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Chapter 1

Introduction

In this brief introductory chapter, we start by presenting industrial applications of
eccentric Taylor–Couette–Poiseuille flow, which motivate the need for a better under-
standing of its stability properties. Then we introduce Taylor–Couette flow, with its
incredibly rich dynamics, and explain the physical mechanism of the centrifugal insta-
bility. The main existing results concerning the effects of eccentricity and axial advection
on this flow are then recalled.

1.1 Industrial motivations

Although the flow studied in this thesis is of fundamental interest, it also has practical
applications in a number of industrial configurations.

1.1.1 Oil-well drilling

In oil-well drilling, the fluid of interest is mud, injected through the rotating drill-
string (or drill pipe) and flowing back to the surface through the annular domain between
it and the wellbore (see figure 1.1a). In figure 1.1(b), we illustrate the bending of the
drillstring along the axis of the well due to hydrodynamic and mechanical forces and
flexibility of the pipe. The axial length scale of the bending is much larger than the well
diameter, so the geometry can be locally modelled by two eccentric cylinders with par-
allel axes. According to Pearson (1988), no less than 106 m3 of mud was used annually
to drill 104 or more oil and gas wells back in the late eighties, so the flow is of major
industrial interest. Despite recent studies concerning the basic laminar flow (Escudier
et al., 2000, 2002), very little is known about the stability properties of this flow, as
will be apparent in section 1.3. Predicting transition to complex flow régimes, such as
vortical flows or turbulence, is of interest because these may well result in increased
pressure losses and viscous torque.
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2 Industrial motivations

(a)

(b)

Figure 1.1 – (a) Sketch of the borehole and drill pipe (Ooms and Kampman-Reinhartz,
1996). (b) Deflection of the drillstring in the borehole (Jansen, 1991).

1.1.2 High-speed journal bearings and other applications

This flow can also be used to model journal bearings with axial flow, even though
their geometry is usually more complex. According to Dai et al. (1992), ‘bearings of
turbines, generators, hydraulic prime movers and other power generating equipment
operate in the superlaminar regime’, which motivates the need for better understanding
of the flow’s stability properties. In their theoretical analysis, these authors did not
consider the effect of axial flow. However, we know in practice that ‘the damaging effect
of impurities contained in oil can be considerably reduced when they are quickly removed
from the friction contact area’ (Sep, 2008) and that this can be achieved by axial flow.
In this case again, eccentric Taylor–Couette–Poiseuille flow can be used to model the
complex fluid motion, thus neglecting finite length effects, grooves, etc.

Escudier et al. (2002), who studied the basic laminar flow in this geometry for a
non-Newtonian fluid, provide a list of other potential applications comprising ‘oil-well-
completion operations [. . .], industries dealing with industrial waste, with slurries and
suspensions such as processed foodstuffs, synthetic fibres and even blood, and with the
extrusion of molten plastics and polymer solutions.’

1.2 Taylor–Couette flow

The Taylor–Couette flow, or flow between two concentric cylinders in differential
rotation, is an archetype of centrifugally unstable flow, but also one of the best-studied
fundamental flows of hydrodynamic stability theory because of its extremely rich dy-
namics.



1.2.1 - The centrifugal instability mechanism 3

1.2.1 The centrifugal instability mechanism

The centrifugal instability mechanism is of inviscid nature, and can be explained by
considering the Euler equations and assuming the flow to be purely azimuthal and steady.
With these assumptions, the radial component of the momentum equation reduces to

ρ
U2

θ

r
=
∂P

∂r
,

with ρ the density, P the pressure and Uθ the azimuthal velocity. This equation indicates
a cyclostrophic balance, namely the centrifugal force (left hand side) is counterbalanced
by a centripetal pressure gradient (right hand side). For some radial velocity profiles, this
equilibrium can become unstable to axisymmetric perturbations, as shown by Rayleigh
(1917). We give here Kármán (1934)’s physical interpretation of the instability criterion.
Consider a circular material line at radius r1, displaced to r2 = r1 + δr, with small
δr > 0. According to Kelvin’s theorem 1, the circulation Γ = 2πrUθ(r) of the material
line is conserved, therefore, the new velocity U ′

θ(r2) at r = r2 is equal to Uθ(r1)r1/r2. As
a result, the new centrifugal force at this position is ρU ′2

θ (r2)/r2 = ρU2
θ (r1)r2

1/r
3
2, which

should be compared to the equilibrium pressure gradient ∂P/∂r(r2) = ρUθ(r2)2/r2. If the
new centrifugal force is weaker than this pressure gradient, the material line is pushed
back towards lower values of r and the flow is stable. If on the other hand the centrifugal
force is greater, then the flow is unstable, and this occurs if r2

1U
2
θ (r1) > r2

2U
2
θ (r2), or

equivalently if Γ2(r1) > Γ2(r2). Considering an infinitesimal axisymmetric perturbation
δr → 0, the Rayleigh criterion for centrifugal instability can be written as

dΓ2

dr
< 0.

To obtain the radial velocity profile in a circular Couette flow, one needs to keep
the viscous terms in the momentum equations. Indeed, the basic axisymmetric, steady
and axially invariant Couette flow is the result of diffusion of axial vorticity from the
rotating walls. When viscosity is taken into account, one easily finds a velocity profile
of the form

Uθ(r) = Ar +
B

r
,

with A and B two coefficients depending on the geometry and the boundary conditions.
Denoting Ωi and Ωo the rotation rates of the inner and outer cylinder respectively, and
a and b their respective radii, the coefficients A and B have the following expressions

A =
Ωob

2 − Ωia
2

b2 − a2
, B =

(Ωi − Ωo)a2b2

b2 − a2
.

The Rayleigh criterion predicts instability when Ωi 6= 0 and Ωo/Ωi < η2, where η = a/b.
Taking viscosity into account, the flow has three nondimensional parameters: namely η
and the inner and outer Reynolds numbers, Ri = aΩi(b− a)/ν and Ro = bΩo(b− a)/ν.
The Rayleigh instability criterion is Ri 6= 0 and Ro/Ri < η. Figure 1.2 shows observed
flow régimes in the Ro–Ri plane for a particular value of η. The Rayleigh criterion
corresponds to the straight-line asymptote of the stability threshold of Couette flow
at large, positive Ro. The stabilising effect of viscosity is apparent, in particular the
existence of a critical value of Ri when Ro = 0.

1. In an inviscid, barotropic flow with conservative body forces, the circulation around a closed curve
moving with the fluid remains constant with time.



4 Taylor–Couette flow

1.2.2 A very rich dynamics

More than 20 years ago, Tagg (1992) undertook an inventory of the literature on
Taylor–Couette and related flows, listing almost 1500 references 2. One of the reasons
for the ‘popularity’ of this flow is the vast range of dynamical phenomena that can be
found in this deceptively simple geometry. Indeed, considering only the effect of changing
inner and outer cylinder rotation, the classical state diagram shown in figure 1.2 illus-
trates the wide variety of flow patterns that can be be observed experimentally. These
states range from simple Couette flow to steady, periodic and quasi-periodic secondary
flows, intermittent flows (coexistence of laminar and turbulent regions), patterned and
featureless turbulence. As a result, many fundamental aspects of the transition to tur-
bulence can be investigated with a simple laboratory experiment. The simple geometry
also makes analytical and numerical analyses relatively easy to implement.

Figure 1.2 – Multiple flow régimes observed in the Taylor–Couette system with indepen-
dent rotation of inner and outer cylinders (from Andereck et al. (1986), here η = 0.883).
For positive Ro, the primary instability threshold is seen to asymptote to the red dashed
line given by the Rayleigh criterion: Ri = Ro/η.

When eccentricity and axial flow are added, with a fixed outer cylinder, we will see in
this thesis that the primary instability can lead to temporal growth of deformed toroidal
and helical structures. Examples of such secondary flows for the concentric case in the
absence of axial flow (but with rotation of the outer cylinder in case b) are given in
figure 1.3. The toroidal vortices are named after Taylor (1923), who successfully carried
out the first viscous stability analysis of the flow, without the help of a computer!

2. An updated version online, with references up to 1999, can be found at http://clasfaculty.

ucdenver.edu/rtagg/tc_refs/taylor_couette.html.

http://clasfaculty.ucdenver.edu/rtagg/tc_refs/taylor_couette.html
http://clasfaculty.ucdenver.edu/rtagg/tc_refs/taylor_couette.html
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(a) (b)

Figure 1.3 – (a) Taylor vortex flow (Burkhalter and Koschmieder, 1974), (b) spiral vortex
flow for counterrotating cylinders (H. Swinney 3).

1.3 Effects of eccentricity and axial flow

The Taylor–Couette flow by itself is a rather crude model for oil-well drilling appli-
cations, but additional effects can be considered to bridge the gap with this industrial
configuration. The first effect that must be taken into account is the axial flow, nec-
essary to carry the rock cuttings out of the well. When axial flow is added, the flow
becomes open, which has important qualitative and quantitative implications for the
spatio-temporal dynamics of instabilities (see chapter 2). Eccentricity can also be taken
into account to model the fact that the drillstring does not remain centered inside the
well, due to its flexibility (see figure 1.1b). Other potentially significant effects such as
the non-Newtonian nature of drilling muds, fluid-structure interaction or axially varying
eccentricity and well diameter are however neglected in this study. The reason for this
choice is that, as we will see in this section, quite a large number of open questions
still remains regarding the dynamics of Taylor–Couette flow under the combined effects
of axial advection and eccentricity. For a thorough review of references concerning the
effect of axial flow on the one hand and eccentricity on the other, we refer the reader
to §4.1.3, §4.1.4, §4.1.5 and §5.1 of the manuscript. In this introductory section, we
focus on just a few results that we consider the most important contributions to the
state-of-the-art at the time of this work.

Before proceeding to this brief review, the concepts of temporal, convective and ab-
solute instabilities need be introduced. A flow is temporally unstable if an infinitesimal
perturbation is amplified in time. Absolute instability occurs when the response to a
localized impulsive disturbance leads to temporal growth in both the downstream and
upstream directions. If the flow is temporally unstable but not absolutely unstable, it is
convectively unstable. Thus, parameter space is divided into stable and unstable regions,
of which the latter consists of convectively and absolutely unstable subregions. All these
concepts will be discussed in more detail in the next chapter.

3. http://rsta.royalsocietypublishing.org/content/366/1864.cover-expansion

http://rsta.royalsocietypublishing.org/content/366/1864.cover-expansion
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Important remark In all the plots given in this section, the vertical axis corresponds
to an author-specific parameter measuring the intensity of centrifugal effects against
viscosity. In all cases though, it is proportional to the inner cylinder rotation rate Ωi.
For the sake of simplicity, we will not provide the exact definition of this parameter for
each curve, but will rather assume the radii and fluid properties to remain fixed and let
only Ωi vary. Under this assumption, the following curves indicate the critical rotation
rate above which instability (temporal or absolute) occurs.

1.3.1 Eccentricity

We choose to reproduce in figure 1.4 the results of Oikawa et al. (1989b), who
numerically computed the critical threshold of instability for the case η = 0.5, with
and without rotation of the outer cylinder. The results without outer cylinder rotation
are highlighted in green. It appears that upon increasing the eccentricity parameter,
the inner cylinder needs to be rotated faster to trigger an instability. For the range of
moderate eccentricities considered here, the corresponding mode at critical conditions
is a deformed Taylor-vortex flow. To the author’s knowledge, this paper, together with
Oikawa et al. (1989a) for a smaller gap configuration, contain the most up to date
theoretical predictions concerning eccentric Taylor–Couette flow.

Figure 1.4 – Temporal instability threshold for the Taylor–Couette flow with η = 0.5 as
a function of eccentricity (denoted here ǫ) for various outer Reynolds numbers (denoted
here Re2). From Oikawa et al. (1989b).
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1.3.2 Axial flow

When the cylinders are concentric but axial flow is added, the most up to date
theoretical results are those of Cotrell and Pearlstein (2004) and Cotrell et al. (2004),
in which the authors cover several decades of the axial Reynolds number for different
outer cylinder rotation rates. Figure 1.5 shows the temporal instability threshold as a
function of axial advection rate, for a fixed outer cylinder and different radius ratios
including the wide-gap case η = 0.5. We note a stabilising effect of axial advection for
all radii ratios at low values of Re. For 102 . Re . 104, there is a plateau in critical Ωi.
For the wide-gap case, the plateau is substantially lower than the maximum value of
critical Ωi, obtained for Re just below 100. At Re ∼ 104, there is an abrupt transition to
a Tollmien–Schlichting-like instability of viscous origin, even in the absence of rotation.
For all values of η, the mode at criticality is toroidal (propagating Taylor vortices) at
small enough Re, then helical with increasing azimuthal angular order as Re is increased.

Figure 1.5 – Temporal instability threshold of the Taylor–Couette–Poiseuille flow as
a function of the axial Reynolds number (denoted here Re), for three radius ratios
η = 0.5, 0.77, 0.95. From Cotrell et al. (2004).

The effect of axial flow on the convective and absolute instability thresholds is clearly
represented in figure 1.6. Note that convective and absolute instability thresholds are
identical in the absence of axial advection. When axial advection is added, the absolute
instability threshold increases faster than the convective instability. This indicates the
need to rotate faster to force amplification of the perturbations in situ, despite trans-
port by the basic flow. For the relatively small values, Re ≤ 3, shown here, both the
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convective and absolute instability thresholds are associated with axisymmetric pertur-
bations (propagating Taylor vortices). These results, initially established by Babcock
et al. (1991, 1992) for the full set of hydrodynamic equations, were followed by other
studies by different authors concerning the helical modes of instability. It was found
that none of these other modes compete with axisymmetric Taylor vortices, which are
always the most absolutely unstable, at least for the moderate range of Re considered by
these authors. As a result, figure 1.6 shows, in my view, the most important conclusions
regarding absolute instabilities in Taylor–Couette–Poiseuille flow.

Figure 1.6 – Convective and absolute instability thresholds, respectively denoted ǫc and
ǫconv

c , as a function of axial Reynolds number Re in Taylor–Couette–Poiseuille flow with
η = 0.75. From Recktenwald et al. (1993).

1.3.3 Combined eccentricity and axial flow

No one seems to have studied theoretically the combined effects of axial flow and
eccentricity, but a few experimental results are available (see §4.1.5 for references). In
figure 1.7, we show two graphs of the threshold of temporal growth as a function of
eccentricity, for different values of the axial Reynolds number. The difference between
the left-hand and right-hand graphs is the inlet conditions of the apparatus: ‘smooth’
or ‘sharp’. Increasing axial flow at any given eccentricity has a stabilising effect. On the
other hand, the effect of eccentricity at fixed axial Reynolds number is less clear, though
it seems to be mostly stabilising. An important observation is the dependence of the
results on the inlet conditions of the apparatus, an effect which is more visible for higher
advection rates.

The flow structures emerging from temporal instability seem difficult to identify, as
noted by the authors: ‘there appears to be a fluctuation in the number of vortex cells
occupying the length of the apparatus at any instant or in the number of turns in the
vortex spirals’. In figure 1.8, we reproduce the so-called ‘double-vortex system’ observed
by the authors and discussed in §4.4.5. The authors indicate that it is made up of two
helical structures winding in opposite directions, but warn the reader of the difficulty in
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(a) (b)

Figure 1.7 – Temporal instability threshold in eccentric Taylor–Couette–Poiseuille flow
as a function of eccentricity (e), for different values of the axial Reynolds number (here
denoted Rea). Experimental results (Coney and Mobbs, 1969–70) for a (a) ‘smooth’
inlet, (b) ‘sharp’ inlet.

precisely discerning this pattern. Indeed, the identification of a double-vortex system in
figure 1.8 is far from clear.

Figure 1.8 – ‘Mysterious’ double-vortex system (from Coney and Mobbs (1969–70), with
modified colour for better contrast), discussed in §4.4.5.

1.4 Objectives and plan of the thesis

In the preceding sections, we have shown that while the stability properties of ec-
centric Taylor–Couette and axisymmetric Taylor–Couette–Poiseuille flows are well doc-
umented, no theoretical analysis of the joint effects of eccentricity and axial flow have
been performed so far. Even though some experimental data are available, the few stud-
ies report scattered results and unexplained flow patterns. Moreover, these experimental
results show no evidence of absolute instabilities, which are expected to lead to well-
defined synchronized patterns rather than randomly fluctuating structures (see chapter
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2). Therefore, the effect of eccentricity on absolute instabilities in the Taylor–Couette–
Poiseuille flow is as yet unexplored, even from an experimental viewpoint.

The present thesis is intended to bridge these gaps, by providing a theoretical analy-
sis of convective and absolute instabilities in the presence of eccentricity and axial flow.
Parametric analyses will be carried out, taking into account the four nondimensional
control parameters of the flow, which respectively measure inner cylinder rotation, axial
advection, radius ratio and eccentricity. The thresholds of convective and absolute in-
stability will be calculated and the corresponding modes of instability will be identified.
The physical mechanisms associated with the instabilities will also be investigated.

The manuscript is organised in five chapters following this introduction. In chapter
2, some elements of hydrodynamic stability theory are recalled. The presentation is
focused on spatio-temporal modal dynamics in open flows invariant in the streamwise
direction. In chapter 3, we present the governing equations of the linear stability problem.
The numerical methods used to solve this problem are also discussed in the chapter.
Next, a temporal stability analysis is reported in chapter 4. The effects of axial flow
and eccentricity are studied for a wide range of parameter values in both wide- and a
small-gap cases. This chapter starts with a presentation of the basic flow properties,
which obviously depend on the control parameters, and ends with a comparison of our
stability calculations with experimental data from the literature. In chapter 5, absolute
instabilities are investigated for a wide-gap case. Finally, the main results of the thesis
are summarized in chapter 6, followed by a discussion of possible directions for future
work.



Chapter 2

Background on convective and
absolute instabilities

In this chapter, we briefly review the concepts of convective and absolute instabilities.
We first define these notions by considering the response of the flow to impulsive forcing.
Then we introduce the tools of modal stability theory used to study the spatio-temporal
linear dynamics of any steady open flow invariant in the streamwise direction. This
second section is based on the comprehensive reviews of Briggs (1964), Huerre (2000) and
Schmid and Henningson (2001). In a third section, we discuss convective and absolute
instabilities in the Taylor–Couette–Poiseuille flow experiment.

2.1 Definitions

In this chapter, we deal with open flows, namely flows with distinct inlet and outlet.
In order to introduce concepts proper to such flows, consider what happens concretely
in a perturbed Taylor–Couette system in the presence of axial flow. Figure 2.1(a) shows
how a pulse perturbation at the inlet leads to a propagating Taylor-vortex wavepacket
because of dispersion. Figure 2.1(b) shows a case where the wavepacket grows while
being advected, indicating temporal instability of the flow. However, the perturbation
eventually leaves the system, the signature of convective instability.

Consider now the possible ways a steady open flow, not necessarily Taylor–Couette–
Poiseuille, can respond to impulsive forcing according to linear theory. The instability
wavepacket can evolve in time and space in three different ways, classically represented
in a space-time diagram, figure 2.2. If the wavepacket is temporally decaying, the flow
is stable (see figure 2.2a). If the wavepacket is temporally growing but advected down-
stream of the impulse location, the flow is convectively unstable (see figure 2.2b). Finally,
if a temporally amplified wavepacket is able to expand in both the downstream and up-
stream directions, the instability is absolute (see figure 2.2c). In the unstable case, there
is a region of space-time in which growth occurs and which is bounded by two rays
z/t = V ±. These rays are called fronts and satisfy V + > 0 (leading front) and V − < 0
(trailing front) in the presence of absolute instability. As a result, absolute instabil-
ity spreads through the entire system and may lead to a new flow following nonlinear
saturation.

11
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(a) (b)

Figure 2.1 – (a) Instability wavepacket in Taylor–Couette–Poiseuille flow (Tsameret and
Steinberg, 1994) in the convectively unstable régime, resulting from amplification of a
pulse perturbation at the inlet. (b) Space-time diagram for Taylor–Couette–Poiseuille
flow (Babcock et al., 1994) showing a convective instability: a wavepacket propagates
downstream while being temporally amplified.
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Figure 2.2 – Linear impulse response wavepacket, with basic flow advection from left to
right: (a) stable, (b) convectively unstable, (c) absolutely unstable. In the temporally
unstable case, z = V +t and z = V −t define the leading and trailing fronts (dashed lines)
bounding the growing part of the wavepacket. After Huerre (2000).

2.2 Modal dynamics in open flows

Linear stability theory is a very general approach applicable to any dynamical system
where one considers the behaviour of infinitesimal perturbations superimposed on a
solution of the governing equations. These equations usually depend on at least one
control parameter χ. Depending on the value of χ, perturbations will grow or decay
exponentially in time. The critical value χc corresponds to the boundary separating
these two types of behaviour. When the flow is open, perturbations evolve in both time
and space and the distinction between convective and absolute instabilities is introduced.

The basic flow U whose stability is studied is a solution of the governing equations,
assumed steady and invariant in the streamwise coordinate, z. Because of invariance of U
with respect to z and t, the linear equations governing the evolution of the perturbation
u′ have coefficients independent of these variables. As a result, u′ can be expressed as a
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superposition of waves of the form

ũ(x, y) exp i(kz − ωt) + c.c.,

where c.c. denotes complex conjugate. When boundary conditions are added, only waves
satisfying a relation

D(k, ω;χ) = 0,

called the dispersion relation between (possibly complex) axial wavenumber k and fre-
quency ω, provide solutions. These waves are referred to as normal modes.

2.2.1 Temporal instability

As previously indicated, any perturbation may be Fourier decomposed along the
streamwise direction z, and k is then a continuous real variable. For each real value of
k, there are many complex values of ω satisfying the dispersion relation, corresponding
to temporal modes and denoted ω(k). The frequency of each such mode is given by the
real part ωr of the frequency, while the temporal growth rate is given by the imaginary
part ωi

1. If at least one temporal mode has a positive growth rate for some value of
k, then the flow is unstable. At critical conditions χ = χc, the temporal mode with
largest growth rate is neutrally stable ωi,max = 0 when k = kc (critical wavenumber)
and stable ωi,max ≤ 0 otherwise. A temporally unstable flow is at least convectively
unstable, because there will always exist a frame of reference where temporal growth
will be observed following impulsive forcing (the maximum of the resulting wavepacket
grows at a rate determined by the fastest growing mode). But the flow may also be
absolutely unstable and an additional criterion is required to distinguish this type of
instability.

2.2.2 Linear impulse response using integral transforms

As noted earlier, the distinction between absolute and convective instabilities can be
made by considering the linear impulse response, or Green function G(z, t), in the long-
time limit (we suppress the x− y dependence here, for clarity). A convenient approach
is to use Fourier and Laplace transforms with respect to z and t to convert the original
linear initial-value problem, consisting of partial differential equations, into a simple
algebraic equation. The latter equation is easily solved: the impulse response in spectral
space being simply the reciprocal of the dispersion relation, 1/D(k, ω). To convert the
solution back to physical space, inverse Fourier and Laplace transforms are applied:

G(z, t) =
1

4π2

∫

Lω

∫

Fk

exp i(kz − ωt)
D(k, ω)

dk dω, (2.1)

where Lω is an appropriately chosen integration contour in the complex ω-plane and Fk

is the real wavenumber axis.

The integrand must be analytic above Lω in order for the response to be zero when
t < 0, namely before impulsive forcing is applied at t = 0. In other words, Lω must be

1. subscripts ‘r’ and ‘i’ denote real and imaginary parts in the rest of the manuscript.
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chosen so as to comply with the causality principle. Since the poles of the integrand are
given by the temporal modes ω(k), a straight integration contour Lω at constant ωi can
be chosen, provided ωi is larger than the maximum growth rate ωi,max.

Even though k is real in the Fourier transform, it is useful to allow for complex
wavenumbers. This approach permits the use of powerful complex variable techniques
to evaluate the integral. In the following, we will therefore consider the analytic con-
tinuation of the integrand to the complex k-plane. The residue theorem can then be
applied to compute the inverse Fourier transform by closing the integration contour Fk

by a semicircle at |k| → ∞. The contribution of the integral along the semicircle is
zero if it is chosen in the upper half k-plane for x > 0, and in the lower half k-plane
for x < 0. The value of the integral is given by the contributions of the poles enclosed
by the integration contour. These poles correspond to the roots k(ω) of the dispersion
relation and are called spatial modes or branches. The residue theorem tells us that
distinct sets of spatial modes, respectively denoted k+(ω) and k−(ω), contribute to the
impulse response downstream and upstream of the forcing at z = 0. When Lω is chosen
as indicated earlier, the k+ lie in the upper half k-plane whereas the k− are in the lower
half k-plane.

2.2.3 The pinching criterion and absolute instability

Provided the choice of Lω complies with causality, it is in principle possible to de-
termine the impulse response at any time and position using (2.1) and Fk on the real
k-axis. However, since ωi > ωi,max, the integrand in (2.1) grows with t faster than any
temporal mode. The distinction between convective and absolute instability arises when
one considers the limit t → ∞ at fixed z. In this limit, the response to the impulse
cannot have exponential growth rate larger than ωi,max and the contributions from dif-
ferent ω on Lω are asymptotically self-cancelling. For this reason, it is appropriate to
adopt analytical continuation with respect to ω and progressively displace the contour
Lω downwards in the complex ω-plane, thus reducing the temporal growth rate of the
integrand. As we shall see, this asymptotic method leads to a simple criterion to predict
absolute instability. This criterion was originally introduced by Briggs (1964) and Bers
(1983) in the context of plasma physics and later reviewed by Huerre and Monkewitz
(1990) for applications in fluid dynamics.

As ωi is decreased, the spatial branches, k+(ω) and k−(ω), move around in the
complex k-plane. As always, these branches are roots of D(k, ω) = 0 and are defined
for ωi ≤ ωi,max by continuation from ωi > ωi,max. If one of the k-roots crosses the real
k-axis, analytic continuation with respect to ω requires that Fk be deformed to avoid
being traversed by the offending k-root. Thus, the distinction between k+(ω) and k−(ω)
is maintained and the contour Fk is deformed to remain above all k− and below all k+.
This is possible provided that a k−(ω) and a k+(ω) do not collide for some value of ω.
Such a collision is known as a pinch (the contour Fk is ‘pinched’ by the two k-roots) and
analytic continuation to smaller values of ωi is not possible: a singularity in the complex
ω-plane arises which dominates the large t asymptotics of the impulse response. If a
pinch occurs in ωi > 0, there is exponential growth at large t and fixed z. This is the
condition for absolute instability, which has growth rate ω0,i, where ω0 is the location
of the pinch of largest imaginary part in the complex ω-plane. If the flow is temporally
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unstable, but the instability is not absolute, it is referred to as convective.

For a convectively unstable or stable flow, the contour Lω can be lowered all the way
to the real ω-axis and the integral over ω in (2.1) is a classical Fourier representation
of the impulse reponse. However, in the presence of temporal instability, deformation
of the contour Fk will generally have forced it off the real k-axis. If one considers the
problem of localised time-harmonic (rather than impulsive) forcing, the large-t response
will be at the real forcing frequency ωf with spatial modes k+(ωf ) downstream and
k−(ωf ) upstream of the forcing location (Huerre, 2000):

u′
forcing ∝ ũ(x, y) exp i(k±(ωf )z − ωf t) + c.c. (2.2)

In this case, spatial modes represent the (possibly growing in |z|) streamwise evolution
of the response. Note that studying such a spatial instability problem (real ωf , complex
k) only makes sense in the absence of absolute instability, otherwise absolute growth
drowns out the response at the forcing frequency. Note also that the correct identification
of the upstream and downstream branches, k+ and k−, requires analytic continuation
with respect to ωf from sufficiently large ωf,i (a study limited to real ωf is insufficient).

2.2.4 Saddle points and branch points

A collision between k+(ω) and k−(ω) for ω = ω0 implies at least a double root of
D(k, ω0) at k = k0. This, in turn, implies D = ∂kD = 0 at k = k0, ω = ω0. Another way
of writing this condition is ∂kω(k0) = 0, where, as always, ω(k) arises from D(k, ω) = 0.
Thus, ω(k) has a saddle point (zero complex derivative) at k = k0. At the same time,
k(ω) has a branch point at ω = ω0. Although an absolutely unstable pinch requires a
saddle point in ωi > 0, this purely local condition is insufficient because there is no
guarantee that the colliding k(ω) correspond to the distinct spatial branches, k+ and
k−. A pinch requires a saddle/branch point, but also that the colliding wavenumbers
lie in k−

i < 0 and k+
i > 0 when continued with respect to ω upwards to large enough

ωi. Because locating saddle/branch points can be carried out locally, it is much easier
in practice than verifying that such a point represents a genuine pinch. As we shall see
later, there can be many branch points which do not correspond to pinches and it is
important (as far as possible) to check candidate branch points by continuation upwards
in ω to large ωi. This is illustrated in figure 2.3.

Although, as we shall see later, higher-order saddle points are possible for partic-
ular parameter values, the collision between two and only two spatial branches at k0

corresponds to the conditions D = ∂kD = 0 and ∂2
kkD 6= 0, which imply

∂kω = 0, ∂2
kkω 6= 0 (2.3)

when k = k0. Since ω(k) is analytic, there is no local extremum of |ω| and, as noted
above, this condition indicates the presence of a saddle point in the complex k-plane
(see white dot in figure 2.3a). Performing a Taylor expansion in the vicinity of k0, one
finds that, as also noted above, a saddle point corresponds to a branch point singularity
of k(ω), located at ω0 = ω(k0):

|k − k0| = O
(
|ω − ω0|1/2

)
. (2.4)
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Indeed, the two spatial branches collide when ω = ω0, but ‘live’ on two different Riemann
sheets otherwise. The two sheets are connected through a branch cut running from ω0

in an arbitrarily chosen direction (see thick line in figure 2.3b). If the branch point is a
genuine pinch, the frequency ω0 is called the absolute frequency and k0 is the absolute
wavenumber.

0

k
i

kr

k0

k
+

b

k
−

b

k+a

k−a

(a)

ω
i

ωr

ω0

ωb

ωa

(b)

Figure 2.3 – (a) Map and isocontours of ωi (shaded regions correspond to larger ωi)
in the complex k-plane. (b) Contours of constant ki in the complex ω-plane for the
same dispersion relation. A pinch point is indicated by a white dot: it corresponds to a
saddle point at k0 in (a) and to a branch point at ω0 in (b). The thick black line in (b)
corresponds to the branch cut associated with the branch point. Solid and dotted lines
in (b) correspond to two different Riemann sheets of k(ω). The white path in (a) and
(b) corresponds to the contour of constant ωr = ω0,r for ωi ≥ ω0,i. The arrows indicate
increasing values of ωi. The spatial branches k±

a and k±
b are respectively associated with

the frequencies ωa and ωb. For large enough ωi, when ω = ωa for instance, the two spatial
branches on the white path separate into the upper and lower half k-planes. Thus, the
saddle point at k0 satisfies the pinching criterion.

Finally, note that the Briggs–Bers method can also be used to evaluate the impulse
response along any spatio-temporal ray V = z/t, corresponding to an observer moving
at velocity V in the laboratory frame. The procedure described above corresponds to
V = 0, since z was held fixed while t → ∞. One finds that the asymptotic dynamics
for any value of V is governed by a pinch criterion applied to the modified dispersion
relation ω′(k) ≡ ω− V k. In other words, the response is dominated by the contribution
of the wavepacket comoving with the observer, namely with group-velocity ∂kω = V .
The growth rate perceived in the moving frame is equal to σ(V ) = ω∗,i − V k∗,i (see
Huerre (2000)), where k∗ is the pinch point of ω′(k) and ω∗ ≡ ω′(k∗) is the associated
frequency. The fronts of the wavepacket, as defined in the previous section (see figure
2.2), are hence given by the condition σ(V ±) = 0. In the case of marginal absolute
instability, defined by ω0,i = σ(0) = 0, one of the fronts is stationary in the laboratory
frame which means that dispersion is just strong enough to compete with advection.
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When ω0,i > 0, the front propagates upstream (see figure 2.2a), permiting growth in
situ. In this sense, the absolute instability criterion corresponds to the existence of an
unstable wave with zero group velocity (and which corresponds to a genuine pinch).

2.3 Discussion of experimental results

Going back to the Taylor–Couette–Poiseuille experiment, one must be aware of some
differences between the idealized description of §2.1 and what is observed in practice.
For instance, no Taylor vortices are observed at the inlet even in the absolutely unstable
case, for mainly two reasons. One is that the flow enters the system with no azimuthal
velocity, hence becomes centrifugally unstable only after a finite distance. But even if the
basic flow were fully-developed and absolutely unstable right at the inlet, perturbations
could only be detected some distance downstream because their amplitude must vanish
at the inlet. Indeed, a finite distance is required to allow for sufficient spatial growth
leading to nonlinear saturation (Couairon and Chomaz, 1997b). Another important
difference between theory and practice is that instabilities may be sustained even in the
convectively unstable régime. Indeed, even in the absence of controlled forcing, noise
may be sufficient to trigger instabilities that could saturate before exiting the system if
their growth rate is large enough. A saturated flow may hence be observed at large time
without the presence of absolute instability, because noise acts as a weak but permanent
forcing.

Despite these warnings, convective and absolute instabilities may usually be clearly
identified in practice. One property of absolute instability is that the ‘interface’ between
basic and bifurcated flow remains at a well-defined position (see figure 2.4a) whereas it
is fluctuating in the convectively unstable case (see figure 2.4b). Time-series taken at a

(a) (b)

Figure 2.4 – Space-time diagrams (optical signal intensity) in axisymmetric Taylor–
Couette–Poiseuille flow (Tsameret and Steinberg, 1994). The fluid flows from left to right
and the solid line indicates the interface between the basic flow and propagating Taylor
vortices. The interface remains at a well-defined position for (a) absolute instability,
whereas it moves for (b) convective instability.
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fixed position downstream this ‘interface’ indicate the most important distinctive feature
between the two types of instabilities: in cases like (a), an almost discrete spectrum with
a single frequency is observed (cf. figure 2.5a) contrasting with the broadened frequency
spectrum obtained in cases like (b) (see figure 2.5b). The oscillation at a well-defined
frequency in case (a) is characteristic of an absolute instability, where the flow behaves
largely as a resonator. The dynamics is intrinsic, explaining why the interface remains at
a fixed location independent of external perturbations. In case (b), the broadband power
spectrum and the moving interface indicate a great sensitivity to noise, which is typical
of convectively unstable flows, sometimes called noise amplifiers (Huerre, 2000). The
broadened spectrum is caused by phase wander of the most rapidly amplified pattern
(Babcock et al., 1994) and is related to the stochastic nature of the forcing.

Figure 2.5 – Time-series at a fixed position in Taylor–Couette–Poiseuille flow (Babcock
et al., 1994), and its discrete Fourier transform near the fundamental peak. The spectrum
has a sharp peak in the presence of (a) absolute instability, but broadens if the instability
is convective (b).



Chapter 3

Numerical methods

In this chapter, the numerical tools used to carry out stability analyses of eccentric
Taylor–Couette–Poiseuille flow are presented. In §3.1, the geometry, control parameters
and governing equations are introduced. In §3.2, the pseudospectral Fourier–Chebyshev
method used to discretize the equations in space is briefly presented. A discussion of
Fourier–Galerkin and Chebyshev collocation methods can be found in Appendices A.1
and A.2. Some additional formulas for implementation of the method are given in Ap-
pendix A.3. In §3.3, we explain how axially invariant and steady basic flow solutions are
computed, using a projection method. In §3.4, we present the methods used to solve the
generalized eigenvalue problem resulting from the linear stability problem. The problem
is first reduced to a smaller standard eigenvalue problem (details in Appendix C.1). The
algorithms used for numerical solution of this problem are briefly discussed to (details
in Appendix C). In §3.5, we show how classical continuation techniques (explained in
Appendix D) can be used to compute the boundaries of temporal and absolute insta-
bility in parameter space, as well as some other critical curves. Finally, in §3.6, some
validation results are presented and commented in detail.

In short, this chapter gives the principal elements of our methodology, which is
classical, and presents validation results. The reader is invited to refer to the Appendices
for further theoretical background and technical details.

N.B. All the code has been developed by the author in C++, with the exception
of the Thomas algorithm (written by B. Pier) and some mathematical libraries. These
packages are FFTW 1 for fast Fourier transforms, LAPACK/BLAS 2 for linear algebra,
and ARPACK++ 3 for the computation of eigenvalues.

3.1 Model

3.1.1 Geometry, control parameters

The annular geometry between eccentric cylinders is represented in figure 3.1. The

1. http://www.fftw.org/

2. http://www.netlib.org/lapack/

3. http://www.caam.rice.edu/software/ARPACK/
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Figure 3.1 – Eccentric annulus of radius ratio η = a/b = 0.5 and basic flow U =
U⊥ +We

z
.

ratio between inner and outer radii is 0 < η = a/b < 1. The clearance ratio δ = d/a
is sometimes used instead of η, with d = b − a the annular clearance. The eccentricity
0 ≤ e = c/(b− a) < 1 measures the distance between cylinder axes.

Define Ω as the inner cylinder rotation rate and ρ the density of the fluid. Physical
quantities will be made non-dimensional with respect to the following length, velocity
and pressure scales

L ≡ d, V ≡ aΩ, P ≡ ρ(aΩ)2.

The rotational/azimuthal Reynolds number ReΩ = aΩd/ν measures the ratio be-
tween centrifugal and viscous effects, with ν the kinematic viscosity. The axial Reynolds
number Rez = Wd/ν, based on the mean axial velocity W , characterises axial advection.

The set of all four control parameters will be denoted χ ≡ (η, e,ReΩ,Rez).

3.1.2 Governing equations

The fluid motion is governed by the incompressible Navier–Stokes equations, for the
velocity u and pressure p

∂tu + u · ∇u = −∇p+ Re−1
Ω ∇2u, (3.1a)

∇ · u = 0, (3.1b)

with no-slip and impermeability at the walls. The rotation of the inner cylinder is thus
represented through the boundary conditions. Along the axial direction z, the pressure
gradient induces a constant forcing term G in the momentum equation (3.1a).



3.1.2 - Governing equations 21

Denote by w the component of the flow in the axial direction z. Crossflow velocity is
defined as the remainder u⊥ ≡ u−wez. All terms in (3.1a) and (3.1b) can be decomposed
in a similar fashion using

∇⊥p ≡ ∇p− ∂zpez (3.2a)

u⊥ · ∇⊥u ≡ u · ∇u− w∂zu (3.2b)

∇⊥ · u⊥ ≡ ∇ · u− ∂zw (3.2c)

∇2
⊥u ≡ ∇2u− ∂zzu. (3.2d)

Flow variables are collectively denoted q ≡ (u⊥, w, p)T .

Basic flow

Basic flows are defined as steady and axially invariant solutions of (3.1a)–(3.1b).
They are denoted using capital letters as Q ≡ (U⊥,W, P )T and satisfy the following
equations

U⊥ · ∇⊥U⊥ = −∇⊥P + Re−1
Ω ∇2

⊥U⊥, (3.3a)

U⊥ · ∇⊥W = −G+ Re−1
Ω ∇2

⊥W, (3.3b)

∇⊥ ·U⊥ = 0. (3.3c)

Equations (3.3a) and (3.3c) form a system of equations for U⊥, independent of W .
However, W depends on U⊥ through (3.3b). In practice, U⊥ is determined by time-
marching two-dimensional Navier–Stokes equations for u⊥

∂tu⊥ + u⊥ · ∇⊥u⊥ = −∇⊥p+ Re−1
Ω ∇2

⊥u⊥, (3.4a)

∇⊥ · u⊥ = 0, (3.4b)

until convergence to a steady solution satisfying (3.3a) and (3.3c). A projection method
is used to perform time integration, and will be explained in §3.3.1. W is then obtained
by solving (3.3b), with G set to 1 without loss of generality. The axial flow field is then
rescaled to match the average value W , set by the ratio Rez/ReΩ.

Normal modes

In the linear stability framework, small-amplitude perturbations q′ ≡ (u′
⊥, w

′, p′)T

are added to the basic flow, i.e. q = Q + q′. In the limit of vanishing amplitude, these
perturbations are governed by the linearized incompressible Navier–Stokes equations

∂tu
′ + U · ∇u′ + u′ · ∇U = −∇p′ + Re−1

Ω ∇2u′, (3.5a)

∇ · u′ = 0, (3.5b)

with u′ = 0 at the walls.

