to build a common nodes column between the two meshes during the 

graph construction. 
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(a)                                   (b) 

Fig 4.14 Resample process in interacting area (rectum mesh for 

example): (a) replacement of conflict vertexes on the surrounding 

organ surface mesh, (b) modify vertex on surround organ to build 

corresponding vertex pair 

 

The solutions of these situations are similar: on the neighbor organ, we will 

define the new vertexes along the prostate surface normal, and delete the old vertexes 

of the surface. In the situation of a surface overlapping (Fig 4.14 - a), we will delete 

the vertex inside the prostate mesh and define a new vertex along the prostate surface 

normal. In the other situation, we define the point of intersection between the prostate 

surface normal and the neighbor organ surface as the new vertex ( '

,2rV  in Fig 4.14 b), 

and delete the closest vertex ( ,2rV in Fig 4.14 b). The new vertex of the neighbor organ 

mesh is given by: 
'

r p pV V   r                             (39) 

here '

rV  is the new vertex of surrounding organ mesh, pV  is the closest vertex on 

the prostate mesh, pr  is the surface normal defined in (23). In the case of mesh 

overlapping,   is defined by the end user as the minimal distance between two 

surfaces on this area (usually 1  ); otherwise,   is the distance between vertex pV  

and surrounding organ surface. 

4.2.4 Multiple objects OSD 

 In the previous sections, we showed how to obtain the initial meshes of prostate 

and the neighbor organs (Fig 4.15). The resample processes not only eliminate the 

conflict between these surfaces, but also define the vertexes interacting areas. 

The main idea of the multiple organs OSD is to build a graph for each organ from 

the three initial meshes. For the graphs construction we will have two cases depending 

whether or not the surface vertex is outside or inside an interacting area. If the surface 

mesh vertex is outside an interacting area, the graph is built as in section 4.1.2. If the 

surface mesh vertex is inside an interacting area, a new way to build the graph is used 

in order to integrate the spatial relationship between both surfaces: 
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Fig 4.15 the initial surface meshes of prostate (green), bladder (red) 

and rectum (yellow) 

 

Nodes 

The column of nodes is build between the vertex on the prostate and its 

corresponding vertex on the surrounding organ (Fig 4.16 a). More nodes of the graph 

are so distributed on both inside and outside of the surfaces on these columns. It has 

also to be noticed that according to the definition of the interacting area, the node 

column in this area is along the normal of the prostate surface and not along the 

normal of the neignbor organ surface.  

In the interacting areas, the columns belonging to different graphs share the same 

position (Fig 4.16 a).  

 

  

(a)                                   (b) 

Fig 4.16 Graph construction of multiple objects OSD: (a) Nodes 

columns from different graph (blue from bladder graph, yellow from 

prostate graph) share the same positions, (b) Surface distance 

constraint   defined in interacting area 

 

Links 

- Column links: They are constructed as the other column links of the graph 

- Surface links: They are also constructed as described in section 4.1.2. 

Different surface hard shape constraint   can be used for each organ. 

This can be done by assigning a specific   on equation (26) for each 
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surface.  

- Interacting links: In order to prevent the leakage between surfaces in the 

interacting area, the distance between surfaces should be at least l  voxels 

and at most h  voxels. l  and h  are the surface distance constraints. 

Because of h  and l , new adjacent columns links are added in the 

interacting area (Fig 4.16 b). 

 

Data term weight assignment 

 All the nodes on the multiples objects graphs (prostate, bladder and rectum) are 

assigned to a weight based on the gradient function as we described in section 4.7.2. 

Some specific weights are defined according to a priori information. 

 As we know, the bladder organ is a hollow structure filled inside with urine. This 

make the bladder on T2 MRI image have very high intensity inside where the liquid is, 

but low intensity on the bladder wall. The initial bladder segmentation gives only the 

liquid, so the inner prostate wall. For the outer wall surface, because of the hyposignal 

on the wall itself and the hyposignal on the prostate surface, it is obvious that a 

gradient based cost function will not be able to distinguish between the bladder wall 

and the prostate surface (Fig 4.10). To overcome this lack of information, we add the 

bladder wall thickness (between 3-5 mm depending on the filling) information within 

the graph. All the nodes outside of the initial bladder mesh but closer to the specified 

wall thickness (5 mm in our case) will be considered as belonging to the bladder. This 

information will be encoded as weights on the links to the terminal nodes (Fig 4.17). 

 

 
Fig 4.17 The nodes in both interacting area and bladder wall area 

(gray region) are assigned to a very low weights to make sure it is 

out of the prostate surface. 

  

At the end, the min-cut/max-flow algorithm is applied on the common graph. The 

result is an estimate of the prostate, bladder and rectum surfaces. 
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4.2.5 Parameters adjustment 

 This multiple objects OSD algorithm has been tested on the 33 cases of T2 MRI 

database (Tab 4.1). These data with different qualities and image size ranges are used 

to adjust the parameters of bladder and rectum. 

For the bladder, the following parameters are important in the segmentation: 

- b : the hard shape constraint from inter-column links of bladder graph, which 

make sure the bladder surface won’t change rapidly. 

- lb  and hb : the distance constraint in the interacting area of the prostate and the 

bladder (Fig 4.16). They keep the distance between the surfaces between at least 

lb  and at most hb . 

- InDB and OutDB: the search distance inside and outside of bladder surface. 

- POS_GDT, NEG_GDT and ALL_GDT: The promoted directions of the gradient 

based cost function on bladder graph. 

