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Résumé

Le principe de parcimonie, si fondamental dans les systèmes biologiques du fait de

ressources limitées, peut être exploité avec profit dans la conception de systèmes

efficaces de stockage de l’information. La parcimonie est une contrainte; malgré

cela, les systèmes biologiques - le cerveau en premier lieu - sont complexes, puis-

sants et flexibles. Le principe de parcimonie appliqué au traitement des signaux et

des données peut donc conduire à des solutions efficaces dans l’acquisition et le

stockage d’informations. Cette thèse traite de la conception d’un système neuro-

inspiré dont une des qualités recherchées est la parcimonie. Le système développé

et validé est un réseau de neurones binaire et récurrent, analysé en détail dans le

deuxième chapitre.

Le néocortex est la couche la plus récemment développée du cerveau humain

et est le centre des pensées conscientes et du langage. Cette partie du cerveau

présente donc un grand intérêt, en tant que référence biologique, dans la recherche

de nouvelles solutions de mémorisation. Les premier et deuxième chapitres du

mémoire de thèse proposent une courte analyse des caractéristiques et des modèles

de la mémoire humaine et constituent une introduction à un réseau de neurones

de stockage original exploitant le principe de parcimonie.

L’organisation et les propriétés du néocortex ont conduit Gripon et Berrou à

proposer un nouveau type de réseau de neurones [GB11]. Ce réseau est constitué

de nœuds regroupés en différents sous-ensembles disjoints appelés “grappes”. Il

lui correspond donc un graphe multiparti dont les connexions sont purement bi-
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naires et non pondérées. Cependant, ce modèle ne répond pas complètement à la

forte contrainte de parcimonie que doit satisfaire le “codage neural”. Afin d’aller

plus loin dans le sens de la parcimonie, le réseau proposé dans [GB11] doit être

repensé et réévalué en ce qui concerne l’utilisation des ressources disponibles : les

messages à y stocker ne doivent pas utiliser toutes les grappes du réseau mais

seulement une partie d’entre elles. Le type de réseau proposé dans cette thèse est

donc une extension de celui présenté dans [GB11] pour lui conférer de plus fortes

catactéristiques de parcimonie.

Ce nouveau réseau offre une capacité de stockage importante et un fort pouvoir

de correction de messages erronés ou partiellement effacés. La diversité, c’est-à-

dire le nombre de messages pouvant être mémorisés, est proportionnelle au carré du

nombre total de nœuds, alors que dans le modèle classique, elle est proportionnelle

au carré du nombre de nœuds dans chaque grappe. Par ailleurs, il a été constaté

et démontré que, pour une même diversité, le taux d’erreur dans la récupération

de messages tronqués est considérablement plus bas avec le réseau que nous pro-

posons qu’avec le réseau classique. En outre, nous pensons que la structure et

les principes de mémorisation de ce nouveau réseau sont plus proches de ceux du

néocortex humain. Dans celui-ci, les micro-colonnes sont regroupées en colonnes

à leur tour réunies en macro-colonnes. Dans notre modèle ainsi que celui décrit

dans [GB11], les nœuds matérialisent les micro-colonnes qui sont regroupées dans

des grappes représentant les colonnes et finalement toutes les grappes forment le

réseau représentatif d’une macro-colonne. La différence réside dans l’utilisation

des grappes, bien plus parcimonieuse dans notre cas, et donc plus plausible bi-

ologiquement.

En plus de sa grande capacité de stockage ainsi que de sa forte aptitude à la

correction, les algorithmes d’écriture et de récupération de messages sont simples.

Ce modèle est un bon candidat pour expliquer les mécanismes et les principes de

la mémoire cérébrale à long terme et aussi pour servir de point de départ dans
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la conception de machines capables de stocker un nombre considérable de mes-

sages, souvenirs, situations, voire même de séquences. Nos travaux ont fait l’objet

d’une soumission d’article à IEEE trans. on Neural Networks and Learning Sys-

tems [AGJ12].

Dans le troisième chapitre, le réseau est analysé sous l’éclairage de la théorie de

l’information et du codage. Le réseau s’appuie en effet sur des lois de codage redon-

dant qui lui confèrent des propriétés de codage correcteur d’erreurs ou d’effacements.

Ainsi il peut restituer un mot de code (un message) stocké à partir d’une version er-

ronée présentée à son entrée. Les mots de codes linéaires, qui sont communément

utilisés dans les systèmes de communication, dépendent d’une matrice génératrice.

Le réseau de neurones, quant à lui, résout le codage de canal différemment: les

mot de code ne sont pas nécessairement linéaires. Le réseau est en effet capable

de stocker une série de mot de codes (par exemple, un ensemble de messages

indépendants et uniformément distribués) qui peuvent être ou ne pas être linéaire-

ment dépendants les uns des autres, ce qui laisse au concepteur un important

degré de liberté dans le choix du transcodage (le “mapping” des informations et

des noeuds du réseau). Le concepteur peut donc fixer les paramètres en fonction

des exigences du système. Il existe deux principales différences entre le réseau

classique et le réseau proposé dans cette thèse quand ils sont utilisés pour des

applications de codage de canal. Dans le modèle classique, le nombre de mots

de code possibles est très large en comparaison du nombre de messages stockés.

Dans le nouveau réseau, la diversité est beaucoup plus importante et est donc plus

proche de la cardinalité des codes linéaires. Le deuxième avantage du nouveau

réseau est la variabilité de la longueur des messages stockés. Cette dernière pro-

priété rend le système capable d’exploiter des codes à longueur variable (quand

les mots de code sont de différentes longueurs). Le système pourrait également

réaliser une fonction de codage à taux de codage variable selon la qualité des

canaux de communication.
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Shannon [Sha48] suggérait que le codage de source et le codage de canal

soient considérés comme des opérations de traitement de l’information distincts et

disjoints. Des recherches ultérieures ont montré qu’un codage conjoint source canal

pouvait améliorer les performances. Le réseau considéré dans cette thèse met en

œuvre un type de codage conjoint source canal qui est élaboré de la façon suivante.

Les messages sont stockés dans des cliques qui sont des sous-graphes entièrement

connectés par des arêtes binaires. Considérons un message avec c sous-messages

significatifs (non-zéro) stockés dans un réseau de χ grappes et ℓ nœuds dans

chaque grappe (n = χℓ est le nombre total de nœuds). Le message est associé à

une clique avec
(
c

2

)
= c(c−1)/2 connexions binaires. Le message contient c log2 ℓ

bits. Ainsi, pour obtenir un effet de compression, l’inégalité c−1
2

< log2 ℓ doit être

respectée. Par ailleurs, une clique a une structure redondante, c’est-à-dire que les

c nœuds appartenant à un message sont liés par c(c−1)
2

connexions alors que ⌊ c+1
2
⌋

connexions peuvent être suffisantes pour spécifier tous les noeuds de la clique.

Du fait de cette redondance, une clique peut être considérée comme un mot de

code d’un code redondant. On voit donc que, sous certaines conditions, codage

de source et codage de canal peuvent être combinés dans une même opération de

mémorisation dans le réseau.

La principale contribution de ce chapitre est le calcul des contraintes sur les

paramètres du système, comme par exemple le nombre maximum de messages

stockés et le nombre maximum acceptable de sous-messages manquants dans

un message d’entrée. Ces contraintes sont calculées à l’aide de la théorie de

l’information. Pour cela, la mémoire du réseau de neurones réalisant le stock-

age et le processus d’extraction est modélisé comme un canal de communication

bruyant. L’ensemble de messages à stocker provient de la source de l’information et

peut ensuite être récupéré à partir du message partiels. L’information est mesurée

depuis trois points: (a) la quantité d’information contenue dans la source, (b) la

quantité d’information fournie au réseau depuis le message partiel, (c) la quan-
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tité d’information obtenue après la récupération. Il est attendu que la quantité

d’information récupérée soit plus élevée que la quantité d’information donnée par

le message partiel. Le différentiel du taux d’information Idiff est défini comme la

quantité d’information récupérée déduite de la quantité d’information donnée par le

message partiel. Le réseau est ainsi appelé informatif quand le différentiel du taux

d’information est positif. La discussion ci-dessus implique que le différentiel du

taux d’information soit dépendant du nombre de sous-messages manquants ainsi

que du nombre de messages stockés. En effet, le taux d’information des messages

partiels est fonction de ces deux facteurs. Ceci conduit à un jeu de contraintes sur

le réseau afin qu’il demeure informatif, c’est-à-dire, Idiff > 0. De plus, l’inégalité

de Fano est aussi utilisée pour dériver les contraintes appliquées au nombre de

sous-messages manquants.

Dans le quatrième chapitre, une nouvelle technique d’acquisition de messages

parcimonieux, à savoir compressed sensing, est étudiée du point de vue de la

théorie de l’information. Différentes techniques sont utilisées pour compresser et

stocker les signaux parcimonieux. Ces différentes techniques comprennent entre

autres, la compression Sample-then-Compress Framework (SCF) et la compres-

sion Compressed-Sensing (CS). La première est une compression bien connue, em-

ployée notamment dans le standard de compression d’image Joint Photographic

Expert Group (JPEG). Dans la compression SCF, un dispositif échantillonne un

signal (incluant des informations redondantes) pour ensuite, dans une étape de

post-traitement, extraire les informations importantes. CS est un domaine émer-

gent de compression et d’acquisition de signaux dans lequel l’échantillonnage et

la compression conjoints de signaux parcimonieux vise à réduire la complexité des

encodeurs. Dans ce schéma, l’échantillonnage et la compression ne sont pas des

procédures distinctes (c-à-d, opérées en série), mais sont réalisées simultanément.

La compression CS permet d’éviter l’acquisition et le traitement d’informations

redondantes : le taux d’échantillonnage est proportionnel à la teneur en informa-
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tions sous-jacentes (autrement dit le niveau de parcimonie) plutôt qu’à la bande

passante.

La structure CS est très similaire à la Bidirectional Associative Memories

(BAM) proposée par Kosko et al., où un ensemble de paires de vecteurs de di-

mensions différentes est stocké dans un réseau à mémoire. Les systèmes de CS

ainsi que leurs connexions avec les réseaux de neurones à mémoire et les tech-

niques d’apprentissage automatique sont discutés dans ce chapitre. La principale

contribution en est le calcul de conditions de récupération plus strictes que l’état

de l’art sur ce genre de systèmes. Une condition de récupération originale est aussi

obtenue pour des signaux approximativement parcimonieux.



Preface

Parsimony in biological neural systems such as the brain inspires the design of

systems that may be more efficient. Indeed, parsimony in signals can be exploited

for efficient sampling and storage. In this thesis the design of a biologically inspired

system that employs parsimony of signals is the main subject of study. This system

is a neural network memory which is presented in chapters two and three. At first,

the parsimonious features of the human neocortex and the human memory are

briefly investigated from psychological and biological aspects. These features have

inspired a neural network memory introduced by Gripon and Berrou. An extension

to this network is proposed in this thesis. It has more embedded sparsity features

of the human brain in comparison with the classical network. It is also capable

of storing sparse messages unlike this classical network. The proposed network is

analysed and its advantages are brought to the fore. In chapter three, the proposed

network is analysed from information and coding theory aspects. The network can

be considered for error correction because it is an auto-associative memory and can

therefore store a set of codewords (as messages) and recover them from distorted

versions. The network implements a kind of joint source-channel coding which

is elaborated in this part. The main contribution of the information-theoretic

analysis is the computation of constraints on the system parameters, such as the

maximum number of stored messages and the maximum number of acceptable

missing sub-messages in a partial message.

In the fourth chapter, a new sparse signal acquisition technique namely com-
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pressed sensing is studied, exploiting information theory. Compressed sensing sys-

tems and their connection to neural network memories and machine learning tech-

niques are discussed. The main contribution of this chapter is the computation

of tighter information-theoretic recovery conditions on these systems. A novel

recovery condition is also derived for approximately sparse signals.
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Chapter 1

Introduction

The brain is the most complex organ of the human body and the center of the

nervous system. Although the brain has been studied for a long time from different

aspects, such as philosophy, biology and psychology, it remains largely a mystery.

Among the revealed properties of the brain, computational capabilities, power

efficiencies and enormous memory capacity of the brain are the most significant

features to the information technology community. Evolution has made the brain a

powerful computing and reasoning machine. It has also evolved to a power efficient

system that consumes only 10−16 joules per operation per second, whereas modern

computers consume up to 1010 times more energy [Hay99].

The elements of the brain are distributed parallel processors, resulting in signif-

icant computational power. Neural computations take place in millisecond-scale,

whereas semiconductor circuits perform nanosecond-scale operations. Today, semi-

conductor circuits have reached a critical point: to increase the processing speed,

the clock frequency has to be increased. A higher clock frequency requires smaller

components and circuits but the circuits can be shrunk only up to a certain limit.

To speed up processing, another possibility is to increase the number of transis-

tors, which increases the power consumption. This leads to heat production in a

small area and the electronic circuit can work in a limited temperature range. This
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is where the importance and power of the biological neural systems become more

evident. Although they are slow at micro operations (in neurons, dendrites and ax-

ons), they have remarkable performance when it comes to complicated processing

tasks, such as image processing [Hay99]. Modern computers may use biological

parallelism features to overcome their circuitry limitations.

The capability of learning and generalizing is a property of the biological neural

networks. The human brain learns an enormous amount of information through

input stimuli and it is then able to respond to the stimuli that were learned before.

The brain may also compute a response to a stimulus without knowing the direct

answer by inferring from what has been learned. This is a desirable feature to be

implemented in man-made machines [Hay99].

The brain has been divided anatomically and functionally into many regions.

The one which is of our main interest throughout this report is the neocortex,

which is also known as the grey matter. It is the 2 to 4 mm thick outermost layer

of the cerebral hemispheres. This thin layer is the center for controlling physical

movements, emotions, and reception and perception of vision, auditory, semantics,

etc. Although there are many parts of the brain that are involved in what is called

memory, we focus on this very recently biologically evolved region.

1.1 Memory

Memory in the human brain is the process of learning, storing and retrieving infor-

mation [San03]. This process can be studied with respect to both biological and

psychological aspects. The brain at the biological and circuitry levels is a connec-

tionist network consisting of nodes (neurons) and connections (axons, dendrites

and synapses) where information is stored in the connections [VC10]. The con-

nections are mostly built during the infancy. They change throughout the lifetime

when the brain learns by being exposed to input stimuli. A simplistic model is that
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the brain learns by loosening and strengthening its connections, which is known as

synoptic plasticity.

The brain at the mental level is considered by psychologists and philosophers

as a system with a set of sub-systems in which information is processed and stored.

From this point of view, learning, recovery, storage and decision-taking functions

are treated abstractly without getting into cell-level operations. This phenomenon

has been studied throughout history by philosophers such as Aristotle and psychol-

ogists [San03]. Ancient thinkers considered the memory as a storage space that

keeps information without processing capability. Aristotle believed that the outside

world leaves imprints on the brain in the mental matter. He modeled memory as

a function that also connects the content of the mental matter rather than just

a storage unit [San03]. This rather old perception of human memory has influ-

enced our knowledge of memory even today. It is known now that memory and

processing are not two distinct functions of the brain but rather are of the same

process [VC10].

There are two modern psychological memory models to explain the mecha-

nisms of the human memory. These are the Atkinson-Shiffrin [AS68] and Working

Memory [BH74] models. The Working Memory model is proposed by Baddeley

and Hitch and describes Short-Term Memory (STM) and its mechanisms. The

model proposed by Atkinson and Shiffrin consists of Sensory Memory (SM), STM

and Long-Term Memory (LTM) stages. Sensory memory describes the first few

hundred milliseconds after informative items are perceived. Short-term memory

refers to the first few seconds after the items are perceived. Long-term memory

describes the memory’s ability to remember what is learned after a long time from

several minutes after informative items are perceived to much longer. Apart from

the importance of each stage, it is worth noting that the storage in LTM requires

perception of the items in early stages of SM and STM. Thus, storing an item in

the long-term memory (which we refer to in everyday life as memory) is a process
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rather than isolated operations. In this report, the memory is a system that cap-

tures a set of input information (through input stimuli) and is able to retain (for

a long time) and reuse it.

Retrieval of stored information is a part of a memory system. In the brain,

retrieval is carried out in different forms which are categorized into recall and

recognition [San03]. Recall is the ability to retrieve what was learned by giv-

ing a hint. Recognition is the ability to acknowledge what was learned in the

past [San03]. These are two fundamental functions of the memory that are also

considered in the design of artificial memories. A memory that is exploited as an

associative memory carries out a recall function. In set implementation applica-

tions, one needs to know if an element is already in a set to decide whether the

element should be added to the set or not. This is what is called recognition.

The recall function has three types, namely free recall, cued recall and serial

recall. Free recall is when the memorized items are retrieved without their order.

Cued recall is the retrieval of an item through another item, where the items in

question were learned in a pair or a group. Serial recall is the retrieval of items in

the order that they were learned.

1.2 Compression and Robustness

The brain is a complex system including information processing and storage subsys-

tems. It is known that the brain is capable of storing a large amount of information

with fairly acceptable retrieval accuracy [WLW03]. To accomplish this, it requires

that the information is stored efficiently with a mechanism to assure the robustness

of recovery. An efficient storage strategy is one that requires the fewest memory

to hold information content, which is known as compression. On the other hand,

information retrieval is robust if there is redundancy to make error detection and

correction possible. Reliability at the circuitry and biological level is obtained by
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creating multiple paths between neurons. Therefore, if neurons lose part of their

connections, the brain is still able to recover at least part of what has been learned.

1.2.1 Neural Coding

The brain receives an enormous amount of the sensory information from outside

such as visual stimuli and from inside which are thoughts (as a product of thinking

and imagination) [F0̈2]. This information is crude and needs to be prepared in

a form that the brain is capable of perceiving and storing. It is transformed

into electrical signals and chemical reactions which neurons, axons, dendrites and

synapses are capable of handling. Moreover, information is also organised in the

brain in a way to be efficiently processed and stored, rather than to be treated as

a pile of random data. This requires a system that projects stimuli. The neural

code is the way that the stimuli information is projected into the brain [BT99].