Perturbations are decomposed as a sum of normal modes, which take the form

q′ = q̃ exp i(kz − ωt) + c.c., (3.6)
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where c.c. denotes the complex conjugate. Axial wavenumber k and frequency ω can
be real or complex numbers, depending on the context. Using (3.6), the final set of
equations reads

− iωũ⊥ + (U⊥ · ∇⊥ + ikW )ũ⊥ + ũ⊥ · ∇⊥U⊥ = −∇⊥p̃+ Re−1
Ω (∇2

⊥ − k2)ũ⊥, (3.7a)

−iωw̃ + (U⊥ · ∇⊥ + ikW )w̃ + ũ⊥ · ∇⊥W = −ikp̃+ Re−1
Ω (∇2

⊥ − k2)w̃, (3.7b)

∇⊥ · ũ⊥ + ikw̃ = 0, (3.7c)

which, together with the boundary conditions, forms a generalized eigenvalue problem
Aq̃ = λBq̃ with λ = iω. The linear operators A and B can be written using matrix-style
notation as

A =




C 0 E
F G ik
H ik 0


 , B =



1 0 0
0 1 0
0 0 0


 , (3.8)

where

C ≡ U⊥ · ∇⊥ + ik − Re−1
Ω (∇2

⊥ − k2) +∇⊥U⊥·, (3.9a)

E ≡ ∇⊥, (3.9b)

F ≡ ∇⊥W, (3.9c)

G ≡ U⊥ · ∇⊥ + ik − Re−1
Ω (∇2

⊥ − k2), (3.9d)

H ≡ ∇⊥ · . (3.9e)

This eigenvalue problem leads to D(k, ω;χ) = 0, where D is the dispersion relation of
instability waves. The zero entries in matrix A allow a reduction of the problem, as
explained in §3.4.1.

3.1.3 Modified bipolar coordinate system

The annular geometry between eccentric cylinders is conveniently represented using
a bipolar coordinate system (see figure 3.2). Wood (1957)’s modified bipolar coordinate
system (ρ, φ) is defined by the conformal mapping of the cartesian coordinates (x, y) 4:

x+ iy =
1
δ

ρeiφ + γ

1 + γρeiφ
, (3.10)

with constants γ and β depending on the geometry through δ and e

γ =





(
2 + δ(1− e2)

2e

)2

− 1





1/2

− 2 + δ(1− e2)
2e

if e 6= 0, else γ = 0. (3.11)

The advantage of this formulation over classical bipolar coordinates is that it is not
singular in the concentric limit, allowing computations in the axisymmetric case e = 0.
The system is locally orthogonal and fits the boundaries of the domain, defined by ρ = 1
and ρ = β, where

β =
1 + δ(1 + e)− γ

1− γ(1 + δ(1 + e))
. (3.12)

4. Recall that spatial coordinates x and y are non-dimensionalized using the length scale d.
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Figure 3.2 – Modified bipolar coordinate system (ξ, φ) fitting the eccentric annular
domain. Polar coordinates (r, θ) are centered on the inner cylinder, with θ = φ = 0
along the line joining the cylinder axes.

By mapping 1 ≤ ρ ≤ β to −1 ≤ ξ ≤ 1 with the transformation ξ = (2ρ−β−1)/(β−1),
the computational domain is

D = {(ξ, φ) ∈ [−1, 1]× [0, 2π[} .

The coordinates ξ and φ are called pseudo-radial and pseudo-azimuthal respectively.

In-plane differential operators defined in (3.2a)–(3.2d) are expressed in this coor-
dinate system. In-plane velocity is decomposed in the local basis as u⊥ = ueξ + veφ.
Following DiPrima and Stuart (1972a), the infinitesimal length element ds in (ξ, φ, z) is

ds2 =
(β − 1)2

4δ2J
dξ2 +

ρ2

δ2J
dφ2 + dz2, (3.13)

where J is the Jacobian of transformation (3.10), given by

J =
(1 + 2γρ cosφ+ γ2ρ2)2

(1− γ2)2 . (3.14)

The scale factors of the coordinates ξ and φ are

µξ =
2δ
√
J

β − 1
, µφ =

δ
√
J

ρ
. (3.15)

It is convenient to define derivation operators

Dξ ≡ µξ∂ξ, Dφ ≡ µφ∂φ, (3.16)

and geometric factors
A ≡ µφ − ∂ξµξ , B ≡ ∂φµφ. (3.17)
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Using Whitham (1963)’s general orthogonal coordinate formulas

∇⊥p =

[
Dξp
Dφp

]
, (3.18a)

∇⊥ · u⊥ = (Dξ + A)u+ (Dφ −B)v, (3.18b)

u⊥ · ∇⊥u⊥ = (uDξ + vDφ)

[
u
v

]
+ (Av +Bu)

[
−v
u

]
, (3.18c)

u⊥ · ∇⊥w = (uDξ + vDφ)w, (3.18d)

∇2
⊥u⊥ =

[
∇2

⊥ u
∇2

⊥ v

]
+

[
(DξA−DφB)u− 2 (ADφ +BDξ) v
(DξA−DφB)v + 2 (ADφ +BDξ)u

]
, (3.18e)

where the scalar Laplacian has the expression:

∇2
⊥ ≡ D2

ξ +D2
φ + (ADξ −BDφ). (3.19)

3.2 Fourier–Chebyshev pseudospectral method

The bipolar mapping allows the use of an efficient pseudospectral method. Some
theoretical aspects of Fourier–Galerkin and Chebyshev collocation methods are reviewed
in Appendices A.1 and A.2. For more details, the reader is referred to Canuto et al. (1988)
and Peyret (2002). Any smooth real or complex field f in D can be decomposed as

f(ξ, φ) ≈
K∑

k=−K

M∑

j=0

f̂kjqj(ξ)eikφ, (3.20)

with qj the Lagrange basis polynomial associated with the Gauss–Lobatto collocation
point ξj = − cos[jπ/M ] in the pseudo-radial direction. The spectral coefficients f̂kj ≡
f̂k(ξj) for each collocation point ξj represent Fourier modes with |k| ≤ K. The strength
of spectral methods lies in the exponential convergence of the series asK andM increase,
a property which is verified in §3.6.1.

An important question regarding implementation of this method is the form of the
matrices arising from the differential operators: gradient, divergence, Laplacian, etc. In
particular, the projection method presented in §3.3.1 requires solution of Poisson prob-
lems, based on a discretized version of the Laplacian operator with Neumann boundary
conditions. Moreover, the gradient and divergence operators, E and H, also give rise
to matrices. The method used to obtain these matrices is explained in the next two
subsections, and additional details are given in Appendix A.3.

Coupling between harmonics induced by the metric

Let ψ be any of the following linear operators f 7→ g ∈ {Dξf,Dφf, Af,Bf,∇2
⊥f}. f

and g are decomposed as infinite Fourier series in φ,

f(ξ, φ) =
∞∑

k=−∞

f̂k(ξ)eikφ, g(ξ, φ) =
∞∑

k=−∞

ĝk(ξ)eikφ.
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In order to obtain a relation between the Fourier coefficients of g and f , the factors
µξ, µφ, A and B are also decomposed in Fourier space. Since ∂ξµ and ∂φµ are both
proportional to

√
J , they can be written in the form

µξ = µ̂0 + µ̂1(eiφ + e−iφ), µφ = ζµξ, (3.21)

with µ̂0, µ̂1 and ζ functions of ξ only (see the detailed expressions in Appendix A.3).
The geometric factors A and B have Fourier coefficients

Âk = ζµ̂k − ∂ξµ̂k, B̂k = ζikµ̂k (3.22)

and as a result, can be written in the form

A = Â0 + Â1(eiφ + e−iφ), (3.23)

B = B̂1(eiφ − e−iφ). (3.24)

The spectrum of µξ, µφ, A and B contains harmonics 0, 1 and −1 only, therefore,

(̂Dξf)k, (̂Dφf)k, (̂Af)k, (̂Bf)k depend on f̂k−1, f̂k and f̂k+1 for any value of k. This cou-
pling of neighbouring Fourier components is due to the special form of the metric coef-
ficients as functions of φ. For instance,

(̂Dξf)k = ̂(µξ∂ξf)k =
∞∑

l=−∞

µ̂l∂ξf̂k−l

= µ̂0∂ξf̂k + µ̂1

[
∂ξf̂k+1 + ∂ξf̂k−1

]
. (3.25)

The Laplacian operator (3.19) is proportional to µ2
ξ :

∇2
⊥ ≡ D2

ξ +D2
φ + (ADξ −BDφ)

= µ2
ξ(∂

2
ξξ + ζ∂ξ + ζ2∂2

φφ). (3.26)

The metric coefficient µ2
ξ has five non-zero harmonics and, as a result, (̂∇2

⊥f)k is a
function of f̂k−2, f̂k−1, f̂k, f̂k+1, f̂k+2.

Matrix form of linear operators for real fields

An important case is when both f and g are real, as this is the case for basic
flow fields. In this case, the Fourier coefficients of f and g have Hermitian symmetry
f̂−k = f̂ ⋆

k (‘⋆’ denoting complex conjugation). Therefore, only the Fourier coefficients
with positive k need be stored, and f̂0 is a real number. Discretized fields can hence be
stored as real-valued vectors

f ≡ (̂f0,r, f̂1,r, . . . , f̂K,r, f̂1,i, . . . , f̂K,i)T , g ≡ (ĝ0,r, ĝ1,r, . . . , ĝK,r, ĝ1,i, . . . , ĝK,i)T ,

where each f̂k,r/i and ĝk,r/i is decomposed on the collocation points as 5

f̂k,r/i ≡ (f̂k0,r/i, f̂k1,r/i, . . . , f̂kM,r/i), ĝk,r/i ≡ (ĝk0,r/i, ĝk1,r/i, . . . , ĝkM,r/i).

5. The subscripts ‘r’ and ‘i’ denote real and imaginary parts.
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Given these conventions, ψf = g can be written as a linear system Mf = g, with a
four-block matrix M

M =

(
Mrr Mri

Mir Mii

)
, (3.27)

and block dimensions

Mrr : (M + 1)(K + 1)× (M + 1)(K + 1)

Mri : (M + 1)(K + 1)× (M + 1)K

Mir : (M + 1)K × (M + 1)(K + 1)

Mii : (M + 1)K × (M + 1)K.

For the Laplacian operator Mri = 0 and Mir = 0. Because of the coupling between
harmonics induced by the metric, the matrices Mrr and Mii are block pentadiagonal, so
a improved version of the Thomas algorithm (cf. Appendix B) can be used to efficiently
solve Poisson and Helmholtz problems in §3.3.1.

3.3 Basic flow computation

In the preceding section, the governing equations and method of spatial discretiza-
tion were given. Basic flow solutions U⊥ are obtained as steady solutions of an unsteady
problem for the crossflow velocity field u⊥, so temporal discretization is also required.
A projection method is used to time-march the momentum equation while always en-
forcing the incompressibility constraint. Finally, the axial velocity W is obtained in a
postprocessing step.

3.3.1 Projection method

The algorithm used to solve the time-dependent incompressible Navier–Stokes equa-
tions is inspired by the projection method of Goda (1979), and the modified version
proposed by Raspo et al. (2002). In the following, we consider equations discretized
with respect to time, with superscript ‘n’ denoting evaluation at time tn = n∆t. For
stability analyses, we are only interested in steady state solutions, so emphasis is put
on numerical stability and fast computation, rather than on accurate time-marching. A
first order forward/backward Euler scheme is used, reading (before splitting)

un+1
⊥ − un

⊥

∆t
= −un

⊥ · ∇⊥un
⊥ −∇⊥p

n+1 + Re−1
Ω

[
∇2

⊥,explu
n
⊥ +∇2

⊥,implu
n+1
⊥

]
, (3.28a)

∇⊥ · un+1
⊥ = 0, (3.28b)

with Dirichlet boundary conditions denoted un+1
⊥,BC at the boundaries. The vectorial

Laplacian operator (3.18e) has been separated into two parts∇2
⊥ ≡ ∇2

⊥,expl+∇2
⊥,impl. The

implicit part contains all stiff second order derivative terms from the scalar Laplacian
of each velocity component, and is therefore applied to un+1

⊥ to enhance stability:

∇2
⊥,implu⊥ ≡

[
∇2

⊥u
∇2

⊥v

]
. (3.29)
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The remaining terms in the Laplacian are less constraining on numerical stability, and
are treated explicitly:

∇2
⊥,explu⊥ ≡

[
(DξA−DφB)u− 2(ADφ +BDξ)v
(DξA−DφB)v + 2(ADφ +BDξ)u

]
. (3.30)

The system of equations (3.28a)–(3.28b) for (un+1
⊥ , pn+1) is solved in three steps:

Preliminary step

For this step, it is useful to separate the Laplacian operator into irrotational and
solenoidal parts

∇2u = ∇(∇ · u)︸ ︷︷ ︸
irrot.

−∇×∇× u︸ ︷︷ ︸
solen.

,

where the components of ∇× u in the (ξ, φ, z) system read

∇× u =



Dφw − ∂zv
∂zu−Dξw

ωz


 , with ωz ≡ (Dξ + A)v − (Dφ −B)u. (3.31)

The crossflow curl term ∇⊥×u⊥ ≡ ωzez is obtained by setting w ≡ 0, ∂z ≡ 0 in (3.31).
Thus, the solenoidal contribution to the crossflow Laplacian operator ∇2

⊥ is

−∇⊥ ×∇⊥ × u⊥ ≡
[
−Dφωz

Dξωz

]
, (3.32)

and the irrotational contribution is ∇⊥(∇⊥ · u⊥).

In the preliminary step, this decomposition is applied to the viscous term in (3.28a),
which is here evaluated at time tn. An approximate pressure p̄n+1 is computed from this
momentum equation. Taking the divergence

∇⊥ · ∇⊥p̄
n+1 = ∇⊥ ·

[
−un

⊥ · ∇⊥un
⊥ − Re−1

Ω ∇⊥ ×∇⊥ × un
⊥

]
, (3.33)

and projecting onto the wall-normal unit vector eξ at the boundaries

Dξp̄
n+1 =

[
−un

⊥ · ∇⊥un
⊥ − Re−1

Ω ∇⊥ ×∇⊥ × un
⊥

]
· eξ, (3.34)

leads to a Poisson problem for p̄n+1 with inhomogeneous Neumann boundary conditions.

A few remarks are in order:

• (3.33)–(3.34) is indeed a Poisson problem because mathematically ∇⊥ ·∇⊥p̄
n+1 de-

fines the Laplacian term ∇2
⊥p̄

n+1. However, the notation ∇⊥ · ∇⊥p̄
n+1 is preferred

because in practice, the discretized version of this operator, in matrix form, is dif-
ferent from the matrix of ∇2

⊥, as explained in the concluding remarks of Appendix
A.3. To ensure compatibility with the right-hand side of the equation, the gradient
matrix should be left-multiplied by the divergence matrix to obtain the left-hand
side linear operator. The expression of these matrices is given in Appendix A.3.
• No time derivative appears because of incompressibility of un

⊥ and un+1
⊥ and im-

permeability at the walls.
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• Mathematically, for a solenoidal field un
⊥, the Laplacian is zero, and no viscous

term should appear in (3.33). This is indeed true to machine precision for the
irrotational contribution ∇⊥(∇⊥ · un

⊥). However, the ‘solenoidal’ term does not
have zero divergence in its discretized version, because of truncation error, and it
is therefore necessary to keep it.
• In an annular geometry, because of periodicity in the pseudo-azimuthal direction
φ, (3.33)–(3.34) only define p̄n+1 up to an additive constant. This problem is solved
by fixing the azimuthal mean ˆ̄pn+1

00,r = 0 at the inner cylinder. This replaces the
Neumann constraint for this variable.
• The matrix associated with operator ∇⊥ ·∇⊥ in spectral space has Mri = Mir = 0,

therefore, there is no coupling between real and imaginary parts of ˆ̄pn+1
kj . Solving

the Poisson problem requires solution of two linear systems of dimensions (M +
1)(K + 1) and (M + 1)K instead of one single problem of size (M + 1)(2K + 1).
Each matrix Mrr and Mii is block-pentadiagonal, so the two linear systems can be
solved using an adapted version of the Thomas algorithm, described in Appendix
B.

Prediction step

In the prediction step, the velocity un+1
⊥ is approximated by a non-solenoidal field

ũn+1
⊥ , obtained by time-marching the momentum equation (3.28a), with the preliminary

pressure p̄n+1

ũn+1
⊥ − un

⊥

∆t
= −un

⊥ · ∇⊥un
⊥ −∇⊥p̄

n+1 + Re−1
Ω

[
∇2

⊥,explu
n
⊥ +∇2

⊥,implũ
n+1
⊥

]
, (3.35)

and Dirichlet boundary conditions.

Equation (3.35) defines two Helmholtz problems: one for ũ and another one for ṽ. The
matrix operator associated with the scalar Laplacian ∇2

⊥ has Mri = Mir = 0 and Mrr,Mii

are block pentadiagonal (expressions given in Appendix A.3). Hence, linear systems for
the real and imaginary parts of ûki and v̂ki are solved independently using the modified
Thomas algorithm.

Projection step

In the projection step, the velocity field at time tn+1 is made incompressible by
adding a pressure correction Φn+1 = pn+1 − p̄n+1, such that

un+1
⊥ = ũn+1

⊥ −∆t∇⊥Φn+1. (3.36)

Taking the divergence of (3.36), one obtains a Poisson problem to solve for Φn+1

∇⊥ · ∇⊥Φn+1 =
1

∆t
∇⊥ · ũn+1

⊥ , (3.37)

with Neumann boundary conditions ∂ξΦn+1 = 0. As in the preliminary step, Φ̂n+1
00 is

fixed to zero, replacing the von Neumann constraint for this harmonic on the inner
cylinder. The method used to solve the linear system is the same as in the preliminary
step.
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Additional comments

Splitting error Combining equations (3.35) and (3.36), we obtain an approximate
version of (3.28a):

un+1
⊥ − un

⊥

∆t
+ un

⊥ · ∇⊥un
⊥ +∇⊥p

n+1 − Re−1
Ω

[
∇2

⊥,explu
n
⊥ +∇2

⊥,implu
n+1
⊥

]
= En+1, (3.38)

with pressure pn+1 = p̄n+1 + Φn+1 and residual error En+1 = ∆tRe−1
Ω ∇2

⊥,impl∇⊥Φn+1.
The estimated pressure p̄n+1 being a first order approximation of pn+1 through (3.33),
we have Φn+1 = O(∆t), hence En+1 = O(∆t2). The splitting error En+1 is one order
of magnitude smaller than the truncation error of the time-marching scheme (3.28a)–
(3.28b), which is O(∆t).

The preliminary pressure prediction produces an almost incompressible provisional
velocity field ũn+1

⊥ , leading to a less ‘brutal’ projection step and enhanced numerical
stability. This step, introduced by Raspo et al. (2002), also takes into account variations
in the wall-normal derivative of p, which would be omitted if one were to use p̄n+1 = pn

in the prediction step, as in Goda (1979). This also has a stabilising effect on the scheme.

Slip velocity If we directly set the desired Dirichlet boundary conditions un+1
⊥,BC in

the prediction step, then a slip velocity un+1
⊥,s = −∆t∇⊥φ

n+1 would be introduced in the
projection step. To anticipate this effect, we impose modified boundary conditions for
(3.35)

ũn+1
⊥ = un+1

⊥,BC + ∆t∇⊥Φn. (3.39)

By doing so, the final slip velocity is reduced to un+1
⊥,s = −∆t∇⊥(Φn − Φn+1), and is

O(∆t3). Approaching steady state conditions, Φn − Φn+1 → 0, so the slip velocity can
be driven down to zero up to machine precision.

Time step The time step is adaptively computed to ensure stability. It is initialized
with a value of ∆t = 0.01τν (with τν ≡ d2/ν the viscous time scale), but is divided by
two upon divergence of the residual, defined as rn = ‖un

⊥ − un−1
⊥ ‖∞. When rn > 100,

the time step is halved and the simulation restarted from the initial conditions.

Convergence criterion The simulation is automatically stopped when rn < 10−8.

3.3.2 Axial flow

The last step of the basic flow computation is to calculate the axial velocity W as
the solution of the linear problem (3.3b) with G = 1

[Re−1
Ω ∇2

⊥ − (UDξ + V Dφ)]W = 1. (3.40)

The matrix associated with the Laplacian operator in spectral space is already known
(see Appendix A.3), but now the convective term also needs to be written in matrix
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form. The relation between the coefficients Ŵki of W and those, ĝki, of (UDξ +V Dφ)W
is

ĝki =
∑

l

∑

j

∑

m

[
Û(k−l−m)iµ̂md

(1)
ij + V̂(k−l−m)iilζiµ̂mδij

]
Ŵlj, (3.41)

where |k|, |l|, |k − l − m| ≤ K, −1 ≤ m ≤ 1, 0 ≤ i, j ≤ M and µ̂−1 ≡ µ̂1. It is much
easier here to store all discretized fields f as complex-valued vectors f

f ≡ (̂f−K , f̂−K+1, . . . , f̂K)T ,

where each block f̂k contains the values of the corresponding harmonic k at all collocation
points

f̂k ≡ (f̂k0, f̂k1, . . . , f̂kM).

Using these conventions, the matrix of linear system (3.40) is full, but it needs to be
solved only once for a given set of parameters (η, e,ReΩ). A multiplicative factor is then
applied to the solution W , to match the average value W = Rez/ReΩ.

3.4 Normal modes computation

In this brief section, we summarize the approach for computing the eigenvalues and
associated normal modes of the linear stability problem. In §3.4.1, we give an overview of
a reduction technique to transform the generalized eigenvalue problem to a much smaller
standard eigenvalue problem. Details of numerical implementation are given in Appendix
C. Two methods are used to solve the resulting eigenvalue problem: QR iteration (see
Appendix C.3), yielding the full spectrum, and the Arnoldi method (see Appendix C.4)
to obtain a small subset of eigenvalues efficiently. The principle of these methods is
described in Appendices. Freely available libraries were used for the computations. The
specific parameter values used with the ARnoldi PACKage (ARPACK++ 6) are given
in §3.4.2.

3.4.1 Reduction of the eigenvalue problem

We recall that normal modes of the form q̃ exp i(kz−ωt)+c.c., with q̃ = (ũ⊥, w̃, p̃)T ,
are solutions of the generalized eigenvalue problem Aq̃ = λBq̃, with λ = iω and linear
operators A and B:

A =




C 0 E
F G ik
H ik 0


 , B =



1 0 0
0 1 0
0 0 0


 . (3.8)

The last equation (incompressibility),

Hũ⊥ + ikw̃ = 0, (3.42)

does not involve λ and is therefore an algebraic constraint that can be used to elimi-
nate w̃ from the eigenvalue problem. Another algebraic constraint can be obtained by

6. http://www.caam.rice.edu/software/ARPACK/

http://www.caam.rice.edu/software/ARPACK/


3.4.2 - Solving the eigenvalue problem 31

left-multiplying the first line (‘in-plane’ momentum equation) by H, the second (ax-
ial momentum equation) by ik and the third by λ, then summing the three resulting
equations yields:

(HC + ikF)ũ⊥ + ikGw̃ + (HE− k2)p̃ = 0. (3.43)

This last equation can be used to eliminate p̃ from the eigenvalue problem. In practice,
the problem has boundary conditions that do not explicitly appear above, but also need
to be taken into account to solve for p̃ as a function of w̃ and ũ⊥ (this is a Poisson problem
since HE− k2 = ∇2

⊥ is the scalar Laplacian operator). The reduction is performed after
discretization of the equations and all details are given in Appendix C.1. The boundary
conditions are no-slip ṽ = w̃ = 0, impermeability ũ = 0 and incompressibility at the
walls. Using these constraints on the discretized problem allows further reduction of the
problem by eliminating boundary points (see Appendix C.1).

3.4.2 Solving the eigenvalue problem

The interested reader will find a short description of the numerical methods used to
solve the eigenvalue problem (of standard type after reduction) in Appendix C. The QR
method (routine zgeev in LAPACK 7, see Appendix C.3) was used for full spectrum com-
putations, while the implicitly restarted Arnoldi method with shift-invert transformation
(see Appendix C.4) was used to compute a few eigenvalues efficiently (ARPACK++).
The following paragraph gives specific parameter values used with ARPACK++.

The ARPACK++ class ‘ARdsNonSymMatrix’ was used to store the dense complex-
valued matrix (A1) of the standard eigenvalue problem. The class ‘ARluCompStdEig’
was used to define the eigenvalue problem, with the following input parameters:
• nev=1 or 5; the number of required eigenvalues.
• which=’LM’; the selected part of the spectrum, here ’Larger Magnitude’ since

the shift-invert transformation is used, see Appendix C.4,
• ncv=15; the number of Arnoldi vectors. This corresponds to the dimension of the

Arnoldi decomposition or Krylov subspace in Appendix C.4,
• tol=10−10; the convergence tolerance for the Ritz values,
• maxit=500; the maximum number of iterations,
• resid=NULL; randomly selected starting vector for Arnoldi iteration,
• AutoShift=true; exact shifts are being used.

The routine performs a LU decomposition of the dense matrix A1−σI (with σ the given
complex shift), using LAPACK, before proceeding to Arnoldi iteration.

3.5 Continuation and Newton–Raphson solvers

In stability analyses, we are often interested in computing critical curves which divide
the parameter space into stable, convectively unstable or absolutely unstable regions.
Once a point on the critical manifold has been found, small steps in the control param-
eters allow the critical curve to be followed (see Appendix D for details). At each step
one needs to solve an equation of the form f(x) = 0, where the precise definitions of

7. http://www.netlib.org/lapack/

http://www.netlib.org/lapack/
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the vector x and function f depend on which of the various criticality conditions are
considered. Solution of f(x) = 0 is carried out using Newton–Raphson iteration (see
Appendix D):

xn+1 = xn − (Df)−1(xn)f(xn), (3.44)

where Df is the Jacobian matrix associated with f : (Df)ij = ∂fi/∂xj.

The main Newton–Raphson solvers used in the stability analyses are listed below:

• Temporal instability threshold: ωi = ∂kωi = 0, k ∈ R, so

x ≡
[
k

ReΩ

]
, f(x) ≡

[
ωi

∂kωi

]
, Df(x) =

[
∂kωi ∂ReΩ

ωi

∂2
kkωi ∂2

kReΩ
ωi

]
. (3.45)

Control parameters: e,Rez.
• Absolute instability threshold: ωi = ∂kω = 0, k ∈ C.

Assuming ω(k) is an analytic function, the Cauchy–Riemann relations hold:

∂krωr = ∂kiωi, ∂krωi = −∂kiωr. (3.46)

Therefore, the zero-group-velocity constraint ∂kω = 0 is equivalent to ∂krω = 0,
thus

x ≡



kr

ki

ReΩ


 , f(x) ≡



ωi

∂krωi

∂krωr


 . (3.47)

Differentiating the Cauchy–Riemann relations (3.46) with respect to kr and ki:

∂2
krkr

ωr = ∂2
krki

ωi = −∂2
kiki
ωr, ∂2

krkr
ωi = −∂2

krki
ωr = −∂2

kiki
ωi. (3.48)

Hence,

Df(x) =



∂krωi ∂krωr ∂ReΩ

ωi

∂2
krkr

ωi ∂2
krkr

ωr ∂2
krReΩ

ωi

∂2
krkr

ωr −∂2
krkr

ωi ∂2
krReΩ

ωr


 . (3.49)

Control parameters: e,Rez.
• Absolute instability threshold in the (ReΩ,Rez)-plane at fixed e, using continuation

with respect to a pseudo-arclength variable s defined along the critical curve:

ωi = ∂kω = ∂sReΩ∆ReΩ + ∂sRez∆Rez − δs = 0, k ∈ C, (3.50)

where δs is the step between two computed values on the critical curve and ∆ReΩ

is defined as follows. Let Re+
Ω,0 be the converged value of ReΩ at s + δs and

Ren
Ω be an approximation of Re+

Ω,0 at step n of the Newton iteration, then ∆ReΩ

designates the variation Ren
Ω − ReΩ,0. A similar definition applies to ∆Rez. With

these definitions, finally:

x ≡




kr

ki

ReΩ

Rez


 , f(x) ≡




ωi

∂krωi

∂krωr

∂sReΩ∆ReΩ + ∂sRez∆Rez − δs


 , (3.51)

Df(x) =




∂krωi ∂krωr ∂ReΩ
ωi ∂Rez

ωi

∂2
krkr

ωi ∂2
krkr

ωr ∂2
krReΩ

ωi ∂2
krRez

ωi

∂2
krkr

ωr −∂2
krkr

ωi ∂2
krReΩ

ωr ∂2
krRez

ωr

0 0 ∂sReΩ ∂sRez


 . (3.52)
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Newton–Raphson iteration was also used for purposes (described below) other than
continuation of the critical manifolds:

• Third-order neutral saddle point: ωi = ∂kω = ∂2
kkω = 0, k ∈ C, so

x ≡




kr

ki

ReΩ

Rez

e



, f(x) ≡




ωi

∂krωi

∂krωr

∂2
krkr

ωi

∂2
krkr

ωr



, (3.53)

Df(x) =




∂krωi ∂krωr ∂ReΩ
ωi ∂Rez

ωi ∂eωi

∂2
krkr

ωi ∂2
krkr

ωr ∂2
krReΩ

ωi ∂2
krRez

ωi ∂2
kreωi

∂2
krkr

ωr −∂2
krkr

ωi ∂2
krReΩ

ωr ∂2
krRez

ωr ∂2
kreωr

∂3
krkrkr

ωi ∂3
krkrkr

ωr ∂3
krkrReΩ

ωi ∂3
krkrRez

ωi ∂3
krkreωi

∂3
krkrkr

ωr −∂3
krkrkr

ωi ∂3
krkrReΩ

ωr ∂3
krkrRez

ωr ∂3
krkreωr



. (3.54)

• Inversion of the dispersion relation k = K(ω), k, ω ∈ C:

x ≡
[
kr

ki

]
, f(x) ≡

[
ωr − ωr,target

ωi − ωi,target

]
, Df(x) =

[
∂krωr −∂krωi

∂krωi ∂krωr

]
. (3.55)

Newton–Raphson iteration requires the derivatives appearing in the Jacobian
∂fi/∂xj and inversion of the resulting matrix Df at each iteration. Matrix inversion
is cheap since the dimension of the largest system considered is only five. Derivatives
are most easily approximated using finite differences and small variations in x. In prac-
tice, steps of δk, δReΩ, δRez and δe of 10−4 were taken to compute the derivatives.

3.6 Validation

Many validation results are given in §4.2.6 and §5.3.5. The aim of the present section
is to give a more detailed presentation, along with some additional tests which will not
be mentioned again in later chapters.

3.6.1 Basic flow

We start by defining a number of basic-flow quantities used for validation
• Fx and Fy, the x- and y-components of the force (per unit length) on the inner

cylinder,
• T , the torque on the inner cylinder,
• f ≡ d|G|/(1/2ρW 2

) (using dimensional quantities), the Fanning friction factor
characterising the resistance to axial motion due to viscosity,
• Qφ, the azimuthal volume flux (per unit length). It is defined as the flux of in-plane

velocity through any path joining the two cylinders.
The torque and forces on the inner cylinder are obtained by integration of the wall

stresses. The stress tensor σ has pressure and viscous contributions, with τ the viscous-
stress tensor

σ = −pI + τ . (3.56)
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For an incompressible Newtonian flow, τ is given in non-dimensional form by

τ = 2Re−1
Ω e, (3.57)

with the strain-rate tensor e:




eξξ = Dξu−Bv,
eφφ = Dφv + Au,
eφξ = eξφ = 1

2
(Dξv +Dφu+Bu− Av).

(3.58)

The infinitesimal force (per unit length) on the inner cylinder of outward unit normal
eξ is

dF =
σ · eξ

µφ

dφ =
eξξeξ + eξφeφ

µφ

dφ, (3.59)

therefore, the components Fx and Fy of the force, and the torque T (all per unit length)
are

Fx =
∮

dF · ex, Fy =
∮

dF · ey, T =
1
δ

∮
dF · eφ. (3.60)

On the inner cylinder, eξ and eφ are respectively equal to er and eθ (polar coordinates).
Thus, the projections cos θ = eξ · ex = eφ · ey and sin θ = eξ · ey = −eφ · ex are given
by cos θ = xδ and sin θ = yδ. The cartesian coordinates (x, y) centered on the inner
cylinder are related to (ξ, φ) via the conformal transformation (3.10)–(3.12).

Stokes régime

The first step is to validate basic flow against analytical solutions. This is trivially
done for the concentric Taylor–Couette flow. Analytical solutions are also available for
the crossflow components of the eccentric case in the Stokes limit, ReΩ → 0. Indeed,
Wannier (1950) derived analytical formulas for the Stokes problem between eccentric
cylinders, with rotation of the inner one (see Appendix E). Analytical expressions for
Fy and T (E.15) and (E.16) show an explicit scaling with Re−1

Ω , expected from the fact
that both the viscous stresses τ and pressure P have this scaling. The azimuthal volume
flux Qφ can also be calculated by evaluating the stream function on the inner and outer
cylinders, with expressions given in Appendix E.

Tests were performed by computing FyReΩ, TReΩ and Qφ for η = 0.5 and eccen-
tricities close to one, with various resolutions. Results are compared with the analytical
values. The code was adapted to eliminate the nonlinear terms in the Navier–Stokes
equations. Time-stepping was stopped when residuals reach a plateau. Computed val-
ues are reported in table 3.1, with sixteen significant digits, and the relative errors are
plotted in figure 3.3.

For e = 0.9, machine accuracy is approached (relative error ∼ 10−13) for Qφ and
TReΩ when (M +1)×K = 32×128. For e = 0.99, machine accuracy is not reached and
a larger number of Fourier components would be needed to attain it. Spectral accuracy
with respect to the Fourier decomposition is clear in figure 3.3(c). The exponential rate
of convergence with respect to the number of collocation points can also be seen for low
values of M , typically M + 1 ≤ 16, but the error reaches a plateau for higher values
(figures 3.3c,d): Stokes flow varies ‘smoothly’ with respect to the pseudo-radial direction.
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e (M + 1)×K FyReΩ TReΩ Qφ

0.9

exact −39.3203945895357 −40.8448766630907 0.0656030515284698
32× 16 −39.3202241544768 −40.8449043568617 0.0654495222319055
32× 32 −39.3203945741966 −40.8448766634296 0.0656029020330217
32× 64 −39.3203945788530 −40.8448766631289 0.0656030515279514
32× 128 −39.3203945909704 −40.8448766630927 0.0656030515284725
24× 128 −39.3203945860874 −40.8448766630826 0.0656030515284609
16× 128 −39.3203945880031 −40.8448766630939 0.0656030515302144
12× 128 −39.3203945986371 −40.8448766627354 0.0656030587195854
8× 128 −39.3204600917767 −40.8448688312408 0.0656329804433483

0.99

exact −125.603824106706 −126.028454301705 0.00665661245732574
32× 16 −122.101899226183 −126.203967010802 −0.0416554215879224
32× 32 −125.232258991428 −126.03091393078 0.00158221631455449
32× 64 −125.602938338639 −126.028454791607 0.00660166275020455
32× 128 −125.603849809656 −126.028454299078 0.00665659498501146
24× 128 −125.603822023761 −126.028454300413 0.00665659497850345
16× 128 −125.603826662920 −126.028454301725 0.00665659505480074
12× 128 −125.603822560541 −126.028454301037 0.00665665830767067
8× 128 −125.603792313892 −126.028444865078 0.00675984911901183

Table 3.1 – Torque T and y-component of the force on the inner cylinder Fy for Stokes
flow between eccentric cylinder with rotation of the inner one, η = 0.5. Exact solution
from analytical formulas of Wannier (1950) and numerical results for various resolutions.

Comparison with experiments

For eccentric Taylor–Couette–Poiseuille flow, no analytical solution exists, so valida-
tion can only be done against experimental and numerical results. Escudier and Gould-
son (1997) reported LDA measurements of eccentric Taylor–Couette–Poiseuille flow,
below onset of the Taylor vortices. The apparatus has a radius ratio of η = 0.506, and
cross-sections A, B, C and D are defined in figure 3.4. Our computations are compared
with these measurements in figure 3.5, for e = 0.2, 0.5, 0.8 and azimuthal Reynolds num-
bers ReΩ ≈ 55 (the precise values indicated in the caption). Uθ̃ is the azimuthal velocity
in the polar coordinate system centered on the outer cylinder (r̃, θ̃).

Agreement is excellent, except for the axial velocity component when e = 0.8 (see
figure 3.5(2c)). The mismatch is likely due to an imprecise measurement of the experi-
mental flow rate. Indeed, rescaling our data by a multiplicative factor of 0.95 leads to
excellent matching, as for all other curves. A 5% inaccuracy in the measured flow rate
may well explain this discrepancy, since W is non-dimensionalized with respect to the
mean axial velocity W . Profile D in figure 3.5(3a) is also poorly fitted for σ < 0.6. The
same discrepancy was reported in Escudier et al. (2000), whose numerical calculations
agree with our results more closely than with the experiment. In this case again, an
experimental bias is plausible.
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Figure 3.3 – Relative error as a function of resolution for Stokes flow between eccentric
cylinders with rotation of the inner one, η = 0.5. (a) e = 0.9, (b) e = 0.99; (1)M+1 = 32,
(2) K = 128.

D
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A

Figure 3.4 – Definition of cross-sections A, B, C and D for velocity measurements by
Escudier and Gouldson (1997).

Fanning friction factor

As mentioned earlier, the Fanning friction factor characterizes the resistance to axial
flow due to viscous effects. Escudier et al. (2000) made a thorough investigation of the
effect of rotation of the inner cylinder on the axial flow between eccentric cylinders, and
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Figure 3.5 – (1) Azimuthal Uθ̃ and (2) axial velocity W in a cylindrical coordinate
system centered on the inner cylinder. Uθ̃ and W are respectively non-dimensionalized
with aΩ and the average axial velocity W . Cross-sections A,B,C,D shown in figure
3.4 are defined by θ̃ = 0, π/2, π, 3π/2. Along a given cross-section, σ is defined by σ ≡
(r̃− r̃i)/(r̃o− r̃i), with r̃i and r̃o the values of r̃ on the inner and outer cylinders. Symbols
represent experimental data from Escudier and Gouldson (1997). Lines correspond to
our simulations. (a) e = 0.2, ReΩ = 53.70, (b) e = 0.5, ReΩ = 55.65, (c) e = 0.8,
ReΩ = 54.67.

reported computed values of the friction factor for various values of η, e and Ta (Taylor
number defined as Ta = Re2

Ωδ). Computations were made using a finite-difference solver
cast in polar coordinates centered on the inner cylinder. The authors validated their
code against their own experimental data (Escudier and Gouldson, 1997) (see figure
3.5). Figure 3.6 shows our results together with those of Escudier et al. (2000) for the
wide-gap case η = 0.5. Our results lie within 0.67% of their values.
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Figure 3.6 – Comparison of Fanning friction factor with numerical values of Escud-
ier et al. (2000), for η = 0.5. The values of ReΩ correspond to Taylor numbers
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Ωδ = 1000, 2500, 5000, 10000, 50000. Lines: present results; symbols: Escudier
et al. (2000).

Forces on the inner cylinder

The calculation of the tangential viscous stress on the inner cylinder is validated
(see figure 3.7) against a curve given in Oikawa et al. (1989a). The contributions of the
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Figure 3.7 – Shear stress τξφ acting on the inner cylinder non-dimensionalized by µaΩ/d,
for δ = 0.205, e = 0.5, ReΩ = 155. Comparison with figure 8 in Oikawa et al. (1989a).
Lines: present results; symbols: Oikawa et al. (1989a).

viscous and pressure terms to the x and y components of the force are then computed
for various eccentricities up to e = 0.98, η = 0.5 and ReΩ = 125, and compared with
numerical results of Feng et al. (2007) (see figure 3.8). The relative difference with these
authors’ values is always less than 1.80%, and 0.76% on average, when at least four digits
are provided by Feng et al. (2007). Comparisons were also made against numerical results
of Podryabinkin and Rudyak (2011) and are shown in figure 3.9. Radius ratios η = 0.2
and η = 0.85 were used, with ReΩ = 100. Matching is good in all cases, except for Fy in
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Figure 3.8 – Pressure Fp and viscous Fs contributions to the (a) x and (b) y components
of the force on the inner cylinder. Comparison with values computed by Feng et al.
(2007). Lines: present results; symbols: Feng et al. (2007).

the very wide gap case η = 0.2 for e ≥ 0.9. The authors observe a change of sign in Fy

that is not found for η = 0.5 and η = 0.85. No mention is made of the spatial resolution
used in their article. For the case e = 0.99, the resolution we used was M + 1 = 32
and K = 128, which we will show to be acceptable for the case η = 0.5 (see resolution
tests in the next subsection and figure 3.10 in particular). Given the convincing results
obtained otherwise with our code, we suspect a convergence issue in the computations
of Podryabinkin and Rudyak (2011).

Resolution tests

Resolution tests were performed to define the appropriate number of Fourier com-
ponents/collocation points for η = 0.5 in the ranges e ≤ 0.99 and ReΩ ≤ 250. Table 3.2
shows meshes necessary to achieve convergence up to the sixth significant digit simulta-
neously on different scalar quantities obtained by numerical integration of the flow field:
azimuthal flowrate Qφ, Fanning friction factor f , torque and the x-y components of the
viscous and pressure forces on the inner and outer cylinders.

Increasing the number of Chebyshev polynomials from 32 to 64 was found to have a
small effect on the sixth significant digit only for e ≥ 0.95 and ReΩ ≥ 250. For such high
values of eccentricity, the mesh concentrates in the narrow gap, leaving the wider gap
coarsely meshed, explaining the need for a significantly higher number of Fourier modes.
N = 128 is the maximum number of Fourier modes considered, and seems to be sufficient
to well represent the flow in conditions as stringent as e = 0.98 and ReΩ = 223.61 (see
figure 3.10 which shows a comparison with Escudier et al. (2000)).