 

The parameters tuning was performed as following: 

b  and lb , hb  are evaluated together, with b  from 1/4, 1/3, 1/2, 2/3 and 3/4, 

lb  from 1 to 5 and hb  from 3lb   to 9lb  . All these parameter combinations 

have been tested, while the other parameters has been fixed to: InDB = -5, OutDB = 

20, the gradient direction is POS_GDT. The best results (which gave the highest 

volume overlap with the manual designed ground truth volume) have been obtained 

with 1lb   and 4hb  . The volume overlap with different b  are closed to each 

other. We choose 1/ 3b   to make a compromise between bladder and prostate. 

InDB and OutDB have been tuned together. For InDB, we only tested the value 

of -5 and -10, because we tend to seek the outer wall of bladder but not inner wall. For 

OutDB, we tested 10, 15, 20, 25 and 30. As we expected, InDB = -5 gave a better 

performance than InDB = -10 and also minimized the risk of getting unwanted surface 

inside bladder. OutDB = 25 and 30 gave both good results, and we choose OutDB = 

30 to avoid too thick bladder wall.  

For the choice of the gradient promoted directions based cost function, there is a 

difference here compared to the situation of the prostate: for the vertices outside of the 

interacting area, the gradient direction must be positive POS_GDT. This is because 

the inside of the bladder appears with higher intensity than the outer bladder wall. In 

this case, a negative gradient function would promote the inner wall, but not the outer. 

For vertices inside the interacting area, we choose ALL_GDT which gave better 

performance than POS_GDT. 
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For the rectum, the same parameters are adjusted as the bladder: 

- r : the hard shape constraint from inter-column links of column graph, which 

make sure the bladder surface won’t change rapidly. 

- lr  and hr : the distance constraint in the interacting area of the prostate and the 

rectum. They keep the distance of surfaces between at least lr  and at most hr . 

- InDR and OutDR: the search distance inside and outside the rectum surface. 

- POS_GDT, NEG_GDT and ALL_GDT: The promoted directions of the gradient 

based cost function on rectum graph. 

 

The parameter tuning gave: 

 The r  and lr , hr  are evaluated together, with r  chosen between 1/4, 1/3 

and 1/2, lr  between 1 and 5, and hr  between 3lr   and 9lr  . All these 

combinations are tested with InDR = -15, OutDR = 30 and a gradient direction 

ALL_GDT on the whole rectum. The result shows that the 1/ 4r   gave the best 

performance with 2lr   and 9hr  . 

 For InDR, we tested -15, -20, -25 and -30, and for OutDR, we tested 15, 20, 25 

and 30. The results with |InDR| and OutDR over 25 gave good performances. 

Considering the variance of the rectum shape in different situation and the initial 

mesh which is based on a rough cylinder model, we choose InDR = -30 and OutDR = 

30. 

 Because the rectum mesh initialization is based on a rough cylinder model, the 

real rectum surface could be on both inside and outside of the initial mesh. So we will 

choose ALL_GDT for the whole rectum graph. 

4.3 Evaluation 

 We performed the evaluation of the T2 MRI multiple objects OSD segmentation 

on the MICCAI Grand Challenge: Prostate MR Image Segmentation (PROMISE) 

2012 training dataset (MICCAI 2012). From this dataset, we considered only the 11 

T2 MR volumes acquired using an external coil. We discarded the volumes acquired 

using transrectal coils because the intensity inhomogeneity correction was out of our 

scope. A manual delineated ground truth was available for all the volumes so as 

recommend by the challenge we choose to evaluate the segmentation using the dice 

similarity coefficient (DSC) between the segmented data and the manual delineated 

volume: 

2
ref seg

ref seg

V V
DSC

V V





                         (40) 
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where refV  is the reference volume and segV  is the segmented volume. The DSC 

measures the overlap degree between refV  and segV . 

In the rest of the evaluation we will examine and compare 3 prostate segmentation 

strategies : 1) single OSD on the prostate (P), 2) multiple objects OSD using the 

prostate and the bladder information (P&B) and 3) multiple objects OSD using the 

prostate, the bladder and the rectum information (P&B&R) 

 We calculated the mean and median DSC of the different results obtained on the 

PROMISE training data (Tab 4.7). The result shows that, our methods gave almost the 

same level performance as the best competitor in MICCAI Grand Challenge at that 

time (Vincent, Guillard et al. 2012). 

It should be noticed that, we do not have exactly the same condition as (Vincent, 

Guillard et al. 2012) in Tab 4.7: we trained our parameters by using the 33 T2 MRI 

database, but not on the “Leave One Out Cross Validation” (LOOCV) from the 

MICCAI Grand Challenge training data set. And we only segmented the cases using 

external coil to avoid intensity inhomogeneity of volume. 

 

 Mean DSC Median DSC 

Single OSD 0.8828 (0.02) 0.8814 

Mutiple object OSD (P&B) 0.8862 (0.02) 0.8833 

Mutiple object OSD (P&B&R) 0.8884 (0.02) 0.8870 

Vincent, et al 0.88 (0.03) 0.89 

Tab 4.7 mean and median DSC of PROMISE training set 

 

 

Fig 4.18 Dice similarity coefficients of all cases for single OSD and 

multiple objects OSD: P (blue) gives single OSD segmentation 

result with only the prostate information; P&B (red) gives multiple 

objects OSD segmentation result with prostate and bladder 

information; P&B&R (yellow) gives multiple objects OSD 

segmentation result with prostate, bladder and rectum information 
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 Fig 4.18 shows the specific Dice similarity coefficient for each case. We can 

notice that in most of the cases, the multiple objects OSD segmentation gave better 

performance than the single OSD segmentation. It can also be seen that when the 

rectum is incorporate in the OSD scheme, the performance is slightly increased. 