1.3 Artificial Neural Networks

Artificial neural networks are an effort to build systems that mimic biological neu-

ral systems, in order to exploit the capabilities and power of their architecture.

These capabilities are parallel computation, adaptivity, and the ability to learn and

generalize [Hay99]. In this work, an artificial neural system is proposed to model

the human neural system, which has the brain as the center of the nervous system.

The nervous system may be seen in three parts. Receptors convert stimuli into

electrical signals to be sent to the brain. This process is represented as the neural

network in Fig. 1.1. The effectors in the nervous system convert the electrical

signals received from the brain into system responses [Hay99]. In Fig. 1.1, the ar-

rows show that the communication between the brain and receptors and effectors

is bidirectional.

There are two kinds of neural networks, namely feedforward networks and recur-
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Neural Network EffectorsReceptorsStimulus Response

Figure 1.1: Block diagram representation of nervous system.

rent networks. The main difference between these two types, as their names imply,

is that the former do not use feedback paths where the latter do exploit feedback

paths. Feedforward networks process the received signals in input nodes and pass

the computation results (which can be linear summation and thresholding) to the

output or the input of the next layer. In this architecture, the processed signals in a

layer are not fed back to that layer in any form. Therefore, more complex functions

can only be implemented through adding layers to the network. Feedback has a

profound effect on the overall performance of the network and brings the network

richer dynamics [Hay99]. This way, the network is able to implement complex

functions with fewer layers than feedforward networks. In Fig. 1.2, a simple form

of feedforward networks is depicted. The signals are received by input source nodes

and are sent to the output neurons. The connections are weighted and the arrows

show the direction of the signal flow. Fig. 1.3 shows a simple recurrent network,

namely the aforementioned feedforward network with a feedback path. Networks

that comprise at least a single feedback path are considered recurrent, otherwise

they are said feedforward [Hay99]. Artificial neural networks are exploited to

compute complex functions, to perform memory functions and to carry out com-

binations of these two. The memory in neural networks appears in different forms

such as the capability of the network to adjust and retain the synaptic connection

weight in the learning process. In this report the memory function is considered,

that is to say the function that makes a network learn and retrieve information.

There are two types of memories, namely content addressable or associative mem-

ories, and index addressable memories. In the latter, the machine accesses the
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Input nodes Output nodes

Figure 1.2: Diagram of a single-layer feedforward neural network.

Input nodes Output nodes

Delay

Figure 1.3: Diagram of a single-layer recurrent neural network with only one feed-
back.
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memory content by knowing its storage address (i.e. index) whereas in the former

the memory content is retrieved from a part of the learned item or a key that it is

associated with. In other words, the memory is accessed by the contents that are

associated to each other and not with their address. Content addressable mem-

ory is the type of the memory exploited by the human brain (see section 1.1). It

is different from traditional computer memory in that if the address of memory

contents are partially known, the stored information can not be recalled.

The associative memories are evaluated with two fundamental quantities, mem-

ory capacity and content addressability. Memory capacity indicates the maximum

amount of information that a network is capable of storing. Content addressability

is the ability of the network to retrieve the stored information correctly. Both of

these characteristic are defined and elaborated in detail in the following chapter

for the specific network that is considered in this report.

1.4 Thesis structure

Chapter 2 The proposed neural network memory that is capable of storing sparse

messages is presented. The network is analysed and compared with the classical

network from which it has been derived. It is shown that the proposed network im-

proves significantly the maximum number of stored messages when the messages

are strongly sparse.

Chapter 3 The proposed neural network is investigated from information-theoretic

aspects. It can be exploited for channel coding applications and the network itself

can be considered as a joint source-channel coding system. The network is then

analysed using Fano’s inequality from which a set of recovery constraints are de-

rived.
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Chapter 4 Recovery conditions for Compressed-Sensing (CS) are the subject of

this chapter. It is mainly used for dimensionality reduction which is also a topic of

machine learning and neural networks. CS is studied exploiting information theory,

through which a few tight sufficient recovery conditions are computed.





Chapter 2

Sparse Neural Network

Memories

In this chapter, an artificial neural network based on the human neocortex struc-

ture is presented. This network embodies several features of the biological neural

systems and more specifically of the neocortex in its design.

The brain comprises neurons, dendrites, axons and synapses as its main material

and other cells such as glial cells for the metabolic support (although this may

seem oversimplified). They construct a grid network with neurons as its nodes

and, dendrites, axons and synapses as its connections [Hay99]. This structure is

well recognised in mathematics and computer science as a graph. Hereafter, the

artificial neural network is considered as a graph consisting vertices and edges.

In [MP43,Hay99] vertices represent neurons and edges represent dendrites, axons

and synapses. Although the graph representation of neural networks is adopted in

this document, the notion of vertices and edges is different. More specifically, the

vertices represent a group of neurons which is explained in the following section.

The principle difference between mathematical graphs and neural networks are

the underlying dynamics of the neural networks: the connections (edges of the

graph) and nodes (vertices of the graph) in a neural network may change due to

29
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the effect of input stimuli from time to time [Hay99]. This resembles the living

tissues and cells in the human brain. That turns the brain into an evolving and

self-organising organ rather than a solid connected grid. The way that the vertices

of a neural network are organised and connected has a profound effect on its

performance and efficiency. To obtain a network with a desirable performance and

efficiency, we refer to the brain that has evolved towards, efficiency throughout

time.

In the human brain, the most recently developed part, the neocortex, is of

our interest. The neocortex is a well structured layer of the brain and it is the

center of conscious thoughts and language. The human neocortex has inspired

the development and design of the network (in this document) that is sparse of

different levels.

The basic structure of the proposed network is based on the network in [GB11].

This is adopted and extended in this document to store sparse data structures.

2.1 Sparse Coding

The notion of sparsity appears in different forms in the biological neural systems.

The very first stage of sparsity in the brain is at the reception of numerous input

stimuli. The neural systems are selective when they are exposed to the input

stimuli. They do not capture every stimulus but a few at a time [Mil56]. This

can be observed in the daily life where we always capture those information that

we intend to. For example we are able to concentrate on a specific person’s voice

in a crowd. This can also be unconscious where much of the sensory information

received by our skin is automatically neglected by the brain but those that are

significant such as pain. The perceived information are passed to SM and STM

afterwards (see section 1.1) to be noticed by the conscious mind. They are passed

to a deeper memory level, LTM, depending on whether they need to be remembered
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later. This structure acts as a biological sieve that filters out the unnecessary

information.

The second sparsity feature is observed in the organization of neurons and con-

nections. The neural system is organized in different sections and the neocortex is

not an exception, in its both vertical and horizontal dimensions. It has six horizon-

tal layers containing various types of the neurons and other vital cells. The one with

greater importance in this report is columnar division of the neocortex [Mou97]. A

column from top-down perspective is a cylinder containing a group of neurons with

the same receptive field. In a column, there are microcolumns1 that are groups

of about 80 ∼ 100 neurons [Mou97]. They are believed to be the basic units

of the neocortex [Mou97]. The microcolumns are connected through horizontally

organized neural layers which constructs a grid [Mou97]. A single neuron has a

simple structure that may not be able to store and process a remarkable amount

of information. Thus, a stand alone neuron is not sufficiently informative, which

implies that the complicated operations in the brain require a developed organi-

zation of neurons. This has led the brain to evolve into a structure in which the

stored information in the neocortex appears as activated microcolumns that are

connected horizontally [F0̈2]. These connections are locally dense and recurrent

whereas they are sparse at the global level [San03].

The brain stores information that is received from the environment and its

internal state (e.g. thoughts) in sparse patterns of simultaneously active micro-

columns. This theory is called “neural coding” (see section 1.2.1) [ALP06, F0̈2].

This sparse representation of information, i.e., neural coding is the feature that is

exploited in the neural network in [GB11] and even more in this report.

The neural network is modeled as a graph in which vertices represent micro-

columns in the neocortex. The vertices are further organized into clusters as groups

of vertices. A vertex is called a fanal to indicate that in each cluster, there is only

1A microcolumn is also called a minicolumn [Mou97]
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one active node for a stored message. Each cluster represents a column in neo-

cortex consisting of about hundred fanals. A collection of about hundred clusters

is considered to be a network. In Fig. 2.1, the described model of the network

Network

Figure 2.1: The neural network inspired by the human neocortex. The dots rep-
resent the microcolumns and the regions surrounded with dashed lines show the
columns (clusters) and a macrocolumn (the network) in the neocortex.

is depicted in which the number of fanals in each cluster is equal to a constant.

This model is further developed and analysed in the following sections as a neural

network memory for which the network dynamics and its properties will be given.

2.2 Messages

Information in digital devices is quantized and packed into groups of bits and bytes,

etc. In this report, information is represented with vectors in which the elements

are drawn from an alphabet. The vectors can be the product of sampling real-world

analog information or they may be obtained by the post processing of an informa-
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tion source. It is assumed that these vectors are sparse, i.e., a few of their elements

bear information and the rest is negligible or blank. Sparse signals and vectors are

of great importance in information science and they have been studied extensively

in mathematical frameworks such as Compressed Sensing [Don06, CT05, CW08],

Information Theory [ASZ10,AT10,WWR10,Wai09], Machine Learning [WCF07],

etc. The goal of the mentioned studies is to exploit sparsity to improve the stor-

age, sampling, energy efficiency, etc. of information systems. Likewise, sparsity is

a strong characteristic to be used in neural network memories.

An application of neural network memories and more specifically associative

memories is image recognition. Assume a set of images such as peoples’ faces.

There is an image (in the image set) to be recognized when a part of it is covered

or missing. This requires a post-processing framework that extracts unique image

specifications which are stored (in the neural network memory) and used as the

image signature. A modified Speeded Up Robust Features (SURF) [BETvG08] or

Scale-Invariant Feature Transform (SIFT) [Low99] may be applied on images to

get the images’ specifications. These transforms return a set of pixel coordinates

as a set of interest points, also known as keypoints. For each image with χ pixels,

a vector (of size χ) is constructed in which the keypoints take a nonzero value and

the rest are zero. It is assumed that these vectors uniquely represent each image in

the image set are sparse and they are so-called specification vectors. Specification

vectors are stored in the proposed network. When part of an image is missing, it

appears as missing nonzero elements in its corresponding specification vector. The

defected image is then recognized by feeding the network with its partially known

specification vector and using the properties of the associative memory especially

redundant coding.

Another application is wireless communications. A technique so-called Cogni-

tive Radio [Hay05, IGM99] is the center of attention among the researchers of the

field in recent years. Communication spectrum is a limited and therefore expensive
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resource. This gets worse by the advent of new wireless hand-held and personal

communication devices. In the past, organisations such as International Telecom-

munication Union (ITU) allocated communication bandwidths to many standards,

especially mobile networks. Today, there is almost no more free-space left in the

frequency spectrum. This has led the communications bodies to allocate shared

bandwidths for various applications such as personal communications. There are

various strategies to use shared radio spectrum bandwidths. One of the cognitive

radio techniques is the opportunistic scheme through which radio devices access

randomly the spectrum range. The issue that rises with this opportunistic scheme

is that each radio device is responsible for surveying the frequency spectrum to

find an empty slot (in time, frequency and space) for communication. Therefore,

a radio device sees the frequency spectrum as a vector in which the occupied fre-

quency slots appear as nonzero elements and the rest is zero. This vector is named

here as spectrum state vector. In hand-held and battery-driven devices, energy is a

valuable asset to be conserved for vital operations. Assume the spectrum changes

among a limited number of patterns for a period of time. In this case the device

may fully sense the spectrum and store the spectrum state vector in the proposed

network (as an associative memory). Afterwards, the radio device may increase its

energy efficiency and communication rate by sensing a limited part of the whole

spectrum and recover the rest from the neural associative memory.

The basic item which the network perceives as an input stimulus is a message.

Following the above discussion, a message with a few information bearing elements

is so-called sparse. The sparse messages that are dealt with in this report can be

either naturally sparse or result of a transform such as Fourier and Wavelet. In

this report, the sparse messages are treated by the network regardless of their

real-world source and they may belong to one of the mentioned or other possible

applications.

A message is a vector with χ elements. An element of the message is so-
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called sub-message that is drawn from an alphabet denoted by A or it may be

blank. The blank elements are the none information-bearing elements because

they are null or negligible. The number of non-blank (significant) sub-messages is

so-called message order. The sub-message alphabet has finite cardinality |A| = ℓ.

Throughout this report, sub-messages are assumed to be uniformly distributed over

the alphabet A. Although the alphabet size can be arbitrary depending on the

application, it is often a power of two. This choice makes the network compatible

with the digital systems where information is quantized in bits. Therefore, a

message may be considered as a sequence of bits to be stored in the network. This

requires that the message is divided into c groups of κ = log2 ℓ bits (see section

2.3).

2.3 Storage

Neural networks are connectionist networks composed of nodes and their corre-

sponding connections. This structure can be modelled as a graph in which these

nodes are vertices and their interconnections are edges of the graph [Hay99,GB11].

Throughout this document, a network with binary connections is considered; in

other words, either there is a connection between two nodes or there is no con-

nection. In the following, the network and its components that store messages

according to the sparse coding approach are defined.

Definition 1 (Neural Network). According to the previously given theory, a neural

network is an undirected multipartite2 graph (F1, ... ,Fχ,W) where F1, ... ,Fχ are

sets of vertices andW is the set of edges. All sets of vertices have equal cardinality,

∀j ∈ {1, ... , χ}, |Fj | = ℓ.

2A multipartite graph is a graph whose nodes are separated into disjoint sets. The edges
of the graph may only be among nodes in disjoint sets of nodes, i.e., there is no edge between
nodes belonging to the same set.
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Definition 2 (Cluster). A set of vertices Fi ∈ {F1, ... ,Fχ} is a cluster. A cluster

is indicated by an index and the set of cluster indices is C = {1, ... , χ}.

Definition 3 (Fanal). A vertex of the graph which is an element of ∪χi=1Fi is a

fanal. A fanal in a cluster is indicated by an index. The set of fanal indices is

F = {1, ... , ℓ}.

A neural network is uniquely identified with (W , χ, ℓ) where ℓ is the number

of fanals in each cluster and χ is the number of clusters in the network that is

so-called afterwards cluster space size. A pair (i , j) ∈ C ×F uniquely specifies a

vertex in the graph.

The defined graph along with the storage and retrieval mechanisms is a network

that is capable of interacting (with another system or the outside world through

an interface) as a system. The very first step toward building such a system is

the storage process that the storage efficiency depends on it. It also significantly

influences the retrieval process, which will be elaborated in the next sections.

The storage is the process of mapping a set of messages into the network

through constructing binary connections among the fanals. To exploit the network

efficiently, a well designed storage procedure is required in which various goals are

pursued. The first purpose of the storage is to map a message in the network by

constructing or removing edges of the graph (connections) in a manner that the

message could be retrievable afterwards. The neural network memory retrieves

the stored message by providing its associated content (e.g. partial message or

blurred/noisy message) to the network. This implies that the storage is a one-

to-one function. This mapping may be considered one-to-one where only a single

message is subject to storage and recovery in the network.

The efficiency of the storage is also an important issue along with the correct

storage and retrieval of messages. In other words, the storage should exploit the

intrinsic property of the network and the messages (e.g. sparsity) to perform a kind
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of compression (lossy or lossless). This is to avoid the storage of messages as a pile

of information that would imply an inefficient use of resources. In this network, such

a compression scheme is implemented by sharing fanals and connections among

stored messages. This compression occurs where at least two distinct messages

have a few corresponding equal sub-messages. For example consider two messages

drawn from alphabet A = {1, 2, ... , 128} and dashes as blank sub-messages,

m1 = [−, 21,−,−, 2,−, 12,−, 5,−,−,−, 115,−]

and

m2 = [−, 45,−,−, 2,−, 12,−,−, 65,−,−, 74,−]

where the fifth and seventh sub-messages of these two messages are equal. These

messages may be associated with two disjoint cliques in the network that share two

fanals and a single connection. This has side effects on content addressability of

the network where in some cases the network may not be able to recover the stored

messages. It is due to the fact that the compression in this network is obtained

by sharing network connections, that is, by a lossy compression (see [CT06]) in

which a part of stored information may not be recovered. The storage is also

aimed to embed a well designed redundancy to combat deficiencies in the network

connections and the input stimuli (e.g. noisy and/or partial messages) at the

retrieval. It was also mentioned that the compression in use in this network may

result in weakening content addressability of the network. A smart redundancy

is the answer to such negative effect. Above discussion refers to source coding

(compression) and channel coding (embedded smart redundancy) in information

theory that was studied and quantified for the first time by Shannon in [Sha48].

This network will be studied from this perspective in the later sections and chapters

of this report. The mentioned design criteria in the network are satisfied through

construction of complete subgraphs. Assume there is a message to be stored. Each

sub-message (from alphabet A) is mapped to its corresponding fanal (one of the
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Figure 2.2: A clique (a complete subgraph) that represents a message containing
eight sub-messages in the network. This clique has twenty-eight connections.
Although a single loop graph with only seven connection can associate the fanals,
a fully connected graph provides robustness against deficiencies.

ℓ fanals in the corresponding cluster). Then the message is stored by connecting

all these fanals. This results in a complete subgraph for a message in the network

3. In Fig. 2.2 a clique, consisting of eight fanals and twenty-eight connections

is depicted. The total number of connections in a bidirectional clique (of this

network) is

c(c − 1)

2
(2.1)

where c is the message order, that is also called clique order.

In this neural clique (a clique in the neural network), the fanals have more than

a single connection to their neighbour fanals. This makes the network capable of

retrieving the message where a few but not all sub-messages (and correspondingly

fanals) are unknown which is a robustness feature.

3A maximal complete subgraph is so-called clique [MM65, GB11]. The storage of a sole
message in the network constructs a clique.
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(1,4)

(7,3)

(6,5)

(3,7)

Figure 2.3: A network composed of 9 clusters of 16 fanals each. A message with
message order 4 forms a clique in the network.

In Fig. 2.2, a clique is shown as a single entity. In Fig. 2.3, a message clique

has been introduced to the network, in order to elaborate the storage procedure.