3.6.2 Normal modes and continuation

Eigenmode calculation

The eigenmode stucture was compared with literature results in a very simple case:
concentric Taylor–Couette flow with η = 0.5 at the onset of temporal instability. Excel-
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Figure 3.9 – Comparison of forces and torque computation with numerical values of
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lent matching is shown in figure 3.11.

Temporal stability threshold

The temporal stability threshold calculations were validated first for the case of
concentric Taylor–Couette–Poiseuille flow with η = 0.5, against numerical results of
Takeuchi and Jankowski (1981) (see figure 3.12). Numerical values given by the authors
are matched with all significant digits (except for the case Rez = 90, where only the last
digit in the values of k and phase speed c = ω/k differed from our result by one).
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e
ReΩ 10 50 100 150 200 250

0 16× 0
0.1
0.2 16× 8
0.3
0.4 32× 16
0.5
0.6 16× 16
0.7
0.8

16× 32
32× 32

0.9 32× 64
0.95 32× 64
0.98 32× 128
0.99

Table 3.2 – Minimum mesh size (M + 1)×K to achieve 6-digit accuracy simultaneously
for Qφ, f , torque and forces on the inner and outer cylinders.

In the eccentric case with no axial flow, comparisons with numerical results for two
different radius ratios η = 0.912 (Dai et al., 1992, Chawda and Avgousti, 1996) and
η = 0.5 (Oikawa et al., 1989a) show good agreement (see figure 4.6). More details are
given in §4.2.6.

Convective/absolute instability threshold

The absolute instability thresholds in concentric Taylor–Couette–Poiseuille flow were
computed for a few modes with largest absolute growth rate by Pinter et al. (2003),
Altmeyer et al. (2011). In the axisymmetric case, the normal modes have the form
q′ = q̃(r) exp[i(kz+mθ−ωt)]+c.c., characterised by an azimuthal integer wavenumber
m. For m = 0, 1, agreement is excellent between our computations and the results of
Pinter et al. (2003). More details can be found in §5.3.5.

For m = 2 and e = 0, Altmeyer et al. (2011) found absolute instability to occur
over a closed domain in the (ReΩ,Rez)-plane, which the authors called an ‘island of
instability’ 8. This closed boundary is accurately reproduced by our code, see figure 3.14.

8. The study is however incomplete since the authors considered only one saddle point in their
calculations, more details can be found in chapter 5.
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(1a) (1b)

(2a) (2b)

Figure 3.10 – Streamlines (a) and axial flow isocontours (b) for η = 0.5, e = 0.98 and
ReΩ = 223.61. Comparison of (1) present calculations using (M + 1) × N = 32 × 257
(K = 128) with (2) Escudier et al. (2000). The calculation recovers the secondary
recirculation region in the wide gap and the two distorted maxima in axial velocity. The
numerical values of the isolines match those of Escudier et al. (2000).
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Chapter 4

Temporal stability

Before proceeding to any stability analysis, the first step is to investigate the basic
flow solution, defined as the hypothetical flow with the maximum number of symmetries.
In this chapter, we review the basic flow properties and study the temporal dynamics
of superimposed infinitesimal perturbations. Perturbations are decomposed as a sum of
normal modes and the properties of the fastest growing ones are studied. In particular,
the effect of eccentricity and axial advection on the instability threshold is investigated
for a wide gap and a small gap configurations. For the small gap configuration, compari-
son is made against experimental data obtained in the seventies, the only available data
of which we are aware. The chapter starts with a review of previous studies on eccentric
Taylor–Couette flow, axisymmetric Taylor–Couette–Poiseuille flow, and finally eccen-
tric Taylor–Couette–Poiseuille flow. We show that little is known about the combined
effects of eccentricity and axial flow, and the originality of our analysis is to perform
a systematic temporal stability analysis incorporating the two effects. The results are
reported in the form of an article published in the Journal of Fluid Mechanics (Leclercq
et al., 2013). Slight notation changes have been introduced to ensure coherence with the
rest of the present manuscript, but the text and figures are otherwise identical to the
original article. Sections, figures, tables and equations were also relabelled to fit with
the manuscript structure. At the end of the chapter, a small section is added, giving
further results concerning the wall stresses on the inner cylinder. This section illustrates
statements made in §4.2.4 and helps to understand the evolution of the forces and torque
on the inner cylinder when parameters are varied.
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The combined effects of axial flow and eccentricity on the temporal stability properties of
the Taylor–Couette system are investigated using a pseudospectral method. Eccentricity
is found to stabilize the Couette flow regardless of axial advection intensity. As the axial
Reynolds number Rez is increased for any fixed eccentricity e ≤ 0.7, the critical mode
switches from deformed toroidal Taylor vortices to helical structures with an increasing
number of waves, and with helicity opposed to the inner cylinder rotation. For a wide
gap configuration of radius ratio η = 0.5, increasing axial advection has a stabilising
effect for low Rez, then a weak destabilising effect for high enough Rez. Centrifugal
effects are always destabilising, but axial shear is responsible for dominance of helical
modes of increasing azimuthal complexity. The modes localise in the converging gap
region, and the energy concentrates increasingly into axial motion for larger Rez. Critical
quantities are also computed for a small gap case, and similar trends are observed, even
though no destabilising effect of advection is observed within the range of Rez considered.
Comparison with the experiment of Coney and Mobbs (1969–70) for η = 0.89 shows
good agreement, despite small discrepancies attributed to finite length effects.

4.1 Introduction

More than 40 years ago, Coney and Mobbs (1969–70) wrote: ‘a linear stability theory
solution for the case of eccentric rotating cylinders with a superimposed axial flow [. . .]
is not available and the difficulties in the way of such a solution are formidable’. Indeed,
while the flow between rotating cylinders is one of the benchmarks of hydrodynamic
stability since the path breaking work of Taylor (1923), the computational cost associ-
ated with more complex versions of this flow has long been considered a show stopper,
and still remains a major challenge as we try to bridge the gap with engineering appli-
cations. In this paper, we study the temporal stability of cylindrical Couette flow with
two additional effects: eccentricity of the cylinder axes and axial flow. Taken separately,
the two effects have already been the subject of numerous studies which we will briefly
review in this introductory section. But to the best of our knowledge, no one has yet
undertaken the complete theoretical study of the combination of both, and very limited
experimental data is available in this case.
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4.1.1 Control parameters

This problem is governed by four control parameters. The geometry is defined by
the ratio of radii 0 < η ≡ a/b < 1 and eccentricity 0 ≤ e ≡ c/(b− a) ≤ 1, with a and b
the inner and outer cylinder radii and c the distance between centers. Introducing the
clearance d = b− a, one can also use the clearance ratio δ ≡ d/a = (1− η)/η instead of
η.

The azimuthal Reynolds number ReΩ = aΩd/ν, based on the inner cylinder rotation
rate Ω, compares centrifugal and viscous effects, while the axial Reynolds number Rez =
Wd/ν, based on the mean axial velocity W , measures the importance of axial advection.

4.1.2 Industrial applications: wellbore drilling and high-speed
journal bearings

This model flow is of interest to the oil industry as a first step towards understanding
the dynamics of the complex annular flow of mud in wellbore drilling operations. For
drilling applications, a drillstring is rotated inside the well in order to drive a drillbit
that cuts the rock at the bottom of the well. Mud is injected through the drillstring
and flows back to the surface through the annular gap, ensuring several engineering
functions, among which (Escudier et al., 2002): carry the rock cuttings out of the well,
cool and clean the drillbit, support the wellbore, avoid inflow of formation fluids and
prevent settling of the cuttings when circulation is stopped. The annular flow of mud
can be modeled in first approximation by an eccentric Taylor–Couette–Poiseuille flow
because of the rotation of the drillstring, the pressure-driven axial flow and eccentricity
caused by flexibility of the drillstring.

For typical industrial configurations (Escudier et al., 2002, Guo and Liu, 2011), the
ratio between drillstring and outer-wall radii ranges from 0.2 at the top to 0.8 at the
bottom, and eccentricity can go all the way to the limit of touching cylinders. The gap
between the drillstring and the outer wall is of order 10−2 − 10−1m. The velocity of the
inner cylinder in rotation is comparable to the mean axial velocity of the flow, of the
order of 1m.s−1. Finally, mud density is of order 103kg.m−3, with equivalent dynamic
viscosity between 10−3 − 10−1Pa.s (note that viscosity is a function of local strain rate
for non-Newtonian fluids). As a result, equivalent Reynolds numbers ReΩ and Rez of
the order of 102 − 105 are expected.

Limitations of the model for this application include non-Newtonian effects (vis-
coelasticity and thixotropicity), motion of the inner cylinder position inside the well,
contamination of the fluid by cuttings and ‘formation fluid’, variable eccentricity and
outer wall radius with depth, and imperfect circularity of the wellbore wall. However,
the consideration of both eccentricity and axial flow in a systematic way is already a
significant improvement on existing theory.

Eccentric Taylor–Couette–Poiseuille flow is also of interest in the field of high-speed
journal bearings where ‘the damaging effect of impurities contained in oil can be con-
siderably reduced when they are quickly removed from the friction contact area [. . .] by
intensifying axial oil flow’ (Sep, 2008). In high-speed journal bearings, Huggins (1966–
67) quotes a value of Rez = 100 during tests on a 24-in diameter journal bearing. And
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instabilities are expected to arise as noted by Coney and Mobbs (1969–70): ‘in the
large-diameter journal bearings, which may be expected to operate in the Taylor vortex
régime, there is [. . .] a considerable superimposed axial flow of lubricant’.

4.1.3 Eccentric Taylor–Couette flow

The effect of eccentricity on the Taylor–Couette flow has been investigated by many
researchers, covering a wide range of ratio of radii and eccentricities, starting with the
experimental work of Cole (1957). Using torque measurements, flow visualisation (dye
injection, aluminum flakes, etc.) and hot wire probes, Cole (1957, 1967, 1969), Kamal
(1966), Vohr (1968), Koschmieder (1976) and later Karasudani (1987), Xiao et al. (1997)
and Lim and Lim (2008) found a stabilizing effect of eccentricity on the appearance of
Taylor vortices. On the other hand Castle and Mobbs (1967), Versteegen and Jankowski
(1969) and Frêne and Godet (1971) found a slight destabilization at weak eccentricities,
followed by stabilization at higher values. The vortices of the first type, confined to
the inner cylinder neighbourhood, were later found to be caused by end wall effects
by Mobbs and Ozogan (1984), El-Dujaily and Mobbs (1990). For the second type of
vortices, an increase in critical wavenumber at higher eccentricities was reported in the
early work of Cole (1967) and quantified by subsequent authors.

The first theoretical analyses were made by DiPrima (1963) and Ritchie (1968), using
local stability theory (as implied by the parallel-flow approximation in the ‘pseudo-
azimuthal’ direction) and asymptotic analyses in the small gap, small eccentricity limit.
The first global stability analyses of the problem, considering fully two-dimensional basic
flows, were performed a decade later by DiPrima and Stuart (1972b), DiPrima and
Stuart (1975) and Eagles et al. (1978), demonstrating a stabilising effect of eccentricity
and the weakness of the local approach to model this flow. More recently, Oikawa et al.
(1989b,a) and Dai et al. (1992) were able to relax the small gap–small eccentricity
constraint (e up to 0.6 − 0.7, η as low as 0.5), using numerical methods to solve the
two-dimensional stability problem.

Finally, most recent numerical and experimental stability analyses seem to have been
concerned mostly with the effect of non-Newtonian fluids (e.g. Chawda and Avgousti
(1996), Dris and Shaqfeh (1998)), with applications to oil drilling and polymeric pro-
cessing.

4.1.4 Taylor–Couette–Poiseuille flow

The effect of a pressure driven axial flow on the concentric Taylor–Couette system
with fixed outer cylinder has been the object of even more investigations. The first an-
alytical studies were restricted to the narrow gap limit and axisymmetric perturbations
(e.g. Chandrasekhar (1960), DiPrima (1960)), reaching (after some controversy) the con-
clusion that advection stabilizes the Couette flow. The first correct numerical studies
of the finite gap geometry, with non-axisymmetric disturbances, are due to Takeuchi
and Jankowski (1981) and Ng and Turner (1982). Considering axial Reynolds number
Rez ≤ 100 − 150 (theoretical – experimental), and a wide gap value η = 0.5, Takeuchi
and Jankowski (1981) confirmed numerically and experimentally the results from Snyder
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(1962, 1965)’s experiments showing that toroidal vortices are replaced by helical vortices
for larger advection rates. Ng and Turner (1982) extended the results to Rez ≤ 6000
for η = 0.77 and η = 0.95, with fair agreement with experiments. They also considered
axisymmetric disturbances for η = 0.95 up to the value of Rez = 7739.5 where annular
Poiseuille flow becomes unstable with respect to Tollmien–Schlichting (TS) like distur-
bances. They showed a connection between the centrifugal instability and the shear
instability at high advection rates, as conjectured by Reid (1961). More recently Cotrell
and Pearlstein (2004), Cotrell et al. (2004) extended the analysis of Ng and Turner
(1982) to non-axisymmetric disturbances for η = 0.5, 0.77, 0.95. Before the transition
to shear instability, these authors noted the existence of a plateau in critical ReΩ, for
which the associated critical axial wavenumber drops with increasing Rez. For the case
η = 0.5, they also noticed the existence of a maximum critical ReΩ for a specific value
of Rez. Heaton (2008) complemented their analyses by assessing the importance of non-
modal effects, and showed their relevance at moderate and large Rez ∼ 102–104. Other
recent studies concern rotation of the outer cylinder (Meseguer and Marques, 2002), ab-
solute/convective instabilities (Altmeyer et al., 2011), supercritical states (Hwang and
Yang, 2004), time-periodic flow (Marques and Lopez (2000), additional radial flow (e.g.
Martinand et al. (2009)), etc. A comprehensive review of the large panel of work on this
topic, though not completely up to date, is available in Cotrell and Pearlstein (2004).

4.1.5 Eccentric Taylor–Couette–Poiseuille flow

As already mentioned, some experimental data is available in the case of combined
eccentricity and axial flow. To the best of the authors’ knowledge, only one experiment
has been undertaken, at a radius ratio of η = 0.89 (Coney and Mobbs, 1969–70, Coney,
1971, Younes, 1972, Younes et al., 1972, Mobbs and Younes, 1974, Coney and Atkinson,
1978). In Coney and Mobbs (1969–70) and Younes et al. (1972) the critical Taylor
number is reported as a function of e ≤ 0.8 and Rez up to 125, using flow visualisation
and torque measurements. It is found that axial flow always stabilises the Couette
flow. At fixed eccentricity, stabilisation due to advection is less marked than in the
concentric case. The critical curves have complicated forms for Rez ≥ 75 but the effect
of eccentricity is generally stabilising. However, the results display considerable scatter
and are very sensitive to the instability criterion, as shown in Coney and Atkinson (1978).
Moreover, attempts at determining the critical wavenumber of the perturbations proved
abortive, because of the complex flow structure observed. For e > 0.2, Rez > 20, there
seems to be coexistence of two helical structures winding in opposite directions, with
‘fluctuations in the number of vortex cells occupying the length of the apparatus at any
instant or in the number of turns in the vortex spirals’ (Coney and Mobbs, 1969–70,
Mobbs and Younes, 1974). These experiments will be discussed further in §4.4.

On the theoretical side, apart from the semi-empiral local stability theory of Coney
and Mobbs (1969–70), inspired by the work of DiPrima (1963), no stability analysis has
been attempted so far. Modal stability analysis is the object of the present article and
is a first step towards understanding the complex behaviour exhibited by this flow.
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4.1.6 Plan of the article

The paper is organised in four parts. §4.2 introduces the linear stability problem,
including governing equations and numerical methods for basic flow and normal modes
computations. The main properties of the basic flow and dominant eigenmodes are
presented. In §4.3, a parametric temporal stability study is performed for η = 0.5: critical
quantities are computed and stability diagrams are given. The instability mechanism is
investigated by examining the spatial structure of the critical modes, and variations
of growth rates with control parameters. In §4.4, critical values are computed for a
small gap case η = 0.89, for which comparison with experimental data is possible. A
concluding section then summarizes our main findings and paves the way for future
work.

4.2 Linear stability framework

Recall that a, b are the inner and outer cylinder radii, d = b− a is the clearance and
Ω is the rotation rate of the inner cylinder. ρ and ν are the density and the kinematic
viscosity. In the following, quantities will be made non-dimensional with respect to the
reference scales L ≡ d, V ≡ aΩ and P ≡ ρV2 for length, velocity and pressure.

An azimuthal/rotational Reynolds number, defined as ReΩ ≡ VL/ν = aΩd/ν will
be used to measure competition between centrifugal effects and viscosity. Note that
this type of definition is preferred in recent numerical work (e.g. Oikawa et al. (1989a),
Feng et al. (2007), Martinand et al. (2009)) rather than using Taylor numbers of the
form Ta ∼ δReΩ

2, which naturally appeared in the pioneering analytical studies of the
small-gap limit δ → 0 (e.g. Taylor (1923), DiPrima (1959), Chandrasekhar (1981)).

Axial advection is characterised by an axial Reynolds number Rez ≡ Wd/ν, based
on the mean axial velocity W . The ratio Rez/ReΩ represents the mean axial velocity in
units of rotation velocity, and conveniently measures competition between advection and
rotation. Because of this, using an azimuthal Reynolds number instead of a ‘classical’
Taylor number seems particularly appropriate when axial flow is considered.

Finally, geometry is characterised by the ratio of radii 0 < η ≡ a/b < 1, or equiva-
lently the clearance ratio δ ≡ d/a = (1− η)/η. c being the distance between centers (cf.
figure 4.1), eccentricity is measured by the non-dimensional number 0 ≤ e = c/d ≤ 1.

4.2.1 Governing equations

The incompressible Navier–Stokes equations governing velocity u and pressure p read

∂tu + u · ∇u = −∇p+ Re−1
Ω ∇2u,

∇ · u = 0,

}
(4.1)

with impermeability and no-slip boundary conditions at the walls (rotating inner cylin-
der, fixed outer one). Basic flows for stability analyses are axially invariant, steady
solutions of (5.1). Because of the vanishing derivatives in the axial direction e

z
, velocity
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Figure 4.1 – Eccentric annular domain for radius ratio η = 0.5 and eccentricity e = 0.5.
(a) Geometry definition. (b) Typical bipolar mesh used for calculations with M + 1 =
K = 16.

components u⊥ = u−we
z

perpendicular to the axis are decoupled from the axial com-
ponent w. Letting the subscript ‘⊥’ denote projection perpendicular to e

z
, u⊥ satisfies

∂tu⊥ + u⊥ · ∇⊥u⊥ = −∇⊥p+ Re−1
Ω ∇2

⊥u⊥,
∇⊥ · u⊥ = 0.

}
(4.2)

Steady solutions of (5.2), with boundary conditions, yield ‘in-plane’ components U⊥ of
basic flows, denoted hereon as U = (U⊥,W ). Basic axial velocity can then be calculated
by simply solving a linear system

U⊥ · ∇⊥W = −G+ Re−1
Ω ∇2

⊥W, (4.3)

with G the imposed axial pressure gradient. Wood (1957)’s modified bipolar coordinate
system (ρ, φ), fitting the annular domain (see figure 4.1) with the following conformal
transformation, is appropriate for the present configuration

x+ iy =
1
δ

ρeiφ + γ

1 + γρeiφ
, (4.4)

with constants γ and β depending on the geometry through δ and e

γ =





(
2 + δ(1− e2)

2e

)2

− 1





1/2

− 2 + δ(1− e2)
2e

if e 6= 0, else γ = 0, (4.5)

β =
1 + δ(1 + e)− γ

1− γ(1 + δ(1 + e))
. (4.6)

Unlike classical bipolar coordinates, this system is non-singular in the concentric limit,
allowing computations in the axisymmetric case. Local orthogonality ensures separa-
tion of the variables in the expression of the Laplacian operator. An additional trans-
formation maps the non-dimensional ‘pseudo-radius’ 1 ≤ ρ ≤ β to −1 ≤ ξ ≤ 1,
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with ξ = (2ρ− β − 1)/(β − 1). In the local frame, in-plane velocity is decomposed as
u⊥ = ueξ + veφ. Expressions for operators in equations (5.2-5.3), written in the (ξ, φ)
coordinate system, are given in the Appendix.

Linear stability theory predicts the behaviour of small-amplitude perturba-
tions q′(ξ, φ, z, t) ≡ (u′, v′, w′, p′)T superimposed on the basic flow, Q(ξ, φ) ≡
(U, V,W, P )T .The system being homogeneous along the axial direction z, small per-
turbations can be written in normal-mode form

q′(ξ, φ, z, t) = q̃(ξ, φ) exp[i(kz − ωt)]. (4.7)

As usual in temporal stability analyses, the axial wavenumber k is real, and the fre-
quency is a complex number ω = ωr + iωi. The phase speed c ≡ ωr/k characterises
axial propagation, and the growth rate ωi indicates temporal growth/decay (resp. ωi > 0
and ωi < 0). Linearizing the Navier–Stokes equations about the basic flow and using the
normal-mode form (4.7) gives the system of differential equations Aq̃ = iωBq̃, expressed
in the (ξ, φ) coordinate system as

A =




A11 A12 0 Dξ

A21 A22 0 Dφ

DξW DφW A33 ik

Dξ + A Dφ −B ik 0



, B =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0



, (4.8)

A11 = (UDξ +DξU) + V (Dφ −B) + ikW − Re−1
Ω (∇2

⊥ − k2 + C),
A22 = (V Dφ +DφV ) + U(Dξ + A) + ikW − Re−1

Ω (∇2
⊥ − k2 + C),

A33 = (UDξ + V Dφ) + ikW − Re−1
Ω (∇2

⊥ − k2),
A12 = −2AV + (Dφ −B)U + 2Re−1

Ω (ADφ +BDξ) ,
A21 = 2BU + (Dξ + A)V − 2Re−1

Ω (ADφ +BDξ) .





(4.9)

Dξ, Dφ are differential operators given in the Appendix, together with the spatially
dependent factors A, B and C. At the walls, impermeability u = 0, no-slip v = w = 0
and incompressibility Dξu = 0 conditions apply. For each value of k, the solution of this
eigenvalue problem yields a spectrum of temporal modes ω = Ω(k; η, e,Rez,ReΩ). The
critical azimuthal Reynolds number is such that the mode with largest growth rate is
at most neutrally stable (ωi,max = 0). The value of k for which it is neutrally stable is
called critical wavenumber.

The eigenvalue problem is invariant under complex conjugation (denoted by ⋆)
(k, ω, q̃) 7→ (−k,−ω⋆,q⋆), so only k > 0 need be considered. In the absence of axial
flow, the problem is also invariant to axial reflection, implying, with conjugation sym-
metry, that the spectrum is symmetric with respect to the imaginary axis (ω 7→ −ω⋆).
When axial flow is added, mirror symmetry of the system in the axial direction and the
resulting symmetry of the spectrum is lost.
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4.2.2 Numerical method

A spectral decomposition of the fields was implemented, as in Oikawa et al.
(1989a) and Chawda and Avgousti (1996), using a Fourier–Chebyshev decomposition

u(ξ, φ) =
M∑

i=0

K∑

j=−K

ûijeijφTi(ξ), (4.10)

with Ti the Chebyshev polynomial of order i. A pseudospectral collocation method is
used in the pseudo-radial direction, using a Gauss–Lobatto distribution ξi = cos[iπ/M ],
with 0 ≤ i ≤M . K is the number of Fourier components, corresponding to N = 2K+ 1
points on the physical grid (figure 4.1), after inverse discrete Fourier transform.

Steady solutions U⊥ of (5.2) are calculated using a time-marching procedure, then
the axial flow W is obtained by solving the linear system (5.3). Thanks to linearity of
(5.3) with respect to W , the axial pressure gradient G is just a multiplying factor on
the axial velocity, so G can be set to 1 without loss of generality. W is then rescaled to
yield the required axial Reynolds number Rez.

Integration of (5.2) is performed using a projection method enhanced with a prelim-
inary pressure-prediction step (Goda (1979), Raspo et al. (2002)). A simple and robust
first-order temporal scheme is used since only steady solutions are of interest here. The
stiff viscous terms of the vectorial Laplacian operator involving the scalar Laplacian ∇2

⊥

(see the Appendix) are treated implicitly, while all other terms are extrapolated from the
previous time step. The Poisson and Helmholtz problems involve block pentadiagonal
matrices, and are efficiently solved using the Thomas algorithm. The choice of time step
was automated in order to achieve convergence. When velocity residuals in the physical
space maxi,j |un

i,j − un−1
i,j | or maxi,j |vn

i,j − vn−1
i,j | diverged, the time step was divided by

2: resulting time steps ranged from 1 for the concentric case to 10−2 for ReΩ = 250,
e ≥ 0.8, and M + 1 = K = 32. The convergence tolerance on the residuals was set to
10−8.

Approximating normal modes (4.7) with the same Fourier–Chebyshev expansion
as the basic flow leads to a generalised eigenvalue problem, with matrix versions of
linear operators (4.8)–(4.9), of size 4N(M + 1). This generalized eigenvalue problem
can be reduced to a standard eigenvalue problem A1q̃1 = iωq̃1 of size 2N(M − 2),
after eliminating w, p, and boundary points of u and v. The reduction is performed
numerically and allows significant time savings in full spectrum calculation, as well as
avoiding spurious eigenvalues. A similar approach seems to have been used in Oikawa
et al. (1989a).

Full spectrum computations were performed using the standard QR procedure avail-
able in the free software package LAPACK (www.netlib.org/lapack). When the region of
interest in the spectrum was known beforehand, we used the Arnoldi (1951) method to
compute a few eigenvalues efficiently. The shift-invert spectral transformation was used
to enhance convergence, where the initial problem was replaced by (A1−σI)−1q̃1 = νq̃1.
The eigenvalues ν = 1/(λ− σ) of largest magnitude give the corresponding eigenvalues
λ = iω of the original problem closest to the given shift σ. The eigenvectors q̃1 of the
new problem are those of the initial one. The method requires solving linear systems
involving the non-sparse matrix A1− σI, which is factorized in LU form in an initialisa-
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tion step. The calculations were performed using the ARPACK++ class for non-sparse
matrices (www.caam.rice.edu/software/ARPACK), based on LAPACK routines.

For a given mode, critical curves were calculated using a Newton–Raphson iteration:
k and ReΩ were varied simultaneously so as to reach |ωi| and |∂kωi| less than 10−6. Initial
estimates for the critical k and ReΩ were obtained by linear extrapolation with respect
to Rez. Identification of the most unstable modes is discussed in §4.2.5.

4.2.3 Spatial resolution

A systematic grid refinement study was performed for the basic flow with 16 ≤
M +1 ≤ 64 and 0 ≤ K ≤ 128 (K = 0 for e = 0), for e ≤ 0.99 and ReΩ ≤ 250. The mini-
mal resolution achieving convergence of 6 significant digits of a number of integral quan-
tities (forces and torque on inner cylinder, Fanning friction factor f ≡ d|G|/(1/2ρW 2

),
azimuthal volume flux) was found for each set of parameters, and used for the compu-
tations in §4.2.4. It appears that refining the number of collocation points much above
m = 32 is unnecessary for ReΩ ≤ 250, and the dependence on eccentricity is weak.
On the other hand, if eccentricities close to 1 are considered, a large number of Fourier
modes is required as φ varies extremely slowly in the wide gap then. For e = 0.98 and
ReΩ = 223.61, a resolution of (M + 1)×K = 32× 128 achieves excellent results, as can
be seen in figure 4.2, showing a comparison with Escudier et al. (2000)’s calculations.

In parametric stability analyses though (§4.3 & §4.4), a fixed resolution of
M + 1 = K = 16 was systematically used for both basic flow and normal modes, for
practical reasons and computational cost. Tests were performed a posteriori to check
that these values provided reliable results, and are reported in table 4.1. With the chosen
resolution, 3 significant digits of the critical ReΩ are converged in most cases. However,
larger inaccuracies occur for high e and Rez, and critical curves are truncated below
ReΩ = 200 (resp. ReΩ = 250) for η = 0.5 (resp. η = 0.89), as remeshing above this limit
becomes quickly prohibitive.

4.2.4 Basic flow

The most striking feature of the basic flow is the occurrence of a recirculation eddy
for eccentricities larger than a certain threshold value of about 0.3 for η = 0.5 (see figure
5.3), which only depends weakly on ReΩ. This behaviour, exists even for Stokes flow and
Kamal (1966) was the first to study the influence of inertial effects. The recirculation is
due to the adverse pressure gradient caused by the large expansion of annulus clearance,
downstream the ‘bottleneck’ at φ = π. Figure 4.4(d) represents the evolution of the
azimuthal volume flux (per unit length) Qφ with eccentricity, for η = 0.5 and azimuthal
Reynolds numbers ReΩ up to 250. Qφ is obtained by integration of the azimuthal velocity
along the radial path φ = 0 joining the cylinders. As the inner cylinder gets closer to
the outer one, the azimuthal flow becomes progressively ‘choked’, and Qφ seems to be
controlled by the smaller gap width. Indeed, the flow in the vicinity of the inner cylinder
resembles a circular Couette flow of clearance ratio controlled by the smaller gap, while
the wide gap region hosts a low velocity recirculation zone contributing no net azimuthal
volume flux. A comparison is made with the value of Qφ in the Stokes régime, using
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(1a) (1b)

(2a) (2b)

Figure 4.2 – Basic flow for η = 0.5, e = 0.98 and ReΩ = 223.61: (1) present calculation
using (M + 1) × N = 32 × 257 (K = 128), (2) Escudier et al. (2000) with a 40 × 256
grid. (a) streamlines, (b) isolines of axial velocity normalized by mean velocity W . The
calculation recovers the secondary recirculation region in the wide gap and the two
distorted maxima in axial velocity. The numerical values of the isolines match those of
Escudier et al. (2000).

Wannier (1950)’s exact formula for the in-plane stream function. Inertial effects only
have a weak impact on Qφ, which could be expected from the fact that the fluid is
entrained in rotation by viscous forces.

Maximum axial velocity occurs in the wide gap region. Indeed, in the absence of
rotation, eccentric annular Poiseuille flow is nearly parabolic in the pseudo-radial direc-
tion, and for any fixed value of φ, the maximum velocity scales as the ‘local clearance’
squared. However, the position of maximum axial velocity is not exactly located at
φ = 0, because of convective transport of W by crossflow components U⊥ (see equation



4.2.4 - Basic flow 57

(5.3)). In fact, these nonlinear effects distort the whole flowfield, and Escudier et al.
(2000) performed a thorough computational/experimental analysis of the effects of ec-
centricity and inner-cylinder rotation, on annular Poiseuille flow. At low eccentricity,
the maximum axial velocity was shown to be advected towards the narrowing-gap re-
gion, inducing a slight increase in Fanning friction factor (defined in §4.2.3) with e. For
moderate eccentricities 0.3 ≤ e ≤ 0.8, the maximum moves back to the wide-gap region,
with a subsequent decrease in friction factor. For larger eccentricities, the maximum
is located in the diverging-gap region, and the friction factor increases again. At very
high eccentricities and rotation rates, a second peak in axial velocity appears in the
wide gap, while a secondary recirculation is observed at the outer cylinder wall. This
complex pattern is successfully obtained with our code, as illustrated in figure 4.2.

(1a) (1b)

(2a) (2b)

Figure 4.3 – Basic flows for η = 0.5, ReΩ = 100: (1) weak eccentricity e = 0.2, (2)
high eccentricity e = 0.7. (a) Contours of equispaced in-plane streamfunction with
superimposed in-plane velocity profiles at θ = 0, π/2, π, 3π/2 (polar angle with respect
to the inner cylinder). (b) Equispaced contours of axial velocity.
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Forces on the inner cylinder can be easily computed by integration of the pressure
and viscous stresses at the wall. The expression of the strain tensor components in our
coordinate system are given in the Appendix. Figure 4.4 shows a systematic study of
the effect of ReΩ and e on the loads, for η = 0.5. A comparison is made with the Stokes
régime, using analytical formulas derived by Wannier (1950). In this limit, the velocity
and pressure distributions are anti-symmetric with respect to the symmetry plane of
the annulus. Therefore, the x-component of the force is exactly 0. At the inner cylinder
surface, the pressure increases with φ on the wide gap side up to 0 < φmax < π, and
decreases on the small gap side up to φmin = −φmax. As e increases, the pressure extrema
both tend to the same limit φmin/max → π. Because 0 < φmax < π, the y-component
of the force Fy is negative. The viscous torque T is obviously opposed to the sense of
rotation, so T < 0. In the Stokes limit, T and Fy both scale as Re−1

Ω . Indeed, the torque
T is induced by shear stresses τ , which scale as τ ∼ µV/L in dimensional form, with µ
the dynamic viscosity. Non-dimensionalising with respect to the pressure scale P ≡ ρV2,
one obtains T ∼ τ ∼ Re−1

Ω . In the absence of inertial terms, the pressure P also scales
as τ , so Fy ∼ P ∼ τ ∼ Re−1

Ω .

(a) (b)

(c) (d)
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Figure 4.4 – Forces, torque and azimuthal flow rate (per unit length) for e = 0, . . . , 0.7
and ReΩ = 10, . . . , 250. (a) x-component Fx, (b) y-component Fy of the force on the
inner cylinder. (c) torque T on inner cylinder. (d) azimuthal flow rate Qφ. Dotted lines in
(b),(c) and (d) correspond to the exact value in the Stokes régime, taken from Wannier
(1950).

When inertial effects are added, this scaling still holds and only small deviations
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to the Stokes limit are observed. Larger variations occur for an eccentricity of about
0.3 − 0.4, where the value of FyReΩ at ReΩ = 250 is almost twice the purely viscous
one. At e ≈ 0.8, variations of FyReΩ with ReΩ are almost non existent. Similarly, the
formula for the torque in the Stokes régime applies quite robustly for all the range of
eccentricities and ReΩ up to 250. Again, this close agreement is attributed to the fact
that the flow in the vicinity of the inner cylinder is similar to a circular Couette flow
where inertial effects are weak (and non existent in the purely axisymmetric case). For
e close to 1, Fy and T increase sharply because of lubrication effects.

When ReΩ 6= 0, the flow anti-symmetry is broken, and Fx is non-zero. For low
eccentricities, Fx is negative, but for high e, Fx is negative, as expected from lubrication
theory. The change of sign of Fx is located about a critical eccentricity of e ≈ 0.7− 0.75
for η = 0.5 and ReΩ ≤ 250, as already discussed by Feng et al. (2007) and Podryabinkin
and Rudyak (2011). Small eccentricity perturbations about this point tend to push the
inner cylinder back to its initial position. However, pressure-induced precession prevents
any stable equilibrium for this value of eccentricity, explaining the complex motion of
drillstrings in wellbores. The intensity of Fx is determined by the magnitude of the
convective term, so the pressure scaling P ≡ ρV2 is appropriate in this case.

4.2.5 Critical modes

The first step of linear stability analysis is to identify a reduced set of leading modes,
with largest growth rates. Full spectrum computations were used to find the most un-
stable eigenvalue at each point of a coarse grid in (e,ReΩ,Rez), for η = 0.5. k was varied
between 1 and 7, a range containing all the critical wavenumbers for the concentric
case with Rez ≤ 200 (1.5 . k . 4.5 from the graph in Cotrell and Pearlstein (2004)),
with large steps of 0.5 for computational efficiency. Approximate critical curves were
obtained, and it was found that the modes at criticality are always either propagating
‘Taylor-like’ vortices or deformed left-handed helical modes. These pseudo-toroidal and
pseudo-helical modes correspond to the same family of critical modes found in Taylor–
Couette–Poiseuille flow (Takeuchi and Jankowski, 1981), but distorted by eccentricity
(cf. figure 4.10). In the axisymmetric case, these modes can be assigned an integer
azimuthal wavenumber m corresponding to a normal-mode decomposition of the form
q′ = q̃(r) exp[i(kz+mθ−ωt)], using the usual cylindrical coordinates (r, θ, z). Consider-
ing k > 0, m = 0 correspond to Taylor vortices and m > 0 (resp. m < 0) are left-handed
(resp. right-handed) helical vortices, with helicity opposed to (resp. matching) that of
the basic flow. Following these modes by continuity, pseudo-helices are also assigned a
‘pseudo-azimuthal wavenumber’ equal to the corresponding value of m in the concentric
case. Henceforth, TV will denote ‘Taylor-like’ vortices while LH|m| and RH|m| will cor-
respond to left- (resp. right-) handed helical vortices of order m. The symmetry of the
spectrum for Rez = 0 implies that LH and RH of equal order m, have the same growth
rate and oppositely signed phase speeds. As Rez is increased, LH modes become more
unstable than TV and RH, and form the family of critical modes, as in the axisymmetric
case (cf. figure 4.5). The critical value of m increases steadily with Rez.

Additional families of modes such as wall modes related to a shear instability mech-
anism were not found to be critically unstable in the range of parameters considered.
Center modes of Sp type, such as described by Merzari et al. (2008), and critical in



60 Linear stability framework

ωi

ωr

-2

-1

0

-2 0 2 4

0 1 2 3−1−2−3

ωi

ωr

-2

-1

0

-2 0 2 4

0 1 2 3−1−2−3

ωi

ωr

-2

-1

0

-2 0 2 4

0 1 2 3−1−2−3

ωi

ωr

-2

-1

0

-2 0 2 4

0 1 2 3−1−2−3

(1a) (1b)

(2a) (2b)

Figure 4.5 – Spectra of eigenvalues ω = Ω(k; e,ReΩ,Rez) with (k,ReΩ) at critical con-
ditions. Rows: (1) e = 0, (2) e = 0.5. Columns: (a) Rez = 0, (2) Rez = 50. Num-
bers indicate the azimuthal wavenumber m of the eigenmode (or pseudo-wavenumber
if eccentric). Positive ωi indicates instability. Positive (negative) m correspond to left-
(right-)handed helix-like modes. The eigenvalue in the square box corresponds to the
most unstable mode.

highly eccentric annular Poiseuille flow for high values of Rez, were not found to be
critical in our configuration either.

In axisymmetric Taylor–Couette–Poiseuille flow with η = 0.5, the maximum value of
m at criticality is 7 (Cotrell and Pearlstein, 2004). Hence, in the subsequent parametric
study at η = 0.5 (§4.3), critical curves were calculated for TV, LH modes with m ≤ 7,
and RH of order 1 and 2 as a check.

4.2.6 Validation

Extensive validation of basic flow and stability calculations have been performed. In
the Stokes limit ReΩ ≪ 1, Wannier (1950) derived analytical expressions for torque and
forces on the inner cylinder, that were matched by our code up to machine precision. Us-
ing his analytical solution of the stream function, azimuthal volume flux Qφ calculations
were also successfully validated. Escudier et al. (2000) provided fourth-order accurate
values of the Fanning friction factor (defined in §4.2.3) in the eccentric Taylor–Couette
flow, for 10 ≤ ReΩ ≤ 223.61 and eccentricities up to 0.98. The present numerical results
all lay within 0.67% of their values. Feng et al. (2007) gave numerical values for the
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Figure 4.6 – Validation of critical azimuthal Reynolds number ReΩ against eccentricity
e. (a) η = 0.912, k = 3.17, solid line: Chawda and Avgousti (1996), dotted line: Dai
et al. (1992), ◦: present calculation. (b) η = 0.5, ×: Oikawa et al. (1989a), ◦: present
calculation.

pressure and stress contributions to the x and y components of the force on the inner
cylinder for ReΩ = 125 and eccentricities up to e = 0.98. For these parameters, our
calculations match their results, with less than 1.80% of relative difference, and 0.76%
on average when at least 4 significant digits were provided by the authors.

In the axisymmetric configuration with axial throughflow, Takeuchi and Jankowski
(1981) performed the first numerical prediction of the critical curves for Rez up to 100.
In their article, they provide data for the critical values of ReΩ, k, and wave speed
c = ωr/k for Rez = 0, 10, . . . , 100. The critical values are exactly matched by our code in
all cases except for Rez = 90, where only the last significant digit given by the authors
for k and c differs from our values by one.

In the eccentric configuration with no axial flow, Oikawa et al. (1989a) reported a
critical azimuthal Reynolds number of 307.59 for an axial wavenumber of 4.126 and
δ = 0.1, e = 0.7. With the same spatial resolution (M + 1) × K = 21 × 24, our
corresponding critical values are ReΩ = 307.71 and k = 4.127, which gives relative
errors of 0.04% and 0.02% respectively. Additional tests were performed using a graph
of critical ReΩ versus eccentricity for η = 0.5 from a second article of Oikawa et al.
(1989b), and for η = 0.912 and k = 3.17 against graphical results from Chawda and
Avgousti (1996) and Dai et al. (1992). Figure 4.6 shows excellent agreement with the
data of Oikawa et al. (1989b), and Chawda and Avgousti (1996) who both used the
same spectral decomposition of the modes as us. Values from Dai et al. (1992) are
close, but discrepancies may be attributed to their relatively coarse meshing (N = 16
points only in the ‘pseudo-azimuthal’ direction) and the use of piecewise polynomials to
approximate the fully nonlinear fields in their bifurcation analysis.
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4.3 Parametric study for a wide gap η = 0.5

In this section, we give results for the case η = 0.5, representative of industrial
configurations in oil drilling. A resolution of M + 1 = K = 16 allows satisfactory
accuracy for e ≤ 0.7 and ReΩ, Rez up to 200 as shown in the previous section.

