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CHAPTER 1

Introduction

LASER stands for ”Light Amplification by Stimulated Emission of Radia-
tion”. The first laser device was designed in 1960 by Theodore Maiman who
used a solid state ruby crystal to generate a red laser light [1]. In 1962 the
first semiconductor laser was born and since then advances in the technology
have put laser devices at the center of our quotidian lives. Nowadays, semi-
conductor lasers —or laser diodes— are the most commonly used laser devices
in the world.

Laser diodes find applications in many fields of technology, engineering
and research: telecommunications, measurement, controls, medical therapeu-
tics, data storage etc. Their reduced cost, the possibility to produce them
at large scales on semiconductor wafers and to cover large wavelength spans
have resulted in their fast and effective integration in many domains of activ-
ity. The semiconductor laser thriving development is drawing more and more
theoretical and experimental research topics such as range-finding, photonic
sampling for analog-to-digital conversion, optical code-division-multiple-access
systems for secure communication, infra-red countermeasures, spectroscopic
sensing, atomic clock state preparation, quantum key cryptography, water
purification and photodynamic therapy. Laser devices have the particular-
ity to generate single-frequency coherent beams showing narrow linewidth,
which makes them suitable for interferometric and spectroscopic applications.

In this manuscript, we focus on the study of the laser dynamics when
subject to optical feedback. We speak of optical feedback when part of the
emitted beam is partially sent back towards the laser, typically after re-
flection. Feedback is not only due to reflections on mirrors inserted on the
beam’s path on purpose. It often comes from an undesired reflection on an
interface such as an optical fibre connector. Optical feedback is a well-known
phenomenon which causes instabilities in the laser power. That is why laser
systems usually try to reduce it as much as possible, by inserting for instance
optical isolators on the beam’s path in order to prevent back reflections.

Our purpose here is indeed to study how optical feedback destabilizes
the laser dynamics. More specifically, we will focus on a particular nature
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of feedback termed phase-conjugate feedback. This nonlinear optical phe-
nomenon will be properly defined in the next chapter. Optical feedback is
typically an undesired situation mostly because of the induced instabilities in
the power and the resulting impossibility to control the device. Yet we show
here that feedback can make the laser exhibit a huge wealth of dynamics,
among which high-frequency pulsations and chaos. Indeed, the presence of
feedback enables the laser to follow a cascade of bifurcations leading to non-
linear dynamics, by contrast to the ordinary laser applications which operate
mostly in steady state.

Nonlinear systems are inherent to nature and most physical systems are
nonlinear, among which the most famous are atmospheric behaviors and fluid
dynamics. The equation describing such systems are difficult to solve and
are at the origin of particular phenomena such as chaos. Chaos theory was
initiated by Henri Poincaré at the end of the 19*" century with the study of
the three-body problem. Chaotic systems are deterministic systems showing
sensitivity to initial conditions. A famous illustration of this sensitivity is the
"Butterfly Effect” presented in a conference talk by Edward Lorenz in 1972
before the American Association for the Advancement of Science: Does the
Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas? Indeed, a
slight change in the initial conditions of a chaotic system may lead to totally
different behaviors in the long term [2].

Therefore we combine here both nonlinear system dynamics and nonlinear
optics in order to characterize a laser diode with phase-conjugate feedback. A
semiconductor laser with feedback can be seen as a nonlinear oscillator gov-
erned by internal and external parameters, each one being characterized by
its own time scale. As we are about to discuss, in its free running operation
a laser diode is a damped nonlinear oscillator showing relaxation oscillations.
Then with the addition of a time-delayed optical feedback, the laser under-
goes a cascade of bifurcations that depends on the feedback strength and
on the interplay between the time scales of both the relaxation oscillations
and the feedback delay. The configuration using phase-conjugate feedback
adds another nonlinear optics time scale which is the feedback build-up time.
Its impact on the laser dynamics remains to be clarified. Consequently, the
laser dynamics is strongly dependent on the relative strengths of these factors
which are always present and show their own signatures in the laser power
and spectrum.

We present here theoretical and experimental results on the dynamics
of a laser diode with phase-conjugate optical feedback. We also discuss the



fundamental differences that are expected compared to the case of conven-
tional feedback. Besides the interest in terms of applications of a laser diode
showing nonlinear dynamics, the fundamental understanding of a nonlinear
system with time-delayed feedback is our purpose here. Indeed, the feedback
not only causes the laser to show unpredictable fast fluctuations typical of
chaotic states but self-pulsing states at high frequencies can also be achieved,
opening thus a way to other kinds of applications.

Although phase-conjugate feedback has been studied for more than 30
years, several issues remain to be addressed. Moreover, as demonstrated in
this manuscript, new physical phenomena are still likely to be discovered
with this configuration.

Outline of the manuscript

In chapter 2, we briefly remind the reader of the laser physics and the state
of the art of laser diodes with optical feedback. We also define the terms and
parameters that will be studied in the following chapters.

Chapter 3 presents the experimental setup that we designed in order to
study the nonlinear dynamics of the laser diode. Phase-conjugate feedback
generation techniques and suitable media are presented. Then the properties
of the phase-conjugate mirror in terms of reflectivity and response time are
discussed. The effects of a very low feedback ratio on the laser threshold
current and spectral width are illustrated as well.

In chapter 4, we present the theoretical model on the basis of which we
will be carrying out simulations of the laser dynamics. The validity of the
model coding, the first bifurcation diagrams depicting a route to chaos and
comparisons with another simulated model of the system are discussed.

Chapter 5 extends the study of the nonlinear dynamics initiated in chap-
ter 4 to larger feedback ratio values. We show evidence of a chaos crisis and
chaos suppression undergone by the laser as the feedback ratio increases.
The consequent birth of bistability between pulsing solutions is highlighted
as well. Then, the influence of the simulation parameters is discussed to show
both that the presented results cover large spans of parameters and how the
system’s dynamics evolves as the operational parameters are varied.

The first in-depth experimental analysis is presented in chapter 6. We
show evidence of self-pulsing solutions and the way they get stabilized and
destabilized according to the variation of the feedback ratio. We also bring
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theoretical confirmation to those experimental observations with qualita-
tively good accordance. We further demonstrate experimentally and the-
oretically that pulsing solutions at multiples of the external cavity frequency
are possible. This major contrast to the case of conventional optical feedback
is discussed as well.

Chapter 7 establishes a comparison between four well-known configura-
tions in which a laser with optical feedback shows pulsing dynamics. The
spectral characteristics of each of these configurations are discussed and com-
pared. We focus on the main spectral differences between the self-pulsing
states seen in the case of phase-conjugate feedback and other well-known
pulsing states studied in the literature.

Chapter 8 reports on results that have been observed in the experiment
in the continuity of the configuration of chapter 6. More precisely, as we
will discuss all along this manuscript, changing the feedback delay induces
a dramatic change in the laser dynamics. The experimental configuration in
chapter 8 is the same as in chapter 6 but for the feedback delay, which is
increased. We show evidence of extreme events appearing in the laser power
and the interesting evolution in their number and their statistical time dis-
tribution as the feedback strength increases. A brief theoretical confirmation
of the presence of extreme events is illustrated too.

In chapter 9, the feedback delay is further increased compared to chap-
ter 8, which unlocks another dynamical state in the laser power. We tackle
the birth and evolution of low-frequency fluctuations. We find that the time
interval separating power dropouts can show optimal regularity for a given
value of the feedback ratio. As we will discuss, this situation corresponds to
a deterministic case of coherence resonance. We also confirm with numerical
simulations the transition to the low-frequency fluctuations dynamics with
time traces and spectra showing qualitatively different features according to
the feedback ratio.

Finally, we bring a summary of the results with the main novelties com-
pared to the existing studies in the domain. We also suggest perspectives
and research directions in nonlinear laser dynamics with phase-conjugate
feedback for a further experimental and theoretical continuation of this work.



CHAPTER 2

Background and motivations

Nothing has such power to broaden the mind as the ability to investigate systematically and
truly all that comes under thy observation in life. Marcus Aurelius

Before entering in the systematic study of the nonlinear dynamics of laser
diodes, we begin with a short presentation of the physical principles of laser
beam generation. We also define in this section parameters on which we will
focus later.

2.1 Laser diodes: physics and dynamics

2.1.1 Laser beam generation

All laser devices have common properties about beam generation. The pho-
tons emitted by the laser are originated by stimulated emission in a gain
medium bounded by a resonator. Within a laser cavity, three optical phe-
nomena are in competition: spontaneous emission —in which photons are
randomly generated without correlation—, stimulated emission —where the
generation of coherent photons is induced by an initial photon— and photon
absorption. They are illustrated in Fig.2.1.

Naturally, absorption is an undesired effect since it causes photon loss
in the laser cavity. Besides, spontaneous emission acts against the process
of laser beam emission since the emitted photons are incoherent. In con-
trast to spontaneous emission, stimulated emission of photons is a cascade
phenomenon in which an initial photon causes a coherent generation of a
multitude of identical photons.

The laser operating point is decided by the interplay between those three
competing phenomena. According to the injection current, one in favored
compared to the two others. The laser light-current characteristic plots the
optical power emitted by the laser P versus the injection current /. When
the current reaches a particular value termed laser threshold current [y, the
laser operates in the stimulated emission state. Fig.2.2 illustrates the laser
operating states versus the current.
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Figure 2.1: Principles of spontaneous emission, stimulated emission and ab-
sorption.

At threshold, the optical gain achieved thanks to stimulated emission
compensates the cavity losses and subsequently, any addition of carriers
through the electrical driving current is proportionally converted into stim-
ulated photons. This corresponds to the linear part of the L-I laser charac-
teristic in Fig.2.2 tagged "laser light emission”.
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Figure 2.2: Typical light-current laser characteristic. For values of the cur-
rent beneath the threshold (I < I;;,), the laser operates in a spontaneous
emission state. When the current is above [y, stimulated emission is favored
and the laser is operational.
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The three main ingredients constituting a laser are:
1/ A gain medium, in which stimulated emission and beam amplification
occur.
2/ A resonator bounding the gain medium and performing wavelength selec-
tion.
3/ A source of energy, termed pumping, to perform carrier inversion.

2.1.2 Semiconductor lasers
Gain medium

In a semiconductor laser —or laser diode—, the gain medium is a semiconduc-
tor. The choice of the medium depends on the wavelength for which the laser
is designed. Indeed, the energy of the emitted photons £ —which is related to
their wavelength A by: £/ = h{, where h is the Planck constant— depends on
the gap energy of the semiconductor constituting the gain medium. Fig.2.3
displays the ranges of wavelength that can be reached with common semicon-
ductor media. As a consequence, a given medium is able to generate photons
in a given span of wavelengths, for which the gain g is sufficient.

It is interesting to notice that the family of ternary and quaternary ma-
terials AlGaAs, InGaAsP and InGaAsSb allows to grow epitaxial layers with
varying bandgaps while keeping the value of the lattice constant almost con-
stant.
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Figure 2.3: Diagram showing the relationship between the emitted wave-
lengths, the material bandgaps and lattice constants for semiconductor active
media.
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Resonator

The resonator is shaped by cleaving the semiconductor medium. The facets
have the role of both natural mirror and output facets. The standard re-
flectivity of the cleaved facets in edge-emitting semiconductor lasers is 30%.
This value is due to the contrast of refractive index n at the interface between
the semiconductor (Ngemiconductor == 3.5) and the air (ng;, ~ 1). Another im-
portant role of the cavity is the wavelength selection. Indeed, the cavity only
allows the propagation of waves, termed longitudinal cavity modes, which
wavelengths fulfill the condition 2. = p\ where L is the cavity length —
which is the distance between the two facets— and p an integer. This condi-
tion is termed phase condition.

As we mentioned, the semiconductor is both a gain medium (suitable
for stimulated emission) and a loss medium (absorption and spontaneous
emission). Therefore, a given medium is convenient to generate a laser beam
when the gain compensates all the losses. The mathematical formulation
of the gain condition is I'g = «; + a,,,, where T' is the optical confinement
factor, «a; represents the intracavity losses and a,, represents the losses due
to the mirrors. According to the injection current, the values of ¢, «; and
o, change. The gain condition is fulfilled when the current reaches Iy.

Electrical pumping

The beam of a laser diode is a flow of photons generated by recombination
of charge carriers (electrons and holes) injected into a semiconductor mate-
rial. The operating point of the laser is driven by the injection current I. Its
role is to favor stimulated emission with respect to spontaneous emission and
absorption. Indeed it can be shown that in a semiconductor medium the en-
ergy separation of quasi-Fermi levels for the electrons and the holes increases
with the increase of the pumping current. As a result, increasing the current
leads excited carriers to occupy the conduction band. As demonstrated by
Einstein in 1917, this situation —termed population inversion—- is a condition
for which the stimulated emission rate is higher than both the spontaneous
emission and the absorption rates.

As a consequence, the laser is capable to emit beams which wavelengths
comply both with the gain and the phase conditions. It is thus operational
when the injection current value is large enough to trigger population inver-
sion and to induce an optical gain larger than the cavity losses, i.e. when
I > I;;,. When the current reaches the threshold current value, the gain
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saturates at the value corresponding to the threshold gain ¢, and all the
charge carriers further injected in the laser for larger current values undergo
recombination process to generate photons by stimulated emission.

The standard semiconductor laser structure is the double heterostruc-
ture and was first designed by Kroemer in 1963 [3]. It is a semiconductor
structure made of layers of dissimilar materials, as presented in Fig.2.4. Het-
erostructures have the particular property to achieve electrical confinement
of the injected carriers in the active layer through potentiel barriers. Besides,
optical confinement is achieved through an inhomogeneous refractive index,
compelling the generated photons to remain in the active layer as well. This
major advance in the laser technology allowed to reach threshold currents of
a few tens of mA, as a consequence of a great diminution of the cavity losses.

Golda—{~ ! -
— a—— Output

T

intensity | * »

profile |

L

® Electrons

— o Holes

Figure 2.4: Double heterostructure in a GaAs-GaAlAs laser. Image from [4].

Nowadays, research in laser technology shows a non-stop movement to-
wards new ways to have a better control of the emitted beam with a lower
threshold current. Breakthroughs in quantum dot and vertical-cavity surface-
emitting lasers (VCSELSs) are the challenges for the next years in the laser
technologies. VCSELs are microcavity lasers with smaller threshold current
and larger modulation bandwidth [5]. Quantum dot devices show three-
dimensional quantum confinement properties which allow to achieve much
higher gain per injected carrier, hence reducing the threshold current below
mA [6,7].
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2.1.3 Laser properties
Beam properties

Due to the nature of the stimulated emission process, laser beams are con-
stituted of identical photons. More precisely, a laser beam is a directional,
coherent and potentially very powerful beam. The directivity and the co-
herence of the beam stem from the fact that in the stimulated emission, a
generated photon has the same direction and phase as the stimulating pho-
ton. The properties of the emitted laser beam are determined by several
parameters such as the cavity geometry and the injection current. The sim-
plest beam shape is the Gaussian distribution in which the power radially
decreases from the center to the edges of the beam. Yet transverse mode
confinement causes higher order transverse modes to appear. Higher order
modes have relatively larger widths compared to the Gaussian mode, and
thus the fundamental Gaussian mode of a laser may be selected by placing
an appropriately sized aperture in the laser cavity [8]. Indeed, the aperture
of the cavity controls both the emitted beam power and the beam’s shape.
Small aperture lasers show Gaussian distributions but have limited power,
as in our experiment (P < 50 mW). In contrast, large aperture lasers can
show powers of some hundreds of mW, yet this high beam power may cause
beam instabilities in the cavity such as filamentation [9, 10]. Furthermore,
the power distribution of the beam is no longer Gaussian in that case

As the gain in the laser cavity is high and the beam section is usually
made very small by the means of a lens apposed to the emitting edge, laser
beams show very high optical intensity. As a consequence, they are capable
to trigger nonlinear effects in the media through which they propagate.

Relaxation oscillations

The interplay between the oscillation field in the resonator and the electronic
state inversion is at the origin of the phenomenon of relaxation oscillations.
An increase in the intracavity power results in an increased rate of stimu-
lated emission and consequently in a reduction in the carrier inversion. This
in turn causes a reduction in the power and so on. This phenomenon is illus-
trated in Fig.2.5. Relaxation oscillations are not specific to semiconductor
lasers and occur at different time scales according to the nature of the laser.
They have been experimentally studied in dye lasers by Gurian et al. in
2010 where their frequency has been reported to be close to 25 MHz [11]. In
semiconductor lasers the inversion changes in a nanosecond time scale while
the photon lifetime ranges some picoseconds [12]. As a consequence, the re-
laxation oscillation phenomenon occurs at frequencies typically ranging from
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1 to 10 GHz.

ATLAS
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Figure 2.5: Result of a small injection current perturbation, obtained by
numerical simulation of a laser diode component using Silvaco. The simu-
lated laser diode is a InP/InGaAsP edge-emitting laser diode. An increase
in the carrier density in the laser (caused by the small current impulse) will
cause an increase in the gain which results in a rise in the photon density
inside the laser. This increase in photon density causes an increase in the
stimulated recombination rate which decreases the carrier density. As a re-
sult, the photon density falls, which causes the carrier density to rise, and so
on. A damped oscillatory process is therefore established at a characteristic
frequency termed relaxation oscillation frequency (here close to 7.5 GHz).

The dependance of this frequency on the injection current follows a square
A
2\ 7o (T
photon lifetime. The relaxation oscillation frequency is close to the direct
modulation frequency limit of a laser diode, i.e. the modulation achieved by

modulation of its driving current.

root law: fro = — 1) [12]. 7. is the carrier lifetime and 7, is the

Relaxation oscillations can be observed when making a step input in the
injection current. Yet, with no external action, they gradually decay if the
perturbation is small enough. However, as we will see, under the action of a
moderate optical feedback, their decay can be suppressed, allowing thus the
laser to show sustained oscillations at the relaxation oscillation frequency.
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Linewidth enhancement factor

The laser linewidth enhancement factor, or parameter «, is defined as the
ratio of the variation of the real part of the refractive index with carrier
density to the variation of the imaginary part of the refractive index with
carrier density [12]. The corresponding mathematical formulation is o =
Z’}V" Z’]\}', where the refractive index of the active layer is written n = n,.+1.n;.
n; is related to the optical gain of the active layer. N is the carrier density.
Usually, the values of the o parameter range from 1 to 7 in semiconductor
lasers [12]. The parameter « was first introduced by Lax in 1967 [13] and
then adapted by Henry in 1982 for the case of semiconductor materials [14]
to account for the increased linewidth of laser diodes with respect to what is
expected from phase noise. In nonlinear dynamics, it is known that « plays
a role in the undamping of the relaxation oscillations and therefore on the
nonlinear laser dynamics, self-pulsing and chaos [15]. The value of « gives
birth to complex laser dynamics and is responsible for the broad linewidth
of laser oscillations. As we will see in chapter 5, a high value of « results in
more developed instabilities in the laser power.

Laser rate equations

The dynamics of the solitary laser is described by the laser rate equations.
These equations show the interplay between the electric field amplitude S,
the phase ¢ and the carrier density n. In the case of a single-mode laser, the
rate equations are as given in equation (2.1) [16].

( as 1

(1) = 5Galn(t) = nu]S (1)
do 1
a(75) = §oan[n(t) — N (2.1)
dn . J n(t) 2
\ a(t) = Grln(t) — nolS=(t)

In those equations, G,, is the linear gain and ny, the carrier inversion
at threshold. « is the laser linewidth enhancement factor, J the injection
current density, e the electric charge and d the thickness of the active layer.
T is the carrier lifetime in the laser cavity and ng the carrier density at
transparency. Those three equations represent the physical phenomena in
the active layer. The first equation is the balance of photon gain and losses.
The second one describes the coupling between the phase and the carriers,
which is ruled by the parameter a. The third equation represents the car-
rier dynamics, showing their injection J and the competition between the
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stimulated emission of photons, the spontaneous emission of photons and
the non-radiative carrier recombination (characterized by 7). This system
of equation is the basis of the models on which we will focus to carry on
simulations of the laser dynamics.

2.1.4 Unlocking nonlinear dynamics

Lasers are classified in three classes —from A to C— according to their dy-
namics. This classification was established by Arecchi et al. in 1984 [17] and
is related to the interplay of three time constants: the relaxation time of the
field, the relaxation time of the polarization of the medium and the relax-
ation time of the carrier inversion. In some cases, one or two among those
time constants may be adiabatically eliminated from the rate equations. In
this case one or two rate equations are enough to model the laser dynamics.

In class C lasers, the three time scales have the same order of magnitude.
Therefore, the three whole rate equations are needed to describe the laser
dynamics. Examples of class C lasers are N Hs and Ne-Xe lasers [16]. Since
their dynamics is ruled by differential equations showing three degrees of
freedom, they spontaneously show instability and chaos if pumped above a
certain threshold.

In class B lasers, the time constant of the medium polarization is small
enough —compared to the two other time scales— to be removed from the
equations. The dynamics of the laser can be described with only two rate
equations. Most semiconductor lasers belong to class B [16] and are the
main object of our research. As we mentioned earlier, a laser diode exhibits
a rather simple dynamical behavior which are the damped relaxation oscilla-
tions. Nonlinear dynamics can be achieved when the laser is further subject
to an optical external input beam. This beam can stem from another laser, in
which case we speak of optical injection. Chaos and instabilities in semicon-
ductor lasers induced by optical injection have been largely studied [17-19].
Another technique is to send part of the emitted laser beam back into the ac-
tive layer after reflection on a mirror. This corresponds to the case of optical
feedback, which we study in this manuscript.

Class A lasers are easily described by a single equation since the popu-
lation inversion and medium polarization time constant are very small com-
pared to the relaxation time of the field. Their dynamics are simpler than
class B and class C lasers. Yet, they can exhibit chaos when subject to opti-
cal feedback as will be discussed in chapter 9. Visible He-Ne and dye lasers
are examples of class A lasers [16].

As we are about to discuss, the presence of a feedback beam, even in very
small ratios, has dramatic dynamical consequences on the laser. The feedback
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ratio is a crucial parameter as it decides for the laser dynamical state. Indeed,
the feedback ratio can trigger undamped relaxation oscillations, initiating
thus a route to chaos through a succession of various states of qualitatively
different dynamics. We will illustrate this route to chaos induced by the
feedback in the next chapters with theoretical and experimental observation
of pulsing and chaotic dynamics. Besides, the feedback time delay is also a
very important parameter which determines the resulting dynamical states
and impacts on the pulsating temporal waveforms and spectral signatures.
In the following chapters, we study the nonlinear dynamics of a laser
diode (class B laser) subject to phase-conjugate feedback. In particular, we
will focus on the influence of the feedback rate and the related time delay.

2.2 Laser diodes with conventional optical feed-
back

2.2.1 Optical feedback generation

Conventional Optical Feedback (COF) is introduced into a laser diode by
sending part of its emitted beam back into the laser cavity. Basically optical
feedback is performed by aligning a mirror on the beam’s path. The distance
of the laser to the mirror L is typically of the order of several centimeters
and is experimentally precisely tuned by micrometric positioning mechanics.
Fig.2.6 shows the common setup to introduce COF in a laser diode.

Emitted beam

. e Conventional
Laser diode = | Mirror

Conventional optical feedback

& S5
< >

L

Figure 2.6: Laser diode subject to COF': the mirror reflects part of the beam
emitted from the laser back to its cavity.

The introduction of optical feedback results in many dynamical effects
on the characteristics of the solitary laser diode, depending on the feedback
ratio —or mirror reflectivity— and the distance to the mirror. The feedback
ratio is defined as the ratio of the power of the beam entering the laser
cavity after reflection on the mirror to the power of the emitted beam: R =
%. Optical feedback dramatically changes the laser features and can

be either disadvantageous, as it may be source of instabilities in the laser
output power, or advantageous as it can enhance some laser properties such
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as contributing to side mode suppression, linewidth narrowing, tunability and
frequency stability [19-27]. Depending on the feedback ratio, the laser can
switch from a given operating state to another, each one being characterized
by specific dynamical features.

2.2.2 Route to chaos

In 1986 Tkach and Chraplyvy identified five operating states —or regimes—
and classified them on the basis of their spectral properties. As presented in
Fig.2.7, the transitions from a regime to another depend on both the feed-
back ratio and the distance to the mirror.

Regime 5
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Figure 2.7: Five regimes of operation of a laser diode subject to COF. The
amount of feedback and the distance to the mirror determine the operating
regime. Figure from [28].

Regime 1 corresponds to the lowest level of feedback (R < 0.01%). The
laser shows linewidth narrowing or broadening according to the phase of the
feedback beam, that is according to the distance to the mirror.

Regime 2 is reached for feedback ratios up to 0.1%. Mode hopping be-
tween external cavity modes induced by the feedback phase occurs. External
cavity modes are the modes of the corresponding cavity bounded by the laser
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output facet and the external mirror. External cavity modes are associated
with frequencies multiples of 5%, where c is the celerity of light in the air (as-
similated to its velocity in vacuum). Mode hopping phenomena in external
cavity lasers have been characterized by Merk et al. in 1990 [29].

Regime 3 exists for a small range of feedback ratio values (close to 1%)
and causes linewidth narrowing. In this regime, the distance to the mirror
has no consequence.

In regime 4, the feedback ratio is moderate (R ~ 1%). The laser spectrum
shows growing side modes separated from the main mode by the relaxation
oscillation frequency. Those side modes are originated from the undamped
relaxation oscillations induced by the feedback ratio. The laser spectrum
broadens significantly. Besides, the laser may exhibit oscillations, enter co-
herence collapse state and exhibit chaos. As a consequence, the noise level
greatly increases. Again the laser dynamics is insensitive to the feedback
phase.

Lastly, for very high values of feedback ratios (R > 10%), the laser enters
regime 5. The external cavity behaves as an extension of the laser internal
cavity. The system is then equivalent to a short active medium within a very
long cavity bounded by the laser back facet and the conventional mirror.
Yet, this regime requires an anti-reflection coating on the laser output facet.
The laser usually operates on a single narrow-linewidth longitudinal mode
defined by the distance to the mirror. The feedback phase has no influence.

The very large number of scientific publications in this field demonstrates
the interest in mastering the dynamical properties of laser diodes in order
to develop new laser applications taking advantage of their feedback-induced
improved features. Researches in the effects of COF on the characteristics of
semiconductor lasers have unveiled many interesting dynamical states that
are nowadays well-known key results:

1/ Observation of hysteresis and multistability in the laser power have
been reported [30].

2/ Laser noise [31-34] and linewidth [35-39] improvement have been per-
formed.

3/ Routes to chaos through undamping of the relaxation oscillations have
been identified [40-42] along with pulsing dynamics [43-45] and coherence



2.2. LASER DIODES WITH CONVENTIONAL OPTICAL FEEDBACK17

collapse state [46]. The impact of coherence collapse state on optical trans-
missions has been experimentally studied [47] as well.

4/ A particular form of chaos named Low-Frequency Fluctuations (LFF)
has also been subject to dedicated studies [48-51].

5/ In short cavity configurations, laser diodes show pulsations at the time-
delay period modulated by a slower enveloppe. This dynamics was termed
Regular Pulse Packages [52] and its bifurcation has been analyzed in de-
tail [53,54].

6/ Chaotic dynamics can have the dynamical signature of excitability [55]
and show coherence resonance when subject to an optimal amount of noise
[56].

Several hundreds of papers have been published reporting both theoretical
and experimental results in the last decades. However, in spite of extensive
research there are still many dynamical aspects of laser diodes with feedback
that are not fully understood or explained.

2.2.3 External cavity modes

In order to simulate the dynamics of a laser diode with COF, a commonly-
used mathematical model is the system of equations known as the Lang-
Kobayashi rate equations [57-59]. This model stems from semiconductor
laser rate equations describing the temporal evolution of the photon number,
the carrier density and the phase inside the laser active layer when subject
to conventional optical feedback. It takes into account the feedback ratio,
the external cavity length and other intrinsic parameters of the laser. The
Lang-Kobayashi equations write as follows for the complex electric field F
and the carrier inversion N [12]:

dE :
—(t) = (1 +ia)N(t)E(t) + ke ““?E(t — 1)
dt . (2.2)
Tg(t) =P —N() — (1L+2N@®)|E(t)]?
P is the normalized pump current above threshold P = £ ;ith, where Iy,

is the laser threshold current. 7" is the ratio of carrier to photon lifetime and
« is the linewidth enhancement factor. The feedback rate x is proportional
to the square root of the mirror reflectivity. 7 is the external cavity delay
and C), is the phase of the feedback beam. This system of equations is a valid
model for single-mode operating lasers with a moderate feedback ratio and
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takes into account only one round-trip in the external cavity.
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Figure 2.8: Experimental identification of a route to chaos in the optical
spectrum of a laser with COF. In this curve, the feedback ratio is calculated
from the laser threshold current reduction Ai. Image from [60].

This model has been extensively studied and has shown good compliance
with many an experiment as reported in [12]. More precisely, the bifurcation
cascade from steady state to chaos through undamped relaxation oscillations
and stabilization and destabilization of external cavity modes has been exper-
imentally identified by Hohl and Gavrielides in 1999 [60]. External Cavity
Modes (ECMs) are solutions of equations (2.2) of the form E(t) = Ce'!
where C' and o are both constants. The spectral illustration of this bifurca-
tion cascade is given in Fig.2.8 where the evolution of the optical spectra of
the laser with the feedback ratio is presented.

In the spectra displayed in Fig.2.8, traces (b), (d), (f), (h), (j), and (1) rep-
resent steady states corresponding to stable ECMs. The constant frequency
shifting is clearly seen as the feedback ratio increases. The transition be-
tween two stable ECMs is depicted in traces (c), (e), (g), (i) and (k) in which
sidebands located at the relaxation oscillation frequency rise in the spectra.
This illustrates the ECM destabilization process in which the steady states
undergo bifurcations leading to oscillating states and further to chaos.

As reported by Petermann in 1995 [20], when a laser diode is subject to
COF, a typical route to chaos begins with the appearence of fluctuations
at the relaxation oscillation frequency. Then if the feedback ratio increases,
successive period doublings occur until a chaotic attractor is created, making
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Figure 2.9: Numerical examples of the laser output power and their corre-
sponding attractors for a laser with COF. Trace (a) is a period-one oscillation
close to the relaxation oscillation frequency of the solitary laser. The corre-
sponding reflectivity is R = 1.6%. Trace (b) is its corresponding period-two
(R = 1.8%), generated by period doubling of trace (a). Trace (c) shows
a chaotic state, as expected when the feedback ratio increases (R = 2%).
Image from [61].

the laser exhibit chaos. Fig.2.9 illustrates the theoretical route to chaos with
simulations carried out by Ohtsubo in 1999 [61].

As illustrated in those experiments and simulations, nonlinear dynamics
emerge from bifurcations of ECMs. Each ECM is associated with a lasing
frequency defined by the distance from the laser to the external mirror [62].
Indeed, as illustrated in Fig.2.10, the ECM frequencies are distributed on
the basis of the external cavity frequency fe.., = 57. Fig.2.10 plots the
normalized intensity (A = |E|?) and frequency (A = w,T) of the ECMs as
the feedback rate n varies. The simulated model is the same as in equations
(2.2) except that « is written . All ECMs but the first one appear in pairs
as n increases. The bifurcation through which these ECMs are created is a
saddle-node bifurcation. In other words, one of the ECMs is a saddle —also
called antimode— and corresponds to the branch of smaller intensity and the
other one is a node —also called mode— and corresponds to the branch of
higher intensity in Fig.2.10.(a). The ECMs are therefore said to appear in
pairs of mode/antimode. An antimode is always an unstable solution while
a mode can be stable depending on the value of the feedback ratio.

Fig.2.10.(b) shows that the frequency difference between ECM2 (bottom
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curve) and ECM1 (straight line) is close to Ag— Ay = (ws, —ws, )T = 27( fs, —
fs;)T ~ 2m. Between two consecutive modes, A is close to 27, therefore
fmodes — fmode; = % But between a mode and the following antimode, A is
close to m and funtimode, — frnode, = % f1 and f5 are the frequencies of ECM1
and ECM2 and the detuning between them depends on the feedback ratio.
In first approximation, the frequency shift between two consecutive modes
equals the external cavity delay: fo — f1 = %
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Figure 2.10: Ilustration of the frequency shift equal to the external cavity
frequency between two consecutive ECMs. This frequency shift depends on
the feedback ratio n. For values of n high enough, we can consider that

fmodez - fmodq ~ % and fantimodeg - fmode1 =~ % Image fl"OHl [63]

Besides, lasers with COF have been reported to exhibit mode hopping
between two stable ECMs. Indeed, Sivaprakasam et al. showed evidence
of external cavity mode hopping [64], as illustrated in Fig.2.11 where the
influence of the feedback level on the hopping frequency is studied.

This mode hopping dynamics is an illustration of regime 2 introduced in
Fig.2.7, in which the frequency of the mode hopping is depicted for two values
of the feedback ratio. The model adopted to obtain the traces displayed
in Fig.2.11 is a potential model from which the study of a laser with low
feedback level has been extended. The switchings from the non lasing level
to the lasing level of one of the ECMs are displayed. Frequency locking has
also been reported in the route to chaos [65].

Generally speaking, the exploitation of this model predicts that, when the
feedback ratio increases, chaos tends to spread and regions of ECMs tend to
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Figure 2.11: Mode hopping as can be seen in regime 2. The mode hopping
frequency varies with the feedback ratio. Image from [64].
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Figure 2.12: Typical bifurcation diagram of a laser with COF. As the feed-

back strength k increases the regions of chaos broaden in spite of the regions
of stable ECMs. Image from [60].

shrink consequently. This phenomenon is displayed in Fig.2.12 in which the
stability domains of the ECMs shrink as the feedback ratio increases. By
contrast, the regions of chaos widen consequently.
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2.3 Phase-conjugate feedback

We focus here on another type of optical feedback which is Phase-Conjugate
Feedback (PCF). PCF is performed with a Phase-Conjugate Mirror (PCM),
as presented in Fig.2.13. The experiment is yet more complicated than in the
case of a simple COF. Indeed, the PCM is not a single optical component like
a conventional mirror. It has to be built and is actually a nonlinear medium
in which beam interactions generate the PCF. Yet, from the point of view of
the laser, the whole setup to perform PCF is equivalent to a single optical
component. Further details about PCF generation will be given in chapter 3.

When optical feedback is performed by phase conjugation, the effects on
the operating characteristics of the laser are globally similar in many aspects
to those induced by conventional optical feedback. Indeed, in the case of
PCF, the laser also exhibits instabilities, linewidth reduction, self-pulsing
dynamics and chaos. However, when looking in detail at how the transitions
between dynamical states occur, many fundamental differences are found.
As a result, in the PCF case, when the feedback ratio increases, the laser un-
dergoes a cascade of bifurcations of a totally different nature from the COF
case [66]. The study of laser diodes subject to PCF has attracted consider-
able attention both theoretically and experimentally. Theoretical analysis is
motivated by the fact that the mere addition in the rate equations of a com-
plex conjugate feedback electrical field instead of a conventional one leads to
significantly modified nonlinear dynamics compared to the case of COF.

From an experimental point of view, a crucial novelty in the case of PCF
compared to the case of COF is the self-alignment of the feedback beam
with respect to the emitted beam. This brings the advantage of enhanc-
ing the beam coupling parameter since no additional manual alignment of
the mirror is required. Moreover, this self-aligning PCF makes the dynamics
induced by the feedback less sensitive to the variations of the feedback phase.

Fig.2.13 illustrates PCF generation from a PCM. An incident electromag-
netic plane wave of amplitude E, angular frequency w and propagating in the
forward z direction may be written E(z,y, 2,t) = Eqcos(wt —kz — ¢(x,y, 2)).
After reflection on the PCM, the corresponding phase-conjugate wave is writ-
ten Eeonj(2,y, 2,t) = rEgcos(wt + kz + ¢(z,y, 2)).

r is the amplitude reflectivity factor of the PCM. Actually those two equa-
tions represent the same wave but the longitudinal component of the wave
vector k and the transverse phase component ¢ have opposite signs. Further
details about phase-conjugate beam generation and wavefront properties will
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Figure 2.13: Laser subject to phase-conjugate feedback. PCF generation is
based on interactions between the laser emitted beam and two other inter-
acting beams in a nonlinear medium. The generation process used in this
case is termed Four-Wave Mixing (FWM) [67].

be given in chapter 3.

2.3.1 Theoretical predictions and comparison to the
COF case

Naturally, theoretical analysis of laser dynamics with PCF has been carried
out along with experimental studies. The most commonly used model of
equations for the case of a self-pumped phase conjugator are directly derived
from the previous Lang-Kobayashi rate equations (2.2) in which the feedback
term has been adapted to take into account the complex conjugate electrical
field:

f;_E(t) — (1 +iQ)N()E(t) + yE*(t — )
dt (2.3)
T—-() = P=N(t) = (1+2N@0)| B

A deeper analysis of this system of equations and its parameters will be
given in chapter 4. Briefly, F is the slowly varying optical field, N the carrier
inversion, P the normalized pump current with respect to the laser thresh-
old, v the normalized feedback ratio and € is the normalized external time
delay. The time t is also normalized and is therefore dimensionless. The
normalization parameter is the photon lifetime 7,,. The relationship between
v and the feedback rate x introduced in equations (2.2) is v = k7,. 7 is
dimensionless and in all that follows, it will be referred to as the feedback
ratio. We rename here the time delay —previously written 7— into 6 which is
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a dimensionless parameter too. In the following chapters, we use 7 to refer
to the physical time delay (which has a temporal dimension) and 6 to refer
T

to the dimensionless time delay in the equations (§ = 5)' a is the linewidth

enhancement factor and 7" is the ratio of carrier to photon lifetime.

However, this quite simple model has a few limitations since it does not
take into account several experimental features. Indeed, it does not con-
sider the physical finite response time of the phase-conjugate mirror. As
presented in Fig.2.13, the phase-conjugate beam is created by nonlinear in-
teraction. This process takes a certain amount of time, ranging typically
from femtoseconds in vapor cells [68] to several seconds in barium titanate
crystals [69]. Consequently the generation of the PCF is not instantaneous.
As a result, the PCM is physically characterized by a finite response time.
In the model, this response time is not taken into account and the PCM is
hence assumed to show instantaneous response to the incident wave. Besides,
this system of equations is standardly used whichever the phase conjugation
medium and setup.

Nonetheless, this model predicts routes to chaos and a very rich set
of dynamical solutions depending on the feedback ratio v have been re-
ported [70-72] in good qualitative accordance with experiments. More so-
phisticated models of rate equations taking into account the finite penetration
depth and the response time of the phase-conjugate mirror have also been
proposed more recently [73,74]. The main difficulty in the models with finite
response time stems from the gap between the order of magnitude of the laser
relaxation oscillation time period and the time of propagation in the cavity
(ranging from hundreds of picoseconds to some nanoseconds) on the one hand
and the mirror response time (usually ranging several seconds) on the other
hand. Thus in order to take into account those three time scales simulta-
neously, the computation time required would be extremely long since the
integration steps are limited by the most quickly varying parameters. Ad-
ditionally, the resulting integro-differential equations make the bifurcation
analysis more difficult.

For all these reasons, in all that follows, we restrict the study to a simple
model of the type of equations (2.3) and discuss its limitations in the con-
clusions and perspectives.

In both cases, (differential or integro-differential models) theoretical com-
parisons of the laser dynamics between PCF and COF cases have been carried
out. When looking closely at bifurcation diagrams in the case of PCF, a first
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fundamental difference compared to the COF case [75] is noted. Indeed, when
the feedback ratio increases, starting from 0%, once the first transition from
steady state to chaos is overcome, the system never stabilizes back to a steady
state. By contrast to the COF case, in which steady states —named in that
case external cavity modes— are recovered after chaotic regions, in the PCF
model these so-called external cavity modes are actually pulsing states which
frequencies are imposed by the external cavity time delay. This phenomenon
is illustrated in Fig.2.14 where a comparison of bifurcation diagrams in the
case of COF and PCF is presented. Erneux et al. showed that the complex
electrical field of the laser beam in ECM state can be written, under legit-
imate approximations reported in [75], Eo(t) = Ajexp(iwt) + Asexp(—iwt)
where A; and A, are scalar constants. w is the pulsing angular frequency

and is related to the external cavity length by w = 275 I
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Figure 2.14: Bifurcation diagrams in the PCF case (a) and COF case (b) for
the same values of all parameters. N is the electron population and N, is
its steady-state value in the absence of feedback. k is the feedback rate and
7 the round-trip time in the external cavity. Figure from [66].

This major difference between COF and PCF —which stems from the
different nature of the solutions of the laser rate equations in both cases—
induces significant changes in the bifurcation diagrams and in the cascade
of dynamical states, as illustrated in Fig.2.14. In these two bifurcation dia-
grams, a dot is reported when the fluctuating laser power reaches a certain
threshold value. Hence, for a given value of k7, a steady state region shows
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no dots at all. A harmonic time series shows one dot which is the maximum
value of the oscillations. A quasi-periodic state shows several dots, one for
each local maximum in the time trace. Lastly, a chaotic dynamics is repre-
sented by a lot of dots, illustrating the complexity of the fluctuations.

We can see in Fig.2.14 that the routes from the initial steady state to
chaos are similar in both cases (a) and (b). However, in trace (a), there is
only one steady state region in the whole diagram. Actually this solution
showing constant output power is already a first ECM. The regions of chaos
are interspaced by continuous lines representing the self-pulsating external
cavity modes of the PCF case. In contrast, in trace (b), there are two regions
of steady states following two regions of chaos. This main difference leads to
the conclusion that after going through a chaotic region, the laser recovers
steady state in the COF case, while in the PCF case the laser bifurcates to a
self-pulsing state. In the latter case, once the initial steady state is overcome
through the first bifurcations to undamped oscillation relaxations, the laser
never exhibits steady state any more. This major difference illustrates the
dynamical nature of the external cavity modes in the COF case — in which
they are steady states— and in the PCF case — in which they are self-pulsing
states.