In this figure, a neural network with cluster space size χ = 9 and ℓ = 16 fanals

in each cluster is depicted. Assume message m = [4,−, 7,−,−, 5, 3,−,−] and

alphabet A = {1, 2, ... , 16}. The assigned set of fanals to this message is ρ =

{(1, 4), (3, 7), (6, 5), (7, 3)} where the first element in the pairs indicates the cluster

index and the second element indicates the fanal index. The set of connections is

then:

W (ρ) ={{(1, 4), (3, 7)}; {(1, 4), (6, 5)}; {(1, 4), (7, 3)};

{(3, 7), (6, 5)}; {(3, 7), (7, 3)}; {(6, 5), (7, 3)}}.

In this specific example, it is assumed that A = F , thus, the mapping is Identity
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function 4. It is also assumed (in this example and in this report) that the support

5 of the messages are chosen uniformly random from
(
χ
c

)
subsets of size c (the

message order). Likewise, the storage of a message set involves repeating the same

operations.

In the following, the storage process is formalized for the network with arbitrary

cluster space size χ and number of fanals ℓ in each cluster. Assume a network

(W , χ, ℓ) that stores a message set M. Then, the storage involves constructing

connections’ set W of the neural network from the message set.

Assume message m is subject to storage, a one-to-one function b maps each

non-blank message node mr ∈ m and mr ∈ A to a cluster index i ∈ C .

b : A −→ C

mr −→ i = b(mr ).

Function b is a one-to-one function, which guarantees that there is no more than

only one activated fanal in the same cluster for a message. This is one of the

conditions that enforces the sparsity of the network.

Next, a one-to-one mapping g maps each sub-message mr ∈ A to a fanal

index f ∈ F .

g : A 7−→ F

mr 7−→ f = g(mr ).

After assigning the clusters and fanals through b and g , function D pairs corre-

sponding clusters and fanals of message m in a set.

D : m −→ {(b(mr ), g(mr )) : mr ∈ m}.

To store the message in the neural network, one-to-one function W maps

ρ = D(m) to binary graph edges (network connections). It constructs a subgraph

4The cluster and fanal indices are assigned by counting them in the figure from left to right
and down to top.

5The support of a message is the set of indices of sub-messages that are non-blank.
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that involves graph vertices (fanals) in ρ,

W (ρ) = {{(i ′, j ′); (i , j)} ∈ ρ× ρ : i 6= i ′}.

Definition 4 (Neural Training of setM). Let m ∈M be a message to be stored

by the neural network. The training consists in setting the binary edges of graph

G = (F1, ... ,Fχ,W) as

W =
⋃

m∈M

W (D(m)) =
⋃

m∈M

W (ρ). (2.2)

It is worth mentioning that as the given storage procedure suggests, the se-

quence order of messages is not stored. The messages can be stored in any order

and at any time or all at the same time.

Since b and g are one-to-one functions, it can be directly deduced that W is

also a one-to-one and reversible function. Assume any two messages m and m′

that hold m 6= m′. This implies that we have W (D(m′)) 6= W (D(m)).

The connections’ set of W can be alternatively represented as a four dimen-

sional matrix

w(i ′j ′)(ij) =





1 if {(i ′, j ′); (i , j)} ∈ W ,

0 otherwise,
(2.3)

where w has size |C |×|F |×|C |×|F |. Such matrix representation of graph con-

nections compresses the information (where the network is built and simulated).

This way of representing network connections results in saving memory. More-

over, it simplifies the description of recovery algorithms that are explained in the

following section.

Previously in this section, the storage procedure in the network was spelled

out. The design and study of the network requires to formalize it with measurable

quantities. These quantities are employed to optimize the network from different

aspects. In the following, first the network is considered to store messages of length

χ with constant number of significant (non-blank) sub-messages c and afterwards
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it is extended to the storage of messages with variable number of significant sub-

messages.

The connections among fanals are binary from which the total number of

storage bits in the network can be deduced as

Q =
χ(χ− 1)ℓ2

2
(2.4)

that is the number of potential bidirectional connections. This quantifies the

maximum number of available bits and it may not be confused by the maximum

number of stored bits (which is always less due to redundancy).

In graph theory, the edge density is used to study the average connectivity of the

graph nodes. It is the ratio of the number of edges to the total number of possible

edges in the graph [Die10]. Assume a single message of order c is stored, then the

network density is c(c−1)
χ(χ−1)ℓ2

. It is the ratio of the number of edges in a clique with

c nodes in (2.1) to the total number of possible connections given by (2.4). The

network connections after the storage of a large number of messages are considered

asymptotically i.i.d. and uniformly distributed. This results in the probability of

having a connection between two fanals of distinct clusters being approximately

equal to the network density. Assume M i.i.d. and uniformly distributed messages

are stored. The network density becomes:

d = 1−

(
1−

c(c − 1)

χ(χ− 1)ℓ2

)M

(2.5)

where c is the message order and χ is the cluster space size. Reversely, the number

of stored messages as a function of the network density is

M =
log(1− d)

log
(
1− c(c−1)

χ(χ−1)ℓ2

) . (2.6)

In Fig. 2.4 the evolution of the network density as a function of M is shown where

χ = 100 and ℓ = 64. A network with a density close to unity may not recover the

stored messages. As a result, a low density network is often desired. It can also be
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concluded that since the network density grows slower for smaller message orders,

the network is capable of storing more messages. In other words, the number of

stored messages is proportional to the sparseness of messages.

1 2 3 4 5 6 7 8 9

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of stored messages (M )

N
e
tw

o
rk

d
e
n
si
ty

(d
)

 

 

c = 8
c = 12
c = 16
c = 20

Figure 2.4: The network density for four values of c as a function of the number
of stored messages M where χ = 100 and ℓ = 64.

A message m ∈M with message order c (all messages have the message order

c) stores log2
((

χ
c

))
+ c log2(ℓ) bits in the network. For M messages, the network

stores

B = M

[
log2

((
χ

c

))
+ c log2(ℓ)

]
(2.7)

bits of information. The first logarithm is the number of bits required to store

non-blank cluster indices and the second logarithm is the number of bits required

to store the non-blank elements’ values. The efficiency of the network is defined

as the ratio of the number of stored bits to the number of total storage bits

η =
B

Q
=

M
[
log2

((
χ
c

))
+ c log2(ℓ)

]

0.5χ(χ− 1)ℓ2
. (2.8)
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The efficiency is a metric without dimension that varies between 0 and 1: 0 ≤

η ≤ 1. It may be used to measure the amount of redundancy for a stored set of

messages.

Efficiency η = 1 occurs where all the network connections have been used to

store a message set (i.e. there is no redundancy in the network). Diversity is

defined as the maximum number of messages that the network is capable to store.

This occurs when η = 1,

Mmax =
χ(χ− 1)ℓ2

2
[
log2

((
χ
c

))
+ c log2(ℓ)

] . (2.9)

Fig. 2.5 illustrates the efficiency-1 diversity in (2.9) for several values of ℓ and
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Figure 2.5: The network diversity (η = 1) is depicted for various values of ℓ when
χ = 100 and when the stored messages have a constant order 4 ≤ c ≤ χ.

for a network with cluster space size χ = 100. It can be observed that a network

with higher number of fanals in each cluster and higher sparsity level (i.e. lower

message order) has larger diversity. The tail of all curves ends at c = χ, that is
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when the messages are no longer sparse. This point has the lowest diversity for

specific ℓ and χ.

Diversity is an important measure when the network in [GB11] is compared

with the proposed network. Indeed, diversity is improved with respect to the one

in [GB11]

Mmax = 0.5(c − 1)
ℓ2

log2 ℓ
(2.10)

while the proposed network has a diversity6

Mmax = Ω

(
χ2ℓ2

log2(χℓ)

)
.

The latter depends on the total number of fanals n = χℓ whereas in (2.10),

diversity only depends on the number of fanals ℓ (because the number of clusters

is constant and it is equal to the message order). Therefore, the proposed network

has significantly improved the diversity. On the other hand, since the network does

not store the blank sub-messages, it exploits the network resources efficiently. This

results in increasing the number of stored messages compared to the classic network

in [GB11].

Now, the storage of messages with variable number of significant sub-messages

is considered. Assume messages set M in which the messages have cmin ≤ c ≤

cmax significant number of sub-messages. The number of messages with order c is

indicated by Mc . the density of the network that stores this variable order message

set is

d = 1−
cmax∏

c=cmin

(
1−

c(c − 1)

χ(χ− 1)ℓ2

)Mc

. (2.11)

In this report, it is assumed that the message order cmin ≤ c ≤ cmax is uniformly

distributed between cmin and cmax. Therefore, the number of messages with order

c is Mc = M/(cmax − cmin + 1) when M is large [Pap91]. The binary information

borne by a message m ∈M is

log2

((
χ

cm

))
+ cm log2(ℓ),

6f (n) = Ω(g(n)) iff ∃ positive c , n0 such that f (n) ≥ c g(n) ≥ 0 ∀n ≥ n0.
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where cm is the number of significant sub-messages of message m. Efficiency is

equal to

η =

2
∑

m∈M

(
log2

((
χ

cm

))
+ cm log2(ℓ)

)

χ(χ− 1)ℓ2
(2.12)

when the message orders are uniformly distributed between cmin and cmax, this

becomes

η =

2M
cmax∑

c=cmin

(
log2

((
χ

c

))
+ c log2(ℓ)

)

(cmax − cmin + 1)χ(χ− 1)ℓ2
. (2.13)

Network diversity as it was computed before in (2.9) by setting η = 1, is

Mmax =
(cmax − cmin + 1)χ(χ− 1)ℓ2

2
cmax∑

c=cmin

(
log2

((
χ

c

))
+ c log2(ℓ)

) . (2.14)

In this section, the essential parameters to evaluate and optimise the network

were given. Indeed, the network can be characterized by its density, d , diversity,

Mmax, and content addressability metrics such as successful retrieval probability.

The retrieval probability and its computation will be discussed in the following

sections of this chapter.

2.4 Retrieval

A biological neural system such as the human brain is exposed to the input stim-

uli during the learning process. These stimuli create or change the connections’

strengths, which is the act of learning. Thereafter, the brain is able to retrieve

these stimuli in various scenarios. An example of this is the capability of storing

and reading the written words. For example, the brain stores a word (spell of the

word) which afterwards it is able to remember completely even if it is given a part

of it (a few but not all letters of the word) [PB04]. The proposed neural network

memory, inspired from the human brain, is expected to perform similar functional-

ity. It is though limited to the storage of a message set that can be considered as
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words of a dictionary (similar to human experience of learning and remembering

words). The messages (in the message set) consist of sub-messages taken from

an alphabet (similar to a language alphabet like English alphabet).

This network is expected to be able to retrieve a stored message from its

partially known sub-messages which is the fundamental property of associative

memories. The network also addresses the problem where a hypothetical message

is to be verified by the network whether it is stored. This is is also known as Set

Implementation. The brain is also able to recognize morphological or dictation

errors. Such situations can take place for example when the letters of a written

word are permuted [GW04]. The network is capable of retrieving a message where

it is fed by its permuted sub-messages.

The classical retrieval algorithm was first introduced in [GB11]. The retrieval

algorithm is based on a variation of Winner-take-all (see [GB11, Maa00]) and

message-passing. The employed message-passing is similar to a kind of message-

passing used in error control coding. In the following, the retrieval algorithm

given in [GB11] is elaborated. Although the principles of the algorithm remain

unchanged, it is modified in different ways to improve the performance in terms

of retrieval error probability.

2.4.1 Winner-take-all

Winner-take-all (WTA) is a nonlinear operation in the human brain that is also

adopted in artificial neural networks. It brings significant flexibility and capability

to neural networks [Maa00]. The basic role of Winner-take-all is rather simple:

among a group of neurons, the neuron with maximum activity level remains active

and the rest is deactivated [Maa00]. This may be a good model for STM (Short-

Term Memory) where in a group of cells that receives inputs, the network selects

the neurons with maximum activity level and maintains that pattern [Erm92]. In

this report, as it was explained earlier (see section 2.1), the fanals (that rep-
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resent microcolumns in human neocortex) are the elements of the network to

perform Winner-take-all. “Current data on the microcolumn indicate that the neu-

rons within the microcolumn receive common inputs, have common outputs, are

interconnected, and may well constitute a fundamental unit of the cerebral cor-

tex” [CBP+05]. Considering above discussions, a fanal is modeled based on the

McCulloch-Pitts model [MP43]. In Fig. 2.6, the fanal model is depicted. It is

∑
≥ max(vmax ,σ)

Figure 2.6: A fanal is modeled similar to McCulloch-Pitts model of neuron. It
computes the sum of the received signals which is known as activity level. There-
after, if it is equal to the maximum of the maximum activity level in the network
and the threshold, it fires.

similar to the model proposed by McCulloch and Pitts for neurons in [MP43]. A

fanal computes the sum of these received signals from other fanals in the network.

The sum of received signals is so-called activity level of the fanal. A fanal fires if

its activity level is equal to max(vmax, σ). vmax is the maximum activity level of a

fanal in either a cluster (which the fanal belongs to) or all fanals in the network,
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and σ is a threshold similar to the threshold in [MP43]. σ is set either for the

fanals of a particular cluster or for all fanals in the network.

In addition to the McCulloch-Pitts model in which the neuron fires when its

activity level exceeds a threshold, this model also includes the maximum activity

level (in a cluster or in the entire network).

2.4.2 The Algorithm

The network is a multipartite recurrent graph that is comparable to the well known

Low Density Parity Check (LDPC) code bipartite graph [Gal62,LC04]. In Fig. 2.7,

Figure 2.7: A bipartite graph that represents an LDPC code is depicted. The nodes
on top are variable nodes and the nodes in the bottom are check nodes. The check
nodes are arithmetic nodes (that do not take values) whereas the variable nodes
hold the result of iterative computation that is performed in each iteration.

a simple LDPC bipartite graph is depicted where the edges are binary connections

constructed according to the parity-check matrix. The advent of bipartite graphs

representation of linear codes and of the message-passing decoding algorithms goes

back to the seminal work of Gallager [Gal62]. Gallager proposed a simple iterative

algorithm (hard information propagation) in which the values of variable nodes

are calculated through parity-check constraints [Gal62,LC04]. This algorithm was



50 CHAPTER 2. SPARSE NEURAL NETWORK MEMORIES

later developed to soft information propagation that is known today as Belief

Propagation (BP) [Loe04].

The proposed network is a multipartite graph in which connections are con-

structed through the storage process (see section 2.3). Unlike LDPC codes, a

node in the network is both a variable and a check node, i.e., it contributes to

both computation and holding the resulting values (activated/deactivated). The

principle that is shared by LDPC decoders and the network is the iterative process,

that is, message-passing. Like the algorithm given in [Gal62], it is simply comput-

ing the values of nodes (they take binary values, 1 or 0, activated or deactivated)

in the network through an iterative process. The iterative process is imposed by

the fact that the state of each node depends on the state of other nodes in the

multipartite graph that may take transitory values in iteration steps. The iteration

may continue till the network converges to a steady state (there are situations

where the network does not converge). A steady state is where all the activated

fanals remain active and all the deactivated fanals remain deactivated when the

algorithm passes from one iteration step to the next.

The graph cycles in linear code graphs may increase the number of iterations

for which decoder converges whereas the cycles are an essential feature of the

proposed network that provides robustness. Therefore, they are avoided in linear

codes whereas in the proposed network having more cycles is desirable.

In the proposed network, the retrieval process is: (a) Accumulating received

signals from the connected fanals to each one. (b) Applying Winner-take-all (see

section 2.4.1) in order to determine the active fanals in the network. (c) repeating

steps (a) and (b) iteratively until the network converges or for a limited iteration

steps. (d) detect whether the remaining active fanals (after the last iteration step)

construct a unique clique while there is only one active fanal in each cluster.

Assume the network has stored a message set M and is stimulated with a

particular input. Now consider the connection matrix w in (2.3) which is four
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dimensional. In step (a) the network computes the accumulated received signals

from clusters with index 1 ≤ i ≤ χ,

v(nij)←

χ∑

i ′=1
i ′ 6=i

max
1≤j ′≤ℓ

(
w(i ′j ′)(ij) v(ni ′j ′)) + γv(nij) (2.15)

where γ is a memory effect that is taken γ = 1 throughout this report. In words it

can be expressed that the activity level of the fanal j in cluster i , v(nij), increments

by one unit if there is one or more active fanals in cluster with index i ′. In the

retrieval procedure given in [GB11], the sum
∑ℓ

j ′=1 in

v(nij)←

χ∑

i ′=1
i ′ 6=i

ℓ∑

j ′=1

w(i ′j ′)(ij)v(ni ′j ′) + γv(nij) (2.16)

takes all the active fanals in a cluster into account. This could be interpreted as

there are more than one active fanal in each cluster. The network is expected to

converge to a single clique (with only one active fanal in a cluster) after being fed

with an input stimulus. This can be directly deduced from the storage procedure

(see section 2.3). Therefore, the mentioned summation contradicts the principles

of the network. To resolve this issue, that summation is replaced by the max(.)

function in (2.15). It returns 1 if there is one or more fanals in cluster i ′ that are

connected to fanal nij [GB12].

The defect of having a fanal nij in (2.16) that receives more than one signal

from fanals of cluster i ′ may have other solutions. Another proposed solution is

the normalization of the emitted signals from cluster i ′. Thus, instead of sending

a single signal to fanal nij (in (2.15)), the active fanals send a weaker signal each

equal to

µ =
1

∑ℓ
j ′=1 w(i ′j ′)(ij)v(ni ′j ′)

from i ′th cluster. The activity level of fanal nij is then computed as

v(nij)←

χ∑

i ′=1

ℓ∑

j ′=1

w(i ′j ′)(ij)v(ni ′j ′)

µ
+ γv(nij). (2.17)
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In Fig. 2.8, a situation is illustrated where there are three active fanals in a cluster

that each sends a one-third signal. Normalizing the emitted signals in (2.17) turns

1

3

1

3

1

3

Figure 2.8: A situation is demonstrated where three active fanals in a cluster send
signals to a fanal in a different cluster. Since for a clique there is only one active
fanal in a cluster the signal strength of each active fanal is normalized to get a
total signal strength equal to unity.

out to be an improper solution with an error rate performance that is worse than

(2.15). Although (2.17) normalizes the receiving signals from several fanals in a

cluster but it may not force the principle of the network (which is a clique may

only have maximum one active fanal in a cluster). The activity level of fanal nij

depends on other activated fanals in cluster i ′ that may have connections belonging

to other stored messages.