Globally the gain on the OSD could be seen as relatively low. But if we look 

qualitatively, our segmentation results in more details, multiple OSD estimates 

surfaces are closer to the real topology between the organs. The prostate-bladder OSD 

segmentation prevents the leakage of the prostate surface to the bladder region (an 

example is given, Fig 4.19 a-b). The prostate-bladder-rectum OSD segmentation 

avoids the overgrowing of the prostate surface in the apex area near the rectum (Fig 

4.19 c-d). 

  

Many factors may affect the accuracy of the segmentation in our method. One of 

the factors is the accuracy of manual defined points used for the initialization, 

especially on the apex and base areas. Because the prostate and neighbor organs 

overlap in these areas, and these organs have intensities similar to these of the prostate 

surface, the manual point location will decide the segmentation qualities. Fig 4.20 

gives the DSC of base, apex and center part of prostate. Obviously, the DSC on center 

part of prostate is the highest, and the most stable in all 11 cases. But on apex and 

base part, the qualities of segmentation are much lower, and more variable in different 

cases. 

 The variability of manual defined contours used for the validation needs also to 

be considered in our result. Lebesque et al. (Lebesque, Bruce et al. 1995) investigated 

intra-doctor variability for contouring rectum and bladder on CT images, and they 

found a 2.5-3% and 7-9% variation when considering rectum/bladder and rectum 

wall/bladder wall volumes. Garnier et al. (Garnier 2009) compared two set of surgeon 

defined manual contours on TRUS volume, and found that the manual volumes 

overlap with a coefficient between 82% and 85%. Hodge et al. (Hodge, Fenster et al. 

2006) suggest to use the mean of the manual segmentations from different radiologists 

and/or the same radiologist at different times to reduce inter and intra-observer 

variations. But in our case, only one manual contour is offered as a ground truth. 

During the initialization part of OSD based segmentation, only minimal 

interactivity (six initial points for prostate, four initial points for rectum) are used to 

obtain the initial surfaces of the prostate and its neighbor organs (Fig 4.1). In these 

initialization schemes, the interactivity level is relatively low but absolutely necessary 

to insert the practitioner expertise into the procedure, especially to define the location 

of some structures badly imaged in T2 MRI like the base and the apex or to model the 

form of very complex structures like the rectum. 
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In order to evaluate the intra-observer variance of our OSD segmentation 

framework, specifically, the influence of initial points’ definition, we make 10 

independent multiple-objects (prostate-bladder-rectum) OSD segmentations on one 

case. The end-user will interactively chose 10 initial points (6 points on prostate, 4 

points on rectum) on each segmentation case. We calculate the dice similarity 

coefficients (DSC) not only on the whole gland, but also the different zones of 

prostate (Fig. 4.21). The results show that (Tab. 4.8), the mean DSC score of 10 

segmentations is 89.71% with a standard deviation 1.23%. When investigating the 

influence on different zones, we find the center zone with 4 initial points give the 

highest segmentation accuracy and lowest standard deviation. In apex and base zone, 

because the T2 MR volume has low resolution in these areas, the initial points’ 

definitions are more difficult. The segmentation accuracy is relatively good in these 

areas, but also shows more intra-observer variance.  

 

     

(a)                (b)  

     

(c)                (d) 
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(e) 

Fig 4.19 Result contours and surfaces (a - b) The result of single OSD (pink) 

and Prostate-Bladder OSD (green) on Axial and Sagittal plane of Case 3, (c – d) 

The result of Prostate-Bladder OSD (green) and Prostate-Bladder-Rectum OSD 

(cyan) on Axial and Sagittal plane of Case 11, (e) 3D view of the joint prostate, 

bladder an rectum segmentation of Case 2. 

 

 

Fig 4.20 Dice similarity coefficients of all cases on different part of 

prostate: base (blue), center (red) and apex (yellow) 

 

 

Fig 4.21 Dice similarity coefficients of one case with 10 

independent segmentations: whole prostate (blue), base (red), center 

(yellow) and apex (green) 
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DSC Whole gland Base zone Center zone Apex zone 

mean 0.8971 0.8906 0.9366 0.8782 

std 0.0123 0.0234 0.007 0.0252 

Tab 4.8 mean and standard deviation of DSC scores from 10 

independent segmentations on the same case. 

4.4 Conclusion 

 In this chapter, the optimal surface detection algorithm has been introduced to 

segment the prostate surface in T2 MRI volume. With a minimal level of interaction 

(six initial points picked manually), we are able to obtain an initial mesh of the 

prostate. Then, an oriented and weighted graph is constructed based on this surface, 

and by including data value information and shape constraints. The max-flow/min-cut 

graph cut method estimates the prostate surface. The parameters of the whole scheme 

have been trained on a 33 cases database with different image size and acquisition 

quality. To increase the accuracy of segmentation on the prostate apex and base areas, 

the information of the neighbor organs surface (bladder and rectum in our case) is 

encoded into the segmentation scheme. The multiple objects OSD segmentation 

allows us to build a “graph” including all these three organs. Some anatomical and 

topological information (distance between surfaces, bladder wall thickness) are 

encoded in these joint graphs. The competition between the surfaces of the three 

organs will refine the prostate surface estimation near the bladder wall and or on the 

rectum area. 