4.3.1 Critical azimuthal Reynolds number

For an eccentricity of e = 0.5, figure 4.7(a) shows the critical curves of the TV
(m = 0), LH (m > 0) and RH (m < 0) modes labeled from m = −2 to 5. The
solid thick line indicates the stability boundary, switching from one m to the next as
Rez is increased. Similar behaviour was found in the axisymmetric case by Takeuchi and
Jankowski (1981).

Similar results were obtained for all eccentricities and figure 4.7(b) superimposes on a
single figure all the results concerning the stability boundary for e = 0, 0.1, . . . , 0.7. The
main result of this study is clear from this figure: eccentricity always has a stabilizing
effect, regardless of axial advection. The origin of this stabilization, as hinted at by
Karasudani (1987) for the eccentric Taylor–Couette flow without axial flow, seems to lie
in the weakening of centrifugal effects by eccentricity. Indeed, as already mentioned in
§4.2.4, azimuthal flow gets ‘choked’ with increasing eccentricity (see Qφ in figure 4.4(d)),
and the basic flow becomes similar to an axisymmetric Couette flow of clearance ratio
δ′ controlled by the small gap δ′ ∼ δ(1 − e), next to a ‘dead’ recirculating flow zone.
Decreasing the clearance ratio, or equivalently, increasing the radius ratio of a circular
Couette flow, reduces curvature effects, and has a stabilising effect, as shown by DiPrima
et al. (1984).

The effect of axial advection on the axisymmetric case is two-fold: first it stabilizes
the Couette flow up to Rez = 61.08 and then it slightly destabilizes it as Rez is further
increased, while maintaining the threshold above the value for Rez = 0. The change in
behaviour corresponds exactly to the intersection between the increasing critical curve
corresponding to mode m = 3 and the decreasing curve for m = 4, hence maximal stabil-
ity is achieved when the two modes exchange stability. The value of Rez corresponding
to the maximum in critical ReΩ increases with eccentricity. Above e = 0.5, maximum
stability occurs beyond Rez = 200.

At fixed Rez above 50, increasing eccentricity tends to select critical modes of lower
m: the stabilizing effect of eccentricity is even more important for higher azimuthal
wavenumbers. On the contrary, at small Rez, eccentricity favours the dominance of the
LH1 over TV. For large enough eccentricities, one can expect helices with m = 1 to
dominate TV even without axial flow. In the absence of axial flow, this feature was
found experimentally by Vohr (1968) (δ = 0.099 and e > 0.707) and Karasudani (1987)
(η = 0.83, e > 0.6). Oikawa et al. (1989a) found a complex conjugate pair of eigenvalues
λ = iω at criticality for δ = 0.1, e = 0.7 (LH & RH), confirming numerically Vohr
(1968)’s findings.
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Figure 4.7 – (a) Critical curves ReΩ = f(Rez) for e = 0.5 and modes m = −2, . . . , 5.
The thick solid line indicates the instability threshold taking into account all the modes.
The shaded area corresponds to instability. (b) Solid (resp. dotted) lines: critical curves
taking into account all the modes, for e = 0.1, 0.3, 0.5, 0.7 (resp. e = 0, 0.2, 0.4, 0.6). In
both (a) and (b), filled/open circles indicate a switch in critical m, and the associated
‘pseudo-azimuthal’ wavenumber is indicated by annotation.
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Figure 4.8 – Critical wavenumber k against axial Reynolds number Rez for eccentricities
e = 0, 0.1, . . . , 0.7. Discontinuities correspond to a switch in critical m (values indicated
by annotation for e = 0).

4.3.2 Critical axial wavenumber

Figure 4.8 shows the evolution of the critical wavenumber. The curves display jumps
at points where modes exchange stability, and these discontinuities always correspond
to a positive jump in k. When axial flow is increased, k usually decreases as long as the
critical mode doesn’t switch. The order of magnitude of k is always the same regardless
of eccentricity, and remains between 1.5 and 5, which indicates that the axial wavelength
of the critical perturbations is always of the same order of magnitude as the clearance
d = b − a. These observations may explain the pattern selection process: increasing
Rez tends to elongate the modes in the axial direction, so a switch to higher ‘pseudo-
azimuthal’ wavenumber mode occurs to reach a vortical structure that better fits the
annular domain, and is thus amplified faster.

4.3.3 Critical phase speed

Figure 4.9 shows the evolution of the phase speed at criticality. As in figure 4.8, the
curves are discontinuous as critical m switches with increasing Rez. The phase speed
always remains between 0.6 times and twice the average axial velocity of the basic flow.
It decreases with increasing Rez for each mode, but discontinuities always correpond to
a jump to a larger value. Interestingly, except for LH1 (LH with m = 1) at the point of
stability exchange with TV, all the critical modes see their phase speed decrease with
eccentricity, this effect being more noticeable for e ≥ 0.3. Most critical pertubations
propagate somewhat faster than the average axial flow velocity, but see their propagation
hindered by increasing Rez.
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Figure 4.9 – Critical phase speed c against axial Reynolds number Rez at critical con-
ditions for eccentricities e = 0, 0.1, . . . , 0.7. Discontinuities correspond to a switch in m
(values indicated by annotation for e = 0). Unit is the average axial basic flow velocity
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4.3.4 Critical eigenmodes structure

A systematic study of the spatial structure of the critical eigenmodes has been per-
formed. Figure 4.10 shows a deformed LH1 for e = 0.5, Rez = 40. Figure 4.10(e) clearly
represents the helical structure while figure 4.10(b) shows the m = 1 azimuthal order.
In-plane motion of the mode (figure 4.10(a)) can be quite complicated and difficult to
interpret for higher-order modes.

It is interesting to look at the disturbance kinetic energy distribution to see where the
mode localizes within the annulus. Figure 4.10(c) shows concentration of the energy in
the converging gap region, consistent with observations of Oikawa for TV perturbations
in both the small and wide gap eccentric Taylor–Couette flow (and the numerous theo-
retical and experimental studies cited in the introduction, either calculating or observing
the so-called ‘maximum vortex activity’ in the saturated régime). It is also possible to
track the position of the maximum of the total disturbance energy. It is found that both
in the axisymmetric and the e = 0.5 cases, the perturbation localizes closer and closer
to the inner wall as advection is increased, at a radius (with respect to inner cylinder) of
about 1.2–1.5 times the inner cylinder radius. In the eccentric case, this maximum also
moves azimuthally to the small gap region, with jumps as the critical mode switches. At
Rez = 0 (m = 0), it is located at a polar angle (centered on inner cylinder) of θ = 79◦,
while at Rez = 200 (m = 5), it is at θ = 121◦. From the energy density maps, it is also
clear that as Rez is increased, the energy is less and less spread out in the annular region
and peaks around some radial position. For Rez = 0, the ratio between the maximum
of the total disturbance energy and the average is 5.7, whereas it is 16.3 for Rez = 200.
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Figure 4.10 – Structure of the critical eigenmode for e = 0.5, Rez = 40. (a) Real part
of the in-plane perturbation velocity ũ⊥ = (ũ, ṽ). (b) Equispaced contours of real part
of the axial perturbation velocity w̃. Solid (dotted) lines indicate positive (negative)
values. (c) disturbance energy density E⊥ + Ez map and (equispaced) contours. Dark
grey correpond to high values. (d) Vertical cuts (equispaced contours) of real part of
the axial perturbation velocity w̃ for θ = 0, π/2, π, 3π/2 (from left to right) in a polar
coordinate system centered on the inner cylinder. (e) Iso-surfaces of Re(w̃) showing the
3D structure of the mode. Dark (light) shades of grey indicate positive (negative) value
respectively.

Define the in-plane and axial disturbance energy contributions of a mode as the
integral quantities over the annular domain A:

E⊥ =
1
2

∫

A
(|u|2 + |v|2)dA, Ez =

1
2

∫

A
|w|2dA. (4.11)

Figure 4.11 shows the contributions to the total disturbance energy of the critical mode
as a function of Rez for e = 0 and e = 0.5. The graphs show in both cases how the energy
transfers from dominantly in-plane motion to dominantly axial motion as advection
is increased, regardless of the (‘pseudo-’) azimuthal wavenumber involved. There is a
tendency of the modes to become more and more two-dimensional with suppressed
spanwise (here azimuthal) motion, as for TS waves on a flat-plate or in channel flow.
This suggests that viscosity plays an important role in the destabilization of the modes
at high Rez. This hypothesis is consistent with the fact that the modes localize more
and more in high shear regions: closer to the inner wall at smaller clearance. It is also
consistent with the decrease in critical axial wavenumber k with increasing Rez (figure
4.8). Interestingly, in the case e = 0.5, the critical axial Reynolds number above which
advection becomes destabilizing corresponds to the switch from dominantly in-plane
disturbance energy to dominantly axial disturbance energy (this is less clear for e = 0).
Note, however, that these modes are distinct from the ‘pure’ viscous wall modes referred
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Figure 4.11 – In-plane E⊥ and axial Ez contributions to the total disturbance energy
of the critical mode as a function of Rez. (a) e = 0. (b) e = 0.5. Numbers indicate the
(‘pseudo-’) azimuthal wavenumber of the critical mode.

to as modes A in Merzari et al. (2008) for eccentric Poiseuille flow, or TS-like modes
in axisymmetric Taylor–Couette–Poiseuille flow (Cotrell and Pearlstein, 2004). Those
latter modes are localised about critical layers, and are expected to become critical at
higher values of Rez, typically of the order of 104 in the axisymmetric Taylor–Couette–
Poiseuille flow with η = 0.5 (Cotrell and Pearlstein, 2004).

4.3.5 Growth rate maps and stability diagrams

In the concentric and e = 0.5 cases, a more complete study of the dispersion relation
was carried out. Figure 4.12 shows maps of the maximum growth rate ωi,max in the
(ReΩ,Rez) space for modes 2 and 4 and e = 0.5. For ‘higher-order’ modes like m = 4
one can clearly distinguish two zones. For low Rez, there is a sharp increase in ωi,max with
advection and rotation only has a minor effect on stability. For higher axial flow rates,
the tendency is reversed: advection has only a weak effect on stability and centrifugal
effects govern the stability of the mode. This trend was also observed in the concentric
case for high-order left helices. For ‘low-order’ modes like m = 2, the separation of the
two effects is less clear: the increase of ωi,max for weak axial advection is also observed,
though less markedly, and at higher axial flow rates, the stabilizing effect of advection
is comparable in magnitude to the destabilizing effect of rotation.

It is also possible to calculate the regions in which each m dominates the instability,
as shown in figure 4.13. In both the cases of no eccentricity and e = 0.5, it appears that
frontiers between these regions are always close to straight lines parallel to the ReΩ axis.
This illustrates again the importance of advection in the destabilization of the helical
modes. While the instability mechanism is centrifugal in nature, there is a need for a
minimum axial flow rate for this instability to operate on higher-order LH modes.

This importance of both shear and centrifugal effects in the destabilisation process
at high Rez as noticed here and in the preceding sub-section is not a complete sur-
prise. Indeed, as pointed out in Meseguer and Marques (2002), Hagen–Poiseuille flow
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is linearly stable for any Rez, however, a slow rotation may destabilize the basic flow
(Mackrodt, 1976). Conversely, rigid-body rotation is linearly stable for any rotation rate
but the superposition of axial flow can also destabilize the flow. The same mechanism
was observed for an axisymmetric Couette flow (Meseguer and Marques, 2000) with
axial motion of the inner cylinder, where both shear and centrifugal effects were needed
to make the basic flow unstable. It is clear from figure 4.12(b) that this is here the case
for higher-order helical modes: the region of instability is bounded by a threshold in
both rotation and advection rates.
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Figure 4.12 – Growth rate map for an eccentricity of e = 0.5. (a) mode m = 2, (b) mode
m = 4.
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Figure 4.13 – Dominant unstable modes in (Rez,ReΩ) space with and without eccen-
tricity. (a) e = 0, (b) e = 0.5. Numbers indicate the azimuthal or ‘pseudo-azimuthal’
wavenumber of the fastest growing mode.
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4.4 Parametric study for a small gap η = 0.89

As mentioned in the introduction, very little work has been done on the experimental
study of eccentric Taylor–Couette–Poiseuille flow. However, some experimental data is
available for radius ratios close to η = 0.9. We study the case η = 0.89 (η = 0.8907
to be exact), corresponding to the sharp entry apparatus in Coney and Mobbs (1969–
70) (comparable results were obtained for the smooth entry). In the same fashion as in
section 4.3, we obtain results for e up to 0.6, Rez up to 50 and ReΩ up to 250, reaching
reasonable accuracy with M + 1 = K = 16, as indicated in table 4.1.

4.4.1 Critical azimuthal Reynolds number

Compared to the wide gap case, the critical ReΩ are higher, as expected because
the curvature of the gap is less important. The transition to higher-order LH modes
happens at much lower advection rates, and m = 5 becomes critical before Rez = 50 for
some eccentricities. Unlike for η = 0.5, increasing the eccentricity at a fixed Rez results
in the selection of higher-order m. For the wide gap, this was the case only for TV and
LH1 (for low e), and otherwise selection of lower order m was observed. Figure 4.14(a)
shows how the critical curves for the different m lie close to each other (e = 0.2 here),
including the first RH modes. Complex behaviour is expected in the supercritical régime
from the competition of the different helices. Notice that no weak destabilising effect of
advection is noticed for any value of Rez ≤ 50 at any eccentricity. Indeed, this effect
is expected to be pushed towards much higher values of Rez, as in the concentric case.
In this case, Ng and Turner (1982) found such an effect to occur at about Rez ∼ 103

for η = 0.77 (extremely weak effect), and did not observe it at all for η = 0.95 and
Rez ≤ 6000.

4.4.2 Critical axial wavenumber

The range of critical axial wavenumbers (figure 4.15) is almost the same as in the wide
gap case. This means that the clearance is still controlling the size of the vortices. The
most noticeable difference with η = 0.5 is the fact that for weak eccentricities (e ≤ 0.2)
and low order modes, k increases continuously with Rez. This was observed only for
TV and LH1 in the previous case, but is now seen for more modes. This observation,
together with the previous subsection, shows that the behaviour is globally the same as
for η = 0.5, but variation in critical m is much faster as Rez increases and more modes
are involved. This behaviour is consistent with the results of Ng and Turner (1982) who
found a critical azimuthal wavenumber of 12 at Rez = 100 for η = 0.77, and of 35 for
η = 0.95.

4.4.3 Critical phase speed

As for the case η = 0.5, the phase speed is around 1 − 2 times the average axial
speed of the base flow (figure 4.16). As eccentricity is increased, the jump in phase speed
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Figure 4.14 – (a) Critical curves ReΩ = f(Rez) for η = 0.8907, e = 0.2 and modes
m = −2, . . . , 5. The thick solid line indicates the instability threshold taking into account
all the modes. Shaded area corresponds to instability. (b) Critical curves taking into
account all the modes, for different eccentricities e = 0, 0.1, . . . , 0.6 and η = 0.8907.
In both (a) and (b), dots indicate a switch in critical m, and the associated ‘pseudo-
azimuthal’ wavenumber is indicated below.
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Figure 4.15 – Critical wavenumber k against axial Reynolds number Rez for eccentricities
e = 0, 0.1, . . . , 0.6. Discontinuities correspond to a switch in critical m (values indicated
by annotation for e = 0).

between consecutive critical modes becomes larger. For high enough eccentricities, the
peak phase speed is that of the LH1.
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4.4.4 Comparison with experiments

In this section, we compare numerical results with a series of experiments performed
on a single apparatus of radius ratio η = 0.89 and aspect ratio (length over clearance)
L = 71.8. Figure 4.17 compares experimental data from Coney and Mobbs (1969–70)
(sharp entry case) against our calculations, after converting their graphical data into
our system of control parameters. Agreement is quite good when there is no axial flow,
and for e < 0.5. At higher eccentricities though, we predict transition at higher rotation
rates. It is likely that the difference is due to boundary effects, causing early transition
to a Taylor ‘pre-vortex’ flow as reported in Mobbs and Ozogan (1984).

As soon as axial flow is added, the predicted critical ReΩ is significantly lower than the
experimental values, at any eccentricity, though trends are the same. The experimental
data lie between 10− 20% above the calculated threshold. Discrepancies as high as 20%
were also noticed between the numerical predictions of Ng and Turner (1982) and the
experimental data of Nagib (1972) for the Taylor–Couette–Poiseuille flow of radius ratio
η = 0.77. Takeuchi and Jankowski (1981) reported divergent trends between thoretical
predictions and experimental data for η = 0.5 and Rez as low as 40. Takeuchi and
Jankowski (1981) claimed that the length of the apparatus was responsible for the
supercritical Taylor numbers. Indeed, they invoked the idea of a ‘vortex development
length’, defined as ‘the length needed for a moving disturbance to reach an amplitude
that is observable by the visualization method’. With more recent theory, it would be said
that the instability is convective and is triggered by noise at the inlet of the apparatus
(sharp or smooth). Indeed, the apparatus used by Coney and Mobbs (1969–70) is quite
compact compared to other experiments. The length to gap ratio L is 71.8, whereas it
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Rez torque [1] visual [1] visual [1] visual [2] visual [3] present work

0 145 175 166 162 164 178
25 208 269 219 249 301 229
50 281 349 303 334 319 296

Table 4.2 – Critical ReΩ for e = 0.5, η = 0.89: [1] Younes (1972), [2] Coney and Mobbs
(1969–70), Coney (1971), [3] Coney and Atkinson (1978).

was respectively 160 for Nagib (1972) and 110 for Takeuchi and Jankowski (1981). In
comparison, for a radius ratio of η = 0.95 and a length to gap ratio of 290, Snyder (1962)
obtained experimental data matching very closely Ng and Turner (1982), supporting
the idea of the importance of the vortex development length. As advection is increased,
perturbations travel faster as they grow, and might not be detected for large Rez, also
explaining why results diverge for larger Rez.

In table 4.2, numerical values are given for the critical ReΩ at e = 0.5, from visual
observations and torque measurements, compared to our values. The table shows signif-
icant scatter of the experimental data, even when using the same technique, e.g. visual
observations. Values obtained via torque measurements always give lower values than
those from visualisation, as the method is essentially more sensitive to the ‘pre-vortex’
flow located near the inner cylinder and difficult to visualise. Overall, theoretical values
always lie within (or very close to) the bounds given by the experiments.

4.4.5 The ‘double-vortex’ pattern

More surprising are the complex patterns observed by Coney and Mobbs (1969–70),
with apparent random axial wavenumber. For an eccentricity of e = 0.3 and an axial
Reynolds number of Rez = 50, they described a system of two vortices co-existing in
the annulus: respectively a left and a right helix. Looking at their graph, the azimuthal
Reynolds number associated with this state has a supercritical value of ReΩ ≈ 275.
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For this set of parameters, it is possible to calculate the maximum growth rate of all
unstable modes. Results are reported in table 4.3, including axial wavenumber, phase
speed and group velocity cg ≡ ∂ωr/∂k. Modes m = −1 to 6 are all linearly unstable,
so theory allows for a RH to grow at these operating conditions. However, the growth
rates associated with higher-order LH are much higher, and m = 5 is dominant, closely
followed by m = 4. The wavenumbers of these latter modes lie in the lower range of what
was experimentally observed: 3.25 − 5.20. Temporal stability theory offers no obvious
explanation for the larger wavenumber perturbations observed in the experiment.

In table 4.3, we also give the equivalent spatial amplification properties of the unsta-
ble modes, following Gaster (1962). For near critical perturbations, the spatial amplifica-
tion rate −ki can be related to the temporal growth rate ωi, via the group velocity of the
perturbation, with the simple relation −ki ≈ ωi/cg. In the spatial stability framework
(meaningful for convective instabilities), the resulting amplification of the perturbations
over the length L of the apparatus is given by exp[−kiL]. According to this theory, the
spatial amplification of higher-order spirals is very fast due to the large growth rate and
the moderate group velocity. On the other hand RH spiral m = −1 is barely amplified
through the apparatus and is very unlikely to saturate before exiting the system.

One could then think of this unexpected pattern as a consequence of transient growth
due to non-modal effects (see Chomaz (2005) for a review). Heaton (2008) assessed the
importance of these effects in axisymmetric Taylor–Couette–Poiseuille flow, and showed
that they could also potentially explain deviations from modal stability predictions at
moderate Rez, typically of the order of a few hundreds. For lower Rez however, transient
growth is not significant, and modal theory alone was shown (Cotrell et al., 2004) to
match experimental results accurately. Hence, for Rez = 50, it seems unlikely that
transient effects might be important, even though no results are currently available for
the eccentric case.

Owing to the supercritical operating conditions and the variety of unstable modes,
nonlinear simulations would surely help to understand the double-vortex pattern. As in
the case with no advection, end effects might have an impact on stability properties as
well. Finally, phase noise may prevent a clear identification of the convectively amplified
pattern (Babcock et al., 1991, 1992).

4.5 Conclusions and perspectives

Temporal stability of eccentric Taylor–Couette–Poiseuille flow with fixed outer cylin-
der has been investigated for a large range of parameter space. Parametric studies have
been performed for a wide gap case η = 0.5 with Rez ≤ 200 and e ≤ 0.7, and a small gap
case η = 0.89 with Rez ≤ 50 and e ≤ 0.6. Taylor vortices give way to helical structures
of increasing azimuthal complexity as advection is increased. The helicity of these struc-
tures is always opposed to the inner cylinder rotation, and are termed left helices, as
in the Taylor–Couette–Poiseuille flow. Broken axisymmetry changes the thresholds and
distorts the critical modes, but was not found to trigger any new instability mechanism
for the parameter range considered.

Eccentricity is always stabilising, regardless of axial flow rate, and this effect becomes
even more important for higher values of e. Indeed, centrifugal effects are weakened
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m k ωi,max c cg −ki exp[−kiL]

−1 2.60 1.95× 10−4 0.89 1.08 0.0010 1.1
0 2.70 9.04× 10−3 1.03 1.09 0.0455 26.3
1 2.82 1.55× 10−2 1.16 1.10 0.0774 258.3
2 2.94 2.00× 10−2 1.28 1.12 0.0986 1187.6
3 3.08 2.28× 10−2 1.39 1.13 0.1112 2943.3
4 3.21 2.43× 10−2 1.50 1.14 0.1169 4429.7
5 3.37 2.46× 10−2 1.60 1.16 0.1171 4488.0
6 3.53 2.40× 10−2 1.69 1.17 0.1131 3356.9

Table 4.3 – Properties of the unstable modes m = −1, . . . , 6 for e = 0.3, Rez = 50 and
ReΩ = 275. k and ωi,max are calculated from the temporal stability problem. Phase and
group velocities c and cg are relative to average axial flow velocity W . ki is the spatial
amplification rate from Gaster (1962)’s relation. exp[−kiL] is the amplification factor
from the inlet to the outlet of the apparatus (Coney and Mobbs, 1969–70).

at e ≥ 0.3, as a low speed recirculation region forms in the base flow and less fluid
is driven in rotation around the inner cylinder. The effect of axial advection at fixed
eccentricities is more subtle. For the small gap case, the critical ReΩ increases steadily
with Rez. For the wide gap case η = 0.5, the critical ReΩ increases for weak values of
Rez, but decreases slightly as axial advection is increased further. The maximum value
of the critical ReΩ is obtained for a value of Rez that increases with eccentricity. Despite
the destabilising effect of advection above this specific value of Rez, the case with no
advection always remains the most unstable. For the wider gap η = 0.5, increasing e
at fixed Rez tends to lower the critical pseudo-azimuthal wavenumber m (except for
LH1 over TV), whereas ‘higher-order’ modes seem to be selected for η = 0.89. The
critical axial wavelength is always of the order of the clearance d. For η = 0.5, the axial
wavenumber k decreases continuously for a given m (except for TV and LH1 at small
eccentricities) with increasing Rez, but positive jumps are seen as higher and higher
pseudo-azimuthal wavenumber m are selected at criticality. For η = 0.89, the behaviour
is similar except that the increase of k for small m and small e is seen for more modes.
For both radius ratios, the critical phase speed c of the travelling waves varies between
0.8 and 2.2 times the axial mean velocity of the base flow. c decreases with Rez, except
when the critical azimuthal wavenumber switches, in which case there is a discontinuous
jump to a higher phase speed. For the small gap case η = 0.89, the range of Rez for
which a critical fixed m dominates is much smaller than for η = 0.5 and transition to
higher-order modes happens in a smoother way as Rez increases. Mode competition is
more pronounced for the small gap case because modes of different m lie closer to each
other in the (ReΩ,Rez) plane.

Whereas the instability mechanism for TV is only centrifugal, with a stabilising ef-
fect of Rez, the destabilisation of helical modes m > 0 is strongly influenced by axial
advection. Indeed, higher-order LH modes require a minimum amount of axial shear
to become unstable, and this effect dominates the centrifugal mechanism for low Rez.
For large enough Rez, the effect of axial advection becomes minor, compared to cen-
trifugal destabilisation with increasing ReΩ. Maximum vortex activity, measured here
by the maximum of the disturbance kinetic energy, is localised in the converging gap
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and moves towards the small gap and inner cylinder as Rez is increased. At the same
time, the disturbance energy concentrates increasingly into axial motion, recalling the
two-dimensional structure of TS waves generated by axial shear. However, the so-called
TS-like disturbances, involving a critical layer close to the wall, are not found in the range
of the computations and are only expected to appear at larger advection rates (Cotrell
and Pearlstein, 2004). Center modes of Sp type, found in eccentric annular Poiseuille
flow by Merzari et al. (2008), are expected to exist in eccentric Taylor–Couette–Poiseuille
flow at sufficiently large values of Rez, but would require prohibitively fine meshing to
be explored thoroughly with the method used here.

Comparison with the experiment of Coney and Mobbs (1969–70) for the small gap
case shows agreement within 20% and matching trends. However, transition is found to
occur below the linear threshold for e ≥ 0.5 and Rez = 0, and above for Rez = 25 and
50 regardless of e. These differences are thought to be due to finite length effects. In the
eccentric case with no axial flow, end effects may be responsible for the onset of toroidal
vortices below the limit of infinite-cylinder theory. When axial flow is added, delayed
onset is probably caused by the ‘vortex development length’ invoked by Takeuchi and
Jankowski (1981). In the framework of convective instabilities, the system needs to be
of appropriate length for the perturbations to reach an amplitude detectable by experi-
ments. The apparatus being quite compact, it is plausible that high rotation rates would
be needed to amplify perturbations before they exit the system. Despite overall encour-
aging results, modal stability analysis cannot fully explain the complex pattern observed
for e = 0.3, Rez = 50, involving a double-vortex structure. Non-modal effects, potentially
responsible for transient amplification of this unexpected structure, are likely to be weak
for such a low advection rate. According to Heaton (2008), these effects become impor-
tant for Rez of the order of a few hundreds in the concentric case, and might contribute
to discrepancies in onset of instability. Assuming non-modal effects are also important
at high Rez for the eccentric case, we leave the calculation of optimal perturbations
as a perspective. The double-vortex structure may result from nonlinear interactions
between modes, and fully nonlinear simulations, including end effects and inlet noise,
would be very helpful to understand formation of this pattern. More experimental data
would also be appreciable to ensure reproducibility of the observations.

Though the experiments of Coney and Mobbs (1969–70) suggest that instability is
triggered by noise at the inlet and amplified convectively, the effect of eccentricity on
absolute instabilities (Huerre and Monkewitz, 1985, 1990) remains an open problem.
This aspect is currently being investigated and will be addressed in a future article. A
weakly nonlinear study is also required to determine whether the bifurcation remains
supercritical over the whole parameter space, or if subcritical transition can occur. Pos-
sible steps towards a better understanding of annular flows of drilling muds include
non-Newtonian effects and motion of the inner cylinder, as complex effects are expected
(Escudier et al., 2002, Feng et al., 2007, Feng and Fu, 2007). To fully document the
linear stability properties of this flow, it would also be interesting to investigate the
connection with eccentric annular Poiseuille flow at high Rez, analysed by Cotrell and
Pearlstein (2004), Cotrell et al. (2004) in the concentric case. At high Rez, three families
of modes of very different structure are expected to compete (Merzari et al., 2008) and
make the problem even more computationally challenging.
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4.6 Appendix

This appendix contains, in non-dimensional form, the expression of some differential
operators using Wood (1957)’s modified bipolar coordinate system defined by equations
(4.4–4.6). As in §5.3.4, the ‘stretched’ variable defined by ξ = (2ρ − α − 2)/α (where
α = β − 1) is used instead of ρ to transform the flow domain to −1 ≤ ξ ≤ 1. Following
DiPrima and Stuart (1972a), the infinitesimal length element ds in (ξ, φ, z) is:

ds2 =
α2

4δ2J
dξ2 +

ρ2

δ2J
dφ2 + dz2, (4.12)

with J the Jacobian of the transformation 4.4 given by:

J =
(1 + 2γρ cosφ+ γ2ρ2)2

(1− γ2)2 . (4.13)

Introducing the inverse scale factors µξ and µφ associated to the coordinates ξ and φ
respectively:

µξ =
2δ
√
J

α
, µφ =

δ
√
J

ρ
, (4.14)

one can define the following operators:

Dξ ≡ µξ∂ξ, Dφ ≡ µφ∂φ, (4.15)

and factors:
A ≡ µφ − ∂ξµξ , B ≡ ∂φµφ , C ≡ DξA−DφB. (4.16)

Using Whitham (1963)’s general orthogonal coordinate formulas, the different terms in
equations (5.2-5.3) can be written (recall that ∂z ≡ 0 for the basic flow):

∇⊥p ≡
[
Dξp
Dφp

]
, (4.17)

∇⊥ · u⊥ ≡ (Dξ + A)u+ (Dφ −B)v, (4.18)

u⊥ · ∇⊥u⊥ ≡ (uDξ + vDφ) u + (Av +Bu)

[
−v
u

]
, (4.19)

u⊥ · ∇⊥w ≡ (uDξ + vDφ)w, (4.20)

∇2
⊥u⊥ ≡

[
∇2

⊥ u
∇2

⊥ v

]
+

[
Cu− 2 (ADφ +BDξ) v
Cv + 2 (ADφ +BDξ)u

]
, (4.21)

where the scalar Laplacian has the expression:

∇2
⊥ ≡ D2

ξ +D2
φ + (ADξ −BDφ). (4.22)

Finally, we give the expression for the rate-of-strain tensor in-plane components used
for forces/torque calculations:





eξξ = Dξu−Bv,
eφφ = Dφv + Au,
eφξ = eξφ = 1

2
(Dξv +Dφu+Bu− Av).

(4.23)
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4.7 Complement: wall stresses

To illustrate the discussion of the forces and torque in §4.2.4, we show the distribution
of wall stress on the inner cylinder in figure 4.18. For ReΩ = 10 (figure 4.18 1a & 1b),

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P

(1a)

0 0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

τ φ
ξ

(1b)

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 π/2 π 3π/2 2π

P

θ

(2a)

0
0.1

0.2
0.3

0.4
0.5

0.6

0.7
0.8

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0 π/2 π 3π/2 2π

τ φ
ξ

θ

(2b)

0
0.1

0.2
0.3

0.4
0.5

0.6 0.7

0.8

Figure 4.18 – (a) Pressure P and (b) shear stress τξφ acting on the inner cylinder,
as a function of θ, the polar angle centered on the inner cylinder, for eccentricities
e = 0, 0.1, . . . , 0.8 and (1) ReΩ = 10, (2) ReΩ = 100.

we notice the quasi-symmetry of the viscous stresses and quasi-antisymmetry of the
pressure with respect to the line joining the centers. The symmetry is in fact lost for
non-zero ReΩ (a fact apparent for ReΩ = 100, see figures 4.18(2a,2b)), leading to a
component of the force in the x-direction caused by inertial effects. We also notice that
P and τφξ scale approximately as ReΩ

−1, indicating the weakness of inertial effects on the
wall stresses (cf. §4.2.4). The pressure term is dominant for e ≤ 0.8. Figures 4.18(1a,2a)
show how the pressure increases on the converging gap side and decreases sharply upon
passing through the ‘bottleneck’ at θ = π. As a result, the inner cylinder is pushed in
the −y-direction. Both the pressure and shear stresses have two extrema, located in the
vicinity of θ = π. As e increases, the extrema approach θ = π more and more.





Chapter 5

Absolute instabilities

The preceding chapter was concerned with temporal growth of infinitesimal pertur-
bations. In the present one, we go a step further and investigate the spatio-temporal
dynamics of infinitesimal perturbations. Any initial perturbation of small amplitude can
be decomposed as a sum of normal modes, which evolve in the form of a wavepacket
carried by the flow. Each wave grows in time at its own rate and propagates with its
own speed, without interacting with other waves. Temporal stability theory predicts the
growth rate and phase speed of each mode, but does not directly predict the behaviour
of the wavepacket at a fixed location in the long term. Indeed, even if a localized pertur-
bation is amplified because of modal growth, the wavepacket may eventually be blown
away if advection is strong enough. As a result, the flow would relax to its initial state
in the long term. On the other hand, growth may occur in both the downstream and
upstream directions and cause the entire flow to bifurcate to a new state. The two types
of dynamics, respectively convective and absolute, are qualitatively very different.

Secondary flows caused by an instability would typically cause an increase in fric-
tional torque and pressure drop, and even trigger transition to turbulence. Convective
instabilities are highly dependent on the level of noise and may only affect the system
downstream of external perturbations. On the other hand, absolute instabilities may
lead to synchronized oscillatory states in the entire medium, which may in turn cause
harmful resonance without the need for sustained forcing. We expect this second type
of dynamics to be even more ‘dangerous’ in industrial systems associated with this flow,
and therefore it is particularly important to be able to predict absolute instabilities.

Hydrodynamic resonance occurs if a wave with zero group velocity ∂kω = 0 is tem-
porally growing. This apparently simple criterion, due to Briggs (1964) & Bers (1983),
and popularized in fluid mechanics by Huerre and Monkewitz (1990), requires analytic
continuation of the dispersion relation to the complex plane of wavenumbers. Care must
be exercised to check that zero-group-velocity waves, represented by saddle points in the
complex k-plane, do not violate the causality principle, which makes spatio-temporal
analysis far more intricate than temporal analysis.

This section is devoted to absolute instabilities in eccentric Taylor–Couette–
Poiseuille flow. We will show that the trends found in the framework of temporal stability
theory do not hold in the presence of absolute instability. The results are reported in the
form of an article currently under review by the Journal of Fluid Mechanics. As in the
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last chapter, a few notations (and the numbering of sections, figures, tables and equa-
tions) have been modified in order to ensure coherence with the rest of the manuscript,
but the text and figures have not been otherwise changed. The article is followed by a
few additional results falling beyond the scope of the article. In particular, we introduce
a theoretical criterion to predict the validity (with respect to the causality principle)
of two saddle points, in the vicinity of a ‘third-order saddle point’ where they ‘collide’.
The analysis was motivated by the fact that collisions between saddle points occur in
practice for relevant modes, very close to critical conditions. Despite limited practical
interest due to a small range of validity, the criterion provides valuable theoretical in-
sight regarding this situation. Additional figures showing results on subdominant modes,
alluded to in the article are given for completeness.
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The effect of eccentricity on absolute instabilities (AI) in the Taylor–Couette system
with pressure-driven axial flow is investigated. Five modes of instability are consid-
ered, characterised by a pseudo-azimuthal wavenumber m. They correspond to deformed
toroidal (m = 0) and left-/right-handed helical structures (m > 0/m < 0) made of one
or two waves (|m| = 1, 2). The most absolutely unstable mode always corresponds to
Taylor-like vortices, with m = 0. However, AI properties of other m are close for highly
eccentric configurations, with large enough axial flow. Axial advection, characterised by
a Reynolds number Rez, carries perturbations away from their source, and has a strong
stabilising effect on AI. On the other hand, the effect of eccentricity e is complex: in-
creasing e generally delays AI, except for a range of moderate eccentricites 0.3 . e . 0.6,
where it favours AI. This striking behaviour is in contrast with temporal instabilities,
always inhibited by eccentricity, and where left helical modes of increasing m > 0 dom-
inate for larger Rez. The instability mechanism of AI is clearly centrifugal, even for the
larger values of Rez considered, as indicated by an energy analysis. For large enough
Rez, critical modes localise in the wide gap for low e, but their energy distribution is
shifted towards the diverging section of the annulus for moderate e. For highly eccentric
geometries, instabilities are controlled by the minimal annular clearance, and critical
modes are confined in the vicinity of the inner cylinder. Untangling the AI properties of
each m requires consideration of multiple saddle points for each dispersion relation.

5.1 Introduction

The flow between rotating cylinders has attracted attention since the end of the 19th

century, starting with the experiments of Couette (1888a,b) and Mallock (1888), and
the landmark work by Taylor (1923), who first predicted theoretically the threshold for
centrifugal instability. Taylor characterised centrifugal effects using a non-dimensional
number appropriate in the limit of small clearance, d = (b − a) ≪ a, with a and b the
inner and outer cylinder radii (see figure 5.1). In this paper, a wide gap geometry with
radii ratio η = a/b = 0.5 will be considered, and centrifugal effects will be conveniently
measured by an azimuthal Reynolds number ReΩ = aΩd/ν, with Ω the inner cylinder
rotation rate and ν the kinematic viscosity.

Adding axial flow to this system, one obtains a simple prototype for the study of
pattern formation in real open flows. The effect of axial advection can also be measured
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Figure 5.1 – Eccentric annulus of radius ratio η = a/b = 0.5 and basic flow U =
U⊥ +We

z
.

by a Reynolds number Rez = Wd/ν, based on the mean axial velocity W . First theo-
retical predictions of the absolute instability (AI) threshold were obtained by Tsameret
and Steinberg (1991b) with a criterion based on a one-dimensional Ginzburg-Landau
equation (with coefficients determined by two-dimensional numerical simulations), and
then by Babcock et al. (1991, 1992), using the full set of hydrodynamic equations and
a saddle-point criterion (Briggs, 1964, Bers, 1983) that will be discussed in §5.3. They
showed that upon crossing the AI threshold, periodic self-sustained vortices appear, in
contrast with the irregular patterns emerging from noise amplification in the convec-
tively unstable régime. In these papers and subsequent work (Tsameret and Steinberg,
1991a, Babcock et al., 1992, Lücke and Recktenwald, 1993, Swift et al., 1994, Babcock
et al., 1994, Tsameret and Steinberg, 1994), effort was dedicated to identifying the noise
sources (inlet noise versus thermal noise) which sustain the convective instability (CI).
These studies were restricted to small axial Reynolds numbers Rez, typically below 4,
and it was found that the most unstable (fastest growing) perturbations were in the
form of propagating Taylor vortices. For higher values of axial advection, Takeuchi and
Jankowski (1981) and Ng and Turner (1982) had previously shown numerically (and
also experimentally for the former reference) that critical modes consisted in propagat-
ing helical vortices, with helicity opposite that of the basic flow, and with azimuthal
order m increasing with Rez. However, the concept of AI was not widespread in fluid
mechanics back then, and these studies were restricted to CI. Theoretical prediction of
AI of helical modes was investigated only recently (Hoffmann 2004, Altmeyer 2011). In
these papers, the authors studied the effect of axial through-flow on the spatio-temporal
properties of toroidal and helical wavepackets with angular orders |m| ≤ 2, for Rez ≤ 20.
For |m| ≤ 1, it was shown that critical azimuthal Reynolds numbers ReΩ are higher for
AI than for CI, and that the difference between the two thresholds increases with Rez.
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For |m| = 2 and a stationary outer cylinder, AI was found to occur in a closed region
of the Rez-ReΩ plane, considering only the saddle point originating at the critical con-
ditions for CI with Rez = 0 (detailed in §5.3.5). However, the authors mentioned other
saddle points expected to destabilise these modes in other regions of parameter space
and which will be taken into account in the present article. More recent work on AI
in the Taylor–Couette–Poiseuille flow concerned the effect of radial flow at the inner
cylinder, representative of filtration devices (Martinand et al., 2009). In this analysis, it
was shown that axisymmetric modes become absolutely unstable for inward radial flow,
while helical modes with helicity identical to that of the basic flow dominate at high
enough Rez, for outward radial flow.