After the fanals’ activity levels are computed in step (a), next step (b) is

Winner-take-all rule. The very first step before applying Winner-take-all is obtain-

ing the maximum activity level in the network for the current iteration step. The
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maximum activity level in cluster i , vmax,i is given by

∀i , 1 ≤ i ≤ χ : vmax,i ← max
1≤j≤ℓ

(v(nij))

and finally the absolute maximum activity level in the network is given by

vmax ← max
1≤i≤χ

(vmax,i) .

Next, Winner-take-all sets the fanals having the maximum activity level, vmax, and

above the threshold σi to 1. This is formulated as

∀iandj , 1 ≤ i ≤ χ, 1 ≤ j ≤ ℓ :

v(nij) =





1 ifv(nij) = vmaxandvmax ≥ σi ,

0 otherwise

(2.18)

where σi is the threshold of a cluster with index i in the network.

2.5 Performance

The storage and retrieval procedures of the proposed neural network memory were

explained previously. The network performance in different scenarios is addressed

in this section where the retrieval success rate (or correspondingly the retrieval

error rate) is the main subject.

The network performs a successful recovery when it converges to a unique

clique (corresponding to the stored message) after being fed by a stimulus. The

recovery of stored messages in the network may be erroneous. The errors are

categorized into two kinds: (Type I) The networks converges to a unique clique.

This clique either corresponds to another stored message (with higher order) or it

may be constructed from other stored messages’ connections (it does not represent

any of the stored messages). (Type II) The network dynamics finalizes towards a

steady state where there are more than one active fanal in a cluster. Having more

than a single active fanal in a cluster is so-called ambiguity. To clarify this point,
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an ambiguous situation example where the network is not certain about the right

clique is illustrated in Fig. 2.9. Therein, it is assumed that a message of order

four (with four sub-messages) is stored. The network is fed with three known

sub-messages that activate their corresponding fanals marked with black and they

are connected with solid lines. The network dynamics activate two other fanals in

a cluster ( the cause of ambiguous state in the network) that are connected to the

known fanals with dashed lines. In this case, the network can not answer which

clique is the correct one.

Figure 2.9: An example of ambiguity in the network where a fanal (corresponding
to a sub-message) is missing. The ambiguous fanals are connected to the known
fanals with dashed lines.

It is also possible that the network does not converge. A special case study is

given later in this chapter where the network never converges (see section 2.5.1).

In such situations, the network may stop after a pre-defined maximum number of

iterations.
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Assume the retrieval procedure recovers m̂ and the stored message is m ∈M.

The error is defined as random variable [CT06]

E =





1 if m 6= m̂,

0 if m = m̂.
(2.19)

The probability Pe = Pr[E = 1] = Pr[m 6= m̂] is the retrieval error probability.

Note that the condition, m 6= m̂, addresses both Type I and Type II errors in the

network. In case a Type II error takes place, the network returns a message/sign

(e.g. an empty message) to indicate that it could not give a response. Indeed,

where there is an ambiguity in a cluster the network is doubtful about the right

clique representing the stored message.

2.5.1 Associative Memory

The most important function of the proposed network is Associative Memory. The

network provides a neural memory whose contents can be accessed by known parts

of the stored messages. Assume a set of sparse messages of size χ each having c

significant sub-messages is stored in the network. A message in the stored set is

retrieved by knowing a part of it. This is so-called partial message in which a few

of the significant sub-messages are missing.

Recovering messages from their corresponding partial messages are considered

for two distinct cases: (a) The partial messages consists only of a few known

sub-messages and their corresponding positions in the message. This is so-called

blind recovery since the positions of missing sub-messages in the support of the

original message are not known. (b) The partial message consists of a few known

sub-messages and the support of the original message is known. Therefore, the

network is a priori aware of the clusters in which the sub-messages are missing.

This is so-called guided recovery.

The recovery of the two mentioned types is explained and their corresponding

retrieval probabilities are given in the following.
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Guided Recovery

In guided recovery, the network is fed with a few known sub-messages (but not

all) and the support of a stored message. This facilitates the recovery procedure

due to the fact that the network dynamics are a priori aware of the cluster indices

in which the fanals are missing. This simplifies down the retrieval situation to

the network in [GB11] with the same retrieval error rate for the first iteration.

Therefore, the retrieval error probability is given by

Pe = 1− (1− d c−ce )(ℓ−1)ce (2.20)

where ce is the number of missing sub-messages.

Blind Recovery

The network in [GB11] stores messages of order c that are not sparse therefore all

clusters are exploited for the storage. In the proposed network, the messages are

sparse and the network exploits this: it only stores the significant sub-messages of

a message in a clique. Afterwards, when the network recovers a message from its

partial message, it has to spot two different types of information for each missing

sub-message. These are the cluster index and the fanal that represent the missing

sub-message. This is a more complicated retrieval in comparison with the retrieval

procedure of the classical network in [GB11].

The network that is stimulated with a partial message for which the support

of the original message is unknown has to investigate the entire network. Assume

the messages in the stored message set have order c and partial messages have

ce missing clusters each. The sufficient condition for message m to be certainly

recovered from its partial message is that there are no fully connected irrelevant

fanals to the known fanals. The network dynamics in the first iteration activates

those fanals that are connected to all c − ce known fanals. Thus, if any other
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fanals in the network has less than c − ce connections with the known fanals, the

network converges to the right clique in the first iteration.

The probability of having a connection between two fanals in two distinct

clusters is approximately equal to the network density P ≈ d . Therefore, a single

connection in the network can be considered as a random variable with Bernoulli

distribution whose success probability is d .

Assume a fanal that does not participate in the construction of the sought

clique. The probability that this fanal is not connected to all known fanals is now

computed. This is the probability that the fanal is connected to any number of

known fanals in {0, 1, 2, ... , (c − ce − 1)} but not all c − ce fanals. It is computed

through binomial distribution as

Ps = 1−
c−ce−1∑

i=1

(
c − ce

i

)
d i(1− d)(c−ce−i)

= 1− d (c−ce)

where d is the success probability. Now this is extended to the entire network.

The probability of not having an irrelevant fanal in the entire network (comprising

the partially known message subject to recovery) is computed through binomial

distribution

Pr =

ce(ℓ−1)∑

i=1

(
ce(ℓ− 1)

i

)
P i
s(1− Ps)

(ce(ℓ−1)−i)

+

ℓ(χ−c)∑

i=1

(
ℓ(χ− c)

i

)
P i
s(1− Ps)

(ℓ(χ−c)−i)

= P [ce(ℓ−1)+ℓ(χ−c)]
s = (1− d (c−ce))[ce(ℓ−1)+ℓ(χ−c)]

where the first sum computes the probability of not having any irrelevant fanal

from the clusters in which the missing sub-messages activate their corresponding

fanals. There are ce(ℓ− 1) irrelevant fanals in those clusters. The second sum is

the probability of not having any irrelevant fanals from other clusters that do not

participate in the message clique. There are ℓ(χ− c) such fanals. The probability
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of error for the first iteration is then:

Pe = 1− Pr = 1− (1− d (c−ce))[ce(ℓ−1)+ℓ(χ−c)]. (2.21)

In this recovery procedure, the network retrieves the messages with only one

iteration since more iterations can not improve the performance. To explain the

Figure 2.10: A situation in the network that cause fanal activity oscillation. This
is when the fanals indicated with star markers are activated in odd iteration steps
and deactivated in even iteration steps.

reason that results in a single iteration retrieval for blind recovery, an example is

given in Fig. 2.10. The network is stimulated with a partial message that activates

the fanals indicated with black markers. The network dynamics activate two other

fanals in the first iteration that are indicated with star markers. The message clique

corresponding to the stored message is depicted with solid lines and includes one

of the activated fanals indicated with a star in the first iteration. The second star

marker is an activated fanal that belongs to another stored message. Assume the
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network passes to the second iteration step. At the end of this step, the fanals

indicated with star markers are deactivated and only the fanals that were initially

activated by the stimulus (the partial message) remain active. Thus, in case the

recovery passes to the next iteration steps the network oscillates between two

distinct states: (a) only the partial message fanals are activated. (b) the partial

message fanals along with the two other fanals (that are connected to all partial

message fanals) indicated with star marker are activated. Therefore, the network

never converges and it does not recover the stored message. This is so-called Type

III error that is the third kind of introduced errors along with Type I and Type II

errors. Assume that in Fig. 2.10, the network has stored message

m = [4,−, 7,−,−, 5, 3,−,−].

Fanal (9, 13) is a false fanal that is connected to all three known fanals (1, 4), (3, 7)

and (6, 5). At the end of the first iteration step, the activity levels of fanals are

v(n1,4) = v(n3,7) = v(n6,5) = v(n7,3) = v(n9,13) = 3. Therefore, all these

fanals remain activated and passed to the second iteration step. At the end of

the second iteration step the activity levels are v(n1,4) = v(n3,7) = v(n6,5) = 5

and v(n7,3) = v(n9,13) = 4. Thus, fanals v(n7,3) and v(n9,13) are deactivated.

This resets the network to the initial state before the first iteration. In Fig. 2.11,

Type III error rate is depicted along with the total error rate for a network that has

χ = 100 clusters and ℓ = 128 fanals in each cluster7. It can be observed that more

than 30% of the errors after the second iteration are Type III. It is also observed

through experiments that in blind recovery several iterations do not improve the

performance.

In Fig. 2.12 the network performance is illustrated through simulation where it

is used as an associative memory. The network has χ = 100 and ℓ = 64 fanals

in each cluster. The messages have c = 12 significant sub-messages and they are

7This phenomenon is seen easier when ℓ is large and this is why ℓ = 128 unlike other
simulations that have ℓ = 64.
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Figure 2.11: Type III error rate is compared to total error rate for a network with
χ = 100 clusters and ℓ = 128 fanals in each cluster. The partial messages have
two unknown sub-messages ce = 2. It is observed that over 30% are Type III
errors.

recovered from partial messages with ce = 3 unknown sub-messages. The solid line

is the theoretical blind retrieval error given by (2.21) and the dark square markers

indicate the corresponding simulation results for a single iteration retrieval. The

dashed line is the theoretical guided retrieval error rate in (2.20) and dark rhombus

markers are the corresponding single iteration simulation results. The simulation

results of a four iteration recovery is shown with dark triangle that demonstrates

a significant improvement with respect to the single iteration retrieval.

Variable Order Messages

Assume the network stores a set of variable order i.i.d. messages. A message has

an order c that is uniformly distributed between cmin and cmax, cmin ≤ c ≤ cmax.
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(a) (b) (c)

Blind Decod. 1 I ter .
Blind Decod. (Theo.)

Guided Decod. 1 I ter .
Guided Decod. (Theo.)

Guided Decod. 4 I ter .

Figure 2.12: The retrieval error rate of both blind and guided recovery of M

i.i.d. messages. The network has χ = 100 clusters and ℓ = 64 fanals in each
cluster. The partial messages have ce = 3 unknown sub-messages.

The blind recovery retrieval error rate is then given by

Pe = 1−
1

cmax − cmin + 1

cmax∑

c=cmin

(1− d (1−ǫ)c)[(ℓ−1)ǫc+(χ−c)ℓ] (2.22)

where ǫ = ce/c is the ratio of the number of unknown sub-messages to the message

order. In Fig. 2.13, the blind retrieval error rate for a network with χ = 100 clusters

and ℓ = 64 fanals in each cluster is shown. There are two distinct simulations for

6 ≤ c ≤ 18 and 12 ≤ c ≤ 24. It is observed that the simulation results depicted

with dark markers lie on the theoretical curves given by (2.22) (the solid and dashed

lines).
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cm in= 6, cmax= 18 (Simulat ion)

cm in= 6, cmax= 18 (Theoret ical)

cm in= 12, cmax= 24 (Simulat ion)

cm in= 12, cmax= 24 (Theoret ical)

Figure 2.13: The retrieval error rate of both blind and guided recovery of M

i.i.d. messages. The network has χ = 100 clusters and ℓ = 64 fanals in each
cluster. The partial messages have ce = c/4 unknown sub-messages, i.e., ǫ = 0.25.

2.5.2 Blurred Messages

The proposed network exploits cliques that are redundant structures to store mes-

sages, therefore, the error correction of distorted messages such as noisy or per-

muted messages is possible.

A message from a stored message set (in the network) in which the sub-

messages are slightly changed due to a sort of disturbance is so-called a blurred

message. The sub-messages of a blurred message may not be equal to those

that are stored in the original message but they are close (e.g. with respect to

Euclidean distance measure). Assume the network has a priori knowledge of the

disturbance (e.g. the disturbance is a Gaussian noise with variance 1). To recover

the original message, the network activates a few hypothetical fanals (depending on
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the disturbance) that may be close to the correct ones. Thereafter, the network

performs the retrieval procedure that may converge to a unique clique that is

associated with the original message.

In order to demonstrate this capability, the problem of recovering permuted

messages is considered here. For example “intelligence” is a twelve letter English

word that may be received either as “nietllgineec” or “etnleilegcni”. If the network is

able to recognize “intelligence” from these pairwise permuted versions, it is also able

to correct less disturbed ones such as “intleligecne” or “intellgienec”. The human

brain is reputed for having the capability of recognizing simple permutations in the

words [GW04].

Having a priori knowledge that the disturbed sub-messages are close to the

original message implies that the network needs to be stimulated by activating the

corresponding close fanals. In the given example above, a limited permutation is

considered where pairs of letters in a word are randomly permuted. To recover the

original message it is required to activate the corresponding fanals of each sub-

message and its neighbour (left and right) sub-messages. Therefore, in each cluster

there are three fanals that are initially activated. The retrieval error probability

is the probability that at least one of the permuted fanals (that corresponds to a

sub-message) constructs a false clique in the network. This is given by

Pe = 1− (1− d c−1)2c . (2.23)

In Fig. 2.14 the network with χ = 100 clusters and ℓ = 64 fanals in each clusters

recovers permuted messages after the first and sixth iteration steps. It can be

observed from the illustrated simulations and theoretical (2.23) that the given

retrieval error probability may be achieved after several iteration steps.

Assume an extreme situation where all fanals are activated to find the stored

message. This occurs when the close fanals (to the stored fanals) may not be

explicitly determined or all fanals may equi-probably participate in the stored clique.
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Figure 2.14: The retrieval error rate of messages that are distorted by permutation.
The network has χ = 100 clusters and ℓ = 64 in each cluster. The stored
i.i.d. messages have order c = 12.

The retrieval error probability is given by

Pe = 1− (1− d c−1)c(c−1). (2.24)

2.5.3 Set Implementation

In this situation, the network stores a set of messages (one at a time or the whole

set at once) and it can be asked afterwards if a hypothetical message (the message

to be verified whether it is stored) is stored.

The query procedure (i.e. algorithm) is the one elaborated in section 2.4.2

exploiting (2.18) and (2.15). The threshold in (2.18) is equal to the number of

significant sub-messages, 1 ≤ i ≤ χ, σ = σi = c . The under test message

activates its corresponding fanals. If the message exists as a stored message, the
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network converges to the fed message. If the network does not return the fed

message, the message has not been stored yet.

As said before, the network always converges if the fed message is already

stored in the network. This stems from the retrieval algorithm in which, if all of

the fanals of a stored message are activated, there is no other fanals in the network

with an activity level higher than the activated fanals. Assume a message of order

c and the memory effect γ = 1. The fanals of this message in the network have

activity level equal to c whereas any other competing fanal can have maximum

score c − 1, since it can not receive any signal from its own cluster. The correct

message fanals receive c − 1 signals from other activated fanals (associated with

the message) in addition to the memory effect that results in an activity level equal

to c . Therefore, a mistake is not possible if the network is asked to verify a stored

message. It can be concluded that one iteration is sufficient and necessary but not

more.

Although recovering back a stored message in the network is certain, there are

other cases for which the network fails. This is when the network is fed with a

message that is not stored but it converges and return the message. This may

be mistakenly interpreted as the message was stored. This phenomenon is related

to false cliques. These are cliques that are not associated with any of the stored

messages but are created from the combination of two or more stored messages’

connections. Therefore, by assuming again that the connections in the network

are asymptotically i.i.d. and uniformly distributed, the probability of detecting a

false clique (associate with a hypothetical message that was never stored) is

P False−Clique = d
c(c−1)

2 =

(
1−

(
1−

c(c − 1)

χ(χ− 1)ℓ2

)M
) c(c−1)

2

(2.25)

where c is the message order of the hypothetical message. In Fig. 2.15, the

simulation results are illustrated along with the theoretical error probability given

by (2.25). In this simulation, the network has χ = 100 clusters with ℓ = 64 fanals
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in each cluster. The densities from which the network stores more messages than

limited by the efficiency-1 diversity (see section 2.3) is indicated with “×” and “+”.

These points are computed through (2.9). It can be observed that even though

the network is overloaded, the probability of false detection is very low. From

this, it can be concluded that the network can be employed for set implementation

reliably with efficiencies larger than one: η > 1.
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c = 6 (Simulat ion)

c = 6 (Theoret ical)

c = 9 (Simulat ion)

c = 9 (Theoret ical)

Mmax≈ 3 × 105

Mmax≈ 2 × 105

Figure 2.15: The set implementation error rate as a function of the density of
the network composed of χ = 100 clusters of ℓ = 64 fanals each, with cliques of
order c = 6 or 9. Densities corresponding to efficiency-1 diversities (Mmax) are
also indicated.

2.6 Optimal Network

The network and the message set need to be designed in order to establish an effi-

cient and optimal neural. The optimality can be based on different cost functions.
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The network is optimized with respect to two cost functions: the retrieval error

rate and the network diversity. In the previous sections the given equations have

established the relations among the network message set parameters and these cost

functions. The network parameters are cluster space size χ and number of fanals

in each cluster ℓ. The parameters of stored the message set are the minimum

and maximum message orders (cmin and cmax) and number of stored messages M .