2.3.2 Still few experimental studies

Despite many fruitful theoretical predictions and simulations, there have been
few experiments to study the dynamics of laser diodes with phase-conjugate
feedback. Many experiments have addressed the question of the creation
of phase-conjugate beam and of the optimization of its generation process
parameters such as the nonlinear beam interaction gain in order to reach
maximum mirror reflectivity [76,77]. Experiments on materials that show
different response time have also been reported [68,69,78]. Yet most of them
do not make use of the generated phase-conjugate beam as feedback, block-
ing it by inserting an optical isolator on its self-aligned way back to the laser
cavity.

The aim of those experiments is not to study the dynamical effects in-
duced by the feedback on the laser but rather the optimization of the phase-
conjugate beam itself along with the phase conjugation media in terms of
stability, power and nonlinear beam interaction time scale. Therefore, in
those experiments, in spite of the ability to generate a potentially intense
phase-conjugate beam, the laser always operates in steady state since no
feedback is directed to it. Those experiments brought advanced results from
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the point of view of the suitable media and techniques to perform phase
conjugation but not from the proper point of view of the laser dynamics. Al-
though they remain scarce, we can mention here some experimental results
that present interesting dynamical features of a laser with PCF.

Undamping of the relaxation oscillations

50 MHz!
s

Figure 2.15: Optical spectra illustrating the route to chaos of a laser diode
subject to PCF. PCF is achieved by four-wave mixing in rubidium vapor
with a detuned pump beam with respect to the laser (signal) beam. Trace
(a) is the free-running laser, (b) shows a small and a big peak symmetrically
placed around the frequency of the pump beam. Trace (c) shows the locking
to this same pump beam frequency. Trace (d) shows two symmetrical side
bands around the locked frequency corresponding to the relaxation oscilla-
tion frequency (peak A at 3.9 GHz). Then, successive period doublings are
undergone: peak B at 7.8 GHz in (e), peaks C and D at 12 and 16 GHz in
(f) rise in the spectrum. Trace (g) is a broad spectrum and (h) corresponds
to the coherence collapse state. Figure from [79].

A pioneering experiment showing self-excitation of the relaxation oscil-
lations and period doublings in a laser with PCF was made by Andersen et
al. in 1999. They brought experimental evidence to the theoretical predic-
tions of a route to chaos with undamped relaxation oscillations and period
doublings [79]. In particular, the appearance of the relaxation oscillation
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frequency followed by several period doublings until reaching the coherence
collapse state is clearly illustrated in 2.15.

PCF-induced operating regimes and spectral properties

Other major experimental results in this field were brought by Lawrence and
Kane in 2001. A comparison between spectral properties and operating laser
regimes of a laser with COF and a laser with PCF has been carried out
in [80]. Fig.2.16 shows the comparison between transitions from regime III
to regime V as a function of the external cavity length in a laser with COF
and in a laser with PCF. The same study of regime transitions has also been
carried out as a function of the injection current [80].
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Figure 2.16: Transitions between stable and unstable output states as a func-
tion of the external cavity length. The feedback fractions at which transitions
between stable and unstable output states occur for PCF (open data points)
and COF (solid data points) as a function of external cavity length are pre-
sented. The points mark transitions from stable single-mode regime III into
coherence collapse regime IV (triangles), and from coherence collapse regime
IV into stable single-mode regime V (circles). Figure from [80].

In the distribution of regimes displayed in Fig.2.16, the very small phase
sensitivity of the laser subject to PCF compared to its COF counterpart is
clearly visible, especially in the transition from regime III to regime IV.

The evolution of the optical spectra of a laser with COF and with PCF
displayed in Fig.2.17 illustrates the difference in the routes to chaos of both
cases. Fig.2.17.(i) shows a stable single-mode state (a) followed by a transi-
tion to a state of excited external cavity modes (b) and (c¢). With an increased
feedback, the output power evolves into a broadband multimode spectrum
indicative of chaos in (d) and (e), before switching back to stable single-mode
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Figure 2.17: Optical spectra for increasing feedback ratio for a laser with
COF (i) and PCF (ii). The feedback ratios are, from a to f, for the COF
case: 0.15%, 0.20%, 0.70%, 1.5%, 2.5% and 5.0%. For the PCF case : 0.04%,
0.06%, 0.5%, 5.0%, 22% and 25%. Figure from [80].

behavior (f). The similar evolution for PCF is shown in Fig.2.17.(ii), even
though the broadband chaotic spectra (c¢) and (d) develop more rapidly and
appear to have fewer features spaced by the external cavity frequency spacing
than for comparable COF ratios.

Low-frequency fluctuations

The observation of Low-Frequency Fluctuations (LFF) has also been reported
in [80] in a laser subject to PCF near the transition from coherence collapse
state (regime IV) to single-mode high feedback regime state (regime V).

Fig.2.18 illustrates the LFF instability. This dynamics is characterized by
intermittent breakdown events, called power dropouts, followed by a slower
recovery to equilibrium. The distribution of the time separating consecutive
dropout events is determined by the injection current and the feedback ratio.
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Figure 2.18: Low-frequency fluctuations induced by phase-conjugate feed-
back, near the transition from coherence collapse to stable single-mode high

feedback regime V. The feedback fraction is 20% in (a) and 10% in (b). Soli-
tary laser diode injection current is 35 mA (= 1.1 x I;;,). Figure from [80].

2.4 Why further study laser diodes with PCF'?

It is worth carrying both theoretical and experimental researches in the field
of laser dynamics with PCF. Indeed, as we already mentioned, simulations of
laser diode with PCF have provided many theoretical predictions that have
never been experimentally confirmed. Due to either technology limitations
or difficulties in terms of experimental stabilization and suitable conditions,
few reports of the huge dynamical diversity that a laser diode with PCF can
exhibit have been published in the literature.

Extension of the study of the external cavity modes

As we will see in chapter 4, the theory forecasts that, in a certain range
of feedback parameters, the laser output power is expected to show purely
time-periodic harmonic self-pulsing states with a frequency precisely defined
by the time delay. We refer here to the previously-mentioned external cavity
modes for PCF [75]. To our knowledge there has been no experimental report
of such a pulsing state. Yet despite this lack of evidence, the existence of
pulsing external cavity modes is commonly accepted and assumed to count
among the most characteristic features of a laser with PCF. We bring in
chapter 6 experimental illustration to this particular dynamical state and
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detail the configuration that allows to see self-pulsing external cavity modes.

Dynamical transitions induced by varying the time delay

Due to the complexity of the system, the modification of one among the quite
numerous parameters that enter in its model can give birth to a great deal
of unexpected dynamics. Yet, in a system ruled by a delayed feedback, the
features of the feedback are crucial parameters that significantly influence
the way the system’s dynamics evolves. Consequently, changing the time de-
lay —through the modulation of the external cavity length— induces dramatic
changes in the bifurcation diagram. The expected dynamics are not similar
when switching from a short external cavity to a long one. We will see all
along this manuscript how crucial the external cavity delay is on the dynam-
ics exhibited by the laser. The experimental results presented in chapters 6
(self-pulsing ECMs), 8 (extreme events) and 9 (LFF) are obtained by succes-
sively increasing the time delay, through an increase of the external cavity
length. Simulated bifurcation diagrams, time series and spectra confirm the
dynamical transitions observed as the cavity length increases.

Chaos crisis induced by increasing the feedback ratio

Although most of the theory of a laser with PCF is known, there are still
many points that have not been explored. For instance, in the literature there
are many reports of theoretical studies of the laser dynamics for weak values
of PCF rate. Yet questions about expected scenarios for higher feedback
values have scarcely been addressed. In chapter 5 we bring theoretical pre-
dictions of totally different scenarios that are undergone by the laser when
operating under higher feedback ratios. Indeed we show that the laser is
likely to exhibit suppression of chaos and bistability between external cavity
modes when the feedback ratio reaches high values.

Application perspectives: chaos suppression and source of optical
self-pulsations

From an application point of view, a great motivation to study the dynamics
of a laser with PCF is to be able to unveil a whole dynamical scenario,
identifying the bifurcations that make the laser exhibit successive operating
states of different dynamics. The simulations presented in chapter 5 predict
stabilization of chaos. Indeed the model shows that in the case of PCF,
suppression of chaos is seen for feedback values under which, in the COF
case, the laser only shows a developed coherence collapse state.
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Moreover, the experimental self-pulsing dynamics that will be presented
in chapter 6 confirm the theoretical predictions about the possibility to gen-
erate optical harmonic signals, known as the previously-mentioned ECMs in
PCF. In chapter 7, we will discuss the main novelty about the self-pulsing
states in the PCF case compared to the COF case. Actually, it stems from
the different nature of the ECMs in both cases.

By mastering the laser dynamics as a function of the feedback parameters
(feedback delay and feedback ratio), we therefore address crucial concerns
such as stabilization and chaos suppression along with all-optical generation
of high-frequency signals at several tens of GHz.

Impact of the PCM response time on the dynamics

Further research in the simulated model could lead to a more realistic, yet
also more complex, set of rate equations. A change in the theoretical scenario
could be expected if the equations took into account the phase-conjugate
mirror response time [81]. And naturally the discrepancy between the PCF
generation time scale —or PCM response time scale- and the laser own in-
ternal time scale would have a great impact on the dynamical predictions.
Still speaking of materials’ response time, the great variety of media that are
suitable to perform phase conjugation (photorefractive crystals, Kerr media,
broadband laser diodes) represent as many time scales that experimentally
affect the running laser, each one having a stronger or a weaker influence.
An interesting question is the effect of the PCM response time on the laser
dynamics. We expect that the smaller the difference between the PCM re-
sponse time and the external cavity time delay the stronger its impact on
the laser state. This also stimulates the research of new media with build-up
times ranging different orders of magnitude. As we will discuss in chapter 3,
several types of media are suitable to generate phase conjugation and their
related grating build-up times range from femtoseconds (vapor cells [68]) to
several seconds (in photorefractive barium titanate crystals [69]).

Time-scale interplay in a nonlinear system

This study of nonlinear dynamics of laser diode with PCF can also be seen
as a test bed for the study of new phenomena in time-delayed systems. Al-
though we focus here on the specific case of nonlinear dynamics in laser
diode with phase-conjugate feedback, the models, the methods and some
conclusions that we are about to present can be compared to analogous time-
delayed systems. Indeed, studying a laser subject to PCF is equivalent, from
a wider point of view, to study any nonlinear system ruled by the interplay
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of three different time scales. Like in the various nonlinear systems subject
to feedback that are found in other fields of physics —such as hydrodynamics,
electricity, and mechanics—, we use analogous methods to analyse bifurca-
tions, identify operating states like chaos, simulate models and understand
the general behavior of the system. For example, the studies of extreme
events and coherence resonance presented in chapters 8 and 9 are analogous
to other reports of observations of the same behaviors in other domains of
physics. After all, if removed from its optical context and seen from a purely
dynamical point of view, a laser diode with PCF is a mere nonlinear system
subject to its own feedback, similar to those that can be found in many other
physical frames.
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CHAPTER 3

Experimental setup

No amount of experimentation can ever prove me right; a single experiment can prove me
wrong. Albert Einstein

In this chapter is presented the experimental setup that we designed to
perform phase conjugation in order to unveil the nonlinear laser dynamics
when subject to phase-conjugate feedback. We first present the laser diode
device, the dynamics of which is the main purpose of our research. Then we
discuss the phase conjugation process along with the suitable techniques, ma-
terials and gain configurations to perform phase-conjugate feedback. Finally,
we present the whole experiment and the corresponding measuring devices
and give first illustrations of the laser behavior when subject to PCF.

3.1 Presentation of the laser diode

Our laser diode is an edge-emitting single transverse mode semiconductor
laser (JDS Uniphase DL-SDI-5400). The active layer is made of quantum
wells in AlGaAs. The operating wavelength is A = 85244 nm. We work
therefore in the near infrared domain and use a photosensitive card to local-
ize the beam path and to perform beam alignments. This kind of laser diode
is largely used in common applications such as printing, point-to-point com-
munications and image recording. Without optical feedback, the laser diode
is driven by means of a direct current and operates according to the linear
light- current characteristic shown in Fig.3.1. Most of the time, we will be
operating with a current of I = 60 mA, which gives an available maximal op-
tical output power of 45 mW. Without feedback the laser operates in steady
state, which means that for a given value of the control current I the optical
output power is constant as illustrated in Fig.3.2. The very small variations
that can be seen are due either to optical noise coming from the laser itself
or electrical noise stemming from the photodiode and the oscilloscope.

Now what we aim to illustrate here is the great dynamical diversity that

can be seen in a laser diode when subject to its own optical feedback —
that is when part of the emitted light is sent back into the laser cavity

35
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Figure 3.1: Laser diode characteristic when operating solitary. We measured
the threshold current at 14.10 mA.

after reflection on a mirror. Therefore we mean to go beyond the otherwise
steady state of the laser and reach for dynamical states that emerge with the
presence of feedback. As we mentioned in chapter 2, we discriminate two
kinds of optical feedbacks: Conventional Optical Feedback (COF) —where
the emitted beam returns to the laser after reflection on a common mirror—
and Phase-Conjugate Feedback (PCF)-where reflection is made on a phase-
conjugate mirror. Our whole research tackles the effect of phase-conjugate
feedback on the laser dynamics and the bifurcation scenarios leading to chaos
[72,74,80-82]. This brings us to the point of the PCF generation process
and its injection back into the laser.
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Figure 3.2: Steady state of the laser diode when operating solitary. The
emitted optical power versus P; is constant. Here it equals zero here since
DC has been cut off by the photodiode.
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3.2 Phase-conjugate feedback

3.2.1 Definition and background

The first experimental study of a laser diode with feedback from a phase-
conjugate mirror was reported by Cronin-Golomb et al. in 1985 [83]. Be-
sides the possibility to enable a laser to exhibit nonlinear dynamics, phase-
conjugate feedback has many utilities. It is a commonly-used technique
to perform wavefront distortion correction [69], to stabilize a laser diode
by means of phase and mode locking [84-86], to enhance frequency stabil-
ity [87-89] and to achieve spectral linewidth and intensity noise improve-
ment [90-94].

Unlike COF, PCF has the particularity to be a self-correcting and self-
aligned feedback [95]. Indeed, the geometry of the PCF generation layout
compels the PCF beam to be self-aligned with the incident laser beam on
the phase-conjugate mirror. Naturally, the PCF beam is counter-propagating
with respect to its incident counterpart. Moreover, as demonstrated in [95],
any phase shift and spreading that the laser beam could undergo in the
way from the laser to the mirror due to propagation in the air or through
distorting media is compensated in the backward trip.

(a) Conventional mirror (b)

Wavefront distorted Wavefront unchanged

Figure 3.3: Phase-conjugate mirror versus conventional mirror. The wave-
front of the COF beam is distorted after one round-trip through the distorting
medium of refractive index n (a) while the PCF beam is unchanged (b).

This property is illustrated in Fig.3.3 where one can see that the PCF
beam keeps at each point of the backward trip to the laser the same wavefront
as in the forward trip to the mirror. In other words, when entering back into
the laser cavity, the photons have exactly the same phase as at the moment
they were emitted out of it. This is why phase conjugation is also called time
reversal [96]. One might see it as if, once the beam has reached the phase-
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conjugate mirror, it would travel back in time until the instant when it was
emitted. An illustration of phase conjugation is displayed in Fig.3.4 where
the wavefront distortion correction operated by the phase-conjugate mirror
is compared to the conventional mirror case. As we mentioned in chapter 2,
this feedback with unchanged phase makes the laser behave quite differently
compared to the case of conventional feedback.

Original and Phase-conjugating
final image mirror

i

Distorted
image
Doubly distorted Conven .tlunal
image mirror

Figure 3.4: Wavefront distortion correction of an image operated by a phase-
conjugate mirror (a), compared to the double distortion operated in the case
of a conventional mirror (b). Picture from Wikipedia.

3.2.2 Suitable media to perform phase conjugation

Many ways to perform phase conjugation using different media have been
studied so far. The most commonly used media are vapor cells —which are
Kerr media— and photorefractive crystals. Kerr media have the property
to perform phase conjugation at very short time scales. Phase-conjugate
feedback has been generated in vapor cells with response times down to
some femtoseconds [68]. In photorefractive crystals the response time is much
larger, usually several hundreds of milliseconds in strontium barium niobate
(SBN) [78] crystals and several seconds in barium titanate (BaTiO3) crystals
[69]. Broad-area laser diodes are also suitable media for phase conjugation. In
AlGaAs, nanosecond response times have been reached at wavelengths close
to 800 nm [87,97-100]. Media based on InP have also been used to perform
phase conjugation with response times of some milliseconds at wavelengths
close to 970 nm [101] and 1.3 pm [101,102].
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Figure 3.5: Absorption spectra of SPS crystal with different dopings at room

temperature. In our experiment we use the SnyPySg : Te (1%) one. Image
from [76].

In our experiment we use a tellurium-doped tin hypothiodiphosphate
SnaPySg : Te (1%) semi-conductor crystal, commonly referred to as SPS
crystal. This choice is motivated by two features. The first is the fact that it
has been demonstrated to show low absorption and high gain properties in
the near infrared domain [76] as shown in Fig.3.5. We expect thus to achieve
reasonable gain with a laser operating at 850 nm without the need for exter-
nal electrical field to improve its photorefractive properties. The second is
its expected short response time which ranges only several milliseconds [77].
SPS crystals can show response times about a thousand times smaller than
SBN and BaT'iOj3 crystals [103]. Moreover, to our knowledge there has been

no experimental study of laser dynamics using phase-conjugate feedback per-
formed in SPS crystals.

Thus we report here on a still unexplored configuration. Semiconductor
broad-area laser diodes would also be attractive media due to their short
response time ranging nanoseconds. Yet our aim is to insert in the laser dy-
namics a new time scale, different from the nanosecond which is close to the
period of the relaxation oscillations. With the SPS crystal the system is sub-
ject to a dynamics which time scale (microseconds) is intermediate between
other photorefractive crystals (seconds) and the laser relaxation oscillations
(nanoseconds). This difference between these three orders of magnitudes al-
lows to discriminate the influence of each time scale on the laser dynamics.
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Photorefractive crystals may be used in several configurations to generate
phase conjugation as presented in Fig.3.6. The principle of phase conjugation
with a photorefractive crystal is based on four-wave mixing. The interfer-
ences between two pump beams result in the generation of a refractive index
grating within the crystal. Then a signal beam is sent on this grating and its
own scattering on the grating results in a fourth beam which properties are to
be counter-propagating and phase-conjugate with respect to the signal beam.

3.2.3 Phase conjugation techniques

A mathematical theory of phase conjugation generation by four-wave mixing
in photorefractive media has been developed by Cronin-Golomb et al. [104]
and has been extended in experimental phase-conjugate mirror characteriza-
tions [105]. There are two possibilities to perform four-wave mixing : either
using an external pumping configuration —in which a secondary laser provides
the pump beams— or a self-pumped configuration —in which the signal beam
and the two pump beams are emitted by the same laser. Among all those
possibilities, the most commonly used to study nonlinear laser dynamics in
the literature are configurations (a), (¢) and (d) in Fig.3.6.

(a) Linear N (b) Semi-linear N (c) CAT
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Figure 3.6: Configurations to perform phase conjugation in photorefractive
crystals. Image adapted from [106].

Using external pumping may prove useful when the signal to conjugate
comes from lasers for which the emitted power is too small to perform phase
conjugation in the crystal with a reasonable gain. One may also want to take
advantage of the detuning between the pump beams and the signal beam to
yield a better spatial and spectral beam resolution [98]. Configuration (c)
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uses a crystal polished on four faces which allows internal beam reflections
on the crystal faces that play thus the role of mirrors. This configuration
is interesting for its a priori experimental simplicity since it requires neither
external pumping nor the use of mirror and lenses. It has provided many
advanced results in terms of laser dynamics so far [80]. For our study we
have decided to work with a self-pumped ring mirror setup like configuration
(d) where the incident beam propagates through the crystal a first time and
re-enters it after reflection on two common mirrors bounding the ring cavity.

3.3 Phase conjugation in SPS crystal

The photorefractive effect is a phenomenon in which the local refractive index
of a medium is changed by the illumination of a beam light with spatial
variation of the intensity [67]. This effect was observed in SPS for the first
time in 1991 [107]. Then deeper analysis of its photorefractive properties
have been carried out since Odoulov et al. showed evidence of the interesting
features of SPS in the infrared domain [108,109]. Our SPS crystal is presented
in Fig.3.7. Its dimensions are 6 x 6 x 11 mm?. The two faces intersecting
the z-axis are polished and are used as entrance and exit faces for the laser
beam through the crystall.

Figure 3.7: Our SPS crystal sample. The laser beam propagates following
the z-axis and is horizontally polarized in the direction of the x-axis.

3.3.1 Beam fanning

In order to use this crystal as a PCF generation medium we need first to
determine two particular angles. The first one is the angle formed by the

'We thank Dr. Alexander Grabar for providing us with the SPS crystal sample and
for the fruitful discussions about photorefractive systems.
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incident beam and the first polished face which is responsible for Fresnel
losses. The second one is the angle of the ring cavity. As we mentioned be-
fore, phase conjugation is performed by four-wave mixing within the crystal.
In this process the values of the angles between the beams are important
parameters since the gain of the wave mixing process depends on them.

Screen

Main lobe

Side lobe Photorefractive crystal

c-axis

Horizontal polarization

Incident beam

Figure 3.8: Beam fanning seen on a screen after propagating through a pho-
torefractive crystal. If the laser polarization and the c-axis are collinear, the
beam fanning occurs in the direction of the c-axis. A main lobe and side
lobes can be seen, resulting from the deviation of part of the laser beam
when propagating through the crystal due to its photorefractive properties.
Image adapted from [106].

In order to maximize the phase conjugation gain, one should choose the
angles that provide the highest gain in the four-wave mixing process which
also correspond to the highest gain measured in two-wave mixing [77]. In
the two-wave mixing process a pump beam and a signal beam interfere in
the crystal and an energy transfer is operated from one beam to the other.
The way energy is transferred depends on the beams’ propagation direction
in the crystal. Indeed the c-axis of the crystal is responsible for the orien-
tation of the beam fanning and thus imposes the direction according which
a beam can be amplified. When a beam propagates through the photore-
fractive crystal following the z-axis, part of it is deviated in the direction of
the c-axis shaping thus a light lobe in this direction and side lobes as shown
in Fig.3.8. Feinberg accounted for this phenomenon called beam fanning as
the appearance of an asymmetric high refractive index area in the crystal
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towards the c-axis due to its photorefractive properties [110].

In our crystal the beam fanning is developed in the direction opposite to
the x-axis. This phenomenon is illustrated in Fig.3.9 where we defined and
oriented the c-axis according to the beam fanning direction, that is in the
direction opposite to the x-axis. In the picture of the beam intercepted with
a photosensitive card the main beam fanning lobe is clearly visible in the
direction of the c-axis. However we could not properly see the also expected
side lobes probably because of a lack of contrast. They might actually be
present but with too small intensity, making them difficult to be seen.

Figure 3.9: Picture of the beam fanning seen with our SPS crystal and
detected with a near-infrared photosensitive card. The main lobe is clearly
visible and shows the direction of the beam deviation to the right in the
direction of the c-axis.

3.3.2 Two-wave mixing gain

Once the direction of the beam fanning —and thus the c-axis— are clearly
identified, we can look for the angle that will bring the highest two-wave
mixing gain. The two-wave mixing setup is presented in Fig.3.10.

The pump beam enters the crystal with the optical power P1, the signal
beam with the optical power P2 where P1 > P2. Then those two beams
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Figure 3.10: Two-wave mixing principle in photorefractive crystal. The pump
beam transfers part of its power to the signal beam when scattering on the
grating.

interfere inducing an intensity grating, which induces the generation of a
spatially phase-shifted refractive index grating within the crystal via the
photorefractive effect. The scattering of the beams on this generated grating
results in an energy transfer from one beam to the other.

The position of the beams with respect to the c-axis determines the di-
rection in which amplification is performed. The two-wave mixing theory
predicts that the constructive interferences between the transmitted and re-
flected beams, and hence the beam amplification, occur in the direction of
the c-axis [67]. By contrast, destructive interferences and hence beam at-
tenuation occur in the direction opposite to the c-axis. Therefore, in the
configuration presented in Fig.3.10, the signal beam is amplified and the
pump beam is attenuated. As a consequence, the amplified signal beam ex-
its the crystal with the power P3 > P2 while the attenuated pump beam
exits the crystal with the power P4 < P1. Experimentally we observe that
if beams 1 and 2 are switched, the amplification still occurs in the direction
given by the c-axis, therefore the energy transfer occurs from the signal beam
to the pump beam.

The grating spacing A is given by A = F/r\l(a)' To be precise, the energy

transfer gain depends more directly on the grating spacing rather than on
the angle 26 [77] since the beam amplification depends on the way the beams

scatter on the grating. Usually, the gain of the two-wave mixing process is
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Figure 3.11: Two-wave mixing gain in SPS crystal versus 6.

defined as follows: I" = %ln(%) [77]. P, is the power of the amplified
signal beam exiting the crystal when the pump is on, P, is the power of
the signal beam exiting the crystal when the pump is off, and z is the crystal
length (in our case, z = 11 mm).

Naturally, since I' depends on the angle 26 between the interfering beams,
it is crucial to know the values of 26 that correspond to the higher values of T'.
The two-wave mixing gain versus # measured in our experiment is presented
in Fig.3.11 where one can distinguish that maximum gain (I' = 3.4 em™1)
is achieved when 6 ~ 15°. We keep therefore this value of 6 as a parameter
value for the orientation of the mirrors in the phase-conjugate mirror cavity.

3.3.3 Reflection and transmission gratings

The whole phase-conjugate mirror is described in Fig.3.12. The pump beams
interfere producing a grating on which a third beam scatters giving birth
to a fourth beam which constitutes the phase-conjugate feedback. How-
ever, within the crystal, two kinds of gratings can be generated according to
which beams are considered to be the pumps. When the pumps are counter-
propagating the induced grating is a reflection grating (in blue in Fig.3.12).
For instance in Fig.3.12, beams 1 and 2 can be pumps and generate the grat-
ing, then beam 4 would be the result of the scattering of signal beam 3 on
this grating. But beams 1 and its self-diffracting beam 3 could also be pumps
and generate the grating, then beam 2 would play the role of the signal beam
and its scattering on the grating would result in the generation of beam 4.
In the case where the pumps are co-propagating like in the latter example,
the grating induced by their interferences is a transmission grating (in red in
Fig.3.12).
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As a consequence, both kinds of gratings may coexist in the crystal [77].
The ability of the crystal to create gratings depends on the electro-optic co-
efficients that are preferentially excited by the propagating beams and the
angle 20 between the pump beams as demonstrated by D’yakov et al. in
1991 [111]. Therefore it depends on the crystal orientation with respect to
the beams at stake in the four-wave mixing process. Nonetheless if the mirror
loop is long enough beams 1 and 2 can become incoherent and the creation
of the reflection grating induced by their interferences is prevented. In our
experiment we usually generate PCF with a transmission grating. However
we will discuss in chapter 6 the possibility to excite a reflection grating and
the consequences on the feedback-induced laser dynamics.

1:incident beam

4 : phase-conjugate beam

Induced transmission grating

Figure 3.12: Phase-conjugate mirror principle: four-wave mixing within SPS
crystal showing reflection (blue) and transmission (red) gratings.

We set the configuration in order to work with a transmission grating-
induced phase-conjugate mirror. Therefore beams 1 and 3 are the pumps
and generate the transmission grating on which beam 2 scatters creating
thus beam 4. The angle 26 is set according to the two-wave mixing max-
imum gain: 20 = 30°. The angle 5 between the incident laser beam and
the crystal face has been set manually at the value of 26° for which we saw
experimentally that the Fresnel losses of the beam entering the crystal were
minimum. This angle § also prevents any feedback in the laser that would
come from reflection on the crystal’s front face. Due to the geometry of the
setup we are sure that no conventional feedback is sent back in the laser. Be-
sides, according to the theory of PCF generation, since the phase-conjugate
beam and the incident beam are self-aligned, the only beam directed towards
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the laser is its own phase-conjugate feedback beam.

Figure 3.13: Transversal picture of the laser beam at the point it enters the
SPS crystal. The beam has the shape of an ellipse in which the dimensions
of the major axis and minor axis are approximately 1100 um and 900 um.
The vertical yellow trace is a defect of the camera.

In a self-pumped configuration, the laser must be powerful enough to
enable the nonlinear effects in the crystal and provide an optical feedback
reasonably strong. Actually the important parameter about the beams’ in-
teraction in the crystal is the intensity J = % where P is the optical power
and S the beam section. According to [77], in SPS crystals, the incident beam
intensity threshold above which the ring loop behaves like a phase-conjugate
mirror is Jy, &~ 1 W.em™2. A transversal picture of the laser beam as it enters
the crystal taken with an infrared-sensitive camera is displayed in Fig.3.13.
We measured approximatively the major and minor axis of the elliptic beam
: 1100 pwm and 900 pm. In the experiment the order of magnitude of the in-
tensity of the beams is about J = 3.5 W.em ™2 which fulfills the requirement
to enable photorefractive effects and phase conjugation in the SPS crystal.

3.3.4 SPS crystal response time

As we mentioned previously one of the main interests of working with a SPS
crystal is its short response time or, in other words, its short grating build-up
time which is expected to be some milliseconds.

In Fig.3.14 the measured response time of our SPS sample is displayed.
The laser optical power is represented in blue and the phase-conjugate feed-
back power in red. The curves are plotted in the same temporal scale but
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Figure 3.14: Measured SPS crystal response time. The blue curve shows
how the laser dynamics is affected when enabling phase conjugation once the
grating build-up time T¢,ystq is elapsed.

have been vertically shifted and amplified for clarity. While t < ¢;, a shut-
ter is placed between the laser and the crystal. Therefore the PCF power
is zero and the laser operates in steady state, emitting theoretically con-
stant optical power but experimentally we can guess small noise-induced
fluctuations around the constant mean value. When ¢ = ¢; the shutter is
removed, allowing the laser beam to enter the crystal and phase conjuga-
tion is enabled. We measure in Fig.3.14 the PCF rising time which corre-
sponds to the crystal grating build-up time simply called crystal response
time: Tirystar = t2 —t1 = 3.72 ms. Terysqr is defined as the time in which the
PCF value rises from 10% to 90% of its average saturation value. In the laser
output power time trace, the dynamical change in the emitted laser power
with the appearance of high peaks of short duration that are inexistant for
t < ty is highlighted. This results from the effect of the PCF on the laser
dynamics, causing it to exhibit fluctuations under the action of the feedback.

3.4 Whole operational experimental setup

Once the phase-conjugate mirror is set, the whole experimental setup natu-
rally comes as displayed in Fig.3.15. Some important parameters still remain
to be focused on, though.
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Figure 3.15: Whole experimental setup. Optical measuring instruments and
a powermeter —giving the PCF power value, from which the PCM reflectivity
is calculated— are introduced to be able to see and to quantify the laser
dynamics when subject to PCF.

3.4.1 Mirror reflectivity

The crystal is placed in front of the laser with the parameters detailed pre-
viously. The four-wave mixing gain in the crystal defines the maximal reflec-
tivity of the phase-conjugate mirror. The PCM reflectivity R is a parameter
in which we show great interest since we will study the laser dynamics when
the feedback strength changes.

Therefore our means to quantify the amount of light that enters back into
the laser is the value of the PCM reflectivity. We define R as the ratio of the
power of the phase-conjugate beam that exits the crystal on the power of the
incident beam in the crystal. With the notations of Fig.3.12, we can write
R = %. We consider that the system made of the crystal and
the ring cavity behaves like only one component: a phase-conjugate mirror
which reflectivity R is tunable. We achieve maximum reflectivity of 9%. We

can thus explore the laser dynamics in a range of reflectivities between 0 and
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9%. A variable optical attenuator is inserted in the ring cavity in order to
change the power of the four-wave mixing beams and consequently to change
the mirror reflectivity.

3.4.2 External cavity length

As we discussed in chapter 2, besides the mirror reflectivity, a very important
parameter in the dynamics of a laser subject to feedback is the external cavity
length L.4,. This length is defined as the path followed by the beam from the
instant it has been emitted to the instant it comes back into the laser. L4,
is thus related to the corresponding propagating time called external cavity
time delay —to which we will refer as time delay or delay— defined as 7 = %

We saw that two kinds of gratings could be generated within the crys-
tal: the reflection grating and the transmission grating. In the case of
a reflection grating, the crystal behaves like a common mirror, reflecting
thus the incident beam when it enters the crystal. Therefore L., is equal
to the length of one round-trip between the laser and the crystal. In the
case of a transmission grating the phase-conjugate beam originates from a
beam that goes through the whole ring cavity before coming back to the
laser. Therefore L., also takes into account the ring cavity length and
L = Lecavyeiection grating T Lring cavity- The effective external
cavity length —and therefore the related time delay— is larger when operating
with a transmission grating than with its reflection counterpart. Fig.3.16
illustrates the difference between the two effective cavity lengths.

CaVtransmission grating

As we will see in chapter 6, it is possible to take advantage of the coexis-
tence of both gratings in order to tune somehow the phase-conjugate mirror
to change the value of the time delay. This property allows to operate with
a shorter or a longer effective L., without changing the setup.

3.4.3 Optical measurement devices

As described in Fig.3.15, an unbalanced beamsplitter is inserted between the
laser and the crystal in order to deviate part of the beams for optical mea-
surements. This beamsplitter has a forward transmission ratio of 78% and a
leftward deviation ratio of 18%. Therefore the PCF beam coming from the
PCM is partially sent to the powermeter which allows to calculate the reflec-
tivity R. Symmetrically, part of the light emitted from the laser is deviated
towards optical temporal and spectral measurement devices.
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Figure 3.16: Cavity length dependence on the grating. Lcau,. iccrion graving =
2Ly while Leav, animission grating = 211+ Lo+ Lz+ Ly. The propagation through

the crystal is not taken into account here.

We have simultaneously access to three complementary sources of infor-
mation to study the laser dynamics. Temporal and spectral data are provided
by the following devices. The oscilloscope is a 4-GHz-bandwidth Tektronix
CSA 7404, 20 GS/s, the RF spectrum analyser is a 9 kHz-30 GHz-bandwidth
Rohde & Schwarz FSP30, with a resolution bandwidth of 6 MHz. They take
as input signal the electric conversion of the laser power operated by the
photodiode (12-GHz-bandwidth Laser 2000 New Focus 1554-B). The optical
spectrum analyser is a 10-GHz-free spectral range confocal interferometer
Thorlabs SA210-8B which finesse is 150. Most of the time we keep the laser
driving current fixed at 60 mA and change the mirror reflectivity using the
optical variable attenuator.

The reflectivity value is calculated from the powermeter’s measurement
while the temporal and spectral effects of the phase-conjugate feedback on
the laser dynamics are observed on the measuring devices. A picture of the
whole experimental setup is presented in Fig.3.17.

3.5 Laser subject to weak phase-conjugate feed-
back

We will focus in deeper details on several particular dynamical features in
the following chapters. We present here some effects of a rather weak phase-
conjugate feedback on the laser temporal and spectral properties.
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Figure 3.17: Experimental setup. The laser emits the green beam which
propagates through the SPS crystal and the ring cavity. The generated PCF
beam is represented in yellow.

3.5.1 Laser threshold reduction

The first characterization to note is the change in the threshold current I,
when the laser operates with PCF. In the literature it has been demon-
strated experimentally that in the case of conventional feedback I, tends to
curb [22]. In the case of PCF, it has been shown that increasing the feedback
ratio leads to a decrease of laser threshold current and of the output power.
Consequently, a decrease of the slope efficiency is also observed [112, 113].
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Theoretical predictions have demonstrated that the threshold gain decreases
proportionally to the increase of the feedback ratio [95].

In order to demonstrate the relationship between the threshold current
and the feedback strength, we resolve the laser rate equations with feedback
in the stationary state. The equations write as follows [16]:

( dA 1 K
2 () = 3Guln(t) —na]A() + —A(t — 7)cosb(1)
%(t) — %aGn[n(t) — Ngp] — %%sin@(ﬂ (3.1)
dn, . J nlt) 2
\ - () == — Gnln(t) — no] A%(t)

A is the field amplitude, GG,, is the linear gain, n the carrier density, ns, the
carrier density at threshold and ng the carrier density at transparency. k is
the dimensionless feedback ratio, 7;, the round-trip time in the laser intra
cavity and 7 the feedback delay. J is the current density, e the elementary
charge and d the active layer’s thickness. The difference between the COF
and the PCF cases stems in the expression of #. In the case of COF, 0 = wor+
¢(t) — p(t—7) while in the case of PCF, § = 26(t— )+ o(t) +d(t—7)+dpcm.
In these expressions, wy is the angular oscillation frequency of the laser, ¢(t)
the phase of the emitted beam and ¢(t — 7) the phase of the feedback beam.
0 is the detuning and can be considered as zero in our case since we work in
a self-pumped configuration.

Considering the stationary solutions, the field and the carrier density

2 _ J/ed—ns/Ts 2kcos(0s)

are given by: AZ = Gt} and ng = ny, — TG As a consequence,
considering that at the threshold, the laser power is zero —or, equivalently,
|As]? = 0, the threshold current can be written Jy, = i—d(nth — Q’iLSG(i))
Therefore, the effect of the feedback is to change the threshold currentmvalue
depending on the feedback ratio x and the phase #,. In the case of COF,
in the stationary state, 8cor = wor while in the case of PCF, Opcr =
205 + dpem == 2¢s since ¢ppcoy can be considered equal to zero [114]. This
difference between the expression of 6, in the COF and the PCF cases results
in totally different dynamical behavior. Indeed, in the case of COF, the laser
is very sensitive to small variations of the external cavity delay —such as small
tilts for instance—, through the dependance of fcor on 7. In contrast, the
phase of a laser with PCF does not change if a small variation of the mirror
position is operated. This is due to the absence of wy7 phase shift in the

expression of Opcr.
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A closer look to the equation demonstrated above Jy;, = i—d(nth — %LSG(“)
may lead one to wonder whether the presence of a feedback could cause
an increase in the threshold current. Indeed, values of 6, satisfying the
condition § < 6, < 37” induce an increase of Jy,. Yet, to our knowledge
there is no report of an increase of Jy induced by optical feedback. We
believe that the laser spontaneously chooses the solution corresponding to a
minimal threshold gain, or equivalently to a minimal threshold current.

Consequently, a good mirror alignment would rather make 6, close to zero
and therefore a reduction of the threshold current would be induced by the
presence of the feedback. To our opinion, it is the same kind of dependence
that causes linewitdh narrowing or broadening induced by the feedback in
regime 1 discussed in chapter 2. It is likely that, according to the quality
of the mirror alignment, the spectral narrowing is enhanced the same way
as the sensitivity of the threshold current to the feedback ratio. The ideal
case would be 6, = 0, which corresponds to the highest possible threshold

diminution for a given feedback ratio.
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Figure 3.18: Effect of the phase-conjugate feedback on the laser current
threshold. I, is reduced by 12% when PCF is enabled.

We show in Fig.3.18 that when the laser is subject to PCF the value of I,
is reduced: it shifts from 14.10 mA to 12.40 mA, which represents a decrease
of 12%. This threshold current value has been estimated by extrapolating the
laser characteristic when subject to PCF for higher current values. Indeed
since the phase conjugation process requires a minimum optical power to
be enabled, the effect of the feedback on the laser output power cannot be
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visible experimentally under a certain current value (24 mA). The external
cavity length is L.,, = 132 cm.

We can also note from Fig.3.18 that the slope of the laser characteristic
is unchanged when subject to feedback compared to the no-feedback case.
Indeed, in both cases the laser shows a progression close to 1 W/A. In con-
trast to the COF case, the PCM reflectivity depends on the laser power.
Fig.3.19 displays the values of R corresponding to the same current span as
in Fig.3.18. We note that, once the PCF generation is enabled (I > 24 mA),
the measured reflectivity fluctuates around an average value of 6.6%. These
fluctuations —ranging from 5.3% to 8.1%— are due to the instabilities in the
laser power triggered by the PCF. The reflected power is almost constant
although the injection current is increased. This means that there is a non-
linear relationship between the feedback efficiency and the pumping power.
This contrast to the COF case was highlighted by Lawrence and Kane in
2000 [112], where it has been reported that the reflected power is constant
over a wide range of incident powers in a similar experiment using a barium
titanate crystal in a CAT configuration.
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Figure 3.19: Evolution of the mirror reflectivity versus the current. For
I > 24 mA, the reflectivity values are averaged values of the fluctuating
laser power.

A change in the slope of the light-current characteristic is expected from
previous works showing that the slope efficiency decreases when the feed-
back ratio increases [113]. A close inspection of the calculated relationship
between A% and J reveals that an increase of the slope efficiency of the laser
light-current characteristic is expected when the mirror reflectivity increases.
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However experiments in both COF and PCF cases show the opposite trend.
This points out the fact that even though R is constant with the current, the
laser slope efficiency decreases. We believe that although the mirror reflectiv-
ity is constant, the coupling factor n might vary when the current increases.
This is all the more true in the PCF case as a variation of the current induces
changes in the beam properties, modifying its section. As a result, the PCF
generation gain can be altered consequently.

Besides, it is worth mentioning that in the presence of feedback, the laser
no longer operates in steady state, therefore the stationary solutions of the
laser rate equations cannot predict the laser behavior with accuracy. In all
cases, no changes in the slope efficiency of the light-current characteristic is
seen in our experiment in the reflectivity span. Yet we believe that, provided
a wider achievable reflectivity span, this behavior would be an interesting
feature to analyze. Fig.3.20 shows how the laser output power is affected
when the mirror reflectivity varies both in the COF and the PCF cases.
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Figure 3.20: Output power versus external feedback fraction for conven-
tional optical feedback and phase-conjugate feedback. The injection current
is 40 mA in (a) and 70 mA in (b). Solid lines are theoretical fittings to the

experimental data points. Image from [113].