When the two cylinder axes do not coincide, axisymmetry is broken and the sta-
bility properties of the flow are modified. Eccentricity is generally measured by the
non-dimensional distance between the two cylinders e = c/d (see figure 5.1). Adding
eccentricity to the Taylor–Couette flow with axial advection, one obtains a basic model
for annular mud flows in oil-well drilling, or lubrication flows present in high-speed
journal bearings. In the first case, mud is injected in a rotating drillstring, and flows
back to the surface through the annular domain between the drillstring and the rock
face, with several engineering functions: carry the rock cuttings out, lubricate, prevent
inflow of formation gases and wellbore collapse, etc. (Escudier et al., 2002, Guo and
Liu, 2011). For deep wells, the drillstring inevitably bends along its axis, on a typical
length scale much larger than the well diameter. As a result, a parallel-flow assumption
is reasonable, and the flow can be locally described as a Taylor–Couette–Poiseuille flow
between eccentric cylinders. In high-speed turbomachinery, a similar configuration is
found: oil is contained in eccentric journal bearings for lubrication purposes, and a pres-
sure gradient is imposed along the shaft to evacuate damaging impurities (Sep, 2008).
Aside from its fundamental interest, these industrial applications motivate the present
analysis. In both applications, transition to complex hydrodynamic régimes would re-
sult in increased frictional losses, detrimental to the system efficiency. If the basic flow
advection is weak compared to the rotation rate, hydrodynamic resonance may occur
and the entire flow would bifurcate to an undesired self-sustained oscillatory state. This
specific behaviour, called absolute instability, is particularly ‘dangerous’, because it does
not require a permanent forcing: once the instability is triggered, it will propagate in
both the downstream and upstream directions, and amplify using energy from the basic
flow. On the other hand, convective instabilities correspond to wavepackets propagat-
ing only in the downstream direction: in the absence of forcing, the system eventually
relaxes to its initial state at any fixed location, after perturbations have been ‘blown
away’ from the source. The most temporally amplified perturbations are given by a
classical temporal stability analysis, and such a study was recently carried out for this
flow (Leclercq et al., 2013). It was shown that the physics is essentially similar to the
axisymmetric case (Takeuchi and Jankowski, 1981, Ng and Turner, 1982), with propa-
gating toroidal vortices replaced by helical structures of increasing azimuthal complexity
as Rez is increased. Eccentricity deforms the critical modes, but does not introduce new
instabilities to the problem. The effect of eccentricity is stabilising for all values of Rez,
and this result is interpreted as a consequence of the reduction of centrifugal effects
in the basic flow. Indeed, as eccentricity increases, the azimuthal flow rate decreases
for a fixed inner cylinder rotation rate, resulting in weaker driving of the instability.
This is a consequence of the appearance of a recirculation region in the wide gap which
does not contribute to the net azimuthal flow rate. Outside this zone, in the vicinity of
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the inner cylinder, the flow resembles an axisymmetric Taylor–Couette flow with clear-
ance scaling with the inner gap d(1− e). The reduction of the ‘effective’ clearance ratio
δ = d/a with eccentricity, or increase in ‘effective’ radius ratio η, also explains stabili-
sation (see DiPrima (1960) for the effect of η on the Taylor–Couette flow). To date, it
is, to the authors’ knowledge, the only available theoretical study of eccentric Taylor–
Couette–Poiseuille flow. The only known series of experiments were performed by Coney
and Mobbs (1969–70), Coney (1971), Younes (1972), Younes et al. (1972), Mobbs and
Younes (1974), Coney and Atkinson (1978) and show good agreement with our a pos-
teriori predictions, despite small discrepancies attributed to finite-length effects. For a
brief review of other theoretical and experimental results on eccentric Taylor–Couette
flow on the one hand, and axisymmetric Taylor–Couette–Poiseuille flow on the other
hand, we refer to Leclercq et al. (2013).

The present paper extends this previous linear stability analysis by considering the
case of AI. In §5.2, the linear stability framework is presented. The governing equations
and numerical methods are briefly described, and the main properties of the basic flow
and normal modes are recalled. In §5.3, the methods used to investigate AI, based on the
Briggs (1964)–Bers (1983) pinching criterion, are described. In §5.4, results are presented
for the 5 modes of instability with angular orders |m| ≤ 2, which include the fastest
growing temporally unstable modes for Rez ≤ 50.

5.2 Linear stability framework

In the following, the geometry will be described using the ratio 0 < η = a/b < 1
between the inner and outer cylinder radii a and b (see figure 5.1), and the eccentricity
0 ≤ e = c/(b−a) < 1, based on the distance c between centers, divided by the clearance
d = b − a. The radii ratio will be fixed at the value η = 0.5 throughout this paper.
Rotation and axial advection will be quantified using the two Reynolds numbers given
in introduction: ReΩ = aΩd/ν and Rez = Wd/ν, with Ω the inner cylinder rotation
rate, W the basic flow mean axial velocity and ν the kinematic viscosity.

The velocity u will be made non-dimensional with the rotation speed V ≡ aΩ. The
clearance d will be taken as the reference length scale L. Finally, the pressure p will be in
units of P ≡ ρV 2, with ρ the density of the fluid. All equations and physical quantities
will be written in non-dimensional form, using V, L and P.

5.2.1 Basic flow

The velocity u can be decomposed into a component w parallel to the axis ez, and a
component u⊥ = u−wez in a plane perpendicular to the axis. The axial flow is driven
by a pressure gradient G in the z-direction. Denoting the in-plane pressure gradient as
∇⊥p = ∇p−Gez, the incompressible Navier–Stokes equations read:

(∂t + u · ∇)


u⊥

w


 = −


∇⊥p

G


+ Re−1

Ω ∇2


u⊥

w


 ,

∇ · u = 0,





(5.1)
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Figure 5.2 – Modified bipolar coordinate system (ξ, φ) fitting the eccentric annular
domain. Polar coordinates (r, θ) are centered on the inner cylinder, with θ = φ = 0
along the line joining the cylinder axes.

with impermeability and no-slip boundary conditions on the fixed outer cylinder and
on the inner cylinder, whose rotational velocity is 1. In-plane and axial derivatives can
be separated, using convenient notations: u⊥ · ∇⊥ ≡ u · ∇ − w∂z, ∇2

⊥ ≡ ∇2 − ∂2
zz and

∇⊥·u⊥ ≡ ∇·u−∂zw. Assuming an axially invariant flow, the problem is two-dimensional
and u⊥ becomes independent of w:

∂tu⊥ + u⊥ · ∇⊥u⊥ = −∇⊥p+ Re−1
Ω ∇2

⊥u⊥,
∇⊥ · u⊥ = 0.

}
(5.2)

Basic flows Q ≡ (U, P ), denoted with capital letters, are defined as axially invariant,
steady solutions of (5.1). Such solutions are found by integrating forwards in time equa-
tion (5.2) until convergence of U⊥ is attained, and then solving for the corresponding
axial velocity W , given by:

U⊥ · ∇⊥W = −G+ Re−1
Ω ∇2

⊥W. (5.3)

Note that because of linearity of (5.3), the magnitude of W is proportional to G. There-
fore, G can be set to a value of 1 without loss of generality. W can then be rescaled
in a postprocessing step to match the average value W = Rez/ReΩ. In order to drive
∂u⊥/∂t to zero, a time-marching procedure based on a projection method (Goda, 1979,
Raspo et al., 2002) is implemented. Equations are cast in a set of locally orthogonal,
body-fitted coordinate system, using a conformal transformation given by Wood (1957).
Full equations for the modified bipolar coordinates (ξ, φ) and the operators in (5.2–5.3)
can be found in Leclercq et al. (2013). In the local frame (eξ, eφ), the in-plane velocity
vector is decomposed as u⊥ = (u, v). The pseudo-radial coordinate −1 ≤ ξ ≤ 1 spans
the gap between the two cylinders while the pseudo-azimuthal coordinate 0 ≤ φ < 2π
winds around the inner cylinder (see figure 5.2). In this coordinate system, a Fourier–
Chebyshev pseudospectral method can be implemented. Fields q ≡ (u, p) are decom-
posed onto N = 2K + 1 azimuthal modes, and M + 1 Chebyshev polynomials Ti,
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with 0 ≤ i ≤M :

q(ξ, φ) =
M∑

i=0

K∑

j=−K

q̂ijeijφTi(ξ). (5.4)

A classical collocation method using a Gauss–Lobatto distribution ξi = cos[iπ/M ] is
implemented in the pseudo-radial direction. We refer to Leclercq et al. (2013) for more
details on the numerical procedure, mesh resolution and validation.

For an axisymmetric flow, the basic in-plane motion results from diffusion of az-
imuthal momentum from the rotating inner cylinder to the fixed outer cylinder. In
cylindrical coordinates (r, θ), it takes the well-known form U⊥ = (0, Ar + B/r), with
A and B two constants depending on the geometry. For low eccentricities, the result
is quite similar, as can be seen in figure 5.3(1a). However, for higher eccentricities, a
low-speed recirculation region forms in the wide gap (figure 5.3(2a)). For the relatively
high value of ReΩ = 500 presented here, small recirculation can already be seen for
e = 0.2, whereas in Leclercq et al. (2013), figure 3, it was not present for ReΩ = 100 and
appeared around e ≈ 0.3 for that lower value of ReΩ.

In the axisymmetric case, W is independent of U⊥, and the axial flow is very similar
to a parabolic Poiseuille flow, with small corrections due the annular geometry. As
eccentricity is increased, W decreases in the small gap, because of viscous effects, and
most of the volume flux passes through the wide gap (see figure 5.3(2b)). Distortion also
occurs, due to coupling with U⊥, and the peak velocity is no longer in the symmetry
plane. For high rotation rates, the nonlinear interaction term U⊥ · ∇⊥W can locally
dominate the viscous term Re−1

Ω ∇2
⊥W , and there is significant transport of W by in-

plane components.

5.2.2 Normal modes

Let q′ ≡ q−Q be three-dimensional perturbations of small amplitude superimposed
onto the two-dimensional basic flow Q. Injecting this decomposition of q into equations
(5.1), and linearizing with respect to q′, one obtains the evolution equations:

∂tu
′ + u′ · ∇U + U · ∇u′ = −∇p′ + Re−1

Ω ∇2u′,
∇ · u′ = 0,

}
(5.5)

with impermeability and no-slip boundary conditions. The basic flow being invariant in
the axial direction, perturbations can be written as normal modes

q′ = q̃(ξ, φ) exp i(kz − ωt) + c.c., (5.6)

where c.c. denotes the complex conjugate. In a general framework, k is the complex axial
wavenumber and ω is the complex frequency. ωr ≡ Re(ω) is the temporal frequency and
ωi ≡ Im(ω) is the temporal growth rate. Equivalently, kr ≡ Re(k) is the wavenumber of
the mode, and −ki ≡ −Im(k) is the spatial growth rate. Injecting the modal form (5.6)
into (5.5) with boundary conditions, one obtains a problem of the form (A− iωB)q̃ = 0,
where (A,B) are two linear operators, with A depending on k. Expressions for A and
B are given in Leclercq et al. (2013), in the modified bipolar coordinate system. The
set of wavenumbers k and frequencies ω satisfying this problem for non-zero q̃ define
the dispersion relation D(k, ω) = 0. Using a Fourier–Chebyshev decomposition of q̃,
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(1a) (1b)

(2a) (2b)

Figure 5.3 – Basic flows for ReΩ = 500: (1) weak eccentricity e = 0.2, (2) high eccen-
tricity e = 0.7. (a) Contours of equispaced in-plane streamfunction with superimposed
U⊥ profiles at θ = 0, π/2, π, 3π/2 (polar angle with respect to the inner cylinder). (b)
Equispaced contours of W .

as in (5.4), the linear problem is converted into a generalized eigenvalue problem for
ω, with eigenvectors q̃. This problem can be reduced by eliminating both w̃, p̃ and
the boundary points, resulting in significantly smaller eigenvalue problems, thus requir-
ing less numerical resources. The reduction is done numerically and yields a standard
eigenvalue problem, which can readily be solved using the QR algorithm implemented
in the free software package LAPACK (www.netlib.org/lapack). However, only a few
eigenvalues are of interest in this problem, and an iterative method based on a small
Krylov subspace is more efficient. Here, the implicit restarted Arnoldi algorithm from
the open-source package ARPACK++ (Lehoucq et al., 1997) is used. A shift-invert
transformation is applied to converge eigenvalues in the vicinity of a given complex
shift. More details on the procedure, validation and resolution can be found in Leclercq
et al. (2013).
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In this previous study, a temporal stability analysis was carried out to predict the
fastest growing perturbations with k real. It was found that among the large set of
temporal modes, the most unstable ones were in the form of deformed toroidal vortices
for low Rez, or complex helical structure for higher Rez. The modes were labelled ac-
cording to a pseudo-azimuthal-integer-wavenumber m, or angular order. The labelling
was made in accordance to the axisymmetric case, where normal modes can be written
as q′ = q̃(r) exp i(kz +mθ − ωt) in polar coordinates (r, θ) (see figure 5.2). Restrict-
ing attention to positive k, because of symmetry arguments to be discussed in the next
paragraph, positive values of m (resp. negative) correspond to helical structures winding
clockwise (resp. counter-clockwise) around the inner cylinder, and were called left-helical
(resp. right-helical), or LH|m| (resp. RH|m|) modes. The case m = 0 corresponds to the
classical toroidal Taylor vortex flow (TV). By following these modes as eccentricity is
continuously varied, one obtains the corresponding pseudo-angular-order m for e 6= 0.
Figure 5.4 shows the structure of modes m = −2, . . . , 2 for the classical Taylor–Couette
flow. When e increases, the modes are deformed and the final three-dimensional struc-
ture can be quite complex to describe.

Note that the symmetry Π0 ≡ (m,ω,w) → (−m,−ω⋆,−w) (with ⋆ denoting the
complex conjugate) between RH and LH in figure 5.4 is broken when axial flow is added,
or when k is complex. Indeed, by taking the complex conjugate of the axisymmetric
modal form, the general symmetry Π1 ≡ (k,m, ω) → (−k⋆,−m,−ω⋆) appears, also
valid for e 6= 0. By considering the mirror image of the system (z → −z), one obtains a
second symmetry of (5.5), Π2 ≡ (Rez, k, w)→ (−Rez,−k,−w). Combining Π1 and Π2,
one gets

Π3 ≡ (Rez, k,m, ω, w)→ (−Rez, k
⋆,−m,−ω⋆,−w). (5.7)

Setting Rez to zero and k real in Π3, one recovers Π0. In the general case, because of
Π3, one can choose to study only m ≥ 0, or only Rez ≥ 0, without loss of generality. Π1

also indicates that it is possible to restrict computations to kr ≥ 0.

5.3 Criterion for absolute instability

This section is intended to recall concepts reviewed comprehensively by Huerre and
Monkewitz (1990), Huerre (2000), Chomaz (2005), but essential to the rest of this paper.
In this analysis we are concerned with the spatio-temporal behaviour of the wavepacket
G(z, t), or Green function, generated by a localised impulse forcing δ(z)δ(t). The linear
stability problem being axially invariant, the Green function can be Fourier-decomposed
in z, with wavenumber k real. Because this is an initial value problem, G is Laplace-
transformed in time, and ω needs to be taken complex. Using standard complex-variable
techniques, the impulse response can be expressed as a superposition of temporal modes
ωj(k), for all real wavenumbers k:

G(z, t) =
∑

j

− i
2π

∫ +∞

−∞

exp[i(kz − ωj(k)t)]
(∂D/∂ω)[k, ωj(k)]

dk. (5.8)

Three situations then arise. (i) If all the modes are decaying, the flow is linearly stable.
(ii) If at least one mode is growing but advection is strong, instabilities will develop
while being convected away from the source: the flow is only convectively unstable. (iii)
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RH2 RH1 TV LH1 LH2
m = −2 m = −1 m = 0 m = 1 m = 2

Figure 5.4 – Structure (isovalues of axial velocity) of the five modes of interest m =
−2, . . . , 2, from left to right. For this example, e = 0, ReΩ = 68.19, Rez = 0 and k = 3.16,
corresponding to the critical conditions for temporal instability of the axisymmetric
Taylor–Couette flow (see DiPrima and Swinney (1985) for a review).

If at least one growing mode remains stationary in the laboratory frame, perturbations
will grow in both the upstream and downstream directions, and eventually invade the
whole medium at large times: the flow is said to be absolutely unstable.

5.3.1 Zero-group velocity condition

In order to distinguish between these 3 possibilities, one can evaluate the Green
function at the point of impulse for very large times. The limit is easily calculated by
considering the analytic continuation of the integrand in equation (5.8) to the complex k-
plane. Cauchy’s theorem implies that the value of the integral remains unchanged, if the
integration path initially lying on the kr axis is deformed into the complex k-plane. This
property holds as long as the new path Fk joins the kr axis when |kr| → ∞, and hits no
singularity or branch cut in the deformation process. Considering the contribution from
a single temporal mode ω(k), the integral can be evaluated by following the so-called
‘steepest-descent’ path through stationary points, which are defined by the zero-group-
velocity condition

∂ω

∂k
= 0. (5.9)

This condition defines saddle points of ω(k), rather than local extrema, because of
analycity of the dispersion relation. By following the steepest-descent path, we ensure
that ωi is maximum at the saddle point, so its contribution dominates the whole integral
over Fk for large times. The wavenumber k0 where (5.9) applies with the largest value
of ωi is called the absolute wavenumber, and the associated frequency ω0 = Ω(k0) is
called the absolute frequency. Using the asymptotic procedure described above, in the



90 Criterion for absolute instability

long-time limit, the response at the point of impulse z = 0 takes the form of a plane
wave

G(z, t) ∼ A(t) exp i(k0z − ω0t). (5.10)

Given this expression, a condition for AI is that the absolute growth rate ω0,i be positive.

5.3.2 Fronts

In the general case, the wavepacket can be approximated by an expression similar
to (5.10) along any spatio-temporal ray z/t = V , when t→∞. The ‘local’ wavenumber
k∗ and frequency ω∗ = Ω(k∗) in (5.10) are then given by the stationarity-condition (5.9)
applied to ω−kV , the apparent frequency in a reference frame translated at velocity V .
In this case, (5.9) is replaced by ∂ω/∂k|k∗

= V . If the apparent temporal growth rate
σ ≡ ω∗,i − k∗,iV is zero, V defines a front of the wavepacket. Any unstable wavepacket
is bounded by a leading front with group velocity V+, and a trailing front with group
velocity V− < V+. In the absolutely unstable case, V+ > 0 and V− < 0.

5.3.3 The pinching criterion

Despite the apparent simplicity of the AI criterion given in §5.3.1, one must examine
very carefully which saddle point will dominate the impulse response, among the poten-
tially large set of stationary points of ω(k). One extra condition applies, and is known
as the Briggs (1964)–Bers (1983) pinching criterion. Using a Taylor expansion in the
vicinity of a saddle point, it is easily shown that the stationarity condition corresponds
to a ‘collision’ between two spatial branches, denoted as k±:

k±(ω) = k0 ±
( 2
ωkk

)1/2

(ω − ω0)1/2, with ωkk =
∂2ω

∂k2

∣∣∣∣∣
k0

(5.11)

Physically, these solutions of the dispersion relation correspond to the spatial responses
to a localised forcing at z = 0, with complex frequency ω. Causality requires that if
the temporal growth rate of the forcing is larger than that of all the temporal modes,
then the spatial response should decay away from the source. In practice, it means that
if one follows the two spatial branches by increasing the temporal growth rate of the
forcing, one solution should eventually lie in the upper-half k-plane, while the other
should be in the lower-half k-plane. Indeed, the solution with ki > 0 will decay for
z > 0, while the other one will decay for z < 0. The branch contributing to the spatial
response for z > 0 (resp. z < 0) is usually denoted k+ (resp. k−). The ‘pinching’ of
a k+ and a k− corresponds to a spatial response smoothly varying from z = −∞ to
z = +∞, in the form of equation (5.10), with no necessity of a forcing at z = 0 to
accomodate a discontinuity: the system behaves as a resonator. In many cases, saddle
points do not satisfy the pinching criterion and correspond to the coalescence of two
upstream or downstream propagating branches. These ‘spurious’ saddle points should
be discarded on physical grounds. In practice, including them in the integration path Fk

would violate the steepest-descent method: in order to join the kr axis at infinity, a ‘hill’
of the function ωi = Ωi(k) has to be crossed, and the saddle point would not dominate
the response for large times.
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5.3.4 Numerical method

In order to determine the border of the absolutely unstable domain, it is necessary
to follow all the neutrally stable saddle points. This is done by performing Newton–
Raphson iterations, varying simultaneously kr, ki and ReΩ until |ωi|, |Re(∂ω/∂k)| and
|Im(∂ω/∂k)| are below 10−6. Estimated values for the independent variables are obtained
by linear extrapolation with respect to the parameter being varied, e. g. e, ReΩ or Rez.
For |m| = 2, critical curves display folds, and it is necessary to implement a continuation
scheme based on an arclength variable (Keller, 1977).

In a second step, extensive checks are made to determine when saddle points remain
valid. This is done by numerically tracking the two spatial branches coalescing at a saddle
point, and checking that they separate into the upper- and lower-half k-plane when
ωi is increased. Spatial k-branches are obtained by numerically inverting the relation
ω = Ω(k) with a Newton–Raphson iteration.

5.3.5 Validation

To validate the numerical procedure, critical curves in the axisymmetric case were
computed and compared with literature results. For m = 0 and 1, Pinter et al. (2003)
provide the coefficients of fourth-order polynomials fm fitting their data in the range
−20 ≤ Rez ≤ 20, with step δRez = 1. The same procedure was applied here, and our
calculated values g̃m at the same points were fitted by polynomials gm. To compare
our results, the residual

∑20
−20 |fm(Rez)− gm(Rez)|2 between the two fits was divided by

the residual
∑20

−20 |gm(Rez) − g̃m(Rez)|2 between our fit and our calculated values. For
m = 0 and 1, this ratio is respectively 1.16× 10−2 and 1.10× 10−2, showing agreement
with the authors’ calculations. For m = 2, only graphical data was available, and figure
5.5 shows excellent agreement with the ‘island’ of instability found by Altmeyer et al.
(2011) in ReΩ-Rez plane. In their analysis, the authors considered only the saddle points
originating at the real critical wavenumber kc of temporal instability with Rez = 0, as
will be explained now. At critical conditions for temporal instability (kc,ReΩ,c), the
leading and trailing fronts (see section §5.3.2 for definition) of the impulse response
wavepacket are degenerate. For ReΩ slightly above ReΩ,c however, the medium is con-
vectively unstable and two fronts can be defined, that bound the temporally growing
region of the wavepacket. Each front has a complex wavenumber k∗ ≈ kc and a velocity
V± ≈ ∂ω/∂k|kc

. By increasing ReΩ further, one front changes propagation direction,
which corresponds formally to the saddle-point condition (5.9), and defines the thresh-
old of AI. When other parameters are varied, typically when Rez < 0, the other front
can also satisfy (5.9) and cause a CI/AI or AI/CI transition. In Altmeyer et al. (2011),
only the two fronts bounding the convectively unstable wavepacket at ReΩ slightly above
ReΩ,c and Rez = 0 were considered. These specific fronts were followed as ReΩ and Rez

were varied, and the AI boundary in figure 5.5 corresponds to points where one of the
fronts was stationary. Saddle points corresponding to other stationary fronts were ig-
nored in figure 5.5, even though the authors mentioned the existence of other relevant
ones. Note that validation for m ≥ 0 is sufficient because of the Π3-symmetry (5.7).

In this study, only values of |m| ≤ 2 will be considered and a small number of Fourier
modes K = 8 is deemed satisfactory, as can be seen in table 5.1. A higher number of
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Figure 5.5 – ‘Island’ of AI in the axisymmetric case, for mode LH2. Line: present calcu-
lation; dots: figure 8(b) in Altmeyer et al. (2011).

m 0 1 -1 2 -2

e 0.3 0.7 0.3 0.7 0.3 0.7 0.45 0.7 0.45 0.7

16× 8 402.59 283.22 475.66 285.22 431.88 300.21 465.54 305.73 472.77 347.83
16× 16 402.59 283.32 475.66 285.70 431.88 300.22 465.54 306.79 472.77 347.90
32× 32 402.59 283.33 475.65 285.71 431.88 300.29 465.52 306.80 472.46 348.34

Table 5.1 – Critical azimuthal Reynolds number ReΩ for Rez = 50 and different resolu-
tions (M + 1)×K.

Chebyshev polynomials M + 1 = 16 is however required for accuracy at large ReΩ.

5.4 Results

A parametric study has been performed within the ranges e ≤ 0.7, 0 ≤ Rez ≤ 60 and
0 ≤ ReΩ ≤ 500. Within these bounds, modes m = 0, 1, 2 are always the most temporally
unstable, except for a small range e ≤ 0.3, 50 ≤ Rez ≤ 60, where m = 3 has the largest
temporal growth rate (Leclercq et al., 2013). It will be assumed that the absolute growth
rate of these modes will be higher than that of |m| ≥ 3. However, right helical modes
RH1 and RH2 will be retained in the analysis, as RH are known to be more absolutely
unstable than TV and LH in some cases (e. g. high Rez, outward radial flow, e = 0, cf.
Martinand et al. (2009)). Because we are considering both positive and negative m, it
is unnecessary to consider negative Rez, because of the Π3-symmetry (5.7).

5.4.1 Reference saddle point

The bifurcation to (pseudo-)toroidal vortices without axial flow is a steady one,
ωr(m = 0) = 0, so CI and AI thresholds, respectively denoted here ReΩ,c and ReΩ,c−a,
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coincide in this case. For modes m 6= 0, CI occurs through Hopf bifurcations at
Rez = 0, so AI only occurs above a higher threshold: ReΩ,c−a > ReΩ,c. For these modes,
ReΩ,c−a(Rez = 0) is found by locating the saddle point with k0 closest to kc, the real
critical wavenumber of CI. This neutral saddle point corresponds to a stationary front
of the impulse response wavepacket for ReΩ just above ReΩ,c, as explained in detail in
section §5.3.5. For m = 1, 2, the stationary front is the trailing one: V− = 0, k0,i < 0.
For negative m, k0,i > 0 because of the Π3-symmetry (5.7), and the stationary front is
the leading one: V+ = 0. The present paragraph defined the reference saddle point for
each m, obtained for Rez = 0 and e = 0. These saddle points are systematically followed
in parameter space to define critical curves of AI. However, as will be seen in the next
paragraph, other saddle points are also relevant to the spatio-temporal dynamics.

5.4.2 Multiplicity of saddle points
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Figure 5.6 – Contours of constant growth rate for m = 0 at criticality; e = 0.3075,Rez =
60 (ReΩ = 472.24). Saddles are indicated by white dots, labelled s1,2,3,4. The integration
path (thick line) passes through ‘pinch point’ s2 on the steepest descent path Fs, and
joins the kr axis at ±∞ through contours F±∞ of constant ωi = −0.004. The white cross
indicates a branch point ∂k/∂ω = 0, associated to a branch cut (straight dotted line).

In the light of the theoretical elements recalled in section §5.3, let us examine closely
the dispersion relation of mode m = 0 for a strong axial advection Rez = 60, and
three eccentricities around e = 0.3. Figure 5.6, similar to figure 2 in Juniper (2006),
shows isocountours of the function ωi = Ωi(k), for the case e = 0.3075 (and ReΩ =
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472.24). Dark shade indicates a ‘hill’, or a region of high ωi, while ‘valleys’ (low ωi)
are indicated in lighter shades. Saddle points are indicated by white dots. Four saddle
points, labelled s1, . . . , s4, are seen in the range 0.6 ≤ kr ≤ 5, −5 ≤ ki ≤ 0.5. There
is a branch point, indicated with a white cross near k = 0.7 − 4i, and corresponding
to a collision of temporal modes for that specific value of k. Its associated branch cut,
oriented towards negative ki, is represented with a dotted white line. The thick black line
indicates the chosen integration path Fk for this case, made up of three different curves:
F−∞, Fs, F+∞. Fs (thick dashed line) follows the steepest-descent path passing through
saddle s2, namely keeping ωr constant and equal to its value on s2. F±∞ connects Fs to
the kr axis at |kr| → ∞ following lines of constant ωi = −0.004. For the given parameter
values, the growth rate associated with saddle s2 is zero, hence F±∞ add subdominant
contributions to the impulse response at z = 0. By zooming on the lower-left-hand corner
(cf. figure 5.7(b)), we notice that both s1 and s2 satisfy the pinching condition, whereas
s3 and s4 do not. Indeed, increasing the value of ωi from a saddle point and following
the coalescing spatial branches requires ‘climbing’ up the two dark ‘hills’ surrounding
the white dot. The direction of ‘climb’ is perpendicular to the isovalues of ωi, because
ω(k) is analytic. For high values of ωi, we see graphically that s1 and s2 will share a
common downstream propagating branch k+, but each saddle will have its own upstream
propagating branch k−

1 /k−
2 . On the other hand, s3 and s4 are of k−/k−-type. s3 shares

one k− branch with s2, and the other one with s4. The saddle s2 has a zero growth rate,
but s1 has a negative growth rate for these conditions, hence s2 is the dominant ‘pinch
point’, which is confirmed by the appropriate choice of the integration path Fk. For the
chosen control parameter values, s2 sets the frontier between CI and AI. If the rotation
rate is increased further, then the absolute growth rate will be positive and the entire
flow will bifurcate to a new state for large times.

Now if we vary the eccentricity about e = 0.3075, while keeping Rez constant, and
imposing the criticality condition ω0,i = 0, we obtain figures 5.7(a) for e = 0.285 and
5.7(c) for e = 0.33. For e = 0.285, s1 is the dominant ‘pinch point’, whereas for e = 0.33,
s3 dictates the long-term dynamics. Interestingly, figure 5.7 shows that there is a switch
of critical saddle point when eccentricity is varied about e ≈ 0.3. This example clearly
shows that not only the ranking of the ‘pinch points’, in terms of absolute growth rate,
can change, but also the nature of saddle points can vary, e. g. invalid saddle point
versus ‘pinch point’. This makes the application of the Briggs–Bers criterion quite tricky
in this situation.

Maps similar to figure 5.6 are drawn for each m, and a large number of saddle points
are identified each time. Saddle points with growth rate close to the reference-saddle-
point’s are systematically identified, and followed in parameter space. As indicated in
§5.3.4, the final critical curves are based on the most unstable saddle point satisfying
the pinching criterion. Over the whole range of parameters, three different ‘pinch points’
are found to be relevant for TV, two for LH1, LH2 and RH2, but surprisingly, just one
for RH1, despite numerous candidate saddle points.

5.4.3 Critical azimuthal Reynolds number

In figure 5.8, the critical azimuthal Reynolds number is represented as a function of
eccentricity, for Rez = 0, 10, . . . , 60. We start by describing the curves in terms of m.
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Figure 5.7 – Magnification of the bottom-left corner of figure 5.6 for the same value
of Rez, three eccentricities around e ≈ 0.3 and their associated critical ReΩ; (a) e =
0.285,ReΩ = 471.65, Fs passes through s1, (b) zoom of previous figure, Fs passes through
s2, (c) e = 0.33,ReΩ = 468.00, Fs passes through s3 (contours F±∞ defined by ωi =
−0.001 here).

Solid lines correspond to m ≥ 0, and dotted lines are for m < 0. Changes of critical
saddle point are indicated with a filled (resp. open) circle for m ≥ 0 (resp. m < 0). The
most important result is that for any value of e and Rez, m = 0 always has the lowest
critical ReΩ, followed by |m| = 1, and finally |m| = 2. This observation gives credence to
the assumption that modes with |m| ≥ 3 can be ignored in the analysis. Curves 5.8(b)
and 5.8(c) also prove the importance of considering both positive and negative m, as
LH are not always more absolutely unstable than RH. Indeed, for low eccentricities,
RH1 is slightly more unstable than LH1, but the converse is true for high eccentricities.
The dynamics is even more subtle for |m| = 2, as LH2 are generally more unstable than
RH2, except for a small range of eccentricities that varies with Rez.

The effect of axial advection is to stabilize all the modes. For high enough Rez, the
critical ReΩ seems to increase almost linearly with Rez. The rate of increase is much
stronger for low eccentricities than for high eccentricities, regardless of the value of m, as
already mentioned. Critical ReΩ are typically one order of magnitude higher than Rez,
which means that the inner cylinder must be rotated much faster than the mean axial
velocity to have self-sustained oscillations. Indeed, axial flow prevents AI by carrying
perturbations downstream while rotation amplifies them.

The effect of eccentricity is more complex than that of Rez. For low eccentricities,
ReΩ increases slowly for m = 0, 1, but decreases for all other modes. For high enough
e, all the curves have the same shape: ReΩ decreases before reaching a minimum and
then increases again beyond this minimum. TV and LH1 display another similarity: they
switch critical saddle point between 0.2 ≤ e ≤ 0.4, for high enough Rez. This change of
saddle point coincides with the change in sign of the slope: critical ReΩ increases with
e for the first saddle point, but decreases for the second one. As was already mentioned
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Figure 5.8 – Critical azimuthal Reynolds number ReΩ versus eccentricity e for (a) m = 0,
(b) |m| = 1 and (c) |m| = 2. Curves are drawn for Rez = 0, 10, . . . , 60. Solid lines are for
m ≥ 0, and dotted lines for m < 0. Filled/open dots indicate a change of saddle point.

in paragraph §5.4.2, TV even changes twice ‘pinch point’ for Rez = 60. On the other
hand, the critical curves for RH1 are smooth, because they are obtained by continuously
following a single saddle point. Finally, two saddle points define the critical curves of
LH2 and RH2. For low values of Rez and e, the AI threshold is quite complex, and
the curves display folds. Folds in the critical curves mean that there are finite ranges
of AI in parameter space, surrounded by CI. This unusual behaviour has already been



5.4.5 - Critical absolute spatial growth rate −k0,i 97

pointed out by Altmeyer et al. (2011) in the concentric case, but it seems important
here to underline the fact that for high enough ReΩ, all the modes eventually become
absolutely unstable, regardless of any ‘island’ of AI occurring at lower ReΩ (cf. figure
5.5).

5.4.4 Critical absolute wavenumber k0,r

Figure 5.9 shows the evolution of the absolute wavenumber k0,r, spatial growth rate
−k0,i and frequency ω0,r associated with the dominant modem = 0, at critical conditions.
As before, curves are plotted as functions of e, for Rez = 0, 10, . . . , 60. The absolute
wavenumber k0,r (figure 5.9(a)) evolves in different ways below and above e ≈ 0.3.
Below e ≈ 0.3, critical modes have longer wavelengths as Rez increases, spanning up to
6 times the clearance for Rez = 60 and e ≈ 0.3. When e is high enough, the trend is the
opposite, and critical modes have shorter wavelengths as Rez increases. Below e ≈ 0.3,
k0,r is almost constant, or slightly decreasing with e, whereas above e ≈ 0.3, it is clearly
increasing with e. For large enough e, the critical wavelength seems to be controlled by
the smaller clearance d(1 − e). Small discontinuities in k0,r around e ≈ 0.3 indicate a
change of critical saddle point.

Comments on the curves obtained for otherm, although not displayed here for clarity,
can be made. First, curves of k0,r for LH1 are very similar to those of TV, except that
LH1 only changes once saddle point for Rez = 60 instead of twice for TV. Ignoring the
change of saddle point, they are also qualitatively similar to those of RH1. For all m, k0,r

always increases with e for high enough eccentricities, showing that all modes scale with
the small gap at critical conditions. For |m| = 2, large values of k0,r up to 8 and more
are obtained for low eccentricites as well, provided Rez is high enough. This behaviour
is not found for other modes, where k0,r is always between 1 and 3.5 when e . 0.3. For
LH2 and RH2, a large discontinuity of axial wavenumber is observed upon switching
saddle point. For example, k0,r of LH2 varies from about 7.5 to about 3.5 for Rez = 60
and e ≈ 0.6.

5.4.5 Critical absolute spatial growth rate −k0,i

The absolute spatial growth rate −k0,i (figure 5.9(b)) measures the ‘steepness’ of the
stationary front of the impulse response wavepacket. For e . 0.3, it is slightly increasing
with e. It varies quickly for Rez . 20, and then slowly varies in the range 2.5 . −k0,i . 4
for higher Rez. For e & 0.3, −k0,i increases with e, reaches a maximum value, and then
decreases again. For high enough e, −k0,i increases steadily with Rez.

Similar trends are noticed for LH1 and RH1, with comparable ranges of values.
For LH2 and RH2 however, the curves are quite different. For low eccentricities, −k0,i

increases significantly with Rez, whereas it is almost constant for other m. Therefore,
extreme front steepness occurs for LH2 at low e, with −k0,i > 12 for Rez = 60.

For RH1 and RH2 at low Rez, −k0,i can be negative over the whole range of ec-
centricities. Physically, this means that the stationary front is the leading one in this
case V+ = 0 (cf. section §5.3.2), and that the most temporally unstable RH wave has a
negative group velocity.
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quency ω0,r for m = 0 at critical conditions, versus eccentricity e. Curves are given for
Rez = 0, 10, . . . , 60.
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Finally, a common feature of all m is that −k0,i has a maximum as a function of e.

5.4.6 Critical absolute frequency ω0,r

The absolute frequency ω0,r (figure 5.9(c)) is given here for reference. After nonlinear
saturation of the instability, self-sustained oscillations with frequency close to ω0,r are
expected for a supercritical transition. Therefore, the values of ω0,r can be used as a good
estimate of the hydrodynamic resonance frequency of the flow, and may be of interest
for engineering applications. The trends of the curves are very similar to those obtained
for the spatial growth rate. The frequency range is shifted towards higher values as m
increases. For RH1 and RH2, ω0,r can be negative (always the case for RH2), indicating
that the absolute phase speed c0 ≡ ω0,r/k0,r of the mode is negative in this case. Finally,
discontinuities in the absolute frequency occur for all modes but RH1, because of changes
in critical saddle point. Discontinuities are not clearly visible for m = 0 and the change
of saddle point is ‘smooth’, as will be discussed later in §5.5.4.

5.4.7 Absolute temporal growth rate ω0,i maps

Critical curves in §5.4.3 indicate the AI domain for each m. However, they do not
indicate which mode will be the most absolutely unstable if ReΩ is above two or more
thresholds. Indeed, the mode which bifurcates first as ReΩ is increased does not necessar-
ily have the highest absolute growth rate ω0,i for larger driving. Figure 5.10 represents
isocontours of ω0,i in ReΩ-Rez plane for m = 0, 1, 2, and e = 0, 0.2, 0.7. Curves for
m = −1,−2 can be recovered upon applying the Π3-symmetry (5.7).

The first conclusion is that m = 0 remains the most unstable mode over the whole
range of parameters. However, for e = 0.7, isocontours of m = 1 are very close to those
for m = 0, and one may expect LH1 to become more absolutely unstable than TV for
larger eccentricities and large Rez.

Isocontours of ω0,i for m = 1 and m = −1 (using Π3-symmetry) are generally close.
For low eccentricity, RH1 is always more unstable than LH1, but for high eccentricity, the
converse is true. For a moderate eccentricity of e ≈ 0.5 (not shown here), the dominant
mode depends on the specific values of ReΩ and Rez.

For m = 1, 2, some isocontours have discontinuous slopes, as a consequence of a
change of dominant saddle point. In figure 5.10(3a), the ‘island’ of instability previously
presented in figure 5.5 is shown to be connected to a ‘continent’, for higher values
of ReΩ, via a change of critical saddle point. Indeed, in their analysis of m = 2 in
the axisymmetric case, Altmeyer et al. (2011) restricted their analysis to the reference
saddle point defined in §5.4.1, even though the authors mentioned the existence of other
saddle points. Figure 5.10(3a) gives the complete AI boundary for this case. For higher
eccentricities, the ‘continent’ of instability absorbs the ‘island’, and for e = 0.7, the
saddle point associated to the ‘island’ is always sub-dominant. When considering the
saddle point associated with the ‘continent’, LH2 is generally more unstable than RH2.
On the other hand, for low e and very low Rez, RH2 can be more unstable than LH2
because of the ‘island’ of instability. For moderate eccentricities, the ordering depends
on the specific values of ReΩ and Rez.
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5.5 Discussion

In this section, we study the critical modes and the production of perturbation
kinetic energy. We discuss the results and the instability mechanism in the light of
these elements. Identification of third-order saddle points in the dispersion relations,
and implications for the results is then discussed. Finally, a comparison between CI and
AI thresholds is provided.

5.5.1 Critical modes

Examining the critical mode associated with m = 0 for Rez = 60, we notice that
localisation of the mode depends strongly on eccentricity. In figure 5.11(1), we plot
isocontours and isosurfaces of the axial perturbation velocity for e = 0.2, 0.4, 0.7, and
the corresponding distribution of perturbation kinetic energy E = 1

2
(|ũ|2 + |ṽ|2 + |w̃|2)

(figure 5.11(2)). These three eccentricities correspond to distinct evolutions of the critical
ReΩ with respect to e: slight increase for e = 0.2, clear decrease for e = 0.4 and increase
for e = 0.7.