 We evaluated our method on 11 cases from the MICCAI Grand Challenge 

PROMISE data set, and we found that our segmentation scheme have the same level 

of performance as the best competitor in this challenge at that time. The result shows 

that OSD could segment the prostate on T2 MRI relatively accurately and that 

multiple objects OSD can improve the performance of this segmentation.  

When investigate the inter-observer variance of OSD segmentation, we noticed 

that the segmentation in center part have higher accuracy and lower standard 

deviation; while in apex and base area, the accuracy is more sensitive to the initial 

points’ definitions. In real surgery case, these initial points are given by surgeon with 

expertise. We have reason to believe that their expertise will be helpful to improve the 

accuracy in apex and base zone. 

This segmentation scheme on T2 MRI allows us to estimate the surface of the 

prostate which will be used in a surface-to-surface registration scheme between 

ultrasound images and T2 MRI. 
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Chapter 5: Surfaced based registration: a 

preliminary work 

In HIFU therapy, the HIFU device probe is not only used to generate the high 

intensity focused ultrasound to destroy the tumor, but also is used to scan the prostate 

gland to generate transrectal ultrasound (TRUS) images. TRUS is used to plan and 

guide the therapeutical beams. But, because the TRUS images are mainly composed 

by speckle (Fig 5.1 a), it is hard to identify the tumor from the normal regions. On the 

other side, the T2 MRI, with high resolution details, could offer the information about 

the prostate tissues as well as the tumor location (Fig 5.1 b). The registration process 

could map this information from T2 MRI volume to the TRUS volume, to guide the 

HIFU therapy. 

 

  

(a)                            (b) 

Fig 5.1 (a) TRUS image of the prostate (b) T2 MRI of the prostate. 

 

 With the multi-objects OSD segmentation scheme described in chapter 4, the 

prostate surface can be obtained from a T2 MRI volume. The prostate of the surface 

on TRUS can also be obtained by OSD (Garnier, Bellanger et al. 2011). A surface 

based registration can now be applied to register the two surfaces. According to 

Audette et al. (Audette, Ferrie et al. 2000), surfaces usually provide more redundancy 

than landmarks, and the redundancy could be an advantages for characterizing 

non-rigid motions or deformations. Furthermore, a surface-based approach is usually 

less affected than volume-based one if the information acquired by the two modalities 

of interest overlap only partially. 

In this chapter, we will propose a preliminary work about TRUS/T2 MRI prostate 

surface-based registration scheme. In order to validate the feasibility of this approach, 
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we will apply this registration method to real prostate images volumes acquired on the 

same patient using T2 MRI and TRUS obtained on the Ablatherm device. 

5.1 Registration and fusion scheme 

 As discussed in chapter 2, the prostate is deformed between the pre-operative T2 

MRI acquisition and the peroperative US acquisition (transrectal coil in MRI in some 

cases, therapy probe size, balloon filling or effect of the therapy). A surface-to-surface 

elastic registration scheme must be considered. In this scheme, the surface of the MRI 

data will be adjusted on the US surface. An elastic registration scheme is generally 

decomposed into 2 steps:  

- Rigid registration between the 2 surfaces in order to find the global 

transformation (translation, rotation, scale) between the 2 volumes.  

- This global transformation is then used as the initial position of the elastic 

registration. The result of this registration step will be a 3D deformation 

field which adjusts the MRI surface to the US one.  

The previous registration steps are then used for the fusion. The information 

contained in the T2 MRI volumes (gray level, tumor position, annotations …) can 

now be transferred to the US volume by using the global transformation matrix and 

the 3D deformation field estimated in the two registration steps. The overall 

framework can be seen on Fig 5.2 
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Fig 5.2: The Complete TRUS-MRI registration process by using 

surface based registration technique. 

5.1.1 Rigid transformation 

As we noticed in Fig 5.1, the prostate regions in TRUS and T2 MRI not only have 

different shapes, but also have a different orientation, size and location in the 3D 

volumes. A rigid registration must be used to align the prostate surfaces and regions 

from these different image modalities. This step could offer an initial statement for the 

elastic registration and accelerate the whole registration process. 

The aim of the rigid registration is to find the global transformation matrix 

(translation, rotation and scaling) which align the 2 forms. Several global registration 

methods exist in the literature depending on the feature (point, line, volume …) and 

the similarity hypothesis (minimization of distances, same inertia moments …). 

Because the forms are not similar, we chose the Iterative Closest Point (ICP) 

algorithm (Besl and McKay 1992), which is a distance minimization method between 

non corresponding features. This algorithm, which aimed to first register non 

corresponding 3D point sets can also be used for other features. 

In our case, with the OSD based segmentation, we not only obtain the segmented 



 

108 

surface of the prostate in TRUS and T2 MRI, but also have the surface meshes with 

vertexes and triangular polygons. If we consider these vertexes as surface points, we 

get two point sets corresponding respectively to the prostate surfaces of TRUS and 

MRI. These sets are used as input of the ICP algorithm (Fig 5.3). 

 

 

Fig 5.3: ICP based rigid registration between TRUS and T2 MRI 

  

In our specific case, we used the vtkIterativeClosestPointTransform class of the 

VTK library (Schroeder, Avila et al. 2001). Appling the final transformation to both 

MRI volume and its associated prostate surface, we can obtain the registered 3D T2 

MRI volume and prostate surface. This allows to align globally the MRI volume to 

the TRUS volume (Fig. 5.4). 