These two sets of parameters are related by retrieval error probability, density and

diversity equations.

2.6.1 Optimal Constant Message Order

The network with cluster space size χ and ℓ fanals in each cluster stores a set

of messages with constant order c . As a design parameter, the optimal message

order c is computed to maximise the number of stored messages.

The blind retrieval error probability in (2.21) is rewritten as

Pr = (1− d (c−ce))[χℓ−(ǫ+(1−ǫ)ℓ)c]

≈ (1− d (1−ǫ)c)χℓ
(2.26)

where ǫ = ce/c . The network density is approximately computed as

d ≈ (1− P
1
χℓ
r )

1
(1−ǫ)c .

For low density values d ≪ 1 in (2.6), the number of stored messages is approxi-

mately given by

M ≈ d
χ(χ− 1)ℓ2

c(c − 1)
.

After taking the derivative of M with respect to c , the approximate optimal mes-

sage order for a specific error rate P0 is

copt ≈
log
(

χℓ
P0

)

2(1− ǫ)
. (2.27)

In Fig. 2.16, the number of messages versus the message order c is illustrated. It
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Figure 2.16: The number of stored messages is depicted for the network with
χ = 100 clusters and ℓ = 64 fanals in each cluster. The curves are given for
several blind retrieval error probabilities where ǫ = 0.25.

is observed that the number of stored messages reaches a maximum for a specific

c that is given approximately by (2.27). The optimal message order can be used as

a rule-of-thumb to design networks that store variable order messages by choosing

the average order close to (2.27).

2.6.2 Optimal Density

The optimal density refers to a density for which the network exploits the con-

nections efficiently. This is when the connections bear the maximum amount of

information. The connections of the network take binary values and each can

be considered as a Bernoulli random variable. Bernoulli random variables bear the

maximum amount of information when their success probability is 1
2
. So, a network
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that exploits efficiently its connections is the one with density d = 0.5. Therefore,

the connection matrix in (2.3) does not need to be compressed when it is being

transferred or stored on a device.

2.6.3 Optimal Variable Message Order

A network that stores variable order messages is more complicated to optimize

although it has more capabilities (storage of variable order messages). To optimize

the network two criteria are considered: the density d = 0.5 and the recovery error

rate. It is aimed to find cmin and cmax for which the network has the least (or very

low) retrieval error probability while d = 0.5. To achieve this goal, the network

density in (2.11) where 1
χ(χ−1)

≪ ℓ2 is rewritten as

d ≈ 1− (1−
1

ℓ2
)
∑M

k=1
ck (ck−1)

χ(χ−1) (2.28)

where M is large and ck (cmin ≤ ck ≤ cmax) is the kth message order. The

message orders ck are assumed to be uniformly distributed between cmin and cmax.

The number of messages with order c is Mc =
M

cmax−cmin+1
(based on an axiom of

probability theory described in [Pap91, p. 11]) that results in

d ≈ 1− (1−
1

ℓ2
)

M∑

k=1

ck(ck − 1)

χ(χ− 1)

= 1− (1−
1

ℓ2
)

Mc

cmax∑

c=cmin

c(c − 1)

χ(χ− 1)

= 1− (1−
1

ℓ2
)M

E{(c−E{c})2}+E{c}2−E{c}
χ(χ−1)

(2.29)

where c (in bold) is the message order random variable (uniformly distributed).

Mean of random variable c is

E{c} =
cmax + cmin

2

and its variance is

E{(c− E{c})2} =
(cmax − cmin + 1)2 − 1

12
.
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In Fig. 2.17, the network is optimized for the maximum connection entropy,

that is, for d = 0.5. It can be observed that there may be several combinations

of cmin and cmax for which the network holds d = 0.5 when it stores a certain

number of messages. In practice one should choose the best among these choices.

A criterion may be the error rate for which each application requires a particular

error rate. For example, image processing applications can tolerate high error rates

while telecommunication systems generally need an error rate lower than 10−4.

0 5 10 15 20 25 30 35

20

30

40

50

60

70

80

90

100

cm in

c
m

a
x

 

 

M = 10000 P e = 1 . 55E − 02

M = 25000 P e = 1 . 31E − 04

M = 40000 P e = 4 . 47E − 03

M = 55000 P e = 5 . 34E − 02

M = 70000 P e = 1 . 37E − 01

Figure 2.17: The message order pairs are depicted for the network with d = 0.5,
χ = 100 clusters and ℓ = 64 fanals in each cluster. The curves are given for several
blind retrieval error probabilities where ǫ = 0.25. The least error probabilities are
given in the legend and their corresponding pair has filled marker.



Chapter 3

Information-Theoretic Analysis

of the Neural Network Memory

Information theory is strongly related to probability theory. It was introduced first

by Claude E. Shannon in 1940’s to quantify information processed by a system,

for which the input and output information can be modeled by probability density

functions. Shannon introduced a metric, namely entropy, defined as a random

variable x:
∑

x∈Ω−P(x) logP(x) where P(x) is the probability of outcome x in the

probability sample space Ω. Entropy is a real and positive value that measures the

amount of randomness, i.e., that reaches its maximum value when x is uniformly

distributed (which represents maximum randomness) [Sha48, CT06]. Shannon

established the separate source and channel coding strategies. He considered the

source coding (compression) and the channel coding (error correction) as separate

blocks: information is first processed by a source coding block to remove useless

redundancy. The result is then processed by a channel coding block to embed

smart redundancy. This redundancy helps the receiver at recovering the original

information from the distorted received information.

The situation in the brain is comparable: external stimuli coming from the

outside world are compressed through successive processing layers (such as in the

71
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visual cortex) and then possibly stored with some added redundancy in order to

ensure robustness and durability. This flow of neural signals that convey informa-

tion (which results in learning, moving a muscle, etc.) can be measured [BT99],

but the information-theoretic study of the biological neural systems such as the

human brain is not really the subject of this thesis. This chapter is focused on

artificial neural networks.

The neural memory proposed in chapter 2 will be discussed exploiting the

information theory framework, that is, the storage and recovery of messages from

their partially known or distorted messages will be studied from source and channel

coding aspects. In particular, the last section is dedicated to information-theoretic

constraints on the proposed network.

3.1 Analysis of the Message Source

The very first step toward the information theoretic analysis of the proposed neural

network is the investigation of the message source. Throughout this report, it is

assumed that the message source is i.i.d. and uniformly distributed. Such a source

has the maximum entropy and therefore is intrinsically compressed. Moreover, this

assumption simplifies the study of the network without loss of generality. Once

the network is mathematically formalized for the i.i.d and uniformly distributed

source of messages, it can be extended to other types of sources (by knowing their

probability density function).

In chapter 2, the retrieval error probability of the network was formulated in

(2.20) and (2.21) for the first iteration. These error probability equations are upper

bounds on the performance of the network, that implies that the network may have

a lower error rate with more than one retrieval iteration step. In this section, a

lower bound on the retrieval error probability is computed to demonstrate that

even if the network stores two messages, the error probability may not be zero.
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The lower bound is computed based on the typical sequences fundamentals [CT06,

Chapter 3].

Assume the network tries to retrieve the stored messages from their correspond-

ing partial messages in either guided recovery or blind recovery (section 2.5.1)

schemes. The network stores two messages of the same order c . The probability

of these two messages having r distinct sub-messages is equal to
(
c

r

)
(1− 1/ℓ)r (1/ℓ)(c−r)

where 1 < r < c . Although the two messages are distinct and can be retrieved,

there is a situation in which none of them can be recovered. Assume the network

retrieves one of the messages when being fed with a partial message. The partial

message has ce missing sub-messages that are chosen uniformly random among

c sub-messages of either of the two messages. In case the r non-identical sub-

messages are missing, an ambiguity situation occurs (see section 2.5) that even a

genie decoder is not able to resolve. The probability of having the r non-identical

sub-messages (1 < r < c) missing in a partial message is equal to

ǫr (1− ǫ)(c−r)

where ǫ = ce/c . The probability PL that the network is not able to retrieve a

stored message from its corresponding partial message is then lower bounded as
(
c

r

)
(1− 1/ℓ)r (1/ℓ)(c−r)ǫr (1− ǫ)(c−r) < PL.

This trivial lower bound (regardless of the number of iterations) is imposed by the

message source and the network architecture.

For example consider two messages that are drawn from A = {1, 2, ... , 128}

and stored in a network with eight clusters.

m1 = [−, 12,−, 14,−, 78, 35,−]

and

m2 = [−, 15,−, 14,−, 78, 35,−].
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Consider that the first non-blank sub-message in m1 is randomly missing (ce = 1).

This operation can be represented as an element-wise multiplication of two vectors

m1 and

O = [−, 0,−, 1,−, 1, 1,−]

where 0 represents the missing sub-message. The partial message is obtained as

mpar = m1 ⊙ O = [−, 0,−, 14,−, 78, 35,−].

Message m1 can not be retrieved from this partial message, because the same

operation on m2 gives the same result.

3.2 Channel Coding

Channel coding is the technique of adding smart redundancy to information in order

to preserve the original information where it is exposed to distortions. A common

application of channel coding is data protection in communication systems where a

transmitter sends information to a receiver over a noisy channel. Transmission over

a noisy communication channel may result in the erroneous reception of information

at the receiver. Shannon [Sha48] and Hamming [Ham50] separately addressed this

problem by proposing error correction codes to protect the transmitted information.

Definition 5. A code (M , c) of length c and cardinality M over an alphabet

A is a collection of M elements from Ac . The elements of the code are called

codewords [RU08,LC04].

Shannon showed that there is a code through which a system can rich a max-

imum communication rate known as channel capacity [Sha48]. Since then, re-

searchers looked for such codes to achieve channel capacity. Turbo code [BG96]

and LDPC code [Gal62] are two examples of linear codes getting close to Shannon

limits. Although the formal definition of a code in [RU08, LC04] does not im-

pose any constraint on the decoding and encoding procedures, these are of great
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importance in practice. Encoding is the mapping of an input information to its

corresponding codeword and decoding is retrieving the original input information

from the distorted codeword. Since in practice an efficient code is enormously large

(M is large), encoding and decoding algorithms are the main concern in coding

theory (along with error correction capabilities of codes). There are not many

successful coding schemes that comply both encoding/decoding and error correc-

tion capability requirements. Turbo and LDPC codes may be the master pieces

of this never ending quest until now. These are linear codes that rely on parity

check matrices. They are also known as generator matrices which are used to

generate codewords. Properties of a code including error detection and correction

capabilities, depend on codewords and computing the generator matrix from the

codewords is formidable and non-trivial. Consequently finding such matrices that

generate desirable codes1 is difficult.

The classical network in [GB11] and the proposed network in this report attack

the channel coding differently. The neural network provides a memory to store the

codewords and a practical decoding algorithm. Unlike linear codes, the codewords

are not extracted from a generator matrix. The network is capable of storing

an arbitrary set of codewords that may or may not be linearly dependent with

respect to each other, which is another degree of freedom. Therefore, the designer

is able to choose each codeword (theoretically) carefully depending on system

requirements.

The code rate of the system depends on the number of messages (i.e. code-

words) which the network is able to store and recover. It is

R =
logℓ(M)

c
(3.1)

where M is the cardinality of the code (it is also defined in chapter 2 as the number

of stored messages), ℓ is the number of fanals in each network cluster and c is the

1Desirable codes may be described by various metrics such as minimum Hamming distance
[LC04,Ham50].
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code block-length (i.e. message order).

There are two main differences between the network in [GB11] and the proposed

network when they are used for channel coding applications. The number of

codewords of a linear code is remarkably large in comparison with the diversity

of the neural network in [GB11]. The proposed network (in this report) has a

larger diversity (see section 2.3) than the classical one, which helps the network

diversity get closer to the cardinality of linear codes. The second advantage of the

proposed network is the storage of codewords with different lengths (i.e. variable

message orders). This makes the system able to exploit non-block codes (where

the codewords have different lengths). The system may also implement a multi-

rate coding system with a variable coding rate depending on the communication

channel quality.

3.3 Source-Channel Coding

In chapter 2, it was briefly mentioned that the network is capable of both com-

pression and protection of the stored messages. This is known as source-channel

coding where input information is compressed to remove its redundancy and then

a smart redundancy is added to protect the compressed information against dis-

tortions. Consider the set-implementation application of the network in which the

message support set and correspondingly the active clusters are a priori known.

It was observed in set-implementation (see section 2.5.3) that the false detec-

tion rate is very low even for network efficiency η > 1. A network efficiency larger

than unity implies that the network stores more information bits than its maximum

available bits Q (equation (2.4) in section 2.3). The compression and error protec-

tion features of the network allow a low false detection rate when η > 1. This is a

kind of joint source-channel coding similar to the classical method in [LC04,CT06]

that is elaborated in the following.
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A message of order c is mapped to a clique with
(
c

2

)
= c(c − 1)/2 binary

connections. The message contains c log2 ℓ bits. Therefore, to compress a single

message at the storage, inequality

c − 1

2
< log2 ℓ

must be held. For example, previously in chapter 2 a simulation result was given

for a network with ℓ = 64 that stores messages of order c = 12. By substituting

the network parameters in the inequality, it is found that the network satisfies the

inequality, (12 − 1)/2 < log2 64. The network compresses further the messages

through sharing connections. For example consider messages

m1 = [−, 12,−, 14,−, 78, 35,−]

and

m2 = [−, 15,−, 14,−, 78, 35,−]

that share
(
3
2

)
= 3 connections in their corresponding cliques. The total number of

connections to store the two messages is equal to 2×
(
4
2

)
−
(
3
2

)
= 9 instead of 12

(when they are stored separately as single messages). The above example simply

shows that a set of stored messages with some equal sub-messages requires a fewer

number of connections to be represented in the network. This feature, when the

network stores a large number of i.i.d. and uniformly distributed messages, results

in compression.

A clique has a redundant structure, i.e., the c active fanals belonging to a

message are linked through c(c−1)
2

connections whereas ⌊ c+1
2
⌋ may be enough to

connect them together2 (the minimal number of required connections to represent

a message). Therefore, due to such redundancy feature, a clique in [GB11] is

considered as a clique code (similar to a codeword) that protects the message.

The classical codes introduced by Hamming are characterized by a well known

2⌊q⌋ is the largest integer not greater than q.
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parameter, namely minimum Hamming distance. It is the minimum number of

non-identical elements in two distinct codewords of a code. A larger Hamming

distance implies a stronger code (in terms of error detection and correction). Ham-

ming distance is the minimum Euclidean distance between two codewords and the

network does not have an algebraic topology. Therefore, it does not characterize

the clique codes. Assume two cliques that only have one different sub-message.

The minimum distance is defined as the number of different edges between these

two cliques [GB11], which is

dmin = 2(c − 1) (3.2)

when the cliques have order c . In [GB11], the authors defined the coding rate R as

the ratio of minimum number of edges to associate a set of nodes and the number

of edges in a clique which is R = 1
c−1

. The coding rate is an important parameter

in coding theory. It quantifies the increased redundancy in order to provide error

correction and detection capability. It is therefore desired that the code has a

coding rate close to unity, i.e., having less redundancy as possible. This is further

used to derive a parameter namely the merit factor F = Rdmin. In the proposed

network and in the one in [GB11], F is equal to 2, indicating that clique codes are

good codes [GB11].

3.4 Communication Channel Model

A memory is expected to recover exactly what has been stored in it. This however

does not happen in real-world applications. Memory contents change throughout

time due to physical changes in their semiconductor substructure, electromagnetic

interference, solar activities, etc. The proposed neural network memory like other

types of memories is not error-free. Therefore, a part of stored information may

not be recovered (see section 3.1). Erroneous recovery imposes limits on the neural

network quality which is highly dependent on the number of stored messages M and
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the number of unknown sub-messages at the input. From the error probabilities

computed in chapter 2, the maximum number of stored messages can be estimated

when the error rate is below a certain limit. Although this is a very useful rule-of-

thumb, it may not be a precise criterion, because the error rate limit may change

from one to another application. Information-theoretic analysis is an approach

that could give rigorous limits on the proposed network rather than vague limits

based on intuition. It has been previously considered in [SSP96,AM89] for neural

network memories. In the following, information theory is exploited to compute a

set of constraints on the proposed network when it is used as an auto-associative

memory.

Unreliability in memories can be modeled as a communication channel for

which there are known information-theoretic analysis. A communication channel

is a probabilistic model to compute information loss in systems in which informa-

tion is distorted randomly (that is, when the distortions can not be modeled as the

result of a deterministic alteration of input and output information). In Fig. 3.1,

the noisy communication system model in [PS07,Hay09] is illustrated. The set of

messages (source) passes through the neural network memory (noisy communica-

tion channel) and the recovered messages are the distorted set of stored messages

(sink) 3.

Source SinkNeural Network

Noisy Channel

Figure 3.1: Communication Channel Model

In Fig. 3.2, the detailed flow of information in the system is depicted. The time-

delay block indicates the separation in time of the recovery and storage in time

3The network including all storage and recovery procedures is considered as a black box.
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Neural 

Network

Memory

Puncturing Block

(DMEC)Input

Messages
Partial

Messages

Recovered

Messages

Time Delay

Figure 3.2: Information-theoretic Block Diagram

(in other words, the recovery is done after the storage). There are three points

in the diagram at which the information is measured: (a) input messages (b)

partial messages (c) recovered messages. The input messages are the realization

of random vector m, the partial messages are the realization of random vector m̃

and the recovered messages are the realization of random vector m̂.