In our experiment this trend could not be observed. Yet the 12%-reduction
of the laser threshold current confirms the fact that an increase of the feed-
back ratio leads to a decrease of the threshold current. A thorough study of
the influence of the PCF on the laser threshold current would require both
good stability of the feedback ratio and the possibility to achieve much higher
PCM reflectivity values, as done in [113] where the maximum reflectance is
50 % and PCF is performed using a CAT configuration in a BaTiO3 crystal.
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3.5.2 Examples of dynamical diversity

When the laser diode operates under optical phase-conjugate feedback, it
tends to forsake its otherwise solitary steady state and to exhibit more com-
plicated dynamics. Even a very small amount of feedback —equivalent to a
very small mirror reflectivity— is enough to destabilize the laser into periodic
self-pulsing or chaotic dynamics. In Fig.3.21 and by contrast to Fig.3.2, we
show some examples of how the laser behaves with small reflectivities due to
the presence of PCF.

Relaxation oscillations damping at the delay time-scale, R=1%
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Figure 3.21: Dynamical diversity when the laser diode is subject to low
phase-conjugate feedback (R < 2%). A first transition from steady state (a)
to chaos (d) is illustrated through the observation of relaxation oscillations
(b), which can be damped at the external cavity delay (c).

The general trend is as follows: when R = 0% the laser is in steady
state (a). Then when R increases up to about 1% we can see periodic traces
showing free relaxation oscillations (tagged RO in Fig.3.21.(b)). A slight
further increase of R gives way to the modulation of the relaxation oscillation
pulses at the period of the time delay (c). For higher values of R the laser
exhibits chaos (d).

3.5.3 Spectral properties

The presence of feedback in the laser diode, even in a small ratio, is imme-
diately seen in the laser spectrum. Both the RF spectrum and the optical
spectrum show evidence of the feedback-induced dynamics. In Fig.3.22 is
displayed the influence of a very low feedback level (R = 0.06%) on the laser
optical spectrum.
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As expected from the laser classification in regimes from 1 to 5 when
the feedback strength varies [80], for a low feedback ratio the main peak in
the laser optical spectrum becomes much thinner and higher than in the no-
feedback condition. Indeed the side peaks that exist when the laser operates
solitarily are removed and the main peak gains a 70% line width sharpening.
Fig.3.22 illustrates improvement of the laser coherence under the action of
the feedback.
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Figure 3.22: Laser optical spectrum without feedback (in blue) and when
R = 0.06% (in red). FWHM changes from 405 MHz to 117 MHz, inducing
thus a linewidth sharpening ratio of 70%.

Besides the properties visible on the optical spectrum, the RF spectrum
also shows the effect of the feedback on the frequencies at stake in the power
fluctuations. Indeed, as we mentioned before, the cavity length L., is as-
sociated with the time delay 7 = LCC“” which is the round-trip time of the
photons in the external cavity. We can also define the external cavity fre-
quency feqw = % = LLM feav 18 a particular value since the RF spectrum
shows peaks at each of its multiples. The external cavity length, through
the PCF time delay, shows its signature in the laser spectrum by means of
these peaks repeating themselves at the pace of f..,. Fig.3.23 shows how
L., affects the frequencies in the laser power time series and how it can be
estimated from a RF spectrum, here measured when R = 0.09%. Indeed
the RF spectrum operates a Fourier transform of the laser time series, which
allows to see the frequency content in the power fluctuations. In this figure,
feaw = 224 M Hz corresponds to the experimental external cavity length of
Loy = 130 em. Naturally the shorter the external cavity length the larger the
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frequency separation between RF peaks which form actually new frequencies
in the laser power time series.
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Figure 3.23: Laser RF spectrum when R = 0.09%. The frequency peaks

induced by the external cavity appear at f.., = I and its multiples.

The temporal and spectral properties shown in Fig.3.21, Fig.3.22 and
Fig.3.23 are seen when R is very low. When the mirror reflectivity is in-
creased the laser undergoes a cascade of bifurcations leading to a lot of dy-
namics more complicated [66,95,115]. As we discussed in chapter 2, countless
different dynamics can be reached with the experimental setup presented here
by merely changing the value of the PCM reflectivity, even in a short range.
Some behaviors have been predicted in theoretical models but have hardly or
never seen in the experiments, mostly because of the experimental toughness
of the setup and its great sensitivity to mechanical and temporal instabilities
as well as beam misalignment.

On the contrary, some experimental observations have never been focused
on in the theory because they are unexpected in the usual model and cannot
be theoretically accounted for. As for the exploitation of our experiment, in
the present work we aim to report a detailed study on three particular fea-
tures that we had the opportunity to see experimentally:

- birth and destabilization of self-pulsing external cavity modes.
- birth and evolution of extreme events in chaos.
- coherence resonance of low-frequency fluctuations.

Before presenting the experimental observations and conclusions, in the
next chapter we focus on the theoretical model predicting the nonlinear laser
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dynamics when subject to PCF. The next chapter introduces the equations
on the basis of which we simulate the system behavior along with the state-
of-knowledge of the laser dynamics subject to PCF.



CHAPTER 4
Theoretical model and route to
chaos

He who loves practice without theory is liKe the sailor who boards ship without a rudder and
compass and never Knows where fie may cast. Leonardo da Vinci

In all domains of physics, in order to fully understand various observed
phenomena, theoretical models are developed and bring mathematical for-
mulation to experimental behaviors and physical units. In complex systems
such as nonlinear laser dynamics, simulations based on theoretical models
are commonly carried out to predict the laser dynamics. In this chapter
we present the model that we exploit in order to both extend the theoret-
ical background and demonstrate qualitative accordance with experimental
observations.

4.1 Lang-Kobayashi system of equations for
PCF

As presented in chapter 2, the theoretical model to study the laser dynamics
is the commonly-used Lang-Kobayashi rate equations adapted for the case of
PCEF. This model is rather simple and is thus easy to tamper with. That is
why it has been largely used to study and predict laser nonlinear dynamics
[66,72,75,114]. This system of equations writes as follows.

9B 2 (14 i) N E®) + Bt — 6)
a (A1)
T—(t) = P = N(t) = (1+ 2N (1)) E@t)[*

6 is the normalized external cavity time delay. The normalization factor
is the photon lifetime 7,, which, according to Ref. [75], we take equal to
7, = 1.4 ps. Then 0 = % The physical link with the cavity length is 7 = LCC‘“’.
« is the linewidth enhancement factor and 7" the ratio of electron to photon

lifetime. FE is the slowly varying complex envelop of the electrical field, N

61
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is the carrier inversion and P the normalized pump current above threshold:

P = L where I, is the laser threshold current. v is the normalized

Iip
1-Rpn,

feedback ratio: v = 7,k where k = T]CRi. R, is the reflection power of

the laser output facets, 7. is the coupling efficiency coefficient, R is the PCM

2nLigser cavit
reflectivity. 7p is the laser intracavity round-trip time: 7, = =<
where n is the refractive index of the semiconductor material on Whlch the
laser cavity is built.

If the drive current is fixed, we can consider that v is proportional to the
square root of the PCM reflectivity. Therefore, the conversion between the
physical PCM reflectivity R and the feedback ratio 7 is not easily guessed.
Since we do not aim at doing quantitative comparisons, it is sufficient to keep
in mind that R = 100% is equivalent to v = 0.256 to have an idea of the
orders of magnitudes of the feedback ratio ranges that will be presented in
the simulations. The parameters that we choose to calculate v for a given R
are: 1. =1, 7, =7 ps, R, = 0.3 and 7, = 1.4 ps.

However, as we discussed in chapter 2, this model does not take into
account several points that are physically intrinsic to the experiment. The
first one is the way phase conjugation is performed, thus the PCM build-
up time does not appear and is supposed to be zero. Phase conjugation
is then considered to be instantaneous. Secondly, the feedback ratio v and
the pumping current P are two independent parameters in the model. This
point differs from reality since in our self-pumped configuration the gain of
the phase conjugation process depends on the powers of both the pump and
the signal beams in the four-wave mixing interaction. As a consequence, the
mirror reflectivity depends on the laser drive current. However, as we saw
in Fig.3.19, the dependence of the mirror reflectivity on the injection cur-
rent is significant only for small current values. Indeed, in our experimental
case, the PCM reflectivity is almost constant (close to 6.6%) in the span
of current ranging from 30 mA to 60 mA. Therefore, we can consider that
the dependence of R on [ is very little for the experimental current values.
As a consequence, the fact that the model considers that v and P are in-
dependent is not contradictory to the experiment. As we mentioned in the
previous chapter, this reflectivity saturation was reported in [112]. Further-
more, as usual when studying lasers subject to PCF, the phase shift at the
phase-conjugate mirror can be considered to be zero: ¢pcy = 0 [114].

The aim of those adapted Lang-Kobayashi equations for PCF is to pro-
vide, using a simple model, with a general trend of the evolution of the laser
dynamics. In the literature, more complex sets of equations have been sug-
gested in order to enhance the compliance of the model with the physical na-
ture of the system. This has been done by extending the equations by either
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taking into account the phase-conjugate feedback build-up time [73,74,81] or
modeling the laser cavity by a saturable gain medium [72]. However, our aim
is to provide a general prediction of the laser dynamics with a quite simple
model which is able to show qualitative compliance with particular experi-
mental results. Indeed, we do not intend to use this model to carry out quan-
titative predictions to be further confirmed experimentally. We rather use it
to provide theoretical guidance and background to observations. We will see
that, if the range of parameters is properly chosen, the Lang-Kobayashi equa-
tions for PCF show good accordance with experimental results. Moreover,
since equations (4.1) stem from the standard Lang-Kobayashi equations for
the COF case (equations 2.2), theoretical comparisons with the well-known
and largely-studied COF case are facilitated.

4.2 Bifurcation diagram

A pioneering theoretical analysis of the laser dynamics and bifurcations with
PCF has been carried out by Krauskopf et al. in 1998 [72] who produced an
in-depth account of the evolution of the bifurcation diagram and the route
to chaos along with the transitions through the three first chaotic regions
—called ”chaos bubbles”— undergone by the laser. The bifurcation diagram
in Fig.4.1 predicts the laser dynamics with the same parameters as in [72]
and computed with equations (4.1).

4.2.1 Bubbles of chaotic dynamics
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Figure 4.1: Bifurcation diagram for §=476, P=0.0417, T=1428 and o = 3.

Fig.4.1 is a typical bifurcation diagram for a laser diode with PCF. The
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x-axis is the feedback ratio v and the y-axis is the laser output power. The
bifurcation diagram counts, for each value of v, all the possible minimum
and maximum values in the laser output power. In the diagram, each laser
operating state is represented by as many dots as extremum values in the
corresponding time trace. The way we plot the bifurcation diagram is further
illustrated in Fig.4.2. A steady state shows only one dot (a) while a harmonic
signal counts two dots (b). A signal showing double periodicity is represented
by four dots (c) and if a second double periodicity is undergone, the diagram
counts eight dots (d). Complex chaotic fluctuations are represented by a
multitude of dots which almost show a continuum of values.
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Figure 4.2: Sketching a bifurcation diagram from the detection of the extrema
in the laser time trace.

In Fig.4.1, the values of the parameters correspond to usual orders of
magnitude found in experiments: 6 = 476 is equivalent to a 20-cm-long
round-trip in the external cavity, P=0.0417 corresponds to a drive current
slightly above the laser threshold, T=1428 and a=3 are common values for
standard laser diodes such as those used in optical communications.

4.2.2 Bifurcations

The bifurcation diagram displays the successive dynamical states that the
laser exhibits when the feedback ratio varies. The dynamical transitions un-
dergone in the route to chaos are ruled by bifurcations which occur for given
values of v and have the effect to change the dynamics of the laser power.
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Bifurcations are classified according to the corresponding qualitative changes
in the dynamics. For example, Hopf bifurcations change a fixed point into a
limit cycle branching from the fixed point. Period-doubling bifurcations dou-
ble the phase plane trajectory of a limit cycle. Fig.4.3 presents the cascade
of bifurcations undergone by the laser as a route to chaos is initiated.
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Figure 4.3: Successive bifurcations from an initial steady state to a period-
four limit cycle. The dynamical transitions from a state to another are seen
in the time traces at the top and in the phase planes at the bottom.

Other bifurcations such as torus — that change a limit cycle into a torus
showing quasi-periodicity— or saddle-node bifurcations are also at stake in
the bifurcation diagram. As we will see in chapter 5, they are responsible
for the stabilization and destabilization of pulsing ECMs and the resulting
chaos suppression.

4.3 Laser dynamical evolution

4.3.1 Route to chaos: small feedback ratio values

Fig.4.4 is a zoom of the bifurcation diagram presented in Fig.4.1 on the lower
values of the feedback, where the route to chaos occurs. Different dynamical
regions are tagged from (A) to (H) and their temporal and spectral features
are presented in Fig.4.5. The well-known bifurcation scenario of the laser



66 CHAPTER 4. THEORETICAL MODEL AND ROUTE TO CHAOS

subject to PCF is as follows. When the feedback ratio v is increased starting
from zero, the laser first begins by operating in steady state (region tagged
A in Fig.4.4) in which the emitted power is constant in time until the first
Hopf bifurcation occurs.

This bifurcation modifies the laser operating state, making it oscillate (B)
at the relaxation oscillations’ frequency (here 1.036 GHz). The amplitude of
those oscillations increases along with the increase of v. Then a sequence
of bifurcations is undergone through two successive period doublings (C)
and (D), making new frequencies appear in the laser spectrum. Indeed, in
Fig.4.5, the first period doubling brings the laser to oscillate at 0.517 GHz
(b.3) —which is half the frequency of the relaxation oscillations’. Then a
second period doubling halves this new frequency, reducing it to 0.259 GHz
(b.4). The effect of period doubling can be clearly seen in time trace (a.3)
where one on every two peaks is amplified and the other one is attenuated
compared to the fundamental pulsing state of trace (a.2).
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Figure 4.4: Same bifurcation diagram as in Fig.4.1 but limited to small
feedback ratios.

As the feedback ratio increases further, the laser enters the first chaotic
region (E). When operating in chaotic state, the laser output power exhibits
irregular fluctuations with no apparent correlation as shown in (a.5). The
corresponding spectrum (b.5) shows that there are no more preferential fre-
quencies and the average level of all frequency components increases. Both
traces (E) and (G) show typical chaotic dynamics. It may happen that tiny
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regions of time-periodic dynamics appear between regions of chaos, as pointed
in (F). In the short range of feedback values in which the time trace (a.6)
and the spectrum (b.6) are seen, the laser exhibits locking to a time-periodic
dynamics. Then a slight increase of v makes the laser resume chaos (G) until
the next bifurcation occurs, inducing a dramatic change of the laser dynam-
ics. Indeed, chaos vanishes in the time trace (a.8) and in the spectrum (b.8),
leaving the laser in a self-pulsing dynamics with perfectly regular sinusoidal
fluctuations (H). This state has been identified by Erneux et al. in [75] as
external cavity modes for a laser with PCF, where the time series shows
periodic pulses at frequencies proportional to the external cavity frequency
: f = = We will bring a deeper analysis of those self-pulsing states in
chapters 5 and 6. Then, when further increasing v, the laser undergoes a
new sequence of bifurcations and re-enters a region of chaos.
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Figure 4.5: Evolution of the time traces and optical spectra when the laser
undergoes route to chaos. The tags (A) to (H) refer to the different regions
in the bifurcation diagram in Fig.4.4.
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4.3.2 Intermediate feedback ratios and validation of
the model

We extend now the study of the laser dynamics predicted by the model to
states that emerge when v is higher than 0.005. To validate this model, we
carry out the same simulations as the ones led by Krauskopf et al. in [72]
about the transition through the first three bubbles of chaos. We look for
confirmation of the predicted succession of dynamical states reported in [72]
and represented in Fig.4.6.
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Figure 4.6: Three first chaos bubbles identified by Krauskopf et al. Picture
from [72].

Those same three bubbles of chaos computed with the model of equations
(4.1) are represented in the bifurcation diagram in Fig.4.7. Yet, the diagrams
are not identical since in our model we do not use gain saturation.

In this range of feedback ratio values, the system is expected to exhibit a
succession of chaotic states and self-pulsing ECMs, as presented in Fig.4.8.
In order to do the comparison, the computed evolution of the laser dynamics
is presented in Figs.4.9, 4.10 and 4.11 for each chaos bubble. We identify the
same evolution of the successive laser states when the feedback ratio varies.
In this range of + values, the system undergoes a succession of stabilizing
and destabilizing bifurcations leading to self-pulsing external cavity modes
interspaced by regions of chaos.

The succession of dynamical states depicted in Fig.4.9 begins with the
limit cycle (A) corresponding to the undamped relaxation oscillations puls-
ing at 1.036 GHz. Then as, « increases, the laser undergoes period doubling
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Figure 4.7: Simulation of the same three chaos bubbles as presented in Fig.4.6
computed with equations 4.1.

(B) until a chaotic attractor is created (C). As the laser exhibits developed
chaos (D and F), a window of periodic dynamics is observed (E) as was
noticed in the first bubble of chaos in Fig.4.8.(f). Chaos terminates as the
attractor gradually shrinks toward a quasi-periodic state (G). A further in-
crease of the feedback ratio makes the laser exit the first bubble of chaos and
exhibit self-pulsing dynamics, corresponding the first external cavity mode
(H) which frequency is 1.3 GHz.

The transition through the second bubble is depicted in Fig.4.10 and is
to be compared to the middle column in Fig.4.8. As the laser just exited
the first bubble, it operates in a self-pulsing state at the external cavity fre-
quency (A). A bifurcation occurs causing quasi-periodicity and reshaping the
limit cycle into a torus (B). Then this torus changes shape and switches to
a chaotic attractor (C). Temporarily, the chaotic dynamics gives way to a
region of locking, the periodicity of which is seen in (D). Yet this region of
locking is not seen in the traces in Fig.4.8. Then chaos is quickly resumed
as a chaotic attractor is regenerated (E). Eventually chaos ceases brutally as
the attractor is reshaped in a limit cycle (F) which is definitely reached as
the system shows regular self-pulsations (G). Yet it is not a purely sinusoidal
pulsing state, as can be guessed from the bifurcation diagram in Fig.4.7 and
asymmetric trajectory in the phase plane in Fig.4.10. Indeed, although the
spectrum (G) shows pulsations at the second ECM frequency (2.7 GHz), by
contrast to the case presented in the middle column in Fig.4.8.(h), the limit
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Figure 4.8: Time traces, spectra and trajectories in the E-plane correspond-
ing to the evolution of the laser through the chaos bubbles presented in
Fig.4.6. Pictures from [72].

cycle of the generated ECM when exiting the second bubble of chaos is not
symmetric and the laser does not operate in an ECM state. It is likely that
the second ECM is already unstable when the laser exits the second chaos
bubble.

The transition through the third bubble of chaos is presented in Fig.4.11.
The same trend as depicted in the right column in Fig.4.8 is observed. The
asymmetric limit cycle (A) becomes unstable and the laser bifurcates to chaos
anew as can be seen in traces (B) to (D). In the study carried out in [72], and
as can be seen in Fig.4.8, the system has been reported to show a nonsym-
metric limit cycle (right column in Fig.4.8.(e-g)) before bifurcating to the
symmetric limit cycle representing the self-pulsations of the third external
cavity mode (right column in Fig.4.8.(h)). In our case, the symmetry break-
ing is also present as off the end of second chaos bubble (Fig.4.10.G), and
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Figure 4.9: Time traces, spectra and trajectories in the E-plane correspond-
ing to the evolution of the laser through the first chaos bubble presented in
Fig.4.7. Those traces are to be compared to the ones presented in Fig.4.8 in
the left column.

the symmetry restauration occurs when the chaotic attractor in Fig.4.11.(E)
is changed into an asymmetric off-centered limit cycle. This limit cycle drifts
then to the center of the Poincaré map where symmetry is restored (F). This
limit cycle pulses at 4.1 GHz and is characteristic of the third self-pulsing
external cavity mode, announcing the end of the third chaos bubble.

4.3.3 Conclusions

The simulations presented in this chapter show good accordance with the
same theoretical study carried out by Krauskopf et al. [72] in which the model
is slightly different since it uses a saturable gain medium. This comparison
is useful in that it reminds the reader of the ECMs and their bifurcations
to chaos as expected for small values of the feedback strength. This also
validates our simulation tools which will be further used in the next chapters
to analyze new bifurcations and dynamical features, hence extending the
previous works carried out by Krauskopf, Green and Erneux [72,75,114].
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Figure 4.10: Time traces, spectra and trajectories in the E-plane correspond-
ing to the evolution of the laser through the second chaos bubble presented
in Fig.4.7. Those traces are to be compared to the ones presented in Fig.4.8
in the middle column.

Time traces o Optical spectra  E-plane trajectories Time traces Optical spectra  E-plane trajectories
5 0 0.5
030 4 y=000798 27 CHz 0.3{ 0 y=0.00967
=
E02 -5 0 0.2 5
@ ( ) 0
g 0.1 01
a _ .
10 s 10
~ 0 4 . - 0
S 0 10 204 -2 0 2 4705 0 05 g 10 20 .4 2 0 2 10.5_
Lf/ 1] 5 — 0 0.5
803 py=000853 oa[Ev=000132
3 0
502 0.2 5
°
201 01 0.5
g, 10
g% 10 0 -1
0 10 204 -2 0 2 441 0 1
0 0.5
0.3 C y=00001 0.3] Fiv=0001366 4.1GHz
. |
o2 5 0.2 5
E 0 0
0.1 0.1
10 -10
0 =0, 0.5
0 10 204 2 0 2 %35 o6 05 % 10 204 2 0 2 4 06 0 05
Time (ns) Frequency (GHz) Re(E) Time {ns) Frequency (GHz) Re(E)

Figure 4.11: Time traces, spectra and trajectories in the E-plane correspond-
ing to the evolution of the laser through the third chaos bubble presented in
Fig.4.7. Those traces are to be compared to the ones presented in Fig.4.8 in

the right column.



CHAPTER 5

Chaos crisis and ECM
bistability

In all chaos there is a cosmos, in all disorder a secret order. Carl Jung

The simulations results presented in this chapter have been carried out
thanks to the fruitful work of Martin Virte as he was doing a five-month
internship in the laboratory.

We have seen that theoretical simulations predict the following scenario
when the feedback strength increases. The laser diode is first destabilized
from steady state and undergoes a route to chaos through a sequence of
bifurcations. As we saw in Fig.4.1 in chapter 4, the chaotic regions are
interspaced by regions of self-pulsing dynamics called external cavity modes
(ECMs). The mechanism of appearance and evolution of these ECMs has
been extensively studied in the case of weak feedback configurations [114,
116]. As for larger values of feedback, although experiments seem to indicate
that ECM restabilization occurs [80], no theoretical study has been reported
accounting for this evolution. In all cases it is a major contrast to the COF
case in which an increase of the feedback strength leads to more and more
developed chaos [46]. In this chapter we extend the theoretical study of the
laser bifurcation cascade for larger values of the feedback ratio computed
with the same set of rate equations as in the previous chapter (see equation
4.1): the Lang-Kobayashi rate equations adapted for PCF.

5.1 Chaos crisis and chaos suppression

5.1.1 Transition from chaos to self-pulsing external cav-
ity mode

Fig.5.1 is the extension of the bifurcation diagram presented in Fig.4.1 for

higher feedback ratio values. One can notice that the regions of chaos tend to

shrink when the feedback ratio increases. Indeed the seven successive regions
of chaos grow thinner while, on the contrary, the self-pulsing external cavity

73
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Figure 5.1: Bifurcation diagram for =476, P=0.0417, T'=1428 and a=3.
Same as Fig.4.1 but for wider ranges of feedback ratio. Seven chaos regions
that gradually shrink and end up by vanishing are counted.

modes’ stability domains cover larger feedback spans. Eventually, when - is
higher than 0.035 chaos is suppressed and only successive self-pulsing states
at frequencies multiples of the external cavity frequency are observed. This
process in which regions of chaos vanish gradually is indicative of a chaos
crisis. As the feedback ratio is increased, the system goes through chaos
bubbles until chaos is totally suppressed. Then the laser remains in a purely
self-pulsing dynamics and no longer shows bifurcation to stable chaotic at-
tractors. If v is further increased, the laser undergoes bistable switching
between ECMs pulsing states of increasing frequencies instead of bifurca-
tions to chaos.

In order to understand this crisis and the abrupt transitions from chaos
regions to self-pulsing states, we present if Fig.5.2 what happens close to
the end of the sixth region of chaos (in the red box in Fig.5.1) fades. A
zoom on this sixth region of chaos is represented in Fig.5.2.(a) where the
transition from chaos to pulsing ECM is presented. Fig.5.2.(b.1) is the time
trace just before chaos disappears (7=0.028796), the trace in (b.2) is a zoom
on the red dashed box in the time series in (b.1). Figures (c.1) and (c.2) are
the corresponding trajectories in the phase space. The red ellipse is the limit
cycle characteristic of the self-pulsing ECM to which the laser bifurcates once
this chaotic region is overcome —that is when ~ reaches 0.02896. This ECM
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state is presented in Fig.5.2.(b.3) along with the corresponding trajectory
in the phase plane (c.3). The phenomenon causing the regions of chaos to
terminate and the consequently observed chaos crisis emerges from the fact
that the chaotic attractor born from the previous ECM grows in size until
taking the shape of the limit cycle trajectory of the next ECM. Indeed, in
Fig.5.2.(b.1) and (c.1), although the laser operates in chaotic state, fragments
of the next ECM self-pulsing dynamics are seen both in the time traces —
like the periodic curve in (b.2)— and the shaping of the limit cycle in (c.2),
announcing the shortly-expected transition to the new ECM state displayed
in (b.3) and (c.3).
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Figure 5.2: Time traces and phase trajectories at the transition from the sixth
region of chaos to self-pulsing ECM. Figure (a) is the bifurcation diagram
focused on the sixth chaos bubble in Fig.5.1. Trace (b.1) is the chaotic time
trace for v = 0.028796. Figure (b.2) is the zoom on the dashed red box in
figure (b.1) and shows in advance the periodic dynamics of the self-pulsing
ECM represented in (b.3). The corresponding trajectories in the phase plane
are displayed in figures (c.1), (c.2) and (c.3), where the red ellipse is the limit
cycle the ECM emerging from the chaos disappearance.

This scenario repeats itself whenever a region of chaos gives way to a
self-pulsing ECM state as has been suggested in [72].
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5.1.2 Bifurcation mechanism of chaos crisis

To bring an explanation to this chaos crisis phenomenon, we have comple-
mented the numerical study with mathematical continuation techniques us-
ing the DDE-BIFTOOL package [117]. Indeed, usual numerical techniques
to solve the laser equations only take into account the stable solutions, ig-
noring thus the unstable branches in the bifurcation diagram. Continuation
methods allow to follow both stable and unstable solutions along with their
related branches of steady states and periodic solutions. An in-depth analy-
sis of the stability domains of the system can be thoroughly carried out with
this continuation method.

All bifurcation points showing ECM stabilization and destabilization and
the corresponding ECM branches are represented in Fig.5.3 along with the
bifurcation diagram of Fig.5.1. For each ECM branch, the stable parts are
displayed with a thick line and the unstable parts with a thin line. The con-
tinuation method shows that every ECM rises from a saddle-node bifurcation
(square) and vanishes with a torus bifurcation (circle) making it unstable.
A very interesting parameter is the ”length” —in terms of feedback span— in
which ECMs are stable. A closer look at Fig.5.3 shows that the stable ECM
branches grow longer when the feedback ratio increases. As a consequence,
the intervals between the torus bifurcation of an ECM and the saddle-node
bifurcation of the next ECM —or in other words, the intervals of feedback
values in which chaos is observed— decrease. That is why regions of chaos get
gradually shorter when ~ increases. As the feedback ratio increases, regions
corresponding to stable external cavity modes tend to grow and invade the
otherwise chaotic regions, causing the diminution of the latter.

But the real disappearance of chaos occurs for values of + higher than
0.035. At that range of feedback ratios, the saddle-node bifurcations that
create the next stable ECMs occur for feedback ratios smaller than the torus
bifurcation that destabilize the previous ECMs. In other words, the stabiliza-
tion process of EC'M,, 1 is complete before EC'M,, is destabilized. Therefore,
when reaching the end of FCM,,, the system has the possibility to directly
jump to EC'M,, 11 without bifurcating to chaos. As a result, the mechanism
inducing the chaos crisis is present as soon as EC'M,, gets destabilized. Con-
sequently chaos is not observed any more if the system spontaneously jumps
to the next stable ECM.

In this model of laser dynamics, the combination of a chaos crisis mech-
anism and a bifurcation mechanism making the position of the torus and
saddle-node bifurcation on limit cycle dependent on the feedback ratio is
a remarkable feature. This phenomenon opens fruitful ideas of research to-
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Figure 5.3: Continuation method applied to the bifurcation diagram. The
stable ECMs are represented by thick yellow lines and the unstable ones by
thin lines. As ~ increases, the regions of stable ECMs grow in spite of the
regions of developed chaos.

wards control and full suppression of chaos in laser diodes. Again, this feature
is particular to the case of PCF since, as we mentioned before, in the COF
case regions of chaos widen when the feedback ratio increases [60].

These conclusions on suppression of chaos are not generalizable to ev-
ery range of feedback level, though. Fig.5.4 shows that when the feedback
ratio is higher than 0.065, in the case of a bifurcation diagram computed
with decreasing values of feedback, the system goes through a quasi-periodic
state before hopping to the next ECM. Indeed, when an ECM is terminated,
it is possible that the torus bifurcation occurs before the next saddle-node
bifurcation. In that case the system initiates a route to chaos through quasi-
periodicity before recovering a pulsing state. That is why the black curve
in Fig.5.4 counts small regions of chaos between consecutive ECMs when
v is higher than 0.065. Nevertheless, this fact does not change the general
mechanism reported before about chaos suppression induced by saddle-node
bifurcation on limit cycle.

5.2 Bistability of pulsing external cavity modes

The fact that the torus and saddle-node bifurcation points —and thus the
ECM stability domains— depend on the feedback ratio brings us to the ob-
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Figure 5.4: Bifurcation diagrams computed for increasing (in red) and de-
creasing (in black) values of .

servation of ECM bistability. Evidence of bistability has been reported by
Green et al. in 2002 [116] but only in a small range of the parameters with
solutions having a small basin of attraction with respect to other stable at-
tractors. In our case the scenario of bifurcations leading to bistability is of a
different kind. Moreover, bistability is seen in large spans of feedback ratio
values, those spans growing wider as the feedback level is increased.

In Fig.5.5.(a) are presented the bifurcation diagrams built for increasing
(in red) and decreasing (in black) values of v. The laser undergoes suc-
cessive transitions to self-pulsing ECMs as the feedback ratio varies. As vy
increases, the value of the feedback ratio that destabilizes EC' M, through
quasi-periodicity gets smaller than the value the feedback ratio value that
stabilizes the next ECM (ECM, 1) through a saddle-node bifurcation. As
a result, there are regions of v where two stable ECMs coexist and the sys-
tem shows bistability. Those regions of bistability are represented by pairs
of vertical dashed lines, for which two stable pulsing states are allowed for
each value of the feedback: one for each stable ECM of the bistability region.
Moreover, bistability regions get wider when the feedback ratio increases, as
the overlap intervals of successive ECMs also grow wider.

Fig.5.5.(b) displays the frequencies of the pulsing ECM solutions as they
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Figure 5.5: Bistability regions. Figure (a) shows in red the bifurcation dia-
gram computed for increasing values of v and in black the one computed for
decreasing values. They have been vertically shifted for legibility. Figure (b)
shows the self-pulsing solution and their frequencies. The bistability domains
(within the green dashed vertical lines) correspond to intervals of v where
two pulsing solutions are permitted.

bifurcate when increasing the feedback ratio. The frequency separation be-
tween two consecutive ECMs is close to the external cavity frequency. In our
case the normalized external frequency is fo.; = %, which corresponds to a
pulsing frequency of 1.5 GHz. To illustrate the coexistence of two pulsing ex-
ternal cavity mode solutions with different and possibly high frequencies, we
show in Fig.5.6 the time series of the two regular self-pulsing dynamics with
different frequencies observed for a normalized feedback ratio of v = 0.0611.
Traces (a) and (c) are observed for the same feedback ratio value but their fre-
quencies are different, due to bistability. Their corresponding optical spectra
are traces (b) and (d). The zero frequency in Fig.5.6.(b) and (d) corresponds
to the free running laser frequency. The optical spectrum (b) shows two peaks
at about 8 GHz and -8 GHz. Similarly, the optical spectrum (d) shows peaks
at 8.75 GHz and -8.75 GHz. Since the complex field trajectory is symmetric
in the phase plane and is centered on the (0; 0) point, the optical spectrum
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shows no component at the zero frequency and shows symmetric peaks on
negative and positive frequencies. One complete cycle for the complex field
E being equivalent to two cycles for |E|?, the time series of the optical power
in (a) shows modulations at about 16 GHz and the one in (c) at 17.5 GHz.
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Figure 5.6: Time series and optical spectra of the two ECMs at stake in the
bistability region corresponding to v = 0.0611.

Those two possible pulsing solutions at 16 GHz and 17.5 GHz for a same
value of v = 0.0611 illustrates bistability in the laser solutions. The sys-
tem would initially select one of the two coexisting self-pulsations at high
frequencies. However a sustained perturbation or noise may induce random
hoppings between these two ECMs with, as a result, a time-averaged RF
spectral signature being made of two peaks, slightly shifted by a frequency
related to the external cavity length.

As we will discuss in detail in chapter 6, the frequency detuning between
two consecutive self- pulsing external cavity modes is fixed by the external
cavity length: f = cav 18 the effective length of the path followed
by the beam. In the Cs,lmulatlons with the parameters chosen to build the bi-
furcation diagram in Fig.4.1, the external cavity frequency is about 1.5 GHz.
Indeed, an analysis of the frequencies of the self-pulsing ECM shows that the
frequencies are distributed on a regular basis, each ECM having a frequency
equal to the previous ECM frequency plus the external cavity frequency. The
frequency distribution of the ECMs in Fig.5.5.(b) illustrates this frequency
shift of 1.5 GHz —equivalent to the external cavity frequency— between con-
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secutive ECMs. The bifurcation diagram of Fig.4.1 is recalled in Fig.5.7 and
summarizes this property as the feedback ratio increases.

[=]
I IS
= o
)
ower {
o
o
=
| |

1 15 20 05 1 P15 20 05 1 1.5 2
Time (ns) Time (ns) Time (ns)

o

w

a
T

i
w

Intensity (a.u)
o
o o
N (4]

o
o

o

1 1 1 1 !
131877 14.69 1619 17.7 192 22177

56 716 B8 10.16 116
GHz GHz GHz GHz GHz GHz @ GHz GHz GHz GHz GHz
- 1 1 1 1 1
0'0(%5.01 0.02 0.03 0.05 0.06 0.07 0.08

Figure 5.7: Bifurcation diagram with the values of the self-pulsing external
cavity modes. Consecutive ECMs states oscillate at frequencies separated by

the external cavity frequency: fgowm,,, = feom, +1.5 GHz.

As v increases, the frequencies of the self-pulsing solutions increase at the
pace of the external cavity frequency and can reach very high values. From
an application point of view, by simply varying the feedback ratio value, the
laser could ideally be changed into a tunable optical oscillating source at
several tens of GHz without the need for current modulation. Additionally
the chaos crisis mechanism makes these self-pulsing solutions very stable and
robust to modifications of ~.

5.3 Influence of the simulation parameters

We study now how the values of the parameters 7', P, a and 6 influence the
laser dynamical properties through a possible modification of the bifurcation
diagram. In order to test the robustness of the conclusions on the evolution
of the laser dynamics with ~, we carry out simulations for different values of
parameters T', P, o and 6.
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Figure 5.8: Effect of the variation of parameter 7" on the bifurcation diagram.
All other parameters are identical to Fig.4.1.

5.3.1 Changing 7', P and «

The influence of the variation of parameter 7" in the bifurcation diagram in
Fig.5.8 is only visible when T' is weak and mostly for small values of the
feedback ratio. For increasing values of 7" higher than 1428 the bifurcation
diagram remains almost unchanged: a cascade of bifurcations to either re-
gions of self-pulsing dynamics or chaos is still observed. Yet a smaller value
of T' leads to a larger region of chaotic dynamics for smaller values of ~.

Increasing the pump current P leads to modifications in the bifurcation
diagram. First the amplitude of the fluctuations increases, as can be noticed
from the re-scaling of the y-axis in Fig.5.9. Then the sequence of bifurca-
tions is strongly changed for the weak feedback ratios. The general trend is
that regions of self-pulsing oscillations disappear as chaotic regions get more
developed. As a result, there are fewer self-pulsing ECM states when P in-
creases. Yet, a closer look at the diagram reveals that the « values at which
bifurcation between ECM occur are quite insensitive to the variations of P.

The same observation is made when the linewidth enhancement factor
a changes, as displayed in Fig.5.10. The bifurcation positions slightly drift
towards the smaller values of v when « increases. In addition to this, when
the value of a increases the system generally loses stability since the chaotic
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Figure 5.9: Effect of the variation of parameter P on the bifurcation diagram.
All other parameters are identical to Fig.4.1.
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Figure 5.10: Effect of the variation of parameter o on the bifurcation dia-
gram. All others are identical to Fig.4.1.

regions get wider and more intense. A high value of a tends to force the
laser to show more chaos, making chaotic regions wider and more numerous.
Besides, chaos suppression occurs for values of v much larger than in the
case of a smaller a. This result in coherent with the constatation made in
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the COF case in [118] where it has been reported that a smaller linewidth
enhancement factor tends to stabilize the laser [15].

5.3.2 Changing the time delay ¢

Whereas changing the values of parameters P, T" and « causes little differ-
ence in the dynamics of the system as we saw in the bifurcation diagrams
in Figs.5.8, 5.9 and 5.10, changing the time delay induces dramatic effects.
Indeed, Fig.5.11 illustrates the particular fact that when 6 increases, all the
bifurcation points drift towards smaller values of v and end up by merging.
This results in larger regions of chaos. Another way to see this phenomenon
is to say that a given bifurcation occurs for a higher value of v when working
with a short cavity than when working with a long one.

We will see in chapters 8 and 9 that this simulated prediction is confirmed
in the experiment and that changing the cavity length allows, for a given value
of the feedback ratio, to see totally different dynamics. A similar observation
was already made in the literature. Indeed, Gray et al. reported that a
decrease of the external cavity length causes the bifurcation points to drift
to higher ~ values [66].
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Figure 5.11: Effect of the variation of parameter § on the bifurcation diagram.
All other parameters are identical to Fig.4.1.

Another consequence from Fig.5.11 is related to the observation of the
pulsing fundamental external cavity mode solutions. When 6 increases, re-
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gions of chaos broaden and ECM are almost fully destabilized. As a conse-
quence, the possibility to see the first pulsing ECMs diminishes greatly when
the external cavity length increases.

5.3.3 Discussion and transition to the experiment

Although they present theoretical interest, we do not focus on the dynamical
effects induced by the variations of T, P and a. As we already mentioned,
our objective in the simulations is to bring qualitative accordance with the
experiment. We keep working at a fixed injection current of 60 mA in order
to maximize the PCM reflectivity. Therefore, P, T and « are fixed parame-
ters.

In contrast, in the following chapters, the experiment will illustrate the
trend seen by the simulations which predicts that for a given value of v the
dynamical states exhibited by the laser change if 6 varies. As displayed in
Fig.5.11, this phenomenon is due to the drifting of the bifurcation points in-
duced by the modification of 6. Therefore, the experimental results reported
in the following chapters will be presented in the order they are observed as
the external cavity length increases.
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CHAPTER 6

Self-pulsing external cavity
modes

In this chapter, we bring experimental evidence of the appearance and desta-
bilization of self-pulsing external cavity modes in a laser diode subject to
PCF. As expected from the theoretical predictions formulated in chapter 4,
the laser exhibits sinusoidal pulsing modes at frequencies multiples of the
external cavity frequency. With the theoretical background, it is possible to
reconstitute the scenario of bifurcations of the observed self-pulsing external
cavity modes from their birth to the transition to successive ECMs. Besides,
good qualitative theoretical accordance about the cascade of stabilizing and
destabilizing bifurcations leading to those ECM pulsing states is achieved.
As we mentioned in chapter 2, there is to our knowledge no experimental
evidence of pulsing external cavity modes reported in the literature. As a
consequence, no experimental confrontation with the theoretical predictions
has been carried out so far either.

6.1 Experimental identification

In the PCF configuration, external cavity modes are self-pulsing solutions,
by contrast to the case of COF where ECMs are steady states [72,75]. The
theory expects the frequencies of the external cavity modes to be multiples
of the fundamental external cavity frequency f.,, related to the physical
cavity length Legy by feaw = 75 [75]. Therefore the frequency of the ECM
numbered n is expected to be f, = LZ}Z, = nfeaw. We remind the reader
that what we call cavity length and write L4, is the effective length of the
path followed by the photons between the instant they are emitted from the
laser facet and the instant they re-enter the laser after undergoing phase-
conjugation. In the case of a conventional mirror, L., would be merely
twice the distance of the laser to the mirror. But as we explained in chapter
3, the expression of L., changes according to the experimental set-up used

to generate PCF.

87
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6.1.1 Experimental setup

The experimental configuration with which we saw self-pulsing external cav-
ity modes is as described in chapter 3: the laser diving current is set at 60 mA
and the SPS crystal is oriented with the angles § = 26° and 260 = 30° in order
to optimize the PCF generation gain. The distance between the laser and the
crystal is Ly = 22 ¢m and the ring cavity length is Lo+ L3+ Ly = 88 cm. Con-
sequently, the total external cavity length L., = Liot = 201+ Lo+ L+ Ly =
132 e¢m is the whole ring cavity length plus one round-trip between the laser
and the crystal. The related time delay is 7 = 4.5 ns. Fig.6.1 summarizes
the experimental conditions.

SPS crystal

L Mirror
L
Diode laser :<'@-2 ——— 2 > AY
20 \
%\ Transmission grating Ls
.f-;' /

i . .
i1y Reflection grating irror

Figure 6.1: Experimental conditions.