 

 Fig 5.4 showed that, the rigid registration could make the prostate volume and 

prostate surface from TRUS and MRI overlap in a common coordinate space. But it 

could not solve the problem of prostate deformation. A non-rigid registration is 

necessary in our work. 

5.1.2 Non-Rigid registration 

Global transformation matrix estimated by the previous surface-to-surface rigid 

registration scheme can be used to globally align the MRI volume into the US volume. 

But because the prostate volume is displaced and deformed during the therapy 

(transrectal therapy probe, edema, etc), the MRI volume should be deformed in order 

that the prostate in this modality fits the prostate in the US volume. The main idea is 

to use an elastic volume registration scheme, but based on the prostate surface 

information, to estimate a 3D deformation field. This 3D deformation field can then 

be used to transfer the MRI prostate volume information into the US volume. 
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(a)                           (b) 

 

(c)                          (d) 

Fig 5.4: Rigid registration between TRUS and T2 MRI 

(a) TRUS image with prostate contour (b) T2 MRI with prostate 

contour (c) T2 MRI after rigid transformation (d) 3D view of 

prostate location in TRUS and T2 MRI after transformation 

 

It should notice that, in our case, the purpose of surface-to-surface elastic 

registration is not simply fitting surfaces, but more finding a 3D deformation field to 

deform the surface and also the inside of the prostate volume. From this constraint, we 

have to choose a 3D elastic volume registration scheme which uses surface 

information. The demons algorithm (Thirion 1998) is able to perform such a kind of 

registration. Thirion proposed a possible expression of demons algorithm by using 

only contour points, and encoded inside/outside information into symmetric forces as 

demons forces. We will applied an optimized symmetric forces demons algorithm 

based registration framework (Thirion 1998, Vercauteren, Pennec et al. 2009) to our 

MRI/TRUS registration problem, and match the prostate from different modalities by 

using surface information. 

In order to speed up the registration speed we will also use a multi-resolution 

framework in our non-rigid registration (Bajcsy and Kovačič 1989). In this framework, 

both sources image and target image, are decomposed into an image pyramid. The 

original images are down-sampled at each level. The coarsest level registration is 
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obtained first, and then this registration will be improved with the finer resolution 

registration (Fig 5.5). The result of the elastic multi-resolution is a 3D deformation 

field (Fig 5.6 c). This deformation field can now be used to transfer the 3D 

information of the moving image to the fixed image (Fig 5.6 d). 

 

Fig 5.5: Multi-resolution registration technique for registration 

 

    

(a)                  (b)                 (c)                 (d) 

Fig 5.6 The non-rigid registration from TRUS to T2 MRI. (a) TRUS 

volume with prostate contour. (b) T2 MRI volume after rigid 

registration with prostate contour. (c) Deformation field obtained by 

the non-rigid registration. (d) T2 MRI volume after non-rigid 

registration 
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In our medical application framework, the question will be: how the elastic 

registration performed using only the prostate surface information will predict the 3D 

deformation inside the prostate? Most of the elastic registration methods are based on 

explicit deformation models (spline, anatomical mechanical model). But in the 

demons algorithm, the deformation is based on local diffusing model. So, in our case, 

the deformations imposed by the elastic registration by the surface will be diffused 

inside prostate.  

The simplest way to convert the surface deformation into 3D deformation will be 

to work on binary volumes build from the prostate surfaces. The idea is to perform the 

demons elastic registration between the binary volume of the moving image and the 

binary volume of the fixed image. This method will probably give 3D deformation 

near the surfaces and no deformation in the center of the prostate. We will call this 

method as binary model in the rest of the Chapter. 

In order to take the whole volume information into account, one solution could be 

to register the distance maps of the two prostate surfaces instead of the binary 

volumes (Dréan, Acosta et al. 2012). In this method, a 3D distance map is constructed 

from each prostate surface. These two maps are then normalized together. The 

demons elastic registration algorithm is then applied on these two normalized distance 

maps. In this case, we hope also that some deformation field will be estimated inside 

the prostate to fit the distances together. We will call this method as normalized 

distance map model. 

 

The registration framework we will use is the following: 

- Each prostate surface aligned after rigid registration is casted to a binary 

volume by filling. The binary volume of the TRUS is set as the fixed image, 

and the binary volume of T2 MRI is set as the moving image.  

- If we want to use the normalized distance map model, a distance map is 

computed from each previous binary volume using the method described in 

(Maurer Jr, Qi et al. 2003). The two distance maps are then normalized as 

described in (Dréan, Acosta et al. 2012). The normalized distance map of the 

TRUS is set as the fixed image, and the normalized distance map of T2 MRI 

is set as the moving image. 

- The demons algorithm calculates the deformation field to transform the 

moving image to match the fixed image. For this we used the 

itkFastSymmetricForcesDemonsRegistrationFilter class of the ITK library 

(Schroeder, Avila et al. 2001) in a pyramidal multi-resolution scheme. 

- The original T2 MRI volume is first transformed using the global 

transformation matrix estimated by the rigid registration and then warped 
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using the deformation field estimated by the elastic registration. The 

information contained in the T2 MRI (gray level, automatic or manual 

tumor delineation) is so transferred into the peroperative US volume to help 

the therapy guidance (Fig. 5.7). 