Consider the polar angle θ of the maximum of energy, with respect to the inner
cylinder center, indicated in figure 5.2. For low eccentricities or low Rez, the mode is
localised in the wide gap, at positive θ. However, for larger e or Rez, this maximum is
shifted upstream to the region −90◦ ≤ θ ≤ 0◦. For e = 0.7, the mode concentrates in
the vicinity of the inner cylinder, on the wide gap side, but has a radial extent scaling
with the small gap. When e increases for Rez = 60, the ratio between the maximum,
and the average value increases from less than 2 for e = 0 to almost 14 for e = 0.7,
indicating confinement of the mode into a smaller region of the annulus. Finally, the
only contribution of ũ⊥ to E accounts for 65% to 85% of the total perturbation energy
when e increases from 0 to 0.7.

Similar behaviour is found for LH1 at Rez = 60, with localisation of the mode in the
wide gap for low e, close to the symmetry plane, then a shift towards negative θ upon
switching saddle point, and finally, concentration of the mode in the vicinity of the inner
cylinder, in the wide gap region. For RH1 however, the energy is less concentrated at a
specific peak. The maximum of E still occurs at negative angles, but does not go beyond
−45◦ in this case. It is concluded that the appareance of the peak of perturbation energy
at strong negative angles is associated with the change of saddle point occuring for both
TV and LH1.

Surprisingly, the critical modes of AI and CI peak at completely different regions of
the annulus for moderate eccentricities and high Rez. In comparison (cf. Leclercq et al.
(2013)), the maximum energy of the critical mode of CI for e = 0.5 was always localised
at large positive values: 79◦ for Rez = 0 (m = 0), and 121◦ for Rez = 200 (m = 5). No
direct comparison should be made with AI because critical modes of CI are obtained
for different threshold values of ReΩ. It is nonetheless interesting to observe that modes
can be localised at either positive or negative polar angles depending on the situation.

Finally, we enumerate characteristics common to all m. First, in-plane motion ac-
counts for the larger contribution to the total perturbation kinetic energy of all m for
Rez = 60. Also, as e approaches 0.7 for Rez = 60, all m tend to have similar distributions
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of energy, with strong localisation close to the inner cylinder, over a radial extent scaling
with the small gap. In addition, we recall that the critical wavenumber of all modes takes
on large values k0,r ∼ 6.5 − 8 when e = 0.7 and Rez = 60. These observations indicate
that for high eccentricities, the critical modes for all m scale with the small gap.

(1)
Re(w̃)

(2)
E

(a) e = 0.2 (b) e = 0.4 (c) e = 0.7

Figure 5.11 – Critical mode m = 0 for Rez = 60, (a) e = 0.2, ReΩ = 465.82, (b) e = 0.4,
ReΩ = 432.74, (c) e = 0.7, ReΩ = 314.16. (1) Distribution of axial perturbation velocity
Re(w̃). Dark (resp. light) grey is for positive (resp. negative) values. (2) Distribution of
perturbation kinetic energy E = 1

2
(|ũ|2 + |ṽ|2 + |w̃|2). Dark grey indicates high values,

and isocontours are equispaced.

5.5.2 Production of perturbation kinetic energy

To further investigate the instability mechanism, the production of perturbation
kinetic energy is calculated. In the well-known Reynolds–Orr equation, the local rate of
production of E is given by −u′ · (u′ · ∇U). Averaging in the axial direction, ignoring
the temporal exponential dependence and separating velocities into in-plane and axial
components, one can define two contributions

P⊥ = −1
2

Re {ũ⋆
⊥ · (ũ⊥ · ∇⊥U⊥)} , and Pz = −1

2
Re {w̃⋆(ũ⊥ · ∇⊥W )} , (5.12)

corresponding to the work of the Reynolds stresses against the in-plane and axial shear
respectively. Expressions for the nonlinear terms in the modified bipolar coordinate
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(1)
P⊥

(2)
Pz

(a) e = 0.2 (b) e = 0.4 (c) e = 0.7

Figure 5.12 – Distribution of kinetic energy production for m = 0 and Rez = 60, at
critical conditions. (1) P⊥ and (2) Pz. (a) e = 0.2,ReΩ = 465.82, (b) e = 0.4,ReΩ =
432.74, (c) e = 0.7,ReΩ = 314.16. Dark grey indicates large contributions and white
corresponds to zero or negative contribution. Isocontours are equispaced.

system are given in Leclercq et al. (2013). Because the basic flow is axially invariant,
these two terms are the only contributions to the production of E .

Figure 5.12 represents the distribution of P⊥ and Pz for m = 0 and Rez = 60, at
e = 0.2, 0.4, 0.7, as in figure 5.11. Only positive contributions are shown in grey shades,
as negative contributions inhibit temporal growth. Distributions of P⊥ and E look very
similar. P⊥ is maximum in the wide gap for low e, then at negative polar angles for
moderate e, then close to the inner cylinder on the wide gap side for e close to 1.
The dominant contribution to P⊥ comes from the Reynolds stress term −1

2
Re {ũṽ⋆}

multiplying the pseudo-radial derivative of the azimuthal velocity V . In fact, the spatial
distribution of −1

2
Re {ũṽ⋆} is very similar to that of P⊥, so the region where axial

oscillations of u′ and v′ are in phase corresponds to the peak of production of kinetic
energy. The same calculation of P⊥ and Pz has been performed for the critical mode of
the CI at Rez = 60 and e = 0.5 (m = 2). P⊥ was also found to account for most of the
kinetic energy production (81%), but the peak was located at a positive polar angle of
92◦. This large positive value correlates well with the value of maximum kinetic energy
at 99◦, and noticeably contrasts with the almost opposite angles obtained for the critical
mode of AI.

Distributions of Pz show larger contributions near the walls, where ‖∇⊥W‖ is larger.
As eccentricity increases, production of kinetic energy close to the outer cylinder de-
creases, as the mode concentrates in the vicinity of the inner cylinder. For e = 0.7, Pz

peaks almost in the same region as P⊥ and E , namely close to the inner cylinder in the
wide gap.
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Integration of P⊥ and Pz over the annular domain for Rez = 60 indicates that
in-plane shear dominates the production of kinetic energy, P⊥ always accounting for
more than 85% of the total amount, and even more than 97% for e = 0.7. The dominant
contribution comes from the term involving pseudo-radial variations of pseudo-azimuthal
velocity, characteristic of a centrifugal instability.

5.5.3 Instability mechanism

The striking destabilisation occuring at moderate eccentricities remains difficult to
explain even after examining the basic flow, the critical mode and the production of
kinetic energy. The transition from a stabilising to a destabilising effect of eccentricity
occurs around 0.2 ≤ e ≤ 0.4 for both TV and LH1, through a change of critical sad-
dle point when Rez is large enough. The recirculation region appears for e ≈ 0.2 for
ReΩ ≈ 500 so it seems that the change of behaviour occurs after the recirculation zone
has reached a critical size. The basic flow is then significantly different from a classical
Couette flow. Indeed, while energy of the mode mostly localises in the vicinity of the
inner cylinder, it also partially spans over the recirculation region for moderate eccen-
tricities (cf. figure 5.11(b)). Surprisingly, a region of the flow located at negative polar
angles seems to drive AI for moderate eccentricities, whereas kinetic energy production
always peaks at positive angles for CI at criticality. Arguments based on local stability
of the flow, however tempting in a quest of explanation, should be avoided here because
of strong non-parallelism of the basic flow in the pseudo-azimuthal direction. Indeed,
assuming the flow locally parallel in φ leads to completely wrong predictions of insta-
bility thresholds of eccentric Taylor–Couette flow (DiPrima, 1963, Ritchie, 1968). The
most temporally unstable velocity profile, theoretically located at φ = θ = 0◦, does not
coincide with the location of maximum vortex activity found in the experiments (Vohr,
1968). On the other hand, global analyses yield good results in this geometry (DiPrima
and Stuart, 1972b, 1975, Eagles et al., 1978), showing the limits of the local approach.
Therefore, localisation of the modes and kinetic energy production at moderate eccen-
tricities should be regarded as a global property of the entire flow field.

As e approaches 1, all m tend to behave in a similar way. After reaching a minimum
value, the critical ReΩ increases again as e becomes larger. Instability thresholds of all
m ≥ 0, and even their respective absolute growth rate for any Rez-ReΩ combination,
become close at high e and less sensistive to variations of Rez. More similarities are
found by inspecting the critical modes. For Rez = 60, all m have absolute wavenumbers
k0,r in the range 6.5-8, indicating a similar length scale. Indeed, the kinetic energy of all
these modes is localised around the inner cylinder, on a radial extent corresponding to
the smaller clearance of the eccentric annulus, consistent with a small wavelength. The
localisation is so strong that the difference between toroidal or helical structure of the
modes is partially ‘blurred’. These similarities between m at high e is reminiscent of small
gap Taylor–Couette–Poiseuille flow, where critical thresholds associated with different
m are very close (Ng and Turner, 1982, Leclercq et al., 2013). Indeed, as eccentricity
increases, the Couette-like flow associated with rotation of the inner cylinder scales
with the smaller clearance d(1 − e), curvature effects become less important, and m
behaves more and more like a continuous real wavenumber, as when η → 1. Matching
between localisation of the modes and the Couette-like part of the basic flow may also
explain the weaker effect of axial advection on the instability thresholds. Indeed, for
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Figure 5.13 – Collision of saddle points with ω0,i = 0 for m = 0: (a) s1&s2 at k0 =
1.0223− 3.2310i for e = 0.2839, ReΩ = 403.21, Rez = 50.115.(b) s2&s3 at k0 = 1.1882−
3.7630i for e = 0.3032, ReΩ = 353.60, Rez = 43.188.

large eccentricities, most of the axial volume flux passes through the wide gap, and the
maximum value of W is located in the recirculation region, far from the inner cylinder.
Hence, the region where perturbations are most amplified is spatially separated from
the region where they are most rapidly ‘blown away’. This observation could explain
why critical ReΩ are less sensitive to Rez for e close to one.

5.5.4 Third-order saddle points

In figure 5.7, saddle points s1, s2 and s3 are seen to lie very close to each other
in the k-plane, with similar values of ω0,i. By simultaneously varying the three control
parameters e,ReΩ,Rez and the complex wavenumber k, it is possible to locate collisions
between two neutral saddle points, defined by the five real-valued constraints

ω0,i = 0, ∂ω/∂k = 0, ∂2ω/∂k2 = 0. (5.13)

These ‘double saddle points’, ‘third-order saddle points’ (Davies, 1989) or ‘super branch
points’ (Healey, 2004) correspond to the collision of three spatial branches, as can be
seen by performing a Taylor expansion, as in equation (5.11), but now up to the third
order. Looking at figure 5.13, it appears that the double saddle point s1,2 corresponds
to the coalescence of one k+-branch, and the two distinct k−-branches associated to
saddle points s1 and s2. s2,3 also corresponds to a k+/k−/k− collision. When control
parameters are varied in the vicinity of a double saddle point, the three spatial branches
collide by pairs, and form the two separate saddle points s1 and s2 (resp. s2 and s3) for
two distinct values of k. For some parameter values, one of the saddle points is formed
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m e ReΩ Rez k0,r −k0,i ω0,r ω0,i

0
0.2839 403.21 50.115 1.0223 3.2310 0.49075 0
0.3032 353.60 43.188 1.1882 3.7630 0.50689 0

1 0.2412 180.20 16.448 1.8937 3.6287 0.79675 0
2 0.2325 202.54 5.8911 4.9163 3.7277 0.98521 0.03570
−2 0.2710 321.49 19.599 4.9062 0.0506 -0.48475 0

Table 5.2 – Parameter values at neutral third-order saddle points, satisfying equations
(5.13) except for m = 2 as ω0,i > 0. In this last case, the neutrality constraint is replaced
by the minimisation of ω0,i.

by the collision of the two k−-branches, and does not comply with causality. Therefore,
careful examination is necessary in the vicinity of third-order saddle points.

Note that both double saddle points are neutral for Rez = 43.188 and Rez = 50.115
respectively, hence almost lie on the critical curves computed for Rez = 40 and Rez =
50. Therefore, no discontinuity in absolute wavenumber and frequency is observed in
figure 5.9. Because of proximity of the two saddle points exchanging stability, their
associated critical modes are quite similar in the vicinity of e ≈ 0.3. As a consequence,
the physical interpretation of the change of critical saddle point is unclear. For reference,
the parameter values corresponding to neutral third-order saddle points are given in
table 5.2 for other m. When m = 2, the temporal growth is always positive so the control
parameters are chosen so as to minimise ω0,i. In all cases, it appears that eccentricity
is always in the range 0.2 ≤ e ≤ 0.3, which, again, coincides surprisingly well with
the appearance of the recirculation in the wide gap. The complexity of the dispersion
relations for moderate eccentricities is remarkable. Note that many saddle points were
also found for RH1, but only one of them satisfied the pinching criterion.

5.5.5 Convective versus absolute instability

We conclude this section by comparing the thresholds of CI (Leclercq et al., 2013)
and AI in the eccentric Taylor–Couette–Poiseuille flow. Figure 5.14 represents the
critical ReΩ for CI (dotted lines), and for AI (solid lines), as a function of Rez for
e = 0, 0.1, . . . , 0.7. For Rez = 0, the two thresholds for m = 0 coincide, as expected for
a steady bifurcation. The critical ReΩ increases with Rez for both CI and AI, but with
a much larger rate for AI. This was expected as axial advection tends to carry the per-
turbations away from the source, so a larger driving is required to reach AI. The critical
mode is always m = 0 for AI, corresponding to closed pseudo-toroidal Taylor vortices,
propagating when Rez 6= 0. For CI, LH modes of increasing m become critically unstable
as Rez increases. Open circles indicate a change of critical m on the CI thresholds. The
effect of eccentricity is clearly stabilising for CI, but the effect on AI is more complex.
For high enough Rez, as eccentricity increases, the critical ReΩ of AI slightly increases
for low e, but then decreases before reaching a minimum and increases again for larger
values of e.
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Figure 5.14 – Absolute (solid lines) and convective (dotted lines) instability thresholds:
critical ReΩ versus Rez, for e = 0, 0.1, . . . , 0.7. Open circles indicate a change of critical
m for CI. For AI, the critical mode is always m = 0.

5.6 Conclusions

In this paper, an AI analysis has been performed for the flow between eccentric
cylinders, with rotation of the inner one and a superimposed pressure-driven axial flow.
The ratio between cylinder radii was fixed at η = 0.5, a value representative of an
oil-well-drilling configuration. The eccentricity was varied from e = 0 to 0.7 with rea-
sonable accuracy for K = 8 Fourier modes in the pseudo-azimuthal direction. The axial
Reynolds number was varied in the range 0 ≤ Rez ≤ 60, requiring azimuthal Reynolds
number one order of magnitude greater, 0 ≤ ReΩ ≤ 500, to capture AI. This theoretical
problem has concrete applications in oil-well drilling or lubrication bearings for high-
speed turbomachinery. Transition to complex hydrodynamic régimes in these flows could
have detrimental impact on the performance, with increased pressure losses or damaging
resonance in the case of AI. The present analysis complements the recent linear stability
analysis of this flow in the temporal framework (Leclercq et al., 2013), that determined
thresholds of CI. In this previous paper, it was shown that modes with pseudo-azimuthal
angular order 0 ≤ m ≤ 2, corresponding to pseudo-toroidal (TV, m = 0) or left-helical
(LH, m = 1, 2) vortices, were the most temporally unstable for Rez ≤ 50. LH modes
with m ≥ 3 were shown to become unstable for higher Rez, while right helices (RH,
m < 0) are always more temporally stable than TV and all LH. Therefore, only modes
m = 0, 1, 2 were considered in the present analysis, together with m = −1,−2, assuming
modes |m| ≥ 3 always have lower absolute growth rates.

The most important result is that mode m = 0, corresponding to pseudo-toroidal
Taylor-like vortices, is always the most absolutely unstable, for any e,Rez,ReΩ in the
range of the present analysis. However, for large e and large Rez, the absolute growth rate



108 Conclusions

associated with LH1 is very close to TV, and one may expect this latter mode to become
the most absolutely unstable for e > 0.7. Another surprising result is that right helices
m < 0 are not always more stable than left helices m > 0 with regards to AI. Despite
lower temporal growth rates, RH can be somewhat more resistant to axial advection
than LH in some cases. To be more specific, RH1 is always more absolutely unstable
than LH1 for low e, but the converse is true for high e. For moderate eccentricities, the
ordering depends on the three parameters e,Rez,ReΩ. LH2 is generally more absolutely
unstable than RH2, but for low and moderate eccentricities, RH2 can sometimes be
more absolutely unstable depending on the values of Rez and ReΩ.

Axial advection always has a stabilising effect on AI, as expected, because it carries
perturbations away from their origin. The driving mechanism of the instability is clearly
centrifugal, even for a moderate value of Rez = 60. Indeed, almost all of the kinetic
energy production is due to pseudo-radial variation of pseudo-azimuthal velocity. On the
other hand, the effect of eccentricity is subtle when Rez is high enough: for TV and LH1,
one may distinguish low eccentricities e . 0.3, moderate eccentricities 0.3 . e . 0.6
and large eccentricities e & 0.6. For low eccentricities, the critical ReΩ slightly increases
with e, then clearly decreases in the range of moderate eccentricities, before increasing
again for large eccentricities, after a minimum value is reached. By contrast, eccentricity
destabilises RH1, LH2 and RH2 at low values of e as well, for large enough Rez. At large
enough Rez, the critical ReΩ of all m has a minimum as a function of e and Rez.

As e → 1, the critical modes associated with the different m share a number of
properties. As just mentioned, critical curves start to increase after a minimum is reached
for large enough e. Instability thresholds and absolute growth rates are less sensitive to
variations of Rez. LH modes are then more absolutely unstable than the corresponding
RH, as in the temporal framework. Moreover, the absolute growth rate of the different
m ≥ 0 become close as e becomes large. Critical modes localise in the vicinity of the
inner cylinder for all m, on a radial extent set by the smaller clearance d(1−e). Because
of localisation, the difference between pseudo-toroidal m = 0 and pseudo-helical m 6= 0
patterns is ‘blurred’, and it is not surprising that their associated AI characteristics
become similar. In the large eccentricity case, the wide gap recirculation region does not
seem to have a significant impact on the AI properties. Most of the axial volume flux
passes through this zone, explaining the weaker effect of Rez when e approaches one.
Indeed, in this case the region of amplification of the perturbations is in the vicinity of the
inner cylinder, and does not intersect with this region of advection of the perturbations.
As e approaches one, the smaller clearance d(1− e) decreases, curvature effects become
weaker in the Couette-like part of the basic flow, and m behaves more and more like
a continuous real wavenumber, as in Ng and Turner (1982) and Leclercq et al. (2013)
when η increases.

When e is not large, TV and LH1 still share many similarities. For high enough Rez,
their critical ReΩ is slightly increasing with e, before undergoing a change of critical
saddle point, then ReΩ decreases with e until a minimum is reached for 0.5 ≤ e ≤
0.7. Both modes change critical saddle point in the range 0.2 ≤ e ≤ 0.4, after the
recirculation region has reached a critical size. TV, however, changes critical saddle
point twice for Rez = 60 while LH1 changes only once. The associated critical quantities
evolve in similar ways for the two modes. For low e, The critical wavenumber k0,r is low,
quasi-constant with e, and decreasing with Rez as for critical CI. When e & 0.3, k0,r

increases with e and reaches high values for e ≈ 0.7, indicating a scaling of the vortices
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with the smaller clearance. Surprisingly, for high e, k0,r increases with Rez.

The complete computation of critical curves for m = 2 has revealed the existence of a
‘continent’ of instability, in addition to the ‘island’ of AI found by Altmeyer et al. (2011).
The two domains are related to different saddle points, and they exchange stability
through large discontinuities in critical absolute wavenumber. Altmeyer et al. (2011)
indicated the relevance of multiple saddle points but considered only the one issuing from
the critical wavenumber kc of the CI with Rez = 0. The ‘new’ AI domain, unbounded
for large values of ReΩ, was to be expected as the destabilising mechanism is centrifugal.

In the present stability analysis, a remarkably large number of saddle points were
found to be relevant to the long-term dynamics, for all m except m = −1, and recalls
the necessity of a thorough investigation of the dispersion relation in AI analyses. In
particular, for each saddle point of high enough temporal growth rate, it is essential
to check the validity of the causality condition. This tedious numerical verification is
absolutely necessary in the vicinity of third-order saddle points, where three spatial
branches collide by pairs, and where relevant ‘pinch points’ can become spurious k−/k−

saddle points (or potentially k+/k+ for other problems) upon varying control parameters.
Because there is no general criterion to anticipate the nature of the saddle points and
because the analysis of the dispersion relation is necessarily performed on bounded
domains of kr and ki, experimental investigations or direct numerical simulations would
be highly valuable to confirm the present predictions.

Finally we briefly summarize the most noticeable differences between AI and tem-
poral instability for this flow. The m = 0 mode is always the most absolutely unstable
while LH modes of increasing m dominate the temporal dynamics when Rez increases.
In both cases, axial advection has a stabilising effect for Rez ≤ 60, but the critical ReΩ

increases much faster for AI, than for CI. For zero axial advection, the two thresholds are
identical as the flow bifurcates to steady Taylor vortices. For non-zero axial flow rate,
perturbations are convected away from the source while growing in time, explaining
much larger values of critical ReΩ for AI. While eccentricity is clearly stabilising with
regards to temporal instability, the effect on AI is complex, and the effect of e can be
destabilising for moderate eccentricities, at high enough Rez. Surprisingly, the produc-
tion of perturbation kinetic energy of the critical mode peaks at negative polar angles in
this case, whereas it peaks on the other side of the annulus for critical CI. For moderate
eccentricities, the flow is strongly non-parallel, the position of this maximum is a global
property of the complete flow field, and local stability arguments fail to explain these
differences.

We believe that the most crucial perspective for this work is additional experiments
to confirm our findings on CI and AI, since the last measurements made on such a
configuration (Cole, 1969, Coney, 1971, Younes, 1972, Younes et al., 1972, Mobbs and
Younes, 1974, Coney and Atkinson, 1978) are older than the introduction of AI theory to
fluid mechanics (Huerre and Monkewitz, 1985)! Even in the convectively unstable régime,
the literature is very lean, and only one apparatus seems to have ever existed, whereas
the domain of application is vast. On a theoretical viewpoint, it would be particularly
interesting to investigate the properties of nonlinear global modes, partly based on local
AI properties (Pier et al., 2001), when eccentricity varies slowly along the axis. Indeed,
because of bending of a thin drillstring in deep oil wells, including variable eccentricity
would yield a more realistic model. Moreover, such weakly non-parallel open flows are
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believed (Pier and Huerre, 2001) to be good candidates to confirm the potential existence
of hat modes, theoretically predicted for model equations, but yet to be identified in a
real configuration.
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5.7 Additional results

5.7.1 Theoretical analysis of third-order saddle points

In this subsection, a theoretical criterion is derived to analyse the vicinity of third-
order saddle points, using asymptotic matching techniques. The criterion is successfully
applied to s1,2 and s2,3, defined in §5.5.4. The question we ask is the following: is it
possible to predict the nature (spurious or representing a genuine pinch) of saddle points
s1 and s2 (resp. s2 and s3), using asymptotic analysis in the vicinity of s1,2 (resp. s2,3)?

Let k0, ω0, χ0 be such that D0 = D0
k = D0

kk = 0, D0
ω 6= 0 and D0

kkk 6= 0. We examine
the limit χ→ χ0, formally expressed by writing

χ = χ0 + ǫµ, (5.14)

where ǫ→ 0+ is a small parameter and µ a fixed vector.

The complex ω-plane can be divided into three asymptotic regions:

Outer region

This is when ω is not near ω0 (formally, fixed ω 6= ω0 and ǫ → 0 ). The k-roots of
D(k, ω;χ) = 0 have expansions in powers of ǫ:

k = k(0) + ǫk(1) + . . . . (5.15)

The leading-order term satisfies

D(k(0), ω;χ0) = 0 (5.16)

and higher-order ones can be obtained by Taylor expansion of D(k, ω;χ) about χ = χ0

and k = k(0). The leading-order term will suffice for present purposes.

Inner region: |ω − ω0| = O(ǫ)

This region is described by the rescaled variable

ω̂ =
ω − ω0

ǫ
(5.17)

and the expansion in powers of ǫ1/3:

k = k0 + ǫ1/3k̂(1) + ǫ2/3k̂(2) + · · · . (5.18)

It will suffice to consider k̂(1), which is one of the three roots of

1
6
D0

kkkk̂
(1)3

+D0
ωω̂ + µ · (∇χD)0 = 0 (5.19)

and depends on ω and µ, as do the higher-order coefficients in (5.18). Note that all three
roots of (5.19) coalesce when D0

ωω̂+µ · (∇χD)0 = 0. This indicates the need for an even
smaller region in the ω-plane.
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Inner-inner region

This region is described by

ω = ǫ−1/2

(
ω̂ +

µ · (∇χD)0

D0
ω

)
(5.20)

It is O(ǫ1/2) smaller than the previous region (i.e. of size O(ǫ3/2)) and centred on

ω = ω0 − ǫ
µ · (∇χD)0

D0
ω

. (5.21)

The k-roots expansion has the form

k = k0 + ǫ1/2k
(1)

+ . . . , (5.22)

where
1
6
D0

kkkk
(1)3

+

(
µ · (∇χDk)0 − µ · (∇χD)0D0

kω

D0
ω

)
+D0

ωω = 0. (5.23)

The notation can be simplified by introducing

α =

(
2

D0
kkk

(
µ · (∇χD)0D0

kω

D0
ω

− µ · (∇χDk)0

))1/2

, (5.24)

K =
k

(1)

α
, (5.25)

∆ = − 3D0
ω

α3D0
kkk

ω, (5.26)

leading to
K3 − 3K − 2∆ = 0. (5.27)

Note that, in writing (5.25) and (5.26), we suppose that α 6= 0 from here on. α = 0 is
a local (near χ0) representation of the codimension 2 subspace of χ-space for which all
three roots coalesce. (5.27) has a double root at K = ±1 when ∆ = ∓1. Thus, there are
saddle points at

ω = ω0 − ǫ
µ · (∇χD)0

D0
ω

± ǫ3/2α
3D0

kkk

3D0
ω

+ · · · . (5.28)

The roots of (5.27) are Kn = Wn + 1/Wn (n = 1, 2, 3), where

W1 =
(
∆ + i(1−∆2)1/2

)1/3
, (5.29a)

W2 = ei2π/3
(
∆ + i(1−∆2)1/2

)1/3
, (5.29b)

W3 = e−i2π/3
(
∆ + i(1−∆2)1/2

)1/3
, (5.29c)

where the cube and square roots are principal values. As functions of complex ∆, (5.29a)–
(5.29c) are analytic, apart from branch cuts running along the negative real axis from
∆ = −∞ to ∆ = −1 and ∆ = 1 to ∆ = +∞. K2(∆) inherits both branch cuts, whereas
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K1(∆) only has the cut from ∆ = −∞ to ∆ = −1 and K3(∆) only has the one from
∆ = 1 to ∆ = +∞. K1(∆) and K2(∆) coalesce when ∆ = −1 and K2(∆) and K3(∆)
when ∆ = 1.

From here on the square root in (5.24) is chosen such that Re(α3D0
kkk/D

0
ω) ≤ 0.

The picture in the complex ω-plane is as shown in figure 5.15. In this figure, the dots

Figure 5.15 – Branch points (dots) and branch cuts of K(ω) (dashed lines), K(ω) (solid
lines).

represent the branch points,

ω = ∓α
3D0

kkk

3D0
ω

(∆ = ±1) (5.30)

and the dashed lines are the branch cuts of Kn(ω), running radially outwards from the
origin. Because Re (α3D0

kkk/D
0
ω) ≤ 0, ∆ = 1 lies in ωr ≥ 0 and ∆ = −1 in ωr ≤ 0. We

want to move the branch cuts to the locations indicated by the bold lines in the above
figure. Define Kn(ω) (n = 1, 2, 3) as follows:

a) outside the regions A and B, Kn(ω) = Kn(ω);

b) in region A, K1(ω) = K2(ω), K2(ω) = K1(ω) and K3(ω) = K3(ω);

c) in region B, K1(ω) = K1(ω), K2(ω) = K3(ω) and K3(ω) = K2(ω).

A little care is required on the dashed lines: the Kn(ω) are there defined by continu-
ity from both sides. The resulting Kn(ω) are roots of (5.27) whose branch cuts run
downwards in the complex ω-plane.

Matching

The inner-inner region solution is

k = k0 + ǫ1/2αK + . . . . (5.31)
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To avoid the complication of the modified branch cuts, we restrict attention to the half
plane Im(∆) > 0 so that Kn(ω) = Kn(ω). As ω →∞ in this half plane, (5.29a)–(5.29c)
and K = W + 1/W yield

ǫ1/2αK1 ∼ ǫ1/2α(2∆)1/3 = ǫ1/3γ, (5.32a)

ǫ1/2αK2 ∼ ǫ1/2αei2π/3(2∆)1/3 = ǫ1/3ei2π/3γ, (5.32b)

ǫ1/2αK3 ∼ ǫ1/2αe−i2π/3(2∆)1/3 = ǫ1/3e−i2π/3γ (5.32c)

where

γ = α

(
− 6
α3D0

kkk

(
D0

ωω̂ + µ · (∇χD)0
))1/3

. (5.33)

Equations (5.32a)–(5.32c) with (5.33) describe the roots in the given half plane. They
can be extended to all ω̂ by ensuring that γ(ω̂) has a branch cut which runs downwards
from its branch point, ω̂ = −µ · (∇χD)0/D0

ω. This is achieved by writing

γ = αeiπ/6

(
− 6D0

ω

α3D0
kkk

)1/3 (
−i

(
ω̂ +

µ · (∇χD)0

D0
ω

))1/3

, (5.34)

where the cube roots are principal values. Equation (5.34) agrees with (5.33) in the given
half plane and has branch cut such that (5.32a)–(5.32c) describe the roots everywhere.
Equations (5.32a)–(5.32c) match the inner region solution because

k̂(1) = γ, k̂(1) = ei2π/3γ, k̂(1) = e−i2π/3γ (5.35)

are roots of (5.19). Matching gives the correspondence between the Kn(ω) and roots of
(5.19): (5.34) and (5.35) give the roots corresponding to K1(ω), K2(ω) and K3(ω) in
that order.

The inner-region solution is

k = k0 + ǫ1/3k̂(1) + · · · , (5.36)

where, as noted above, k̂(1) has one of the values (5.35). As ω̂ → ∞, (5.34) and (5.35)
give

ǫ1/3k̂(1) ∼ ǫ1/3αeiπ/6

(
− 6D0

ω

α3D0
kkk

)1/3

(−iω̂)1/3 = β (−i(ω − ω0))
1/3 , (5.37a)

ǫ1/3k̂(1) ∼ βei2π/3 (−i(ω − ω0))
1/3 , (5.37b)

ǫ1/3k̂(1) ∼ βe−i2π/3 (−i(ω − ω0))
1/3 , (5.37c)

where (5.37a)–(5.37c) respectively correspond to K1(ω), K2(ω), K3(ω) and

β = αeiπ/6

(
− 6D0

ω

α3D0
kkk

)1/3

(5.38)

Matching of (5.37a)–(5.37c) to the outer region requires that three roots of (5.16) behave
like

k(0) ∼ k0 + β (−i(ω − ω0))
1/3 + · · · , (5.39a)

k(0) ∼ k0 + βei2π/3 (−i(ω − ω0))
1/3 + · · · , (5.39b)

k(0) ∼ k0 + βe−i2π/3 (−i(ω − ω0))
1/3 + · · · (5.39c)

as ω → ω0.
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Figure 5.16 – Spatial branches (a) k+/k−
1 /k

−
2 for ωr = 0.49075 colliding at neutral third-

order saddle-point s1,2 (see figure 5.13a), e = 0.2839, ReΩ = 403.21, Rez = 50.115; (b)
k+/k−

2 /k
−
3 for ωr = 0.50689 colliding at neutral third-order saddle-point s2,3 (see figure

5.13b), e = 0.3032, ReΩ = 353.60, Rez = 43.188. Arrows indicate increasing values of
ωi.

Identification of spatial branches

The spatial branches colliding at a third-order saddle point can be identified by
keeping ωr = ω0,r at the double-saddle-point value and increasing ωi from ω0,i. Figure
5.16 show the example of s1,2 and s2,3 for which a k+-branch collides with two k−-
branches. k−

2 is shared by the two double saddle points.

Domains in parameter space

Denote by kn (n = 1, 2, 3) the three spatial branches. When χ 6= χ0, the kn collide
by pairs of saddle points and three cases are possible

case 1) k1/k2 & k1/k3,

case 2) k2/k1 & k2/k3,

case 3) k3/k1 & k3/k2,

as illustrated in figure 5.17 (resp. figure 5.18), for three values of χ in the vicinity of
χ0(s1,2) (resp. χ0(s2,3)).

In the outer region, each kn can be associated to a solution k(0) given by one of
the formulas (5.39a)–(5.39c). These outer region solutions are themselves associated to
inner-inner solutions K1(ω), K2(ω) and K3(ω), in that order. Therefore, the kn can be
matched with the Kn through (5.39a)–(5.39c). Moreover, we have proved that collisions
between Kn in the inner-inner region were only possible between K3 and K1 or K3 and
K2. Therefore
• if K3 ≡ k1, then case 1 applies,
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• if K3 ≡ k2, then case 2 applies,
• if K3 ≡ k3, then case 3 applies.

In figure 5.19, the data of figure 5.17 is reploted after some transformation. The k-
branches are seen to approach k0 with directions well predicted by theory. It is also
observed that the branch common to both saddle points is always matching K3, as
expected.

These three cases define domains in parameter space. The identification of their
frontiers depends only on the determination of β, appearing in (5.39a)–(5.39c). The
frontiers are given by the loci of the discontinuities of µ 7→ β. Upon choosing the square
root of α2 in (5.24) such that Re (α3D0

kkk/D
0
ω) ≤ 0, discontinuities of β occur as

Re
(
α3D0

kkk/D
0
ω

)
= 0. (5.40)

Let

a =
2

D0
kkk

, b = (∇χDk)0 − (∇χD)0D
0
kω

D0
ω

, and c =
D0

kkk

D0
ω

, (5.41)
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Figure 5.19 – Identification of branch K3: (a) β = −0.58254 − 2.23862i, K3 ≡ k−
1 ; (b)

β = 2.22998 + 0.614818i, K3 ≡ k−
2 ; (c) β = −1.64744 + 1.62381i, K3 ≡ k+. Black lines

correspond to data in figure 5.17.

then condition (5.40) reads

arg([a(µ · b)]3/2c) =
π

2
mod π, (5.42)

therefore, the angle Θ ≡ arg(µ · b) can take on the values

Θ =
π

3
− 2

3
arg c− arg a mod

2π
3
. (5.43)

Denote Θi (i = 1, 2, 3) the three values in [−π, π]. These directions define hyperplanes
of normal vector ni

µ · ni = 0, with ni = Im b− tan Θi Re b, i = 1, 2, 3. (5.44)

In order to recover the equivalence with (5.43), additional constraints are added




µ · Re b ≤ 0 if − π/2 ≤ Θi < π/2, i = 1, 2, 3,

µ · Re b < 0 otherwise.
(5.45)

Equations (5.44)–(5.45) define the frontiers of the different domains. This criterion
applied in the vicinity of s1,2 and s2,3 (see figures 5.20 & 5.21) give results consistent
with figures 5.17 & 5.18. Cases (a), (b) and (c) fall into different domains of parameter
space. The critical threshold associated with each saddle point is indicated on these
plots. Combining on the same graph the critical curves together with the frontiers of
the different domains is particularly useful. In domain (c) of figure 5.20, the two saddle
points are pinch points, so the absolute instability threshold corresponds to the lower
critical curve. However, only one saddle point is a genuine pinch point in domain (a),
so an additional step is necessary to conclude. It is sufficient to check at one point if
a neutral saddle point is spurious or not. If it is not, then the selected curve sets the
frontier of absolute instability, otherwise, the other one does.
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Figure 5.20 – Lines: critical curves ω0,i = 0 for saddles s1 and s2, Rez = 50. The solid
line indicates the absolute instability threshold. The (e,ReΩ)-plane is split into three
regions, according to the three possible patterns (a), (b) and (c) of collision between the
spatial branches, see figure 5.17. In (c), both saddle points are genuine pinch points, so
the absolute instability threshold is given by the lower critical curve. In (a), only one
saddle point is causal so the absolute instability threshold is given by the critical curve
associated with the k+/k−

1 saddle point. Upon crossing the border between (a) and (b),
the saddle point governing the dynamics is changed into a k+/k−
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Figure 5.21 – Same caption as in figure 5.20, but now for s2 and s3, Rez = 43.188. The
third-order saddle point criterion is applied with respect to s2,3 instead of s1,2, in order
to determine the three regions (a), (b) and (c).
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Summary of the procedure

The different steps required to apply the criterion are summarized as follows:

1) The double saddle point is identified, using a Newton–Raphson iteration with the
four real-valued constraints ∂kω = 0, ∂kkω = 0, satisfied by adjustment of k and two
real control parameters.

2) The different derivatives appearing in (5.40) are computed. The dispersion rela-
tion is evaluated using its definition as determinant of the eigenvalue problem
D(k, ω;χ) = det(A1 − λI). Finite differences can be used to approximate the deriva-
tives.

3) Frontiers are straightforwardly computed using (5.44)–(5.45).

4) The three spatial branches coalescing at the double saddle point are calculated, using
Newton iteration to find k as a function of ω. Each branch is identified as a k+ or a
k−.

5) In each of the three domains defined in 3) crossed by the two critical curves, the
nature of the saddle points is assessed by following their associated k-branches. Only
one calculation per critical curve and domain is necessary since the type of a saddle
point is unchanged within a domain.

6) The absolute instability threshold is given by the lower critical curve associated to a
pinch point, in each domain.

Discussion

Though there are many steps, calculations are not expensive. The aim of this criterion
is, first and foremost, to provide a better understanding of the dispersion relation in the
vicinity of third-order saddle points. It assigns a domain of validity to each saddle point,
which cannot be obtained otherwise because of prohibitive computational effort. Indeed,
the other approach would be to follow the spatial branches of each saddle point on a
grid in parameter space, but this is impractical for large parameter spaces.

The weakness of this approach is evident because of the use of asymptotic techniques:
it is only valid in the neighbourhood of the double saddle point. In figures 5.20 and 5.21,
the criterion was successfully applied though at distances ∆e ∼ 0.03 and ∆ReΩ ∼ 10
from χ0, which represent a few percent of the respective ranges of e and ReΩ. In practice,
when many parameters are varied and several saddle points potentially result from
pinching, systematic computations of the spatial branches seem inevitable. Between 100
and 200 tests were performed to build confidence in the parametric analysis presented
in this chapter.

5.7.2 Multiplicity of saddle points

To obtain the critical curves of each m, many saddle points were followed in param-
eter space, and many tests were performed to check whether the pinching criterion was
satisfied or not. In figure 5.22, we show isocontours of the growth rate as a function of
complex wanumber for −2 ≤ m ≤ 2 to illustrate the multiplicity of saddle points for
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each m. All the saddle points denoted with a white dot were systematically tracked in
parameter space, and tested with respect to the causality principle.

k
i

kr

-8

-7

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

s1
s2

s3

s4

(a)

k
i

kr

-8

-7

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8
-0.1

0

0.1

0.2

0.3

0.4

0.5

s2
s3

s4

s1

(b)

k
i

kr

-8

-7

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

s1
s2

s3

(c)

k
i

kr

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

s1

s2

s3

(d)

k
i

kr

-6

-5

-4

-3

-2

-1

0

1

2

1 2 3 4 5 6 7 8
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

s1 s2

(e)

Figure 5.22 – Isocontours of ωi = Ωi(k) (with step δωi = 0.02 except when refined) at
criticality (ω0,i = 0) for (a) m = 0, e = 0.3075, Rez = 60, ReΩ = 472.24, (b) m = 1,
e = 0.3, Rez = 30, ReΩ = 305.79, (c) m = −1, e = 0.3, Rez = 30, ReΩ = 272.79,
(d) m = 2, e = 0.2, Rez = 6.29, ReΩ = 187.84, (e) m = −2, e = 0.2, Rez = 12.43,
ReΩ = 274.08.
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Figure 5.22(a) and 5.22(b) show a striking similarity between the dispersion relations
of modes m = 0 and m = 1, explaining the close stability properties reported earlier in
this chapter. The spatio-temporal dynamics of mode m = −1 is governed by only one
pinch point, well separated from a large number of spurious saddle points in the range
0 < kr < 1. For modes m = ±2, the maps show two pinch points sharing one spatial
branch. The pinch point of larger temporal growth rate varies depending on the control
parameters. Unlike for m = 0, 1, the pinch points have equal temporal growth rate for
well separated values of kr, so the associated mode wavelength varies discontinuously
upon switching critical saddle point.

5.7.3 Complete critical surfaces

Continuation was applied with respect to both e and Rez to define the critical surface
separating regions of convective and absolute instability, for each −2 ≤ m ≤ 2. The
results are shown in figure 5.23, and associated critical quantities k0,r, k0,i, ω0,r are
plotted in figures 5.24, 5.25 and 5.26. The main results were already stated in §5.4 but
curves were not shown for m 6= 0, and only with respect to e for m = 0.