The mutual information rate between two random vectors is the amount of

transmitted information from one random vector to another one, the mutual infor-

mation rate between m and m̂ being denoted by I (m; m̂). The mutual information

rate between m and m̃ is denoted by I (m; m̃). The network is fed with m̃. It

is then expected to extract additional information from the network connections,

while exploiting m̃. The given information to the network is equal to I (m; m̃). The

extracted information after recovery is equal to I (m; m̂). The network is called

informative if and only if I (m; m̂) > I (m; m̃). I (m; m̂) < I (m; m̃) implies that

the amount of information in hand by knowing m̃ is more than what the network

gives after the recovery. In this case, the network would loose information in the

process of decoding. The differential information rate is defined as

Idiff = I (m; m̂)− I (m; m̃)

= H(m|m̃)− H(m|m̂)
(3.3)

where H(.|.) is the conditional entropy between two random vectors/variables and

the network is informative if Idiff > 0. The computation of Idiff requires the com-

putation of I (m; m̃) and I (m; m̂). They are derived in the following sections.
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3.4.1 Puncturing Block Channel Model

The proposed network is an auto-associative memory which recovers a message

from its corresponding partial version. It was mentioned earlier that the missing

sub-messages (in a partial message) are distributed uniformly random among sig-

nificant sub-messages. To be precise, partial message m̃ is message m with order

c in which ce sub-messages are missing. A sub-message in m may be unknown

in m̃ with probability ǫ = ce/c (ǫ was introduced first in section 2.5.1). The

generation of partial messages is assumed to be performed by a function, namely

puncturing block. This block is modeled as a Discrete Memoryless Erasure Channel

(DMEC) [CT06,PS07] in which a sub-message is either passed through the chan-

nel (unchanged) with probability 1−ǫ or it is mapped to null (here it is shown with

0) with probability ǫ. This channel model is depicted in Fig. 3.3. The amount of

information at the DMEC input is equal to the sub-message’s entropy H(x) where

x is the sub-message random variable. Because x is assumed i.i.d. and uniformly

distributed over alphabet A with cardinality ℓ, H(x) = log2 ℓ [CT06]. z is a ran-

dom variable which takes values in A ∪ {0}. It represents the sub-messages that

are passed through the puncturing block. The remained amount of information

(in a sub-message) after the puncturing operation is computed through mutual

information rate

I (x; z) = H(x)− H(x|z)

= H(x)−
∑

z

P(z)H(x|z = z)

= H(x)− ǫH(x|z = 0)

= (1− ǫ)H(x).

(3.4)

The mutual information rate in (3.4) has a simple relation with source entropy

H(x): it reaches its maximum when there is no missing sub-messages, i.e., ǫ = 0

and it reaches its minimum when all sub-messages are missing (ǫ = 1).

The random vector m can be decomposed into a c-tuple vector of c i.i.d. ran-
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dom variable x (sub-message random variable) and a support vector which holds

the indices of the c significant values in m. Therefore, the entropy of the message

random vector is equal to

H(m) = log2

(
χ

c

)
+ cH(x)

= log2

(
χ

c

)
+ c log2 ℓ

bits, where the first term in the sum is the support vector entropy and the second

is the significant sub-messages’ entropy. The separation of the support vector and

sub-messages entropies is of great importance, because the network may recover

in two different modes: guided recovery and blind recovery. In guided recovery, the

network is fed with the complete support vector information and in blind recovery,

it is fed only with the support vector of the known sub-messages. The mutual

information rate for guided recovery is computed as

IG(m; m̃) = log2

(
χ

c

)
+

c∑

i=1

I (x; z)

= log2

(
χ

c

)
+ c(1− ǫ) log2 ℓ.

(3.5)

In (3.5), the sum over I (x; z) is the implication of the previous assumption: the

mutual information rate of c i.i.d. random variables in a vector is the sum of each

random variable’s mutual information rate [CT06].

In blind recovery, the support vector gives only the indices of ce = (1 − ǫ)c

known sub-messages. Therefore, the support vector requires log2
(

χ
(1−ǫ)c

)
bits to

be represented. The mutual information rate for blind recovery is computed as

IB(m; m̃) = log2

(
χ

(1− ǫ)c

)
+

c∑

i=1

I (x; z)

= log2

(
χ

(1− ǫ)c

)
+ c(1− ǫ) log2 ℓ.

(3.6)
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Figure 3.3: Discrete Memoryless Erasure Channel (DMEC) diagram for the punc-
turing block. The information flow is from left to right.
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Figure 3.4: Discrete Memoryless Erasure Channel (DMEC) diagram for the neural
network memory. The information flow is from left to right.
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3.4.2 Neural Network Memory Channel Model

Set of stored messages M passes through the network (as a black box) and is

mapped to a set of retrieved messages. Although the internal storage and retrieval

procedures of the messages are known, the underlying mapping between the set

of stored messages and retrieved messages may not be easy to predict. This is

worsen when considering more than one iteration step at the retrieval.

The recovery error was defined in section 2.5. If the network fails to recover

even one sub-message in a message, an error occurs (although there may be cor-

rectly recovered sub-messages). By definition, an erroneous recovery bear no infor-

mation about the stored message and its sub-messages, i.e., I (m; m̂|m 6= m̂) = 0.

This is to guarantee the network functionality as a memory which is aimed to

retrieve what has been stored. In Fig. 3.4, the network channel model that maps

m to m̂ is shown. The network mutual information rate is equal to

I (m; m̂) = log2

(
χ

c

)
+ (1− Pe)H(m)

= log2

(
χ

c

)
+ (1− Pe)cH(x)

= log2

(
χ

c

)
+ (1− Pe)c log2 ℓ

(3.7)

where Pe is the network error probability. Pe was given in section 2.5.1 for the

single iteration blind and guided recoveries.

3.4.3 Recovery Constraints: Differential Information

Rate

The first recovery constraint is guided recovery computed by simply substituting

(3.7) and (3.5) into (3.3). Inequality

Pe < ǫ (3.8)
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holds when the network is informative, i.e., Idiff > 0. From substituting (3.7) and

(3.6) into (3.3), the blind recovery constraint is computed,

Pe <
1

c log2 ℓ
log2

(
χ
c

)
(

χ
(1−ǫ)c

) + ǫ (3.9)

when the network is informative. In Fig. 3.5, the differential information rate (as
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Figure 3.5: Differential Information Rate Idiff versus Number of Stored Messages
M is illustrated for the network with χ = 100 and ℓ = 64. ǫ = 0.25 and c = 12.

defined by (3.3)) for the network with χ = 100 clusters and ℓ = 64 fanals in

each cluster is depicted. The network stores a set of messages with order c = 12

and it recovers the stored messages from their corresponding partial messages

with ǫ = 0.25. The error probabilities in (3.9) and (3.8) are calculated from the

given error probabilities in chapter 2 for one iteration recovery. In this figure, the

informative region where Idiff > 0 is separated with a thick solid line. As long as

the network is in this region it extracts information from the network connections
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and gives it to the additional information. The network in guided recovery mode

can store more messages and remain in informative region in comparison with

blind recovery. The differential information rates have a crossing point where

they both are equal. It can be concluded that by feeding the network with the

message support (in guided recovery) we may not gain in terms of the extracted

information. The network also has a larger differential information rate for blind

recovery than guided recovery when the number of stored messages is less than

that of the crossing point. In Fig. 3.6, the given upper bounds in (3.9) and (3.8) on
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Figure 3.6: Upper bounds on Pe exploiting the DMEC model for the network. The
network has χ = 100 clusters, ℓ = 64 fanals in each cluster. The stored messages’
order is c = 12.

error probability Pe are depicted. The network remains in the informative region,

i.e., Idiff > 0 if its recovery error rate is below the upper bounds. It is observed that

the error probability upper bound for blind recovery grows faster and it reaches

the unity where ǫ = 0.63. This suggests that the network may not be in the
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informative region for ǫ ≥ 0.63.

3.4.4 Recovery Constraints: Fano’s Inequality

Fano’s inequality is one of the information-theoretic utilities that are often used

to compute bounds and constraints [CT06, Chapter 2]. Fano showed that for any

two random variables y and w, inequality

H(p) + pH(w) ≥ H(w|y) (3.10)

holds where p = Pr[y 6= w]. This variation of Fano’s inequality given in [CT06, p.

39] is used to compute the constraints in this section. The importance of Fano’s

inequality lies in the connection of the error probability with the information rate.

Theorem 1. Assuming I (m; m̂) < I (m; m̃), the network holds

I (m; m̃) ≥ (1− Pe)H(m)− H(Pe) (3.11)

where Pe = Pr[m 6= m̂].

Proof. Fano’s inequality is written separately for H(m|m̃) and H(m|m̂).

H(Pe) + PeH(m) ≥ H(m|m̂). (3.12)

H(ǫ) + ǫH(m) ≥ H(m|m̃). (3.13)

The information rate of the puncturing block is

I (m; m̃) = H(m)− H(m|m̃).

I (m; m̂) < I (m; m̃) implies H(m|m̂) > H(m|m̃). By substituting

H(m|m̃) = H(m)− I (m; m̃)

in

H(Pe) + PeH(m) ≥ H(m|m̂) > H(m|m̃),

equation (3.11) is obtained.
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The retrieval error probability for more than one iteration may not be straight-

forward to compute. Theorem 1 gives an upper bound on the network retrieval

error probability. The network remains informative for a specific ǫ if and only if

it has an error rate below Pe in (3.11). This inequality holds for any number of

iterations and is independent of the storage and recovery procedures. In Fig. 3.7,

the computed upper bound on Pe by (3.11) is depicted versus ǫ. The network has

χ = 100 clusters with ℓ = 64 fanals in each cluster. The stored messages have

c = 12 significant sub-messages.
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Figure 3.7: Upper bounds on Pe for the network with χ = 100, ℓ = 64 and c = 12.

3.4.5 Discussion

Two sets of upper bounds on Pe for blind and guided recoveries were computed in

sections 3.4.3 and 3.4.4. The first upper bounds in section 3.4.3 were computed

by condition Idiff > 0. In section 3.4.4, in addition to the condition on Idiff , Fano’s
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inequality was also used. Moreover, for the computation of the bound in Theorem 1

the network was not modeled as a DMEC. Indeed, the network may be considered

to be any procedure which recovers m from m̃.

Fano’s inequality is often exploited to obtain lower bounds on error probability.

Theorem 1 computes the lowest value of Pe for which Idiff < 0. This implies that

if the network error probability is equal to P ′
e and P ′

e < Pe , then Idiff > 0. Thus

the given bound in Theorem 1 depends on not only Idiff but also Fano’s inequality.

Figs. 3.7 and 3.6 show that Theorem 1 gives a tighter bound than (3.9) and (3.8).





Chapter 4

Information-Theoretic

Constraints on Sparse Pattern

Recovery

Sparse signals have intrinsically a few nonzero elements or they can be represented

in a basis that have a few nonzero coefficients. These signals appear in various

applications such as image processing [BCNV08], Magnetic Resonance Imaging

(MRI) [LDSP08], reflection seismology [SZ09,ZS10,HFYay] etc. As a very simple

example, consider a signal that is constructed from superposition of a few sinusoids.

This signal is not intrinsically sparse but its Fourier transform coefficients’ vector

is sparse. The nonzero coefficients are spikes on the frequency spots in which the

sinusoids oscillate. Therefore, the coefficients form a sparse vector in which the

informative parts are the nonzero elements.

Definition. A signal is k-sparse if its representation in a basis has only k nonzero

coefficients [BCNV08]. A vector is k-sparse if it has only k nonzero elements1.

1In the existing literature in which sparse data structures are studied [BCNV08,CW08,Can08],
sparse signal and sparse vector may be distinct. A sparse vector is a vector with a few nonzero
elements whereas a sparse signal is not intrinsically sparse but it has sparse coefficients in a
particular basis.

91



92
CHAPTER 4. INFORMATION-THEORETIC CONSTRAINTS ON SPARSE

PATTERN RECOVERY

Although sparse signals and vectors are desirable, they are rare in practice.

There may be a basis in which a signal is sparse along with very small nonzero

residuals [Sto09]. This is the dominant situation in real-world applications. In

order to have a purely sparse (without tiny residual coefficients), the signal must

be noise-free (as a counterexample) and this is not usually the case. Besides,

practical signals are naturally random and to find a basis that gives strictly sparse

coefficients may not be feasible.

Definition. A vector is strictly sparse when there are only a few nonzero elements.

A vector is approximately sparse when there are a few significantly large coefficients

and the rest is small but not necessarily zero [BSB10,Sto09].

Sparseness or parsimony is an a priori knowledge about a signal. It may be

exploited to improve the performance of information processing systems. In this

report, the situation in which these signals have to be sampled and stored is

considered. There are other applications such as blind deconvolution [HFYay,ZS10]

that are not discussed here.

Various techniques are used to compress and store the sparse signals, includ-

ing Sample-then-Compress Framework (SCF) [BCNV08] and Compressed-Sensing

(CS) [BCNV08,CT05,Don06]. The former is a well known compression and storage

scheme for which Joint Photographic Experts Group (JPEG) image compression

standard is an example. In SCF, a device samples a real-world signal (including

redundant information), then, in a post processing stage, it extracts useful infor-

mation. Assume p-dimensional vector α is acquired through a sampling process

that satisfies Nyquist criterion. Further assume α is sparse in a basis indicated by

B and the complete set of transform coefficients {βi} is computed as β = Bα.

The k largest coefficients in β are located and the p − k smallest coefficients are

discarded. The values and locations of those large coefficients are encoded and

stored. This scheme has several drawbacks. It requires to sample at Nyquist rate
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or higher that implies that the system acquires and stores enormous amount of

redundant information. This imposes a data processing burden on the encoder

whereas the decoding is less energy and computationally demanding. It may also

lead to some practical limitations, especially in the hand-held devices and sensor

networks where the devices are battery driven.

Compressed-sensing is an emerging field for compression and signal acquisition.

It is the joint sampling and compression of sparse signals that is aimed to reduce

the complexity of encoders. In this scheme, sampling and compression are not sep-

arate procedures (i.e. serially implemented) but they are performed simultaneously.

The compressed-sensing systems avoid acquisition and processing of redundant in-

formation: the sampling rate is proportional to the underlying information content

(sparsity level) rather than the bandwidth of the underlying signal [DMM09,TV11].

For example in [TV11], an under-Nyquist Analog-to-Information Conversion (AIC)

scheme is proposed. CS can significantly reduce processing time and power con-

sumption in the encoder (i.e. acquisition system). Moreover, there are situations

in which acquiring sampled data is too expensive or practically infeasible. Such

situations can be seen in physics experiments when the sensors are too costly or

when a quantity is measured in a large spacial volume with few sensors. Although

compressed-sensing is an efficient scheme at the sensory level, i.e., signal acquisi-

tion, it requires a sophisticated recovery procedure. A compressed-sensing setup

is formulated as

Y = XBα = Xβ (4.1)

where αp×1 is the sparse signal, βp×1 is the sparse vector, Bp×p is a basis and Xn×p

is the sampling matrix. Yn×1 is the sparse signal projection in a lower dimension

hyper-space (n < p). It is assumed that β has at maximum k-nonzero elements

(or significant elements if β is approximately sparse) and k < p. The system of

linear equations in (4.1) is generally so-called compressed-sensing when k/p ≪ 1.

In this report, the system is named compressed-sensing regardless of k/p value.
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The operations of a compressed-sensing system is packed into an underdeter-

mined set of linear equations where the high dimensional sparse vector is mapped

(compressed) into a lower dimensional vector. The compression is a simple map-

ping whereas the recovery (decompression) is a search for the corresponding vector

(with higher dimension). In general such a system of equations has infinite num-

ber of solutions. It was first observed in reflection seismology that such a system

may have a unique answer. In reflection seismology, a system transmits a series of

sparse pulses after which it estimates the transfer function of the traversed path.

It was known that if the pulses are sparse, there may be a unique solution (the

transfer function) to the problem [SZ09, ZS10]. It was later shown (rigorously

proved) in [Don06,Can06,CW08,Can08] that an underdetermined system of linear

equations has a unique solution under certain conditions. These are algebraic con-

ditions on the sparsity level and the sampling matrix (coefficients’ matrix). There

are two very well known conditions (among others) derived independently by Can-

dès and Donoho. A sufficient condition on the sampling matrix that is so-called

Restricted Isometric Property (RIP) given by Candès [Can06]. A sufficient and

necessary condition on the sampling matrix that is so-called Null Space Property

(NSP) given by Donoho [Don06].

4.1 Recovery

For sparse enough vectors in underdetermined linear system of equations there is an

exact solution [Can06,Can08,Don06,BCNV08]. This is an optimization problem

that finds the sparsest solution [Can06,Can08].

(P0)
minimize |supp(α̃)|

subject to XBα̃ = Y ,

where supp(.) gives the support set of a vector. This optimization problem is non-

polynomial (NP) time in general. In [CT05,Don06, CW08], Candès and Donoho
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show that under Restricted Isometry Property (RIP) and Null-Space Property

(NSP) conditions, the solution of

(P1)
minimize ‖α̃‖ℓ1

subject to XBα̃ = Y

is equal to the solution of (P0). Unlike (P0), this optimization problem can

be solved by a polynomial time algorithm that is so called ℓ1-norm minimiza-

tion [CW08]. The importance of this is that Candès and Donoho rigorously showed

that if the solution is sparse, there is a unique solution for the underdetermined sys-

tem and this is obtained in polynomial time where NSP and/or RIP are/is satisfied.

RIP is a sufficient condition whereas NSP is a necessary and sufficient condition

which implies that a system satisfying RIP also satisfies NSP [Don06].

4.1.1 Restricted Isometry Property (RIP)

A sufficient condition for a stable recovery is that the matrix X preserves the

length of any k-sparse vector being projected. This implies that the projected

sparse vectors are not distorted by projection, therefore, the exact recovery is

feasible. On the other hand, this condition is not necessary for the recovery of the

signal and there might be other random projections (e.g. sampling matrices with

smaller n) that lead to successful recovery.

Definition 6 (see [Can06,CW08]). A matrix X ∈ R
n×p satisfies the RIP of order

k ∈ N and isometry constant δk ∈ (0, 1) if

(1− δk)‖β‖
2
ℓ2
≤ ‖Xτβ‖

2
ℓ2
≤ (1 + δk)‖β‖

2
ℓ2
∀β ∈ R

|τ | (4.2)

where τ ⊂ {i ∈ N|i < n} and |τ | ≤ k . Xτ is a submatrix of X with column indices

from τ .

RIP expresses that every set of columns with cardinality less than k approx-

imately behaves like an orthogonal vector space [CRTV05]. All matrices X t
τXτ
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have their eigenvalues in [1 − δk , 1 + δk ] and the k-sparse vectors can not be in

the null-space of Xτ [YZ09,CW08].