 

    

(a)                 (b)                  (c)                 (d) 

Fig 5.7 Final registration scheme: (a) US peroperative image; (b) T2 

MRI volume after rigid transformation; (c) T2 MRI after elastic 

warping; (d) fusion of information. 

5.3 Experiment and discussion 

 In order to validate the feasibility of the proposed framework, we applied it on a 

set of 10 patients treated by the Ablatherm device. For each patient we had a 

pre-operative T2 MRI volume and a peroperative TRUS volume recorded on the 

Ablatherm device during the treatment planning. The goal of these interventions was 

to treat the whole prostate, on all these cases a urethra resection has been performed 

on the prostate before the treatment to prevent the compression by this swelling and a 

catheter has been introduced to ensure the urine flow. The details of these volumes are 

shown in Tab 5.1: 

 

Patient 
T2 MRI Volume TRUS Volume 

Size (voxel) aS  (mm) tS  (mm) Size (voxel) aS  (mm) tS  (mm) 

HEH0054 512×512×24 0.4297 3.0005 500×470×340 0.1566 0.1566 

HEH0055 512×512×24 0.4297 3.0005 500×470×308 0.1566 0.1566 

HEH0056 512×512×24 0.4297 3.0005 500×470×207 0.1566 0.1566 

HEH0057 512×512×24 0.4297 2.99994 500×470×261 0.1566 0.1566 

HEH0061 512×512×24 0.4297 3.0004 500×470×341 0.1566 0.1566 

HEH0062 512×512×24 0.4297 3.0005 500×470×275 0.1566 0.1566 

HEH0065 512×512×24 0.4297 2.99994 500×470×248 0.1566 0.1566 

HEH0068 512×512×24 0.4297 2.99994 500×470×247 0.1566 0.1566 

HEH0070 512×512×24 0.4297 2.99994 500×470×261 0.1566 0.1566 

HEH0074 512×512×28 0.4297 3.0004 500×470×322 0.1566 0.1566 

Tab 5.1: The details of registration database 
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First of all, for all the MRI volumes an interpolation between the slices has been 

performed to ensure that the volume data are isotropic. The US volumes were directly 

isotropic. For each patient, we segmented the TRUS and T2 MRI volumes by the 

OSD-based prostate segmentation technique. For the TRUS volume, the segmentation 

has been initialized by 8 manual points. For the T2 MRI volume 10 manual initial 

points have been set, 6 for the prostate and 4 for the rectum in the multi-objects OSD 

scheme. After the segmentation scheme, we have two meshes describing the prostate 

surface in both TRUS and T2 MRI modalities.  

The vertexes of the meshes are used in the Iterative Closest Point (ICP) based 

registration in order to align globally the MR surface to the US surface (Fig 5.4). A 

binary volume is then generated from each aligned surface. In the case we want to use 

the normalized distance map model, we converted the binary volumes to normalize 

distance maps. These 2 volumes (binary or distance map) served as input for the 

Demons-based elastic registration (Fig 5.6). The rigid transformation matrix and the 

deformation field are then used to transfer the T2 MRI pre-operative information to 

the peroperative TRUS volume. The information can be simply the gray level of the 

MRI (Fig 5.9) or annotation like the tumor (Fig 5.8). 

 

  

(a)                        (b) 

Fig 5.8 (a) T2 MRI transformed volume with a labeled location of 

tumor (Simulation) (b) The location of tumor mapped from T2 MRI 

to TRUS 

 

We tested the registration process to the whole data set of the 10 different patients, 

and have deformed MRI volumes (Fig 5.9). With our method (segmentation and 

registration), we were able to register all the ten couple of clinical data. The overall 

method seems so to be robust. However, because we had no possibility to evaluate the 

final accuracy of registration, only some qualitative preliminary conclusions can be 

assert based on the visual examination of our results. 
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Fig 5.9 Surface-to-surface registration results: Each row show a 

registration case with TRUS and MR data from the same patient; 
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from left to right: original TRUS image with contour, original MR 

image with contour, MR image after registration with contour from 

TRUS image, fusion of TRUS and MR image. 

 

Influence of the surface segmentation 

As we already discussed in chapter 4, the dice similarity coefficient (DSC) of T2 

MRI segmented prostate surface is about 88%. And according to (Garnier, Bellanger 

et al. 2011), the volume overlap (VO) between segmented surface and ground truth on 

US volume is also about 81~87%. The segmentation results on both MR and US 

images have usually a good accuracy in the medial prostate zone but a lower accuracy 

at the apex and base zone. Since the whole surface-to-surface registration process is 

based on the segmented surfaces from the two different modalities, it is obvious to say 

that the registration accuracy is highly depending on the surface segmentation 

accuracy. But in our last work about 10 cases, we have neither expert delineated 

contours ground truth to evaluate the segmentation, nor gold seed points or manual 

designed landmarks to evaluate the registration. It is so hard to analyze the influence 

of the surface segmentation accuracy in the overall registration process. We can only 

give some registration results in which the segmented surfaces are obviously bad (Fig 

5.10). But we think that in HIFU therapy, the experienced surgeon can discard these 

poor segmentations to avoid wrong registrations. 

 

   

Fig 5.10 registration result with bad MR contours 

 

Influence of the deformation field estimation model  

In order to point out the influence of the deformation field estimation model 

(binary model or normalized distance map model), we performed a simple test to 

compare the inner deformation of the prostate. Some spherical areas were labeled in 

the MR image (Fig 5.11 a). We performed the elastic registration between MRI and 

US using the binary model and the normalized distance map model. The MRI 

information is then warped according to the estimated 3D deformation field. Fig 5.11 

shows the results after warping.  