Critical azimuthal Reynolds number ReΩ

The dots and dashed lines in figure 5.23 indicate a change of critical saddle point for
the same value of m. For all m, the critical ReΩ decreases with e for moderate eccentric-
ities before increasing when e approaches one. The effect ot Rez is always stabilizing.

Critical absolute axial wavenumber k0,r

On figure 5.24, the discontinuity in absolute wavelength for |m| = 2 is easily visual-
ized. We notice distinct behaviours on each side of the discontinuity for m = 0, 1: when
e . 0.3, k0,r decreases with Rez whereas it increases for e & 0.3. For large values of e,
k0,r increases for all m, because the available space in the ‘small gap’ (θ = π) decreases.

Critical absolute spatial growth rate −k0,i

On figure 5.25, we notice that the spatial growth rate associated with absolute in-
stability is of the same order for m = 0,±1, larger for m = 2, and negative for m = −2
at low values of Rez (the wavepacket propagates upstream in the convectively unstable
régime).

Critical absolute frequency ω0,r

The evolution of ω0,r resembles that of k0,i. For m = −1,−2, negative absolute
frequency indicates upstream propagation of the wave under the stationary front of the
wavepacket.
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Figure 5.23 – Critical ReΩ vs. e and Rez for (a) m = 0, (b) m = 1, (c) m = −1, (d)
m = 2, (e) m = −2. Dots and dashed lines indicate a change of critical saddle point.
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Figure 5.24 – Critical k0,r vs. e and Rez for (a) m = 0, (b) m = 1, (c) m = −1, (d)
m = 2, (e) m = −2. Dots and dashed lines indicate a change of critical saddle point.
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Figure 5.25 – Critical k0,i vs. e and Rez for (a) m = 0, (b) m = 1, (c) m = −1, (d)
m = 2, (e) m = −2. Dots and dashed lines indicate a change of critical saddle point.
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Figure 5.26 – Critical ω0,r vs. e and Rez for (a) m = 0, (b) m = 1, (c) m = −1, (d)
m = 2, (e) m = −2. Dots and dashed lines indicate a change of critical saddle point.
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5.7.4 Helical modes at criticality

In this subsection, we describe the helical modes at criticality for Rez = 60, for
comparison with m = 0, discussed in §4.2.5. Specific values of e and ReΩ corresponding
to figures 5.27 and 5.28 are given in table 5.3.

(a) (b) (c)

m e ReΩ e ReΩ e ReΩ

1 0.2 560.41 0.4 509.21 0.7 316.83
−1 0.2 537.81 0.4 460.11 0.7 331.85

2 0.505 488.41 0.6 396.83 0.7 339.52
−2 0.5 491.70 0.6 402.57 0.7 381.40

Table 5.3 – Parameter values for plots in figures 5.27 and 5.28.

Despite significant distortion due to eccentricity, the helical structures visually match
their associated pseudo-azimuthal wavenumber given by m. For moderate eccentricity,
modes m = 1 and m = 2 are localized in the diverging gap region, in the same fashion
as m = 0 (see figure 5.11). The mode shape is particularly distorted in this region.
For e = 0.7, all the modes have similar shapes, and are localized in the vicinity of the
inner cylinder. Indeed, as e approaches one, the equivalent clearance of the Couette-
like part of the flow becomes smaller and smaller, as indicated in §4.2.5. In the limit
e→ 1, the flow would be locally similar to a plane Couette-like flow in the vicinity of the
inner cylinder, with φ as the streamwise slowly-varying direction. In this approximation,
m would become a continuous wavenumber, which would explain why the shape and
stability properties of the critical modes are similar when e is close to one.
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(a) (b) (c)

Figure 5.27 – Same caption as figure 5.11 but for m = 1 (top) and m = −1 (bottom) at
Rez = 60. Values of e and ReΩ at criticality are given in table 5.3.
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(a) (b) (c)

Figure 5.28 – Same caption as figure 5.11 but for m = 2 (top) and m = −2 (bottom) at
Rez = 60. Values of e and ReΩ at criticality are given in table 5.3.



Chapter 6

Conclusions and future work

In this last chapter, we summarize the main results obtained in chapters 4 and 5,
and suggest possible directions for future work.

6.1 Conclusions

In the present work, we have studied the combined effects of eccentricity and axial
flow on the linear stability properties of the flow between two infinite cylinders, the outer
one being fixed and the inner one rotating. This analysis complements previous studies
which have considered the effects of eccentricity and axial flow separately. It is, to the
author’s knowledge, the first theoretical analysis taking the two effects into account
simultaneously. Some experimental results dating from the seventies can be found in
the literature, but they are restricted to the convective régime of the instability.

The eccentric Taylor–Couette–Poiseuille flow can be used to model the annular flow
of mud between the drillstring and the wellbore in oil-well drilling operations. This flow
has several engineering functions among which carrying the rock cuttings out of the well.
The drillstring is locally eccentric with respect to the well because of the flexibility of
the drillstring. Other applications of this flow have been identified, such as high-speed
journal bearings.

A pseudospectral method has been implemented to solve the incompressible Navier–
Stokes equations and compute the steady, axially invariant basic-flow solutions. The
method is based on a conformal mapping of the eccentric annular domain allowing
a Fourier–Chebyshev decomposition of the flow variables. The same decomposition has
been used to discretize the normal modes, solutions of the linearized Navier–Stokes equa-
tions. A novel reduction method has been implemented to simplify greatly the eigenvalue
problem associated with the discretized set of equations. There are four nondimensional
control parameters: the eccentricity, e, the radius ratio, η, and the azimuthal and axial
Reynolds numbers, ReΩ and Rez.

Though many results were already available regarding basic flow solutions, we re-
call some important properties. In particular, when eccentricity is low, the crossflow
components resemble a deformed circular Couette flow, whereas for large enough e
(e & 0.2 − 0.3), a large recirculation zone develops in the wide gap. The separation is

129
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caused by a strong adverse pressure gradient in the diverging gap. In the vicinity of
the inner cylinder, the flow remains similar to a Couette flow, but with an ‘equivalent’
clearance scaling visually with the smallest gap width. The axial flow is driven by a
pressure gradient so it is approximately parabolic in the pseudo-radial direction. How-
ever, because of distortion by the crossflow components, the maximum axial velocity
does not occur at the widest gap location. The forces on the inner cylinder are such
that there is no stable position, even when the cylinders are concentric, which is the
only equilibrium position. As a result, complex motion of the inner cylinder is to be
expected, with possible fluid-structure interaction.

6.1.1 Temporal stability properties

In the temporal stability analysis performed in chapter 4, we have shown that adding
eccentricity to the Taylor–Couette–Poiseuille flow does not destabilise any new family
of modes. Indeed, the modes with the largest temporal growth rates are always pseudo-
toroidal or pseudo-helical vortices such as those found in the concentric case, but de-
formed by eccentricity. As in the concentric case, right-handed helical modes are always
more stable than left-handed helical modes when axial flow is added. In the concentric
case, the modes have an azimuthal angular order m because of the axisymmetry of the
basic flow. When e 6= 0, we chose to label the modes with a pseudo-azimuthal wavenum-
ber m obtained by continuation from the concentric case. For any given eccentricity, the
critical value of m increases with Rez. In other words, pseudo-toroidal vortices give way
to left-handed helical modes of increasing pseudo-azimuthal wavenumber as advection
increases.

The temporal instability threshold, in terms of critical ReΩ, usually increases with
axial advection, though a weak destabilising effect has been observed for large enough
Rez in the wide gap case η = 0.5.

For any given value of Rez, increasing the eccentricity always reduces the maximal
temporal growth rate, and this can be considered to be the main result of the temporal
stability analysis. This stabilising effect of eccentricity has been interpreted as the con-
sequence of the decrease in azimuthal volume flux in the basic flow, as the recirculation
region becomes larger and larger with increasing e. The instability mechanism being cen-
trifugal, it is therefore necessary to rotate the inner cylinder faster when the Couette-like
part of the flow has a smaller radial extent. Axial advection tends to destabilise modes
of higher pseudo-azimuthal wavenumber m. However, once Rez is large enough, the
temporal growth rate associated with a given m only varies with ReΩ, confirming the
centrifugal nature of the instability mechanism.

The axial wavenumber of the critical mode is always of the order of the clearance,
and the phase speed is always of the order of (usually somewhat larger than) the mean
axial velocity.

Results obtained in the large- and the small-gap cases are very similar. The main
difference is that no destabilising effect of Rez has been observed for the small gap
case. Another qualitative difference is that the stability properties of helical modes with
adjacent m are very similar for larger η, hence the switchover from one critical value
of m to the next occurs more rapidly as Rez increases. This effect can be interpreted
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by considering the limit η → 1, where curvature effects become negligible. In this limit,
the circular Couette flow tends to a plane Couette flow, and m becomes a continuous
wavenumber, explaining the similarity between the different helical modes when η is
close to one.

Finally, comparisons with experimental results from the literature show good agree-
ment with our theoretical predictions, despite small discrepancies which we attribute to
the limited aspect ratio of the apparatus.

6.1.2 Absolute instabilities

The effect of eccentricity on absolute instabilities in the Taylor–Couette–Poiseuille
flow has been investigated in chapter 5 for the wide gap case η = 0.5. Fives modes of
instability have been considered, m = −2,−1, 0, 1, 2, thus including the most temporally
unstable modes up to Rez = 50. Throughout the range of Rez and e considered in the
present study, the mode with the largest absolute growth rate is always the pseudo-
toroidal vortex flow corresponding to m = 0. Dominance of left-handed helical modes
over right-handed ones does not always hold for the absolute growth rate.

Increasing Rez tends to hinder absolute instability because axial flow sweeps pertur-
bations away downstream.

The effect of eccentricity is more complex and the most significant result of the
absolute instability analysis is that eccentricity can be destabilising for large enough Rez,
this occuring in the range of moderate eccentricities 0.3 . e . 0.6. In this case, the
critical mode has a complex structure, and the production of kinetic energy peaks at
a well-defined region of the annulus, located in the diverging gap region. For e below
∼ 0.3, eccentricity has a weak stabilising effect, while for e close to one, the stabilising
effect is more pronounced.

The instability mechanism is purely centrifugal and the critical-mode axial wave-
length and radial extent are controlled by the small gap region. When eccentricity is
close to one, the effect of Rez on the absolute instability threshold becomes weaker. To
interpret this effect, we noted that the region where centrifugal effects dominate is local-
ized in the vicinity of the inner cylinder whereas axial velocity peaks far from the inner
cylinder, somewhere in the wide gap region. This spatial separation between the region
of effective amplification of the perturbation and the region of effective axial advection
may explain the weak sensitivity to Rez when the cylinders are nearly touching.

Overall, many valid saddle points were found for the different instability modes,
and the critical pinch point switches upon varying the flow parameters. The physical
interpretation of the switchovers of saddle point occuring near e ≈ 0.3 for m = 0 is
unclear, because the saddle points are associated with modes having almost the same
spatio-temporal properties. Indeed, when they swap, they almost collide into ‘double
saddle points’ or third-order saddle points, at which the two saddle points become
indistinguishable.

A useful rule of thumb can be deduced from this work: the rotational velocity needs
to be approximately one order of magnitude greater than the axial velocity of the inner
cylinder to trigger an absolute instability.
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In the last section of chapter 5, we have theoretically studied the case of two colliding
saddle points and derived a criterion to predict the nature of these saddle points, e.g.
valid versus invalid, when control parameters are varied in the vicinity of the ‘double
saddle point’. The criterion was successfully applied to two double saddle points of the
dispersion relation associated with m = 0. Despite limited practical interest because
of its local nature, the criterion provides valuable information regarding this unusual
situation.

6.2 Possible future work

We have a number of suggestions for future work regarding experimental, theoreti-
cal/numerical and applied aspects.

6.2.1 The need for more experimental data

The only experimental results regarding this flow were obtained more than forty
years ago, and showed great sensitivity to the type of inlet of the apparatus and in the
criterion used to identify the instability. Moreover, as noted earlier, the limited aspect
ratio of the apparatus may have been responsible for deviations from our theoretical
results. Finally, only the convective régime of the instability has been investigated ex-
perimentally, probably for the simple reason that the concept of absolute instability
was unknown to the experimentalists when they made their observations. Indeed, the
concept of absolute instabilities became widely known in the field of fluid mechanics a
decade later. For these reasons, it seems crucial to carry out more experiments, prefer-
ably using a longer aspect-ratio apparatus. Experimental absolute instability thresholds
remain to be established and the effect of inlet boundary condition needs to be clarified
in the presence of eccentricity. The distance from the inlet necessary to reach order one
amplitude could be compared with the theoretical scalings obtained by Couairon and
Chomaz (1997a), successfully applied to axisymmetric Taylor–Couette–Poiseuille flow
(Couairon and Chomaz, 1997b). It would also be interesting to reproduce the conditions
that lead to the observation of the ‘double-vortex system’ and draw firmer conclusions
building on our discussion in §4.4.5.

6.2.2 Further linear and nonlinear dynamics

Linear stability properties

• The modal stability properties at very high axial Reynolds number (say Rez & 103)
remain to be investigated. It would be interesting to assess the potential impor-
tance of ‘Sp-modes’ found by Merzari et al. (2008) in eccentric annular Poiseuille
flow and study the competition with centrifugal and Tollmien–Schlichting-like
modes, in the spirit of the analysis of Cotrell and Pearlstein (2004) for the ax-
isymmetric case. Such an endeavour is expected to lead to significant numerical
difficulties though, because the three families of modes have quite different struc-
tures.
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• The global linear stability properties in the case where the eccentricity is slowly
varying along the axis could be considered (Huerre, 2000). Such an analysis would
be relevant to oil-well drilling applications, where the drillstring deflection has,
for instance, an axial length scale much larger than the well diameter. Interesting
results may arise from the fact that the variation of the absolute growth rate with
respect to eccentricity is non-monotonic.
• A structural sensitivity analysis (Giannetti and Luchini, 2003) could be used to

gain more information about the feedback mechanism responsible for enhanced
absolute instability in the moderate eccentricity case. This would potentially help
explain the changes of critical saddle point for e ∼ 0.3.
• The importance of non-modal effects has not been assessed here, because they are

expected to be weak for the range Rez . 102 of our analyses. However, a recent
study Heaton (2008) has shown that they become important at larger advection
rates in the axisymmetric configuration and it may be interesting to examine the
effects of eccentricity.

Nonlinear dynamics

• A weakly nonlinear analysis in the vicinity of critical conditions would tell us if
the transition is supercritical or subcritical. A particularly interesting case occurs
when two modes become critical at the same time. ‘Unfolding’ the bifurcation (here
double-Hopf) in such cases would be particularly challenging from a numerical
viewpoint, and this type of approach has seldom been applied to flows of such
complexity (see however Avila et al. (2006) and Meliga et al. (2009)).
• Fully nonlinear analyses could be carried out after significant modification of our

code. Using three-dimensional DNS on a finite axial domain with periodic bound-
ary conditions would yield the nonlinear wave solutions for unstable configurations.
This would be particularly useful for comparisons with experimental results. Using
a much longer axial domain (without periodic boundary conditions), any nonlin-
ear state could in principle be simulated: steady, periodic, quasi-periodic or even
turbulent.
• Another approach would be to implement Newton–Raphson iteration to solve for

nonlinear wave patterns and their phase speed. Using this approach, one could
follow potentially unstable solutions and build bifurcation diagrams by continua-
tion. This method would also yield the nonlinear dispersion relation between the
real frequency, real wavenumber and amplitude of the saturated waves. With the
knowledge of the complete linear and nonlinear dispersion relations for a range of
eccentricities, it would be possible to investigate the existence of nonlinear global
modes in the case of slowly varying eccentricity, using the theory of Pier and Huerre
(2001). In this situation, the local linear stability properties of the basic flow would
vary along the axis, with regions of space being potentially stable, convectively un-
stable or absolutely unstable. For high values of the rotational Reynolds number,
pockets of absolute instability would exist and nonlinear synchronized states lead-
ing to a sharp front are expected to emerge (Pier et al., 1998). The properties of
such ‘elephant modes’ (Pier and Huerre, 2001) can be readily derived from the
linear and nonlinear dispersion relations and then checked using direct numeri-
cal simulations. A different type of nonlinear synchronized structures called soft
modes, or ‘hat modes’, theoretically predicted by Pier and Huerre (1996), might
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also be found in this flow when axial advection is weak. Hat modes have been
obtained for a one-dimensional model equation, but have yet to be observed in
any real flows so far. It would thus be particularly exciting to confirm the physical
relevance of hat modes by testing the theory on the present configuration.

6.2.3 Towards a higher-fidelity model for drilling applications

A different research path could be followed if one focuses on the oil-well drilling ap-
plication. Indeed, even though the assumption of constant eccentricity through the well
is unrealistic for this application, the assumption of a Newtonian fluid is probably an
even bolder one, which may need to be relaxed first. Drilling muds are non-Newtonian
fluids with complex rheological properties, which are expected to lead to different insta-
bility thresholds and mechanisms (Escudier et al., 2002, Chawda and Avgousti, 1996,
Dris and Shaqfeh, 1998). However, adapting the code to take into account nonlinear
rheological properties is expected to be a non-trivial task.

Another aspect would be taking into account the coupled dynamics of the inner cylin-
der and fluid. In practice, the centre of the inner cylinder is not held fixed, but moves
according to the mechanical and hydrodynamic forces which act on it. A proper mod-
elling of fluid-structure interaction and the handling of a time-dependent fluid domain
would be required. Major difficulties would also arise from the fact that eccentricities
close to one occur in practice. Simulating the coupled dynamics would be a very chal-
lenging problem, but one which might be rendered feasible by assuming a simplified
motion, for example a circular orbit, as in Feng et al. (2007) and Feng and Fu (2007).
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Pseudospectral method

A.1 Fourier–Galerkin decomposition

Let g be a 2π-periodic function over R, then

g(φ) =
∞∑

k=−∞

ĝkek(φ) (A.1)

is its Fourier series representation. For numerical purposes, the series is truncated as

g(φ) ≈ gK(φ) =
∑

|k|≤K

ĝkek(φ). (A.2)

The advantage of a spectral approach such as this is that, for smooth g, it allows approx-
imation with convergence faster than any negative power of K (Canuto et al., 1988).
This may be contrasted with local approximations, such as finite differences, finite vol-
umes or finite elements, which achieve only algebraic convergence with the discretization
step.

Other than rapid convergence, Fourier decomposition is also very efficient for differ-
entiation. Thus, the derivative of (A.2) of order p gives

ĝ
(p)
k = (ik)pĝk, |k| ≤ K, (A.3)

whose calculation requires only O(K) arithmetic operations.

If g is real-valued, then
ĝ−k = ĝ⋆

k, (A.4)

with ‘⋆’ denoting complex conjugation. The Hermitian symmetry allows us to write

gK(φ) = a0 +
K∑

k=1

(ak cos kφ+ bk sin kφ), (A.5)

with a0 = ĝ0 and ak = 2ĝk,r, bk = −2ĝk,i (1 ≤ k ≤ K), where subscripts ‘r’ and ‘i’ denote
real and imaginary parts. This allows more efficient numerical treatment of real fields,
such as those of the basic flow.
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Products of two functions of φ are treated using a pseudospectral approach (see e.g.
Canuto et al. (1988), Peyret (2002)). Given the Fourier coefficients of the functions,
zero-padded up to a total of N ′ using Orszag (1971)’s ‘3/2 rule’ to avoid aliasing, FFT
is used to compute the functions at the discrete points,

φi =
2πi
N ′

, 0 ≤ i ≤ N ′ − 1. (A.6)

The product is then taken in ‘physical’ space and inverse FFT employed to return to
‘spectral’ space. The resulting Fourier coefficients of the product are then truncated to
|k| ≤ K. This approach is more efficient than taking convolutions in ‘spectral’ space.

A.2 Chebyshev collocation

Let h be a smooth function defined on [−1, 1]. It can be represented as a combination
of Chebyshev polynomial as

hM(ξ) =
M∑

j=0

ĥjTj(ξ). (A.7)

This provides an M th degree polynomial approximation and, like the Fourier represen-
tation, has the advantage of spectral accuracy.

Let ξi be the set of Gauss–Lobatto collocation points on −1 ≤ ξ ≤ 1 given by

ξi = − cos
iπ

M
, 0 ≤ i ≤M. (A.8)

and hi = h(ξi) denote the values at these points. An M th degree polynomial approxi-
mation which agrees with h at the collocation points is

hM(ξ) =
M∑

j=0

hjqj(ξ), (A.9)

where

qj(ξ) =
M∏

i=0
i6=j

ξ − ξi

ξj − ξi

, (A.10)

is the Lagrange interpolation polynomial of collocation point ξj.

Differentiating (A.9) gives

h′
M(ξ) =

M∑

j=0

hjq
′
j(ξ). (A.11)

Evaluating this relation at the collocation points, a linear relation appears between the
coefficients hj and h′

i ≡ h′(ξi)

h′
i =

M∑

j=0

hjq
′
j(ξi). (A.12)
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Let h ≡ (h0, h1 . . . , hM)T and h′ ≡ (h′
0, h

′
1, . . . , h

′
M)T then (A.12) can be written as

h′ = Dh, with the differentiation matrix D ≡ (d(1)
ij ) = (q′

j(ξi)) given by

D =





d
(1)
ij =

c̄i

c̄j

(−1)i+j

(ξi − ξj)
, 0 ≤ i, j ≤M, i 6= j,

d
(1)
ii = − ξi

2(1− ξ2
i )
, 0 < i < M,

d
(1)
00 = −d(1)

MM =
2M2 + 1

6
,

(A.13)

where

c̄j =





2 if j = 0 or j = M,

1 if 0 < j < M.
(A.14)

Higher-order derivatives h(p) ≡ (h(p)
0 , h

(p)
1 , . . . , h

(p)
M )T , with h

(p)
j ≡ h

(p)
M (ξj) for any integer

p > 2, are then obtained as

h(p) = Dh(p−1) = D2h(p−2) = · · · = Dph, (A.15)

where Dp ≡ (d(p)
ij ) is the p-order derivation matrix.

Roundoff errors

The Navier–Stokes equations are second order in space, so only D and D2 are needed.
In principle, if one considers the differentiation of a constant function at any order p,
the following relation must hold

M∑

j=0

d
(p)
ij = 0, i = 0, . . . ,M. (A.16)

However, because of roundoff errors, this relation is not satisfied in practice. To avoid this
source of inaccuracy, the method recommended by Bayliss et al. (1995) is followed. First,
D is calculated from analytical formulas (A.13), but the diagonal terms are replaced by

d
(1)
ii = −

M∑

j=0
j 6=i

d
(1)
ij = 0, i = 0, . . . ,M, (A.17)

using (A.16). The second order derivation matrix is then calculated as the product D2,
before replacing the diagonal entries with

d
(2)
ii = −

M∑

j=0
j 6=i

d
(2)
ij = 0, i = 0, . . . ,M. (A.18)

The derivation matrices being full, large roundoff errors may occur during matrix vector
products or resolution of linear systems, for large values of M . However, in the present
study, M + 1 is typically 16, and no larger than 64, so the approach is fully valid.
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A.3 Matrix form of linear operators for real fields

In-plane gradient (3.18a), divergence (3.18b) and scalar Laplacian (3.19) terms can
be expressed using the truncated Fourier–Chebyshev decomposition (3.20). To do this,
Fourier decomposition of scale factors µξ and µφ are needed. Both metric coefficients
are proportional to

√
J so

µξ = µ̂0 + µ̂1(eiφ + e−iφ), µφ = ζµξ, (A.19)

with

µ̂0 =
1 + γ2ρ2

1− γ2
, µ̂1 =

γρ

1− γ2
, (A.20)

and

ζ =
β − 1

2ρ
, ρ = 1 +

1
2

(β − 1)(1 + ξ). (A.21)

Factors A and B and can also be Fourier decomposed, and (3.17) yields

Âk = ζµ̂k − ∂ξµ̂k, B̂k = ζikµ̂k. (A.22)

The only non-zero terms are

Â0 = ζµ̂0 − ∂ξµ̂0, Â−1 = Â1 = ζµ̂1 − ∂ξµ̂1, B̂1 = −B̂−1 = iζµ̂1, (A.23)

with

∂ξµ̂0 =
γ2ρ(β − 1)

1− γ2
, ∂ξµ̂1 =

γ(β − 1)
2(1− γ2)

. (A.24)

Assume for now that K =∞ to express the Fourier components of (3.18a), (3.18b)
and (3.19) for any integer k. Despite linearity of these terms with respect to the flow
variables, product with the metric coefficients lead to convolution sums:

Gradient

Considering one Fourier harmonic k

(̂Dξf)k = ̂(µξ∂ξf)k =
∞∑

l=−∞

µ̂l∂ξf̂k−l

= µ̂0∂ξf̂k + µ̂1

[
∂ξf̂k+1 + ∂ξf̂k−1

]
, (A.25)

(̂Dφf)k = ̂(ζµξ∂φf)k = iζ
∞∑

l=−∞

µ̂l(k − l)f̂k−l

= iζ
(
µ̂0kf̂k + µ̂1

[
(k + 1)f̂k+1 + (k − 1)f̂k−1

])
, (A.26)

then using Chebyshev collocation for 0 ≤ i, j ≤M (and Einstein summation convention)

(̂Dξf)ki = µ̂0id
(1)
ij f̂kj + µ̂1id

(1)
ij

[
f̂(k+1)j + f̂(k−1)j

]
, (A.27)

(̂Dφf)ki = iζ
(
µ̂0ikf̂ki + µ̂1i

[
(k + 1)f̂(k+1)i + (k − 1)f̂(k−1)i

])
. (A.28)
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Divergence

Consider one Fourier harmonic k

̂(∇⊥u⊥)k = (̂Dξu)k + (̂Dφv)k + (̂Au)k − (̂Bv)k. (A.29)

The first two terms in this equation are given by (A.25) and (A.26) for f ≡ u, v. The
last two terms are

(̂Af)k =
∞∑

l=−∞

Âlf̂k−l

= Â0f̂k + Â1(f̂k−1 + f̂k+1), (A.30)

(̂Bf)k =
∞∑

l=−∞

B̂lf̂k−l

= B̂1(f̂k−1 − f̂k+1), (A.31)

then using Chebyshev collocation for 0 ≤ i ≤M

(̂Af)ki = Â0if̂ki + Â1i(f̂(k−1)i + f̂(k+1)i), (A.32)

(̂Bf)ki = B̂1i(f̂(k−1)i − f̂(k+1)i). (A.33)

Scalar Laplacian

The scalar Laplacian is given by (3.19)

∇2
⊥ ≡ D2

ξ +D2
φ + (ADξ −BDφ)

= µ2
ξ(∂

2
ξξ + ζ∂ξ + ζ2∂2

φφ). (A.34)

The Fourier decomposition of µ2
ξ is

µ2
ξ =

[
µ̂2

0 + 2µ̂2
1

]
+ 2µ̂0µ̂1(eiφ + e−iφ) + µ̂2

1(e
2iφ + e−2iφ), (A.35)

so for a scalar field f

(̂∇2
⊥f)k =

∞∑

l=−∞

(̂µ2
ξ)l

(∂2
ξξ + ζ∂ξ − ζ2(k − l)2)f̂k−l

=
[
µ̂2

0 + 2µ̂2
1

]
(∂2

ξξ + ζ∂ξ − ζ2k2)f̂k

+ 2µ̂0µ̂1

[
(∂2

ξξ + ζ∂ξ − ζ2(k − 1)2)f̂k−1 + (∂2
ξξ + ζ∂ξ − ζ2(k + 1)2)f̂k+1

]

+ µ̂2
1

[
(∂2

ξξ + ζ∂ξ − ζ2(k − 2)2)f̂k−2 + (∂2
ξξ + ζ∂ξ − ζ2(k + 2)2)f̂k+2

]
. (A.36)

Using Chebyshev collocation for 0 ≤ i, j ≤M
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(̂∇2
⊥f)ki =

[
µ̂2

0i + 2µ̂2
1i

] [
(d(2)

ij + ζid
(1)
ij )f̂kj − ζ2

i k
2f̂ki

]

+ 2µ̂0iµ̂1i

[
(d(2)

ij + ζid
(1)
ij )f̂(k−1)j − ζ2

i (k − 1)2f̂(k−1)i

]

+ 2µ̂0iµ̂1i

[
(d(2)

ij + ζid
(1)
ij )f̂(k+1)j − ζ2

i (k + 1)2f̂(k+1)i

]

+ µ̂2
1i

[
(d(2)

ij + ζid
(1)
ij )f̂(k−2)j − ζ2

i (k − 2)2f̂(k−2)i

]

+ µ̂2
1i

[
(d(2)

ij + ζid
(1)
ij )f̂(k+2)j − ζ2

i (k + 2)2f̂(k+2)i

]
. (A.37)

Let now ψ be any of the following linear operators f 7→ g ∈
{Dξf,Dφf, Af,Bf,∇2

⊥f}. Relations (A.27), (A.28), (A.32), (A.33) and (A.37) between
ĝki and f̂ki are infinite sets of equations. Assume now that |k| ≤ K, then these relations
become linear systems with (M + 1)(2K + 1) equations and unknowns, which can be
represented each by a square matrix M . Such matrices are needed for basic flow compu-
tations, as explained later in §3.3.1, so from now on, f will be a real field. Because f and
g are both real-valued, they have Hermitian symmetry and only the Fourier coefficients
with k ≥ 0 need be stored (see Appendix A.1). Moreover, the zeroth-order Fourier co-
efficient is real. Therefore, the coefficients f̂ki and ĝki will be stored in two real-valued
column-vectors f and g as follows

f ≡ (̂f0,r, f̂1,r, . . . , f̂K,r, f̂1,i, . . . , f̂K,i)T , g ≡ (ĝ0,r, ĝ1,r, . . . , ĝK,r, ĝ1,i, . . . , ĝK,i)T ,

where each f̂k,r/i and ĝk,r/i is decomposed on the collocation points as

f̂k,r/i ≡ (f̂k0,r/i, f̂k1,r/i, . . . , f̂kM,r/i), ĝk,r/i ≡ (ĝk0,r/i, ĝk1,r/i, . . . , ĝkM,r/i).

Given these conventions, relations (A.27), (A.28), (A.32), (A.33) and (A.37) can be
written as Mf = g, with a four-block matrix M

M =

(
Mrr Mri

Mir Mii

)
, (A.38)

and block dimensions

Mrr : (M + 1)(K + 1)× (M + 1)(K + 1)

Mri : (M + 1)(K + 1)× (M + 1)K

Mir : (M + 1)K × (M + 1)(K + 1)

Mii : (M + 1)K × (M + 1)K.

Each of these blocks is composed of square sub-blocks of size M + 1. Each line of each
system of equations can be written as

ĝki,p =
∑

q

∑

l

∑

j

Mpq[k, l; i, j]f̂lj,q, (A.39)

where p, q ∈ {r, i}, 0 ≤ i, j ≤M and
• if p = q = r:

0 ≤ k, l ≤ K, Mpq[k, l; i, j] ≡ Mrr[i+ k(M + 1), j + l(M + 1)],
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• if p = r & q = i

0 ≤ k ≤ K, 1 ≤ l ≤ K, Mpq[k, l; i, j] ≡ Mri[i+ k(M + 1), j + (l − 1)(M + 1)],

• if p = i & q = r

1 ≤ k ≤ K, 0 ≤ l ≤ K, Mpq[k, l; i, j] ≡ Mir[i+ (k − 1)(M + 1), j + l(M + 1)],

• if p = q = i

1 ≤ k, l ≤ K, Mpq[k, l; i, j] ≡ Mii[i+ (k − 1)(M + 1), j + (l − 1)(M + 1)].

Note that matrix entries labelling starts at Mpq[0, 0], to match pointer convention in
C++.

Gradient

• Let g ≡ Dξf , then Mri = 0, Mir = 0, whereas Mrr and Mii are block-tridiagonal

Mrr[k, l; i, j] =





µ̂0id
(1)
ij if l = k,

µ̂1id
(1)
ij if l = k − 1, k + 1 and (k, l) 6= (0, 1),

2µ̂1id
(1)
ij if (k, l) = (0, 1),

0 otherwise,

(A.40)

Mii[k, l; i, j] =





µ̂0id
(1)
ij if l = k,

µ̂1id
(1)
ij if l = k − 1, k + 1,

0 otherwise.

(A.41)

• Let g ≡ Dφf , then Mrr = 0, Mii = 0, whereas Mri and Mir are block-tridiagonal

Mri[k, l; i, j] =





−ζiµ̂0ilδij if l = k,

−ζiµ̂1ilδij if l = k − 1, k + 1 and (k, l) 6= (0, 1),

−2ζiµ̂1iδij if (k, l) = (0, 1),

0 otherwise,

(A.42)

Mir[k, l; i, j] =





ζiµ̂0ilδij if l = k,

ζiµ̂1ilδij if l = k − 1, k + 1,

0 otherwise.

(A.43)

The special case (k, l) = (0, 1) corresponds to the fact that f̂−1 = f̂ ⋆
1 .

Divergence

• Let g ≡ Af , then Mri = 0, Mir = 0, whereas Mrr and Mii are block-tridiagonal
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Mrr[k, l; i, j] =





Â0iδij if l = k,

Â1iδij if l = k − 1, k + 1 and (k, l) 6= (0, 1),

2Â1iδij if (k, l) = (0, 1),

0 otherwise,

(A.44)

Mii[k, l; i, j] =





Â0iδij if l = k,

Â1iδij if l = k − 1, k + 1,

0 otherwise.

(A.45)

• Let g ≡ Bf , then Mrr = 0, Mii = 0, whereas Mri and Mir are block-tridiagonal

Mri[k, l; i, j] =





−ζiµ̂1iδij l = k − 1,

ζiµ̂1iδij l = k + 1 and (k, l) 6= (0, 1),

2ζiµ̂1iδij if (k, l) = (0, 1),

0 otherwise,

(A.46)

Mir[k, l; i, j] =





ζiµ̂1iδij l = k − 1,

−ζiµ̂1iδij l = k + 1,

0 otherwise.

(A.47)

The special case (k, l) = (0, 1) corresponds to the fact that f̂−1 = f̂ ⋆
1 .

Scalar Laplacian

Let g ≡ ∇2
⊥f , then Mri = 0, Mir = 0, whereas Mrr and Mii are block-pentadiagonal

Mrr[k, l; i, j] =





[µ̂2
0i + 2µ̂2

1i](d
(2)
ij + ζid

(1)
ij − l2ζ2

i δij) if l = k and (k, l) 6= (1, 1),

2µ̂0iµ̂1i(d
(2)
ij + ζid

(1)
ij − l2ζ2

i δij) if l = k − 1, k + 1 and (k, l) 6= (0, 1),

µ̂2
1i(d

(2)
ij + ζid

(1)
ij − l2ζ2

i δij) if l = k − 2, k + 2 and (k, l) 6= (0, 2),

4µ̂0iµ̂1i(d
(2)
ij + ζid

(1)
ij − ζ2

i δij) if (k, l) = (0, 1),

2µ̂2
1i(d

(2)
ij + ζid

(1)
ij − 4ζ2

i δij) if (k, l) = (0, 2),

(µ̂2
0i + 3µ̂2

1i)(d
(2)
ij + ζid

(1)
ij − ζ2

i δij) if (k, l) = (1, 1),

0 otherwise,
(A.48)

Mii[k, l; i, j] =





[µ̂2
0i + 2µ̂2

1i](d
(2)
ij + ζid

(1)
ij − l2ζ2

i δij) if l = k and k 6= 1,

2µ̂0iµ̂1i(d
(2)
ij + ζid

(1)
ij − l2ζ2

i δij) if l = k − 1, k + 1,

µ̂2
1i(d

(2)
ij + ζid

(1)
ij − l2ζ2

i δij) if l = k − 2, k + 2,

(µ̂2
0i + µ̂2

1i)(d
(2)
ij + ζid

(1)
ij − ζ2

i δij) if (k, l) = (1, 1),

0 otherwise.

(A.49)

Special cases (k, l) = (0, 1), (0, 2), (1, 1) correspond to the fact that f̂−1 = f̂ ⋆
1 and

f̂−2 = f̂ ⋆
2 .
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Remarks

• Mathematically, the scalar Laplacian is defined as the divergence of the gradient,
as ∇2

⊥ ≡ ∇⊥ · ∇⊥. However, discretizing the gradient and divergence operators
and multiplying the corresponding matrices does not yield the discretized version
of ∇2

⊥, obtained directly from analytical formula (3.19). This can be readily il-
lustrated on a small example. Let f be here a smooth 2π-periodic function, and
consider linear operator ψ such that

g(φ) ≡ ψf(φ) = (1 + 2 cosφ)f ′(φ), (A.50)

h(φ) ≡ ψ2f(φ) = (1 + 2 cosφ)[(1 + 2 cosφ)f ′(φ)]′

= −(2 sinφ+ 2 sin 2φ)f ′(φ) + (3 + 4 cosφ+ 2 cos 2φ)f ′(φ). (A.51)

The following relations hold for the Fourier coefficients of g and h with respect to
those of f

ĝk =i(k − 1)f̂k−1 + ikf̂k + i(k + 1)f̂k+1, (A.52)

ĥk =− (k − 2)(k − 1)f̂k−2

− (k − 1)(2k − 1)f̂k−1

− 3k2f̂k

− (k + 1)(2k + 1)f̂k+1

− (k + 2)(k + 1)f̂k+2. (A.53)

If we write f ≡ (f̂−1, f̂0, f̂1)T , g ≡ (ĝ−1, ĝ0, ĝ1)T and h ≡ (ĥ−1, ĥ0, ĥ1)T , we have
g = Af and h = Bf with

A =



−i 0 0
−i 0 i
0 0 i


 , B =



−3 0 0
−1 0 −1
0 0 −3


 . (A.54)

In this example,

A2 =



−1 0 0
−1 0 −1
0 0 −1


 6= B (A.55)

even though h = ψg. In the same fashion, the metric coefficient µξ is responsible
for the difference between discretized versions of ∇2

⊥ and ∇⊥ · ∇⊥. This has some
important implications for the stability of the projection method explained in
subsection §3.3.1.
• Matrix forms of linear operators ψ : f 7→ g ∈ {Dξf,Dφf, Af,Bf,∇2

⊥f} are also
needed for f a complex scalar field, when dealing with normal modes. In this
case, it is irrelevant to separate real and imaginary parts because of the absence
of Hermitian symmetry. Matrices are easily built using formulas (A.27), (A.28),
(A.32), (A.33) and (A.37).
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Thomas algorithm

Poisson problems (3.33)–(3.34) and (3.37) and Helmholtz problem (3.35) writ-
ten with the Fourier–Galerkin/Chebyshev-collocation method yield block-pentadiagonal
matrices. Each block applies to a given Fourier harmonic evaluated at collocation points.
Given the structure of the matrices, a variant of the Thomas (1949) algorithm efficiently
solves linear systems

Mf = g,

with

M =




B0 C0 CC0 0

A1 B1 C1 CC1

AA2 A2 B2 C2 CC2

. . . . . . . . . . . . . . .
AAN−2 AN−2 BN−2 CN−2 CCN−2

AAN−1 AN−1 BN−1 CN−1

0 AAN AN BN




. (B.1)

Each block of M is of size (M +1)× (M +1). The method is based on classical Gaussian
elimination, or LU factorization

M = LU,

where L and U are lower and upper block-triangular matrices

L =




L0 0

G1 L1

H2 G2 L2

. . . . . . . . .
0 HN GN LN



, U =




U0 E0 F0 0
. . . . . . . . .