Fig.6.2 shows a quasi-sinusoidal time trace, pulsing at f = 1360 M Hz
that has been observed with this setup. Yet, 1360 MHz in not an expected
ECM oscillating frequency from what we said above. Indeed, a time delay of
4.5 ns is equivalent to a frequency of 222 MHz. In the theory, f is expected
to be a multiple of the round-trip frequency in the external cavity, that is
f= I =mn % 222 M Hz where n is an integer. However in the case shown
in Fig.6.2, f does not correspond to one of the above-mentioned frequencies.
Actually, the trace displayed in Fig.6.2 is indeed a self-pulsing ECM, which
frequency is f = 22701 In other words, the cavity length which is to be
taken into account is not the whole round-trip in the ring cavity but only
the round-trip in the space between the laser and the SPS crystal which is
2L; = 2 x 22 em. Consequently, the parameter L.,,, which represents the
effective path of the beam is now written L., = 2L, = 44 cm.

This means that the PCF has only the signature of the round-trip prop-
agation between the laser and the crystal. The explanation relies on the fact
that what creates the PCF in this case is a photorefractive reflection grating
within the crystal. As explained in chapter 3, both reflection and transmis-
sion grating may be generated within the crystal. The difference is that in
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Figure 6.2: Typical example of a pulsing external cavity mode in the PCF
case. Here the oscillating frequency is f = 1360 M H z.

the case of a reflection grating, the effective external cavity length is shorter
than in the case of a transmission grating since the mirror loop is not taken
into account. Indeed, in this case, the photons undergo phase conjugation as
they first enter the crystal, without propagating in the ring cavity. This is
a major contrast to the case of PCF generation with a transmission grating.
We managed to switch the nature of the grating by changing the beam’s
section at the point it re-enters the crystal after going through the ring loop.
Therefore we come to the conclusion that the fundamental external cavity
frequency is then fe, = 37 = 680 MHz. As a consequence, the pulsing
ECM shown in Fig.6.2 is the second ECM of this experimental configuration
since its frequency is fo = 1360 M Hz = 2f.4,.

This possibility to generate PCF from the crystal’s reflection grating is
a useful tool because it allows to work with a shortened external cavity and
thus with a shorter-delayed feedback. Indeed the round-trip time with the
transmission grating is Ty, = Ltc"t = 4.5 ns while the round-trip time with
the reflection grating is 7.y = % = 1.47 ns. According to the predictions
in chapter 4, a shorter time delay causes secondary bifurcations to chaos to
occur for reflectivity values larger than in the case of a long time delay. This
property gives a wider span of feedback ratio values to see the ECMs between
two chaotic regions, making them more likely to be detected and resolved
experimentally. This phenomenon has been presented in Fig.5.11 where the
intervals of feedback strength v where self-pulsing ECMS are stable are wider
in the case of shorter cavities than in the case of longer cavities.

Fig.6.3 illustrates this property with the two experimental values of the
time delay. Indeed, the bifurcation diagram in (a), calculated for = 1050 <
Tref = 1.47 s, is more likely to show self-pulsing states than the one in (b),
where 6 = 3200 < 7,.¢ = 4.5 ns and for which only developed chaos is visi-
ble. Moreover, further experimental results that will be presented in chapters

8 and 9 confirm the crucial influence of the operating effective cavity length
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Figure 6.3: Bifurcation diagrams computed with time delay values corre-
sponding to the experimental conditions: 7.y = 1.47 ns < 6 = 1050 (a)
and 7., = 4.5 ns & 0 = 3214 (b). P, T and « are the same as in Fig.4.1.
Pulsing solutions are visible only in the case of # = 1050 and yet in very
small intervals of feedback ratio values.

on the nature of the dynamical states that the laser is able to exhibit within
our reflectivity range.

Although self-pulsing external cavity modes can be seen provided suitable
experimental conditions are fulfilled, they show to be very sensitive states.
This means that the laser often switches from ECM state to quasi-periodic
or other pulsing solutions under the sole effect of the experimental noise.
This sensitivity makes stable observation of those self-pulsing states quite
difficult. Furthermore, the likeliness to see a full scenario showing successively
several ECMs and their transitions is very poor. Yet, we could identify two
external cavity modes pulsing at multiples of the fundamental frequency.
Experimental evidence of the process that destabilizes them is given as well.

6.1.2 Birth and evolution of self-pulsing ECMs

Fig.6.4 shows some experimental time traces of the laser output power and
the corresponding RF and optical spectra when the laser undergoes a route
to chaos as the feedback ratio increases. Trace (a) is the laser steady state as
it can be seen for the smallest feedback strength values. The time traces show
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very small fluctuations in the laser power due to the experimental noise. The
RF spectrum is totally flat and the optical spectrum only shows the solitary
running laser frequency.
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Figure 6.4: Evolution of the time traces and corresponding RF and optical
spectra when R is increased. Y-axis are in arbitrary units (linear scale for
the time traces and Log scale for the spectra).

As the mirror reflectivity increases, several fast-fluctuating dynamics are
seen until trace (b) is generated —when R=0.24%— with the signature of the
delay time-scale f.,, = 680 M Hz. Trace (b) pulses with a complex frequency
content but with a very strong signature of the external cavity delay as can
be seen from the regular peaks interspaced by 680 MHz in the corresponding
RF spectrum. The related optical spectrum also accounts for this fact with
peaks separated by the external cavity frequency. This trace (b) marks the
end of a chaotic attractor about to switch to the limit cycle related to the
second self-pulsing external cavity mode (c). As a comparison, trace (b) is
similar to the theoretical trace (b.1) in Fig.5.2.
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Then we distinguish two pulsing ECMs: trace (c¢) which pulses at 1.36 GHz
and trace (d) at 2.06 GHz. We reckon they are respectively the second and
the third ECMs since they pulse at 2f.., and 3f.. as encircled in the RF
spectra of traces (c) and (d). The corresponding optical spectra confirm the
oscillation frequencies by showing peaks separated by intervals of 1.36 GHz
and 2.06 GHz. ECM2 originates from trace (b) and gives way to ECM3 with
a very short transition: experimentally the solution switches from ECM2 to
ECMS3 so quickly that it is hardly possible to see how the destabilization
of ECM2 and the associated reshaping from its limit cycle into ECM3’s oc-
curs. Yet, both traces (c¢) and (d) are experimental quasi-sinusoid pulsing
at frequencies multiples of the external cavity fundamental frequency. They
illustrate the self-pulsing dynamics of the so-called external cavity modes in
PCF that have been for a long time predicted by the theoretical model. To
our knowledge, this experimental evidence is the first confirmation of the
ECMs in the PCF case.

Then when R is further increased, a route to chaos by period multiply-
ing is initiated: ECM3 undergoes period tripling giving birth to trace (e) in
which it can be clearly seen that one on every three peaks is skipped com-
pared to trace (d). In the RF spectrum the main frequency at 2.06 GHz
stemming from trace (d) is encircled and we can see that peaks interspaced
by 680 MHz appear, changing thus the quasi-sinusoid of trace (d) into a
quasi-periodic signal (e) by period tripling. The related optical spectrum
begins to lose accuracy as new small frequencies under the optical spectrum
analyzer’s finesse rise and modulate the laser power.

When further increasing the feedback strength, the route to chaos con-
tinues with trace (f) originated from trace (e) which shows the contribution
of many frequencies. The RF spectrum corresponding to trace (f) shows
a multitude of peaks, separated from each other by 170 MHz —which is a
fourth of 680 MHz—, along with a higher overall level for all frequencies. The
related optical spectrum is flat since too many frequencies very close to each
other are present in this case. This evolution suggests that at that point the
laser enters chaos. Indeed, for values of R higher than 1% the experiment
shows only chaos and no self-pulsation at higher frequencies such as ECM4
or other are seen. Therefore, the sequence of bifurcations corresponding to
ECM generation and transitions occur for very weak values of the feedback
ratio: they initiate the route to fully developed continuous chaos.

Although we were not able to see other self-pulsing ECMs, an inter-
esting trace has been spotted, confirming what we just discussed. Indeed,
Fig.6.5.(a) shows an experimental time trace that has the same dynamical
properties as trace (e) in Fig.6.4. We identify it as the quasi-periodic state
that is present in the process of destabilization of the fifth external cavity
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mode. The plain self-pulsing ECMb5 at 3.3 GHz could not be seen, though.
Yet the corresponding post process calculated RF spectrum in Fig.6.5.(b)
reveals a main frequency peak at 3.3 GHz along with several side peaks.
An immediate comparison to the RF spectrum corresponding to trace (e) in
Fig.6.4 allows to follow a reasoning analogous to the destabilization process
of ECM3 that we reported previously. The peaks at 680 MHz in Fig.6.5.(b)
are responsible for the slow modulation of the otherwise self-pulsing dynam-
ics at 3.3 GHz —that is ECM5- and which would be expected to be seen for
a reflectivity value slightly smaller. Since the RF spectrum in (b) has been
computed from the data of time trace (a), its accuracy is not as high as the
one in the RF spectra gathered by the RF spectrum analyzer and displayed in
Fig.6.4. Yet, this figure illustrates the existence of a self-pulsing fifth external
cavity mode. This brings further confirmation to the theoretical predictions
related to the evolution of the ECMs and the evolution of their frequency as
the PCM reflectivity increases.
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Figure 6.5: Experimental observation of a destabilizing self-pulsing external
cavity mode at the frequency f5 = 3.3 GHz (a). Trace (b) is the post process
calculated square modulus of the Fourier transform of trace (a).

It is experimentally very difficult to see a whole continuous scenario of
bifurcations leading the laser from an ECM state to quasi-periodic or chaotic
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states with all the related successive time series and spectra. That is why even
though we could only see the destabilization through quasi-periodicity related
to ECM3, we believe that this phenomenon also occurs with ECM2 and that
period multiplying is at stake in the transition from ECM2 to ECM3 as well.
Generally speaking, we expect every ECM to follow the same process as we
saw for the destabilization of ECM3. We provide in the following section a
theoretical scenario accounting for the destabilization process of the external
cavity modes.

6.2 Theoretical confirmation

Although there has been no report in the literature showing experimental
pulsing ECMs, several theoretical studies have been done to simulate the
laser behavior when subject to delayed PCF. We present here a simulated
model in order to show qualitative accordance with the experimental traces
shown above in Fig.6.4. We model the laser system using the same system
of equations as presented in chapter 2 and already used to do the theoreti-
cal predictions in chapters 4 and 5: the Lang-Kobayashi equations for PCF
(equations 4.1).

Due to the great number of parameters and possible ranges of study, a
given set of parameters may show compliance with experimental results, yet
under another set of parameters a totally different scenario can be predicted
by the simulation. As we mentioned before, the model we use is quite simple
on the one hand but on the other hand it can show very complex results
that are difficult to fit to the experimental observations since the parameters
often range values very different from the experimental ones. Therefore, any
quantitative comparison is hardly possible.

6.2.1 Simulated self-pulsing ECMs

Since we aim at bringing theoretical confirmation to the observations of self-
pulsing external cavity modes reported above, we carry out simulations in
order to show qualitative simulated compliance with the experimental results.
A computed simulation of the model with the following parameters: 6 =
1050, P = 0.04, T = 1000, and o = 2.2 reveals the bifurcation diagram
displayed in Fig.6.6.

Among those parameters only # has the same value as in the experiment.
Since it is normalized with respect to the photon lifetime 7, = 1.4 ps, 0 x 7, =
1050 x 1.4 ps = 1.47 ns = T,.5. Therefore, in the simulations the periodic
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Figure 6.6: Bifurcation diagram for § = 1050 which corresponds to the physi-
cal time delay in our experiment (1.47 ns). P = 0.04, 7' = 1000, and o = 2.2.

solutions pulse at frequencies very close to the experimental ones which have
been reported in Fig.6.4. The value of P is smaller than in the experiment.
However, it is important to remind that physical the dependance of the
feedback ratio 7 on the injection current P is not taken into account in
the model while it is inherent to the PCF generation process. A careful look
at the pulsing and quasi-periodic states in Fig.6.6 brings us to the dynamical
evolution presented in Fig.6.7.

Fig.6.7 displays simulated predictions of the laser time traces and the
corresponding RF and optical spectra, which are tagged from A to F in
Fig.6.6. The scenario begins with the steady state displayed in trace (A) in
which no fluctuations are seen and the optical spectrum shows no frequency
besides the solitary laser one. It is the simulated counterpart of trace (a) in
Fig.6.4.

Then, as « increases, we come to trace (B) which shows irregular fluc-
tuations with the signature of the external cavity time delay in the spectra.
In the simulations, the value of 6 of 1050 gives a frequency signature in the
spectra of about 650 MHz. This trace (B) is the initial state from which the
external cavity modes will be generated and is the simulated equivalent of
trace (b) in Fig.6.4.

Trace (C) originates from trace (B) and reveals a sinusoidal self-pulsing so-
lution at 1.34 GHz. Trace (C) is a clear illustration of the experimental ECM2
seen in Fig.6.4.(c). This ECM2 is then made unstable when ~ increases and
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Figure 6.7: Simulated time series and spectra corresponding to traces A to
F in the bifurcation diagram (Fig.6.6). Y-axis are in arbitrary units (linear
scale for the time traces and Log scale for the spectra).

gives way to trace (D), the experimental counterpart of which was not re-
solved but which contains the same features as trace (e) in Fig.6.4. Indeed,
trace (D) in Fig.6.7 shows the destabilization of ECM2 by quasi-periodicity
making new peaks rise in the spectrum at the frequency of 480 MHz. The
value of this frequency of 480 MHz which appears when ECM2 bifurcates
to quasi-periodicity is unclear to us. It would require a careful an complex
analysis of the secondary bifurcations on ECMs to account for this value.
Still, it is quite close to the 650 MHz of the external cavity frequency. As
a comparison, it is exactly homologous to the frequencies at the delay time
scale that are visible in Fig.6.4.(e). As we saw, those peaks rising at the
cavity frequency initiate the destabilization of the ECMs.

Trace (D) is followed by a region of chaos which ends up by giving way
to the next external cavity mode pulsing at 1.9 GHz (trace (E)). Again good
accordance is seen with trace (d) in Fig.6.4 both in the pulsing frequency and
the signal shape. In Fig.6.6, in the transition from the limit cycle of ECM2
(C) to the limit cycle of ECM3 (E), the system goes through a region of chaos
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that was not observed in the experiment. Indeed as we mentioned before,
the experimental transition from ECM2 to ECM3 occurred very quickly and
we could not observe the full scenario.

Then if v is further increased, the laser follows another route to chaos
from ECM3 giving birth to trace Fig.6.7.(F) in which the main frequency at
1.9 GHz is still visible. Yet, it is this time surrounded by many frequencies
covering the whole spectrum and inducing fast irregular fluctuations. For
values of v above 0.01, the bifurcation diagram in Fig.6.6 shows no more
self-pulsing solutions. The systems enters and remains essentially in chaotic
state in a wide span of feedback ratio values, as was the case in the exper-
iment for values of R larger than 1%. The phenomena of chaos crisis and
chaos suppression is seen for high values of ~, though.

6.2.2 Confrontation to the experiment

The confrontation between the simulated results of Fig.6.7 and the experi-
mental traces of Fig.6.4 brings us to a few discussion points. First in none of
them the fundamental pulsation of ECM1 at the fundamental external cavity
frequency of 680 MHz could be seen. As we mentioned before, ECM1 is ex-
pected to be the first periodic solution related to the external cavity to appear
but it is also expected to be very quickly destabilized as the first bifurcations
to chaos occur. Hence we are not surprised not to be able to see it. We find
that ECM1 could be visible in the simulation with a smaller value of 6 or with
another set of laser and feedback parameters but we chose in this theoretical
confrontation to work with the same delay as in the experiment. The aim
is indeed to provide a theoretical result close to the experimental conclusions.

Secondly no quantitative accordance can be expected from this experiment-
simulation comparison. Indeed the iteration pace of the simulation is 7, =
1.4 ps while our oscilloscope resolution is limited by its 4-GHz-bandwidth.
Hence the simulations —which were by the way undertaken without addition
of noise in the model— provide results which accuracy is far beyond our ex-
perimental reach. Besides, the value of P is much lower in the simulation
(P = 0.04) than in the experiment, where the laser was operating with an
equivalent normalized pump ratio of about 4. Again a high value of P causes
regions of self-pulsing states to shrink dramatically in bifurcation diagram.
That is why we chose a smaller value of P in the simulation. The same reason
justifies the value chosen for «.

Nonetheless the theoretical predicted scenario displayed in Fig.6.7 shows
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good qualitative accordance with the experimental observations reported in
Fig.6.4. This compliance leads to the conclusion that the transition from a
self-pulsing external cavity mode to the following one shows a destabilization
by period multiplying and quasi-periodicity including the external cavity
frequency and its multiples.

6.3 Other scenario of self-pulsations

Among the diversified dynamics that can be exhibited by the laser diode, we
focus here on a particular destabilization process of a self-pulsing harmonic
state that was spotted in the experiment. Fig.6.8 displays a self-pulsing
ECM undergoing a destabilization process totally different from the one re-
ported previously. The initial state is similar since it is a quasi-sinusoid, as
in Fig.6.4.(c) and (d). Yet, as the feedback ratios increases, successive period
multiplyings of a different nature occur. Indeed, in contrast to the scenario
presented in Fig.6.4, the pulsing state undergoes a period doubling followed
by a period tripling which results in a state exhibiting very short pulse pack-
ages made of two or three pulses oscillating at a high frequency.

Although the spectra in Fig.6.8.(b.1-b.3) seem to follow each other in
a scenario pretty much alike the one shown in Fig.6.4.(d-f), the evolution
of the corresponding time traces is totally different. Indeed, in the case of
Fig.6.4.(f), the period multiplying gives way to chaos with very fast fluc-
tuations with a constant amplitude in average. Now, in the case shown
in Fig.6.8, the amplitude of the power fluctuations is dramatically reduced
while only very high peaks are visible and distributed at regular intervals
of 310 MHz. This frequency corresponds to the sixth of the self-pulsing fre-
quency of Fig.6.8.(a.1) and (a.2). This behavior has been observed in the
experiment very few times. Actually, it is rather a transition from a har-
monic dynamics to a train-of-pulses-like emission state. Yet, it is an inter-
esting illustration of the dynamical diversity of a laser with phase-conjugate
feedback, different from the previously reported one.

Another interesting feature of the harmonic trace displayed in Fig.6.8.(a.1)
is its fundamental frequency. The experimental conditions under which this
trace is seen are as follows. The crystal is located at a distance of 12 cm
from the laser and the ring loop ranges 30 cm. The total cavity length is
thus 54 c¢cm and the related external cavity frequency is f.., = 550 M Hz.
Yet the pulsing frequency in Fig.6.8.(b) is 1.87 GHz, which is not a multiple
of f..i. The laser pulses consequently at a frequency different from the one
expected from the external cavity length. Even taking into account only the
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Figure 6.8: Self-pulsing state with successive destabilizations by period mul-
tiplying. A first period doubling brings the lower frequency from 1.87 GHz
(a) to 930 MHz (b). Then the system undergoes period tripling, resulting in
very short power pulses at the frequency of 310 MHz (c).

distance of the crystal to the laser, as we did in the case of a PCF gen-
erated by means of a reflection grating, the expected equivalent frequency
(1.25 GHz) would not fit to the observation either. We found no theoreti-
cal conditions of parameters which could account for this phenomenon so far.

Yet this result brings an experimental evidence to the fact that a self-
pulsing ECM in the case of PCF can undergo two different destabilization
processes of totally different dynamics. The first is the destabilization by
period multiplying leading to chaos and to ECMs of higher frequencies as
presented in Fig.6.4 and for which we brought theoretical account. The
second is the the destabilization by period multiplying leading to trains of
pulses such as the traces presented in Fig.6.8 to which no theoretical model
has been suggested to our knowledge.

6.4 Conclusions

We brought in this chapter the first experimental report of self-pulsing ex-
ternal cavity modes in a laser diode with PCF. The experiment confirms
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the theoretical predictions about the pulsing frequencies and the scenario of
bifurcations on the successive ECMs. In particular, ECMs pulsing at twice
and three times the external cavity frequency are well resolved experimentally
and their bifurcations are supported by numerical simulations.

In the next chapter, we present a deeper analysis of self-pulsing ECMs.
Their corresponding oscillating mechanism and spectral features are to be
compared to other pulsing states reported in both PCF and COF cases.



CHAPTER 7
Self-pulsation in a laser with
feedback

Time-periodic self-pulsing dynamics in laser diodes subject to optical feed-
back have been reported in the literature with both theoretical and exper-
imental illustrations. As we saw in the bifurcation diagrams through the
previous chapters, several kinds of pulsing dynamics can be exhibited in the
laser power both in COF and PCF cases.

In this chapter, we carry out a comparison between pulsing states of
different natures. We will especially focus on their spectral characteristics.
We consider and compare four fundamental self-pulsing dynamics: undamped
relaxation oscillations, mode locking, bridges between steady state ECMs in
the COF case and self-pulsing ECMs in the PCF case.

7.1 Undamped relaxation oscillations
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Figure 7.1: Simulated relaxation oscillations seen in the power and the optical
spectrum. Same traces as in Fig.4.9.(A).

As we saw in chapter 4, the normally damped laser relaxation oscillations
can become undamped for small values of feedback ratio. The laser power
exhibits then harmonic time-periodic oscillations at a frequency close to the

101
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relaxation oscillation frequency. This frequency is totally determined by the

laser injection current according to the relation fro = £,/== (ﬁ — 1) given
cTp

in chapter 2. Therefore fro is proportional to the square root of the injection
current.

Fig.7.1 displays simulated time trace and optical spectrum of undamped
relaxation oscillations pulsing at 1.036 GHz. The spectrum shows the solitary
laser frequency at the center and symmetrical repeating side-bands separated
from it by the value of fro.

From a dynamical point of view, relaxation oscillations show little interest
to us since their frequency cannot be changed either by a modulation of
the feedback ratio or the time delay. Usually, fro ranges from 1 GHz to
10 GHz [16].

7.2 Mode locking

The presence of an external cavity can make the laser show mode locking
on external cavity modes. Indeed, oscillations which wavelengths are sub-
multiples of the length of the cavity bounded by the laser back facet and the
mirror are supported. Yet, the individual phase of the light waves in each
mode is usually random.

40

35 “

30

IS
T

f =160 MHz
cav

>

)
<>
S
N

=)
T

|
[\
T

;

=
=
=
=
=

Laser power (a.u.
1
A
:

I
)
T

Log spectral power (a.u.)

|
®

o

(3] o
T T

0 5 10 15 20 25 30 35 40 -1 -05 6
Time (ns) Frequency (GHz)

0.5

Figure 7.2: Simulated mode locking. In the time trace at the left, all ECMs in
blue are in phase and result in the generation of a train of pulses in red at the
external cavity frequency. At the right, the optical spectrum corresponding
to the red time trace is displayed. The frequency peaks are interspaced by
the external cavity frequency fe.q..

If instead of oscillating independently, the phases of each mode are syn-
chronized with —or locked on— the others’, the modes of the laser interfere
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constructively. As a result, intense pulses of light are generated, with the
periodicity of the fundamental external cavity frequency. With the presence
of optical feedback, it is possible to sustain mode locking and take advantage
of this phenomenon to generate time-periodic short pulses [86,119].

There are several techniques to perform mode locking. Active mode lock-
ing is controlled by an externally applied signal such as an acousto-optic
modulator. In passive mode locking, the mechanism occurs through nonlin-
ear optical phenomena in the laser cavity, by means of a saturable absorber
for instance. Mode locking can be applied to a wide variety of lasers to
generate pulses which widths range from 10 fs to 1 ns [120].

Mode locking is schematically shown in Fig.7.2. We consider the con-
structive interference of many external cavity modes. The resulting field is
of the form E(t) = Y E,e'%e~™a! where E, is the amplitude of the ¢'* mode,

q

¢4 its phase and w, its angular frequency. If we consider the real parts only,
with all £, equal to Ey and ¢, = 0 —corresponding to the configuration where
all modes are in phase—, the constructive interferences of many external cav-
ity modes result in the generation of a train of pulses as displayed in red in
Fig.7.2. Since all the external cavity modes have frequencies multiples of the
fundamental external cavity frequency f...,, the resulting beam also pulses
at few. The corresponding optical spectrum shows characteristic frequency
peaks interspaced by f..,. Besides, the temporal extension of the resulting
pulse is inversely proportional to the number of excited modes [85,121].

7.3 Bridges between ECMs in the case of COF

Pulsing states have been reported in a laser with COF since 1994 by Tager
and Petermann [119]. This kind of self-pulsations in a laser with COF cor-
respond to a bridge connecting two Hopf bifurcations associated with two
frequency-detuned ECMs.

This oscillating dynamics can be seen as a beating between two stable
competing ECM solutions, as reported in [122,123]. Fig.7.3 illustrates this
beating of two ECM solutions with bifurcation diagrams from the Lang-
Kobayashi equations without feedback (2.2) for different values of . Con-
figuration (d) displays a stable closed branch on two ECM solutions and
corresponds to a regime of beating between ECMs. As a result, the laser
shows oscillations which frequency equals the frequency difference of the two
ECM solutions. Fig.7.4 illustrates this pulsing state in the case of COF.
The spectrum displays frequencies of the two ECMs that beat and connect
through the bridge of Hopf bifurcations.
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Figure 7.3: Bifurcation diagrams showing a pulsing state due to a bridge
between stable ECMs in the COF case calculated for a = 4 (a), o = 2 (b),
a = 125 (c) and @ = 1 (d). 7 is the feedback ratio. The diamonds are
Hopf bifurcations and the squares are torus bifurcations. Configuration (d)
corresponds to the case where the torus bifurcation occurs for a feedback
rate higher than the second Hopf bifurcation. As a consequence, a bridge be-
tween those two stable ECM solutions is built and the system shows beating
between them. Picture from [62].

The bifurcation mechanism leading to those pulsations is a Hopf bifurca-
tion on an external cavity mode (steady state). The self-pulsing dynamics
mathematically corresponds to a bridge of time-periodic solution connecting
two Hopf bifurcations belonging to two ECMs which frequencies are sep-
arated by the external cavity frequency. Sciamanna et al. demonstrated
that the pulsing frequencies are limited to the external cavity frequency
feaw- Fig.7.4 shows the spectral signature of the ECM beating presented
in Fig.7.3.(c). The main spectral feature of this pulsing state is the presence
of two peaks. Each one can be individually identified to a single ECM and
the frequency difference between them defines the oscillation frequency of
the laser power which is frome — fecmi- The beating frequency between
the ECMs depends on both the stability of the solutions emerging from the
saddle-node bifurcation and the feedback ratio. As we mentioned in chapter
2, the beating can occur either between two consecutive modes or between
a mode and the following anti-mode. In all cases, the beating frequency
ranges between fc% and feq, [62]. Further illustration of this phenomenon
is displayed in Fig.7.5, where the self pulsing dynamics corresponding to a
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Figure 7.4: Optical spectra showing ECM beating and the consequent os-
cillating solution at the frequency equal to the frequency difference between
the two ECMs. The left column illustrates the typical spectra of a mode-
antimode bridge. Trace (a) displays a single ECM. In trace (b), the peak
corresponding to an antimode is also represented. The beating between the
two ECMs leads to a pulsing state that eventually gets destabilized as seen in
trace (¢). The right column corresponds to a stable mode-mode bridge, yet
calculated for different parameters compared to the left column. Again, trace
(d) is a stable ECM. A second stable ECM rises in trace (e), representing
the beating where each peak stands for each ECM. When further increasing
the feedback ratio, the first ECM gets destabilized and only the second one
remains stable as presented in trace (f). Picture from [62].

beating between two adjacent ECMs is plotted.

Moreover, as one of the connecting ECMs is typically an unstable solu-
tion, the self-pulsing dynamics gets easily destabilized, leading thus to quasi-
periodicity and chaos as the feedback ratio is slightly changed. This makes
the observation of such ECM beating and Hopf bridge quite difficult. In ad-
dition, self-pulsing dynamics at the external cavity frequency resulting from
this ECM beating are typically limited to so-called short external cavity in
the COF case [119].

7.4 Self-pulsing ECMs in the case of PCF

In the PCF case, the laser has only one stable steady state solution which is
the initial steady state. Under the action of the feedback, it gets destabilized



106 CHAPTER 7. SELF-PULSATION IN A LASER WITH FEEDBACK

0.15 ‘ ‘ ‘ 2

feemefeomi= foa=1-33 GHZ

0.1

Laser power (a.u.)
Log spectral power (a.u.)

0 5 ) 10 15 20 -4 -3 -2 -1 0 1 2 3 4
Time (ns) Frequency (GHz)

Figure 7.5: Simulated pulsing state corresponding to the beating between two
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through a Hopf bifurcation to a stable self-pulsing solution. As mentioned
before, since the frequency of that solution is close to the external cavity
frequency, that solution has been called ECM. Yet by contrast to the COF
case, an ECM in the PCF case is a rotating solution with time-periodic
intensity instead of an intensity constant in time. The laser creates new
ECM solutions as the feedback increases, but all originate from the same
and single initial steady state branch.

Furthermore, as we discussed in chapter 5, the stability of the external
cavity self-pulsing dynamics in PCF is determined by the interplay between
a saddle-node bifurcation and a torus bifurcation, hence it is still possible to
observe a robust and fully stable self-pulsing dynamics when increasing the
feedback ratio or the external cavity length. Fig.7.6 recalls the self-pulsing
ECM analyzed in chapter 6 in Fig.6.7.(C). Compared to the case of Fig.7.5,
the major difference in the spectrum is the repetition of the frequency peaks.

Fig.7.6 shows peaks symmetrically located in both sides of the zero fre-
quency corresponding to the free running laser frequency. Yet, by contrast
to the COF case, those peaks do not individually represent single ECMs
that could be characterized by their position in the spectrum. Indeed, only
the frequency span between two consecutive peaks has a physical meaning
and represents the self-pulsing frequency, which is a multiple of the external
cavity fundamental frequency.

In other words, the individual peaks in the optical spectrum in Fig.7.6 do
not represent single ECM solutions as in the case of Fig.7.5 for the COF case.
Indeed, we identify them as side-bands of the self pulsation at any multiple
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Figure 7.6: Example of a self-pulsing ECM in the PCF case. Same traces as
in Fig.6.7.(C).

of the external cavity frequency. In addition, while in the COF case only self
pulsations between fgﬂ and f.., can be stable, in the PCF case self-pulsing
dynamics at higher multiples of the external cavity frequency can become
stable when increasing the feedback strength. Experimental evidence of some
of those self-pulsations at twice and thrice the external cavity frequency has
been demonstrated in chapter 6.

7.5 Discussion

The purpose of this chapter is to compare the different mechanisms leading
to self pulsations in a laser diode with optical feedback. We emphasize how
the self-pulsing dynamics seen in the case of PCF has temporal and spectral
signatures very different from the other cases of pulsations.

Fig.7.7 summarizes the spectral differences between pulsations due to
undamped oscillation relaxation (a), mode locking (b), ECM beating in the
case of COF (c) and self-pulsing ECM in the case of PCF (d). In the case of
the relaxation oscillations (a), the spectrum is easily identified by the side-
bands separated from the central laser solitary frequency by the relaxation
frequency, which does not depend of the feedback rate or delay. Case (c) is
immediately identified as corresponding to the beating between ECMs since
the spectrum shows only two peaks, each one being associated with one of the
ECMs at stake. In the case of mode locking (b), the spectrum shows many
frequencies repeating at the external cavity frequency only and qualitatively
shows the same features as the case of a self-pulsing ECM in PCF at the
fundamental frequency f..,. However, this ambiguity is suppressed as soon
as the self-pulsing ECM starts pulsing at a frequency multiple of f,, —for
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Figure 7.7: Confrontation of the four possible pulsing states in a laser diode
with feedback. The optical spectra and frequency properties are compared
for the identified cases: oscillation relaxation (a), mode locking (b), ECM
beating in the case of COF (c) and self-pulsing ECM1 (in blue) and ECM2
(in red) in the case of PCF (d).

example under the effect of an increasing feedback ratio—, since the related
spectrum would then show peaks interspaced by n f.,, and not f.,, any more.

Among the four pulsing states, the only one that shows a possibility to
be easily tuned in a large frequency span is the one corresponding to self-
pulsing ECM in the PCF case. Indeed, the relaxation oscillations are fixed by
the laser injection current. Besides, the pulsation frequency of mode locking
and ECM bridges between ECMs in the COF case are limited to f..,. By
contrast, a self-pulsing ECM in the PCF case is expected to pulse at any
multiple of f....

In table 7.1, the four physically different fundamental mechanisms that
may lead a laser diode to exhibit oscillations are identified by the four cor-
responding optical spectra. Indeed, each one has specific signatures from
which the nature of the oscillations and the parameters that drive them can
be determined. For a given value of the external cavity length, the pulsing fre-
quency can be tuned in the case of the PCF only, through the feedback ratio.
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Frequency properties of pulsing states for given values of P, T and «

Nature of the

Is the frequency Frequency Spectral features
pulsing state tunable? expression
Undamped No I Side bands separated
: Jro o /71— —1 .
relaxation th from the solitary laser
oscillations frequency by fro
Mode-locking Yes, with a frocking = ﬁ Frequency peaks
train of pulses modulation of L, separated by fiocking
(or 0) and covering the
whole spectrum
Bridges between Yes, with a st < Joridges < T Only two peaks are
ECMs in the modulation of L,, displayed, each one
case of COF (or ) representing an
identified ECM
Self-pulsing Yes, with a fecm = ng=—, where Frequency peaks
ECMs in the modulation of L, n € N and depends separated by frowm
case of PCF (or #) or with a on R (or 7) and covering the
modulation of R (or whole spectrum
)
Table 7.1:

diodes.

Comparing spectral features of the four pulsing states in laser
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As we mentioned in chapter 2, the possibility to tune the pulsing frequency of
a laser diode shows great advantages in the field of optical communications.
Mastering the self-pulsing ECM pulsations will certainly extend the horizon
of laser applications.

In the next chapter, another particular dynamics exhibited by the laser
is presented. The experimental modification causing the transition from this
chapter to the next one is the increase of the effective external cavity length.



CHAPTER 8
Extreme events in the laser
power

i e

Figure 8.1: The Great Wave off Kanagawa, Katsushika Hokusai.

Recently, a new matter of interest and discussion has emerged throughout
all domains of physics. It is often designated as rogue waves, extreme events
or disruptive events among other names. When they occur in a nonlinear
system, they are seen as events of very high amplitude rising far above the
mean level of their peers but remaining in few supply compared to them.

8.1 Definition and intuitive illustration

Extreme events can be visible in many contexts. Nature is a prolific source
of extreme events. In order to figure out qualitatively what an example of
extreme event can be, let us imagine a forest in which the heights of the trees
are distributed with a gaussian law, by which nature often abides. In this
forest, most trees are about as high one as another, let us say from about 6
to about 10 meters high and close to the average forest height —about 8 me-
ters. However, like in every gaussian-distributed population, some samples
belonging to the tails of the distribution have extreme values either in high-
ness or in smallness. Therefore some trees of the forest —the highest ones—
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can reach heights far above the forest mean level, although they are very few.

Now let us suppose that there could be a means to control the rate of very
high trees in the forest. For example if increasing the annual precipitation
rate in the forest could stimulate the growth of very high trees, it would be
possible to make them grow even higher and be more numerous in the forest.
We could imagine that for a certain value of the precipitation rate, 5% of
the trees grow much higher than others, reaching about 12-14 meters high.
Then not only would they belong to the set containing the highest trees of
the forest, but they would also affect the statistical distribution of the height
which would show a larger standard deviation and a non-gaussian tail would
appear for high values. Indeed only the population of very high trees would
swell following a non-gaussian law. Those highest trees are then called ex-
treme event. An illustration of an extreme event in a forest is given in Fig.8.2.

Figure 8.2: Extreme events in nature: one of the trees rises much higher than
the average level of the forest. Picture from National Geographic, Reedwoods:
The Super Trees, October 2009.

To quantify this phenomenon, one must define a condition to discriminate
among a whole set of events which are extreme and which are not. In our
research, we use the mathematical tool known as abnormality index, written
AI. This term is actually borrowed from studies of oceanic rogue waves [124].
In a population of N events we write H f,, the value associated with the n'®
event F,. In our example each tree is an event and H f, is the difference
between height of the n* tree and the average height of the forest. We write



8.1. DEFINITION AND INTUITIVE ILLUSTRATION 113

Hs the significant value of the whole population. Hs is actually defined
in [124] as the average value among one third of the highest values of H f
the whole population. In other words, Hs is the average difference between
the height of each tree and the average height value of the forest, calculated
in the third of the forest composed only of the highest trees. Now for each
event F, we can calculate the associated abnormality index: Al, = };I’;"
The threshold to which compare an event to know if it is an extreme event,
according to the definition of [124], is Al = 2. Therefore event E, is an
extreme event if A, > 2.

Fig.8.3 shows an illustration of the extreme events’ distribution in the
example of the forest mentioned above. The distribution of a population of
10,000 trees with heights randomly distributed around the mean value of 6 m
with a standard deviation of 1 is presented in Fig.8.3.(a). The red vertical
line is the extreme event threshold Al = 2 which corresponds to 10.1 meters
high. Some trees have an abnormality index above 2, yet they are in few
supply (155 trees) and do not reach very high Al values since the maximum
value is 11.9 meters high which corresponds to AI = 2.3.

According to what we just said, all the trees which abnormality index is
larger than 2 could be considered as extreme events. However those trees do
not induce a distortion of the gaussian distribution since they stem from a
normal law. Therefore we take into account a second criterion. In order to
be counted as an extreme event, an event must comply with two conditions:
showing Al > 2 and belonging to a set of events that induces a distortion
of the gaussian tail, typically showing new concavity. Otherwise any gaus-
sian distribution would be likely to exhibit extreme events. That is why, in
addition to the abnormality index criterion, the statistics’s reshaping into a
long-tailed shape is also commonly used to identify extreme events [125].

Actually, what is really interesting in the study of extreme events is to
see how their number, their regularity and their amplitude —through their
Al value— evolve and tend to increase when changing the value of a control
parameter. Considering again the forest, since the precipitation rate stim-
ulates the appearance of extreme events (5% of trees reaching 12-14 m) it
is also responsible for the distribution reshaping shown in Fig.8.3.(b). The
presence of the high trees shifts the position of the AI = 2 threshold since
the value of each event counts in the calculation of the threshold. This time,
the condition Al = 2 corresponds to an 11-meter-high tree. In our exam-
ple, 452 trees have heights larger than 11 meters. In other words there are
452 extreme events in the forest. Since its population is 10,000, the ratio of
extreme events is 4.52%.
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Figure 8.3: Statistical distributions of the tree heights in a population of
10,000 trees. In (a) all the tree heights are distributed with a gaussian statis-
tics and 155 trees reach naturally the Al = 2 threshold with a maximum A/l
value of 2.3 but there is no distortion of the gaussian distribution. Therefore
they are not extreme events. In (b) 5% of the trees are artificially made very
high, inducing thus a distortion of the gaussian distribution. 452 trees fulfill
the AI > 2 condition and induce a distribution reshaping, making thus as
many extreme events. Maximum Al here is 2.7.

8.2 Extreme events in physics

The concept of extreme events can be easily adapted to almost any kind of
population: all that matters is to define, in each context, the quantity to
compare to the threshold value or, in other words, to define the abnormality
index. This formality being set, extreme events can be studied in a number of
diversified systems beyond reckoning: amplitude of an electric voltage, speed
of the wind, height of the swell, price of a market share, population in a
hive, cardiac beating rhythm and so on. Fig.8.4 illustrates extreme events in
oceanography (a), plasma physics (b) and electromagnetism (c). Researches
are being carried out in various fields of science to report on their appear-
ance and to try to find a law by which extreme events could possibly abide.
Besides, results predicted or measured in one area may be expected to be
generalizable to many.

Historically the first extreme events have been spotted in the ocean by
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Figure 8.4: Examples of extreme events in different domains of physics.
Fig.(a) shows an example of an unexpected wave from a simulation of the
sea surface [126]. Fig.(b) depicts the profile of a rogue pulse of negative ions
density and mass in unmagnetized electronegative plasma in Titan’s atmo-
sphere [127]. Fig.(c) displays a rogue wave (or hot spot) in the intensity of a
microwave transport experiment in a resonator conical scatterer [128].

sailors and were then described as huge lone waves arising very high above
the calm average water level without warning and causing pretty much dam-
age to sailors’ ships. Many studies have been done to account for their origin
and their probability to occur in various systems. Nowadays, they are deeply
studied in many fields such as hydrodynamics [124], plasma physics [129]
and optics [130-132]. Whichever the domain, extreme events always show
the characteristic property to be waves of very high amplitude that can ap-
pear on a rare and irregular basis in a signal, breaking thus its otherwise
smooth or regular evolution. Researchers agree to say that extreme events
are scarce, very intense and unpredictable phenomena making them both
amazing and potentially dangerous events. In optics, besides their first report
in microstructured optical fibers showing supercontinuum emission [130], ex-
treme events have been reported in mode-locked lasers [133, 134] and laser
diodes with optical injection [135,136].

8.3 Extreme events in a laser diode with PCF

We study here the features of extreme events in our time-delayed optical
system with phase-conjugate feedback. Although the occurrences of extreme
events cannot be predicted, their number and their intensity can be driven by
some parameters, just like the precipitation rate in the forest was a command
parameter for extremely high trees. In our case, the command parameter
is the feedback ratio which we vary changing the phase-conjugate mirror
reflectivity. We will see that the evolution of R causes significant impact
on the ratio, the regularity and the shape of the extreme events that the
laser exhibits when operating in chaotic regime. The experimental setup is
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as described in chapter 3. This time the effective external cavity length has
been extended —compared to chapter 6— to L., = 66 ¢cm : 12 cm between
the laser and the crystal (L; in Fig.3.16) and 42 c¢m in the ring loop length
(Lo+ L3+ Ly4). Consequently, the associated time delay is 7 = 2.2 ns. Fig.8.5
displays a typical example of extreme event rising up above the average laser
output power level. The peak in red is an extreme event since its abnormality
index is larger than 2. Yet, in the particular case of this example, we do not
study the deviation from the assumed gaussian distribution of the power
peaks.
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Figure 8.5: Typical example of an extreme event in the chaotic temporal trace
of the laser. The black horizontal line is the signal average value and the green
one its significant height Hs. The peak in red reaches Al = g—ﬁ =5 > 2 and
is an extreme event.