This is bearing the pseudo-orthogonal vector space concept. RIP searches

grouped vectors as vector spaces for an approximate orthogonality where Xτ is a

k × |τ | sub-matrix that holds (4.2) for any k-sparse vector in R
|τ |.

Theorem 2 (see [Can06,CT05]). Assume β is k-sparse and suppose that δ2k +

δ3k < 1 or, better, δ2k + δk,2k < 1. Then the solution β̂ to (P1) is exact, i.e.,

β̂ = β.

4.1.2 Null-Space Property (NSP)

The Null-Space Property (NSP) is given by Donoho in [Don06]. This is a necessary

and sufficient condition which guarantees that none of the sparse vectors with

sparsity level k lies in the null-space of the sampling matrix.

Theorem 3. (see [Don06]) A measurement matrix, Xn×p is assumed. Further,

assume that Y = Xβ and β has at most k nonzero elements and δp×1 is a p-

dimensional vector. Let K ⊂ {1, 2, · · · , n} such that |K | = k and let Ki denote

the i -th element of K . Further, let K̄ ⊂ {1, 2, · · · , n}/K . Then (P1) will produce

a solution β̂ that satisfies ‖β − β̂‖1 ≤
2(C+1)
C−1
‖β̂K̄‖1 if and only if

(∀δ ∈ R
p|X δ = 0) and ∀K ,

k∑

i=1

|δKi
| ≤

n−k∑

i=1

|δK̄i
|. (4.3)

4.1.3 Verification of the Algebraic Conditions

The verification of both RIP and NSP for a specific sampling matrix is not a

tractable task [dE10,dG11]. To verify any of those conditions, an algorithm should

test the sampling matrix with a set of sparse vectors of infinite cardinality. This

drawback has attracted the attention of researchers to randomly generated matri-

ces (such as Gaussian matrices) and deterministic matrices [CW08,Can08,Don06].
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The study of recovery conditions for random matrices is simplified since the prob-

ability density function of the generated elements is known. The deterministic

matrices are generated (to satisfy the algebraic conditions) by carefully choosing

the constructing vectors of the sampling matrix. For example in [LGGZ12], the

deterministic construction of sampling matrices is studied. In [Don06], it is shown

that, if the elements of the sampling matrix is drawn from the outcomes of an

i.i.d. Gaussian random source, the matrix satisfies NSP.

4.2 Compressed Sensing and Neural Networks

Compressed-sensing provides under-Nyquist sampling [TV11] and dimensionality

reduction. Neural network memory is concerned with learning mechanisms inspired

by the human brain and information compression. The key to find the similarities

between the two is the mathematical representation of compressed-sensing sys-

tems. It is a linear projection that maps a high dimensional sparse vector to a

lower dimensional vector (that may not be sparse).

A single-layer feedforward neural network [Hay99] is similar to compressed-

sensing formalization as expressed by (4.1). It is a network of input nodes that are

connected to the output nodes through weighted connections (the sampling matrix

elements). This is simply expressed by a linear projection that maps the inputs

as a vector to an output vector [Hay99]. An example is Bidirectional Associative

Memory (BAM) that was proposed by Kosko et al. in [Kos88]. It is a single-layer

recurrent neural network memory that learns pairs of binary vectors in a matrix.

The vector pairs may not have the same length. The recovery type is cued-recall

(see section 1.1) where a vector in a pair is retrieved through another one. BAM

decoding consisting the linear projection of the key vector (the known vector in a

pair) followed by a thresholding function.

Dimensionality reduction is well studied under the formalism of machine learn-
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Figure 4.1: Compressed-sensing has been modeled as a single-layer neural network.
The connections have random i.i.d. Gaussian weights.

ing. Principal Component Analysis (PCA) and Independent Component Analysis

(ICA) [WCF07] are two machine learning techniques for dimensionality reduction.

ICA and PCA methods find a basis for a known vector set in which the vectors

may not be sparse. In case there are linear dependencies among the vectors, the

computed basis maps the vectors to a lower dimension. This process is neces-

sarily adaptive (because the basis is computed for a specific vector set) whereas

compressed-sensing is not adaptive. On the other hand, the vectors subject to

compression in ICA and PCA may not be necessarily sparse.

A compressed-sensing system may be considered as a single-layer neural net-

work where the neural connections (weights) are i.i.d. Gaussian random values.

These weights are kept constant throughout the learning process. In Fig. 4.1, this

model is illustrated. The network responds to an input vector (stimulus) by giving

a lower dimensional or a higher dimensional pair of that vector. In other words,

the network has intrinsically learned (in the random matrix X )
(
p

k

)
sparse vectors
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and their corresponding lower dimensional pairs.

4.3 Information-Theoretic Conditions

The recovery conditions in section 4.1 were derived for an ideal setup when there

is no distortion. In practice, sampling devices and digital computations introduce

noise to information. Transistor junction noise, quantization noise and rounding

noise are common sources of distortion. These examples are modeled in various

systems as Additive White Gaussian Noise (AWGN) [CT06]. Computing bounds

using algebraic tools on the number of measurements for such systems may be

formidable. Thus, numerous researches [SBB06, AT10, Wai09, WWR10, ASZ10]

have considered information theory as an alternative solution. Information theory

stems from probability theory and the noise is intrinsically random and unpre-

dictable. Therefore, such a probabilistic approach may be suitable to study the

noisy systems in addition to the discussion given in section 4.1.3.

A noisy system of linear equations is considered for which it is a priori known

that the solution is k-sparse (a vector with k nonzero elements).

Y = Xβ +W (4.4)

where X ∈ R
n×p is a random Gaussian measurement matrix with independently

and identically distributed (i.i.d.) elements Xij ∼ N (0, 1). β is the k-sparse vector

subject to measurement. W is a Gaussian noise vector W ∼ N (0, In×n) where

In×n is the n dimensional identity matrix. The support set of β is defined as

supp(β) , {i : βi 6= 0},

that is a set of indices where elements of β are nonzero. The estimation of β as

a function of X and Y is an inverse problem that consists of (a) detecting the

support and (b) estimating the amplitudes of the nonzero elements [AT10,Rad11].



100
CHAPTER 4. INFORMATION-THEORETIC CONSTRAINTS ON SPARSE

PATTERN RECOVERY

Once the support set of β̂ is determined, the estimated sparse (optimal) solution

is

β̂ = arg min
ν
||Y − X

supp(β̂)ν||
2
2 (4.5)

where X
supp(β̂) is a n×k sub-matrix of the measurement matrix with column indices

in supp(β̂). Therefore, as it is discussed in [AT10, Rad11,WWR10], finding the

optimal solution of such a noisy system is reduced to the exact support recovery.

The error metric is the 0–1 loss function defined in [Wai09,WWR10,AT10]

ρ(β, β̂) = I

[{
β̂i 6= 0, ∀i ∈ supp(β)

}

∩
{
β̂j = 0, ∀j 6∈ supp(β)

}] (4.6)

where I(.) is the indicator function. A decoder D : Y → θ maps the vector Y to

a support set θ = supp(β̂). The probability of choosing a wrong support set is

Pr[θ 6= supp(β)|X , β] over the measurement noise and the sampling matrix. The

average detection error is defined as in [Wai09,WWR10]

Perr =
1(
p

k

)Pr[D(Y ) 6= supp(β)|X , β]

where the support supp(β) is assumed to be chosen uniformly random from
(
p

k

)

possible subsets of size k [Wai09,WWR10]. In an exact support recovery regime,

the aim is to have asymptotically zero average detection error where Perr → 0 as

n→∞ [Wai09,WWR10].

In this report, asymptotic sufficient conditions (on exact support recovery)

depend on the number of measurements n, the sparse vector dimension p, the

sparsity level k and the signal-to-noise ratio

SNR =
E{||Xβ||22}

E{||W ||22}
= ||β||22, (4.7)

where the noise variance σ2 = 1 and the measurement matrix elements are drawn

from a Gaussian random source output with unit variance and zero mean. Though

the signal-to-noise ratio is an important parameter, the exact support recovery
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of a k-sparse vector is not solely guaranteed by its SNR [WWR10, Rad11]. The

case in which the decoder has the highest failure probability for a given SNR

is considered, by taking |βi | = λ where i ∈ supp(β) and λ is the minimum

absolute value of any nonzero element of the strictly sparse vector β. Therefore,

by such assumption, the recovery of any k-sparse vector with SNR ≥ kλ2 is

guaranteed [Wai09,WWR10,Rad11].

In [WWR10], the authors assume that β has a mean and variance stationary

source. In [BSB10,SXC08], the authors model the support of a sparse signal as a

vector of random elements, in which an element is an outcome of a random source

with probability k/p to be nonzero that implies mean stationarity. In [BD11,

JMB12] the authors model the high-dimensional sparse vector β as a realization

of an ergodic stationary source. In signal processing, random sources are widely

modeled as ergodic wide-sense stationary (EWSS) [Hay96,Hay01]. In this work,

the sparse vector β is assumed to be random ergodic wide-sense stationary. Even

though this assumption is common and most often inevitable in signal processing,

it has not been considered in [Wai09,WWR10,Rad11,ASZ10,AT10,SBB06,JKR11,

FRG09] to compute the information-theoretic constraints.

4.3.1 Bounds and Recovery Conditions

In [Wai09, WWR10, ASZ10] and this report, Fano’s inequality [CT06] was ex-

ploited to obtain asymptotic constraints on the exact support recovery depending

on (p, k , n, λ). Fano’s inequality in asymptotic form given in [WWR10,Rad11] is

log

((
p − k +m

m

)
− 1

)
− log 2 ≤ EX I (θ;Y ), (4.8)

for m = 1, ... , k where k is the sparsity level, p is the sparse vector dimension and

EX I (θ;Y ) is the expected information rate between measurement vector Y and

detected support vector θ (see [ASZ10, WWR10]). m is the number of nonzero

elements that is not known by the support detector, i.e., the detector a priori
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knows indices of k−m nonzero (or significantly large) elements. As it is discussed

in [WWR10], having a priori knowledge about some nonzero elements may not

facilitate the support detection. In fact, for some (p, k ,m) where m < k there are

more support sets to choose than m = k . The cardinality of the support sets that

may be chosen wrongly by the support detector is
(
p−k+m

m

)
− 1. This appears in

the left-hand side of (4.8) that reaches a maximum value for a particular (p, k ,m)

due to its concavity (see the discussion in [WWR10]).

Strictly Sparse Signals

The recovery constraints in [Wai09,WWR10,Rad11,ASZ10,AT10,SBB06,JKR11,

FRG09] are dedicated to strictly sparse signals. These signals have explicitly k

nonzero elements and the rest are zeros.

The tightness of the recovery constraints through (4.8) depends on its right-

hand side that is EX I (θ;Y ) (see [WWR10,ASZ10]). To compute the information

rate, the autocorrelation matrix of the sparse vector is required (see [WWR10,

ASZ10, SBB06]). In general, the autocorrelation matrix is computed from the

probability distribution function (PDF) of the process. The distribution func-

tion may not always be known and assuming a specific PDF restricts the given

constraint to that specific random process. Therefore, in [SBB06, ASZ10] an

upper bound on I (θ;Y ) is computed and exploited to obtain their recovery con-

straints. In [WWR10], the authors compute a tighter upper bound (with respect

to [SBB06,ASZ10]) on the information rate that results in tighter necessary con-

ditions on the exact support recovery.

When the process is ergodic and wide-sense stationary (EWSS), the autocor-

relation function and consequently the autocorrelation matrix can be computed

from its time realizations [Pap91, Hay96]. The random sparse vector is chosen

uniformly from
(
p

k

)
possible k-sparse vectors of dimension p in which a vector el-

ement is nonzero with probability k/p [Pap91, BD11, SXC08]. This is employed
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in [BD11, SXC08] to compute different statistics and sparse signals. EWSS as-

sumption is exploited to compute the autocorrelation matrix for the worst case

scenario (where |βi | = λ ∀i ∈ supp(β)) without having knowledge of PDF. Hav-

ing the autocorrelation function, the exact information rate can be computed for

the worst case scenario EWSS signals. What remains as an obstacle is the com-

putation of the expected information rate in (4.8) with respect to sampling matrix

X (for which only its distribution is known). To overcome that, the combina-

tion of Jensen and Minkowski inequalities is exploited to obtain a lower bound on

EX I (θ;Y ). It is worth mentioning that the combination of Jensen and Minkowski

inequalities for the information rate results in extremely tight bounds that is re-

ported in [ONBP02,JG05]. This combination is of great importance. It facilitates

the information rate computation through product of two polytopes’ volumes. The

first is a Wishart matrix (that defines a polytope) constructed from the Gaussian

sampling matrix and the second is the autocorrelation matrix of the worst case

ergodic wide-sense stationary signal. This tight lower bound on the expected in-

formation rate is used in (4.8) to get a sufficient condition depending on (p, n, k , λ)

which is given in the following theorem.

Theorem 4. Assume a measurement matrix X ∈ R
n×p whose elements are drawn

from the outcome of an i.i.d. Gaussian random source with zero mean and unit

variance, i.e., Xi ,j ∼ N (0, 1). A sufficient condition for asymptotically reliable

recovery of a k-sparse ergodic wide-sense stationary signal β in which the nonzero

elements |βi | ≥ λ is

log

[(
p − k +m

m

)
− 1

]
− 1 ≤ L (4.9)

where

L =
n

2
log

[
1 +

m

p − k +m
λ2(1−

m

p − k +m
)

n

√
Γ(n)

(
p − k +m − 1

n − 1

)]
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in which Γ(.) is Gamma function and m = 1, ... , k .

By lower bounding further the information rate (right-hand side of (4.9)), the

following sufficient condition is obtained.

Corollary 1. Assume a measurement matrix X ∈ R
n×p whose elements are drawn

from the outcome of an i.i.d. Gaussian random source with zero mean and unit

variance, i.e., Xi ,j ∼ N (0, 1). A sufficient condition for asymptotically reliable

recovery of a k-sparse ergodic wide-sense stationary signal β in which the nonzero

elements |βi | ≥ λ is

n > max{f1(p, k , λ), ... , fk(p, k , λ), k} (4.10)

where

fm(p, k , λ) =
log
[(

p−k+m

m

)
− 1
]
− 1

1
2
log
(
1 + m

e
λ2
(
1− m

p−k+m

)) (4.11)

for m = 1, ... , k .

For the sake of completeness and comparison, the necessary condition by

Wang et al. is given.

Theorem 5. [WWR10] Assume the measurement matrix X ∈ R
n×p whose ele-

ments are drawn from the outcome of an i.i.d. Gaussian source with zero mean

and unit variance. A necessary condition for asymptotically reliable recovery of a

k-sparse signal β in which nonzero elements |βi | ≥ λ is

n > max{f1(p, k , λ), ... , fk(p, k , λ), k} (4.12)

where

fm(p, k , λ) =
log
(
p−k+m

m

)
− 1

1
2
log
(
1 +mλ2

(
1− m

p−k+m

)) (4.13)

for m = 1, ... , k .
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In Table 4.1 the given result for strictly sparse signals is compared with the

sufficient condition in [Rad11] and the necessary condition in [WWR10]. In this

table, the first three rows represent the constraints for linear sparsity regimes 2.

The last three rows of the table show the constraints for sublinear regimes3. In

the last two rows the signal-to-noise ratio tends to infinity , i.e, kλ2 →∞.

Corollary 1 is obtained by loosening further the information rate lower bound

with respect to right-hand side of (4.9) in Theorem 4. In spite of this, as demon-

strated in Table 4.1, Corollary 1 is as tight as previous sufficient and necessary

results. From this, it can be concluded that Theorem 4 may be asymptotically

tighter than the results in [WWR10,Rad11].

The given tight sufficient condition in Corollary 1 is valid for the whole range

of signal-to-noise ratio whereas the sufficient condition in [Rad11] is claimed to be

restricted to λ2 = Ω( 1
k
) or λ2 = O(1) [Rad11].

The tightness of the sufficient conditions in Theorem 4 and Corollary 1 implies

that the computed condition for approximately sparse signal (in the following sec-

tion) may also be tight. This is concluded because the conditions (for strictly and

approximately sparse signals) are computed in the same way.

Approximately Sparse Signals

The practical signals are not strictly sparse but they are approximately sparse with

a few significantly large elements and the rest is small but nonzero. In this set-up,

the existing constraints based on the sparsity level may not work.

A feature of Fano’s inequality is connecting the detection error probability and

the mutual information rate between source and estimation random vectors. The

source random vector (here it is the approximately sparse vector) does not nec-

essarily have a discrete alphabet but the estimated vector must be drawn from a

2In computation of the asymptotic constraints k = Θ(p) is taken as k ≈ p, i.e., k = p − 1.
3In computation of the asymptotic constraints k = o(p) implies that k/p → 0, i.e., k ≪ p.
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discrete and countable alphabet [CT06]. This plays an important role in compu-

tation of recovery conditions for approximately sparse signals.

Assume that the wide-sense stationary and approximately sparse random vec-

tor β has k significantly large elements and the rest are small and the support

detector recovers the k largest elements. To obtain recovery conditions for the

approximately sparse signals assume decoder D : Y → θ where θ is a detected

support set with cardinality k . The support set of an approximately sparse signal

is defined to be the indices of the k largest elements

suppk(β) , {i : βi 6= 0, βi > βj > βp, k + 1 ≤ j ≤ p}.

The error metric is defined as

ρk(β, β̂) = I

[{
β̂i 6= 0, ∀i ∈ suppk(β)

}

∩
{
β̂j < βk , ∀j 6∈ suppk(β)

}] (4.14)

where βk is the kth largest element of β. The probability of choosing a wrong

support set is Pr[θ 6= suppk(β)|X , β] and the average detection error is

Pe =
1(
p

k

)Pr[D(Y ) 6= suppk(β)|X , β]

where suppk(β) is the support set that is uniformly chosen from
(
p

k

)
subsets of

size k [Wai09,WWR10].