We can notice that, the registration with binary model is able to deform the areas 

around the prostate surface, but have only little influence on the areas away from the 

surface (Fig 5.11 b). For example, the sphere in the middle of the prostate got any 
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deformation. The registration with the normalized distance map model has an 

influence on all the inner structures of the prostate (Fig 5.11 c). For example, the 

sphere in the middle of the prostate is deformed. But we can also notice that the 

deformation of the structures inside of the prostate can have an unnatural aspect. 

 

   

(a)                 (b)                   (c) 

Fig 5.11 The comparison between different demon grid deformation 

models: (a) T2 MR image after rigid registration with circular areas; 

(b) Elastic registration result with binary model; (c) Elastic 

registration result with normalized distance map model 

  

As a conclusion to the deformation field estimation model, we can say that the 

demons algorithm could give a good deformation around the surface, but we have 

little warranty to the inside of the prostate.  

5.4 Conclusion and perspectives 

In this chapter, we performed a first attempt to realize the complete registration 

framework to fuse the preoperative T2 MRI information to the peroperative TRUS 

image. This study showed the feasibility of the approach. However, this approach has 

to be validated more deeply. 

Because we had neither the contour ground truth by expert delineations nor the 

volume ground truth, we were not able to validate the accuracy of the registration. 

More evaluations need to be performed with more specific criterions, such as 

annotated prostate zones, or landmarks visible in both modalities as gold seed points. 

Furthermore, if our method can give realistic results near the prostate surface, we 

have any warranty on the deformation inside the prostate. Other deformation models, 

like spline based, anatomical mechanical model …, should be investigated and 

evaluated according to some ground truth to increase the accuracy of registration 

inside the prostate. 

Finally, according to our medical application, our elastic registration method is 

able to give a first estimate of the tumor location in the TRUS image. Even if this 
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location has some incertitude, it could be used in a focal therapy but with some 

security margins around the reported tumor location. 
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Chapter 6: Conclusion and future works 

6.1 Conclusions 

HIFU therapy is an efficient treatment for prostate cancer. The HIFU device 

probe is not only able to generate precise focused ultrasound waves to treat accurately 

the tumor within prostate, but also can image the prostate with ultrasound to guide the 

treatment process. Because of its low sensitivity and the presence of speckle, the 

peroperative TRUS image can not offer enough information to locate spatially the 

tumor area. On the other hand, pre-operative T2 MRI with its high resolution and 

discrimination capability is helpful to locate the tumors within the prostate. The 

fusion by registration of the preoperative T2 MRI information into the peroperative 

TRUS image becomes an important issue in HIFU therapy. In this thesis, we tried to 

solve the registration problem by two different strategies: intensity-based registration 

and feature-based registration. 

For intensity-based registration, one of the problems is that the ultrasound images 

rarely have uniform intensity because of the speckle distribution. We considered the 

speckles as a kind of texture, and proposed a moment invariants based texture 

descriptor to convert the texture distribution to an intensity distribution. We proved 

the rotation and scaling invariance of the new descriptor theoretically and practically. 

Moreover, we find the interesting property of moment invariants based texture 

descriptor: the features extracted by moment invariants with different repetitions were 

sensitive to regional texture information while others enhanced the boundaries 

between two textured regions. The features sensitive to the boundaries between two 

textured regions can be seen as texture “gradient” and can thus be used in 

segmentation techniques where the boundary information is needed, i.e. active 

contours, deformable models, level sets, etc. In order to demonstrate the usability of 

moment-invariant features, such as region and boundary information, we introduced 

this joint information into the min-cut/max-flow graph cut algorithm. Moment 

invariants are so eligible to be used to adapt techniques based on the combination on 

regional and boundary information to the segmentation of ultrasound images. 

Although we were able to convert the speckle distribution of ultrasound image to 

intensity distribution, we were not able to find a similar intensity/texture distribution 

in T2 MRI. We did not continue the intensity-based registration in our Thesis.  

 For feature-based registration, we intend to find some common features which 

could be detected in both imaging modalities. In this Thesis, we choose the prostate 
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surface as a common feature for the registration. The registration problem is so 

converted into a segmentation problem. An OSD based method was proposed to 

segment the prostate surface in T2 MRI from six manual defined points. Furthermore, 

we extend the OSD based segmentation by including the bladder and rectum 

information. In this multiple object OSD segmentation process, some prior knowledge, 

such as the thickness of bladder wall, are used to prevent the prostate surface to the 

bladder or rectum and so we improved the segmentation accuracy. These OSD based 

methods were evaluated on 33 cases from clinical T2 MRI volumes and also 11 cases 

from MICCAI Grand Challenge PROMISE 2012 database. Our segmentation scheme 

has the same level accuracy as the best competitor from this challenge. 

 With the OSD based T2 MRI segmentation method and the TRUS segmentation 

method proposed by our colleague (Garnier, Bellanger et al. 2011), we are able to 

extract the prostate surface in both T2 MRI and TRUS images. A surface-to-surface 

elastic registration is then applied to align the preoperative MRI volume to the 

peroperative TRUS volume. We applied the surface-based registration on 10 cases of 

MRI/TRUS data from different patients. This study showed the feasibility of the 

approach. However, this approach has to be validated more deeply. 