8.3.1 General evolution with the feedback ratio

In order to study the occurrences of extreme events in the laser output power,
we will be operating in chaotic regime, which is reached in our setup when R
is larger than 1.3%. As a laser in chaotic regime emits a very quickly fluctu-
ating power over time, some of those fluctuations have very high magnitudes
with respect to the average laser power level. As a consequence, they are
good candidates to be extreme events. In the system we study, an event is a
whole power peak. Therefore we first perform maxima detection in the laser
time series to detect events and then we calculate for each peak the corre-
sponding ratio g—£ Although in the discrete example of the forest each tree
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height counted as an event, in the analogous fluctuation of the laser power we
consider that an event has a wave shape like in the first accounts of extreme
events in the sea where they were huge waves. That is why we count as
many events —or waves— as maxima detected in the laser power series instead
of counting each sampling point as one itself. For example, in Fig.8.5, the
peak in red counts as a single extreme event even though it is obtained by
interpolating 5 sampling points. Seeing extreme events in a chaotic signal
is something quite expected since chaos is typically made of a succession of
peaks of many different intensities. What we analyze in deeper details is the
evolution of the extreme events when R increases and the reshaping of their
statistical distribution.
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Figure 8.6: Time traces and histograms of the maxima in the laser power for
increasing values of R. The red horizontal and vertical lines are the AI = 2
thresholds. The dashed box is shown in details in Fig.8.10.

Fig.8.6 shows the evolution of the laser output power versus time and the
histograms of the maxima detected in the power time series when R increases.
The red line is the extreme event threshold associated with each time trace
(AI = 2 level). The general trend in the laser power distribution when R
increases is a drift towards higher values, meaning that the average power
globally increases. Besides, the number of events that show abnormality
indices larger than 2 also increases, starting from zero. Indeed when R=1.8%
there is no pulse above the threshold therefore the signal shows no extreme
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events. When R increases some high pulses start to appear and to rise
far above the signal’s significant height. This induces both a continuously
increasing number of events above the threshold in the statistics’ tail and
a resulting stretching of the statistics’ shape showing new concavity. In
the experiment, the higher the feedback strength the more numerous the
extreme events and the bigger the distribution’s distortion compared to its
initial shape.

The time series on which this analysis is based have been collected in
a succession of single shots for values of R continuously increasing. There-
fore the curves displayed in the figures are not an average of several shots.
However, we observed experimentally that re-iterating the same operation
leads to the same conclusions about the extreme events’ properties. The
time traces have been collected within a time span of 40 ps with a sampling
time of 200 ps. We work thus with 200,000 samples per time series and no a
posteriori filtering is operated on the signals.

8.3.2 Events getting more and more numerous

Fig.8.7 summarizes the evolution of the number of extreme events as R in-
creases (a) and the ratio of extreme events with respect to the number of all
events in the signal (b).
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Figure 8.7: (a): number and (b): ratio of extreme events detected in the
laser power for increasing values of R in signals counting in average 71,000
events.

We can discriminate two trends in the curves presented in Fig.8.7. First,
for the smallest values of the mirror reflectivity, very few extreme events are
visible and their growth with R is very limited. Then there is like a threshold
value around R = 3% above which the number of extreme events starts to
increase at a significant pace. The ratios in curve (b) are calculated for each
value of R since the number of events varies with R. Each one equals the
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ratio of the number of extreme events to the total number of events in the
laser power, for a given value of R.

The total number of events —or total number of maxima in the laser
power— increases very slowly with R: it ranges from 70,899 events when
R = 1.3% to 72,252 when R = 7%. Therefore the variation of the ratio
follows the same trend as the variation of the number of extreme events —
which is much more significant— making curves (a) and (b) in Fig.8.7 pretty
much alike. The value when R = 6.2% in Fig.8.7.(a) and (b) is unexpectedly
low. Indeed we would intuitively expect a value between the previous and
the following ones according to the general trend of the curve. We believe it
is an experimental incoherence due to a mistake or a transient instability at
the moment when the time trace was recorded rather than a local minimum
with physical interpretation. Indeed a new iteration of the measurements did
not show this low value point but a continuously growing number and ratio
of events when R increases.

Since in our experiment we cannot reach PCM reflectivities much larger
that 7% we have no experimental results to carry out an analysis for higher
values of R. However, the number of extreme events when R = 7% is only
little higher than when R = 6.7%. We believe that this might be the begin-
ning of a region where a saturation of the number of extreme events is seen
in the laser output power. Naturally we have not enough data to confirm
this trend but we cannot expect the number of extreme events to grow on
limitless either. Indeed if too many events had very high amplitudes, the
whole signal’s significant level H, and the Al = 2 threshold would both be-
come higher and the number of events likely to reach this level would curb
consequently.

Besides the number of extreme events, the laser power level is also affected
by the feedback. Indeed the maxima histograms in Fig.8.6 also show a drift of
the average level towards higher power values. This means that the feedback
ratio induces an increase of the general signal level along with the increase
of the number of extreme events.

8.3.3 Reshaping the distribution

As mentioned previously, the statistics’ shape undergoes a stretching when R
increases. The transition from a gaussian-like shaped statistics of the pulses’
power when R is small to a long-tailed statistics with increasing probability
for high amplitude peaks when R is larger is illustrated in Fig.8.8.

In Fig.8.8, the maxima histogram envelope shows new concavity for in-
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Figure 8.8: Evolution of the shape of the tail of the events’ distribution in
the laser power for increasing values of R. The continuously growing new
concavity shows a long-tailed distributed power peaks.

creasing R values due to a higher number of power peaks of high amplitude.
By comparison to the histograms shown in Fig.8.6, in Fig.8.8 the average level
of the signal has been subtracted in order to compare relative distortions, in-
ducing a shifting of the x-axis to lower values, starting at zero. The stretching
of the distribution is the result of the presence of peaks of higher amplitude
in the laser power. These peaks contribute to increase the standard deviation
of the maxima histogram and the abnormality index span. The evolution of
maximum A/ for each trace versus R is presented in Fig.8.9. Again the curve
shows the same trend as seen in Fig.8.7. Maximum abnormality index value
is achieved (Al = 3.3) when R = 6.7%.

The variation of maximum A[ for each trace versus R is a means to quan-
titatively estimate the distortion of the statistics since we can see how far
from the average value the highest peaks range. Considering the case when
R = 1.3% as a starting point and the associated distribution shape as a ref-
erence, the stretching of the distribution reaches at its maximum 150% of its
initial value when R = 6.7%. Therefore the reflectivity value, through the
associated number of extreme events, dramatically induces a modulation of
the width of the laser power distribution. Consequently, a long-tailed reshap-
ing of the distribution is induced as well, directly caused by the increasing
number of high-amplitude peaks in the laser power.
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Figure 8.9: Evolution of the maximum value of abnormality index reached
in each trace versus R.

Extreme events are a very good example and illustration of how the mere
variation of a single parameter can induce an alteration in the major prop-
erties of the overall dynamics of a system. The delayed feedback strength is
therefore a command control for the occurrences of extreme events in a laser
diode. Extreme events become more and more numerous and show increasing
abnormality indices when R is increased.

8.4 Lone pulses versus multiple pulses

A careful analysis of the time traces in Fig.8.6 allows us to go deeper in the
analysis of the features of the detected extreme events and to classify them
in two groups. Generally, in chaotic dynamics most pulses are not regularly
spaced in time. Yet, in our feedback laser system there are some which are
clearly separated by regular time intervals like those shown in Fig.8.10, which
is a zoom on the dashed box in Fig.8.6.(b). Those regularly spaced peaks
also get amplified when R increases and count as extreme events if their
amplitudes reach Al = 2.

We sort the extreme events in two groups according to their type. In
group I we gather the isolated extreme events, which are those like the one
shown in Fig.8.5. An extreme event belonging to group I is basically a single
high pulse with no correlation with its precedent and its following counter-
parts. In other words, group I is made of lone extreme event which temporal
distribution is randomly set. Group II contains what we call "bunches of
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Figure 8.10: Zoom on the time trace (b) in Fig.8.6 showing examples of peaks
distributed at the pace of the time delay 7 = 2.2 ns.

extreme events”. Those bunches are made of pulses that not only comply
with the Al > 2 condition but have also the characteristic property to be
distributed in regular time intervals. To be more precise, we saw experi-
mentally that bunches of peaks could appear showing perfectly regular time
intervals between consecutive peaks. By measuring this interval, we noticed
that the time span between two peaks of a same bunch is constant and equals
the external cavity delay 7. As can be seen in Fig.8.10, a bunch of events
is made of about four or five peaks, separated from each other by the time
delay 7 = 2.2 ns. The histograms in Fig.8.6 take into account both types
of extreme events since they only count how many peaks reach Al = 2. To
discriminate those two kinds of extreme events, we consider that consecutive
events separated by times below thrice the delay belong to the same bunch.

First, for smaller R values like in Fig.8.6.(b)-(c), extreme events appear
as high lone peaks. Then as shown in Fig.8.6.(d) bunches of small pulses
that are separated by the time-delay period grow and end up by reaching
the threshold as well, each pulse might thus count as an extreme event as
illustrated in Fig.8.12. These two situations of extreme events, either isolated
pulses from group I or bunches of pulses with the time-delay periodicity from
group II, coexist in a single time series. However, we find more extreme events
of type I (isolated pulses) than of type II (bunches of pulses). Their ratio
varies when increasing the mirror reflectivity, though.
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Figure 8.11: Distribution of the number (left) and the ratio (right, calculated
on the basis of all extreme events) of the two kinds of extreme events in the
laser power.
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Figure 8.12: Extreme event of group II, made of a bunch
separated by the delay 7.

8.4.1 Relative evolution of the extreme events

of three peaks

Fig.8.11 illustrates the distribution of the two kinds of extreme events for
each value of the mirror reflectivity. We notice that single pulses are always
in higher supply than the pulses appearing in bunches. Indeed for the small-
est values of R, only extreme events of group I are seen. Then when R is
increased the number of both kinds of events increase, the events of group
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IT always remaining fewer than those of group I in our reflectivity span. As
for the ratios of the two kinds of extreme events, we notice an interesting
feature. When R increases, although the number of both kinds of extreme
events increase, the evolution of the ratios of each kind shows that the pro-
portion of events of group II increases gradually in spite of the proportion of
events of group I. In other words, extreme events distributed in bunches are
more likely to appear when the feedback ratio is larger.

We account for this observation with the argument that the delayed feed-
back somehow tends to impose its own time scale on the chaotic laser dynam-
ics, which is exhorted by moments to oscillate at the delay time scale. There-
fore when the feedback strength is larger, more extreme events separated by
the delay 7 are seen than when the feedback is low. Consequently, the ra-
tio of extreme events in bunches increases while the ratio of the randomly
time-distributed isolated extreme events curbs. It is worth emphasizing that
both types of extreme events are pulses (or pulse packages) that occur at ran-
domly distributed time intervals much larger than the system’s time scale,
hence they can be considered as scarce events. Note that when counting the
extreme events, each peak showing Al > 2 counts as one, whether belonging
to group I or group II. Thus a single bunch made of five peaks counts as five
extreme events, provided the Al > 2 condition is fulfilled for each peak.

8.4.2 Delay-induced coherence in extreme events

We just saw that the feedback delay has a characteristic impact on the tem-
poral distribution of the extreme events in the laser output optical power. We
have identified the extreme events that appear regularly in bunches (group
IT) and discriminated them from the isolated ones (group I) which are ran-
domly distributed in time. Actually, even when extreme events appear as
isolated pulses, they differ from the usual model of lone pulses totally uncor-
related with any other pulse that has been reported so far and those isolated
pulses keep the signature of the time-delayed feedback. This phenomenon is
illustrated in Fig.8.13.

A single extreme event is basically made of a very short pulse surrounded
by fast fluctuations of lower amplitude. As shown in Fig.8.13.(a) and previ-
ously seen in Fig.8.6, a single extreme event pulse is anticipated and followed
by other pulses that repeat periodically at the delay time scale. Fig.8.13.(b)
shows the superposition of 70 time series exhibiting extreme events of group
I when R=4.4%, each one being centered on the main pulse and plotted in
a 20-ns time span. We are sure there is no extreme event of group Il among
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those traces since only one peak per trace reaches the red AI = 2 thresh-
old line in a time span of 20 ns. The criterion that we choose to sort the
extreme events into group II is as follows: two consecutive extreme events
must be separated by a time interval smaller than three times the delay —
that is 3 X 2.2 = 6.6 ns — to belong to the same bunch. This criterion is
never fulfilled in the traces in Fig.8.13.

1 (a) | ‘Tzz.z ns

o
o
@

Power (a.u.)
o
o
N
T
|

o
o
=
T
|

o

o
o
@®

Power (a.u.)
o
o
N

Time (ns)

Figure 8.13: (a): single time series centered on one single extreme event of
group L. (b): superposition of 70 extreme events of group I with the cor-
responding average curve in yellow. Power dropouts (green ellipses) occur
about three time at intervals of 7 at each side of the central pulse. As a
result, a sketching in packages made of fuzzy pulses repeating themselves at
the delay time scale is observed.

In all cases, a single extreme event has a well-defined pulse shape which
is surrounded by pulses repeating at multiples of the time delay. From one
time series to another, although the central peaks are superimposed, the
smaller pulses at the time delay periodicity remain uncorrelated and overlap
with each other with no apparent regularity. However a general patterning
is sketched when many traces are simultaneously plotted. Indeed, they show
power dropouts at each side of the main peak at multiples of the time delay
and within a time interval of about two or three times the delay. It is inter-
esting to see that even the extreme events that appear as single pulses show
temporal properties related to the time delay. Naturally, they are different
from the extreme events of group II which are very precisely spaced by 7.
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Nonetheless the patterning of overlapping fast oscillations in fuzzy packages
separated by the delay time scale in Fig.8.13 leads to the conclusion that,
in our system, extreme events are not merely single high-intensity pulses
with immediate recovery to an average as reported in [135]. Indeed, extreme
events are rather pulses of high amplitude coming along with very fast oscil-
lations of smaller amplitude damped with the delay time scale.

However, as we mentioned before, although the influence of the feedback
delay is clear when looking at an extreme event of group II, its influence is
much weaker on those of group I. That is why we need to superimpose many
traces of extreme events of group I before being able to see this special pat-
terning at the delay time scale. When looking at time spans lager than two
or three times the delay 7, this patterning induced by the delay ends up by
fading. Repeating this analysis for other R values leads to the same obser-
vation, confirming thus the coherence induced by the delay in the temporal
distribution of the extreme events.

8.5 Reflectivity-dependent temporal distribu-
tion

As we demonstrated with the experimental results, the external cavity time
delay induces regularity in the temporal distribution of some extreme events:
those that appear in bunches (group II). We analyse now the statistics of
the time between extreme events in order to see if the occurrences of ex-
treme events abide by a special law. As has been measured in a spatially
extended nonlinear optical system [125], the distribution of the waiting time
between extreme events is expected to follow a Poisson distribution. The
representation of the histogram of the occurrences of the elapsed times be-
tween two extreme events using an x-axis in log scale is convenient to us.
Indeed as explained in details in [137], a Poisson distribution of times (tx)xen
in linear scale is equivalent to a straight line when the abscissa values are
(wr, = In(tg/tx_1))ken=- Therefore a deviation from the Poisson distribution
would induce a deviation from the straight line and would be easily pointed
out. The same temporal study of the extreme events occurrences as the one
done in [125] applied to our PCF laser results in the curves presented in
Fig.8.14.

The curve in Fig.8.14.(a) is a straight line as expected from [125], we
can then conclude that the time between extreme events is distributed ac-
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Figure 8.14: Statistical distribution of the times between extreme events for
R =4.4% (a) and R = 7% (Db).

cording to a Poisson law. However, in Fig.8.14.(b), the distribution shows a
deviation from the monotonous straight line. Indeed when R is small, the
distribution follows a Poisson law since the points form a straight line. But
increasing the feedback strength leads to a deviation from the log-Poisson
statistics. And this deviation occurs mostly for small values of wy, where
the events are still distributed linearly in log scale but with a different slope.
In Fig.8.14.(b), the distribution of the time elapsed between extreme events
shows two trends represented by two straight lines with different slopes. In
other words, the time intervals corresponding to small values of wy follow
their own log-Poisson law and the time intervals corresponding to larger val-
ues of wy follow another log-Poisson law with a different slope. The above
mentioned small wy values correspond to values of t, — tx_; that are com-
parable to the time delay, hence the deviation originates from the delayed
feedback.

Again, the parameter that causes the deviation from a single Poisson
distribution to two Poisson distributions with different slopes is the feedback
strength through the mirror reflectivity value R. As expected, we noticed
experimentally that the larger the value of R the larger the difference between
the slopes of the two log-Poisson distributions.

Actually, this trend is also expected from Fig.8.13 where pulsating dy-
namics showing the periodicity of the time delay occur along with isolated
extreme events. These secondary pulses become themselves extreme events
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when R increases, increasing thus the number of extreme events belonging
to group II to the statistics. Therefore the signature of the delay 7 in the
time between extreme events is stronger when R is higher.

8.6 Extreme events seen in simulation

Extreme events are also predicted in the theory. Fig.8.15.(a) displays the
same bifurcation diagram as Fig.4.1 with two time traces (b) and (c) show-
ing very high peaks. We identified those peaks as extreme events since they
show abnormality indices larger than 2. As indicated in the bifurcation dia-
gram (a), time traces exhibiting extreme events such as those in Fig.8.15.(b)
and (c) are found in the two last chaos bubbles, that is for values of v above
0.025. For lower v values, no such behavior is seen and for higher v values
chaos suppression occurs. We do not bring here quantitative compliance with
the experimental results since we simply aim at providing with a theoreti-
cal confirmation of the dynamics seen in the experiment about the extreme
events. Indeed, a thorough study of extreme events would require to carry
out simulations with much larger time and feedback ratio spans, along with
a detailed study of the distortion of the distribution.
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Figure 8.15: Bifurcation diagram (a) with time traces showing theoretical
evidence of extreme events in the laser power (b) and (c). The parameters
of the simulation are the same as in Fig.4.1. The red horizontal lines in the
time traces are the Al = 2 extreme event threshold.

Yet il could be of great interest to carry out simulations in order to do
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an extensive study of the evolution of the extreme events and a statistical
analysis of their occurrences similar to the one we reported about the exper-
imental observations. We expect that a further statistical study of the time
between extreme events in simulated long time traces —maybe with other
simulation parameters to be closer to the experiment— could result in the
same conclusions as we presented in this chapter. For example, an increasing
ratio of extreme events of group II for large values of v could be expected.

We also believe that the extreme events stem from destabilized external
cavity modes that give their temporal signature to the time interval between
their occurrences. This could account for the fact that several ECM desta-
bilizations need to occur before extreme events can be seen. Indeed, in the
simulation, they are visible only for feedback ratios higher than a certain
value, which, in Fig.8.15.(a) is located in the sixth chaos bubble.

8.7 Discussion and interpretation

In conclusion, extreme events occurring in a laser diode with phase-conjugate
feedback operating in chaotic regime have a double nature. They show both
general features commonly seen in extreme events throughout many field of
physics and particular features associated with the time-delayed nature of
the laser system. As we discussed in this chapter, extreme events in the
laser power are high peaks or pulses that fulfill the condition Al > 2 and
which number and amplitude increase along with the value of the command
parameter R. Moreover they induce a stretching of the initial Gaussian dis-
tribution of the power peaks into a long-tailed shape as often reported in the
researches tackling extreme events in physical systems. Now the fact that
our system is driven by a time-delayed feedback adds characteristic proper-
ties to the extreme events detected. Indeed they show a double nature and
can be sorted in two groups according to whether they are single isolated
pulses (group I) or distributed in bunches of regularly-spaced pulses with the
time delay time scale (group II). Since the strength of the signature of the
delay is directly dependent on the value of R, the mirror reflectivity is again
a control parameter of the proportion of extreme events of both nature, as
well as their temporal distribution law.

By contrast to reported extreme events seen in optics the fact that we
work with a time-delayed feedback configuration somehow adds a constrain
to the extreme events that are prevented to behave freely with a totally
random time distribution. The delayed feedback, even in a range of values
that may seem small (R < 7%), clearly imposes its own time scale on the
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system’s dynamics through privileged values of the times between extreme
events that are more likely to occur than others. And this last point is not
only related to extreme events since we also see bunches of peaks in the laser
power that do not reach the extreme event threshold as well as we can see
many single peaks that do not show Al > 2 in any common chaotic dynamics.

This brings us to the conclusion that the extreme events that we report
here show an interesting ambivalency. Their occurrences are clearly unfore-
seeable since they originate from chaotic fluctuations in the laser power.
However, depending on the feedback ratio their likeliness to occur at a pre-
cise time scale —naturally the one ruled by the external cavity delay— can be
foreseen. This property makes our PCF laser system show extreme events of
a kind different from those that can be seen in a system without feedback.

The simulation results presented along with the experimental study bring
confirmation to the fact that extreme events are also expected from the the-
ory. Yet, no quantitative accordance with the experiment about the evolution
of their number and the time between their occurrences is targeted in the
simulations presented here. Nonetheless, as we already mentioned, an in-
depth study of this phenomenon could unveil interesting new trends.

Now, increasing further the external cavity length leads to a transition
to another laser dynamics, causing the suppression of this extreme events
behavior. The next chapter focuses on this particular chaotic dynamics.



CHAPTER 9

Low-frequency fluctuations

Figure 9.1: Sisyphus, Franz von Stuck.

Low-Frequency Fluctuations (LFF) are randomly distributed dropouts of
the laser power followed by slower recoveries. LFF in laser diodes have been
largely studied in the case of conventional optical feedback [60,138]. Due to
this particular succession of abrupt dropouts and slow recoveries, LFF regime
is also known under the name of Sisyphus effect, as a reference to the myth
of Sisyphus in the Greek mythology. Their first experimental observation
was made by Risch and Voumard in 1977 in the output intensity of a laser
diode coupled to an external optical cavity [139]. They have been since then
theoretically accounted for with the model of the Lang-Kobayashi rate equa-
tions where they originate from a sequence of bifurcations on a large number
of external cavity modes. They are generally expected to occur when the
laser operates close to threshold. However they also occur for higher current
values when the laser operates in a fully developed chaotic regime, close to
the so-called coherence collapse state [46].

In the case of conventional feedback, the features of the LFF have been
experimentally studied as a function of the laser current or the feedback ratio.

131
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Figure 9.2: Intensity time series of a semiconductor laser subject to constant
optical feedback and three different injection currents. Image from Heil et
al. [138]. The time traces show typical LFF dynamics characterized by brutal
power dropouts occurring at irregular intervals followed by slower recoveries.
When the injection current increases (from (a) to (c)), the time intervals
between dropouts shorten.

Fig.9.2 shows an experimental evolution of LFF in the case of a fixed conven-
tional feedback ratio when varying the current [138]. In the case of phase-
conjugate feedback LFF have been seen and studied experimentally [80], yet
no satisfactory theoretical model capable to account for their origin has been
formulated by contrast to the COF case. Moreover, to our knowledge there
is no detailed analysis of the evolution of LFF in the case of PCF related to
a variation of the feedback ratio. Therefore we study here in detail the LFF
that occur in the case of PCF. We also report on an interesting new case of
coherence resonance undergone by the laser when varying the feedback ratio
and without any addition of external noise.

9.1 Experimental evidence

9.1.1 Conditions of occurrence

Generally, and as predicted by the theory, experiments that aim at showing
low-frequency fluctuations work close to threshold. Indeed the LFF regime
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is expected to appear from a stable emission regime and to give way to a
fully developed coherence collapse regime [80, 138, 140], as shown in Fig.9.3
in the case of COF. However it is also possible to see them for high current
values.
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Figure 9.3: Dynamical behavior of a semiconductor laser subject to optical
feedback in feedback(y) — current(I) space. The LFF regime is depicted in
light gray. The dark-gray region embedded in the LF'F regime corresponds to
the region of coexistence of the stable emission state and the LFF state. The
unshaded region encompassed by the dashed line corresponds to the contin-
uous transition between the LFF regime and the fully developed coherence
collapse regime. Image and description from Heil et al. [138].

In our experiment, we work at a fixed drive current value: I = 60 mA <—
ﬁ ~ 5. Although LFF have been seen and theoretically predicted when the
laser operates close to the threshold, the reason why we work at this high
current value is the necessity of high beam powers to perform phase conju-
gation with a reasonable gain in the SPS crystal. The external cavity length
is different from what it was in chapter 8. We have now L., = 132 cm
with Ly = 32 em and Ly + L3 + Ly = 68 ¢cm. The external cavity delay is
7 = 4.5 ns. When we increase the mirror reflectivity value gradually from
zero, the laser first exhibits self-pulsing external cavity modes as described in
chapter 6. Then the system reaches the coherence collapse regime in which
chaos shows features similar to what was reported in chapter 8 where the
extreme events were studied. When further increasing R the dynamics quali-
tatively changes and starts resembling LFF. Indeed, the particular dynamics
related to the LFF tends to impose itself upon the otherwise fully developed
coherence collapse state. Therefore in our case LFF only appear for cur-
rent values much higher than the laser threshold, once the laser is already
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operating in chaotic regime. This contrasts with some above-mentioned ex-
periments in COF where LFF were seen as a transition to chaos. Moreover,
in our reflectivity span, the LFF dynamics does not disappear nor does it
give way to another dynamics —like a return to steady state— as could be ex-
pected from the literature. Fig.9.4 shows the evolution from fully developed
chaos to the LFF regime seen in the time traces and the RF spectra.
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Figure 9.4: Birth of low-frequency fluctuations and qualitative evolution
when R increases. The curves at the bottom are the RF spectra corre-
sponding to the time series at the top.

One can see that when R increases, the laser power shows a transition
from coherence collapse state (R = 3.5%) to LFF dynamics characterized
by the clearly visible abrupt power dropouts and the following slow recov-
eries. In the associated spectra this transition is easily spotted when the
low-frequency components gain intensity comparatively to higher frequen-
cies. The signature of the external cavity delay is strongly marked in the
regular distribution of the frequency peaks. Indeed, the corresponding fre-
quency interval is % = 220 M Hz. Depending on the feedback ratio, the
regularity of the dropouts and the sharpness of the spectral peaks are al-
tered. For instance, when R = 6.1%, the power fluctuations appear to be
more regular in time and the spectral peaks appear to be sharper than when
R = 4.6%.
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9.1.2 Reflectivity range

Before moving to their detailed temporal and spectral analysis, the reflectiv-
ity range in which LFF are seen has to be discussed. We study the properties
of the low-frequency fluctuations with reflectivities ranging up to 7.4%. This
value is limited by the gain of the four-wave mixing in the phase conjugation
process. Consequently we do not know how they evolve for higher reflectiv-
ity values. In Fig.9.4, LFF are seen for R > 3.5% even though they were
never seen for the same values of reflectivities when studying extreme events
in chapter 8. Indeed experimentally, for the same reflectivity values, there
are times when the laser exhibits LFF and times when it does not show this
transition and remains in a plain chaos dynamics as was the case in chapter
8.

Actually, the reason of this difference stems from the external cavity
length. In the case of chapter 8, the time delay was 2.2 ns and no LFF
was seen while now it is 4.5 ns. Hence the time delay is the parameter
which controls the appearance of the LFF state. As was predicted in chapter
4, a longer time delay causes secondary bifurcations on ECMs to occur for
smaller feedback values. Therefore, in the case of a longer external cavity,
more complex chaotic dynamics are expected to be seen for smaller feedback
values than in the case of a short cavity. This is why the transition to
LFF was not seen in the study of the extreme events in chapter 8 and is
seen now. Since our reflectivity range is limited to about 8%, it is strongly
possible that the transition to LFF would have happened in the case of the
short cavity for larger -but out of range- reflectivities. Indeed, what we call
low-frequency fluctuations is merely a common chaotic state for which the
contribution of the lowest frequencies of the laser power somehow become
boosted up under the effect of the feedback. In other words, LFF state is a
particular self-organization of the fluctuations constituting a chaotic trace in
a slowly-varying enveloppe showing more or less regular power dropouts.

The time delay 7, through the external cavity length L..,, is therefore
a crucial parameter in the observation of the laser dynamics. According to
its value, the laser exhibits totally different dynamics for the same range of
feedback ratio.

9.2 An interplay between three time scales

The experimental conditions in this study of the LFF are I = 60 mA and
Loy = 132 em. This value of L.y, corresponds to the effective cavity length
in the case when the grating within the crystal is a transmission grating,
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thus the path of the light takes into account one round-trip between the
laser and the crystal —in this case 32 cm— plus the length of the ring cavity
loop (68 cm).

One can see in Fig.9.4 that starting from a rather weak PCM reflec-
tivity value (R = 3.5%) for which the laser exhibits chaos, an increase of
the reflectivity induces a modification of the time trace shape until power
dropouts start to appear, characteristic of the LFF state. They are called
low-frequency fluctuations due to the average time between dropouts rang-
ing from about 30 to 200 ns, which is much longer than the laser relax-
ation oscillations period, remaining at about 150 ps. The power dropouts
occur then with a frequency much lower than the relaxation oscillations:
frrr 210 MHz < fro ~ 7 GHz. Those LFF become distinguishable from
the chaotic background only when operating above a certain value of PCM
reflectivity. Furthermore, in our range of reflectivities, once the laser exhibits
LFF, this dynamics does not disappear when further increasing R.

The RF spectra in Fig.9.4 show the frequency distribution of the signals.
We first identify frequency peaks repeating themselves on a regular basis.
They are the signature of the feedback time delay. Indeed in the spectrum
those peaks are regularly distributed at a pace of f.., = 220 MHz =
which corresponds to the external cavity frequency. These peaks at
and multiples correspond to bifurcating self-pulsing dynamics at the exter—
nal cavity frequency or, equivalently, indicate that the chaotic dynamics
emerges from secondary bifurcations on a self-pulsing solution of the type
of the ECMs. The characteristic feature related to the appearance of LFF is
the relative intensity of the lowest frequencies of the signal with respect to
the others. Indeed, in Fig.9.4, when R = 3.5% there is no visible LFF in the
time trace since the contribution of the lowest frequencies in RF spectrum
is weak. Then, when R in increased, the leftmost peaks in the RF spectra
gain intensity and become much higher than the others (up to 20 dB more
intense). This phenomenon happens along with the appearance of the power
dropouts in the time traces to which it is equivalent. Since the leftmost
peak in the spectrum is the one responsible for the low-frequency fluctuation
dynamics, the higher its intensity the more distinguishable the LFF in the
related time series.

C
Lca,’v

As we mentioned, the LFF regime shows a competition between several
time scales: the very fast relaxation oscillations —fro ~ 7 GHz—, the feed-
back time delay —f.., = 220 M Hz— and the slow power dropout frequency
—frrr =~ 10 M Hz. In order to study the full details of the LFF we need
to be able to see fluctuations within a bandwidth of about 10 GHz and at
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the same time to do acquisitions of the traces in a time span long enough to
see several low-frequency fluctuations and to study their distribution. This
requires measurement devices with huge resolution and storage capabilities.
Therefore we split the study of the LFF in two parts according to the working
time span:

- In order to see the details of a single LFF package —relaxation oscillations
and feedback time delay— we work with a 12-GHz-bandwidth LeCroy oscil-
loscope (40 GS/s) in a time span of about 500 ns.

- In order to see the evolution of the time distribution of the power dropouts
at the LFF envelope time scale with many LFF packages repeating succes-
sively, we work with a 4-GHz-bandwidth oscilloscope in a time span of about
200 ps.

9.2.1 Detailed zoom on a single LFF package
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Figure 9.5: LFF in the laser time series with a 12-GHz bandwidth oscillo-
scope. The power dropouts are randomly distributed in time and the time
between consecutive dropouts 17 rr has a great standard deviation. In this
example, Tppp, = 60 ns, Tppp, = 30.2 ns and Tpp, = 43 ns.

Fig.9.5 shows a typical experimental time-trace of LFF chaotic dynamics
seen with a 12-GHz bandwidth oscilloscope and observed for a mirror reflec-
tivity of 5%. As typical in LFF dynamics [60] and as predicted theoretically
in a model of a laser with PCF [51], the dynamics is made of successive
significant power dropouts. As we will discuss later and as we can see in
Fig.9.5, those power dropouts occur randomly in time but with an average
time between dropouts much slower than both the laser internal time scale
and the external cavity time delay.
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Figure 9.6: Detailed zoom on a single LFF package. Time series taken with
a 12-GHz-bandwidth oscilloscope. The fast oscillations in red are the relax-
ation oscillations while the pulses in the blue trace are the signature of the
external cavity delay. A LFF package is the dynamical superposition of those
two time scales.

Fig.9.6 shows in detail the constitution of a single LFF package. We
distinguish two regions in the package of qualitatively different dynamics.
Indeed the first half (in red in Fig.9.6), contains mostly very fast fluctuations
with a period of about 150 ps which we identify to be the relaxation oscil-
lations. These oscillations quickly fade as off the second half of the package
is reached, in which we mostly see pulses separated from the external cavity
delay (in blue in Fig.9.6). A single LFF package sequence contains thus the
signature of both the feedback delay and the relaxation oscillations’ period.
At the beginning of the LFF sequence, the relaxation oscillations are very
intense and do not allow to see the pulses at the delay time scale. But when
we move rightwards in the LFF package, the amplitude of the relaxation os-
cillations curbs and their damping ends up by unveiling pulses at the period
of the time delay 7 that were until then hidden in the fuzzy fast dynamics
of the relaxation oscillations. To be more precise, the dynamics between two
power dropouts is made of plateaus of damped relaxation oscillations which
period is the time delay 7.

Note that the value of 7 given in Fig.9.6 (3.1 ns) differs from the value
given above (4.5 ns) because the experimental setup has been changed —the
cavity length has been reduced— the day when the acquisition with the 12-
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GHz-bandwidth oscilloscope was taken. But in all that follows in this chapter
the external external time delay is 7 = 4.5 ns.

9.2.2 Organization in successive packages

As we just saw, a LFF package shows particular dynamical properties due to
a two-time-scale interplay between the relaxation oscillations frequency and
the external cavity frequency. The last —and by far the most easily visible—
temporal parameter in a time series exhibiting LFF is the time distribution
of the packages Tprp. As one can notice in Fig.9.5, all LFF packages do
not have the same temporal extension, and 17, pp follows its own distribution
policy. In order to see the distribution of the time between consecutive power
dropouts, we take advantage of the fact that 17 ppr is much larger than any
other laser or feedback time scales, and therefore we filter out the time traces
with a low-pass filter of 1-GHz bandwidth so that we keep only the frequency
information on 17 pp.
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Figure 9.7: Consecutive LFF packages as typically seen in the laser power.
The low fluctuation time T pp is distributed following the histogram at the
right. The low-frequency components’ peak in the RF spectrum in the middle
is responsible for the power dropouts seen in the time series at the left.

A typical statistical distribution of Ty pp is shown in Fig.9.7 along with
the corresponding time trace and the RF spectrum. Similarly to what has
been reported for LFF dynamics in COF [55], the distribution shows no
statistical event for times smaller than a given refractory time —here about
10 ns—, and then Ty ppr follows a monotonously decreasing curve for larger
times. The histogram in Fig.9.7 is the evidence that in the corresponding
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single time series —counting about 3,000 LF'F packages—, the time distribution
of these packages varies in a wide range from 10 ns to over 300 ns. What is
interesting to study now is the evolution of this time distribution when the
mirror reflectivity changes to see the influence of the feedback ratio on the
temporal properties of the laser power.

9.3 Deterministic coherence resonance

9.3.1 Stochastic resonance and coherence resonance in
dynamical systems

It is of common knowledge that the dynamics of a noise-driven nonlinear sys-
tem can exhibit optimal response either to an external modulation or to one
of the system’s own time scale. The first case is called stochastic resonance
and the resonance parameter stems from outside the system. Stochastic
resonance was initially used in a climate model designed to explain the al-
ternance of glacial and interglacial ages [141]. Later, stochastic resonance
has also been reported in bistable noise-driven systems, such as in neuronal
systems and solid-state physics [142]. In the field of optics, a pioneering
experiment was performed using a bistable ring laser [143] and was later de-
tailed using vertical-cavity surface-emitting lasers [144]. Stochastic resonance
has also been seen in semi-conductor lasers exhibiting LFF by Buldu et al.
in 2002 [145] where the action of both external noise and a modulation of
the drive current leads the system to undergo resonance. This phenomenon
is shown in Fig.9.8 where the standard deviation of the normalized dropout
periods is shown for different noise intensities D.

A minimum of the standard deviation at noise intensity D = 0.25 ps is
observed, showing a higher regularity in the dropouts. Moreover, the mean
value of the dropout periods at this maximum regularity coincides with the
modulation period 7' = 70 ns (in the upper trace). The indicator of the
presence of resonance is usually the standard deviation. Indeed, a minimum
value of the standard deviation is directly associated with a higher regularity
of the system.

When the system, in presence of noise, shows optimal response to its own
internal time scale, i.e. without the influence of external modulation, this
phenomenon is called coherence resonance. Coherence resonance was found
initially in noise-driven excitable nonlinear systems by Pikovsky and Kurths
in 1997 [146]. Excitable systems are systems that can fire a pulse when given
an appropriate perturbation above a certain threshold and that cannot fire
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Figure 9.8: Mean value and relative standard deviation of the dropout peri-

ods versus noise intensity in a system showing LFF. Stochastic resonance is
achieved for a particular value of the noise intensity. Figure from [145].

a second pulse until a given refractory time. They demonstrated that the
normalized variance of the time between pulses may show a minimum value
for a precise value of external noise amplitude as presented in Fig.9.9. Trace
(a) can be seen as a sequence of pulses having durations ¢,. In trace (b) is

reported the normalized fluctuation of pulse duration R = Z;(;p), where

0%(X) is the variance and (X) is the ensemble average of X. This quantity
shows a minimum value when the noise amplitude D equals 0.07.
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Figure 9.9: Coherence resonance in a Fitz Hugh-Nagumo system under ex-
ternal noisy driving. Trace (a) displays the amplitude of the emitted spikes
y versus time. In trace (b), the normalized variance of the interspike time
R (dashed curve) shows a minimum value for a specific noise amplitude

(D = 0.07) while their correlation 7. is maximum (solid curve). Figures
from [146].
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Examples of coherence resonance are typically found in the generation of
nerve pulses in biology [147]. The first experimental demonstrations of coher-
ence resonance have been reported in electronic circuits [148] and in a laser
diode with optical feedback [56]. Both stochastic resonance and coherence
resonance have today been demonstrated for a large class of dynamical sys-
tems, including in the random-like motion between chaotic attractors [149]
and in bistable systems with time delay [150].

Both coherence and stochastic resonance have recently been shown in
deterministic chaotic systems, i.e. without the addition of noise. Martinez
Avila et al. [140] and Hong et al. [151] demonstrated that the increase of
the drive current leads to an optimal regularity of the time between chaotic
power dropouts in a laser diode. Buldu et al. reported that the chaotic
fluctuations exhibit optimal entrainment to external modulation when the
time period of this modulation is close to one of the multiples of the system’s
time scale [152]. As we are about to demonstrate, our experimental study of
LFF dynamics also fits in the frame of coherence resonance. We will show
in the following section that the laser exhibits optimal response to its own
internal time scale for a specific value of the mirror reflectivity.

9.3.2 Delay-induced optimal dynamical regularity

As we saw before, the time distribution between power dropouts T;pr in a
time series showing LFF is sparse as recalled in Fig.9.10. We demonstrate
here experimentally that when the mirror reflectivity varies, the distribution
of Ty pr is affected and the system shows coherence resonance.

Fig.9.11 shows the evolution of the time series and the corresponding
histograms of the distribution of T rp. Experimentally, with the increase
of the mirror reflectivity, the LFF tend to gradually organize themselves in
more and more regular power dropouts until a certain value of reflectivity.
Here, the most regular traces are spotted when R = 6.1%. For higher values
this regularity is then gradually lost but due to the limitation on the PCM
reflectivity in our setup at 7.4% we cannot observe what happens for higher
reflectivity values.

This feature is also visible in the spectra in Fig.9.4. Indeed the regularity
of the dropouts is related to the sharpness of the peaks distributed every
220 M Hz. The sharper the peaks the smaller the frequency dispersion and
thus the more regular the power dropouts. In Fig.9.4, the RF peaks are
sharper when R = 6.1% than for any other reflectivity value.

Besides the qualitative observation of the time trace regularity and the
RF spectra sharpness, another way to quantify the dispersion of T, pp versus
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Figure 9.10: Consecutive LFF packages as typically seen in the laser power.
The low fluctuation time Ty pr between two power dropouts is sparsely dis-
tributed in the time series.

R is to analyze the histograms of the time between dropouts as presented
in Fig.9.11 for each time series. We find that an increase of the mirror
reflectivity leads to a severe change of the statistical properties of Trpp.
First the average value of Ty pp, represented by the vertical red bars in the
histograms, increases. Then there is an optimal value of R for which the
dropout time distribution is narrower around its average value and therefore
the standard deviation of Ty pr gets a minimum value (b). A further increase
of the reflectivity leads to a statistical distribution (c) similar to case (a) but
with a larger average value of T pp. This feature is further confirmed when
looking at the corresponding time traces in Fig.9.11. Case (b) shows more
regular power dropouts than (a) or (c¢) and corresponds to the optimal LFF
regularity.

The fact that optimal regularity is achieved when R = 6.1% is confirmed
by three indicators:
1/ The time series in Figs.9.11.(b) and 9.4 show higher regulatity when R =
6.1%.
2/ The RF spectrum associated with the same time series in Fig.9.4 exhibits
sharper peaks when R = 6.1%.
3/ The histogram of the distribution of 77 rp in Fig.9.11.(b) has the smallest
standard deviation.
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Figure 9.11: Evolution of the LFF time traces with the mirror reflectivity
(left). The histograms at the right represent the statistical distribution of
Trrr for the related time trace. The red bars are the average values of Ty pp
for each time trace.