UN−2 EN−2 FN−2

UN−1 EN−1

0 UN



, (B.2)

and Ln, Un are of the form

Ln =




0



, Un =


 0

1

1



. (B.3)

In the following, Ln will denote the nth block-row of linear system Mf = g.
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Forward sweep: g̃ ≡ L−1g

• n = 0:
– LU decomposition: B0 = L0U0

– L̃0 ← L−1
0 L0

l.h.s.: U0 ≡ B̃0 = L−1
0 B0, E0 ≡ C̃0 = L−1

0 C0, F0 ≡ C̃C0 = L−1
0 CC0

r.h.s.: g̃0 = L−1
0 g0

• n = 1:
– G1 ≡ A1U

−1
0 . Eliminate A1 with L∗

1 ← L1 − G1L̃0

l.h.s.: B∗
1 = B1 − G1C̃0, C∗

1 = C1 − G1C̃C0, CC∗
1 = CC1

r.h.s.: g∗
1 = g1 − G1g̃0

– LU decomposition: B∗
1 = L1U1

– L̃1 ← L−1
1 L∗

1

l.h.s.: U1 ≡ B̃1 = L−1
1 B∗

1, E1 ≡ C̃1 = L−1
1 C∗

1, F1 ≡ C̃C1 = L−1
1 CC∗

1

r.h.s.: g̃1 = L−1
1 g∗

1

• 2 ≤ n ≤ N − 2:
– Hn ≡ AAnU−1

n−2. Eliminate AAn with L∗
n ← Ln − HnL̃n−2

l.h.s.: A∗
n = An − HnC̃n−2, B∗

n = Bn − HnC̃Cn−2, C∗
n = Cn, CC∗

n = CCn

r.h.s.: g∗
n = gn − Hng̃n−2

– Gn ≡ A∗
nU−1

n−1. Eliminate A∗
n with L∗∗

n ← L∗
n − GnL̃n−1

l.h.s.: B∗∗
n = B∗

n − GnC̃n−1, C∗∗
n = C∗

n − GnC̃Cn−1, CC∗∗
n = CC∗

n = CCn

r.h.s.: g∗∗
n = g∗

n − Gng̃n−1

– LU decomposition: B∗∗
n = LnUn

– L̃n ← L−1
n L∗∗

n

l.h.s.: Un ≡ B̃n = L−1
n B∗∗

n , En ≡ C̃n = L−1
n C∗∗

n , F1 ≡ C̃Cn = L−1
n CC∗∗

n

r.h.s.: g̃n = L−1
n g∗∗

n

• n = N − 1
– HN−1 ≡ AAN−1U

−1
N−3. Eliminate AAN−1 with L∗

N−1 ← LN−1 − HN−1L̃N−3

l.h.s.: A∗
N−1 = AN−1 − HN−1C̃N−3, B∗

N−1 = BN−1 − HN−1C̃CN−3, C∗
N−1 = CN−1

r.h.s.: g∗
N−1 = gN−1 − HN−1g̃N−3

– GN−1 ≡ A∗
N−1U

−1
N−2. Eliminate A∗

N−1 with L∗∗
N−1 ← L∗

N−1 − GN−1L̃N−2

l.h.s.: B∗∗
N−1 = B∗

N−1 − GN−1C̃N−2, C∗∗
N−1 = C∗

N−1 − GN−1C̃CN−2

r.h.s.: g∗∗
N−1 = g∗

N−1 − GN−1g̃N−2

– LU decomposition: B∗∗
N−1 = LN−1UN−1
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– L̃N−1 ← L−1
N−1L

∗∗
N−1

l.h.s.: UN−1 ≡ B̃N−1 = L−1
N−1B

∗∗
N−1, EN−1 ≡ C̃N−1 = L−1

N−1C
∗∗
N−1

r.h.s.: g̃N−1 = L−1
N−1g

∗∗
N−1

• n = N
– HN ≡ AANU−1

N−2. Eliminate AAN with L∗
N ← LN − HN L̃N−2

l.h.s.: A∗
N = AN − HN C̃N−2, B∗

N = BN − HN C̃CN−2

r.h.s.: g∗
N = gN − HN g̃N−2

– GN ≡ A∗
NU−1

N−1. Eliminate A∗
N with L∗∗

N ← L∗
N − GN L̃N−1

l.h.s.: B∗∗
N = B∗

N − GN C̃N−1

r.h.s.: g∗∗
N = g∗

N − GN g̃N−1

– LU decomposition: B∗∗
N = LNUN

– L̃N ← L−1
N L∗∗

N

l.h.s.: UN ≡ B̃N = L−1
N B∗∗

N

r.h.s.: g̃N = L−1
N g∗∗

N

Backward sweep: f = U−1g̃

• n = N
fN = U−1

N g̃N

• n = N − 1
fN−1 = U−1

N−1[g̃N−1 − EN−1fN ]

• n = N − 2, . . . , 0
fn = U−1

n [g̃n − Enfn+1 − Fnfn+2]

Roundoff errors In each decomposition of B0,B
∗
1,B

∗∗
n in LU form LnUn, large numer-

ical errors may arise from division by small coefficients. To enhance accuracy, rows are
exchanged (partial pivot change) in order to pick the largest coefficient under the diag-
onal when performing the reduction, therefore, PnB∗∗

n = LnUn with Pn a permutation
matrix. The entire block-line of the system should be multiplied by Pn, hence

l.h.s.: Un ≡ B̃n = L−1
n PnB∗∗

n , En ≡ C̃n = L−1
n PnC∗∗

n , F1 ≡ C̃Cn = L−1
n PnCC∗∗

n

r.h.s.: g̃n = L−1
n Png∗∗

n

replace the former equations at step n.

Storage Matrices L and U are stored in place of M, hence, no extra memory allocation
is required.

Complexity Multiplication of a vector/matrix by inverse matrices L−1
n or U−1

n requires
only O(M)/O(M2) operations (tridiagonal system solve). The cost of the forward and
backward sweeps are both O(NM2), even with partial pivot change.





Appendix C

Numerical methods for eigenvalue
problems

In §C.1, the numerical method to reduce the large generalized eigenvalue problem
to a smaller standard eigenvalue problem is presented. In the following sections, we
present iterative methods to compute the eigenvalues λ1, λ2, . . . , λn and corresponding
eigenvectors x1, x2, . . . , xn of a non-symmetric complex matrix A in Cn×n, satisfying by
definition the relation

Axi = λixi, xi 6= 0. (C.1)

C.1 Numerical reduction of eigenvalue problem

The discretized version of q̃ is a column-vector of complex numbers q̃ ≡ (ũ⊥, w̃, p̃, π̃)T ,
where we choose

ũ⊥ ≡ (ũ1, ũM−1, ũ2, . . . , ũM−2, ṽ1, . . . , ṽM−1)T

w̃ ≡ (w̃1, . . . , w̃M−1)T

p̃ ≡ (p̃1, . . . , p̃M−1)T

π̃ ≡ (p̃0, p̃M)T .

This time, indices denote the pseudo-radial position ξj with 0 ≤ j ≤ M , and each
unknown f̃j ∈ {ũj, ṽj, w̃j, p̃j} is an N -dimensional row vector containing the N = 2K+1
Fourier components

f̃j ≡ ( ˆ̃f−Kj,
ˆ̃fkj, . . . ,

ˆ̃fKj).

The boundary points of ũ have been removed because of impermeability ũ0 = ũM = 0
and no-slip condition ṽ0 = ṽM = w̃0 = w̃M = 0. Note the unorthodox ordering of the
vector ũ⊥. This simplifies the algebra later. With these conventions, the discretized
eigenvalue problem can be written

(C− λI2(M−1))ũ⊥ + Ep̃ + eπ̃ = 0, (C.2a)

Fũ⊥ + (G− λIM−1)w̃ + ikIM−1p̃ = 0, (C.2b)

Hũ⊥ + ikIM−1w̃ = 0, (C.2c)

hũ⊥ = 0, (C.2d)

149



150 Numerical reduction of eigenvalue problem

or collectively as



C− λI2(M−1) 0 E e

F G− λIM−1 ikIM−1 0

H ikIM−1 0 0

h 0 0 0







ũ⊥

w̃

p̃

π̃




= 0, (C.2)

Here and henceforth, IM−1 denotes the N(M−1)×N(M−1) unit matrix. The matrices
are of size:

C : 2(M − 1)N × 2(M − 1)N

E : 2(M − 1)N × (M − 1)N

e : 2(M − 1)N × 2N

F,H : (M − 1)N × 2(M − 1)N

G : (M − 1)N × (M − 1)N

h : 2N × 2(M − 1)N.

Each matrix consists of N × N Fourier blocks. The first (M − 1)N rows of (C.2a)
come from the radial component of the momentum equation at collocation points
ξ1, ξM−1, ξ2, . . . , ξM−2, while the last (M − 1)N rows represent the azimuthal compo-
nent at ξ1, . . . , ξM−1. (C.2b) and (C.2c) arise respectively from the axial component of
the momentum equation and the condition of incompressibility at ξ1, . . . , ξM−1. Finally,
(C.2d) corresponds to the incompressibility constraint at ξ0 and ξM , simply correspond-
ing to the zero-derivative condition ∂ξũ = 0. In this form, the generalized eigenvalue
problem is of size 4(M −1)N +2N , and if boundary points of ũ had been kept, it would
have been of size 4(M + 1)N .

Equations (C.2a)–(C.2c) imply

(HC− λH)ũ⊥ + HEp̃ + Heπ̃ = 0, (C.3)

ikFũ⊥ + (ikG− ikλIM−1)w̃ − k2IM−1p̃ = 0, (C.4)

λHũ⊥ + ikλIM−1w̃ = 0. (C.5)

The sum of these equations gives

(HE− k2IM−1)p̃ = −(HC + ikF)ũ⊥ − ikGw̃ − Haπ̃. (C.6)

Thus,

p̃ = −(HE−k2IM−1)−1(HC+ikF)ũ⊥−ik(HE−k2IM−1)−1Gw̃−(HE−k2IM−1)−1Heπ̃, (C.7)

and so
Ep̃ + eπ̃ = J(1)ũ⊥ + J(2)w̃ + J(3)π̃, (C.8)

where

J(1) = −E(HE− k2IM−1)−1(HC + ikF) (C.9a)

J(2) = −ikE(HE− k2IM−1)−1G (C.9b)

J(3) = e− E(HE− k2IM−1)−1He, (C.9c)
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with respective dimensions

J(1) : 2(M − 1)N × 2(M − 1)N

J(2) : 2(M − 1)N × (M − 1)N

J(3) : 2(M − 1)N × 2N.

Using this result, the eigenvalue problem becomes


C + J(1) − λI2(M−1) J(2) J(3)

H ikIM−1 0
h 0 0






ũ⊥

w̃

π̃


 = 0, (C.10)

i.e. the interior pressure variables have been eliminated.

Supposing k 6= 0 from here on, we employ (C.2c) in the form

w̃ = − 1
ik

Hũ⊥ (C.11)

to eliminate w̃, [
C + J(1) − ikJ(2)H− λI2(M−1) J(3)

h 0

] [
ũ⊥

π̃

]
= 0. (C.12)

The matrix h has the structure

h =

[
d01I1 d0(M−1)I1 d02I1 . . . d0(M−2)I1 0 . . . 0
dM1I1 dM(M−1)I1 dM2I1 . . . dM(M−2)I1 0 . . . 0

]
, (C.13)

with d0j and dMj, 0 ≤ j ≤M the first and last row elements of the Chebyshev differen-
tiation matrix D defined in Appendix A.2. Hence (C.2d) gives

d01ũ1 + d0(M−1)ũM−1 = −
M−2∑

j=2

d0j ũj (C.14)

dM1ũ1 + dM(M−1)ũM−1 = −
M−2∑

j=2

dMj ũj. (C.15)

The solution of these equations is

ũ1 =
M−2∑

j=2

ej ũj, ũM−1 =
M−2∑

j=2

fj ũj, (C.16)

where

ej =
d0(M−1)dMj − dM(M−1)d0j

d01dM(M−1) − dM1d0(M−1)

, fj =
dM1d0j − d01dMj

d01dM(M−1) − dM1d0(M−1)

. (C.17)

Thus,
ũ⊥ = Lq̃1, (C.18)

where q̃1 = (ũ2, . . . , ũM−2, ṽ1, . . . , ṽM−1)T ,

L =

[
K

I2(M−1)

]
(C.19)
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and

K =

[
e2I1 . . . eM−2I1 0 . . . 0
f2I1 . . . fM−2I1 0 . . . 0

]
. (C.20)

The eigenvalue problem becomes

[(
C + J(1) − ikJ(2)H− λI2(M−1)

)
L J(3)

] [q̃1

π̃

]
= 0. (C.21)

As λ→∞,

det
[(

C + J(1) − ikJ(2)H− λI2(M−1)

)
L J(3)

]
∼ λ2(M−2)N det B, (C.22)

where
B =

[
L J(3)

]
. (C.23)

In what follows, we suppose B nonsingular, so det B 6= 0 and

det
[(

C + J(1) − ikJ(2)H− λI2(M−1)

)
L J(3)

]
(C.24)

is a polynomial of degree 2(M − 2)N : this is then the number of (finite) eigenvalues. To
make the assumption that B is nonsingular plausible, suppose that

B

[
q̃1

π̃

]
= 0. (C.25)

Next consider what happens when we modify the problem (C.3) by setting λ = 1 and
C = F = G = 0, while keeping E,H, e and h unchanged. This makes J(1) = J(2) = 0, but
leaves J(3) the same. Thus, (C.25) implies (C.21) and hence modified (C.3) holds with
ũ⊥ given by (C.18), w̃ by (C.11) and p̃ by (C.7):




−I2(M−1) 0 E e

0 −IM−1 ikIM−1 0

H ikIM−1 0 0

h 0 0 0







ũ⊥

w̃

p̃

π̃




= 0. (C.26)

This is a numerical approximation of

ũ = ∇p̃ (C.27a)

∇ · ũ = 0 (C.27b)

with ũ = 0 on the boundary and eikz dependence. It follows that the pressure satisfies

∇2
⊥p̃− k2p̃ = 0 (C.28)

and p̃ = ∂ξp̃ = 0 on the boundary. The only solution of this problem is p̃ = 0 so ũ = 0.
If this property is shared by the numerical approximation (C.26), q̃1 = π̃ = 0 and so B

is indeed nonsingular.

From the definition of B,

B−1B =
[
B−1L B−1J(3)

]
=

[
I2(M−2) 0

0 I2

]
= 0, (C.29)
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hence

B−1L =

[
I2(M−2)

0

]
, B−1J(3) =

[
0
I2

]
. (C.30)

Multiplying (C.21) by B−1,
[
A− λ

[
I2(M−2)

0

] [
0
I2

]] [
q̃1

π̃

]
= 0, (C.31)

where
A = DL (C.32)

and
D = B−1

(
C + J(1) − 1

ik
J(2)H

)
. (C.33)

Writing

A =

[
A1

A2

]
, (C.34)

where A1 is 2(M − 2)N × 2(M − 2)N and A2 is 2N × 2(M − 2)N ,

A1q̃1 = λq̃1 (C.35)

π̃ = −A2q̃1 (C.36)

(C.35) is a standard eigenvalue problem of size 2(M − 2)N . (C.36) determines π̃, (C.18)
gives ũ⊥, (C.11) yields w̃ and p̃ follows from (C.7).

Using the definition of L and writing

B−1L =

[
D11 D12

D12 D22

]
, (C.37)

where D11 is 2(M − 2)N × 2N , D12 is 2(M − 2)N × 2(M − 2)N , D21 is 2N × 2N and
D22 is 2N × 2(M − 2)N ,

A1 = D11K + D12 (C.38a)

A2 = D21K + D22. (C.38b)

The question remains, how to invert B? Suppose

B

[
q̃1

π̃

]
=

[
ν
κ

]
, (C.39)

where ν is a 2N -dimensional column vector and κ a 2(M − 2)N -dimensional column
vector. Given the definitions of L and B,

Kq̃1 + J
(3)
1 π̃ = ν (C.40)

q̃1 + J
(3)
2 π̃ = κ, (C.41)

in which J(3) has been written as

J(3) =

[
J

(3)
1

J
(3)
2

]
, (C.42)
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where J
(3)
1 is a 2N × 2N matrix and J

(3)
2 a 2(M − 2)N × 2N matrix. It follows that

Pπ̃ = ν − Kκ, (C.43)

where
P = J

(3)
1 − KJ

(3)
2 . (C.44)

Thus,

π̃ = P−1(ν − Kκ), (C.45)

q̃1 = κ− J
(3)
2 P−1(ν − Kκ). (C.46)

We conclude that

B =

[
−J

(3)
2 P−1 I2(M−2) + J

(3)
2 P−1K

P−1 −P−1K

]
. (C.47)

Summary of the solution procedure

1) Calculate

J(1) = −E(HE− k2IM−1)−1(HC + ikF) (C.9a)

J(2) = −ikE(HE− k2IM−1)−1G (C.9b)

J(3) = e− E(HE− k2IM−1)−1He (C.9c)

2) Determine

ej =
d0(M−1)dMj − dM(M−1)d0j

d01dM(M−1) − dM1d0(M−1)

, fj =
dM1d0j − d01dMj

d01dM(M−1) − dM1d0(M−1)

. (C.17)

from which the matrix K follows as

K =

[
e2I1 . . . eM−2I1 0 . . . 0
f2I1 . . . fM−2I1 0 . . . 0

]
. (C.20)

3) Writing

J(3) =

[
J

(3)
1

J
(3)
2

]
, (C.42)

calculate
P−1 = (J(3)

1 − KJ
(3)
2 )−1 (C.44)

and hence

B =

[
−J

(3)
2 P−1 I2(M−2) + J

(3)
2 P−1K

P−1 −P−1K

]
. (C.48)

4) Determine D11,D12,D21 and D22 from
[
D11 D12

D12 D22

]
= B−1

(
C + J(1) − 1

ik
J(2)H

)
(C.49)

and hence A1 and A2 from

A1 = D11K + D12 (C.38a)

A2 = D21K + D22. (C.38b)

5) Compute the eigenvalues, λ, (and, if required, the eigenvectors, q̃1) of A1.
6) If required, complete the eigenvectors using (C.36), (C.18), (C.11) and (C.7).
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C.2 Power and inverse power iteration

Power iteration

The power method is introduced first, as it is a very simple iterative algorithm at
the root of any eigenvector computation routine. Assume A has n eigenvalues labelled
in the following order

|λ1| > |λ2| > · · · > |λn|,
and assume that the associated eigenvectors {x1, x2, . . . , xn} are linearly independent.

Decompose any random vector q(0) on the basis of eigenvectors

q(0) = c1x1 + c2x2 + · · ·+ cnxn. (C.39)

Define q(1) as
q(1) = Aq(0) = λ1c1x1 + λ2c2x2 + · · ·+ λncnxn, (C.40)

and more generally, for j ≥ 1

q(j) = Aq(j−1) = Ajq(0) = λj
1c1x1 + λj

2c2x2 + · · ·+ λj
ncnxn. (C.41)

Since λ1 6= 0, we have

q(j) = λj
1[c1x1 + (λ2/λ1)jc2x2 + · · ·+ (λn/λ1)jcnxn] −−−→

j→∞
λj

1c1x1, (C.42)

so after a few iterations, q(j) tends towards a multiple of eigenvector x1, associated with
the leading eigenvalue λ1. Power iteration ‘damps’ contributions from any eigenvector
associated with a subdominant eigenvalue.

Inverse power iteration

If an approximate eigenvalue σ ≈ λi is known beforehand, the corresponding eigen-
vector xi can be found using inverse power method. Starting with any initial vector q(0),
we define q(k+1) as the solution of the linear system:

(A− σI)q(k+1) = q(k). (C.43)

It is simply the power method applied to the ‘shifted-inverted’ matrix (A − σI)−1, the
eigenvalues of which are 1/(λj−σ) while the eigenvectors are the same as those of A. The
power method will amplify the eigenvector xi associated with the eigenvalue of larger
modulus, namely 1/(λi − σ), since σ is an approximation of λi. This method is used to
compute eigenvectors once the eigenvalues have been obtained (using for example the
QR method to be described in the next section). The shift-invert spectral transformation
presented here is also used later in the Arnoldi method.

C.3 QR method

The QR method is used to compute the full spectrum of eigenvalues of a matrix. In
practice, we used an optimized version of the algorithm, freely available in the software
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package LAPACK (routine ‘zgeev’). The intent here is only to give the main ideas of
the method, and by no means to give all the lenghty implementation details. For more
details and proofs, we refer to Golub and Van Loan (1989), Quarteroni et al. (2006),
Watkins (2008).

Schur decomposition

Let A be a n × n square matrix with complex entries, then there exists a unitary
matrix 1 Q such that

Q−1AQ = QHAQ =




λ1 t12 . . . t1n

λ2
. . . t2n

. . .
...

0 λn




= T. (C.44)

Q and A being similar, they have the same eigenvalues. Moreover, T being triangular, its
eigenvalues are the diagonal entries: λ1, λ2, . . . , λn. The principle of the QR algorithm is
to obtain a Schur decomposition of A by iterative means, and then read the eigenvalues
on the diagonal of T.

QR decomposition

Any square matrix A in Cn×n may be decomposed as

A = QR, (C.45)

with Q a unitary matrix and R an upper triangular matrix. The QR decomposition is
not unique.

‘Basic’ QR method

Starting with A0 = A, the basic QR iteration step consists in performing a QR
decomposition of Ak = QkRk, and then multiply matrices Qk and Rk in backwards order
to obtain Ak+1:

Ak = QkRk, Ak+1 = RkQk. (C.46)

By doing so, we compute a series of similar matrices Ak+1 = QH
k AkQk, eventually con-

verging to a triangular matrix T . After k iterations, one observes that Ak = QHA0Q

with Q = Q0Q1 . . .Qk−1, which gives the Schur decomposition when Ak is triangular up
to machine precision.

1. complex matrix such that QQH = QHQ = I, QH denoting the conjugate transpose of Q.
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Hessenberg-QR method

Hessenberg matrices H = (hij) satisfy hij = 0 for i > j + 1:

H =




• • . . . •
• • •

. . . . . .
...

0 • •



. (C.47)

Linear combinations and products of Hessenberg matrices conserve the Hessenberg struc-
ture. Because of their sparsity, these matrices are cheap to work with. In particular, QR
iterations are performed much more efficiently if in a first step, A0 is converted to a
Hessenberg matrix A1 = QH

0 A0Q0. The reduction can always be done using similarity
transformations. In the next QR iterations, Qk and Ak will then always be Hessenberg
matrices, leading to O(n2) flops per iteration instead of O(n3).

Deflation

If at some stage k, one sub-diagonal element of Ak = (a(k)
ij ) is ‘zero’ (below fixed

tolerance), say a(k)
(i+1)i ≈ 0, then one can write

Ak =

(
A11 A12

0 A22

)
, (C.48)

with block dimensions A11 : i × i, A22 : (n − i) × (n − i), A12 : i × (n − i), and
the problem decouples into two smaller problems involving A11 and A22. If we keep the
labelling of the eigenvalue in the following order

|λ1| > |λ2| > · · · > |λn|,

then all subdiagonal elements tend to zero as |a(k)
(i+1)i| = O(|λi+1/λi|k) during Hessenberg-

QR iterations.

Shifted-QR algorithm

The rate of convergence of the subdiagonal elements can be greatly enhanced by
introducing a shift σ

Ak = QkRk − σI, Ak+1 = RkQk + σI, (C.49)

then |a(k)
(i+1)i| = O(|(λi+1−σ)/(λi−σ)|k). Note that one step of the shifted-QR algorithm

still yields Ak+1 = QH
k AkQk. In practice, σ should be chosen close to an eigenvalue, to

obtain fast convergence. The classical approach is to compute, at each iteration the
eigenvalue of the lower-right-hand 2 × 2 submatrix of A closer to a(k)

nn (Wilkinson shift
Wilkinson (1965)). The shift can be updated at each iteration, leading to an even greater
convergence rate. In practice, multiple shifts σ1, σ2, . . . , σm are simultaneously applied
(eigenvalues of them×m trailing submatrix of A), using an implicit formulation (‘buldge-
chasing’) described in detail in Watkins (2008).
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C.4 Arnoldi method

The QR method that was just presented returns the full spectrum of a dense matrix.
However, in stability analyses, only a few eigenvalues dominate the linear dynamics, and
one would like to compute only those ‘most unstable’ ones. If the eigenvalue problem is
cast in terms of λ = iω, then we are typically interested in the eigenvalues with smaller
algebraic real part λr corresponding to the largest temporal growth rate ωi. In some
cases, it is useful to be able to follow a specific eigenvalue in the spectrum, as control
parameters are varied, and full spectrum computations are then useless. The principle
of the Arnoldi factorization is to project the matrix A onto a small subspace containing
the desired ‘eigen-information’. The resulting projected matrix has Hessenberg structure,
then implicit shifted QR iteration can be applied to eliminate its subdiagonal elements.
The diagonal elements of this small triangular matrix yield the desired subset of the
spectrum of A.

Krylov subspace

By applying power iteration, an initial vector q(0) is amplified preferentially in the
direction of x1, the eigenvector associated with λ1. However, significant amplification
may also occur in the directions associated with the next largest eigenvalues λ2, λ3,
etc., and one may be interested in keeping the information related to a small number
of leading eigenvalues. To achieve this, Krylov subspace methods keep the information
from the first m− 1 power iterations, and consider the associated subspace:

Km(A, q(0)) = span
{
q(0),Aq(0),A2q(0), . . . ,Am−1q(0)

}
. (C.50)

Arnoldi factorization

The principle of Arnoldi factorization is to project the potentially large matrix A onto
the small Krylov subspace Km(A, q(0)), which, by construction, contains information
about the m most unstable eigenpairs 2. An orthonormal basis of Km(A, q(0)) is created,
using some numerically stable version of the Gram–Schmidt orthogonalization process,
with the usual inner product on Cn denoted with (., .). Starting with an initial random
(but normalized) vector q(0), the next vectors q(j+1) for j = 0, . . . ,m− 1 are defined by:

hij = (Aq(j), q(i)), i = 0, . . . , j, (C.51)

w(j) = Aq(j) −
j∑

i=0

hijq
(i), (C.52)

hj+1,j = ‖w(j)‖2, (C.53)

q(j+1) = w(j)/h(j+1)j, (C.54)

and if at some point hj+1,j = 0, the iteration stops.

For any integer j, the vectors (q(0), q(1), . . . , q(j)) form an orthonormal basis of
Kj+1(A, q(0)). The coefficients hij are obtained by successive orthogonal projections of

2. eigenpair = eigenvalue + eigenvector.
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Aq(j) on previous q(i), i = 0, . . . , j. After projection of Aq(j) onto Kj+1(A, q(0)), there re-
mains a contribution w(j) /∈ Kj+1(A, q(0)) which defines q(j+1) after normalization. This
process leads to the decomposition of Aq(j):

Aq(j) =
j∑

i=0

hijq
(i) + h(j+1)jq

(j+1). (C.55)

If we denote by Vm the n × m matrix formed by the vectors (q(0), q(1), . . . , q(m−1)),
orthogonal basis of Km(A, q(0)), and Hm the small m×m matrix of general term (hij),
then one can rewrite equation (C.55) in matrix form

AVm = VmHm + reT
m, with r = h(m+1)mv(m+1) and eT

m = (0, . . . , 0︸ ︷︷ ︸
m−1

, 1). (C.56)

Given the fact that Aq(j) is not rigorously in Kj+1(A, q(0)), h(j+1)j 6= 0 in general, and
Hm is a Hessenberg matrix. Multiplying (C.56) by VH

m, one obtains:

VH
mAVm = Hm, (C.57)

so Hm is the orthogonal projection of A onto Km(A, q(0)), and reT
m in (C.56) is a residual

matrix:

reT
m = . (C.58)

This residual is a consequence of the choice of q(0), for which Km(A, q(0)) is not an
invariant subspace of A 3. Eigenvalues θ (resp. eigenvectors y) of Hm are called Ritz
values and (resp. Ritz vectors) of A. For any Ritz-pair (θ, y)

‖AVmy − θVmy‖ = |ym|‖r‖. (C.59)

Therefore, if the residual ‖r‖ is small, then θ (resp. Vmy) is an approximate eigenvalue
(resp. eigenvector) of A. If q(0) is in a m-dimensional invariant subspace of A, then
‖r‖ = 0 after a m-step Arnoldi factorization.

Restarting Arnoldi method

The idea behind restarting Arnoldi method is to drive the residual r to zero by forcing
the initial vector q(0) into a k-dimensional invariant subspace of A. The new initial vector
q(0)+ is defined as

q(0)+ ← p(A)q(0), (C.60)

3. subspace S invariant by A: for any v ∈ S, Av ∈ S.
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where p is a polynomial. If q(0) is decomposed onto the basis of eigenvectors {xi} of A

as q(0) =
∑n

i=1 γixi, then the new starting vector is

q(0)+ ≡ p(A)q(0) =
n∑

i=1

p(λi)γixi. (C.61)

If the polynomial p is chosen such that p(λi) is zero for some eigenvalues, the corre-
sponding eigenvectors xi will be filtered out from q(0). Therefore, polynomial filtering
can be applied to damp undesired eigenvectors before restarting the Arnoldi factoriza-
tion with the new initial vector xi. The spectrum of Hm, which approximates a subset of
the spectrum of A, can be split between k wanted eigenvalues µ1, . . . , µk and p = m− k
unwanted eigenvalues σ1, . . . , σp. An order p polynomial defined with the p shifts

p(X) = (X − σ1)(X − σ2) . . . (X − σp), (C.62)

will remove the projections of q0 onto the unwanted Ritz vectors. This simple strategy
forces q(0) into a k-dimensional subspace of Hm, spanned by the k wanted Ritz vectors.
In the explicit implementation of the method, the m-step Arnoldi iteration is iteratively
restarted after filtering of the unwated Ritz-vector components of q(0), until convergence.

Implicitly restarted Arnoldi method

In practice, a more efficient and more numerically stable implementation of poly-
nomial filtering is used, known as implicit restarting. Starting with a m-step Arnoldi
factorization, as in (C.56)

AVm = VmHm + reT
m, (C.63)

apply the first factor (X − σ1) of p(X) to all basis vectors q(j)

(A− σ1I)Vm = Vm(Hm − σ1I) + reT
m. (C.64)

Let Hm − σ1I = Q1R1, then

(A− σ1I)Vm = VmQ1R1 + reT
m, (C.65)

A(VmQ1) = (VmQ1)(R1Q1 + σ1I) + reT
mQ1, (C.66)

so a new factorization is obtained

AV+
m = V+

mH+
m + b+

m, (C.67)

with

V+
m ≡ VmQ1 (C.68)

H+
m ≡ R1Q1 + σ1I = QH

1 HmQ1 (C.69)

b+
m ≡ reT

mQ1. (C.70)

We notice that
• H+

m is a Hessenberg matrix,
• V+

m is unitary, since both Vm and Q1 are unitary,
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• multiplying (C.65) by e1 = (1, 0, . . . , 0︸ ︷︷ ︸
n−1

)T

(A− σ1I) Vme1︸ ︷︷ ︸
v

(1)

= VmQ1R1e1︸ ︷︷ ︸
r11v

(1)+
1

+ reT
me1︸ ︷︷ ︸
0

, (C.71)

with rij the entries of the upper triangular matrix R1. Therefore, q
(0)+
1 is a multiple

of (A− σ1I)q(0), as wanted.
This procedure is equivalent to applying a shifted QR iteration to Hm, with shift σ1.
Such step can be repeated with all p shifts σj with j = 1, . . . , p, and a factorization of
the form (C.67) is obtained with Q = Q1Q1 . . .Qp instead of Q1. Hence, by applying p
implicitly shifted QR iterations to Hm, polynomial filtering with p of order p is applied
to q(0).

The residual b+
m in factorization (C.67) is now of the form

b+
m = , (C.72)

so a k-step Arnoldi factorization can be recovered by simply eliminating the last p =
m−k columns of (C.67). The next step in the procedure consists in performing p steps of
the Arnoldi iteration to recover a m-dimensional factorization of the initial form (C.56).
Then implicit restarting is applied again iteratively until convergence of the eigenvalues
of Hm to the k wanted eigenvalues of A. Implicitly restarted Arnoldi method can be seen
as a truncated version of the implicitly shifted QR iteration (Lehoucq et al., 1997).

This method is implemented in the free software package ARPACK 4, used in this
work. More details can be found in Lehoucq et al. (1997), Saad (2011).

Shift-invert spectral transformation

Since Arnoldi method is based on power iteration, the principle of inverse power
iteration can also be used if we want to follow a specific eigenvalue λi in the spectrum
(see §C.2). The idea is to apply the Arnoldi method to the ‘shifted-inverted’ matrix
(A − σI)−1, with shift σ close to λi. The method will converge a few eigenvalues in
the vicinity of the shift, and the eigenvectors will be the same as those of the initial
problem. Note that in order to construct the Krylov basis, one needs to solve a sequence
of linear systems with matrix (A−σI) (cf. equation (C.43)). An efficient implementation
factorizes the matrix in LU form in an initial step, and then performs a sequence of
forward and backward solves to compute the basis.

4. http://www.caam.rice.edu/software/ARPACK/





Appendix D

Continuation methods

D.1 Newton–Raphson iteration

Newton–Raphson iteration is an efficient method to find a root x0 of a nonlinear
continuously differentiable function f : Rm → Rm

f(x0) = 0. (D.1)

Assume at step n we know an approximate root xn = x0−δx, and linearize (D.1) about
xn, then

f(xn) + Df(xn)δxn ≈ 0, (D.2)

where Df is the Jacobian matrix (Df)ij = ∂fi/∂xj. A new approximation xn+1 =
xn + δxn at step n+ 1 is found by solving (D.2) for δxn:

δxn = −(Df)−1(xn)f(xn). (D.3)

The iteration stops when ‖f(xn)‖ ≤ ǫ, with ǫ a specified tolerance, typically 10−6 in our
computations.

D.2 Natural continuation

Now assume f depends continuously on a real parameter χ, and denote x0 a solution
of

f(x, χ) = 0, (D.4)

for a given value of χ. If the Jacobian of f with respect to x is non-singular for the
chosen value of χ, then one can write

f(x0(χ), χ) = 0, (D.5)

using implicit function theorem. In other terms, the solution x0 can be parametrized
by χ. Therefore, by taking small steps δχ, the solution x0 can be followed continuously
when χ varies (see figure D.1a). At each step, the exact value of x0 is converged using
Newton iteration. The iteration is started with an estimated root extrapolated from the
previous values of x0 computed at χ− δχ, χ− 2δχ, etc.
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D.3 Pseudo-arclength continuation

When the graph representing the relation between x0 and χ displays a fold, as
illustrated on figure D.1(b) (where m = 1 for clarity), then implicit function theorem is
not applicable and it is no longer possible to parametrize the curve by χ. In this case,
the solution is parametrized by an arclength variable s, on which both x and χ depend
on the solution curve. Denote by (x0, χ0) a solution of

f(x(s), χ(s)) = 0, (D.6)

for a given value of s. Small steps δs can be taken to follow this root along the associated
continuous solution manifold. Newton iteration is applied at each step to converge both
x0 and χ0. The function f is differentiated with respect to both x and χ in the Newton
iteration, so an additional constraint is needed to close the system of equations. This
constraint is known as the normalization equation of the tangent vector (ẋ0, χ̇0) ≡
(∂sx0, ∂sχ0):

‖ẋ0‖2 + χ̇2
0 = 1. (D.7)

With this equation, the definition of the arclength coordinate s is unique. In practice,
an approximated version of (D.7) is used (cf. Keller (1977))

N(x, χ) ≡ (x− x0)T ẋ0 + (χ− χ0)χ̇0 − δs
= 0, (D.8)

which corresponds to (D.7) when δs→ 0. This is the equation of a hyperplane perpen-
dicular to the tangent vector and positioned at a distance δs from the previous point.
Derivatives χ̇0 and ẋ0 are simply approximated with first-order backward differences
with respect to s. Newton–Raphson iteration is hence applied to solve an ‘augmented’
nonlinear system of size m+ 1

(
f(x, χ)
N(x, χ)

)
= 0. (D.9)

Initial values for the Newton scheme are usually obtained by linear extrapolation from
the previous values (see figureD.1b).

Figure D.1 – Continuation with respect to (a) ‘natural’ parameter χ, (b) pseudo-
arclength variable s. �: estimated value from linear extrapolation, ◦: converged value.



Appendix E

Eccentric Taylor–Couette flow in
the Stokes régime

In this appendix, we report the formulas derived by Wannier (1950) for the eccentric
Taylor–Couette flow in the Stokes limit, expressed with our system of variables and
control parameters.

First, define non-dimensional distances

s =
1

2eδ

√
(1− e2)[(2 + δ)2 − e2δ2], (E.1)

d1 =
2 + δ

2eδ
− e

2
, (E.2)

d2 =
2 + δ

2eδ
+
e

2
, (E.3)

and some intermediate variables

K1 =
d1 + s

d1 − s
, (E.4)

K2 =
d2 + s

d2 − s
, (E.5)

den =
(1 + δ)2 + 1

δ
ln
K1

K2

− 4seδ, (E.6)

{.} =
1

(1 + δ)2 + 1

[
2(d2

2 − d2
1)δ

2

den
+

(1 + δ)2

seδ

]
. (E.7)

used in the following definitions:

A = −1
2

(d1d2 − s2) {.} , (E.8)

B = (d1 + s)(d2 + s) {.} , (E.9)

C = (d1 − s)(d2 − s) {.} , (E.10)

D =
1

den

[
d1 lnK2 − d2 lnK1 − 2s

(1 + δ)2 − 1
(1 + δ)2 + 1

]
− (1 + δ)2

eδ[(1 + δ)2 + 1]
, (E.11)

(E.12)
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E =
1

2den
ln
K1

K2

, (E.13)

F =
e

den
. (E.14)

Fy and T are then given by the following formulas:

Fy = − 8π
ReΩ

F, (E.15)

T =
8π

ReΩ

(A+ Fd1) . (E.16)

The stream function along y = 0 (symmetry plane) is given as a function of x′ = x+ d1

by

ψ(x′, e) = 2(A+ Fx′) ln

∣∣∣∣∣
s+ x′

s− x′

∣∣∣∣∣+B
x′

s+ x′
+ C

x′

s− x′
+Dx′ + E(x′2 + s2). (E.17)

The azimuthal volume flux Qφ can be calculated by evaluating the stream function on
the inner and outer cylinders, located respectively at

x′
i = d1 + 1/δ, (E.18)

x′
o = d2 + 1 + 1/δ. (E.19)
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Résumé

Cette thèse porte sur les effets combinés de l’excentricité et du débit axial sur les propriétés
de stabilité linéaire de l’écoulement de Couette circulaire avec cylindre extérieur fixe. Cet
écoulement intervient, entre autres, lors du forage de puits de pétrole. Une méthode pseudo-
spectrale est mise en œuvre pour calculer l’écoulement de base, stationnaire et invariant
suivant la direction axiale, ainsi que les modes normaux d’instabilité. L’écoulement est régi par
quatre paramètres adimensionnels : rapport de rayons η et excentricité e pour la géométrie,
nombres de Reynolds azimuthal et axial, ReΩ et Rez, pour la dynamique.

La première partie de l’étude est consacrée aux propriétés de stabilité temporelle. Il ap-
paraît que l’excentricité repousse le seuil d’instabilité convective vers de plus fortes valeurs
de ReΩ. L’effet de l’advection axiale sur le seuil est principalement stabilisant également.
L’excentricité a pour conséquence de déformer la structure des modes par rapport au cas
concentrique. Le mode au plus fort taux de croissance temporelle est ainsi constitué de
tourbillons de Taylor « pseudo-toroïdaux » lorsque le débit axial est nul, et de structures
« pseudo-hélicoïdales » d’ordre azimuthal croissant lorsque Rez augmente. Les résultats sont
qualitativement similaires lorsque l’on change le rapport de rayons. Les prédictions théoriques
sont en bon accord avec les quelques résultats expérimentaux disponibles.

Dans une seconde partie, l’instabilité absolue est étudiée par application d’un critère de
point selle à la relation de dispersion. Le débit axial a pour effet d’inhiber fortement l’instabil-
ité absolue, d’origine centrifuge, et la valeur de ReΩ au seuil est typiquement supérieure à celle
de Rez d’un ordre de grandeur. L’effet de l’excentricité est plus complexe : légère stabilisation
aux faibles valeurs de e, puis déstabilisation marquée aux excentricités modérées lorsque Rez

est suffisament grand, et enfin stabilisation lorsque e croît davantage. Contrairement au cas
de l’instabilité convective, le mode dominant l’instabilité absolue correspond à l’écoulement
tourbillonnaire « pseudo-toroïdal » pour toute la gamme de paramètres considérée.

Mots-clés: écoulement de Taylor–Couette–Poiseuille, excentricité, instabilités convective et
absolue.

Abstract

This work is concerned with the combined effects of eccentricity and pressure-driven axial
flow on the linear stability properties of circular Couette flow with a fixed outer cylinder. An
example of this flow can be found in oil-well drilling operations. A pseudospectral method
is implemented to compute the basic flow, steady and homogeneous in the axial direction,
as well as the normal modes of instability. There are four non-dimensional parameters: the
radius ratio η and the eccentricity e for the geometry, the azimuthal and axial Reynolds
numbers, ReΩ and Rez, for the dynamics.

The first part of the study is devoted to the temporal stability properties. It is found that
eccentricity pushes the convective instability threshold towards higher values of ReΩ. The
effect of axial advection on the threshold also tends to be stabilising. Eccentricity deforms
the modes structure compared to the concentric case. As a result, the mode with the largest
temporal growth rate takes the form of ‘pseudo-toroidal’ Taylor vortices in the absence of
axial flow, and ‘pseudo-helical’ structures with increasing azimuthal order as Rez becomes
larger. Results are qualitatively similar for different radius ratios. Agreement with the few
available experimental data is good.

In a second part, absolute instability is studied by applying the pinch-point criterion
to the dispersion relation. Axial flow is found to strongly inhibit absolute instability, the
mechanism of which being centrifugal, and the value of ReΩ at the threshold is typically one
order of magnitude larger than that of Rez. The effect of eccentricity is more complex: weak
stabilisation for low values of e, marked destabilisation for moderate eccentricities and high
enough Rez, and finally stabilisation as e is further increased. Unlike temporal instability,
the dominant absolutely unstable mode is the ‘pseudo-toroidal’ Taylor vortex flow over the
whole range of parameter space considered.

Keywords: Taylor–Couette–Poiseuille flow, eccentricity, convective and absolute instability.
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