In this problem, a similar approach to strictly sparse signals is used. The

combination of Jensen and Minkowski inequalities is used to obtain a lower bound

on the expected information rate in (4.8). For the approximately sparse signals,

it may not be possible to compute the autocorrelation matrix from (p, n, k) and

λ can not generally be assumed constant. A lower bound on the volume of the

polytope defined by the autocorrelation matrix can be alternatively computed from

the signal power spectrum [Hay96]. Therefore, the power spectrum of the signal is

assumed to be available through measurement and estimation. Having the power

spectrum of the signal, the computation of the sufficient condition in the following

theorem is straightforward.
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Theorem 6. Assume a measurement matrix X ∈ R
n×p whose elements are drawn

from the outcome of an i.i.d. Gaussian random source with zero mean and unit

variance, i.e., Xi ,j ∼ N (0, 1). A sufficient condition for asymptotically reliable

recovery of a wide sense-stationary sparse signal β with k large nonzero elements

is

log

[(
p − k +m

m

)
− 1

]
− 1 ≤ L (4.15)

where

L =
n

2
log

[
1 + G n

√
Γ(n)

(
p − k +m − 1

n − 1

)]
(4.16)

in which Γ(.) is Gamma function, m = 1, ... , k and G is the infimum of the

approximately sparse signal power spectrum.

Corollary 2. Assume k = Θ(p). In Theorem 6 the sufficient condition for asymp-

totically reliable recovery of a wide-sense stationary and approximately sparse signal

β is obtained by replacing

G =
1

2π

∫ 2π

0

log S(ω) dω (4.17)

in (4.16) where S(ω) is the power spectrum of the sparse signal.

4.3.2 Proof

Theorem 4

To obtain the exact support recovery conditions on the number of measurements,

Fano’s inequality is exploited

Pe ≥ 1−
I (θ;Y ) + log 2

log
((

p

k

)
− 1
) (4.18)

where I (θ;Y ) is the mutual information between θ and Y [Wai09,WWR10,ASZ10,

CT06]. θ is the detected support set that is given by the decoder, θ = D(Y ). Pe

is the probability that the decoder fails to detect the correct support set, i.e.,

Pe = Pr[supp(β) 6= θ|X , β].
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Scaling Sufficient Condition Corollary 1
Necessary Condition Theorem 5 [WWR10]
Sufficient Condition [Rad11]

k = Θ(p)
λ2 = Θ( 1

k
)

n = Θ(p log p)

k = Θ(p)
λ2 = Θ( log k

k
)

n = Θ(p)

k = Θ(p)
λ2 = Θ(1)

n = Θ(p)

k = o(p)
λ2 = Θ( 1

k
)

n = Θ(k log(p − k))

k = o(p)
λ2 = Θ( log k

k
)

n = max
{
Θ(k log(p−k)

log k
),Θ(

k log p

k

log log k
)
}

k = o(p)
λ2 = Θ(1)

n = max
{
Θ(

k log p

k

log k
),Θ(k)

}

Table 4.1: Sufficient and Necessary Conditions on n for Exact Support Recovery
in the Linear and the Sublinear Regimes. The sufficient condition in [Rad11] holds
only for λ2 = Ω( 1

k
) or λ2 = O(1) whereas the other sufficient and necessary

conditions hold for the entire signal-to-noise ratio range.

The error probability of the decoder, Perr(D), is the average error probability with

respect to Gaussian measurement matrix X . This is

Perr(D) = EXPe

where EX denotes the expected value operator with respect to X [AT10,WWR10].

Further, assume that the decoder has a priori knowledge of all nonzero locations of

β but m locations with smallest values (1 ≤ m ≤ k). The decoder has to choose

from
(
p−k+m

m

)
support sets [WWR10]. Let U be the set of unknown location

indices where |U| = m. The n-dimensional observation vector is

Ỹ = X̃ β̃ +W

where X̃ is the measurement matrix with column indices in U . β̃ is the vector

subject to measurement with element indices in U . Therefore, the error probability

of the decoder is bounded as

Perr(D) ≥ 1−
EX̃ I (θ; Ỹ ) + log 2

log
((

p−k+m

m

)
− 1
) . (4.19)
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The mutual information I (θ; Ỹ ) is given by

I (θ; Ỹ ) = H(Ỹ |X̃ )− H(Ỹ |θ, X̃ )

= H(Ỹ |X̃ )− H(W )

=
1

2
log
∣∣∣In + X̃Rβ̃X̃

†
∣∣∣

(4.20)

where Rβ̃ is the autocorrelation matrix of random vector β̃ and † indicates Hermi-

tian transpose. The equality |Ip + AB | = |In + BA| holds for any pair of matrices

Ap×n and Bn×p [Mey01]. This is an algebraic equality that implies equality of the

volumes. This is required to separate the autocorrelation matrix from the sam-

pling matrix and its conjugate transpose that faciliates the computation of the

information rate. Therefore, (4.20) can be rewritten as

I (θ; Ỹ ) =
1

2
log
∣∣∣Ip−k+m + X̃ †X̃Rβ̃

∣∣∣ . (4.21)

rank(X̃ †X̃Rβ̃) ≤ min{rank(X̃ †X̃ ), rank(Rβ̃)}. In [FZ07] it is shown that rank(X †X ) =

n, which implies min{rank(X †X ), rank(Rβ)} = n.

A lower bound on the mutual information is computed by applying Brunn-

Minkowski inequality [CT06],

I (θ; Ỹ ) ≥
n

2
log
(
1 + |X̃ †XRβ̃|

1/n
)

=
n

2
log

(
1 + exp

(
1

n
log |X̃ †X̃Rβ̃|

))
.

(4.22)

Now, by taking the expectation in (4.22) and by using Jensen’s inequality

EX̃ I (θ; Ỹ ) ≥
n

2
log2

[
1 + exp

(
1

n
(a + b)

)]
(4.23)

where

a = EX̃

n∑

i=1

log σi

(
X̃ †X̃

)
(4.24)

and

b =
n∑

i=1

log σi

(
Rβ̃

)
. (4.25)
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σi(.) is the ith eigenvalue of a matrix. In (4.25), the eigenvalues are sorted

σ1(Rβ̃) < σ2(Rβ̃) < · · · < σp−k+m(Rβ̃).

(4.24) is the expected value of the logarithm of random Wishart matrix deter-

minant |X̃ †X̃ |. The product of the eigenvalues of this random Wishart matrix is dis-

tributed as product of n chi-square distributed random variables [YL03,ONBP02],

and therefore
n∏

i=1

σi

(
X̃ †X̃

)
∼

n∏

j=1

χ2
p−k+m−j+1. (4.26)

By taking the logarithm and then the expectation of the right-hand side of (4.26)

a = E

n∑

j=1

logχ2
p−k+m−j+1 = −nγ +

n∑

j=1

p−k+m−j∑

ℓ=1

1

ℓ
(4.27)

where γ is Euler’s constant [YL03, ONBP02]. In the asymptotic regime where

Pe(D)→ 0 as n→∞ that implies p →∞

γ = lim
p→∞

[
p−k+m−j∑

ℓ=1

1

ℓ
− log(p − k +m − j)

]
.

a =
n∑

j=1

log(p − k +m − j)

= log(p − k +m − j − 1)!− log(p − k +m − n − 1)!

= log
Γ(p − k +m)

Γ(p − k +m − n)

= log
Γ(p − k +m)

Γ(n)Γ(p − k +m − n)
Γ(n)

= log

(
p − k +m − 1

n − 1

)
+ log Γ(n)

(4.28)

where Γ(.) is Gamma function. The sparse vector elements β̃i is modeled as

output of an ergodic wide-sense stationary random vector source. Therefore, the

elements of such random vector is also ergodic wide-sense stationary. The nonzero

elements appear with probability Pr[β̃i 6= 0] = m
p−k+m

[Pap91,BSB10,SXC08]. The

autocorrelation matrix of β̃ is a Hermitian Toeplitz matrix that is obtained from

its autocorrelation function [Hay96]. Assume that the nonzero elements β̃i where
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i ∈ U , are negative with probability ξ, i.e., ξ = Pr[β̃i ∈ R
−]. The autocorrelation

function at lag τ = 0 is

rβ̃(0) =
1

p − k +m

∑

i

β̃i β̃i =
m

p − k +m
λ2.

For lag τ 6= 0 and |τ | ≤ p, the autocorrelation function is

rβ̃(τ) =
1

p − k +m

∑

i

β̃i β̃i+τ

=
p − k +m − |τ |

p − k +m
(

m

p − k +m
)2λ2

×
[
ξ2 + (1− ξ)2 − 2ξ(1− ξ)

]
.

For |τ | > p the autocorrelation function rβ̃(τ) = 0. Therefore, the autocorrelation

function is

rβ̃(τ) =





(p−k+m−|τ |)m2

(p−k+m)3
(4ξ2 − 4ξ + 1)λ2 if |τ | ≤ p, τ 6= 0

m
p−k+m

λ2 if τ = 0,

0 Otherwise.

The autocorrelation matrix of β̃ is a Hermitian Toeplitz matrix with rβ̃(τ) in its

first row, i.e.,

Rβ̃ = Toeplitz{rβ̃}.

Rβ̃ and rβ̃ is used to find a lower bound on (4.25),

n log σmin ≤
n∑

i=1

log σi

(
Rβ̃

)

where σmin ≤ σi(Rβ̃) is the lower bound on all eigenvalues of Rβ̃. The minimum

eigenvalue of Rβ̃ is lower bounded by the infimum of the power spectrum [Hay96],

σmin = min
ω

Sβ̃(ω) (4.29)

where

Sβ̃(ω) =

[
sin(ω(p + 1/2))

sin(ω/2)

]2
(

m

p − k +m
λ)2(4ξ2 − 4ξ + 1)

+
m

p − k +m
λ2 − (

m

p − k +m
λ)2(4ξ2 − 4ξ + 1)

(4.30)
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is the power spectrum of β̃. It is computed by taking Fourier transform of rβ̃

[Hay96]. Therefore,

σmin(ξ) =

[
m

p − k +m
− (

m

p − k +m
)2(4ξ2 − 4ξ + 1)

]
λ2 (4.31)

from (4.30) and (4.29). σmin is a function of ξ. The term 0 ≤ 4ξ2 − 4ξ +

1 ≤ 1 reaches its maximum when ξ ∈ {0, 1}, i.e., the sparse vector subject to

measurement is unipolar. To lower bound the minimum eigenvalue ξ is chosen

either 0 or 1, ξ ∈ {0, 1}, that results in

b ≥ n log

[
(1−

m

p − k +m
)

m

p − k +m
λ2

]
. (4.32)

Substituting left-hand side of (4.32) and (4.28) in (4.23) gives

EX I (θ; Ỹ ) ≥
n

2
log

[
1 + n

√
Γ(n)

(
p − k +m − 1

n − 1

)

(1−
m

p − k +m
)

m

p − k +m
λ2

]
.

(4.33)

Finally, the sufficient condition is computed as

log

[(
p − k +m

m

)
− 1

]
− log(2) ≤ L (4.34)

where

L =
n

2
log

[
1 + n

√
Γ(n)

(
p − k +m − 1

n − 1

)

(1−
m

p − k +m
)

m

p − k +m
λ2

] (4.35)

for m = 1, ... , k .

Corollary 1

In proof of Theorem 4

a = log

(
p − k +m − 1

n − 1

)
+ log Γ(n) (4.36)
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that can be lower bounded to obtain another lower bound on EX I (θ, Ỹ ). On the

other hand
√
2π(n − 1)(n − 1)(n−1)e−(n−1) ≤ Γ(n) (4.37)

and

(n − 1) log

(
p − k +m − 1

n − 1

)
≤ log

(
p − k +m − 1

n − 1

)
. (4.38)

Considering n → ∞ (see the asymptotic Fano’s inequality in [WWR10]) and

consequently p →∞

a/n ≥
(n − 1)

n
log

p − k +m − 1

n − 1
+

1

n
log
[√

2π(n − 1)(n − 1)(n−1)e−(n−1)
]

≥
n − 1

n
log(p − k +m − 1)−

n − 1

n
.

(4.39)

By replacing the right-hand sides of (4.39) and (4.32) in (4.23)

L =
n

2
log

[
1 +

m

e
(1−

m

p − k +m
)λ2

]
(4.40)

in (4.34).

Theorem 6

In proof of Theorem 4 it is assumed that β is strictly sparse. Where the signal is

not strictly sparse it may not be tractable to compute analytically a lower bound on

(4.25) as it is computed in Theorem 4. In the proof of Theorem 4 a lower bound on

b is obtained through computation of a lower bound on the minimum eigenvalue of

the signal autocorrelation matrix. The minimum eigenvalue of the autocorrelation

matrix of the signal is lower bounded by the infimum of the power spectrum

(see [Hay96] for details). Assume that the power spectrum of the approximately

sparse signal is known (from experiments or from computations). By replacing

σi(Rβ̃) with its lower bound (see (4.29) and (4.25)) that is obtained from the

signal power spectrum the sufficient condition in Theorem 6 is computed.
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Corollary 2

Consider k = Θ(p). In (4.25) the eigenvalues of the autocorrelation matrix are

sorted. They are n smallest eigenvalues out of p. To tighten the condition in

Theorem 4 a lower bound in [MV97] is used on the product of n smallest eigenvalues

of the matrix instead of lower bounding (4.25) by replacing the eigenvalues with

the minimum eigenvalue. Therefore, a lower bound on (4.25) is computed as

b ≥ (p − n) log

(
p − n

SNR

)
+ log

∣∣Rβ̃

∣∣

= (p − n) log

(
p − n

SNR

)
+

[
n

2π

∫ 2π

0

log S(ω) dω

] (4.41)

where the second term in the right-hand side is the integral of the logarithm of the

signal power spectrum [MV97,Gra06]. Noting that inequalities k ≤ p and n ≥ k

hold, k = Θ(p) implies that

G =
1

2π

∫ 2π

0

log S(ω) dω.



Chapter 5

Discussion and Conclusion

The first part of this report was dedicated to the presentation and analysis of a

new neural network able to store a large amount of sparse messages and to retrieve

them from partial and/or distorted versions. The simulation results showed that we

can store a significant fraction of Mmax in the network (we can reach efficiencies as

high as 30% with low recovery error but this depends on the different parameters).

It can be concluded that the network does not offer strict optimality but something

close to it. In addition to the mentioned properties, a main feature of the proposed

network was plausibility. It was intended to design a network that mimics the

biological and psychological features of the human neocortex.

In the second part, we were interested in compressed sensing (CS) systems,

mainly through the evaluation of their feasible compression rates in presence of

noise. A new tight sufficient condition for strictly sparse signals was established.

This holds for the entire signal-to-noise ratio unlike another existing condition.

The same computation technique was used to determine a sufficient condition

for approximately sparse signals. To the best of our knowledge there was no

such conditions for these types of signals before. It may be concluded, that this

condition is also tight, because the computation procedure had been led to a tight

condition before (for strictly sparse signals).
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These two parts are strongly related: the purpose of the neural network is to

store sparse messages with the largest possible efficiency (i.e. with the best use of

available material resource) whereas the CS system is intended to transmit sparse

messages spending the less possible energy (i.e. with the shortest possible length).

It was then natural to try to study the properties of the proposed network in the

light of CS theory.

The CS principle can be described by a bipartite graph which associates vec-

tors of length p with vectors of length n < p through weighted connections (cf.

Fig. 1.2). This is the simplest graphical way to describe a matrix-vector product,

which can then be directly transcribed into a perceptron-like neural network. The

network proposed in this report is quite different: (a) it is not an operator but a

memory. (b) it has a binary structure (connections have weight 0 or 1). (c) source

and channel coding are both performed by the network.

Regarding the last point, source coding comes from two features. First, any

message of length χ is stored as a clique with only c vertices (c ≪ χ) for sparse

messages); second, when M messages are stored, the corresponding cliques share

vertices and edges, which adds to the compression rate. As for channel coding, it

is assured by the strongly redundant structure of cliques.

Although the CS operation and the proposed neural network are both intended

to process sparse messages, the comparison in terms of compression rate and

performance is not straightforward.

To compare compressed sensing and the proposed network, consider a scenario.

The same set of sparse vectors is compressed by both systems, thereafter, the

compressed information is transmitted. The main interest is finding out which

one is possibly more efficient. (1) Assume a noise-free compressed sensing system

along with a genie support detector. It transforms a k-sparse analog vector of

length p into an analog vector of length n < p. Then, the latter is quantized on ℓ

levels, thus producing a message of n log2 ℓ bits. In a given slot of time, M such
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messages are compressed and sent by some communication system. The total

amount of transmitted information is Mn log2 ℓ bits. (2) M c-sparse vectors of

length χ, each character (or sub-message) being quantized on ℓ levels, are stored

in the proposed neural network. Then, the communication system sends the state

of the network, that is, Q = χ(χ−1)ℓ2

2
bits. According to efficiency-1 diversity given

by (2.5), an upper bound on M is

Mmax =
0.5χ(χ− 1)ℓ2

log2
((

χ
c

))
+ c log2 ℓ

.

If we want the classical CS system to send as many messages as Mmax, with

p = χ, k = c , the same level ℓ of quantization and with the same total amount

of bits Q, we need Q = Mmaxn log2 ℓ, which leads to:

n =
log2

((
χ
c

))
+ c log2 ℓ

log2 ℓ

For some values of the parameters, the first term in numerator may be neglected

by comparison with the second one, which then leads to a rather interesting result:

n ≈ c , meaning that the classical system must achieve optimality (n of the order

of c = k). Reversely, this means that the neural network may be considered as

optimum as a compressed-sensing and storing unit.

Certainly, all this is approximation. Moreover, in the second situation, the

messages are not ordered in the network and we have to use additional clusters

to store addresses (for instance, with χ = 100, we can solve this problem, with 5

additional clusters, that is about 5% extra material).

The proposed network and compressed-sensing were both modeled as noisy

communication channels. Then, they were analysed using Fano’s inequality to

compute the recovery conditions. Discrete Memoryless Erasure Channel (DMEC)

model was used for the analysis of the network and Multiple Input Multiple Output

(MIMO) noisy channel was used for compressed-sensing. Regardless of the type

of channel model, Fano’s inequality connects the detection error probability to the

system information rate. It was observed that the computed bounds are tight: the
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network bound is tighter than the given bound by Idiff introduced in [SSP96] and

compressed-sensing conditions are tighter than previous works.
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