9.3.3 Coherence resonance of LFF dynamics

The existence of an optimal regularity in the LFF time trace as a function
of the PCM reflectivity is a potential signature of a coherence resonance.
A common indicator for demonstrating coherence resonance is to check the
evolution of the normalized variance defined by V' = <UTTLL§ £~ ~where o7, ..
and < Trpp > are respectively the standard deviation and the average value
of the dropout time T rp— as a function of the resonance parameter which
is in our case the PCM reflectivity R. The resonance-like phenomenon is
evidenced in Fig.9.12 which plots V' as a function of the mirror reflectivity.
This normalized variance V' exhibits a clearly distinguishable minimum at
a particular value of the mirror reflectivity that corresponds to case (b) of
Fig.9.11 where the dropout time shows higher regularity and the time distri-
bution shows smaller width. Like in the cases of [146] and [145], we conclude
that the presence of this minimum is the signature of a resonance. The curve
in Fig.9.12 shows three regions of qualitatively different features:

1/ For small mirror reflectivities, the laser exhibits a route to chaos from
undamped relaxation oscillations, which leads to a chaotic dynamics with
dominating high-frequency components at either the relaxation oscillation
frequency or the multiples of the external cavity frequency. There is no dis-
tinguishable power dropout, and the dynamics shows a large dispersion of
the times between chaotic pulses together with a small average time between
pulses. As a consequence V is large.
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Figure 9.12: Evolution of V = —Z-LEE_ g5 a function of the PCM reflectivity

<IrLpr>
R. A minimum is seen when R = 6.1%, signature of a resonance.

2/ For a larger values of R, the low-frequency components —pulsing at
frequencies ranging from 10 to 200 MHz- in the power spectrum gain inten-
sity, which indicates the emergence of clearly distinguishable and slow power
dropouts. The average time between dropouts increases with the increase of
the mirror reflectivity, but this increase occurs more slowly than the decrease
of the standard deviation of the time between dropouts. As a result, when
R increases, V' decreases down to a minimum value reached when R = 6.1%.
At that point the laser time series shows maximum regularity in the dropout
times and coherence resonance is achieved.

3/ A further increase of the reflectivity leads to a more randomly-distributed
sequence of power dropouts and o, ... increases faster than < 77 pp > with
R. V increases again consequently.

Since the resonance occurs without external modulation —typically drive
current [140] or external cavity length [152] modulation-, it is a coherence
resonance. Moreover, by contrast to the well-known coherence resonance,
in our case the resonance situation occurs without the need for any addi-
tional and optimal amount of noise. Therefore we call this phenomenon
delay-induced deterministic coherence resonance where varying the amount
of delayed feedback signal in a nonlinear system leads to an optimal response
of the system to one of its own dynamical time scales without addition of
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noise.

An important difference between our experimental conditions and other
demonstrations of coherence resonance is the fact that the resonance pa-
rameter is the feedback ratio only. More precisely we do not change the
drive current value as has been done in [140] and [153]. Indeed changing
the drive current induces a change in the relaxation oscillations frequency
fro. Although we do not know the influence of fro on the resonance of the
laser power dropouts, it is known that the competition between the dynam-
ics at the relaxation oscillation frequency and the slow chaotic LFF at the
time scale related to time delay is stronger when operating close to the laser
threshold, where it also leads to locking of quasi-periodic dynamics known
as synchronous LFF [154]. In our case we work at a fixed current level high
above the threshold and only change the mirror reflectivity value. We claim
that the resonance is purely delay-induced, i.e. that it is not related to or
supported by current-dependent relaxation oscillation fluctuations. There-
fore the mechanism that makes the laser undergo coherence resonance is
totally different in the case when R is varied from the case when [ is varied.

9.3.4 Independence of the resonance from the relax-
ation oscillations

Delay-induced coherence resonance is a phenomenon that does not require
the relaxation oscillations’ dynamics to be achieved. This claim is supported
by simulations on a model from a much simpler laser system than the one
used in the experiment: a class A laser with conventional optical feedback.
By contrast to laser diodes or class B lasers, class A lasers like gas lasers do
not exhibit relaxation oscillation-like dynamics because the carrier dynamics
has been adiabatically removed. Thus the dynamics is made of a single
equation for the optical field [18]. Taking into account the time delay, the
class A laser model writes [155]:

% = (1l +ia)E —b(1 +iB)|EPE + a(l +ie)E(t — T,) (9.1)

In this equation, t is the time measured in units of 1/, . 7, is the polar-
ization decay rate, E is the complex electric field, p is a dimensionless gain
coefficient and b a saturation coefficient. « is a detuning coefficient that is
function of A and §, where A is the detuning between the cavity frequency
and the laser frequency and 0 is the detuning between the atomic center
frequency and the laser frequency. [ is a detuning coefficient, function of 9.
T, is the normalized delay time. a = (1 — Ry)v/RoR3/[R2 \/(1 + €)1 Tin 18
the normalized delayed feedback ratio, where 7;, is the internal laser cavity



9.3. DETERMINISTIC COHERENCE RESONANCE 147

(a)

W
0 L L
0 100 200
(b ‘ |
)
E 2 i
0

0 100 200

|E|

0 100 200 300 7 75 8 8.5 9
Time (in units of delay time) a

Figure 9.13: Simulations of equation 9.1. Traces (a)-(c): low-frequency power
dropouts for a = 7.2, a = 7.5, a = 8.3, respectively. Diagram (d) shows the
ratio of standard deviation to mean value of the time between drops (1) as
a function of a. A minimum in the curve of the normalized variance (d) is
again the signature of a resonance, like in our experiment.

round-trip time, Ry is the power reflectivity of the laser output mirror and
Rj3 the power reflectivity of the external mirror. (1 + d€) is the phase shift
induced by optical feedback. We have simulated the dynamics of F for in-
creasing values of a and the other parameters fixed as follows: p = 0 (laser
pumped at threshold), « = 1.4, b =1, § = 3, ¢ = 0 (the feedback phase is
not taken into account), 7, = 1.

Samples of chaotic time series are shown in fig.9.13 for increasing val-
ues of a, with the time scale being normalized by the delay time 7,.. One
can observe fast pulsations of the laser output at a period close to T, and
dropouts that occur at random time intervals and with a much slower time
scale, of the order of 207, or even more. As shown in fig.9.13, the time in-
terval between successive power dropouts gets an optimal regularity for an
intermediate value of the feedback ratio (b), if compared to the situation
at smaller (a) or larger (c) feedback ratios. This conclusion is confirmed by
a plot of the ratio between standard deviation and mean value of the time

between power dropouts 7= as a function of the feedback ratio a (d).
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This delay-induced resonance of chaotic dynamics is qualitatively similar
to the one seen in our experiment, even though the dynamical system exhibits
no relaxation oscillation or internal dynamics faster than the delay time-
scale. Since class A lasers are dynamical systems of higher simplicity than
laser diodes (no relaxation oscillations) we claim that the conclusion about
the coherence resonance shown in the simulation can be extended to a much
wider category of time-delayed optical systems.

9.4 Simulated illustration of LFF

Although low-frequency fluctuations in laser diodes have been largely studied
experimentally, there are very few reports of simulated LFF in the case of
phase-conjugate feedback. Moreover, the cascade of bifurcations leading to
LFF state is still unknown. A pioneering simulated evidence of LFF dynamics
has been led by O’Brien et al. by simulation of the same Lang-Kobayashi
system of equations for PCF as analyzed in this manuscript [51].

P g

P - Power (arb. units)

600 800 1000 1200 1400
time/t

Figure 9.14: Simulated low-frequency fluctuations dynamics seen in the laser
power filtered at the round-trip time 7. Picture from [51].

An illustration of LFF dynamics is presented in Fig.9.14. Yet LFF are
seen for values of parameters out of physical range since the feedback ratio
value corresponding to the trace in Fig.9.14 is v = 5. Indeed, as we explained
in chapter 4, 100% PCM reflectivity is reached for v = 0.256.

We show here that a transition to LFF dynamics is also expected from the
theory within a range of parameters closer to our experimental conditions.
In the continuity of the simulations shown in the theoretical model in chapter
4, Fig.9.15 shows bifurcation diagrams in which we identify LFF dynamics.
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Figure 9.15: Bifurcation diagrams in which LFF dynamics are seen. The
simulation parameters for diagram (a) are P = 0.0417, T' = 1428, o = 3 and
0 = 3200. In diagram (b), P = 0.0417, T'= 1428, o = 5 and 6 = 3200.

Diagram (a) in Fig.9.15 is calculated for the same parameters as Fig.4.1
except 6 which has been changed to fit to the experimental time delay:
0 = 3200 <& 7 ~ 4.5 ns. The related time traces and spectra —tagged
from (A) to (E)- are presented in Fig.9.16 and show a transition to LFF dy-
namics when the feedback ratio increases. The time traces have been filtered
at the delay #. The transition to LFF is seen for reasonable values of v. In-
deed, the developed coherence collapse state displayed in trace (A) gives way
to the first visible LFF dynamics (B) as 7 reaches 0.015. Then, when the
feedback ratio increases, the power dropouts dominate the laser dynamics
and the time interval between consecutive dropouts gets larger (C), (D) and
(E). The general shape of the time traces show the dynamical properties of
typical LFF regime. Besides, we can see in the corresponding RF spectra the
increase of the level of the low-frequency components, which are responsible
for the transition from the coherence collapse state to sharp power dropouts.
This trend is in accordance with the experimental traces of LFF that were
presented in Fig.9.11.

The simulations however show a particular feature in comparison to the
experiment. The comparison between Fig.9.4 (bottom) and Fig.9.16 (middle)
shows that in the experiment the RF spectrum is made of peaks separated by
200 MHz (equivalent to ) while in the simulations the RF spectrum peaks
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are separated by 110 MHz (equivalent to 5-). Although solutions pulsing at
frequencies corresponding to double round-trip conditions have been theoret-
ically predicted in PCF from an analysis of the standing waves [71,90], such
solutions are not possible in our Lang-Kobayashi equations that only account
for single round-trip solutions. The reason is most probably to be found in
a period-doubling bifurcation on the ECM solution before it bifurcates to
chaotic LFF. However, a clear confirmation of this feature would require an
analysis of the ECM bifurcations, e.g. with continuation techniques like in
chapter 5.

Moreover, in contrast to the experiment, as displayed in Fig.9.15.(a),
the LFF regime in simulations is seen within chaos bubbles interspaced by
external cavity modes. This means that within each bubble of chaos a tran-
sition from the self-pulsing state characteristic of the ECM is destabilized
in a chaotic dynamics with the properties of LFF dynamics presented in
Fig.9.16. Experimentally, when LFF dynamics is observed, the laser oper-
ates in a continuous region of chaos without being interrupted by windows
of ECMs.
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Figure 9.16: Simulated transition to LFF obtained for P = 0.0417, T' = 1428,
a = 3 and 0 = 3200. Traces A to E refer to the tags in Fig.9.15.(a).

The bifurcation diagram in Fig.9.15.(b) brings theoretical illustration of
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LFF dynamics closer to the experimental observation conditions. Indeed, by
contrast to diagram (a), chaos is now extended to the whole feedback span.
Therefore, it shows a transition to LFF in a continuous chaotic state without
interruptions due to recoveries to pulsing ECMs. Diagram (b) is obtained by
increasing « up to 5, compared to diagram (a). The corresponding transition
to LFF is presented in Fig.9.17.

In the associated time traces and spectra, the transition from coherence
collapse state to LFF dynamics is shown to occur for a value of v larger
than in the case of Fig.9.16 where o = 3. Indeed, the transition becomes
clear in trace B when v = 0.03. The same dynamical properties as discussed
in Fig.9.16 are visible: the fluctuations get stronger and the interval time
between power dropouts gets larger when v increases. Yet due to a higher
value of «, dropouts are less sharp and the dynamics show more fuzzy fluc-
tuations. The main spectral properties such as the increase in the level of
the low-frequency components and the frequency spacing of the peaks are
similar to the previous case.

This set of simulated parameters illustrates with good qualitative accor-
dance the transition to LFF as seen experimentally. Indeed this transition
occurs for physically reachable feedback ratios and the LFF are seen in a
region of continuous chaos, without windows of periodic states.
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Figure 9.17: Simulated transition to LFF obtained for P = 0.0417, T" = 1428,
a =5 and 6 = 3200. Traces A to E refer to the tags in Fig.9.15.(b).

Those simulations aim at showing that there are configurations of pa-
rameters for which a theoretical prediction of LFF dynamics is possible. The
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main parameter that allows to see the LFF is the time delay. According to the
value of 6, the simulations predict different dynamical states which support
the experimental observations done for different external cavity lengths.

Since LFF dynamics can be observed in the simulation, it could be of in-
terest to carry out a study about the deterministic delay-induced coherence
resonance of LFF in the theoretical model as we reported in the experiment.
However, the short range of parameters in which LFF are seen in our sim-
ulations does not allow such a relevant study. Our aim here is limited to
show that this particular dynamics observed in the experiment is justified by
a theoretical background using a set of parameters reasonably close to the
physical ones.

9.5 Inverted LFF and burstups

Besides the common LFF state showing power dropouts, an inverted LFF
dynamics, showing brutal power increases followed by gradual decreasing
recoveries can also be observed. Yet these inverted LFF are very scarce and
accounts in the literature are in very short supply. Pan et al. saw them in
a semiconductor laser subject to moderate and strong conventional optical
feedback in 1996 [49]. They have also been spotted in asymmetric laser
diodes with different reflectivities in both facets [48]. Numerical calculations
also predicted them in laser diodes with frequency-selective optical feedback
[156], in multimode lasers with anticorrelated LFF dynamics [157] and in
the power VCSELs of different polarization states [54]. In our experiment
we also see evidence of this particular kind of LFF as shown in Fig.9.18.
Yet this switching has been operated without any changes in the experiment
compared to the previous study of the LFF.

The dynamics is pretty much the same as in the case of the common
power dropouts: the shape and the time scale of the LFF packages show no
difference except the fact that instead of brutal power dropouts, the laser
power shows brutal power increases. However, a particular feature makes
the transformation of inverted LFF into common LFF by a mere upside-
down shifting operation impossible. Indeed in both cases the brutal power
variations (either dropouts or increases) occur along with very intense power
burstups. Those power burstups are made of very short pulses — therefore
they need a high resolution scope to be detected— that appear along with
each LFF package whether it be a power dropout or a power increase. These
high-amplitude peaks preceding power bursts or dropouts are emphasized in
Fig.9.19.

Compared to the standard LFF package, the inverted one (Fig.9.19.(b))
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Figure 9.19: Comparison of the two kinds of LFF states. (a) is the common
LFF trace showing power dropouts while (b) is the inverted LFF state show-
ing power increases. In both cases the LFF packages show sharp and intense

power burstups.

shows the same very short power burstup pulse with an inverted pulse pack-
age. An interesting feature could be the study of the burstups’ occurrences.
There is to our knowledge no account for their presence and for the scenario
of bifurcations giving birth to them. Although we believe they always come
along with the LFF packages, they might not have been spotted before due
to the high temporal resolution required to see them. Indeed we measured
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the average HWHM of those burstups at about 300 ps.

9.6 Discussion

We have demonstrated here purely delay-induced and deterministic coher-
ence resonance in the precise case of the chaotic low-frequency fluctuations
(LFF) in a semiconductor laser with phase-conjugate feedback. This observa-
tion of low-frequency fluctuations is in good accordance with the simulations
showing that the theory expects the laser to exhibit LFF dynamics. This is,
to our knowledge, the first simulated evidence of low-frequency fluctuations
for reasonable values of feedback. Yet a thorough theoretical study of LFF
would be of great interest since the cascade of bifurcations leading to LFF
and their evolution with the feedback ratio remain unexplored.

This experimental evidence of the appearance of low-frequency fluctua-
tions in a chaotic laser with phase-conjugate feedback along with the study
of the statistics of the time between power dropouts led to the demonstra-
tion of a new kind of coherence resonance. The originality of this study is
that coherence resonance occurs without noise addition and also that the
resonance parameter is the PCF ratio only, all other parameters such as the
driving current are kept constant. Indeed, we saw that for an optimal amount
of feedback ratio, the laser diode exhibits an optimal regularity of the time
between slow power dropouts. This further confirms that the resonance is
induced by the feedback strength only and is not related to any appropriate
relationship between the system’s time scale and the time delay.

We also saw that low-frequency fluctuations are not always characterized
by power dropouts but can also show rapid power increases followed by slower
decreases. This inverted LFF state appears much more scarcely and it was
not possible to us to see them many times or to do a similar study as for the
regular LFF with power dropouts. However when we saw inverted LFF they
were not as easily destabilized as an external cavity mode could be. Indeed,
changing the mirror reflectivity or the drive current would keep them still
present at the scope. Indeed, they behave exactly as counterparts showing
power dropouts. Thus they cannot be identified to mere transient oddities or
noise-driven instabilities. The reason why sometimes inverted LFF appear
instead of the regular ones is unknown to us. Under apparently identical
experimental conditions they could show up and then never turn up again
for a long time. To our knowledge there is no theoretical explanation to their
appearance.
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As we already mentioned previously in this chapter, we studied the LFF
in the same range of reflectivities for which we studied the extreme events
of chapter 8 and in which LFF were never seen. This is because the transi-
tion from fully developed chaos —which is the state in which we tackled the
detection of extreme events— to the LFF state does not only depend on the
feedback ratio but also on the effective external cavity length. Since L., is
larger here (132 cm) than in chapter 8 (66 cm), our small reflectivity range
~limited at about 7.5%— is enough to see the transition to LFF state. Yet, we
have no experimental evidence of how this LFF state could evolve for higher
values of R, even with this long cavity configuration.
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CHAPTER 10
Conclusion and perspectives

What is a scientist after all? It is a curious man looKing through a Keyhole, the Keyhole of
nature, trying to Know what s going on. Jacques-Yves Cousteau

Our study of nonlinear dynamics in laser diode subject to phase-conjugate
feedback has unveiled several new theoretical and experimental results. We
discuss here the resulting conclusions and perspectives for a further continu-
ation of our work.

10.1 Summary of the results

The first main point was to design the experimental setup on which all our
observations and measurements were based. We performed phase-conjugate
feedback generation in a photorefractive semiconductor SPS crystal through
both reflection and transmission gratings. PCM reflectivities up to about 8%
are achieved with a laser diode power of 50 mW and with a build-up time of
some milliseconds. The effects of very small values of PCF ratio on the laser
properties have been evidenced in a reduction of the laser spectral width and
of its current threshold.

We tackled then the theoretical study of the nonlinear laser dynamics
through the exploitation of the Lang-Kobayashi system of equations adapted
for the PCF case. After demonstrating accordance with other simulations
carried out with different models, we extended the analysis of the laser dy-
namics to longer feedback ratio values. We showed that the laser may exhibit
chaos crisis, characterized by a gradual shrinkage of the regions of chaos as the
feedback ratio increases, resulting in chaos suppression. This phenomenon
is also at the origin of bistability between external cavity modes that are
self-pulsing solutions which frequency can possibly reach several tens of GHz
when increasing the feedback ratio.

For small values of the external cavity length, we showed evidence of

self-pulsing external cavity modes along with the bifurcation cascade that
stabilize and destabilize them. The spectral signature of the delay initiates

157
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the transition from chaos to a stable ECM which further undergoes period
multiplying and gives way to the next stable ECM. Moreover, the frequency
detuning between consecutive ECMs equals the external cavity frequency.

If the feedback rate is further increased, the dynamics qualitatively changes
making the self-pulsing ECMs unstable and transition to chaos occur. In
this chaotic dynamics we have identified and characterized the presence of
extreme events in the laser power. Extreme events are of two kinds: lone
peaks (group I) and bunches of pulses at the delay time scale (group II). As
the phase-conjugate mirror reflectivity increases, the ratio of extreme events
is modified, showing a higher impact of the time scale of the delayed feedback
on the elapsed time between successive extreme events. The mirror reflectiv-
ity controls the evolution of the extreme events, from their birth until their
transition to another dynamical solution.

The transition to the low-frequency fluctuation regime is triggered by
the feedback ratio. The chaotic fluctuations of the laser corresponding to
a fully coherence collapse state organize themselves in power dropouts at a
frequency much smaller than the external cavity frequency. Under the ef-
fect of the feedback ratio, the power dropouts undergo coherence resonance,
i.e. the property to show optimal response to the system’s own time scale.
This resonance is achieved under the sole effect of the feedback ratio with-
out current or external noise modulation. As a consequence we termed this
phenomenon ”feedback-induced deterministic coherence resonance”.

Fig.10.1 summarizes in a bifurcation diagram the intervals of feedback in
which the various dynamics can be seen. Experimentally, the transition be-
tween dynamics of qualitatively different dynamics are enabled by a variation
of the feedback ratio. Yet we also insisted in the importance of the feedback
delay which is a parameter that can be tuned as well as the feedback ratio
in order to favor the stabilization of a particular dynamics, especially when
working with a physically limited feedback range.

10.2 Consequences and novel contributions

In chapters 4 and 6, the theoretical studies have both confirmed and extended
the Lang-Kobayashi system of rate equations adapted for PCF —equations
(4.1)— for the analysis of a laser subject to PCF. The extension to higher
feedback values unveiled a route to chaos suppression and ECM bistability.
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Figure 10.1: Bifurcation diagram summarizing the repartition of the dynam-
ical states. The simulation parameters are P = 0.0417, T' = 1428, a = 3 and
0 = 476.

In addition to this, the experiment has also shown main novelties. First,
the generation of phase-conjugate feedback with a SPS crystal in a self-
pumped ring cavity in order to exhibit nonlinear dynamics in a laser diode
is a new configuration. Then, we showed the first experimental observation
of self-pulsing external cavity modes at different frequencies. This brings a
major illustration and confirmation of the theoretical predictions carried out
for years in this field.

We also have highlighted main differences compared to the conventional
optical feedback case. Indeed the presence self-pulsing external cavity modes
at frequencies multiples of f.,, is a characteristic of the PCF dynamics that
cannot be seen in the COF case. The theoretical study extended to higher
values of feedback which predicts chaos suppression and the resulting ECM
bistability is also a major difference with the COF case. More specifically,
we pointed out the crucial importance of the feedback rate and the feedback
delay. A judicious configuration of those two parameters allows the laser to
switch from one dynamical state to another. This property is a step towards
control of chaos and self-pulsing laser tunability.

In chapter 7 the comparative presentation of the four possible pulsing
states in a laser diode (undamped relaxation oscillations, mode locking, beat-
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ing between ECMs in the case of COF and self-pulsing ECMs in PCF) led us
to an interesting result. Each pulsing state has its own spectral characteris-
tic and is discriminated by the signature of the external cavity delay in the
optical spectrum. We identified the fundamental differences between these
pulsing states and therefore we emphasized that the self-pulsing dynamics
obtained with PCF is fundamentally different from any previously reported
case of self pulsation in a laser diode with optical feedback.

A laser diode with phase-conjugate feedback is a delayed nonlinear system
in which the dynamics is ruled by two fundamental parameters that deter-
mine the operating point. The feedback delay through the external cavity
length and the feedback ratio through the phase-conjugate mirror reflectiv-
ity are the two parameters that decide of the operating state of the laser.
Fig.10.2 displays in a 3-dimension mapping the evolution of the bifurcation
diagram as v and 6 vary.

Power (a.u.)

1000

Figure 10.2: Cascade of bifurcations and dynamical operating states as a
function of v and #. The simulation parameters are P = 0.0417, T" = 1428
and a = 3. For a given value of 6, if v varies, the usual bifurcation cascade
through a succession of self-pulsing ECMs and chaos is observed. Then, if #
increases, the bifurcation points drift towards the smaller values of .

With a simple theoretical model, we had the opportunity to account for
many dynamical operating states. Moreover, the simulations that we present
always show good qualitative accordance with the experimental observations.
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This experiment also proved that generating a phase-conjugate feedback from
a SPS crystal in a ring cavity loop is possible and suitable to the study of the
nonlinear dynamics of semiconductor lasers. This material shows sufficient
gain properties to be fruitfully used to generate PCF without the need for
an external electric field.

10.3 Perspectives for a future work

There are still several points of interest to be addressed, though. They con-
cern both theoretical extension of the model and experimental characteriza-
tions.

Thorough theoretical study of the extreme events and coherence
resonance of LFF

In chapters 8 and 9, we showed simulated evidence of extreme events and
low-frequency fluctuations. Yet, we did not go further in the analysis of the
bifurcation cascade that unveils those dynamics and their evolution. Show-
ing that the model predicts the existence of those two particular dynamical
states is sufficient to bring legitimate confirmation to our experiment. Yet,
studying the evolution of the extreme events and LFF with v could result in
the discovery of the bifurcation mechanisms that give birth to them. More-
over we expect that the experimental behaviors that we identified such as
the evolution of extreme events of group I and II and the signature of a
coherence resonance of LFF dynamics could be unveiled with a detailed the-
oretical study. Continuation methods may prove appropriate to identify the
transitions to these dynamics.

Taking into account the finite mirror response in the model

As we mentioned in chapter 4, our simple simulated model of the Lang-
Kobayashi system of equations does not take the PCF build-up time into
account, considering that the PCM has instantaneous response time. Since
it allows to work with much simpler equations that have until now shown
good accordance with experimental results, few publications have addressed
the question of integrating the mirror response time. However, we believe
that taking into account the PCF build-up time scale in the equations could
unveil different bifurcation scenarios according to the response time. In par-
ticular the values of feedback ratios for which the bifurcations occur could
show better accordance with experimental values and the transition from a
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short-cavity configuration to a long-cavity configuration could be better un-
derstood.

Along with the theoretical study of the influence of the mirror response
time, its experimental counterpart also deserves attention. The research
of new materials to perform phase conjugation showing new build-up time
scales and gain properties could also be motivated by a developing theoretical
research in the field. A mapping of the various suitable media to generate
PCF with their properties could bring a solid foundation to the state of the
art of the phase-conjugation generation techniques.

Experimental traces still unclarified

Among the wealthy dynamical states that were observed in our experiment,
there are still some to which we could bring no physical explanation about
their origin due to either uncertain experimental observation conditions or
to a too quick transition to a different dynamics. We present in Fig.10.3 two
samples of periodic states exhibiting short pulses or groups of pulses.
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Figure 10.3: Pulsing states observed in the experiment. Trace (a) pulsing at
935 MHz and (b) at 312 MHz were seen for the same experimental configu-
ration as the traces presented in Fig.6.8.

Traces (a) and (b) were seen for the same experimental conditions as the
traces displayed in Fig.6.8. Although we are not sure of the mechanism that
led to those traces due to a lack of experimental repeatability, a careful look



10.3. PERSPECTIVES FOR A FUTURE WORK 163

into the two traces suggests that trace (b) in Fig.10.3 could be originated
from a period tripling operated upon trace (a). Yet, the shape of the pulses
are not the same as the ones presented in Fig.6.8. Indeed the pulses in Fig.6.8
were centered on the mean power value —with power burstups as intense as
dropouts— while the pulses presented in Fig.10.3 show mostly power dropouts.
Therefore we cannot conclude on an potential scenario of bifurcation leading
to trace (b). It might also be totally independent from trace (a). At first
look, both traces resemble excitable pulse trains, either of the simple pulse
or the multiple pulse types that have been largely discussed in the case of
laser diodes with optical injection. Excitable pulses have been theoretically
predicted by Wieczorek et al. [158] in the PCF case and our experiment might
have resolved one of such excitable dynamics.

Control of chaos and applications

Chaos applications such as optical cryptography and random number gen-
eration are up-to-date applications using laser diodes with optical feedback.
Through our study of the nonlinear dynamics of a laser diode with phase-
conjugate feedback we have made a further step in the direction of chaos
control. Indeed, with the experimental reports on self-pulsing ECMs that
follow the trend predicted by the simulated model one may think of perform-
ing generation of optical frequency-tunable pulsing states. We can imagine to
design a tunable source of optical pulses at high frequencies where, by merely
changing the feedback ratio, the frequency selection could be operated. And
naturally, the physical origin of the pulses would be then the excitation of self-
pulsing external cavity modes of a laser diode with phase-conjugate feedback.

By contrast to the techniques using electrical modulation, an accurate
control of the PCF delay and ratio can make the laser exhibit either har-
monic oscillations or train of pulses at high frequencies. The challenge is
to be able to master the laser dynamical states in order to change it into
a tunable optical source at frequencies much higher that the boundary im-
posed by the relaxation oscillations which restricts the electrical modulation
frequency, hardly reaching 10 GHz. High-speed applications in the field of
optical communications motivate the research in this field.
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CHAPITRE 1
Introduction

L’acronyme LASER signifie "Light Amplification by Stimulated Emission
of Radiation". Le premier laser fut inventé en 1960 par Theodore Maiman
qui utilisa un cristal de rubis pour générer de la lumiere rouge. Les lasers
a semi-conducteurs, ou diodes laser, apparurent dés 1962 et ont pris de-
puis lors une place de plus en plus importantes dans nos vies quotidiennes.
On trouve des applications aux diodes laser dans de nombreux domaines de
la technologie, I'ingénierie et la recherche tels que les télécommunications,
la métrologie, le stockage de données et la médecine. Leur faibles cotit et
dimensions, la possibilité de les produire a grandes échelle ainsi que leur ca-
pacité a couvrir un large spectre de longueur d’onde ont rapidement permis
de les intégrer a tous domaines d’activité. Les lasers ont la particularité de
générer des faisceaux cohérents monochromatiques, particuliérement adaptés
aux applications d’interférométrie et de spectrométrie.

Nous nous intéressons dans cette these a I'étude de la dynamique d’une
diode laser lorsqu’elle est soumise a de la rétroaction optique. On parle de
rétroaction optique lorsqu’une partie du faisceau émis par le laser lui est re-
dirigé vers sa cavité apreés réflexion partielle sur un miroir. La rétroaction
est connue pour créer des instabilités dans le laser. C’est précisément dans
quelle mesure la présence d’une rétroaction optique a conjugaison de phase
perturbe le laser que nous nous proposons d’étudier dans ce manuscrit. Il
s’agit donc d’une étude de la dynamique non linéaire du laser pilotée par une
rétroaction optique a conjugaison de phase.

Les systémes non linéaires sont inhérents a la nature, les plus connus étant
les comportements atmosphériques et la dynamique des fluides. Les équations
régissant ce type de systémes sont trées difficiles & résoudre et sont a ’origine
de phénomeénes particuliers comme le chaos. La théorie du chaos fut initiée
a la fin du XIX¢ siécle par Henri Poincaré avec 1’étude du probléme a trois
corps. Les systémes chaotiques sont déterministes et montrent une grande
sensibilité aux conditions initiales car une légére modification des conditions
initiales pour un méme systéme peut mener a des évolutions a long terme
totalement différentes.
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Par conséquent, nous combinons par cette étude les domaines de la dyna-
mique de systémes non linéaires et de 'optique non linéaire. Une diode laser
avec rétroaction optique peut étre vue comme un oscillateur non linéaire
régi par des des paramétres intérieurs et extérieurs au systéme. En effet, en
absence de rétroaction, la dynamique du laser est gouvernée par ses oscilla-
tions de relaxation a la période bien définie. L’ajout de la rétroaction fait
intervenir une deuxiéme échelle de temps liée a son retard temporel. Le laser
va en conséquence suivre une successions de bifurcations aux dynamiques
particuliéres sous l'effet du taux de rétroaction. La configuration utilisant la
conjugaison de phase rajoute une troisiéme échelle de temps qui est celle du
temps de génération de la rétroaction. La dynamique du laser et ses points
de fonctionnement dépendent donc fortement de l'interaction entre ces trois
échelles de temps dont les caractéristiques sont visibles temporellement et
spectralement.

Nous apportons ici une contribution théorique et expérimentale sur la dy-
namique d’une diode laser soumise a rétroaction optique par conjugaison de
phase. Nous discuterons les différences fondamentales qui y sont attendues
par rapport au cas de la rétroaction conventionnelle. Au-dela de l'intérét ap-
plicatif du systéme, il s’agit aussi de la compréhension fondamentale d'un
systéme non linéaire montrant une rétroaction a retard. Bien que ce type
de systeme ait été étudié depuis plusieurs décennies, il reste de nombreux
comportements & élucider ainsi que des phénomeénes a découvrir.

Nous commencerons cette étude avec un bref rappel de ’état de 'art des
diodes laser a rétroaction optique puis nous présenterons le dispositif expé-
rimental permettant 1’étude de la dynamique du laser. Nous définirons aussi
la rétroaction a conjugaison de phase ainsi que le retard associé. L’étude
théorique présente le modéle utilisé pour simuler les comportements du laser
ainsi que les prévisions des routes vers le chaos et des influences de plusieurs
parameétres. Nous mettrons en évidence les phénomeénes de bistabilité entre
solutions pulsées, ainsi que la crise chaotique et la suppression de chaos ré-
sultantes. Une manifestation expérimentale de solutions auto-pulsées et leurs
processus de stabilisation et de déstabilisation associés seront ensuite présen-
tés ainsi qu’une confirmation qualitative obtenue par simulation. L’évolution
de la dynamique du laser alors que la force de la rétroaction augmente sera
ensuite présentée et illustrée par la visualisation expérimentale d’événements
extrémes et d’une résonance cohérente déterministe en régime de fluctuations
a basse fréquence. Nous terminerons enfin avec un rappel des points abordés
et une ouverture sur les pistes de recherche dans ce domaine.
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Contexte et motivations

2.1 Diodes lasers soumises a rétroaction optique

2.1.1 Rétroaction conventionnelle

La génération d’une rétroaction optique est en général simplement réa-
lisée en insérant un miroir sur le trajet du faisceau émis afin d’en renvoyer
une partie a l'intérieur de la cavité laser. La distance L entre le miroir et le
laser est habituellement de plusieurs centimétres. La figure 2.1 présente la
réalisation d’une rétroaction dite conventionnelle (notée COF : Conventional
Optical Feedback), c’est-a-dire ot le miroir est un miroir classique. La pré-
sence de cette rétroaction a de nombreux effets sur la dynamique du laser en
fonction de sa force. La proportion de rétroaction retournant dans le laser est
définie comme étant le rapport entre les puissances réfléchie par le miroir et

. P ; , . . N
émise par le laser : R = w. La rétroaction optique peut étre source
émis
de désavantages car elle peut changer totalement les propriétés du laser et y
causer des instabilités tout comme elle peut étre utilisée au contraire pour en

améliorer des propriétés et contribuer a la suppression de modes secondaires,
I'affinement spectral, I’accordabilité ou la stabilité en fréquence [1-9].

Faisceau émis

Diodel ) | Miroir
lodefaser e | conventionnel

Rétroaction conventionnelle

- \
- rd

L

FIGURE 2.1 — Diode laser soumise & une rétroaction conventionnelle : un
miroir renvoie une partie du faisceau émis dans la cavité laser.

Sous 'effet d’une telle rétroaction, le laser peut montrer des transitions
entre points de fonctionnement (ou régimes) qui ont été identifiées par Tkach
et Chraplyvy en 1986, rappelés en figure 2.2.

Le régime 1 correspond aux valeurs de rétroaction les plus faibles (R <
0.01%). Le laser montre de I'affinement ou de 1’élargissement spectral selon le

3
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Regime 5

Regime 4

-0 =

T =
Regime 3

-0

Regime 2
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-80 —
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Distance to Reflector (cm)

FIGURE 2.2 — Les cinq régimes pouvant se manifester dans une diode laser
soumise a rétroaction conventionnelle. La proportion de rétroaction et la
distance au miroir déterminent le régime. Figure provenant de [10].

déphasage du faisceau de rétroaction, c¢’est-a-dire selon la distance au miroir.
Le régime 2 est atteint pour des valeurs de R atteignant 0.1%. Des sauts
entre modes de cavité externe induits par la rétroaction y sont possibles. Ces
modes de cavité externe correspondent aux modes formés dans la cavité dé-
limitée par la facette émettrice du laser et le miroir extérieur.

Le régime 3 n’existe que pour une faible gamme de rétroaction (proche de
1%) et est caractérisé par de I'affinement spectral.

Dans le régime 4, la proportion de rétroaction est modérée (R ~ 1%). Le
spectre laser montre des modes secondaires naissant & des intervalles de fré-
quence de part et d’autre du mode principal définis par la fréquence des os-
cillations de relaxation. Les oscillations de relaxation représentent 1’échange
d’énergie entre les photons et les porteurs de charge dans la cavité laser. Leur
échelle de fréquence est habituellement de 5 4 8 GHz. Le spectre laser s’élargit
en conséquence. De plus, le laser est susceptible de montrer des oscillations
et du chaos.

Le régime 5 est atteint pour des valeurs de rétroaction trés élevées (R > 10%).
La cavité externe se comporte alors comme un prolongement de la cavité in-
terne et le systéme est équivalent & un court milieu amplificateur (la diode
laser) dans une trés longue cavité. Le laser émet alors un faisceau monomode
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avec une grande finesse spectrale.

Les recherches dans la dynamique des diodes lasers soumises a rétroaction
conventionnelle ont montré des phénomeénes d’hystérésis et de multistabilité
[11], d’oscillations de relaxation non amorties [12-14], de régimes pulsés [15—
17|, de fluctuations & basse fréquence [18-21] ainsi que d’excitabilité [22] et
de résonance cohérente pilotée par du bruit [23].

2.1.2 Rétroaction optique a conjugaison de phase (PCF)

Nous nous intéressons plus spécifiquement & un type particulier de rétro-
action appelé rétroaction a conjugaison de phase (ou PCF : Phase-Conjugate
Feedback). Cette rétroaction est générée a partir d’un miroir a conjugaison
de phase qui est un milieu dans lequel des interactions non linéaires entre
différents faisceaux ont pour conséquence la création d’un faisceau conjugué
par rapport au faisceau émis, comme schématisé en figure 2.3.

Faisceau

interagissant 1/
Faisceau émis

. — Milieu
Diode laser & e
non linéaire

Faisceau conjugué Faisceau
interagissant 2
axez L )
T
Miroir a conjugaison
de phase

FIGURE 2.3 — Laser soumis a rétroaction a conjugaison de phase. La géné-
ration de la rétroaction est basée sur des interactions entre le faisceau émis
par le laser et deux autres faisceaux interférant dans un milieu non linéaire.
Dans ce cas-ci, la conjugaison de phase est créée par mélange a quatre ondes
(Four-Wave Mixing (FWM) [25]).

Les effets d’une rétroaction a conjugaison de phase sont similaires au cas
de la rétroaction conventionnelle. En effet, la laser montre des instabilités
et une route vers le chaos a travers des régimes oscillants. Cependant, en
regardant dans le détail comment s’opérent les transitions entre dynamiques
et les natures-mémes de celles-ci, on se rend rapidement compte que des
différences fondamentales existent. En conséquence, dans le cas de la conju-
gaison de phase, la séquence de bifurcations vers le chaos fait intervenir des
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dynamiques inexistantes dans le cas de la rétroaction conventionnelle [24].
La dynamique des diodes laser avec PCF a été l'objet de nombreuses études
théoriques. De plus, d'un point de vue expérimental, les propriétés de la gé-
nération de la conjugaison de phase font que l'onde conjuguée créée et le
faisceau incident sont auto-alignés, ce qui a 'avantage a la fois d’augmenter
le facteur de couplage des faisceaux et de s’affranchir de I’alignement manuel
nécessaire dans le cas du COF.

Une onde plane électromagnétique d’amplitude F, de pulsation w se pro-
pageant suivant l'axe z s’écrit F(z,vy, z,t) = Focos(wt — kz — ¢(x,y, 2)).
Apres réflexion sur le miroir a conjugaison de phase, 'onde correspondante
s'écrit Eeon;(,y,2,t) = rEycos(wt + kz + ¢(x,y, 2)). 7 est le coefficient de
réflexion en amplitude du miroir. En réalité ces deux expressions représentent
la méme onde mais la composante longitudinale du vecteur d’onde k et la
phase ¢ sont de signe opposé.

Les études théoriques d’un laser avec PCF prévoient une grande richesse
dynamique [26-28|. Des comparaisons ont été établies confrontant le COF au
PCEF. La principale différence qui nous intéresse ici est présentée en figure 2.4.
Il s’agit de la nature des modes de cavité externe. Dans le cas du PCF, lorsque
le taux de rétroaction augmente, une fois la premiére transition vers le chaos
effectuée, le systéme ne retrouve jamais de solution stationnaire. Cependant,
dans le cas du COF, les régions de chaos sont entrecoupées de solutions
stationnaires appelées modes de cavité externe dans le cas du COF qui sont
représentés par des régions ne présentant aucun point. Dans un systéme avec
PCF, les régions de chaos sont entrecoupées de solutions pulsées périodiques
appelées modes de cavité externe dans le cas du PCF, représentées par des
régions constituées de lignes continues. Comme nous le discuterons plus loin,
les fréquences de pulsation de ces solutions sont parfaitement définies par
le retard de la rétroaction. Dans ce cas, le champ électrique complexe du
faisceau laser peut s’exprimer Fy(t) = Ajexp(iwt) + Asexp(—iwt) ou A; et
A, sont des constantes scalaires [29]. w est la pulsation qui est rattachée a la

C

longueur de la cavité externe par w = 25—, ¢ étant la vitesse de la lumicre
cav

et L.q, la longueur de la cavité externe.

Malgré de nombreuses études théoriques menées sur le sujet, les études
expérimentales de la dynamique de diodes laser avec rétroaction a conjugai-
son de phase demeurent peu nombreuses. Il est cependant documenté dans
la littérature une route vers le chaos a travers un régime d’oscillations de re-
laxation non amorties [30], ainsi que des évolutions de propriétés spectrales
et une mise en évidence d'un régime de fluctuations a basse fréquence [31].
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FIGURE 2.4 — Diagrammes de bifurcation dans le cas de PCF (a) et du COF
(b) pour les mémes valeurs de paramétres. N est la population électronique
et Ny sa valeur a ’état stationnaire en absence de rétroaction. x représente
la proportion de rétroaction et 7 le retard de la rétroaction : temps d’aller-
retour dans la cavité externe. Figure adaptée de [24].