6.2 Future works 

 MRI/US registration is an important research topic in the medical image 

processing area. In this Thesis, we introduced a moment invariants based texture 

descriptor for ultrasound image, proposed an OSD based prostate segmentation 

method on T2 MRI, and performed a surface-to-surface registration between T2 MRI 

and TRUS images. Several research lines can be considered: 

1) The prostate surface is the only information used in surface-based registration. 

Meanwhile, the segmentation accuracies are various on both T2 MRI and 

TRUS images, especially on the apex and base area. The influence of 

segmentation accuracy to registration should be considered in future work. 

2) The demons based elastic registration could fit the surfaces of prostate. But 

the inside deformation of prostate is still not clear. More evaluations need to 

be performed with more specific criterions, such as annotated prostate zones, 

or landmarks visible as gold seed points in both modalities. 

3) The moment invariants showed their ability to characterize the ultrasound 

images. But because of the complexity of the prostate, in T2 MRI, we were 

not able to prove the usability of the moment invariants in an intensity-based 

registration scheme. A future work could be to use the moment invariants 

based descriptor for the registration from US to another modality of organs 
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which are more homogeneous. 

4) The ability of the moment invariants to characterize region and also 

boundaries in US image should be used in other segmentation algorithm such 

as active contours.  
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Invariance of moment invariants 

The rotation and scaling invariance of the three moment invariants can be proved 

mathematically (Chen, Shu et al. 2011) (Zhang, Dong et al. 2010) (Zhang, Shu et al. 

2010). Here, we take ZMIs as an example (Chen, Shu et al. 2011):  

 

The radial moment of order p  with repetition q  of image intensity function 

 ,f r    is defined as (Mukundan and Ramakrishnan 1998): 
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 The Zernike moment of order p  with repetition q  of  ,f r   is defined as: 
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where  ,p qR r  is the real-valued radial polynomial given by 
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Let ''f  and f  be two images having the same content but a different 

orientation (  ) and scale ( ), that is,    '' , / ,f r f r     , the Zernike 

moment of the transformed image is given by: 
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     (44) 

With the definition of Zernike moment and radial moment in equation (41)，(1) 

and (2), we will have the relationship between them: 
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Meanwhile, the radial moments can also be expressed as series of Zernike 

moments: 
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So we can make equation (45) to: 
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This equation also can be written in a matrix form as: 
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Applying the ZMIs to this transformed image ''f , it can also be expressed in 

matrix form as: 
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Based on the definition of f  and f , it can be verified that 
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The rotation and scaling invariance has been proved. 

 



 



 



 

Résumé 

Les travaux de cette Thèse porte sur des éléments de guidage d’une thérapie focale du cancer 

de la prostate par Ultrasons Focalisés Haute Intensité (HIFU). Actuellement l’IRM est la seule 

technique d’imagerie qui permet de localiser la tumeur dans la prostate. Par contre, la tumeur n’est 

pas visible dans l’échographie qui est l’imagerie utilisée pour la planification et le guidage de la 

thérapie. L’objectif de la Thèse est de proposer des techniques de recalage de l’IRM T2 vers 

l’échographie. Deux approches ont été explorées : 

- une approche basée région et plus particulièrement une méthode de descripteurs de la 

texture en échographie basée sur des moments invariants en rotation et en échelle. Ces 

descripteurs sont sensibles à la distribution du speckle quelle que soit son échelle ou son 

orientation. Certains de ces descripteurs permettent de caractériser les régions présentant une 

même distribution de speckle, mais nous avons également constaté que certains autres de ces 

descripteurs étaient sensibles aux contours de ces régions. Cette caractéristique nous semble très 

utile pour les méthodes de segmentation intégrant à la fois l’information de contours et 

l’information de régions (contours actifs, graph cut, etc.). 

- une approche basée surface. Nous avons adapté une méthode de Détection Optimale de la 

Surface (OSD) à la segmentation de la prostate en IRM T2. Et plus particulièrement une 

segmentation concurrente de la prostate, de la vessie et du rectum par OSD multi-objets. Les 

surfaces de la prostate extraites du volume échographique et du volume IRM T2 nous ont permis 

d’envisager une première tentative de recalage surface/surface par la méthode des démons. 

Abstract 

The work of this Thesis is focused on image guided focal therapy of prostate cancer by High 

Intensity Focused Ultrasound (HIFU). Currently MRI is the only imaging technique that can 

locate the tumor in prostate. In contrast, the tumor is not visible in the ultrasound image which is 

used to guide the HIFU planning and therapy. The aim of the Thesis is to provide registration 

techniques of T2 MRI to ultrasound. Two approaches were explored: 

- Region-based registration. More particularly, we studied an ultrasound texture descriptors 

based on moments invariant to rotation and scaling. These descriptors are sensitive to speckle 

distribution regardless of the scale or the orientation. As we expected, some of these descriptors 

can be used to characterize regions sharing a similar speckle spatial distribution. But, we also 

found that some other descriptors were sensitive to the contours of these regions. This property 

seems very useful to adapt the classical boundary-based or mixed region/boundary-based 

segmentation methods (active contours, graph cut, etc.) to process US images. 

- Surface-based registration approach.. We adapted the Optimal Surface Detection (OSD) 

method to the segmentation of the prostate in T2 MRI, Furthermore, we proposed the 

multiple-objects OSD which is a concurrent segmentation of the prostate, bladder and rectum. 

Finally we used the prostate surface extracted from the ultrasound volume and from T2 MRI in a 

surface-to-surface elastic registration scheme. This registration allowed us to merge the 

preoperative MR information in the peroperative US volume. 
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