2.2 Pourquoi I’étude de diodes laser avec PCF ?

Les diodes laser soumises a rétroaction optique a conjugaison de phase
présentent encore des propriétés inexploitées ou peu connues jusqu’a aujour-
d’hui. Nous apportons ici une extension de I’étude des modes de cavité externe
en en montrant la premiére illustration expérimentale. Puis nous étudierons
aussi l'influence du retard, par le biais de la longueur de la cavité externe,
sur les dynamiques observables en montrant des transitions vers le chaos
dans lesquelles des événements extrémes peuvent étre détectés ainsi qu’un
forme particuliére de résonance cohérente en régime de fluctuations a basse
fréquence. Sur le plan théorique, nous apportons aussi une explication aux
phénoménes de crise chaotique et bistabilité de solutions auto-pulsées, at-
tendues pour des taux de rétroaction plus élevés que ceux étudiés jusqu’a
présent. Nous mentionnerons également dans les perspectives d’autres pistes
de recherche que nous ne développerons pas dans cette thése.
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CHAPITRE 3
Dispositif expérimental

Nous présentons ici le montage expérimental qui permet de réaliser la
conjugaison de phase puis d’étudier la dynamique du laser avec rétroaction
a conjugaison de phase ainsi que les différents appareils de mesure associés a
I’acquisition des données.

Notre diode laser est un laser a semi-conducteur a émission latérale mo-
nomode (JDS Uniphase DL-SDL-5400). La couche active est faite de puits
quantiques dans de ’AlGaAs et la longueur d’onde est A = 852 + 4 nm. Le
courant d’alimentation est fixé a 60 mA, ce qui correspond & une puissance
disponible en sortie de 45 mW. Ce type de diode laser est couramment utilisé
dans les communications par fibre optique dans le proche infrarouge, dans
les imprimantes laser et dans les lecteurs de disques.

3.1 Rétroaction a conjugaison de phase

La premieére étude expérimentale d'une diode laser avec rétroaction prove-
nant d’un miroir a conjugaison de phase remonte aux expériences de Cronin-
Golomb et al. en 1985 [32]. La conjugaison de phase est une technique utilisée
pour corriger les distortions de front d’onde, stabiliser un laser par mode-
locking, réduire le bruit et améliorer sa finesse spectrale [33-44].

Contrairement au cas du COF, le PCF a la particularité d’étre une ré-
troaction auto-alignée et auto-corrigée [45|. Par conséquent, tout déphasage
acquis par le faisceau a l'aller est compensé par un déphasage opposé acquis
lors du trajet retour vers le laser de telle sorte que le front d’onde retour soit
en tout point du trajet retour identique a ce qu’il était lors du trajet aller.
Cette propriété est illustrée sur la figure 3.1.

Les milieux adaptés a la réalisation d’un miroir a conjugaison de phase
sont nombreux. On y dénombre les milieux a effet Kerr pouvant avoir des
temps de réponse de l'ordre de la femtoseconde [46], les cristaux photoréfrac-
tifs dont le temps de réponse va de la miliseconde & plusieurs secondes [33,47|
ou encore les diodes laser répondant & la nanoseconde [37,48-51|. Dans notre

9
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(a) Miroir conventionnel (b)

Front d’onde déformé Front d'onde inchangé

FIGURE 3.1 — Miroir a conjugaison de phase et miroir conventionnel. Le front
d’onde dans le cas du COF subi une double distortion aprés un aller-retour
dans la cavité contenant un milieu d’indice de réfraction n (a) alors que dans
le cas du PCF le front d’onde est inchangé (b).

expérience, nous utilisons un cristal semi-conducteur photoréfractif d’hypo-
thiodiphosphate d’étain dopé tellure : SnyP2Se : T'e (1%) que nous appelle-
rons plus simplement SPS. Ce matériau présente plusieurs avantages : il est
particulierement adapté au proche infrarouge pour lequel il présente des taux
d’absorption faible et de gain élevé [52], ainsi qu’un court temps de réponse
comparé aux autres cristaux photoréfractifs. En effet nous avons mesuré son
temps de réponse a environ 3.8 ms alors que 'ordre de grandeur habituel est
entre plusieurs centaines de millisecondes (SBN [47]), et plusieurs secondes
(BaTiO3 [33]).

Il existe plusieurs configurations utilisant les cristaux photoréfractifs pour
créer de la conjugaison de phase. Nous travaillons dans une configuration en
anneau auto-pompée dans laquelle les trois faisceaux intervenant dans le
mélange a quatre ondes proviennent du méme laser. Cette configuration en
anneau est présentée en figure 3.2.

Le principe de la conjugaison de phase est le suivant. Deux faisceaux
pompes interagissent dans le cristal créant ainsi un réseau d’indice de réfrac-
tion au sein du cristal. La diffraction d'un troisiéme faisceau sur ce réseau a
pour conséquence d’engendrer la création du quatriéme faisceau : la rétroac-
tion conjuguée en phase. Une formulation mathématique a été proposée par
Cronin-Golomb et al. et appliquée a la caractérisation de miroirs a conjugai-
son de phase [53,54]. Dans cette configuration, il est en réalité possible de
réaliser deux réseaux d’indices de natures différentes. En effet, selon quels
faisceaux jouent le role de pompes et de signaux, il se peut que le réseau
créé soit soit un réseau de transmission soit un réseau de réflexion. La pos-
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1: faisceau incident _ f-~ !
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4 : faisceau conjugué
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Réseau de transmission généré

FIGURE 3.2 — Principe du miroir & conjugaison de phase : mélange & quatre
ondes dans un cristal photoréfractif SPS présentant des réseaux de réflexion
(bleu) et de transmission (rouge).

sibilité de pouvoir sélectionner 'un ou l'autre de ces deux réseaux présente
un avantage considérable qui sera discuté plus loin en termes de dynamiques
observables dans le laser.

Sur le schéma de la figure 3.2, les angles § = 26° et 20 = 30° ont été ajus-
tés pour optimiser le gain du processus de mélange & quatre ondes et éviter
au maximum les pertes par réflexion de Fresnel & lentrée du cristal. Etant
donnée la géométrie de la configuration, nous sommes certains qu’aucune ré-
troaction conventionnelle n’est renvoyée vers le laser et, d’aprés la théorie de
la génération de 'onde conjuguée qui est auto-alignée sur le faisceau incident,
seule la rétroaction a conjugaison de phase est redirigée vers la cavité laser.
Le montage complet est présenté en figure 3.3.

3.2 Visualisation de la dynamique du laser

La proportion de rétroaction controlée a I’aide d’un atténuateur variable
inséré dans la boucle de la cavité en anneau qui influe sur le gain du mélange

a quatre ondes. Avec les notations de la figure 3.2, la réflectivité du miroir
Puissance du faisceau 4
Puissance du faisceau 1°
réflectivité maximale de 9% avec notre montage.

est définie par R = Nous parvenons & obtenir une

Le retard temporel de la rétroaction est défini par son temps de propa-
gation dans la cavité extérieure. Si L4, est la distance totale parcourue par
le faisceau dans la cavité, le retard associé s’écrit 7 = Lcc,w' Nous avons vu
que deux types de réseaux sont possibles, comme rappelé en figure 3.4. Or
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Photodiode

Couplage fibre
optique Analyseur de
spectre électrique
<>
Séparateur
de faisceau/
Isolateur

optigue

Faisceau incident Fanning

Diode laser

Fais

Atténuateur
variable

Watt-métre

FIGURE 3.3 — Montage complet. Des appareils de mesure et un watt-meétre
indiquant la puissance de 'onde conjuguée générée sont introduits afin de
mesurer et quantifier la dynamique du laser soumis a la rétroaction optique.

L4

1: faisceau incident

Diodelaser |TF——o-ooo,

4 : faisceau conjugué

Réseau de transmission L3

Réseau de réflexion

FIGURE 3.4 — Dépendance de la longueur de cavité équivalente en fonction
des réseaux. Leav, i, = 2L1 alors que L = 2Ly + Lo+ L3+ Ly.
La propagation a l'intérieur du cristal n’est pas prise en compte ici.

CAVtransmission

chacun est associé a une distance parcourue différente. En effet, dans le cas
d’un réseau de réflexion, le cristal se comporte comme un miroir classique et
la propagation dans la cavité en anneau n’est pas prise en compte. Le retard
est alors simplement égal au temps 'aller-retour dans l'espace séparant le
laser du cristal et la distance parcourue équivalente est Leay,, epion = 2L1-
Dans le cas ot la génération de 'onde conjuguée se fait au moyen d’un réseau
de transmission, le retard prend en compte la propagation dans la cavité en
anneau et la distance parcourue est L =201+ Ly+ L3+ Ly. La

CAVtransmission
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capacité a passer d'un réseau a l'autre permet de changer la longueur de la
cavité vue par le laser, ou en d’autre termes, de changer le retard temporel
de la rétroaction.

Les appareils de mesure donnent simultanément plusieurs informations
complémentaires. Les données temporelles sont fournies par un oscilloscope
Tektronix CSA 7404, 20 GS/s avec une bande passante de 4 GHz. Les don-
nées spectrales sont fournies par un analyseur de spectre électrique Rohde &
Schwarz FSP30, avec une bande passante de 9 kHz-30 GHz et une résolution
de 6 MHz ainsi qu’un analyseur de spectre optique confocal Thorlabs SA210-
8B avec une finesse de 150. Afin de voir les différentes dynamiques du laser,
on maintient généralement le courant d’alimentation fixé & 60 mA et on fait
varier la réflectivité du miroir au moyen de I'atténuateur optique variable.
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CHAPITRE 4
Modéle théorique et scénario
simulé

4.1 Systéme d’équations de Lang-Kobayashi

Le modéle théorique sur lequel nous nous basons pour I'étude de la dy-
namique non linéaire du laser est le systéme d’équations de Lang-Kobayashi
adapté dans le cas de la conjugaison de phase, fréquemment utilisé pour
modéliser ce systéme [24,28,29,55]. Les équations s’écrivent comme suit :

9 0 — (14 i) N E(®) + 1B (t — 0)
a (4.1)
T— () =P —=N(t)—(1+ 2N ()| E(t)[?

0 est le retard de la rétroaction normalisé par le temps de vie des photons
T,, pris égal a 7, = 1.4 ps, d’aprés la référence [29]. D’ou 0 = % Le lien
physique avec la longueur de la cavité est 7 = LC% a est le facteur d’élar-
gissement spectral et T' le rapport du temps de vie des électrons sur celui
des photons. F est I’enveloppe complexe du champ électrique, N l'inversion
de population et P le courant d’alimentation normalisé au-dessus du seuil :
p =1 ;ith ou Iy, est le courant de seuil. v est le taux de rétroaction nor-

1-R

malisé : v = Tk ol K = =y /nc%. R,, est le coefficient de réflexion des
facettes du laser, 7. le coefficient de couplage et R la réflectivité du miroir
a conjugaison de phase. 71 est le temps d’aller-retour des photons dans la
cavité laser : 71, = % ol n est 'indice de réfraction du matériau
semi-conducteur dans lequel est construite la cavité laser. Pour un courant
d’alimentation fixé, on peut considérer que 7y est proportionnel & la racine
carrée de la réflectivité du miroir & conjugaison de phase R. Pour indication,
R = 100% correspond a v = 0.256 avec . = 1, 7, = 7 ps, R,, = 0.3 et

T, = 1.4 ps.

Ce modéle assez simple traduit dans la premiére équation 1’équilibre entre
la génération de photons et les pertes dans la cavité laser et dans la deuxiéme

15
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équation la dynamique des porteurs de charge. Les dynamiques prédites par
ce systéme alors que y varie on été étudiées par Krauskopf et al. en 1998 [28|
qui documentérent de fagon détaillée 1’évolution des diagrammes de bifurca-
tion et des routes vers le chaos pour des faibles valeurs de « en identifiant les
premiéres "bulles de chaos".

4.2 Evolution de la dynamique pour v modéré

Un diagramme de bifurcation typique d’une diode laser avec PCF est
présenté en figure 4.1 dont les paramétres pris pour la simulation sont les
mémes que ceux de la référence [28]. On y distingue les régions de chaos
apparaissant sous formes de bulles entrecoupées de solutions périodiques.

0.4 ! ! ! ! -
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T
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o
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T
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0 0002 0.004 0. 0.12 0.014 0016 0.018 0.02

FIGURE 4.1 — Diagramme de bifurcation calculé pour =476, P=0.0417,
T=1428 et a = 3.

La premiére bulle de chaos est en fait la transition entre I’état stationnaire
initial et la premiére solution périodique auto-pulsée a une fréquence liée a la
longueur de la cavité externe. Ses principales dynamiques sont représentées
en figure 4.2. On y voit d’abord le cycle limite des oscillations de relaxation
non amorties (A) oscillant & 1.036 GHz. Puis, alors que v croit, le laser subit
des doublements de période (B) jusqu’a ce qu'un attracteur chaotique soit
créé (C) et que le laser montre des dynamiques chaotiques (D) et (F) qui
finissent par se restabiliser en des cycles limites correspondant & des modes
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de cavité externe auto-pulsés (ECM) a la fréquence de la cavité externe 1.36
GHz (H).
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FIGURE 4.2 — Traces temporelles, spectres et représentations dans le plan
complexe de I’évolution du laser au travers de la premiére bulle de chaos.

L’évolution du laser au travers de la deuxiéme bulle de chaos est présentée
en figure 4.3. Alors que le laser vient de quitter la premiére bulle de chaos et
oscille & la fréquence de la cavité externe, une bifurcation vient changer ce
cycle limite en tore (B) puis en un attracteur chaotique (C) et (E). A nou-
veau, le laser finit par se restabiliser en une solution périodique (G) qui n’est
cependant pas une sinusoide pure, contrairement & ce qui se produit en fin de
bulle 1. Cette solution n’est donc pas un mode de cavité externe bien que la
fréquence fondamentale soit au double de celle de la trace (H) de la figure 4.2.

Enfin la troisiéme bulle, dont les dynamiques sont représentées en figure
4.4, montre a nouveau une déstabilisation du cycle limite issu de la bulle 2
menant vers du chaos (B), (C) et (D). En fin de bulle 3, le systéme recouvre
un cycle limite symétrique correspondant au troisiéme mode de cavité ex-
terne (F), pulsant a 4.1 GHz.

Ces simulations sont en trés bon accord avec les travaux de la réfé-
rence [28| et permettent donc de confirmer le code servant & modéliser la
dynamique du laser ainsi que les outils d’analyse que nous utiliserons dans
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FIGURE 4.3 — Traces temporelles, spectres et représentations dans le plan
complexe de I’évolution du laser au travers de la deuxieme bulle de chaos.
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FIGURE 4.4 — Traces temporelles, spectres et représentations dans le plan
complexe de I’évolution du laser au travers de la troisiéme bulle de chaos.

le suite pour étendre 1’étude aux valeurs de ~ plus élevées.
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4.3 Evolution de la dynamique pour v élevé

Nous poursuivons ici les travaux menés dans les références [28,29,55| pour
des valeurs de v plus élevées. Le diagramme de bifurcation présenté en figure
4.5 est I'extension de celui de la figure 4.1 pour des taux de rétroaction plus
élevés. On y voit que les régions de chaos disparaissent et que, pour des va-
leurs de « supérieures a 0.035, seules des solutions pulsées (modes de cavité
externe) sont visibles. Le laser semble demeurer dans une succession d’états
pulsés sans jamais bifurquer vers le chaos & nouveau. Afin de comprendre
ce phénoméne qui fait se réduire les intervalles de régions chaotique (crise
chaotique) jusqu’a les faire disparaitre (suppression de chaos), nous faisons
appel & une méthode de continuation dans I'objectif de localiser les points de
bifurcation responsables de la stabilisation et de la déstabilisation des modes
de cavité externe.
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FIGURE 4.5 — Diagramme de bifurcation pour =476, P=0.0417, T=1428
et a=3. Identique & celui en figure 4.1 mais pour des valeurs de rétroaction
plus élevées. On y compte sept régions chaotiques de plus en plus fines et qui
finissent par disparaitre alors que vy augmente.

La figure 4.6 montre le méme diagramme de bifurcation qu’en figure 4.5
sur lequel la position des bifurcations a été superposée avec les branches de
chaque ECM. Le mécanisme de crise chaotique et de suppression de chaos
peut s’expliquer de la maniére suivante. Quand v augmente, les intervalles
de taux de rétroaction sur lesquels les ECMs sont stables (représentés par
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les lignes jaunes épaisses délimitées par les bifurcations en selle qui les stabi-
lisent et les bifurcations en tore qui les déstabilisent) s’allongent. Les régions
de chaos s’amincissent en conséquence, causant ainsi une crise chaotique. Pas
ailleurs, pour les plus hautes valeurs de v, on voit que le processus de stabili-
sation de 'ECM,,;; peut se produire avant, (en termes de valeurs de ), que
le processus de déstabilisation de ’'ECM,, ne soit accompli. Par conséquent,
lorsque le laser atteint la fin de 'ECM,,, il a la possibilité de "sauter" directe-
ment sur ’ECM,,;; sans bifurquer vers le chaos. Il existe donc des intervalles
de v pour lesquels deux ECMs consécutifs sont stables. Cette bistabilité de
modes de cavité externe est a l'origine de la suppression de chaos.

® Bifurcations en tore

018~ = Bifurcations en selle
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FIGURE 4.6 — Méthode de continuation appliquée au diagramme de bifurca-
tion. Les branches stables des ECMs sont représentées par des lignes jaunes
épaisses et les branches instables par des lignes jaunes fines. Quand ~ aug-
mente, les régions de stabilité des ECMs s’élargissent aux dépens des régions
de chaos développé.

La figure 4.7 montre la distribution fréquentielle des ECMs. On voit que
dans les régions de bistabilité le laser a le choix entre deux solutions pulsées
a des fréquences différentes, dont ’écart correspond en réalité a la fréquence
fondamentale de la cavité externe f.,, (soit 'inverse du retard 7 = L—C“” ). De
fagon générale, les valeurs de fréquence auxquelles peuvent pulser les modes
de cavité externe successifs sont réparties sur la base de la fréquence f..., et
sont toutes des multiples de cette fréquence f..,. On appelle alors ECM,, le
mode de cavité externe dont la fréquence est égale a nf,q,.
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FIGURE 4.7 — Régions de bistablilité. La figure (a) montre en rouge le dia-
gramme de bifurcation calculé pour des valeurs de v croissantes et en noir
pour des valeurs décroissantes. Les diagrammes sont décalés verticalement
pour une meilleure lisibilité. La figure (b) montre les solutions auto-pulsées
et leurs fréquences respectives. Les domaines de bistabilité (délimités par les
lignes interrompues verticales vertes) correspondent & des intervalles de v sur
lesquels deux solutions pulsées (ECMs) sont stables.

Il et aussi intéressant d’étudier l'influence des différents parameétres de
simulation (7, P, a et #) sur l'allure du diagramme de bifurcation en termes
de points de bifurcation et stabilité des dynamiques observables. Il apparait
qu’une variation de 7" influe peu sur I'aspect général. On observe cependant
que lorsque T est grand une légere stabilisation due au rétrécissement des
régions chaotiques est constatée. P et « agissent tout deux dans le méme sens
dans la mesure ot quand leurs valeurs sont plus élevées, le laser se déstabilise
plus vite en faisant que les régions correspondant aux ECMs stables dimi-
nuent au profit des zones de chaos. € est un paramétre dont les effets sont
plus visibles. En effet, un retard plus court décale les points de bifurcations
vers les valeurs de 7 plus élevées, révélant des ECMs stables sur de longs in-
tervalles de taux de rétroaction. Pour des valeurs de 6 élevées, les bifurcations
se rapprochent et le diagramme semble ne montrer que du chaos en continu
sur un grand intervalle de 7. Cependant la crise chaotique et la suppression
de chaos sont toujours observées pour des valeurs de 7 suffisamment grandes.
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CHAPITRE 5
Modes de cavité externe
auto-pulsés

5.1 Visualisation expérimentale

Nous présentons dans ce chapitre le résultat expérimental majeur de ce
travail sur la dynamique des diodes laser avec PCF : la premiére observation
expérimentale de modes de cavité externe auto-pulsés dans une diode laser.
Nous avons vu dans les prévisions théoriques que ces ECMs sont censés avoir
une répartition fréquentielle particuliére et totalement dépendante de la lon-
gueur de la cavité externe : fgpon n = LT:Z,‘ Nous révélons ici des pulsations
a deux de ces fréquences ainsi que les transitions vers ces ECMs et leur dé-
stabilisation vers le chaos.

La figure 5.1 montre 1’évolution de la trace temporelle et des spectres du
laser depuis 1’état stationnaire vers le chaos en manifestant deux ECMs se
stabilisant et de déstabilisant. La trace (a) représente 1’état stationnaire puis,
alors que R augmente, le laser montre la trace (b) sur laquelle la signature du
retard (a la fréquence fondamentale de la cavité externe f.,, = 680 M Hz) est
visible, notamment sur les spectres. Elle marque en réalité la fin d’un attrac-
teur chaotique sur lequel I'influence du retard se dénote avant de bifurquer
vers un cycle limite (trace c¢), & ’évolution harmonique dont la fréquence
de 1360 MHz correspond au double de la fréquence de la cavité externe :
1360 M Hz = 2f.4,. La méme dynamique est remarquée sur la trace (d) qui,
elle, pulse a 2064 MHz, soit 3f..,. Nous pouvons donc identifier les traces
(c) et (d) comme étant respectivement les deuxiéme et troisiéme modes de
cavité externe de 'expérience. La transition entre 'ECM2 et 'ECM3 fut ex-
périmentalement trés rapide, et il ne fut possible de la suivre. Cependant,
la déstabilisation de 'ECM3 montre une route vers le chaos par triplement
de période (trace e) suivi encore d’une multiplication de période (f) avant
de ne montrer que du chaos développé sans qu’il n’y soit plus possible d’y
distinguer le présence du retard.

Nous remarquerons que toute cette succession de stabilisation et de dé-

23



24 CHAPITRE 5. MODES DE CAVITE EXTERNE AUTO-PULSES

stabilisation d’ECMs et route vers le chaos se produit sur un intervalle de
taux de rétroaction réduit : pour R > 1%, le laser ne montre plus que du
chaos. Notons aussi que le premier ECM, celui que 'on s’attendrait a voir
pulser & 680 MHz, ne fut pas visible dans ’expérience. Il est possible que son
intervalle de stabilité soit trop court ou méme noyé dans une région de chaos.
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FIGURE 5.1 — Evolution temporelle et spectrale quand R augmente. L’axe
des ordonnées est en unités arbitraires, I’échelle est linéaire pour les traces
temporelles et logarithmique pour les spectres.

Remarquons que la valeur de la fréquence fondamentale de la cavité ex-
terne f.q., = 680 M H z correspond a une distance équivalente parcourue dans
la cavité de L., = 44 ¢m. Nous avons, pour cette visualisation des ECMs,
travaillé avec une génération de faisceau conjugué opéré par un réseau de
réflexion dans le cristal afin de minimiser le retard. En effet, ces 44 cm cor-
respondent a la distance aller-retour entre le laser et le cristal. L’avantage de
pouvoir travailler avec un réseau de réflexion au lieu d’un réseau de transmis-
sion est de raccourcir le retard, ne prenant ainsi pas en compte la propagation
dans la cavité en anneau, afin de pouvoir avoir une meilleure chance d’ob-
server les premiers ECMs. En effet, comme prédit par la théorie, et confirmé
expérimentalement, un retard plus court déplace les bifurcations vers les plus
hautes valeurs de taux de rétroaction, laissant ainsi les intervalles de stabilité
des ECMs plus longs.
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5.2 Confirmation théorique

Nous avons cherché a trouver un jeu de parameétres pour lesquels il se-
rait possible d’obtenir en simulation la méme évolution de dynamiques que
celle présentée expérimentalement sur la figure 5.1. Nous cherchons donc un
scénario ou l'on verrait les ECMs 2 et 3 (mais pas 'ECM1), suivis d’une
route vers le chaos par multiplication de période. Ce scénario est visible sur
les traces simulées présentées en figure 5.3, correspondant au diagramme de
bifurcation de la figure 5.2. Les paramétres de la simulation sont : P = 0.04,
T = 1000, a = 2.2 et 8 = 1050. Cette valeur de 6 correspond au retard
physique de l'expérience : § = 1050 < foq, >~ 680 M Hz.

05 T
0.4
0.35

0.3+

' : . EF
e R R f
: : I

'
i

I

i
it
i
i

02

Intensité (u.a.)

| I
-MMNW |

T ey L 1 e "“"""“"‘linnmmﬁ”ﬂ

i

bl
|
|
]

0.15- mnNWl' :

0.1 i
L

0.05

¥

FIGURE 5.2 — Diagramme de bifurcation pour § = 1050, P = 0.04, T" = 1000,
et a = 2.2.

On retrouve sur la figure 5.3 le méme enchainement de dynamiques que
présenté expérimentalement en figure 5.1. Le scénario débute avec la trace
(A) correspondant & ’état stationnaire puis, pour v plus élevé, on voit des
fluctuation irréguliéres portant la signature du retard (B), dont la fréquence
est d’environ 650 MHz. Les traces (C) et (E) sont les ECMs 2 et 3. On voit
ici le processus de déstabilisation de 'ECM2 avant de donner 'ECM3 par
triplement de période (D), en suivant le méme procédé que la route vers le
chaos amorcée par 'ECM3 expérimentalement. Ensuite, si v augmente en-
core, le systéme bifurque vers un état de chaos développé (F).

Cette confrontation entre résultats expérimentaux et théoriques apporte
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FIGURE 5.3 — Traces temporelles et spectres simulés correspondant aux dy-
namiques A a F du diagramme de la figure 5.2. L’axe des ordonnées est en
unités arbitraires, ’échelle est linéaire pour les traces temporelles et logarith-
mique pour les spectres.

un trés bon accord qualitatif quant aux ECMs qui sont visibles ainsi qu’a
leurs fréquences de pulsation et leurs processus de stabilisation et déstabili-
sation. La transition entre modes de cavités auto-pulsés successifs se fait donc
par multiplication de période et quasi-périodicité mettant en jeu la fréquence
de la cavité externe et ses multiples.

Nous avons ainsi apporté la premiére preuve expérimentale de modes de
cavité auto-pulsés a des fréquences multiples de la fréquence de la cavité
dans une diode laser soumise a rétroaction a conjugaison de phase. Nous
avons aussi documenté leurs transitions et apporté une confirmation de leurs
dynamiques relatives par simulation.



CHAPITRE 6
Evénements extrémes

Ce chapitre traite de l'apparition d’événements extrémes dans la puis-
sance du laser pouvant survenir sans prévenir sous l'effet du taux de rétro-
action. Ces événements particuliers, aussi appelés rogue waves, événements
rares, ou vagues scélérates sont caractérisés par leur grande amplitude, par
rapport aux aux autres événements se produisant dans le systéme, ainsi que
par la déformation de la distribution d’énergie du systéme.

6.1 Deéfinition et visualisation

Les événements extrémes sont étudiés dans de nombreux domaines de la
physique comme 'océanographie, la physique des plasmas et 1’électromagné-
tisme [56-58|. En optique, ces événements extrémes ont aussi été documentés
dans des fibres optiques & miscrostructures [59|, dans des lasers montrant du
mode-locking [60,61] et dans les diodes & injection optique [62,63].

Dans notre systéme de laser a retard, nous nous intéressons a la possibilité
d’occurrence de ces événements rares sous l'effet de la force de la rétroaction.
Nous considérons que chaque pic dans la puissance optique émise par le laser
est un événement. Elle est par conséquent constituée d’une succession d’évé-
nements. Chacun de ces pics est potentiellement un événement extréme. Pour
discriminer les événements pouvant étre considérés comme extrémes de ceux
qui ne le sont pas, nous utilisons deux critéres de sélection. Le premier est
un critére sur 'amplitude, connu sur le nom d’indice d’anormalité noté Al
(Abnormality Index) et consiste en un seuil dont la valeur dépend des ampli-
tudes de tous les événements du signal comme défini dans la référence [64].
Un pic de puissance vérifiant AI > 2 pourra étre considéré comme étant un
événement extréme si le second critére est vérifié. Ce second critére porte
sur la distribution en puissance du signal sur ’ensemble de ses événements.
Conformément a la référence [65], les événements extrémes doivent induire
une déformation de la distribution de la puissance en faisant apparaitre un
allongement pour les hautes valeurs de puissance. Ainsi, les événements vé-
rifiant & la fois la condition sur 'indice d’anormalité et sur la déformation
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de la distribution seront considérés dans notre cas comme des événements
extrémes.
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FIGURE 6.1 — Evénements extrémes visibles dans la puissance du laser : soit

sous forme de pics isolés (a) soit sous la forme de groupes de pics séparés par
le retard 7 (b). Les lignes rouges sont les seuils Al = 2.

En analysant en détails la trace temporelle du laser soumis au PCF, il ap-
parait que les événements extrémes peuvent apparaitre sous deux formes : soit
sous forme de pics isolés sans lien apparent les uns avec les autres (formant
le groupe I) soit sous la forme de groupes de quelques pics trés rapprochés,
et, plus précisément, séparés les uns des autres par un intervalle de temps
proche du retard temporel (7 =2.2 ns sous les conditions expérimentales avec
lesquelles les événements extrémes sont observés), formant le groupe II. La
figure 6.1 présente ces deux types d’événements extrémes.

L’évolution de 'apparition d’événements extrémes dans la puissance du
laser en fonction de la réflectivité du miroir & conjugaison de phase est pré-
sentée en figure 6.2. On y voit que plus R augmente, plus le nombre d’évé-
nements franchissant le seuil Al = 2 augmente aussi. En effet, pour les plus
faibles valeurs de R, aucun événement extréme n’est présent, jusqu’a ce que
1.8 % des événements soient des événements extrémes pour R=7 %. De plus,
I’évolution de I'enveloppe de ces histogrammes, représentant la distribution
de 'amplitude des événements présentée en figure 6.3 illustre clairement le
déviation de la distribution gaussienne existant en 'absence d’événements
extrémes causée par ’émergence de ceux-ci quand R croit.
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FIGURE 6.2 — Traces temporelles et histogrammes des pics d’intensité pour
des valeurs de R croissantes. Les lignes rouges verticales et horizontales re-
présentent les seuils correspondant a Al = 2.
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FIGURE 6.3 — Distortion de la distribution des amplitudes des pics dans la
puissance du laser pour R (de (a) & (e)) croissant. L’apparition d’une nouvelle
concavité grandissante témoigne de la présence des événements extrémes.

6.2 Distribution temporelle

Une propriété remarquable des événements extrémes visibles dans la trace
temporelle du laser est leur répartition en fonction du temps, ainsi que l'in-
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fluence de la force de la rétroaction sur cette répartition. L’effet de cette
rétroaction est visible sur la figure 6.4 ou les intervalles de temps entre évé-
nements extrémes consécutifs sont représentés pour R = 4.4% et R = 7%.
Conformément a ce qui est attendu d’aprés I'étude d’événements extrémes
dans d’autres systémes optiques comme la référence [65], on voit que la sta-
tistique suit une distribution poissonienne, représentée ici en échelle loga-
rithmique par une droite sur le graphique (a) ou le taux de rétroaction est
faible. Cependant, dans le cas (b) ou la réflectivité du miroir est plus forte
(R = 7%), la distribution des temps entre événements extrémes dévie de la
simple droite et montre en réalité deux droites aux pentes différentes. Il est
intéressant de constater que 1’échelle de temps pour laquelle cette déviation
de la droite initiale est significative est proche de 1’échelle de temps du retard.
Sous l'effet d’une rétroaction grandissante, les événements extrémes sont en
quelque sorte incités a se produire plus souvent (donc a étre plus nombreux)
mais aussi a se produire préférentiellement & des échelles de temps proches de
celle du retard lui-méme qui impose de cette fagon sa dynamique temporelle
sur le systéme.
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FIGURE 6.4 — Distribution temporelle statistique des temps entre événements
extrémes pour R = 4.4% (a) et R = 7% (b). On note ¢, 'instant o1 se produit
I’événement extréme k.

Une rapide simulation du systéme montre également que les événements
extrémes sont attendus par la théorie, bien que nous n’ayons pas identifié¢ le
scénario de bifurcations qui les fait se produire.



CHAPITRE 7
Fluctuations a basse fréquence

Ce chapitre s’intéresse a la visualisation de fluctuations & basse fréquence
dans la trace temporelle du laser. Nous étudions aussi leur évolution quand
la réflectivité du miroir augmente et mettons en évidence une résonance co-
hérente déterministe induite par le retard de la rétroaction.

7.1 Définition et évolution avec R

Les fluctuations a basse fréquence (aussi connues sous le nom de LFF
pour Low-Frequency Fluctuations) se produisent quand le laser est en ré-
gime chaotique et sont caractérisées par des chutes soudaines de puissance
suivies de retour plus lents au niveau initial. L’échelle de temps sur laquelle
ces chutes se produisent est trés grande (~ 100 ns) devant 'échelle de temps
des oscillations du laser (~ 10 ps), d’ou 'appellation de fluctuations a basse
fréquence. Depuis leur premiére mise en évidence expérimentale par Risch et
Voumard en 1977 [66], elles furent étudiées avec le modéle de Lang-Kobayashi
dans le cas du COF ou elles ont été identifiées comme provenant d’une sé-
quence de bifurcations sur un grand nombre de modes de cavité externe.
Dans le cas du PCF, leur existence est documentée expérimentalement [31]
bien qu’aucune explication théorique quant a leur origine n’ait été développée
jusqu’a présent.

La figure 7.1 présente comment apparaissent et évoluent les LFF dans
notre expérience. On y voit que lorsque R augmente, le laser montre une
transition depuis un état de chaos développé vers une dynamique caracté-
ristique de ces chutes de puissances soudaines suivies de retours plus lents
au niveau initial de puissance (R = 3.5%). Dans les spectres associés, cette
transition est facilement visible par ’apparition de composantes fréquentielles
pour les fréquences les plus faibles qui naissent et gagnent en intensité par
rapport au reste du spectre. La signature du retard est visible dans la répar-
tition parfaitement réguliére des pics de fréquence a des intervalles égaux a
% = 220 M H~z. En effet, la longueur de la cavité externe est dans ce cas de
132 c¢m, ce qui correspond a f.,, = 220 M Hz. En fonction du taux de rétro-
action, la régularité des chutes de puissance et le finesse des pics de fréquence
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FIGURE 7.1 — Naissance des fluctuations & basse fréquence et évolution qua-
litative quand R augmentes. Les traces du bas représentent les spectres élec-
triques associés aux traces temporelles du haut.

varie.

7.2 Cohérence résonante induite par le retard

Il est commun de trouver le phénoméne de résonance dans divers systémes
physiques soumis ou non a des signaux externes dans lesquels la réponse du
systéme & une excitation est optimale. Lorsqu’un systéme non linéaire montre
une réponse optimale a sa propre échelle de temps en présence de bruit, on
parle de résonance cohérente. La résonance cohérente fut d’abord mise en
évidence par Pikovsky et Kurths en 1997 [67] dans un systéme excitable.

Des exemples de résonance cohérente en optique peuvent étre trouvés dans
divers systémes dynamiques [68], des diodes laser soumises a de la rétroaction
[23] ou des systémes bistables [69]. Nous nous intéressons ici au phénomeéne
de résonance cohérente dans la distribution des chutes de puissances vues en
régime de LFF.

La figure 7.2 montre 1’évolution des traces temporelles et des histogrammes
des temps entre chutes de puissance (notés Tprr) associés. Expérimentale-
ment, lorsque la réflectivité du miroir augmente, les LFF ont tendance a
s’organiser en des chutes de puissance de plus en plus réguliéres jusqu’a une
certaine valeur de réflectivité. La, les traces les plus réguliéres, c’est-a-dire
celles qui montrent les spectres les plus fins et les histogrammes les moins
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larges, sont observées. Dans notre expérience, cela se produit pour R = 6.1%.
Pour des valeurs de R supérieures, cette régularité est progressivement per-
due.

En plus de I'observation qualitative de la régularité des traces temporelles
et de la finesse des spectres, un moyen de quantifier la dispersion de Ty pp est
d’analyser les histogrammes des temps entre chutes de puissance. En effet,
la figure 7.2 montre la déformation de la distribution des temps entre chutes
alors que R augmente. On y voit a nouveau qu’il existe une valeur de R
optimale pour laquelle la distribution est plus fine et plus regroupée autour
de sa valeur moyenne, indiquant ainsi une dispersion plus faible du temps
entre chutes. Une augmentation de la réflectivité résulte en une perte de
cette régularité maximale.
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FIGURE 7.2 — Evolution des LFF en fonction de la réflectivité du miroir
vues sur les traces temporelles (& gauche). Les distributions des temps entre
chutes de puissance Trpp associées sont représentées a droite. Les barres
rouges marquent les valeurs moyennes de Ty prp pour chaque cas.

Le fait que 'optimum de régularité soit atteint pour R = 6.1% dans notre
cas est confirmé par trois indicateurs :
1/ La trace temporelle da la figure 7.2.(b) est la plus réguliére.
2/ Le spectre électrique associé & cette méme trace temporelle sur la figure
7.1 présente des pics de fréquence plus fins lorsque R = 6.1%.
3/ La distribution de T rp sur la figure 7.2.(b) présente la dispersion la plus
faible.

L’existence de cette régularité optimale pour une valeur particuliére de ré-
flectivité démontre un phénoméne de résonance cohérente induite par le taux
de rétroaction. La figure 7.3 montre 1’évolution de la déviation normalisée
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_ 9Trrr : N
V= PSS des temps entre chutes pour R croissant ol o7, ., et < Trpp >

sont respectivement 1’écart-type et la moyenne des temps entre chutes T, pp.
On y distingue clairement un minimum pour V' lorsque R = 6.1%, témoi-
gnant de la régularité optimale des temps entre chutes et donc de la réponse
optimale du laser & la rétroaction pour cette valeur de réflectivité particuliére.
Tout comme dans les cas des références [67] et [70], nous pouvons conclure
que la présence de ce minimum est la signature d’une résonance cohérente.

Déviation normalisée V

0.4 L L L L L L L L L
3 35 4 45 5 55 6 65 1 15
Réflectivité du miroir (%)
FIGURE 7.3 — Evolution de V = —ZLEE_ op fonction de la réflectivité du

<Trrprp>
miroir & conjugaison de phase R. Un minimum est constaté lorsque R = 6.1%,

signature d'une résonance.

Puisque notre systéme évolue en 1’absence de modulation externe (comme
souvent appliqué a 'aide du courant d’alimentation [71] ou d’une variation
de la longueur de la cavité externe [72]), il s’agit d’une résonance cohérente.
De plus, contrairement aux cas de résonances cohérentes courantes, cette
résonance se produit sans la nécessité d’apporter un bruit quelconque. Par
conséquent, nous dénommons ce type de résonance cohérente une résonance
cohérente déterministe induite par la rétroaction a retard. En effet, ¢’est un
systéme dans lequel la résonance a lieu en changeant le taux de rétroaction
sans addition de bruit externe.

Une simulation menée sur un laser de classe A, donc ne présentant pas
de phénomeéne d’oscillations de relaxation, montre que le méme phénomeéne
de résonance cohérente se produit pour une certaine valeur de taux de rétro-
action. Ceci indique que ce résultat expérimental sur la résonance cohérente
n’est pas limité au cas des diodes laser mais peut étre généralisée & un champ
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de systemes optiques a retard plus large.

D’autres simulations sur le modéle théorique montrent des transitions
depuis le chaos développé vers le régime de LFF, ce qui apporte une confir-
mation théorique aux observations expérimentales. Cependant nous n’avons
pas cherché a mettre en évidence une résonance cohérente ou la cascade de
bifurcations menant au régime de LFF.
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CHAPITRE 8
Conclusion et perspectives

8.1 Résumé des résultats

Cette étude de la dynamique non linéaire d’une diode laser soumise a ré-
troaction optique par conjugaison de phase nous a amenés a nous intéresser
a différents points.

Le premier fut la conception d’un banc expérimental permettant I’étude
de ce systeme, en générant de la conjugaison de phase au moyen d'un mé-
lange a quatre ondes dans un cristal photoréfractif de SPS. Puis nous nous
sommes intéressés a I’étude théorique de la dynamique du systéme en mettant
en évidence les bifurcations vers le chaos, les phénomeénes de crise chaotique,
bistabilité entre ECMs et suppression de chaos. Les résultats expérimentaux
montrérent pour la premiére fois dans un systéme laser avec PCF une transi-
tion vers des solutions auto-pulsées a des fréquences multiples de la fréquence
de la cavité externe : les modes de cavité externe (ECMs). Nous avons aussi
rendu compte du processus de stabilisation et de déstabilisation de ces ECMs.
Nous avons ensuite vu, pour des valeurs de réflectivités et de tailles de cavité
externe supérieures que le laser pouvait montrer des événements extrémes ca-
ractérisés par leur haute amplitude et la déformation de la statistique qu’ils
engendrent. L’influence de la rétroaction sur leur distribution temporelle fut
aussi démontrée. Enfin, le régime de fluctuations a basse fréquence (LFF)
avec le phénomeéne de résonance cohérente induit par la rétroaction fut aussi
caractérisé dans notre systéme.

La figure 8.1 résume en un seul diagramme de bifurcation les intervalles
de taux de rétroaction sur lesquels les différentes dynamiques mentionnées
et étudiées dans cette thése sont observables. Expérimentalement, les transi-
tions entre dynamiques sont causées par une variation du taux de rétroaction,
via la réflectivité du miroir & conjugaison de phase. Mais pour une analyse
systématique d’une dynamique particuliére, il existe des conditions expéri-
mentales plus propices que d’autres, en particulier en termes de valeur du
retard, via la longueur de la cavité externe. Ces deux paramétres (force et
retard de la rétroaction) sont fondamentaux et conditionnent totalement le
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point de fonctionnement dynamique du laser.

8.2 Contributions personnelles

Au-dela de l'intérét théorique de la poursuite de ’étude de ce systéme
pour des gammes de parameétres encore inexploités, comme lors de ’étude
de la crise chaotique et de la suppression de chaos, I’apport de cette thése
est essentiellement expérimental. Et c¢’est dans l'identification des modes de
cavité externe auto-pulsés que notre contribution est la plus importante. La
démonstration expérimentale des solution harmoniques aux fréquences mul-
tiples de la fréquence de la cavité externe, depuis longtemps prédites par la
théorie mais jusqu’alors jamais vues, ouvre la voie vers des applications de
génération tout optique de signaux périodiques a haute fréquence. En effet,
nous avons montré que ces solutions s’échelonnent en fréquences multiples
de feaw : fECMNR = Nfeaw- Avec un meilleur controle de la stabilité de ces solu-
tions, il serait possible d’atteindre des valeurs de n élevées et par conséquent
de pulser a plusieurs dizaines de GHz, sans modulation électrique extérieure.

Nous soulignons aussi I'importance cruciale du retard et du taux de ré-
troaction qui décident conjointement des régions de stabilité des différentes
dynamiques visibles dans le laser. Nous sommes convaincus d’avoir franchi
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un pas dans le controle de chaos dans les lasers et leur accordabilité.

A laide du simple modéle des équations de Lang-Kobayashi adaptées au
cas du PCF, nous avons pu apporter diverses confirmations théoriques aux
comportements expérimentaux observées avec une bonne fidélité qualitative.

8.3 Perspectives

Pour aller plus loin dans I’étude de ce systéme, nous proposons quelques
pistes d’analyse dans la continuité immédiate de notre étude :

1/ Il serait intéressant de mener une étude théorique plus poussée sur 1’ap-
parition des événements extrémes ainsi que des LFF dans le cas du PCF et a
fortiori de mettre en évidence une résonance cohérente déterministe comme
dans 'expérience.

2/ La prise en compte du temps de réponse du miroir dans le modéle théo-
rique, lié aux interactions non linéaires dans le cristal photoréfractif pourrait
mener a un scénario plus proche de celui observé expérimentalement, avec
un meilleur accord qualitatif.

3/ Sur I’étude des ECMs auto-pulsés, la recherche de solutions a des mul-
tiples de la fréquence de la cavité externe d’ordres plus élevés serait aussi une
grande avancée dans la génération de signaux tout optique a haute fréquence.
D’aprés ce qui a été vu ici, cette recherche serait probablement facilitée en
travaillant dans des configurations de cavités externes courtes.
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Chaos crisis and bistability of self-pulsing dynamics in a laser diode with
phase-conjugate feedback

Martin Virte,* Andreas Karsaklian Dal Bosco, Delphine Wolfersberger, and Marc Sciamanna
Supélec, OPTEL Research Group, Laboratoire Matériaux Optiques,
Photonique et Systémes (LMOPS) EA-4423 , 2 Rue Edouard Belin, F-57070 Metz, France
(Dated: August 29, 2011)

A laser diode subject to a phase-conjugate optical feedback can exhibit rich nonlinear dynamics
and chaos. We report here on two bifurcation mechanisms that appear when increasing the amount
of light being fedback to the laser. First, we report on a full suppression of chaos from a crisis in-
duced by a saddle-node bifurcation on self-pulsing, so-called external-cavity mode solutions (ECMs).
Secondly, the feedback-dependent torus and saddle-node bifurcations on ECMs may be responsible
for large regions of bistability between ECMs of different and high (beyond GHz) frequencies.

PACS numbers: 42.65.5f, 05.45.-a, 42.55.Px, 42.60.Mi, 42.65.Hw

Phase-Conjugate optical Feedback (PCF) has been ex-
tensively used for applications where one needs to stabi-
lize a laser diode output through phase or mode locking
[1, 2] or to improve laser performances such as single-
mode emission [3], spectral linewidth [4, 5] and intensity
noise [6]. However experimental and theoretical works
have shown that, depending on the feedback parame-
ters, the laser diode also can exhibit complex nonlin-
ear dynamics leading to chaos [7-17]. To summarize,
when increasing the feedback strength, the laser diode
is destabilized from its otherwise steady state dynamic
and exhibits a sequence of bifurcations to chaos. Re-
gions of chaos (also called ’bubbles’) are interspersed by
self-pulsing dynamics [12]. The oscillation frequency of
these self-pulsations being close to a multiple of the ex-
ternal cavity frequency, these solutions have been called
external cavity modes (ECM). An in-depth bifurcation
analysis of these ECMs is however available only for weak
optical feedback [15, 16], where one can also benefit from
approximations of the ECM solutions [8, 11] and appro-
priate asymptotic methods [17]. Yet the experiments
suggest that the laser spectral component at the external
cavity frequency increases and broadens with the increase
of feedback strength, hence indicating that restabilization
of ECM and/or additional bifurcations on ECMs may be
in order for larger feedback rates (see e.g. cases e to g
of fig. 3 in Ref. [14]). This situation contrasts with the
case of conventional optical feedback, where a continuous
increase of feedback strength typically leads to an even
more developed chaos such as coherence collapse [18].

In this paper, we extend the previously reported
bifurcation analysis to larger values of the feedback
strength. Using both direct numerical integration and
continuation tools for delay-differential equations, we
unveil two new bifurcation scenarios.  First, when
increasing the feedback strength, a full suppression
of chaos may be observed because of a crisis from a
saddle-node bifurcation on ECM. As a result, the laser

* martin.virte@supelec.fr

diode is left in a purely regular self-pulsing dynamic
with a frequency being a multiple of the external cavity
frequency. Second, bistability between ECMs can appear
when increasing the feedback strength, and leads to
coexisting self-pulsing dynamics of very high frequencies
(for our parameters, several tens of GHz). These
results show a new configuration where a laser regular
self-pulsing dynamic gets stabilized by the increase of
feedback rate, other than the reported regular pulse
package in conventional optical feedback [19, 20] or
polarization self-modulation and square waveforms in
polarization rotated feedback [21, 22].

We model the laser system using the so-called Lang-
Kobayashi equations, i.e. time-delayed differential equa-
tions for the slowly varying optical field (Y') and the car-
rier inversion (Z). The field dynamics accounts for a
delayed and phase-conjugated feedback field (Y*). The
model writes as follows, where the time-scale has been
normalized by the photon lifetime (as done in Ref. [17]):

dd—); =(14+ia)ZY +~7Y*(t —0) (1)
T%:P—Z—(1+2Z)|Y|2 (2)

In these equations + is the normalized feedback
rate, f is the normalized external delay, o stands for
the linewidth enhancement factor, P for the pump
parameter above threshold and T is defined as the ratio
of carrier to photon lifetime. To simplify the comparison
with previous works, we have taken the same values of
the parameters as in Refs. [9, 12, 15-17]: P = 0.0417,
T = 1428, a = 3, § = 476. These are typical values of
a diode laser working close to threshold and subject to
feedback from a 10 cm distant mirror. The normalized
feedback rate « is our bifurcation parameter and will
be varied between 0 and 0.07, which correspond to
external mirror reflectivities from 0 to 3.35 %. The
model is simple in that it does not account for the
phase-conjugate mirror internal dynamic (typically
on ns to s time-scale [23]) and the multiple delayed
round-trips in the extended cavity (which may occur in



very strong feedback situations [24]). Still, it contains
the main ingredients (ECMs and underlying bifurca-
tions) to explain qualitatively the dynamics observed in
experiments and it allows for a mathematical treatment
using either numerical bifurcation tools or asymptotic
mathematical analysis.
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FIG. 1. Bifurcation Diagram for v € [0,0.07]. It shows the
extrema of the time series of the optical power versus the
normalized feedback rate.

Figure 1 shows a bifurcation diagram of the extrema
of laser output power (|Y|?) versus the feedback rate ~.
One recognizes the sequence of bifurcations at weak feed-
back rate (7 < 0.015) as reported in Ref. [12, 15, 16]:
the laser steady-state destabilizes with a Hopf bifurca-
tion to a ECM self-pulsing, which further undergoes a
torus bifurcation to chaos. As the feedback rate increases
the laser follows a sequence of three bubbles of chaos in-
terspersed by ECM self-pulsing solutions. Interestingly
when increasing the feedback rate further, the parame-
ter range where chaos is seen (i.e. the size of the bub-
bles of chaos) shrinks progressively until chaos disappears
for larger feedback rate values. For v > 0.035 the laser
diode is left in a purely regular self-pulsing dynamic cor-
responding to a ECM solution of the laser system. When
increasing the feedback rate, bifurcations between ECMs
lead to successive jumps between self-pulsing solutions of
different frequencies, all being multiples of the external-
cavity frequency (i.e. a property of ECM solution), but
ECMs do not exhibit higher-order bifurcations to stable
chaotic attractors.

To understand the mechanism leading to suppression
of chaos, it is of interest to analyze in more detail
the transition from chaos to ECM self-pulsing. The
bifurcation diagram suggests an abrupt destabilization
of chaos that is indicative of a crisis. This is confirmed
in figure 2, where we plot time-traces of laser output
power and projections of the trajectory in the reduced
phase space (real vs. imaginary parts of the field), for
v = 0.028795 that is just before a transition from chaos
to ECM self-pulsing indicated by the arrow in figure 1.
In several time-intervals of the chaotic time-serie (1.a),
the laser diode exhibits a self-pulsing dynamic that
resembles very much the dynamic of the next appearing

ECM (see e.g. a zoom in 2.a). This is also better seen
in the phase space (1.b-2.b) where one recognizes the
limit cycle dynamic of the ECM as contained in the
larger chaotic attractor. When increasing the feedback
rate, the chaotic attractor born on an ECM grows in
size until it starts exhibiting large trajectories forming
the ghost of the limit cycle trajectory of the next ECM,
which is the signature of a so-called chaos crisis from a
saddle-node bifurcation of a limit cycle (in our case an
ECM solution). Such a crisis scenario, which happens for
all bubbles of chaos starting from weak optical feedback,
has been suggested also in Ref. [12], the originality
being here to understand how the crisis combined with
the saddle-node bifurcation on ECM may be responsible
for a total disappearance of chaos for larger values of the
feedback rate.

(1.a)
0 2 4 6 - X
WNU (2.a -
-0.4
6 6.1 6.2 6.3

6.4 04 02 0 02 04
Time [Photon Lifetime x10%] Re(Y)

Normalized Optical Power (arb. units)

FIG. 2. Time-serie of output power (1.a) and phase-space
trajectory (1.b) for v = 0.028795. (2.a) is an enlargement
of the boxed part with (2.b) its trajectory. In (1.b-2.b) the
ellipse is the trajectory of the stable ECM about to appear.

To answer this question, one has to get a closer look
into the saddle-node bifurcation of ECM and whether
this bifurcation occurs for feedback rates smaller or
larger than the torus bifurcation destabilizing ECM
and leading to chaos. We have then complemented
our numerical study by mathematical continuation
techniques using the DDE-BIFTOOL package [25]. It
allows us to follow stable or unstable branches of steady
states or time-periodic solutions and to analyze their
linear stability. Figure 3 complements the previous
bifurcation diagram by showing the branches of ECMs
(only the maximum of |Y|? is plotted) that successively
appear when increasing the feedback rate. The stable
(unstable) part of each branch is displayed in thick
(thin) line. Each ECM is born from a saddle-node
bifurcation (square) where the high-intensity solution
only can be stable. Each ECM then destabilizes with
a torus bifurcation (circle) when increasing the feed-
back rate. The interval of feedback rate values that
separate the torus bifurcation of a previous ECM and



the saddle-node bifurcation of the next ECM decreases
as the feedback rate increases. Since the saddle-node
bifurcation is responsible for the disappearance of chaos,
this also explains that regions of chaos are observed
for progressively smaller ranges of feedback rates as
the feedback rate is increased. Furthermore, a sudden
change of the bifurcation picture happens for v > 0.035:
the saddle-node bifurcation that creates the next stable
ECM occurs for feedback rate smaller than the torus
bifurcation that destabilizes the previous ECM. As a
result the mechanism inducing the chaos crisis is present
as soon as the ECM gets destabilized, and chaos is
not observed anymore. This is a remarkable feature of
the combination in our laser system of a chaos crisis
mechanism and of a bifurcation mechanism that makes
the position of torus and saddle-node bifurcation on
limit cycles being dependent on the feedback rate.
Control of chaos up to its full suppression is therefore
rendered possible by varying the feedback strength.

Normalized optical power (arb. units)
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FIG. 3. Bifurcation diagram obtained by simulation and con-
tinuation method. In black is the simulation result and in or-
ange is the continuation result. The stable part of the branch
is in thick line while the unstable part is in thin line. Squares
(resp. circles) are saddle-node (resp. torus) bifurcations.

The bifurcation mechanism explained in figure 3 has
another consequence: bistability can be observed be-
tween ECM solutions when increasing the feedback rate.
Another mechanism leading to bistability of locked solu-
tions in a laser diode with phase-conjugate feedback has
been reported in Ref. [15], but as also stated by the au-
thors in a very small region of the parameters and with
solutions having a small basin of attraction with respect
to other stable attractors. As a result such a bistabil-
ity was hardly observable in direct numerical integration
only with the help of continuation methods where the
system can be started with initial conditions in a close
neighborhood of the coexisting solutions. In our case,
not only the bifurcation leading to bistability is different
but also bistability is seen in a large interval of feedback
rate values, interval which moreover increases with the
increase of feedback rate. Bistability between ECMs is
clearly seen in figure 4 (a), where we plot the bifurca-
tion diagrams of laser output power (only maximum of
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FIG. 4. Top: bifurcation diagram for increasing (top) and
decreasing feedback (bottom) plotted on the same scale but
shifted vertically for clarity. Bottom: the frequency of the
periodic solutions (stable part only) obtained by continuation
versus the normalized feedback rate. Dashed vertical lines
bound the bistability regions.

|Y|2 is plotted) for either increasing (top) or decreasing
(bottom) feedback rate. We determine the boundaries
of each region of bistability by looking to the feedback
rate that corresponds to each saddle-node bifurcation
(resp. torus bifurcation) creating (resp. destabilizing)
an ECM. These boundaries are represented by pairs of
vertical dashed lines. As we can see, all the states are eas-
ily accessible in simulation and the regions of bistability
are quite large. In figure 4 (b) we show the frequencies of
the ECM solutions as they bifurcate when increasing the
feedback rate. The frequency separation between ECMs
is close to the external cavity frequency. In our case the
normalized external frequency is fe = 1/6 = 2.1.1073,
hence is about 1.5 GHz if one accounts for a photon life-
time of 7, = 1.4 ps as in Refs. [9, 12, 15, 16]. To il-
lustrate the coexistence of two ECM solutions with dif-
ferent and possibly high frequencies, we show in figure 5
the time-series of the two regular self-pulsing dynamics
observed for a normalized feedback rate of v = 0.0611
(a-b), together with their corresponding optical spec-
tra (c,d). The zero frequency in figure 5 (c), (d)
corresponds to the free laser frequency, which is
the frequency reference frame of our equations
(1) and (2). The optical spectrum (c) [(d)] shows
two peaks at about 8 (8.75) GHz and —8 (—8.75)
GHz. Since the complex field trajectory is sym-
metric in the phase plane of the real vs imaginary
parts and is centered on the (0,0) point, the op-
tical spectrum shows no component at the zero
frequency and symmetric peaks on negative and
positive frequencies. One complete cycle for the
complex field Y being equivalent to two cycles for
|Y|?, the time-series of the optical power in (a),
(b) show modulations at about 16 GHz and 17.5
GHz, respectively. The laser system will initially se-
lect one of the two coexisting self-pulsations at high fre-



quencies. However a sustained perturbation or noise may
induce random jumps between these two ECMs, with as
a result a time-averaged RF spectral signature being
made of two peaks, slightly shifted in frequency (shift be-
ing related to the external cavity frequency). The obser-
vation of such robust self-pulsations at controllable (with
the feedback rate) and high frequencies, and moreover
the possibility to observe bistability between these ECM
solutions, is of interest for all-optical signal processing.
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FIG. 5. Two time series of the light output power available
for a normalized feedback rate of v = 0.0611 (a) and (b) and
the corresponding optical spectra in (¢) and (d).

Finally, we have checked the robustness of the re-
ported bifurcation mechanism when varying the laser
and feedback parameters. First, the increase of the
linewidth enhancement factor does not modify the
reported bifurcation scenario, but increases the number
and the size of the bubbles of chaos for weak optical
feedback. Secondly, the reported findings are not specific
to so-called short external cavity. We still observe
the feedback induced suppression of chaos and ECM
bistability, when increasing the delay or the pump
parameter such that the delay becomes larger than
the free-running laser relaxation-oscillation frequency.
The increase of time-delay value however leads to
additional bifurcations on ECMs which deserve further
investigations. This conclusion contrasts strongly
with the COF case, where similar self-pulsing
dynamics at the external cavity (EC) frequency
is typically limited to so-called short external
cavity [26]. This can be justified by the very
different bifurcation mechanism leading to EC
self-pulsing dynamics in both cases. In COF, the
bifurcation mechanism is a Hopf bifurcation on
a ECM, that is, a steady-state solution of the
compound cavity system. The self-pulsing dy-
namics corresponds mathematically to a bridge
of time-periodic solution connecting two Hopf
bifurcations on two frequency detuned ECMs,
or, equivalently to a ECM beating [27, 28|.
Moreover, as one of the connecting ECMs is typ-
ically an unstable solution (called antimode), the

self-pulsing dynamics gets easily destabilized to
e.g. quasiperiodicity and chaos as one increases
even slightly the feedback rate. This makes
the observation of such ECM beating and Hopf
bridge quite difficult. In the PCF case, the laser
has only one stable steady state solution that
gets destabilized through a Hopf bifurcation to a
stable self-pulsing solution. As mentioned earlier,
since the frequency of that solution is close to the
external cavity frequency, that solution has been
called ECM but by contrast to COF an ECM
of the PCF system is a rotating solution with
time-periodic intensity and not a time-constant
intensity. The laser creates new such ECM solu-
tions as the feedback increases, but all originates
from the same and single steady state branch
and not, as for the COF, from a possible beating
or Hopf bridge on (ECM) steady state solutions.
The stability of the EC self-pulsing dynamics in
PCF (i.e. of ECM solution) is determined by
the interplay between a saddle-node bifurcation
and a torus bifurcation, hence makes it possible
to observe a robust and fully stable self pulsing
also when increasing the feedback rate or the
external cavity length.

In summary, we have reported on a new bifurcation
scenario in a laser diode with phase-conjugate optical
feedback. =~ When increasing the feedback rate, the
saddle-node bifurcation that creates a self-pulsating
ECM solution (limit cycle) may occur for feedback rate
value smaller than the one corresponding to the torus
bifurcation of another ECM. This results first in a full
suppression of chaos for larger values of the feedback
rate, where the underlying bifurcation mechanism is a
crisis from a saddle-node bifurcation on limit cycle. The
laser then exhibits robust self-pulsating dynamics at fre-
quencies being multiples of the external cavity frequency,
hence adjustable. Secondly, this leads to bistability
between self-pulsating ECM solutions of different and
high frequencies. The reported bifurcation scenarios
are observed in a large range of parameters. These
conclusions have been obtained through direct numerical
integration of an appropriate set of rate equations, but
also from the use of advanced continuation tools for
delay-differential equations. The reported dynamics
are of interest for the all-optical generation of high
frequency, microwave signals, and also the bistability
is of interest for all-optical signal processing. Many
of the reported bifurcation features, and in particular
the existence of a robust self-pulsing dynamics at large
feedback rates, contrasts with what is typically seen in
conventional optical feedback. They motivate further
investigations in experiments, where, although not
detailed, reports show the existence of coexisting more
regular attractors at large feedback rates.
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Abstract — We show that time-delayed feedback can induce an optimal regularity in the pulsating
dynamics of a nonlinear system without the need for an additional noise source. This deterministic
delay-induced coherence resonance is reported experimentally in the chaotic dynamics of a laser
diode subject to a phase-conjugate optical feedback, when varying the amount of feedback light.
Qualitatively similar resonance is found theoretically in the model of a time-delayed class-A laser.
The resonance is therefore not related to an interplay between time-delayed dynamics and faster
undamped relaxation oscillations and is thought to be generic for a large class of delayed nonlinear

systems.
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Introduction. — It is of common knowledge that the
dynamics of a noise-driven nonlinear system can exhibit
an optimal response to either an external modulation
(stochastic resonance [1]) or to one of the system internal
time scale (coherence resonance [2]). Stochastic reso-
nance has been initially reported in bistable noise-driven
systems, such as in neuronal systems and solid-state
physics (for a review see, e.g., [3]). A pioneering experi-
ment was performed in optics using a bistable ring laser [4]
and was later detailed using vertical-cavity surface-
emitting lasers [5]. Stochastic resonance has also been
reported in chaotic pulsating dynamics [6]. Coherence
resonance was found initially in noise-driven excitable
nonlinear systems. Excitable systems are systems that
can fire a pulse when perturbed above a certain threshold
and that cannot fire a second pulse before a given
refractory time has passed. Examples are typically found
in the generation of nerve pulses in biology [7]. The first
experimental demonstrations of coherence resonance have
been reported in electronic circuits [8] and in a laser diode
with optical feedback [9]. As for stochastic resonance,
coherence resonance has today been demonstrated for
a large class of dynamical systems, including in the
random-like motion between chaotic attractors [10] and
in bistable systems with time delay [11].

Both coherence and stochastic resonance have recently
been shown in deterministic chaotic systems, i.e., without
the addition of noise. In refs. [12,13] the increase of

current leads to an optimal regularity of the time between
chaotic laser diode power dropouts. In ref. [14] the chaotic
fluctuations show an optimal entrainment to external
modulation when the modulation time period is close to
one of the multiples of the system time scale.

In this letter, we report on a significantly different
case of deterministic coherence resonance (DCR) in the
dynamics of a nonlinear system. The resonance occurs
by simply increasing the amount of feedback signal in a
time-delayed system. It is demonstrated experimentally
in the chaotic dynamics of a laser diode with optical
feedback: an optimal value of the feedback strength leads
to an optimal regularity of the time between chaotic
low-frequency fluctuations (LFF), all the other laser and
feedback parameters remaining fixed. The previously
reported case of DCR [12] originates from the complex
interplay between the fast fluctuations at the system
internal time scale (relaxation oscillations) —which play
the role of driving noise-like forces— and the slower
chaotic fluctuations at the time delay time scale. Hence it
is typically observed close to the solitary laser threshold
where the laser shows typically coexistence between stable
steady state and excitable-like chaotic dynamics [13].
The purely delay-induced resonance shown here cannot
be explained by these mechanisms. First, we find a
qualitatively similar DCR in a model of a time-delayed
class-A laser that shows chaotic dynamics resembling LFF
but without the additional complexity of the laser diode
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Fig. 1: (Colour on-line) Experimental setup. Beam 1 (5) is the
emitted (PCF) beam. Beam 2 is the crystal incident beam.
Counterpropagating beams 3 and 4 create the transmission
grating in the crystal. The mirror reflectivity can be varied
using a neutral density filter. The powermeter measures the
PCF beam power.

relaxation oscillations [15]. Secondly, our experiment uses
a phase-conjugate feedback (PCF) and the PCF laser
system has no such steady-state but only pulsating solu-
tions at multiples of the external cavity frequency [16,17].

Optical feedback experiment. — Our experimental
setup is summarized in fig. 1. The laser is a 852 nm edge-
emitting diode laser with threshold current of 18 mA. The
phase-conjugate feedback is performed by nonlinear self-
pumped four-wave mixing (FWM) in a SnaP5Sg : Te crys-
tal which dimensions are 6 x 6 x 11 mm3. The orientation
of the crystal has been set in order to minimize Fresnel
losses from the crystal faces (8=26°) and to optimize
the wave mixing gain (20 =30°). The beam undergoes
phase conjugation and is then injected back into the laser
cavity after a time delay of about 8.4ns (=L/c where
L is the optical path of the pump beam, i.e. twice the
distance laser-crystal plus the length of the FWM loop).
PCF reflectivity is estimated from the ratio of the PCF
power (component 5) with the crystal incident beam power
(component 2). We achieve maximum PCF reflectivity
of about 9% for an injection current of 60 mA. PCF is
interesting in that it compensates for any phase shift and
misalignment in the extended cavity, which are known
to induce dynamical resonance of low-frequency chaotic
dynamics [18].

Figure 2(a) shows a typical experimental time trace of
LFF chaotic dynamics observed for a mirror reflectivity
up to about 5%. As typical for LFF dynamics [19], and
as predicted theoretically in a model of a laser with
PCF [20], the dynamics is made of successive significant
power dropouts, that occur randomly in time but with
an average time between dropouts much slower than both
the laser internal time scales and the external cavity time
delay. In this case the times between dropouts range
between 30 and 200ns, while the relaxation oscillations
period at this injection current is measured at about
0.125ns and the time delay is of 8.4ns. As shown in
fig. 2(b), the corresponding power spectrum consists of
low-frequency components at the LFF averaged frequency,
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Fig. 2: (a): Experimental time trace showing typical chaotic
LFF. (b): Corresponding power spectrum.
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Fig. 3: Statistical distribution of the time between power
dropouts TrLrpp, for three increasing values of the mirror
reflectivity: (a) 4.84%, (b) 6.14%, (c) 7.47%.

with additional peaks at multiples of ¢/L. Remnants of
this self-pulsing dynamics at ¢/L frequency are seen in the
LFF dynamics: the power recovers in a stepwise manner
with damped relaxation oscillations that are reactivated
at about every time delay as shown in fig. 2(a).

Time delay induces coherence resonance without
external noise. — LFF dynamics have been seen [21] but
never characterized in the PCF case. We first analyze the
statistics of the time between power dropouts (TrLpp).
For that purpose, we take advantage of the fact that
Trrpr is much larger than any other laser or feedback
time scales, and therefore we filter out the time traces
(with a low-pass filter of 1 GHz bandwidth) so that we
keep only the information on Ty pp. A typical statistical
distribution of Tprp is shown in fig. 3(a). Similarly to
what has been reported for LFF dynamics in COF [22],
the statistics shows no statistical event for times smaller
than a given refractory time (here about 10 ns), and
then a monotonously decreasing curve for larger times.
Interestingly however, we find that an increase of the
mirror reflectivity leads to a severe change of the statistical
properties of Trpp: the average T pp increases with
the increase of the mirror reflectivity, but there is an
optimal amount of this reflectivity for which the dropout
time distribution is narrower around its averaged value
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and therefore the standard deviation gets a minimum
value (b). A further increase of the reflectivity leads to a
statistical distribution similar to case (a) but with a larger
averaged value of T, ppr. This feature is further confirmed
when looking as the corresponding time traces in fig. 4.
Case (b) shows more regular power dropouts than (a)
or (c).

The LFF dynamics exhibits what we call a “delay-
induced deterministic resonance”, i.e., varying the amount
of feedback signal in the nonlinear system leads to an
optimal response of the system to one of its dynamical
time scales without the need for an external noise input.
The coherence resonance-like phenomenon is evidenced in
fig. 5, which plots the ratio of the dropout time standard
deviation o7, . with the averaged Trrr, as a function of
the mirror reflectivity. This normalized variance R exhibits
a clearly distinguishable minimum at a particular value of
the mirror reflectivity that corresponds to the resonance
case (b) of fig. 4 and fig. 3 where the dropout time shows
higher regularity. The curve shows three regions of qual-
itatively different features: 1) For small mirror reflectiv-
ity, the laser exhibits a route to chaos from undamped

relaxation oscillations, which leads to a chaotic dynam-
ics with dominating high-frequency components at either
the relaxation oscillation frequency or the multiples of
the external cavity frequency. There is no distinguish-
able power dropouts, and the dynamics shows a large
dispersion of time between chaotic pulses together with a
small averaged time between pulses. Therefore R is large.
2) For a larger PCF reflectivity, the low-frequency compo-
nent (f <100-200 MHz) of the power spectrum increases,
which indicates the emergence of clearly distinguishable
and slow power dropouts. The averaged time between
dropouts increases with the increase of the mirror reflec-
tivity, but more slowly than the decrease of the standard
deviation of the time between dropouts. As a result R
decreases when increasing the feedback strength up to a
minimum value for a 6.14% mirror reflectivity. At that
point the laser time series shows maximum regularity in
the dropout times and coherence resonance is achieved.
3) Increasing the reflectivity leads to a more random
sequence of power dropouts and o7, ,, increases faster
than (T pr) with the PCF reflectivity.

Delay-induced resonance in class-A chaotic
power dropouts. — This purely delay-induced DCR
(i.e. without noise and without modification of the
internal system parameters) significantly differs from the
current-induced DCR reported earlier [12]. The authors
explain their current-induced DCR by the fast fluctu-
ations at the relaxation oscillation time scale that are
driving noise-like forces of a self-excitable deterministic
system [23]. The competition between the dynamics at
the relaxation oscillation frequency and the slow chaotic
LFFs at the time scale related to time delay is known to
be stronger when operating close to the laser threshold,
where it also leads to locking of quasiperiodic dynamics
known as synchronous LFFs [24]. The resonance is there-
fore observed when sweeping the current from below to
above the solitary laser threshold. In our case the current
is fixed at 60 mA (well above the threshold) and we claim
that the resonance is purely delay-induced, i.e. that it
does not link to or is not supported by current-dependent
relaxation oscillation fluctuations. To demonstrate this,
we deliberately simulate a model from a much simpler
laser system than the one used in experiment: a class-A
laser with feedback. By contrast to laser diodes or
class-B lasers, class-A lasers like, e.g., gas lasers do
not exhibit relaxation oscillation-like dynamics because
the carrier dynamics has been adiabatically removed
and the dynamics is made of a single equation for the
optical field [25]. With time delay the class-A laser model
writes [26]

dE

v p(1+iQ)E —b(1+iB)|E*E+a(1+ie)E(t — Ty,

(1)
where t is the time measured in units of 1/v, (v is
the polarization decay rate), E is the complex electric

field, p (b) is a dimensionless gain (saturation) coefficient,
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Fig. 6: Simulations of eq. (1). (a)—(c) Low-frequency power
dropouts for a=7.2; a=7.5, a =8.3, respectively. Panel (d)
shows the ratio of standard deviation to mean value of the
time between drops (T") as a function of a.

« is a detuning coefficient that is function of A and 9,
where A (0) is the detuning between the cavity frequency
(atomic center frequency) and the laser frequency. 3 is a
detuning coefficient that is function of §. T;. is the normal-
ized delay time. a = (1 — R3)v/R2R3/[R2 \/(1 + €2)y1 Tin)
is the normalized delayed feedback rate, where 7;, is the
internal laser cavity round-trip time, Rs (R3) is the power
reflectivity of the laser output mirror (external mirror).
(1+ ie) is the phase shift induced by optical feedback. We
have simulated the dynamics of E for increasing values of
a and the other parameters fixed as: u =0 (laser pumped
at threshold), « =14, b=1, =3, e=0 (the feedback
phase is not taken into account), T, = 1. Samples of chaotic
time-series are shown in fig. 6 for increasing values of a,
with the time scale being normalized by the time delay 7T’..
A close look shows fast pulsations of the laser output at
a period close to T, and dropouts that occur at random
time intervals and on a much slower time scale, of the
order of 207, or even more. As shown in fig. 6, the time
interval between successive power dropouts gets an opti-
mal regularity for an intermediate value of the feedback
strength (b), if compared to the situation at smaller (a) or
larger (c) feedback strength. This conclusion is confirmed
by a plot of the ratio between standard deviation and mean
value of the time between power dropouts (or/(T)) as a
function of the feedback rate a (d). This delay-induced
resonance of chaotic dynamics is qualitatively similar to
the one seen in our experiment, although the dynami-
cal system exhibits no relaxation oscillation or internal
dynamics faster than the delay time scale.

Discussion. — In summary, we have provided an exper-
imental evidence for a new class of coherence resonance
(CR) in a nonlinear system, which is observed without the
need for an additional noise and for which the parameter
inducing resonance is only the amount of feedback signal.
This so-called deterministic delay-induced resonance is
observed in the chaotic low-frequency fluctuations (LFF)
of a laser diode with phase-conjugate feedback (PCF).
For an optimal amount of feedback ratio, the laser diode

exhibits an optimal regularity of the time between slow
chaotic power dropouts. The mechanism inducing this
deterministic CR is different from the current-induced CR
shown in refs. [12,13] for at least two reasons: 1) we show
theoretically that a qualitatively similar CR occurs in a
simple model of a time-delayed class-A laser that shows
no relaxation oscillations but only fundamental pulsations
at the time delay, 2) the basic solutions of the PCF laser
system are not steady states but self-pulsating solutions at
the external cavity frequency, therefore the LFFs cannot
be related to self-induced saddle-node type of excitability.
Which are the bifurcations that lead to LFF in the PCF
laser system is an interesting question, which is further
stimulated here by the CR phenomenon. We anticipate
the delay-induced CR to be generic to a large class of
delayed nonlinear systems, as suggested by recent theo-
retical works in, e.g., delayed logistic maps and diffusively
coupled Rossler oscillators [27].
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We report experimentally on extreme events in the pulsating dynamics of an optical time-delayed system, i.e., a
diode laser subject to a phase-conjugate feedback. We study the effect of the feedback strength on extreme events’
properties. We show a transition to non-Gaussian statistics of the pulse intensity and an increased number of
extreme events as the mirror reflectivity increases. The extreme event pulse is anticipated and followed by smaller
pulses with time-delay periodicity. © 2013 Optical Society of America

OCIS codes: 190.3100, 250.56960, 190.5040.

Extreme events, rogue waves, and disruptive events are
names often given to single events that may occur in
many fields, such as hydrodynamics [1], plasma physics
[2], and optics [3-5]. Those extreme events are waves of
very high amplitude that can appear in a signal on a rare
basis, thus breaking its otherwise smooth or regular evo-
lution. Historically, the first extreme events were spotted
in the ocean by sailors and were then described as huge
lone waves arising very high above the calm average
water level without warning. Many studies have been per-
formed to account for their origin, their probability of
occurrence, and the systems that could give birth to ex-
treme events. Besides their first report in microstruc-
tured optical fibers showing supercontinuum emission
[3], extreme events in optics have also been shown in
mode-locked lasers [6,7] and laser diodes with optical
injection [8,9].

We report here on extreme events in another well-
known class of nonlinear optics, which is a system with
time-delayed optical feedback. More specifically, our
experiment uses a laser diode with phase-conjugate feed-
back (PCF). We show a transition to long-tailed non-
Gaussian statistics of the pulse intensity and an increased
number of extreme events as the mirror reflectivity in-
creases. The single extreme event pulse is anticipated
and is followed by pulses with time-delay periodicity.
Upon increasing the feedback strength, a larger number
of these time-delay-periodic pulses become extreme
events and lead to a deviation from the log-Poisson
statistics of the time between extreme events.

Our experimental setup is shown in Fig. 1(a). The laser
is a 852 nm edge-emitting diode laser with 50 mW output
power at a driving current of 60 mA. The PCF is per-
formed by nonlinear self-pumped four-wave mixing in a
6 mm x 6 mm x 11 mm SnyPyS4:Te crystal. The whole ring
cavity is the phase conjugation mirror (PCM) and the or-
ientation of the crystal has been set in order to minimize
Fresnel losses at the crystal faces (f = 26°) and to opti-
mize the two-wave mixing gain (20 = 30°). The external
cavity length L = 54 cm is the whole ring cavity length
plus one roundtrip between the laser and the crystal.
The related time delay is = = 1.8 ns. PCM reflectivity R
is the ratio of the PCF power (component 5) with the
crystal incident beam power (component 2). When the
mirror reflectivity increases, the system undergoes a se-
quence of bifurcations to self-pulsing dynamics at fre-
quencies close to the relaxation oscillation frequency

0146-9592/13/050703-03$15.00/0

or to the external cavity frequency and multiples, as pre-
dicted theoretically [10]. Additional secondary bifurca-
tions lead to deterministic chaotic pulsing with a
broadband RF spectrum showing enhanced frequency
content at the multiples of the external cavity frequency.
Chaos is observed already for R = 1.3%; hence the
parameter range where the dynamics is steady or time-
periodic pulsing is very small. Figure 1(b) is a typical ex-
ample of a chaotic time series—for R = 4.4%—where we
recognize an extreme event arising well above the signal
average value. The red line labeled Al = 2 is the thresh-
old above which a pulse is considered as an extreme
event, i.e., as defined in [1] twice the average peak height
among one third of the highest peaks of the whole series
(abnormality index Al = (H;/H,) > 2).

Figure 2 shows the evolution of the laser output power
versus time and the corresponding histograms when R
increases. The red horizontal and vertical lines are the
extreme events thresholds (different for each time ser-
ies). Extreme events appear and their number increases
when R increases. When R = 1.8% there is no pulse
above the threshold; therefore the signal shows no ex-
treme event. When R increases pulses appear that rise
much higher than the signal’s significant height. This
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Fig. 1. (Color online) (a) Experimental setup. Beam 1 (5) is
the emitted PCF beam. Beams 3 and 4 create the transmission
grating. The mirror reflectivity is varied using a neutral density
filter. (b) Extreme event pulse (Al = 2.23).
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olds for extreme events.

induces a stretching of the statistics’ shape, showing new
concavity due to a higher number of events above the
threshold in the statistics’ tail. We achieve a maximum
Al value (2.6) when R = 7.7%. Figure 3 summarizes
the increased number of extreme events as R increases
(a) and the transition from Gaussian-shaped statistics of
the pulses’ power when R is small to long-tailed statistics
with increasing probability for high-amplitude peaks
when R is larger (b). Besides the Al criterion, the
statistics’ reshaping into a long-tailed shape is typically
used to identify extreme events [11].

A careful analysis of Fig. 2 allows us, however, to dis-
tinguish between two kinds of extreme events. Indeed,
although in chaotic dynamics most pulses are not regu-
larly spaced in time, in our feedback laser system there
are some that are clearly separated by the time-delay per-
iod, such as those shown in the dashed box of Fig. 2(b),
and that are amplified when R increases. As in Figs. 2(b)
and 2(c), extreme events appear as high lone peaks.
Then, as shown in Fig. 2(d), bunches of small pulses that
are separated by the time-delay period grow and end up
by reaching the threshold as well; each pulse might thus
count as an extreme event. These two situations of
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(Color online) Time traces and histograms of the laser power for increasing R. Red horizontal and vertical lines are thresh-

extreme events, either isolated pulses or bunches of
pulses with time-delay periodicity, coexist in a single
time series. The histograms of Fig. 2 consider both types
of extreme events. To discriminate those two kinds of
events, we considered that consecutive events separated
by times below twice the delay (about 6 ns) belong to the
same bunch. We find more extreme events of type I (iso-
lated pulses) than of type II (bunches of pulses), although
the ratio varies when increasing the mirror reflectivity. In
a time series of 40 ps, we count 203 single events and 19
events in bunches (8%) when R = 4.4%, while we have
959 single events and 272 events in bunches (22%) when
R = T%. Tt is worth emphasizing that both types of ex-
treme events are pulses (or pulse packages) that occur
at randomly distributed time intervals much larger than
the system time scale; hence they can be considered as
rare events.

Even when extreme events appear as isolated pulses,
they differ from what has been reported so far and keep
the signature of the time-delayed feedback. This is better
analyzed in Fig. 4. A single extreme event is basically
made of a very short pulse surrounded by fast fluctua-
tions. As shown in Fig. 4(a) and previously seen in Fig. 2,
a single extreme event pulse is anticipated and followed
by pulses that repeat periodically at the time-delay time
scale. Figure 4(b) shows (in blue) 70 time series
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Fig. 4. (Color online) (a) Time series centered on one single
extreme event and (b) superposition of 70 extreme events with
corresponding averaged output power (yellow).



exhibiting single pulse extreme events when R = 4.4%,
each one being centered on the main pulse and plotted
in a 20 ns time span. In all cases, the single extreme event
has a well-defined pulse shape that is surrounded by
pulses repeating at multiples of the time delay. From
one time series to another, although the central peaks
are superimposed, the smaller pulses at the time-delay
periodicity remain uncorrelated. However, a general pat-
terning is sketched when many traces are simultaneously
plotted, showing power dropouts on each side of the ex-
treme event, at multiples of the time delay and within a
time interval of about 2-3 times the time-delay value. The
same observation is made for other R values. We can con-
clude therefore that in our system extreme events are not
merely single high-intensity pulses with immediate recov-
ery to an average value as in [8] but rather high-intensity
pulses coming along with very fast oscillations of smaller
amplitude damped with the delay time scale.

Finally, we analyze in Fig. 5 the statistics of the time
between extreme events. As has been recently measured
in a spatially extended nonlinear optical system [11], the
distribution of the waiting time between extreme events
is thought to follow a Poissonian distribution when the
time elapsed between extreme events numbered k -1
and k is written in log scale: w = In(%;,/t;_;). This is true
also in our time-delayed system when R is small (dots)
but increasing the feedback strength leads to a deviation
from the log-Poissonian statistics (squares). The devia-
tion occurs mostly for small values of w, where the
events are distributed linearly in log scale but with a dif-
ferent slope. These small w values correspond to values
of t;, — t;_1 that are comparable to the time delay; hence
the deviation originates from the delayed feedback. This
is also expected from Fig. 4, where pulsating dynamics
showing the periodicity of the time delay occur along
with single extreme events. These pulses become
extreme events when R increases, therefore adding
new extreme events—of the type “bunch of pulses”™—
to the statistics. The time separation between these
extreme events is still randomly distributed because
the pulses at the time-delay periodicity remain uncorre-
lated from one bunch of pulses to another [Fig. 4(b)], but
remains small in comparison to the time interval between
single extreme events.

In conclusion, we reported experimentally on extreme
events in an optical system with time-delay induced chao-
tic dynamics. The increased feedback strength yields an
increased number of extreme events that fulfill the criter-
ion relative to the Al, and exhibit statistics that show the
typical long-tailed distribution. By contrast to other re-
ported cases of extreme events, an extreme event pulse
is anticipated and followed by pulses with delay periodi-
city that may exhibit extreme event properties when
varying the feedback strength. The impact of noise on
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Fig. 5. (Color online) Statistical distribution of the time be-

tween extreme events for R = 4.4% (blue) and R = 7% (red).

the number of events and the statistics of the waiting
times form an interesting question, which could be ad-
dressed by simulations of a rate equation model.
Although the route to chaos is qualitatively well repro-
duced by a model with instantaneous phase conjugation
[10], the analysis of extreme events might require one to
account for the finite buildup time of the photorefractive
grating [12].
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